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Modern Statistical Methods for Genetics and Genomic Studies 

 

ABSTRACT 

Recent scientific advances in genetics and genomic studies have enabled the characterization and 

prediction of functional genomic elements across the human genome, including biological 

evidence which assesses different aspects of functional consequences of genetic variants through 

a diverse set of in silico functional annotations; and genetic evidence which assesses how genetic 

variants are associated with complex phenotypes or traits from large-scale sequencing studies. In 

this dissertation, we present novel statistical methods that performs integrative analysis of data 

arising from these complementary lines of evidence to better understand the functional 

annotation landscape of coding and noncoding genetic variants and uncover the genetic 

architecture of human disease or traits. 

 

In Chapter 1, we propose Multi-dimensional Annotation Class Integrative Estimation (MACIE), 

an unsupervised multivariate mixed model framework capable of integrating annotations of 

diverse origin to assess multi-dimensional functional roles for both coding and noncoding 

variants. MACIE effectively summarizes these diverse and complementary functional 

annotations into measures that can predict the multi-faceted biological functions of any given 

genetic variant, and thus provides richer and more interpretable information than existing one-

dimensional scores in the presence of multiple aspects of functionality. Applied to a variety of 
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independent coding and non-coding datasets, MACIE demonstrates powerful and robust 

performance in discriminating between functional and non-functional variants. We also show an 

application of MACIE to fine-mapping using lipids GWAS summary statistics data from the 

European Network for Genetic and Genomic Epidemiology Consortium. 

 

Large-scale whole genome sequencing (WGS) studies have enabled the analysis of rare variants 

(RVs) associated with complex phenotypes. Commonly used RV association tests (RVATs) have 

limited scope to leverage variant functions. In Chapter 2, we propose STAAR (variant-Set Test 

for Association using Annotation infoRmation), a scalable and powerful RVAT method that 

effectively incorporates both variant categories and multiple complementary annotations using a 

dynamic weighting scheme. STAAR accounts for population structure and relatedness, and is 

scalable for analyzing very large cohort and biobank WGS studies of continuous and 

dichotomous traits. We apply STAAR to identify RVs associated with four lipid traits using data 

from the Trans-Omics for Precision Medicine (TOPMed) program. We discover and replicate 

novel RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region 

near APOC1P1 associated with low-density lipoprotein cholesterol. 

 

Meta-analysis of WGS studies has provided an exciting solution to leverage large sample sizes 

for the discovery of coding and noncoding RVs associated with complex human traits. Existing 

RV meta-analysis approaches are not scalable when applied to WGS data due to the very large 

number of RVs whose summary-level information needs to be stored and shared. In Chapter 3, 

we extend the method in Chapter 2 and propose MetaSTAAR as a powerful and resource-

efficient RV meta-analysis framework scalable to large cohort and biobank WGS studies with 
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hundreds of millions of RVs across the genome, while accounting for relatedness and population 

structure for both quantitative and dichotomous traits. Through meta-analysis of four lipid traits 

from 14 studies of the TOPMed program, we demonstrate that MetaSTAAR performed resource-

efficient RV meta-analysis at scale and identified several conditionally significant RV 

associations with lipids. 
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CHAPTER I 

A Multi-dimensional integrative scoring framework for predicting functional 

variants in the human genome 

Xihao Li, Godwin Yung, Hufeng Zhou, Ryan Sun, Zilin Li, Yaowu Liu, Iuliana Ionita-Laza and 

Xihong Lin 

 

Abstract 

Attempts to identify and prioritize functional DNA elements in coding and noncoding regions, 

particularly through use of in silico functional annotation data, continue to increase in popularity. 

However, specific functional roles may vary widely from one variant to another, making it 

challenging to summarize different aspects of variant function. Here we propose Multi-

dimensional Annotation Class Integrative Estimation (MACIE), an unsupervised multivariate 

mixed model framework capable of integrating annotations of diverse origin to assess multi-

dimensional functional roles for both coding and noncoding variants. Unlike existing one-

dimensional scoring methods, MACIE views variant functionality as a composite attribute 

encompassing multiple different characteristics, and estimates the joint posterior functional 

probability vector of each genomic position, a quantity that offers richer and more interpretable 

information in the presence of multiple aspects of functionality. Applied to a variety of 

independent coding and non-coding datasets, MACIE demonstrates powerful and robust 

performance in discriminating between functional and non-functional variants. We also show an 

application of MACIE to fine-mapping using lipids GWAS summary statistics data from the 

European Network for Genetic and Genomic Epidemiology Consortium. 
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Introduction 

Recent scientific advances have enabled the identification of functional genomic elements 

through a diverse set of functional annotations, including proteins functional scores (1, 2), 

evolutionary conservation scores (3-5), and epigenetics scores from the Encyclopedia of DNA 

Elements (ENCODE) (6). Other initiatives such as the Roadmap Epigenomics project (7) and 

FANTOM5 project (8, 9) also provide evidence for potential regulatory variants in the human 

genome. Although different functional annotations capture different aspect of variant function, 

yet they provide complementary information on each other (10). Thus, to achieve a  

comprehensive understanding of the biological function of genomic variants, multi-faceted 

information from different functional annotations should be integrated simultaneously. However, 

it remains unclear how to summarize these diverse functional annotations in an insightful and 

interpretable manner. 

 

Current algorithmic scoring frameworks utilize a variety of statistical and machine-learning 

methods to aggregate information from multiple sources of individual annotations into one-

dimensional scores to measure functional impact of genetic variants. Supervised tools such as 

CADD (11), DANN (12), GWAVA (13), FATHMM-MKL (14), and FATHMM-XF (15) build 

machine learning classifiers on training sets with pre-labeled functional statuses, e.g., fine-

mapped pathogenic or disease-associated variants labeled against benign or neutral variants. 

Such supervised approaches rely strongly on the quality of labels in the training set. Therefore, 

they may demonstrate suboptimal performance when inaccurate or biased labels are used. 

Unsupervised methods such as EIGEN (16), GenoCanyon (17), PINES (18), and FUN-LDA (19) 
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do not depend on labeled training data. They possess advantages in studying non-coding regions, 

where our current lack of knowledge often precludes gold-standard training data labels. A third 

group of methods including fitCons (20) and LINSIGHT (21) use evolution-based approaches 

that characterize the potential effect of natural selection at each genomic location using 

polymorphism and divergence data. Recent reviews provide a more detailed discussion of 

available functional annotation tools (22, 23). 

 

Although existing methods attempt to integrate functional annotations through various 

approaches, to the best of our knowledge, these methods all summarize the annotation 

information with a single rating. In doing so, they implicitly assume that variant function can be 

described along a single axis, with variants being more functional on one end of the axis and less 

functional on the other end. This assumption may be reasonable if interest lies in predicting a 

specific aspect of variant function (e.g. regulatory behavior) and all annotations used as input are 

intended to predict that same aspect. However, if multiple aspects of variant function are 

simultaneously of interest, then it is unclear how to interpret the one-dimensional consolidation 

of annotations measuring different aspects of function, especially when these annotations appear 

to provide orthogonal information, e.g., weak correlation between evolutionary conservation 

scores and regulatory scores (Figure 1.1). Therefore, it is of interest to construct multi-

dimensional integrative scores capable of capturing multiple facets of variant function 

simultaneously. 
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Figure 1.1 Heatmap demonstrating the correlation between individual and integrative 

functional scores for ClinVar pathogenic and benign noncoding variants. 

 

In this chapter we propose Multi-dimensional Annotation Class Integrative Estimation (MACIE), 

an unsupervised multivariate mixed model framework capable of synthesizing multiple 

categories of annotations and producing interpretable multi-dimensional integrative scores. 

Instead of a single rating, MACIE explicitly defines variant function as a vector of latent binary 

outcomes, each outcome capturing functionality corresponding to a specific class of annotations. 

Correlations within and between the different classes of annotations are explicitly modeled, 

another advancement over existing methods. Using the Expectation-Maximization algorithm, 

MACIE calculates the joint posterior probability vector of a genomic position being functional 

(Methods). 
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Because of its multivariate formulation, MACIE is able to provide detailed and nuanced 

assessments of variant functionality. Output from MACIE is highly interpretable due to the 

specificity allowed by multiple functional classes. Additionally, the MACIE framework allows 

for considerable versatility to incorporate data in a manner that is most biologically relevant to 

the scientific question of interest. We apply MACIE to multiple independent coding and 

noncoding testing sets and show that, compared to current state-of-the-art integrative scores, 

MACIE consistently provides robust and best or near best performance in discriminating 

between functional and non-functional variants. 

 

Results 

Construction of MACIE training sets 

MACIE scores were computed for a, nonsynonymous coding and b, noncoding and synonymous 

coding variants separately because the two types of variants are expected to have highly different 

functional profiles (16). All nonsynonymous coding annotations and some noncoding and 

synonymous coding annotations were downloaded from EIGEN. The remaining noncoding and 

synonymous coding annotations were downloaded from CADD full database (11) v1.3.  

 

Nonsynonymous coding variants 

For the nonsynonymous coding training set, we randomly extracted 10% of the variants with a 

match in the dbNSFP database (24). This database excludes synonymous variants that fall in 

coding regions but do not alter protein function. Only one unique variant per position was 

selected, and variants residing in sex chromosomes X and Y were removed to mitigate potential 

sources of bias. The final set included approximately 2.2 million variants. For each variant in the 
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training set, four protein substitution damage scores (SIFT (1), PolyPhenDiv, PolyPhenVar (2), 

Mutation Assessor (25)) and eight evolutionary conservation scores (GERP_NR and 

GERP_RS(5); PhyloP primate (PhyloPri), placental mammal (PhyloPla), and vertebrate 

(PhyloVer)(4); PhastCons primate (PhastPri), placental mammal (PhastPla), and vertebrate 

(PhastVer)(3)) were extracted from the EIGEN database (16). Thus we defined the two-class 

MACIE model (𝑀 = 2) for nonsynonymous coding variants to assess damaging protein coding 

function and evolutionarily conserved function. Full information on the MACIE model for 

nonsynonymous coding variants and the list of individual functional scores are given in Methods 

and Supplementary Table 1.1. 

 

Noncoding and synonymous coding variants 

For the noncoding and synonymous coding training set, we extracted a random sample 

comprising 10% of the variants in the 1000 Genomes Project dataset that were located within 

500 base pairs (bp) upstream of a gene start site and did not possess a match in dbNSFP. 

Duplicated variants with multiple alternative alleles and variants in sex chromosomes X and Y 

were again removed to mitigate potential bias. The final training set included 36,431 variants. 

For each variant in the training set, the same eight evolutionary conservation scores used for 

coding variants were extracted from the EIGEN full database (16). A total of twenty-eight 

transformed epigenetic scores were additionally extracted from the CADD database (11) v1.3, 

including a collection of regulatory annotations from the ENCODE Project (6), three 

transcription factor binding site scores, GC content, CpG content, five chromatin state 

probabilities derived from the 15 state ChromHMM model (26), a background selection score 

(27), and physical distance metrics (11). We then defined the two-class MACIE model (𝑀 = 2) 
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for noncoding and synonymous coding variants to assess evolutionarily conserved function and 

epigenetic regulatory function. Full information on the MACIE model for noncoding and 

synonymous coding variants and the list of individual functional scores are given in Methods and 

Supplementary Table 1.1. Detailed information on pre-processing steps for the epigenetic scores 

are given in Supplementary Table 1.2.  

 

Benchmarking the performance of MACIE with other integrative scoring methods 

We compared the predictive performance of MACIE against existing state-of-the-art variant 

classifiers including CADD (11), FATHMM-XF (15), EIGEN (16), fitCons (20), LINSIGHT 

(21), and DANN (12) over a range of realistic variant assessment scenarios. Specifically, we 

assessed the ability of each score to identify clinically significant variants from ClinVar (28, 29); 

loss-of-function variants in the BRCA1 gene uncovered through saturation genome editing (SGE) 

(30); promoters and enhancers from the FANTOM5 project defined by cap analysis of gene 

expression (CAGE) (8, 9); and experimentally verified functional variants from massive parallel 

reporter assays (MPRA) (31, 32). Some alternative scoring methods were excluded due to 

difficulties related to providing a proper comparison of results. For example, LINSIGHT is 

designed to predict the deleteriousness of noncoding variants, so we did not include it in the 

comparison for nonsynonymous coding variants. 

 

Distribution of posterior probabilities for noncoding and synonymous coding variants in 

the training set 

In Supplementary Table 1.3 we provide the posterior probabilities of each functional class 

averaged across all the noncoding and synonymous coding variants in the training set. The 
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predicted MACIE score for a given variant can be interpreted as the posterior probability of that 

variant belonging to (0,0), neither conserved nor regulatory classes; (1,0), the conserved but not 

the regulatory class; (0,1), the regulatory but not the conserved class; and (1,1), both conserved 

and regulatory classes. The four MACIE scores necessarily sum up to 1. A chi-squared test 

comparing observed and expected percentages under independence of evolutionary conservation 

and regulatory classes gives a significant P value of less than 2.2 × 10−16, suggesting that the 

two classes are correlated. Since the observed percentage of functional variants that belong to 

(1,1) is statistically significantly greater than the expected percentage under independence 

(3.15% > 1.96%), we find strong evidence of enrichment of regulatory activity in conserved 

regions. Additionally, the MACIE model for noncoding and synonymous coding variants 

estimates that 8.05% and 24.34% of the variants show evolutionarily conserved and regulatory 

functionality, respectively. This is consistent with the prediction from LINSIGHT and other 

previous studies that approximately 7% - 9% of noncoding sites are under evolutionary 

constraint (21, 33), as well as an estimated upper bound of 25% of the functional fraction within 

the human genome (34). 

 

ClinVar pathogenic and benign variants 

We first validated our methods on a testing set consisting of all variants recorded in the ClinVar 

database (28, 29). Variant effect predictor (VEP) information was extracted from GENCODE 

(35) and used to separate nonsynonymous coding variants from noncoding and synonymous 

coding variants in ClinVar. The two MACIE models described above were then applied to the 

respective partitions. We combined the ClinVar categories “pathogenic” and “likely pathogenic” 

into a single pathogenic class and treated these variants as the putatively functional class. 
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Similarly, we combined the ClinVar categories “benign” and “likely benign” into a single benign 

class and treated these variants as the putatively non-functional class. The remaining variants 

were categorized as having uncertain significance. 

 

We first tested MACIE’s ability to distinguish pathogenic variants (𝑛 = 33,714) from their 

benign counterparts (𝑛 = 14,410) among ClinVar nonsynonymous variants through two 

approaches. First, we calculated two marginal MACIE scores: a, MACIE-damaging protein 

function score (denoted by MACIE-protein) as the sum of the posterior probabilities of 

“damaging protein functional/not conserved” and “damaging protein functional/conserved”; b, 

MACIE-conserved score as the sum of the posterior probabilities of “damaging protein 

functional/conserved” and “not damaging protein functional/conserved”. We also considered the 

posterior probability of either damaging protein functional or conserved (denoted by MACIE-

anyclass) by summing the posterior probabilities corresponding to at least one functional class. 

This example illustrates the versatility of MACIE’s posterior probability outputs, which can be 

summed to form new probability measures with various informative interpretations depending on 

the specific needs of each analysis. 

 

Figure 1.2 provides the receiver operating characteristic (ROC) curves and area under the curves 

(AUC) for the three MACIE approaches and seven one-dimensional scores for ClinVar 

nonsynonymous variants. Of the methods considered, MACIE-damaging protein function score 

delivered the highest discrimination power (AUC = 0.93), followed by CADD (AUC = 0.91), 

EIGEN (AUC = 0.90), and MACIE-anyclass (AUC = 0.89). These four methods substantially 

outperformed the supervised DANN (AUC = 0.78), the supervised FATHMM-XF (AUC = 
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0.74), and the evolution-based fitCons (AUC = 0.54). Similar results were observed when 

distinguishing between pathogenic missense (as opposed to all nonsynonymous) variants (𝑛 =

21,409) from their benign counterparts (𝑛 = 14,035) in ClinVar (Supplementary Figure 1.1). 

 

Figure 1.2 ROC curves comparing the performances of MACIE and other functional 

scores in discriminating between ClinVar pathogenic and benign 

nonsynonymous coding variants. 

 

Next, we identified 40,109 noncoding variants from ClinVar database in total, including 6,551 

pathogenic variants, and 33,558 benign variants. For these noncoding variants, we chose to 
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calculate a marginal MACIE-conserved score, as ClinVar pathogenic noncoding variant labels 

track closely with evolutionary conservation scores (Figure 1.1). ROC curves and AUCs for 

discriminating between the pathogenic and benign variants are provided in Supplementary Figure 

1.2. MACIE-conserved score showed comparable performance (AUC = 0.95) to FATHMM-XF 

score, which showed the highest discrimination power (AUC = 0.97). The outperformance of 

FATHMM-XF in this specific example should be expected because FATHMM-XF is a 

supervised machine-learning method trained on labels that bear many similarities to the labels 

defined in ClinVar, while MACIE is an unsupervised method. We performed Wilcoxon rank-

sum tests to compare the distribution of integrative scores between ClinVar pathogenic and 

benign noncoding variants for each method. The Wilcoxon test P values for both FATHMM-XF 

and MACIE-conserved scores were less than 2.2 × 10−308, representing high discriminative 

abilities for each score. MACIE-conserved score substantially outperformed the unsupervised 

method EIGEN (AUC = 0.84) and the evolution-based method fitCons (AUC = 0.55). 

 

Loss-of-function nonsynonymous coding variants in BRCA1 

We evaluated MACIE’s performance in predicting the deleteriousness of nonsynonymous coding 

variants located within 13 exons that encode functionally critical domains of BRCA1. A two-

component Gaussian mixture model was fit based on the saturation genome editing function 

scores to classify all BRCA1 variants as loss-of-function (LOF), intermediate (INT), or functional 

(FUNC), in a decreasing order of severity (30). Thus, FUNC corresponds to benign variants in 

this experiment. We selected reported LOF nonsynonymous coding variants (𝑛 = 674) as the 

putative functional set and designated FUNC nonsynonymous coding variants (𝑛 = 1,443) as 

the putative non-functional set. Among all the methods compared (Figure 1.3), MACIE- 
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Figure 1.3 ROC curves comparing the performances of MACIE and other functional 

scores in discriminating between loss-of-function (LOF) and functional (FUNC) 

nonsynonymous coding variants within 13 exons that encode functionally critical 

domains of BRCA1 based on saturation genome editing (SGE) data. Here the 

LOF class is our putative functional class and the FUNC class is our putative 

non-functional class. 

 

damaging protein function score showed the highest predictive power (AUC = 0.91), followed 

by EIGEN (AUC = 0.88) and MACIE-anyclass (AUC = 0.88). The top three scores were much 

more powerful than CADD (AUC = 0.78), FATHMM-XF (AUC = 0.69), DANN (AUC = 0.60) 

and fitCons (AUC = 0.42). The Wilcoxon test P value for MACIE-damaging protein function 
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score was the lowest (𝑃 = 7.60 × 10−203), and was orders of magnitude smaller than EIGEN 

(𝑃 = 7.22 × 10−179), CADD (𝑃 = 1.81 × 10−95) and other integrative scores. We observed 

similar results when distinguishing between BRCA1 LOF nonsynonymous coding variants (𝑛 =

674) and ClinVar benign nonsynonymous coding variants (𝑛 = 14,410) (Supplementary Figure 

1.3). 

 

FANTOM5 CAGE-defined promoters and enhancers among 1000 Genomes noncoding 

variants 

We tested the ability of MACIE to identify promoter regions defined by the cap analysis of gene 

expression conducted during the FANTOM5 project (8, 9). A total of 110,895 out of 

approximately 80 million noncoding variants from the 1000 Genomes Project Phase 3 data (36) 

were mapped to such regions and therefore labeled as CAGE promoters. For each identified 

CAGE promoter variant, we used the 1000 Genomes Project database to randomly select a 

matched control variant (non-promoter) that possessed the same minor allele frequency (MAF) 

and same minimum distance to any gene transcription start site that was located at least 500 

kilobase (kb) away from the promoter variant, yielding a total number of 97,298 variants in the 

control set (it was not possible to find a matched control for each CAGE variant). Similar to the 

previous analysis, we calculated a marginal MACIE-regulatory score by summing the two 

probabilities corresponding to the regulatory class (denoted by MACIE-regulatory). ROC curves 

and AUCs for discriminating between CAGE promoters and non-promoters are provided in 

Figure 1.4a. MACIE-regulatory and MACIE-anyclass scores showed the highest discrimination 

power (AUC = 0.75), followed by EIGEN with AUC = 0.74. The Wilcoxon test P value for 

MACIE-regulatory score was less than 2.2 × 10−308, indicating high discrimination ability.  



 

14 
 

Figure 1.4 ROC curves comparing the performances of MACIE and other functional 

scores in discriminating between a, CAGE identified promoters and non-

promoters and b, CAGE identified enhancers and non-enhancers among 

noncoding variants from 1000 Genomes Project Phase 3 data. For CAGE 

Enhancer predictions, LINSIGHT was excluded as it uses the FANTOM5 

enhancer label as one of the genomic features in building the LINSIGHT score. 

 

FATHMM-XF (AUC = 0.54) and fitCons (AUC = 0.56) scores performed poorly due to the 

inability of these one-dimensional scores to capture epigenetic functionality. We also performed 

a similar analysis by contrasting CAGE-identified enhancers (𝑛 = 520,987) versus non-



 

15 
 

enhancers (𝑛 = 448,253) using noncoding variants from the 1000 Genomes Project. The results 

were similar, with MACIE-regulatory score displaying the highest predictive power and 

significantly outperforming all other state-of-the-art methods (Figure 1.4b). 

 

MPRA validated variants and dsQTLs in lymphoblastoid cell lines 

We examined the performance of MACIE for predicting cell type/tissue-specific regulatory 

variants using test sets from the massively parallel reporter assay. The MPRA dataset included 

validated regulatory variants in lymphoblastoid cell lines (LCLs) (31). We paired each positive 

variant (𝑛 = 693) with four control variants from MPRA where neither allele showed significant 

differential expression at a Bonferroni corrected P value threshold of 0.1 (𝑛 = 2,772) (37). 

Figure 1.5a shows that MACIE-regulatory score produced the highest discrimination power 

(AUC = 0.68), outperforming the second-best performing method (LINSIGHT, AUC = 0.64). 

 

Finally, we evaluated the performance of our proposed method on a collection of dsQTLs that 

were identified using DNase I sequencing data from human lymphoblastoid cell lines (38). 

Variants possessing association P values less than 1 × 10−5 and residing within 100 bp of their 

corresponding DNase I-hypersensitive sites were chosen as the putatively functional set (𝑛 =

560) (39). The control set of variants was randomly selected from a larger set of common 

variants (MAF > 5%) falling in the top 5% of DNase I sensitivity sites used to identify dsQTLs 

in the original study (𝑛 = 2,240). We observed that MACIE-regulatory score exhibited a larger 

AUC (AUC = 0.76) than all other methods (Figure 1.5b). MACIE-anyclass score also delivered 

robust performance on MPRA validated and dsQTLs datasets. 
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Figure 1.5 ROC curves comparing the performances of MACIE and other functional 

scores for prediction of a, validated regulatory variants in lymphoblastoid cell 

lines (LCLs) from massively parallel reporter assays (MPRAs) and b, dsQTLs 

identified using DNase I sequencing data in LCLs against control variants. 

 

In summary, MACIE consistently ranked as one of the most powerful, robust and interpretable 

methods across a variety of settings and scientific questions. Our results show that while one-

dimensional scores have gaps in coverage, a multi-dimensional scoring method offers robust and 
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interpretable predictive performance. The ability of MACIE to interrogate variant functionality 

from multiple perspectives, at a level that is highly competitive with or better than state of the art 

methods, is unmatched by existing integrative functional scoring methods. 

 

MACIE prioritizes functional variants using lipids GWAS data 

To illustrate the utility of MACIE scores in identifying plausible functional causal variants in 

genetic association studies, we applied MACIE to the publicly available lipids GWAS data from 

the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium (40). 

This dataset consists of lipids GWAS summary statistics for 9.6 million single nucleotide 

variants (SNVs) across 62,166 samples (Supplementary Table 1.4). We focused on genome-wide 

significant (𝑃 < 5 × 10−8) SNVs associated with low-density lipoprotein cholesterol (LDL-C), 

high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and total cholesterol (TC). In 

total, we found 8, 9, 6, and 11 nonsynonymous coding SNVs that were predicted to belong to the 

protein damaging class with probability greater than 0.9 for LDL-C, HDL-C, TG, TC, 

respectively; 640, 377, 322, and 846 synonymous or noncoding SNVs that were predicted to 

belong to the regulatory class with probability greater than 0.9; 50, 64, 39, and 61 SNVs that 

were predicted to belong to the evolutionarily conserved class with probability greater than 0.9; 

and 9, 8, 10, 12 SNVs that were predicted to belong to both evolutionarily conserved and 

regulatory class with probability greater than 0.9 (Supplementary Tables 1.5-1.12). Compared to 

the total number of marginally significant SNVs for each trait (Supplementary Table 1.4), the 

MACIE scores reduce the number of SNVs prioritized for follow-up by an order of magnitude, 

saving much cost and effort in effectively pinpointing SNVs with relevant biological function. 
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For example, for LDL-C, the single most significant SNV was rs7412 (chr19:45412079 C/T; 

𝑃 < 1 × 10−316). We predicted this known common missense SNV to be functional, as both 

MACIE-protein and MACIE-conserved scores provided a prediction greater than 0.95. These 

predictions highlight the multiple functional roles of this SNV. It is also worth noticing that the 

second most significant SNV rs1065853 (chr19:45413233 G/T; 𝑃 < 1 × 10−316) is in extremely 

high linkage disequilibrium (LD) with the leading SNV rs7412 (Figure 1.6). MACIE scores 

indicate that rs1065853 (upstream variant of APOC1) may possess a regulatory role since its 

MACIE-regulatory score is greater than 0.99, possibly suggesting that both the missense and 

regulatory variants can be putatively causal in affecting LDL-C levels. Similar results were 

observed for TC (Supplementary Figure 1.4). For HDL-C, although the single most significant 

SNV was rs17231506 (chr16:56994528 C/T; 𝑃 = 6.88 × 10−316), the MACIE prediction was 

less than 0.01 for both classes. By scanning across the CETP locus and nearby noncoding 

regions associated with HDL-C, we found that two SNVs, rs72786786 (chr16:56985514 G/A; 

𝑃 = 2.52 × 10−253) and rs12720926 (chr16:56998918 A/G; 𝑃 = 1.89 × 10−260), both under 

moderate to high LD with the leading SNV (Supplementary Figure 1.5), possess a MACIE-

regulatory score greater than 0.99. These two SNVs may be more functionally important than 

rs17231506 and may provide more information regarding risk-perturbing biological mechanisms 

associated with this locus and can be prioritized for functional follow-up. For TG, there is also a 

lack of functional evidence for the leading SNV rs964184 (chr11:116648917 G/C; 𝑃 =

1.74 × 10−157) in the APOA1/C3/A4/A5 gene cluster region. However, a SNV rs2075290 

(chr11:116653296 C/T; 𝑃 = 2.13 × 10−103) in moderate LD with rs964184 at this locus has a 

MACIE-regulatory score of 0.88 (Supplementary Figure 1.6). These examples illustrate how 
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MACIE scores can be used to supplement previous literature and provide additional information 

to aid prioritization of putatively functional causal variants for functional follow-up. 

Figure 1.6 LocusZoom plot (41) for GWAS associations of LDL-C at the APOE locus. The 

lipids GWAS summary statistics were from the European Network for Genetic 

and Genomic Epidemiology (ENGAGE) Consortium (n = 58,381) (40). 

 

The MACIE-protein and MACIE-conserved scores for rs7412 are 0.96 and 0.97, respectively. 

The MACIE-conserved and MACIE-regulatory scores for rs1065853 are < 0.01 and > 0.99, 

respectively. 

 

Discussion 

As the amount of publicly available annotation data increases and our understanding of variant 

functional effects continues to grow, describing variant functionality with a flexible yet 

practically interpretable and intuitive vocabulary will only become more important. Existing one-

dimensional integrative scores cannot capture the multi-faceted functional profile of a variant 
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because such ratings necessarily combine diverse, and possibly unrelated, sets of annotations into 

a single outcome. Oftentimes, they also ignore or do not fully take into account the correlation 

between individual annotations. Current supervised methods further demonstrate performance 

profiles that are linked strongly to the quality of training set labels. These supervised scores may 

lack robustness in the absence of gold-standard training sets. 

 

In this chapter we have proposed MACIE, an unsupervised multivariate mixed model framework 

that allows for multiple, possibly correlated, binary functional statuses. This framework offers 

several fundamental advancements over existing methods. First, MACIE provides multi-

dimensional scores that measure functionality across multiple different functional classes. As 

posterior predictive probabilities, these scores are interpretable and scientifically relevant. They 

can be further summarized into marginal measures such as “probability of function according to 

at least one class of annotations” or “probability of function according to all classes of 

annotations”. Classes of annotation can be defined separately for different types of variants, for 

example, coding and noncoding variants.  

 

Second, the MACIE model accommodates correlations both within- and between- classes. It has 

been reported that, while some of the available annotations measure similar notions of 

functionality, others provide distinct and complementary information (10, 23). By flexibly 

modeling potential, complex correlations across all the annotations, MACIE reflects this 

underlying biology. In doing so, it is better able to assign each annotation and group of 

annotations the appropriate amount of influence. 
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In multiple independent testing datasets, we showed that MACIE delivers powerful and robust 

performance in discriminating between functional and non-functional variants. Using lipids 

GWAS summary statistics data from the ENGAGE consortium, we also illustrated that MACIE 

offers an effective tool for fine-mapping studies to prioritize top hit in silico functional variants 

for experimental follow-up. MACIE scores have already been used, for example, to identify and 

characterize inflammation and immune-related risk variants in squamous cell lung cancer (42). 

Finally, the proposed MACIE scores can be used as a weighting scheme to further empower 

variant-set analyses of rare variants (43). 

 

Our proposed MACIE framework provides a multi-dimensional functional class extension of 

several existing unsupervised single scoring frameworks, such as EIGEN (16). MACIE fits a 

mixed model to the set of annotations for several latent functional classes and outputs the 

corresponding posterior component probabilities, which are highly interpretable. If we assume 

that there exists a single latent dichotomous variable summarizing functional status and that all 

annotations are independent conditional on the univariate functional status, then MACIE reduces 

to the GenoCanyon framework (17). 

  

The versatility of the MACIE approach does introduce additional decisions that investigators 

need to make. For example, one needs to decide which set of annotations to include and how to 

group the annotations. The exponential family assumption in the model may also require a 

proper transformation for each individual annotation score before fitting the model. 

Operationally, users need to consider the trade-off between a more complex model (e.g., by 

increasing the number of classes or the number of functional scores in each class) and 
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computation time. Such issues will become more relevant when extending the MACIE 

framework to integrate cell type-specific, tissue-specific, species-specific, or phenotype-related 

annotations (18, 19, 37). Nevertheless, these choices again highlight the flexibility of the MACIE 

approach. Unlike other one-dimensional algorithms that rely on assumptions more likely to be 

satisfied when the number of annotations is small, the MACIE statistical model scales well with 

increasing annotation data. Thus, MACIE can be expected to provide more meaningful 

predictions as the availability of annotation scores continues to expand and the quality of these 

data improves. 

 

A final important consideration in practical analysis concerns the differences between supervised 

and unsupervised methods. The performance of unsupervised scores may lag behind supervised 

methods when training datasets with relevant, high-quality labels are available. We observed this 

behavior when comparing MACIE to FATHMM-XF in ClinVar noncoding variants. Future 

extensions of interest include development of tools capable of integrating both supervised and 

unsupervised methods to further improve prediction accuracy (37). 

 

Methods 

The MACIE generalized linear mixed model (GLMM) 

Suppose there are 𝑁 genetic variants in total and we are interested in 𝑀 latent annotation classes, 

each containing 𝐿𝑗 annotation scores. For example, the first class may consist of 𝐿1 = 4 protein 

functional scores and the second class may consist of 𝐿2 = 8 evolutionary conservation scores. 

For genetic variant 𝑖 and annotation class 𝑗, we denote the set of 𝐿𝑗 annotations as 𝒚𝑖𝑗 =
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(𝑦𝑖𝑗1, … , 𝑦𝑖𝑗𝐿𝑗
)

𝑇
, such that each variant is described by 𝐿 = ∑ 𝐿𝑗

𝑀
𝑗=1  annotations in total. We 

want to estimate for each variant 𝑖 the vector of binary functional statuses 𝒄𝑖 = (𝑐𝑖1, … 𝑐𝑖𝑀), 

where 𝑐𝑖𝑗 is the unobserved latent functional status for class 𝑗. Continuing our example, 𝑐𝑖1 

would denote membership in the evolutionarily conserved function class while 𝑐𝑖2 would denote 

membership in the regulatory function class. Conditional on 𝑐𝑖𝑗 and a random effect term 𝑏𝑖𝑗𝑘, 

we assume that 𝒚𝑖𝑗 follows a GLMM, 

𝑔𝑗𝑘 (𝐸(𝑦𝑖𝑗𝑘|𝑐𝑖𝑗 , 𝑏𝑖𝑗𝑘)) = 𝛽0𝑗𝑘 + 𝛽1𝑗𝑘𝑐𝑖𝑗 + 𝑏𝑖𝑗𝑘 , 

where 𝒃𝑖𝑗 = 𝚲𝑗𝒇𝑖𝑗 ∼ MVN(𝟎, 𝚲𝑗𝚲𝑗
𝑇) is modeled using a factor analysis model with 𝒇𝑖𝑗 ∼

𝑀𝑉𝑁 (𝟎, 𝐈𝑃𝑗×𝑃𝑗
) and 𝑃𝑗 < 𝐿𝑗. Note that 𝚲𝑗𝚲𝑗

𝑇 is a flexible model for capturing the correlation 

between annotations of group 𝑗, conditional on 𝑐𝑖𝑗, while reducing the number of covariance 

parameters that need to be estimated (44). 

 

The Expectation-Maximization (EM) algorithm 

The MACIE score for a given genetic variant 𝑖 is defined by 𝑝(𝒄𝑖|𝒚𝒊), that is, the posterior 

probability of the unobserved class label 𝒄𝑖, conditional on the observed annotations 𝒚𝒊. Given 

this is a missing data problem (from an unsupervised perspective), the EM algorithm provides a 

natural solution (45). We first write out the complete-data log-likelihood 

log 𝑓(𝒚, 𝒄, 𝒃) = ∑ (∑ ∑ log 𝑓𝑗𝑘(𝑦𝑖𝑗𝑘|𝑐𝑖𝑗, 𝑏𝑖𝑗𝑘; 𝜷𝑗𝑘 , 𝜙𝑗𝑘)

𝐿𝑗

𝑘=1

𝑀

𝑗=1

+ ∑ log 𝑓(𝒃𝑖𝑗; 𝜽)

𝑀

𝑗=1

+ log 𝑝(𝒄𝑖 ; 𝜸))

𝑁

𝑖=1
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where 𝜷, 𝝓, 𝜸, 𝜽 are (unknown) model parameters. Given that both 𝒄 and 𝒃 are unobserved, we 

proceed with the following EM algorithm. 

i) Initiate reasonable parameter values. At iteration 𝑟 with parameter estimates 

(𝛽̂𝑗𝑘
(𝑟)

, 𝜙̂𝑗𝑘
(𝑟)

, 𝚲̂𝑗
(𝑟)

, 𝜸̂(𝑟)) 

ii) (E-step 1) Compute 𝑓(𝑟)(𝒄𝑖 , 𝒃𝑖|𝒚𝑖) = 𝑓(𝑟)(𝒃𝑖|𝒚𝑖 , 𝒄𝑖)𝑝̂(𝑟)(𝒄𝑖|𝒚𝑖) via 

𝑓(𝒃𝑖|𝒚𝑖 , 𝒄𝑖) = ∏
𝑓(𝒚𝑖𝑗|𝑐𝑖𝑗 , 𝒃𝑖𝑗)𝑓(𝒃𝑖𝑗)

∫ 𝑓(𝒚𝑖𝑗|𝑐𝑖𝑗 , 𝒃𝑖𝑗)𝑓(𝒃𝑖𝑗)d𝒃𝑖𝑗

𝑀

𝑗=1

 

𝑝(𝒄𝑖|𝒚𝑖) =
𝑝(𝒄𝑖 , 𝒚𝑖)

𝑝(𝒚𝑖)
=

∏ [∫ 𝑓(𝒚𝑖𝑗|𝑐𝑖𝑗 , 𝒃𝑖𝑗)𝑓(𝒃𝑖𝑗)d𝒃𝑖𝑗]𝑀
𝑗=1 ∙ 𝑝(𝒄𝑖)

∑ ∏ [∫ 𝑓(𝒚𝑖𝑗|𝑐𝑖𝑗 , 𝒃𝑖𝑗)𝑓(𝒃𝑖𝑗)d𝒃𝑖𝑗]𝑀
𝑗=1 ∙ 𝑝(𝒄)𝒄∈{0,1}𝑀

 

iii) (E-step 2) Compute expected score functions with respect to the posterior distribution 

of 𝑓(𝒄𝑖 , 𝒃𝑖|𝒚𝑖), i.e. 𝐸𝒄,𝒃𝑆(𝜷𝑗𝑘), 𝐸𝒄,𝒃𝑆(𝚲𝑗), 𝐸𝒄,𝒃𝑆(𝜙𝑗𝑘), 𝐸𝒄,𝒃𝑆(𝜸), where 

𝑆({𝜷𝑗𝑘 , 𝚲𝑗 , 𝜙𝑗𝑘 , 𝜸}) = 𝜕 log 𝑓(𝒚, 𝒄, 𝒃) /𝜕{𝜷𝑗𝑘, 𝚲𝑗 , 𝜙𝑗𝑘 , 𝜸} are the complete data score 

functions of 𝜷𝑗𝑘 , 𝚲𝑗 , 𝜙𝑗𝑘 , 𝜸, respectively. 

iv) (M-step) Update (𝛽̂𝑗𝑘
(𝑟+1)

, 𝜙̂𝑗𝑘
(𝑟+1)

, 𝚲̂𝑗
(𝑟+1)

, 𝜸̂(𝑟+1)) by solving the expected score 

equations from (iii). 

v) Iterate between (ii) - (iv) until convergence of parameters. 

The algorithm proceeds until the relative change in the estimated parameters is sufficiently small 

(< 10−4) with a maximum of 200 iterations. The final converged value of 𝑝̂(𝒄𝑖|𝒚𝑖) corresponds 

to the MACIE score for genetic variant 𝑖. Further details are available online (46). 

 

Data analysis using the MACIE GLMM 
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We used the proposed framework to fit the MACIE GLMM models for a, nonsynonymous 

coding variants and b, noncoding and synonymous variants separately. For nonsynonymous 

coding variants, we considered fitting a two-class MACIE model (𝑀 = 2) where the damaging 

protein function class included four protein substitution scores: SIFT, PolyPhenDiv, 

PolyPhenVar (dichotomous) and Mutation Assessor (continuous), with two latent factors of 𝚺1; 

and the evolutionary conserved class included eight conservation scores: GERP_NR, GERP_RS, 

PhyloPri, PhyloPla, PhyloVer (continuous), and PhastPri, PhastPla, PhastVer (dichotomous), 

with two latent factors of 𝚺2 (Supplementary Table 1.1). As such, the MACIE score predicted for 

each nonsynonymous coding variant is a vector of length 4, representing the estimated joint 

posterior probabilities of belonging to (0,1) - “not damaging protein functional and conserved”; 

(1,0) - “damaging protein functional and not conserved”; (0,0) - “not damaging protein 

functional and not conserved”; (1,1) - “both damaging protein functional and conserved”. The 

MACIE GLMM regression paramete estimates from the training set of nonsynonymous coding 

variants are presented in Supplementary Table 1.13. 

 

For noncoding and synonymous coding variants, we considered fitting a two-class MACIE 

model (𝑀 = 2), where the evolutionary conserved class included the same eight conservation 

scorers as the nonsynonymous coding model, with two latent factors of 𝚺1, and the regulatory 

class included a total of twenty-eight transformed (continuous) epigenetic scores scores, 

consisting of three histone marks and 12 open chromatin marks from the ENCODE Project, three 

transcription factor binding site scores, GC content, CpG content, five chromatin state 

probabilities derived from the 15 state ChromHMM model, a background selection score, and 

physical distance metrics, with three latent factors of 𝚺2 (Supplementary Table 1.1). As such, the 
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MACIE score predicted for each noncoding or synonymous coding variant is also a vector of 

length 4, representing the estimated joint posterior probabilities of belonging to (0,1) - “not 

conserved and regulartory functional”; (1,0) - “conserved and not regulatory functional”; (0,0) - 

“not conserved and not regulatory functional”; (1,1) - “both conserved and regulatory 

functional”. The MACIE GLMM regression parameter estimates from the training set of 

noncoding and synonymous coding variants are presented in Supplementary Table 1.14. 
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CHAPTER II 

Dynamic incorporation of multiple in silico functional annotations empowers 

rare variant association analysis of large whole genome sequencing studies at 

scale 

Xihao Li, Zilin Li, Hufeng Zhou, Sheila M. Gaynor, Yaowu Liu, Han Chen, Ryan Sun, Rounak 

Dey, et al., NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed 

Lipids Working Group, Benjamin M. Neale, Shamil R. Sunyaev, Gonçalo R. Abecasis, Jerome I 

Rotter, Cristen J. Willer, Gina M. Peloso, Pradeep Natarajan and Xihong Lin 

 

Abstract 

Large-scale whole genome sequencing (WGS) studies have enabled the analysis of rare variants 

(RVs) associated with complex phenotypes. Commonly used RV association tests (RVATs) have 

limited scope to leverage variant functions. We propose STAAR (variant-Set Test for 

Association using Annotation infoRmation), a scalable and powerful RVAT method that 

effectively incorporates both variant categories and multiple complementary annotations using a 

dynamic weighting scheme. For the latter, we introduce “annotation Principal Components”, 

multi-dimensional summaries of in silico variant annotations. STAAR accounts for population 

structure and relatedness, and is scalable for analyzing very large cohort and biobank WGS 

studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated 

with four lipid traits in 12,316 discovery samples and 17,822 replication samples from the Trans-

Omics for Precision Medicine program. We discovered and replicated novel RV associations, 



 

28 
 

including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 

associated with low-density lipoprotein cholesterol. 

 

Introduction 

An increasing number of whole genome/exome sequencing (WGS/WES) studies are being 

conducted to investigate the genetic bases of human diseases and traits, including the Trans-

Omics for Precision Medicine Program (TOPMed) of the National Heart, Lung and Blood 

Institute (NHLBI) and the Genome Sequencing Program (GSP) of the National Human Genome 

Research Institute (NHGRI). Such studies enable assessment of associations between complex 

traits and both coding and non-coding rare variants (RVs; minor allele frequency (MAF) < 1%) 

across the genome. However, single-variant analyses typically have low power to identify 

associations with rare variants (47-49). To improve power, variant-set tests have been proposed 

to jointly test the effects of given sets of multiple rare variants. These methods include the 

burden test (50-53), Sequence Kernel Association Test (SKAT) (54), and their various 

combinations (55-58). In parallel, external biological information provided by functional 

annotations, such as conservation scores and predicted enhancer status, has been successfully 

used for prioritizing plausibly causal common variants in fine-mapping studies, partitioning 

heritability in GWAS, and predicting genetic risk (59-63). It is of substantial interest to 

incorporate variant functional annotations effectively, to boost the power of RV analysis of WGS 

association studies (64, 65). 
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Variant functional annotations take two forms: (i) qualitative functional groupings into genomic 

elements, such as Variant Effect Predictor (VEP) categories (35, 66), and (ii) quantitative 

functional scores available for variants across the genome, including protein functional scores (1, 

2), evolutionary conservation scores (3, 4), epigenetic measures (6), and integrative functional 

scores (11). Different annotation scores capture diverse aspects of variant function (22, 23). 

Given the diversity of available annotations, efforts have been made to aggregate the evidence 

they provide on genomic function (10). Simultaneous use of multiple, varied functional 

annotation scores in variant-set tests could improve rare variant association study (RVAS) 

power, for example, by optimally selecting and weighting plausibly-causal rare variants (67). 

 

To boost power for variant-set tests in WGS RVAS, we propose the variant-Set Test for 

Association using Annotation infoRmation (STAAR), a general framework that dynamically 

incorporates both qualitative functional categories and quantitative complementary annotation 

scores using a unified omnibus multi-dimensional weighting scheme. For the latter, to effectively 

capture the multi-faceted biological impact of a variant, we introduce annotation Principal 

Components (aPCs), multi-dimensional summaries of annotation scores that can be leveraged in 

the STAAR framework.  

 

Recent methods (68-70) have incorporated functional annotations in genetic association studies. 

However, these methods are not scalable to analyze large-scale WGS studies while accounting 

for relatedness and population structure. Large scale WGS and WES studies, such as TOPMed 

and GSP, include a considerable fraction of related and ancestrally diverse samples. STAAR 
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accounts for both relatedness and population structure, as well as longitudinal follow-up designs, 

for both quantitative and dichotomous traits, using a Generalized Linear Mixed Models (GLMM) 

framework (71) that includes linear and logistic mixed models (72, 73). Using sparse Genetic 

Relatedness Matrices (GRMs) (74), STAAR is computationally scalable for very large WGS 

studies and biobanks of hundreds of thousands of samples. 

 

We perform herein extensive simulation studies to demonstrate that STAAR can achieve 

substantially greater power compared to conventional variant-set tests, while maintaining 

accurate type I error rates for both quantitative and dichotomous phenotypes. We then apply 

STAAR to perform WGS gene-centric and sliding window-based genetic region analysis of 

12,316 discovery samples and 17,822 replication samples with four quantitative lipid traits: low-

density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), 

triglycerides (TG), and total cholesterol (TC) from the NHLBI TOPMed program. We show that 

STAAR outperforms existing methods and identifies novel and replicated associations, including 

with LDL-C in disruptive missense RVs of NPC1L1, and in an intergenic region near APOC1P1. 

 

Results 

Overview of methods 

STAAR is a general framework for analyzing WGS RVAS at scale by using both qualitative 

functional categories as well as multiple in silico variant annotation scores within a variant-set, 

while accounting for population structure and relatedness by fitting linear and logistic mixed 

models for quantitative and dichotomous traits using fast and scalable algorithms. For each 
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variant-set, there are two main components of the STAAR framework: (i) using annotation PCs 

to capture and prioritize multi-dimensional variant biological functions, and (ii) testing the 

association between each variant-set and phenotypes by incorporating these annotation PCs as 

well as other integrative functional scores and MAFs in the STAAR test statistics using an 

omnibus weighting scheme (Figure 2.1). 

Figure 2.1 STAAR workflow. 

 

a, Prepare the input data of STAAR, including genotypes, phenotypes, covariates, and (sparse) 

genetic relatedness matrix. b, Annotate all variants in the genome and calculate the annotation 

principal components for different classes of variant function. c, Define two types of variant-sets: 

gene-centric analysis by grouping variants into functional genomic elements for each protein-

coding gene; genetic region analysis using agnostic sliding windows. d, Estimate STAAR 

statistics for each variant-set. e, Obtain STAAR-O P values for all variants sets that are defined 

in c and report significant findings. 

 

Variants often influence genes and gene products through multiple mechanisms. We extract a 

broad set of variant functional annotations (Supplementary Table 2.1), including both individual 

and ensemble functional scores, from various databases, such as ENCODE (6), Roadmap 

Epigenomics (7), and other evolutionary and protein annotation databases (11, 24, 75). A 

correlation heatmap across variants in the genome (Figure 2.2) shows that the correlation 
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structure among all individual annotations is approximately block-diagonal, with highly 

correlated blocks representing different classes of variant function, e.g., epigenetic function, 

evolutionary conservation, protein function, local nucleotide diversity. We introduce annotation 

Principal Components defined as the first PCs calculated from the set of individual functional 

annotation scores in each functional block (Supplementary Table 2.1 and Methods). Annotation 

PCs effectively reduce the dimensionality of the large number of individual annotations and 

summarize multiple aspects of variant function. 

Figure 2.2 Correlation heatmap of functional annotation scores. 

 

Pairwise correlations between 76 individual and integrative functional annotations using variants 

from the pooled samples of lipid traits in the TOPMed data. The cells in the visualization are 

colored by Pearson’s correlation coefficient values with deeper colors indicating higher positive 

(red) or negative (blue) correlations. Each annotation principal component (aPC) is the first PC 

calculated from the set of individual functional annotations that measure similar biological 

function. These aPCs are then transformed into the PHRED-scaled scores for each variant across 

the genome (Methods). 

Annotation PCs
Integrative ScoresMicroRNA
Mutation Density

Mappability

Distance to TSS/TES

Transcription FactorsEpigeneticsDistance to CodingProtein FunctionConservationLocal Diversity
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The STAAR framework first calculates a set of multiple candidate test statistics using different 

annotation weights under a particular testing approach (Figure 2.1d). For each type of RV test, 

STAAR then uses ACAT (aggregated Cauchy association test) method to combine the resulting 

P values calculated using different weights in order to effectively and powerfully aggregate the 

association strength from all annotations in a data-adaptive manner (Fig. 2.1d and Methods). The 

ACAT method for combining P values is accurate and computationally efficient, while 

accounting for arbitrary correlation structure between tests (55, 76). To leverage the advantages 

of different types of tests, we propose an omnibus test in the STAAR framework (STAAR-O) by 

combining P values across different types of multiple-annotation-weighted variant-set tests using 

the ACAT method (Figure 2.1d and Methods). 

 

Simulation studies 

To evaluate the type I error and power of STAAR compared to conventional variant-set tests, we 

performed simulation studies under a variety of configurations. We followed the steps described 

in Data simulation (Methods) to generate both continuous and dichotomous phenotypes. We 

generated genotypes by simulating 20,000 sequences for 100 different regions with each 

spanning 1 megabase (Mb). The data were generated to mimic the linkage disequilibrium (LD) 

structure of an African American population by using the calibration coalescent model (COSI) 

(77). We randomly selected 5-kilobase (kb) regions from these 1-Mb regions and considered 
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sample sizes of 2,500, 5,000, and 10,000 for each replicate. The simulation studies focused on 

aggregating uncommon variants with MAF < 5%. 

 

Type I error simulations 

The empirical type I error rates for STAAR-O were evaluated based on 109 simulations at 𝛼 =

10−5, 10−6, 10−7 for continuous and dichotomous traits (Supplementary Table 2.2). The results 

show that the type I error rate for STAAR-O appeared to be well controlled for both continuous 

and dichotomous traits at all α levels. For continuous traits, STAAR-O delivered accurate 

empirical type I error rates. For dichotomous traits and the smallest α level considered of 10−7, 

STAAR-O was slightly conservative for moderate sample sizes (2,500 individuals); however, its 

type I error rate came close to the nominal level with larger sample sizes. 

 

Empirical power simulations 

Next, we evaluated the power of STAAR empirically by incorporating MAF and 10 annotations 

into its analysis and comparing results with conventional variant-set tests in a variety of 

configurations. Power was estimated as the proportion of P values less than 𝛼 = 10−7 based on 

104 replicates. Causality of variants was allowed to be dependent on different sets of annotations 

through a logistic model (Methods). We considered different proportions of causal variants (5%, 

15%, 35% on average) in the signal region. For both continuous and dichotomous traits, 

STAAR-O incorporating all 10 annotations had higher power than the conventional variant-set 

tests in terms of signal region detection (Supplementary Figures 2.1-2.4). Power simulation 

results of STAAR-O for different magnitudes of effect sizes and different proportions of effect 
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size directions yielded the same conclusion (Supplementary Figures 2.1, 2.5 and 2.6). Overall, 

our simulation studies showed that STAAR-O could provide considerably higher power than 

conventional variant-set tests. 

 

Association analysis of lipid traits in the TOPMed WGS data 

We applied STAAR to identify RV-sets associated with four quantitative lipid traits (LDL-C, 

HDL-C, TG and TC) using TOPMed WGS data (78, 79). LDL-C and TC were adjusted for the 

presence of medications as before (78). DNA samples were sequenced at >30× target coverage. 

The discovery phase consists of four study cohorts of TOPMed Freeze 3. The replication phase 

consists of ten different study cohorts in TOPMed Freeze 5 that were not in Freeze 3 

(Supplementary Note and Supplementary Table 2.3). 

 

Sample-level and variant-level quality control (QC) were performed (78, 79). There were 12,316 

discovery samples, which had 155 million single nucleotide variants (SNVs), and 17,822 

replication samples, which had 188 million SNVs. The TOPMed data consist of ancestrally 

diverse and multi-ethnic related samples. Race/ethnicity was defined using a combination of self-

reported race/ethnicity and study recruitment information. The discovery cohorts consist of 4,580 

(37.2%) Black or African American, 6,266 (50.9%) White, 543 (4.4%) Asian American, and 927 

(7.5%) Hispanic/Latino American. Among all samples in discovery phase, 3,577 (29.0%) had 

first-degree relatedness, 491 (4.0%) had second-degree relatedness, and 273 (2.2%) had third-

degree relatedness (Supplementary Figure 2.7). Among all SNVs observed in the discovery 

samples, there were 6.5 million (4.2%) common variants (MAF > 5%), 5.3 million (3.4%) low 



 

36 
 

frequency variants (1% ≤ MAF ≤ 5%), and 143.2 million (92.4%) rare variants (MAF < 1%). 

The race/ethnicity distribution, related sample distribution, and variant number distribution for 

replication phase and pooled samples (samples from both discovery phase and replication phase) 

are given in Supplementary Table 2.4. 

 

Our study used the proposed STAAR-O method to perform (i) gene-centric analysis using RV-

sets based on functional categories, and (ii) genetic region analysis using variant-sets defined by 

2-kb sliding windows with 1-kb skip length across the genome. We adjusted for age, age2, sex, 

race/ethnicity, study, and the first 10 ancestral PCs, while controlling for relatedness using linear 

mixed models, with inverse-rank normal transformation applied to phenotypes (Methods). 

Race/ethnicity was included as a covariate to adjust for sociocultural and environmental factors, 

while genetic ancestry differences were captured by the inclusion of the ancestral PCs. In 

addition to the two MAF weights (49), we incorporated 13 aggregated functional annotation 

scores in STAAR-O: 3 integrative scores (CADD (11), LINSIGHT (21), and FATHMM-XF 

(15)) and 10 aPCs. Figure 2.2 summarizes the correlation among all functional annotations, 

including 60 individual scores, 3 integrative scores, and 10 aPCs. 

 

Gene-centric association analysis of coding and non-coding rare variants 

We performed gene-centric analysis to identify whether rare variants in coding, promoter, and 

enhancer regions of genes are associated with lipid traits using STAAR-O. For each of the four 

lipid traits, we analyzed five functional categories (masks) of coding and non-coding variants: (i) 

pLoF (stop gain, stop loss and splice) RVs, (ii) missense RVs, (iii) synonymous RVs, (iv) 
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promoter RVs, and (v) enhancer RVs. The pLoF, missense, and synonymous RVs were defined 

by GENCODE VEP categories (35, 66). The promoter RVs were defined as RVs in the +/- 3-kb 

window of transcription starting site (TSS) with overlap of Cap Analysis of Gene Expression 

(CAGE) sites. The enhancer RVs were defined as RVs in GeneHancer predicted regions with 

overlap of CAGE sites (8, 9, 80). Within each gene functional category, we tested for an 

association between rare variants (MAF < 1%) in the functional category and lipid traits using 

STAAR-O with the 13 aggregated functional annotations described above. For missense RVs, 

we incorporated an additional annotation functional category predicting functionally “disruptive” 

variants determined by MetaSVM (81), which measures the deleteriousness of missense 

mutations. The overall distributions of STAAR-O P values were well calibrated for all four lipid 

phenotypes (Supplementary Figure 2.8). We considered in unconditional analysis a Bonferroni-

corrected genome-wide significance threshold of 𝛼 = 0.05/(20,000 ×  5) = 5.00 ×  10−7 

accounting for five different masks across protein-coding genes. 

 

STAAR-O identified 21 genome-wide significant associations with four lipid phenotypes using 

unconditional analysis of the discovery samples (Supplementary Table 2.5 and Supplementary 

Figure 2.9). After conditioning on known lipids-associated variants (40, 78, 82-96), 11 out of the 

21 associations remained significant at the Bonferroni correction level 0.05/21 = 2.38 ×  10−3 

using the discovery samples. These included associations with LDL-C (pLoF RVs in PCSK9 and 

APOB, missense RVs in PCSK9, NPC1L1, and APOE), association with HDL-C (pLoF RVs in 

APOC3), association with TG (pLoF RVs in APOC3), and associations with TC (pLoF RVs in 

PCSK9 and APOB, missense RVs in PCSK9 and LIPG) (Table 2.1). Of these 11 associations, 10 

were replicated at the Bonferroni-corrected level 0.05/11 = 4.55 × 10−3 after adjusting for 
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known lipid-associated variants. The association between APOC3 pLoF RVs and HDL-C was 

unreported in a previous study using the same TOPMed Freeze 3 data (78). 

 

The association between missense RVs in NPC1L1 and LDL-C was not detected by the 

conventional variant-set tests and has not been observed in previous studies (78, 85, 97, 98). In 

the discovery phase, its unconditional STAAR-O P value was 1.29 × 10−7, while the most 

significant conventional variant-set test was the burden test with 𝑃 = 7.04 × 10−6. This 

association was not driven by any single RV (minimum single RV P value  > 10−3) but was due 

to the aggregated effects of multiple missense RVs. The P value of the burden test additionally 

weighted by MetaSVM was the smallest of all annotations (𝑃 = 3.15 × 10−9), highlighting the 

significant association between disruptive missense RVs in NPC1L1 and LDL-C (Supplementary 

Figure 2.10). Among all 174 missense RVs in NPC1L1 from the discovery samples, the 

disruptive missense RVs as predicted by MetaSVM were enriched among variants with higher 

aPC-Conservation scores (Supplementary Table 2.6). This contributed to the test weighted by 

aPC-Conservation being the most significant across all quantitative annotation-weighted tests 

included in STAAR-O (burden 𝑃 = 3.12 ×  10−7). As aPC-Conservation summarizes variants’ 

evolutionary conservation scores, it is informative in predicting whether or not variants are 

deleterious and thus functional (99, 100). Conditioning on the ten known common variants in 

NPC1L1 associated with LDL-C (Supplementary Table 2.7) (40, 87-90, 94-96), the association 

between disruptive missense RVs in NPC1L1 and LDL-C remained significant after Bonferroni 

correction with the conditional analysis 𝑃 = 9.27 ×  10−9 in discovery phase. This association 

was validated in replication phase with 𝑃 = 2.59 ×  10−4 and with 𝑃 = 4.02 ×  10−11 in 

pooled samples in conditional analysis. This significant association was also validated using 
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whole exome sequencing data from the UK Biobank (101) (𝑛 = 40,519) with 𝑃 = 2.49 ×  10−4 

in the conditional analysis. 

 

Genetic region analysis of rare variants 

We performed genetic region analysis to determine whether RVs within sliding windows are 

associated with lipid traits. The sliding windows were defined to be 2 kb in length, start at 

position 0 base pairs (bp) for each chromosome, and have a skip length of 1 kb. Windows with a 

total minor allele count less than 10 were excluded from the analysis, resulting in a total of 2.66 

million 2-kb overlapping windows, with a median of 104 RVs in each sliding window among 

discovery samples. For each 2-kb window, we tested for an association between the RVs in the 

window and each lipid trait using STAAR-O by incorporating 13 aggregated quantitative 

annotations. The overall distributions of STAAR-O P values were well calibrated for all four 

lipid phenotypes (Figure 2.3b and Supplementary Figures 2.11b, 2.12b and 2.13b). Using the 

Bonferroni correction, we set the genome-wide significance threshold at 𝛼 = 0.05/

(2.66 ×  106) = 1.88 ×  10−8 across sliding windows (Figure 2.3a and Supplementary Figures 

2.11a, 2.12a, and 2.13a). Supplementary Table 2.8 summarizes the significant 2-kb sliding 

windows identified using STAAR-O. Overall, by dynamically incorporating multiple functional 

annotations capturing different aspects of variant function, STAAR-O was able to detect more 

significant sliding windows, and showed consistently smaller P values for top sliding windows 

compared with conventional variant-set tests weighted using MAFs (Figure 2.3c,d and 

Supplementary Figures 2.11c-f, 2.12c and 2.14). Burden tests were not able to detect any 

window that reached significance. 
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Among the 59 genome-wide significant sliding windows detected by STAAR-O in unconditional 

analysis, 17 remained significant at the Bonferroni correction level 0.05/59 = 8.47 ×  10−4 

after conditioning on known lipids-associated variants using the discovery samples (Table 2.2). 

For LDL-C, the significant sliding windows were located in gene PCSK9 or in a 50-kb region on 

chromosome 19 including the APOE cluster. For TC, all of the significant sliding windows were 

located in the same areas as for LDL-C. For TG, STAAR-O detected two consecutive significant 

sliding windows within APOC3, whereas no significant sliding windows were detected for HDL-

C. Of these 17 associations, six were replicated at level 0.05/17 = 2.94 ×  10−3 after 

Bonferroni correction and another four were replicated at level 0.05/9 = 5.56 × 10−3 after 

Bonferroni correction for nine non-overlapping sliding windows in conditional analysis of 

replication samples (63), including a sliding window located downstream of APOC1P1 

(chromosome 19: 44,931,528 bp - 44,933,527 bp), which was significantly associated with LDL-

C but undetected by the burden test, SKAT, and ACAT-V (Table 2.2 and Figure 2.3c).
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Figure 2.3 Genetic region (2-kb sliding window) unconditional analysis results of LDL-C in 

the discovery phase using the TOPMed cohort. 

 

a, Manhattan plot showing the associations of 2.66 million 2-kb sliding windows for LDL-C 

versus − 𝐥𝐨𝐠𝟏𝟎(𝑷) of STAAR-O. The horizontal line indicates a genome-wide P value threshold 

of 𝟏. 𝟖𝟖 ×  𝟏𝟎−𝟖 (n = 12,316). b, Quantile-quantile plot of 2-kb sliding window STAAR-O P 

values for LDL-C (n = 12,316). c, Genetic landscape of the windows significantly associated 

with LDL-C that are located in the 150-kb region on chromosome 19. Four statistical tests were 

compared: Burden, SKAT, ACAT-V and STAAR-O. A dot indicates that the sliding window at 

this location is significant using the statistical test that the color of the dot represents (n = 

12,316). d, Scatterplot of P values for the 2-kb sliding windows comparing STAAR-O with 

Burden, SKAT and ACAT-V tests. Each dot represents a sliding window with x-axis label being 

the − 𝐥𝐨𝐠𝟏𝟎(𝑷) of the conventional test and y-axis label being the − 𝐥𝐨𝐠𝟏𝟎(𝑷) of STAAR-O (n 

= 12,316).
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Table 2.1 Gene-centric analysis results of both unconditional analysis and analysis conditional on known common and low-frequency 

variants. 

Trait Gene 
Chr. 

no. 
Category 

 Discovery   Replication   Pooled  

Variants (adjusted) No. of 

SNVs 

STAAR-O 

(Unconditional) 

STAAR-O 

(Conditional) 

No. of 

SNVs 

STAAR-O 

(Unconditional) 

STAAR-O 

(Conditional) 

No. of 

SNVs 

STAAR-O 

(Unconditional) 

STAAR-O 

(Conditional) 

LDL-C 

PCSK9 1 
Putative loss 

of function 
5 3.09E-38 1.94E-07 8 6.97E-27 5.29E-10 9 4.59E-65 7.52E-17 

rs28362286, rs28362263, 

rs11591147, rs12117661 

APOB 2 
Putative loss 

of function 
11 1.91E-14 2.38E-14 5 1.97E-09 1.76E-09 16 3.91E-21 4.08E-21 rs934197 

PCSK9 1 Missense 92 1.09E-16 2.65E-08 129 1.90E-06 1.15E-06 167 2.11E-15 1.14E-14 
rs28362286, rs28362263, 

rs11591147, rs12117661 

NPC1L1 7 Missense 174 1.29E-07 3.83E-07 219 2.19E-03 3.28E-03 293 3.25E-10 1.58E-09 

rs10234070, rs73107473, 

rs2072183, rs41279633, 

rs17725246, rs2073547, 

rs10260606, rs217386, 

rs7791240, rs2300414 

NPC1L1 7 
Disruptive 

missense 
94 3.15E-09* 9.27E-09* 129 1.46E-04* 2.59E-04* 173 8.05E-12* 4.02E-11* 

rs10234070, rs73107473, 

rs2072183, rs41279633, 

rs17725246, rs2073547, 

rs10260606, rs217386, 

rs7791240, rs2300414 

APOE 19 Missense 54 3.11E-10 9.88E-11 58 6.61E-05 3.47E-04 88 1.07E-13 2.02E-12 rs7412, rs429358 

HDL-C APOC3 11 
Putative loss 

of function 
5 2.20E-07 6.82E-07 6 5.73E-18 2.89E-17 7 3.18E-23 4.51E-22 rs66505542 

TG APOC3 11 
Putative loss 

of function 
5 1.10E-14 5.53E-14 6 2.67E-49 2.73E-46 7 3.98E-56 1.04E-52 

rs66505542, rs964184, 

rs7350481 

TC 

PCSK9 1 
Putative loss 

of function 
5 4.60E-33 2.04E-10 8 1.83E-25 9.74E-11 9 9.83E-58 4.23E-20 

rs28362286, rs11591147, 

rs191448952 

APOB 2 
Putative loss 

of function 
11 7.29E-13 8.78E-13 5 2.62E-09 2.30E-09 16 9.76E-20 1.01E-19 rs934197 

PCSK9 1 Missense 92 6.00E-15 1.11E-06 131 2.14E-05 1.13E-05 169 5.18E-12 3.16E-12 
rs28362286, rs11591147, 

rs191448952 

LIPG 18 Missense 62 9.61E-08 4.34E-06 68 3.45E-04 1.47E-01 101 2.04E-09 5.62E-04 
rs4939883, rs7241918, 

rs149615216 

*Burden test P value. A total of 12,316 discovery samples, 17,822 replication samples and 30,138 pooled samples from the TOPMed program were considered in 

the analysis. Results for the conditionally significant genes (unconditional STAAR-O 𝑃 < 5.00 × 10−7; conditional STAAR-O 𝑃 < 2.38 ×  10−3) using 

discovery samples are presented in the table. Chr. no., chromosome number; category, functional category; no. of SNVs, number of RVs with a MAF < 1% of the 

particular functional category in the gene; STAAR-O, STAAR-O P value; variants (adjusted), adjusted variants in the conditional analysis. 
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Table 2.2 Genetic region (2-kb sliding window) analysis results of both unconditional analysis and analysis conditional on known common 

and low-frequency variants. 

Trait 
Chr. 

no. 

Start 

location 

End 

location 
Gene 

Discovery Replication Pooled 

Variants (adjusted) No. of 

SNVs 

STAAR-O 

(Unconditional) 

STAAR-O 

(Conditional) 

No. of 

SNVs 

STAAR-O 

(Unconditional) 

STAAR-O 

(Conditional) 

No. of 

SNVs 

STAAR-O 

(Unconditional) 

STAAR-O 

(Conditional) 

LDL-C 

1 55045498 55047497 PCSK9 114 7.83E-09 1.06E-04 124 3.33E-06 4.10E-04 186 1.89E-15 2.90E-09 
rs28362286, rs28362263, 

rs11591147, rs12117661 

1 55046498 55048497 PCSK9 124 5.32E-09 2.13E-05 130 1.79E-06 8.79E-05 191 1.33E-15 1.15E-09 
rs28362286, rs28362263, 

rs11591147, rs12117661 

19 44881528 44883527 NECTIN2 118 7.31E-10 1.81E-08 155 5.16E-04 2.42E-01 202 8.15E-08 5.26E-06 rs7412, rs429358 

19 44882528 44884527 NECTIN2 104 2.08E-10 3.90E-09 133 1.23E-01 3.59E-01 176 1.38E-08 7.47E-07 rs7412, rs429358 

19 44893528 44895527 TOMM40 110 2.64E-19 2.33E-11 136 4.54E-09 2.60E-02 187 7.29E-29 7.62E-13 rs7412, rs429358 

19 44894528 44896527 TOMM40 120 2.44E-15 4.31E-11 153 7.62E-05 1.74E-02 205 6.73E-20 5.28E-13 rs7412, rs429358 

19 44905528 44907527 APOE 91 1.73E-10 1.64E-10 115 1.22E-02 4.91E-03 169 7.68E-12 9.00E-12 rs7412, rs429358 

19 44906528 44908527 APOE 84 1.67E-09 1.90E-10 115 8.65E-03 3.24E-03 165 8.34E-11 6.25E-12 rs7412, rs429358 

19 44907528 44909527 APOE 113 1.01E-09 1.97E-10 143 5.92E-03 3.58E-03 205 4.88E-11 8.71E-12 rs7412, rs429358 

19 44908528 44910527 APOE 140 6.30E-10 1.32E-10 152 4.14E-03 6.10E-03 228 2.40E-11 5.21E-12 rs7412, rs429358 

19 44931528 44933527 APOC1P1 114 6.63E-09 7.60E-04 123 5.78E-11 5.40E-03 181 1.34E-19 4.15E-06 rs7412, rs429358 

TG 

11 116828930 116830929 APOC3 125 4.63E-10 2.80E-09 155 1.35E-36 3.94E-34 207 7.32E-45 2.73E-41 
rs66505542, rs964184, 

rs7350481 

11 116829930 116831929 APOC3 109 3.61E-10 5.99E-10 140 2.85E-36 4.25E-34 187 5.75E-45 2.17E-41 
rs66505542, rs964184, 

rs7350481 

TC 

1 55045498 55047497 PCSK9 114 3.05E-09 2.86E-07 130 3.12E-06 1.92E-06 189 2.22E-15 9.21E-14 
rs28362286, rs11591147, 

rs191448952 

1 55046498 55048497 PCSK9 124 2.24E-09 2.06E-07 138 2.19E-06 1.34E-06 195 1.78E-15 7.04E-14 
rs28362286, rs11591147, 

rs191448952 

19 44893528 44895527 TOMM40 111 9.35E-13 4.37E-07 146 1.12E-07 4.02E-01 196 7.57E-21 7.91E-08 rs7412, rs429358 

19 44894528 44896527 TOMM40 120 1.80E-09 1.99E-06 164 1.08E-04 8.31E-01 213 8.40E-14 2.19E-07 rs7412, rs429358 

A total of 12,316 discovery samples, 17,822 replication samples and 30,138 pooled samples from the TOPMed program were considered in the analysis. Results for 

the conditionally significant sliding windows (unconditional STAAR-O 𝑃 < 1.88 × 10−8; conditional STAAR-O 𝑃 < 8.47 ×  10−4) using discovery samples are 
presented in the table. Chr. no., chromosome number; start location, start location of the 2-kb sliding window; end location, end location of the 2-kb sliding 

window; no. of SNVs, number of RVs (MAF < 1%) in the 2-kb sliding window; STAAR-O, STAAR-O P value; variants (adjusted), adjusted variants in the 

conditional analysis. The physical positions of each window are on build hg38. 
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The top variant of the significant sliding window located downstream of APOC1P1 was 

rs370625306 (MAF = 0.005, 𝑃 = 8.71 ×  10−8), which was not significant at a Bonferroni-

corrected threshold (𝛼 = 0.05/(1.51 ×  107) = 3.31 ×  10−9) in individual variant analysis. 

This rare variant and the second top variant in these windows (rs9749443, MAF = 0.009, 𝑃 =

2.46 × 10−5) were upweighted by aPC-Epigenetic in STAAR-O (Supplementary Figure 2.15). 

Specifically, the aPC-Epigenetic scores of rs370625306 and rs9749443 ranked in the top 10% 

and top 30% among all RVs, respectively, in each sliding window. Conditioning on the two 

known common variants rs7412 and rs429358 in APOE associated with LDL-C (85), the 

strength of association of both sliding windows was reduced but remained significant (Table 

2.2). Similar results were found after further conditioning on APOE haplotypes using these two 

SNPs (Supplementary Table 2.8). This suggests that the effects of RVs in this sliding window 

are not fully captured by the two known common LDL-associated variants. STAAR-O also 

identified and replicated two highly significant windows in APOC3 associated with TG in 

conditional analysis that were undetected by SKAT and burden test (102). 

 

STAAR identifies more associations using relevant tissue functional annotations 

To evaluate the effect of tissue specificity, we compared the performance of STAAR-O in both 

gene-centric and genetic region analysis by incorporating liver (a central hub for lipid 

metabolism), heart, and brain annotations. For each tissue, we calculated a tissue-specific aPC 

from tissue-specific DNase, H3K4me3, H3K27ac and H3K27me3 from ENCODE 

(Supplementary Table 2.9) (6, 103). We used tissue-specific CAGE sites with overlap of RVs in 

the +/- 3-kb window of TSS and GeneHancers to define promoter and enhancer RV masks in 

gene-centric analysis. To make a fair comparison between tissues, we calculated STAAR-O P 
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values based solely on the tissue-specific aPC and without incorporating the MAF and other 

annotations. 

 

Overall, the use of liver annotation resulted in more significant levels of association than heart 

and brain annotations, as would be expected for lipid traits, although no additional replicated 

conditionally significant association was detected by using tissue-specific annotations. STAAR-

O identified 9 and 8 replicated conditionally significant associations by using liver annotation in 

gene-centric and genetic region analysis, respectively (Supplementary Tables 2.10 and 2.11). 

Among these 17 significant associations, two were not seen when heart annotation was used and 

two were not seen when brain annotation was used, and no additional associations were detected 

by using heart and brain annotations (Supplementary Tables 2.10 and 2.11). Furthermore, more 

suggestive significant associations were detected when using liver annotation than the other two 

tissues at various levels of unconditional P value thresholds in the discovery phase 

(Supplementary Figures 2.16 and 2.17). 

 

Computation cost 

We developed an R package, STAAR, to perform scalable variant-set association tests 

incorporating multiple variant annotations for WGS RVAS. Using sparse GRMs (74), STAAR 

scales well both in terms of computation time and memory for very large-scale WGS association 

studies, such as sample sizes in TOPMed, GSP, and UK Biobank. The computation time for 

STAAR-O to perform WGS gene-centric and genetic region analysis on 30,000 related samples 

using the TOPMed data requires 15 hours for 100 2.10 GHz computing cores with 6 GB memory 
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for each lipid trait. Analyzing 500,000 simulated related samples mimicking the UK Biobank 

sample size requires 26 hours for WGS analysis using the same approach and computational 

resources (Methods). 

 

Discussion 

We propose STAAR as a general, computationally scalable framework that effectively 

incorporates multiple qualitative and quantitative variant functional annotations to boost power 

for variant-set tests for continuous and binary traits in WGS RVAS, while accounting for both 

population structure and relatedness using GLMMs. 

 

We highlighted STAAR-O, the omnibus test that aggregates multiple annotation-weighted tests 

in the STAAR framework. We focused on two types of WGS RV association analyses using 

STAAR-O: gene-centric analyses by grouping coding and noncoding variants into functional 

categories for each protein-coding gene, and agnostic genetic region analyses using sliding 

windows. In extensive simulation studies, we demonstrated that STAAR-O achieves substantial 

power gain compared with conventional variant-set tests weighted by MAF, while maintaining 

accurate type I error rates for both quantitative and dichotomous phenotypes. 

 

In a WGS RV analysis of lipid traits using the TOPMed data, STAAR-O identified several 

conditionally significant functional categories associated with lipid traits in gene-centric analysis 

(including NPC1L1 missense RVs and LDL-C; APOC3 pLoF RVs and HDL-C; and LIPG 

missense RVs and TC) that were missed by the previous study using the same TOPMed data 
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(78). Earlier studies reported marginal association between inactivating mutations (pLoF RVs 

and frameshift indels) in NPC1L1 and LDL-C with 𝑃 = 0.04 (98), which was replicated using 

the pooled TOPMed samples (𝑃 = 0.02), although no significant association between pLoF RVs 

and LDL-C was found (𝑃 = 0.15). STAAR-O identified much more significant novel 

association, which replicated, between missense RVs in NPC1L1 and LDL-C, which was driven 

by disruptive missense RVs (conditional 𝑃 = 4.02 × 10−11 in pooled samples). None of these 

disruptive missense RVs was reported in ClinVar (104), suggesting that the findings from 

emerging WGS studies can help guide the expansion of the ClinVar database. NPC1L1 is the 

direct molecular target of the lipid-lowering drug ezetimibe, which reduces the absorption of 

cholesterol by binding to NPC1L1 (105). STAAR-O also suggested several conditional 

associations in the discovery phase that were validated in our replication phase and achieved 

significance in pooled samples (Supplementary Table 2.12). 

 

In agnostic sliding-window based genetic region analysis, STAAR-O detected and replicated 10 

sliding windows after conditioning on known variants, including association between an 

intergenic region located downstream of APOC1P1 and LDL-C, that were not detected using 

conventional tests. This detected APOC1P1 region is located in the hepatic control region 2 

(HCR-2) that regulates hepatic expression of apolipoproteins. By further conditioning on the 

APOE haplotypes and rs35136575, a common variant previously found in the downstream HCR-

2 associated with LDL-C (106), the strength of association was reduced but remained significant 

(Supplementary Table 2.8). This discovery is due to upweighting several plausibly causal rare 

variants that have regulatory functions using aPC-Epigenetic scores in STAAR-O 

(Supplementary Figure 2.15 and Supplementary Table 2.13). These results highlight that 
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incorporating multiple functional annotations using STAAR can effectively boost power for 

WGS RVAS. 

 

To capture multiple aspects of variant functionality, we introduced annotation PCs by 

performing dimension reduction of a large number of diverse individual annotations from 

various external databases. See Methods for an example demonstrating that aPCs explain diverse 

and complementary functionality of known LDL-associated functional rare variants, and STAAR 

provides greater power for RV association tests by upweighting these variants using aPCs. 

 

In practice, STAAR is very flexible and users can determine the set of individual annotations to 

calculate aPCs and the number of aPCs and integrative functional scores and other qualitative 

scores to be used, as well as tissue, cell-type and phenotype-specific variant annotations (18, 19, 

107). In this chapter, we group the individual annotations based on biological knowledge; users 

can also apply data-driven approaches, such as clustering, to group annotations for aPC 

calculation. We also demonstrate that STAAR detects more associations using relevant tissue 

functional annotations. It will be of interest, in future research, to incorporate improved rare 

variant effect size models in the weights to further improve power for RVAS (108, 109). 

 

The STAAR procedure is fast and scalable for very large WGS studies and biobanks of hundreds 

of thousands to millions of samples for both quantitative and dichotomous phenotypes as it uses 

estimated sparse GRMs (74) to fit the null GLMM and to scan the genome. Besides using sliding 

windows of a pre-specified fixed window length, STAAR could be extended to flexibly detect 
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the sizes and locations of coding and non-coding rare variant association regions using the 

dynamic window analysis method SCANG (110). In addition, STAAR could be extended to 

settings with survival, unbalanced case-control, and multiple phenotypes, and hence could 

provide a comprehensive framework for WGS RVAS. Thus, STAAR provides a powerful and 

flexible tool for variant association discovery in many settings to explore the molecular basis of 

common diseases. 

 

Methods 

Notations and model 

Suppose there are 𝑛 subjects with 𝑀 total variants sequenced across the whole genome. Given a 

genetic set of 𝑝 variants, for subject 𝑖, let 𝑌𝑖 denote a continuous or dichotomous trait with mean 

𝜇𝑖; 𝑿𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑞)
𝑇
 denote 𝑞 covariates, such as age, gender, ancestral principal components; 

and 𝑮𝑖 = (𝐺𝑖1, … , 𝐺𝑖𝑝)
𝑇
 denote the genotype information of the 𝑝 genetic variants in a variant-

set. 

 

When the data consist of unrelated samples, we consider the following Generalized Linear 

Model (GLM) 

 𝑔(𝜇𝑖) = 𝛼0 + 𝑿𝑖
𝑇𝜶 + 𝑮𝑖

𝑇𝜷,  (2.1) 
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where 𝑔(𝜇) = 𝜇 for a continuous normally distributed trait, 𝑔(𝜇) = logit(𝜇) for a dichotomous 

trait, 𝛼0 is an intercept, 𝜶 = (𝛼1, … , 𝛼𝑞)
𝑇

 is a vector of regression coefficients for 𝑿𝑖, and 𝜷 =

(𝛽1, … , 𝛽𝑝)
𝑇
 is a vector of regression coefficients for 𝑮𝑖. 

 

When the data consist of related samples, we consider the following Generalized Linear Mixed 

Model (GLMM) (71-73) 

 𝑔(𝜇𝑖) = 𝛼0 + 𝑿𝑖
𝑇𝜶 + 𝑮𝑖

𝑇𝜷 + 𝑏𝑖 , (2.2) 

where the random effects 𝑏𝑖 account for remaining population structure unaccounted by ancestral 

PCs, relatedness, and other between-observation correlation. We assume that 𝒃 = (𝑏1, … , 𝑏𝑛)𝑇 ∼

𝑁(𝟎, ∑ 𝜃𝑙𝚽𝑙
𝐿
𝑙=1 ) with variance components 𝜃𝑙 and known covariance matrices 𝚽𝑙. The random 

effects 𝒃 can be decomposed into a sum of multiple random effects to account for different 

sources of relatedness and correlation as 𝒃 = ∑ 𝒃𝑙
𝐿
𝑙=1  with 𝒃𝑙 ∼ 𝑁(𝟎, 𝜃𝑙𝚽𝑙). For example, 𝒃1 

accounts for population structure and family relatedness by using the Genetic Relatedness 

Matrices (GRMs) as its covariance matrix 𝚽1 (111, 112). A sparse GRM can be used to scale up 

computation (74). Additional random effects 𝒃2, ⋯ , 𝒃𝐿 can be used to account for complex 

sampling designs, such as correlation between repeated measures from longitudinal studies using 

subject-specific random intercepts and slopes and hierarchical designs. The remaining variables 

are defined in the same way as those in the GLM (2.1). Under both the GLM and the GLMM, we 

are interested in testing the null hypothesis of whether the variant-set is associated with the 

phenotype, adjusting for covariates and relatedness, which corresponds to 𝐻0: 𝜷 = 𝟎, that is, 

𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0. 
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Conventional variant-set tests 

Conventional score-based aggregation methods allow for jointly testing the association between 

variants in the genetic set and phenotype. In particular, burden tests (50-53) assume that 𝛽𝑗 =

𝑤𝑗𝛽, where 𝛽 is a constant for all variants, such that the corresponding burden test statistic to test 

𝐻0: 𝜷 = 𝟎 ⟺ 𝐻0: 𝛽 = 0 is given by  

𝑄𝐵𝑢𝑟𝑑𝑒𝑛 = (∑ 𝑤𝑗𝑆𝑗
𝑝
𝑗=1 )

2
, 

where 𝑆𝑗 = ∑ 𝐺𝑖𝑗(𝑌𝑖 − 𝜇̂𝑖)
𝑛
𝑖=1  is the score statistic of the marginal model for variant 𝑗 and 𝜇̂𝑖 is 

the estimated mean of 𝑌𝑖 under the null GLM 𝑔(𝜇𝑖) = 𝛼0 + 𝑿𝑖
𝑇𝜶 or the null GLMM 𝑔(𝜇𝑖) =

𝛼0 + 𝑿𝑖
𝑇𝜶 + 𝑏𝑖 . 𝑄𝐵𝑢𝑟𝑑𝑒𝑛  asymptotically follows a chi-square distribution with 1 degree of 

freedom under the null hypothesis, and its P value can be obtained analytically while accounting 

for linkage disequilibrium (LD) between variants (49, 73). 

 

For SKAT (54), the 𝛽𝑗’s are assumed to be independent and identically distributed (i.i.d.) 

following an arbitrary distribution, with 𝐸(𝛽𝑗) = 0 and 𝑉𝑎𝑟(𝛽𝑗) = 𝑤𝑗
2𝜏. The null hypothesis of 

no variant-set effect 𝐻0: 𝜷 = 𝟎 is equivalent to 𝐻0: 𝜏 = 0, and the corresponding SKAT test 

statistic is given by 

𝑄𝑆𝐾𝐴𝑇 = ∑ 𝑤𝑗
2𝑆𝑗

2

𝑝

𝑗=1

. 
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𝑄𝑆𝐾𝐴𝑇  asymptotically follows a mixture of chi-square distributions under the null hypothesis, and 

its P value can be obtained analytically while accounting for LD between variants (49, 73). 

 

Further, the recently proposed ACAT-V test uses a combination of transformed variant P values 

rather than operating on the test statistics directly(55). The ACAT-V test statistic is given by 

𝑄𝐴𝐶𝐴𝑇−𝑉 = 𝑤2MAF(1 − MAF)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ tan((0.5 − 𝑝0)𝜋) + ∑ 𝑤𝑗
2MAF𝑗(1 − MAF𝑗) tan ((0.5 − 𝑝𝑗)𝜋)

𝑝′

𝑗=1

, 

where 𝑝′ is the number of variants with minor allele count (MAC) greater than 10 and 𝑝𝑗 is the 

association P value of individual variant 𝑗 corresponding the individual variant score statistics 

𝑆𝑗 for those variants with MAC > 10. 𝑝0 is the burden test P value of extremely rare variants 

with MAC ≤ 10 and 𝑤2MAF(1 − MAF)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average of the weights 𝑤𝑗
2MAF𝑗(1 −

MAF𝑗) among the extremely rare variants with MAC ≤ 10. 𝑄𝐴𝐶𝐴𝑇−𝑉 can be well approximated 

by a Cauchy distribution under the null hypothesis, and its P value can be obtained analytically 

while accounting for LD between variants (55). For binary traits in highly unbalanced designs, 

one can improve individual P value calculations using Saddlepoint approximation (113, 114). 

 

These conventional approaches consider a weight 𝑤𝑗  defined as a threshold indicator or a 

function of minor allele frequency (MAF) for variant 𝑗, i.e. 𝑤𝑗 = 𝐵𝑒𝑡𝑎(MAF𝑗; 𝑎1, 𝑎2) (49). 

Common choices of the parameters are 𝑎1 = 1 and 𝑎2 = 25 which upweights rarer variants, or 

𝑎1 = 1 and 𝑎2 = 1, which corresponds to equal weights for all variants. In WGS studies, the vast 

majority of rare variants across the genome are not causal. Thus, choosing their weights 
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according to MAF will incorrectly upweight many such “noise” variants in a variant-set and 

result in a loss of statistical power. Weighting using multiple variant functional annotations will 

help overcome this deficiency. 

 

Calculation of annotation principal components using individual functional annotations 

To effectively capture the multi-faceted biological impact of a variant while reducing 

dimensionality, we propose variant annotation Principal Components (aPCs) as the PC summary 

of the functional annotation data by incorporating individual scores extracted from various 

functional databases (6, 7, 11, 24, 75, 115). We first group the individual scores into 10 major 

functional categories based on a priori knowledge, each capturing a specific aspect of variant 

biological function, including epigenetics, conservation, protein function, local nucleotide 

diversity, distance to coding, mutation density, transcription factors, mappability, distance to 

TSS/TES, and micro RNA (Figure 2.2). For each category, we then center and standardize all 

individual scores within the category, such that higher value of each individual score indicates 

increased functionality of that annotation, and calculate aPC as the first PC from the standardized 

individual scores (Supplementary Table 2.1). To facilitate better interpretation, these aPCs are 

then transformed into the PHRED-scaled scores for each variant across the genome, defined as 

−10 ×  log10(𝑟𝑎𝑛𝑘(−𝑠𝑐𝑜𝑟𝑒)/𝑀), where 𝑀 is total number of variants sequenced across the 

whole genome. 

 

Unlike ancestral PCs that are subject-specific and are calculated using genotypes across the 

genome to control for population structure, annotation PCs are variant-specific and are calculated 
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using functional annotations for individual variants and are used to summarize multi-facet 

functions of individual variants. Complementary to other existing single-dimension integrative 

functional scores, annotation PCs summarize multiple aspects of variant function, with different 

blocks captured by different annotation PCs in the heatmap (Figure 2.2). 

 

STAAR incorporating multiple functional annotations 

STAAR constructs the weights by modeling the probability of a variant being causal using its 

functional annotation information via qualitative annotations (e.g. functional categories) and 

quantitative annotations (e.g. annotation PCs and integrative annotations), as well as modeling 

the effect sizes of causal variants. Specifically, we consider the effect of variant 𝑗 on a phenotype 

can be written as  

𝛽𝑗 = 𝑐𝑗𝛾𝑗 , 

where 𝑐𝑗 is the latent binary indicator of whether variant 𝑗 is causal, and 𝛾𝑗  is the effect size of 

variant 𝑗 if it is causal. The burden test, SKAT, and ACAT-V make direct assumptions on the 

variance of 𝛽𝑗  using MAF information. This newly proposed variant effect model is expected to 

increase association power since a variant’s causal status can be prioritized using its functional 

annotations (59, 60). Let 𝜋𝑗 = 𝐸(𝑐𝑗) denote the probability of variant 𝑗 being causal, then the 

effect of variant 𝑗 given above is equivalent to  

𝛽𝑗 = (1 − 𝜋𝑗)𝛿0 + 𝜋𝑗𝛾𝑗 , 

where 𝛿0 is the Dirac delta function indicating that with probability 1 − 𝜋𝑗 , variant 𝑗 has no 

association with the phenotype. 
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Define 𝜋̂𝑗𝑘 as the estimated probability of 𝑗th variant being causal using the 𝑘th annotation (𝑘 =

0, ⋯ , 𝐾), e.g., 𝜋̂𝑗1 measures the estimated probability that the 𝑗th variant is causal using 

epigenetic annotation, aPC-Epigenetic. We estimate 𝜋̂𝑗𝑘 using the empirical CDF of the 𝑘th 

annotation for variant 𝑗 using its rank among all variants as  

𝜋̂𝑗𝑘 = 𝐸𝐶𝐷𝐹𝑘(𝐴𝑗𝑘) =
𝑟𝑎𝑛𝑘(𝐴𝑗𝑘)

𝑀
, 

where 𝐴𝑗𝑘 is the 𝑘th annotation for the 𝑗th variant. For 𝑘 = 0, we set 𝐴𝑗0 = 1 as the intercept, 

which gives 𝜋̂𝑗0 = 1. For a quantitative annotation, 𝐴𝑗𝑘 represents its numeric value, e.g., the 𝑘th 

annotation PC. The quantitative 𝐴𝑗𝑘 we consider in this chapter include 10 aPCs (Supplementary 

Table 2.1) and existing integrative scores, including CADD (11), LINSIGHT (21), and 

FATHMM-XF (116). For a qualitative annotation, we define 𝐴𝑗𝑘 = 1 for variants in the 

functional group (yes) and 𝐴𝑗𝑘 = 0 for variants otherwise (no). For example, 𝐴𝑗𝑘 denotes 

whether a variant is a disruptive missense variant using MetaSVM (81). Hence, 𝜋̂𝑗𝑘 = 1 for 

variants in the functional group and 𝜋̂𝑗𝑘 = 0 otherwise, e.g., disruptive missense variants 

(yes/no). This corresponds to the RV tests using variants of this functional group. 

 

In the STAAR framework, we model the effect sizes of causal variants 𝛾𝑗  in the same way as that 

used in conventional variant-set tests. Specifically, we assume |𝛾𝑗| ∝ 𝑤𝑗 , where 𝑤𝑗  is assumed as 

a function of MAFs. For simplicity, we model 𝑤𝑗  using 𝐵𝑒𝑡𝑎(MAF𝑗; 𝑎1, 𝑎2) and set (𝑎1, 𝑎2) to 

be (1,1) or (1,25). Then, the burden test statistic using 𝑘th variant functional annotation as the 
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weight, e.g., aPC-Epigenetic, is given by 𝑄𝐵𝑢𝑟𝑑𝑒𝑛,𝑘 = (∑ 𝜋̂𝑗𝑘𝑤𝑗𝑆𝑗
𝑝
𝑗=1 )

2
, whose P value is 

denoted by 𝑝𝐵𝑢𝑟𝑑𝑒𝑛,𝑘 (𝑘 = 0, ⋯ , 𝐾). Under the assumption of SKAT, by estimating the 

probability of 𝑗th variant being causal using the 𝑘th annotation (𝑘 = 0, ⋯ , 𝐾), we have 𝐸(𝛽𝑗) =

0 and 𝑉𝑎𝑟(𝛽𝑗) = 𝑉𝑎𝑟(𝑐𝑗𝛾𝑗) = 𝜋𝑗𝑘𝑤𝑗
2𝜏𝑘. Hence, the SKAT test statistic using 𝑘th variant 

functional annotation as the weight is given by  

𝑄𝑆𝐾𝐴𝑇,𝑘 = ∑ 𝜋̂𝑗𝑘𝑤𝑗
2𝑆𝑗

2

𝑝

𝑗=1

, 

whose P value is denoted by 𝑝𝑆𝐾𝐴𝑇,𝑘 (𝑘 = 0, ⋯ , 𝐾). In the ACAT-V test, the test statistic using 

𝑘th variant functional annotation as the weight is given by 

𝑄𝐴𝐶𝐴𝑇−𝑉,𝑘 = 𝜋̂⋅𝑘𝑤2MAF(1 − MAF)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ tan ((0.5 − 𝑝0,𝑘)𝜋)

+ ∑ 𝜋̂𝑗𝑘𝑤𝑗
2MAF𝑗(1 − MAF𝑗) tan ((0.5 − 𝑝𝑗)𝜋)

𝑝′

𝑗=1

, 

where 𝜋̂⋅𝑘𝑤2MAF(1 − MAF)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average of the weights 𝜋̂𝑗𝑘𝑤𝑗
2MAF𝑗(1 − MAF𝑗) among the 

extremely rare variants with MAC ≤ 10. The P value of 𝑄𝐴𝐶𝐴𝑇−𝑉,𝑘 is denoted by 𝑝𝐴𝐶𝐴𝑇−𝑉,𝑘 (𝑘 =

0, ⋯ , 𝐾). 

 

We denote by 𝑝𝐵𝑢𝑟𝑑𝑒𝑛,𝑘, 𝑝𝑆𝐾𝐴𝑇,𝑘, 𝑝𝐴𝐶𝐴𝑇−𝑉,𝑘 the P values of burden, SKAT, and ACAT-V tests, 

respectively calculated using the 𝑘th annotation as the weight. For each type of RV tests, to 

robustly aggregate information from multiple annotations to boost power RV association tests in 

a data-adaptive manner, we propose to use the STAAR framework to combine individual 
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annotation weighted tests using the ACAT P value combination method (55, 117). Specifically, 

we define STAAR-Burden (STAAR-B), STAAR-SKAT (STAAR-S), and STAAR-ACAT-V 

(STAAR-A) as  

𝑇𝑆𝑇𝐴𝐴𝑅−𝐵 = ∑
𝑡𝑎𝑛{(0.5 − 𝑝𝐵𝑢𝑟𝑑𝑒𝑛,𝑘)𝜋}

𝐾 + 1

𝐾

𝑘=0

, 

𝑇𝑆𝑇𝐴𝐴𝑅−𝑆 = ∑
𝑡𝑎𝑛{(0.5 − 𝑝𝑆𝐾𝐴𝑇,𝑘)𝜋}

𝐾 + 1

𝐾

𝑘=0

, 

𝑇𝑆𝑇𝐴𝐴𝑅−𝐴 = ∑
𝑡𝑎𝑛{(0.5 − 𝑝𝐴𝐶𝐴𝑇−𝑉,𝑘)𝜋}

𝐾 + 1

𝐾

𝑘=0

. 

The P value of 𝑇𝑆𝑇𝐴𝐴𝑅−𝑆, 𝑇𝑆𝑇𝐴𝐴𝑅−𝐵, and 𝑇𝑆𝑇𝐴𝐴𝑅−𝐴 can be approximated by  

𝑝𝑆𝑇𝐴𝐴𝑅−𝐵 ≈
1

2
−

{𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝑆𝑇𝐴𝐴𝑅−𝐵)}

𝜋
, 

𝑝𝑆𝑇𝐴𝐴𝑅−𝑆 ≈
1

2
−

{𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝑆𝑇𝐴𝐴𝑅−𝑆)}

𝜋
, 

𝑝𝑆𝑇𝐴𝐴𝑅−𝐴 ≈
1

2
−

{𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝑆𝑇𝐴𝐴𝑅−𝐴)}

𝜋
. 

 

To further aggregate information from different types tests and different weights, we propose an 

omnibus test in the STAAR framework (STAAR-O) by combining STAAR-B, STAAR-S and 

STAAR-A using the ACAT method (55, 117). We define the STAAR-O test statistic as  
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𝑇𝑆𝑇𝐴𝐴𝑅−𝑂 =
1

3|𝒜|
∑ [𝑡𝑎𝑛{(0.5 − 𝑝𝑆𝑇𝐴𝐴𝑅−𝐵(𝑎1,𝑎2))𝜋} + 𝑡𝑎𝑛{(0.5 − 𝑝𝑆𝑇𝐴𝐴𝑅−𝑆(𝑎1,𝑎2))𝜋}

(𝑎1 ,𝑎2)∈𝒜

+ 𝑡𝑎𝑛{(0.5 − 𝑝𝑆𝑇𝐴𝐴𝑅−𝐴(𝑎1,𝑎2))𝜋}], 

where 𝑝𝑆𝑇𝐴𝐴𝑅−𝐵(𝑎1,𝑎2), 𝑝𝑆𝑇𝐴𝐴𝑅−𝑆(𝑎1,𝑎2), and 𝑝𝑆𝑇𝐴𝐴𝑅−𝐴(𝑎1,𝑎2) denote the P values of STAAR-B, 

STAAR-S, and STAAR-A using 𝑤𝑗 = 𝐵𝑒𝑡𝑎(MAF𝑗; 𝑎1, 𝑎2), 𝒜 is the set of specified values of 

(𝑎1, 𝑎2), and |𝒜| is the size of set 𝒜. In practice, we set 𝒜 = {(1,25), (1,1)}. The P value of 

𝑇𝑆𝑇𝐴𝐴𝑅−𝑂 could then be accurately approximated by  

𝑝𝑆𝑇𝐴𝐴𝑅−𝑂 ≈
1

2
−

{𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝑆𝑇𝐴𝐴𝑅−𝑂)}

𝜋
. 

By combining different types of tests into an omnibus test, STAAR-O has a robust power with 

respect to the sparsity of causal variants and the directionality of effects of causal variants in a 

variant-set, as well as variant multi-facet functions and MAFs. Specifically, by including the 

burden test, STAAR-O is powerful when majority of variants in a variant-set are causal and have 

effects in the same direction; by including SKAT, STAAR-O is powerful when not a small 

number of variants in a variant-set are causal with effects in different directions, or when variants 

in a variant-set are in high LD; by including ACAT-V, STAAR-O is powerful when a small 

number of variants in a variant-set are causal or a good number of extremely rare variants are 

causal; by weighting each type of tests using multiple annotation PCs and other integrative 

functional scores and qualitative annotations, STAAR-O is powerful when any of these variant 

functional annotations can pinpoint causal variants and help boost power. 

 

Data simulation 
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Type I error simulations 

We performed extensive simulation studies to evaluate whether the proposed STAAR framework 

preserves the desired type I error rate. We generated continuous traits from a linear model 

defined as  

𝑌𝑖 = 0.5𝑋1𝑖 + 0.5𝑋2𝑖 + 𝜖𝑖 , 

where 𝑋1𝑖 ∼ 𝑁(0,1), 𝑋2𝑖 ∼ Bernoulli(0.5), and 𝜖𝑖 ∼ 𝑁(0,1). Dichotomous traits were generated 

from a logistic model defined as  

logit 𝑃(𝑌𝑖 = 1) = 𝛼0 + 0.5𝑋1𝑖 + 0.5𝑋2𝑖 , 

where 𝑋1𝑖 and 𝑋2𝑖 were defined the same as continuous traits and 𝛼0 was determined to set the 

prevalence to 1%. In this setting, we used a balanced case-control design. We generated 

genotypes by simulating 20,000 sequences for 100 different regions each spanning 1 Mb. The 

data were generated to mimic the LD structure of an African American population by using the 

calibration coalescent model (COSI) (77). In each simulation replicate, 10 annotations were 

generated as 𝐴1, … , 𝐴10 i.i.d. 𝑁(0,1) for each variant, and we randomly selected 5-kb regions 

from these 1-Mb regions for type I error simulations. We applied STAAR-B, STAAR-S, 

STAAR-A, and STAAR-O by incorporating MAFs and the 10 annotations and repeated the 

procedure with 109 replicates to examine the type I error rate at 𝛼 = 10−5, 10−6, 10−7 levels. 

Total sample sizes considered were 2,500, 5,000, and 10,000. 

 

Empirical power simulations.  
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Next, we carried out simulation study under a variety of configurations to assess the power gain 

by incorporating multiple functional annotations using STAAR compared to conventional 

variant-set tests that use MAFs as weights. In each simulation replicate, we randomly selected 5-

kb regions from these 1-Mb regions for power simulations. For each selected 5-kb region, we 

generated causal variants according to a logistic model defined as  

logit 𝑃(𝑐𝑗 = 1) = 𝛿0 + 𝛿𝑘1
𝐴𝑗,𝑘1

+ 𝛿𝑘2
𝐴𝑗,𝑘2

+ 𝛿𝑘3
𝐴𝑗,𝑘3

+ 𝛿𝑘4
𝐴𝑗,𝑘4

+ 𝛿𝑘5
𝐴𝑗,𝑘5

, 

where {𝑘1, ⋯ , 𝑘5} ⊂ {1, ⋯ ,10} were randomly sampled for each region. For different regions, 

causality of variants was allowed to be dependent on different sets of annotations. We set 𝛿𝑘𝑙
=

log(5) for all annotations and varied the proportions of causal variants in the signal region by 

setting 𝛿0 = logit(0.0015), logit(0.015), and logit(0.18) for averaging 5%, 15% and 35% 

causal variants in the signal region, respectively. 

 

We generated continuous traits from a linear model given by  

𝑌𝑖 = 0.5𝑋1𝑖 + 0.5𝑋2𝑖 + 𝛽1𝐺1𝑗 + ⋯ + 𝛽𝑠𝐺𝑠𝑗 + 𝜖𝑖 , 

where 𝑋1𝑖 , 𝑋2𝑖 , 𝜖𝑖 were defined the same as the type I error simulations, 𝐺1𝑗 , … , 𝐺𝑠𝑗  were the 

genotypes of the s causal variants in the signal region, and 𝛽1, … , 𝛽𝑠 were the corresponding 

effect sizes of causal variants. Dichotomous traits were generated from a logistic model given by  

logit 𝑃(𝑌𝑖 = 1) = 0.5𝑋1𝑖 + 0.5𝑋2𝑖 + 𝛽1𝐺1𝑗 + ⋯ + 𝛽𝑠𝐺𝑠𝑗 , 

where α0, 𝑋1𝑖 , 𝑋2𝑖 were defined the same as the type I error simulations, 𝐺1𝑗 , … , 𝐺𝑠𝑗  were the 

genotypes of the 𝑠 causal variants in the signal region, and 𝛽1, … , 𝛽𝑠 were the corresponding log 

ORs of the 𝑠 causal variants. 
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Under both settings, we model the effect sizes of causal variants using 𝛽𝑗 = 𝛾𝑗 =

𝑐0| log10 𝑀𝐴𝐹𝑗 |. The effect size of causal variant was therefore a decreasing function of MAF. 

For continuous traits, 𝑐0 was set to be 0.13. For dichotomous traits, 𝑐0 was set to be 0.255, which 

gives an odds ratio of 3 for a variant with MAF of 5 ×  10−5. For each setting, we additionally 

varied the proportions of causal variant effect size directions by setting 100%, 80%, and 50% 

variants to have positive effects. Finally, we performed simulations using different magnitudes of 

effect sizes by varying the values of 𝑐0 across a wide range. We applied STAAR-B, STAAR-S, 

STAAR-A, and STAAR-O using MAFs and all 10 annotations in the weighting scheme, and 

repeated the procedure with 104 replicates to examine the powers at 𝛼 = 10−7 level. Total 

sample sizes considered were 10,000 across all settings. 

 

Computation cost 

 To test the computation time of 500,000 related samples, we simulated 1,000 genomic regions, 

each with 100 variants, for 1 million haplotypes of 125,000 families with 2 parents and 2 

children per family. The computation time for WGS RVAS was estimated by analyzing 2.5 

million variant-sets with on average 100 variants in each set using STAAR. 

 

Statistical analysis of lipid traits in the TOPMed data 

The TOPMed WGS data consist of ancestrally diverse and multi-ethnic related samples (79). 

Race/ethnicity was defined using a combination of self-reported race/ethnicity and study 
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recruitment information. The discovery cohorts consist of 4,580 (37.2%) Black or African 

American, 6,266 (50.9%) White, 543 (4.4%) Asian American, and 927 (7.5%) Hispanic/Latino 

American. The replication cohorts consist of 3,534 (19.8%) Black or African American, 11,662 

(65.4%) White, 132 (0.7%) Asian American, and 2,494 (14.0%) others. The “others” category in 

the replication cohort includes many Hispanic/Latino American as well as a cohort of Samoans. 

 

We applied STAAR-O to identify RV-sets associated with four quantitative lipid traits (LDL, 

HDL, TG and TC) using the TOPMed WGS data. LDL-C and TC were adjusted for the presence 

of medications as before (78). Linear regression model adjusting for age, age2, sex was first fit 

for each study-race/ethnicity-specific group. In addition, for Old Order Amish (OOA), we also 

adjusted for APOB p.R3527Q in LDL-C and TC analyses and adjusted for APOC3 p.R19Ter in 

TG and HDL-C analyses (78). The residuals were rank-based inverse normal transformed and 

rescaled by the standard deviation of the original phenotype within each group. We then fit a 

heteroscedastic linear mixed model (HLMM) for the rank normalized residuals, adjusting for 10 

ancestral PCs, study-ethnicity group indicators, and a variance component for empirically 

derived kinship matrix plus separate group-specific residual variance components to account for 

population structure and relatedness. The output of HLMM was then used to perform following 

variant set analyses for rare variants (MAF < 1%) by scanning the genome, including gene-

centric analysis using five variant categories (pLoF RVs, missense RVs, synonymous RVs, 

promoter RVs, and enhancer RVs) for each protein coded gene, and agnostic genetic region 

analysis using 2-kb sliding windows across the genome with a 1-kb skip length. The WGS 

RVAS analysis was performed using the R package STAAR (version 0.9.5). 
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The aPCs provide diverse and complementary information on variant functionality, and are 

incorporated in rare variant association tests using an omnibus weighting scheme via the 

proposed STAAR method. We demonstrate using the following example that STAAR boosts the 

rare variant association test power by properly upweighting known LDL-associated functional 

rare variants. For example, the association between a 2-kb sliding window located at 55,038,498 

bp - 55,040,497 bp on chromosome 1 and LDL-C using STAAR-O is more significant than 

conventional tests in unconditional analysis (Supplementary Table 2.14). This power gain of 

STAAR-O is due to upweighting functional variants, e.g., the known tolerated missense variant 

rs11591147 within the sliding window through incorporating multiple aPCs (118). Specifically, 

the aPC-Epigenetic, aPC-Protein, and aPC-Mappability PHRED scores are greater than 20 (top 

1% across the genome), and the aPC-MutationDensity, aPC-TF, and CADD PHRED scores are 

greater than 10 (top 10% across the genome) for this variant, highlighting the multi-dimensional 

functionality of this variant. The aPC-Protein and aPC-Mappability weighted SKAT P values are 

6.69 × 10−13 and 3.78 ×  10−12, which are more significant than SKAT (𝑃 = 1.12 × 10−9) 

and burden test (𝑃 = 4.68 × 10−4). 

 

Statistical analysis of LDL-C in the UK Biobank data 

We used UK Biobank whole exome sequences (WES) from the functionally equivalent (FE) 

pipeline. Sample and variant quality control measures were previously described (101, 119). In 

brief, samples with mismatch between genetically inferred and reported sex, high rates of 

heterozygosity or contamination (D-stat > 0.4), low sequence coverage (less than 85% of 

targeted bases achieving 20× coverage), duplicates, and WES variants discordant with 

genotyping chip were removed. A total of 43,243 individuals with genetically inferred European 
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ancestry were included; 40,519 of those had data on LDL cholesterol. Total cholesterol was 

adjusted by dividing the value by 0.8 among individuals reporting lipid lowering medication use 

after 1994 or statin use at any time point. LDL cholesterol was calculated from adjusted total 

cholesterol levels by the Friedewald equation for individuals with triglyceride levels < 400 

mg/dl. If LDL cholesterol levels were directly measured, then their values were divided by 0.7 

among reporting lipid lowering medication use after 1994 or statin use at any time point. 

Residuals were created after adjustment for age, age2, sex, and the first 10 ancestral principal 

components. Residuals were then rank-based inverse-normal transformed and multiplied by the 

standard deviation. Analyses were restricted to missense variants in the NPC1L1 gene predicted 

to be damaging according to the MetaSVM prediction algorithm and conditioned on ten known 

common variants in NPC1L1 associated with LDL-C (rs10234070, rs73107473, rs2072183, 

rs41279633, rs17725246, rs2073547, rs10260606, rs217386, rs7791240, rs2300414) obtained 

from the UK Biobank imputed genotype data. We performed a burden test for the association 

between disruptive missense RVs in NPC1L1 and LDL-C. 

 

Code availability 

STAAR is implemented as an open source R package available at 

https://github.com/xihaoli/STAAR and https://content.sph.harvard.edu/xlin/software.html. 

 

Data availability 

This chapter used the TOPMed Freeze 5 Whole Genome Sequencing data and lipids phenotype 

data. The genotype and phenotype data are both available in dbGAP. The discovery phase used 

https://github.com/xihaoli/STAAR
https://content.sph.harvard.edu/xlin/software.html
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the data from the following four study cohorts, where the accession numbers are provided in 

parenthesis: Framingham Heart Study (phs000974.v1.p1), Old Order Amish (phs000956.v1.p1), 

Jackson Heart Study (phs000964.v1.p1), and Multi-Ethnic Study of Atherosclerosis 

(phs001416.v1.p1). The replication phase used the data from the following ten study cohorts: 

Atherosclerosis Risk in Communities Study (phs001211), Cleveland Family Study (phs000954), 

Cardiovascular Health Study (phs001368), Diabetes Heart Study (phs001412), Genetic Study of 

Atherosclerosis Risk (phs001218), Genetic Epidemiology Network of Arteriopathy (phs001345), 

Genetics of Lipid Lowering Drugs and Diet Network (phs001359), San Antonio Family Heart 

Study (phs001215), Genome-wide Association Study of Adiposity in Samoans (phs000972) and 

Women’s Health Initiative (phs001237). The sample sizes, ethnicity and phenotype summary 

statistics of these cohorts are given in Supplementary Table 2.3. 

 

The functional annotation data are publicly available and were downloaded from the following 

links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/download), ANNOVAR dbNSFP 

v3.3a (https://annovar.openbioinformatics.org/en/latest/user-guide/download), LINSIGHT 

(https://github.com/CshlSiepelLab/LINSIGHT), FATHMM-XF 

(http://fathmm.biocompute.org.uk/fathmm-xf), CAGE (https://fantom.gsc.riken.jp/5/data), 

GeneHancer (https://www.genecards.org), and Umap/Bismap (https://bismap.hoffmanlab.org). 

In addition, recombination rate and nucleotide diversity were obtained from Gazal et al(120). 

The tissue-specific functional annotations were downloaded from ENCODE 

(https://www.encodeproject.org/report/?type=Experiment). 

 

https://cadd.gs.washington.edu/download
https://annovar.openbioinformatics.org/en/latest/user-guide/download
https://github.com/CshlSiepelLab/LINSIGHT
http://fathmm.biocompute.org.uk/fathmm-xf
https://fantom.gsc.riken.jp/5/data
https://www.genecards.org/
https://bismap.hoffmanlab.org/
https://www.encodeproject.org/report/?type=Experiment
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CHAPTER III 

Powerful and resource-efficient meta-analysis of rare variant associations in 

large whole-genome sequencing studies at scale  

Xihao Li, Zilin Li, Corbin Quick, et. al, NHLBI Trans-Omics for Precision Medicine (TOPMed) 

Consortium, TOPMed Lipids Working Group, Jerome I. Rotter, Cristen J. Willer, Pradeep 

Natarajan, Gina M. Peloso and Xihong Lin 

 

Abstract 

Meta-analysis of whole-genome/exome sequencing (WGS/WES) studies has provided an 

exciting solution to leverage large sample sizes for the discovery of coding and noncoding rare 

variants (RVs) associated with complex human traits. Existing RV meta-analysis approaches are 

not scalable when applied to WGS/WES data due to the very large number of RVs whose 

summary-level information needs to be stored and shared. We propose MetaSTAAR, a powerful 

and resource-efficient RV meta-analysis framework scalable to large cohort and biobank 

WGS/WES studies with hundreds of millions of RVs across the genome, while accounting for 

relatedness and population structure for both quantitative and dichotomous traits. Through meta-

analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans-

Omics for Precision Medicine program, we demonstrated that MetaSTAAR performed resource-

efficient RV meta-analysis at scale and identified several conditionally significant RV 

associations with lipids. 
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Introduction 

Ongoing large-scale whole-genome/exome sequencing studies, such as the Trans-Omics for 

Precision Medicine (TOPMed) Program of the National Heart, Lung and Blood Institute 

(NHLBI) (79), the Genome Sequencing Program (GSP) of the National Human Genome 

Research Institute, and UK Biobank WES Program (101), have provided invaluable insights into 

uncovering the genetic contributions of both coding and noncoding RVs (minor allele frequency 

(MAF) < 1%) to many complex diseases and traits. Because single-variant analyses are typically 

underpowered to identify RV associations (49), variant set tests have been proposed by jointly 

analyzing the effects of multiple RVs to improve power (51-55). In addition, it is well known 

that single studies are underpowered to detect small to moderate genetic effects (121). As such, 

meta-analysis of data from comparable WGS/WES studies provides a natural and cost-effective 

solution to augment sample sizes and increase power for genetic discovery (122). Compared to 

the joint analysis of pooled individual-level data, meta-analysis only requires summary-level data 

to be shared from each study, which protects the data privacy of study participants, bypasses the 

cumbersome genotype and phenotype data harmonization, and results in smaller shareable data 

sizes. More importantly, the statistical power of meta-analysis is asymptotically equivalent to 

that of pooled analysis (123), making meta-analysis an essential tool for analyzing RV 

associations in large-scale WGS/WES studies, especially when individual-level data across 

studies cannot be shared. 

 

Existing methods have been proposed to perform meta-analysis of RVs in genetic association 

studies (124-127). However, these methods require 𝒪(𝑛2) computation time and summary-level 

data storage for a participating study, where 𝑛 is the sample size, which are not scalable to large 
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WGS studies. Here we propose the Meta-analysis of variant-Set Test for Association using 

Annotation infoRmation (MetaSTAAR), a general framework to perform RV meta-analysis for 

large-scale WGS studies with hundreds of millions of RVs across the genome. MetaSTAAR 

accounts for relatedness and population structure for both quantitative and dichotomous traits by 

fitting the null GLMMs using sparse genetic relatedness matrices (GRMs) (43, 74, 128). By 

calculating and storing a new form of summary-level data shared across studies, MetaSTAAR is 

computationally scalable and highly resource-efficient for RV meta-analysis of large-scale WGS 

data, which only requires 𝒪(𝑛) computation time and summary-level data storage without 

information loss (Methods). Furthermore, MetaSTAAR dynamically incorporates multiple 

functional annotations to empower RV meta-analysis and could be applied to any analysis units, 

including gene-centric analysis by grouping variants into functional categories for each gene and 

genetic region analysis using sliding windows (43). MetaSTAAR also enables conditional 

analysis to identify RV association signals independent of known variants.  

 

In the present study, we performed extensive simulation studies to demonstrate that MetaSTAAR 

maintains accurate type I error rates and achieves greater power by incorporating relevant 

functional annotations for both quantitative and dichotomous phenotypes. By applying 

MetaSTAAR to perform WGS RV meta-analysis of 30,138 related and ancestrally diverse 

samples from 14 participating studies with four quantitative lipid traits: low-density lipoprotein 

cholesterol (LDL-C); high-density lipoprotein cholesterol (HDL-C); triglycerides (TG) and total 

cholesterol (TC) from the NHLBI TOPMed program, we show that MetaSTAAR is 

computationally scalable and resource-efficient for large-scale WGS RV meta-analysis, requiring 

at least 100 times smaller storage and computation time than existing methods. MetaSTAAR also 
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identifies several conditionally significant RV associations with lipids, after adjusting for known 

lipid-associated variants. 

 

Results 

Overview of methods 

MetaSTAAR is a general framework to perform powerful and resource-efficient meta-analysis of 

RV associations in WGS studies at scale, while accounting for relatedness and population 

structure for both quantitative and dichotomous traits using fast and scalable algorithms. There 

are two main steps of the MetaSTAAR framework: (i) generating summary-level data for each 

participating study, referred to as MetaSTAARWorker, and (ii) testing for association between 

each variant set and phenotypes via meta-analysis by combining these summary-level data across 

studies and incorporating multiple functional annotations, including annotation principal 

components (aPCs) (43) (Figure 3.1). 

 

For each participating study, MetaSTAARWorker first fits the null GLMM, including linear and 

logistic mixed model for quantitative and dichotomous trait, to account for relatedness and 

population structure (72, 73). It uses sparse GRM and allows for study-specific covariates (for 

example, ancestral principal components) in fitting the null mixed model to ensure 

computational efficiency while preserving accuracy (74, 128). MetaSTAARWorker then 

calculates single-variant score statistics and their variances (summary statistics) for all 

polymorphic variants in the study, which can be used to perform single-variant meta-

analysis(129). For meta-analysis of RVs, one of the most time-consuming and resource- 
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Figure 3.1 MetaSTAAR workflow. 

 

a, Input data of MetaSTAAR for each study, including genotypes, phenotypes, covariates, and 

sparse genetic relatedness matrix is prepared. b, Summary statistics and sparse LD matrices for 

each study are generated using MetaSTAARWorker. c, All RVs in the merged variant list are 

annotated (including annotation principal components) and two types of variant sets are defined: 

gene-centric analysis by grouping variants into functional genomic elements for each protein-

coding gene; and genetic region analysis using agnostic sliding windows. d, The MetaSTAAR-O 

P values for all variant sets defined in c are obtained. e, The conditional MetaSTAAR-O P 

values for all significant variant sets from d after adjusting for known variants are obtained and 

reported. 

 

demanding components is generating the variance-covariance matrices to represent the linkage 

disequilibrium (LD) structure among RVs. To address this issue, MetaSTAARWorker 

decomposes the variance-covariance matrix of RVs as the difference between the sparse LD 

matrix and the cross product of a low-rank dense matrix which captures the covariate effects 

(Methods). It stores the low-rank dense matrix along with the single-variant summary statistics, 

and stores the LD matrix in sparse matrix format. By storing these two matrices separately, 

MetaSTAARWorker only requires 𝒪(𝑛) computation and storage without information loss. 

Compared with existing methods that require 𝒪(𝑛2) computation and storage (124, 125), 
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MetaSTAARWorker can efficiently reduce the summary-level data storage, while being able to 

reconstruct the variance-covariance matrix of RVs. 

 

After collecting the summary-level data from each participating study, MetaSTAAR combines 

the summary statistics into a merged variant list for any user-specified variant set. MetaSTAAR 

then calculates the aggregated score statistics and their variance-covariance matrix that 

corresponds to all RVs in the merged variant list, by using the summary statistics and sparse LD 

matrices from each study. Since the vast majority of RVs sequenced across the genome are 

extremely rare variants, a considerable number of RVs are study-specific for WGS/WES meta-

analysis (Supplementary Table 3.1a). As such, if a genetic variant is monomorphic in a study, 

MetaSTAAR will set its single-variant score statistic and the corresponding row and column in 

the variance-covariance matrix to 0 for that study (124, 125). With the aggregated score statistics 

and their variance-covariance matrix of a given variant set, MetaSTAAR performs powerful RV 

meta-analysis by incorporating multiple functional annotations in the weighting scheme using 

the STAAR framework and outputs the meta-analysis STAAR-O (MetaSTAAR-O) P value for 

the variant set (43). In addition, MetaSTAAR allows dissecting RV association signals 

independent of a given set of known variants via conditional analysis (Methods). 

 

Application to the TOPMed Lipids WGS data 

We applied MetaSTAAR to identify RV associations with four quantitative lipid traits (LDL-C, 

HDL-C, TG and TC) by meta-analysis of 14 study cohorts in TOPMed Freeze 5 WGS data 

consisting of 30,138 individuals (Supplementary Note of Appendix B): the Framingham Heart 
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Study (FHS), the Old Order Amish (OOA), the Jackson Heart Study (JHS), the Multi-Ethnic 

Study of Atherosclerosis (MESA), the Atherosclerosis Risk in Communities Study (ARIC), the 

Cleveland Family Study (CFS), the Cardiovascular Health Study (CHS), the Diabetes Health 

Study (DHS), the Genetic Study of Atherosclerosis Risk (GeneSTAR), the Genetic 

Epidemiology Network of Arteriopathy (GENOA), the Genetics of Lipid Lowering Drugs and 

Diet Network (GOLDN), the San Antonio Family Heart Study (SAFS), the Genome-wide 

Association Study of Adiposity in Samoans (SAS), and the Women’s Health Initiative (WHI). 

LDL-C and TC were adjusted for the presence of medications(78), and DNA samples were 

sequenced at > 30x target coverage. We performed sample- and variant-level quality control for 

each participating study(78, 79). Race/ethnicity was defined using a combination of self-reported 

race/ethnicity and study recruitment information. There were 30,138 ancestrally diverse and 

multi-ancestry-related samples from these 14 studies in total, consisting of 8,114 (26.9%) Black 

or African-American individuals, 17,928 (59.5%) White, 675 (2.2%) Asian American and 3,421 

(11.4%) Hispanic/Latino American and Samoans. Among these samples, 6,690 (22.2%) had 

first-degree relatedness, 938 (3.1%) had second-degree relatedness and 769 (2.6%) had third-

degree relatedness. There were 255 million of single-nucleotide variants (SNVs) observed 

overall, consisting of 6.3 million (2.5%) common variants (MAF > 5%), 4.9 million (1.9%) low-

frequency variants (1% ≤ MAF ≤ 5%) and 244 million RVs (MAF < 1%). The study-specific 

demographics, summaries of lipid levels and variant number distributions are given in 

Supplementary Tables 3.1a and 3.1b.  

 

Runtime and resource requirements of MetaSTAARWorker 
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We evaluated the computational performance of MetaSTAARWorker, including runtime and 

resource requirements. For each study, we first applied inverse rank normal transformation to 

phenotypes, adjusted for age, age2, sex, race/ethnicity, and the first ten ancestral principal 

components, and controlled for relatedness using heteroscedastic linear mixed models (HLMM) 

with sparse GRMs plus ancestry-specific residual variance components (Methods). We then used 

MetaSTAARWorker to generate and store the summary statistics of all variants and sparse LD 

matrices of variants whose MAFs are below a study-specific threshold (Supplementary Table 

3.2). The MAF threshold is dependent on the relative sample size between studies to ensure all 

RVs in the pooled samples are included in the meta-analysis. It requires 3 hours for 100 2.10 

GHz computing cores with 12 GB memory to generate the summary-level data for each study 

and each trait. Each trait requires 590 GB on average to store these summary-level data of all 14 

cohorts (Supplementary Table 3.2). 

 

We then considered multiple subsets of individuals from the TOPMed lipids Freeze 5 WGS data 

and compared the computational performance of MetaSTAARWorker and the existing method 

RareMetalWorker (RMW). Note that RMW does not allow for HLMM of a given study, linear 

models were performed using both methods for a fair comparison. In summary, 

MetaSTAARWorker requires at least 100 times smaller storage and computation time than 

RMW (Table 3.1). In addition, the ratio between RMW and MetaSTAARWorker of both storage 

and computation time increases as the sample size increases, which is anticipated due to the 

different order of computation complexity and storage for the two methods. 
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Table 3.1 Comparison of runtimes and storage of MetaSTAARWorker and 

RareMetalWorker. 

Region 
Sample 

size 

MetaSTAARWorker RareMetalWorker (RMW) MetaSTAARWorker/RMW 

CPU hours 

(h) 
Storage (GB) 

CPU hours 

(h) 
Storage (GB) CPU hours Storage 

chromosome 6: 160 

Mb – 161 Mb 

4,791 0.10 0.01 2.05 1.77 4.69% 0.46% 

12,316 0.14 0.02 10.47 3.77 1.34% 0.41% 

30,138 0.21 0.03 69.94 10.14 0.31% 0.26% 

chromosome 16: 0 

Mb -12 Mb 

4,791 1.58 0.24 80.28 65.33 1.97% 0.37% 

12,316 2.65 0.46 358.04* 123.94* 0.74% 0.37% 

30,138 3.59 0.80 2303.78* 328.79* 0.16% 0.24% 

*Predicted numbers based on partial results. Runtimes and storage of MetaSTAARWorker 

v0.9.6 (linear model) and RareMetalWorker v4.15.1 (linear model) to generate sparse LD 

matrices and covariance matrices, respectively. Three datasets from TOPMed Freeze 5 total 

cholesterol WGS data were used in this benchmarking test: MESA cohort (n = 4,791); TOPMed 

Freeze 3 data (n = 12,316, including 4 study cohorts FHS, JHS, MESA and OOA described in 

the Supplementary Note) and TOPMed Freeze 5 data (n = 30,138, including 14 study cohorts 

described in the Supplementary Note). Two variant sets were considered in this test: all 

uncommon variants (MAF ≤ 5%) from 160 Mb to 161 Mb on chromosome 6 and all uncommon 

variants from 0 Mb to 12 Mb on chromosome 16. MetaSTAARWorker was performed at a 2.10 

GHz computing core with 12 GB memory and RareMetalWorker was performed at the same 

core with 30 GB memory. 

 

Gene-centric meta-analysis of coding and noncoding RVs 

We applied MetaSTAAR-O to perform gene-centric meta-analysis of coding, promoter, and 

enhancer RVs of genes associated with lipid traits. RVs (pooled MAF < 1%) from five functional 

categories (masks) of each gene were aggregated and analyzed for each of the four lipid traits, 

including (i) putative loss-of-function (stop gain, stop loss and splice) RVs, (ii) missense RVs, 

(iii) synonymous RVs, (iv) promoter RVs with overlap of cap analysis of gene expression 

(CAGE) sites (8), and (v) enhancer RVs with overlap of CAGE sites (9, 80), where each mask 

was defined in Methods. We incorporated 10 aPCs (including 1 liver-specific aPC) (43), CADD 
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(11), LINSIGHT (21), FATHMM-XF (116) and MetaSVM (81) (for missense RVs only) along 

with the two MAF weights (49) in MetaSTAAR-O. Overall, the distribution of MetaSTAAR-O 

P-values was well calibrated for all four lipid phenotypes (Supplementary Figure 3.1). At a 

Bonferroni-corrected significance threshold of 𝛼 = 0.05/(20,000 ×  5) = 5.00 × 10−7 

accounting for five different masks across protein-coding genes, MetaSTAAR-O identified 53 

genome-wide significant associations with four lipid phenotypes using unconditional meta-

analysis (Supplementary Table 3.3 and Supplementary Figure 3.2). After conditioning on known 

lipids-associated variants, 45 out of the 53 associations remained significant at the Bonferroni-

corrected threshold of 0.05/53 = 9.43 ×  10−4, including associations with LDL-C (putative 

loss-of-function RVs in PCSK9 and APOB, missense RVs in PCSK9, ABCG5, NPC1L1, LDLR, 

and APOE, synonymous RVs in RNF20, promoter RVs in LDLR and APOE, enhancer RVs in 

LDLR), associations with HDL-C (putative loss-of-function RVs in APOC3, missense RVs in 

CD36, ABCA1, APOC3, PCSK7, SCARB1, CETP, LCAT, and LIPG), associations with TG 

(putative loss-of-function RVs in APOC3, missense RVs in APOA5, APOA4, APOC3, 

PAFAH1B2, APOE, and COL18A1, promoter RVs in APOA5, APOA4, APOC3, and APOE, 

enhancer RVs in APOA5, APOA1, and COL18A1), and associations with TC (putative loss-of-

function RVs in PCSK9 and APOB, missense RVs in PCSK9, ABCG5, NPC1L1, ABCA1, LIPG, 

LDLR, and APOE, promoter RVs in APOE, enhancer RVs in LDLR) (Table 3.2). We then 

compared the results obtained from MetaSTAAR-O with the results from the joint analysis of 

pooled data using STAAR-O. All significant and conditionally significant findings using 

STAAR-O could be detected by MetaSTAAR-O (Table 3.2). Furthermore, the P values from 

MetaSTAAR-O and STAAR-O were highly concordant, with 𝑟2 > 0.99 of significant and 

suggestive significant masks defined by various levels of unconditional P value thresholds for  
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Table 3.2 Gene-centric meta-analysis results of both unconditional analysis and analysis conditional on 

known common and low-frequency variants. 

Trait Gene 
Chr. 

no. 
Category 

No. of 

SNVs 

MetaSTAAR-O 

(Unconditional) 

MetaSTAAR-O 

(Conditional) 
Variants (adjusted) 

LDL-C 

PCSK9 1 
Putative loss 

of function 
9 3.07E-63 6.42E-63 

rs11591147, rs28362263, rs505151, rs12117661, 

rs472495 

APOB 2 
Putative loss 

of function 
16 1.14E-20 2.42E-20 rs1367117, rs563290, rs533617 

PCSK9 1 Missense 167 1.55E-15 3.11E-14 
rs11591147, rs28362263, rs505151, rs12117661, 

rs472495 

ABCG5 2 Missense 148 2.66E-08 6.28E-08 rs4245791 

NPC1L1 7 Missense 293 4.88E-10 2.40E-09 rs217381 

LDLR 19 Missense 192 5.33E-27 5.16E-27 rs12151108, rs688, rs6511720 

APOE 19 Missense 88 2.25E-13 1.91E-12 rs7412, rs429358, rs35136575 

RNF20 9 Synonymous 58 4.25E-08 4.25E-08 n/a 

LDLR 19 Promoter 150 1.46E-17 1.98E-05 rs12151108, rs688, rs6511720 

APOE 19 Promoter 102 7.52E-12 9.98E-12 rs7412, rs429358, rs35136575 

LDLR 19 Enhancer 170 2.17E-17 2.95E-05 rs12151108, rs688, rs6511720 

HDL-C 

APOC3 11 
Putative loss 

of function 
7 2.26E-22 7.49E-21 rs964184, rs12269901 

CD36 7 Missense 237 3.18E-07 4.03E-08 rs3211938 

ABCA1 9 Missense 346 6.72E-11 2.00E-11 rs4149310, rs1883025, rs11789603 

APOC3 11 Missense 19 4.93E-07 9.42E-07 rs964184, rs12269901 

PCSK7 11 Missense 116 1.17E-09 2.43E-09 rs964184, rs12269901 

SCARB1 12 Missense 120 7.76E-11 7.41E-11 rs10773112, rs4765127 

CETP 16 Missense 101 1.00E-13 1.73E-08 rs247616, rs5883, rs7499892, rs17231520, rs5880 

LCAT 16 Missense 63 1.56E-10 1.17E-10 rs1109166 

LIPG 18 Missense 101 1.62E-07 1.18E-07 rs8086351, rs9958734 

TG 

APOC3 11 
Putative loss 

of function 
7 3.57E-54 1.88E-51 rs964184, rs9804646, rs3135506, rs2266788 

APOA5 11 Missense 64 2.14E-07 2.37E-09 rs964184, rs9804646, rs3135506, rs2266788 

APOA4 11 Missense 118 1.15E-08 8.05E-10 rs964184, rs9804646, rs3135506, rs2266788 

APOC3 11 Missense 18 2.99E-12 1.50E-12 rs964184, rs9804646, rs3135506, rs2266788 

PAFAH1B2 11 Missense 31 2.71E-09 3.76E-10 rs964184, rs9804646, rs3135506, rs2266788 

APOE 19 Missense 89 1.43E-11 1.30E-10 rs12721054, rs5112, rs429358 

COL18A1 21 Missense 588 1.07E-08 1.07E-08 n/a 

APOA5 11 Promoter 15 1.32E-10 4.74E-12 rs964184, rs9804646, rs3135506, rs2266788 

APOA4 11 Promoter 198 8.12E-11 1.45E-09 rs964184, rs9804646, rs3135506, rs2266788 

APOC3 11 Promoter 62 4.72E-11 1.80E-11 rs964184, rs9804646, rs3135506, rs2266788 

APOE 19 Promoter 104 9.50E-18 3.83E-10 rs12721054, rs5112, rs429358 

APOA5 11 Enhancer 13 2.38E-10 8.90E-12 rs964184, rs9804646, rs3135506, rs2266788 

APOA1 11 Enhancer 357 5.04E-10 2.87E-10 rs964184, rs9804646, rs3135506, rs2266788 

COL18A1 21 Enhancer 312 3.97E-09 3.97E-09 n/a 

TC 

PCSK9 1 
Putative loss 

of function 
9 4.46E-57 1.23E-56 

rs11591147, rs28362263, rs505151, rs12117661, 

rs2495477 

APOB 2 
Putative loss 

of function 
16 3.52E-19 7.85E-19 rs1367117, rs10692845, rs533617 

PCSK9 1 Missense 169 1.94E-11 1.15E-11 
rs11591147, rs28362263, rs505151, rs12117661, 

rs2495477 

ABCG5 2 Missense 157 4.74E-09 1.21E-08 rs4245791 

NPC1L1 7 Missense 301 3.92E-08 1.57E-07 rs217381 
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    Table 3.2 (Continued)  

ABCA1 9 Missense 346 6.90E-08 3.72E-08 rs1800978, rs4149310, rs3847302 

LIPG 18 Missense 101 2.69E-08 1.39E-08 rs9958734 

LDLR 19 Missense 200 1.41E-22 8.33E-23 rs73015024, rs688, rs2278426, rs6511720 

APOE 19 Missense 90 1.18E-08 1.49E-08 rs7412, rs429358, rs12721054 

APOE 19 Promoter 105 1.92E-07 7.20E-08 rs7412, rs429358, rs12721054 

LDLR 19 Enhancer 176 1.22E-15 7.15E-04 rs73015024, rs688, rs2278426, rs6511720 

A total of 30,138 samples from 14 study cohorts in TOPMed program were considered in the meta-analysis. 

Results for the conditionally significant genes (unconditional MetaSTAAR-O 𝑃 < 5.00 ×  10−7; conditional 

MetaSTAAR-O 𝑃 < 9.43 ×  10−4) are presented in the table. Chr. no., chromosome number; category, 

functional category; no. of SNVs, number of RVs (pooled MAF < 1%) of the particular functional category in 

the gene; MetaSTAAR-O, MetaSTAAR-O P value; variants (adjusted), adjusted variants in the conditional 

analysis; n/a, no variant adjusted in the conditional analysis. 
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each lipid phenotype (Supplementary Table 3.4a and Supplementary Figure 3.3). In addition, 

MetaSTAAR-O and STAAR-O delivered highly concordant P values in conditional analysis of 

significant masks (𝑟2 > 0.99) (Supplementary Table 3.4b and Supplementary Figure 3.4). 

 

Genetic region meta-analysis of RVs 

We next applied MetaSTAAR-O to perform genetic region meta-analysis of RVs within sliding 

windows associated with lipid traits. We considered sliding windows to be 2 kb in length, started 

at position 0 bp for each chromosome and had a skip length of 1 kb. Windows with at least two 

RVs were included in the meta-analysis, resulting in a total of 2.68 million 2-kb overlapping 

windows. Same annotations were incorporated as the gene-centric analysis. Overall, the 

distribution of MetaSTAAR-O P-values was well calibrated for all four lipid phenotypes (Figure 

3.2b and Supplementary Figures 3.5b, 3.6b and 3.7b). At a Bonferroni-corrected significance 

threshold of 𝛼 = 0.05/(2.68 ×  106) = 1.86 × 10−8 across sliding windows (Figure 3.2a and 

Supplementary Figures 3.5a, 3.6a and 3.7a), MetaSTAAR-O identified 268 genome-wide 

significant associations with four lipid phenotypes using unconditional meta-analysis. After 

conditioning on known lipids-associated variants, 143 out of the 268 associations remained 

significant at the Bonferroni-corrected threshold of 0.05/268 = 1.87 ×  10−4. (Supplementary 

Tables 3.5-3.8). We also compared the results of MetaSTAAR-O with that of pooled analysis 

using STAAR-O. Reassuringly, the P values from MetaSTAAR-O and STAAR-O were highly 

concordant, with 𝑟2 > 0.99 of significant and suggestive significant sliding windows defined by 

various levels of unconditional P value thresholds for each lipid phenotype (Supplementary 

Table 3.9a and Supplementary Figures 3.2c, 3.5c, 3.6c and 3.7c). MetaSTAAR-O and STAAR-O 
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also delivered highly concordant P values in conditional analysis of significant sliding windows 

(𝑟2 > 0.99) (Supplementary Table 3.9b and Supplementary Figure 3.8). 

Figure 3.2 Genetic region (2-kb sliding window) unconditional meta-analysis results of 

LDL-C using the TOPMed data. 

 

a, Manhattan plot showing the associations of 2.68 million 2-kb sliding windows for LDL-C 

(low-density lipoprotein cholesterol) versus − log10(𝑃) of MetaSTAAR-O. The horizontal line 

indicates a genome-wide P value threshold of 1.86 × 10−8 (n = 30,138). b, Quantile-quantile 

plot of 2-kb sliding window MetaSTAAR-O P values for LDL-C (n = 30,138). c, Scatterplot of 

P values for 2-kb sliding windows comparing MetaSTAAR-O with STAAR-O from the joint 

analysis of pooled individual-level data (STAAR-O-Pooled). Each dot represents a sliding 

window with x-axis label being the − log10(𝑃) of STAAR-O-Pooled and y-axis label being the 

− log10(𝑃) of MetaSTAAR-O (n = 30,138). *Intergenic sliding window. 
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Simulation studies 

We performed simulation studies to evaluate the type I error and power of MetaSTAAR under a 

variety of configurations. We considered five participating studies in the meta-analysis, each 

with a sample size of 10,000. Quantitative and dichotomous phenotypes were generated by 

following the steps described in Data simulation (Appendix C). For each study, genotypes were 

generated by simulating 20,000 sequences for 20-Mb to mimic the LD structure of an African 

American population using the calibration coalescent model (COSI) (77). We randomly selected 

2-kb regions from the 20-Mb region in simulation studies. 

 

Type I error simulations 

For RV meta-analysis of both quantitative and dichotomous traits, we performed 109 simulations 

using MetaSTAAR and evaluated the empirical type I error rates for the burden(51-53), 

SKAT(54), ACAT-V(55) and STAAR-O tests at 𝛼 = 10−5, 10−6, 10−7 (Supplementary Table 

3.10). The results show that all of these four tests based on MetaSTAAR well controlled the type 

I error rate for both continuous and dichotomous traits at all 𝛼 levels. 

 

Empirical power simulations 

We then examined the empirical power of MetaSTAAR-O under a variety of configurations. 

MAF and ten annotations were incorporated in the meta-analysis, and power was evaluated as 

the proportions of P values less than 𝛼 = 10−7 based on 104 simulations. We considered 

different proportions of causal variants (5, 15 and 35% on average) in the signal region, and 
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allowed the causality of variants to be dependent on different sets of annotations through a 

logistic model (Methods). The results show that MetaSTAAR-O incorporating all ten annotations 

had higher power of detecting signal regions than the burden, SKAT, and ACAT-V tests 

implemented in MetaSTAAR for both quantitative and dichotomous traits across different 

proportions of effect size directions (Supplementary Figures 3.9-3.12). Our simulation studies 

indicated that MetaSTAAR-O could achieve considerable power gain through the incorporation 

of multiple relevant annotations. 

 

Discussion 

In this study, we proposed MetaSTAAR as a computationally scalable and resource-efficient 

framework to perform RV association meta-analysis in large WGS/WES studies, while 

accounting for population structure and relatedness for both quantitative and dichotomous traits. 

 

We highlighted MetaSTAARWorker, the preliminary step of MetaSTAAR that generates and 

stores summary-level data, including summary statistics and sparse LD matrices, for each 

participating study. Existing methods stores the full variance-covariance matrix of RVs and 

requires 𝒪(𝑛2) computation and storage, which is not scalable of large-scale WGS studies. 

Instead, MetaSTAARWorker stores the sparse LD matrix and low-rank matrix that captures the 

covariate effects separately, and hence only requires 𝒪(𝑛) computation and storage without 

information loss. MetaSTAARWorker was benchmarked to be at least 100 times smaller in 

computation time and storage than existing methods using TOPMed WGS data. This notable 
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gain in computation and storage efficiency of MetaSTAARWorker has made it possible for 

large-scale WGS RV association meta-analysis. 

 

MetaSTAAR framework enables the dynamic incorporation of multiple functional annotations to 

boost RV meta-analysis power and allows for any analysis units. MetaSTAAR also provides 

conditional analysis to distinguish novel RV association signals independent of known variants. 

In the present study, we focused on gene-centric and genetic region meta-analysis of RVs using 

MetaSTAAR-O. In a WGS RV meta-analysis using the TOPMed Freeze 5 data consisting of 14 

study cohorts, MetaSTAAR-O identified 45 conditionally significant functional categories lipid 

traits in gene-centric meta-analysis, including NPC1L1 missense RVs and LDL-C; CD36, 

APOC3, SCARB1 missense RVs and HDL-C; and NPC1L1 missense RVs and TC that were 

missed by the burden, SKAT, and ACAT-V tests (Supplementary Table 3.3). In genetic region 

analysis, MetaSTAAR-O identified 143 conditionally significant sliding windows after 

conditioning on known variants (Supplementary Tables 3.5-3.8), including the association 

between a 2-kb sliding window (chromosome 1: 55,051,498 - 55,053,497 bp) located within 

PCSK9 and LDL-C, that were not detected using tests without incorporating annotations 

(Supplementary Table 3.5). These results demonstrate that incorporating multiple functional 

annotations using MetaSTAAR-O can effectively boost power for WGS RV meta-analysis. 

 

MetaSTAAR framework delivers comparable statistical power in detecting RV association 

signals compared to the joint analysis of pooled individual-level data. In both gene-centric and 

genetic region analysis, we showed that the P values from MetaSTAAR-O and STAAR-O of 
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pooled analysis were highly concordant in unconditional analysis of various levels of P value 

thresholds (Figure 3.2c, Supplementary Figures 3.3, 3.5c, 3.6c, 3.7c and Supplementary Tables 

3.4a, 3.9a) and conditional analysis of significant variant sets (Supplementary Figures 3.4, 3.8 

and Supplementary Tables 3.4b, 3.9b) for each lipid phenotype. The computation time for 

MetaSTAAR-O to perform WGS RV meta-analysis of 30,000 related samples from 14 study 

cohorts using the TOPMed data requires 10 hours for 100 2.10 GHz computing cores with 12 

GB memory for each lipid trait, which is also comparable to the pooled analysis. These results 

guarantee that our proposed MetaSTAAR framework provides comparable performance in RV 

association analysis compared to pooled analysis, while bypassing the cumbersome data 

harmonization across studies and protecting the data privacy of study participants. 

 

In practice, MetaSTAAR is very flexible and users can determine the RV analysis units and the 

annotations to be used (23, 43). In this study, we grouped the RVs by functional categories for 

each protein-coding gene and agnostic sliding windows with fixed length; users can also apply 

dynamic window analysis with flexible locations and sizes (110). In addition, MetaSTAAR 

generates phenotype-independent sparse LD matrix for quantitative traits in unrelated samples, 

hence further saving computation resources in phenome-wide association study (PheWAS) 

(Methods). It is of interest to extend MetaSTAAR to related samples in PheWAS settings. 

 

Overall, the proposed MetaSTAAR framework is fast, scalable and highly resource-efficient for 

large WGS/WES studies of hundreds of thousands of samples and hundreds of millions of 
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variants. Our method is currently the only available solution to perform RV meta-analysis at the 

scale of large WGS studies. 

 

Methods 

Notations and model 

Suppose there are 𝐾 participating studies in the meta-analysis. For the 𝑘th study, suppose there 

are 𝑛𝑘 subjects with 𝑀𝑘 total variants sequenced in a given variant set. Let 𝒀𝑘 =

(𝑌1,𝑘 , … , 𝑋𝑛𝑘,𝑘)
𝑇
denote a continuous or dichotomous trait vector with mean 𝝁̂𝑘 =

(𝜇̂1,𝑘 , … , 𝜇̂𝑛𝑘,𝑘)
𝑇
; 𝑿𝑘 denote the 𝑛𝑘 × 𝑞𝑘 design matrix of covariates, such as age, gender, (study-

specific) ancestral principal components; and 𝑮𝑘 denote the 𝑛𝑘 × 𝑀𝑘  genotype matrix of the 𝑀𝑘 

genetic variants in the variant set. We let 𝒆̂𝑘 = (𝑒̂1,𝑘 , … , 𝑒̂𝑛𝑘,𝑘)𝑇 denote the trait residuals 

adjusting for covariates, population stratification and relatedness, which is generated as follows. 

 

When the data consist of unrelated samples, we consider the following null Generalized Linear 

Model (GLM) 

 𝑔(𝝁𝑘) = 𝛼0,𝑘𝟏𝑛𝑘
+ 𝑿𝑘𝜶𝑘 ,  (3.1) 

where 𝑔(𝜇) = 𝜇 for a continuous normally distributed trait, 𝑔(𝜇) = logit(𝜇) for a dichotomous 

trait, 𝛼0,𝑘 is an intercept,𝟏𝑛𝑘
 is a column vector of 1’s with length 𝑛𝑘, 𝜶𝑘 = (𝛼1,𝑘 , … , 𝛼𝑞𝑘,𝑘)

𝑇
 is a 

vector of regression coefficients for 𝑿𝑘. We calculate 𝚺̂𝑘 = 𝜙̂𝑘𝐈𝑛𝑘
 for linear model, where 𝜙̂𝑘 is 

an estimate of the residual variance 𝜙𝑘, 𝐈𝑛𝑘
 is the identity matrix of dimension 𝑛𝑘 × 𝑛𝑘; and 
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𝚺̂𝑘 = diag (1/ (𝜇̂𝑖,𝑘(1 − 𝜇̂𝑖,𝑘))) for logistic model, where 𝜇̂𝑖,𝑘 is the fitted value for individual 𝑖 

under the null model (3.1), and obtain 𝒆̂𝑘 = (𝒀𝑘 − 𝝁̂𝑘)/𝜙̂𝑘. 

 

When the data consist of related samples, we consider the following null Generalized Linear 

Mixed Model (GLMM)(71-73)  

 𝑔(𝝁𝑘) = 𝛼0,𝑘𝟏𝑛𝑘
+ 𝑿𝑘𝜶𝑘 + 𝒃𝑘 , (3.2) 

where the random effects 𝒃𝑘 account for remaining population structure unaccounted by 

ancestral PCs and relatedness. We assume that 𝒃𝑘 = (𝑏1,𝑘 , … , 𝑏𝑛𝑘,𝑘)
𝑇

∼ 𝑁(𝟎, 𝜃𝑘𝚽𝑘) with 

variance component 𝜃𝑘 and known sparse genetic relatedness matrix 𝚽𝑘. The remaining 

variables are defined in the same way as those in the GLM (1). We calculate 𝚺̂𝑘 = 𝑹̂𝑘 + 𝜃̂𝑘𝚽𝑘 

with 𝑹̂𝑘 = 𝜙̂𝑘𝐈𝑛𝑘
 for linear mixed model; and 𝑹̂𝑘 = diag (1/ (𝜇̂𝑖,𝑘(1 − 𝜇̂𝑖,𝑘))) for logistic 

mixed model, where 𝜇̂𝑖,𝑘 is the fitted value for individual 𝑖 under the null model (3.2), and obtain 

𝒆̂𝑘 = (𝒀𝑘 − 𝝁̂𝑘)/𝜙̂𝑘. Note that we allow for heteroscedastic models with group-specific residual 

variance components in both linear model and linear mixed model for quantitative traits. 

 

Summary-level data shared by MetaSTAARWorker 

We describe the summary-level data to be shared by MetaSTAARWorker, including summary 

statistics and sparse LD matrices. For the 𝑘th study, we first computed and shared a vector of 

score statistics 𝑼𝑘 = 𝑮𝑘
𝑇𝒆̂𝑘 and a vector of corresponding variances 𝑽𝑘 = (𝑉1,𝑘 , … , 𝑉𝑀𝑘,𝑘)

𝑇
, 

where 𝑉𝑗,𝑘 = 𝑮⋅,𝑗,𝑘
𝑇 𝑷𝑘𝑮⋅,𝑗,𝑘, 𝑮⋅,𝑗,𝑘 = (𝐺1,𝑗,𝑘 , … , 𝐺𝑛𝑘,𝑗,𝑘)

𝑇
 and 𝑷𝑘 = 𝚺̂𝑘

−1 −
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𝚺̂𝑘
−1𝑿𝑘(𝑿𝑘

𝑇𝚺̂𝑘
−1𝑿𝑘)

−1
𝑿𝑘

𝑇𝚺̂𝑘
−1. We also computed and shared a matrix 𝚲𝑘 =

𝑮𝑘
𝑇𝚺̂𝑘

−1𝑿𝑘(𝑿𝑘
𝑇𝚺̂𝑘

−1𝑿𝑘)
−1/2

 which captures the covariate effects. Note that 𝚲𝑘 has the same 

number of rows as 𝑼𝑘 and 𝑽𝑘, and was shared in the summary statistics. 

 

We next computed and shared the sparse LD matrix 𝑮̃𝑘
𝑇𝚺̂𝑘

−1𝑮̃𝑘, where 𝑮̃𝑘 denotes the genotype 

matrix of variants below a study-specific MAF threshold. Let 𝑼̃𝑘 = 𝑮̃𝑘
𝑇𝒆̂𝑘 and 𝚲̃𝑘 =

𝑮̃𝑘
𝑇𝚺̂𝑘

−1𝑿𝑘(𝑿𝑘
𝑇𝚺̂𝑘

−1𝑿𝑘)
−1/2

 denote the corresponding partition of 𝑼𝑘 and 𝚲𝑘, respectively. The 

MAF threshold is dependent on the relative sample size between studies to ensure all RVs in the 

pooled analysis are included in the meta-analysis. Note that for quantitative traits with unrelated 

samples (𝚺̂𝑘 = 𝜙̂𝑘𝐈𝑛𝑘
), the sparse LD matrix reduced to 𝑮̃𝑘

𝑇𝚺̂𝑘
−1𝑮̃𝑘 = 𝜙̂𝑘

−1𝑮̃𝑘
𝑇𝑮̃𝑘 which is 

phenotype-independent (up to a scaling constant 𝜙̂𝑘
−1). Thus, MetaSTAARWorker could further 

save computation resources in phenome-wide association study (PheWAS) by only storing 𝑮̃𝑘
𝑇𝑮̃𝑘 

under this setting. 

 

To store and share the variance-covariance information of all RVs across the genome, we 

computed the sparse LD matrices using 500-kb banded windows. The 500-kb banded windows 

guarantee the LD information of RVs whose distances under 500-kb could be recovered. In 

practice, user can determine the bandwidth of the sparse LD matrices to be shared. 

 

Meta-analysis of rare variant association tests 
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We are interested in jointly testing the association between RVs in the genetic set and phenotype 

via meta-analysis. For simplicity, we assume all variants in the given variant set are RVs and 

observed in all 𝐾 studies, so that 𝑀 = 𝑀1 = ⋯ = 𝑀𝐾. We denote 𝑼̃ = ∑ 𝑼̃𝑘
𝐾
𝑘=1 =

(𝑈(1), … , 𝑈(𝑀))
𝑇
 and hence Cov(𝑼̃) = ∑ Cov(𝑼̃𝑘)𝐾

𝑘=1 = ∑ 𝑮̃𝑘
𝑇𝚺̂𝑘

−1𝑮̃𝑘 − 𝚲̃𝑘𝚲̃𝑘
𝑇𝐾

𝑘=1 . For meta-

analysis of burden test using MetaSTAAR, the test statistics is given by 

𝑄𝐵𝑢𝑟𝑑𝑒𝑛−𝑀𝑆 = (∑ 𝑤𝑗

𝑀

𝑗=1

𝑈(𝑗))

2

, 

where 𝑤𝑗  is the weight defined as a function of minor allele frequency (MAF) for the 𝑗th variant 

(49). 𝑄𝐵𝑢𝑟𝑑𝑒𝑛−𝑀𝑆 asymptotically follows a chi-square distribution with 1 degree of freedom 

under the null hypothesis, and its P value can be obtained analytically while accounting for 

linkage disequilibrium (LD) between variants (49, 73). 

 

For meta-analysis of SKAT using MetaSTAAR, the test statistic is given by 

𝑄𝑆𝐾𝐴𝑇−𝑀𝑆 = ∑ 𝑤𝑗
2𝑈(𝑗)

2

𝑀

𝑗=1

. 

𝑄𝑆𝐾𝐴𝑇−𝑀𝑆 asymptotically follows a mixture of chi-square distributions under the null hypothesis, 

and its P value can be obtained analytically while accounting for LD between variants (49, 73). 

 

For meta-analysis of ACAT-V using MetaSTAAR, the test statistic is given by 
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𝑄𝐴𝐶𝐴𝑇−𝑉−𝑀𝑆 = 𝑤2MAF(1 − MAF)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ tan((0.5 − 𝑝0)𝜋)

+ ∑ 𝑤𝑗
2MAF𝑗(1 − MAF𝑗) tan ((0.5 − 𝑝𝑗)𝜋)

𝑀′

𝑗=1

, 

where 𝑀′ is the number of variants with cumulative minor allele count (cMAC) greater than 10, 

MAF𝑗 is the minor allele frequency of individual variant 𝑗 in meta-analysis, and 𝑝𝑗 is the 

association P value of variant 𝑗 corresponding the individual variant score statistics 𝑈(𝑗) for those 

variants with cMAC > 10. 𝑝0 is the burden test P value of extremely rare variants with cMAC ≤ 

10 and 𝑤2MAF(1 − MAF)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average of the weights 𝑤𝑗
2MAF𝑗(1 − MAF𝑗) among the 

extremely rare variants with cMAC ≤ 10. 𝑄𝐴𝐶𝐴𝑇−𝑉−𝑀𝑆 can be well approximated by a Cauchy 

distribution under the null hypothesis, and its P-value can be obtained analytically while 

accounting for LD between variants (55). 

 

Given a collection of 𝐿 annotations, let 𝐴𝑗𝑙 is the 𝑙th annotation for the 𝑗th variant. We define the 

MetaSTAAR-O test statistic as  

𝑇𝑀𝑒𝑡𝑎𝑆𝑇𝐴𝐴𝑅−𝑂 =
1

3|𝒜|
∑ 𝑇𝑀𝑒𝑡𝑎𝑆𝑇𝐴𝐴𝑅−𝐵(𝑎1,𝑎2) + 𝑇𝑀𝑒𝑡𝑎𝑆𝑇𝐴𝐴𝑅−𝑆(𝑎1,𝑎2) + 𝑇𝑀𝑒𝑡𝑎𝑆𝑇𝐴𝐴𝑅−𝐴(𝑎1,𝑎2)

(𝑎1 ,𝑎2)∈𝒜

=
1

3|𝒜|
∑ ∑

𝑡𝑎𝑛{(0.5 − 𝑝𝐵𝑢𝑟𝑑𝑒𝑛−𝑀𝑆,𝑙,(𝑎1,𝑎2))𝜋}

𝐿 + 1

𝐿

𝑙=0(𝑎1,𝑎2)∈𝒜

+
𝑡𝑎𝑛{(0.5 − 𝑝𝑆𝐾𝐴𝑇−𝑀𝑆,𝑙,(𝑎1,𝑎2))𝜋}

𝐿 + 1
+

𝑡𝑎𝑛{(0.5 − 𝑝𝐴𝐶𝐴𝑇−𝑉−𝑀𝑆,𝑙,(𝑎1,𝑎2))𝜋}

𝐿 + 1
, 

where 𝑝𝐵𝑢𝑟𝑑𝑒𝑛−𝑀𝑆,𝑙,(𝑎1,𝑎2), 𝑝𝑆𝐾𝐴𝑇−𝑀𝑆,𝑙,(𝑎1 ,𝑎2), and 𝑝𝐴𝐶𝐴𝑇−𝑉−𝑀𝑆,𝑙,(𝑎1,𝑎2) are the P values of  
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𝑄𝐵𝑢𝑟𝑑𝑒𝑛−𝑀𝑆,𝑙,(𝑎1 ,𝑎2) = (∑ 𝜋̂𝑗𝑙𝑤𝑗,(𝑎1 ,𝑎2)𝑈(𝑗)

𝑀

𝑗=1

)

2

, 

𝑄𝑆𝐾𝐴𝑇−𝑀𝑆,𝑙,(𝑎1,𝑎2) = ∑ 𝜋̂𝑗𝑙𝑤𝑗,(𝑎1,𝑎2)
2 𝑈(𝑗)

2

𝑀

𝑗=1

, 

𝑄𝐴𝐶𝐴𝑇−𝑉−𝑀𝑆,𝑙,(𝑎1,𝑎2)

= 𝜋̂⋅𝑙𝑤(𝑎1 ,𝑎2)
2 MAF(1 − MAF)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ tan ((0.5 − 𝑝0,𝑙)𝜋)

+ ∑ 𝜋̂𝑗𝑙𝑤𝑗,(𝑎1,𝑎2)
2 MAF𝑗(1 − MAF𝑗) tan ((0.5 − 𝑝𝑗)𝜋)

𝑀′

𝑗=1

, 

respectively. Here 𝜋̂𝑗𝑙 =
𝑟𝑎𝑛𝑘(𝐴𝑗𝑙)

𝑝
, where 𝑝 is the number of variants across the whole genome, 

𝑤𝑗,(𝑎1,𝑎2) = 𝐵𝑒𝑡𝑎(MAF𝑗; 𝑎1, 𝑎2) with (𝑎1, 𝑎2) = (1,25) or (1,1), and 𝜋̂⋅𝑙𝑤(𝑎1 ,𝑎2)
2 MAF(1 − MAF)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is the average of the weights 𝜋̂𝑗𝑙𝑤𝑗,(𝑎1,𝑎2)
2 MAF𝑗(1 − MAF𝑗) among the extremely rare variants 

with cMAC ≤ 10. The P value of 𝑇𝑀𝑒𝑡𝑎𝑆𝑇𝐴𝐴𝑅−𝑂 could be calculated by  

𝑝𝑀𝑒𝑡𝑎𝑆𝑇𝐴𝐴𝑅−𝑂 =
1

2
−

{𝑎𝑟𝑐𝑡𝑎𝑛(𝑇𝑀𝑒𝑡𝑎𝑆𝑇𝐴𝐴𝑅−𝑂)}

𝜋
. 

MetaSTAAR-O is an omnibus test that has a robust power with respect to the sparsity of causal 

variants and the directionality of effects of causal variants in a variant set, as well as variant 

multi-facet functions and MAFs. 

 

In WGS RV meta-analysis, it is very often that some variants may be observed in only a subset 

of studies but not the others (Supplementary Table 3.1a). If a variant 𝑗 was not observed in study 
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𝑘, the 𝑗th entry of 𝑼̃𝑘 and the (𝑗, 𝑗′) and (𝑗′, 𝑗)-th entries of Cov(𝑼̃𝑘) were set to 0 for all 𝑗′ in the 

merged variant list (124, 125). 

 

Conditional meta-analysis using MetaSTAAR 

We implemented conditional analysis in MetaSTAAR to perform meta-analysis of RV 

association tests adjusting for a given list of known variants (130). We first generated the LD 

matrix between RVs in the variant set and known variants to be adjusted. Following the notations 

before and let 𝑮𝑘
(𝑐)

 denote the 𝑛𝑘 × 𝑀(𝑐) genotype matrix of 𝑀(𝑐) known variants to be adjusted 

for in conditional analysis. The score statistics vector and the corresponding variance-covariance 

matrix of these adjusted variants were given by 𝑼𝑘
(𝑐)

= 𝑮𝑘
(𝑐)𝑇𝒆̂𝑘 and Cov(𝑼𝑘

(𝑐)
) = 𝑮𝑘

(𝑐)𝑇𝑷𝑘𝑮𝑘
(𝑐)

, 

respectively. The covariance matrix between RVs in the variant set and adjusted variants is given 

by Cov(𝑼̃𝑘 , 𝑼𝑘
(𝑐)

) = 𝑮̃𝑘
𝑇𝑷𝑘𝑮𝑘

(𝑐)
. MetaSTAAR additionally requires these three components to 

perform conditional analysis from each study, i.e. 𝑼𝑘
(𝑐)

, Cov(𝑼𝑘
(𝑐)

), and Cov(𝑼̃𝑘 , 𝑼𝑘
(𝑐)

). 

 

To perform conditional meta-analysis of RV association tests, we calculated the adjusted score 

statistics vector  

𝑼̃𝑎𝑑𝑗 = 𝑼̃ − [∑ Cov(𝑼̃𝑘 , 𝑼𝑘
(𝑐)

)

𝐾

𝑘=1

] [∑ Cov(𝑼𝑘
(𝑐)

)

𝐾

𝑘=1

]

−1

∑ 𝑼𝑘
(𝑐)

𝐾

𝑘=1

, 

and hence 



 

91 
 

Cov(𝑼̃𝑎𝑑𝑗) = Cov(𝑼̃) − [∑ Cov(𝑼̃𝑘 , 𝑼𝑘
(𝑐)

)

𝐾

𝑘=1

] [∑ Cov(𝑼𝑘
(𝑐)

)

𝐾

𝑘=1

]

−1

[∑ Cov(𝑼̃𝑘 , 𝑼𝑘
(𝑐)

)

𝐾

𝑘=1

]

𝑇

. 

The test statistics of conditional analysis of each test in MetaSTAAR were calculated in the same 

way as discussed before, with 𝑼̃𝑎𝑑𝑗 and Cov(𝑼̃𝑎𝑑𝑗) instead of 𝑼̃ and Cov(𝑼̃). 

 

Meta-analysis of lipid traits in the TOPMed data 

The TOPMed WGS data consist of ancestrally diverse and multi-ethnic related samples (79). 

Race/ethnicity was defined using a combination of self-reported race/ethnicity and study 

recruitment information. We applied MetaSTAAR to perform RV meta-analysis of four 

quantitative lipid traits (LDL, HDL, TG and TC) using 14 study cohorts from the TOPMed 

Freeze 5 WGS data. LDL-C and TC were adjusted for the presence of medications as before 

(78). For each study, we first fit linear regression model adjusting for age, age2, sex for each 

race/ethnicity-specific group. In addition, for Old Order Amish (OOA), we also adjusted for 

APOB p.R3527Q in LDL-C and TC analyses and adjusted for APOC3 p.R19Ter in TG and 

HDL-C analyses (78). We performed rank-based inverse normal transformation of the residuals 

and rescaled these residuals by the standard deviation of the original phenotype within each 

group. We then fit a heteroscedastic linear mixed model (HLMM) for the rank normalized 

residuals, adjusting for 10 ancestral PCs, ethnicity group indicators, and a variance component 

for empirically derived kinship matrix plus separate ancestry-specific residual variance 

components to account for population structure and relatedness. The output of HLMM was then 

used to generate summary-level data by MetaSTAARWorker, including summary statistics of all 

variants and sparse LD matrices of variants whose MAFs are below a study-specific threshold 
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(Supplementary Table 3.2). We next used MetaSTAAR-O to perform RV meta-analysis based on 

the summary-level data of the 14 study cohorts, including gene-centric analysis using five variant 

functional categories (pLoF RVs, missense RVs, synonymous RVs, promoter RVs, and enhancer 

RVs) for each protein-coding gene, and genetic region analysis using 2-kb sliding windows 

across the genome with a 1-kb skip length. The WGS RV meta-analysis was performed using the 

R package MetaSTAAR (version 0.9.6). 

 

Data availability 

This chapter used the TOPMed Freeze 5 Whole Genome Sequencing data and lipids phenotype 

data. The genotype and phenotype data are both available in dbGAP. The discovery phase used 

the data from the following four study cohorts, where the accession numbers are provided in 

parenthesis: Framingham Heart Study (phs000974.v1.p1), Old Order Amish (phs000956.v1.p1), 

Jackson Heart Study (phs000964.v1.p1), and Multi-Ethnic Study of Atherosclerosis 

(phs001416.v1.p1). The replication phase used the data from the following ten study cohorts: 

Atherosclerosis Risk in Communities Study (phs001211), Cleveland Family Study (phs000954), 

Cardiovascular Health Study (phs001368), Diabetes Heart Study (phs001412), Genetic Study of 

Atherosclerosis Risk (phs001218), Genetic Epidemiology Network of Arteriopathy (phs001345), 

Genetics of Lipid Lowering Drugs and Diet Network (phs001359), San Antonio Family Heart 

Study (phs001215), Genome-wide Association Study of Adiposity in Samoans (phs000972) and 

Women’s Health Initiative (phs001237). The sample sizes, ethnicity and phenotype summary 

statistics of these cohorts are given in Supplementary Table 3.1b. 
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APPENDIX A 

Supplementary 1.1. ROC curves comparing the performances of MACIE and other 

functional scores in discriminating between ClinVar pathogenic and benign 

missense variants. 
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Supplementary Figure 1.2. ROC curves comparing the performances of MACIE and other 

functional scores in discriminating between ClinVar pathogenic and benign 

noncoding variants. 
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Supplementary Figure 1.3. ROC curves comparing the performances of MACIE and other 

functional scores in discriminating between loss-of-function (LOF) 

nonsynonymous coding variants within 13 exons that encode functionally critical 

domains of BRCA1 (putative functional class) based on saturation genome 

editing (SGE) data and ClinVar benign nonsynonymous coding variants 

(putative non-functional class).  
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Supplementary 1.4. LocusZoom plot for GWAS associations of TC at the APOE locus. The 

lipids GWAS summary statistics were from the European Network for Genetic 

and Genomic Epidemiology (ENGAGE) Consortium (n = 62,166). 

 

The MACIE-protein and MACIE-conserved scores for rs7412 are 0.96 and 0.97, respectively. 

The MACIE-conserved and MACIE-regulatory scores for rs1065853 are < 0.01 and > 0.99, 

respectively. 
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Supplementary Figure 1.5. LocusZoom plot for GWAS associations of HDL-C at the CETP 

locus. The lipids GWAS summary statistics were from the European Network 

for Genetic and Genomic Epidemiology (ENGAGE) Consortium (n = 60,812). 

 

The MACIE-conserved and MACIE-regulatory scores for rs17231506 are both < 0.01. For both 

rs72786786 and rs12720926, the MACIE-conserved and MACIE-regulatory scores are < 0.01 

and > 0.99, respectively. 
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Supplementary Figure 1.6. LocusZoom plot for GWAS associations of TG at the APOC3 

locus. The lipids GWAS summary statistics were from the European Network 

for Genetic and Genomic Epidemiology (ENGAGE) Consortium (n = 60,027). 

 

The MACIE-conserved and MACIE-regulatory scores for rs964184 are both < 0.01. The 

MACIE-conserved and MACIE-regulatory scores for rs2075290 are < 0.01 and 0.88, 

respectively. 
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APPENDIX B 

Supplementary Figure 2.1. Simulation-study power comparisons of burden test, SKAT, 

ACAT-V and STAAR methods for continuous and dichotomous traits. 

Continuous Trait 

 

Dichotomous Trait 

 

In each simulation replicate, a 5-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model and on average there were 5%, 15% or 35% causal variants in the signal region. 

The effect sizes of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |, where 𝑐0 was set to be 0.13 for 

continuous traits and 0.255 for dichotomous traits, which gives an odds ratio of 3 for a variant 

with a MAF of 5 × 10−5. Power was estimated as the proportion of the p-values less than 𝛼 =
10−7 based on 104 replicates. Total sample sizes considered were 10,000. For each setting, 

seven statistical tests were compared: burden test, STAAR-B, SKAT, STAAR-S, ACAT-V, 

STAAR-A, and STAAR-O (Methods). 
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Supplementary Figure 2.2. Scatterplot of P values comparing STAAR-O to conventional 

variant-set tests (Burden, SKAT, ACAT-V) for continuous and dichotomous 

traits when 5% of rare variants are causal variants. 

Continuous Trait 

 

Dichotomous Trait 

 

In each simulation replicate, a 5-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model and on average there were 5% causal variants in the signal region. The effect sizes 

of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |. For continuous traits, 𝑐0 = 0.13; for dichotomous 

traits, 𝑐0 = 0.255. All causal variants had positive effect sizes. Power was estimated as the 

proportion of the P values less than 𝛼 = 10−7 based on 104 replicates. Total sample sizes 

considered were 10,000. 
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Supplementary Figure 2.3. Scatterplot of P values comparing STAAR-O to conventional 

variant-set tests (Burden, SKAT, ACAT-V) for continuous and dichotomous 

traits when 15% of rare variants are causal variants. 

Continuous Trait 

 

Dichotomous Trait 

 

In each simulation replicate, a 5-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model and on average there were 15% causal variants in the signal region. The effect 

sizes of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |. For continuous traits, 𝑐0 = 0.13; for 

dichotomous traits, 𝑐0 = 0.255. All causal variants had positive effect sizes. Power was 

estimated as the proportion of the P values less than 𝛼 = 10−7 based on 104 replicates. Total 

sample sizes considered were 10,000.  
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Supplementary Figure 2.4. Scatterplot of P values comparing STAAR-O to conventional 

variant-set tests (Burden, SKAT, ACAT-V) for continuous and dichotomous 

traits when 35% of rare variants are causal variants. 

Continuous Trait 

 

Dichotomous Trait 

 

In each simulation replicate, a 5-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model and on average there were 35% causal variants in the signal region. The effect 

sizes of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |. For continuous traits, 𝑐0 = 0.13; for 

dichotomous traits, 𝑐0 = 0.255. All causal variants had positive effect sizes. Power was 

estimated as the proportion of the P values less than 𝛼 = 10−7 based on 104 replicates. Total 

sample sizes considered were 10,000. 
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Supplementary Figure 2.5. Simulation-study power comparisons of burden test, SKAT, 

ACAT-V and STAAR for continuous traits with different effect sizes (𝒄𝟎) and 

different proportions of effect size directions. 

 

In each simulation replicate, a 5-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model and on average there were 5%, 15% or 35% causal variants in the signal region. 

The effect sizes of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |. Power was estimated as the 

proportion of the p-values less than 𝛼 = 10−7 based on 104 replicates. Total sample sizes 

considered were 10,000. For each setting, seven statistical tests were compared: burden test, 

STAAR-B, SKAT, STAAR-S, ACAT-V, STAAR-A, and STAAR-O (Methods). 
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Supplementary Figure 2.6. Simulation-study power comparisons of Burden, SKAT, ACAT-

V and STAAR for dichotomous traits with different effect sizes (𝒄𝟎) and 

different proportions of effect size directions. 

 

In each simulation replicate, a 5-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model, and on average there were 5%, 15% or 35% causal variants in the signal region. 

The effect sizes of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |. Power was estimated as the 

proportion of the p-values less than 𝛼 = 10−7 based on 104 replicates. Total sample sizes 

considered were 10,000. For each setting, seven statistical tests were compared: burden test, 

STAAR-B, SKAT, STAAR-S, ACAT-V, STAAR-A, and STAAR-O (Methods). 
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Supplementary Figure 2.7. Relatedness of subjects within and across studies in the 

discovery and replication samples of the TOPMed lipid study. 

 

See Supplementary Note for study abbreviations. 
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Supplementary Figure 2.8. Quantile-quantile plots for gene-centric unconditional analysis 

of lipid traits LDL-C, HDL-C, TG and TC in discovery phase using the 

TOPMed cohort (n = 12,316). 

 

Different symbols represent the STAAR-O P value of the gene using different functional 

categories (pLoF, missense, synonymous, promoter, and enhancer).  Promoter and enhancer are 

the promoter and the GeneHancer region with overlap of DNase hypersensitivity sites for a given 

gene. Four lipid traits were analyzed using linear mixed models (Methods): LDL-C, low-density 

lipoprotein cholesterol); HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; TC, 

total cholesterol. 
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Supplementary Figure 2.9. Manhattan plots for gene-centric unconditional analysis of lipid 

traits LDL-C, HDL-C, TG and TC in discovery phase using the TOPMed cohort 

(n = 12,316). 

 

The horizontal line indicates a genome-wide STAAR-O P value threshold of 5.00 × 10−7. 

Different symbols represent the STAAR-O P value of the gene using different functional 

categories (pLoF, missense, synonymous, promoter, and enhancer).  Promoter and enhancer are 

the promoter and the GeneHancer region with overlap of DNase hypersensitivity sites for a given 

gene, respectively. Four lipid traits were analyzed (Methods): LDL-C, low-density lipoprotein 

cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; TC, total 

cholesterol. 
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Supplementary Figure 2.10. Individual variant unconditional P-values associated with 

LDL-C for missense RVs in gene NPC1L1 on chromosome 7 in discovery phase 

using the TOPMed cohort (n = 12,316). 

 

Each dot represents a variant with x-axis label being the physical position on build hg38 and y-

axis label being the sign of effect size times − log10(𝑃). The P values were calculated using the 

individual variant score test. Different symbols represent different types of missense variants, 

including disruptive missense variant (MetaSVM=“D”) and tolerated missense variant 

(MetaSVM=“T”).  
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Supplementary Figure 2.11. Genetic region (2-kb sliding window) unconditional analysis 

results of TC in discovery phase using the TOPMed cohort. 
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a, Manhattan plot showing the associations of 2.66 million 2-kb sliding windows for TC (total 

cholesterol) versus − log10(𝑃) of STAAR-O. The horizontal line indicates a genome-wide P-

value threshold of 1.88 × 10−8 (n = 12,316). b, Quantile-quantile plot of 2-kb sliding window 

STAAR-O P values for TC (n = 12,316). c, Genetic landscape of the windows significantly 

associated with TC that are located in the 500-kb region on chromosome 1. Four statistical tests 

were compared: Burden, SKAT, ACAT-V and STAAR-O. A dot indicates that the sliding 

window at this location is significant using the statistical test that the color of the dot represents 

(n = 12,316). d, Genetic landscape of the windows significantly associated with TC that are 

located in the 200-kb region on chromosome 19. Four statistical tests were compared: Burden, 

SKAT, ACAT-V and STAAR-O. A dot indicates that the sliding window at this location is 

significant using the statistical test that the color of the dot represents (n = 12,316). e, Genetic 

landscape of the windows significantly associated with TC that are located in the 150-kb region 

on chromosome 19. Four statistical tests were compared: Burden, SKAT, ACAT-V and STAAR-

O. A dot indicates that the sliding window at this location is significant using the statistical test 

that the color of the dot represents (n = 12,316). f, Scatterplot of P values for the 2-kb sliding 

windows comparing STAAR-O with Burden, SKAT and ACAT-V tests. Each dot represents a 

sliding window with x-axis label being the − log10(𝑃) of the conventional test and y-axis label 

being the − log10(𝑃) of STAAR-O (n = 12,316). 
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Supplementary Figure 2.12. Genetic region (2-kb sliding window) unconditional analysis 

results of TG in discovery phase using the TOPMed cohort. 

 

a, Manhattan plot showing the associations of 2.66 million 2-kb sliding windows for TG 

(triglycerides) versus − log10(𝑃) of STAAR-O. The horizontal line indicates a genome-wide P-

value threshold of 1.88 × 10−8 (n = 12,316). b, Quantile-quantile plot of 2-kb sliding window 

STAAR-O P-values for TG (n = 12,316). c, Scatterplot of P-values for the 2-kb sliding windows 

comparing STAAR-O with Burden, SKAT and ACAT-V tests. Each dot represents a sliding 

window with x-axis label being the − log10(𝑃) of the conventional test and y-axis label being 

the − log10(𝑃) of STAAR-O (n = 12,316). 
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Supplementary Figure 2.13. Genetic region (2-kb sliding window) unconditional analysis 

results of HDL-C in discovery phase using the TOPMed cohort. 

 

a, Manhattan plot showing the associations of 2.66 million 2-kb sliding windows for HDL-C 

(high-density lipoprotein cholesterol) versus − log10(𝑃) of STAAR-O. The horizontal line 

indicates a genome-wide P-value threshold of 1.88 × 10−8 (n = 12,316). b, Quantile-quantile 

plot of 2-kb sliding window STAAR-O P-values for HDL-C (n = 12,316). c, Scatterplot of P-

values for the 2-kb sliding windows comparing STAAR-O with Burden, SKAT and ACAT-V 

tests. Each dot represents a sliding window with x-axis label being the − log10(𝑃) of the 

conventional test and y-axis label being the − log10(𝑃) of STAAR-O (n = 12,316). 
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Supplementary Figure 2.14. Genetic landscape of the sliding windows significantly 

associated with LDL-C in unconditional analysis using different methods in 

discovery phase using the TOPMed cohort. 

 

a, Genetic landscape of the windows significantly associated with LDL-C that are located in the 

500-kb region on chromosome 1. Four statistical tests were compared: Burden, SKAT, ACAT-V 

and STAAR-O. A dot indicates that the sliding window at this location is significant using the 

statistical test that the color of the dot represents (n = 12,316). b, Genetic landscape of the 

windows significantly associated with LDL-C that are located in the 150-kb region on 

chromosome 19. Four statistical tests were compared: Burden, SKAT, ACAT-V and STAAR-O. 

A dot indicates that the sliding window at this location is significant using the statistical test that 

the color of the dot represents (n = 12,316). 
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Supplementary Figure 2.15. Individual variant unconditional P values associated with 

LDL-C for RVs in a sliding window near gene APOC1L1 in discovery phase 

using the TOPMed cohort (n = 12,316). 

 

The x-axis label is the − log10(𝑃). The P-values were calculated using the individual variant 

score test. The y-axis label is the standardized Beta(MAF;1,25) weights and the standardized 

aPC-Epigenetic weights for individual RVs in the sliding window. The sliding window is located 

from 44,931,528 bp to 44,933,527 bp on chromosome 19. The physical positions are on build 

hg38. 
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Supplementary Figure 2.16. Number of below-threshold associations by incorporating 

tissue-specific aPCs in gene-centric analysis in discovery phase using the 

TOPMed cohort (n = 12,316). 

 

Various levels of unconditional STAAR-O P value thresholds (𝛼 = 5.00 × 10−7, 1.00 ×
10−6, 5.00 × 10−6, 1.00 × 10−5) using discovery phase are compared. 

 

 

 



 

129 
 

Supplementary Figure 2.17. Number of below-threshold associations by incorporating 

tissue-specific aPCs in genetic region analysis in discovery phase using the 

TOPMed cohort (n = 12,316). 

 

Various levels of unconditional STAAR-O P value thresholds (𝛼 = 1.88 × 10−8, 5.00 ×
10−8, 1.00 × 10−7, 5.00 × 10−7) using discovery phase are compared. 
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TOPMed study participants and acknowledgements 

Discovery phase (n = 12,316) 

Framingham Heart Study (FHS) 

The FHS is a three generational prospective cohort that has been described in detail previously 

(131). Individuals were initially recruited in 1948 in Framingham, USA to evaluate 

cardiovascular disease risk factors. The second generation cohort (5,124 offspring of the original 

cohort) was recruited between 1971 and 1975 (132, 133). The third generation cohort (4,095 

grandchildren of the original cohort) was collected between 2002 and 2005. Fasting lipid levels 

were measured at exam 1 of the Offspring (1971-1975) and third generation (2002-2005) 

cohorts, using standard LRC protocols. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Whole Genome Sequencing and Related Phenotypes in the Framingham 

Heart Study” (phs000974.v1.p1) was performed at the Broad Institute of MIT and Harvard 

(HHSN268201500014C). 

 

The Framingham Heart Study (FHS) acknowledges the support of contracts NO1-HC-25195, 

HHSN268201500001I and 75N92019D00031 from the National Heart, Lung and Blood Institute 

and grant supplement R01 HL092577-06S1 for this research. We also acknowledge the 

dedication of the FHS study participants without whom this research would not be possible. Dr. 

Vasan is supported in part by the Evans Medical Foundation and the Jay and Louis Coffman 

Endowment from the Department of Medicine, Boston University School of Medicine. 

 

Old Order Amish (OOA) 

The Old Order Amish individuals included in this study were participants of several ongoing 

studies of cardiovascular health carried out at the University of Maryland among relatively 

healthy volunteers from the Old Order Amish community of Lancaster County, PA and their 

family members (134, 135). 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Genetics of Cardiometabolic Health in the Amish” (phs000956.v1.p1) was 

performed at the Broad Institute of MIT and Harvard (3R01HL121007-01S1). 

 

Jackson Heart Study (JHS) 

The JHS is a large, population-based observational study evaluating the etiology of 

cardiovascular, renal, and respiratory diseases among African Americans residing in the three 
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counties (Hinds, Madison, and Rankin) that make up the Jackson, Mississippi metropolitan area 

(136). Data and biologic materials have been collected from 5,301 participants, including a 

nested family cohort of 1,498 members of 264 families. The age at enrollment for the unrelated 

cohort was 35-84 years; the family cohort included related individuals >21 years old. Participants 

provided extensive medical and social history, had an array of physical and biochemical 

measurements and diagnostic procedures, and provided genomic DNA during a baseline 

examination (2000-2004) and two follow-up examinations (2005-2008 and 2009-2012). The 

study population is characterized by a high prevalence of diabetes, hypertension, obesity, and 

related disorders. Annual follow-up interviews and cohort surveillance are ongoing. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: The Jackson Heart Study” (phs000964.v1.p1) was performed at the 

University of Washington Northwest Genomics Center (HHSN268201100037C). 

 

The Jackson Heart Study (JHS) is supported and conducted in collaboration with Jackson State 

University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi 

State Department of Health (HHSN268201800015I/HHSN26800001) and the University of 

Mississippi Medical Center (HHSN268201800010I, HHSN268201800011I and 

HHSN268201800012I) contracts from the National Heart, Lung, and Blood Institute (NHLBI) 

and the National Institute for Minority Health and Health Disparities (NIMHD). The authors also 

wish to thank the staffs and participants of the JHS. 

 

Multi-Ethnic Study of Atherosclerosis (MESA) 

The Multi-Ethnic Study of Atherosclerosis is a National Heart, Lung and Blood Institute-

sponsored, population-based investigation of subclinical cardiovascular disease and its 

progression (137). A total of 6,814 individuals, aged 45 to 84 years, were recruited from six US 

communities (Baltimore City and County, MD; Chicago, IL; Forsyth County, NC; Los Angeles 

County, CA; New York, NY; and St. Paul, MN) between July 2000 and August 2002. 

Participants were excluded if they had physician-diagnosed cardiovascular disease prior to 

enrollment, including angina, myocardial infarction, heart failure, stroke or TIA, resuscitated 

cardiac arrest or a cardiovascular intervention (e.g., CABG, angioplasty, valve replacement, or 

pacemaker/defibrillator placement). Pre-specified recruitment plans identified four racial/ethnic 

groups (White European-American, African-American, Hispanic-American, and Chinese-

American) for enrollment, with targeted oversampling of minority groups to enhance statistical 

power. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)” (phs001416.v1.p1) was 

performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized read 
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mapping and genotype calling, along with variant quality metrics and filtering were provided by 

the TOPMed Informatics Research Center (3R01HL-117626-02S1; contract 

HHSN268201800002I). Phenotype harmonization, data management, sample-identity QC, and 

general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-

120393-02S1; contract HHSN268201800001I). 

 

MESA and the MESA SHARe projects are conducted and supported by the National Heart, 

Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for 

MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 

75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, 

N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 

75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-

95169, UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420, UL1TR001881, and 

DK063491. 

 

Replication phase (n = 17,822) 

Atherosclerosis Risk in Communities Study (ARIC) 

The ARIC study is a population-based prospective cohort study of cardiovascular disease 

sponsored by the National Heart, Lung, and Blood Institute (NHLBI). ARIC included 15,792 

individuals, predominantly European American and African American, aged 45-64 years at 

baseline (1987-89), chosen by probability sampling from four US communities. Cohort members 

completed three additional triennial follow-up examinations, a fifth exam in 2011-2013, and a 

sixth exam in 2016-2017. The ARIC study has been described in detail previously (138). 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Atherosclerosis Risk in Communities (ARIC)” (phs001211) was performed 

at the Baylor College of Medicine Human Genome Sequencing Center (HHSN268201500015C 

and 3U54HG003273-12S2) and the Broad Institute of MIT and Harvard (3R01HL092577-06S1). 

Centralized read mapping and genotype calling, along with variant quality metrics and filtering 

were provided by the TOPMed Informatics Research Center (3R01HL-117626-02S1; contract 

HHSN268201800002I). Phenotype harmonization, data management, sample-identity QC, and 

general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-

120393-02S1; contract HHSN268201800001I). We gratefully acknowledge the studies and 

participants who provided biological samples and data for TOPMed. 

 

The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal 

funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, 

Department of Health and Human Services (contract numbers HHSN268201700001I, 

HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and 
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HHSN268201700005I). The authors thank the staff and participants of the ARIC study for their 

important contributions. 

 

Cleveland Family Study (CFS) 

The CFS is a family-based longitudinal study that includes participants with laboratory 

diagnosed sleep apnea, their family members and neighborhood control families followed 

between 1990 and 2006. Four examinations over 16 years provided measurements of sleep apnea 

with overnight polysomnography, anthropometry, and other related phenotypes, as detailed 

previously (139, 140). After an overnight fast, blood was collected which was assayed for lipid 

levels at the University of Vermont Laboratory for Clinical Biochemistry Research. Lipids 

(triglycerides, HDL cholesterol) from fasted blood serum were measured by enzymatic methods 

using Centers for Disease Control and Prevention guidelines (141). 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Cleveland Family Study” (phs000954) was performed at the University of 

Washington Northwest Genomics Center (3R01HL098433-05S1). 

 

This research was supported by grants HL 046389; HL113338;1R35HL135818 from the 

National Heart, Lung, and Blood Institute (NHLBI).  

 

Cardiovascular Health Study (CHS) 

The Cardiovascular Health Study is a prospective population-based cohort study of risk factors 

for CHD and stroke in adults 65 years and older (142). The main objective is to identify factors 

related to the onset and course of heart disease and stroke. The four Field Centers are located in 

Forsyth County, NC; Sacramento County, CA; Washington County, MD; and Pittsburgh, PA. 

The original cohort of 5201 elderly were recruited in 1989-1990; and in 1992-1993, 687 

additional minority participants were recruited and examined. Each community sample was 

obtained from random samples of the Medicare eligibility lists of the Health Care Financing 

Administration (HCFA). Eligible to participate were persons living in the household of each 

sampled individual who were: 1) 65 yr or older; 2) non-institutionalized; 3) expected to remain 

in the area for 3 yr; and 4) able to give informed consent. Excluded were those wheelchair-

bound, receiving hospice care or cancer treatment. The minority cohort was recruited using 

similar methods. Participants were eligible whether or not they had clinically apparent 

cardiovascular disease. Subjects were followed with semi-annual contacts, alternating between 

telephone calls and surveillance clinic visits. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 
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“NHLBI TOPMed: Cardiovascular Health Study” (phs001368) was performed at the Baylor 

College of Medicine Human Genome Sequencing Center (HHSN268201500015C). 

 

This research was supported by contracts HHSN268201200036C, HHSN268200800007C, 

HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, 

N01HC85082, N01HC85083, N01HC85086, and grants U01HL080295 and U01HL130114 from 

the National Heart, Lung, and Blood Institute (NHLBI), with additional contribution from the 

National Institute of Neurological Disorders and Stroke (NINDS). Additional support was 

provided by R01AG023629 from the National Institute on Aging (NIA). A full list of principal 

CHS investigators and institutions can be found at CHS-NHLBI.org. 

 

Diabetes Heart Study (DHS) 

The Diabetes Heart Study (DHS) began as a family-based study enriched for type 2 diabetes 

(T2D). The initial cohort included 1443 European American and African American participants 

from 564 families with multiple cases of type 2 diabetes recruited between 1998 and 2006 (143). 

As an ancillary study, the African American Diabetes Heart Study (AA-DHS) expanded the total 

number of African Americans to 691 by recruiting additional unrelated participants with type 2 

diabetes from 2007 and 2010 (144). All participants were extensively phenotyped for measures 

of subclinical CVD and other known CVD risk factors. Primary outcomes were quantified 

burden of vascular calcified plaque in the coronary artery, carotid artery, and abdominal aorta all 

determined from non-contrast computed tomography scans. For TOPMed, DHS and AA-DHS 

African American participants with CAC were selected for WGS, prioritizing the inclusion of 

families. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Diabetes Heart Study” (phs001412) was performed at the Broad Institute of 

MIT and Harvard (HHSN268201500014C). 

 

This work was supported by R01 HL92301, R01 HL67348, R01 NS058700, R01 AR48797, R01 

DK071891, the General Clinical Research Center of the Wake Forest University School of 

Medicine (M01 RR07122, F32 HL085989), the American Diabetes Association, and a pilot grant 

from the Claude Pepper Older Americans Independence Center of Wake Forest University 

Health Sciences (P60 AG10484). 

 

Genetic Study of Atherosclerosis Risk (GeneSTAR) 

GeneSTAR is an ongoing family-based prospective study designed to determine environmental, 

phenotypic, and genetic causes of premature cardiovascular disease. GeneSTAR was originally 

conducted in healthy adult European- and African-American siblings of probands with 

documented early onset coronary disease under 60 years of age at the time of hospitalization in 

https://urldefense.proofpoint.com/v2/url?u=https-3A__chs-2Dnhlbi.org&d=DwMGaQ&c=WO-RGvefibhHBZq3fL85hQ&r=b5Nbqbd-i1zGTvpDeTmxllZPAOZcm40GJ2T0r9cfKmI&m=aO3aCp_qn4wQyYNri083AIpCuFbcV5lFdIZtpOTrToo&s=4kzdKhr8oCU2j4wnSvCQB8emkH-NRBqJVoZPcl-ncf4&e=
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any of 10 Baltimore area hospitals from 1982-2006. Participants were screened for traditional 

coronary disease and stroke risk factors and have been followed regularly to ascertain incident 

cardiovascular disease (145). Commencing in 2003, the siblings, their offspring, and the coparent 

of the offspring who were free of cardiovascular disease participated in a 2 week trial of aspirin 

81 mg/day with pre and post ex vivo platelet function assessed using multiple agonists and were 

screened for traditional coronary disease and stroke risk factors (146). Of the total 3949 

participants, 1786 were selected for TOPMed prioritized on complete platelet function measures 

and largest family size. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Genetic Study of Atherosclerosis Risk” (phs001218) was performed at the 

Microgen Corp. and the Broad Institute of MIT and Harvard (HHSN268201500014C). 

 

GeneSTAR was supported by grants from the National Institutes of Health/National Heart, Lung, 

and Blood Institute (U01 HL72518, HL087698, HL49762, HL59684, HL58625, HL071025, 

HL112064), by a grant from the National Institutes of Health/National Institute of Nursing 

Research (NR0224103), and by a grant from the National Institutes of Health/National Center for 

Research Resources (M01-RR000052) to the Johns Hopkins General Clinical Research Center. 

 

Genetic Epidemiology Network of Arteriopathy (GENOA) 

The Genetic Epidemiology Network of Arteriopathy (GENOA) is one of four networks in the 

NHLBI Family-Blood Pressure Program (FBPP) (147). GENOA's long-term objective is to 

elucidate the genetics of target organ complications of hypertension, including both 

atherosclerotic and arteriolosclerotic complications involving the heart, brain, kidneys, and 

peripheral arteries (148). The longitudinal GENOA Study recruited European-American and 

African-American sibships with at least 2 individuals with clinically diagnosed essential 

hypertension before age 60 years. All other members of the sibship were invited to participate 

regardless of their hypertension status. Participants were diagnosed with hypertension if they had 

either 1) a previous clinical diagnosis of hypertension by a physician with current anti-

hypertensive treatment, or 2) an average systolic blood pressure ≥ 140 mm Hg or diastolic blood 

pressure ≥ 90 mm Hg based on the second and third readings at the time of their clinic visit. Only 

participants of the African-American Cohort were sequenced through TOPMed. 

 

During the first exam (Phase 1; 1996-2000), 1,583 European-Americans from Rochester, MN 

and 1,854 African-Americans from Jackson, MS were examined. Between 2000 and 2004 (Phase 

2), 1,241 participants of the European-American Cohort and 1,482 participants of the African-

American cohort returned for a second examination. The second examination of the European-

American cohort included computed tomography scans for coronary artery calcification while 

the second examination of the African-American cohort included an echocardiogram.  Between 
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2009 and 2011, an examination that included computed tomography scans for coronary artery 

calcification (CAC Study) was conducted on 752 participants of the African-American Cohort. 

 

Every participant with an echocardiogram was selected for whole genome sequencing (WGS) 

through TOPMed. We then selected 106 African-American participants who had a computed 

tomography scan for coronary artery calcification but not an echocardiogram or were a sibling of 

someone already selected for WGS. Finally, we excluded individuals whom we knew were 

already being whole genome sequenced through TOPMed or another sequencing effort (GENOA 

participants who overlap with ARIC or JHS participants). 

 

Support for GENOA was provided by the National Heart, Lung and Blood Institute (HL054457, 

HL054464, HL054481, HL119443, HL085571, and HL087660) of the National Institutes of 

Health. WGS for “NHLBI TOPMed: Genetic Epidemiology Network of Arteriopathy” 

(phs001345) was performed at the Mayo Clinic Genotyping Core, the DNA Sequencing and 

Gene Analysis Center at the University of Washington (3R01HL055673-18S1), and the Broad 

Institute (HHSN268201500014C) for their genotyping and sequencing services. We would like 

to thank the GENOA participants. 

 

Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) 

GOLDN is a family-based study of European descent individuals recruited in Minneapolis and 

Salt Lake City (two of the NHLBI Family Heart Study sites). It aims to uncover genetic 

predictors of variability in lipid phenotypes, which include both fasting and postprandial lipids 

quantified using traditional methods, NMR, and high-throughput lipidomics. During the initial 

screening of ~1,350 individuals, the following criteria were used for exclusion: age < 18 years; 

fasting triglycerides ≥1500 mg/dL; recent history of myocardial infarction, coronary bypass 

surgery, or coronary angioplasty; self-report of a positive history of liver, kidney, pancreas, or 

gallbladder disease, or a history of nutrient malabsorption; current use of insulin; abnormal liver 

or kidney function; in women of childbearing potential, pregnancy, breastfeeding, not using an 

acceptable form of contraception. Of those who enrolled, 1,048 individuals consented to the use 

of their DNA in research; 893 participants with data on all exposures, outcomes, and covariates 

were included in the current study. 

 

GOLDN biospecimens, baseline phenotype data, and intervention phenotype data were collected 

with funding from National Heart, Lung and Blood Institute (NHLBI) grant U01 HL072524. 

Whole-genome sequencing in GOLDN was funded by NHLBI grant R01 HL104135-04S1. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Genetics of Lipid Lowering Drugs and Diet Network” (phs001359) was 

performed at the University of Washington Northwest Genomics Center (3R01HL104135-04S1). 
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San Antonio Family Heart Study (SAFS) 

The SAFHS began in 1991, and included 1,431 individuals in 42 extended families at baseline. 

Probands were 40 to 60 year old low-income Mexican Americans selected at random without 

regard to presence or absence of disease, almost exclusively from Mexican American census 

tracts in San Antonio, Texas. All first, second, and third degree relatives of the proband and of 

the proband's spouse, aged 16 years or above, were eligible to participate in the study. As part of 

our ongoing studies, we have recruited new family members from the original families, 

expanding the cohort to almost 3,099 individuals primarily from 73 families. Our study is a 

mixed longitudinal design. Subjects have been seen between 1 and 4 times with an average of 

1.95 examinations. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: San Antonio Family Heart Study” (phs001215) was performed at the 

Illumina Genomic Services (3R01HL113323-03S1). 

 

Collection of the San Antonio Family Study data was supported in part by National Institutes of 

Health (NIH) grants R01 HL045522, MH078143, MH078111 and MH083824; and whole 

genome sequencing of SAFS subjects was supported by U01 DK085524 and R01 HL113323. 

We are very grateful to the participants of the San Antonio Family Study for their continued 

involvement in our research programs. 

 

Genome-wide Association Study of Adiposity in Samoans (SAS) 

The parent Samoan study is a population-based genome-wide association study (GWAS) of 

adiposity and cardiometabolic phenotypes among adults, 25-65 years of age, from the 

independent nation of Samoa in the South Pacific. The research goal of this study is to identify 

genetic variation that increases susceptibility to obesity and cardiometabolic phenotypes. 

Biomarker and questionnaire data were collected to assess cardiometabolic phenotypes. DNA 

was collected and the Affymetrix 6.0 chip used for SNP genotyping. After quality control checks 

on genotyping and excluding individuals with key missing data we have a final sample of 3,122 

adults with high-quality genome-wide marker data (149). Participation in TOPMed provided 

whole genome sequence data for 1,222 individuals from the GWAS sample chosen for maximal 

informativity for our Samoan-specific imputation panel. 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Genome-wide Association Study of Adiposity in Samoans” (phs000972) was 

performed at the University of Washington Northwest Genomics Center 

(HHSN268201100037C) and the New York Genome Center (HHSN268201500016C). 



 

138 
 

 

Date collection was funded by NIH grant R01-HL093093. We thank the Samoan participants of 

the study and local village authorities. We acknowledge the support of the Samoan Ministry of 

Health and the Samoa Bureau of Statistics for their support of this research. 

 

Women’s Health Initiative (WHI) 

The Women's Health Initiative (WHI) is a large study of postmenopausal women’s health 

investigating risk factors for cancer, CVD, age-related fractures and chronic disease [ref]. It 

began in 1993 as a set of randomized controlled clinical trials (CT) and an observational study 

(OS). Specifically, the CT (n=68,132) included three overlapping components: The Hormone 

Therapy (HT) Trials (n=27,347), Dietary Modification (DM) Trial (n=48,835), and Calcium and 

Vitamin D (CaD) Trial (n=36,282). Eligible women could be randomized into as many as all 

three CTs components. Women who were ineligible or unwilling to join the CT were then 

invited to join the OS (n=93,676) (150). 

 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 

“NHLBI TOPMed: Women’s Health Initiative” (phs001237) was performed at the Broad 

Institute of MIT and Harvard (HHSN268201500014C). 

 

The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes 

of Health, U.S. Department of Health and Human Services through contracts 

HHSN268201600018C, HHSN268201600001C, HHSN268201600002C, 

HHSN268201600003C, and HHSN268201600004C. The authors thank the WHI investigators 

and staff for their dedication, and the study participants for making the program possible. A full 

listing of WHI investigators can be found at: 

http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator

%20Long%20List.pdf. 

 

UK Biobank (external to TOPMed) 

The UK Biobank analyses were conducted using the UK Biobank resource under application 

7089. 

 

 

http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%20List.pdf
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APPENDIX C 

Supplementary Figure 3.1. Quantile-quantile plots for gene-centric unconditional meta-

analysis of lipid traits LDL-C, HDL-C, TG and TC using the TOPMed data (n = 

30,138). 

 

Different symbols represent the MetaSTAAR-O P values of the gene using different functional 

categories (putative loss-of-function, missense, synonymous, promoter and enhancer). Promoter 

and enhancer are the promoter and the GeneHancer region with overlap of CAGE sites for a 

given gene, respectively (Methods). Four lipid traits were analyzed using MetaSTAAR: LDL-C, 

low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, 

triglycerides; TC, total cholesterol. 



 

140 
 

Supplementary Figure 3.2. Manhattan plots for gene-centric unconditional meta-analysis 

of lipid traits LDL-C, HDL-C, TG and TC using the TOPMed data (n = 30,138). 

 

The horizontal line indicates a genome-wide MetaSTAAR-O P value threshold of 5.00 × 10−7. 

Different symbols represent the MetaSTAAR-O P values of the gene using different functional 

categories (putative loss-of-function, missense, synonymous, promoter and enhancer). Promoter 

and enhancer are the promoter and the GeneHancer region with overlap of CAGE sites for a 

given gene, respectively (Methods). Four lipid traits were analyzed using MetaSTAAR: LDL-C, 

low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, 

triglycerides; TC, total cholesterol. 
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Supplementary Figure 3.3. Scatterplots comparing gene-centric unconditional meta-

analysis P values from MetaSTAAR-O with STAAR-O from the joint analysis of 

pooled individual-level data (STAAR-O-Pooled) of lipid traits LDL-C, HDL-C, 

TG and TC using the TOPMed data (n = 30,138). 

 

Each dot represents a functional category of a gene with x-axis label being the − log10(𝑃) of 

STAAR-O-Pooled and y-axis label being the − log10(𝑃) of MetaSTAAR-O (n = 30,138). 
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Supplementary Figure 3.4. Scatterplots comparing gene-centric conditional meta-analysis 

P values from MetaSTAAR-O (MetaSTAAR-O-Cond) with STAAR-O from the 

joint analysis of pooled individual-level data (STAAR-O-Pooled-Cond) of lipid 

traits LDL-C, HDL-C, TG and TC using the TOPMed data (n = 30,138). 

 

Significant associations in pooled analysis were used in the comparison (unconditional STAAR-

O-Pooled 𝑃 < 5.00 × 10−7). Each dot represents a functional category of a gene with x-axis 

label being the − log10(𝑃) of STAAR-O-Pooled and y-axis label being the − log10(𝑃) of 

MetaSTAAR-O (n = 30,138). 
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Supplementary Figure 3.5. Genetic region (2-kb sliding window) unconditional meta-

analysis results of HDL-C using the TOPMed data. 

 

a, Manhattan plot showing the associations of 2.68 million 2-kb sliding windows for HDL-C 

(high-density lipoprotein cholesterol) versus − log10(𝑃) of MetaSTAAR-O. The horizontal line 

indicates a genome-wide P value threshold of 1.86 × 10−8 (n = 30,138). b, Quantile-quantile 

plot of 2-kb sliding window MetaSTAAR-O P values for HDL-C (n = 30,138). c, Scatterplot of 

P values for 2-kb sliding windows comparing MetaSTAAR-O with STAAR-O from the joint 

analysis of pooled individual-level data (STAAR-O-Pooled). Each dot represents a sliding 

window with x-axis label being the − log10(𝑃) of STAAR-O-Pooled and y-axis label being the 

− log10(𝑃) of MetaSTAAR-O (n = 30,138). 
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Supplementary Figure 3.6. Genetic region (2-kb sliding window) unconditional meta-

analysis results of TG using the TOPMed data. 

 

a, Manhattan plot showing the associations of 2.68 million 2-kb sliding windows for TG 

(triglycerides) versus − log10(𝑃) of MetaSTAAR-O. The horizontal line indicates a genome-

wide P value threshold of 1.86 × 10−8 (n = 30,138). b, Quantile-quantile plot of 2-kb sliding 

window MetaSTAAR-O P values for TG (n = 30,138). c, Scatterplot of P values for 2-kb sliding 

windows comparing MetaSTAAR-O with STAAR-O from the joint analysis of pooled 

individual-level data (STAAR-O-Pooled). Each dot represents a sliding window with x-axis label 

being the − log10(𝑃) of STAAR-O-Pooled and y-axis label being the − log10(𝑃) of 

MetaSTAAR-O (n = 30,138). *Intergenic sliding window. 
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Supplementary Figure 3.7. Genetic region (2-kb sliding window) unconditional meta-

analysis results of TC using the TOPMed data. 

 

a, Manhattan plot showing the associations of 2.68 million 2-kb sliding windows for TC (total 

cholesterol) versus − log10(𝑃) of MetaSTAAR-O. The horizontal line indicates a genome-wide 

P value threshold of 1.86 × 10−8 (n = 30,138). b, Quantile-quantile plot of 2-kb sliding window 

MetaSTAAR-O P values for TC (n = 30,138). c, Scatterplot of P values for 2-kb sliding 

windows comparing MetaSTAAR-O with STAAR-O from the joint analysis of pooled 

individual-level data (STAAR-O-Pooled). Each dot represents a sliding window with x-axis label 

being the − log10(𝑃) of STAAR-O-Pooled and y-axis label being the − log10(𝑃) of 

MetaSTAAR-O (n = 30,138). *Intergenic sliding window. 
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Supplementary Figure 3.8. Scatterplots comparing genetic region (2-kb sliding window) 

conditional meta-analysis P values from MetaSTAAR-O (MetaSTAAR-O-Cond) 

with STAAR-O from the joint analysis of pooled individual-level data (STAAR-

O-Pooled-Cond) of lipid traits LDL-C, HDL-C, TG and TC using the TOPMed 

data (n = 30,138). 

 

Significant associations in pooled analysis were used in the comparison (unconditional STAAR-

O-Pooled 𝑃 < 1.86 × 10−8). Each dot represents a functional category of a gene with x-axis 

label being the − log10(𝑃) of STAAR-O-Pooled and y-axis label being the − log10(𝑃) of 

MetaSTAAR-O (n = 30,138). 
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Supplementary Figure 3.9. Power comparisons of Burden, SKAT, ACAT-V and STAAR 

methods implemented in MetaSTAAR for quantitative and dichotomous traits. 

Quantitative Trait 

 

Dichotomous Trait 

 

Meta-analysis of Burden, SKAT and ACAT-V implemented in MetaSTAAR are denoted by 

Burden-MS, SKAT-MS and ACAT-V-MS (MS for short). Meta-analysis of STAAR methods 

incorporating ten functional annotations are denoted by MetaSTAAR-B, MetaSTAAR-S, 

MetaSTAAR-A and MetaSTAAR-O. In each simulation replicate, a 2-kb region was randomly 

selected as the signal region. Within each signal region, variants were randomly generated to be 

causal based on the multivariate logistic model and on average there were 5%, 15% or 35% 

causal variants in the signal region. The effect sizes of causal variants were 𝛽𝑗 =

𝑐0| log10 𝑀𝐴𝐹𝑗 |, where 𝑐0 was set to be 0.07 for quantitative traits and 0.11 for dichotomous 

traits, which gives an odds ratio of 1.6 for a variant with a MAF of 5 × 10−5. Power was 

estimated as the proportion of the P values less than 𝛼 = 10−7 based on 104 replicates. Five 

studies were included in the meta-analysis, each with a sample size of 10,000. 
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Supplementary Figure 3.10. Scatterplot of P values comparing MetaSTAAR-O to Burden-

MS, SKAT-MS and ACAT-V-MS (MS is short of MetaSTAAR) for quantitative 

and dichotomous traits when 5% of rare variants are causal variants. 

Quantitative Trait 

 

Dichotomous Trait 

 

In each simulation replicate, a 2-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model and on average there were 5% causal variants in the signal region. The effect sizes 

of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |. For quantitative traits, 𝑐0 = 0.07; for dichotomous 

traits, 𝑐0 = 0.11. All causal variants had positive effect sizes. Power was estimated as the 

proportion of the P values less than 𝛼 = 10−7 based on 104 replicates. Five studies were 

included in the meta-analysis, each with a sample size of 10,000. 
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Supplementary Figure 3.11. Scatterplot of P values comparing MetaSTAAR-O to Burden-

MS, SKAT-MS and ACAT-V-MS (MS is short of MetaSTAAR) for quantitative 

and dichotomous traits when 15% of rare variants are causal variants. 

Quantitative Trait 

 

Dichotomous Trait 

 

In each simulation replicate, a 2-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model and on average there were 15% causal variants in the signal region. The effect 

sizes of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |. For quantitative traits, 𝑐0 = 0.07; for 

dichotomous traits, 𝑐0 = 0.11. All causal variants had positive effect sizes. Power was estimated 

as the proportion of the P values less than 𝛼 = 10−7 based on 104 replicates. Five studies were 

included in the meta-analysis, each with a sample size of 10,000. 
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Supplementary Figure 3.12. Scatterplot of P values comparing MetaSTAAR-O to Burden-

MS, SKAT-MS and ACAT-V-MS (MS is short of MetaSTAAR) for quantitative 

and dichotomous traits when 35% of rare variants are causal variants. 

Quantitative Trait 

 

Dichotomous Trait 

 

In each simulation replicate, a 2-kb region was randomly selected as the signal region. Within 

each signal region, variants were randomly generated to be causal based on the multivariate 

logistic model and on average there were 35% causal variants in the signal region. The effect 

sizes of causal variants were 𝛽𝑗 = 𝑐0| log10 𝑀𝐴𝐹𝑗 |. For quantitative traits, 𝑐0 = 0.07; for 

dichotomous traits, 𝑐0 = 0.11. All causal variants had positive effect sizes. Power was estimated 

as the proportion of the P values less than 𝛼 = 10−7 based on 104 replicates. Five studies were 

included in the meta-analysis, each with a sample size of 10,000. 
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Supplementary Note. Data simulation. 

Type I error simulations 

We performed extensive simulation studies to evaluate whether the proposed MetaSTAAR 

framework preserves the desired type I error rate. We generated continuous traits from a linear 

model defined as  

𝑌𝑖 = 0.5𝑋1𝑖 + 0.5𝑋2𝑖 + 𝜖𝑖 , 

where 𝑋1𝑖 ∼ 𝑁(0,1), 𝑋2𝑖 ∼ Bernoulli(0.5), and 𝜖𝑖 ∼ 𝑁(0,1). Dichotomous traits were generated 

from a logistic model defined as  

logit 𝑃(𝑌𝑖 = 1) = 𝛼0 + 0.5𝑋1𝑖 + 0.5𝑋2𝑖 , 

where 𝑋1𝑖 and 𝑋2𝑖 were defined the same as continuous traits and 𝛼0 was determined to set the 

prevalence to 1%. In this setting, we used a balanced case-control design. We then generated five 

participating studies in the meta-analysis using the above model, each with a sample size of 

10,000. For each study, we generated genotypes by simulating 20,000 sequences for 20 different 

regions each spanning 1 Mb. The data were generated to mimic the LD structure of an African 

American population by using the calibration coalescent model (COSI)(77). In each simulation 

replicate, 10 annotations were generated as 𝐴1, … , 𝐴10 i.i.d. 𝑁(0,1) for each variant, and we 

randomly selected 2-kb regions from these 20-Mb regions for type I error simulations. We 

applied MetaSTAAR-B, MetaSTAAR-S, MetaSTAAR-A and MetaSTAAR-O by incorporating 

MAFs and the 10 annotations and repeated the procedure with 109 replicates to examine the type 

I error rate at 𝛼 = 10−5, 10−6, 10−7 levels. 

 

Empirical power simulations 

Next, we carried out simulation study under a variety of configurations to assess the power gain 

of MetaSTAAR-O by incorporating multiple functional annotations compared to the burden, 

SKAT, and ACAT-V tests implemented in MetaSTAAR. In each simulation replicate, we 

randomly selected 2-kb regions from a 1-Mb region for power simulations. We considered five 

participating studies in the meta-analysis, each with a sample size of 10,000. Then for each of the 

five participating study, we generated the phenotype in the meta-analysis using the following 

model. We first generated causal variants according to a logistic model defined as  

logit 𝑃(𝑐𝑗 = 1) = 𝛿0 + 𝛿𝑙1
𝐴𝑗,𝑙1

+ 𝛿𝑙2
𝐴𝑗,𝑙2

+ 𝛿𝑙3
𝐴𝑗,𝑙3

+ 𝛿𝑙4
𝐴𝑗,𝑙4

+ 𝛿𝑙5
𝐴𝑗,𝑙5

, 

where {𝑙1, ⋯ , 𝑙5} ⊂ {1, ⋯ ,10} were randomly sampled for each region. For different regions, 

causality of variants was allowed to be dependent on different sets of annotations. We set 𝛿𝑙⋅
=

log(5) for all annotations and varied the proportions of causal variants in the signal region by 

setting 𝛿0 = logit(0.0015), logit(0.015), and logit(0.18) for averaging 5%, 15% and 35% 

causal variants in the signal region, respectively. 

 

We generated continuous traits from a linear model given by  

𝑌𝑖 = 0.5𝑋1𝑖 + 0.5𝑋2𝑖 + 𝛽1𝐺1𝑗 + ⋯ + 𝛽𝑠𝐺𝑠𝑗 + 𝜖𝑖 , 
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where 𝑋1𝑖 , 𝑋2𝑖 , 𝜖𝑖 were defined the same as the type I error simulations, 𝐺1𝑗 , … , 𝐺𝑠𝑗  were the 

genotypes of the s causal variants in the signal region, and 𝛽1, … , 𝛽𝑠 were the corresponding 

effect sizes of causal variants. Dichotomous traits were generated from a logistic model given by  

logit 𝑃(𝑌𝑖 = 1) = 0.5𝑋1𝑖 + 0.5𝑋2𝑖 + 𝛽1𝐺1𝑗 + ⋯ + 𝛽𝑠𝐺𝑠𝑗 , 

where α0, 𝑋1𝑖 , 𝑋2𝑖 were defined the same as the type I error simulations, 𝐺1𝑗 , … , 𝐺𝑠𝑗  were the 

genotypes of the 𝑠 causal variants in the signal region, and 𝛽1, … , 𝛽𝑠 were the corresponding log 

ORs of the 𝑠 causal variants.  

 

Under both settings, we model the effect sizes of causal variants using 𝛽𝑗 = 𝛾𝑗 =

𝑐0| log10 𝑀𝐴𝐹𝑗 |. The effect size of causal variant was therefore a decreasing function of MAF. 

For continuous traits, 𝑐0 was set to be 0.07. For dichotomous traits, 𝑐0 was set to be 0.11, which 

gives an odds ratio of 1.6 for a variant with MAF of 5 ×  10−5. For each setting, we additionally 

varied the proportions of causal variant effect size directions by setting 100%, 80%, and 50% 

variants to have positive effects. We applied MetaSTAAR-B, MetaSTAAR-S, MetaSTAAR-A, 

and MetaSTAAR-O using MAFs and all 10 annotations together with the burden-MS, SKAT-

MS, and ACAT-V-MS (MS is short of MetaSTAAR), and repeated the procedure with 104 

replicates to examine the powers at 𝛼 = 10−7 level. 
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