
Information Markets for Multi-Robot Navigation
Under Uncertainty

Citation
Wantlin, Kathryn. 2021. Information Markets for Multi-Robot Navigation Under Uncertainty.
Bachelor's thesis, Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37370030

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37370030
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Information%20Markets%20for%20Multi-Robot%20Navigation%20Under%20Uncertainty&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=580c1ac007f162601aa0b88f12bb65d0&department
https://dash.harvard.edu/pages/accessibility

InformationMarkets for Multi-Robot
Navigation Under Uncertainty

a thesis presented
by

KathrynWantlin
to

The Department of Computer Science

in partial fulfillment of the requirements
for the degree of

Bachelor of Arts (Honors)
in the subject of
Computer Science

Harvard University
Cambridge, Massachusetts

May 2021

©2021 – KathrynWantlin
all rights reserved.

Thesis advisors: Professor David Parkes and Dr. Sarah Keren KathrynWantlin

InformationMarkets for Multi-Robot Navigation Under
Uncertainty

Abstract

We investigate the role of an information market in improving navigation outcomes for risk-
averse multi-agent systems with incomplete state information. Given a partially observed graph rep-
resentation of an environment map and the deployed agents, we first create a path planning heuristic
that characterizes each agent’s path preference, given the currently observable occupancy statuses
of environment positions, by the expected utility of path traversal. Secondly, we utilize prior work
in the field of decision theory to determine the value of receiving information on positions with
uncertainty as well as the cost to obtain the information. Lastly, we create a suite of assignment al-
gorithms to best determine how agents can cooperate to collect additional information and facilitate
path planning updates. A synthetic dataset of environments, settings, and team compositions is cre-
ated according to the operation specifications considered in this paper and is used to demonstrate
that information exchange yields significant improvements in the global utility outcomes both in
expectation and in practice.

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 RelatedWork . 3
1.3 Contribution . 7

2 The Agent’s Decision Problem 8
2.1 Evaluating Paths . 9
2.2 Computing the Optimal Path . 10
2.3 Value of Information . 15
2.4 Cost of Information . 18

3 InformationMarket 22
3.1 Problem formulation . 22
3.2 Optimal Assignment . 26
3.3 Greedy Assignment . 28
3.4 Iterative Auction Assignment . 29
3.5 Iterative Auction - Stabilized . 32

4 Empirical Evaluation 34
4.1 Dataset . 35
4.2 Setup . 36
4.3 Results . 37

5 Conclusion 41

References 44

iv

Listing of figures

1.1 Motivating Example . 2

2.1 Pathfinding Algorithm Example . 13
2.2 Base Path Example . 14
2.3 Value of Information Example . 17
2.4 Cost of Information Example . 20

v

List of Tables

4.1 Simulation Results . 38

vi

Acknowledgments

I would like to express my deepest appreciation to my advisors, Professor David Parkes and
Dr. Sarah Keren, for being outstanding teachers and mentors throughout the process of writing
this thesis. Through many months of exploration, feedback, and revision, they have contributed
immensely to my development as a researcher, and this project would not be possible without their
guidance. I am particularly grateful to Dr. Keren for her generosity with her time and for her role in
helping to inspire this project.

I also thank Professor Ariel Procaccia for kindly offering to be my thesis reader.
Lastly, I thank my parents for consistently supporting me in my studies during this challenging

year of remote learning and research.

vii

1
Introduction

Making decisions under uncertainty is a highly crucial aspect of robotic navigation, given

that real-world deployed robots inherently operate with noisy or incomplete information due to

hardware-level issues or lack of domain data. The most prominent sources of uncertainty that have

been treated by the field fall under the umbrellas of localization and navigation, where small errors

in sensor readings, wheel feedback, mapped environment data, and other inputs can lead to agent

1

failures, damage, or simply less than optimal planning and coordination. In this paper, we focus

on the uncertainty at the system level concerning an initial occupancy grid provided as a map to a

set of agents who wish to navigate paths to pre-assigned destinations. We wish to understand how

coordination between the agents can best resolve the uncertainty and aid agents in finding safe, short

paths to reaching their destinations.

1.1 Motivation

Figure 1.1: Motivating Example

Consider the motivating example displayed in Figure 1.1. Here we have visualized a system of

four agents in a two dimensional grid, having pre-assigned them to initial and destination positions.

The white and black cells designate positions in which we have perfect information that the cell

is free or blocked, respectively, and we have some uncertainty about all the grey cells. The green,

orange, blue, and yellow lines signify the optimal base paths selected by Agents 1-4, respectively.

Given the grid environment, we wish to understand first how this combination of paths has been

2

selected and if it most appropriately captures the payoffs possible in this setting. Uncertainty in

robotic mapping is typically presented in the form of an occupancy grid where each cell is associated

with a probability value that the cell is blocked.16 Assuming we have this probabilistic expression of

the environment and the payoffs for each state, it would be possible to characterize, in expectation,

the preferences of each agent for particular paths and arrive at a set of base paths such as the one in

Figure 1.1.

At this point, agents may still experience significant uncertainty; for example, in the illustrated

setting, Agent 2 and Agent 3’s paths require traversal over unknown cells in the map. Completely

removing all sources of uncertainty may be infeasible, so we want to understand how best to mini-

mize the uncertainty with a given set of resources.

Considering the agents to be resources themselves and looking at the distribution of their base

paths, we see that some unknown positions may be more impactful than others. Namely, the un-

known areas of the map that could most sway the agents’ base paths to more preferred outcomes or

simply decrease uncertainty of the current path option if no alternatives exist are highly valuable.

Understanding how to quantify this information value for the system would allow us to determine

which areas of the grid, if resolved, could bring the system to a more optimal global planning out-

come. For example, since Agents 2 and 3 both pass through a common unknown cell, coordination

between them would likely be desirable since the task of travelling to the unknown cell to resolve its

true occupancy status could be assigned to one agent for the benefit of others.

1.2 RelatedWork

The literature surrounding this paper’s methods fall primarily in the following categories: robotic

navigation under uncertainty, cooperative mapping and sensing, market-based task allocation, deci-

sion theory’s “value of information” definition, and combinatorial auctions.

3

Due to its prevalence in real-world applications, uncertainty has been investigated in several

forms in the field of robotics. At the level of the individual agent, uncertainty from sources such

as depth sensors, wheel feedback, and other hardware elements can create large compounding errors

in navigation and localization. Lazanas and Latombe11 developed a landmark method in response

to uncertainty during both the planning and execution phases of single agent robotic operation. By

establishing a baseline of certainty, which they term “islands of perfection”, at certain landmark re-

gions, they are able to develop a demonstrably reliable planner in response to sensing information.

Other work by Takeda and Latombe21 focuses on path planning in the multi-agent case and seeks to

determine optimal paths that minimize expected errors, where error is determined by comparing the

system’s current model of the environment with individual sensing data. We will build on this idea

of selecting paths by solving an optimization problem on the currently perceived uncertainty.

Outside of uncertainty in path planning, it is also important to note the related problem of un-

certainty in localization, which has been treated within planning research to enable exploration

of unknown environments.1 In this paper, we will not deal with localization uncertainty, but our

framework leaves room for extension into this problem area in future work. In our setting, we pri-

oritize minimizing uncertainty and error based on agents’ reported preferences. Likhachev and

Stentz’s12 work in this area is highly relevant and also employs a graph representation of the state

space similar to what we will use to characterize the environment. Their calculation of expected pay-

offs also lays the groundwork for an extension of this paper into replanning settings. Probabilistic

treatments of the planning problem in similarly partially observed environments was studied earliest

by Simmons and Koenig18, who employ a topological map in their algorithm to direct goal-oriented

actions.

Within the field of multi-agent systems, prior literature points to high potential for distributed

sensing and planning to improve the distribution of actions between agents and reduce estimation

error. One benefit arises when considering teams of heterogeneous agents, which may be specialized

4

for completing certain actions over others. Parker’s key contribution on the ALLIANCE architec-

ture expresses this heterogeneity in terms of a “patience” factor and uses this to establish optimal

task allocations amongst agents.13 Wewill employ a similar idea beyond validating the efficacy of

our path planning heuristic to show how best to divide the work of reducing uncertainty in an en-

vironment. Another benefit surrounds a system’s potential to leverage its constituent agents as a

proxy for an external information source, such as GPS or other “oracle” provider, which yields bene-

fits particularly in situations with insufficient data or limited connectivity.20 This is the assumption

under which we develop our setting, where although we assume perfect communication between

agents, we begin navigation with an incomplete map of the environment.

Market-based methods of allocating tasks, where agents negotiate their individual interests to

arrive at an optimal assignment, were first studied by Smith’s Contract Net Protocol19. This work

establishes a decentralized agent network and enables a negotiation scheme to solve the task distribu-

tion problem. As the literature and hardware evolved, the MURDOCH framework was introduced,

which utilized a publish-subscribe architecture to facilitate negotiation.8 This model is also now

utilized by the popular open-source Robot Operating System suite, which supports realistic simula-

tion of hardware for robotic software development.16 MURDOCH also introduces the role of an

“auctioneer”, which we will similarly utilize to coordinate the computation of negotiation. Other

market-based techniques vary approach using different coordination languages4, introducing com-

petition between agents7, or focus on globally optimal assignment.14

To determine the value of items traded between agents, our system also touches on the concept

of “value of information”. With a founding in decision sciences, information value was first inves-

tigated in this way by Howard, who calculates the expected value based on the possible results of a

given information request.10 Zilberstein and Lesser extend this idea to develop a modern framework

of information gathering planning.24

Under the umbrella of market-based methods, much literature exists specifically on auction

5

methods, which have well-established performance competitiveness. Gerkey andMatarić survey

several key algorithms within the multi-robot task allocation taxonomy, with a particular focus on

iterative and online approaches.9 Another of their papers serves as the inspiration for the greedy ap-

proach used in our setting, and although their Broadcast of Local Eligibility (BLE) algorithm tech-

nically falls under behavior-based methodologies, by replacing the utility heuristic they employ with

a profit-based objective function, we can translate their robot-task interactions into robot-robot

interaction.23

In trying to find an assignment procedure that more closely approximates the optimal assign-

ment, auction-based methods exhibit suitable competitiveness and also facilitate the “bundling”

actions that is useful to our setting. Approximating the determination of an optimal subset of as-

sets, which might exhibit characteristics of both complements and substitutes, non-additive pricing,

or other complicating features, can be achieved via combinatorial auction.22 This method, which

was first introduced by Rassenti, Smith, and Bulfin for airport time slot allocation, involves both a

bidding phase and a winner-determination phase, and each of these phases have been studied indi-

vidually to determine optimal algorithms.17 Auctions also provide the benefit of gradually revealing

participants’ supply and demand functions, and in our setting, the supply side will be most chal-

lenging. However, unlike other auction applications, our setting does not necessarily require strict

performance guarantees for honest bidding or maximum revenue collection. Instead, given rela-

tively easier computation of the demand-side, we use the framework to determine the supply-side

best response. Parkes and Ungar’s work on the iBundle algorithm is particularly relevant for this

purpose, and also introduces the idea of a “provisional allocation” which will allow the demand-side

to update in response to supply-side negotiation.15

6

1.3 Contribution

The contribution of the paper is threefold. Firstly, given a probabilistic environment abstraction

and a set of agent following a set of operation rules, we define a planning heuristic rooted in ex-

pected utility of traversing a particular path. Using this heuristic, we utilize prior work from deci-

sion theory to determine the value of receiving information that improves the knowledge set agents

use to plan. By characterizing the value and cost of certain information bundles, we test a set of

algorithms that return assignments of agents to bundles in a way that allows agents to cooperate

with each other to improve the global navigation outcome. We explore several such algorithms to

find computationally feasible and sufficiently optimal procedures for practical application, and

demonstrate a statistically significant improvement in outcomes due to employing these assignment

algorithms.

7

2
The Agent’s Decision Problem

The investigation begins by considering the decision problem of a single agent in a simple set-

ting. This agent is located in an environment which we characterize as a two dimensional occupancy

gridO : {ci} → [0, 1]which associates a given cell c = (x, y), defined by its x and y coordinates,

with a probability αc that the cell is occupied. If c is known to be free, then αc = 0, and if c is known

to be blocked, then αc = 1. For all other ”unknown” cells, there is some uncertainty about the

8

true occupancy status. Within this grid, assume that the agent knows with complete certainty its

own initial position cinit and its destination position cdest, and that αcinit = αcdest = 0. There may

also be other agents present in the environment, with their own respective initial and destination

positions. Information about the grid’s state is shared completely among all agents and updated in-

stantaneously as agents move within the environment. Assume the agent also knows that there is a

reward r(cdest) located at cdest which it will claim upon arriving at that cell and that no other agent

can claim, even if other agents were to move onto this cell. Once a reward has been claimed by an

agent, it cannot be reclaimed. Agents’ movement is constrained to step-wise movement to adjacent

cells, including along grid diagonals, and each step incurs a movement cost of 1. We assume that

agents will not move onto known blocked cells, but attempting to move onto an unknown cell will

reveal its true occupancy status to all agents in the environment. Assume agents have distinct initial

and destination positions and that multiple agents occupying the same grid cell will not present an

issue. The agent then seeks to determine the optimal simple path from its cinit to cdest.

2.1 Evaluating Paths

First, we must define a function that maps from cinit, cdest, andO to an optimal path. To construct

our definition of optimality, note that with the given input information, the agent will exhibit pref-

erences for certain paths. For example, the agent might prefer to take less risky paths which are both

shorter and less likely to be obstructed. We imagine a setting where agents exploring an environment

under uncertainty will fail upon attempting to move onto a blocked cell and become inoperable,

no longer able to take further actions or collect reward. In order to quantify its path preference, the

agent can attach to each possible path an expected utility of traversing this path to reach cdest. With

this construct, the agent can determine the utility of any path from cinit to cdest and select the path

with highest corresponding utility. We seek an efficient algorithm to determine this optimal path.

9

To determine the utility of a path consider the following: characterize a path p as a list of |p| = N

points [cp0, c
p
1 , c

p
2, ..., c

p
N], where the nth point in path p has a known probability of being obstructed

αcpn . Assume also that cp0 is a cell adjacent to cinit (the first cell an agent moves to while following this

path) and cpN = cdest. The expected utility of pmust capture the probability and value of all possible

events that could occur during its traversal, which consist of either safely arriving at a certain cell

or attempting to move to a cell only to find it obstructed. The value associated with the event that

the agent reaches cdest without being obstructed is r(cdest) − N. The value of arriving at any other

point in pwithout having been obstructed is 0, and the value of safely traversing p up until a point

cpn, where failure occurs due to c
p
n being obstructed, is−n. Therefore, we can calculate the expected

utility of traversing path p as follows:

EU(p) = [r(cdest)− |p|]
∏
n∈|p|

(1− αcpn)−
∑
n∈|p|

[nαcpn
∏

k∈[n−1]

(1− αcpk)] (2.1)

Calculating expected utility rather than expected cost has benefits for our application. In addi-

tion to allowing for easier generalization to scenarios with more specialized reward schemes, working

with expected utility ensures that we are properly accounting for the probability of reaching the

destination given accumulated path traversal risk. We will specifically set r(cdest) to be larger than

the maximum possible cost to prevent counterintuitive behavior. In two-dimensional grid environ-

ments, this can simply be set to the number of cells in the grid.

2.2 Computing the Optimal Path

Now the agent must solve the problem of finding the maximum utility, single-source, single-destination

path within a directed, weighted, cyclic graph. To see that this is the case, note that we can build

a graph to representOwhere each grid cell c is made a vertex and each vertex has at most 8 edges,

where each neighboring vertex is an adjacent cell on the grid that can be reached in the grid via

10

one step. Nodes for “center” cells have 8 edges, “corner” cells 3 edges, and other “boundary” cells

5 edges. The weight of each edge ab, where a and b are the two vertices incident to this referenced

edge, is characterized by both the αb of the corresponding out-neighbor b of a, as well as the step

cost of 1 between vertices. Call this graph representationG and the set of its verticesV.

We propose an algorithm to solve this problem in polynomial time with a modified Dijkstra’s

algorithm.3 We first note that removing cycles will always serve to increase the expected utility of the

resulting simple path since cycling introduces undesirable additional step-wise cost and risk terms

to the expected utility of the path. This allows us to use a Dijkstra-like search with the guarantee of

termination.

For simplicity, note that in the following algorithm outline s is the source vertex (previously

dubbed cinit), d is the destination vertex (previously dubbed cdest) andU(x), our proxy for the “dis-

tance” metric that is typically used in Dijkstra, signifies the expected utility of a path p′ from s to x if

we were to receiveR = r(cdest) at x. U(x) thus captures the expected cost of the best path found so

far up to vertex x and also captures expected reward based on the vertices traversed so far. Note that

this means that once the algorithm terminates,U(d)will contain the expected utility of a path to

cdest that is consistent with Equation 2.1. In practice, we keep track of the maximumU(x) from the

source vertex to any given vertex x and the optimal edge connections between vertices in dictionary-

like data structures asU[] and prev[], respectively. Let “getPath(prev[], s, d)” be a helper function

that takes prev[], s, and d and returns the path from s to d given the current edge connections stored

in prev[]. Algorithm 1 outlines our base path algorithm.

Conjecture 2.2.1. Given graphGwith verticesV, source node s, destination node d, and rewardR,

Algorithm 1 for Optimal Path Determination will return the optimal path P∗ and corresponding

expected utilityU(d).

We conjecture that this algorithm returns the optimal solution. Like Dijkstra’s algorithm, our

11

Algorithm 1Optimal Path Determination
Input: GraphGwith verticesV, source node s, destination node d, and rewardR
Output: Max expected utilityU(d) and corresponding optimal path P∗

1: procedureMod-DIJKSTRA(G,V,s,d)
2: for x ∈ V− {s} do
3: U(x)← −∞
4: prev[x]←None
5: U(s)← R
6: Q← {s}
7: P∗ = []
8: whileQ ̸= {} do
9: Q′ ← {}
10: for x in A do
11: for out-neighbors y of x do
12: if U(y) > U(x|“xy” next edge) then
13: U(y)← U(x|“xy” next edge)
14: prev[y]← x
15: Q′ ← Q′ ∪ {y}
16: if y = d then
17: P∗ = getPath(prev[], s, d)
18: Q← Q′

returnU(d), P∗

12

algorithm has polynomial runtime and uses the same update rule for determining optimal edge con-

nections in prev[] and the associated expected utilities. However, unlike Dijkstra’s, we use a simple

queue as opposed to a priority queue and stores the optimal path to d particular separately. This

allows us to explore shorter paths (in number of steps) first, replacing those with longer paths if we

determine them to offer sufficient safety benefits. It also ensures that if make further modifications

to prev[] after finding an optimal solution (due to the queue being nonempty), those potentially

non-optimal edge connections will not be erroneously returned.

Figure 2.1: Pathfinding Algorithm Example

To understand how the simple queue benefits us, consider the example displayed in Figure 2.1.

Assume that the agent has the two path options as shown, where the individual cells are depicted.

Blue lines link identical cells between the two paths, and we assume that all non-linked cells are dis-

tinct. The source and destination nodes are labelled with “S” and “D”, and the α values of unknown

grey cells are also included. Assume the reward at “D” is 100. Overall, the agent is deciding between

two paths which intersect at cell X and afterward move along the same cells. Before intersecting at

X, Path 1 traverses more cells, which are all free, while Path 2 traverses fewer cells, one of which is

unknown.

Applying Algorithm 1, if we were to follow the updates along Path 1, we would see that the

13

algorithm would findU(x) = 100 − 7 = 93. If we follow updates along Path 2, the algo-

rithm would findU(x) = 0.5(−2) + 0.5(100 − 3) = 47.5. However, ultimately the true

expected utility of Path 1 is 0.9(−8) + 0.1(100 − 9) = 1.9 and the expected utility of Path 2 is

0.5(−2) + (0.5)(0.9)(−4) + (0.5)(0.1)(100− 5) = 1.95. Therefore, Path 2 is the optimal choice,

but if we had performed our algorithmic search to X through Path 1 first before exploring through

Path 2, then we would assign the utility at X to be 93 and would not continue exploring Path 2 past

X. Therefore, it is important for us to perform our Breadth-First-Search using a simple queue to ex-

plore shorter paths first and switch to longer paths only if we find them to be superior alternatives.

The full proof of optimality of Algorithm 1 is let for future work.

Figure 2.2: Base Path Example

Let’s consider an example to illustrate expected utility path determination. Figure 2.2 visualizes

a possible environment, where blocked cells are black, free cells are white, and unknown cells (all

with α = 0.5) are grey. The four agents’ initial and destination positions are labelled. Assume

each agent’s destination reward is 25. The blue line denotes Agent 3’s optimal base path. From our

14

expected utility formulation, we see that Agent 3’s base path has expected utility 1
2(−3) +

1
2(25 −

4) = 9, since there is a 1
2 probability that the agent will fail after 3 steps and

1
2 probability that the

agent will successfully arrive at it’s destination after 4 steps and receive a reward of 25.

Also note that in environments where no base path can be found due to the density and config-

uration of blocked points, we will consider the agent’s optimal base path to be no movement, with

expected utility of 0.

2.3 Value of Information

From the above example, we can see that especially in environments with little known information,

the uncertainty of paths can be quite high. To improve upon this would require obtaining addi-

tional information about the state of the environment. This information could be gained by the

agent’s traversal of the environment, or via other agents in the environment with which an agent

can interact. To decide which information to collect from the environment or other agents, an agent

needs a heuristic to, before traversing its base path, assess the tradeoffs of information acquisition

and exchange. We therefore wish to define a function mapping from a waypoint w ∈ W = {c|αc ∈

(0, 1)} and the agent’s cinit, and cdest to value of information.

There are several options for types of information an agent might like to request, but for now,

consider the case where the agent can obtain additional information on the occupancy status of

waypoint cellsW. The agent must then decide if it might like to query for information on a bundle

Wi ⊆ W. To evaluate which bundleWi, the agent must develop a metric for howmuch it values

having information about the occupancy status of points inWi. Note that the information could

be that cells are either free or blocked, and having perfect information in either direction is valuable;

if the agent discovers new free cells, it could potentially find a shorter, safer path to its destination,

and if the agent discovers new blocked cells, it could potentially forego its base path for a safer alter-

15

native. These considerations will factor into the way agents value eachWi.

As already hinted, the value of information is highly connected to the notion of path improve-

ment; if an agent’s plan will be no better off as a result of obtaining a certain set of information,

then that set of information would have no value. Therefore, it is reasonable to characterize value

of information as the expected improvement in utility when comparing the path determined after

gaining new information with the base path.24 This is also consistent with prior definitions from

the field of decision theory.

Consider the optimal base path for agent n to be pn, with associated expected utility EU(pn). The

probability of the event that the agent learns that a subset of cells Fi ⊆ Wi are free and all cells in

Bi = Wi − Fi are blocked is P(Fi) =
∏

c∈Fi(1 − αc) ×
∏

c∈(Wi−Fi) αc. For convenience, we are

referring to this event, givenWi, as Fi.

Given this event Fi, we can modify the graph representationG of the environment to reflect this

event by changing the edge weights such that for every edge inGwith out-neighbor v ∈ Wi, if

v ∈ Fi, then that edge’s weight is changed to 0, and to 1 otherwise. From here, we can simply use

our Modified Dijkstra’s algorithm presented previously to determine an optimal path p|Wi, Fi con-

ditional on the given bundleWi and event Fi from the source vertex to the destination vertex and

the path’s associated utility.

In order to determine the value of information atWi, it is necessary to consider all possible

events Fi ⊆ Wi. Thus, agent n’s expected value of information onWi expressed as a function

is:

Vn(Wi) =
∑
Fi⊆Wi

P(Fi)[EU(p′n|Fi)− EU(pn|Fi)] (2.2)

where EU(p′n|Fi) is the expected utility of agent n’s optimal path choice when planning with

information that event Fi ⊆Wi occurred for a givenWi and EU(pn|Fi) is the expected utility of the

16

agent’s base path given that event Fi occurs.

Thus, for anyWi ⊆ W, the agent can compute the expected value of information for waypoints

using expected utilities of paths.

Figure 2.3: Value of Information Example

Staying with the same example as the last section, Figure 2.3 shows Agent 3’s value of infor-

mation consideration for the highlighted yellow waypoint. Agent 3’s base path (in blue) has ex-

pected utility of 9. If the waypoint is a free cell, which based on current knowledge will be true

with probability 1
2 , then Agent 3 will maintain its base path, which will have a “true” expected util-

ity of 25 − 4 = 21 given that the highlighted waypoint is a free cell. However, if the waypoint

is blocked, the agent’s base path would have expected utility−3. If Agent 3 knew that the way-

point was blocked, it would choose the orange alternate path, which has expected utilitiy 1
2(−2) +

1
4(−3) +

1
4(25 − 4) = 3.5. Then overall, Agent 3’s value of information for the highlighted

waypoint is 1
2(21− 21) + 1

2(3.5− (−3)) = 3.25.

Moving forward, we will see that it is also useful to consider the value of a waypoint w given that

17

we will be receiving information on someW0, which we will call the “provisional bundle” since we

will be calculating value of other waypoints provided that we are currently going to receive informa-

tion onW0. For now, we can note that this conditional value to agent n isVn(w|W0) = Vn(w) if

W0 is empty. Generally,

Vn(w|W0) = Vn(W0 ∪ {w})− Vn(W0 − {w}) (2.3)

If w ∈ W0, thenVn(w|W0) captures the value of keeping w in the provisional bundle. Other-

wise,Vn(w|W0) captures the value of adding waypoint w to the provisional bundle.

2.4 Cost of Information

Now, we will consider possible mechanisms by which agents can obtain information. Assuming

that no system administrator or oracle is present but other agents are present in the system, it would

be possible to query other agents for information about certain locations within the environment,

creating a case of distributed sensing that enhances agents’ ability to solve the navigation and explo-

ration problems more effectively.5 Also assume for now that any unknown cell on which an agent

steps will be immediately established in the commonmap as unobstructed, and attempting to step

onto a grid location that is obstructed is impossible. For any agent to resolve the occupancy status

on a waypoint itself would require incurring some additional cost for no additional reward, mean-

ing that incentive from other agents would be required for the agent, utilizing an expected utility

metric to determine optimal paths, to favor a path of assistance over its base path. Therefore, in this

section, we wish to determine a function that maps from agent n’s cinit, cdest, and a given waypoint

w ∈ W to a cost of diverting from its current base path pn to assist with w before continuing on to

its destination. While previously we considered the decision problem from the perspective of agent

receiving information, we are now characterizing the decision problem from the perspective of the

18

agent providing information.

With an agent’s optimal base path established as p, the agent compares this with the optimal

path associated with collecting information, which we call pW, which is associated with traveling

from cinit to all waypoints in a bundleW and then continuing on to cdest. Thus, the only differ-

ence between these two paths is due to deviating for waypoint traversal, and by comparingU(p) and

U(pW), it will be possible to characterize the expected difference in utility between the two alterna-

tives. The amount for which agent nwill need to be compensated to take pW over pwill be

Cn(W) = EUn(p)− EUn(pW) (2.4)

It is possible to determine the expected utility of traversing between any two grid cells using the

modified Dijkstra’s algorithm presented earlier. With these utilities established, finding pW when

the order of traversingW is not specified becomes analogous to finding a maximum utility tour of

the points cinit, cdest, and all points inW. Given that our graph representation of the environment

is directed and the expected utility of taking a path in reverse is not equal to that if the path is taken

forwards, this is an instance of the Asymmetric Traveling Salesman Problem (ATSP). Polynomial

time approximations exist to solve this problem with varying performance guarantees.2 In order to

simplify this problemmoving forward, we will constrain ourselves to considering the cost of travers-

ing a bundle in a specific order to collect information.

Assuming then thatW is given to the cost function Cn(W) as an ordered set, we can find pW

with the following logic: For a traditional Dijkstra’s algorithm that finds the minimum sum-of-

edge-costs path p between two vertices, the distance between any two vertices in p is also minimized.

If it wasn’t, that would imply that we could reduce the length of p by replacing some subpath of p

between two vertices x and ywith the minimum distance path between x and y. Therefore, finding

a minimum distance path p that must pass through some secondary vertex awould be equivalent to

19

combining the minimum distance paths from x to a and then from a to y.

This property of optimal paths computable via a Dijkstra scheme also holds for our expected util-

ity path planning. Therefore, if an agent is given an ordered set of waypoints to traverse in between

its initial and destination positions, computing the optimal pW for a bundleW = {wi} ofmway-

points will simply require computing the optimal path between cinit and w1, w1 and w2, ..., and wm

and cdest.

Figure 2.4: Cost of Information Example

Consider Figure 2.4 as an example scenario to illustrate the cost of information calculation.

Still working with the same environment, we now seek to compute the cost for Agent 1 to collect

information at the highlighted waypoint. Agent 1’s base path in blue has an expected utility of

25 − 3 = 22. If the optimal path for Agent 1 to pass through the highlighted waypoint and col-

lect information is the orange path, where this path has utility 1
2(−1) +

1
2(25− 3) = 10.5, then the

cost to Agent 1 to collect information at the highlighted waypoint is 22− 10.5 = 11.5.

In certain environments such as this simple one, cooperation may be impossible for some agents

20

due to the fact that all agents are affected by risk and cost in the same way and the placement of

waypoints may be too far away from any agent’s optimal base path to be feasibly compensated. One

way to avoid this is to employ heterogeneous agents, where those less sensitive to risk can provide

information to those more sensitive. A classic example is cooperative traversal of an environment by

unmanned ground vehicles (UGVs) with the assistance of drones.6 In our setting, we consider the

agents as described already to be UGVs traversing the grid environment. We can relax the constraint

of “failure upon stepping on a blocked cell” for some agents while still requiring them to traverse

the environment along established graph structure (step-wise, as already described). These agents

then operate as drones, and we hypothesize that employing drones who incur less cost for certain

risky actions will change the setting dynamics. We also stipulate that drones will have no assigned

destination. Therefore, the cost for a drone to collect information at a given w is simply the length of

shortest path in the graph from its cinit to w, where the graph edge weights are all 1, computable via a

traditional minimum distance Dijkstra’s algorithm.

21

3
InformationMarket

3.1 Problem formulation

The question remaining now is how to determine the criteria for assigning “helper agents” to collect

information on bundles. In the toy examples outlined previously, it seems possible to do a simple

comparison of value of a bundle with desired compensation for assistance, and if the former is at

least as much as the latter, an exchange could occur. Since we’re moving beyond the single agent’s

22

decision to characterizing coordination of a multi-agent system, we now consider how optimal ex-

changes should be determined.

Note that so far, each agent in the system has been acting independently in its computation, and

in a multi-agent system, this translates to a decentralized control. However, beyond the individual

decision problems, we must now take the final step of performing the value-cost comparison and

deciding what information should be collected by which agent. Agents can now either take on roles

of buyers (who pay to receive information collected by other agents) and sellers (“helper agents”

that incur cost to provide information). These additional areas of computation require visibility

over the entire system, so we can introduce the role of a “market-maker”, who compiles information

about waypoint bundle values and corresponding costs for helper agents to assist and then performs

the computation necessary to assign helper agents to bundles. A similar design has been utilized in

previous system architectures, and we will draw inspiration from this previous work.8 Note that for

the purposes of my evaluation, I ran simulations on completely synthetic grid environments rather

than a framework that allows for publish/subscribe commands, such as the ROS Construct.16 I

therefore used centralized control for convenience, though in a decentralized scheme I could have

randomly designated an agent to perform the “market-maker” role.

Now that we have expressions for value of information within our system, we would like to be

able to ascertain which points to actually acquire. We are working with the following inputs: a set of

n agents, each with an initial position and goal position,m individual waypoints available for acqui-

sition, a function for value of information (VOI) at a given waypoint bundle for a given agent, and a

function for cost of information (COI) for a given agent and waypoint. We will consider the agents

to take on roles of buyers and sellers, and the waypoints are the goods to be purchased. Buyers will

wait until sellers collect information before using it to replan new optimal paths. We would like a

function that, given these inputs, outputs an assignment of sellers to waypoint traversals such that

information is collected in a way that maximizes the expected utility of all agents.

23

However, it is first necessary to make some slight adjustments to ground the single agent deci-

sion problems in the context of the multi-agent system. Note that previously, value was assigned

to waypoint bundles purely based on evaluation of the single agent in question. However, since all

information is held in common within a multi-agent system and we are currently exploring a coop-

erative setting whereby navigation is augmented via this distributed sensing and exploration, we now

characterize the value of each bundle of waypointsWi to buyers b as:

V(Wi) =
∑
b

Vb(Wi) (3.1)

We also note that if all agents are allowed to take on roles of buyers and sellers without strict sep-

aration and, for example, all agents receive a waypoint assignment, the resulting movement of agents

to collect information at those waypoints would alter the optimality of that assignment since the

initial positions from which agents recompute optimal paths has changed. To remedy this, given an

environment setup, we perform a random assignment of each agent to the role of either buyer or

seller. Note that in the case of simulating drone sellers, this corresponds to randomly selecting some

of the agents to be drones.

We can formulate our optimization problem as follows:

argmax{ws∀s} [
∑
b

EU(pb|
∪
s
ws) +

∑
s
EUs(pws)] (3.2)

s.t.
∪
s
ws ⊆W (3.3)

∩
s
ws = ∅ (3.4)

where ws is the subset ofW uniquely assigned to be traversed by seller s, EU(pb|
∪
s
ws) is the ex-

24

pected utility of buyer b’s updated best path to its destination given information on the set of way-

points
∪
s
ws, and EUs(pws) denotes the expected utility for seller s to traverse from its initial location,

through ws, and to its destination.

In order to translate this optimization problem into the language of VOI and COI for implemen-

tation, we note thatV(W) is a measure of the expected gain in utility for buyers given information

on the set of waypointsW, and thus a mechanism that maximizesV(W)will maximize expected

utility for buyers and also for the entire system. Since the cost remains unique to the individual

agent, we call seller s’s desired compensation for assisting with waypoint w to be Cs(w). Cs(w) is a

measure of the expected utility penalty seller swould personally incur to collect information on w,

and thus a mechanism that minimizes Cs(w)will minimize expected utility penalties incurred by

sellers during information collection and therefore also maximize expected utility of the system.

Under this lens, which we will employ moving forward, we can rewrite our optimization problem

as follows:

argmax{wi} [V(
∪
i
wi)−

∑
s
Cs(wi)] (3.5)

s.t.
∪
i
wi ⊆W (3.6)

∩
i
wi = ∅ (3.7)

For the remainder of this paper, when we refer to the “objective function” , we will be referring

to the J = V(
∪
i
wi) −

∑
s Cs(wi)maximized in Equation 3.5. Given that the task of assisting with

a given bundleW has emerged and that the task assignment is able to be evaluated by comparing

value with cost, there is a strong case for employing a market-based approach to this task allocation.

25

Wewill now characterize an algorithm for this approach, as well as those for several other possible

approaches to arriving at an optimal solution.

For this paper, we will only allow each seller to be assigned a single waypoint. Single-waypoint

assignment will serve as the baseline for further research on creating and traversing more complex

bundles. We also do assignment in an offline fashion; that is, we require agents, after computation

of base paths, to calculate VOI and COI based on currently available information and produce way-

point assignments to sellers. Sellers will then attempt to collect information along their optimal

waypoint traversal paths, after which buyers can recompute their optimal paths and all agents will

complete their paths to their destinations, if possible.

3.2 Optimal Assignment

For this algorithm, we seek to determine the optimal allocation of waypoints to sellers for a given

system. This approach requires exhaustive exploration of all possible assignments of waypoints to

sellers.

We will utilize following variables:

• An ordered set of all seller agents S.

• A set of possible assignment points, A = W + {∅}, where ∅ designates a null value, rather

than the empty set. Thus, A consists of the set of waypointsW as well as the null value,

which if assigned to a seller agent will signal this seller will remain unassigned.

• The set “Perm” consisting of all permutations of selections of |S| elements from A, with re-

placement. Perm then holds every possible assignment for the ordered set S. We can assume

that Perm is determined in advance based onW and A and provided to the optimal assign-

ment algorithm as input.

26

• Indicator variables xPsa, where xPsa = 1 if and only if seller s receives assignment a in assign-

ment permutation P. Otherwise, xPsa = 0. Let XP = {xPsa∀s ∈ S, a ∈ A}

• The set Costs = {csa∀s ∈ S}, where csa is the cost for seller agent s to collect information

at assignment a. These costs are fixed for sellers all assignment algorithms introduced in this

paper, we so can assume that they are calculated in advance and provided to the algorithms as

inputs. Note that if a = ∅, then csa = 0.

• The set of all buyer agents B.

• The functionV(Wi), which returns the the value of bundleWi.

Algorithm 2Optimal Assignment
Input: S, P, Costs, B
Output: Optimal X

1: procedureOpt-Assign(S, P, Costs, B)
2: J← 0
3: X∗ ← None
4: for P ∈ Perm do
5: CT ← 0
6: W′ = ∅
7: for all xPsa = 1 do
8: CT ← CT + csa
9: if a ̸= ∅ then
10: W′ ←W′ ∪ {a}
11: VT = V(W′)
12: if VT − CT > J then
13: J = VT − CT
14: X∗ = XP

return X∗

Algorithm 2 outlines the optimal procedure. Note that although P includes permutations that

may assign a waypoint to multiple agents, the optimal assignment algorithm will never return such

27

an assignment since a higher J can be achieved by reassigning all but one of those agents to other

waypoints or no waypoint.

Despite finding an optimal assignment, this algorithm requires checking (|W|+ 1)|S| permuta-

tions, making it impractical for real-world use-cases. Therefore, we now consider several alternative

algorithms that seek to achieve the same maximized objective function with less computation.

3.3 Greedy Assignment

For our first alternative algorithm, we consider a greedy approach to assignment; assignment is done

iteratively for all unassigned sellers, and at each round the single best seller-waypoint pair is deter-

mined and removed from consideration for future rounds.

We will work with the following variables:

• A provisional set of assigned waypoints A, which will be initialized to the empty set.

• A set of active (still unassigned) waypointsWa, which will be initialized to all waypoints.

• A set of active (still unassigned) seller agents Sa, which will be initialized to all sellers.

• The set of costs Costs = {csw∀s ∈ S}, where csw is the cost for seller agent s to collect infor-

mation at waypoint w.

• The set of all buyer agents B.

• The functionV(Wi), which returns the the value of bundleWi.

• vAbw = Vb(w|A), the value of information to buyer b ∈ B for waypoint w given the provi-

sional assignment bundle A.

• Indicator variables xsw, where xsw = 1 if and only if seller s is assigned to waypoint w in the

current allocation A. Otherwise, xsw = 0. Let XA = {xsw∀s ∈ S,w ∈W}.

28

Algorithm 3 Greedy Assignment
Input: S,W, Costs, B
Output: Optimal X

1: procedureGreedy(S,W, Costs, B)
2: A← ∅
3: xsw ← 0,∀s ∈ S,w ∈W
4: while |Sa| > 0 and |Wa| > 0 do
5: for b ∈ B do
6: for w ∈W do
7: vAbw = Vb(w|A)
8: w′, s′ ← argmaxw,s[

∑
b vAbw −mins∈Sacsw]

9: if w′ is None then
10: break
11: A← A+ {w′}
12: Sa ← Sa − {s′}
13: Wa ←Wa − {w′}
14: xs′w′ = 1

return XA

Algorithm 3 outlines the greedy procedure. This algorithm requires at most a factor of (min[S,W]BW)

while loop iterations to terminate with a final assignment, a significant improvement over the opti-

mal assignment algorithm.

3.4 Iterative Auction Assignment

For this algorithm, we will employ a market-based method, the iterative auction, to determine an

assignment of waypoints to sellers. While a termination condition has not occurred, this algorithm

allows for more dynamic shifting of the provisional allocation based on buyers’ and sellers’ best

responses to market prices, terminating only once they agree on an allocation or cycling occurs.

We will work with the following variables:

• A provisional set of assigned waypoints A, which will be initialized to the empty set.

29

• The sets of all waypointsW, supplied waypointsWS, and demanded waypointsWD.

• A set of waypoint market prices {pw∀w ∈W}, which will all be initialized to 0.

• The functionV(Wi), which returns the the value of bundleWi.

• A constant price update step size δ. This is a parameter we are free to appropriately choose.

• The set of all seller agents S.

• The set of costs Costs = {csa∀s ∈ S}, where csw is the cost for seller agent s to collect infor-

mation at waypint w.

• The set of all buyer agents B.

• Indicator variables xsw, where xsw = 1 if and only if seller s is assigned to waypoint w in the

current allocation A. Otherwise, xsw = 0. Let XA = {xsw∀s ∈ S,w ∈W}. .

Algorithm 4 outlines the iterative auction procedure. After it terminates with a final A∗, note

that if multiple sellers are supplying the same waypoint in A∗, we will select one at random to supply

that waypoint.

Due to the additive nature of the price updates, this algorithm is guaranteed to terminate. If

some pw ever falls to 0 or below, wwill be guaranteed to be demanded by at least one buyer. If pw

ever meets or exceeds max(csw), wwill be guaranteed to be supplied by at least one seller. Thus, for a

given set of inputs, there are finite price combinations possible, and our iterative auction algorithm

is guaranteed to terminate either when buyers and sellers agree on an allocation or when a price set

cycle occurs.

30

Algorithm 4 Iterative Auction
Input: S,W, Costs, B, δ
Output: Optimal X

1: procedure Iter-Auc(S,W, Costs, B, δ)
2: A← ∅
3: xsw ← 0,∀s ∈ S,w ∈W
4: pw ← 0,∀w ∈W
5: while no cycle do
6: WS ← ∅
7: WD ← ∅
8: for b ∈ B do
9: for w ∈W do
10: vAbw = Vb(w|A)
11: for s ∈ S do
12: w′ ← argmaxw{pw − csw}
13: if pw′ − csw′ ≥ 0 then
14: WS ←WS + {w′}
15: for w ∈W do
16: if

∑
b∈B vAbw ≥ pw then

17: WD ←WD + {w′}
18: for w ∈W do
19: if w ∈WS −WD then
20: pw ← pw − δ
21: if w ∈WD −WS then
22: pw ← pw + δ
23: A←WD ∩WS
24: if {pw} seen orWS = WD then break

return XA

31

3.5 Iterative Auction - Stabilized

Since the first iterative auction method is prone to much variation in the provisional assignment,

we consider utilizing the value of the objective function for the allocation to both stabilize the algo-

rithm and more closely approximate the assignment returned by the optimal allocation.

In addition to those variables used for Iterative Auction 1, we now include the following:

• J = J(A) equalling the value of our objective function given provisional allocation A.

• The number of rounds to run the algorithm, T.

Algorithm 5 outlines the stablized iterative auction procedure. Note that, as before, we will ran-

domly select an assigned agent to assist with any waypoint that has been assigned more than one

agent after the algorithm has returned.

The new feature introduced to the method begins on Line 26, where we first check to see if the

objective value achieved by the latest allocation is greater than the best found so far and, if so, updat-

ing A. This allows the algorithm to make gradual progress toward finding the best allocation.

32

Algorithm 5 Iterative Auction Stable
Input: S,W, Costs, B, δ, T
Output: Optimal X

1: procedure Iter-Auc-Stable(S,W, Costs, B, δ, T)
2: A← ∅
3: xsw ← 0,∀s ∈ S,w ∈W
4: pw ← 0,∀w ∈W
5: J← J(A)
6: Jmax = J
7: t = 0
8: while t < T do
9: WS ← ∅
10: WD ← ∅
11: for b ∈ B do
12: for w ∈W do
13: vAbw = Vb(w|A)
14: for s ∈ S do
15: w′ ← argmaxw{pw − csw}
16: if pw′ − csw′ ≥ 0 then
17: WS ←WS + {w′}
18: for w ∈W do
19: if

∑
b∈B vAbw ≥ pw then

20: WD ←WD + {w′}
21: for w ∈W do
22: if w ∈WS −WD then
23: pw ← pw − δ
24: if w ∈WD −WS then
25: pw ← pw + δ
26: A′ ←WD ∩WS
27: J = J(A′)
28: if J > Jmax then
29: A← A′

30: J← Jmax

31: if WS = WD then break
32: t← t+ 1

return XA

33

4
Empirical Evaluation

The objective of this empirical evaluation is to determine the impact our assignment algorithms

have on the total utility outcome of multi-agent systems. From generating abstract, centralized sim-

ulation environments, we compare the performance of our four information exchange settings –

greedy assignment, iterative auction, stabilized iterative auction, and optimal assignment – with that

of the setting in which agents do not exchange information.

34

4.1 Dataset

Wework with randomly generated 5 × 5 grid environments where the occupancy status of each

cell is set to be free/unknown/blocked with 40%/30%/30% chance, respectively. All unknown

cells are associated with the same probability of being blocked, and we test settings where αw =

0.5. 4 agents are placed on the grid and randomly divided into sellers and buyers (requiring at least

one buyer). Each agent is initially positioned on a starting cell and assigned a destination cell, with

reward at each destination set to 25.

We consider two different “team compositions”:

1. All-UGV:All agents will fail upon attempting to step on blocked cells, remaining at the

position immediately preceeding failure. We can imagine this setting to consist entirely of

risk-prone UGVs. Note that this means if sellers with assignments fail before finishing infor-

mation collection, they will communicate this so that buyers do no unnecessarily delay their

path re-computation.

2. Drone-Sellers: Seller agents are able to traverse blocked cells without failing, and do not have

assigned destinations. We can imagine this setting to consist of UGV buyers and “drone”

sellers, who are employed only to move between waypoints, resolving the occupancy status of

any other unknown points along their paths. In computing their cost of collecting informa-

tion, they are only concerned with the minimum step-cost path from their current position

to a given waypoint.

We generated environments that meet these conditions for both team compositions, and then

operated the assignment settings according to the following procedure:

1. After all non-drone agents compute base paths, each setting produces assignments based on

its corresponding algorithm.

35

2. Assigned helper agents determine an optimal path to collect information and begin to com-

plete traversal. Drone sellers move to their assigned waypoints only, whereas UGV sellers

move to the waypoint and then to their destinations, if possible.

3. After all assigned waypoints have their information collected or their assigned sellers com-

municate failure before collection is completed, buyers recompute optimal paths to their

destinations with all information collected in the previous step. This includes information

on waypoints traversed by sellers other than the explicitly assigned waypoints.

4. Buyers and sellers traverse the remainder of their paths until they reach their destinations or

fail.

Note that there are two phases of path recomputation, once for assigned helper agents to deter-

mine waypoint traversal paths and once for buyers to recompute optimal paths with new informa-

tion. Agents are bound to the traversal of paths until permitted to recompute. In the no-assignment

setting, agents simply traverse their base paths until destinations are reached.

The code for this evaluation and all algorithms cited in this paper can be found in this GitHub

repository.

4.2 Setup

We test five settings for multi-agent navigation with expected utility path-planning, one no-assignment

setting and four assignment settings:

1. No Assign

2. Greedy Assign information exchange

3. Iterative Auction information exchange

36

https://github.com/kwantlin/cs91r
https://github.com/kwantlin/cs91r

4. Iterative Auction-S (stabilized) information exchange

5. Optimal Assign information exchange

Note that for the purposes of evaluation, we utilized Algorithm 6, a simpler version of pathfind-

ing Algorithm 1, which utilizes a priority queue structure. Due to this, it is less optimal than Algo-

rithm 1 but has a faster runtime.

Algorithm 6 Empirical Simulations Pathfinding Algorithm
Input: GraphGwith verticesV, source node s, destination node d, and rewardR
Output: Max expected utilityU(d) and corresponding path P∗

1: procedureMod-DIJKSTRA-S(G,V,s,d,R)
2: for x ∈ V− {c} do
3: U(x)← −∞
4: prev[x]←None
5: U(c)← R
6: A← {}
7: while A ̸= V do
8: pick x not in A with largest U(x)
9: A′ ← A ∪ {x}
10: for out-neighbors y of x do
11: if U(y) > U(x|“xy” next edge) then
12: U(y)← U(x|“xy” next edge)
13: prev[y]← x

returnU(d), getPath(prev[],s,d)

Over several thousand simulation runs for different environment setups, we tracked the average

expected value of the objective function, average total utility, average total cost to all agents, average

percent of non-drone agents successfully reaching destinations.

4.3 Results

Simulation results are summarized in Table 4.1. Since average total utility achieved in each setting

characterizes overall performance of each approach, we note that regardless of the team composi-

37

Table 4.1: Simulation Results

NoAssign Greedy Assign Iterative Auction Iterative Auction-S Optimal Assign

All-UGV Team

Average Expected J – 1.2067± .0117 1.0699± .0108 1.1729± .0114 1.1742± .0367

Average Total Utility 70.8714± .1089
–

72.8298± .0998
(+2.76%)

72.7024± .1009
(+2.58%)

72.9175± .0997
(+2.88%)

72.5379± .3231
(+2.35%)

Average Total Cost 8.9241± .0120 9.1358± .0124 9.1711± .0126 9.1455± .0124 9.1075± .0398

Average Success % 79.79%± .11% 81.96%± .10% 81.87%± .11% 82.06%± .10% 81.64%± .33%

Drone-Sellers Team

Average Expected J – 1.6426± .0126 1.3583± .0115 1.4611± .0121 1.6647± .0402

Average Total Utility 35.4185± .0951
–

37.5619± .0922
(+6.05%)

37.3231± .0928
(+5.37%)

37.3850± .0929
(+5.55%)

37.3228± .2932
(+5.37%)

Average Total Cost 4.4782± .0115 5.4889± .0142 5.4226± .0143 5.4292± .0142 5.4856± .0448

Average Success % 79.59%± .14% 86.15%± .12% 85.39%± .13% 85.49%± .13% 85.69%± .41%

Notes: Results provided for environments where all unknown cells are initialized with 0.5 probability of being blocked.
Settings “No Assign” through “Iterative Auction-S” are compiled from 50,000 simulation runs, and optimal assignment
from 5,000 runs, all using the same random seed. “Average Expected J” denotes the average value of the objective func-
tion in assignment settings. The first 4 rows of results correspond to the settings with teams of All-UGV’s, and the last 4
rows of results to settings with teams whose seller agents are drones. Standard error is reported along with mean values.
For the “Average Total Utility” rows, the percent difference between the empirical mean for a given setting (column) as
compared with the “No Assign” setting in the same row is provided in parentheses. For example, with an All-UGV Team,
the “Greedy Assign” setting resulted in a 2.76% larger average total utility compared to the “No Assign” setting.

38

tion, each of the assignment settings, on average, exhibited a statistically significant improvement in

total utility of the outcome, based on the confidence intervals achieved. “Iterative Auction-S” also

exhibited a statistically significant out-performance of “Iterative Auction”. How “Greedy Assign”

and “Iterative Auction-S” perform in relation to each other and when compared to “Optimal As-

sign” is less clear, though, and leaves room for further work to characterize the competitiveness of

each algorithm in relation to optimal assignment, as well as any other performance guarantees. It is

also important to note that while optimal assignment seems to under-perform slightly, this setting

was only simulated for 5000 runs, whereas the others are reported for 50000 runs. Optimal assign-

ment’s runtime prohibits it from being employed efficiently in even slightly larger settings, especially

for higher densities of unknown points. Therefore, “Optimal Assign’s” results are reported only to

establish a significant difference in average total utility compared to “No Assign”.

To explain the differences in average total utility, we note that for all assignment settings, al-

though the average total cost incurred by all agents (via step-wise motion of all agents until termi-

nation) was higher than for “No Assign”, this is compensated for by the higher rate of success in

non-drone agents, for both team compositions. This confirms our hypothesis that, especially in en-

vironment setups like the one investigated here where reaching the goal is weighted heavily in the

utility formulation, incurring some additional cost in order to determine shorter, less risky paths

results in better system performance.

We also note that systems with drone sellers exhibit an even larger improvement in performance

in assignment settings. Although the drone seller teams have lower average total (all buyers and sell-

ers) cost, the simulations actually showed that the increase in this cost in assignment settings com-

pared to no assignment was actually larger compared to the additional cost incurred in assignment

settings with all-UGV teams. Therefore, the improvement in performance of the drone-seller teams

over the all-UGV teams is entirely explained by the improvement in the success rate of non-drone

agents. When we compare the Average Expected J between the two team compositions, we see that

39

drone-seller teams allowed for a statistically significant improvement in this metric. Thus, as hy-

pothesized, employing drone sellers allows for more profitable exchanges of information due to the

drones lower risk aversion and better specialization for collecting information under uncertainty.

40

5
Conclusion

Creating multi-agent systems robust to uncertainty and failure risk is key to moving the field for-

ward and tackling real-world applications. Inspired by the challenges present when deploying mul-

tiple robots to navigate an environment with an incomplete occupancy map, we created an expected

utility path-planning heuristic, determined the prices at which information exchange can occur

between agents, and created a suite of algorithm options to test for performance improvements.

The results show significant promise for two teammakeups (differentiated on the basis of risk aver-

41

sion of agents) using the assignment algorithms to profit from collection of additional information.

These algorithms ultimately improve the global outcome of the system over a no-assignment base-

line.

Further work can test the algorithms robustness to additional environment setups, and specifi-

cally see how these algorithms scale or would perform in more realistic domains. Given the success

of the expected utility path planning, an implementation in ROS could be fruitful and allow for

a truly decentralized market setup. Information remains key to developing robust autonomous

coordination, so continuing to examine the ways we can exploit multi-agent systems to reduce un-

certainty will continue to yield diverse and fruitful research insights.

42

References

[1] Arvanitakis, I., Tzes, A., & Giannousakis, K. (2017). Mobile robot navigation under pose
uncertainty in unknown environments**this work has received funding from the european
union horizon 2020 research and innovation programme under the grant agreement no.
644128, aeroworks. IFAC-PapersOnLine, 50(1), 12710–12714. 20th IFACWorld Congress.

[2] Asadpour, A., Goemans, M., Mądry, A., oveis gharan, S., & Saberi, A. (2017). An o (log n
/log log n)-approximation algorithm for the asymmetric traveling salesman problem. Opera-
tions Research, 65.

[3] Borradaile, G. (2021-03-20). Dijkstra’s algorithm: Correctness by induction.

[4] Botelho, S. & Alami, R. (2000). : (pp. 55–68).

[5] Cai, A., Fukuda, T., Arai, F., & Ishihara, H. (1996). Cooperative path planning and nav-
igation based on distributed sensing. In Proceedings of IEEE International Conference on
Robotics and Automation, volume 3 (pp. 2079–2084 vol.3).

[6] Cantelli, L., Presti, M., Mangiameli, M., Melita, C., &Muscato, G. (2013). Autonomous
cooperation between uav and ugv to improve navigation and environmental monitoring in
rough environments.

[7] Dias, M. & Stentz, A. (2004). Traderbots: a new paradigm for robust and efficient multi-
robot coordination in dynamic environments.

[8] Gerkey, B. P. &Mataric, M. (2002). Sold!: auction methods for multirobot coordination.
IEEE Trans. Robotics Autom., 18, 758–768.

[9] Gerkey, B. P. &Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in
multi-robot systems. The International Journal of Robotics Research, 23(9), 939–954.

[10] Howard, R. A. (1966). Information value theory. IEEE Transactions on Systems Science and
Cybernetics, 2(1), 22–26.

[11] Lazanas, A. & Latombe, J.-C. (1995). Motion planning with uncertainty: a landmark ap-
proach. Artificial Intelligence, 76(1), 287–317. Planning and Scheduling.

43

[12] Likhachev, M. & Stentz, A. (2009). Probabilistic planning with clear preferences on miss-
ing information. Artificial Intelligence, 173(5), 696–721. Advances in Automated Plan
Generation.

[13] Parker, L. (1994). : (pp. 776 – 783 vol.2).

[14] Parker, L. (2008). MultipleMobile Robot Systems, (pp. 921–941).

[15] Parkes, D. & Ungar, L. (2000). : (pp. 74–81).

[16] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A.
(2009). Ros: an open-source robot operating system. volume 3.

[17] Rassenti, S. J., Smith, V. L., & Bulfin, R. L. (1982). A combinatorial auction mechanism for
airport time slot allocation. The Bell Journal of Economics, 13(2), 402–417.

[18] Simmons, R. & Koenig, S. (1995). Probabilistic robot navigation in partially observable
environments. In Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence - Volume 2, IJCAI’95 (pp. 1080–1087). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

[19] Smith (1980). The contract net protocol: High-level communication and control in a dis-
tributed problem solver. IEEE Transactions on Computers, C-29(12), 1104–1113.

[20] Stipes, J., Hawthorne, R., Scheidt, D., & Pacifico, D. (2006). Cooperative localization and
mapping. In 2006 IEEE International Conference on Networking, Sensing and Control (pp.
596–601).

[21] Takeda, H. & Latombe, J. . (1992). Sensory uncertainty field for mobile robot navigation.
In Proceedings 1992 IEEE International Conference on Robotics and Automation (pp. 2465–
2472 vol.3).

[22] Vries, S. D. & Vohra, R. (2000). Combinatorial auctions: A survey.

[23] Werger, B. &Mataric, M. (2000). Broadcast of local eligibility: Behavior-based control for
strongly cooperative robot teams.

[24] Zilberstein, S. & Lesser, V. (2003). Intelligent information gathering using decision models.

44

	Introduction
	Motivation
	Related Work
	Contribution

	The Agent's Decision Problem
	Evaluating Paths
	Computing the Optimal Path
	Value of Information
	Cost of Information

	Information Market
	Problem formulation
	Optimal Assignment
	Greedy Assignment
	Iterative Auction Assignment
	Iterative Auction - Stabilized

	Empirical Evaluation
	Dataset
	Setup
	Results

	Conclusion
	References

