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Fetal Health and the Environment 

Abstract 

Whether fetuses are vulnerable to the effects of environmental exposures is a difficult 

question to answer due to the internal, and therefore, hidden nature of conceptions and early 

embryonic development. Studies of prenatal environmental exposures often assess fetal health 

using newborn anthropometry, such as birth weight, as these data are easily accessible from 

medical records and birth certificates. Although newborn size is a key development indicator for 

perinatal morbidity and mortality under the Barker hypothesis (also known as the Developmental 

Origins of Health and Disease hypothesis), it is measured at the end of pregnancy, and thus 

provides limited insights on the timing of when the growth-restricting effects manifest. That is, 

birth weight is insensitive to early to mid-pregnancy effects, as a fetus that experiences early 

fetal growth restriction can still catch up to achieve population growth standards by birth. 

Furthermore, birth weight is mainly driven by fat accumulation throughout pregnancy, and so 

may be a poor proxy for the development of other organs relevant for health (e.g., it may not 

reflect a reduction in head size, which has implications for later brain development). Finally, 

assessing newborn health necessitates the production of live births. Most epidemiologic analyses 

have focused on birth outcomes, and so ignore the effects on pregnancy loss, which not only is a 

relevant health outcome, but also a potential source of bias, as it is a competing event that 

prevents the birth outcome of interest from occurring. Thus, this dissertation comprises of three 

studies that aim to examine how environmental exposures affect in utero fetal developmental 

processes during pregnancy, rather than using proxies at birth. 
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In Chapter 1, we assessed through simulations the potential bias induced by restricting 

epidemiologic analyses to live births when pregnancy loss is influenced by the environmental 

exposure of interest A and any unmeasured factors U that also affect the child outcome. Few 

simulation studies have explored this topic, but they presuppose that there is no interaction 

between the exposure A and unmeasured factor U, which may not be a realistic assumption. In 

this chapter, we relax these assumptions and consider three fetal survival (or selection) 

mechanisms: 1) collider-stratification without interaction, where A and U independently affect 

selection, 2) depletion of susceptibles, where selection is dependent on the presence of both A 

and U (i.e., the interaction-only effect), and 3) when both mechanisms operate simultaneously. 

We show that ignoring pregnancy loss when estimating the effects of prenatal exposures on 

outcomes in live-born children lead to associations that are biased downwards, where the 

magnitude of the bias is determined by the selection mechanism, strength of selection, and 

prevalence of U. In Chapters 2 and 3, we examine the association between gestational exposure 

to PM2.5 and ambient temperature, respectively, and fetal growth outcomes in a pregnancy cohort 

using spatiotemporally resolved data on exposures in Massachusetts, USA. Unlike prior studies 

that have mostly examined fetal growth using newborn size, we leveraged data from routine 

ultrasound measurements which allowed us to observe the developmental processes of distinct 

organs during pregnancy. These last two chapters demonstrate that gestational exposure to PM2.5 

and ambient temperature were associated with impaired fetal growth, where early to mid-

pregnancy appears to be a critical window of exposure. Overall, the findings from this collection 

show the importance of studying in utero fetal health during pregnancy, rather than at its 

conclusion. 
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ABSTRACT 

Background: Studies of the effects of prenatal environmental exposures on postnatal outcomes 

are particularly vulnerable to live birth bias; that is, the bias that arises from the necessary 

restriction of the analysis to live births when that is influenced by both the exposure under study 

𝐴 and unmeasured factors U that also affect the outcome. 

Objectives: In the context of a recent publication of nitrogen dioxide (NO2) and autism spectrum 

disorder (ASD) that found an odds ratio (OR) of 0.77 per 5.85 ppb NO2 during pregnancy, we 

aimed to examine what parameters would be needed to account for this protective association 

through live birth bias. 

Methods: We simulated the magnitude of bias under two selection mechanisms and when both 

mechanisms co-occur, assuming a true null effect. Simulation input parameters were based on 

characteristics of the original study and a range of plausible values for the prevalence of 

unmeasured factor 𝑈 and the ORs for the selection effects (i.e., the effects of NO2 and 𝑈 on loss, 

and 𝑈 on ASD). Each scenario was simulated 1000 times.  

Results: We found that the magnitude of bias was small when NO2 and 𝑈 independently 

influenced pregnancy loss (collider-stratification without interaction), was stronger when NO2-

induced loss preferentially occurred in U=1 (depletion of susceptibles), and strongest when both 

mechanisms worked together. For example, ORs of 3.0 for NO2-loss, 𝑈-loss, 𝑈-ASD and U 

prevalence=0.75 yielded NO2-ASD ORs per 5.85 ppb NO2 of 0.95, 0.89, and 0.75 for the three 

scenarios, respectively. The bias is amplified with multiple 𝑈s, yielding ORs as low as 0.51. 

Discussion: Our simulations illustrate that live birth bias may lead to exposure-outcome 

associations that are biased downwards, where the extent of the bias depends on the fetal 

selection mechanism, the strength of that selection, and the prevalence of U. 
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INTRODUCTION 

Understanding the health effects of environmental exposures is critical for identifying and 

developing preventive interventions for high-risk populations. However, these effects may not be 

identifiable if exposure prevents selection into the study and thus, observation of the outcome of 

interest. This process is a form of ‘left truncation’ and can lead to estimates of exposure-outcome 

associations that are biased1,2. Epidemiologic studies of environmental exposures are particularly 

vulnerable to left truncation as exposures are typically ubiquitous in time (e.g., participants are 

already exposed prior to study initiation), such that exposure-induced selection processes likely 

inform the formation of observational cohorts from which exposure-health effects are estimated. 

 

In studies investigating the effects of prenatal exposures on outcomes in live-born children, left-

truncation can induce a specific type of selection bias called live-birth bias3,4. These studies are 

typically based on cohorts formed by only live births, where selective survival between 

conception and birth can skew the distribution of prenatal exposures in the subset available for 

analysis (i.e., those conceptions that resulted in a live birth) from the exposure distribution 

among all conceptions, such that the estimated parameter in the analyzed subset differs from the 

parameter in the total population (i.e., all conceptions).  

 

An example of possible live-birth bias is a recent analysis of traffic-related nitrogen dioxide 

(NO2) and autism spectrum disorder (ASD), where the odds ratio was 0.77 per 5.85 parts per 

billion (ppb) increase in NO2 during pregnancy when mutually adjusted for postnatal exposure to 

NO2
5; that is, prenatal exposure to NO2 appeared to be protective against ASD. This paradoxical 

finding is unlikely to be causal as we are not aware of a possible biological mechanism for which 
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NO2 may confer beneficial effects on the risk of ASD, or for human health in general for that 

matter. It is more likely that this strong protective association could be attributed to live-birth 

bias. 

 

It has been suggested that there are two selection mechanisms that can lead to live-birth bias3,4. 

Although parameterized differently, both mechanisms can be envisioned as forms of collider-

stratification bias6, and can be represented by the directed acyclic graph (DAG) in Figure 1 – 

which is the same structure as the birth weight paradox7. We will refer to these here as “collider-

stratification without interaction” and “depletion of susceptibles”. In “collider-stratification 

without interaction”, exposure 𝐴 and some unmeasured factor 𝑈 – for example, exposure to 

endocrine disrupting chemicals which have been associated with pregnancy loss and autism8–11 - 

are independent and each affect selection (𝑆). In “depletion of susceptibles”, which is separate 

but related to the first mechanism, exposure 𝐴 and unmeasured variable 𝑈 do not have 

independent causal effects on fetal loss, but rather loss is dependent on the joint effects of 𝐴 and 

𝑈. A potential example of this mechanism is a gene-environment interaction whereby, exposure-

induced loss preferentially occurs in those who have the genetic factor 𝑈 (i.e., the subset of 

fetuses susceptible to ASD). Lastly, both mechanisms described above can also work in tandem 

as they operate through distinct mechanistic pathways, in that, 𝐴 and 𝑈 not only causally interact 

to affect fetal loss, but also, have independent causal effects on fetal loss. It is important to note 

that although the three mechanisms described above are parameterized differently, they are 

indistinguishable on a DAG since DAGs are nonparametric and thus cannot encode biases that 

depend on the specific parameterization of the effect. That is, they all represent the same causal 

structure (but are parameterized differently) where restricting the analysis to live births (i.e., 



5 
 

conditioning on collider 𝑆 = 1) induces a spurious association between 𝐴 and 𝑈, which results in 

a biased 𝐴 − 𝑌 association (Figure 1).  

 

Unlike other examples of selection bias, such as the birthweight paradox7, obesity paradox12–14 or 

loss to follow-up in cohort studies15, live-birth bias is less amenable to addressing analytically as 

we cannot adjust for selection processes that we cannot observe (i.e., the necessary data to 

mitigate this bias are often not available). Thus, simulations are an invaluable tool for exploring 

the influence of live-birth bias on the estimation of the effects of exposure during pregnancy on 

outcomes in live-born children. Motivated by the findings of Raz et al.5, we examine through 

simulations the magnitude of bias that would result from analyses under the two hypothetical 

selection mechanisms as well as when they operate simultaneously. 

 

METHODS 

 

Data-generating process 

To examine bias from selection on live births under a true null effect of NO2 on ASD, we 

simulated a pregnancy cohort of 100,000 conceptions, which we will refer to as the “total 

population”, with data on entire-pregnancy NO2 exposure 𝐴, an unmeasured factor 𝑈, the ASD 

outcome 𝑌 and selection indicator 𝑆 (Figure 1). Entire-pregnancy NO2 was normally distributed 

with mean 16.7 and standard deviation of 4.3 to reflect the distribution of NO2 found in the 

original study5. For simplicity, we ignored the seasonal nature of the NO2 exposure, and though 

we treated the exposure as Gaussian, the same principles would apply for a binary exposure. 

Unmeasured variable 𝑈 and outcome 𝑌 were binary variables. The prevalence of 𝑈 (𝜋𝑈) was set 

to be either 0.25, 0.50 or 0.75. The baseline odds of 𝑌 were set to be 0.015 to reflect the low 
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incidence of ASD in the original analysis5, and the baseline odds of fetal loss were set to be 0.05, 

such that the causal effects that lead to selection bias (i.e., 𝐴 → 𝑆, 𝑈 → 𝑆, {𝐴𝑈} → 𝑆 [i.e., the 

effect of the 𝐴 − 𝑈 interaction], and 𝑈 → 𝑌), which we will henceforth refer to as “selection 

effects”, lead to an overall loss in line with observed estimates16. All selection effects were 

modeled in terms of odds ratios, so that simulated probabilities were correctly bounded between 

0 and 1; and for the 𝐴 → 𝑆, 𝑈 → 𝑆, {𝐴𝑈} → 𝑆, and 𝑈 → 𝑌 associations (𝑂𝑅𝐴𝑆, 𝑂𝑅𝑈𝑆, 𝑂𝑅{𝐴𝑈}𝑆, 

𝑂𝑅𝑈𝑌, respectively) that were not 1.0 as determined by the selection mechanism (see section 

Selection Mechanisms below) were set to all be the same and equal to 1.5, 2.0, 2.5 or 3.0 

(for 𝑂𝑅𝐴𝑆, this is per 5.85 ppb increase in NO2, the interquartile range in the original study). 

Here, we only considered effects of the same sign because exposures that are harmful for 

pregnancy loss are most likely also harmful for ASD (beneficial exposures would function in the 

same manner, in that, what is beneficial for loss is also beneficial for ASD, while those of 

opposite signs which we considered less plausible would lead to upwardly biased 𝐴 − 𝑈 and 𝐴 −

𝑌 associations among live births). For simplicity of displaying, we will refer to the selection 

effects odds ratios as 𝑂𝑅𝑆 henceforth. The probability of loss and the ASD outcome 𝑌 for each 

fetus 𝑖 was estimated using the following equations below. Equation 1 represents the probability 

that the pregnancy will result in a fetal loss given 𝐴 and 𝑈. Equation 2 represents the probability 

of the outcome 𝑌 given 𝑈, where 𝐴 is omitted since our simulations were conducted under the 

null; that is, there is no causal effect of 𝐴 on 𝑌. 

 

𝑃(𝑙𝑜𝑠𝑠𝑖) =
exp(𝛽0 + 𝛽1𝐴𝑖 + 𝛽2𝑈𝑖 + 𝛽3𝐴𝑖 ∗ 𝑈𝑖)

1 + exp(𝛽0 + 𝛽1𝐴𝑖 + 𝛽2𝑈𝑖 + 𝛽3𝐴𝑖 ∗ 𝑈𝑖)
(1)
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𝑃(𝑌𝑖) =
exp(𝛾0 + 𝛾1𝑈𝑖)

1 + exp(𝛾0 + 𝛾1𝑈𝑖)
 (2) 

 

Selection mechanisms 

To examine bias from collider-stratification with no interaction (Mechanism 1 [M1]), where both 

𝐴 and 𝑈 have independent causal effects on fetal loss, selection effects were set to the 𝑂𝑅𝑆 

specified above, except that exp(𝛽3)=𝑂𝑅{𝐴𝑈}𝑆 was set to 1. For depletion of susceptibles 

(Mechanism 2 [M2]), exp(𝛽1)=𝑂𝑅𝐴𝑆 and exp(𝛽2)=𝑂𝑅𝑈𝑆 were set to be 1, whereas 

exp(𝛽3)=𝑂𝑅{𝐴𝑈}𝑆 was set equal to the pre-specified 𝑂𝑅𝑆; that is, 𝐴 and 𝑈 do not have 

independent causal effects on fetal loss and loss due to NO2 could only occur in the subset of 

fetuses who were exposed to 𝑈. Finally, to examine bias from both mechanisms operating 

simultaneously (Both Mechanisms [M1+2]), where both 𝐴 and 𝑈 have independent causal 

effects on fetal loss and they causally interact on selection, exp(𝛽1)=𝑂𝑅𝐴𝑆, exp(𝛽2)=𝑂𝑅𝑈𝑆 and 

exp(𝛽3)=𝑂𝑅{𝐴𝑈}𝑆 were set to the specified 𝑂𝑅𝑆. For all mechanisms, 𝑂𝑅𝑈𝑌=exp(𝛾1) was set to 

the prespecified selection effect 𝑂𝑅𝑆, such that the extent of the bias is driven by the differing 

parameterizations of the relations between 𝐴, 𝑈, and 𝑆 across the three selection mechanisms 

(and not the 𝑈 − 𝑌 relationship, which is fixed to be constant for each scenario). In order to 

focus only on the bias induced by the selection effects, all simulations assumed that there was no 

confounding for the effect of NO2, loss to follow-up among live-born children, outcome 

misclassification or exposure misclassification, such that observed associations can only be 

explained by live-birth bias. 

 

Analysis 
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Each scenario was simulated 1,000 times. For each simulated dataset, we first restricted our 

analytic sample to live births (i.e., 𝑆 = 1), and then performed a logistic regression of ASD 

status in children with NO2 exposure to obtain the observed odds ratio 𝑂𝑅𝐴𝑌|𝑆=1 (per 5.85 ppb), 

which approximates the risk ratio as the outcome is rare. With the distribution of point estimates 

generated over the 1000 iterations for each scenario, we computed the mean 𝑂𝑅𝐴𝑌|𝑆=1 and 

percentile-based 95% simulation intervals (SIs), which are the 2.5th and 97.5th percentiles of the 

distribution. As the simulated truth is that there is no causal effect, the value of 𝑂𝑅𝐴𝑌|𝑆=1 

demonstrates the bias ratio, where greater departures from 1 indicate larger magnitudes of bias. 

Furthermore, simulation intervals demonstrate the range of 𝑂𝑅𝐴𝑌|𝑆=1 estimates that are 

consistent with the data generating mechanism for the specified sample size; for example, if the 

95% SIs generated by a given selection mechanism included the odds ratio of 0.77 found in the 

original study 5, it would suggest that this observed protective association would be consistent 

with live birth bias induced by that mechanism. 

 

To better understand the drivers of bias from the different selection mechanisms, we also 

estimated the odds ratio for the association between 𝐴 (NO2 exposure, per 5.85 ppb) and 𝑈 in the 

selected population (𝑂𝑅𝐴𝑈|𝑆=1) using a logistic regression, the prevalence of 𝑈 in the selected 

population (𝜋𝑈|𝑆=1), and their respective 95% SIs. Since both parameters determine the strength 

of live-birth bias and are driven by the simulation inputs 𝑂𝑅𝑆 and 𝜋𝑈, we will henceforth refer to 

both parameters as “bias parameters”. The simulation input 𝑂𝑅𝐴𝑈 is expected to be 1 in the total 

population of all conceptions, but the parameter 𝑂𝑅𝐴𝑈|𝑆=1 is expected to be below 1 in the 

selected population (i.e., fetuses that survived) since those exposed to both high air pollution 𝐴 

and 𝑈 are strongly selected against because both factors increase the likelihood of loss. Thus, 
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those exposed to high air pollution in the selected population are less likely to be exposed to 𝑈 

(and vice versa) setting up an inverse association between 𝐴 and 𝑈. Furthermore, the difference 

between 𝜋𝑈|𝑆=1 and 𝜋𝑈 indicates the extent to which the 𝑈 → 𝑆 and 𝐴 → 𝑆 determine the 

prevalence of 𝑈 in those selected; that is, the expected value of 𝜋𝑈|𝑆=1 is 𝜋𝑈 in the absence of 

bias.  

 

Finally, to examine the extent of the bias that would occur if there were multiple 𝑈s involved in 

the fetal selection process, we also estimated the value of 𝑂𝑅𝐴𝑌|𝑆=1 and its 95% SI for each 

scenario in the presence of two, and then three 𝑈s, where all 𝑈s were set to have the same 

prevalence and effect on selection. All simulations and analyses were performed in R (R 

Foundation for Statistical Computing, Vienna, Austria)17. The simulation code and 

documentation are available at https://github.com/mleung-harvard/live-birth-bias-simulation and 

in the Appendix so that readers can explore the extent of potential biases with any parameters 

they wish. 

 

RESULTS 

The results of this simulation study on the bias in average 𝑂𝑅𝐴𝑌|𝑆=1 are shown in Figure 2 and in 

Table S1. In the presence of collider-stratification with no interaction (M1), where both NO2 

exposure 𝐴 and unmeasured variable 𝑈 have independent causal effects on fetal loss and 

therefore selection 𝑆 (i.e., 𝑂𝑅𝐴𝑆 and 𝑂𝑅𝑈𝑆 were set to the prespecified selection effect, but 

𝑂𝑅{𝐴𝑈}𝑆 was set to 1), the bias was generally weak (Figure 2; Table S1). Selection effects of 

magnitudes 1.5 and 2.0 generated little to no bias on average across the three values of 𝜋𝑈 with 

𝑂𝑅𝐴𝑌|𝑆=1 ranging from 0.99 to 1. Only when the selection effects reached 3.0 did we see larger 

https://github.com/mleung-harvard/live-birth-bias-simulation
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departures from the null (e.g., 𝑂𝑅𝐴𝑌|𝑆=1 of 0.94 for 𝜋𝑈 of 0.5), but these were still relatively 

weak such that the 95% SI (i.e., the distribution of point estimates consistent with this 

mechanism) still included the null (Table S1). Examining the bias parameters 𝑂𝑅𝐴𝑈|𝑆=1 and 

𝜋𝑈|𝑆=1, we observed that stronger selection effects in the total population yielded a lower 

𝑂𝑅𝐴𝑈|𝑆=1 (i.e., a stronger inverse association between 𝐴 and 𝑈), but a smaller 𝜋𝑈|𝑆=1 in the 

selected population (Figure 3; Table S2); that is, with stronger selection effects, both parameters 

deviate further from the underlying population parameter, where 𝑂𝑅𝐴𝑈|𝑆=1 would be 1 and 

𝜋𝑈|𝑆=1 would be equal to 𝜋𝑈 in the absence of bias.  

 

For depletion of susceptibles (M2), where fetal loss is solely dependent on the interaction 

between NO2 exposure 𝐴 and unmeasured variable 𝑈 (i.e., 𝑂𝑅𝐴𝑆 and 𝑂𝑅𝑈𝑆 were set to 1 but 

𝑂𝑅{𝐴𝑈}𝑆 was set to the prespecified selection effect), the magnitude of bias was slightly stronger 

compared with those generated by M1 (Figure 2; Table S1). Unlike with M1, with M2, 𝑂𝑅𝐴𝑌|𝑆=1 

was consistently low such that several 95% SI did not include the null (Table S1); for example, if 

the selection effects were 3.0 and 25% of the total population were exposed to 𝑈, then the 

observed OR for the NO2-ASD association would be 0.91 (95% SI: 0.85, 0.97). When selection 

parameters were relatively weak (i.e., 𝑂𝑅𝑆 of 1.5 and 2), corresponding values of 𝑂𝑅𝐴𝑈|𝑆=1 (for 

the same 𝜋𝑈) deviated further from the null under M2 compared to M1 (Figure 3; Table S2). For 

example, when the selection effect 𝑂𝑅{𝐴𝑈}𝑆 was set to 1.5 (and both 𝑂𝑅𝐴𝑆=1 and 𝑂𝑅𝑈𝑆=1) and 

𝜋𝑈 = 0.75, 𝑂𝑅𝐴𝑈|𝑆=1 was 0.94 for depletion of susceptibles compared to 0.98 for M1. 
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When both mechanisms work together (M1+2), where both 𝐴 and 𝑈 have independent causal 

effects and causally interact on fetal loss (i.e., 𝑂𝑅𝐴𝑆, 𝑂𝑅𝑈𝑆, and 𝑂𝑅{𝐴𝑈}𝑆 were set to the 

prespecified selection effects), the magnitude of bias was usually strongest (Figure 2; Table S1). 

For example, if the selection effects were 3.0 and 50% of the total population were exposed to 𝑈 

(𝜋𝑈=0.50), then the average OR for ASD by NO2 among live births (𝑂𝑅𝐴𝑈|𝑆=1) would be 0.85 

(95% SI: 0.74, 0.97) (Table S1). Even if we only change the selection effects to 2.0, the observed 

OR was 0.90 (95% SI: 0.82, 0.99) (Table S1). Examining the bias parameters, both 𝑂𝑅𝐴𝑈|𝑆=1 

and 𝜋𝑈|𝑆=1 deviated further from their corresponding population parameters under M1+2, 

compared to both M1 and M2 (Figure 3; Table S2). For example, when the prevalence of 𝑈 was 

0.75 and the selection effect were set to 3 (𝑂𝑅𝐴𝑆=3, 𝑂𝑅𝑈𝑆=3, 𝑂𝑅{𝐴𝑈}𝑆=3), 𝑂𝑅𝐴𝑈|𝑆=1=0.21 and 

𝜋𝑈|𝑆=1=0.19 for M1+2 compared to 𝑂𝑅𝐴𝑈|𝑆=1=0.77 and 𝜋𝑈|𝑆=1=0.62 for M1 (𝑂𝑅𝐴𝑆=3, 𝑂𝑅𝑈𝑆=3, 

𝑂𝑅{𝐴𝑈}𝑆=1) and 𝑂𝑅𝐴𝑈|𝑆=1=0.58 and 𝜋𝑈|𝑆=1=0.60 for M2 (𝑂𝑅𝐴𝑆=1, 𝑂𝑅𝑈𝑆=1, 𝑂𝑅{𝐴𝑈}𝑆=3). 

 

In the presence of multiple 𝑈s, the bias is amplified with increasing number of 𝑈s, but the extent 

of the amplification differs by selection mechanism as shown in Figure 4 and in Table S3. For 

M1, the increase in bias is overall small, yielding small to moderate associations even in the 

presence of three 𝑈s. For example, when both 𝑂𝑅𝐴𝑆 and 𝑂𝑅𝑈𝑆 for three 𝑈s were set to 1.5, the 

resulting 𝑂𝑅𝐴𝑌|𝑆=1 were 0.99 for all values of 𝜋𝑈, compared with 𝑂𝑅𝐴𝑌|𝑆=1 of 1 for all values of 

𝜋𝑈 when only one 𝑈 was simulated. When both 𝑂𝑅𝐴𝑆 and 𝑂𝑅𝑈𝑆 for three 𝑈s were set to 3.0, the 

resulting 𝑂𝑅𝐴𝑌|𝑆=1 ranged from 0.87-0.90 across values of 𝜋𝑈, compared with 𝑂𝑅𝐴𝑌|𝑆=1 of 0.94-

0.95, when only one 𝑈 was simulated. The amplification of bias with additional 𝑈 parameters 

was stronger for M2 and strongest when both mechanisms co-occurred (M1+2). For example, 

when 𝑂𝑅{𝐴𝑈}𝑆 for three 𝐴 − 𝑈 interactions were set to 1.5 under M2 (𝑂𝑅𝐴𝑆 and 𝑂𝑅𝑈𝑆 set to 1), 
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𝑂𝑅𝐴𝑌|𝑆=1 ranged from 0.94-0.97 compared with 1.0 for all values of 𝜋𝑈 when only one 𝑈 was 

simulated. When 𝑂𝑅𝐴𝑆, 𝑂𝑅𝑈𝑆, and 𝑂𝑅{𝐴𝑈}𝑆 were set to 1.5 under mechanism M1+2 with three 

𝑈s, 𝑂𝑅𝐴𝑌|𝑆=1 ranged from 0.88-0.95, compared with 0.98 for all values of 𝜋𝑈 when only one 𝑈 

was simulated. Bias increased under both mechanisms as the selection effects increased in 

magnitude and the prevalence of 𝑈 was high. The most extreme bias occurred when there were 

three 𝑈s under M1+2, 𝑂𝑅𝑆 was set to 3.0, and 𝜋𝑈 was set to 0.75, resulting in an average 

𝑂𝑅𝐴𝑌|𝑆=1 of 0.51 (95% SI: 0.34, 0.73) for the NO2-ASD association when the population was 

restricted to live births. 
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Figure 1.1. Directed Acyclic Graph (DAG) of the structure of live birth bias. Nitrogen 

dioxide (NO2) exposure A affects live births S that is also affected by an independent 

unmeasured risk factor U for autism spectrum disorder (ASD) outcome Y. Arrows are direct 

causal effects, and the dashed line is a spurious association induced between A and U after 

selection on live births (i.e., conditioning on S = 1). This DAG has the same structure as the 

birthweight paradox7. 
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Figure 1.2. Live birth bias of 𝑶𝑹𝑨𝒀 under different selection effects. Average odds ratios for 

the association between nitrogen dioxide (NO2; exposure 𝐴) and autism spectrum disorder (ASD, 

outcome 𝑌) among live births 𝑆 = 1 (𝑂𝑅𝐴𝑌|𝑆=1) with varying simulation inputs for the 

prevalence of the unmeasured risk factor 𝑈 (𝜋𝑈) and the magnitude of selection effects (𝑂𝑅𝑆) 

under two selection mechanisms (collider-stratification without interaction, and depletion of 

susceptibles) and when they both co-occur with a single 𝑈, assuming a true null effect of NO2 on 

ASD. Collider-stratification without interaction (Mechanism 1) occurs when 𝐴 and 𝑈 have 

independent causal effects on fetal loss, but with no interaction on the multiplicative scale 

(𝑂𝑅{𝐴𝑈}𝑆=1, and 𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆); Depletion of susceptibles (Mechanism 2) occurs 

when 𝐴 has a causal effect on fetal loss only in the subset of susceptible fetuses (𝑈 = 1), but 

neither 𝐴 or 𝑈 have independent causal effects on fetal loss (𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=1, and 

𝑂𝑅{𝐴𝑈}𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆); Both mechanisms occur when 𝐴 and 𝑈 have independent causal effects 

on fetal loss, and with interaction on the multiplicative scale 

(𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=𝑂𝑅{𝐴𝑈}𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆). Each scenario was simulated 1000 times. Points represent 

the mean 𝑂𝑅𝐴𝑌|𝑆=1 in each scenario. Dashed lines indicate the true null effect of NO2 on ASD 

(𝑂𝑅𝐴𝑌=1) in the absence of live birth bias, where deviations from 1.0 quantify the magnitude of 

live birth bias. See Table S1 for corresponding numeric data, including 95% simulation intervals 

(SI). 

 



15 
 

 

 

Figure 1.3. Bias parameters that drive live birth bias of 𝑶𝑹𝑨𝒀 under different selection 

effects. Average bias parameters in the selected population with varying simulation inputs for the 

prevalence of the unmeasured risk factor 𝑈 (𝜋𝑈) and the magnitude of selection effects (𝑂𝑅𝑆) 

under two selection mechanisms and when they both co-occur with a single 𝑈, assuming a true 

null effect of nitrogen dioxide (NO2; exposure 𝐴) on autism spectrum disorder (ASD, outcome 

𝑌). In the selected population (live births), 𝑂𝑅𝐴𝑈|𝑆=1 is the association between 𝐴 and 𝑈, and 

𝜋𝑈|𝑆=1 is the prevalence of 𝑈. Collider-stratification without interaction (Mechanism 1) occurs 

when 𝐴 and 𝑈 have independent causal effects on fetal loss, but with no interaction on the 

multiplicative scale (𝑂𝑅{𝐴𝑈}𝑆=1, and 𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆); Depletion of susceptibles 

(Mechanism 2) occurs when 𝐴 has a causal effect on fetal loss only in the subset of susceptible 

fetuses (𝑈 = 1), but neither 𝐴 or 𝑈 have independent causal effects on fetal loss (𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=1, 

and 𝑂𝑅{𝐴𝑈}𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆); Both mechanisms occur when 𝐴 and 𝑈 have independent causal 

effects on fetal loss, and with interaction on the multiplicative scale 

(𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=𝑂𝑅{𝐴𝑈}𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆). Each scenario was simulated 1000 times. Points represent 

the mean value of the bias parameter in each scenario. Dashed lines indicate the expected values 

(in the absence of live birth bias) for 𝜋𝑈|𝑆=1 (𝜋𝑈|𝑆=1=𝜋𝑈), and 𝑂𝑅𝐴𝑈|𝑆=1(𝑂𝑅𝐴𝑈|𝑆=1=𝑂𝑅𝐴𝑈=1), 

which are the parameters in the selected population that drive the strength of live birth bias of 

𝑂𝑅𝐴𝑌. See Table S2 for corresponding numeric data, including 95% simulation intervals (SI). 
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Figure 1.4. Live birth bias of 𝑶𝑹𝑨𝒀 under different selection effects and different numbers 

of unmeasured risk factors for selection and the outcome. Average odds ratios for the 

association between nitrogen dioxide (NO2; exposure 𝐴) and autism spectrum disorder (ASD, 

outcome 𝑌) among live births 𝑆 = 1 (𝑂𝑅𝐴𝑌|𝑆=1) with varying simulation inputs for the 

prevalence of the unmeasured risk factor 𝑈 (𝜋𝑈) and the magnitude of selection effects (𝑂𝑅𝑆) 

under two selection mechanisms and when they both co-occur with one, two or three 𝑈s, 

assuming a true null effect of NO2 on ASD. 𝑈 is a vector that consists of ≤ 3 unmeasured factors 

(𝑈1, 𝑈2, 𝑈3), where input parameters were applied equally for each unmeasured factor; thus, all 

references to 𝑈 henceforth applies to each of the unmeasured factors 𝑈1, 𝑈2, 𝑈3. Collider-

stratification without interaction (Mechanism 1) occurs when 𝐴 and 𝑈 have independent causal 

effects on fetal loss, but with no interaction on the multiplicative scale (𝑂𝑅{𝐴𝑈}𝑆=1, and 

𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆); Depletion of susceptibles (Mechanism 2) occurs when 𝐴 has a causal 

effect on fetal loss only in the subset of susceptible fetuses (𝑈 = 1), but neither 𝐴 or 𝑈 have 

independent causal effects on fetal loss (𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=1, and 𝑂𝑅{𝐴𝑈}𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆); Both 

mechanisms occur when 𝐴 and 𝑈 have independent causal effects on fetal loss, and with 
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interaction on the multiplicative scale (𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=𝑂𝑅{𝐴𝑈}𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆). Each scenario was 

simulated 1000 times. Points represent the mean 𝑂𝑅𝐴𝑌|𝑆=1 in each scenario. Dashed lines 

indicate the true null effect of NO2 on ASD (𝑂𝑅𝐴𝑌=1) in the absence of live birth bias, where 

deviations from 1.0 quantify the magnitude of live birth bias. See Table S3 for corresponding 

numeric data, including 95% simulation intervals (SI). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

DISCUSSION 

In our simulations, we found that the magnitude of bias was generally weak for collider-

stratification without interaction (M1), which is consistent not only with previous research on 

live-birth bias4, but also with existing literature that has focused on collider-stratification in other 

observational settings, such as the birthweight paradox7, obesity paradox12,13 and selection into 

genetic studies18, where much stronger and perhaps implausible effects are required to induce 

substantial bias19,20. Thus, it is unlikely that collider-stratification without interaction alone can 

account for the observed association between pregnancy wide NO2 exposure and ASD in the 

original study5, as few simulated scenarios yielded odds ratios that were close to 0.77, the OR for 

NO2 during pregnancy when mutually adjusted for postnatal exposure to NO2
5. Although other 

factors could have been at play as well, depletion of susceptibles (M2) or both mechanisms 

operating simultaneously (M1+2) would be more likely to be able to account for the observed 

association in the original study all on their own, as the simulations under these scenarios 

consistently generated moderate to strong protective associations due to more extreme selection 

bias parameters among live births—particularly when multiple 𝑈s were present.  

 

To better understand the differences between the two selection mechanisms with just a single 

unmeasured variable 𝑈, we also estimated the 𝐴 → 𝑈 association (𝑂𝑅𝐴𝑈|𝑆=1) and prevalence of 

𝑈 (𝜋𝑈|𝑆=1) in the selected populations, as the magnitude of bias (𝑂𝑅𝐴𝑌|𝑆=1) is constrained by 

these two parameters, and the effect of 𝑈 on ASD (𝑂𝑅𝑈𝑌). However, as 𝑂𝑅𝑈𝑌 was the same 

across mechanisms in our simulations, any discrepancies in 𝐴 − 𝑌 bias are driven by both 

𝑂𝑅𝐴𝑈|𝑆=1 and 𝜋𝑈|𝑆=1. Here, M1 generally yielded weaker 𝑂𝑅𝐴𝑈|𝑆=1 but similar 𝜋𝑈|𝑆=1 compared 

to M2, which explains why M1 produces a weaker bias compared to M2. When both 
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mechanisms co-occur (M1+2), 𝑂𝑅𝐴𝑈|𝑆=1 is lower (i.e., 𝐴 and 𝑈 are more strongly negatively 

associated) than either M1 or M2; this is unsurprising given that the effects of 𝐴 and 𝑈 on 

selection are “super-additive” under M1+2, in that the contributions of 𝐴 and 𝑈 together exceed 

the sum of their contributions when 𝐴 and 𝑈 are considered separately, as shown in Equation 1. 

Furthermore, 𝜋𝑈|𝑆=1 is also lower under M1+2, however this does not necessarily generate more 

bias since similar to the magnitude of bias due to confounding21, bias is maximized when 

𝜋𝑈|𝑆=1=0.50 (𝜋𝑈|𝑆=1 that is close to 0 or 1 actually reduces bias, as this is akin to conditioning on 

or stratifying by variable 𝑈). Thus, when 𝜋𝑈≤0.5, there exists a tension between the strength of 

𝑂𝑅𝐴𝑈|𝑆=1 and the distance of 𝜋𝑈|𝑆=1 from 0.50, since stronger selection effects reduced 𝜋𝑈|𝑆=1 

(i.e., it moves further away from 0.50) such that it could offset the bias generated by the stronger 

𝑂𝑅𝐴𝑈|𝑆=1. For example, when 𝜋𝑈=0.25 and 𝑂𝑅𝑆=3.0, the bias under M1+2 was weaker than 

under M2 (𝑂𝑅𝐴𝑌|𝑆=1=0.94 under M1+2 and 𝑂𝑅𝐴𝑌|𝑆=1=0.91 under M2) because despite the 

stronger 𝑂𝑅𝐴𝑈|𝑆=1 (𝑂𝑅𝐴𝑈|𝑆=1=0.22 under M1+2 and 𝑂𝑅𝐴𝑈|𝑆=1=0.59 under M2) 𝜋𝑈|𝑆=1 was 

further away from 0.50 (𝜋𝑈|𝑆=1=0.02 under M1+2 and 𝜋𝑈|𝑆=1=0.14 for M2). On the other hand, 

when 𝜋𝑈=0.75, stronger selection effects strengthened 𝑂𝑅𝐴𝑈|𝑆=1, and lowered 𝜋𝑈|𝑆=1 closer to 

0.50 (except for when 𝑂𝑅𝑆=3.0 under M1+2, where 𝜋𝑈|𝑆=1=0.19), such that both bias parameters 

worked in concert to increase the bias in the overall 𝑂𝑅𝐴𝑌|𝑆=1 association. 

 

Evaluating the range of plausible parameters for simulation inputs is important for bias analyses.  

With a single unmeasured variable 𝑈, neither M1 nor M2 produced associations near the 

observed OR of 0.77 from the original study5. On the other hand, when both mechanisms operate 

together (M1+2) and there is just a single unmeasured variable 𝑈, not only do the selection 

effects need to be quite strong, but also 𝑈 needs to be relatively common in the population to 
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yield this observed OR. For example, an 𝑂𝑅𝑆 of 3.0 and 𝜋𝑈 of 0.75 yielded an observed 

association of 0.75 (95% CI: 0.64, 0.89) in our simulations. Thus, with a single 𝑈, not only are 

there very few scenarios that could produce the observed estimate, but the magnitude of the input 

parameters that could potentially generate the bias strains credibility. That is, although it is 

perhaps plausible that one of the selection effects is that large, it seems unlikely that all three are. 

Therefore, strong bias is more likely under either M2 or M1+2 when 𝑈 is a composite of 

uncontrolled variables (as well as those that have been controlled for, just imperfectly), as the 

𝑂𝑅𝑆 would only need to be between 1.5 and 2.0 to generate a bias of similar magnitude. With 

selection effects of 2.0, and 𝜋𝑈=0.75 for each 𝑈, the 𝑂𝑅𝐴𝑌|𝑆=1 was 0.87 and 0.78 under M2 

when there were two and three 𝑈s, respectively; whereas, with the same input parameters, the 

𝑂𝑅𝐴𝑌|𝑆=1 was 0.79 and 0.72 under M1+2 when there were two and three 𝑈s, respectively. Even 

if these unmeasured factors were just as strongly associated with 𝑆 and 𝑌, but were less prevalent 

in the population, the mean 𝑂𝑅𝐴𝑌|𝑆=1 is only slightly attenuated. For example, under the same 

selection effects, but now 𝜋𝑈=0.50 for each 𝑈, the 𝑂𝑅𝐴𝑌|𝑆=1 was 0.90 and 0.82 under M2 when 

there were two and three 𝑈s, respectively, and the 𝑂𝑅𝐴𝑌|𝑆=1 was 0.83 and 0.78 under M1+2 

when there were two and three 𝑈s, respectively. 

 

Potential candidates for 𝑈 include prenatal stress22–38, maternal smoking39–42, genetic factors43–45 

and environmental stressors, such as endocrine-disrupting chemicals8–11. Many of these 

associations have been reported to be in line with or stronger than an 𝑂𝑅𝑆 of 1.5 – 2.0 and the 

collective exposure to these factors (or just a subset) in the population is likely not uncommon. 

For example, maternal smoking during pregnancy (any versus none) has been associated with an 

OR of 1.47 for stillbirth42, and an OR of 1.56 for autism41. Furthermore, endocrine-disrupting 
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chemicals such as polychlorinated biphenyls (PCBs) have been associated with pregnancy loss 

with ORs ranging from 1.6-2.52 depending on the type of PCB when comparing those 

accidentally exposed versus those unexposed to accidental contamination of rice oil during the 

Yusho incident in Japan in 196810,46. PCBs have also been associated with increased odds of 

autism, where a prior study reported ORs ranging from 1.20-1.97 depending on the type of PCB 

when comparing the highest to the lowest quartile of exposure47. Although we identified these 

𝑈s for our illustrative example of NO2 and ASD, they are also relevant for the estimation of the 

effects of any exposure during pregnancy that has the potential to cause loss and ASD. 

Furthermore, an 𝑂𝑅𝐴𝑆 of 1.5 – 2.0 is also plausible for the effects of NO2 on loss. Although past 

studies have reported ORs ranging from 1.04 – 1.27 for the association between NO2 (typically 

per 10 ppb) and pregnancy loss48, these are likely biased downwards since only a subset of 

pregnancy losses come to medical attention and can be studied. That is, early pregnancy loss, 

which has been estimated to be around 20-30%16, are typically not observed, such that NO2-

induced loss early in pregnancy would go undetected and the resultant association would 

underestimate the true harmful effect of NO2 on pregnancy loss. As our simulation code is 

available online, we encourage other investigators to evaluate the potential bias arising from live-

birth bias with input parameter values that are relevant to their own research. 

 

Although our simulations could generate the magnitude of the protective effect reported from the 

original nested case-control study using a range of plausible input parameter values, they are 

simplified depictions of potential causal structures and, therefore, should not be directly 

compared with estimates from analyses using real data. For example, for simplicity, we assumed 

no confounding of the exposure effects, no loss to follow-up among live-born children, no 
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measurement error, and no seasonal or time trends in the exposure or outcome. It is unlikely that 

all these assumptions would hold in a real analysis. The potential bias in the original nested case-

control study may actually be a net downward bias (assuming that exposure to NO2 during 

pregnancy is not neuroprotective) arising from a combination of residual and/or unmeasured 

confounding, selection bias due to non-random attrition between birth and ASD assessment 

(although such selection would be subject to the same issues we describe here for live-birth bias), 

exposure measurement error (which typically biases the estimate towards the null), outcome 

misclassification, and model misspecification (e.g., imperfect control for seasonal trends) in 

addition to live-birth bias. However, the simplicity of our current simulation study is also its 

strength, though, in that in our simulations we can isolate and fully identify the bias due to the 

specific fetal selection mechanism. Furthermore, as prior knowledge of the magnitude and sign 

of the selection effects (𝑂𝑅𝐴𝑆, 𝑂𝑅𝑈𝑆, 𝑂𝑅{𝐴𝑈}𝑆, 𝑂𝑅𝑈𝑌) is limited since pregnancy loss is a 

challenging outcome to study16,49, we set these ORs to be equal in our simulations for simplicity, 

but presumably similar associations could be seen with some OR lower and others higher. Along 

similar lines, we ran our simulations under the null for simplicity, which is sufficient to evaluate 

the magnitude of bias as it does not depend on the effect of NO2 on ASD. For example, if we 

observe an 𝑂𝑅𝐴𝑌|𝑆=1 of 0.75 for a given selection mechanism under the null, then a true effect of 

𝑂𝑅𝐴𝑌=1.33 (i.e., the inverse of 0.75) would be rendered null by this selection mechanism. 

Finally, we also assumed that exposure groups are exchangeable in the total population of all 

conceptions (e.g., conceptions are not affected by selection processes induced by pre-conception 

exposures). However, this may not be the case as there are likely selection processes that 

influence fertility (i.e., the likelihood of conception). Excluding women of reproductive age who 

are trying, but are unable, to conceive (as pregnancy is a requirement to study exposures during 
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pregnancy) may lead to biased exposure-health effects in the set of actual conceptions, which 

differs from the total population of intended conceptions. This bias would act through similar 

mechanisms that we address in this paper’s simulations, and therefore could amplify live-birth 

bias in an analysis with real data (Figure S1). 

 

Here, we show that live-birth bias under plausible simulation parameters can lead to associations 

of NO2 and ASD that are biased downwards, where the largest bias occurs when both M1 and 

M2 both operate simultaneously (i.e., M1+2). This bias may explain the inconsistent body of 

literature5,50–53, where truly adverse effects may appear not as harmful, null, or even protective. 

Although we used NO2 and ASD for our illustrative example, this bias can extend to other 

studies relevant to fetal programming54, which can limit the identification of harmful prenatal 

exposure effects and prevent the development of interventions during pregnancy aimed at 

promoting better health. For example, it is possible that live-birth bias can also explain the 

unexpected negative associations between prenatal exposure to perfluoroalkyl substances 

(PFAS) with ASD55 and attention-deficit/hyperactivity disorder56–59.  

 

In order to rule out live-birth bias as a threat to internal validity, we would need to show that the 

exposure in question does not affect selection (i.e., fetal loss); that is, if we find that exposure 

does not affect selection, either independently or in conjunction with another risk factor for fetal 

loss, then the association with the outcome cannot be biased through this mechanism. If, on the 

other hand, exposure is associated with selection, then to potentially mitigate or eliminate this 

bias, we would need to collect information on 𝑈 (something we would need to plan for in the 

study design phase) and adjust for it in the analysis. Lastly, if there is reason to believe that there 
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are no common causes of selection and the outcome, then there would be no live-birth bias even 

if the exposure affects selection (although this is impossible to verify in practice). It would still 

be worthwhile to quantify the effect of exposure on selection, as it gives us insight into the 

change in the potential number of losses and the child outcome (when considered jointly with its 

effect on the outcome), if we were to intervene to set exposure to another level. All of these 

analyses require estimating the effects on selection which is no simple feat, but new approaches 

for studying pregnancy loss without needing to enumerate the population at risk (i.e., all 

conceptions)60, makes such an undertaking less daunting. Thus, our study findings highlight the 

need for cautious interpretations of studies of the effects of prenatal exposures on postnatal 

outcomes, and for more investment into research on the determinants of pregnancy loss.  
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ABSTRACT 

Background: Prior studies have examined the association between particulate matter less than 

2.5 µm (PM2.5) and fetal growth with either limited spatial or temporal resolution. 

Objectives: In this study, we examined the association between PM2.5 exposure during 

pregnancy and fetal growth outcomes (ultrasound biometric parameters and birth weight) in a 

pregnancy cohort using spatiotemporally resolved PM2.5 in Massachusetts, USA. 

Methods: We used prenatal and obstetric data from 10,008 pregnancies that delivered at Beth 

Israel Deaconess Medical Center from 2011-2016. There were 26,151, 26,038, 26,035, and 

25,978 ultrasound measurements for biparietal diameter (BPD), head circumference (HC), femur 

length (FL), and abdominal circumference (AC), respectively, and 9,991 measurements for birth 

weight. We used linear mixed effects models to examine the associations of PM2.5 in the first 16 

weeks of pregnancy with anatomic ultrasound scans (<24 weeks), growth ultrasound scans (≥24 

weeks), and birth weight. All models were adjusted for sociodemographic characteristics, 

maternal comorbidities, long-term trends, and temperature. 

Results: Higher PM2.5 exposure in the first 16 weeks was associated with reductions in all fetal 

growth outcomes, where associations were particularly strong for BPD, AC, and birth weight. 

For example, a 5 µg/m3 increase in PM2.5 was associated with a BPD z-score reduction of -0.18 

before 24 weeks, an AC z-score reduction of -0.15 after 24 weeks, and a birth weight z-score 

reduction of -0.12. Our secondary analyses examining the associations with cumulative PM2.5 

exposure up until the assessment of fetal growth produced attenuated associations. 

Conclusions: Gestational exposure to PM2.5 was associated with impaired fetal growth at levels 

below the current national standards, where early to mid-pregnancy appears to be a critical 

window of exposure.  
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INTRODUCTION 

Particulate matter less than 2.5 microns (PM2.5) is a considerable threat to health worldwide61–63. 

Pregnant individuals and their fetuses are likely vulnerable to the effects of PM2.5 due to changes 

in maternal physiology, and the rapid speed of fetal organ formation and development64. A recent 

systematic review showed compelling evidence for an association between maternal exposure to 

PM2.5 and impaired fetal growth as characterized by birth weight65, a key developmental 

indicator for perinatal morbidity and mortality as well as later life cardiometabolic outcomes54. 

Several biological mechanisms have been proposed to explain these associations, including 

inflammation, oxidative stress, endocrine disruption, coagulation changes, and placental 

dysfunction66–69.  

 

As the sequence of events during fetal development is very specific (e.g., cell differentiation, 

organ development, changes in fetal metabolism, etc.), the timing of exposure to PM2.5 during 

pregnancy is likely to manifest in distinct effects on fetal growth parameters. However, the use 

of newborn anthropometry does not allow for the identification of these developmental windows. 

Routine ultrasound measurements would make these internal (and therefore hidden) processes 

observable. However, only a few studies have used fetal ultrasound parameters to examine the 

timing of when the growth-restricting effects of PM2.5 manifest70–72. Although all three studies 

found that increased prenatal PM2.5 exposure was associated with reduced fetal growth from 

mid-gestation onwards, they suffer from several limitations with regards to exposure assessment: 

1) limited spatial resolution, in that two of the three used the nearest land-based monitors for 

exposure assessment71,73, and 2) assessment of long-term cumulative PM2.5 exposure without 

considering other potentially relevant developmental windows (two of the three assessed PM2.5 
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concentrations from conception to the date of ultrasound71,73, while the third assessed annual 

average PM2.5 concentrations70). Thus, we aimed to overcome these limitations by examining the 

association between PM2.5 exposure during several exposure windows and fetal growth in a 

pregnancy cohort with routine ultrasound and spatiotemporally resolved PM2.5 from 

Massachusetts, USA. 

 

METHODS 

Study population 

We used prenatal and obstetric data from Beth Israel Deaconess Medical Center (BIDMC), a 

large tertiary-care hospital which covers a wide geographic area in Massachusetts with no 

specific pattern of referral, therefore representing the general population residing in the study 

area. In this study, we included all pregnancies delivered by the practices in which all obstetric 

ultrasounds are performed through BIDMC. We restricted the analyses to live births ≥20 weeks 

of gestation from 2011 through 2016, which is the period for which both ultrasound and PM2.5 

data were available. Of these, we excluded individuals with multifetal gestations due to different 

growth trajectories, and residential addresses outside of Massachusetts. Full addresses were 

available for each delivery and were geocoded to latitude and longitude using the Google Maps 

Application Programing Interface. This study was approved by the institutional review boards of 

Harvard T.H. Chan School of Public Health and Beth Israel Deaconess Medical Center. 

 

PM2.5 exposure 

We assigned PM2.5 exposure based on where the pregnant individual resided at birth in 

Massachusetts from a state-of-the-art spatiotemporal model that estimates daily PM2.5 
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concentration for each 1x1 km grid across the Continental United States74. Briefly, the model 

uses an ensemble of three machine learning algorithms (artificial neural network, random forest, 

and gradient boosting) that incorporates satellite-based aerosol optical depth, simulation outputs 

from three chemical transport models, land-use predictors, and meteorological predictors to 

estimate daily concentrations of PM2.5 at each grid. The predictive model is calibrated using data 

from 1,928 monitoring stations that belong to the Environmental Protection Agency Air Quality 

System plus additional monitoring from the National Park Service IMPROVE network, the 

SEARCH network in the Southeastern U.S. and the MATES III and MATES IV networks in 

California. Ten-fold cross-validation revealed good model performance with a total R2 of 0.86 

for the entire United States. These predicted PM2.5 data have been used in a large body of work 

that have examined associations with birth outcomes in Massachusetts75–77. 

 

Our primary window of exposure, over which daily PM2.5 levels were averaged, was the first 16 

weeks of pregnancy, as this is the period where organ formation takes place and most major 

functional defects occur in the fetal anatomy78. Furthermore, as a secondary analysis, we also 

considered cumulative PM2.5 exposure up until the assessment of fetal growth; that is, from 

conception to the ultrasound for fetal ultrasound parameters, and from conception to birth for 

birth weight. 

 

Fetal ultrasounds and birth weight 

We used repeated ultrasound biometric measurements of biparietal diameter (BPD), head 

circumference (HC), femur length (FL) and abdominal circumference (AC), all of which were 

reported in millimeters (mm). Ultrasounds were interpreted by maternal-fetal medicine 
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specialists or radiologists. Gestational age at the time of ultrasound was based on the best 

obstetric estimate combining information from the last menstrual period and the earliest 

ultrasound performed in pregnancy79. 

 

Ultrasounds were classified a priori into two groups based on the type of scan. The standard of 

care is one scan at about 18-20 weeks to evaluate fetal anatomy but can sometimes be delayed to 

21-23 weeks if the participant is late for prenatal care. Scans conducted later in pregnancy are 

typically ordered for pregnancies at risk for impaired fetal growth or other complications. Thus, 

we will refer to scans before 24 weeks as “anatomic scans”, and those at 24 weeks and beyond as 

“growth scans” henceforth. We excluded measurements that were considered implausible, 

defined as values below or above 4 standard deviations (SD) from the mean of the cohort at that 

gestational age. Furthermore, to enable comparisons across gestational weeks, we generated z-

scores for each of the fetal growth measures by applying the INTERGROWTH-21st standards for 

fetal growth80. Since these standards are only available up to 40 weeks of gestation, ultrasound 

scans conducted after 40 weeks were excluded. Finally, we also abstracted birth weight from the 

medical records, which was reported in grams, and generated z-scores using the 

INTERGROWTH-21st standards for newborn size80. 

 

Covariates 

Temperature data were obtained from the Land Data Assimilation Systems at the NASA 

Goddard Earth Sciences Data and Information Services Center with 12x12 km spatial resolution 

81. Individual-level covariates were abstracted from the medical records and included maternal 

age (continuous), race (White, Black, Asian, Hispanic, or Other), education (high school or 
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higher or less than high school), insurance type (private or public/uninsured), parity (nulliparous 

or parous), and fetal sex (male or female). Finally, for area-level socioeconomic status, we used 

the national percentile rankings of the Area Deprivation Index (ADI)82, which is a neighborhood 

disadvantage metric derived from 17 census variables on income, education, employment, and 

housing quality from the American Community Survey (ACS). The ADI from the 2009 – 2013 

ACS was linked to each pregnancy at the census block group level.  

 

Epidemiologic air pollution studies also typically control for smoking status83, and population 

density84; however, neither was included as a covariate in our analyses, as they are already 

controlled for by design with a form of restriction. That is, of those included in our study, few 

women reported to have smoked during pregnancy, and only 1 participant lived in a small 

town/rural area according to the Rural-Urban Commuting Area (RUCA) Codes.  

 

Statistical Analysis 

We fitted linear mixed effects models to assess the associations of PM2.5 in the first 16 weeks of 

pregnancy with anatomic ultrasound scans (<24 weeks), growth ultrasound scans (≥24 weeks), 

and birth weight. To adjust for confounding by long-term and seasonal trends, we used natural 

splines with 4 degrees of freedom per year (i.e., 24 degrees of freedom for the entire 6-year study 

period). All covariates previously described also were included in the model, where linear and 

quadratic terms were used for continuous variables. Furthermore, we included a random intercept 

for each pregnancy because ultrasounds within each pregnancy were likely to be correlated.  
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We conducted several additional analyses. First, we examined the associations with cumulative 

PM2.5 exposure, which is the average PM2.5 from conception to ultrasound for fetal ultrasound 

parameters, and whole pregnancy average PM2.5 for birth weight. Furthermore, prior analyses 

have identified several subgroups that are at an increased risk of growth impairment, such as 

male fetuses85, and those of Black women and individuals with lower SES (e.g., less education, 

lower median household income, etc.)65. Thus, for each developmental window, we assessed 

whether the association was separately modified by fetal sex, maternal race, maternal education, 

and ADI. To do so, we included a product term between PM2.5 and the modifier. For each 

potential modifier, we tested whether the association differed from that of the reference level, 

which was “female” for fetal sex, “White” for maternal race, “less than college” for maternal 

education, and the first quartile for ADI. Finally, since all PM2.5 exposures in this cohort were 

below the national ambient standard, it was not necessary to conduct a low dose analysis86. All 

analyses were performed in R (version 3.6.1; R Foundation for Statistical Computing, Vienna, 

Austria)17.  

 

RESULTS 

Maternal and fetal characteristics for the 10,008 pregnancies included in our study are shown in 

Table 1, where this sample of eligible participants was formed as in Figure S1. Participants were, 

on average, 31 years of age at the time of conception, majority White (51%), and had private 

insurance (78%); about half had a college education or higher (48%). Furthermore, the mean 

ADI was 22, suggesting that participants in this cohort lived in more advantaged neighborhoods 

compared to the rest of the US given that an ADI of 50 is the median ADI nationwide. In our 

sample, the average PM2.5 exposure during the first 16 weeks of pregnancy was 7.4 µg/m3, where 
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exposure levels decreased from 9.3 µg/m3 in the beginning of 2011 to 5.9 µg/m3 at the end of 

2016 (Figure S2). Furthermore, average temperature during the first 16 weeks of pregnancy was 

10º Celsius and remained relatively stable over the years of the study period (Figure S2).  

 

Most participants had 2 or more ultrasound measurements (73%) during pregnancy (Table 1), 

where summary statistics for the fetal ultrasound parameters are displayed in Table 2. The mean 

z-scores for all ultrasound parameters were similar for anatomic and growth scans, where fetuses 

had, on average, smaller BPD, but larger HC, FL and AC during pregnancy compared to the 

international standard 80. At delivery, the mean birth weight z-score was 0.33, which suggests 

that newborns in our sample were slightly heavier than the international norm. 

 

The associations between PM2.5 exposure in the first 16 weeks of pregnancy and fetal growth 

outcomes (ultrasound biometric parameters and birth weight) are shown in Table 3. For both 

anatomic and growth scans, we observed that increased PM2.5 was linearly associated with 

reduced ultrasound parameters, where associations were particularly strong for BPD and AC. For 

example, a 5 µg/m3 increase in PM2.5 was associated with z-score reductions among anatomic 

scans (<24 weeks) of -0.18 (95% CI: -0.29, -0.07) for BPD, -0.09 (95% CI: -0.20, -0.02) for HC, 

-0.07 (95% CI: -0.19, -0.05) for FL, and -0.11 (95% CI: -0.23, 0.01) for AC, and z-score 

reductions among growth scans (≥24 weeks) of -0.14 (95% CI: -0.23, -0.05) for BPD, -0.03 

(95% CI: -0.12, 0.06) for HC, -0.05 (95% CI: -0.14, 0.04) for FL, and -0.15 (95% CI: -0.24, -

0.06) for AC. Furthermore, PM2.5 exposure in the first 16 weeks was also associated with 

reduced birth weight, where a 5 µg/m3 increase was associated with a z-score reduction of -0.12 

(95% CI: -0.22, -0.01). Analyses with cumulative PM2.5 exposure produced attenuated 
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associations for the ultrasound parameters, where most 95% CIs include the null. However, the 

association with birth weight was similar to our primary analysis (Table S1).  

 

Results from our effect modification analyses can be found in Tables S2-5. We did not find any 

evidence for effect modification by fetal sex (Table S2). However, we found that maternal race, 

education, and ADI potentially modified the association during specific windows. For maternal 

race, we found that the negative associations for all ultrasound parameters ≥24 weeks were 

stronger for Hispanic women compared to White women (Table S3). On the other hand, the 

growth-restricting effects of PM2.5 were not observed after 24 weeks (i.e., among growth scans 

and birth weight) in Asian women (Table S3). For maternal education, we found that the 

negative associations appeared to be stronger for ultrasound parameters <24 weeks for those with 

college or higher education (Table S4). For ADI, we found that the fourth quartile association 

with FL <24 weeks, fourth quartile association with BPD ≥24 weeks, and second quartile 

association with HC ≥24 appeared to be attenuated compared the first quartile (Table S5). 
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Table 2.1. Maternal and fetal characteristics of deliveries at Beth Israel Deaconess Medical 

Center, Boston, Massachusetts from 2011-2016 (N=10,008) 

Characteristics N (%) 

Age (years)  

     Mean (SD) 31 (5.4) 

Education  

     College or higher 4769 (48) 

     Lower than college 3416 (34) 

     Not specified 1823 (18) 

Race  

     White 5117 (51) 

     Black 1750 (17) 

     Asian 940 (9) 

     Hispanic 931 (9) 

     Not specified 1270 (13) 

Parity  

     Nulliparous 4941 (49) 

     Parous 5067 (51) 

Child sex  

     Female 4927 (49) 

     Male 5081 (51) 

Insurance  

     Private 7797 (78) 

     Public or uninsured 2211 (22) 

Area Deprivation Index (percentile)  

     Mean (SD) 22 (20) 

Average PM2.5 in first 16 weeks of pregnancy (µg/m3)  

     Mean (SD) 7.4 (1.5) 

Average temperature in first 16 weeks of pregnancy (º C)  

     Mean (SD) 10 (7.5) 

Number of ultrasounds  

     2+ ultrasounds 7320 (73) 

     1 ultrasound 2688 (27) 
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Table 2.2. Summary statistics for fetal ultrasound parameters and birth weight from deliveries at 

Beth Israel Deaconess Medical Center, Boston, Massachusetts in 2011-2016 (N=10,008) 

 

Growth outcome N Mean (SD) 

Anatomic scans (<24 weeks)   

     BPD z-score 10,207 -0.67 (1.10) 

     HC z-score 10,164 0.37 (1.10) 

     FL z-score 10,143 0.82 (1.14) 

     AC z-score 10,112 0.52 (1.17) 

Growth scans (≥24 weeks)   

     BPD z-score 15,944 -0.86 (1.12) 

     HC z-score 15,874 0.33 (1.15) 

     FL z-score 15,892 1.11 (1.10) 

     AC z-score 15,866 0.56 (1.10) 

Birth weight z-score 9,991 0.33 (1.00) 
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Table 2.3. Linear mixed effects model estimates and 95% CIs for the association between PM2.5 

during the first 16 weeks of pregnancy and fetal growth outcomes (ultrasound parameters and 

birth weight) from deliveries at Beth Israel Deaconess Medical Center, Boston, Massachusetts in 

2011-2016 (N=10,008) 

 

Growth outcome Estimate 95% CI p-Value 

Anatomic scans (<24 weeks)    

     BPD z-score -0.18 (-0.29, -0.07) 0.002 

     HC z-score -0.09 (-0.20, 0.02) 0.09 

     FL z-score -0.07 (-0.19, 0.05) 0.23 

     AC z-score -0.11 (-0.23, 0.01) 0.08 

Growth scans (≥24 weeks)    

     BPD z-score -0.14 (-0.23, -0.05) 0.0003 

     HC z-score -0.03 (-0.12, 0.06) 0.56 

     FL z-score -0.05 (-0.14, 0.04) 0.30 

     AC z-score -0.15 (-0.24, -0.06) 0.001 

Birth weight    

     Birth weight z-score -0.12 (-0.22, -0.01) 0.03 

Note: Estimates represent the difference in mean z-score with a 5 µg/m3 increase in PM2.5 during 

the first 16 weeks of pregnancy after adjusting for maternal age, race, education, insurance type, 

parity, fetal sex, conception year, day of the year of conception, temperature, and Area 

Deprivation Index. 

 

 

 

 

 

 

 

 

 

 

 



38 
 

DISCUSSION 

This large retrospective cohort study showed that higher PM2.5 exposure was associated with 

reductions in all four ultrasound parameters as well as birth weight at levels below the current 

annual ambient standard of 12 µg/m3 for PM2.5
86. Associations were particularly strong for BPD, 

AC, and birth weight; for example, a 5 µg/m3 increase in PM2.5 was associated with a BPD z-

score reduction of -0.18 before 24 weeks. These findings have implications for later health and 

childhood development. For example, head size, as measured by BPD and HC, has been 

associated with brain development and cognitive achievement in childhood87–89; height, as 

approximated in utero by FL, has been associated with educational attainment and economic 

productivity in adulthood90,91; abdominal circumference, which is an indicator for the size of the 

fetal liver and the amount of subcutaneous fat deposition, has been associated with later 

cardiometabolic conditions92; and birth weight, a summary measure of in utero growth, is a key 

indicator for later life morbidity and mortality54.  

 

Our findings are consistent with prior studies that have found that increased prenatal PM2.5 

exposure was associated with reduced fetal ultrasound parameters, even though our estimates are 

not directly comparable70–72. One study conducted in Beijing did not assess the same fetal growth 

parameters, where they found that a 10 µg/m3 increase in PM2.5 from conception to ultrasound 

was associated with a 0.3 z-score reduction in estimated fetal weight; however, they did not 

examine associations with either HC, FL or AC, all of which were used to compute estimated 

fetal weight93. Furthermore, another study conducted in Shanghai used raw ultrasound 

measurements and did not standardize their parameters by gestational age, but still aggregated all 

ultrasound measurements together as a single outcome71. They found that a 10 µg/m3 increase in 
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PM2.5 from conception to ultrasound was associated with reduced BPD, FL, and AC by about 5.5 

mm each. Finally, the last study conducted in Scotland internally standardized their fetal 

ultrasound parameters and thus their z-scores are not directly comparable to ours, but they found 

that PM2.5 exposure was associated with reduced BPD70. Despite the heterogeneity in analytic 

treatments, the current body of evidence (including our contribution) suggests a robust signal for 

the association between prenatal PM2.5 exposure and impairment of ultrasound parameters of 

fetal growth. This is further corroborated by the negative associations we found between PM2.5 

and birth weight, which is concordant with the findings from 25 out of the 29 studies included in 

a recent systematic review examining this association65. 

 

Among studies of fetal growth and particulate matter exposure (both PM2.5 and PM10), there is 

still inconsistency with regards to the critical window of exposure. The three studies focusing on 

PM2.5 only examined long-term exposure, either entire pregnancy average70 or the cumulative 

exposure from the date of ultrasound to the date of ultrasound71,72, and did not, or were not able 

to, consider other exposure windows. Studies examining PM10 have also identified that PM10 

exposure in the first 16 weeks of pregnancy94, and also, in the third trimester95,96, were associated 

with reduced ultrasound parameters. Here, we found that both exposure windows we considered 

produced negative associations, but those using cumulative PM2.5 produced weaker associations 

for all outcomes (i.e., fetal ultrasound parameters, and birth weight). This pattern indicates that 

the effects of PM2.5 potentially interfere with fetal tissue development in early pregnancy, rather 

than with the period of rapid growth in late pregnancy. Thus, it is imperative that future studies 

also assess exposures early in pregnancy in addition to cumulative exposures otherwise harmful 

exposures may be overlooked. That is, if the potential critical window is indeed in early 
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pregnancy, then only assessing cumulative exposures by averaging values in the critical window 

with other periods later in pregnancy would add measurement error, such that the estimate is 

biased towards the null. 

 

In our effect modification analyses, we found that the associations did not differ by fetal sex. 

Although this is contrary to previous literature suggesting that stressful exposures during 

pregnancy may be more harmful to male births, those investigations mostly focused on acute 

exposures85,97–99. We, however, found suggestive evidence that race, education, and ADI could 

modify the association during specific developmental windows. Associations with fetal 

ultrasound parameters were stronger for individuals who were Hispanic and were null for those 

who were Asian. These findings however should be interpreted with caution given that the 95% 

CIs were wide due to few Asian and Hispanic women in our cohort (about 900 deliveries each 

over the 6-year study period), where future studies should examine these racial disparities in 

other settings with different demographic distributions. Furthermore, we also found stronger 

associations for individuals who were more educated and lived in areas with the least 

disadvantage. This finding, which was conditional on the other covariates, such as maternal age, 

was not expected. One possible explanation is that although less socially vulnerable individuals 

(e.g., those with lower ADI) are presumably, on average, healthier, they may be less resilient to 

the effects of PM2.5. This explanation is consistent with findings from other health disparities 

work that show that minority groups in the US tend to have a lower risk of experiencing certain 

health outcomes, such as depression, anxiety and suicide100. Potential effect heterogeneity among 

fetal ultrasound measurements were also mostly observed in birthweight; however, these two 

sets of measurements are not directly comparable for several reasons. First, birth weight poorly 
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reflects fetal growth during early pregnancy; that is, it is hard to distinguish a healthy newborn 

from one that experiences fetal growth restriction early in pregnancy but later catches up to 

achieve population growth standards by birth. Furthermore, birth weight is a summary measure 

of in utero growth and may be more sensitive to symmetric growth restriction. Thus, its use in 

this setting may not be appropriate given that we show that the effect of PM2.5 manifests in 

distinct effects on different organs (i.e., the effect on the fetal anatomy is asymmetric) 

 

This study has several strengths. We assessed PM2.5 exposure at home addresses at birth with 

high spatial and temporal resolution using a state-of-the-art model, where several exposure 

windows were considered. We used repeated ultrasound measures to longitudinally assess 

growth trajectories, which enabled the assessment and identification of critical windows of 

development. We controlled for an extensive panel of confounders, the most important being 

socioeconomic status, for which we had both individual and neighborhood-level variables. 

Furthermore, we also controlled for prenatal smoking and population density by design with 

restriction as our study population had few individuals who smoked during pregnancy or lived in 

non-urban areas. These variables could therefore not confound the exposure-outcome 

association.  

 

Some limitations also should be acknowledged. Our PM2.5 exposure assessment was based on 

modelled outdoor values at the home address, which may not reflect personal PM2.5 exposure. 

This measurement error will bias the estimate towards the null, but this could be offset by better 

control for confounding as more proxy measures of exposure are less vulnerable to individual-

level confounding101. Furthermore, we used maternal residence at delivery to assign exposures, 
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which could result in further misclassification due to residential mobility during pregnancy. Yet, 

past simulations have shown that ignoring residential mobility had only a minor impact on point 

estimates, and that the identification of critical windows was robust to this type of exposure 

misclassification102. We also ignored the time-activity pattern of participants during pregnancy, 

as we used exposure grids where the participant was reported to have resided at delivery. Yet 

participants are less likely to spend time at home during early pregnancy103. However, time-

activity patterns are unlikely to be related to fetal growth conditional on the covariates included, 

and thus the bias is expected to be nondifferential and towards the null. Furthermore, our 

analyses were restricted to live-born children and so our estimates may be biased 

upwards3,4,104,105. That is, if pregnancy loss is driven by both the exposure and other unmeasured 

factors that also affect the outcome, then the PM2.5-growth associations estimated in the 

subpopulation of “healthier” live births are likely biased. These considerations suggests that 

perhaps the associations are even stronger than they are shown here, which further supports the 

need to reduce PM2.5 exposure in early to mid-pregnancy. Finally, this study was retrospective, 

and so analyses of growth scans should be interpreted with caution since high-risk pregnancies 

could be overrepresented (i.e., low-risk pregnancies with normal fetal growth are unlikely to 

have third-trimester pregnancy scans). 

 

In conclusion, we show that gestational exposure to PM2.5 was associated with fetal ultrasound 

parameters and birth weight at levels below the current national standards86, where early to mid-

pregnancy appears to be a critical window of exposure. These findings add to the growing body 

of literature documenting the harmful effects of PM2.5 not only during pregnancy, but also for 

overall health. Future work should explore this topic further in other settings and different 
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populations, at exposure levels higher than this study, while also considering early pregnancy as 

a critical window of exposure. Clinicians should keep up-to-date with emerging research to 

inform pregnant women about the potential adverse effects of PM2.5 exposure. In terms of policy 

implications, our findings suggest the need to focus efforts on reducing exposures even at “safe” 

concentrations. 
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ABSTRACT 

Background: No prior study has examined the association between exposure to ambient 

temperature during pregnancy and fetal ultrasound parameters. 

Objectives: In this study, we examined the association between gestational exposure to ambient 

temperature and fetal growth outcomes (ultrasound biometric parameters and birth weight) in a 

pregnancy cohort using spatiotemporally resolved temperature in Massachusetts, USA. 

Methods: We used ultrasound measurements of biparietal diameter (BPD), head circumference 

(HC), femur length (FL), and abdominal circumference (AC), in addition to birth weight from 

10,008 pregnancies that delivered at Beth Israel Deaconess Medical Center from 2011-2016. We 

fitted linear mixed effects models to examine the associations of temperature in the first 16 

weeks of pregnancy with anatomic ultrasound scans (<24 weeks), growth ultrasound scans (≥24 

weeks), and birth weight. All models were adjusted for sociodemographic characteristics, 

maternal comorbidities, long-term trends, PM2.5, and humidity. 

Results: Higher temperatures in the first 16 weeks were associated with reductions in all fetal 

growth outcomes, where associations were particularly strong for head size parameters. For 

example, a 5 ºC in temperature was associated with a BPD and HC z-score reductions of -0.20 

and -0.22, respectively, before 24 weeks, and z-score reductions of -0.20 and -0.14, respectively, 

after 24 weeks. Our secondary analyses examining the associations with long-term average 

temperature, and average temperature 1 month prior to growth assessment produced attenuated 

associations, except for birth weight which was more strongly associated with long-term average 

temperature. 

Conclusions: Higher temperatures were associated with impaired fetal growth, with head size 

parameters being particularly sensitive 
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INTRODUCTION 

The climate crisis has led to warmer global temperatures, where eight of the ten hottest years on 

record have occurred in the past decade106–108. Apart from having been recognized as an 

environmental emergency, several organizations including the World Health Organization 

(WHO) and the Lancet Countdown have identified human health as one of its major 

consequences109,110. Pregnant individuals and their fetuses have been recognized as one group 

that is particularly vulnerable to heat stress111,112. The physiological and anatomical changes that 

occur during pregnancy (e.g., increased internal heat production with fetal and placental 

metabolism) present challenges to thermoregulation. The impaired ability to respond to high 

temperatures can result in cell death, disturbance of cell migration, disruption of gene expression, 

and damage to blood vessels and the placenta113–117. 

  

Two recent systematic reviews have shown that heat exposure during pregnancy is associated 

with lower birth weight65,118, which has implications for subsequent health and 

development54,119,120. However, the use of newborn anthropometry to assess fetal growth 

provides limited insights on the timing of when the growth-restricting effects of heat manifest 

during pregnancy. Routine ultrasound measurements would make the ontogenetic processes of 

fetal development observable, and thus would be an invaluable tool for identifying 

developmental windows during which a fetus is susceptible to heat stress. Yet, no study, to date, 

has examined the associations between heat exposure and ultrasound parameters of fetal growth. 

Thus, in a pregnancy cohort with routine ultrasound and spatiotemporally resolved temperature 

from Massachusetts, USA, we aimed to examine the association between ambient temperature 

during pregnancy and fetal growth. 
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METHODS 

Study population 

This study population has been described previously121. Briefly, we used prenatal and obstetric 

data from Beth Israel Deaconess Medical Center (BIDMC). Pregnant individuals who delivered 

at ≥20 weeks of gestation from 2011 to 2016 by the practices in which all obstetric ultrasounds 

are performed through BIDMIC were eligible (n=12,967). Of these, we excluded pregnant 

individuals with multifetal gestations because the growth trajectory is different than singleton 

pregnancies (n=844) and residential addresses outside of Massachusetts (n=408). We further 

excluded those without any ultrasound measurements (n=1,707), leading to a final sample size of 

10,008 participants (Figure S1). Full addresses were available for each delivery and were 

geocoded to latitude and longitude using the Google Maps Application Programing Interface. 

This study was approved by the institutional review boards of Harvard T.H. Chan School of 

Public Health and Beth Israel Deaconess Medical Center. 

 

Temperature 

To assess temperature, we downloaded daily temperature data on a 12 km grid from Phase 2 of 

the North American Land Data Assimilation Systems (NLDAS-2) at the NASA Earth Sciences 

Data and Information Services Center122. These data were derived from the 32 km grids of the 

National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis 

(NARR). The 32 km NARR grids were spatially interpolated to the finer resolution of the 

NLDAS-2 1/8-degree grid (approximately 12 km). This spatial interpolation process has been 

described in more detail elsewhere123. 
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For each delivery, we assigned the 12 km grid in which the pregnant individual reported to have 

resided at the time of birth. After grid assignment, we estimated the average temperature in the 

first 16 weeks of pregnancy, as this has been previously reported to be a critical window of 

development78,121. As a secondary analysis, we also considered two other exposure windows: 1) 

long-term average temperature exposure from conception up until the assessment of fetal growth; 

that is, from conception to the ultrasound for fetal ultrasound parameters, and from conception to 

birth for birth weight, and 2) average temperature exposure 1 month prior to growth assessment. 

 

Fetal ultrasound 

Ultrasound scans at about 18-23 weeks are typically conducted to evaluate fetal anatomy, while 

scans conducted later are typically done to screen for pregnancy complications (e.g., impaired 

growth, obstetric indications such as breech presentation etc.). Thus, the ultrasound data were 

categorized into two types of scans for the analyses: the “anatomic scan” prior to 24 weeks, and 

the “growth scan” at 24 weeks and beyond. To assess impairment of fetal growth in each of these 

windows, we used four ultrasound biometric parameters – biparietal diameter (BPD), head 

circumference (HC), femur length (FL) and abdominal circumference (AC) – all of which were 

recorded in millimeters (mm). The gestational age at the ultrasound examination was based on 

the best obstetric estimate combining information from the last menstrual period and the earliest 

ultrasound performed in pregnancy79. 

 

For a given gestational week, we considered ultrasound measurements 4 standard deviations 

away from the mean of the cohort implausible, and thus excluded these measurements. 

Furthermore, to enable comparisons across gestational weeks, we generated z-scores for each of 
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the fetal ultrasound parameters by applying the INTERGROWTH-21st standards for fetal 

growth80. Since these standards are only available up to 40 weeks of gestation, ultrasound scans 

conducted after 40 weeks were excluded. Finally, we also abstracted birth weight from the 

medical records, which was reported in grams, and generated age- and sex-specific z-scores 

using the INTERGROWTH-21st standards for newborn size80.  

 

Covariates 

Data on specific humidity, defined as the mass of water vapor in a unit mass of moist air, were 

obtained from NASA NLDAS-2 with 12 km spatial resolution122. From the medical records, we 

abstracted data on the following maternal and fetal characteristics: maternal age (continuous), 

race (White, Black, Asian, Hispanic, or Other), educational attainment (college or higher or less 

than college), insurance type (private or public/uninsured), parity (nulliparous or parous), and 

fetal sex (male or female). Furthermore, for area-level socioeconomic status, we used the 

national percentile rankings of the Area Deprivation Index (ADI), which ranges from 1 to 100, 

with 1 being the least disadvantaged and 100 being the most82. The ADI was calculated at the 

census block group level and represents a composite measure of neighborhood socioeconomic 

disadvantage derived from 17 census variables on income, employment, and housing from the 

American Community Survey82. Finally, for comparability with prior studies, we also included 

exposure to particulate matter less than 2.5 microns (PM2.5) in our models. The PM2.5 data were 

assigned based on where the pregnant individual resided at birth in Massachusetts from a state-

of-the-art spatiotemporal model that predicts daily PM2.5 concentration for each 1 km grid across 

the Continental United States74. 
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Statistical Analysis 

We fitted generalized additive mixed models (GAMMs) to examine the relationship of 

temperature in the first 16 weeks with anatomic ultrasound scans (<24 weeks), growth ultrasound 

scans (≥24 weeks), and birth weight. We used a penalized spline for temperature to allow for a 

nonlinear exposure-response function in each window124. To adjust for confounding by long-

term and seasonal trends, we included conception year and day of the year, where the latter was 

modeled using natural splines with 4 degrees of freedom per year. All other covariates 

previously described were included in the model, with linear and quadratic terms used for 

continuous variables. Furthermore, we included a random intercept for each pregnancy because 

ultrasounds within each pregnancy were likely to be correlated. Since our GAMMs showed all 

associations between temperature and fetal ultrasound parameters to be approximately linear 

(Figures S2-3), we present estimates from linear mixed effects models. 

 

We conducted several additional analyses. First, we examined the associations between each 

outcome and the other two exposure windows we considered: 1) long-term temperature 

exposure, defined as the average temperature exposure from conception to ultrasound for fetal 

ultrasound parameters, and whole pregnancy average temperature exposure for birth weight, and 

2) average temperature exposure 1 month prior to growth assessment. Furthermore, we also 

conducted several subgroup analyses to assess for potential effect modification, focusing on 

effect modifiers reported in prior studies. Specifically, prior work has shown that the growth-

restricting effect of heat exposure is larger in pregnant individuals at the age extremes (<22 or 

>40 years)125–127; those who were Black or Hispanic126,127; and those of low socioeconomic 

status125–127. We also considered potential effect modification by fetal sex as other birth 
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outcomes research has shown that prenatal exposures may be more harmful to male fetuses85,97–

99. Thus, for each type of scan, we assessed whether the association of temperature in the first 16 

weeks and fetal growth was separately modified by maternal age (<22, 22-40, and >40 years), 

race, education, ADI (divided into quartiles), and fetal sex. To do so, we included a product term 

between temperature and the modifier. For each potential modifier, we tested whether the 

association differed from that of the reference level, which was “22-40 years” for maternal age, 

“White” for race, “less than college” for education, the first quartile for ADI, and “female” for 

fetal sex. We used a Bonferroni correction to account for multiple testing when examining 

modifiers with more than two levels. All analyses were performed in R (version 3.6.1; R 

Foundation for Statistical Computing, Vienna, Austria)17. 

 

RESULTS 

Characteristics of the 10,008 pregnancies that constituted our study population are shown in 

Table 1. On average, participants were 31 years of age at conception, with the majority being 

white (52%) and having private insurance (78%). About half had completed college or higher 

(52%), and about half were nulliparous (49%). Furthermore, the mean ADI percentile was 22 

(median nationwide is 50), which indicates that our cohort was comprised of individuals that 

lived in neighborhoods with less disadvantage relative to the rest of the US. In our sample, 

average temperature in the first 16 weeks of pregnancy was 10º C (Table 1 and Figure S2). Peak 

temperature exposures in the first 16 weeks were approximately 20 º C, which was experienced 

by pregnancies that were conceived in the summer of each year. On the other hand, the coldest 

temperatures varied throughout the study period, where conceptions beginning in the winters of 

2010, 2013, and 2015 experienced average temperatures below 0 º C during the first 16 weeks of 
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pregnancy, and those that occurred in the winters of other years experienced milder conditions 

(Figure S4). Average specific humidity in the first 16 weeks of pregnancy was 0.0068 g/kg, 

where the pattern over the study period closely resembled that of temperature (Figure S4). Most 

pregnancies had at least 2 ultrasound scans (73%) (Table 1). Summary statistics for the four 

ultrasound parameters are displayed in Table 2. On average, fetuses in our sample had smaller 

BPD, but larger HC, FL and AC compared to the international standard80. Furthermore, 

newborns in our sample had an average birth weight z-score of 0.33, which is slightly heavier 

than the international norm (Table 2). 

 

The associations between temperature in the first 16 weeks of pregnancy and fetal growth 

outcomes (ultrasound parameters and birth weight) are shown in Table 3. For both anatomic and 

growth scans (i.e., scans performed <24 weeks and ≥24 weeks, respectively), we observed that 

increased temperature was linearly associated with reduced ultrasound parameters, where 

associations were particularly strong for head size parameters (BPD and HC). For example, a 5 

ºC increase in temperature in the first 16 weeks was associated with z-score reductions among 

anatomic scans of -0.20 (95% CI: -0.34, -0.06) for BPD, -0.22 (95% CI: -0.36, -0.09) for HC,  

-0.15 (95% CI: -0.30, 0.00) for FL, and -0.15 (95% CI: -0.30, 0.00) for AC, and z-score 

reductions among growth scans of -0.20 (95% CI: -0.32, -0.09) for BPD, -0.14 (95% CI: -0.26, -

0.02) for HC, -0.01 (95% CI: -0.13, 0.10) for FL, and -0.17 (95% CI: -0.29, -0.06) for AC. 

Furthermore, temperature exposure in the first 16 weeks was also associated with reduced birth 

weight, with a 5 ºC increase associated with a z-score reduction of -0.11 (95% CI: -0.19, -0.02). 

Analyses with the two other exposure windows produced associations that were attenuated 
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relative to the effect estimates for the 16-week exposures, with most 95% CIs including null. 

However, the estimates for birth weight were comparable to our primary analysis (Tables S1-2). 

 

Results from our effect modification analyses can be found in Tables S3-7. We found that 

maternal age and race potentially modified the associations during specific windows. For 

maternal age, pregnant individuals <22 years had stronger negative associations with AC among 

growth scans compared to those 22-40 years, while associations with FL among growth scans 

appear slightly positive for individuals >40 years (Table S3). For maternal race, Black 

individuals had stronger negative associations with HC among growth scans compared to White 

individuals (Table S4). Furthermore, Asian individuals had stronger negative associations with 

HC among growth scans, AC among growth scans, and birth weight, compared to their White 

counterparts (Table S4). Finally, Hispanic individuals had stronger negative associations with 

BPD among growth scans compared to White individuals (Table S5). We did not find any 

evidence for effect modification by education, ADI, or fetal sex (Tables S6-7). 
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Table 3.1. Maternal and fetal characteristics of deliveries at Beth Israel Deaconess Medical 

Center, Boston, Massachusetts from 2011-2016 (N=10,008) 

 

Characteristics N (%) 

Age (years)  

     Mean (SD) 31 (5.4) 

Education  

     College or higher 4769 (48) 

     Lower than college 3416 (34) 

     Not specified 1823 (18) 

Race  

     White 5117 (51) 

     Black 1750 (17) 

     Asian 940 (9) 

     Hispanic 931 (9) 

     Not specified 1270 (13) 

Parity  

     Nulliparous 4941 (49) 

     Parous 5067 (51) 

Child sex  

     Female 4927 (49) 

     Male 5081 (51) 

Insurance  

     Private 7797 (78) 

     Public or uninsured 2211 (22) 

Area Deprivation Index (percentile)  

     Mean (SD) 22 (20) 

Average temperature in first 16 weeks of pregnancy (º C)  

     Mean (SD) 10 (7.5) 

Average specific humidity in first 16 weeks of pregnancy (g/kg)  

     Mean (SD) 0.0068 (0.003) 

Average PM2.5 in first 16 weeks of pregnancy (µg/m3)  

     Mean (SD) 7.4 (1.5) 

Number of ultrasounds  

     2+ ultrasounds 7320 (73) 

     1 ultrasound 2688 (27) 
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Table 3.2. Summary statistics for fetal ultrasound parameters and birth weight from deliveries at 

Beth Israel Deaconess Medical Center, Boston, Massachusetts in 2011-2016 (N=10,008) 

 

Growth outcome N Mean (SD) 

Anatomic scans (<24 weeks)   

     BPD z-score 10,207 -0.67 (1.10) 

     HC z-score 10,164 0.37 (1.10) 

     FL z-score 10,143 0.82 (1.14) 

     AC z-score 10,112 0.52 (1.17) 

Growth scans (≥24 weeks)   

     BPD z-score 15,944 -0.86 (1.12) 

     HC z-score 15,874 0.33 (1.15) 

     FL z-score 15,892 1.11 (1.10) 

     AC z-score 15,866 0.56 (1.10) 

Birth weight z-score 9,991 0.33 (1.00) 
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Table 3.3.  Linear mixed effects model estimates and 95% CIs for the association between 

temperature during the first 16 weeks of pregnancy and fetal growth outcomes (ultrasound 

parameters and birth weight) from deliveries at Beth Israel Deaconess Medical Center, Boston, 

Massachusetts in 2011-2016 (N=10,008) 

 

Growth outcome Estimate per 5 ºC  95% CI p-Value 

Anatomic scans (<24 weeks)    

     BPD z-score -0.20 (-0.34, -0.06) 0.006 

     HC z-score -0.22 (-0.36, -0.09) 0.001 

     FL z-score -0.15 (-0.30, 0.00) 0.05 

     AC z-score -0.15 (-0.30, 0.00) 0.05 

Growth scans (≥24 weeks)    

     BPD z-score -0.20 (-0.32, -0.09) 0.001 

     HC z-score -0.14 (-0.26, -0.02) 0.02 

     FL z-score -0.01 (-0.13, 0.10) 0.82 

     AC z-score -0.17 (-0.29, -0.06) 0.004 

Birth weight    

     Birth weight z-score -0.11 (-0.19, -0.02) 0.01 

Note: Adjusted for maternal age, race, education, insurance type, parity, fetal sex, conception 

year, day of the year of conception, Area Deprivation Index, humidity, and PM2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

DISCUSSION 

In this large retrospective pregnancy cohort from Massachusetts, USA, we found that increased 

temperature was linearly associated with reductions in all four ultrasound parameters - BPD, HC, 

FL and AC - which has implications for subsequent health and development, as each of these 

ultrasound parameters has been associated with later health outcomes87–92. Negative associations 

with birth weight were also observed, which is concordant with the published literature65,118. 

Although head size parameters BPD and HC appear particularly sensitive to heat exposure, the 

associations with other ultrasound parameters and birth weight are still important for public 

health given that exposure to high temperatures is common and escalating106–108.  

 

Several studies have explored the question of critical exposure windows in fetal growth using 

birth weight as an outcome, but this body of work has produced results that are inconclusive118. 

In this study, we found that the associations with ultrasound parameters were stronger for 

temperature exposure in the first 16 weeks of pregnancy compared to long-term temperature 

exposure (i.e., from conception to the time of fetal growth assessment) and exposure 1 month 

prior to growth assessment, which indicates that exposure to heat potentially interferes with early 

fetal development rather than growth later in pregnancy. One possible mechanism is that 

increased heat exposure leads to the production of heat-shock proteins, which can disrupt normal 

protein synthesis in early pregnancy, leading to altered fetal organ development128. Given the 

strong associations we see for head size parameters, the ontogenetic processes of early brain 

development (e.g., neurogenesis, axonal and dendritic growth, synaptogenesis etc.) appear to be 

particularly vulnerable, where any perturbation in these processes (which occur in a specific 

order) could potentially have long-term effects on brain development129.  
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We also found that birth weight was associated with temperature in the first 16 weeks and long-

term average temperature, but not exposure 1-month prior to growth assessment, where 

associations were strongest when using long-term average temperature. However, our results 

with birth weight are not directly comparable to our ultrasound results for several reasons. First, 

we expect the critical window for birth weight to be different from fetal ultrasound parameters, 

as the biological mechanism underpinning the association is different. With birth weight, the 

effects of heat mainly relate to fat accumulation which occurs throughout pregnancy (as opposed 

to organ development which occurs early to mid-pregnancy). Suboptimal thermoregulation in 

response to rising temperatures could divert too much blood away from the developing fetus, 

which could lead to lower birth weight by depriving the fetus of adequate nutrition130. Second, 

birth weight is a summary measure of in utero growth and may be more sensitive to either 

symmetric growth restriction or growth restriction related to larger organs (e.g., a reduction in 

just head size does not necessarily translate to a reduction in birth weight).  

 

One unexpected finding was that cold temperatures did not seem to have an impact on fetal 

growth in our cohort, where temperature effects on health have often been shown to be either U- 

or J-shaped118,131. This may be because our cohort is comprised of highly educated individuals 

who live in urban neighborhoods with little disadvantage, such that they may be better at 

mitigating the effects of extreme cold (e.g., heating, adequate clothing, staying indoors etc.). 

Furthermore, colder winters in New England are shorter and are becoming less common132, 

where only 9% of the study participants over the six-year study period experienced averaged 

temperature below freezing. Thus, although there may be a true effect of cold temperatures on 
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fetal growth, the relatively mild climatic conditions of Massachusetts in recent years (i.e., the 

limited sample size at temperature extremes) may not be adequate to detect any signal that would 

exist in the data. These considerations suggest that perhaps the linear dose-repose relationship we 

observed may not be generalizable to other settings with different temperature distributions and 

seasonality patterns. 

 

In our effect modification analyses, we found that the associations did not differ by educational 

attainment or ADI. One possible explanation, akin to the rationale for the lack of effect for cold 

temperatures, is that the socioeconomic distribution of our cohort falls within a narrow range, 

such that between-group comparisons did not yield any differences. Past studies that found 

differences were able to do so because, perhaps, they included individuals from a broader range 

of socioeconomic contexts. For example, a study using birth certificates in California in which 

individuals from lower socioeconomic groups were better represented in the analytic sample 

found differences by educational attainment127. Furthermore, we did not find differences by fetal 

sex which is contrary to some of the previous literature85,97–99, but coincides with our previous 

report on gestational exposures to PM2.5 which showed that male fetuses were equally vulnerable 

to environmental stressors compared to their female counterparts121. We did, however, find that 

maternal age could potentially modify the association between heat stress and impaired fetal 

growth. Negative associations were stronger for pregnant individuals who were <22 years, which 

coincides with previous literature suggesting that younger mothers are at an increased risk of 

adverse birth outcomes due to a constellation of potential reasons, including biological 

immaturity, socioeconomic disadvantages, behavioral factors, and lack of access to high quality 

antenatal care133. Furthermore, it is notable that we found differences by race (despite controlling 
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for socioeconomic status), where Black, Asian, and Hispanic individuals appeared to be more 

vulnerable to the effects of heat than White individuals. One possible reason according to recent 

research is that non-White individuals are more likely to experience more intense urban heat 

islands134, a phenomenon which our 12 km exposure grids may not be able to capture. Further 

research is warranted using temperature data with finer spatial resolution in other settings with 

different demographic and socioeconomic compositions to better understand the intersectionality 

between race/ethnicity and socioeconomic status on the impact of rising temperatures during 

pregnancy. 

 

To our knowledge, this is the first study to use fetal ultrasound parameters to investigate the 

growth-restricting effect of heat, which is a key strength of our analyses. Other strengths include 

the use of temperature data with high spatial and temporal resolution, where three exposure 

windows were considered. Furthermore, our adjustment for confounding variables was 

comprehensive, where we controlled for individual, area-level socioeconomic, and 

meteorological variables in addition to long-term time trends. However, we also acknowledge 

several limitations. Although the resolution of the temperature data is reported to be 12 km, it is, 

in reality, coarser because the spatial interpolation process of the NARR 32 km grid may not 

capture urban-scale features (e.g., urban heat islands), which may be relevant for human 

health135, especially in the context of racial disparities. Furthermore, there were additional 

sources of measurement error with regards to exposure assignment: 1) heat exposure was based 

on outdoor values, and so may not reflect personal exposure, and 2) assignment was based on 

residential address at delivery, and so is agnostic towards both residential mobility and time-

activity patterns during pregnancy. However, these errors are likely nondifferential with respect 
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to fetal growth, and so the expected direction of the bias is towards the null. Our estimates are 

also vulnerable to live birth bias since our analyses were restricted to live-born children3,4,104,105. 

That is, if heat exposure also causes pregnancy loss, then our associations are likely biased 

upwards since fetuses who are more susceptible to the effects of heat do not survive to birth. This 

suggests that the estimates we present here are conservative and that the growth-restricting 

effects of heat could possibly be even stronger. Finally, our study was based on retrospective 

ultrasound data, and so estimates from the analyses of growth scans (i.e., scans ≥24 weeks) 

should be interpreted with caution as they might have been conducted among individuals at 

higher risk for pregnancy complications. 

 

In conclusion, we show that heat exposure during pregnancy was associated with reductions in 

all fetal ultrasound parameters and birth weight. Head size parameters were particularly 

sensitive, where early to mid-pregnancy appears to be a critical exposure window. Future 

research should explore this topic further in other settings with different temperature 

distributions/seasonality, different demographic/socioeconomic compositions, and using 

temperature data with finer spatial resolution. Long-term follow-up studies of neurodevelopment 

in children are warranted to examine the practical implications of our findings. These novel 

findings contribute to the growing body of evidence documenting the overall health impact of 

rising temperatures, which further highlights the importance of investment into preventive 

measures for pregnant individuals, heat warning systems, and more broadly, advocacy for 

regulations to mitigate the climate crisis. 
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Chapter 4: Conclusion 

This dissertation expands our knowledge about pregnancy as a vulnerable period for health. In 

Chapter 1, we show that estimating the effects of prenatal exposures on health outcomes in live-

born children is a challenge when the exposure under study affects pregnancy loss, and if fetal 

survival and the outcome of interest share common causes. Analyses restricted to live births can 

lead to associations that are biased downwards, which can produce a body of evidence that is 

inconsistent – associations with harmful exposures may appear less harmful, null, or even 

paradoxically protective. This finding implies that not accounting for live-birth bias can limit the 

identification of harmful prenatal exposures and prevent the development of interventions aimed 

at promoting better health for pregnant individuals and their fetuses. Despite important 

theoretical and methodological advances, further investment into collecting the necessary data to 

mitigate this bias is required if we are to make advances in this field. Specifically, we need better 

study designs that can capture conceptions or viable fetuses at the relevant exposure window 

and/or measurements that can capture information on possible selection-outcome confounders. 

  

In Chapters 2 and 3, we found that increased PM2.5 and ambient temperature during pregnancy 

was associated with reduced fetal ultrasound parameters and birth weight in a pregnancy cohort 

from Massachusetts, USA. For both environmental exposures, we found that early to mid-

pregnancy appears to be a critical exposure window which indicates that these exposures 

primarily interfere with early tissue development rather than with the period of rapid growth late 

in pregnancy. Notably, Massachusetts is a low pollution environment where PM2.5 

concentrations were below the current national standards, and so in terms of policy implications, 

these findings suggest the need to focus efforts on reducing PM2.5 exposures at even 
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concentrations considered to be safe for human health. With ambient temperature, we found that 

fetal head size was particularly sensitive to the effects of heat, and so it would be interesting to 

explore whether this affects later neurodevelopment in future long-term follow-up studies of 

these children. Given that exposure to high temperatures is common and escalating, the 

importance of advocacy for regulations to mitigate the climate crisis cannot be understated. 

Overall, this dissertation aims to unbox the black box of fetal health during pregnancy and 

highlights that studies which exclusively focus on health outcomes among live births may miss 

in utero events that are relevant for health. 
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Appendix 

Table S1.1. Average odds ratios for the association between nitrogen dioxide (NO2; exposure 𝐴) and 

autism spectrum disorder (ASD, outcome 𝑌) among live births 𝑆 = 1 (𝑂𝑅𝐴𝑌|𝑆=1) and 95% simulation 

intervals (SI) over 1000 simulations with input parameters 𝜋𝑈=0.25, 0.50, 0.75 and 𝑂𝑅𝑆=1.5, 2.0, 2.5, 3.0 

under two selection mechanisms and when they both co-occur with a single unmeasured 𝑈, assuming a 

true null effect of NO2 on ASD 

 

Inputs  Average NO2-ASD odds ratio among live births, 𝑂𝑅𝐴𝑌|𝑆=1 (95% SI) 

𝜋𝑈 𝑂𝑅𝑆 

 Mechanism 1: 

Collider-stratification 

without interactiona 

Mechanism 2: 

Depletion of  

susceptiblesb 

Both Mechanisms: 

Mechanism 1 + 

Mechanism 2c 

0.25 1.5                             1.00 (0.93,1.07) 1.00 (0.93,1.07) 0.98 (0.91,1.06) 

 2.0  0.99 (0.92,1.06) 0.98 (0.91,1.04) 0.94 (0.86,1.04) 

 2.5  0.97 (0.89,1.06) 0.94 (0.88,1.01) 0.94 (0.84,1.04) 

 3.0  0.95 (0.86,1.06) 0.91 (0.85,0.97) 0.94 (0.83,1.06) 

0.50 1.5  1.00 (0.93,1.07) 1.00 (0.93,1.06) 0.98 (0.91,1.05) 

 2.0  0.99 (0.91,1.06) 0.97 (0.91,1.03) 0.90 (0.82,0.99) 

 2.5  0.96 (0.88,1.04) 0.92 (0.86,0.98) 0.86 (0.77,0.96) 

 3.0  0.94 (0.86,1.03) 0.87 (0.82,0.94) 0.85 (0.74,0.97) 

0.75 1.5  1.00 (0.93,1.06) 1.00 (0.94,1.06) 0.98 (0.91,1.05) 

 2.0  0.99 (0.92,1.06) 0.98 (0.92,1.04) 0.87 (0.78,0.96) 

 2.5  0.97 (0.89,1.05) 0.94 (0.89,1.00) 0.79 (0.69,0.90) 

 3.0  0.95 (0.86,1.04) 0.89 (0.83,0.94) 0.75 (0.64,0.89) 

Note: 𝜋𝑈 is the prevalence of unmeasured 𝑈 in the target population of all conceptions; 𝑂𝑅𝑆 is the 

magnitude of the select effects (𝑂𝑅𝐴𝑆, 𝑂𝑅𝑈𝑆, 𝑂𝑅{𝐴𝑈}𝑆, 𝑂𝑅𝑈𝑌) in the target population of all conceptions. 

The expected value of 𝑂𝑅𝐴𝑌|𝑆=1 is 1.0 in the absence of live birth bias, where deviations from 1.0 

quantify the magnitude of live birth bias.  
a Collider-stratification without interaction: NO2 exposure 𝐴 and unmeasured factor 𝑈 have independent 

causal effects on fetal loss, but with no interaction on the multiplicative scale (𝑂𝑅{𝐴𝑈}𝑆=1, and 

𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆) 
b Depletion of susceptibles: NO2 exposure 𝐴 has a causal effect on fetal loss only in the subset of 

susceptible fetuses (𝑈 = 1), but neither 𝐴 or 𝑈 have independent causal effects on fetal loss 

(𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=1, and 𝑂𝑅{𝐴𝑈}𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆) 
c Both Mechanisms: NO2 exposure 𝐴 and unmeasured factor 𝑈 have independent causal effects on fetal 

loss, and with interaction on the multiplicative scale (𝑂𝑅𝐴𝑆=𝑂𝑅𝑈𝑆=𝑂𝑅{𝐴𝑈}𝑆=𝑂𝑅𝑈𝑌=𝑂𝑅𝑆) 
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Figure S1.1. A directed acyclic graph (DAG) representing the additional bias that could arise from 

conditioning on the ability to conceive, where exposure 𝐴 affects conceptions and live births, both of 

which are also affected by an independent unmeasured risk factor 𝑈 for the outcome 𝑌. Here, 

conditioning on both conceptions and live births induces a stronger 𝐴-𝑈 association in the selected 

population, which produces an 𝐴-𝑌 association with a stronger downward bias compared to that generated 

from the causal structure in Figure 1. 
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Simulation Code 

library(Rlab) 

library(dplyr) 

 

# set seed 

set.seed() 

 

lbb <- function(iter, n, p, mean, sd, con,  

                bL, bY, or1, or2, or3, or4, or5, nU) 

   

{ 

  ## iter   number of iterations 

  ## n      sample size for each of the generated datasets 

  ## p      prevalence of U  

  ## mean   mean of normally distributed exposure 

  ## sd     standard deviation of normally distributed exposure 

  ## con    exposure contrast (i.e., increment of exposure for associations) 

  ## bL     baseline odds of loss 

  ## bY     baseline odds of outcome 

  ## or1    odds ratio for exposure-loss effect 

  ## or2    odds ratio for U-loss effect 

  ## or3    odds ratio for exposure*U loss interaction effect 

  ## or4    odds ratio for U-outcome effect 

  ## or5    odds ratio for exposure-outcome effect 

 

  # create matrix to store simulation results 

  results.cs <- rep(NA, iter) 

  results.dos <- rep(NA, iter) 

  results.both <- rep(NA, iter) 

   

  for (i in 1:iter){ 

    set.seed(i) 

     

    # monitor simulation 

    if((i %% 10) == 0) print(c(iter, i)) 

     

    # specify contrast 

    mean_std <- mean/con 

    sd_std <- sd/con 

     

    ############################################ 

    ### Mechanism 1: collider-stratification ### 

    ############################################ 

     

    # data generating mechanism  

    cs <- data.frame("id" = 1:n) %>% 

      mutate(no2 = rnorm(n, mean_std, sd_std), # exposure is gaussian 

             U = rbern(n, p),  

             prob_loss = plogis(log(bL) + log(or1)*no2 + log(or2)*U), 

             loss = rbern(n, prob_loss), 

             pY = plogis(log(bY) + log(or4)*U + log(or5)*no2), 

             Y = rbern(n, pY)) 

     

    # fit a logistic model among live births 

    model1 <- cs %>% 

      glm(formula = Y ~ no2, 
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          family = binomial(link = "logit"), 

          data = ., 

          subset = loss==0) 

     

    results.cs[i] <- exp(model1$coef[2]) 

     

    ############################################## 

    ### Mechanism 2: depletion of susceptibles ### 

    ############################################## 

     

    # data generating mechanism 

    dos <- data.frame("id" = 1:n) %>% 

      mutate(no2 = rnorm(n, mean_std, sd_std), 

             U = rbern(n, p), 

             prob_loss = plogis(log(bL) + log(or3)*no2*U), 

             loss = rbern(n, prob_loss), 

             pY = plogis(log(bY) + log(or4)*U + log(or5)*no2), 

             Y = rbern(n, pY)) 

     

    # fit a logistic model among live births 

    model2 <- dos %>% 

      glm(formula = Y ~ no2, 

          family = binomial(link = "logit"), 

          data = ., 

          subset = loss==0) 

     

    results.dos[i] <- exp(model2$coef[2]) 

     

    ####################### 

    ### Both Mechanisms ### 

    ####################### 

     

    # data generating mechanism 

    both <- data.frame("id" = 1:n) %>% 

      mutate(no2 = rnorm(n, mean_std, sd_std), 

             U = rbern(n, p), 

             prob_loss = plogis(log(bL) + log(or1)*no2 + log(or2)*U + 

log(or3)*no2*U), 

             loss = rbern(n, prob_loss), 

             pY = plogis(log(bY) + log(or4)*U + log(or5)*no2), 

             Y = rbern(n, pY)) 

     

    # fit a logistic model among live births 

    model3 <- both %>% 

      glm(formula = Y ~ no2, 

          family = binomial(link = "logit"), 

          data = ., 

          subset = loss==0) 

     

    results.both[i] <- exp(model3$coef[2]) 

     

  } 

   

  # turn results into data frame 

  simResults <- data.frame(results.cs, results.dos, results.both)  

   

  # get mean ORs for ASD-no2 association 
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  csOR <- mean(simResults$results.cs) 

  dosOR <- mean(simResults$results.dos) 

  bothOR <- mean(simResults$results.both) 

   

  # get the 95% simulation intervals 

  csOR.si <- quantile(simResults$results.cs, c(0.025,0.975)) 

  dosOR.si <- quantile(simResults$results.dos, c(0.025,0.975)) 

  bothOR.si <- quantile(simResults$results.both, c(0.025,0.975)) 

   

  # put results together 

  lbb.cs <- paste(formatC(csOR,digits=2,format="f"), 

                  " (",formatC(csOR.si[1],digits=2,format="f"), 

                  ",",formatC(csOR.si[2],digits=2,format="f"),")",sep="") 

  lbb.dos <- paste(formatC(dosOR,digits=2,format="f"), 

                   " (",formatC(dosOR.si[1],digits=2,format="f"), 

                   ",",formatC(dosOR.si[2],digits=2,format="f"),")",sep="") 

  lbb.both <- paste(formatC(bothOR,digits=2,format="f"), 

                    " (",formatC(bothOR.si[1],digits=2,format="f"), 

                    ",",formatC(bothOR.si[2],digits=2,format="f"),")",sep="") 

  lbb.results <- cbind(lbb.cs,lbb.dos,lbb.both) 

  lbb.results 

     

} 

 

# example inputs 

lbb(iter=1000, n=100000, p=0.75, mean=16.7, sd=4.3, con=5.85, 

    bL=0.05, bY=0.015, or1=2, or2=2, or3=2, or4=2, or5=1) 
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Figure S2.1. Flow chart of participant selection in deliveries at Beth Israel Deaconess Medical 

Center, Boston, Massachusetts from 2011-2016 

 

 

 

 

 

 

12,967 Deliveries, 2011 - 2016 

11,715 eligible participants 

408    Non-Massachusetts residence 

844    Multiple gestations 

10,008 final sample 

1,707 No ultrasound data 
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Figure S2.2. Distributions of A) average PM2.5 in the first 16 weeks of pregnancy, and B) 

average temperature in the first 16 weeks of pregnancy over the study period (2011 – 2016). 

Grey points represent the mean value for each pregnancy. The solid black line represents the 

fitted mean values during pregnancy from a generalized additive model with a penalized spline 

for date of birth. 
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Table S2.1. Linear mixed effects model estimates and 95% CIs for the association between 

cumulative PM2.5 and fetal growth outcomes (ultrasound parameters and birth weight) from 

deliveries at Beth Israel Deaconess Medical Center, Boston, Massachusetts in 2011-2016 

(N=10,008) 

 

Growth outcome Estimate  95% CI p-Value 

Anatomic scans (<24 weeks)    

     BPD z-score -0.15  (-0.25, -0.05) 0.004 

     HC z-score -0.08  (-0.18, 0.01) 0.09 

     FL z-score -0.03  (-0.13, 0.08) 0.59 

     AC z-score -0.08  (-0.18, 0.03) 0.17 

Growth scans (≥24 weeks)    

     BPD z-score -0.07  (-0.17, 0.02) 0.15 

     HC z-score 0.04  (-0.06, 0.14) 0.43 

     FL z-score -0.05  (-0.14, 0.05) 0.33 

     AC z-score -0.05  (-0.14, 0.05) 0.31 

Birth weight    

     Birth weight z-score -0.12  (-0.24, -0.01) 0.03 

Note: Estimates represent the difference in mean z-score with a 5 µg/m3 increase in cumulative 

PM2.5 from conception to the assessment of fetal growth after adjusting for maternal age, race, 

education, insurance type, parity, fetal sex, conception year, day of the year of conception, 

temperature, and Area Deprivation Index. 
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Table S2.2. Linear mixed effects model estimates and 95% CIs for the association between 

PM2.5 in the first 16 weeks and fetal growth outcomes (ultrasound parameters and birth weight) 

by fetal sex from deliveries at Beth Israel Deaconess Medical Center, Boston, Massachusetts in 

2011-2016 (N=10,008) 

 

Growth outcome 
Female Male 

Estimate (95% CI) p-Value Estimate (95% CI) p-Value 

Anatomic scans (<24 weeks) 

     BPD z-score -0.18 (-0.33, -0.03) Ref -0.18 (-0.33, -0.03) 0.97 

     HC z-score -0.11 (-0.25, 0.04) Ref -0.08 (-0.23, 0.06) 0.78 

     FL z-score -0.07 (-0.22, 0.09) Ref -0.08 (-0.23, 0.08) 0.88 

     AC z-score -0.10 (-0.26, 0.06) Ref -0.12 (-0.28, 0.05) 0.87 

Growth scans (≥24 weeks) 

     BPD z-score -0.13 (-0.29, 0.03) Ref -0.15 (-0.30, 0.01) 0.84 

     HC z-score -0.04 (-0.19, 0.12) Ref -0.02 (-0.17, 0.14) 0.82 

     FL z-score -0.07 (-0.22, 0.09) Ref -0.03 (-0.19, 0.13) 0.70 

     AC z-score -0.11 (-0.28, 0.06) Ref -0.19 (-0.35, -0.02) 0.37 

Birth weight 

     Birth weight z-score -0.14 (-0.26, -0.02) Ref -0.10 (-0.21, 0.02) 0.50 

Note: Estimates represent the difference in mean z-score with a 5 µg/m3 increase in PM2.5 during 

the first 16 weeks of pregnancy after adjusting for maternal age, race, education, insurance type, 

parity, conception year, day of the year of conception, temperature, and Area Deprivation Index; 

P-values were computed by testing whether the association for each level of the potential 

modifier differs from that of the reference level, which is “Female” for fetal sex. 
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Table S2.4. Linear mixed effects model estimates and 95% CIs for the association between 

PM2.5 in the first 16 weeks and fetal growth outcomes (ultrasound parameters and birth weight) 

by maternal education from deliveries at Beth Israel Deaconess Medical Center, Boston, 

Massachusetts in 2011-2016 (N=10,008) 

 

Growth outcome 
Less than college College or higher 

Estimate (95% CI) p-Value Estimate (95% CI) p-Value 

Anatomic scans (<24 weeks) 

     BPD z-score -0.09 (-0.28, 0.09) Ref -0.23 (-0.37, -0.09) 0.14 

     HC z-score -0.05 (-0.23, 0.13) Ref -0.11 (-0.25, 0.03) 0.51 

     FL z-score 0.07 (-0.11, 0.25) Ref -0.14 (-0.29, 0.01) 0.03 

     AC z-score 0.02 (-0.26, 0.06) Ref -0.18 (-0.34, -0.02) 0.04 

Growth scans (≥24 weeks) 

     BPD z-score -0.17 (-0.35, 0.02) Ref -0.14 (-0.29, 0.02) 0.76 

     HC z-score -0.08 (-0.27, 0.11) Ref 0.01 (-0.15, 0.16) 0.37 

     FL z-score -0.09 (-0.27, 0.09) Ref -0.03 (-0.19, 0.13) 0.52 

     AC z-score -0.21 (-0.28, 0.06) Ref -0.10 (-0.27, 0.06) 0.28 

Birth weight 

     Birth weight z-score -0.14 (-0.28, 0.00) Ref -0.10 (-0.22, 0.02) 0.64 

Note: Estimates represent the difference in mean z-score with a 5 µg/m3 increase in PM2.5 during 

the first 16 weeks of pregnancy after adjusting for maternal age, race, insurance type, parity, fetal 

sex, conception year, day of the year of conception, temperature, and Area Deprivation Index; P-

values were computed by testing whether the association for each level of the potential modifier 

differs from that of the reference level, which is “Less than college” for maternal education. 
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Figure S3.1. Flow chart of participant selection in deliveries at Beth Israel Deaconess Medical 

Center, Boston, Massachusetts from 2011-2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12,967 Deliveries, 2011 - 2016 

11,715 eligible participants 

408    Non-Massachusetts residence 

844    Multiple gestations 

10,008 final sample 

1,707 No ultrasound data 
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Figure S3.2. Relationship between temperature in the first 16 weeks of pregnancy and 

ultrasound biometric parameter z-scores estimated using a generalized additive mixed model 

among A) anatomic scans (<24 weeks), and B) growth scans (≥24 weeks) from deliveries at Beth 

Israel Deaconess Medical Center, Boston, Massachusetts in 2011-2016. The solid line represents 

the predicted z-score by temperature given that all other covariates are at their respective means. 

The dashed line represents the 95% confidence intervals. Analyses were adjusted for maternal 

age, race, education, insurance type, parity, fetal sex, conception year, day of the year of 

conception, Area Deprivation Index, humidity, and PM2.5. 
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Figure S3.3. Relationship between temperature in the first 16 weeks of pregnancy and birth 

weight z-score estimated using a generalized additive mixed model from deliveries at Beth Israel 

Deaconess Medical Center, Boston, Massachusetts in 2011-2016. The solid line represents the 

predicted z-score by temperature given that all other covariates are at their respective means. The 

dashed line represents the 95% confidence intervals. Analyses were adjusted for maternal age, 

race, education, insurance type, parity, fetal sex, conception year, day of the year of conception, 

Area Deprivation Index, humidity, and PM2.5. 
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Figure S3.4. Distributions of A) average temperature in the first 16 weeks of pregnancy, and B) 

average specific humidity in the first 16 weeks of pregnancy over the study period (2011 – 

2016). Grey points represent the mean value for each pregnancy.  
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Table S3.1. Linear mixed effects model estimates and 95% CIs for the association between 

cumulative temperature and fetal growth outcomes (ultrasound parameters and birth weight) 

from deliveries at Beth Israel Deaconess Medical Center, Boston, Massachusetts in 2011-2016 

(N=10,008) 

 

Growth outcome Estimate per 5 ºC   95% CI p-Value 

Anatomic scans (<24 weeks)    

     BPD z-score -0.06 (-0.19, 0.06) 0.32 

     HC z-score -0.11 (-0.24, 0.01) 0.07 

     FL z-score -0.08 (-0.21, 0.05) 0.25 

     AC z-score -0.10 (-0.23, 0.04) 0.15 

Growth scans (≥24 weeks)    

     BPD z-score 0.02 (-0.11, 0.14) 0.77 

     HC z-score 0.01 (-0.12, 0.14) 0.87 

     FL z-score 0.14 (0.02, 0.27) 0.03 

     AC z-score -0.05 (-0.17, 0.08) 0.48 

Birth weight    

     Birth weight z-score -0.16 (-0.26, -0.07) 0.001 

Note: Adjusted for maternal age, race, education, insurance type, parity, fetal sex, conception 

year, day of the year of conception, Area Deprivation Index, humidity, and PM2.5. 
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Table S3.2. Linear mixed effects model estimates and 95% CIs for the association between 

temperature 1 month prior to growth assessment and fetal growth outcomes (ultrasound 

parameters and birth weight) from deliveries at Beth Israel Deaconess Medical Center, Boston, 

Massachusetts in 2011-2016 (N=10,008) 

 

Growth outcome Estimate per 5 ºC   95% CI p-Value 

Anatomic scans (<24 weeks)    

     BPD z-score -0.00 (-0.09, 0.08) 0.95 

     HC z-score -0.02  (-0.11, 0.06) 0.59 

     FL z-score -0.03  (-0.12, 0.06) 0.54 

     AC z-score -0.04  (-0.13, 0.06) 0.44 

Growth scans (≥24 weeks)    

     BPD z-score -0.02  (-0.09, 0.04) 0.48 

     HC z-score -0.07  (-0.14, 0.00) 0.06 

     FL z-score 0.04  (-0.03, 0.11) 0.24 

     AC z-score -0.03  (-0.10, 0.04) 0.43 

Birth weight    

     Birth weight z-score -0.03  (-0.09, 0.02) 0.31 

Note: Adjusted for maternal age, race, education, insurance type, parity, fetal sex, conception 

year, day of the year of conception, Area Deprivation Index, humidity, and PM2.5. 
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Table S3.5. Linear mixed effects model estimates and 95% CIs for the association between 

temperature in the first 16 weeks and fetal growth outcomes (ultrasound parameters and birth 

weight) by maternal education from deliveries at Beth Israel Deaconess Medical Center, Boston, 

Massachusetts in 2011-2016 (N=10,008) 

 

Growth outcome 
Less than college College or higher 

Estimatea (95% CI) p-Value Estimatea (95% CI) p-Value 

Anatomic scans (<24 weeks) 

     BPD z-score -0.20 (-0.36, -0.04) Ref -0.20 (-0.36, -0.04) 0.85 

     HC z-score -0.23 (-0.38, -0.07) Ref -0.22 (-0.38, -0.07) 0.72 

     FL z-score -0.16 (-0.33, 0.01) Ref -0.15 (-0.32, 0.02) 0.51 

     AC z-score -0.16 (-0.33, 0.01) Ref -0.14 (-0.31, 0.03) 0.24 

Growth scans (≥24 weeks) 

     BPD z-score -0.20 (-0.39, -0.02) Ref -0.21 (-0.39, -0.02) 0.92 

     HC z-score -0.15 (-0.33, 0.03) Ref -0.14 (-0.33, 0.04) 0.80 

     FL z-score -0.00 (-0.18, 0.18) Ref -0.03 (-0.22, 0.15) 0.09 

     AC z-score -0.17 (-0.36, 0.02) Ref -0.18 (-0.36, 0.01) 0.73 

Birth weight 

     Birth weight z-score -0.10 (-0.19, -0.02) Ref -0.11 (-0.20, -0.03) 0.38 
a Estimates per 5 ºC, adjusted for maternal age, race, insurance type, parity, fetal sex, conception 

year, day of the year of conception, Area Deprivation Index, humidity, and PM2.5; P-values were 

computed by testing whether the association for each level of the potential modifier differs from 

that of the reference level, which is “Less than college” for maternal education.
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Table S3.7. Linear mixed effects model estimates and 95% CIs for the association between 

temperature in the first 16 weeks and fetal growth outcomes (ultrasound parameters and birth 

weight) by fetal sex from deliveries at Beth Israel Deaconess Medical Center, Boston, 

Massachusetts in 2011-2016 (N=10,008) 

 

Growth outcome 
Female Male 

Estimatea (95% CI) p-Value Estimatea (95% CI) p-Value 

Anatomic scans (<24 weeks) 

     BPD z-score -0.20 (-0.38, -0.02) Ref -0.20 (-0.38, -0.01) 0.93 

     HC z-score -0.23 (-0.38, -0.07) Ref -0.22 (-0.38, -0.07) 0.87 

     FL z-score -0.15 (-0.32, 0.01) Ref -0.15 (-0.31, 0.01) 0.94 

     AC z-score -0.16 (-0.33, 0.02) Ref -0.15 (-0.32, 0.03) 0.52 

Growth scans (≥24 weeks) 

     BPD z-score -0.21 (-0.40, -0.01) Ref -0.20 (-0.40, -0.00) 0.74 

     HC z-score -0.14 (-0.33, 0.04) Ref -0.14 (-0.32, 0.04) 0.91 

     FL z-score -0.00 (-0.19, 0.18) Ref -0.03 (-0.21, 0.16) 0.16 

     AC z-score -0.18 (-0.36, 0.00) Ref -0.16 (-0.35, 0.02) 0.39 

Birth weight 

     Birth weight z-score -0.11 (-0.20, -0.03) Ref -0.10 (-0.19, -0.02) 0.25 
a Estimates per 5 ºC, adjusted for maternal age, race, education, insurance type, parity, 

conception year, day of the year of conception, Area Deprivation Index, humidity, and PM2.5; P-

values were computed by testing whether the association for each level of the potential modifier 

differs from that of the reference level, which is “female” for fetal sex. 
 

 


