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Abstract

As machine learning continues to exhibit remarkable performance across a wide range of

experimental tasks, there is an increasing enthusiasm to deploy these models in the real world.

However, the traditional supervised learning framework optimizes performance without

consideration to the use of these models by humans. In nearly all applications, human

interaction affects the generation of input data, outcomes, or both. For example, a doctor

may choose to either incorporate or override a machine-generated medical risk score. This

judgment influences outcomes and invalidates the predicted level of performance in isolation.

In the case of movie recommendation, digital records of human viewing behavior are guided

by a recommendation engine, such that the distribution of input data is a function of the

recommender itself. Human behavior is dynamic and responsive, and failing to account for

this leads to suboptimal and even harmful results when machine learning models trained in

isolation begin to interact with human stakeholders.

In this thesis, I consider humans in three different roles relative to the machine learning

system: humans as model users, humans as model subjects, and humans as model auditors.

For the first two configurations, I develop new frameworks that are capable of considering

and adapting to relevant human behavior. For the last configuration, I reveal an important

vulnerability in popular tools intended to assist human auditors. Specifically, when humans

are model users, I design a new model architecture and training procedure that allows machine

learning decision aids to directly adapt to how humans use them, optimizing for performance

of the entire machine-human pipeline rather than solely machine accuracy. This system is

validated in experiments with real human users, confirming its ability to adapt productively

to different human behaviors. For humans as model subjects, I introduce a new form of
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model regularization that considers the motivations of to adopt new behaviors when regarding

predictive models as accurate proxies for causal phenomena. This look-ahead regularizer

balances model accuracy against ensuring that behavior change motivated in users results

in positive outcomes with high probability. Finally, I construct an adversarial model capable

of causing popular explainability tools to lead human auditors to incorrect inferences about

model behavior. I show that on a variety of real world datasets, predictive models can exhibit

discriminatory behavior (e.g. racial or gender disparity of outcomes) while passing proposed

tests for such behavior.
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Chapter 1

Introduction

Machine learning has shown incredible potential in advancing data-driven modeling and

decision making. With increased access to data, flexible architectures, and greater processing

power, machine learning algorithms now surpass human experts at tasks across a variety of

fields. These systems can ingest large quantities of unstructured data and extract insights,

distilling information that human experts would take years to read and process. Additionally,

algorithms avoid human cognitive biases and prejudices, interpreting the data with the sole

objective of minimizing the specified loss criterion. For these reasons, machine learning has

been deployed across a wide range of fields with the goal of reducing human errors and

improving performance. However, many worry that in automating decisions that traditionally

rely on human judgment, important details may be lost in translation, resulting in unexpected

and potentially catastrophic errors.

In law enforcement, machine learning is used to help predict the time and location of future

crimes, as well as identify individuals who are more likely to commit crimes. Location-based

predictive policing uses past crime data to highlight patterns of recurring crime in time and

space. This allows additional resources to be preemptively assigned to those areas, potentially

stopping crime before it happens [MW19]. In selected examples, this has been highly effective

at reducing crime [Pea10], but with the limited data available to machine algorithms, is it

possible for these predictions to incorporate the longer term implications of modified police

presence as holistically as experienced human experts? On an individual level, predictive
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policing is used to identify individuals who are either at high risk of becoming criminals

or being victims of criminal behavior [Per13]. Machine learning is also used to help judges

determine bail and sentencing. Risk assessment tools predict whether defendants will commit

another crime or fail to appear in court. In simulation, statistical tools can reduce the number

of defendants held pretrial while also reducing the percentage of defendants who fail to appear,

relative to human judges [Jun+20; Kle+18]. The algorithms can also simultaneously achieve

better fairness outcomes, equalizing release rates across judges or jailing fewer minorities,

compared to human judge data. Does this imply that even the most experienced human judges

are unskilled at their jobs, or should we be concerned that the algorithms have missed some

other important criterion of human judges?

In medicine, machine learning models are used to build risk models, perform diagnostic

imaging, and surface relevant data across patient populations. Neural networks have shown

such success in identifying disease in medical images that several high profile computer

scientists have questioned whether radiology has a future as a medical specialty [The]. Models

can successfully identify and predict the progression of diabetic retinopathy [Nie+19; Arc+19]

and identify melanomas and other skin cancers as well as experts [Est+17; Tsc+19]. In radiology,

deep learning matches or outperforms radiologists in a number of tasks [Liu+19b], including

predicting breast cancer risk [Yal+19] and analyzing chest x-rays for pneumonia [Raj+17].

Patients may wonder, though: do these algorithms rely on the same indicators that human

doctors use? Are they robust enough to correctly identify unusual cases or to flag conditions

other than those which they are explicitly trained to detect, as a human physician would?

Machine learning has been used to generate both standalone risk scores that are more predictive

than the prevailing human-developed risk scores [Spa+19] and interpretable risk scores to aid

physicians in understanding the interactions between known risk factors where no models

previously existed[Str+17]. Advances in content-based image retrieval allow practitioners to

search by concept as well as image, quickly identifying labeled examples that relate to a query

image (in, for example, tissue biopsies) [Cai+19]. Are these tools proven to improve patient

outcomes, or might they interfere with a doctor’s carefully refined intuitions?

In financial technology, machine learning is used to generate credit scores and evaluate
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insurance applications and claims. Algorithms use ‘digital footprint’ information, not typically

available to credit bureaus, to help determine if applicants qualify for a loan or credit card

[Ber+20]. Companies argue that this practice can reduce disparities in lending by making credit

more available to minorities who do not have traditional credit scores, while not increasing

the risk of charge-offs to lenders [Kah20]. Insurance companies use machine learning to make

underwriting decisions, determining whether to approve or deny applicants [Adv], and to

identify claims patterns that are likely to be fraudulent [Mel18]. In both applications, these

processes allow the companies to pass difficult cases to human agents while rapidly approving

low risk applicants and claims with a high probability of legitimacy.

Machine learning algorithms permeate the more quotidian aspects of our lives as well,

helping to determine the news we read [LDP10], the routes we take to work, the items we

purchase [LSY03], and even our romantic partners [Tif19].

In all of these applications, the data of interest are generated by humans and often concern

human activity. Thus, where humans have a significant advantage over machine learning is in

understanding the processes that generate the data in the first place. Machine models are by

comparison extremely narrow in scope: the provided data is evaluated without consideration

for any biases and errors that may have gone into its creation, and the loss criterion is optimized

absent constraints that comparable human decision-makers would consider.

In particular, in high-stakes domains, in which predictions may have a lasting impact on

people’s lives, there is increasing awareness that accuracy is often not appropriate as a singular

objective. Researchers have raised concerns in each of the aforementioned domains. Predictive

policing is widely criticized for perpetuating biased police practices that generate the training

data [RSC19; Ens+18]. Because police data only reflect crimes that were reported to or observed

by the police, crime data will be biased toward the areas where areas where the police were to

begin with. In this way, human biases are encoded in the data: if police were more likely to

target a neighborhood before the system’s existence, they were more likely to identify crime

there. Algorithms that are not carefully engineered to consider this bias will identify the

pattern of higher crime without taking into account the higher surveillance, and will thus

suggest sending even more police presence to these areas. This can be expected to further
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influence future training data in a reinforcing feedback loop.

Risk assessment tools, despite promising less incarceration and more objective outcomes,

have been criticized as inaccurate and biased against minority groups [Ang+16b]. Even when

race is not used as an input to models, as in the widely analyzed Northpointe algorithm, other

variables which correlate with race can be unintentionally used as proxies [BS16]. For example,

when neighborhoods tend to have different racial concentrations, it is often possible for zip

code to act as a proxy for race.

In medicine, several examples have identified machine learning algorithms with apparently

high diagnostic accuracy that rely on correlations related to care decisions made by the human

medical team, which differ by severity of condition, rather than causal features in the data. Zech

et al. [Zec+18] find that CNNs trained to identify pneumonia in chest x-rays often make use of

features of the image to identify the hospital and department from which the x-ray was obtained.

Because hospitals and department (for example, specialty vs general, emergency vs outpatient)

vary in the prevalence and severity of cases they handle, knowing this information alone can be

predictive. However, using these features results in classifiers which rely on non-causal features

and therefore have poor performance out of distribution or under distribution shift. Caruana

et al. [Car+15] describe the application of machine learning models to a pneumonia dataset,

predicting probability of death, and show that in this application, the presence of asthma is

negatively associated with probability of death. This is highly counterintuitive, and can be

attributed to the fact that individuals with asthma receive much more aggressive treatment

compared to individuals without asthma because, in fact, their risks are higher. However,

again, without this human knowledge, machine learning is likely to pick up on correlations

which could cause the classifier to be inaccurate or even dangerous in deployment.

Patterns in data and the use of predictive machine learning have also led to concerns in

the realm of algorithmic lending. Bartlett et al. [Bar+19] find that while fintech mortgage

brokers exhibit much less discriminatory pricing relative to traditional lenders, some price

disparity persists between Hispanic/African-American and White borrowers, with minority

borrowers expected to pay slightly more than comparable white borrowers. The authors

hypothesize that this may be due to tendencies of minority groups to both solicit fewer
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competing mortgage offers and to live in specific neighborhoods. Thus, even without an

intention to discriminate, profit-maximizing algorithms in this case learn to extract higher rents

in minority neighborhoods.

The above examples raise concerns related to fairness, safety, and accountability. These

concepts can be difficult to mathematically define or may lack supporting data, making it

challenging to develop models that satisfy these objectives. Human experts, on the other

hand, can readily consider the sociological structures that generated the data. This can yield a

highly informative prior concerning which features are likely to be relevant, contain errors, or

relate to outcomes only through confounders. Additionally, understanding the source of the

data can allow human experts to understand its limits: identifying out of distribution data or

subpopulations where performance may not be guaranteed. These competing advantages, of

accuracy and objectivity for machines and external perspective for humans, should allow for a

highly productive collaboration between humans and ML. Indeed, much research has been

dedicated to developing systems that allow humans to harness the advantages of machine

learning while maintaining oversight with respect to properties outside of the machine’s

consideration. Unfortunately, many of these solutions are themselves limited due to the

restrictive assumptions they place on humans within the partnership. In the following section,

I categorize some existing approaches to human-ML partnerships by the role humans play and

highlight empirical weaknesses and theoretical gaps.

1.1 Human Roles in ML Collaboration

1.1.1 Humans as Auditors

Methods in this class train machine models in isolation to maximize an objective, generally ac-

curacy, then pass optimized models to a human-decision maker who issues the final prediction.

Introducing machine learning algorithms but allowing incumbent human decision-makers to

audit the predictions, at either a model or individual prediction level, seems at first a natural ap-

proach to ensure strict improvements. This allows for humans to accept high-accuracy machine

predictions when the models meet external criteria (e.g. safety, fairness, causal validity) to the
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Figure 1.1: Machine models pass a prediction to human decision-makers, who decide whether to accept or modify
the prediction. The machine receives no feedback from the human or the pipeline loss.

standard of human judgment and otherwise (1) default to the original human recommendation

or (2) appropriately modify machine predictions, allowing recommendations to be informed by

both machine and human advantages. Methods in this class focus on providing human experts

with tools to effectively audit and incorporate machine predictions.

Interpretable and Explainable Machine Learning A first set of techniques are interpretable

and explainable machine learning. Interpretable machine learning, in which a model is constrained

to belong to a class of functions simple enough that humans can follow the decision function

exactly from data input to prediction output, has been proposed as a widely-applicable solution

for human inspection of machine recommendations [Lip18; DVK17]. Explainable machine learning

attempts to do the same, but with proxy "explanations" of models: simple models fitted to

the output of complicated models, often in the locality of a given prediction. These models

often take the form of feature importance scores (often sparse, as in sparse linear classifiers)

[Tib96; UR16; RSG16; LL17; Smi+17], decision trees or decision lists [Ang+17; Lin+20; LBL16],

or prototype-based models [KRS14; Che+18].

Even assuming appropriate human usage, these approaches have a number of limitations.

Interpretable approaches require simple models, which are necessarily less flexible than black-

box models such as deep networks and random forests. Further, they often require that

the input features are themselves interpretable; even if highly accurate, a decision tree that
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considers individual pixel values is unlikely to yield an intuitive human understanding of

the model. Advocates for interpretable models have suggested that it is more common than

not that interpretable models exist with comparable predictive power to black box models

[SRP19], but finding these models often requires time-consuming feature engineering and

fundamentally hard constrained optimization relative to deep learning methods [Rud19].

Explanation methods suffer from the obvious setback that the simpler explanations do

not fully represent the more complicated model they seek to explain [Rud19]. Further, recent

work has also shown that there may exist many differing explanations of approximately equal

fidelity. This multiplicity allows users to draw a range of conclusions about the same model,

including that a model is more fair than it is in actuality [Aïv+19; LB20].

When interpretable models are provided to humans, still more complications arise. While

studies have shown that interpretable models and explanations can improve performance on

specific tasks relative to a non-interpretable benchmark [LBL16; KRS14; RSG16], it is less clear

that they can generally resolve the difficulty in human incorporation or evaluation of machine

predictions arises from an inability to reason about the machine’s decisions. Poursabzi-Sangdeh

et al. [PS+18] find that providing interpretable models hindered study participants’ ability

to identify and correct model errors relative to a black box benchmark and provided no

additional benefit in encouraging participants to use predictions when it would have improved

performance. Lage et al. [Lag+19] find inconsistent effects of increasing numerical proxies for

interpretability on response time and accuracy. Kaur et al. [Kau+20] conduct a user study of

trained data scientists and find that interpretability methods are ineffective in helping them

identify many common model problems.

Explanations have also been shown to increase the probability that humans yield to a

machine recommendation, even when the explanation is nonsensical [LT19] or the prediction is

incorrect [Ban+20]. Additional concerns arise when considering that explainability tools often

require careful tuning of hyperparameters to yield sound insights [Zha+19]. When deployed

under default settings, the explanations may be silently incongruous with the task the user has

in mind, and can therefore backfire, increasing confidence in incorrect suppositions about the

model internals.
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Post-hoc fairness metrics A second set of techniques are post-hoc fairness metrics that allow

human users to more effectively audit machine models and predictions for violations of specific

fairness definitions. This is particularly relevant for black box models, in which it is impossible

to know whether protected features such as age, gender, or race are being used in prediction,

but can also be relevant when protected features correlate with non-protected features. In

these cases, it is often possible for a model to achieve comparable outputs to a biased model

while using only proxy features for protected features. Adebayo et al. [Ade+16] creates a

toolkit for auditing models with respect to the relative contribution of input variables to the

model output. Unlike many explainability methods for variable importance, it does not require

access to the black box model. Bellamy et al. [Bel+18] implement a suite of output fairness

metrics for comparing model outputs across different definitions of fairness, of which there are

many [GP17]. Unfortunately, it has been shown that it is impossible to simultaneously satisfy

many of these fairness definitions [KMR16; FSV16], and the appropriate definition is often

application-specific and subjective [Sax+19]. A public debate between Propublica [Ang+16b]

and Northpointe [DMB16] regarding whether the latter’s risk assessment software exhibits

racial bias reveals that it is possible for an algorithm to be fully vetted with respect to fairness

by one party and violate the fairness perceptions of another. Without a more unified framework

in which the algorithmic fairness goal is aligned with the goal of the human decision-maker,

such audits may result in inconsistent outcomes.

More generally, all systems in which computers provide recommendations to human users

suffer from a number of obstacles related to broad human biases. Research consistently shows

that human decision-makers follow algorithmic recommendations less frequently than would

be optimal [DSM15; YWVW19; PS+18; LT19]. This phenomenon is not well understood, but has

been at least partially attributed to error intolerance [DSM15], a desire to retain agency [DSM18],

and expertise bias (the propensity of experts to overestimate their performance) [Log17]. Recent

work proposes that at least some of these factors relate to a decreasing sensitivity to forecasting

error: that is, the more inherent uncertainty exists in a prediction problem, the less people

believe that a machine would be capable of achieving high accuracy [DB20]. This results in

humans preferring their own more flexible predictions more often than is ideal.
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Further, when humans have the opportunity to reject or modify machine outputs, they

may (intentionally or unintentionally) do so inconsistently across groups due to personal

biases, potentially increasing rather than correcting for any unfairness present in the machine

predictions. In particular, research has shown that risk scores may exacerbate disparate out-

comes for minority groups in the hands of human users, as judges use the scores selectively to

justify harsh punishments for some groups while exercising the ability to overturn unfavorable

predictions for others [SD19; GC19a].

For all of these reasons, incorporating humans as auditors, without feedback to the machine

learning system, may result in reduced accuracy or unintended consequences resulting from

human interpretation and biases.

1.1.2 Humans as Fallback

Figure 1.2: Machine models decide whether or not to recuse themselves from decision-making. When machines do
choose to predict, humans do not participate in the process

Methods in this class accept that human decision-makers are flawed and time-constrained,

and that in many cases allowing humans to make the final decision on all predictions is

both inefficient and likely to result in worse outcomes with respect to accuracy and fairness.

However, because humans may have higher accuracy on specific examples, for example due to

access to side information or unavailability of training examples for the machine algorithm,

they allow for the machine model to choose not to issue a prediction, instead passing the
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prediction problem to a human expert.

Learning to Defer A particular technique in this "humans as fallback" class is composed of

two separate classifiers: one that learns to minimize loss for the classification problem and

one that learns on which examples to recuse itself [CDM16]. The earliest works of this kind

assumed a fixed machine classifier which minimizes loss over the entire data distribution

[MPZ18], as well as fixed human performance (here, simulated by a fixed neural network). This

setup does not allow for the classifier to adapt at all to the human expert; in situations where

the classifier has limited flexibility, this may decrease performance as the pipeline may be better

off learning to predict well on only those examples which will not be deferred to the human

decision-maker. Later works incorporate this flexibility, training the recuser and classifier

jointly with access to information on human decision-maker performance [WHK20; MS20]. An

alternate extension keeps the fixed machine classifier but allows for human performance to

vary with the number of examples deferred, as the human decision-maker can dedicate more

resources to a fewer number of cases [Rag+19].

However, all of these models are still limited in that either the human decision-maker or the

machine classifier is solely responsible for making the end decision. (While Wilder, Horvitz,

and Kamar [WHK20] theoretically allow for the machine classifier to vary predictions based on

input from a human, in practice deferred decisions are always equal to the human output.)

The human decision-maker does not receive assistance from the machine model. Moreover, the

machine model does not incorporate human feedback.

Further, in many domains humans are unlikely to allow for machines to make final

predictions without human approval, especially in domains in which the available data is known

to be insufficient to fully model the phenomenon of interest. For example, Neufeld [Neu17]

gives suggestions for public officials to audit and adapt recidivism prediction algorithms to the

goals of individual jurisdictions before deployment, and Chan and Siegel [CS19] discusses a

robust future of human oversight in radiology, despite AI superiority in specific tasks [Kil20].
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Figure 1.3: Humans generate the data on which computer algorithms are trained, but the machine does not
consider the possibility of feedback from decisions to humans.

1.1.3 Humans as Static Data Distribution

Until fairly recently, applications of machine learning to data generated by humans have

generally focused on modeling the learning environment as static. However, when machine

models recommend or incentivize specific behaviors, the deployment of a model can create

feedback loops. In recommendation systems, commonly these are positive feedback loops,

where the outputs reinforce the conclusions of the model. For example, popular items are

generally more likely to be recommended than unpopular items, and this greater exposure

tends over time to exacerbate this relationship [Man+20]. While this appears to make the

model better (more accurate) in the short run, in the long run it can lead to low system welfare,

reducing diversity and fairness among recommended items and disincentivizing new content

creation [Mla+20].

In other applications, incentives can shift the data distribution such that models are less

accurate in deployment than in training. This relates to the observation commonly known as

Goodhart’s law, that "when a measure becomes a target, it ceases to become a good measure".

One example of this is domains in which it is possible for users to “game" the system, changing

superficial features to improve their predictive outcomes without affecting the latent quality

the model attempts to measure; in these scenarios, negatively labeled points can with relatively

low cost move into positive regions of the classifier, creating a data distribution shift that

decreases the efficacy of the classifier. Particular concerns have been raised about this behavior

in the context of credit scoring and college admissions. Internet finance sites commonly

recommend strategies for credit card usage which manipulate the factors of the FICO credit

score [Har21] without changing the inherent creditworthiness of the individual. The recent
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college admissions scandal highlighted the many ways wealthy parents attempt to increase

their children’s prospects outside of improving their academic abilities [Boa19].

Alternatively, models may disincentivize investment in positive causal behaviors for certain

groups when the groups are heterogeneous in their features and only a single classifier is

deployed. Liu et al. [Liu+20] cite the example of college admissions, in which appropriate

SAT score cutoffs may vary by group. If the college sets a single cutoff and places a high

cost on false positives, the group with lower scores may be discouraged from investing in

academic qualifications. Had this not been the case, the college may have observed these points

as false negatives and been encouraged to lower the SAT score cutoff to capture more qualified

students. When the students do not invest, however, the model appears to have classified these

students correctly.

Furthermore, interpretable models may affect human choices even in situations where

the model itself does not directly determine users’ outcomes. Interpretable models can be

simulated by human users, thus users are able to imagine how different outcomes might be

possible with altered features. This may encourage users to improperly understand predictive

interpretable models prescriptively. For example, many nutritional recommendations are

based on epidemiological studies (due largely to the difficulty of rigorously controlling study

participants’ diets for any extended period of time). This has often led to population-level

correlations being interpreted causally, for example leading individuals to reduce dietary

cholesterol [CI04]. In fact, the causal link between dietary cholesterol and heart disease is

weak at best [Kra05], and there is evidence that dietary shifts away from cholesterol-containing

whole foods such as eggs resulted in higher consumption of processed grains, which have

themselves been associated with higher levels of heart disease [Yu+13].

These examples emphasize that when subjects are liable to alter their behaviors based on

model predictions, it is important that models encourage feature changes which are safe and

beneficial.
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Figure 1.4: The classifier is trained on an initial dataset to maximize predictive accuracy. As deployed classifiers
alter human behavior, the data distribution shifts, and the classifier must be retrained to maintain high predictive

accuracy.

1.1.4 Humans as Adversaries

In response to the above examples in which the subjects of classification algorithms are able

to change their input features, labels, or both, several methods have emerged which frame

classification as a game between the classifier and the subjects of the classifier. In strategic

classification, the classification problem is formed as a Stackelberg game, in which the classifier

has the goal of achieving maximum accuracy but must commit to a classifier before observing

the realized feature changes of the model subjects [Har+16; BS11]. Thus the goal of the classifier

is to anticipate feature changes, ensuring that the classifier is still maximally accurate after

subjects perform strategic modifications. Performative prediction explores a similar setup but

allows for repeated retraining and studies the conditions under which alternating steps by

classifier and classified can be expected to converge to a "performatively stable" equilibrium:

that is, a model which achieves optimal accuracy for the behavior it induces [Per+20].

A number of works have brought to light the ways in which strategic classification may

increase inequality among classified groups. For example, when the disadvantaged group has

a higher cost of modifying features relative to the advantaged population, the equilibrium

solution found using a strategic classification framework will tend to create errors that benefit

the advantaged population and hurt the disadvantaged population [HIV19]. It has additionally
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been shown that strategic classification results in a burden to subjects with positive true labels

(as positive individuals who wish to be classified positively must incur costs to optimally

change their features to meet the classifier’s expectations). Furthermore, this burden falls more

heavily on disadvantaged groups when they either tend to have lower feature values for the

same outcome or experience higher costs of modifying features [Mil+19].

Furthermore, strategic classification and performative prediction do not consider the quality

of the equilibrium outcome for members of the classified population. In strategic classification,

it is assumed that all feature changes are superficial and therefore the distribution of true

outcomes is unaffected by any modifications. Performative prediction, however, allows for

modifications to both input features and outcomes, and thus we should be concerned whether

or not the equilibrium outcomes are safe and preferable to the original set of outcomes.

1.1.5 Humans as Collaborators

Figure 1.5: Machine models provide information to a human decision-maker. The machine model receives
feedback based on the quality of the human output.

In this thesis, I argue that improving human interactions with machine learning models

requires that models take into account human decision processes, preferences, and biases.

In order to properly account for the performance of the entire machine-human pipeline,

machine models must "close the loop", considering the human outcomes that result from their

outputs. Optimization of machine parameters should be based on the pipeline loss, rather than

optimizing the machine model in isolation.
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Bansal et al. [Ban+21] demonstrate some simple ways in which optimizing machine models

for total pipeline expected utility may differ from optimizing for maximum machine-only

accuracy. The authors show that, for example, when humans reject low-confidence machine

predictions, it can be preferable for the machine model to sacrifice accuracy in low-confidence

regions to increase the number of high-confidence, high-accuracy examples. While these effects

are illustrated in controlled, stylized experiments in which mathematical models take the

place of human users, the disparity between machine-optimal model and human-optimal

model may be even more pronounced with actual human users. Foundational research in

behavioral economics and psychology reveals that humans make decisions less predictably

than mathematical calculations would suggest: for example, valuing risk and probabilities

inconsistently [Sim09; GLW06; TK74], arriving at different decisions when the same information

is provided in different ways [TK81], and overestimating their own performance [KD99].

Algorithms that consider only the static data and not the dynamic human response in these

situations will be unable to adapt if and when human behavior affects the optimal machine

output.

In this thesis, I aim to develop methodologies for incorporating human actions into the

machine training process. In particular, I provide frameworks and proof of concept experiments

for incorporating human behavior in machine learning pipelines in two settings: (a) learning

optimal computer-generated decision aids for human decision-makers (chapter 2) and (b)

learning predictive models that reliably lead to good outcomes when interpreted prescriptively

by users (chapter 3). I additionally demonstrate a vulnerability in a popular class of explainable

machine learning methods. This vulnerability allows explanations to be manipulated by the

party that trains the model, and more generally reveals that these explanations may not reliably

represent the model’s characteristics (chapter 4).

In what follows, I provide an overview of the problems addressed in the following chapters,

as well as key results, in the order in which they appear in the thesis.
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1.2 Human-Optimized Decision Aids

The goal of this chapter is to introduce a new paradigm for machine learning models, in which

the objective is to produce outputs which, rather than being predictively optimal in isolation,

are optimal when taking into account the quality of outcomes selected by human decision-

makers on the basis of the machine output. As machine learning models are increasingly

deployed to assist human decision-makers in high-stakes environments such as law [Kle+18],

social welfare [Cho+18], and medicine [Cha+20], examples continue to emerge suggesting that

predictions alone may result in a variety of human use patterns [SD19; Alb19; DAFC20].

Rather than provide human users with a single static prediction, the framework introduced

in this chapter (called "mind composed with machine", or M˝M) uses neural network archi-

tectures to learn representations that are optimized for human decision quality. In the same

way that representation learning is able to automatically extract and engineer features to reveal

to a simple (e.g. linear) classifier for high performance, I aim to realize similar results with a

human classifier [BCV13]. To achieve this, the pipeline models humans in-the-loop based on

actual human decision outcomes made in response to provided machine outputs. Outputs

from a parameterized machine network pass through a fixed visualization mechanism (e.g.

plots, feature highlighting), chosen to enable human respondents to distinguish parameter

variation in a way that is relevant to the task. Human respondents use this data representation

(either alone or in conjunction with the original data) to make decisions.

Ideally, the loss would flow directly from the quality of the human decisions back to the

machine model parameters, allowing for optimization of the full pipeline. However, since

human decisions are not differentiable (we cannot "backprop through them"), I introduce

a proxy network that is trained to reproduce human decisions on machine outputs. This

network is then frozen and used to train the parameters of the machine model to discover

new representations that are expected to improve human performance. As the representation

network is updated, the representation domain drifts from that on which the original human

queries were acquired, and so new human responses must be gathered periodically. In this way,

training alternates between the human proxy model and the machine representation-generating
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network until convergence.

I provide several experiments that vary in the form of representation, the level of human

interaction (synthetic, small survey group, large-scale Amazon Mechanical Turk), and the

target task. These experiments show that the M˝M framework is capable of generating

representations that enable humans to make good decisions, including in situations where

optimizing for a machine-only prediction would not produce useful aids for skeptical human

users.

1.3 Predictive Models that Encourage Improvement in Human Sub-

jects

Figure 1.6: There are several different predictors which achieve maximum accuracy on the dataset shown in (1),
in which light circles are positive examples and dark crosses are negative examples. The predictor in (2)

encourages subjects to make changes that shift points into areas with low data density, in which it is unclear that
positive outcomes are likely. The predictor in (3) encourages subjects to shift features in ways that have more data

evidence of positive outcomes.

The goal of this chapter is to develop a new objective for training predictive models that also

lead to safe and productive decisions when they are interpreted prescriptively. In particular,

I formulate a new form of regularization, called "lookahead", which seeks to anticipate the

actions that model subjects will take in response to model parameters and penalize models

when those actions do not result in improved outcomes with high probability. The highest

accuracy model on a given training dataset may be highly inaccurate outside of the training

distribution, for example because it relies on feature correlations which break outside of the

training set. When users are able to simulate models, they may be inclined to change their
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features to achieve better outcomes. However, if the model is invalid outside of the training

distribution, these feature shifts could result in arbitrarily bad outcomes for the users. A

more decision-minded approach would ensure that users’ anticipated feature modifications

continue to lie in regions for which there is sufficient training data to be confident in the

model prediction. Lookahead regularization seeks to balance between the two objectives of

predictive accuracy on the original training distribution and high decision quality. When a

dataset admits multiple high-accuracy predictive models, lookahead regularization can be

seen as a type of model selection, promoting the use of those models whose features are

likely to encourage positive outcomes for model subjects. Because I assume that the outcome

distribution is constant as input features vary (that is, feature modifications should be thought

of as "investments" by the subjects, rather than attempts at "gaming" the classifier), lookahead

regularization also relates to the literature on causality; models which rely on causal features

will generally be more likely to yield consistent improvements, and will thus be preferred over

models which rely on correlated, non-causal variables.

Lookahead regularization works by calculating the uncertainty and accompanying con-

fidence intervals associated with outcomes as model incentives encourage users to modify

features away from the original domain of the training data. Points for which high uncertainty

results in the confidence lower bound lying beneath the original outcome (that is, the outcome

given no strategic manipulation of features) are penalized, as we cannot be confident that these

manipulations will result in safe or positive outcomes for users. The algorithm alternately

optimizes three different components: the predictive model (with lookahead regularization), the

uncertainty model, and a propensity model used to weight data points to account for covariate shift.

The framework requires that the uncertainty model is differentiable and that the predictive

model is twice-differentiable (as the gradient is used to predict user actions) for gradient-based

optimization to be applied to the full pipeline.

I provide three experiments quantifying the accuracy-improvement tradeoffs that exist in

real datasets and showing that lookahead regularization can reliably improve decision quality

and in some cases also improve generalization accuracy, similarly to `2 regularization.
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1.4 Vulnerabilities in Explainability Methods

The goal of this chapter is to reveal vulnerabilites in a popular class of post-hoc explanation

methods, showing that these are not a reliable solution for enabling human-machine collabora-

tion. I develop a framework for training a black-box model that can successfully hide aspects

of the learned model from LIME [RSG16] and KernelSHAP [LL17]. LIME and KernelSHAP

are perturbation-based local explanation models, meaning that they work by querying a black box

model on a series of new, "perturbed" points around the explanation point of interest. Model

outputs at these locations are then weighted with a method-specific distance function and

used to train a local linear model, the coefficients of which are to be interpreted as feature

importances. These methods are frequently promoted as a means to audit model behavior,

both at individual points and over the entire domain, to determine whether model predictions

align with human intuition and/or human objectives.

My experiments demonstrate how an adversarial model developer can adopt a learned

model that may be biased or illegal while generating benign explanations of their choosing.

While this particular scenario is hopefully unlikely, I believe that this suggests broader concerns

with the family of perturbation-based explanation methods: without prior knowledge of the

model’s behavior, it may be difficult to choose an appropriate family of perturbations for the

auditing task. Different perturbation sets can lead to different explanations, only some provide

an accurate characterization of model behavior that is relevant to the auditing task. While

LIME allows for perturbation distributions to be defined flexibly, there is little guidance on how

best to set these parameters. I also outline some recent work in response to this discovery that

has attempted to create more robust perturbation-based explanations or to more theoretically

explore the limitations of LIME.
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Chapter 2

Learning Representations for Human

Decision-Makers

2.1 Introduction

Advancements in machine learning algorithms, as well as increased data availability and

computational power, have led to the rise of predictive machines that outperform human

experts in controlled experiments [Est+17; NR14; Tab+19b]. However, human involvement

remains important in many domains, [Liu+19b], especially those in which safety and equity

are important considerations [PON19; Bar+17] and where users have external information or

want to exercise agency and use their own judgment. In these settings, humans are the final

arbiters, and the goal of algorithms is to produce useful decision aids.

Given that learning algorithms excel at prediction, previous efforts in this space have largely

focused on providing predictions as decision aids. This has led to a large body of work on

how to make predictions accessible to decision makers, whether through models that are

interpretable [LBL16], or through explainable machine learning, in which machine outputs (and so

human inputs) are assumed to be predictions and are augmented with explanations [RSG16;

LL17]. We see two main drawbacks to these approaches. First, setting the role of machines to

’predict, then explain’ reduces humans to auditors of the ’expert’ machines [LT19]. With loss of

agency, people are reluctant to adopt predictions and even inclined to go against them [Ban89;
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Ban10; Yeo+17; DSM16; YWVW19; GC19b]. This leads to a degradation in performance of the

human-machine pipeline over time [Elm+15; DSM15; Log17; SD19]. More importantly, these

methods cannot adapt to the ways in which predictions are used, and so are unable to adjust

for systematic human errors or to make use of human capabilities.

Moving beyond predictions, in this paper we advocate for broader forms of learnable

advice and capitalize on a different strength of machine learning: the ability to learn useful

representations. Inspired by the success of representation learning, in which deep neural

networks learn data representations that enable ’simple’ (i.e., linear) predictors to perform well

[BCV13], we leverage neural architectures to learn representations that best support human

decision-makers [Kah11; Mil56]. Consider a multi-layered neural network N “ f ˝ φ composed

of a high-dimensional representation mapping φ and a predictor f . Our key proposal is to

remove the predictor and instead plug the human decision function h into the learning framework

to obtain h ˝ φ, allowing us to optimize the representation mapping to directly improve human

performance.

Our framework for optimizing h ˝ φ, which we refer to as ’Mind Composed with Machine’

(M˝M) contributes to work that seeks to bridge machine learning with human-centric de-

sign [Sut+20; Ven+03], and we make two key contributions in this regard. First, rather than

machines that predict or decide, we train models that learn how to reframe problems for a

human decision-maker. We learn to map problem instances to representational objects such as

plots, summaries, or avatars, aiming to capture problem structure and preserve user autonomy.

This approach of "advising through reframing" draws on work in the social sciences that

shows that the quality of human decisions depends on how problems are presented [Tho80;

CT92; GH95; KT13; Bro+13]. Second, rather than optimizing for machine performance, we

directly optimize for human performance. We learn representations of inputs for which human

decision-makers perform well rather than those under which machines achieve high accuracy.

In this, we view our approach as taking a step towards promoting machine learning as a tool

for human-intelligence augmentation [Lic60; Eng62].

The immediate difficulty in learning human-facing representations in M˝M is that h encodes

how actual human decision-makers respond to representational advice and so is not amenable
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to differentiation (we cannot "backprop through h.") To overcome this, we propose an iterative

human-in-the-loop procedure that alternates between (i) learning a differentiable surrogate

model of human decision-making at the current representation, and (ii) training the machine

model end-to-end using the current surrogate. For estimating the surrogate model we query

actual humans for their decisions given a current representation.

We demonstrate the M˝M framework on three distinct tasks, designed with two goals in

mind: to explore different forms of human-facing representations and to highlight different

benefits that come from the framework. The first experiment focuses on classifying point clouds

in a controlled environment. Here we show how the M˝M framework can learn scatter-plot

representations that allow for high human accuracy without explicitly presenting machine-

generated predictions (or decisions). The second experiment considers loan approvals and

adopts facial avatars as the form of representational advice. Here we demonstrate that the

framework can be applied at scale (we train using „ 5,000 queries to Amazon mTurk) and

also explore what representations learn to encode and how these representations are used

to support human decision-making. The third experiment is designed to demonstrate the

capacity of our framework to support decision-making in ways that outperform either human

or machine alone. Here we use a simulated environment to show how M˝M can learn a

representation that enables a human decision-maker to incorporate side-information (consider

e.g. a hospital setting, in which doctors have the option to run additional tests or query the

patient for information not included in the machine model), even when this information is

known only to the user.

On the use of facial avatars: In our study on loan approval we convey advice through

a facial avatar that represents an algorithmic assistant. We take care to ensure that users

understand this, and understand that the avatar does not represent a loan applicant. We also

restrict the avatar to carefully chosen variations on the image of a single actor. We are interested

to experiment with facial avatars as representations because facial avatars are high dimensional,

abstract (i.e., not an object that is in the domain studied), and naturally accessible to people.

We are aware of the legitimate concerns regarding the use of faces in AI systems and the

potential for discrimination [WC19] and any use of facial representations in consequential
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decision settings must be done with similar care.

2.2 Related Work

2.2.1 Modeling human factors

Recent studies have shown that the connections between trust, accuracy, and explainabil-

ity can be complex and nuanced. Human users tend to use algorithmic recommendations

less frequently than would be beneficial [GC19a; LT19], and user trust (as measured by

agreement with algorithmic recommendation) does not increase proportionately to model

accuracy [YWVW19]. Increasing model interpretability may not increase trust (as measured by

agreement with the model), and may decrease users’ ability to identify model errors [PS+18].

Further, even when explanations increase acceptance of model recommendations, they do not

increase self-reported user trust or willingness to use the model in the future [Cra+08]. In fact,

explanations increase acceptance of model recommendations even when they are nonsensical

[LT19] or support incorrect predictions [Ban+20]. At the same time, understanding human

interactions with machine learning systems is crucial; for example, whether or not users retain

agency has been shown to affect users’ acceptance of model predictions [DSM16], providing

support for our approach.

Recent work acknowledges that human decision processes must be considered when devel-

oping decision support technology [LCT20; Ban+19], and work in cognitive science has shown

settings in which accurate models of human decision-making can be developed [Bou+19].

Trained models of human decision-making have been successfully used to enhance the perfor-

mance of reinforcement learning (RL) agents relative to that of agents trained with self-play

when the evaluation requires engaging with humans. This is shown both in settings where

the human interaction involves teamwork between human and computer agent [Car+19] and

in settings where the computer agent attempts to adversarially manipulate human actions

[DND20]. Abramson et al. [Abr+20] additionally train models that successfully imitate human

evaluation of machine performance in subjective human-AI cooperative tasks, suggesting that

it may be possible to tune models for human cooperation without additional human queries.
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2.2.2 Humans in the loop

Despite much recent interest in training with "humans in the loop," experimentation in this

setting remains an exceptionally challenging task. The field of interactive machine learning

has successfully used human queries to improve machine performance in tasks where human

preferences determine the gold standard [Ame+14], but human-in-the-loop training has been

less productive in adapting predictive machines to better accommodate human decision-makers.

In the field of interpretable machine learning, optimization for human usage generally relies

on proxy metrics of human interpretability in combination with machine accuracy [Lag+19],

with people only used to evaluate performance at test time. A few exceptions have allowed

human feedback to guide model selection among similarly-accurate machine-optimized models

[RHDV17; Lag+18], incorporating human preferences. In regard to using human responses as

part of a feedback loop to a learning system, we are only aware of Lage et al. [Lag+18], and the

authors actually abandoned attempts to train with mTurkers.

2.2.3 Collaboration with machine arbiters

A related field considers learning when a machine learning system should defer to a human

user instead of making a prediction. This setting, unlike ours, allows the machine to bypass a

human decision-maker [MPZ18; MS20; WHK20]. In this setting, human accuracy is considered

to be fixed and independent of the machine learning system, and in evaluation human decisions

are either fully simulated or based on previously gathered datasets.

2.3 Method

In a typical setting, a decision-making user is given an instance x P X . For clarity, consider

X “ Rd. Given x, the user must decide on an action a P A. For example, if x are details of a

loan application, then users can choose a P tapprove,denyu. Each instance is also associated

with a ground-truth outcome y P Y , so that px, yq is sampled from an unknown distribution

D. We assume that users seek to choose actions that minimize an incurred loss `py, aq, with

` also known to the system designer; e.g., for loans, y denotes whether a loan will be repaid.
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Figure 2.1: Left: The M˝M framework. The neural network learns a mapping φ from inputs x to representations
z, such that when z is visualized through ρ, representations elicit good human decisions. Right: Training
alternates between (A) querying users for decisions on the current representations, (B) using these to train a
human surrogate network ĥ, and (C) re-training representations.

We consider the general class of prediction policy problems [Kle+15], where the loss function is

known and the difficulty in decision-making is governed by how well y can be predicted.

We denote by h the human mapping from inputs to decisions or actions. For example, a “ hpxq

denotes a decision based on raw instances x. Other sources of input such as explanations e or

representations can be considered; e.g., a “ hpx, ŷ, eq denotes a decision based on x together

with prediction ŷ and explanation e. We allow h to be either deterministic or randomized,

and conceptualize h as either representing a particular target user or a stable distribution

over different kinds of users. We assume the mapping h is fixed (if there is adaptation to a

representation, then h can be thought of as the end-point of this adaptation).

Crucially, we also allow machines to present users with machine-generated advice γpxq, with

human actions denoted as a “ hpγpxqq. Users may additionally have access to side information s

that is unavailable to the machine, in which case user actions are a “ hpγpxq, sq.1 Advice γpxq

allows for a human-centric representation of the input, and we seek to learn a mapping γ from

inputs to representations under which humans will make good decisions. The benchmark for

evaluation is the expected loss of human actions given this advice:

EDr`py, aqs, for a “ hpγpxqq. (2.1)

1This notion of machine-generated advice generalizes both explanations (as γ “ px, ŷ, eq, where e is the
explanation) and deferrals (as γ “ px, ȳq, where ȳ P t0, 1, deferu, with a human model that always accepts
t0, 1u) [MPZ18].
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2.3.1 Predictive advice

A standard approach provides human users with machine-generated predictions, ŷ “ f pxq,

where f is optimized for predictive accuracy and there is a straightforward mapping from

predictions to prescribed actions ŷ Ñ ŷa (e.g., for some known threshold, ’probability of

returning loan’ corresponds to ’approve loan’). This is a special case of our framework where

advice γ “ px, ŷq, and the user is modeled as a “ ŷa “ hpx, ŷq. The predictive model is trained

to minimize:

min f EDr`py, ŷaqs, for ŷ “ f pxq. (2.2)

In this approach, predictions f pxq are useful only to the extent that they are followed.

Moreover, predictions provide only a scalar summary of the information in x, and limit the

degree to which users can exercise their cognitive and decision-making capabilities; e.g., in the

context of side information.

2.3.2 Representational advice

In M˝M, we allow advice γ to map inputs into representations that are designed to usefully

convey information to a human decision-maker (e.g., a scatterplot, a compact linear model, or

an avatar).2 Given a representation class Γ we seek a mapping γ P Γ that minimizes expected

loss minγPΓ EDr`py, hpγpxqqqs. With a training set S “ tpxi, yiqu
m
i“1 sampled from distribution D,

and with knowledge of the human mapping h, we would seek γ to minimize the empirical loss:

min
γPΓ

m
ÿ

i“1

`pyi, aiq, for ai “ hpγpxiqq, (2.3)

possibly under some form of regularization (more details below). Here, Γ needs to be rich

enough to contain flexible mappings from inputs to representations while also generating

objects that are accessible to humans. To achieve this, we decompose algorithmic advice

γpxq “ ρpφθpxqq into two components:

2We intend representations to generalize rather than oppose both predictive advice and explanations. Our
primary concern is outcome quality, and in some settings predictions and explanations may be effective represen-
tations for supporting good human decisions. However, we imagine that a broader class of representations can
convey more information, with representations exhibiting some correlation to inputs even after conditioning on
prediction.
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‚ φθ : Rd Ñ Rk is a parameterized embedding model with learnable parameters θ P Θ, that

maps inputs into vector representations z “ φθpxq P Rk for some k ą 1, and

‚ ρ : Rk Ñ V is a visualization component that maps each z into a visual object v “ ρpzq P V

(e.g., a scatterplot, a facial avatar).

This decomposition is useful because for a given application of M˝M we can now fix the

visualization component ρ, and seek to learn the embedding component φθ . Henceforth, it is

convenient to fold the visualization component ρ into the human mapping h, and write hpzq to

mean hpρpzqq, for embedding z “ φθpxq. The training problem (2.3) becomes:

min
θPΘ

m
ÿ

i“1

`pyi, aiq, for ai “ hpφθpxiqq, (2.4)

again, perhaps with some regularization. By solving (2.4), we learn representations that

promote good decisions by the human user. See Figure 2.1 (left).

Regularization

Regularization may play a number of different roles: as with typical L2 regularization, it may

be used to reduce overfitting of the representation network, encouraging representations that

generalize better to new data points. It may also be used to encourage some desired property

such as sparsity, which may be beneficial for many visualizations, given the limited ability of

human subjects to process many variables simultaneously. Regularization can also be used in

our framework to encode domain knowledge regarding desired properties of representations,

for example when the ideal representation has a known mathematical property. We utilize this

form of regularization in Experiments 1 and 2.

Choosing appropriate representations

Determining the form of representational advice that best serves expert decision-makers in any

concrete task will likely require in-depth domain knowledge and should be done with care. A

variety of tools are available to designers with the intent of achieving a target behavior such as

good decision outcomes [LHS10], and some may be more appropriate for a given task than

others. At a minimum, we imagine that: i) User goals and system goals should be aligned.
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Users should opt in to the system with knowledge of its methods and goals rather than being

blindly manipulated [BN99]. 2) Representations must be in some sense "faithful" to the input;

they should not seek to deceive users into believing something that is not true.

The characterization of varying visualizations’ effects on decision-making is sufficiently

elaborate as to warrant its own field of study [LM07], and thus we focus here on learning to

adapt a particular choice of representation from within a set of "approved" representational

forms.

2.3.3 Training procedure, and human proxy

We adopt a neural network to model the parameterized embedding φθpxq, and thus advice

γ. The main difficulty in optimizing (2.4) is that human actions taiu
m
i“1 depend on φθpxq via

an unknown h and yet gradients of θ must pass through h. To handle this, we make use

of a differentiable surrogate for h, denoted ĥη : Rk Ñ Γ with parameters η P H. We learn this

surrogate, referring to it as "h-hat."

The M˝M human-in-the-loop training procedure alternates between two steps:

1. Use the current θ to gather samples of human decisions a “ hpzq on inputs z “ φθpxq and

fit ĥη .

2. Find θ to optimize the performance of ĥη ˝ φθ for the current η, as in (2.4).

Algorithm 2.1: Alternating optimization algorithm
1: Initialize θ “ θ0

2: repeat

3: x1, . . . , xn „ S {Sample n train examples}

4: zi Ð φθpxiq @ i P rns {Generate representations}

5: ai Ð hpρpziqq @ i P rns {Query human decisions}

6: T “ tpzi, aiqu
n
i“1

7: η Ð argminη1 ET r`pa, ĥη1pzqqs {Train ĥ}

8: θ Ð argminθ1 ES r`py, ĥηpφθ1pxqqqs {Train φ}

9: until convergence
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Figure 2.1 (right) illustrates this process and pseudocode is given in Algorithm 2.1. Since

ĥ is trained to be accurate for the current embedding distribution rather than globally, ĥ is

unlikely to exactly match h. However, for learning to improve, it suffices for ĥ to induce

parameter gradients that improve loss (see Figure A.3 in the Appendix). Still, h-hat must be

periodically retrained because as parameters θ change, so does the induced distribution of

representations z (and ĥη may become less accurate).

Initialization of θ

In some applications, it may be useful to initialize φ using a machine-only model with

architecture equal to ĥpφq. In applications in which the human must attend to the same features

as the machine model, this can help to focus φ on those features and minimize exploration of

representations which do not contain decision-relevant information. This can be particularly

useful when the representation lies within the domain of the data (e.g. plots, subsets). However,

in domains in which it is possible for the machine-only setup to produce a high-accuracy

model which relies on features inaccessible to human users (consider, for example, adversarial

features in image recognition) this may focus φ too narrowly too early, making it more difficult

to discover representations useful to humans. We note that the machine-only model with

architecture equal to ĥpφq may be otherwise useful in model selection: the architecture of

φ may be verified in a machine-only setting to be sufficiently flexible to achieve a desired

representation distribution, and the architecture of ĥ may be similarly verified to be capable of

mapping a set of representation distributions to a set of binary answers with high accuracy.

When a desired initial distribution of representations is known, φ can be positioned as the

generator of a Wasserstein GAN [ACB17]. In this case, the labels are not used at all, and thus

the initial mapping is used only to achieve a certain coverage over the representation space

and not expected to encode feature information from a machine-only model.

2.3.4 Handling Side Information

One way humans could surpass machines is through access to side information s that is informa-

tive of outcome y yet unknown to the machine. The M˝M framework can be extended to learn
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a representation γpxq that is optimal conditioned on the existence of s, despite the machine

having no access to s. At test time, the human has access to s, and so action a “ hpφpxq, sq. The

observation is that the ground-truth outcome y, which is available during training, conveys

information about s: if s is informative of y, then there exist x for which the outcome y

varies with s. Thus px, yq is jointly informative of s: for such x, knowing y and modeling the

mechanism y “ gxpsq by which s affects y for a given x would allow reverse-engineering the

value of s as g´1
x pyq. Although s cannot generally be exactly reconstructed without supervision

on s (e.g. due to inexact modeling or non-invertibility of gx), in some cases px, yq can be used

to make useful inference about s. Intuitively, note that for a given x, multiple y P ty1 . . . yku

values correspond to multiple s values. If h varies with s, without access to s or y, the best ĥpxq

we can learn is Es„Srhpx, sqs. With varied yi which correspond to different values of s, we can

learn ĥpx, yiq “ Es„S|y“yi
rhpx, sqs for each yi, which allow ĥ to incorporate information about s.

2.4 Experimental Results

We report the results of three distinct experiments. Our intent is to demonstrate the breadth

of the framework’s potential, and the experiments we present vary in the task, the form of

advice, their complexity and scale, and the degree of human involvement (one experiment

is simulated, another uses thousands of mTurk queries). We defer some of the experimental

details to the Appendix.

Model Selection

Experimenting with people in-the-loop is expensive and time-consuming, making standard

practices for model selection such as cross-validation difficult to carry out. This necessitates

committing to a certain model architecture at an early stage and after only minimal trail-and-

error. In our experiments, we rely on testing architectures in a machine-only setting with

various input and output distributions to ensure sufficient flexibility to reproduce a variety

of potential mappings, as well as limited human testing with responses from the authors.

Our model choices produced favorable results with minimal tuning. We believe this suggests
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some useful robustness of the approach to model selection choices, but future work would be

beneficial to better understand sensitivity to model selection.

2.4.1 Decision-compatible scatterplots

In the first experiment, we focus on learning useful, low-dimensional representations of high-

dimensional data, in the form of scatterplots. To make high-dimensional data more accessible

to users, it is common practice to project into a low-dimensional embedded space and reason

based on a visualization, for example a scatter plot or histogram. The choice of how to project

high-dimensional data into a lower-dimensional space is consequential to decision-making

[KAH19], and yet standard dimensionality-reduction methods optimize statistical criteria

(e.g., maximizing directional variation in PCA) rather than optimizing for success in user

interpretation. The M˝M framework learns projections that, once visualized, directly support

good decisions.

We consider a setting where the goal is to correctly classify objects in p-dimensional space,

p ą 2. Each x is a p-dimensional point cloud consisting of m “ 40 points in Rp (so x P R40p).

Point clouds are constructed such that, when orthogonally projected onto a particular linear

2D subspace of Rp, denoted V, they form the shape of either an ‘X’ or an ‘O’, this determining

their true label y. All directions orthogonal to V contain similarly scaled random noise. In the

experiment, we generate 1,000 examples of these point clouds in 3D.

Subjects are presented with a series of scatterplots, which visualize the point clouds for

a given 2D projection, and are asked to determine for each point cloud its label (‘X’ or ’O’).

Whereas a projection onto V produces a useful representation, most others do not, including

those learned coming from PCA. Our goal is to show that M˝M can use human feedback

to learn a projection (φ) that produces visually meaningful scatterplots (ρ), leading to good

decisions.

Model

Here, representation φ plays the role of a dimensionality reduction mapping. We use d “ 3

and set φ to be a 3x2 linear mapping with parameters θ as a 3x2 matrix. This is augmented
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Figure 2.2: 2D representations of point clouds. (A) Points in their original 3D representation give little visual
indication of class (X or O). (B) Shapes become easily distinguishable when projected onto an appropriate subspace
(shown in bold). (Bottom) Learned 2D representations after each training round (‘X’, ‘O’ are overlaid). The
initial 2D projection (round 1), on which a machine-classifier is fully accurate, is unintelligible to people. However,
as training progresses, feedback improves the projection until the class becomes visually apparent (round 4), with
very high human accuracy.

with an orthogonality penalty φTφ´ I to encourage matrices which represent rotations. For

the human proxy model, we want to be able to roughly model the visual perception of subjects.

For this, we use for ĥ a small, single-layer 3x3 convolutional network, that takes as inputs a

soft (differentiable) 6x6 histogram over the 2D projections.

For training, we use a fixed number of epochs (500 for ĥ and 300 for φ) with base learning

rates of .07 and .03, respectively, that increase with lower accuracy scores and decrease with

each iteration. We have found these parameters to work well in practice, but observed that

results were not sensitive to their selection.
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Results

We recruited 12 computer science students to test the M˝M framework.3 Participants watched

an instructional video and then completed a training and testing phase, each having five rounds

(with intermittent model optimization) of 15 queries to label plots as either ‘X’ or ‘O’. The

results we provide refer to the testing phase. Round 1 includes representations based on a

random initialization of model parameters and therefore serves as a baseline condition. The

results show that participants achieve an average accuracy of 68% in round 1, but improve

to an average accuracy of 91% in round 5, a significant improvement of 23% (p ă .01, paired

t-test) with 75% of participants achieving 100% accuracy by round 5. Subjects are never given

machine-generated predictions or feedback, and improvement from training round 1 to testing

round 1 is negligible (3%), suggesting that progress is driven solely by the successful reframing

of problem instances (not humans getting better at the task).

Figure 2.2 demonstrates a typical example of a five-round sequential training progression.

Initially, representations produced by M˝M are difficult to classify when θ is initialized

arbitrarily. (This is also true when θ is initialized with a fully accurate machine-only model.)

As training progresses, feedback regarding subject perception gradually rotates the projection,

revealing distinct class shapes. Training progress is made as long as subject responses carry

some machine-discernible signal regarding the subject’s propensity to label a plot as ‘X’ or ‘O’.

M˝M utilizes these signals to update the representations and improve human performance.

2.4.2 Decision-compatible algorithmic avatars

For this experiment we consider a real decision task and use real data (approving loans), train

with many humans participants (mTurkers), and explore a novel form of representational

advice (facial avatars). Altogether we elicit around 6,000 human decisions for training and

evaluation. Specifically we use the Lending Club dataset, focusing on the resolved loans, i.e.,

loans that were paid in full (y “ 1) or defaulted (y “ 0), and only using features that would

3All experiments are conducted subject to ethical review by the university’s IRB.
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Figure 2.3: Different facial avatars, each avatar representing an algorithmic assistant and not a loan applicant,
and trained to provide useful advice through facial expressions. The leftmost avatar is set to a neutral expression
(z “ 0).

have been available to lenders at loan inception.4 The decision task is to determine whether to

approve a loan (a “ 1) or not (a “ 0), and the loss function we use is `py, aq “ 1ty‰au.

Goals, expectations, and limitations

Whereas professional decision-makers are inclined to exercise their own judgment and deviate

from machine advice [SD19; DAFC20], mTurkers are non-experts and are likely to follow

machine predictions [LT19; YWVW19].5 For this reason, the goal of the experiment is not to

demonstrate performance superiority over purely predictive advice, nor to show that mTurkers can

become expert loan officers. Rather, the goal is to show that abstract representations can convey

predictive advice in a way that requires users to deliberate, and to explore whether humans use

learned representations differently than they use machine predictions in making decisions. In

Appendix A.1 we further discuss unique challenges encountered when training with mTurkers

in the loop.

Representations

With the aim of exploring broader forms of representational advice, we make use of a facial

avatar, framed to users as an algorithmic assistant— not the recipient of the loan —and communi-

4https://www.kaggle.com/wendykan/lending-club-loan-data

5We only know of Turk experiments where good human performance from algorithmic advice can be attributed
to humans accepting the advice of accurate predictions [LCT20].
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Figure 2.4: Human accuracy in the algorithmic advice condition (‘avatar advice’) consistently increases over
rounds. Performance quickly surpasses the ‘no advice’ (data only) condition, and steadily approaches performance of
users observing algorithmic predictions (‘predictive advice’), which in itself is lower than machine-only performance
(‘machine accuracy’). Human accuracy falls when faces are shuffled within predicted labels of ĥ, confirming that
faces convey useful, multi-variate information.

cating through its facial expressions information that is relevant to a loan decision. The avatar

is based on a single, realistic-looking face capable of conveying versatile expressions (Figure 2.4

includes some examples). Expressions vary along ten dimensions including basic emotions

[DTM14], social dimensions (e.g., dominance and trustworthiness [DTM14; Tod+08]), and subtle

changes in appearance (e.g., eye gaze). Expressions are encoded by the representation vector z,

with each entry corresponding to a different facial dimension. Thus, vectors z can be thought

of as points in k-dimensional ‘face-space’ in which expressions vary smoothly with z.

We are interested in facial avatars because they are abstract (i.e., not in the domain of the

input objects) and because they have previously been validated as useful representations of

information [Che73; LD90]. They are also high-dimensional representations, and non-linear

in the input features; that is, faces are known to be processed holistically with dependencies

beyond the sum of their parts [Ric+09]. Faces also leverage innate human cognition—immediate,

effortless, and fairly consistent processing of facial signals [Iza94; Tod+08; FJ16].

Through M˝M, we learn a mapping from inputs to avatars that is useful for decision-

making. Training is driven completely by human responses, and learned expressions reflect

usage patterns that users found to be useful, as opposed to hand-coded mappings as in Chernoff

faces [Che73].
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Model and training

We set φ to be a small, fully connected network with a single 25-hidden unit layer, mapping

inputs to representation vectors z P R9. The visualization component ρpzq creates avatars

by morphing a set of base images, each corresponding to a facial dimension, with z used to

weight the importance of each base image.6,7 For regularization, we additionally consider

the loss of a decoder network implemented by an additional neural network, which attempts

to reconstruct the input x from the representation. This term encourages points in face-

space to preserve distances in instance-space at the cost of some reduction in accuracy. This

promotes representations that carry more information about inputs than that implied by simple

predictions. For ĥ we use a small, fully connected network with two layers of size 20 each,

operating directly on representation vectors z.

In collecting human decisions for training ĥ, mTurkers were queried for their decisions

regarding the approval or denial of loan applications.8 New users were recruited at each round

to obtain reports that are as independent as possible and to control for any human learning.

Each user was queried for a random subset of 40 training examples, with the number of users

chosen to ensure that each example would receive multiple responses (w.h.p.). For predictive

purposes, binary outputs were set to be the majority human response. Each loan application

was presented using the most informative features as well as the avatar. We did not relate to

users any specific way in which they should use avatar advice, and care was taken to ensure

users understood that the avatar does not itself represent an applicant.9 Appendix A.2.2 provides

additional experimental details.

6Morphed images were created using the Webmorph software package [DT16].

7All base images correspond to the same human actor, whose corresponding avatar was used throughout the
experiment.

8As all users share the same representation mapping, we restrict to US participants to promote greater cross-user
consistency.

9Respondents who did not understand this point in a comprehension quiz were not permitted to complete the
task.
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Results

Our results show that M˝M can learn representations that support good decisions through a

complex, abstract representation, and that this representation carries multivariate information,

making it qualitatively different than prediction. As benchmarks, we consider the accuracy

of a trained neural network model N pxq having architecture equal to ĥ ˝ φ (but otherwise

unrelated to our human experiments), as well as human performance under predictive advice

γpxq “ ỹ P r0, 1s where ỹ is the predicted probability of N pxq. We also consider a condition

with ‘shuffled’ avatar advice, which we describe below.

Figure 2.4 shows the training process and resulting test accuracy (data is balanced so

chance « 0.5).10 At first, the (randomly-initialized) representation φ produces arbitrary avatars,

and performance in the avatar condition is lower than in the no-advice condition. This indicates

that users take into account the (initially uninformative) algorithmic advice. As learning

progresses, user feedback accumulates and the accuracy from using the M˝M framework

steadily rises. After six rounds, avatar advice contributes to a boost of 11.5% in accuracy

(0.69) over the no-advice condition (0.575), reaching 99% of the accuracy in the predictive

advice condition (0.70). Performance in the predictive advice condition does not reach machine

accuracy (0.73), showing that not all subjects follow predictive advice.

Analysis. We additionally explore what the representations learn, and how humans incorpo-

rate them into predictions. One possible concern is that despite regularization, learned avatars

may simply convey stylized binary predictions (e.g., happy or sad faces). To explore this, we

added a ‘shuffled’ condition in which faces are shuffled within predicted labels of ĥ. As shown

in Figure 2.4, shuffling degrades performance, confirming that faces convey more information

than the system’s binary prediction. Moreover, the avatars do not encode a univariate (but

not binary) prediction, and humans do not use the information in the same way that they use

numeric predictions: (i) no single feature of z has a correlation with human responses ĥpzq

of more than R2 “ 0.7, (ii) correlations of average human response with features z are low

(R2 ď 0.36 across features) while responses in the predictive condition have R2 “ 0.73 with the

10Results are Statistically significant under one-way ANOVA, Fp3, 196q “ 2.98, p ă 0.03.
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predictions, and (iii) users in the avatar condition self-report using the data as much or more

than the advice 83% of the time, compared to 47% for the predictive advice condition.

At the same time, z preserves important information regarding x. To show this, we train

linear models to predict from z each of the data features: interest rate (rate), loan term (term),

debt to income ratio (dti), negative public records (rec), annual income (inc), employment

length (emp). Results show that z is highly informative of rate (R2 “ 0.79) and term (0.57),

mildly informative of rec (´0.21), inc (0.23), and emp (0.13), and has virtually no predictive

power of dti (´0.03). Further inspecting model coefficients reveals a complex pattern of how z

carries information regarding x (see Appendix A.2.2 for all coefficients). E.g.: trustworthiness

plays an important part in predicting all features, whereas anger is virtually unused; happiness

and sadness do not play opposite roles—happiness is significant in term, while sadness is

significant in rate; and whereas emp is linked almost exclusively to age variation, inc is

expressed by over half of the facial dimensions.

Because representations are driven solely by performance, any analysis of how they are

used is necessarily post hoc. In our setting, with no individualized user-representation training

loop, a reasonably hypothesis is that avatars help convey how a given data point relates to the

full training set of data points. For example, extreme avatars suggest outliers, either positive or

negative, and help users both to evaluate those data points and to gain a better understanding

of the data distribution (e.g. means, deviations) earlier in the decision process. Again, we do

not suggest that avatars are the ideal data representation for this task. Avatars may, however,

be exceptionally useful in scenarios where engaging some level of emotion or social reasoning

(e.g. retirement planning [Her+11]) has been shown to lead to better decisions than data alone.

2.4.3 Incorporating side information

To demonstrate additional capabilities of M˝M we show that the framework can also learn

representations that allow a decision maker to leverage side information that is unavailable to

the machine. Access to side information is one advantage humans may have over machines,

and our goal here is to show the potential of representations in eliciting decisions whose quality

surpasses that attainable by machines alone. We adopt simulation for this experiment because
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it is challenging for non-experts (like mTurkers) to outperform purely predictive advice, even

with access to additional side information. Simulation also allows us to systematically vary the

synthetic human model, and we consider four distinct models of decision-making.

We consider a medical decision-making task in which doctors must evaluate the health

risk of incoming ER patients and have access to a predictive model. 11 Here, we focus on

compact, linear models, and view the model coefficients along with the input features as the

representation, affecting the decision process of doctors. Doctors additionally have access to

side information that is unavailable to the model and may affect their decision. Our goal is to

learn a model that can account for how doctors use this side information.

Setup

There are four primary binary features x P t0, 1u4: diabetes (xd), cardiovascular disease (xc),

race (xr), and income level (xi). An integer ’side-information’ variable s P t0, 1, 2, 3u encodes

how long the patient’s condition was allowed to progress before coming to the ER and is

available only to the doctor. We assume ground-truth risk y is determined only by diabetes,

cardiovascular disease, and time to ER, through y “ xd ` xc ` s, where xd, xc, s are sampled

independently. We also assume that xr, xi jointly correlate with y (e.g. due to disparities in

access), albeit not perfectly, so that they carry some but not all signal in s, whereas xd, xc do

not. In this way, xr and xi offer predictive power beyond that implied by their correlations with

known health conditions (xd, xc), but interfere with use of side information.

Specifically, a latent variable l0 „ N p.3, .1q introduces a low correlation between xi and xr

by setting a common mean for their Bernoulli probabilities l1, l2:

• l1, l2 „ Unifpmaxpl0 ´ .3, 0q, minpl0 ` .3, 1qq

• xi „ Bernoullip1´ l1q

• xr „ Bernoullip1´ l2q

An additional latent variable l3 provides a similar correlation between xc and xd, which

also correlate, respectively, with xi and xr:

11MDCalc.com is one example of a risk assessment calculator for use by medical professionals.
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Figure 2.5: Relationship of variable correlations in the side information experiment

• l3 „ Unifp.5, .7q

• xc „ Bernoullipl3 ` xiq

• xd „ Bernoullipl3 ` xrq

A directed graph showing the variable correlations is shown in Figure 2.5.

Side information s is highly correlated with xr and xi but noisy: s is drawn from a normal

distribution centered at xr ` xi before rounding to an integer value between 0 and 3.

• scont „ N pxr ` xi, .5q

• s “ maxp0, minp3, roundpscontqqq

The integer outcome variable y is the sum of xc, xd, and s. The binary outcome variable ybin

is thresholded at y ą 3.

We model a decision maker who generally follows predictive advice ŷ “ fwpxq “ xw, xy,

but with the capacity to adjust the machine-generated risk scores at her discretion and in a

way that depends on the model through its coefficients w. We assume that doctors are broadly

aware of the correlation structure of the problem, and are prone to incorporate the available

side information s into ŷ if they believe this will give a better risk estimate. We model the

decisions of a population of doctors as incorporating s additively and with probability that

decreases with the magnitude of either of the coefficients wr or wi. We refer to this as the or

model and set horpx, s, wq “ ŷ` Ipwq¨ s with Ipwq91{pmaxtwr, wiuq. We also consider simpler

decision models: always using side information (halways), never using side information (hnever),

and a coarse variant of hor using binarized side information, hcoarse “ ŷ` Ipwq¨ 2¨1ts ě 2u.
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M˝M hpMachineq
Or 1.0 .894
Coarse Or .951 .891
Never .891 .891
Always 1.0 .674

Table 2.1: Performance of M˝M with side information on four synthetic human models. Machine-only perfor-
mance is 0.890.

Model

The representation ρpzq consists of x, coefficients w (these are learned within φ), and ŷ “ xw, xy.

12 The difficulty in optimizing φ is that s is never observed, and our proposed solution is

to use y (which is known at train time) as a proxy for s when fitting ĥ, which is then used

to train φ (see Section 2.3). Since x and y jointly carry information regarding s, we define

ĥpx, y; wq “ xw, xy ` ŝpx, yq, where ŝpx, yq “ v0y`
ř4

j“1 vjxj, and v are parameters. Note that

it is enough that ŝ models how the user utilizes side information, rather than the value of s

directly; s is never observed, and there is no guarantee about the relation between ŝ and s.

Results

We compare M˝M to two other baselines: a machine-only linear regression, and the human

model h applied to this machine-only model, and evaluate performance on the four synthetic

human models (hor, hcoarse, hnever, and halways). Both M˝M and the baselines use a linear model

but the model in M˝M is trained to take into account how users incorporate side information.

For evaluation, we consider binarized labels ybin “ 1ty ą 3u.

We report results averaged over ten random data samples of size 1,000 with an 80-20

train-test split. As Table 2.1 shows, due to its flexibility in finding a representation that allows

for incorporation of side information by the user, M˝M reaches 100% accuracy for the or and

always decision models. M˝M maintains its advantage under the coarse-or decision model

(i.e., when doctors use imperfect information), and remains effective in settings where side

information is never used. The problem with the baseline model is that it includes non-zero

12In an application, the system should convey to users that it is aware they may have side information.
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coefficients for all four features. This promotes accuracy in a machine-only setting, and in

the absence of side information. Given this, the or and coarse-or decision models only very

rarely introduce the side information— and this is indeed the best they can do given that

the machine model uses all four variables. In contrast, for the always decision model the

user always introduces side information, causing over-counting of the time to ER effect on

patient outcomes (because of correlations between s and xr and xi). In contrast, M˝M learns a

linear model that is responsive to the human decision-maker: for example, including non-zero

coefficients for only xd and xc with the or decision model.

2.5 Discussion

We have introduced a novel learning framework for supporting human decision-making.

Rather than view algorithms as experts, asked to explain their conclusions to people, we

position algorithms as advisors whose goal is to help humans make better decisions while

retaining human agency. The M˝M framework learns to provide representations of inputs

that provide advice and promote good decisions. We see this as a promising direction for

promoting synergies between learning systems and people and hope that by tapping into innate

cognitive human strengths, learned representations can improve human-machine collaboration

by prioritizing information, highlighting alternatives, and correcting biases.

2.5.1 Ethics

By incorporating the use of human judgment rather than encouraging human automation bias

or simply automation, the kinds of methods suggested here have the potential to fail more

gracefully than traditional decision support systems. Still, the idea of seeking to optimize for

human decisions should not be considered lightly.

It is our belief that a responsible and transparent deployment of models with "h-hat-like"

components should encourage environments in which humans are aware of what information

they provide about their thought processes. Unfortunately, this may not always be the case,

and ethical, legal, and societal aspects of systems that are optimized to promote particular
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human decisions must be subject to scrutiny by both researchers and practitioners. If designed

to correct for inadvertent user biases, for example, the system will first have to learn these

biases, and this can be sensitive information and damaging to users if not properly managed.

These kinds of issues are not specific to our framework and have been a concern of the HCI

community as early as 1998 [Fog98]. The opportunities and dangers of our framework generally

reflect those of the broader field of persuasive technology [BN99], where system goals may be

poor proxies for user goals [Rib+20], or even at odds with user goals. Moreover, the method

does not in itself prevent biases from being passed through the data without appropriate care

in the design of loss functions.

Still, we see reasons to be optimistic regarding the future of algorithmic decision support.

Systems designed specifically to provide users with the information and framing they need

to make good decisions can harness the strengths of both computer pattern recognition and

human judgment and information synthesis. We can hope that the combination of man and

machine can do better than either one alone. The ideas presented in this paper serve as a step

toward this goal.
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Chapter 3

Learning Models that Induce Good

Decisions

3.1 Introduction

Machine learning is increasingly being used in domains that have considerable impact on

people, ranging from healthcare [CS17], to banking [Sid12], to manufacturing [Wue+16].

In many of these domains, fairness and safety concerns promote the deployment of fully

transparent predictive models. An unavoidable consequence of this transparency is that end-

users are prone to use models prescriptively: if a user (wrongly) views a predictive model as

a description of the real world phenomena it models (e.g., heart attack risk), then she may

look to the model for how to adapt her features in order to improve future outcomes (e.g.,

reduce her risk). But predictive models optimized for accuracy cannot in general be assumed

to faithfully reflect post-modification outcomes, and model-guided actions can prove to be

detrimental. The goal in this chapter is to present a learning framework for organizations

seeking to deploy learned models in a way that is transparent and responsible, a setting I

believe applies widely. Consider a medical center who would like to publish an online tool

to allow users to estimate their heart attack risk, while keeping in mind that users may also
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infer how lifestyle changes will affect future risk.1 Consider a lender who would like to be

transparent about their first-time mortgage approval process, while knowing that this will

suggest to applicants how they may alter their credit profiles. Consider a wine reseller, who

would like to provide demand guidance to producers through an interpretable model while

considering that producers may use the same guidance to modify future vintages. Each of

these organizations must be cognizant of the actions their classifiers promote, and seek to

emphasize features that promote safe adaptations as well as predictive accuracy.

It is well understood that correlation and causation need not go hand-in-hand [Pea+09;

Rub05]. What is novel about this work is that I seek models that serve the dual purpose of

achieving predictive accuracy and providing high confidence that decisions made with respect

to the model are safe. That is, I care foremost about the utility that comes from having a

predictive tool, but recognize that these tools may also drive decisions.

To illustrate the potential pitfalls of a naïve predictive approach, consider a patient who

seeks to understand his or her heart attack risk. If the patient consults a linear predictive model

(as is often the case for medical models, see [UR16]), then a negative coefficient for alcohol

consumption may lead the patient to infer that a daily glass of red wine would improve his or

her prognosis. Is this decision justified? Perhaps not, although this recommendation has often

been made based on correlative evidence and despite a clear lack of experimental support

[HAB17; Sah+15].

The main insight is that controlling the tradeoff between accuracy and decision quality, where

it exists, can be cast as a problem of model selection. For instance, there may be multiple models

with similar predictive performance but different coefficients, that therefore induce different

decisions [Bre+01]. To achieve this tradeoff, this chapter introduces lookahead regularization,

which balances accuracy and the improvement associated with induced decisions. This is

achieved by modeling how users will act, and penalizing a model unless there is high confidence

that decisions will improve outcomes.

Formally, these decisions in response to a model f induce a target distribution p f on

1For example, the Mayo Clinic, a leading medical center in the U.S., provides such a calculator [Cli20].
MDCalc.com is an example of a site that provides medical many risk assessment calculators to the public.
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covariates that may differ from the distribution of data at training, p. In particular, a decision

will map an individual with covariates x to new covariates x f . For a prespecified confidence

level τ, we want to guarantee improvement for at least a τ-fraction of the population, comparing

outcomes under p f in relation to outcomes in p (under an invariance assumption on ppy|xq,

where y is the outcome). The technical challenge is that p f may differ considerably from

p, resulting in uncertainty in estimating the effect of decisions. To solve this, lookahead

regularization makes use of an uncertainty model that provides confidence intervals around

decision outcomes for different examples x f . A discriminative uncertainty model is trained

through importance weighting [Gre+09; Shi00; Sug+08] to handle covariate shift with the

distribution of x f different from x, and is designed to estimate accurate intervals for p f .

Lookahead regularization has stages that alternate between optimizing the different com-

ponents of the framework: the predictive model (under the lookahead regularization term), the

uncertainty model (used within the regularization term), and the propensity model (used for

covariate shift adjustment). If the uncertainty model is differentiable and the predictive model

is twice-differentiable, then gradients can pass through the entire pipeline and gradient-based

optimization can be applied. We run three experiments. One experiment uses synthetic data to

illustrate the approach, helping to understand what is needed for lookahead regularization

to succeed. The second experiment considers an application to wine quality prediction, and

shows that even simple tasks lead to interesting tradeoffs between accuracy and improved

decisions. The third experiment focuses on predicting diabetes progression and includes a

demonstration of the framework in a setting with individualized actions.

3.1.1 Related work

Strategic Classification. In the field of strategic classification, the learner and agents, who are

the subjects of a model, engage in a Stackelberg game, where the learner attempts to publish a

maximally accurate classifier taking into account that agents will shift their features to obtain

better outcomes under the classifier [Har+16]. While early efforts viewed all modifications

as "gaming"— an adversarial effect to be mitigated [Don+18; BS11] —a recent trend has

focused on creating incentives for modifications that lead to better outcomes under the ground
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truth function rather than simply better classifications [KR19; Alo+; Hag+20; Tab+19a]. In the

absence of a known mapping from effort to ground truth, Miller, Milli, and Hardt [MMH20]

show that incentive design relates to causal modeling, and several responsive works explore

how the actions induced by classifiers can facilitate discovery of these causal relationships

[Bec+20; SEA20]. The effect of strategic classification on algorithmic fairness has also motivated

several works [Liu+20; HIV19; Mil+19]. Generally, these works consider the equilibrium

effects of classifiers, or other sequential aspects of their deployment, where the choice of

model affects covariate distributions and in turn predictive accuracy. In contrast, we consider

what can be done at a particular point in time, with awareness of the decisions a model will

induce and consideration for subject outcomes under those decisions. Further, our invariance

assumption on ppy|xq rules out "gaming" of features. Rather, we view feature changes as

effortful investments that affect ground truth outcomes.

Recent work on performative prediction [Per+20] studies the equilibrium of retraining dy-

namics in settings where the model at each round affects the next input distributions (this

generalizes strategic classification). Training is focused entirely on accuracy, and does not

consider the quality of induced decision outcomes (these can be arbitrarily bad). We study

a different setting of one-time interactions between users and a model (consider first-time

mortgage buyers or consumers who access a medical risk calculator online), focusing on the

tradeoff between predictive accuracy (and as it relates to p and not p f ) and decision outcomes

(under p f ). Our model is also relevant in settings with feedback coming in slowly, with models

being intermittently re-trained, and where decision outcomes are consequential at each step of

the retraining process.

Causality, Covariate Shift, and Distributionally Robust Learning. There are many efforts

in ML to quantify the uncertainty associated with predictions and identify domain regions

where models err [LPB17; HLA15; GG16; Guo+17; TLP19; Liu+19a]. However, most methods

fail to achieve desirable properties when deployed out of distribution (OOD) [Sno+19]. When

the shifted distribution is unknown at train time, distributionally robust learning can provide

worst-case guarantees for specific types of shifts but require unrealistic computational expense

or restrictive assumptions on model classes [SND18]. Our framework is concerned only with

47



the single, specific OOD distribution that is induced by the learned predictive model. Hence,

we need only guarantee robustness to this particular distribution, for which we make use of

tools from learning under covariate shift [BBS09]. Relevant to our task, Mueller et al. [Mue+17]

seek to identify treatments that are beneficial with high probability under the invariance

assumption on ppy|xq. These treatments are chosen directly from a flexible set of available

modifications on covariates, whereas we assume treatments on covariates are induced by

published predictive models and additionally consider the accuracy of such models. Because

model variance generally increases when covariate shift acts on non-causal variables [PBM16],

our framework of trading off uncertainty minimization with predictive power relates to efforts

in the causal literature to find models that have optimal predictive accuracy while being robust

to classes of interventional perturbations [Mei18; Rot+18].

Conformal Prediction. Techniques from conformal prediction attempt to identify an interval

around a given model prediction such that any given prediction interval contains the true

label with some specified probability 1´ ε [SV08]. Tibshirani et al. [Tib+19] adapt traditional

conformal prediction techniques, which rely on exchangeability of training and test example

sequences, to settings with covariate shift. The conformal prediction setting differs from ours

in that conformal prediction considers a guarantee on each label (and often in an online setting),

rather than a guarantee over a population.

3.2 Method

Let x P X “ Rd denote a feature vector and y P R denote a label, where x describes the

object of interest (e.g., a patient, a customer, a wine vintage), and y describes the quality of

an outcome associated with x, where we assume that higher y is better (e.g. life expectancy,

creditworthiness, wine score). We assume an observational dataset S “ tpxi, yiqu
m
i“1, which

consists of IID samples from a population with joint distribution px, yq „ ppx, yq over covariates

(features) x and outcomes y. We denote by ppxq the marginal distribution on covariates.

Let f : X Ñ R denote a model trained on S . We assume that f is used in two different

ways:
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Figure 3.1: An illustration of our approach. Here ppy|xq is deterministic, y “ f ˚pxq, and the data density ppxq
is concentrated to the left of the peak. (A) Users (x) seeking to improve their outcomes (y) often look to predictive
models for guidance on how to act, e.g. by following gradient information (x ÞÑ x f ). (B) But actions may move
x f into regions of high uncertainty, where f is unconstrained by the training data. Models of equally good fit
on p can behave very differently on p f , and hence induce very different decisions. (C) Promoting good decisions
requires reasoning about the uncertainty in decision outcomes. For this, our approach learns an interval model
gpx f q “ r` f , u f s guaranteeing that y f P r` f , u f s with confidence τ, decoupled from f and targeted specifically
at p f . (D) Lookahead regularization utilizes these intervals to balance between accuracy and improvement,
achieved by penalizing f whenever y ą ` f (Eq. (3.4)). By incorporating into the objective a model of user behavior,
our approach learns predictive models encouraging safe decisions, i.e., having y f ě y w.p. at least τ.

1. Prediction: To predict outcomes y for objects x, sampled from ppxq.

2. Decision: To take action, through changes to x, with the goal of improving outcomes.

We will assume that user actions map each x to a new x f P X . We refer to x f as a user’s decision

or action and denote decision outcomes by y f P R. We set x f “ dpxq and refer to d : X Ñ X as

the decision function. We will assume that users consult f to drive decisions—either because

they care only about predicted outcomes (e.g., the case of bank loans), or because they consider

the model to be a valid proxy of the effect of a decision on the outcome (e.g., the case of heart

attack risk or wine production). As in other works incorporating strategic users into learning

[Per+20; Har+16], our framework requires an explicit model of how users use the model to
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make decisions. For concreteness, we model users as making a step in the direction of the

gradient of f , but note that the framework can also support any other differential decision

model.2 Since not all attributes may be susceptible to change (e.g., diet can be changed, height

is fixed), we distinguish between mutable and immutable features using a task-specific masking

operator Γ : X Ñ t0, 1ud. Further, immutable features are never affected by changes to mutable

features.3

Assumption 1 (User decision model). Given masking operator Γ and predictive model f , we define

the decision of user with features x as:

x f “ x` ηΓp∇ f pxqq, (3.1)

where the step size η ą 0 is a design parameter. Any features not present in f , including unobserved

features, do not change.

Through Assumption 1, user decisions induce a particular decision function d f pxq, and in

turn, a target distribution over X , which we denote p f pxq. This leads to a new joint distribution

px f , y f q „ p f px, yq, with decisions inducing new outcomes. Note that this assumption implies

that unobserved features that do not appear in the model f will remain unchanged after user

decisions. To achieve causal validity in the way we reason about the effect of decisions on

outcomes, we follow Peters, Bühlmann, and Meinshausen [PBM16] and assume that y depends

only on x (and optionally on additional unobserved, unconfounding variables), and that this

dependence is invariant to the distribution on x.

Assumption 2 (Covariate shift [Shi00]). The conditional distribution on outcomes, ppy|x f q, is

invariant for any marginal distribution p f pxq on covariates, including the data distribution ppxq.

Assumption 2 says that whatever the transform d f , the conditional distribution ppy|xq is

2Many works consider a ‘rational’ decision model x f “ argmaxzPX f pzq ´ cpx, zq where c is a cost function.
Eq. (1) can be thought of as modeling a boundedly-rational agent, taking action to optimize a local first-order
approximation of f , with η serving as a hard constraint on the amount of change that is possible. Our choice flows
mostly for reasons of feasibility; in principal, rational decision models can be incorporated into learning using
differentiable optimization layers (e.g., [Agr+19]). Like cost functions in all other works, η is a design choice that
can be set e.g. by an expert.

3Γ does not reflect any causal assumptions; it merely states which features are amenable to change.
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fixed, and the new joint distribution is p f px f , yq “ ppy|x f qp f px f q, for any p f . This covariate-

shift assumption ensures the causal validity of the approach (and entails the property of

no-unobserved confounders, see Figures 3.2 and 3.3). Note that we do not require that there are

no unobserved features, and nor do we require that we observe all causal features. Rather, we

require covariate shift on observed features (and thus no-unobserved confounders), and as per

Assumption 1, we require unobserved causal features to be unaffected by the published model.

Although covariate shift is a strong assumption, this kind of invariance is reasonable for

many applications (e.g. writing improvement, gene perturbation), and has been leveraged in

other works that relate directly to questions of causality [RC+18; Mue+17] as well as more

generally for settings in which the target and training distributions differ [Sch+09; QC+09;

Shi00; Sug+08].4 There also exist important domains in which violations are sufficiently minor

that this is a reasonable assumption (see [Mue+17; PBM16] for discussion).

3.2.1 Learning objective

Our goals in designing a learning framework are twofold. First, we would like learning

to result in a model whose predictions ŷ “ f pxq closely match the corresponding labels y

for x „ ppxq. Second, we would like the model to induce decisions x f for counterfactual

distribution p f whose outcome y f improves upon the initial y. To balance between these two

goals, we construct a learning objective in which a predictive loss function is augmented with

a regularization term that promotes good decisions. The difficulty is that decision outcomes y f

depend on decisions x f through the learned model f . Hence, realizations of y f are unavailable

at train time, as they cannot be observed until after the model is deployed. For this reason,

simple constraints of the form y f ě y are ill-defined, and to regularize we must reason about

outcome distributions y f „ ppy|x f q, for x f „ p f .

One approach might consider the average improvement, with µ f “ Ey f„ppy|x f qry
f s, for a

given x f „ p f , and penalize the model whenever µ f ă y, for example linearly using µ f ´ y.

4One possibility to relax covariate shift is to instead assume Lipschitzness, i.e., that ppy|xq changes smoothly
with changes to p f pxq. This would affect the correctness of propensity weights, but can be accounted for by
smoothly increasing uncertainty intervals (or reducing τ). We leave this to future work.
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Figure 3.2: Unobserved Confounders are a challenge for both causal inference and estimating outcomes under
covariate shift. (Note: dark nodes are observed; light nodes are unobserved) For X1 correlated with unobserved
X2 (here, let X1 “ X2) that also affects Y “ X1 ` X2, it is impossible to isolate the effect of X1, leading to an
overestimation of the causal effect of X1 on Y (top). Furthermore, when only X1 is observed, the best estimate of
PpY|X1q is also 2X1. However, because this does not reflect the true causal mechanism behind Y, shifts in X1 that
hold X2 constant (as when model subjects react only to published coefficients) will result in PpY|X f

1 q that does not
align with the empirical PpY|X1q (bottom). Thus samples from PpY|X1q cannot be used to accurately estimate
PpY|X f

1 q.

Concretely, µ f must be estimated, and since f minimizes MSE, then ŷ f “ f px f q is a plausible

estimate of µ f , giving:

min
fPF

Eppx,yqrpŷ´ yq2s ` λEppx,yqrŷ f ´ ys, ŷ f “ f px f q, x f “ d f pxq, (3.2)

where λ ě 0 determines the relative importance of improvement over accuracy.

There are two issues with this approach. First, learning can result in an f that severely

overfits in estimating µ, meaning that at train time the penalty term in the (empirical) objective

will appear to be low whereas at test time its (expected) value will be high. This can happen,

for example, when x f is moved to a low-density region of ppxq where f is unconstrained by

the data and, if flexible enough, can artificially (and wrongly) signal improvement. To address

this we use two decoupled models—one for predicting y on distribution p, and another for
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Figure 3.3: Examples of graphical models that can and cannot accommodate the covariate shift assumption (Note:
dark nodes are observed; light nodes are unobserved). In A), X2 is causal and unobserved but uncorrelated with X f

1 .

This allows for covariate shift to hold for Y|X f
1 , assuming as in Assumption 1 that unobserved feature X2 will not

change under the user decision function d f induced by f . In B), as seen in Figure 3.2, X2 is causal, unobserved,
and correlated with X f

1 , violating "no unobserved confounders" and therefore violating covariate shift. In C), X2

is causal and correlated with X f
1 but observed. This allows for covariate shift to hold for Y|X f

1 , X2. In D), X2 is

downstream (a causal child of Y). This allows for covariate shift to hold for Y|X f
1 . In E), X2 is non-confounding

after conditioning on X1. A, D, and E represent acceptable instances of unobserved non-confounders.

handling y f on distribution p f .

Second, in many applications it may be unsafe to guarantee that improvement hold only on

average per individual (e.g., heart attack risk, credit scores). To address this, we encourage

f to improve outcomes with a certain degree of confidence τ, for τ ą 0, i.e., such that

P
“

y f ě y
‰

ě τ for a given px, yq and induced x f and thus ppy f |x f q. Importantly, while one

source of uncertainty in y f is ppy|x f q, other sources of uncertainty exist, including those

coming from insufficient data as well as model uncertainty. Our formulation is useful when

additional sources of uncertainty are significant, such as when the model f leads to actions

that place x f in low-density regions of p.
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In our method, we replace the average-case penalty in Eq. (3.2) with a confidence-based

penalty:

min
fPF

Eppx,yqrpŷ´ yq2s ` λEppx,yqr1tP
”

y f ě y
ı

ă τus, y f „ ppy|x f q, x f “ d f pxq (3.3)

where 1tAu “ 1 if A is true, and 0 otherwise. In practice, P
“

y f ě y
‰

is unknown, and must

be estimated. For this, we make use of an uncertainty model, gτ : X Ñ R2, gτ P G, which we

learn, and maps points x f P X to intervals r` f , u f s that cover y f with probability τ. With this,

we replace the penalty term in Eq. (3.3) with the slightly more conservative 1t` f ă yu, and to

make learning feasible we use the hinge loss maxt0, y´ ` f u as a convex surrogate.5

Definition 1 (Lookahead Learning Objective). For a given uncertainty model, gτ, the empirical

learning objective for model f on sample set S “ txi, yiu
m
i“1 is:

min
fPF

m
ÿ

i“1

pŷi ´ yiq
2 ` λRpgτ;Sq, for Rpgτ;Sq “

m
ÿ

i“1

maxt0, yi ´ `
f

i u, `
f

i “ gτpx
f

i q, (3.4)

where Rpgτ;Sq is the lookahead regularization term.

By anticipating how users decide, this penalizes models whose induced decisions do not

improve outcomes at a sufficient rate (see Figure 3.1). The novelty in the regularization term is

that it accounts for uncertainty in assessing improvement, and does so for points x f that are out

of distribution. If f pushes x f towards regions of high uncertainty, then the interval r` f , u f s is

likely to be large, and f must make more “effort" to guarantee improvement, something that

may come at some cost to in-distribution prediction accuracy. While the objective encodes the

rate of decision improvement, increasing the p1´ τqth percentile of outcomes can broadly be

achieved either by reducing uncertainty for a given Ery f s or by increasing Ery f s for a given

level of uncertainty, and so we will also see the magnitude of improvement increase in our

experiments.

Note that the regularization term R depends both on f and gτ—to determine x f , and to

5The penalty is conservative in that it considers only one-sided uncertainty, i.e., y f ă ` f and u f is not used
explicitly. Although open intervals suffice here, most methods for interval prediction consider closed intervals, and
in this way our objective can support them. For symmetric intervals, τ simply becomes τ{2.
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determine ` f given x f , respectively. This justifies the need for the decoupling of f and g.

Without this, uncertainty estimates are prone to overfit by artificially manipulating intervals to

be higher than y, resulting in low penalization at train time without actual improvement (see

Figure 3.4 (right)).

3.2.2 Estimating uncertainty

The usefulness of lookahead regularization relies on the ability of the uncertainty model g to

correctly capture the various kinds of uncertainties about the outcome value for the perturbed

points. This can be difficult because uncertainty estimates are needed for out-of-distribution

points x f .

Fortunately, for a given f the counterfactual distribution p f is known (by Assumption 1),

and we can use the covariate transform associated with the decision to construct sample

set S f “ tx f
i u

m
i“1. Even without labels for S f , estimating the uncertainty model g is now

a problem of learning under covariate shift, where the test distribution p f can differ from the

training distribution p. In particular, we are interested in learning uncertainty intervals that

provide good coverage. There are many approaches to learning under covariate shift. Here

we describe the simple and popular method of importance weighting, or inverse propensity

weighting [Shi00]. For a loss function `pgq “ `py, gpxqq, we would like to minimize Ep f px,yqr`pgqs.

Let wpxq “ p f pxq{ppxq, then by the covariate shift assumption:

Ep f px,yqr`pgqs “
ż

`pgqdp f pxqdppy|xq “
ż

p f pxq
ppxq

`pgqdppxqdppy|xq “ Eppx,yqrwpxq`pgqs.

Hence, training g with points sampled from distribution p but weighted by w will result in

an uncertainty model that is optimized for the counterfactual distribution p f . In practice, w is

itself unknown, but many methods exist for learning an approximate model ŵpxq « wpxq using

sample sets S and S f (e.g. [KHS09]). To remain within our discriminative approach, we follow

[BBS09] and train a logistic regression model h : X Ñ r0, 1s, h P H, to differentiate between

points x̃ P S (labeled ỹ “ 0) and x̃ P S f (labeled ỹ “ 1) and set weights to ŵpxq “ ehpxq. As we

are interested in training g to gain a coverage guarantee, we define `py, gpxqq “ 1ty R r`, usu as

in [RMYT18].
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3.2.3 Algorithm

All the elements in the framework— the predictive model f , the uncertainty model g, and

the propensity model h —are interdependent. Specifically, optimizing f in Eq. (3.4) requires

intervals from g; learning g requires weights from h; and h is trained on S f which is in

turn determined by f . The algorithm therefore alternates between optimizing each of these

components while keeping the others fixed. At round t, f ptq is optimized with intervals

r`
f

i , u f
i s “ gpt´1qpx f

i q, gptq is trained using weights wi “ hptqpxiq, and hptq is trained using points

x f
i as determined by f ptq. The procedure is initialized by training f p0q without the lookahead

term R. For training g and h, weights wi “ ŵpxiq and points tx f
i u

m
i“1, respectively, can be

computed and plugged into the objective. Training f with Eq. (3.4), however, requires access to

the function g, since during optimization, the lower bounds ` f must be evaluated for points x f

that vary as updates to f are made. Hence, to optimize f with gradient methods, we use an

uncertainty model g that is differentiable, so that gradients can pass through the model (while

keeping the parameters of the uncertainty model fixed). Furthermore, since gradients must

also pass through x f (which includes ∇ f ), we require that f be twice-differentiable.

In the experiments we consider two methods for learning g:

1. Bootstrapping [ET94], where a collection of models tgpjquk
j“1 is trained, each on a subsam-

pled dataset, and combined to produce a single interval model g, and

2. Quantile regression [KH01], where models gp`q, gpuq are discriminatively trained to es-

timate the τ and 1´ τ quantiles, respectively, of the counterfactual target distribution

p f py|x f q.

3.3 Experiments

In this section, I evaluate the approach in three experiments of increasing complexity and scale,

where the first is synthetic and the latter two use real data. Because the goal of regularization is

to balance accuracy with decision quality, we will be interested in understanding the attainable

frontier of accuracy vs. improvement in outcomes. For our method, this will mostly be
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controlled by varying lookahead regularization parameter, λ ě 0. In all experiments we

measure predictive accuracy with root mean squared error (RMSE), and decision quality in

two ways: mean improvement rate Er1ty f
i ą yius (corresponding to the the regularization term

in Eq. (3.3)), and mean improvement magnitude Ery f
i ´ yis (corresponding to its convex proxy in

Eq. (3.4)).6

To evaluate the approach, we need a means for evaluating counterfactual outcomes y f for

decisions x f . Therefore, and similarly to Shavit and Moses [SM19], we make use of an inferred

‘ground-truth’ function f ˚ to test decision improvement, assuming y f “ f ˚px f q. Model f ˚ is

trained on the entirety of the data. By optimizing f ˚ for RMSE, we think of this as estimating

the conditional mean of ppy|xq, with the data labels as noisy observations. To make for an

interesting experiment, we learn f ˚ from a function class F˚ that is more expressive than F or

G. The sample set S will contain a small and possibly biased subsample of the data, which

we call the ‘active set’, and that plays the role of a representative sample from p. This setup

allows us not only to evaluate improvement, but also to experiment with the effects of different

sample sets.

3.3.1 Experiment 1: Quadratic curves

For a simple setting, we explore the effects of regularized and unregularized learning on

decision quality in a stylized setting using unidimensional quadratic curves. Let f ˚pxq “ ´x2,

and assume y “ f pxq ` ε where ε is independently, normally distributed. By varying the

decision model step-size η, we explore three conditions: one where a naïve approach works

well, one where it fails but regularization helps, and one where regularization also fails.

In Figure 3.4 (top left), η is small, and the x f points stay within the high certainty region

of p. Here, the baseline works well, giving both a good fit and effective decisions, and the

regularization term in the lookahead objective remains inactive. In Figure 3.4 (top right), η

is larger. Here, the baseline model pushes x f points to a region where y f values are low.

Meanwhile, the lookahead model, by incorporating into the objective the decision model and

6Our code can be found at https://github.com/papushado/lookahead.
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Figure 3.4: Results for the synthetic experiment comparing lookahead (main plots) to a baseline model (inlays;
note the change in scale across plots). In both models, decisions move points x over the peak. Under the baseline
model, as η increases, decision outcomes y f worsen. Lookahead corrects for this, and at a small cost to accuracy
(on p) ensures good decision outcomes (on p f , with sufficient overlap).

estimating uncertainty surrounding y f , is able to adjust the model to induce good decisions

with some reduction in accuracy. In Figure 3.4 (bottom), η is large. Here, the x f points are

pushed far into areas of high uncertainty. The success of lookahead relies on the successful

construction of intervals at p f through the successful estimation of w, and may fail if p and p f

differ considerably, as is the case here.

3.3.2 Experiment 2: Wine quality

The second experiment focuses on wine quality using the wine dataset from the UCI data

repository [DG17]. The wine in the data set has 13 features, most of which correlate linearly

with quality y, but two of which (alcohol and malic acid) have a non-linear U-shaped or inverse-

U shaped relationship with y. For the ground truth model, we set f ˚pxq “
ř

i θixi `
ř

i θ1i x
2
i

(RMSE “ 0.2, y P r0, 3s) so that it captures these nonlinearities. To better demonstrate
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the capabilities of our framework, we sample points into the active set non-uniformly by

thresholding on the non-linear features. The active set includes „30% of the data, and is further

split 75-25 into a train set used for learning and tuning and a held-out test set used for final

evaluation.

For the predictive model, our focus here is on linear models. The baseline includes a linear

fbase trained with `2 regularization (i.e., Ridge Regression) with regularization coefficient α ě 0.

Our lookahead model includes a linear flook trained with lookahead regularization (Eq. (3.4))

with regularization coefficient λ ě 0. In some cases we will add to the objective an additional

`2 term, so that for a fixed α, setting λ “ 0 recovers the baseline model. Lookahead was trained

for 10 rounds and the baseline with a matching number of overall epochs. The uncertainty

model g uses residuals-based bootstrapping with 20 linear sub-models. The propensity model

h is also linear. We consider two settings: one where all features (i.e., wine attributes) are

mutable and using decision step-size η “ 0.5, and another where only a subset of the features

are mutable and using step-size η “ 2.

Full mutability. Figure 3.5 (top left) presents the frontier of accuracy vs. improvement on

the test set when all features are mutable. The baseline and lookahead models coincide when

α “ λ “ 0. For the baseline, as α increases, predictive performance (RMSE) displays a typical

learning curve with accuracy improving until reaching an optimum at some intermediate

value of α. Improvement, however, monotonically decreases with α, and is highest with no

regularization (α “ 0). This is because in this setting, gradients of fbase induce reasonably good

decisions: fbase is able to approximately recover the dominant linear coefficients of f ˚, and

shrinkage due to higher `2 penalization reduces the magnitude of the (typically positive, on

average) change. With lookahead, increasing λ leads to better decisions, but at the cost of

higher (albeit sublinear) RMSE. The initial improvement rate at λ “ 0 is high, but lookahead

and `2 penalties have opposing effects on the model. Here, improvement is achieved by (and

likely requires) increasing the size of the coefficients of linear model, flook. We see that flook

learns to do this in an efficient way, as compared to a naïve scaling of the predictively-optimal

fbase.
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Figure 3.5: Results for the wine experiment. Tradeoff in accuracy and improvement under full mutability (left)
and partial mutability (center), for which model coefficients are also shown (right).

Partial mutability. Figure 3.5 (top right) presents the frontier of accuracy vs. improvement

when only a subset of the features are mutable (note that this effects the scale of possible

improvement). The baseline presents a similar behavior to the fully-mutable setting, but

with the optimal predictive model inducing a negative improvement. Here we consider

lookahead with various degrees of additional `2 regularization. When α “ λ “ 0, the models

again coincide. However, for larger λ, significant improvement can be gained with very little

or no loss in RMSE, while moderate λ values improve both decisions and accuracy. This

holds for various values of α, and setting α to the optimal value of fbase results in lookahead

dominating the trade-off curve for all observed λ. Improvement is reflected in magnitude and

rate. Improvement rate (see Figure 3.5 (top right) inlay) rises quickly from the baseline’s „ 40%

to an optimal 100%, showing how lookahead learns models that lead to safe decisions.

Figure 3.5 (bottom) shows how the coefficients of fbase and flook change as α and λ increase,
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respectively (for lookahead α “ 0). As can be seen, lookahead works by making substantial

changes to mutable coefficients, sometimes reversing their sign, with milder changes to

immutable coefficients. Lookahead achieves improvement by capitalizing on its freedom to

learn a useful direction of improvement within the mutable subspace, while compensating for

the possible loss in accuracy through mild changes in the immutable subspace.

3.3.3 Experiment 3: Diabetes

The final experiment focuses on the prediction of diabetes progression using the diabetes

dataset7 [Efr+04]. The dataset has 10 features describing various patient attributes. We consider

two features as mutable: BMI and T-cell count (marked as ‘s1’). While both display a similar

(although reversed) linear relationship with y, feature s1 is much noisier. The setup is as in

wine but with two differences: to capture nonlinearities we set f ˚ to be a flexible generalized

additive model (GAM) with splines of degree 10 (RMSE “ 0.15), and train and test sets are

sampled uniformly from the data. We normalize y to r0, 1s and set η “ 5. Appendix B.3.4

includes a sensitivity analysis to learning with misspecified η.

Figure 3.6 (top) presents the accuracy-improvement frontier for linear f and bootstrapped

linear g. Results show a similar trend to the wine experiment, with lookahead providing

improved outcomes (both rate and magnitude) while preserving predictive accuracy. Here,

lookahead improves results by learning to increase the coefficient of s1, while adjusting other

coefficients to maintain reasonable uncertainty. The baseline fails to utilize s1 for improvement

since from a predictive perspective there is little value in placing weight on s1.

When f is linear, decisions are uniform across the population in that ∇ fθ
pxq “ θ is

independent of x. To explore individualized actions, we also consider a setting where f is a

more flexible quadratic model (i.e., linear in x and x2) in which gradients depend on x and

uncertainty is estimated using quantile regression. Figure 3.6 (bottom left) shows the data as

projected onto the subspace pxBMI, xs1q, with color indicating outcome values f ˚pxq, interpolated

within this subspace. As can be seen, the mapping x ÞÑ x f due to flook generally improves

7https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
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Figure 3.6: Results for the diabetes experiment. Tradeoff in accuracy and improvement under linear f with partial
mutability (left), visualization of shift p Ñ p f with non-linear f to regions of higher decision quality (center),
and regions of lower uncertainty (right).

outcomes. The plot reveals that, had we had knowledge of f ˚pxq, uniformly decreasing BMI

would also have improved outcomes, and this is in fact the strategy invoked by the linear

fbase. But decisions must be made based on the sample set, and so uncertainty must be

taken into account. Figure 3.6 (bottom right) shows a similar plot but with color indicating

uncertainty estimates as measured by the interval sizes given by g. The plot shows that

decisions are directed towards regions of lower uncertainty (i.e., approximately following the

negative gradients of the uncertainty slope), showing how lookahead successfully utilizes these

uncertainties to adjust the predictive model flook.
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3.4 Discussion

Given the extensive use of machine learning across an ever-growing range of applications, it is

appropriate to assume that predictive models will remain in widespread use, and that at the

same time, and despite well-understood concerns, users will continue to act upon them. In

line with this, the goal with this work has been to develop a machine learning framework that

accounts for decision making by users but remains fully within the discriminative framing of

statistical machine learning. The lookahead regularization framework that we have proposed

augments existing machine learning methodologies with a component that promotes good

decisions. I have demonstrated the utility of this approach across three different experiments,

one on synthetic data, one on predicting and deciding about wine, and one on predicting

and deciding in regard to diabetes progression. I hope that this work will inspire continued

research in the machine learning community that embraces predictive modeling while also

being cognizant of the ways in which our models are used.

Future work is needed to understand how robust the method is to different violations of

Assumptions 1 and 2. In particular, I am interested in finding settings where it may be possible

to directly observe the changes that users make in response to deployed models, and to use

these observations to evaluate how much decisions may vary from those assumed both in this

chapter and in related literature, such as strategic classification and recourse. Additionally,

the assumption of covariate shift may often be violated to some degree. Understanding

of such violations may take the form either of assessing theoretical relaxations, such as

assuming Lipschitzness rather than invariance of ppy|xq, or evaluating empirical datasets with

confounding variables withheld from the model.

Broader Impact

In our work, the learning objective was designed to align with and support the possible use of

a predictive model to drive decisions by users. Responsible and transparent deployment of

models with "lookahead-like" regularization components should avoid the kinds of mistakes

that can be made when predictive methods are conflated with causally valid methods.
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At the same time, this work makes a strong simplifying assumption, that of covariate shift,

which requires that the relationship between covariates and outcome variables is invariant as

decisions are made and the feature distribution changes. This strong assumption is made to

ensure validity for the lookahead regularization, since we need to be able to perform inference

about counterfactual observations. As discussed by Mueller et al. [Mue+17] and Peters,

Bühlmann, and Meinshausen [PBM16], there exist real-world tasks (e.g. writing improvement,

gene perturbation) that reasonably satisfy this assumption, and yet at the same time, other

tasks— notably those with unobserved confounders —where this assumption would be violated.

Moreover, this assumption is not testable on the observational data. This, along with the need

to make an assumption about the user decision model, means that an application of the method

proposed here should be done with care and will require appropriate domain knowledge to

understand whether or not the assumptions are plausible.

Furthermore, the validity of the interval estimates requires that any assumptions for the

particular interval model used are satisfied and that weights w provide a reasonable estimation

of p f {p. In particular, fitting propensity scores for a distribution p f that has little to no overlap

with p (see Figure 3.4) may result in underestimating the possibility of bad outcomes.

If used carefully and successfully, then lookahead regularization provides safety and

protects against the misuse of a model. If used in a domain for which the assumptions fail to

hold then the framework could make things worse, by trading accuracy for an incorrect view

of user decisions and the effect of these decisions on outcomes.

We also caution against any specific interpretation of the application of the model to

the wine and diabetes data sets. Model misspecification of f ˚ can result in arbitrarily bad

outcomes, and estimating f ˚ in any high-stakes setting requires substantial domain knowledge

and should err on the side of caution. The data sets are used to illustrate the kinds of results

that should be available when the method is correctly applied to a domain of interest.
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Chapter 4

Vulnerabilities in Popular

Explainability Methods

4.1 Introduction

Owing to the success of machine learning (ML) models, there has been an increasing interest in

leveraging these models to aid decision makers (e.g., doctors, judges) in critical domains such

as healthcare and criminal justice. The successful adoption of these models in domain-specific

applications relies heavily on how well decision makers are able to understand and trust their

functionality [DVK17; Lip16]. Only if decision makers have a clear understanding of the model

behavior can they diagnose errors and potential biases in these models and decide when and

how much to rely on them. However, the proprietary nature and increasing complexity of

machine learning models makes it challenging for domain experts to understand these complex

black boxes, motivating the need for tools that can explain them in a faithful and interpretable

manner.

As a result, there has been a recent surge in post hoc techniques for explaining black box

models in a human interpretable manner. One of the primary uses of such explanations is

to help domain experts detect discriminatory biases in black box models [Tan+18; Kim+18].

Among the most prominent of these techniques are local, model-agnostic methods that focus

on explaining individual predictions of a given black box classifier, including LIME [RSG16]
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and SHAP [LL17]. These methods estimate the contribution of individual features towards a

specific prediction by generating perturbations of a given instance in the data and observing

the effect of these perturbations on the output of the black-box classifier. Due to their generality,

these methods have been used to explain a number of classifiers, such as neural networks and

complex ensemble models, and in various domains ranging from law, medicine, finance, and

science [EAMS19; Ibr+19; WGH16]. However, there has been little analysis of the reliability

and robustness of these explanation techniques, especially in the adversarial setting, making

their utility for critical applications unclear.

In this work, we demonstrate significant vulnerabilities in post hoc explanation techniques

that can be exploited by an adversary to generate classifiers whose post hoc explanations can

be arbitrarily controlled. More specifically, we develop a novel framework that can effectively

mask the discriminatory biases of any black box classifier. Our approach exploits the fact that

post hoc explanation techniques such as LIME and SHAP are perturbation-based, to create

a scaffolding around any given biased black box classifier in such a way that its predictions

on the input data distribution remain biased, but its behavior on the perturbed data points is

controlled to make the post hoc explanations look completely innocuous. In particular, using

our framework, we generate highly discriminatory scaffolded classifiers (that, for example, only

use race to make their decisions) whose post hoc explanations (generated by LIME and SHAP)

effectively hide their discriminatory biases, making them look unobjectionable.

We evaluate the effectiveness of the proposed framework on multiple real world datasets

— COMPAS [Lar+16], Communities and Crime [Red11], and German loan lending [DG17].

For each dataset, we craft classifiers that heavily discriminate based on protected attributes

such as race (demographic parity ratio = 0), and show that our framework can effectively hide

their biases. In particular, our results show that the explanations of these classifiers generated

using off-the-shelf implementations of LIME and SHAP often do not flag any of the relevant

sensitive attributes (e.g., race) as important features of the classifier for the test instances, thus

demonstrating that the adversarial classifiers successfully fooled these explanation methods.

These results suggest that it is possible for malicious actors to craft adversarial classifiers that

are highly discriminatory, but can effectively fool existing post hoc explanation techniques.
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This further establishes that existing post hoc explanation techniques are not sufficiently robust

for ascertaining discriminatory behavior of classifiers in sensitive applications.

4.2 Building Adversarial Classifiers to Fool Explanation Techniques

In this section, we discuss our framework for constructing adversarial classifiers (scaffoldings)

that can fool post hoc explanation techniques that rely on input perturbations. We first provide

a detailed overview of popular post hoc explanation techniques, namely, LIME [RSG16] and

SHAP [LL17], and then present our framework for constructing adversarial classifiers.

4.2.1 Background: LIME and SHAP

While simpler classes of models (such as linear models and decision trees) are often readily

understood by humans, the same is not true for complex models (e.g., ensemble methods, deep

neural networks). Even when model examiners have full access to architectures and parameters,

these complex models are essentially black boxes for all practical purposes. This obscurity is

often further exacerbated when model examiners have only query access to models, for example

due to models being protected due to proprietary knowledge. One way to better understand

the behavior of such classifiers is to build simpler explanation models that are interpretable

approximations of these black boxes. This approach to model understanding is known as post

hoc explanation, as the explanation methods are applied after model training. This is in contrast

to intrinsically interpretable models which are trained with interpretability constraints (e.g. on

model class and complexity) in place.

To this end, several techniques have been proposed in the existing literature. LIME [RSG16]

and SHAP [LL17]1 are two popular model-agnostic, local explanation approaches designed to

explain any given black box classifier. These methods explain individual predictions of any

classifier in an interpretable and faithful manner, by learning an interpretable model (e.g., linear

model) locally around each prediction. The intuition behind LIME and SHAP is the following:

1Here we focus specifically on KernelSHAP. While Lundberg and Lee [LL17] provide several alternative
implementations, only KernelSHAP is applicable to any black box model.

67



while complex black box models typically exhibit highly non-linear decision boundaries

globally (and are therefore harder to explain overall), the behavior of these models tends to be

much less complex within a smaller region of the feature space. Therefore, simple, human

interpretable models such as linear models are often a useful description of model behavior

in a particular input locality. Specifically, LIME and SHAP use the coefficients on local linear

models to estimate feature attributions for individual instances, which capture the contribution

of each feature to the black box prediction. Below, we provide some details of these approaches,

while also highlighting how they relate to each other.

Let D denote the input dataset of N data points, D “ pX , yq “ tpx1, y1q, px2, y2q ¨ ¨ ¨ pxN , yNqu

where xi is a vector that captures the feature values of data point i, and yi is the corresponding

class label. Let there be M features in the dataset D and let C denote the set of class labels in D

i.e., yi P C. Let f denote the black box classifier that takes a data point as input and returns a

class label i.e., f pxiq P C. The goal here is to explain f in an interpretable and faithful manner.

Note that neither LIME nor SHAP assume any knowledge about the internal workings of f .

Let g denote an explanation model that we intend to learn to explain f . For LIME and SHAP,

g P G where G is the class of linear models.

gpxq “ φ0 `

M
ÿ

i“1

φixi, φi P R (4.1)

Let the complexity of the explanation g be denoted as Ωpgq (the complexity of a linear

model can be measured as the number of non-zero weights), and let πxpx1q denote a proximity

measure between inputs x and x1, used to define the vicinity (neighborhood) around x. With all

this notation in place, the objective function for both LIME and SHAP is crafted to generate an

explanation that: (1) approximates the behavior of the black box accurately within the vicinity

of x, and (2) achieves lower complexity and is thereby interpretable. In particular, the objective

function is

argmin
gPG

Lp f , g, πxq `Ωpgq, (4.2)
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where the loss function L is defined as

Lp f , g, πxq “
ÿ

x1PX1

r f px1q ´ gpx1qs2πxpx1q

, where X1 is the set of inputs constituting the neighborhood of x. Often, these instances are

sampled by drawing some subset of features of x uniformly at random and setting the other

features to be missing.2 Missing features can be set exactly equal to zero or to some other

context-specific definition of zero; e.g. in image classification, setting all pixel values to zero

may be less appropriate than setting them equal to the average pixel value.

The primary difference between LIME and SHAP lies in how Ω and πx are chosen. In

LIME, these functions are defined heuristically: Ωpgq is the number of non-zero weights in the

linear model and πxpx1q is defined using cosine or l2 distance.

On the other hand, KernelSHAP grounds these definitions in a game theoretic method used

to value the contributions of individual players in a coalition, called Shapley values. [Sha51].

SHAP guarantees that explanations satisfy three desired properties which relate to the Shapley

value axioms:

1. Local Accuracy states that gpxq “ f pxq; that is, the additive contributions of all features at

a point x, as represented by linear model g, must add up to the function value f pxq. This

is exactly the efficiency axiom of the Shapley values, which states that the contributions of

individual players must sum to the total proceeds of a game.

2. Missingness states that a feature that is missing must be constrained to have zero

contribution. This property is added to the Shapley axioms to adapt to the model

valuation setting.

3. Consistency ensures a monotonicity property over feature contributions φi: if the function

f to be explained changes to some f 1 such that the marginal value of including a given

feature i (as opposed to setting that feature to be missing) increases or stays the same

regardless of how many other features are included, the contribution φ1i of that feature

2The standard implementation of LIME varies from this behavior for continuous features, perturbing inputs
according to a normal distribution rather than sampling uniformly at random, see Section 4.3
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must not decrease relative to φi of the original function. That is, for two functions f , f 1

and S any subset of features taken to be nonzero:

f pSY iq ´ f pSq ě f 1pSY iq ´ f 1pSq ñ φip f q ě φip f 1q

This property entails the other three axioms of the Shapley values: symmetry, null player,

and linearity. Symmetry states that two players who contribute identically receive identical

values. Null player states a player who always contributes nothing receives zero value.

Linearity is a combination of additivity, which suggests that the value of a player in any

two games is the sum of their individual values in those games, and scalar multiplication,

which suggests that the units in which utility is measured does not affect relative

contributions. In particular, Young [You85] demonstrated that monotonicity enforces the

linearity and null player axioms, and Lundberg and Lee [LL17] show that in the model

evaluation setting, it also implies symmetry.

Lundberg and Lee [LL17] show that the unique choices of Ω and π to satisfy these properties

are:

Ωpgq “ 0 and πxpx1q “
pM´ 1q

` M
|x1|

˘

|x1|pM´ |x1|q
,

where |x1| is the number of non-missing (non-zero) elements in x1. Further, for x1 that represent

the presence of a subset S of features these weights relate to the classical expression of Shapley

values

φi “
ÿ

x1PX1

pM´ |x1|q!p|x1| ´ 1q!
M!

“

f px1q ´ f px1ziq
‰

,

as Lundberg and Lee [LL17] prove that this is exactly the result in the analytical solution to the

weighted linear regression

φ “ pXᵀΠXq´1XᵀΠy

where X is a 2M ˆM matrix with rows representing all possible binary feature inclusions and

y is a 2M vector of corresponding function values.

More details about the intuition behind the definitions of these functions and their compu-

tation can be found in Ribeiro, Singh, and Guestrin [RSG16] and Lundberg and Lee [LL17].
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Figure 4.1: PCA applied to the COMPAS dataset (blue) as well as its LIME style perturbations (red). Even in
this low-dimensional space, we can see that data points generated via perturbations are distributed very differently
from instances in the COMPAS data. In this paper, we exploit this difference to craft adversarial classifiers.

4.2.2 Proposed Framework

In this section, we discuss our framework in detail. First, we discuss some preliminary details

about our set up. Then, we discuss the intuition behind our approach. Lastly, we present the

technical details of our approach along with a discussion of some of our design choices and

implementation details.

Preliminaries

Setting: Assume that there is an adversary with an incentive to deploy a biased classifier

f for making a critical decision (e.g., parole, bail, credit) in the real world. The adversary

must provide black box access to customers and regulators [Reg16], who may use post hoc

explanation techniques to better understand f and determine if f is ready to be used in the

real world. If customers and regulators detect that f is biased, they are not likely to approve it

for deployment. The goal of the adversary is to fool post hoc explanation techniques and hide

the underlying biases of f .

Input: The adversary provides the following to our framework: 1) the biased classifier f which

they intend to deploy in the real world and, 2) an input dataset X that is sampled from the

real world input data distribution Xdist on which f will be applied. Note that neither our

framework nor the adversary has access to Xdist.

Output: The output of our framework will be a scaffolded classifier e (referred to as the
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adversarial classifier henceforth) that behaves exactly like f when making predictions on instances

sampled from Xdist, but will not reveal the underlying biases of f when probed with leading

post hoc explanation techniques such as LIME and SHAP.

Intuition As discussed in the previous section, LIME and SHAP (and several other post hoc

explanation techniques) explain individual predictions of a given black box model by construct-

ing local interpretable approximations (e.g., linear models). Each such local approximation

is designed to capture the behavior of the black box within the neighborhood of a given data

point. These neighborhoods constitute synthetic data points generated by perturbing features of

individual instances in the input data. However, instances generated using such perturbations

could potentially be off-manifold or out-of-distribution (OOD) [MRW19].

To better understand the nature of the synthetic data points generated via perturbations,

we carried out the following experiment. First, we perturb input instances using the approach

employed by LIME (See previous section). We then run principal component analysis (PCA)

on the combined dataset containing original instances as well as the perturbed instances, and

reduce the dimensionality to 2. As we can see from Figure 4.1, the synthetic data points

generated from input perturbations are distributed significantly differently from the instances

in the input data. This result indicates that detecting whether or not a data point is a result

of a perturbation is not a challenging task, and thus approaches that rely heavily on these

perturbations, such as LIME, can be gamed.

This intuition underlies our proposed approach. By differentiating between data points

coming from the input distribution and instances generated via perturbation, an adversary

can create an adversarial classifier (scaffolding) that behaves like the original classifier (and in

particular may be extremely discriminatory) on the input data points, but behaves arbitrarily

differently (looks unbiased and fair) on the perturbed instances, thus effectively fooling LIME

or SHAP into generating innocuous explanations.

Next, we formalize this intuition and explain our framework for building adversarial

classifiers that can fool explanation techniques.

Building Adversarial Classifiers Let f be the biased classifier described earlier. The adversary
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would like to design a framework such that if and when end users generate explanations of this

black box, post hoc techniques can be fooled into thinking that the model is innocuous. Recall

that the real world data on which this classifier is likely to be applied follows a distribution Xdist,

and X is a set of N data points sampled from this distribution that the adversary has access

to. To fool the post hoc techniques, the adversary could design an adversarial classifier that

exhibits biased behavior on instances sampled from Xdist, and remains unbiased on instances

that do not come from Xdist. Since the feature importances output by LIME and SHAP rely

heavily on perturbed instances (which may typically be OOD samples, e.g. Figure 4.1), the

resulting explanations will make the classifier designed by the adversary look innocuous.

Assuming ψ is a unbiased classifier (e.g., makes predictions based on features that are

uncorrelated with sensitive attributes), the adversarial classifier e takes the following form:

epxq “

$

’

’

&

’

’

%

f pxq, if x P Xdist

ψpxq, otherwise

In order to create such a classifier, we need to be able to decide whether a given data point x

comes from Xdist or not.

Detecting OOD Samples To build a classifier is_OOD that detects if a given data point is

an out-of-distribution (OOD) sample (is_OODpxq “ True) or not, we construct a new dataset

from the instances in X . Specifically, we perturb (more details in Experimental Evaluation)

each instance x in X to generate a new instance xp. Let us denote the set of all the instances

generated via perturbation as Xp. The instances in X are then assigned the class label False

indicating that they are not OOD samples, while the instances in Xp are assigned the class

label True (indicating that they are OOD samples) unless they are already in X . We then train

an off-the-shelf classifier on the combined dataset X YXp and their corresponding class labels

(assigned as discussed above).
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Dataset Size Features Positive Class Sensitive Feature

COMPAS 6172 criminal history, demographics,
COMPAS risk score, jail and
prison time

High Risk (81.4%) African-American
(51.4%)

Communities & Crime 1994 race, age, education, police de-
mographics, marriage status,
citizenship

Violent Crime Rate (50%) White Population
(continuous)

German Credit 1000 account information, credit his-
tory, loan purpose, employ-
ment, demographics

Good Customer (70%) Male (69%)

Table 4.1: Summary of Datasets

4.3 Experimental Results

In this section, we discuss the detailed experimental evaluation of our framework. First, we

analyze the effectiveness of the adversarial classifiers generated by our framework. More

specifically, we test how well these classifiers can mask their biases by fooling multiple post

hoc explanation techniques. Next, we evaluate the robustness of our adversarial classifiers by

measuring how their effectiveness varies with changes to different parameters (e.g., weighting

kernel, background distribution). Lastly, we present examples of post hoc explanations (both

LIME and SHAP) of individual instances in the data to demonstrate how the biases of the

classifier f are successfully hidden.

Datasets We experimented with multiple datasets pertaining to diverse yet critical real world

applications such as recidivism risk prediction, violent crime prediction, and credit scoring.

Below, we describe these datasets in detail (See Table 4.1 for detailed statistics). Our first

dataset is the COMPAS dataset which was collected by ProPublica [Ang+16a]. This dataset

captures detailed information about the criminal history, jail and prison time, demographic

attributes, and COMPAS risk scores for 6172 defendants from Broward County, Florida. The

sensitive attribute in this dataset is race – 51.4% of the defendants are African-American.

Each defendant in the data is labeled either as high-risk or low-risk for recidivism. Our

second dataset is Communities and Crime (CC) that captures various socio-economic and law

enforcement aspects, as well as crime across various communities in the US [RB02]. This dataset

contains information about 1994 communities (each community is a data point) in total. The
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sensitive attribute in this dataset is the percentage of Caucasian population. This percentage

varies widely across communities and ranges from 2.68% to 99.63%. Each community is

assigned a label depending on if the violent crime proportion in that community is above

the median (violent crime rampant) or not. The third dataset we use is the German credit

dataset from the UCI repository [BKM99]. This dataset captures financial and demographic

information (including account information, credit history, employment, gender) of about

1000 loan applicants. The sensitive attribute in this dataset is gender – 69% of the individuals

are male. Each individual in the dataset is labeled either as a good customer or a bad one

depending on their credit risk.

Experimental Setup Here, we discuss the implementation details of our framework. We

randomly split all the datasets into training (90%) and test (10%) sets. We build our framework

using the training set and evaluate it on the test set.

Biased Classifier f : We construct f to be a perfectly discriminatory classifier that uses a sensitive

feature i.e., f makes predictions purely based on race in the case of COMPAS and Communities

and Crime datasets (if race = African American, then predict 1, otherwise set predict 0), and

based on gender for the German Credit dataset.

Perturbations & OOD classifier: For LIME, we generate perturbations for every data point in the

data set X by adding random noise sampled from N p0, 1q to each feature value. For SHAP,

we randomly choose a subset of features for each data point and mark their values as missing

by replacing them with their corresponding values from background distribution3.We choose

the background distribution for SHAP to be cluster centers from k-means with 10 clusters. We

use these newly generated perturbations as well as the input data points to train the OOD

classifier to detect OOD samples (See Proposed Framework section). We use the standard

sklearn implementation of a random forest with 100 tree estimators as our OOD classifier.

Unbiased Classifier ψ: We build the unbiased classifier ψ by constructing synthetic uncorrelated

features that have zero correlation with sensitive attributes (e.g., race or gender). We experiment

with one or two uncorrelated features. When we only have one uncorrelated feature in a

3See Lundberg and Lee [LL17] for more details.
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Figure 4.2: COMPAS: % of data points for which each feature (color coded) shows up in top 3 (according to
LIME and SHAP’s ranking of feature importances) for the biased classifier f (left), our adversarial classifier where
ψ uses only one uncorrelated feature to make predictions (middle), and our adversarial classifier where ψ uses two
uncorrelated features to make predictions (right).

particular experiment, ψ solely uses that to make predictions (if uncorrelated feature = 1, then

predict 1, else predict 0). On the other hand, when we have two uncorrelated features in an

experiment, we base the predictions on the xor of those two features. Note that ψ does not have

to be restricted to always use synthetic uncorrelated features. It can also use any other existing

feature in the data to make predictions. We experiment with synthetic uncorrelated features on

COMPAS and CC dataset, and with Loan Rate % Income feature on the German credit dataset.

Generating Explanations: We use default LIME tabular implementation without discretization,

and the default Kernel SHAP implementation with k-means with 10 clusters as the background

distribution.

76



Figure 4.3: Communities and Crime: Similar to Fig 4.2; Race % White is the sensitive feature here.

4.3.1 Effectiveness of Adversarial Classifiers

To evaluate how successful our attacks are on LIME and SHAP, we compute the percentage of

data points for which race, uncorrelated features (in case of COMPAS and CC) or Loan Rate %

Income (in case of German credit data) show up in top 3 when features are ranked based on

feature attributions output by LIME and SHAP. In figures 4.2, 4.3, and 4.4, we show the results

of these experiments.4

In case of LIME, when a single feature is used for the attack, i.e., ψ uses a single feature

for making predictions, the adversarial classifier e successfully shifts the feature importance in

4Code available at: https://github.com/dylan-slack/Fooling-LIME-SHAP
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Figure 4.4: German credit: Similar to Fig 4.2 and 4.3, but unbiased classifier ψ uses an existing feature (Loan
Rate % Income) to make predictions, and Gender is the sensitive feature. Feature importances for the biased
classifier f shown in the figure (left) are generated using LIME; SHAP also produces similar feature importance
values.

LIME from the true informative feature (the sensitive feature used by f ) to the uncorrelated

feature in 100% of held-out points for COMPAS (Figure 4.2 - top and middle) and CC (Figure 4.3

- top and middle), and to the Loan % Income feature in 91% for German (Figure 4.4 - middle).

Furthermore, the sensitive feature appears at 2nd or 3rd rank position roughly only as often as

other features. When both uncorrelated features are used to define ψ (for COMPAS and CC),

the 1st and 2nd rank positions for nearly all the data points are occupied by these features, with

the sensitive feature entering into 3rd place at about the same rate as other features (Figures 4.2

& 4.3 - top right). These results demonstrate that the LIME explanation technique has been

effectively fooled by the adversarial classifier e for all three datasets.

For SHAP, when a single uncorrelated feature is used for the attack, the adversarial classifier

e successfully shifts the feature importance from the sensitive feature in 100% of data points in

CC (Figure 4.3 - bottom and middle), 84% of data points in COMPAS (Figure 4.2 - bottom and

middle), and 85% of data points in German. When two uncorrelated features are used in the

attack (for COMPAS and CC), the adversarial classifier is less successful in removing the bias

feature from the first position in the ranking, succeeding in only 67% and 71% instances for

COMPAS and CC respectively (Figures 4.2 & 4.3 - bottom right). This is due to SHAP’s local

accuracy property that ensures that feature attributions must add up to the difference between
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(a) LIME COMPAS Sensitivity Analysis (b) SHAP COMPAS Sensitivity Analysis

Figure 4.5: Effectiveness of our attack: % of data points for which race is the most important feature vs. the F1
score of the OOD classifier (perturbation detection) for both LIME and SHAP on the COMPAS dataset over a
variety of models (fit with line plot over mean of binned points).

a given prediction and the average prediction for the background distribution. This property

will tend to distribute feature attributions across several features when it is not possible to

identify a single most informative feature.

To ensure that the adversarial classifiers e are faithfully approximating the original classifiers

f on instances from the original dataset, we evaluate the fidelity of e w.r.t. f by computing

the percentage of held-out instances on which their predictions agree. In case of LIME, our

adversarial classifiers perfectly reproduce the classifier f on all datasets 100% of the time. On

the other hand, in case of SHAP, our adversarial classifiers are slightly less effective: 75% for

CC, 80% for German, and 91% for COMPAS. These results indicate that our approach has

constructed adversarial classifiers e that successfully fool LIME and SHAP, making them look

like the unbiased ψ classifiers, while behaving like the original biased classifiers f on input

data.

4.3.2 Effect of Perturbation Detection Accuracy

Our approach relies on the OOD classifier to detect whether a given instance is a result of

perturbation or not. Here, we investigate how accurate does this classifier have to be for our

attacks to be effective. We train a number of different OOD classifiers with varying accuracies
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(F1 scores) on the COMPAS dataset. For each OOD classifier, we evaluate the effectiveness

of the resulting attacks (measured as percentage of data points for which race is the most

important feature in the post hoc explanations). The results are presented in Figure 4.5. When

the OOD classifiers are unable to adequately differentiate between perturbed instances and

points from the input dataset, both LIME and SHAP explanations detect race as the most

important feature i.e., the adversarial attacks are not successful. However, once the OOD

classifier is more accurate, the adversarial attacks are successful, and both LIME and SHAP

do not identify race as the most important feature. Between the two, LIME requires the OOD

classifier to be more accurate for the attack to be effective, but is very vulnerable to these

attacks once the F1 score is above 0.8. SHAP, on the other hand, starts responding to the attacks

with a less accurate OOD classifier (F1 score „ 0.45). However, the effect is more gradual; it

needs a very accurate OOD classifier to completely hide the bias. These results indicate that

our attacks are effective as long as it is possible to differentiate between perturbed instances

and input data points with a reasonable accuracy.

4.3.3 Robustness to Hyperparameters

We analyze the behavior of our framework when different parameters are varied at test time

when generating LIME and SHAP explanations for COMPAS; we summarize the key results

here. First, we observe that classifiers that are adversarial to LIME are ineffective against SHAP

explanations, while adversarial classifiers designed for SHAP have varying effectiveness against

LIME. On varying the LIME kernel width between 0.15
?

M to 0.95
?

M (default kernel width is

0.75
?

M, where M is the number of features), the attacks remain equally effective. Additionally,

changing the LIME kernel to use l1 norm for distance instead of the default l2 norm also does

not impact the effectiveness. For SHAP, we train our adversarial classifier assuming the default

background distribution of k-means with 10 clusters; 5 and 15 clusters at test-time are also

equally effective. Using a background distribution of all zeroes for SHAP makes our attacks

even more pronounced.
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Feature Before After attack

Race -0.42 0.0
Uncorrelated feature 1 0.0 0.42
Average of other features 0.0 0.0

Table 4.2: Feature coefficients of LIME explanations for an instance from COMPAS, before and after an attack (ψ
uses a single feature).

(a) Example SHAP explanation for biased classifier f

(b) SHAP explanation of the same instance after the attack (e)

Figure 4.6: Example SHAP explanations for a data point with biased classifier f (top) and adversarial classifier e
(bot.).

4.3.4 Example Explanations

Here, we present few example explanations from the COMPAS dataset that demonstrate the

effectiveness of the technique. In case of LIME explanations in Table 4.2, we see that Race as a

feature is completely hidden from the explanation after the attack, even though it was the sole

important feature for the original classifier f . Similarly, for SHAP explanations in Figure 4.6,

the sole important feature (race) is considerably hidden in the explanation after the attack,

although not completely nullified as in the LIME explanation.

4.4 Additional Contemporaneous Research

The field of explainable machine learning continues to be extremely active, generating an

ongoing dialogue of critiques of existing methodologies and new techniques designed to
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respond to these criticisms. In this section, I discuss both the work that preceded and inspired

ours, as well as a large volume of work generated in response to this and other contemporary

research highlighting the possible vulnerabilities of explanation methods.

This work focuses on post hoc explainability, in which simpler human-interpretable models

are fit to the output of a complex black box after training, as most vulnerabilities result

from the necessary mismatch between black boxes and their interpretable proxies. Inherently

interpretable models, in which the interpretability constraints are included in the training

objective, exhibit no such discrepancy between explanation and ground truth model behavior,

but constraints may lead to lower predictive power. I first describe a number of additional

preliminaries to support the discussion of a broader scope of work in post hoc explainable

machine learning.

4.4.1 Terminology

Perturbation-based Explanation Methods refers to a class of post hoc explanation methods in

which explanations are generated by querying labels from the black box model at a selected set

of inputs which are related to the input being explained through some perturbation function

specific to the explanation tool. It is often required (as in e.g. LIME [RSG16] and Anchors

[RSG18]) that these perturbations take place in a human-interpretable feature space, which

may be some transformation of the original feature space.

Gradient-based Explanation Methods refers to a class of post hoc explanation methods in

which feature importances are generated by taking the partial derivatives of the output with

respect to the input [SVZ13]. Variations consider multiplying gradients by the input [SGK17]

or taking the average gradient over a path from some default input to the input of interest

[STY17] to name a few. Note that while perturbation-based approaches require only black

box query access and may be used on any model, gradient-based approaches require gradient

access.

Propagation-based Explanation Methods refers to a class of post hoc explanation methods

specifically for neural network architectures, in which a relevance score initiated at an output

node is backpropagated through the network according to some set of axioms to assign
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(a) Interventional Distribution Sampling (b) Conditional Distribution Sampling

Figure 4.7: Selecting perturbations (in yellow) to explain the effect of x2 on the red point.

importance to inputs. Layer-wise Relevance Propagation (LRP) is one example, in which the

axiom states that relevance must be conserved in every layer [Bac+15].

On-manifold vs Off-manifold are used to refer to data points which are either within

the considered data distribution (on-manifold) or outside the considered data distribution

(off-manifold).

Interventional Distribution Sampling vs Conditional Distribution Sampling are two

competing strategies for generating perturbations in perturbation-based post hoc explanation

methods such as LIME and SHAP. In interventional distribution sampling, samples are drawn

to estimate the effect of intervening on a feature or set of features. That is, these feature

values are perturbed independently of the remaining features, which are held constant. This

sampling strategy may result in sampled points being off-manifold when features are not truly

independent. In conditional distribution sampling, samples are drawn to estimate the effect of

altering a feature or set of features conditional on the remaining features. That is, perturbed

features are constrained to values that naturally occur in combination with the fixed feature

values. This sampling strategy results in sampled points being on-manifold. See Figure 4.7.
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4.4.2 Criticism of Post hoc Explanations

General Criticism Rudin [Rud19] argues that post hoc explanations are not reliable indications

of black box model behavior, as these explanations are necessarily unfaithful to the underlying

models; if the models were simple enough to be fully represented by an explanation, the model

would be the explanation. Furthermore, because model agnostic techniques including LIME

and KernelSHAP necessarily do not encode any information about the computation of the

black box model, the explanations they yield aren’t truly descriptive of the model’s decision

process but rather present correlations between inputs and model outputs.

As a Tool for Bias Detection Doshi-Velez and Kim [DVK17] argue that interpretability,

including post hoc explanations, can help us evaluate if a model is biased or discriminatory.

On the other hand, Lipton [Lip16] posits that post hoc explanations can never definitively

prove or disprove unfairness of any given classifier. Selbst and Barocas [SB18] and Kroll et al.

[Kro+16] show that even if a model is completely transparent, it is hard to detect and prevent

bias due to the existence of correlated variables.

More recently, Aïvodji et al. [Aïv+19] demonstrated that global post hoc explanations in the

form of rule lists can achieve high fidelity to the original model outputs while displaying highly

divergent fairness metrics. This property can potentially be exploited to fairwash decisions made

by unfair black-box models, by presenting high-fidelity explanations of models that appear

more fair than the model is in actuality. Dimanov et al. [Dim+20] show in adversarially trained

models that the apparent importance of a feature, as measured by a variety of explanation

methods, has no consistent relationship to a set of fairness metrics measured with respect to

the feature.

Criticism of LIME and SHAP Early criticism of LIME and SHAP provided empirical evidence

of a lack of robustness in perturbation-based explanations. Alvarez-Melis and Jaakkola [AMJ18]

demonstrate that LIME and SHAP explanations are sensitive to small changes in input, even

when the model prediction remains constant. Several works note that results may vary between

runs of the algorithms [Lee+19; Zha+19; ZK19; Che+19], and hyperparameters used to select

the perturbations can greatly influence the resulting explanation [Zha+19].
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Garreau and Luxburg [GL20] provide a theoretical analysis of LIME for tabular, discretized

features.5 The authors develop a closed-form expression for the explanations returned by

LIME under mild assumptions and use this expression to develop properties and intuitions

for the explanations returned by LIME for simple models. In some cases, this analysis reveals

favorable properties of LIME explanations, such as that features that do not affect the output

provably receive an attribution of zero. However, the analysis also uncovers many qualities that

raise concerns about the reliability of LIME explanations. In particular, the authors find that

the setting of certain hyperparameters can cause the sign of coefficients to reverse (that is, for

one hyperparameter choice, a feature appears to contribute positively to an outcome, but for

another hyperparameter choice the contribution appears to be negative) or to reduce feature

contributions toward zero. LIME provides little guidance on how to set these hyperparameters,

and the default hyperparameter values are unlikely to be appropriate in every use case. The

authors additionally find that for indicator or partition-based functions, such as regression

trees and the scaffolded classifier used in the present chapter, it is possible for LIME to report

large feature contributions despite the function of interest being completely flat in the vicinity

of the explained example.

Conditional vs Interventional Distributions Many critiques of Shapley values for explainabil-

ity focus on the variation in computational methods and approximations attributed to the same

conceptual goal of adapting Shapley values to model feature attribution [SN20]. Most central

to the execution of the attack in Section 4.2.2 is the distinction between the use of conditional

and interventional distrbutions for calculation of Shapley values. Both sampling strategies have

benefits and drawbacks, and these apply to LIME as well; however, criticism of LIME sampling

(which is interventional by design) tends to refer to the issue as "unrealistic" sampling, rather

than in these more principled terms. This difference in interpretation is reasonable given the

motivation for each of the methods. LIME is explicitly intended to explore model behavior,

which often requires breaking data correlations through interventional sampling. However,

the specification of a sampling neighborhood that is overly off-manifold can lead to results

5Note that while this is the setting explored in the original LIME paper, our work uses the default LIME
implementation for continuous, non-discretized features.
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that don’t explain model behavior within the scope expected by the user. Shapley methods,

on the other hand, intend to adapt a game theoretic concept that values player contributions

conditional on the presence of other players to the model explanation setting, necessarily

creating a theoretical tension.

Because the work in this chapter highlights a vulnerability related to interventional distribu-

tion sampling, it has been seen as advocating for conditional distribution sampling [CLL20]. In

fact, I believe that both sampling methods have merits and that comparing the results of one to

the other can result in additional insights for a user who understands the implications of each.

Kumar et al. [Kum+20] provide a critical look at the use of both conditional and interven-

tional distributions. I focus first on the issues they describe with interventional implementations,

as this class includes KernelSHAP, the method used in this chapter. In interventional methods

for estimating Shapley values, the value of a feature set in an example is calculated by sub-

stituting in values from a specified background distribution, meant to represent the baseline

state when features are absent. This distribution is often taken to be either a set of random

values from the marginal distribution of each feature, the average value of the feature over

the training set, or zero. Importantly, these methods assume feature independence: when

features are not truly independent, this results in evaluating the model at points that are

out-of-distribution relative to the training set. On these points, model behavior can vary widely

as it is unconstrained by the training objective. This behavior will then affect explanations,

potentially allowing for multiple explanations for a model that behaves similarly on the ex-

ample of interest. Even without intervention by an adversary, the explanation will partially

depend on the extrapolation behavior of the model class [HM19] (see Figure 4.8 for intuition).

In addition, the work in this chapter shows that an adversary can also use this property to

manipulate the explanation.

In conditional methods for estimating Shapley values, the value of a feature set in an

example is calculated as the expected value of the function conditional on the features in the

set being equal to the example values. In particular, this means that out-of-distribution samples

are never used in calculating the feature values. This avoids the issues above, although Kumar

et al. [Kum+20] note that it also introduces new concerns: when features are correlated, it

86



Figure 4.8: Extrapolation behavior of similarly accurate models results in different explanations for the red point
using yellow KernelSHAP perturbations, assuming a background distribution of zeros. Note that the queried
labels will be (L to R): (Blue, White), (Red, Red), (Blue, Red). When used in the KernelSHAP formula, these
labels will result in varied explanations for the prediction of the red point, even though model behavior is similar
on-manifold across all three models.

is not possible to disentangle the individual contributions, resulting in feature attributions

that may not accurately represent the influence that changing a given feature would have. In

particular, when features are correlated, it is possible for importance to be assigned to a feature

that is not used by the model, as is also shown by Sundararajan and Najmi [SN20]. This occurs

because the Shapley framework divides value among features when the contribution cannot be

attributed to a single feature, and without sampling off-manifold it is impossible to identify

which of two features, one used by the model and one merely correlated, is driving model

behavior. Janzing, Minorics, and Blöbaum [JMB20] further develop these theoretical concerns,

using a causal framework to argue in favor of the use of interventional methods.

More practically, the true conditional distributions are generally not known, making it diffi-

cult to use conditional methods even when desired. The issue of how best to approximate these

conditional distributions is among the topics covered by Covert, Lundberg, and Lee [CLL20],

who present a unified framework for describing 25 different explanation methods, including

LIME and SHAP. These methods all share the same goal of calculating feature attributions by

analyzing the value of a function after "removing" subsets of features. The authors develop

a set of three design choices that describe the different methods: the feature removal method,

the model behavior being analyzed (LIME and SHAP both consider model predictions), and

the summary presentation (e.g., LIME presents a linear model; SHAP presents Shapley values).

Among these, the choice of feature removal method determines whether the subset value
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calculations approximate conditional distributions. The authors take the position of a prefer-

ence for conditional over interventional distributions and provide a novel justification for this

stance, citing that the true conditional distributions are unique in forming a valid probability

distribution over the outcome, a property they refer to as consistency. Covert, Lundberg, and

Lee [CLL20] show both theoretically and empirically that the default implementations of LIME

and KernelSHAP, which sample according to a background distribution and assume feature

independence, unsurprisingly use poor approximations of the true conditional distribution

under most circumstances. However, they find promising results for other proposed techniques

for calculating conditional values, which are detailed in the following section.

While most of these works tend to advocate for the use of either conditional or interventional

distributions, and Kumar et al. [Kum+20] present their irreconcilability as a critical flaw of

Shapley values for explainability in general, Chen et al. [Che+20] argue that the existence of

these two treatments can actually be beneficial, allowing users to tailor explanations to their

specific application.

4.4.3 New Sampling Methods for LIME and SHAP

Because LIME and KernelSHAP use interventional rather than conditional distributions, most

proposed methods for improving the sampling in LIME and SHAP emphasize the benefits

of conditional sampling and attempt to provide approximations (note that sampling from

the true conditional distributions tends to be infeasible due to being both ill defined and

computationally intensive).

Aas, Jullum, and Løland [AJL19] propose methods for sampling from the true conditional

distributions when the data approximates certain known distributions, such as conditional

Gaussian, as well as a strategy for using a weighted empirical distribution for arbitrary non-

parametric data distributions. Using known synthetic distributions for which they can calculate

the true analytical Shapley values, they find that their method provides a closer approximation

than KernelSHAP. However, the methods, and in particular the non-parametric approach, are

computationally intensive.

Frye et al. [Fry+20] propose two methods for computing Shapley values using approximate
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(a) (b)

Figure 4.9: Architecture of the masked encoder network used by Frye et al. [Fry+20]. Variational autoencoder q
and decoder p discover the latent distribution of the data, z. The masked encoder r attempts to match outputs
ppz|xq using only a masked subset of x. To generate samples from the conditional distribution for a point, the
masked encoder rpz|xSq is combined with the decoder ppx|zq.

conditional distributions for the removed features where each involves training just one

additional model. In the first, unsupervised method, the authors use a variational autoencoder

[KW13], a model designed to discover a low dimensional latent representation of a data

distribution, to create a generative model of conditional datapoints. The traditional autoencoder

(with parameters determined by a neural network), which is composed of an encoder that maps

data points to a latent space and a decoder that maps latent representations back to the original

data points, attempting to minimize the reconstruction error, is augmented with a second

encoder network that attempts to match latent representations using only masked subsets of

the input (See Figure 4.9). Samples from the conditional distribution are then generated by

sampling from the masked encoder network given a desired example and then sampling from

the decoder network given the latent variables acquired in the previous step. The conditional

value function can then be estimated by averaging the original function value over a number of

these samples.

In the second, supervised method, the authors train a surrogate model to approximate

the conditional value function directly by minimizing prediction error relative to the original

function values using only masked subsets. In comparing against the empirical conditional

distributions for a dataset with limited values (note that many continuous values make the

empirical conditional distribution overly sparse with a fixed number of datapoints), the authors
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find that the supervised method is both more accurate and more efficient with respect to model

evaluations, as it does not require sampling. Covert, Lundberg, and Lee [CLL20] also test the

use of a similar surrogate model for generating conditional values and find that this method

ranks feature importances such that the use of top-ranked features for prediction leads to

lower losses than features selected when using background values and marginal samples (the

approximations used by default LIME and SHAP, respectively).

Several works propose variations on the LIME sampling procedure that can increase its

stability and local accuracy by using samples closer to the true conditional distribution. Zafar

and Khan [ZK19] use a deterministic set of nearby points from the training data to generate

explanations for any given example, which forces all perturbations to be on-manifold and

removes variation in explanations across runs of the algorithm. However, the authors note

that the accuracy of this approach is limited by the density of training data around a desired

explanation. Shankaranarayana and Runje [SR19] draw perturbations according to a Gaussian

distribution, as in the implementation of LIME for continuous data, but use an autoencoder

(similar to Frye et al. [Fry+20]) to weight points according to their similarity in the latent

space determined by the encoder, rather than the original data space. This is designed to

encourage higher weightings for on-manifold points relative to off-manifold points. Saito et al.

[Sai+20] propose training a conditional tabular GAN (generative adversarial network [Goo+14])

from which to sample points consistent with the data distribution when generating LIME

explanations. The authors show that this results in explanations that are more robust to the

adversarial attack described in the present chapter.

4.4.4 Adversarial Explanations

The work in this chapter concerns the development of a specific attack that exploits the

perturbation strategies of LIME and KernelSHAP explanations to train an adversarial model.

Additional adversarial attacks have been developed for other post hoc explanation methods

and attack vectors (for example, adversarial model inputs).

Ghorbani, Abid, and Zou [GAZ19] show that some gradient-based explanation techniques

for image-based deep neural networks can be highly sensitive to small perturbations in the
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input even though the underlying classifier’s predictions remain unchanged. In particular, they

develop a method for identifying an imperceptibly perturbed input for which the prediction

remains the same while the regions of the input highlighted as contributing to that prediction

vary substantially. Dombrowski et al. [Dom+19] build upon this idea, showing that not only

can these feature maps be altered with small perturbations in the input image, they can

be arbitrarily changed to resemble an explanation of the adversary’s choosing. The attack

proposed by Heo, Joo, and Moon [HJM19] considers both gradient-based and propagation-

based explanations, and is more similar to the attack in this chapter in that the authors focus

on fine-tuning the model rather than the input, such that explanation methods are inconsistent

with the model’s prediction across the entire test set.

Dimanov et al. [Dim+20] develop an adversarial method to reduce the appearance of

a sensitive feature in a variety of feature importance-based explanations, including LIME

and SHAP as well as gradient-based methods. The authors tune existing models with a

regularization term on the norm of the gradient of the sensitive feature, encouraging models

that flatten the gradient of the sensitive feature in the vicinity of training points. They show

that this technique successfully lowers the perceived importance of a sensitive feature across

all explanation models tested, while maintaining predictions that are fairly consistent with

the original model. This suggests that the attack is effective in shifting gradients of the model

away from regions that are expected to be audited, allowing it to obfuscate any use of sensitive

features.

Anders et al. [And+20] provide a theoretical proof that models can be manipulated to

provide arbitrary gradient and propagation-based explanations despite maintaining the same

predictions for data in the distribution of the training set when the underlying structure of

the input data (i.e. the dimension of the data manifold) is of significantly lower dimension

than the input data, for example due to correlations. This occurs because model gradients

are constrained only within the data manifold but are calculated over all input dimensions.

Additional dimensionality beyond that of the latent data manifold allows for setting the

gradients of directions orthogonal to the data manifold arbitrarily (See Figure 4.10), which

leads to flexibility in manipulating resulting explanations. The authors develop an adversarial
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Figure 4.10: The data manifold (in blue) is low-dimensional relative to the input space (in pink). Model
explanations are constrained by training data only along the data manifold (green arrow). Explanation components
orthogonal to the data manifold (orange arrow) may be controlled by an adversarial model without affecting
predictions on the training data, allowing for many possible explanations of the same model (along black arrows),
especially as dimensionality grows.

model to provide such explanations and prove its effectiveness empirically. They additionally

propose an explanation strategy that is robust to these attacks. This strategy reveals model

gradients restricted to the data manifold, better representing the model behavior on training

data points and tending to produce explanations similar to those in the absence of an attack.

To achieve this, the authors use k nearest neighbors to estimate the tangent plane to the data

manifold in the vicinity of a point to be explained and then project model explanations into

this plane.

4.5 Conclusion

This chapter introduced a novel framework that can effectively hide discriminatory biases of

any black box classifier. The approach exploits the fact that post hoc explanation techniques

such as LIME and SHAP are perturbation-based to create a scaffolding around the biased

classifier such that its predictions on input data distribution remain biased, but its behavior

on the perturbed data points is controlled to make the post hoc explanations look completely

innocuous. Extensive experimentation with real world data from criminal justice and credit

scoring domains demonstrates that the approach is effective at generating adversarial classifiers

that can fool post hoc explanation techniques, finding that LIME is more vulnerable than SHAP.

These findings thus suggest the existing post hoc explanation techniques of LIME and SHAP
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are not sufficient for ascertaining discriminatory behavior of classifiers in sensitive applications.

This work has generated several follow-up research directions in machine learning ex-

plainability and adversarial considerations. Recent work has exposed other vulnerabilities in

gradient-based and propagation-based techniques, as well as explored the theoretical basis for

these vulnerabilities and proposed alternative sampling techniques. I hope that together this

line of research can contribute to a better understanding of the limitations of explainability

techniques, encouraging human users to interpret results more cautiously.
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Chapter 5

Conclusion

In this thesis, I highlight the ways in which traditional machine learning fails to account for

human behavior when incorporating humans in a variety of roles. I delineate the ways in

which this oversight can lead to suboptimal model outcomes when humans play each of three

roles: model user, model subject, and model auditor. In the case of humans as model users or

model subjects, I propose solutions that allow for model optimization to consider and adapt

to human behavior in common settings. In the case of humans as model auditors, I present

an important deficiency in popular model explanation techniques that can lead to models

with undesirable qualities (for example, racial or gender inequity) being able to pass certain

proposed human audits intended to detect such behavior.

Chapter 2 concerns the setting of computer-assisted decision-making, in which a machine

learning model provides a recommendation or risk score to a human decision-maker. I

proposed and validated an alternative framework, in which machine learning models provide

representational advice, allowing for greater flexibility in adapting to human users, and retaining

human judgment and agency. In Chapter 3, I designed and tested a new form of model

regularization that anticipates how model subjects will take action in response to the incentives

created by a transparent model and ensures that these actions result in improved outcomes

with high probability. Finally, in Chapter 4, I developed a framework for training adversarial

models that is capable of fooling popular model explanation techniques and verified its efficacy

on several real world datasets.
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As machine learning is increasingly applied to problems in which human behavior deter-

mines input data and the use of a model in obtaining outcomes, the achievement of desired

results will depend on the ability of humans and machines to predict, at least to some degree,

each other’s actions. Toward the goal of allowing machines to predict human actions, I pre-

sented novel work incorporating human behavioral models into machine learning training

pipelines. Toward the goal of allowing humans to predict machine actions, I revealed a vul-

nerability in popular explainability methods which may lead humans to improperly predict

machine behavior. I hope these contributions will lead to improved human-machine collabora-

tion. Moving forward, there are many opportunities for extending the concepts explored in

this thesis.

Humans as Model Users One of the greatest hurdles in optimizing for human behavior is

minimizing the burden on humans to provide information during the training process. Future

work should focus not only on reducing redundancy in human queries and optimizing for

the collection of samples that lead to the largest resolution of uncertainty regarding human

behavior but also on studying what other forms of feedback may be more informative than

labels. This may reduce the human burden in two ways. First, more detailed feedback may

allow for a greater level of model refinement per sample. Second, humans may prefer to

provide more nuanced forms of feedback [Ame+14]. Thus, even providing a similar number of

labels may feel less onerous. What these forms of feedback may be and how best to incorporate

them into a system such as M˝M are interesting questions for future work.

Explanations should not be ruled out as a useful tool to facilitate human-model collaboration,

but more research should be done to understand how humans use explanations. In particular,

several studies show that explanations can increase the frequency with which people accept

model recommendations even when the model is wrong or the explanation is random [LT19;

Ban+20]. This suggests a greater focus on helping humans to identify when models are wrong,

especially if they are frequently right.
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Humans as Model Subjects Current work on the effects of humans responding to model

incentives, including the work presented in Chapter 3, as well as strategic classification [Har+16]

and recourse [USL19], assume human decisions based on model gradients and cost functions.

These cost functions are often taken to be distance functions over some transformation of

feature space. It is likely that human behavior is more complicated than this, and that feature

changes are correlated in ways that are not fully reflected in static data. A compelling future

direction would be to design an experimental setting such that responses in feature space can

be directly observed, or at least intended changes can be queried from human users. This

would also allow for testing whether current methods are robust to human behavior, and, if

not, developing models that will be more applicable in real world deployment.

Humans as Model Auditors Many errors of human auditors may arise as the result of a

mismatch between the assumptions a human user has about a given model and its explanation,

and the assumptions warranted by the model or explanation method. More work should be

done to understand the assumptions users tend to exhibit and how to align user assumptions

with those appropriate for the model and task.

Sokol and Flach [SF20] argue for providing fact sheets with explanation methods, which

highlight functional requirements and assumptions among other qualities. However, it remains

to be studied whether or not the addition of such information would deter users from improper

inferences. Research in other fields, such as internet security, suggests that such passive

warnings are generally ineffective [ECH08], indicating a potential need for active warnings

embedded in explainability software.

Additionally, the accessibility and general purpose nature of tools such as LIME and

SHAP may invite inappropriate uses and ill-informed users. Hancox-Li and Kumar [HLK21]

encourage the development of task-specific tools, and, importantly, call for a greater use of task-

specific human validation experiments in explainability research. They additionally suggest

the use of multiple explanations or visualizations with more ambiguous implications, inviting

a greater degree of human reasoning. It remains an open question whether this additional

engagement of the human interpreter would, in fact, lead to fewer errors of overconfidence in
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machine learning explanations.

In conclusion, machine learning has great potential to extract new and useful insights

across a wide range of applications. However, when humans play a role in creating data

and interpreting and acting on model outputs, model efficacy will suffer unless models

properly account for human behavior. To this end, I believe machine learning must continue to

expand away from assumptions of static datasets and rational human behavior and engage

with the Human-Computer Interaction and social science communities to cultivate a more

human-centered approach to learning.
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Appendix A

Appendix to Chapter 2

A.1 General Optimization Issues

A.1.1 Initialization

Because acquiring human labels is expensive, it is important to initialize φ to map to a region

of the representation space in which there is variation and consistency in human reports, such

that gradients lead to progress in subsequent rounds.

In some representation spaces, such as our 2D projections of noisy 3D rotated images, this

is likely to be the case (almost any 3D slice will retain some signal from the original 2D image).

However, in 4+ dimensions, as well as with the subset selection and avatar tasks, there are no

such guarantees.

To minimize non-informative queries, we adopt two initialization strategies:

1. Initialization with a computer-only model: In scenarios in which the representation

space is a (possibly discrete) subset of input space, such as in subset selection, the

initialization problem is to isolate the region of the input space that is important for

decision-making. In this situation, it can be useful to initialize with a computer-only

classifier. This classifier should share a representation-learning architecture with φ but

can have any other classifying architecture appended (although simpler is likely better

for this purpose). This should result in some φ which at least focuses on the features
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relevant for classification, if not necessarily in a human-interpretable format.

2. Initialization to a desired distribution with a WGAN: In scenarios in which the ini-

tialization problem is to isolate a region of representation space into which to map all

inputs, as in the avatar example, in which we wish to test a variety of expressions without

creating expression combinations which will appear overly strange to participants, it can

be useful to hand-design a starting distribution over representation space and initialize

φ with a Wasserstein GAN [ACB17]. In this case, we use a Generator Network with

the same architecture as φ but allow the Discriminator Network to be of any effective

architecture. As with the previous example, this results in an φ in which the desired

distribution is presented to users, but not necessarily in a way that reflects any human

intuitive concept.

A.1.2 Convergence

As is true in general of gradient descent algorithms, the M˝M framework is not guaranteed to

find a global optimum but rather is likely to end up at a local optimum dependent on both the

initialization of φ and ĥ. In our case, however, the path of gradient descent is also dependent

on the inherently stochastic selection and behavior of human users. If users are inconsistent

or user groups at different iterations are not drawn from the same behavior distribution, it is

possible that learning at one step of the algorithm could result in convergence to a suboptimal

distribution for future users. It remains for future work to test how robust machine learning

methods might be adapted to this situation to mitigate this issue.

A.1.3 Regularization/Early Stopping

As mentioned in Section 2.3, training φ will in general shift the distribution of the representation

space away from the region on which we have collected labels for ĥ in the previous iterations,

resulting in increasing uncertainty in the predicted outcomes. We test a variety of methods to

account for this, but developing a consistent scheme for choosing how best to maximize the

information in human labels remains future work.
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(a) Initial (b) Step 3 ‘x’ (c) Step 4 ‘x’

(d) Step 3 ‘o’ (e) Step 4 ‘o’

Figure A.1: Images of x-o interface

• Regularization of ĥ: We test regularization of ĥ both with Dropout and L2 regularization,

both of which help in preventing overfitting, especially in early stages of training,

when the representation distribution is not yet refined. As training progresses and

the distribution φθpxq becomes more tightly defined, decreasing these regularization

parameters increases performance.

• Training ĥ with samples from previous iterations: We also found it helpful in early

training iterations to reuse samples from the previous human labeling round in training

ĥ, as inspired by [Bobu et al. 2018]. 1 We weight these samples equally and use only

the previous round, but it may be reasonable in other applications to alter the weighting

scheme and number of rounds used.

• Early stopping based on Bayesian Linear Regression: In an attempt to quantify how

the prediction uncertainly changes as θ changes, we also implement Bayesian Linear

Regression, found in [Riquelme et al., 2018] 2 to be a simple but effective measure of

1Bobu, Andreea, et al. "Adapting to continuously shifting domains." (2018).

2Riquelme, Carlos, George Tucker, and Jasper Snoek. "Deep bayesian bandits showdown." International Conference
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uncertainty, over the last layer of ĥpφθq as we vary θ through training. We find that in

early iterations of training, this can be an effective stopping criterion for training of φ.

Again, as training progresses, we find that this mostly indicates only small changes in

model uncertainty.

A.1.4 Human Input

Testing on mTurk presents various challenges for testing the M˝M framework:

• In some applications, such as loan approval, mTurk users are not experts. This makes

it difficult to convince them that anything is at stake (we found that bonuses did not

meaningfully affect performance). It is also difficult to directly measure effort, agency,

trust, or autonomy, all of which result in higher variance in responses.

• In many other applications, the ground truth is generated by humans to begin with (for

example, sentiment analysis). Since we require ground truth for training, in these task it

cannot be expected of humans to outperform machines.

• As the researchers found in [Lag+18], there can be a large variance in the time users

take to complete a given task. Researchers have found that around 25% of mTurk users

complete several tasks at once or take breaks during HITs [Moss and Litman, 2019].3

making it difficult to determine how closely Turkers are paying attention to a given task.

We use requirements of HIT approval rate greater than 98%, US only, and at least 5,000

HITs approved, as well as a simple comprehension check.

• Turker populations can vary over time and within time periods, again leading to highly

variable responses, which can considerably effect the performance of learning.

• Recently, there have been concerns regarding the usage of automated bots within the

mTurk communiy. Towards this end, we incorporated in the experimental survey a

on Learning Representations. 2018.

3A. J. Moss and L. Litman. How do most mturk workers work?, Mar 2019.
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required reading comprehension task and as well as a CAPTCHA task, and filtered users

that did not succeed in these.

A.2 Experimental Details

A.2.1 Decision-compatible 2D projections

In the experiment, we generate 1,000 examples of these point clouds in 3D. The class of φ is a

3x3 linear layer with no bias, where we add a penalization term on φTφ´ I during training

to constrain the matrix to be orthogonal. Humans are shown the result of passing the points

through this layer and projecting onto the first two dimensions. The class of ĥ is a small

network with 1 3x3 convolutional layer creating 3 channels, 2x2 max pooling, and a sigmoid

over a final linear layer. The input to this network is a soft (differentiable) 6x6 histogram over

the 2D projection shown to the human user.

We tested an interactive command line query and response game on 12 computer science

students recruited on Slack and email. Users filled out a consent form online, watched an

instructional video, and then completed a training and testing round, each with up to 5 rounds

of 15 responses. Due to the nature of the training process, achieving 100% accuracy results in φ

not updating in the following round. With this in mind, if a user reached 100% accuracy in

training, they immediately progressed to testing. If a user reached 100% accuracy in testing,

the program exited. φ was able to find a representation that allowed for 100% accuracy 75% of

the time, with an average 5 round improvement of 23% across all participants. Many times

the resulting projection appeared to be an ‘x’ and ‘o’, as in Figure A.1, but occasionally it

was user-specific. For example, a user who associates straight lines with the ‘x’ may train the

network to learn any projection for ‘x’ that includes many points along a straight line.

The architecture of φ and ĥ are described in Section 2.4. For training, we use a fixed

number of epochs (500 for ĥ and 300 for φ) with base learning rates of .07 and .03, respectively,

that increase with lower accuracy scores and decrease with each iteration. We have found

these parameters to work well in practice, but observed that results were not sensitive to their

selection.
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Figure A.2: Visualization of reconstruction component

A.2.2 Decision-compatible algorithmic avatars

Data Preprocessing.

We use the Lending Club dataset, which we filter to include only loans for which we know

the resolution (either default or paid in full, not loans currently in progress) and to remove

all features that would not have been available at funding time. We additionally drop loans

that were paid off in a single lump sum payment of at least 5 times the normal installment.

This results in a dataset that is 49% defaulted and 51% repaid loans. Categorical features are

transformed to one-hot variables. There are roughly 95,000 examples remaining in this dataset,

of which we split 20% into the test set.

Learning architecture and pipeline.

The network φ takes as input the standardized loan data. Although the number of output

dimension are R9, φ outputs vectors in R11. This is because the some facial expressions do not

naturally coexist as compound emotions, i.e., happiness and sadness [DTM14]. Hence, we must

add some additional constraints to the output space, encoded in the extra dimensions. For

example, happiness and sadness are split into two separate parameters (rather than using one

dimension with positive for happiness and negative for sadness). The same is true of “happy

surprise", which is only allowed to coincide with happiness, as opposed to “sad surprise."

For parameters which have positive and negative versions, we use a tanh function as the final

nonlinearity, and for parameters which are positive only, we use a sigmoid function as the final

nonlinearity.
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(a) Loss in training ĥ over 3 rounds (b) Validation Accuracy in training φ over 3
rounds

Figure A.3: ĥ does not necessarily have to match h well to lead to an increase in accuracy

These parameters are programmatically mapped to a series of Webmorph [DT16] transfor-

mation text files, which are manually loaded into the batch transform/batch edit functions of

Webmorph. We use base emotion images from the CFEE database [DTM14] and trait identities

from [OT08]. This forms ρ for this experiment.

The network φ is initialized with a WGAN to match a distribution of parameters chosen

to output a fairly uniform distribution of feasible faces. To achieve this, each parameter

was chosen to be distributed according to one of the following: a clipped N p0, 4q, U r0, 1s, or

Beta(1,2). The choice of distribution was based on inspection as to what would give reasonable

coverage over the set of emotional representations we were interested in testing. In this initial

version of φ, x values end up mapped randomly to representations, as the WGAN has no

objective other than distribution matching.

The hidden layer sizes of φ and ĥ were chosen via cross validation. For φ, we use the smallest

architecture out of those tested capable of recreating a wide distribution of representations z as

the generator of the WGAN. For ĥ, we use the smallest architecture out of those tested that

achieves low error both in the computer-only simulation and with the first round of human

responses.

In the first experiment, we collect approximately 5 labels each (with minor variation due to

a few mTurk users dropping out mid-experiment) for the LASSO feature subset of 400 training

set x points and their φ0 mappings (see Figure A.5). a is taken to be the percentage of users
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(a) Training Rounds (‘Overall‘ here is average per
user score, rather than the score of the average
response per question)

(b) Test Round

Figure A.4: Results by Reported User Type

responding “approve" for each point.

To train ĥ, we generate 15 different training-test splits of the collected tz, au pairs and

compare the performance of variations of ĥ in which it is either initialized randomly or

with the ĥ from the previous iteration, trained with or without adding the samples from

the previous iteration, and ranging over different regularization parameters. We choose the

training parameters and number of training epochs which result in the lowest average error

across the 15 random splits. In the case of random initialization, we choose the best out of 30

random seeds over the 15 splits.

To train φ, we fix ĥ and use batches of 30,000 samples per epoch from the training set,

(a) (b)

Figure A.5: Images from mTurk questionnaire
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which has 75,933 examples in total. To prevent mode collapse, wherein faces “binarize" to two

prototypical exemplars, we add a reconstruction regularization term Rpxq “ }x´ ψpφpxqq}22 to

the binary cross entropy accuracy loss, where ψ is a decoder implemented by an additional

neural network (see Figure A.2). φ here also features a constraint penalty that prevents

co-occurrence of incompatible emotions.

We train φ for 2,000 epochs with the Adam optimizer for a variety of values of α, where we

use α to balance reconstruction and accuracy loss in the form Ltotal “ αLacc ` p1´ αqLrec. We

choose the value of α per round that optimally retains x information while promoting accuracy

by inspecting the accuracy vs. reconstruction MSE curve. We then perform Bayesian Linear

Regression over the final layer of the current ĥ for every 50th epoch of φ training and select

the number of epochs to use by the minimum of either 2,000 epochs or the epoch at which

accuracy uncertainty has doubled. In all but the first step, this resulted in using 2,000 epochs.

At each of the 2-5th epochs, we choose only 200 training points to query. In the 6th epoch we

use 200 points from the test set.

Self-reported user type.

In the end of the survey, we ask users to report their decision method from among the following

choices:

• I primarily relied on the data available

• I used the available data unless I had a strong feeling about the advice of the computer

system

• I used both the available data and the advice of the computer system equally

• I used the advice of the computer system unless I had a strong feeling about the available

data

• I primarily relied on the advice of the computer system

• Other
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The percentage of users in each of these groups varied widely from round to round.

We consider the first two conditions to be the ‘Data’ group, the third to be the ‘Equal’ group,

and the next two to be the ‘Computer Advice’ group. Although the trend is not statistically

significant (at p “ 0.05), likely due to the small number of subjects per type per round, we find

it interesting that the performance improved on average over training rounds for all three types,

of which the equal-consideration type performed best. For the data-inclined users, whose

performance improved to surpass that of the no-advice condition in as early as round two,

this implies at least one of the following: users misreport their decision method; users believe

they are not influenced by the advice but are in fact influenced; or, as the algorithmic evidence

becomes apparently better, only the population of users who are comparatively skilled at using

the data continue to do so.

Diversity in avatar representation.

Figure A.6 presents examples of visualized avatars. Avatars correspond to examples having

either low or high human-predicted probability (averaged across users) (top figure), and either

low or high machine-predicted probability (lower figure). For visualization purposes, avatars

are aligned according to a uni-dimensional PCA projection of the inputs, so that their spatial

positioning captures the variance in the data. As can be seen, avatars are different for each

predictive category (positive or negative; human or machine), but also vary considerably within

each predictive category, with variance eminent across multiple facial dimensions.

We believe the additional dimensionality of the avatar representation relative to a numerical

or binary prediction of default is useful for two reasons. Most importantly, high dimensionality

allows users to retain an ability to reason about their decisions. In particular, avatars are useful

because people likely have shared, mental reference points for faces. Moreover, users with a

more sophisticated mental reference space may be able to teach the advising system over time

to match specific reasoning patterns to specific characteristics. Additionally, when the advising

system does not have a strong conviction about a prediction, presenting neutral advice should

encourage the user to revisit the data, whereas percentages above or below the base rate of

default (or 50%) may suffer from the anchoring effect.
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Figure A.6: Richness of avatar representation. A visualization of 200 avatars randomly sampled from the held-out
test set, grouped by either human (top) or machine (bottom) predictive probability (0.2 in blue, 0.8 in orange, with
a tolerance of 0.05). Avatars are positioned based on a 1D PCA dimensionality reduction of their corresponding
feature vectors z, along which a ‘gradient’ of facial changes can be observed. Top: Here avatars are grouped by
human predictive probability. The figure shows how for the same human decisions, learning results in avatars
of varied and complex facial expressions, conveying rich high-dimensional information. Interestingly, avatars
corresponding to loan denial exhibit more variance, suggesting that there may be more ‘reasons’ for denying a loan
than for approving one. Bottom: Here avatars are grouped by machine predictive probability. Since all examples
in each group have the same predictive probability, they are equally similar, which does not facilitate a clear notion
for reasoning. In contrast, avatars maintain richness in variation, and can be efficiently used for reasoning (e.g.,
via similarity arguments) and other downstream tasks.
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Further Details on Information Learned by z.

Using cross-validated ridge regression to predict individual x variables from individual z

variables results in the coefficients of determination R2 (to 2 significant figures) shown in Table

A.1.

Using cross-validated ridge regression to predict individual x variables from all z variables

(both standardized to mean 0, std 1) results in the variable coefficients (to 2 significant figures)

shown in Table A.2.

A.2.3 Incorporating Side Information

y “ xc ` xd ` s; ; ybin “ 1ty ą 3u

Learning Architecture.

The network φ contains a single linear layer with no bias which takes a constant (1) as an input

and outputs a number zi for each data dimension i.

Table A.1: Coefficients of Determination R2, predicting each x variable from each final z variable.

rate term dt rec inc emp

happiness 0.00 -0.15 -0.14 0.00 -0.01 0.00
sadness -0.01 -0.06 -0.10 0.00 -0.04 -0.07
trustworthiness 0.57 0.17 0.01 0.00 -0.01 -0.01
dominance 0.00 -0.01 0.03 -0.01 0.01 -0.01
hue 0.48 0.29 -0.02 0.00 -0.04 -0.02
eye gaze 0.42 0.46 -0.04 -0.40 -0.04 -0.17
age 0.23 0.22 -0.12 -0.21 0.17 0.04
anger -0.01 -0.02 -0.05 -0.02 -0.01 0.00
fear 0.04 0.00 -0.03 0.00 -0.01 -0.01
surprise -0.18 0.04 -0.01 -0.02 0.00 -0.04

Table A.2: Coefficients of Ridge Regression, predicting each x variable from all final z variables.

rate term dt rec inc emp

happiness -0.07 -0.29 -0.10 -0.06 0.21 -0.07
sadness 0.16 0.07 0.07 -0.01 0.13 0.07
trustworthiness -0.62 -0.28 -0.05 -0.23 0.31 0.16
dominance 0.05 0.16 0.12 -0.13 -0.02 0.04
hue 0.27 0.20 0.19 0.03 0.01 -0.08
eye gaze 0.13 0.28 -0.10 0.13 -0.29 -0.04
age -0.09 0.14 0.12 -0.09 0.67 0.40
anger 0.00 0.00 0.00 0.00 0.00 0.00
fear 0.19 0.12 0.08 -0.07 0.04 0.00
surprise 0.07 0.12 0.03 -0.07 -0.06 0.13
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The network ĥ takes as input px, w, yq. It contains one linear layer with no bias which takes

as input rx, ys and outputs a single number ŝ. The second linear layer (with bias) takes as input

w and outputs the sigmoid activation of a single number, switch, representing the propensity

to incorporate s at w. It then outputs wᵀx` switch ¨ ŝ.

Baselines.

• Machine Only: The best possible linear model (with bias) trained to predict y from

x1 . . . x4.

• hpMachine): The human model h applied to the best possible linear model (with bias)

trained to predict y from x1 . . . x4.

hpMachineq “ β0 ` hpx, β1, . . . , β4, sq

where β are the coefficients selected by the machine-only regression.

Human Models

• Always: The human always fully incorporates the side information,

hpx, w, sq “ wᵀx` s

• Never: The human never incorporates the side information,

hpx, w, sq “ wᵀx

• Or: The human becomes less likely to incorporate side information as weight is put on

xi, xr,

hpx, w, sq “ wᵀx` σp1{maxpmaxpxi, xrq, .0001q ´ 2q. ¨ s

Note that max(.0001) is required to prevent numerical overflow, and -2 recenters the

sigmoid to allow for values ă .5.
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• Coarse: The human incorporates s as in Or, but uses a coarse, noisy version of s,

s1 “ 2 ¨ 1ts ě 2u

hpx, w, sq “ wᵀx` σp1{maxpmaxpxi, xrq, .0001q ´ 2q. ¨ s1

A.3 Select Turker quotes

• “I wasn’t always looking at just happiness or sadness. Sometimes the expressions seemed

disingenuously happy, and that also threw me off. I don’t know if that was intentional

but it definitely effected my gut feeling and how I chose.”

• “In my opinion, the level of happiness or sadness, the degree of a smile or a frown, was

used to represent applications who were likely to be payed back. The more happy one

looks, the better the chances of the client paying the loan off (or at least what the survey

information lead me to believe).”

• “I was more comfortable with facial expressions than numbers. I felt like a computer and

I didn’t feel human anymore. Didn’t like it at all.”
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Appendix B

Appendix to Chapter 3

B.1 Pseudocode

Our algorithm alternates between optimizing the three components of the framework: a

predictive model, a propensity model, and an uncertainty model. Here we give pseudocode

for the following per-component objectives:

1. A predictive model ŷ “ f pxq, optimizing the squared loss:

`predp f ;Sq “
m
ÿ

i“1

pyi ´ ŷiq
2

2. A propensity weight model w “ ehpxq, optimizing the log-loss:

`propph;S ,S 1q “
m
ÿ

i“1

logp1` ehpxiqq ` logp1` e´hpx1
iqq

3. An uncertainty interval model r`, us “ gτpxq, optimizing the τ-quantile loss:

`
pτq
uncertpg;S , wq “

m
ÿ

i“1

wpxiqmaxtpτ´ 1qpyi ´ `iq, τpyi ´ `iqu

but note that others can be plugged in. The pseudocode is given below.
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Algorithm B.1: LookaheadpS , T, λ, η, τq

1: f p0q Ð argmin fPF `predp f ;Sq
2: for t “ 1, . . . , T do
3: x1i Ð dηpxi; f pt´1qq for all i “ 1, . . . , m {e.g., dηpx; f q “ x` ηΓp∇ f pxqq}
4: S 1 Ð tx1iu

m
i“1

5: hptq Ð argminhPH `propph;S ,S 1q
6: w Ð ehptq

7: gptq Ð argmingPG `
pτq
uncertpg;S , wq

8: f ptq Ð argmin fPF `predp f ;Sq ` λRpgptq;Sq
9: end for

10: return f pTq

B.2 Uncertainty models

Here we describe the two uncertainty methods used in our paper and how they apply to our

setting.

B.2.1 Bootstrapping

Bootstrapping produces uncertainty intervals by combining the outputs of a collection of k

models tgpiquk
i“1, each trained independently for prediction on a random subset of the data.

There are many approaches to bootstrapping, and here we describe two:

• Vanilla bootstrapping: Each gpiq is trained using a predictive objective (e.g., squared

loss) on a sample set Spiq “ tpxpiqj , ypiqj qu
m
j“1 where pxpiqj , ypiqj q are sampled with replacement

from S . The sub-models are then combined using:

gpxq “ rµpxq ´ zσpxq, µpxq ` zσpxqs

where:

µpxq “
1
k

k
ÿ

i“1

gpiqpxq, σpxq “
1
k

k
ÿ

i“1

pµpxq ´ gpiqpxqq2

and z is the z-score corresponding to the confidence parameter τ under a normal distri-

bution.

• Bootstrapping residuals: First, a predictive model ḡ is fit to the data, and residuals

r “ y´ ḡpxq are computed. Then, each gpiq is trained on the original sample data but
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with ground truth-labels yi replaced with random pseudo-labels:

Spiq “ tpxj, ȳpiqj qu
m
j“1 ȳpiqj “ yi ` rj

where rj are sampled with replacement from trju
m
j“1.

In our framework, because g must apply to p1, each gpiq is trained with propensity weights

w. To account for cases where p and p1 differ, the gpiq are trained not on sample sets of size m,

but rather, of size m̃pwq, where m̃pwq is the effective sample size [KLW94] given by:

m̃pwq “
meanptwiu

m
i“1q

varptwiu
m
i“1q

, wi “ wpxiq @ i “ 1, . . . , m

B.2.2 Quantile regression

Quatile regression is a learning framework for training models to predict the τ-quantile of

the conditional label distribution ppy|xq. Just as training with the squared loss is aimed at

predicting the mean of ppy|xq, training with the absolute loss |y´ ŷ| is aimed at the median.

Quantile regression generalizes the absolute loss by considering a ’tilted’ variant with slopes

τ´ 1 and τ:

Qτpy, ŷq “ maxtp1´ τqpy´ ŷq, τpy´ ŷqu

B.3 Experimental details

B.3.1 Experiment 1: Quadratic curves

Here we set f ˚pxq “ ´0.8x2` 0.5x` 0.1. F and G include quadratic functions, and H to include

linear functions. For uncertainty estimation we used vanilla bootstrap, and for propensity

scores we used logistic regression. For lookahead, we set λ “ 4, τ “ 0.95, use k “ 10

bootstrapped models, and train for T “ 5 rounds. The data includes m “ 25 samples x drawn

from Np´0.8, 0.5q, and y “ f ˚pxq ` ε where ε „ Np0, 0.25q. We use a 75 : 25 train-test split. The

three conditions vary only in η with values η “ 0.75, 1.25, and 3.5.

Quantitative results are given in the table below:
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RMSE Imp. rate Imp. mag.

η “ 0.75
baseline 0.349 0.857 1.109
lookahead 0.351 0.857 1.108

η “ 1.25
baseline 0.342 0.143 -0.261
lookahead 0.424 0.714 1.065

η “ 3.5
baseline 0.342 0 -35.13
lookahead 0.675 0.571 0.604

B.3.2 Experiment 2: Wine quality

The wine dataset includes m “ 178 examples and d “ 13 features. We learn a quadratic

f ˚pxq “
ř

i θixi `
ř

i θ1i x
2
i . F, G, and H include linear functions. For uncertainty estimation we

used residuals bootstrap, and for propensity scores we used logistic regression. For lookahead,

we set τ “ 0.95, use k “ 20 bootstrapped models, and train for T “ 10 rounds. For f , we use

SGD with a learning rate of 0.1 and 1000 epochs for initialization and 100 additional epochs

per round. For g, each sub-model was trained with SGD using a learning rate of 0.1 and for

500 epochs. We set η “ 0.5 and η “ 2 for the fully and partially mutable settings, respectively.

B.3.3 Experiment 3: Diabetes

The diabetes dataset includes m “ 442 examples and d “ 10 features. We set f ˚pxq to be a

generalized additive model (GAM) with splines of degree 10 trained on the entire dataset and

tuned using cross-validation. In the first setting, F, G, and H include linear functions. In the

second setting, F, G are quadratic functions (i.e., linear in xi and in x2
i ) and H remains linear.

For uncertainty estimation we used quantile regression, and for propensity scores we used

logistic regression. For lookahead, we set τ “ 0.8 and train for T “ 10 rounds. For f , we use

SGD with a learning rate of 0.05 and 1000 epochs for initialization and 100 additional epochs

per round. For g, we use SGD with a learning rate of 0.05 and for 500 epochs. For both linear

and non-linear settings we set η “ 5, and normalize y to be in r0, 1s.

B.3.4 Sensitivity analysis

The experiments in the paper assume models are trained with the same η used in evaluation.

Here we evaluate the sensitivity of our method to the misspecification of η. We use the diabetes
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Figure B.1: Sensitivity analysis of learning with misspecified η. (Left) Improvement rate of misspecified models,
trained on a single η and evaluated on data generated with varying values of η. (Right) The ratio between the
improvement rate of misspecified and correctly-specified models (i.e., trained on the same η on which they are
evaluated).

experimental setup, train four different models with η P t1, 2, 5, 10u, and evaluate each on

action outcomes generated with η1 P t0, . . . , 30u. Figure B.1 (left) shows the improvement rate

of each model evaluated on varying test-time η1. As can be seen, improvement rates across η1

show an inverse-U patter. In most regimes performance is robust, although for large deviations

between η and η1 improvement rates deteriorate. To investigate this, in Figure B.1 (right) we

compare the improvement rate of the misspecified model (i.e., trained on a fixed η) to that of

a correctly-specified model, and report the ratio.1 The correctly-specified model serves as a

benchmark on performance, and results show that misspecified models are competitive with

this benchmark (except for extremely large values of η1).

1Due to randomness in experimentation, the ratio can be larger than one.
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Appendix C

Appendix to Chapter 4

Symbol Description

xi Observed attributes of a data point i

yi ground truth class label of a data point i

X Set of all the observed attributes of input data points i.e., X “ tx1, x2, ¨ ¨ ¨ xNu

y Set of all the ground truth class labels of input data points i.e., y “ ty1, y2, ¨ ¨ ¨ yNu

D Set of input data points D “ pX , yq “ tpx1, y1q, px2, y2q ¨ ¨ ¨ pxN , yNqu

C Set of class labels in D i.e., @i, yi P C
Xdist Distribution from which X is sampled

Ddist Distribution from which D is sampled

f Black box model which maps a data point to a class label i.e., f pxiq P C
g Interpretable model that serves as an explanation of the black box model f

generated by posthoc explanation techniques

ψ Unbiased classification function

e Adversarial classifier

Xp Set of perturbed data points generated from X

Table C.1: Description of Notation
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COMPAS LIME Adversarial Classifier
Baseline classifier f Attack 1 feature Attack 2 features

Importance Ranking 1 1 2 3 1 2 3

African-American 100 0 9 11 0 0 11

Unrelated Feature 1 0 100 0 0 49 51 0
Unrelated Feature 2 0 0 9 10 50 49 0

Other Features 0 0 82 79 0 0 89

Accuracy 56 56 56

COMPAS SHAP Adversarial Classifier
Baseline classifier f Attack 1 feature Attack 2 features

Importance Ranking 1 1 2 3 1 2 3

African-American 100 16 82 1 34 31 33

Unrelated Feature 1 0 84 12 1 35 31 19
Unrelated Feature 2 0 0 0 13 32 31 18
Other Features 0 0 6 55 0 5 20

Accuracy 56 53 55

Table C.2: The percentage occurrence of the top features in e with the perfectly unfair f (if African-American
predict high likely to recidivate) on COMPAS LIME and SHAP adversarial explanations. “Attack 1 feature” and
“Attack 2 features” can be read as two different scenarios: the former where one feature is used in ψ and the latter
where two features are used in ψ. The baseline is the explanation on f . The percentages are the mean rates of
occurrences on a 10% test set over three different runs (including re splitting into a different train-test set). We
see that whether the individual is African American is the most important feature in both LIME and SHAP on f .
Using e, we are able to exclude all of the explanations of this feature in LIME and most of the explanations in
SHAP in the top feature positions.

Figure C.2: The effectiveness of explaining classifiers adversarial to SHAP with LIME and classifiers adversarial
to LIME with SHAP. We see that classifiers adversarial to LIME are not effective at hiding bias from SHAP
explanations, and classifiers adversarial to SHAP are moderately effective at hiding biases from LIME explanations.
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Communities and Crime LIME Adversarial Classifier
Baseline classifier f Attack 1 feature Attack 2 features

Importance Ranking 1 1 2 3 1 2 3

Race % White 100 0 1 1 0 0 2

Unrelated Feature 1 0 100 0 0 48 52 0
Unrelated Feature 2 0 0 3 3 52 48 0

Other Features 0 0 96 96 0 0 98

Accuracy 73 73 73

Communities and Crime SHAP Adversarial Classifier
Baseline classifier f Attack 1 feature Attack 2 features

Importance Ranking 1 1 2 3 1 2 3

Race % White 100 0 78 3 26 26 40

Unrelated Feature 1 0 100 0 0 36 25 7
Unrelated Feature 2 0 0 0 3 35 30 6

Other Features 0 0 16 86 0 16 44

Accuracy 73 70 72

Table C.3: The percentage occurrence of the top features in e with the perfectly unfair f (if race % white ą
median race % white predict nonviolent community) on Communities and Crime. Using the e, we are able to
exclude all of the explanations of this feature in LIME and many of the SHAP explanations, consistent with our
results on COMPAS.

Figure C.1: SHAP attack effectiveness across different background distributions: K-means 10 is the distribution
assumed in training. We also test on K-means 5, K-means 15, and all 0. These represent different suggestions in
the SHAP software package for representing a large dataset.
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German Credit LIME Adversarial Classifier
Baseline classifier f With Attack

Importance Ranking 1 1 2 3

Gender 100 0 4 4

Loan Rate % Income 0 91 0 0
Other Features 0 9 96 96

Accuracy 64 64

German Credit SHAP Adversarial Classifier
Baseline classifier f With Attack

Importance Ranking 1 1 2 3

Gender 100 0 5 1

Loan Rate % Income 0 85 0 0
Other Features 0 0 72 65

Accuracy 64 64

Table C.4: The percentage occurrence of the top features in e with the perfectly unfair f (if Gender is male predict
will repay loan) on COMPAS LIME and SHAP explanations. We use loan rate as a percentage of income as ψ
and predict false if the value is above its mean. In both the LIME and SHAP case, we are able to exclude gender
from the majority of the explanations. When the explanation is included, it appears at the same frequency as other
features.
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