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Abstract 

“Lineage-specific” genes, defined operationally as those lacking detected homologs 

outside of a narrow group of related species, are widely interpreted as novel genes. In this 

capacity, they have become the subject of significant evolutionary interest seeking to understand 

the nature and consequences of genetic novelty. Are all or most lineage-specific genes truly 

evolutionarily novel? Or might there be other, more mundane, reasons that these genes lack 

homologs beyond their lineage? Here, I explore two sources of lineage-specific genes that do not 

involve novelty. The first is variation in the genome annotation methods that are used for 

different species in a comparative analysis; the second is the failure of homology detection 

algorithms to identify homologs that do actually exist outside of a given lineage. I find evidence 

that these contribute large numbers of the total lineage-specific genes, suggesting that 

interpreting lineage-specific genes as novel is not generally reliable. I explore a particular 

example in which such an interpretation may have confused attempts to understand the evolution 

of a novel animal trait, and show how an analysis method developed here informs a different 

interpretation, altering conclusions about evolutionary history. Finally, I review what is known 

about de novo genes, a particularly poorly-understood type of novel gene.  
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Introduction: Homology, novelty, and lineage-specific genes 

Homology is a central notion in evolutionary biology. Despite vast diversity in 

organismal form and function, all life on Earth shares a common origin. Many genes present in 

this common ancestor have been carried forward into its modern descendants: genomes spanning 

even the farthest reaches of the tree of life are rife with components recognizable as extremely 

similar to one another, a phenomenon that we interpret as evidence of this common descent.   

Even more striking than how many genes disparate organisms share is how many functions they 

have in common. It is not just the parts list that evolution has retained: it is how they run the 

machine. All but necessary in any discussion of the pervasiveness of homology is Jacques 

Monod’s famous adage: “What is true for E. coli is true for the elephant.” This quip now 

represents a sentiment taken so much for granted that it has acquired the feel of a quaint 

platitude. Everyone knows that most things in biology are homologous. It is our default 

expectation, so omnipresent that it fades from conscious awareness, the nose on our face as we 

peer into nature.  

Beyond repeated empirical demonstration of the broad conservation of genes and the 

functions that they encode, compelling a priori intuitions bolster the conviction that most 

biological processes have homologs, and thereby evolutionary roots, elsewhere. Even structures 

and functions that appear new are much likelier to result from modifications of components of 

existing ones than to have been created from entirely new components. The prospect of getting 

useful biology from nothing simply seems an astronomically tall order compared to getting it 

from something. It must, of course, have happened once or a few times, at the very origin of life, 

in a process that has been likened to a molecular “big bang” [1]; but, with this initial hurdle 

mounted and some cellular machinery in place, the argument goes, it becomes vastly easier, and 
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so vastly more likely, for evolution to modify and re-use existing components than to invent 

processes or structures totally anew [1]. Consistent with this line of thinking, early work 

estimated that the number of evolutionarily distinct protein families was much smaller than the 

total number of proteins: perhaps on the order of a thousand [2]. Again, a compulsory adage, this 

time from Monod’s partner Francois Jacob: “Evolution does not produce novelties from scratch” 

[3]. In the next section, on “Molecular Tinkering,” the prospect of novel proteins in particular 

prompts a pointed follow-up: “the probability that a functional protein would appear de novo by 

random association of amino acids is practically zero” [3]. Jacob belabored the supremacy of 

homology over novelty in the case of proteins, the cell’s basic constituents, in particular. Here, 

many of us agree, it is especially hard to imagine how novelty could arise, how function might 

emerge from nothing.  

That all genes ought to have homologs was put systematically to the test with the advent 

of genome sequencing projects. In the completed S. cerevisiae genome sequence, 30% of 

inferred genes “had no clear-cut sequence homologs in any organism” [4]. Other genomes from 

across the tree of life yielded similar results [5, 6]. It was hoped that this was an artifact of too-

sparse sampling, and that increasing database size would squash the problem of these so-called 

“orphan” proteins [7]. While broader sequencing has somewhat decreased their abundance, a 

persistent minority of proteins in any species still remains orphaned, lacking detectable 

homologs anywhere else in the tree of life [8, 9]. The problem deepens when so-called “lineage-

specific” or “taxonomically-restricted” proteins are considered: every taxon, young or old, seems 

to have its own suite of unique proteins, not found in any species beyond its borders [8, 9]. I will 

refer to both of these classes as “lineage-specific genes,” with orphans being the base case in 

which the lineage is a single species. I will define them throughout this thesis as is standard in 
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the field: purely operationally, as those that lack detected homologs beyond the specified 

taxonomic boundary. I note that strict adherence to this operational definition can at times 

produce unintuitive statements: for example, a gene with no detected homologs beyond a 

lineage, but for which there is circumstantial evidence pointing toward such homologs 

nonetheless existing, will still be referred to as lineage-specific. Though at times unwieldy, this 

terminology is consistent with use in the field, and so I adhere to it here.  

Lineage-specific genes have remained quite abundant, despite the rapid recent increase in 

sequencing density across the tree of life. A few quantitative examples: 23% of Caenorhabditis  

elegans genes are specific to the genus [10]; 6% of honey bee (Apis mellifera) genes specific to 

insects [11]; 25% of ash tree (Fraxinus excelsior) genes specific to the species [12]; and 1% of 

human genes specific to primates [13].  

 What are these genes? Lacking homologs, they appear on face to be evolutionarily novel. 

This interpretation rapidly dominated: in many circles, lineage-specificity became, and remains, 

essentially synonymous with novelty [9, 14-28]. The prospect of such abundant genetic novelty, 

so starkly in contrast to the unflashy truism of pervasive homology, captured imaginations and 

sparked a rush to study these novel genes. With available genome sequences from increasingly 

diverse organisms mounting, an obvious and fairly simple approach to learning about these genes 

was to computationally, systematically and at large scale, identify them in different taxa and then 

analyze them in some way. A cottage industry taking this approach sprung up: a lineage was 

selected; lineage-specific genes, lacking outgroup homologs, were identified, usually with a 

BLASTP search; and their properties were analyzed, again usually computationally and at large 

scale [10, 13, 18, 29-45]. (The term “phylostratigraphy” was introduced to refer to this approach 

when used to identify genes specific to lineages of varying ages, inferred to have been born at 
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corresponding “strata” in evolution [32].) The results of these analyses of lineage-specific genes 

– the numbers of genes in different taxa, the properties of their sequences, any hints of apparent 

functions – are often explicitly interpreted as results about novel genes [13, 18, 29-36].  

 In precisely what way are these genes thought to be novel? Different proposals have been 

made. An early and influential hypothesis held that these genes are duplicates that have gained 

an entirely new function: although they have homologs in the formal sense, these bear no 

meaningful resemblance, entirely different in function and unrecognizable by homology search 

algorithms in sequence. In the proposed model for how this occurs, in a period of relaxed 

selective constraint following the duplication event, these genes undergo rapid evolution in 

which they rapidly sample mutational space and thereby acquire a novel function. Selective 

constraint then reemerges to conserve this function, slowing gene evolution and allowing 

detection of homologs that emerge after this point and so share the new function. The result of 

this process is that these genes are lineage-specific, with the extent of the lineage corresponding 

to the evolutionary moment at which their new function as gained [21]. Another version of 

novelty attributed to lineage-specific genes, simpler but arguably more exotic, is that they are “de 

novo” genes, emerged from previously noncoding DNA [21, 22]. Individual studies sometimes 

clearly adopt one of these interpretations, usually without justification, but sometimes do not [9, 

14-28]. The field therefore strikes me as somewhat confused on this point, a lack of clarity that I 

interpret as reflecting that the focal claim – what drives interest in these genes -- seems not to be 

anything about the molecular nature of the origin of lineage-specific genes per se, but just the 

overall notion they are in some way evolutionary novel. I will use the term “novel genes” to 

indicate this kind of meaningful evolutionary novelty implied by the novelty hypothesis. 
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I will refer to these and similar interpretations collectively as the “novelty hypothesis”: 

again, the view that lineage-specific genes are all, or overwhelmingly, meaningfully novel. A 

lack of detected homologs alone is taken as a reliable indicator of novelty. Terminologically, the 

novelty hypothesis holds that all lineage-specific genes are novel genes. 

 Conclusions about novel genes drawn in studies that adopt the novelty hypothesis are 

tantalizing. While results from studies that take this approach are reviewed extensively elsewhere 

[22, 46, 47], a brief sampling includes: that the properties of de novo genes are distinct from 

those of more conserved genes, in that they are shorter [23, 48-52], faster-evolving [23, 48-52], 

lower-expressed [18, 23], more tissue-specific [18, 23], and more disordered [53]; that in 

animals, de novo genes are enriched in particular tissues like brain and testis; that the emergence 

rate of novel genes has varied across evolutionary time, and has peaked in paleontologically 

significant eras like the Cambrian Explosion [34]; and, of course, that de novo genes are 

shockingly abundant, repeatedly reported to number hundreds to thousands in any individual 

species, and to emerge at a rate comparable to or higher than gene duplicates [21, 22].   

But these conclusions, and all attempts to study novel genes by way of studying lineage-

specific genes, are only as good as the assumption on which they are based: the novelty 

hypothesis. Are all, or even most, lineage-specific genes actually novel? If the answer is no, 

these results do not reflect the true biology of novel genes. Any signal of real novelty will be 

polluted by the noise of whatever other genes have wound up in the mix.  

 To understand whether studies of lineage-specific genes can be interpreted as bearing on 

the properties of novel genes, one needs to identify other sources of lineage-specific genes and 

know what proportion of total lineage-specific genes they contribute. Two outcomes are 

possible. Lineage-specific genes may be comprised exclusively or largely of truly novel genes. 
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Alternatively, they could be comprised exclusively or largely of genes that appear lineage-

specific for reasons that have nothing to do with novelty. In this case, we cannot study novel 

genes by studying lineage-specific genes, and cannot trust existing conclusions about novel 

genes arrived at by doing so.  

 I take up this question here. In Chapters One and Two, I describe two possible sources of 

lineage-specific genes that have nothing to do with evolutionary novelty, and determine 

approximately what proportion of lineage-specific genes they seem to comprise. To briefly 

foreshadow, the first source is the use of different genome annotation methods for different 

species within a single comparative analysis, which produces lineage-specific genes merely due 

to some of those different methods mistakenly including or excluding the same sequence in the 

different annotations, making it appear as though it is present only in a subset of species. The 

second source is the failure of homology detection algorithms like BLAST to identify homologs 

outside of the given lineage even when they are present. I find evidence that both sources 

contribute substantial fractions of the total lineage-specific genes. From this, I conclude that the 

novelty hypothesis is not generally reliable: most lineage-specific genes are not novel, and so I 

cannot study novel genes by studying lineage-specific genes.  

In Chapter Three, I identify a particular instance in which adherence to the novelty 

hypothesis has confused attempts to address an outstanding question in animal evolution, and 

demonstrate how a revised understanding of the relevant lineage-specific genes, provided by a 

method developed here, can correct this confusion.  

The first three chapters are disappointing to those, including myself, who seek an 

understanding of genetic novelty. This was the initial aim of the work described here. Its primary 

conclusion is a negative one: that most studies of lineage-specific genes likely do not 
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meaningfully bear on novel genes. As a small step toward some positive insight into novel genes, 

Chapter Four presents a review aiming to comprehensively summarize more reliable data 

regarding what is known about the origins and functions of the most radical molecular novelties: 

de novo genes. A brief and fair summary of this chapter, and indeed of this thesis as a whole, is: 

I do not know very much. If this work amounts to anything, I hope it is to encourage more direct 

and reliable study of this exciting class of genes.  
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Chapter 1: The contribution of genome annotation errors to 

analyses of lineage-specific genes 

 

Introduction 

 The rapid decline in cost of genome sequencing has provided fuel for sequence-based 

attempts to identify lineage-specific genes [10, 13, 18, 29-45]. Conceptually, the methodology 

underlying these attempts is straightforward: one identifies lineage-specific genes by searching 

for homologs of the genes from species in the focal lineage in all outgroup species . Genes for 

which homologs cannot be found are considered lineage-specific [8, 47]. 

Such an analysis requires one to define the set of genes within the focal lineage. 

Generally, this is done by relying on a particular annotation of the focal lineage genomes: a 

hypothesis for what genes they encode. Only genes included in this annotation are used in the 

homology search [32, 34, 46], and so results depend crucially on the annotation.  

The process of producing an accurate genome annotation – one that includes all genes in 

the genome, and omits all non-genic sequences -- is by no means a solved problem [54]. A large 

number of genome annotation methods are in widespread use, with no clear consensus about 

which is the most accurate in any given situation or what the false positive, false negative, and 

trade-off between the two looks like [55]. Common methods have broad similarities, but differ in 

important details, as do particular implementations of them [54]. Among annotation methods in 

widespread use are custom pipelines at large bioinformatic databases (NCBI [56], Ensembl [57]), 

hand-curated model organism annotation (Flybase [58], Wormbase [59]), crowdsourced 
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annotation (VectorBase [60]), and idiosyncratic combinations of a subset of the available 

software packages that perform some or all of the steps inherent in annotation (Maker [61], 

PASA [62]), run with custom parameters chosen by individual researchers. A few major 

differences in these methods are worth noting. Some of these methods are purely sequence-

based, while others bring to bear expression data like RNA-seq. When used, such expression 

data are produced at varying sequencing depths and from varying numbers of tissues or 

conditions. Some methods incorporate purely de novo predictions, while others require 

additional support for genes from either homology or expression.  

  Insofar as different annotation methods exist and disagree in their predictions, they 

cannot all be right. It may also be the case that none of them are right. There is therefore 

undeniably some rate of error in the genome annotations that underlie comparative genome 

analyses. Previous work has suggested two ways that errors in genome annotations may produce 

spurious lineage-specific genes. In one, a gene is annotated in the lineage, but its homologs are 

incorrectly omitted in outgroups [63-65]. In another, a non-genic sequence is incorrectly 

annotated in the lineage, but is correctly omitted in outgroups [53].  

Both of these cases are caused by erroneous differential annotation: homologous 

sequences are inconsistently annotated in the ingroup and outgroup, when they should actually 

either both be included or both omitted. Because different annotation methods can disagree about 

what sequences are genes, I wondered whether these errors could be particularly abundant when 

different annotation methods are used on different species within a study. I term this “annotation 

heterogeneity”; indeed, it is extremely common in comparative genome analyses, including those 

seeking to identify lineage-specific genes [14, 15, 23, 33, 51]. Although previous work has 

highlighted how genome annotation errors may cause spurious lineage-specific genes  [63-65] 
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[53], the concept of annotation heterogeneity, and its potential to cause or enhance the rate of 

spurious lineage-specific genes within these error modes, has not been explored. 

Here, I explore the effects of annotation heterogeneity on the inferred number of lineage-

specific genes, hypothesizing that increased heterogeneity should falsely inflate the apparent 

number of such genes. In six case studies, I compare the number of lineage-specific genes when 

all species are annotated with the same method (“uniform annotations”) to when they are 

annotated with different methods (“heterogeneous annotation”). I also investigate the possibility 

that annotation heterogeneity is responsible for or contributes to reported correlations between 

the inferred age of lineage-specific genes (with the age of the lineage corresponding to the age of 

the gene) and characteristics like length, evolutionary rate, and GC content, which have been 

used to propose models of novel gene evolution [18, 23, 51-53]. 

 

Identifying an appropriate dataset: taxa in which each species has a genome 

assembly with genome annotations from two methods 

To isolate and assess the effect of annotation heterogeneity on the apparent number of 

lineage-specific genes, I sought groups of species for which a) all species had been annotated 

using the same single method, and b) the same genome assembly of each species had been 

independently annotated using some different second method. This allowed us to compare the 

apparent number of genes specific to a lineage within the group when all species annotations 

were generated by the same method (“uniform annotation”) to the number when annotations 

were generated by different methods (“heterogeneous annotation”). I identified four groups of 

five species, each less than approximately 60 My old: cichlids, primates, bats, and rodents. 
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Assembly accessions, links to both annotations, annotation sources, and a brief description of 

annotation methods are listed in Supplemental Table 1.  
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We used existing annotations from common methods instead of generating my own to make 

results representative of real studies. Accordingly, annotations were taken from a variety of 

standard sources: bioinformatic databases (NCBI [56], UCSC [66], Ensembl [57]), sequencing 

consortia (Bat1K [67]), and individual research groups [68]. These and similar sources are 

generally treated as functionally equivalent: explanation is not generally offered for which is 

used, and the effect of sources on results is not generally tested or discussed. my initial 

expectation was therefore that these annotations would be highly similar. 

 

Different annotations of the same genome assembly result in hundreds to 

thousands of proteins unique to one method  

 For annotation heterogeneity to affect inferences of lineage-specific genes, different 

annotation methods applied to the same genome sequence must produce different sets of 

proteins. Specifically, they must differ in the proteins to which they show significant similarity in 

a homology search.  

  To get a sense of the magnitude of these differences, for each species, I performed a 

reciprocal homology search between the two annotations from different methods. For each 

species’ two annotations, I used a BLASTP search [69] (version 2.6.0) of all proteins in each 

annotation to ask if a significantly similar (E=0.001) protein was present in the other annotation. 

I used BLASTP with a relatively permissive E-value threshold rather than requiring identical 

proteins to permit common minor annotation differences, like start/stop site or splice structure, 

that do not affect homology search results.   

 In the pairs of annotations considered here, the percentage of proteins in one annotation 

missing a similar sequence in the other varies between 0.6% and 9.7%, and the absolute number 
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between 197 and 4143. Most annotations include many hundreds to thousands of proteins that 

have no similar sequence in the other annotation (Table 1). 
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Table 1.1: Percentages and numbers of genes in one annotation of a genome assembly lacking a 

significantly similar gene (by BLASTP, E=0.001) in another annotation of the same assembly. 

Species Annotation 1 

source 

Annotation 

2 source 

Number/percent 

of genes in 

annotation 1 not 

found in 

annotation 2 

Number/percent 

of genes in 

annotation 2 not 

found in 

annotation 1 
     

Cichlid fish 
    

Metraclimia zebra Broad 

Institute 

NCBI 

Eukaryotic 

annotation 

pipeline 

3592/6.9% 706/1.8% 

Pundamilia 

nyererei 

Broad 

Institute 

NCBI 

Eukaryotic 

annotation 

pipeline 

3276/7.7% 668/1.7% 

Astatotilapia 

burtoni 

Broad 

Institute 

NCBI 

Eukaryotic 

annotation 

pipeline 

4110/7.8% 799/1.8% 
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Table 1.1 (Continued) 
 

Neolamprologus 

brichardi 

Broad 

Institute 

NCBI 

Eukaryotic 

annotation 

pipeline 

3568/9.7% 755/2.4% 

Oreochromis 

niloticus 

Broad 

Institute 

NCBI 

Eukaryotic 

annotation 

pipeline 

4143/6.2% 765/1.6% 

     

Primates 
    

Macaca 

fascicularis 

Ensembl "full 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

1510/3.3% 1044/1.7% 

Macaca 

nemestrina 

Ensembl "full 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

1295/2.8% 1623/2.4% 

Mandrillus 

leucophaeus 

Ensembl "full 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

1406/3.4% 693/1.8% 
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Table 1.1 (Continued) 
Rhinopithecus 

bieti 

Ensembl "full 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

1233/2.8% 1476/3.0% 

Cebus imitator Ensembl "full 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

926/1.7% 602/1.5% 

     
     

Rodents 
    

Mus musculus Ensembl "full 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

1523/2.2% 471/0.6% 

Mus caroli UCSC NCBI 

Eukaryotic 

annotation 

pipeline 

1496/3.0% 590/1.2% 

Mus pahari UCSC NCBI 

Eukaryotic 

annotation 

pipeline 

1596/3.2% 413/1.0% 
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Table 1.1 (Continued) 
Rattus norwegicus Ensembl 

"mixed 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

458/1.6% 716/1.3% 

Peromyscus 

maniculatus 

Ensembl "full 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

267/0.9% 517/1.1% 

     
     

Bats 
    

Myotis lucifugus Ensembl "full 

genebuild" 

NCBI 

Eukaryotic 

annotation 

pipeline 

197/1.0% 622/1.4% 

Myotis brandtii Beijing 

Genomics 

Institute 

NCBI 

Eukaryotic 

annotation 

pipeline 

867/4.5% 1370/3.4% 

Myotis myotis Bat1K NCBI 

Eukaryotic 

annotation 

pipeline 

3448/7.5% 704/1.2% 
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Table 1.1 (Continued) 
Molossus molossus Bat1K NCBI 

Eukaryotic 

annotation 

pipeline 

3107/5.8% 486/1.1% 

Pteropus alecto Beijing 

Genomics 

Institute 

NCBI 

Eukaryotic 

annotation 

pipeline 

1338/6.8% 955/2.4% 
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 While these values do not translate directly into changes in apparent numbers of lineage-

specific genes, they demonstrate the extent to which using different annotation methods affects 

the resulting set of proteins from the perspective of homology detection.  

 

Different patterns of annotation heterogeneity may differently affect the 

inferred number of lineage-specific genes 

When different methods have been used to annotate different species in a comparative 

analysis, there are different possible patterns in which the different methods may be arranged on 

the topology of the species tree. I hypothesized that different such patterns may differently affect 

how many lineage-specific genes are inferred. In particular, because any sequence annotated in 

the focal lineage and not annotated in the outgroups will appear to be a lineage-specific gene, I 

hypothesized that the differences in annotation methods between the lineage and outgroups 

would be of particular impact. Three such classes of annotation heterogeneity patterns are fairly 

common in existing studies, and so I focused on these, described below. 

In the first pattern, the entire focal lineage is annotated using a single method, and all 

outgroups are annotated with a different single method. I refer to this as “phyletic annotation,” 

and it occurs in at least two scenarios.  Studies that newly sequence a lineage often use a custom 

method to annotate ingroups, and may then compare them to outgroup annotations from a single 

other source (e.g. Ensembl). Additionally, studies using existing annotations may encounter a 

correlation between taxon and annotation method because groups that produce annotations often 

select species taxonomically (e.g. studies of particular taxa, sequencing consortia/database 

initiatives for particular taxa) [18, 70]. If use of the same annotation method produces more 
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similar sets of proteins, phyletic annotation should maximize differences between the proteins in 

the lineage and outgroups; I therefore hypothesized that this pattern would produce the highest 

number of spurious lineage-specific genes. 

In the second pattern, the ingroup is annotated with a single method, and the outgroups 

with a mixture of methods. I refer to this as “semi-phyletic” annotation. This occurs in scenarios 

similar to phyletic annotation, but where outgroup annotations are available from multiple 

sources (e.g. a mix of Ensembl and NCBI) [23, 27, 50-52, 70-72]. While any difference in 

annotation method between ingroups and outgroups risks some spurious lineage-specific genes, 

compared to phyletic annotation, semi-phyletic annotation should increase the chance that a gene 

from the lineage is annotated in at least one outgroup. I therefore hypothesized that this pattern 

would produce spurious lineage-specific genes, but fewer than would phyletic annotation.  

In the third pattern, different annotation methods are used for different species in the 

analysis, but there is no systematic variation between those used for the ingroup and outgroup. I 

refer to this as “unpatterned” annotation heterogeneity. This commonly arises when existing 

annotations for species are available from a variety of sources, but without taxonomic bias [11, 

14, 33, 50, 73-75]. Of the three patterns described here, this one minimizes annotation 

differences between ingroups and outgroups. While such differences should produce some 

spurious lineage-specific genes, I hypothesized that, among the three considered here, this 

method harbors the lowest potential for spurious lineage-specific genes. 
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Annotating a lineage with one method and outgroups with a different method 

(“phyletic annotation”) greatly increases the apparent number of lineage-

specific genes 

We tested the impact of phyletic annotation on the apparent number of lineage-specific 

genes. I used two young (approximately 50 My old [68, 76]) taxa in which each species had been 

annotated by the same two methods: five cichlids, annotated both by a group at the Broad and 

NCBI; and five primates, annotated both by Ensembl and NCBI (Table 1). These pairs of sources 

exemplify the two scenarios above: a research group’s lineage annotations compared to outgroup 

annotations from an established database, and lineage and outgroup annotations taken from two 

different established databases.  

In each group, I selected a focal species based on the species topology: the cichlid 

Metraclimia zebra, and the primate Macaca fascicularis (Figure 1.1, Figure 1.2). I then asked 

how many of this species’ proteins appear to be specific to lineages of different ages within the 

group, based on having no significant similarity to any proteins from outgroups to that lineage in 

a BLASTP search (Methods). For example, if a protein had no significant similarity to proteins 

from any other species, it was considered an ‘orphan’; if it had no significant similarity to 

proteins from any species other than its two nearest neighbors, it was considered specific to that 

three-species lineage; and so on (Figure 1.1, Figure 1.2). 
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Figure 1.1: Comparison of the number of lineage-specific genes in cichlid fish when uniform 

annotations are used to when heterogeneous (phyletic) annotations are used. Each row shows 

genes specific to the lineage indicated by the blue box on the species trees. Species outside of the 
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(Continued) blue box are the outgroups in each analysis. The colors of species names depict which 

annotation source was used in the uniform (left tree) and heterogeneous (right) annotation 

schemes. The bar graphs depict the numbers of genes that appear specific to the given lineage in 

the uniform (left bar) and heterogeneous (right bar) annotation schemes. When phyletic 

heterogeneous annotations are used, there is a large increase in the number of apparent lineage-

specific genes.  
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Figure 1.2: Comparison of the number of lineage-specific genes in primates when uniform 

annotations are used to when heterogeneous (phyletic) annotations are used. Each row 

shows genes specific to the lineage indicated by the blue box on the species trees. Species 

outside of the blue box are the outgroups in each analysis. The colors of species names depict 

which annotation source was used in the uniform (left tree) and heterogeneous (right) annotation 
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(Continued) schemes. The bar graphs depict the numbers of genes that appear specific to the 

given lineage in the uniform (left bar) and heterogeneous (right bar) annotation schemes. When 

phyletic heterogeneous annotations are used, there is a large increase in the number of apparent 

lineage-specific genes. 
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We first determined the number of genes specific to each lineage when the same 

annotation method was used for all species. For each lineage, I then replaced the annotations of 

all outgroups with the alternative annotation method, such that annotations were phyletic: all 

species in the lineage annotated by one method and all outgroup species by a second, different 

method. I then again determined the number of genes specific to each lineage. The difference 

between these two cases is the number of genes that appear lineage-specific due only to 

annotation heterogeneity.   

Figure 1.1 shows the results of this analysis for cichlids, comparing uniform Broad 

annotations to a phyletic mixture of Broad and NCBI annotations. Figure 1.2 shows results for 

primates, comparing uniform Ensembl annotations to a phyletic mixture of Ensembl and NCBI 

annotations.  

Compared to when all species were annotated by the same method, phyletic annotation 

heterogeneity consistently caused a large increase in the number of genes that appear to be 

specific to the lineage in question. In all lineages in both groups, annotation heterogeneity 

produced hundreds to thousands of lineage-specific genes. This corresponds to a percent increase 

ranging between 50% and 6000%, with typical values around 400%. 

We also performed the same analysis in both lineages after reversing the pattern of the 

two annotation sources on the tree: beginning with the uniform set of NCBI annotations, and 

then considering heterogeneous annotations by mixing in annotations from the Broad or Ensembl 

in the cichlid and primate lineages, respectively. Results from these analyses were qualitatively 

similar, and are shown in Figures 1.3 and 1.4.  
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Figure 1.3: Comparison of the number of lineage-specific genes in cichlid fish when uniform 

annotations are used to when heterogeneous (phyletic) annotations are used. Each row shows 

genes specific to the lineage indicated by the blue box on the species trees. Species outside of the 

blue box are the outgroups in each analysis. The colors of species names depict which annotation 
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(Continued) source was used in the uniform (left tree) and heterogeneous (right) annotation 

schemes. These are switched relative to Figure 1.1 The bar graphs depict the numbers of genes 

that appear specific to the given lineage in the uniform (left bar) and heterogeneous (right bar) 

annotation schemes. When phyletic heterogeneous annotations are used, there is a large increase 

in the number of apparent lineage-specific genes. 
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Figure 1.4: Comparison of the number of lineage-specific genes in primates when uniform 

annotations are used to when heterogeneous (phyletic) annotations are used. Each row 

shows genes specific to the lineage indicated by the blue box on the species trees. Species 
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(Continued) outside of the blue box are the outgroups in each analysis. The colors of species 

names depict which annotation source was used in the uniform (left tree) and heterogeneous 

(right) annotation schemes. These are switched relative to Figure 1.2. The bar graphs depict the 

numbers of genes that (Continued) appear specific to the given lineage in the uniform (left bar) 

and heterogeneous (right bar) annotation schemes. When phyletic heterogeneous annotations are 

used, there is a large increase in the number of apparent lineage-specific genes. 
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 Considered in reverse, in almost all cases, a majority of genes that appear to be lineage-

specific when heterogeneous annotations are used disappear if annotation methods are 

standardized. Very often, this majority is overwhelming.  

 

Annotating a lineage with one method and outgroups with a mixture of other 

methods (“semi-phyletic annotation”) increases the apparent number of 

lineage-specific genes 

We tested the impact of semi-phyletic annotation on the apparent number of lineage-

specific genes. I used two young (approximately 60 My old [77, 78]) taxa in which every species 

had been annotated by the same single method, and in addition had been annotated by some 

second, different method. The first is five rodents, annotated both by a) NCBI and b) a mixture 

of UCSC and two methods from Ensembl. The second is five bats, annotated by both a) NCBI 

and a mixture of Beijing Genomics Institute and the Bat1K consortium (Table 1). I chose these 

species and annotations by first determining the availability of one set of uniform annotations 

and then pulling a second set of heterogeneous annotations from wherever I found them to be 

available. This design was intended to emulate as closely as possible the approach taken in real 

studies, which often draw on available annotations regardless of source.  

We repeated the same procedure as above to compare the number of genes that appear to 

be specific to each lineage within the group when uniform annotations and semi-phyletic 

annotations were used. Results are shown in Figures 1.5 (rodents) and 1.6 (bats).  
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Figure 1.5: Comparison of the number of lineage-specific genes in rodents when uniform 

annotations are used to when heterogeneous (semi-phyletic) annotations are used.  Each row 

shows genes specific to the lineage indicated by the blue box on the species trees. Species outside 

of the blue box are the outgroups in each analysis. The colors of species names depict which 
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(Continued) annotation source was used in the uniform (left tree) and heterogeneous (right) 

annotation schemes. The bar graphs depict the numbers of genes that appear specific to the given 

lineage in the uniform (left bar) and heterogeneous (right bar) annotation schemes. When semi-

phyletic heterogeneous annotations are used, there is an increase in the number of apparent lineage-

specific genes. 
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Figure 1.6: Comparison of the number of lineage-specific genes in bats when uniform 

annotations are used to when heterogeneous (semi-phyletic) annotations are used.  Each row 

shows genes specific to the lineage indicated by the blue box on the species trees. Species outside 
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(Continued) of the blue box are the outgroups in each analysis. The colors of species names depict 

which annotation source was used in the uniform (left tree) and heterogeneous (right) annotation 

schemes. The bar graphs depict the numbers of genes that appear specific to the given lineage in 

the uniform (left bar) and heterogeneous (right bar) annotation schemes. When semi-phyletic 

heterogeneous annotations are used, there is an increase in the number of apparent lineage-specific 

genes.
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Semi-phyletic annotation heterogeneity caused an increase in the number of apparent lineage-

specific genes in all lineages in both groups. The magnitude of this effect varied between lineages, 

ranging from tens to hundreds of additional lineage-specific genes. This corresponds to a percent 

increase of between 20% and 600%. Though this effect size is smaller than for phyletic annotation, 

semi-phyletic annotation still causes an increase in the apparent number of lineage-specific genes. 

 

Annotating species with a mixture of methods lacking taxonomic bias 

(“unpatterned annotation”) increases the apparent number of lineage-specific 

genes 

 We sought to test the impact of unpatterned annotation heterogeneity on the apparent 

number of lineage-specific genes. I used the same two species groups from the section above, for 

which I had already identified a) one uniform set of annotations and b) one unpatterned 

heterogeneous set of annotations. I repeated the same procedure to compare the number of genes 

that appear to be specific to each lineage within the group when uniform annotations were used 

to when heterogeneous annotations were used. However, instead of systematically varying the 

annotation used to produce a semi-phyletic annotation pattern for each lineage (Figures 1.5, 1.6), 

I used the full set of heterogeneous annotations for all lineages (Figures 1.7, 1.8), producing 

unpatterned annotation heterogeneity.  
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Figure 1.7: Comparison of the number of lineage-specific genes in rodents when uniform 

annotations are used to when heterogeneous (unpatterned) annotations are used.  Each row 

shows genes specific to the lineage indicated by the blue box on the species trees. Species outside 
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(Continued) of the blue box are the outgroups in each analysis. The colors of species names depict 

which annotation source was used in the uniform (left tree) and heterogeneous (right) annotation 

schemes. The bar graphs depict the numbers of genes that appear specific to the given lineage in 

the uniform (left bar) and heterogeneous (right bar) annotation schemes. When unpatterned 

heterogeneous annotations are used, the number of apparent lineage-specific genes tends to 

increase.  
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Figure 1.8: Comparison of the number of lineage-specific genes in bats when uniform 

annotations are used to when heterogeneous (unpatterned) annotations are used.  Each row 

shows genes specific to the lineage indicated by the blue box on the species trees. Species outside 
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(Continued) of the blue box are the outgroups in each analysis. The colors of species names depict 

which annotation source was used in the uniform (left tree) and heterogeneous (right) annotation 

schemes. The bar graphs depict the numbers of genes that appear specific to the given lineage in 

the uniform (left bar) and heterogeneous (right bar) annotation schemes. When unpatterned 

heterogeneous annotations are used, the number of apparent lineage-specific genes increases. 
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 Results for rodent and bats are shown in Figures 1.7 and 1.8. Unpatterned annotation 

heterogeneity tended to produce an increase in the apparent number of lineage-specific genes. 

The magnitude of this effect was smaller and more inconsistent than for the two kinds of 

annotation heterogeneity considered above. One lineage in mice showed a slight decrease, and 

typical increases were in the 10s of genes, though one lineage in each group showed a large 

increase of between 500 and 800 genes. These increases correspond to percent increases ranging 

between 10% and 500%, with typical values around 30%. Unpatterned annotation heterogeneity 

therefore also causes increases in the apparent number of lineage-specific genes, which are 

sometimes, though not as frequently as in other patterns of annotation heterogeneity, substantial.  

 

Could annotation heterogeneity produce observed correlations between 

apparent gene age and sequence characteristics? 

 Sequences that appear to be genes specific to lineages of varying evolutionary ages 

within a phylogeny are commonly inferred to have been born at the base of that lineage. Genes 

specific to older lineages are therefore considered older in age, and those specific to younger 

lineages considered younger. It has become common in comparative analyses of lineage-specific 

genes to classify apparent lineage-specific genes by age in this manner, and to then characterize 

how genes of different ages differ in various characteristics, like gene length, evolutionary rate, 

expression level, GC content, or structural content. For example, these analyses have consistently 

found that the youngest genes are shorter, faster-evolving, more lowly-expressed and more 

tissue-specific than the oldest genes, with a fairly smooth continuum displayed by age classes in 

between [22, 48, 52]. Other characteristics, most notably GC content and structural disorder, 
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have been the subject of more controversy, with different results reported in different taxonomic 

groups and from different methods [23, 53, 64]. Such analyses have been used to propose, in a 

Hertzsprung-Russell diagram-like manner, a narrative of how genes change as they age, with 

accompanying suggestions of the forces dictating their origin and evolution: new genes emerge 

from the open reading frames present by chance, and therefore likely to be short, lowly-

expressed, and poorly-conserved, in intergenic DNA, and gradually come to acquire more “gene-

like” properties as they gain biological functions.  

 Different annotation methods differ in detail, but are similar in their shared reliance on a 

suite of sequence characteristics to distinguish genic from non-genic sequences. These 

characteristics are just those that are displayed by sequences for which there is little doubt of 

their coding status: that is, highly conserved, or “old,” genes. Sequences with properties that 

match those found in highly conserved genes – fairly long, highly and broadly expressed, fairly 

slow-evolving, with high codon adaptation indices – are therefore more likely to be annotated by 

any given method. I hypothesized that homologs of sequences higher in these properties are 

therefore more likely than sequences lower in these properties to be annotated in multiple 

species, causing sequences with such properties to appear older than those without, even if they 

are similarly conserved throughout the taxonomy. I further hypothesized that, while this effect 

should affect analyses in which all species have been annotated with the same method, it may be 

exacerbated in the case of annotation heterogeneity. This would be true if the probability of 

different methods annotating homologous sequences is more dependent on these sequence 

features than is the probability of the same method annotating homologous sequences, which I 

considered plausible.  
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In one analysis, annotation heterogeneity changes the relationship between 

gene age and gene length, exon number, expression level, and GC content  

 We aimed to test whether annotation heterogeneity does indeed produce or increase the 

magnitude of the above-described correlations between apparent gene age and gene 

characteristics compared to the case of uniform annotations.  

 We first considered the four rodent species described above, using the same datasets and 

methods to partition genes from the focal species Mus musculus into three “gene age” categories: 

orphan genes, which had no detectable homologs outside of M. musculus; lineage-specific genes, 

which had detectable homologs only in M. caroli, M. pahari, and/or R. norvegicus; and 

conserved genes, which had detectable homologs in the earliest-diverging P. maniculatus. I then 

found the lengths, exon numbers, GC contents, expression level, codon adaptation indices [79] 

and/or hexamer scores [80], and degree of structural disorder [81] for all genes (Methods). I 

performed this procedure using both the uniform annotation set and the heterogeneous annotation 

set described above, and asked whether any correlations of these properties with gene age 

classification were introduced, changed, or exacerbated in the heterogeneous annotations 

compared to the uniform annotations.  

 We found that the relationship of three of these quantities with gene age was qualitatively 

different when the uniform versus heterogeneous annotations were used. First, the widely-

observed positive relationships between apparent gene age and both gene length and exon 

number (themselves clearly correlated quantities) was present but fairly mild with the uniform 

annotations, and was substantially exacerbated when considering heterogeneous annotations. 

Second, a negative relationship between age and GC content was present when using uniform 

annotations, but disappeared when heterogeneous annotations were used. Finally, the widely-
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observed positive relationship between age and expression level was absent when uniform 

annotations were used, appearing only under heterogeneous annotations. The magnitude of these 

differences between age classes are roughly comparable to those observed in published analyses 

of lineage-specific genes [18, 23, 51-53]. For other quantities, only mild quantitative differences 

were present (Table 2). 

 Changing the annotations used in any comparative genomic analysis should change the 

its results, and so some degree of quantitative difference between these pairs of annotations is 

expected. Whether the qualitative differences in trends that I observe here are statistically 

significant within this analysis, and, more importantly, whether they belie a general effect 

operating in other studies, is not yet clear. I conclude that some of the reported trends between 

gene age and various gene characteristics may be due to annotation heterogeneity.   
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Table 1.2:  Mean and median values of several characteristics for genes of different apparent ages 

using uniform and heterogeneous annotations. 

Uniform annotations (mean/median) 

  Orphan Lineage-specific Conserved 

Length (aa) 219/204 269/155 687/493 

Exon number 2/52 5.2/3 12.4/9 

GC% 59/57 53/53 52/52 

% Disordered 44/45 37/37 33/31 

Average expression level 

across tissues (FPKM) 
69/23 208/24 137/19 

Hexamer score 0.26/0.26 0.27/0.28 0.26/0.27 

 

Heterogeneous (unpatterned) annotations  (mean/median) 

  Orphan Lineage-specific Conserved 

Length (aa) 241/214 367/240 689/494 

Exon number 2.9/2 6.6/4 12.5/9 

GC% 58/58 50/49 52/52 

% Disordered 44/49 39/39 33/31 

Average expression level 

across tissues (FPKM) 
55/29 97/19 138/18 

Hexamer score 0.25/0.25 0.28/0.28 0.26/0.27 

    



 
 
  

46 

  

Conclusions 

 Here, I investigated the effects of using taxa in which different species’ genomes have 

been annotated using a mixture of different methods (“annotation heterogeneity”) on analyses of 

genes specific to restricted lineages within those taxa. I considered six case studies of four 

lineages each, taken from four different species groups. I found that, compared to when all 

species were annotated with the same method, annotation heterogeneity consistently increased 

the number of apparent lineage-specific genes.   

The number of apparent lineage-specific genes produced by annotation heterogeneity 

depended to some extent on the particular pattern in which the different annotation methods were 

arranged on the species topology, increasing as the annotation methods used within the lineage 

became more distinct overall from those used in outgroups. Effect sizes ranged from increases of 

tens to several thousands of genes, corresponding to percent increases of between 10% and 

6000%. In many cases, a large majority of the total genes that appeared lineage-specific in the 

heterogeneous annotation analysis were due only to annotation heterogeneity, disappearing when 

uniform annotations were used.  

 Annotation heterogeneity is common in studies of lineage-specific genes. My results 

suggest that the numbers of lineage-specific genes found in such studies are likely inflated, 

potentially significantly, by the effects I find here.  

Recent work, including that described in Chapter 2, has shown that homology detection 

failure, in which homology searches fail to detect homologs that are actually present in 

outgroups, can also produce spurious lineage-specific genes [82, 83]. Annotation heterogeneity 

joins homology detection failure as a second such source. Unlike homology detection failure, 
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whose incidence increases with evolutionary time, I show here that annotation heterogeneity can 

cause large numbers of spurious genes appearing specific to very young lineages (<60 million 

years old). This may explain the surprisingly large number of young lineage-specific genes found 

in many studies; for example, one analysis found, in two taxa, a peak in lineage-specific genes 

that emerged within the last ~50 million years that is larger than at any other point in the taxa’s 

evolutionary history [34]. 

 Annotation heterogeneity is common not just in studies of lineage-specific genes, but in 

comparative genomic studies at large [6, 84-88]. It may have effects on other types of analyses; 

for example, it could cause the false appearance of lineage-specific gene loss. 

 We find some evidence that annotation heterogeneity can alter the qualitative trends 

between the apparent age of lineage-specific genes and features like their length, expression 

level, and GC content. Such trends have been used to draw inferences how and from what new 

genes are born, and how they change over time [23, 53]1. If such trends were shown to be 

entirely or in part a technical artifact of annotation heterogeneity, such evolutionary inferences 

would be called into questions. The data presented here is not at all conclusive on this point. I 

demonstrate only, through one example, that such an effect is possible, and leave open whether it 

is a general or sizable enough phenomenon to have such consequences. Though I do not address 

this explicitly here, I also propose the related concept of differences in annotations between 

studies may account for the conflicting reports of correlation of particular gene properties like 

GC content and disorder with gene age [23, 53, 89]. 

What is the true number of lineage-specific genes? My results do not answer this 

question: I find only that annotation heterogeneity inflates results compared to uniform 

 
1  
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annotations. These annotations may themselves still overestimate the number of lineage-specific 

genes. Conversely, they may underestimate the number of lineage-specific genes. That most 

annotation methods omit some real lineage-specific genes seems likely, as they generally rely on 

features, like homology to known genes, and sequence properties like length, expression level, 

and codon optimization, that are likely weaker in novel genes. The relative magnitude of these 

effects, and so the true total number of lineage-specific genes, remains unknown.  

Importantly, studies affected more or less by these different types of errors will disagree 

about not just how many lineage-specific genes there are, but also which they are. When 

annotation methods disagree, which is the most accurate? I do not attempt to address this 

question: my results only illustrate a consequence of these disagreements. I consider annotation 

accuracy a question primarily accountable to experimental data. Whether a sequence is 

transcribed, translated, and effects a biologically important function in a given species is of 

ultimate importance in determining whether it is a gene in that species. In light of these results, I 

suggest an increased emphasis on these metrics in studies of lineage-specific genes. Some recent 

papers have opted to avoid reliance on existing annotations entirely, instead using ribosome 

profiling occupancy to define in the set of analyzed sequences uniformly in all organisms under 

consideration [90-92]. While ribosome occupancy is not a not perfect proxy for function, it is 

closer than purely computational annotations or annotations guided only by transcriptomic data, 

and using a single method to annotate all genomes under consideration avoids the risk of artifacts 

described here. This type of approach seems to us like a promising way forward.  

 

Methods  

Identifying lineage-specific genes 
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For each species group, I defined a gene as specific to a particular lineage if a search 

using BLASTP [69] version 6.2.0 had no similar gene at a significance threshold of E=0.001 in 

any species in each group that was an outgroup to that lineage. I did not require that a gene be 

present in all members of the lineage to be specific to that lineage: a gene was defined as specific 

to a lineage based on the most distant species in which it was detected. For example, if a gene in 

M. musculus was detected only in R. norvegicus, it was defined as specific to that lineage; if a 

gene in M. musculus was detected in M. caroli, M. pahari, and R. norvegicus, it was also defined 

as specific to that same lineage. If a gene was found in the oldest member of the species group, it 

was considered “conserved” and so not counted as any kind of lineage-specific gene. This way of 

classifying lineage-specificity coheres with standard practice [32]. 

 

Computation of percent disorder, expression level, and hexamer score for Mus musculus 

genes 

 For all sequences in the NCBI annotation of M. musculus used here, I computed the 

hexamer score using version 1.2.2. of CPAT [80], run with default settings. I used model files 

prebuilt for M. musculus (mus_hexamer and mus_logit version 1.2.2, downloaded from 

https://sourceforge.net/projects/rna-cpat/files/v1.2.2/prebuilt_model/).  

 We computed the percent disorder of these sequences using IUPred [81] version 2a, 

downloaded from https://iupred2a.elte.hu/, using “long” mode.  

 We computed the expression level of these sequences by calculating the average FPKM 

in one replicate of several tissues available from a published M. musculus RNA-seq tissue atlas 

[93]. The datasets used here were downloaded from the NCBI SRA as ERR2130614, 

ERR2130626, ERR2130638, ERR2130640, ERR2130648, and ERR21306. I aligned reads from 
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these datasets to the M. musculus genome assembly underlying the annotation used here 

(GCF_000001635.26_GRCm38.p6_genomic.fna) using Bowtie version 1.1.1 [94] and calculated 

FPKM for each sequence using FeatureCounts [95] as available in SubRead version 1.5.1 [96]. 
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Chapter 2: The contribution of homology detection errors to 

analyses of lineage-specific genes 

This chapter is based heavily on a published manuscript [82], but is here somewhat elaborated 

with additional explanation, discussion, and analyses.  

Introduction 

As discussed in the introductory chapter, the prevailing common interpretation of 

lineage-specific genes is that they are in some way meaningfully biologically “novel.” In the 

previous chapter, I explored one possible alternative explanation, having nothing to do with 

novelty, for what these genes are: that they are merely technical artifacts resulting from different 

annotation methods being used for different species in the analysis.  

Another explanation for a lineage-specific gene having nothing to do with novelty is that 

homologs of the gene do exist outside of the lineage, but that computational similarity searches 

(e.g. BLAST) have merely failed to detect those homologs. I refer to this scenario as homology 

detection failure. Why would this occur? As homologs diverge in sequence from one another, the 

statistical significance of their similarity declines. Over evolutionary time, with a constant rate of 

sequence evolution, the degree of similarity is expected to eventually fall below the chosen 

significance threshold, resulting in a failure to detect the homolog. Some lineage-specific genes 

may just be those for which this happens to have occurred relatively quickly, even in the absence 

of any novelty-generating evolutionary mechanisms. 

The possibility of homology detection failure has long been recognized [4, 97-102], but 

the key questions of how many and which lineage-specific genes are best explained by it remains 

unclear. Previous work has aimed to explicitly simulate the evolution of each gene to predict 
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whether or not its homologs would be detectable at a given evolutionary distance [48, 98, 99, 

103-106]. These approaches depend on the choice of an evolutionary model and a method for 

fitting the large number of parameters within that model; results have proven sensitive to these 

choices, varying widely within the same taxon [48, 98, 99, 103-105, 107]. In the absence of clear 

data benchmarking the accuracy of different methods that take this approach, significant 

controversy remains about the motivating question of how many, and which, lineage-specific 

genes could be due to homology detection failure [48, 98, 99, 103-105, 107]. In addition, the 

parameter richness and computational complexity of these approaches makes them practically 

difficult to apply to new genes in new taxa. A tool to easily determine whether any given 

lineage-specific gene in any given taxon could be due to homology detection failure would be 

useful, allowing researchers to focus further characterization – for example, functional 

experiments – on the genes likeliest to be novel, minimizing the possibility of results based on 

technical artifact.  

Here, I further explore this question: for how many, and which, lineage-specific genes is 

homology detection failure a viable explanation? I present a method for evaluating whether 

homology detection failure is sufficient to account for a given lineage-specific gene. This method 

is based on a simple two-parameter mathematical model that estimates the probability that a 

homolog would be detected at a specified evolutionary distance if it were evolving at a constant 

rate under standard, novelty-free evolutionary processes. I apply this method to lineage-specific 

genes in insects and yeasts, assessing for how many such genes in these taxa homology detection 

failure is a sufficient explanation. I make a preliminary assessment of features of the genes that 

reject the explanation of detection failure by this test, making them stronger candidates for 
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potential novelty. Finally, I make this method, which I call abSENSE, available for studies of 

lineage-specific genes in arbitrary taxa, and describe ongoing efforts to increase its ease of use. 

 

Mathematical formulation of a null model of homolog detectability decline as 

a function of evolutionary distance  

We developed a formal test of the null hypothesis that homology detection failure is 

sufficient to explain the lineage-specificity of a gene. Specifically, I model the scenario in which 

the gene actually existed in the common ancestor of all species, evolved at a constant rate, and 

has homologs outside the clade in which its homologs are detected that appear to be absent solely 

due to homology detection failure. This is an evolutionary null model: it invokes no processes 

beyond the simple and novelty-free scenario of orthologs diverging from a common ancestor and 

evolving at a constant rate.  

Because of its use in previous work on lineage-specific genes and in sequence analysis 

more broadly, I use BLASTP as the search program used to detect homologs here. In search 

programs like BLAST, sequence similarity is used to infer homology between two genes. Such 

programs report a similarity score (referred to as “bitscore” by BLAST) between a pair of 

sequences, as well as the number of sequences that would be expected to achieve that similarity 

score by chance (an E value). When this number falls below a significance threshold (e.g. E < 

0.001), statistically significant similarity is interpreted as evidence that the two genes are 

homologous. The similarity score therefore directly determines whether a homolog is 

successfully detected in a search. 

The key idea in my method is to predict how the similarity score between two homologs 

evolving according to my null model is expected to decline as a function of the evolutionary 
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distance between them. I can then ask whether a given gene’s lack of detectable homologs 

outside of the lineage is expected under this null evolutionary model. Previous work on this 

problem has simulated the evolution of each gene [48, 98, 99, 105]. In preliminary work, I 

explored similar ideas. Such an approach requires selection of many evolutionary parameters, 

which has led to questions about the sensitivity of results to these details [48, 99, 103, 104, 107]. 

my preliminary work recapitulated this sensitivity. In addition, I found the parameter inference 

and simulation procedures involved in these approaches to be unwieldy to perform. I wondered if 

a different approach might be both more robust to parameter uncertainty and simpler in practice.  

 We chose instead to analytically model how the similarity score between two homologs 

decays with the evolutionary distance between them. my model assumes that a similarity score S 

between two homologs [69] is proportional to the number of amino acid sites that are identical in 

these two homologs. After the homologs diverge from their common ancestor, I assume that they 

undergo a substitution-only mutation process, in which each site in the proteins mutates into a 

non-identical site at the same protein-specific rate R per unit of evolutionary time. Neglecting the 

possibility of reversion, the probability that a site will not undergo a mutation within a time t 

following homolog divergence is e-Rt, as given by the Poisson distribution. Given a constant 

number N0 of total sites in the protein, the number of sites that remain identical at that time t is 

binomially distributed with mean N0e-Rt. If each identical site contributes the same amount c to 

the total similarity score, then the mean similarity score at time t is S(t)  = cN0e-Rt. The variance 

of the similarity score at time t is s2 = cN0(1-e-Rt)(e-Rt), from the variance of a binomial 

distribution. I refer to cN0 as L, as these two parameters only appear as a product. This model 

makes many simplifying approximations. It abstracts away effects of the substitution score 

matrix, insertion and deletion scores, and local versus global sequence alignment. It also 



 
 
  

55 

approximates the evolution of all sites in a protein as evolving identically, at the same protein-

specific rate R.  

With this model, I can predict similarity scores for a given gene if I have three inputs: a 

gene from a chosen focal species, the similarity scores of successfully identified homologs of the 

gene in a few other species (S), and the evolutionary distances between the focal species and 

these other species (t). As described in the following section and methods, I precalculate these 

evolutionary distances t from an aggregate of many genes from the set of species under 

consideration, and therefore they do not depend on the particular gene under consideration. I use 

these inputs to find the gene-specific values of the parameters L and R that produce the best fit to 

my equation describing how similarity scores decline within the species where homologs were 

detected. I then use these parameters to extrapolate and predict the expected similarity score of 

hypothetical homologs of the gene at evolutionary distances beyond those of the species whose 

homologs were used in the parameter fitting. Given an E-value threshold, this predicted 

similarity score, and the expected variance of the similarity score, I can estimate the probability 

that a homolog will be undetected at these longer evolutionary distances. In the analyses that 

follow, I use a relatively permissive E-value threshold of 0.001. 

 

Null model adequately describes the decay of ortholog detectability with 

evolutionary distance  

We applied my model to genes of the yeast Saccharomyces cerevisiae and the fly 

Drosophila melanogaster and their orthologs in several fungal and insect outgroups respectively. 

I focus on the fungi and insects because their genomes are well-annotated, they have closely 

related and well-annotated sister species, and they have been the focus of previous work on 
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lineage-specific genes [21, 23, 36, 38, 51, 108]. For S. cerevisiae, I included 11 fungal species 

spanning a divergence time of ~600 million years [109]; for D. melanogaster, I included 21 

insect species spanning a divergence time of ~400 million years [110]. These species are listed in 

Figure 2.1. 
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Figure 2.1: Inferred evolutionary distances between each fungal species and S. cerevisiae (a) and 

each insect species and D. melanogaster (b). The tree topologies for these taxa are based on 

previously published studies [110, 111] and were not calculated here; branch lengths are not to 

scale. The fungal sensu stricto lineage, referenced frequently in the text, is shaded in yellow. 
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  Before using my null model to ask whether it explains the lack of detected homologs of 

lineage-specific genes, I confirmed that it is a good approximation of how similarity scores 

decay with evolutionary distance. To do this, I tested how well the model represents the decay of 

similarity scores of general S. cerevisiae and D. melanogaster genes in increasingly distant 

species. If the model fits this decay well for most genes, it is likely a good representation of the 

minimal evolutionary process in the null hypothesis, and can therefore detect deviations from 

that process. 

To obtain evolutionary distances from the focal species (t values), I used 102 genes from 

the Benchmarking Universal Single Copy Ortholog (“BUSCO”) [112] database to calculate 

evolutionary distances in substitutions/site between S. cerevisiae and each of the 11 other fungi, 

and 125 BUSCO genes to calculate evolutionary distances between D. melanogaster and each of 

the 21 other insects (Methods). In both taxa, to show that distances can be reliably computed 

using a small number of genes, I also re-calculated these distances using two random subsets of 

15 BUSCO genes. Distances computed from these different gene sets were similar (Table 1).  
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Table 2.1: Computed evolutionary distances for the two lineages considered here. 

Species 

Inferred distance to S. 

cerevisiae 

(substitutions/site), 102 

BUSCOs 

Inferred distance to S. 

cerevisiae 

(substitutions/site), 15 

BUSCOs subset 1 

Inferred distance to S. 

cerevisiae 

(substitutions/site), 15 

BUSCO subset 2 

S. 

cerevisiae 
0 0 0 

S. 

paradoxus 
0.05 0.05 0.05 

S. mikatae 0.09 0.09 0.09 

S. 

kudriavzevii 
0.1 0.11 0.1 

S. bayanus 0.11 0.12 0.11 

S. castellii 0.36 0.39 0.44 

K. waltii 0.49 0.49 0.51 

A. gossypii 0.52 0.52 0.54 

K. lactis 0.52 0.56 0.58 

A. nidulans 1.02 0.9 0.99 

S. pombe 1 0.92 0.95 

Y. lipolytica 0.9 0.95 0.89 
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Table 2.1 

(Continued) 
   

 
   

Species 

Inferred distance to 

D. melanogaster 

(substitutions/site), 

125 BUSCOs 

Inferred distance to D. 

melanogaster 

(substitutions/site), 15 

BUSCO subset 1 

Inferred distance to D. 

melanogaster 

(substitutions/site), 15 

BUSCO subset 2 

D. 

melanogaster 
0 0 0 

D. simulans 0.02 0.02 0.02 

D. sechelia 0.02 0.02 0.02 

D. erecta 0.04 0.03 0.04 

D. yakuba 0.04 0.03 0.04 

D. 

pseudoobscura 
0.14 0.13 0.11 

D. persimilis 0.14 0.14 0.12 

D. willistoni 0.16 0.14 0.16 

D. virilis 0.17 0.15 0.15 

D. grimshawi 0.18 0.16 0.16 

D. mojavensis 0.18 0.18 0.17 

M. domestica 0.3 0.27 0.29 

C. capitata 0.31 0.28 0.33 
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Table 2.1 (Continued) 
   

 
A. aegypti 0.48 0.43 0.48 

A. gambiae 0.49 0.46 0.5 

Z. nevadensis 0.58 0.53 0.6 

T. castaneum 0.58 0.54 0.58 

A. mellifera 0.62 0.57 0.62 

B. germanica 0.62 0.57 0.65 

B. terrestris 0.62 0.57 0.63 

B. mori 0.62 0.57 0.6 

A. pisum 0.69 0.67 0.67 
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  Figure 2.1 shows evolutionary distances inferred from one of the 15 gene sets between the 

focal organism S. cerevisiae and the 11 other fungi, and between the focal organism D. 

melanogaster and the 21 other insects. For reference, Figure 2.1 depicts these distances along with 

a topology taken from previous phylogenetic studies of these taxa [110, 111]; branch lengths are 

not to scale. I use these distances, computed from one of the 15 gene subsets, in all results presented 

in the main text below. I opted to use distances from 15-gene subsets instead of from the full set 

of 100+ BUSCO genes to demonstrate that the method I describe here produces reliable results 

using only a small number of genes, which lowers the barrier to use for other researchers seeking 

to apply the method to different taxa. 

We next took all annotated S. cerevisiae and D. melanogaster proteins (Supplemental 

Table 2) and calculated the similarity scores of their detectable orthologs in each of the 11 other 

fungal and 21 other insect outgroup species respectively. (For S. cerevisiae and D. melanogaster, 

the score is the comparison of the protein with itself.) I identified orthologs using reciprocal best 

BLASTP search with a threshold of E < 0.001 (Methods). Reciprocal best BLASTP is not a 

perfect means of distinguishing orthologs from paralogs, and results in some genes failing to be 

assigned to orthologs in some species, but, based on my results below, suffices for the purpose, 

and is easy to do at scale. 

 With these similarity scores (S) and evolutionary distances (t) in hand, I tested how well 

my model explains the observed decline in similarity scores with increasing evolutionary 

distance in fungal and insect genes. Fits to the model for three example genes from each taxon 

are illustrated in Figure 2.2.   
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Figure 2.2: Depictions of the fit of the null model of similarity score, as defined in the text, decline 

with evolutionary distance for three representative proteins from S. cerevisiae (a) and D. 
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(Continued) melanogaster (b). Colored points represent the BLASTP score between the protein 

and its ortholog in the species that is at the evolutionary distance indicated on the x axis. Tick 

marks on the x axis represent each of the species used here. For visual clarity, only some species 

names and evolutionary distances are included, indicated with black tick marks; gray tick marks 

represent the other unlabeled species. The dashed line represents the detectability threshold, the 

score below which an ortholog would be undetected at my chosen E-value of 0.001. The best fit 

values of L and R are shown for each protein. The r2 value is also shown and was calculated from 

a linear regression of the log of the similarity score versus evolutionary distance. 
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We aimed to assess the fit of my model systematically. my model predicts a linear 

relationship between the log of ortholog similarity scores and evolutionary distance. For all 

proteins in both clades, I therefore performed a linear regression of the log of each protein’s 

similarity score, ln S(t), against the inferred evolutionary distance to the focal species, t, and 

computing the square of the Pearson correlation coefficient (r2), which measures how much of 

the variance in ln S(t) is explained by t.  

The model predicts similarity scores reasonably well. The mean and median r2 were 0.92 

and 0.95 for similarity scores of S. cerevisiae genes. I repeated this with D. melanogaster 

proteins and their orthologs in the other insects, where the mean and median r2 were 0.84 and 

0.91 for similarity scores of D. melanogaster genes. Results were similar using the two other sets 

of estimated distances (Figure 2.3), indicating their insensitivity to minor differences in the 

choice of gene sets used.  
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Figure 2.3: r2 distributions for the fit to the model of S. cerevisiae and D. melanogaster genes 

using evolutionary distances derived from 3 sets of genes. a: S. cerevisiae genes with distances 

derived from 102 BUSCOs. b: S. cerevisiae genes with distances derived from a randomly 

selected subset of 15 of the BUSCOs used in a. c: S. cerevisiae genes with distances derived from 

a second randomly selected subset of 15 of the BUSCOs used in a. d: D. melanogaster genes with 

distances derived from 125 BUSCOs. e: D. melanogaster genes with distances derived from a 

a) b) c)

d) e) f)



 
 
  

67 

(Continued) randomly selected subset of 15 of the BUSCOs used in d. f: D. melanogaster genes 

with distances derived from a second randomly selected subset of 15 of the BUSCOs used in d. In 

d-f, the peak near r2 = 0 is comprised of genes with orthologs identifiable only in a subset of the 

closely related Drosophilid flies, such that their sequences are identical or nearly identical in all 

species, except 1 or 2 in which a large chunk of the melanogaster protein is absent from the 

annotation, resulting in almost none of the variance in score (of which there is none, save this large 

event) being explained by divergence time. I consider this an artifact of the method, as it only 

appears in the limited cases where the sequences in question are almost totally identical. 
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As well as considering the fit of each gene to the expected value of the model, I tested 

how well my estimate for the variance of the similarity score captured the observed scatter 

around this expected value. To do this, for the ortholog of each S. cerevisiae gene in each 

species, I calculated the difference between the actual and expected similarity score and 

expressed it as a multiple of the predicted standard deviation s = ÖL(1-e-Rt)(e-Rt) of the similarity 

score (a Z score). I expect these Z-scores to follow a normal distribution if my model’s estimated 

variance is correct, which is roughly what I observe. Approximately 92% of S. cerevisiae 

orthologs have observed scores within 3 s.d. of the prediction; for a standard normal distribution, 

99% are expected. 7% of scores are below three s.d., and 1% are above three s.d. Results in D. 

melanogaster are similar: 88% have observed scores within 3 s.d., 8% below, and 4% above. I 

attribute the skew toward predicted scores that are higher than observed scores to the fact that my 

model neglects how insertions and deletions may disrupt the length of a local alignment. Results 

were similar when using the two other sets of estimated distances (Figure 2.4).  



 
 
  

69 

 

 

Figure 2.4: Distribution of position of BLASTP scores between S. cerevisiae and outgroup yeast 

(top) and D. melanogaster and outgroup insects (bottom) relative to the predicted confidence 

interval. 0 indicates that the score has the same value as the best fit to the model; multiples of 

sigma indicate that the score is that many standard deviations above or below the best-fit 

value. a: S. cerevisiae genes with distances derived from 102 BUSCOs. b: S. cerevisiae genes 

with distances derived from a randomly selected subset of 15 of the BUSCOs used in 

a. c: S. cerevisiae genes with distances derived from a second randomly selected subset of 15 of 

a) b) c)

d) e) f)
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(Continued) the BUSCOs used in a. d: D. melanogaster genes with distances derived from 125 

BUSCOs. e: D. melanogaster genes with distances derived from a randomly selected subset of 15 

of the BUSCOs used in d. f: D. melanogaster genes with distances derived from a second 

randomly selected subset of 15 of the BUSCOs used in d. 
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We asked whether the best-fit values of the parameters L and R found for the fungal 

proteins are correlated with the interpretation of these parameters in my model. I expect values of 

L to be related to gene length, and values of R to be related to evolutionary rate. Using 

comparisons to S. cerevisiae genes, I plotted L versus gene length and R vs. maximum likelihood 

estimates of evolutionary distance in substitutions/site in multiple alignments of proteins from S. 

cerevisiae and the four most closely related species.  The L parameter is indeed highly correlated 

with gene length (r2 = 0.99), and R is more weakly correlated with gene-specific evolutionary 

rate (r2 = 0.47) (Figure 2.5).  

 

 

Figure 2.5: Correlation between best-fit parameters and gene properties in yeast. a: Correlation 

between each S. cerevisiae protein’s best-fit value of L and its length in amino acids. The 

L parameter is consistently larger than the length due to most identical alignment positions 

contributing a score larger than 1 according to the scoring scheme used here (BLOSUM62). b: 

Correlation between each S. cerevisiae protein’s best-fit value of R and its relative evolutionary 

a) b)
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(Continued) rate in substitutions per site from  alignments made from it and its orthologs in the 

other four sensu stricto yeasts. 

 

We attribute some of this lower correlation to the fact that R, which describes how 

quickly score declines, includes the effects of insertions and deletions as well as substitutions, 

while standard measures of evolutionary rate derived from alignments (like the gene 

evolutionary rates I calculated to compare to R) only consider substitutions. The distributions of 

the estimated L and R parameters across all genes are long-tailed and approximately log-normal 

(Figure 2.6), consistent with other analyses of distributions of gene length [113] and evolutionary 

rate [114].  
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Figure 2.6: Distribution of best-fit parameter values for all S. cerevisiae proteins. a: Distribution 

of the best-fit a values for all S. cerevisiae proteins. b: Distribution of the best-fit b values for 

all S. cerevisiae proteins.  

 

Many lineage-specific genes can be explained by homology detection failure  

 Having validated my null model for similarity score decline, I then used the model to ask 

my central question: what proportion of lineage-specific genes is homology detection failure 

alone sufficient to explain? 

 We first considered annotated S. cerevisiae proteins that are lineage-specific to the sensu 

stricto yeasts, a young lineage sharing a common ancestor ~20 Mya containing the five species 

S. cerevisiae, S. paradoxus, S. mikatae, S. bayanus, and S. uvarum (Figure 2.1), which has been 

the focus of previous work on lineage-specific genes [23, 51]. I identified 375 such sensu stricto-

specific genes, defined as having homologs detectable by BLASTP in at least one of these 

species but lacking detectable homologs in the nearest outgroup S. castellii or in any other 

outgroups according to a permissive E-value threshold of 0.001 (Methods). Between 40 and 70% 

a) b)
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of sensu stricto specific genes identified in two previous studies are included in this set [23, 51]. 

The remainder are either ORFs not used in my initial search because they are marked as dubious 

in both the Saccharomyces Genome Database and Refseq and so have been removed from the S. 

cerevisiae Refseq annotation, or because I detected homologs outside of the sensu strictos, likely 

due to my permissive E-value threshold. Since my detectability model is regression-based, a 

minimum of 3 observed homologs (including the gene in the focal species) are required; for 

example, I could not perform this computation on the S. cerevisiae gene BSC4 [115], proposed to 

have a very recent de novo origin and thus only found in S. cerevisiae. I applied my model to the 

155 such sensu stricto-specific proteins. 

 For each of these 155 lineage-specific genes, I used the best-fit values of the L and R 

parameters found above to extrapolate and predict the score of an ortholog at the evolutionary 

distance of S. castellii under the null model. Using parameters from the sensu stricto lineage to 

extrapolate to more distant species corresponds to assuming that these two groups of orthologs 

have evolved in the same manner since their divergence from their common ancestor. Finally, I 

calculated the probability that a homolog at the evolutionary distance of S. castellii would be 

detected, P(detected | null model, tcastellii), by using my model for similarity score variance to 

generate a probability distribution for the score and computing the percentage of the probability 

mass in this distribution below my chosen detectability threshold (corresponding to an E-value of 

0.001).  

This analysis is illustrated for one example of a sensu stricto-restricted S. cerevisiae 

protein, Uli1, in Figure 2.7.  
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Figure 2.7: Illustration of the prediction of detectability decline for the S. cerevisiae protein Uli1, 

displayed as in Figure 2.2. At the evolutionary distance of the nearest outgroup S. castellii, the 

entire prediction interval lies below the detectability threshold, indicating a ~0% probability that 

an ortholog would be detected under the null model even if an S. castellii ortholog were present. 

 

Uli1 has been implicated in the unfolded protein response [116], making it one of only a 

few sensu stricto specific genes with experimental evidence of function, and its lineage-

specificity has prompted previous studies to propose that it originated de novo [23, 51]. 

However, I find that the probability that an ortholog of this gene would be detectable in S. 

castellii, P(detected | null model, tcastellii), is approximately 0, indicating that a null evolutionary 

model is sufficient to explain the lineage specificity of this short and rapidly-evolving gene. 
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The result of performing this test on all of the 155 sensu stricto-specific genes amenable 

to my analysis is shown in Figure 2.8a, which depicts the distribution of probabilities of 

detecting a homolog in the outgroup S. castellii given the null model and the evolutionary 

distance between S. cerevisiae and S. castelli, P(detected | null model, tcastellii). 
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Figure 2.8: Distributions of detectability prediction results for three yeast lineages (a, b, c). Top: 

results for all lineage specific genes. Middle: results of the same analysis for all non-lineage 

specific genes, which serve as a positive control. These genes, which have detectable orthologs 

outside of the lineage, should be predicted to be detected, which they largely are. Bottom: 
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(Continued) Depiction of the lineage (yellow) and closest outgroup (blue) considered in the 

analyses in the corresponding column. In c), note that Y. lipolytica is the topological outgroup to 

the shaded lineage, but is not the closest species by evolutionary distance (branch lengths are not 

to scale).
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Many genes have a very high probability of being undetected, and a majority are more likely to be 

undetected than detected: 55% have P(detected | null model, tcastellii) below 0.05, and 73% percent 

below 0.5. This implies that homology detection failure is sufficient to explain a large number, 

potentially a majority, of these lineage-specific genes. Homologs of these genes only being 

detected in sensu stricto species does not require invoking evolutionary novelty. 

We repeated this procedure for D. melanogaster genes restricted to the Drosophila genus. 

This young lineage shared a common ancestor ~70 Mya, with the housefly M. domestica as the 

nearest outgroup in my analyses (Fig 9a). I identified 1611 Drosophila-restricted genes 

(Methods), of which 1278 had the two identified orthologs in the Drosophila lineage required for 

my analysis. Again, many of these Drosophila-restricted genes are very likely to be undetected: 

46% percent have values of P(detected | null model, tdomestica) below 0.05, and 76% percent are 

below 0.5. Homology detection failure is therefore also sufficient to explain many lineage-

specific genes in this group.  
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Figure 2.9: Distributions of detectability prediction results for three insect lineages (a, b, c). Top: 

results for all lineage specific genes. Middle: results of the same analysis for all non-lineage 

specific genes, which serve as a positive control. These genes, which have detectable orthologs 

outside of the lineage, should be predicted to be detected, which they largely are. Bottom: 
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(Continued) Depiction of the lineage (yellow) and closest outgroup (blue) considered in the 

analyses in the corresponding column. In a), note that C. capitata is the topological outgroup to 

the shaded lineage, but is not the closest species by evolutionary distance (branch lengths are not 

to scale). 
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 As both the sensu stricto yeasts and the drosophilid flies are relatively young lineages, I 

asked whether these results generalize to older lineages. In fungi, I tested two additional lineages 

with approximate divergence times of ~70 Mya (Figure 2.8b) and ~250 Mya [109] (Figure 2.8c). 

In insects, I also tested two additional lineages, with approximate divergence times of ~150 Mya 

(Figure 9b) and ~350 Mya [110] (Figure 2.9c). I identified all genes specific to each of these four 

additional lineages, and then calculated P(detected | null model, toutgroup) for all genes with the 

required 2 identified orthologs, exactly as described for the two lineages above. Results in all of 

these comparisons are very similar to those in the younger lineages tested above: I predict that a 

large number of lineage-specific genes have very low probabilities of being detected, with a 

majority more likely to be undetected than detected (Figures 2.8b,c, 2.9b, c). Homology 

detection failure is thus sufficient to explain a large number of lineage-specific genes in these 

older lineages as well.  

As a control, I asked my model to predict the probability of detecting homologs of genes 

that are not lineage-specific, meaning that these genes have homologs that are detected both 

inside and outside of the lineage. I repeated the same procedure on all non-lineage-specific genes 

in the six lineages tested above. As I did for the lineage-restricted genes, I used only similarity 

scores from orthologs within the given lineage to calculate the probability of detecting homologs 

in the nearest outgroup to the lineage, P(detected | null model, toutgroup). If my model operates 

correctly, it should predict high values of P(detected | null model, toutgroup) for these genes, since 

their homologs are in fact detected. In accordance with this expectation, my model predicts that 

the vast majority (>97% in all lineages) of these genes have a very high probability of being 

detected, P(detected) > 0.95 (Figures 2.8, 2.9).  
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To assess whether this central analysis was robust to the use of different sets of genes for 

calculating the underlying evolutionary distances, I computed the correlation between the values 

of P(detected) for each gene in the three analyses in each lineage for these different gene sets. 

Results were highly similar across gene sets, showing that this analysis, like earlier analyses, was 

robust to the use of different sets of genes for calculating evolutionary distances (Table 2).  
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Table 2.2: Correlation coefficients for gene detectability prediction results based on evolutionary 

distance estimates derived from the 3 different sets of genes.  

S. castellii 
   

    
  102 BUSCOS 15 BUSCO subset 1 15 BUSCO subset 2 

102 BUSCOS       

15 BUSCO subset 1 0.995     

15 BUSCO subset 2 0.923 0.901   

    
K. waltii 

   

    
  102 BUSCOS 15 BUSCO subset 1 15 BUSCO subset 2 

102 BUSCOS       

15 BUSCO subset 1 0.985     

15 BUSCO subset 2 0.984 0.989   

    
A. nidulans 

   
    
  102 BUSCOS 15 BUSCO subset 1 15 BUSCO subset 2 

102 BUSCOS       

15 BUSCO subset 1 0.962     

15 BUSCO subset 2 0.929 0.962   

  

M. domestica 
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Table 2.2 (Continued) 
 

  125 BUSCOs 15 BUSCO subset 1 15 BUSCO subset 2 

125 BUSCOs       

15 BUSCO subset 1 0.994     

15 BUSCO subset 2 0.984 0.971   

    
A. aegypti 

   

    
  125 BUSCOs 15 BUSCO subset 1 15 BUSCO subset 2 

125 BUSCOs       

15 BUSCO subset 1 0.996     

15 BUSCO subset 2 0.972 0.958   

    
Z. nevadensis 

   
    
  125 BUSCOs 15 BUSCO subset 1 15 BUSCO subset 2 

125 BUSCOs       

15 BUSCO subset 1 0.992     

15 BUSCO subset 2 0.969 0.958   
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We separately considered the set of 784 S. cerevisiae genes marked as ‘dubious’ in the 

Saccharomyces Genome Database [117], which I excluded from the analyses described above. 

Although they have been deemed unlikely to encode functional proteins, many of them are 

lineage-specific and so have been included in previous studies as potentially novel genes [23, 

51]. I analyzed the 167 of these dubious genes that met my analysis requirement of having 

detected orthologs in at least two other species (many are unique to S. cerevisiae). I find that 

homologs of these genes would be undetected at an even higher rate than for validated genes; in 

all three fungal lineages, at least 99% of these dubious ORFs have P(detected | null model, 

toutgroup) below 0.5, and at least 80% below 0.05.  

 

When controlling for differences in dataset, results are similar to seemingly 

divergent conclusions from another recent study using an orthogonal method  

 Another recent paper used a different approach to estimate the fraction of lineage-specific 

genes that are attributable to homology detection failure [97]. Vakirlis et al. used a small set of 

genes in “microsyntenic blocks” to count how often a gene is not recognizably similar to its 

presumptive homolog in the syntenic position in a comparative genome. Assuming that this 

sample is representative, and so approximates the frequency at which homologous genes in 

general diverge beyond recognition, they conclude that 20-45% of lineage-specific genes in 

fungal, insect, and vertebrate phylogenies are attributable to homology detection failure. I 

consider this result to be in broad qualitative agreement with ours: both values indicate that 

homology detection failure generates a substantial fraction of lineage-specific genes. However, I 

do find somewhat larger estimates of the rate of detection failure.   
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We investigated the cause of this discrepancy. I hypothesized that genes in microsyntenic 

regions may diverge more quickly than those outside, which would lead to an overestimation of 

the rate of detection failure when using a dataset comprised exclusively of such genes. Vakirlis et 

al. did check whether genes in microsyntenic regions had higher values of dN (the inferred 

number of amino acid substitutions), and so are faster-evolving, than those outside of those 

regions. They found that this effect was present and statistically significant (Mann-Whitney p-

value=8*10-5), but hypothesized that the effect size was likely too small (we compute from their 

data that the median dN of genes in microsyntenic regions was 9% slower than those without) to 

affect their results.  

This analysis was based on dN values computed from a set of previously-produced 

alignments that include only 5261 S. cerevisiae genes [118], compared to the 6002 used here. 

This difference in number is due to two factors: a different underlying S. cerevisiae protein 

annotation, and the inclusion only of genes for which orthologs were identified in all five of the 

sensu stricto yeast species used here. I speculated that this latter factor in particular may impose 

a bias against faster-evolving genes, for which orthologs are less likely to be detected in all five 

species. I also speculated that considering dN alone may not comprehensively enough capture 

the effect of evolutionary rate on homolog detectability, as insertions and deletions are also 

known to have a large effect. 

 As a result, I produced my own alignments of all S. cerevisiae genes with an ortholog 

present in at least S. bayanus and used them to perform a similar analysis (Methods). These 

include 400 S. cerevisiae genes that are present in my alignments but absent from the alignments 

used by Vakirlis et al [118]. I used my alignments to compute substitutions/site between S. 

cerevisiae and S. bayanus (Methods). For genes in common between the two datasets, the r2 
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between these substitutions/site values and the dN values provided by Vakirlis et al. was 0.75. I 

found that dN values of genes missing from the alignments used in Vakirlis et al were indeed 

higher than the genes that were included (Mann-Whitney p-value=3*10-5), with a clear tail of 

very fast-evolving genes unique to the missing genes (Figure 2.10).  

 

 

 

Figure 2.10: dN values for the full dataset of 6002 S. cerevisiae genes used here, colored by their 

presence or absence from the dataset of Vakirlis et al. 

 

However, this effect is driven by a small number of genes. Accordingly, I find that the overall 

differences in substitutions/site between genes in syntenic regions and those outside computed 

from my alignments are similar to those found by Vakirlis et al., excepting the small tail of very 

fast-evolving genes enriched in the non-microsyntenic distribution not present in their analysis, 

with a difference in medians of about 9% (Mann-Whitney p-value=9*10-5) (Figure 2.11). 

 

Substitutions/site (computed here)
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Figure 2.11: dN values for the full dataset of 6002 S. cerevisiae genes used here, colored by their 

presence or absence from microsyntenic regions according to Vakirlis et al., and so included or 

not in their analysis. 

 

In addition to point substitutions, homolog detectability over evolutionary time is 

influenced by the number of insertions and deletions that have occurred; whether this number is 

comparable between genes within and outside microsyntenic regions was not considered by 

Vakirlis et al. I find that the number of gaps in my alignments (normalized for number of 

positions and number of sequences), representing the number of amino acids that have been 

inserted and deleted, is on average twice as high for genes in microsyntenic regions than in those 

outside (Mann-Whitney p-value=3*10-24) (Figure 2.12).  
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Figure 2.12: Frequency of gaps for the of 6002 S. cerevisiae genes used here, colored by their 

presence or absence from microsyntenic regions according to Vakirlis et al., and so included or 

not in their analysis. 

 

Consistent with these two observations, genes in microsyntenic regions have higher 

values of my R parameter, which reflects the overall rate of homology detectability decline and 

incorporates both substitution rate and insertion/deletion rate (Mann-Whitney p-value = 4*10-12) 

(Figure 2.13).  
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Figure 2.13: Best-fit value of R parameter of 6002 S. cerevisiae genes used here, colored by their 

presence or absence from microsyntenic regions according to Vakirlis et al., and so included or 

not in their analysis. 

 

Based on my analyses, this difference in R value seems to be driven largely by a 

differential rate of insertions and deletions, perhaps with some smaller contribution from 

differential substitution rate. I note that insertions and deletions are commonly not considered in 

evolutionary rate calculations, though they have a clear effect on homolog detectability that is at 

least partially accounted for by my method, which can include their effects on score decline in 

the best-fit R parameter. 

Having noted differences in substitution rate and insertion/deletion rate between genes 

within and outside microsyntenic regions, I asked whether these differences could cause 

differences in the inferred rate of homology detection failure between these classes of genes. I 

find that genes in microsyntenic regions are significantly less likely to be predicted to be 

undetectable in S. castellii by my analysis than genes outside syntenic regions (Chi-square p-

value=3x10-13), suggesting that this is the case (Figure 2.14).  

R



 
 
  

92 

 

 

 

Figure 2.14: Best-fit values of L and R for all genes in my analysis. These two parameters, plus 

the evolutionary distance between S. cerevisiae and S. castellii (t), determine whether or not an 

ortholog is expected to be detected at an E-value of 0.001. The gray area corresponds to this 

prediction, indicating values of L and R that result in the predicted bitscore being below the 

detectability threshold (corresponding to a bitscore of 37), defined by the curve 37 < Le-Rt, where 

t is evolutionary distance of S. castellii from S. cerevisiae. 

 

If such a bias were operating, I would expect that, when I restrict my analysis in fungi to 

consider only lineage-specific genes in microsyntenic regions, I would find a much lower rate of 

homology detection failure compared to the rate that I infer from all genes (Figure 2.8). I find 

that this is the case when I perform my detectability prediction analysis only on the subset of 

lineage-specific genes within microsyntenic regions in S. castellii and K. waltii (Methods). With 

the caveat that the total number of genes in microsyntenic regions is small (25 and 77 in the two 

L

R
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lineages analyzed), around 40% of these genes have values of P(detected | null model) less than 

0.05, and around 60% less than 0.5 (Figure 2.15).  

 

 

 

Figure 2.15: Distribution of predicted detectability restricted to lineage-specific genes within 

microsyntenic regions in the indicated lineages.  

 

This is lower than my findings of around 55% and 75% for all lineage-specific genes. It is also 

consistent with the estimate in yeast of around 40% from Vakirlis et al. 

Based on this analysis, I conclude that genes in microsyntenic blocks evolve more 

quickly than those outside of such regions, such that considering only this subset of genes leads 

to a lower inferred rate of detection failure. These two studies roughly agree when I correct for 

differences in the set of genes used in the underlying analyses.  

 

a) b)
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More sensitive homology searches detect beyond-lineage homologs for many lineage-

specific genes well-explained by homology detection failure 

If a gene being lineage-specific is due to the failure of BLASTP to detect homologs that 

are in fact present, I would expect that a more sensitive search will sometimes succeed in finding 

homologs where BLASTP did not. I asked whether this was the case for genes whose lineage-

specificity was consistent with the hypothesis of detection failure: can I use a more sensitive 

method to find previously undetected homologs for these genes? I refer to such homologs, 

detected using a different method in species outside of the originally defined lineage, as 

“beyond-lineage homologs.”  

We used sensu stricto yeast-specific genes as a case study to ask this question. These 

yeasts and several of their nearest outgroups have a high degree of conservation of chromosomal 

gene order (synteny), presenting the opportunity for a more sensitive search. A standard 

similarity search tests all proteins in a large database of sequences, such as a complete proteome. 

The resulting multiple testing burden requires a higher score to achieve statistical significance 

than would be required for a search over a smaller number of sequences. In these yeasts, synteny 

allows us to restrict a similarity search to one candidate gene at the orthologous chromosomal 

locus, reducing the multiple testing burden and enabling ortholog identification with a lower 

score. For the fungal species used here, a proteome-wide search would need a BLASTP score of 

~37 to achieve an E-value of 0.001, but a single-protein search would only require a score of 

~24. Orthologs with scores between these two values would be missed in my initial search but 

successfully detected with synteny-guided similarity searches.   
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We used this synteny strategy to search for beyond-lineage orthologs for all sensu stricto-

specific genes for which the null model of detection failure is a reasonable explanation. I use a 

threshold of P(detected | null model) < 0.95 to define these genes. This choice is a conservative 

threshold that corresponds to genes that are insignificant according to a traditional significance 

test threshold of P(undetected | null model) = 1 – P(detected | null model) > 0.05. There are 126 

sensu stricto-specific genes that pass this threshold.   

To identify the orthologous locus in outgroup yeasts for these 126 S. cerevisiae genes, I 

used the Yeast Gene Order Browser (YGOB), an online resource that curates the chromosomal 

orthology relationships between species including the sensu stricto yeasts, S. castellii, K. waltii, 

A. gossypii, and K. lactis [119]. 19 of these 126 sensu stricto-specific genes are included in 

YGOB and have an orthologous locus in at least one of these outgroup yeasts. For all of these 

genes, the upper bound of the 99% prediction interval for the similiarity score predicted by my 

model is above the detectability threshold of 24 bits, indicating that they are potentially 

detectable by this analysis. Of these 19 genes, 17 had an annotated gene at the orthologous locus 

in at least one outgroup species. For 11 of these, at least one of these genes at an outgroup 

orthologous locus had significant detectable similarity (E<0.001) to the S. cerevisiae gene. In all 

but 2 of these cases, the similarity score fell within my prediction interval (in those 2 cases, the 

similarity score was slightly higher than predicted). These 11 genes and their proposed orthologs 

are listed in Table 3.  



 
 
  

96 

Table 2.3: List of 11 S. cerevisiae genes for which synteny-based searches in YGOB revealed 

candidate out-of-lineage orthologs, the YGOB IDs of those orthologs, and their synteny search E-

values. 
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In total, I found beyond-lineage homologs for 46% of genes for which I were able to 

perform a synteny analysis. I note that this is a conservative estimate. I only considered ORFs 

that are already annotated in outgroup species, although unannotated orthologs may be present. 

Additionally, the lower bound of the 99% similarity score prediction interval for all remaining 

54% of these genes is lower than the threshold required for detection via synteny, so that all have 

some probability of orthologs still being missed in this analysis.  

 

Some lineage-specific genes are poorly explained by homology detection 

failure 

In all lineages studied here, there are also lineage-specific genes that are poorly explained 

by the null hypothesis: their similarity score declines too slowly to make homology detection 

failure alone a good explanation for their lineage-specificity. These are the genes with high 

values of P(detected | null model). In all six lineages I studied, 10-20% of lineage-specific genes 

have detection probabilities of 0.95 or greater (Figs 2.8, 2.9).   

This result is illustrated by one such sensu stricto-specific protein, Spo13, in Fig 2.16. 



 
 
  

99 

 

 

Figure 2.16: Detectability prediction results for the S. cerevisiae protein Spo13. At the 

evolutionary distance of the nearest outgroup S. castellii, the entire prediction interval lies well 

above the detectability threshold, indicating an approximately 100% probability that an ortholog 

should be detected in this species under the null model.  
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Spo13 has been proposed as a candidate de novo gene [51] by virtue of its lineage-specificity, 

and this analysis highlights it as a particularly promising novel gene candidate amongst the large 

number of other lineage-specific genes in the sensu stricto lineage. 

The existence of lineage-specific genes like Spo13, which my null model predicts should 

have detectable homologs outside of the lineage, indicates that evolutionary mechanisms beyond 

those included in the null model may be operating. Among such mechanisms are those 

postulated by the novelty hypothesis, like de novo origination and duplication-induced 

neofunctionalization. However, other known mechanisms could also explain such genes. These 

include processes that cause the gene tree to deviate from the species tree, like horizontal gene 

transfer and any mechanisms that change the evolutionary rate of a protein on a restricted part of 

the tree.  

 

Characterization of yeast lineage-specific genes that are poorly explained by 

homology detection failure  

  We next aimed to characterize genes whose lineage-specificity is poorly explained by 

homology detection failure. I again used sensu stricto-specific genes as a case study, allowing for 

synteny analysis and the biological insight provided by many genes in S. cerevisiae being 

comparatively well-studied. I selected the subset of sensu stricto-specific genes, including 

Spo13, whose lineage-specificity is poorly explained by homology detection failure, i.e. for 

which P(detected | null model) > 0.95. These are genes on the other side of the threshold applied 

above: the null hypothesis strongly predicts that homologs should be detected, making their 

lineage-specificity incompatible with the null hypothesis. There are 25 sensu stricto-specific 
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genes that satisfy this threshold. While a thorough study of these genes is beyond my scope, I 

report a few initial observations.  

 “De novo origination,” the process of a new gene emerging from previously non-coding 

sequence, is a commonly proposed origin of lineage-specific genes [34]. I asked how many of 

these 25 lineage-specific genes might be such de novo genes. By definition, genes that have 

emerged de novo in the sensu stricto lineage should have no out-of-lineage homologs, and so the 

more sensitive synteny-based homology search strategy used above should fail to find such 

homologs. I performed a synteny-based search for out-of-lineage homologs for these 25 genes in 

the same way as above. For 20 of these 25 genes, an orthologous locus is listed in YGOB. Of 

these 20, 12 have annotated genes with significant similarity (E<0.001) at the orthologous locus 

in at least one outgroup species. Thus, 12 of 25 genes, or just under half, of genes that are not 

well-explained by homology detection failure did not originate de novo in the sensu stricto 

lineage. This is a conservative estimate of the total number of genes that have out-of-lineage 

homologs, since, as described above, even this synteny-based homology search has finite 

sensitivity. Spo13, the gene shown in Fig 5, is one example of these lineage-specific genes that 

nonetheless are not de novo originated: it has out-of-lineage orthologs identifiable by synteny in 

S. castellii, K. waltii, K. lactis, and A. gossypii.  

Genes that acquire a new function following duplication and divergence 

(“neofunctionalization”) are another proposed source of lineage-specific genes [34]. I therefore 

asked how many of my sensu stricto-specific genes have a paralog, consistent with the 

hypothesis that they emerged through duplication and divergence. Based on BLASTP searches 

within the S. cerevisiae genome, I find that 4 of the 25 lineage-specific genes have annotated 

paralogs specific to some subset of the sensu stricto yeasts, which therefore likely emerged after 
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their divergence from S. castellii. I also find using YGOB that another 4 of these 25 genes have 

annotated paralogs resulting from the yeast whole genome duplication, which occurred before 

the divergence of S. castellii from the sensu stricto yeasts. In total, 8/25, or fewer than one-third, 

of these genes show evidence of having been the result of duplication events. However, I note 

that this estimate for the number of genes with paralogs is again conservative due to the finite 

sensitivity of the homology searches.  

We performed a gene ontology enrichment test (Methods) to determine if certain 

biological processes were statistically overrepresented among these 25 genes. I find significant 

enrichment of genes involved in several GO categories relating to spore formation and meiosis, 

including “ascospore-type prospore membrane assembly” (p = 7*10-5; 3 observed vs 0.7 

expected) and “meiotic cell cycle process” (p = 5*10-5; 7 observed vs 1 expected). Spo13, 

involved in meiotic cell cycle regulation through its roles in maintaining sister chromatid 

cohesion during meiosis I and promoting kinetochore attachment [120], is one such example. By 

contrast, no biological processes were overrepresented among lineage-specific genes that are 

consistent with homology detection failure (although these genes are much less likely to have 

GO annotations at all: 92% have no annotation, compared to 12% of all cerevisiae genes and 

36% of lineage-specific genes that are inconsistent with homology detection failure). 

Finally, I assessed the length and rates of these genes. Analyses of lineage-specific genes 

regularly find that they are shorter and faster-evolving than conserved genes [23, 32, 49, 121]  

There has been controversy about how to interpret this finding. On one hand, it is tempting to 

conclude that these features are indicative of genetic novelty, given that they are natural 

consequences of a compelling conceptual model for how novel genes might be born and evolve: 

emerging from noncoding DNA and the short random ORFs that it encodes, at first under no 
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selective constraint and so free to evolve quite rapidly [23]. On the other hand, as is formalized 

in my model but has been appreciated widely for some time [4, 21, 98-100], shorter and faster-

evolving genes are more prone to detection failure; this bias is therefore also expected under the 

hypothesis that lineage-specific genes are largely due to detection failure [98, 99, 103-105, 107]. 

Do lineage-specific genes appear short and fast-evolving because they are these technical 

artifacts, or is this observation a biological reality reflecting their novelty?  

In my model, the parameters L and R correspond roughly to length and evolutionary rate 

respectively, and jointly determine whether homologs of a gene are predicted to be detectable at 

a given evolutionary distance. This dependence is given by the equation S = Le-Rt , where S is the 

bitscore corresponding to the chosen significance threshold and t is the evolutionary distance in 

question. All lineage-specific genes within the portion of L-R parameter space given by S < Le-Rt 

are therefore genes for which detection failure is a sufficient explanation. Similarly, all genes for 

which S > Le-Rt are genes for which detection failure is not a sufficient explanation – the genes 

under consideration in this section, which I consider to be interesting candidates for genetic 

novelty.  

We can ask how these genes are distributed within L-R parameter space. I take for 

granted that they reject my null model and so satisfy S > Le-Rt . Beyond this, they might be 

distributed similarly to conserved genes within this portion of parameter space: that is, there 

might be no way in which they look particularly special. Alternatively, their values of L and R 

might be biased in some fashion, such that they look noticeably different from conserved genes. 

We find that these genes are noticeably different from other, non-lineage-specific genes. 

Specifically, their lengths and rates are highly biased toward being shorter and faster-evolving 
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(lower L and higher R) than is true of conserved genes falling below the curve S = Le-Rt (Figure 

2.17).  

 

 

Figure 2.17: Distribution of L and R parameters as inferred from the sensu strictu yeast clade for 

all S. cerevisiae genes. Genes specific to that clade, and so absent from the nearest outgroup S. 

castellii and all other fungi, are indicated in color: red genes are those that reject the hypothesis of 

detection failure at p = 0.05, and blue are those that do not.  
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By considering only genes that reject the hypothesis of rejection failure, I minimize the 

contribution of technical artifacts to the lengths and rates of lineage-specific genes. This result 

suggests that their short lengths and fast evolutionary rates may be biologically meaningful.  

An alternative explanation for this pattern is that these genes are merely those that were 

fairly short and fast in the ingroup where the parameter fitting was conducted: they lay close to, 

but just on the predicted-undetectable side of, the curve S = Le-Rt . If these parameters happened 

to significantly change, such a change would be likelier than for genes elsewhere in parameter 

space to bump them over the curve into the space that I predict to be detected. These changes 

could happen for reasons other than novelty and would explain the observed bias in lengths and 

rates. Because my approach only detects deviations from my evolutionary null model and does 

not attempt to pinpoint the particular cause of the deviation, this possibility cannot be excluded.  

 

 

abSENSE is a simple method to interpret undetected homologs and is freely 

available as downloadable code and a graphical user interface-based web 

server 

  We consider one of the major advantages of the method for predicting homolog 

detectability, and therefore interpreting the absence of detected homologs, developed here, to be 

that it should be easily applicable to new genes and new taxa, requiring only two sets of 

relatively straightforward input parameters: a) the bitscores of detected homologs in at least three 

species, including the focal species, and b) the pairwise evolutionary distances between the focal 

species and the other species under consideration. This is especially true compared to alternative 

simulation-based approaches described in the Introduction.  
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  We have named my method abSENSE, and have made it available to the research 

community. A fully documented software package is available 

(https://github.com/caraweisman/abSENSE), allowing abSENSE to be downloaded and run 

locally. The package includes all required input parameters for running abSENSE on all genes 

considered here. It also contains instructions for running abSENSE on genes in new taxa.  

We also created a web server (http://eddylab.org/abSENSE/), lowering the barrier to use 

of a command line interface by offering a graphical user interface. Like the downloadable code, 

the site is preloaded with all data required to analyze all D. melanogaster and S. cerevisiae genes 

considered here, and can also be used to analyze user-provided data from genes in new taxa.  

 

Conclusions 

The widespread interpretation of lineage-specific genes as evolutionarily novel assumes 

that absence of evidence for detectable homologs in outgroups is evidence that homologs are 

absent. The model I have presented here allows us to formally test the alternative, null 

hypothesis: homologs do exist outside the specified lineage, but they have diverged, at a constant 

novelty-free evolutionary rate, beyond the ability of a similarity search program to detect them. I 

find that this hypothesis is sufficient to explain a large number of lineage-specific genes in two 

taxa where lineage-specific genes have been interpreted as exhibiting some kind of evolutionary 

novelty. These results caution against automatically assuming that lineage-specific genes are 

novel.  

Two important caveats should be kept in mind. First, this method cannot exclude the 

possibility that a gene is truly novel, but also short enough and evolving fast enough that its 

ortholog would not be detected if present, such that homology detection failure can also explain 



 
 
  

107 

its lineage-specificity. For this reason, it may be difficult for de novo genes in particular, which 

have been hypothesized to be short and fast-evolving, to reject the null model. However, in this 

case, where two hypotheses can both explain a lineage-specific gene, I argue that additional 

evidence should be required to prefer the comparatively exotic hypothesis of novelty to the more 

conservative one of detection failure. my case study in the sensu stricto yeasts finds that more 

sensitive synteny-based homology searches successfully find previously undetected homologs 

for many lineage-specific genes, supporting this argument. Second, these results may or may not 

generalize to classes of lineage-specific genes that I have not considered here. Because my 

method requires at least two observed orthologs, I have only applied it here to genes found in at 

least two species in the lineages in question. Moreover, like other studies, I focused on genes in 

existing annotations, which are prone to biases that may exclude novel genes. However, when I 

analyze cerevisiae ORFs with the requisite 2 orthologs that are marked as of “dubious” coding 

status in the Saccharomyces Genome Database, I find that an even larger proportion – nearly all 

– are unlikely to be detected. Although I have not done so here, I note that this method could be 

extended to these classes of genes. In principle, individual conspecifics with sufficient genetic 

differentiation could be used as discrete taxa in my method to analyze genes found in only one or 

two species. Additionally, the method is readily applicable to any protein annotation, which 

could be custom-made as desired. 

 Although I find that many lineage-specific genes can be adequately explained by 

homology detection failure, I also find a minority of lineage-specific genes in fungi and insects 

that cannot. This leaves open the possibility that these genes are biologically novel. However, the 

reason that these genes reject my null model is not addressed by my present work. my initial 

analyses do show that many of these genes are neither de novo genes nor have detectable 
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paralogs, suggesting that processes other than the commonly proposed hypotheses of de novo 

origination and duplication-divergence may be at play. There are many possible processes that 

could cause genes to deviate from my null model, but one speculative example lies in the 

observed enrichment in yeast of genes involved in meiotic processes, exemplified by Spo13. 

This strikes us as suggestive of meiotic drive phenomena, which have been observed in yeast 

[122] and have been shown to cause rapid protein divergence [123], producing clade-specific 

rate accelerations leading to lineage-specific genes. More detailed characterization of these genes 

is required to understand if and in what way they are evolutionarily novel.  

 There is increasing consensus that homology detection failure is frequent [97]. It should 

be taken into account in studies that aim to use lineage-specific genes to identify candidates for 

genetic novelty. To this end, my approach allows us to determine whether a particular lineage-

specific gene is attributable to homology detection failure. Synteny analyses of the kind used 

here can sometimes be used to determine whether out-of-lineage orthologs are present [46, 124]  

and can provide strong evidence of de novo origination [125], but syntenic analyses are only 

possible in the limited taxa where sequenced species are related closely enough that synteny is 

conserved. By contrast, my method can be used in any set of species for which relative 

evolutionary distances are known. I hope it to be useful in the wide variety of studies that aim to 

identify novel genes that may underlie the evolution of morphological, behavioral, and other 

novel traits [11, 20, 25, 71, 126, 127].  

 

Methods 

 

Identification of S. cerevisiae and D. melanogaster orthologs 
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 We downloaded previously annotated proteomes of all species used here from several 

sources, largely Refseq and GenBank. Accession IDs for Refseq and GenBank proteomes and 

download links for those from other sources are listed in S2_Table. I performed a BLASTP 

(version 2.8.0) search [128] with an E-value threshold of 0.001 using the S. cerevisiae proteome 

as the query against each of the 11 other yeast proteomes independently. I also performed the 

reciprocal of each of these searches, using each of the 11 other yeast proteomes as the query 

against the S. cerevisiae proteome. I used a custom Python script to identify reciprocal best 

BLAST hits for each S. cerevisiae protein in each of the other yeast proteomes. A protein in 

another yeast’s proteome was considered a reciprocal best hit to the S. cerevisiae protein if a) the 

E-value of the S. cerevisiae protein against that protein was the lowest of any in that species’ 

proteome and b) the E-value of that protein against the S. cerevisiae protein was the lowest of 

any protein in the S. cerevisiae proteome. Proteins in the other yeast species satisfying this 

reciprocal best hit criterion were considered orthologs of the S. cerevisiae protein. When no 

significant homology to a S. cerevisiae protein was detected in another species, or when the 

reciprocal best hit criterion was not met by any protein in that species, no ortholog was assigned 

in that species. To identify orthologs for D. melanogaster proteins, I repeated this same 

procedure for all D. melanogaster proteins and each of the 21 other insect species’ proteomes. 

 

Calculation of evolutionary distances  

Because evolutionary distance t only appears in my model as a product with the gene-

specific rate parameter R, I can use a subset of genes in the species group to infer these relative 

distances. Each gene’s value of R will scale these relative distances appropriately when fit to the 

model: genes that evolve faster than these relative distances will have values of R above 1, and 
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slower, below. I used BUSCO genes as the subset of genes from which to estimate distances, as 

they are generally well-conserved, facilitating ortholog identification and alignment. This 

enables my desired result of a species tree with correct relative evolutionary distances (in 

substitutions/site across aligned BUSCO genes), which is the only feature needed by my 

downstream inference. I downloaded a list of eukaryotic BUSCO genes [112] from the BUSCO 

web server (https://busco.ezlab.org/) and identified all of these genes for which I were able to 

identify an ortholog of the corresponding S. cerevisiae gene in all 11 other yeast species 

(“Identification of orthologs” above). I found 102 such BUSCO genes. I used the alignment 

software MUSCLE (version 3.8.31) [129] with default parameters to create a multiple sequence 

alignment of the orthologs from all 12 yeast species for of each of these 102 genes. I then 

concatenated these alignments and used the Protdist program from the PHYLIP software 

package (version 3.696) [130] with default parameters to find pairwise evolutionary distances for 

all 12 yeast species in substitutions per site. To test the effect of using a smaller number of genes 

to infer these distances, I then randomly and independently selected two subsets of 15 of these 

102 genes, and performed the same alignment and distance calculation procedure on each of 

these two subsets. I then performed the same procedure using D. melanogaster genes and the 21 

other insect species. Here, there were 125 BUSCOs for which I were able to identify orthologs in 

all species, and the two random subsets of 15 genes were selected from among these 125. Refseq 

accessions for genes in the three sets of BUSCOs in both taxa are listed in S7_Table. 

 

Correlation of R parameter with evolutionary rate 

 To determine the correlation between each gene’s best-fit value of the R parameter in my 

model and the substitution rate, I used alignments of 5261 S. cerevisiae genes and their orthologs 
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in all four other sensu stricto yeast species generated by a previous study [118]. I opted not to 

include more distantly related species in these alignments for the sake of more reliable ortholog 

identification and alignment construction. I used the protdist function of the PHYLIP package 

(version 3.696) [130] on these alignments to infer the number of substitutions per site between 

the S. cerevisiae gene and its ortholog in the most distant sensu stricto yeast S. kudriavzevii (we 

chose a fairly distant representative of these species to minimize sampling error from low 

substitution counts), and correlated this value with the R parameter inferred from the regression 

analysis.  

 

Identification of lineage-specific genes 

 To identify S. cerevisiae genes specific to the three yeast lineages tested here, I 

performed a BLASTP search [128] with an E-value threshold of 0.001 for each gene in the S. 

cerevisiae proteome as the query against each of the 11 other yeast proteomes independently. If 

the BLASTP search detected no homologs of the S. cerevisiae gene in the proteomes of any of 

these species outside of the specified lineage, I considered it lineage-specific. I applied the same 

criterion using the 21 other insect proteomes to identify D. melanogaster genes specific to the 

three insect lineages tested here. 

 

Synteny-based homology searches 

 We used version 7 of the Yeast Gene Order Browser’s online web tool 

(http://ygob.ucd.ie/) [119]. For tested S. cerevisiae genes, if the gene was included in this YGOB 

version, I determined whether an orthologous chromosomal region in any of the outgroup yeast 

species used here had been identified in the browser. If so, I searched for any genes in these 
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outgroup species at the locus that were annotated in the browser. I considered genes to be within 

the outgroup orthologous locus if they were between the outgroup’s orthologs of the closest S. 

cerevisiae genes up- and downstream of the query gene. If annotated genes existed at the 

orthologous locus, I performed a BLASTP search of the S. cerevisiae sequence against the 

sequences of all outgroup genes at that locus as listed in YGOB, and called orthology in cases 

where this single-search E-value was <0.001.  

 

Gene ontology analysis 

 We used the Gene Ontology Consortium’s online web server (http://geneontology.org/) 

[131] to test whether or not certain biological functions were enriched in the set of sensu stricto-

specific genes that I found to be poorly explained by detection failure. I performed a Fisher’s 

exact test using the “GO biological process complete” annotation data set for all S. cerevisiae 

genes.  

 

Calculation of substitutions/site and gaps for sensu strictu alignments  

 Although Vakirlis et al. (2020) [97] provide dN values computed from alignments of S. 

cerevisiae genes and their sensu strictu orthologs, these underlying alignments are restricted to 

the 5261 genes for which orthologs were identified in all five sensu strictu species in a previous 

study [118]. Because I worried that this might introduce a bias against quickly-evolving genes, 

for which orthologs are less readily identifiable, I opted to make my own alignments, including 

all 5586 genes for which I could identify an ortholog in at least one of the four other sensu strictu 

species. I used both MUSCLE [55] and ClustalOmega [132] with default settings to produce a 

multiple alignment of each cerevisiae gene and its orthologs in at least one other sensu strictu 



 
 
  

113 

species. I then used these alignments to compute substitutions/site between S. cerevisiae and S. 

bayanus with the Phylip ProtDist program as in my other evolutionary distance calculations 

(above). I chose S. bayanus because it is the most distant species from cerevisiae according to 

my analysis. I then used all genes with an ortholog present in S. bayanus, regardless of its status 

in the three other yeast species, in the subsequent analysis. Results from the two alignment 

programs were extremely similar, as were results using distances to the slightly closer S. 

kudriavzevii. I then used these same alignments to count the total number of gaps in each 

alignment and divide by the number of columns and number of sequences in the alignment to 

calculate the gaps per column per sequence.  

 

Detectability prediction analysis of microsyntenic lineage-specific genes 

 We repeated my original analysis of fungal lineage-specific genes, but restricted to genes 

determined to be in microsyntenic regions by Vakiriis et al (2020) [97]. I included genes in this 

analysis as follows. I started with the same list of genes specific to the lineages for which S. 

castellii and K. waltii are the closest outgroups (Fig 4) as in my original analysis. From these, I 

selected genes that Vakirlis et al. determined to be in a microsyntenic region in at least one of a) 

a species within that lineage; b) that species itself (S. castellii or K. waltii); or c) another 

outgroup species to the lineage of very similar divergence time to b). I chose to include genes in 

microsyntenic regions in species within the lineage and not just in its closest outgroup to be 

maximally conservative, and because the number of genes in microsyntenic regions only in the 

outgroup species was low. I chose to allow for another outgroup species of similar divergence 

time to be substituted for the species that I used as outgroup because the set of species for which 

Vakirlis et al. performed a synteny analysis did not overlap exactly with the set of species used 
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here (for example, K. waltii was not included), such that this was the closest approximation 

possible using those data.  In the case of S. castellii, these species included S. arboricola, S. 

kudriavzeviii, and S. castellii itself. In the case of K. waltii, these species included K. lactis, A. 

gossypii, L. thermotolerrans, E. cymbalariae, A. aceri,  S. arboricola, S. kudriavzeviii, and S. 

castellii. 
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Chapter 3: Why correct interpretation of lineage-specific genes 

matters: the evolutionary origin of mesoderm  

 

Background 

 So far, I have described and quantified the contribution of processes that generate 

lineage-specific genes which have nothing to do with evolutionary or biological novelty. The 

motivation for this enterprise has been to assess the widespread interpretation of lineage-specific 

genes as largely or entirely novel. On the basis of results so far, I propose that this assumption is 

not generally reliable. Here, I explore how making this assumption could confuse inquiry into 

biological questions beyond those regarding lineage-specific genes per se. Does erroneously 

attributing novelty to lineage-specific genes actually muddy understanding of more fundamental 

or wide-ranging biology? Or is the impact of the findings in the previous chapters limited to the 

relatively specialized niche of lineage-specific and novel genes?  

  I take up what I consider to be an evolutionarily impactful question to which the current 

consensus has been partially based on interpreting lineage-specific genes as novel. I reinterpret 

the data on which this consensus was based using analysis methods developed in previous 

chapters, consider the effects of this new interpretation on our understanding of the biology at 

issue, and describe a new avenue of experimental work opened by this analysis.  

 

The evolutionary origin of mesoderm: one or multiple?   

Mesoderm is a primary layer of cells that emerges early in the development of some 

animals, one of three so-called “germ layers” that are present in some animals [133]. In the 



 
 
  

116 

species in which mesoderm is present, it gives rise to tissues including muscle, connective tissue, 

blood, and kidneys [133]. As such, mesoderm is an important evolutionary innovation that 

enabled the novel structures and functions made possible by these derivative tissues.  

Mesoderm was characterized and defined in Bilaterians [133]. The phylum Cnidaria 

appears to lack a cell lineage with extremely strong morphological or ontological similarity 

during development to Bilaterian mesodermal lineages, and also lacks the mesodermal 

derivatives characteristic of Bilaterian mesoderm (e.g. fully-fledged muscles) [134]. The same is 

true of the early-branching animal phyla Porifera and Placozoa [135]. The situation is somewhat 

more complicated for the phylum Ctenophora. Ctenophores have contractile muscle cells that are 

molecularly and functionally similar to those of Bilateria [136, 137], and at least one order also 

has striated muscle [138]. They also have micromeres that derive from larger macromeres before 

migrating toward the center of the embryo during gastrulation and settling between clearly 

endodermal and ectodermal lineages, then giving rise to muscle cells in the adult [139]. They 

share these morphological and developmental features with Bilaterian mesoderm cells, but differ 

in others: for example, the mesodermal lineage originates from the animal pole, rather than the 

vegetal pole, as in Bilaterians (and as in the so-called “endomesodermal” lineage of Cnidaria) 

[140]; the micromere mesoderm progenitors lack organization into a clear embryonic germ layer 

[141]; and striated muscle, where present, has significant cellular differences, including the 

absence of nuclei and most organelles [138]. Different authors hold different standards for what 

features are necessary for a lineage to be defined as mesoderm, resulting in Ctenophores 

sometimes being described as possessing mesoderm [139, 142, 143], and sometimes as lacking it 

[142] [134].  
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   In discussing whether another taxon “has mesoderm,” one might mean to comment on 

whether that taxon has a structure that is homologous to Bilaterian mesoderm. Alternatively, one 

may mean merely to comment on the presence of a structure that meets the criterion of a set of 

shared morphological or functional features. Here, based on the similarities described above, I 

will refer to the Ctenophore structure in question, which bears the described similarities to 

Bilaterian mesoderm, as “mesoderm,” but in doing so, I will not be asserting the homology of 

the two. I will merely be using the term to refer to their shared developmental characteristics. 

Accordingly, so far, one can summarize the situation thus: Bilateria and Ctenophores both have 

mesoderm; Cnidaria, Placozoa, and Porifera lack it.  

 Phylogenetically, the current consensus is that Cnidaria are the sister taxon to Bilateria, 

with Placozoa, Ctenophora, and Porifera each branching independently at some earlier point 

[144, 145]. The relative placement of these three taxa, and in particular whether Ctenophora or 

Porifera is sister to the rest of the animals, remains unclear and is at present the subject of 

controversy [146]. There is nonetheless significant consensus on two points: that Cnidaria are 

sister to Bilateria, and that Ctenophores are not the next-latest branching taxon, i.e. that either 

Porifera, Placozoa, or both branched between Ctenophores and the common ancestor of Bilateria 

and Ctenophores [145, 146]. A consequence of these possible phylogenies, if true, is that 

mesoderm is paraphyletic: it is absent in either one or two descendants of the common ancestor 

of Ctenophores and Bilateria, the two taxa possessing mesoderm.  

These two observations – the commonality of some but not all developmental and 

morphological features, and paraphyly -- jointly raise the question: is Ctenophore mesoderm 

homologous to Bilaterian mesoderm? There are two maximally simple and distinct possibilities. 

The first, the “homology hypothesis,” is that they are indeed homologous: that mesoderm 



 
 
  

118 

evolved once in the common ancestor of Ctenophores and Bilateria, and was lost either two or 

three times (depending on the correct animal tree topology), in Cnidaria, Placozoa, and perhaps 

Porifera. The second, the “convergence hypothesis,” is that they are not: that Ctenophores and 

Bilaterians each evolved their respective mesoderms totally independently. Of course, between 

these two possibilities are a slew of subtler combinations: for example, that pieces of the 

mesodermal program were present in the common ancestor, with independent elaborations 

occurring later; or that mesoderm was present in the common ancestor, but that one or both 

lineages have independently switched out or reinvented components of the ancestral program.  

How can one test these possibilities? Decades of experimental work have generated 

substantial knowledge of the genetics of mesoderm generation in Bilaterians. The strictest 

version of the homology hypothesis holds that these same genes should then be involved in 

mesoderm generation in Ctenophores. At a bare minimum, then, one would expect that these 

Bilaterian mesoderm genes have homologs in Ctenophores.  

The publication of two Ctenophore genomes, from Mnemniopsis leidyi [136] and 

Pleurobrachia bachei [147], saw this question asked and apparently answered. The authors 

selected Bilaterian genes known to be involved in mesoderm generation and asked whether they 

had detectable homologs in these two Ctenophore species. Although BLASTP detected clear 

homologs for some of the Bilaterian mesoderm genes that the authors considered, a majority of 

these genes had no apparent homologs: they appeared to be specific only to the Bilaterian 

lineage. On this basis, the authors concluded that Bilaterian and Ctenophore mesoderm likely 

evolved convergently [136, 147], a view that has since been endorsed by others [139, 144]. 

The evolutionary distance between Ctenophores and Bilaterians is large (~800 million 

years [148]). As evolutionary distances increase, as demonstrated in the previous chapter, the 
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probability of homology detection failure increases. I therefore wondered whether Ctenophores 

may actually have homologs of these Bilaterian genes that BLASTP has merely failed to detect. 

If true, this would have clear implications for our current understanding of the relationship 

between Bilaterian and Ctenophore mesoderm: if Ctenophores do have these homologs, the 

homology hypothesis, currently considered falsified, becomes viable again. 

Here, I use my method abSENSE, developed in the previous chapter, to assess whether 

Ctenophores may have undetected homologs of Bilaterian mesoderm genes. I find that this is the 

case for many of these genes; use results from abSENSE and more sophisticated homology 

search methods to identify genes in M. leidyi that may be these homologs; and describe ongoing 

work to experimentally test whether these Ctenophore genes do indeed have mesodermal 

functions.  

 

Application of abSENSE to Metazoa 

 We first applied abSENSE to Metazoa, repeating the methods used for the fungal and 

insect lineages as described in Chapter 2. I used H. sapiens as my focal species due to its high-

quality genome and due to the comparatively short branch length of the vertebrate lineage among 

Bilateria, such that distance to outgroups would be minimized. I included 18 other target species, 

selected to roughly uniformly cover the evolutionary distances between H. sapiens and the most 

distant outgroup, the choanoflagellate Monosiga brevicolis, and on the basis of genome quality. I 

also included the Ctenophore M. leidyi. I did not include the second Ctenophore with a 

sequenced genome, P. bachei, because its genome was not publicly available at the time of 

analysis. These species and a consensus topology are shown in Figure 3.1.  
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Figure 3.1: Species used in the abSENSE analysis performed in this chapter. Tree inferred using 

an alignment constructed according to the methods for BUSCO gene selection and alignment 

described in Chapter 2, which was then analyzed by the ProML program in Phylip using default 

parameters.  

 

We computed the pairwise evolutionary distances between H. sapiens and each of the 

target species as described in Chapter 2. I also identified orthologs of all H. sapiens genes in 

each of the target species as described in Chapter 2.  

We then sought to confirm the accuracy of my mathematical model of homology 

detectability and the accuracy of the computed evolutionary distances. As in Chapter 2, I 
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performed a regression analysis comparing the bitscore predicted by my model and the actual 

bitscore of each H. sapiens ortholog in each target species. The distribution of resulting r2 values 

for all H. sapiens genes are shown in Figure 3.2.  

 

 

Figure 3.2: r2 for regression analysis assessing the goodness of fit of the model to the bitscores of 

human orthologs in the animals considered here.  

 

The mean and median r2 values were 0.82 and 0.88 respectively, demonstrating a good fit to the 

model.  

 We aim to use this model to predict the detectability of orthologs of human genes in M. 

leidyi. To be confident that the model makes predictions in this species, I repeated the positive 

control described in Chapter 2, computing the probability of being detected for genes that do in 

fact have detectable homologs in M. leidyi. As in Chapter 2, I computed this probability without 
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using the bitscores of thee genes in M. leidyi or any more distant species, mirroring the amount 

of data that available to fit the model parameters for the desired experimental case of lineage-

specific genes. The results of this analysis are shown in Figure 3.3.  

 

 

 

Figure 3.3: Distribution of P(detected | null model) in target species M. leidyi for all human genes 

that do have detected homologs in M. leidyi.  

 

As in the fungal and insect clades, I correctly assign a very high probability of being detected to 

the vast majority (>97%) of these genes, indicating the reliability of the model’s predictions.  

   

Homologs of many Bilaterian mesoderm genes are not expected to be 

detectable in M. leidyi 



 
 
  

123 

 

 With a reliable method to predict whether orthologs of H. sapiens genes would be 

detected in M. leidyi if evolving according to my null model, I then used this method to consider 

the Bilaterian mesoderm genes considered in previous analyses. These genes were found to lack 

homologs in M. leidyi, on the basis of which it was proposed that Ctenophore and Bilaterian 

mesoderm likely evolved independently [136, 147]. 

 We used abSENSE to predict the probability of an ortholog of the H. sapiens gene being 

detected in M. leidyi for 12 genes considered in these previous analyses and found to lack 

apparent homologs by BLASTP. I selected these genes according to the following criteria. First, 

I considered all genes that were considered in either of the two published analyses that 

considered the presence and absence of Bilaterian mesoderm genes in Ctenophores [136, 147] 

for which a homolog was not detected. I note that these genes may or may not ultimately be the 

most informative, or not all equally so, for assessing the homology or convergence of mesoderm; 

for example, one might place more emphasis on genes controlling earlier stages of mesoderm 

development and less on genes involved in later stages of differentiation that are unique to 

Bilateria, for example those involved in heart morphogenesis. I chose to use these same genes to 

reassess the claims previously made, such as they are, with respect to how homology bears on 

the question of mesoderm’s evolutionary origins, independent of my own views about whether 

these genes are optimally informative, or all equally so, for the question of the origin of 

mesoderm. For this reason, here I only describe the results of this analysis, and do not discuss the 

functions of these genes in mesoderm.  Further work in collaboration with experts in mesoderm 

development and evolution may consider if other genes would be more informative, or if some 

genes among these should be weighted more highly. 
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  We then excluded genes for which members of the same gene family were clearly present 

in Ctenophores, but for which there was ambiguity about identity within the family that could not 

be resolved on the basis of the presence of a distinguishing protein domain. For example, many 

proteins with a single homeobox domain are clearly present in Ctenophores, but it is not clear on 

the basis of homology searches alone, and is therefore not answerable by my method, if any of 

these is an ortholog of the human mesoderm gene goosecoid; determining this would require 

creating a gene tree, which is difficult and uncertain at evolutionary distances this large. I 

retained human mesoderm genes that share domains with other members of a large family, but 

for which the presence of a distinguishing domain is unique to the gene with mesodermal 

function. For example, HNF1a/Forkhead shares a Forkhead domain with a large family of genes, 

including other non-mesodermal genes, but has a characteristic HNF-C domain that is therefore 

diagnostic of identity within this family. In these cases, my method can be used to predict the 

detectability of the diagnostic domain and therefore the gene.  

  As a positive control for the possibility that such mesoderm genes are in some way 

different than the majority of other genes, such that my prediction method is more prone to err in 

analyzing them, I also considered 7 genes included in these previous analyses for which a 

Ctenophore homolog was successfully detected by BLASTP. As above, these 7 genes included 

all such genes included in these previous studies for which assigning family membership was 

unproblematic. 

Consistent with my analysis in Chapter 2, I considered a human gene as being predicted 

to be detected in M. leidyi if it had a 95% or greater value of P(detected | null model, tleidyi). The 

results of these predictions are shown in Figure 3.4. 
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Figure 3.4: Results of abSENSE predictions for Bilaterian mesoderm genes in Ctenophores 

analyzed in previous studies to assess the likelihood of the homology vs. convergence of Bilaterian 

and Ctenophore mesoderm. The left table depicts the results of BLASTP searches in the M. leidyi 

genome. Red shading indicates genes taken to be inconsistent with the homology hypothesis, on 

the basis of lacking apparent homologs in M. leidyi; blue shading indicates genes taken to be 

consistent, based on having apparent homologs. The right table depicts the results of both BLASTP 

searches and my abSENSE analysis. Red shading indicates genes inconsistent with the homology 

hypothesis, which both lack detected homologs and should have detectable homologs according 

to abSENSE analysis; blue shading indicates genes consistent with the homology hypothesis, 

which lack detected homologs but for which abSENSE predicts homologs are not expected to be 

detectable. (The bottom seven genes, in blue on the left, serve as a control for the reliability of 

abSENSE predictions.) 
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  A majority (75%) of the genes for which no homolog was detected in Ctenophore are not 

predicted to be detectable. The apparent absence of these genes from Ctenophores is therefore 

strictly consistent with the homology hypothesis: if they were in fact present and evolving the 

same way in Ctenophores as they are in Bilaterians, they would potentially not be detected by 

BLASTP, and so their absence is not indicative of processes beyond those included in my 

evolutionary null model, i.e. presence and uniform evolutionary pattern in all species. 

 Previous analyses concluded that convergence of Bilaterian and Ctenophore mesoderm 

was likelier on the basis of the large number (12) of Bilaterian mesoderm genes lacking apparent 

homologs in Ctenophores [136, 147]. This analysis shows that, when the possibility of detection 

failure is controlled for, the available data is much more consistent with the homology of 

mesoderm than previously believed. Only 3 genes both lack apparent homologs and are expected 

to be detected, and so are inconsistent with the homology hypothesis. The change in the balance 

of the evidence against the homology hypothesis before and after my analysis is heuristically 

depicted in Figure 3.4 as the number of genes shaded red (inconsistent with homology) vs. blue 

(consistent with homology).   

 

More sensitive homology searches reveal potential homologs of Bilaterian 

mesoderm genes initially undetected in M. leidyi 

 The available data and abSENSE analysis for the nine Bilaterian mesoderm genes above 

predicted to be undetectable in M. leidyi if present are consistent with the hypothesis that 

homologs for these genes are actually present in M. leidyi. If this is the case, although BLAST, 

as expected, has failed to detect them, as in the previous chapter, a more sensitive homology 
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search method may yet succeed. Indeed, the 99% prediction interval for the bitscore of all nine of 

these genes has some probability mass above the detection threshold; although the bitscore from 

one homology search method does not translate directly into that of another, this suggests 

roughly that the sequences of homologs may not be so diverged as to be impossible to detect by 

any method.  

 Accordingly, I aimed to use more sensitive homology search techniques to identify 

potential M. leidyi homologs of these Bilaterian mesoderm genes. I first turned to HMMER, 

which converts an alignment of homologs of a gene into a hidden Markov model (HMM) that is 

used to search for homologs, thereby capturing the information about site-specific substitution 

patterns that is contained in the underlying alignment [149]. Because protein domains, rather 

than full-length proteins, display characteristic substitution preferences, it is common to use an 

HMM of a domain in a homology search. The Pfam database is a repository of pre-computed 

alignments and HMMs for protein domains [150], and so I began by using these HMMs in a 

HMMER search to identify homologs.  

  The FGF ligand is short and has only one eponymously-named domain. A search with the 

existing Pfam FGF domain profile against the annotated M. leidyi proteome immediately 

revealed one strong candidate homolog (ML04673a at E=5*10-6) and another less statistically 

significant candidate (ML10595a at E=0.03). If these are true FGF homologs, I would expect 

them to be expressed during embryonic development in M. leidyi. I examined the expression 

profiles of these genes during M. leidyi using the Mnemiopsis genome portal 

(https://research.nhgri.nih.gov/mnemiopsis/) and found that this was the case.  

 Bilaterian Follistatin is comprised of a Follistatin EGF-like domain followed by three 

Kazal-type serine protease inhibitor domains. These Kazal-type domains are readily identifiable 
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in Ctenophores by BLASTP, but are present in many other proteins and so not diagnostic of a 

Follistatin homolog. A HMMER search with the Pfam profile for the Follistatin EGF-like 

domain identified a significant hit in the M. leidyi proteome: ML00905a at E=4*10-3). This 

protein also has three Kazal-like domains, although the ordering of these four domains occurs in 

a slightly different order than in the Bilaterian Follistatin. I confirmed that this protein is 

expressed during development as above.  

  Bilaterians have three types of Troponin proteins, each playing a different role within the 

sarcomere: Troponin-I, Tropinin-T, and Troponin-C. Each of these contains a so-called Troponin 

domain, and are distinguished on the basis of additional domains. A search with the existing 

Pfam profile for a Troponin domain against the annotated M. leidyi proteome immediately 

identified three hits with middling statistical significance (E~0.1). However, a search with this 

profile against a custom database of six-frame translations of transcriptomes of other Ctenophore 

species, assembled from a variety of sources, revealed strong hits (E < 10-40) in Pulkia falcata 

and Hormiphora californensis, suggesting that troponin was present in the common ancestor of the 

Ctenophores. I still sought to identify a candidate homolog in the model species M. leidyi in 

particular. Profile HMMs are built from underlying alignments of selected homologs; because 

the sequence properties and site-specific substitution preferences of homologs may change 

throughout evolution, the taxonomic source of these homologs may influence the ability of a 

profile to successfully identify homologs in a target taxon. I hypothesized that the including the 

candidate troponin homologs from the two other Ctenophore species, phylogenetically closer to 

the target species M. leidyi, could enhance the ability of the profile HMM to identify candidate 

homologs there. A modified HMM that included these sequences in addition to those in the 

existing Pfam alignment found two of the same M. leidyi genes as my initial search, but with 



 
 
  

129 

improved E-values: ML08948a at E=10-5 and ML45846a at E=0.03. If these genes are true 

troponin homologs, I would expect them to be expressed in striated muscle cells in adult M. 

leidyi. I consulted an existing M. leidyi single-cell RNAseq dataset [151] in which striated 

muscle cells had been previously identified on the basis of expression of other conserved muscle 

components (eg tropomyosin), and found that one of these genes, ML45846a, is indeed 

expressed in all, and exclusively in, striated muscle cells. I were unable to identify any of the 

additional domains diagnostic of identity within the three Troponin proteins (e.g. the Troponin-I 

domain) in M. leidyi. 

 The Bilaterian Forkhead protein has three domains: a Forkhead domain, a Forkhead-N 

domain and an HNF-C domain. The Forkhead domain is readily identifiable in many M. leidyi 

proteins, but is contained in many members of the family that do not have Bilaterian mesodermal 

functions; to be more confident in protein identity within this family, I sought to find a gene that 

contains one of the two additional domains characteristic of Forkhead. I therefore searched with 

Pfam HMMs of these two domains. The existing Pfam HMM of the HNF-C domain did not find 

significant hits in M. leidyi. I then used that HMM to search against the large and taxonomically 

diverse UniprotKB database, which identified additional potential homologs, including many 

from earlier-diverging animal species not represented in the Pfam HMM, and created a new 

HMM from these hits as above. I then used this new HMM to search within M. leidyi proteins 

that had an identifiable Forkhead domain; I restricted the search to these because I would only 

consider a gene possessing both domains to be a candidate homolog, and this restriction reduces 

the search space, increasing search sensitivity. This search resulted in one significant hit: 

ML154527a at E=10-4. I confirmed using the NHGRI database that this gene is expressed during 
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Ctenophore development. I were, however, unable to identify any genes in M. leidyi with the 

Forkhead-N domain.  

 The Bilaterian Noggin protein contains only a single Noggin domain, which is unique to 

the Noggin family and so diagnostic of membership. A search with the existing Pfam profile for 

the Noggin domain in the M. leidyi proteome immediately identified one significant hit: 

ML093034a, at E=4*10-3. I expanded the alignment from which the Pfam profile was created by 

using it as the query in a search against the UniprotKB database, which found additional hits, 

including early-branching animal species not represented in the existing profile. I added these 

sequences to the profile and re- searched the M. leidyi proteome, which lowered the E-value of 

the previous hit to 10-8. I confirmed that this gene is expressed during M. leidyi development.  

 The Bilaterian Cerberus/DAN protein family is defined by a single “DAN” domain, 

which is largely (though not entirely) unique to the family and thereby informative for defining 

family membership. A search with the existing Pfam domain against the M. leidyi proteome 

found no significant hits, but did find a significant hit in the Ctenophore P. falcata, as well as 

Trichoplax adhaerens and several choanoflagellate species. Inclusion of these sequences in the 

existing Pfam HMM found several significant hits in the M. leidyi proteome, with E-values 

ranging from 10-23 to 10-6: ML03229a, ML03224a, ML018012a, and ML231814a. I confirmed 

that all of these genes are expressed during M. leidyi development.  

 For all other genes in Figure 3.4 above lacking apparent M. leidyi homologs, including 

those for which abSENSE did not predict that homologs would be undetectable by BLAST (red 

shading), I were unable to identify candidate homologs. I only attempted to use HMM-based 

methods here; further work may explore more sensitive search strategies.   
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 The results of my attempts to find candidate homologs for these Bilaterian mesoderm 

genes and their consequences on the question of the homology of Ctenophore mesoderm are 

summarized in Figure 3.5.  
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Figure 3.5: Results of HMM-based homology searches aiming to find previously undetected  M. 

leidyi homologs of Bilaterian mesoderm genes. The left depicts genes for which homologs were 

(blue) or were not (red) detected by BLAST; the right depicts genes for which homologs were 

(blue) or were not (red) detected either by BLAST or by my HMMER-based searches.  

 

The number of Bilaterian mesoderm genes used in previous analyses to assess the probability of 

the homology of Ctenophore mesoderm with putative Ctenophore homologs thereby increased 

from seven (left) to thirteen (right), changing from a minority to a majority of these genes. 

 

Ongoing experimental work aims to test role of putative M. leidyi homologs in 

mesoderm development 



 
 
  

133 

 Ctenophores having homologs of Bilaterian mesoderm genes is a minimal prediction of 

the homology hypothesis, but is also compatible with a convergence scenario. The common 

ancestor of Bilaterians and Ctenophores may have had these genes, and both taxa could have 

gone on to evolve mesoderm independently, such that although the same genes are present in 

their genomes, different genes are involved in mesoderm generation in the two groups. Tests of 

whether the Ctenophore homologs of  Bilaterian mesoderm genes actually play analogous roles 

in Ctenophore mesoderm development are therefore essential for assessing the likelihood of 

homology.  

 We are currently working to perform such tests using two experimental approaches. The 

first is to perform scRNAseq on M. leidyi embryos to determine whether these genes are 

expressed in the mesoderm lineage during development; a positive result would support the 

hypothesis that they have mesoderm-related functions. I plan to identify the presumptive 

mesodermal lineage based on its expression of genes known from previous RNAseq data to be 

expressed in adult muscle tissue [151]. Data from whole-embryo RNAseq developmental 

timecourse experiments have shown that some of these, like Tropomyosin, are expressed as early 

in development as 2 hours post fertilization [152], raising the possibility that they can be used as 

markers for the early mesodermal lineage, even before gastrulation occurs (around 4 hours post 

fertilization), when many crucial developmental genes involved in mesoderm specification, 

including many in the list above, would be expected to be expressed. These experiments are 

underway in the lab of Mark Martindale (Whitney Lab for Marine Biosciences), which has 

substantial expertise in Ctenophore experimental techniques. 
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The second is to determine whether phenotypes resulting from knockouts of Bilaterian 

mesoderm genes in D. melanogaster can be rescued by expression of the corresponding M. leidyi 

homolog; a positive result would strongly suggest a shared function of these homologs. These 

experiments are underway in the lab of Kate Beckingham (Rice University). 

There are clear downsides and limitations to these approaches. The first approach runs 

the risk of being unable to confidently identify the mesodermal lineage. scRNAseq alone cannot 

unambiguously identify the mesodermal lineage at early developmental timepoints in the 

absence of unambiguous cell type markers, which do not yet exist in M. leidyi. It is my hope that 

I can use markers from adult mesoderm derivative tissues, like muscle, to identify their 

progenitor cells at an earlier stage, but it is possible that different lineages express these markers 

at earlier developmental times, such that this approach will identify the incorrect lineage. I hope 

to perform sufficiently dense temporal sampling across development (every ~1-2 hours for the 

24 hours of development required for the adult body plan to emerge) that I can overcome this 

problem, using a transitive approach: using the adult markers to identify the corresponding cell 

type at an earlier stage of development, identifying a new set of markers in that cell type, and 

then repeating the process to reach the earliest desired time point. I hope that the short time 

intervals between the sampled time points will minimize risk of the markers identified in the 

mesodermal lineage at one time point being expressed in a different cell type at the next type 

point.  

Pending a pilot experiment assessing practical difficulty, I are also considering a labeling 

experiment that would overcome this difficulty. A fate map for M. leidyi has been published 

[142], allowing the cell that gives rise to the mesodermal lineage to be identified in early 

embryos and injected with fluorescent dye acting as a lineage tracer. Performing this injection, 
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FACS sorting labeled cells at the desired later points in development, and sequencing only these 

labeled cells would allow independent identification of the appropriate lineage, which could then 

be transcriptionally profiled. The main barrier to this approach is that the large number of 

embryos required for such a scRNAseq experiment is practically difficult to reconcile with time-

consuming manual injection of the lineage tracer into the correct macromere of each embryo.  

The second approach is unlikely to yield a positive result due to the large phylogenetic 

distances involved in the attempted rescue experiments. There is some precedent for successful 

compensation at such timescales using similar types of mesodermal and developmental genes; 

for example, a dominant negative brachyury mutant from M. leidyi was shown to display the 

same phenotype when injected into Xenopus laevis embryos as the corresponding dominant 

negative mutant in the endogenous protein [153]. I therefore consider this approach worthwhile 

enough to attempt. However, on the whole, it seems relatively unlikely that even true homologs 

would successfully functionally compensate for one another when taken from organisms as 

distant as Ctenophores and Bilaterians. While a positive result would be strongly suggestive of 

homology, a negative result would therefore be minimally informative. I have opted to take this 

approach because of its relative practical ease: experiments in M. leidyi are difficult, while the 

genetics of D. melanogaster are comparatively quite straightforward.  

There are two vastly more conceptually straightforward experiments, neither of which I 

have so far undertaken. The first is an in situ hybridization in M. leidyi embryos to assess the 

expression of the putative mesodermal homologs at the developmental stage corresponding to the 

developmental stage at which they are known to be expressed in Bilaterians. The second is direct 

disruption of these putative homologs in M. leidyi to assess their role in producing M. leidyi 

mesoderm. The difficulty of working with M. leidyi has made me disinclined to attempt either of 
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these myself. I have identified collaborators with expertise in the organism, but their preferred 

experimental approach has been the scRNAseq strategy described above, and so I have 

proceeded accordingly.  

Of note is a very recent report of successful gene knockouts and knockdowns in M. leidyi 

using CRISPR and splice-blocking morpholinos in M. leidyi [154]. Future work may explore the 

possibility of using these techniques to directly test the functions of these putative mesoderm 

homologs in M. leidyi.  

 

Conclusions 

 Here, I consider a question of broad biological interest that does not at first glance have 

obvious relation to the subject of lineage-specific genes: what is the evolutionary relationship 

between the mesoderm of two animal taxa? Prior to the availability of relevant molecular data, 

intuitive arguments could be marshaled for each of the two broad possibilities. A parsimony 

calculation that merely counts the number of events seems to favor convergence, which requires 

two events (two origins of mesoderm), compared to homology, which requires at least three (one 

origin and at least two losses). A clear counterargument contests the comparable ease of these 

two events: it might seem more difficult to create structures than to lose them, pointing to the 

higher likelihood of homology. The middling morphological and developmental similarity of 

Bilaterian and Ctenophore mesoderm – a level of resemblance that is suggestive but not so 

striking as to seem conclusive – adds to the ambiguity of the situation, and has been interpreted 

variously as evidence in favor of both possibilities.  

 Molecular data is widely regarded as uniquely informative in resolving these sorts of 

questions about homology. The publications introducing sequenced Ctenophore genomes 
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accordingly took up the question, seeking the molecular evidence that was taken to be necessary 

to support homology: successful detection of Bilaterian mesoderm gene homologs in 

Ctenophores. The lack of such apparent homologs was accordingly taken as strong support for 

the conclusion that convergence of mesoderm in these two taxa was the likelier scenario [136, 

147].  

Here, I apply my analysis method, developed in a previous chapter, to the explore an 

alternative possibility also consistent with the observed data: that Btenophore and Bilaterian 

mesoderm are homologous, and that Bilaterian mesoderm genes accordingly have Ctenophore 

homologs, but that these homologs are merely undetectable by homology search due to the large 

evolutionary distance between the taxa. I find that for the majority of genes lacking detected 

Ctenophore homologs, such homologs are not expected to be detectable if present.  

Motivated by these results, which suggest that Ctenophore homologs could yet be lurking 

undetected, I undertake more sensitive homology searches in an effort to identify them. I find 

putative homologs for 6 new Bilaterian mesoderm genes. Some of these were found with easy, 

off-the-shelf homology search methods (e.g. using an existing Pfam profile in a HMMER 

search), but others required time and manual intervention (e.g. construction of Ctenophore 

transcriptome databases not available in standard sequence databases like RefSeq and so 

requiring manual literature searches and third-party websites to identify). The increased 

difficulty of these approaches is likely why they are not regularly performed by the average user 

of programs like BLAST and HMMER. abSENSE analysis results were key to success in these 

cases: knowledge that the apparent absence of a homolog is consistent with it yet being present 

decreased the probability that continued efforts would be wasted and so was a strong motivator 

to undertake them. 
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We argue that this new analysis changes the fairest conclusion regarding whether 

Ctenophore and Bilaterian mesoderm are homologous. Contrary to previous analyses proposing 

that homology is unlikely, I argue that the results of previous homology searches are consistent 

with both homology and convergence, and so both hypotheses remain viable. The discovery of 

six new additional putative mesoderm genes in Ctenophores supports this position.  

  We do find a small number (3) of genes absent in Ctenophores that are predicted to have 

detectable homologs. This inconsistent with the strongest form of the homology hypothesis, 

which holds that the full Bilaterian mesoderm program was present in the common ancestor and 

remained as such, unchanged and unelaborated, in all descendants. I find this strongest 

formulation fairly unlikely on face: over large expanses of evolutionary time, elaboration, 

replacement, or loss of parts of the mesoderm program seems likely. This is especially plausible 

given that Bilateria have mesoderm-derived tissues totally absent in Ctenophores (e.g. heart, 

blood), for which additional genetic programs may have evolved following their divergence from 

Ctenophores.  

A priori, the likeliest form of the homology hypothesis seems to be an intermediate one: 

that some components of the mesoderm program existed in the common ancestor, while others 

were evolved or elaborated independently in descendant taxa. Rather than a yes/no answer 

arrived at by way of counting how many or which fraction of ‘mesoderm genes’ are conserved in 

Ctenophores, I feel that a subtler analysis taking into account the functions of conserved vs. 

likely actually absent genes and their roles in the overall mesoderm program will be most 

revealing as to the origins of mesoderm. To this end, it remains important not to conflate genes 

with undetected homologs as those that are definitively absent: such an error could muddy these 

types of functional evolutionary analyses.  
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Our results do not provide positive evidence of homology. They merely revive its status 

as a viable hypothesis consistent with the available data. Mesoderm could be convergently 

evolved even if the same genes are present in all species; they may have evolved mesodermal 

roles only in Bilateria, retaining the ancestral function or evolving another one in Ctenophores. I 

feel that the strongest evidence for homology is experimental evidence of shared function of 

these Bilaterian and Ctenophore genes. We are currently undertaking such experiments.  
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Chapter 4: Against all odds? The origins and functions of de novo 

genes 

 

Introduction 

 The work described in the preceding chapters was motivated by a desire to understand 

novel genes, with a particular eye toward what I consider the most dramatic form of molecular 

novelty: de novo genes. There is much work claiming to reveal features of the origin and 

functions of de novo genes: the bulk of these were studies of lineage-specific genes, which, by 

way of the novelty hypothesis, equated the two. As the preceding chapters detail, inquiry into the 

matter has convinced me that the novelty hypothesis is not reliable, and that lineage-specific 

genes cannot be reliably interpreted as de novo genes, or indeed as any type of novel genes. The 

substantial body of work on lineage-specific genes thereby becomes uninformative for 

understanding de novo genes.  

 So: what do we actually know about de novo genes? In lieu of my own experimental 

inquiry into this question, I have here tried to systematically survey published results that bear on 

this question, and especially on a particular conundrum inspired by Francois Jacob’s famed 

argument for the implausibility of these genes. What follows is a review that reflects my current 

understanding of the question, with an emphasis toward including only results that strike me as 

reliable, based on the lessons learned in the first two chapters.   

 

Jacob’s unanswered argument for the implausibility of de novo genes 
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As is almost proudly noted in introductions of most papers on the subject, the birth of 

new genes out of non-genic sequence – the “de novo” birth of genes -- was at first largely 

regarded to be essentially impossible. A canonical example comes from Francois Jacob’s famous 

discussion of evolutionary novelty, “Evolution and Tinkering,” in which he argues broadly that 

new functions in evolution come about through tinkering with components of existing functions, 

rather than emerging intact from wholly new cloth. Amongst his discussion of this general stance 

on novel functions and structures writ large, there is a brief but specific claim about the prospect 

of de novo genes in particular. As he put it in his now oft-cited discussion: “the probability that a 

functional protein would appear de novo by random association of amino acids is practically 

zero” [3].  

Since then, documented cases of de novo genes have provided direct evidence that this 

probability is not zero. Jacob’s claim about the implausibility of de novo genes has turned out to 

be wrong. Nonetheless, it remains compelling, voicing an intuition that I still share: that a protein 

comprised of largely unselected sequence is enormously unlikely to be biologically functional. 

What drives this intuition? I propose the following formalization of Jacob’s argument. He did not 

put it this way, but it seems to make precise what I have found compelling in it. 

 

Premise 1 (“Sparsity”): A very small fraction of all possible sequences has biological function.  

Premise 2 (“Fair play”): The sequences available for de novo gene birth are a random and 

unbiased sample of all possible sequences.  

Premise 3 (“Limited trials”): The number of sequences assessed for function during evolution is 

modest.   

--------------------------------------------------------------------------------------------------------------------- 
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Conclusion: A functional gene evolving from unselected sequence is very unlikely. 

 

Where does this argument go wrong? Its constituent premises reveal at least three (not 

mutually exclusive) possibilities.  

The first: my intuition about the rareness of biological function in among random 

sequences is wrong. Function may be much easier to get – more abundant in sequence space -- 

than we think.  

The second: de novo genes emerge from sequences that are not a random sample of 

sequence space, and as a result are in some way enriched for function.  

The third: although the first two premises hold, and so the fraction of unselected 

sequences that are functional is extremely low, the number of such sequences tested by evolution 

is so high that de novo gene birth is nonetheless appreciable. 

 What do we know about which of these possibilities surmounts Jacob’s argument?  

 

Try, try again: ample evolutionary trials enable de novo gene birth 

Part of the answer is already clear: recent work has demonstrated that the limited trials 

premise is false. Evolution has available to it a huge number of unselected sequences, each 

representing a trial from which a de novo gene could spring. Given their sheer number, even if 

only an extremely small fraction are successful, de novo genes should still emerge appreciably.  

This abundance of unselected sequence is found in the large amount of noncoding DNA 

present in many genomes, especially those of “higher” eukaryotes. New technologies like RNA-

seq and ribosome profiling have revealed that a surprisingly large amount of this sequence, 

despite lacking obvious functionality and not being under detectable selective constraint, 
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undergoes appreciable “pervasive” transcription and translation [155, 156]. Recent comparative 

work additionally suggests that which such sequences are expressed shifts fairly quickly across 

evolution [90, 91, 157]. These observations suggest strongly that the total number of unselected 

sequences tested for function is vast, overwhelming Jacob’s problem. 

What of the other two possibilities?  

 

Where do de novo genes come from, and what do they do?  

 The first and second possibilities concern the functions that de novo genes perform and 

the sequences from which they emerge. 

Is biological function extremely rare in sequence space? Or is it more abundant than we 

think? If the latter, how and why? Are one or a few quite specific functions much more common 

than we appreciated? Or are we more uniformly wrong, such that all sorts of functions are 

actually fairly common? In either case, can we offer any molecular explanation for the true map 

between sequence space and function space? 

  Do de novo genes emerge from a representative sample of unselected sequence? Or do 

they preferentially emerge from a biased subset of sequence space that may be enriched for 

function? If the latter, what is this bias, and for what types of biological function is it enriched?   

 One way to answer these questions is to look to known examples of de novo genes, and 

ask where they came from and what they do. Enrichment in these genes for having emerged from 

particular kinds of sequences, or for having particular functions, would be strongly suggestive.    

 

A case study approach  
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Much work has aimed to systematically identify and characterize de novo genes, which 

other reviews have comprehensively summarized [34, 46]. There are two substantial limitations 

to these results. The first is that most published studies use methods that lineage-specific genes 

as synonymous with de novo genes, an approach that I believe to be unreliable because it 

includes a significant fraction – potentially even a large majority -- of genes that are not de novo 

[97] [82]. The second is that even studies that avoid this first issue very rarely study the actual 

functions of de novo genes. Instead, they loosely infer broad features, often from accessible but 

weakly informative proxies like expression pattern. This type of information is not well suited to 

our question, which asks, in molecular and cellular detail, what these genes do.  

Here, I instead take a case study approach to understand the origin and functions of de 

novo genes that differs from most studies in two main aspects. I consider only genes whose de 

novo status is fairly clear-cut, and for which there is direct experimental data regarding their 

function. The number of such genes is very small. Nonetheless, as of the last few years, I feel 

that there is a critical mass such that an accounting may suggest the outlines of answers to 

Jacob’s unresolved problem.  

While this review aims to be in part an objective summary of these case studies, the 

subsequent interpretation is speculative, as any analysis based on so few cases must be. My 

primary aim is to draw attention to this interesting and unanswered problem, to encourage further 

work, and to offer a few hypotheses. 

 

Criteria for inclusion of a gene in this review 

There has been a lack of consensus about the burden of proof that should be required to 

demonstrate that a sequence is truly a de novo gene, as opposed to, for example, a gene with 
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homologs that are present but undetected in other species, or a sequence that is not actually 

functional in the organism under consideration (and therefore not, at least by my definition, a 

gene). Beyond making clear the criteria that I use to consider a sequence likely enough to be a 

true de novo gene to include it here, I will not consider this issue. For the interested reader, the 

question has been reviewed elsewhere [46, 158]. 

  First, there must be direct evidence of the gene’s absence in outgroup species, as should 

be the case if the gene truly emerged de novo in the focal species. For RNA genes, the 

orthologous genome sequence must be identified in outgroups and shown experimentally or 

inferred computationally (e.g. on the basis of absent promoter elements) not to be transcribed 

there, or to likely have an extremely dissimilar transcript structure (e.g. on the basis of absent 

splice sites), making shared function unlikely. For protein-coding genes, the orthologous 

sequence must be identified in outgroups and shown experimentally not to be translated there, or 

shown computationally to lack an ORF of comparable length or coding sequence.  

 Second, there must be at least two outgroups for which this first criterion is true. This is 

the minimum number of such outgroups required to make de novo origination a likelier scenario 

than the alternative of gene loss, assuming -- generously -- that the two are equally likely. 

  Finally, the gene must be directly shown to be functional. This excludes the many cases 

of computationally-identified genes for which there has been no experimental follow-up. It also 

excludes genes for which inferences about function have been made on the basis of various 

features, like expression pattern, but for which there is no direct evidence of function, like a 

knockout phenotype. Moreover, if it is a protein, as opposed to the transcript potentially 

encoding that protein, that has been proposed to be de novo, there must be some evidence that 

the functional effect indeed occurs at the protein level. 



 
 
  

146 

By standards of the field, these criteria are conservative. They are also still imperfect. For 

example, the possibility of noncanonical, ‘leaky’ translation beyond the bounds of conventional 

ORFs leaves open the possibility that an ORF whose sequence has a requisite early termination 

codon in an outgroup may yet be translated and functional, despite appearing otherwise on the 

basis of sequence analysis. Ideally, the absence of the protein product or of translation would be 

experimentally shown. But such tests are usually difficult and so are rarely done. 

On the flip side, the stringency of these criteria likely lead to biases. One example is that 

a large proportion of these genes come from humans and have roles in cancer. This is unlikely to 

be due in its entirety to the special enrichment of de novo genes for roles in human cancer (the 

contribution of this effect will be discussed later), but at least in part to the increased probability 

that genes with these properties have been functionally characterized. Another is that the 

taxonomic source of the genes considered here is restricted to vertebrates and yeast. This is not 

an intentional selection criterion on my part; it just so happens that the small number of genes 

that meet these criteria do not completely fill out the tree of life, and so are absent from, for 

example, bacteria.  

I have chosen to these criteria not because they are bulletproof or without drawback, but 

because I believe they constitute a balance of the evidence making such cases likelier than not to 

be true de novo genes, and to carry an acceptable degree of functional and taxonomic bias in 

doing so. 

 

Case studies: origins and functions of known de novo genes  

RNA genes 

 H. sapiens ELFN1-AS1 
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 ELFN1-AS1 is an RNA gene purportedly unique to humans, found antisense to and 

contained entirely within an intron of the conserved gene ELFN1. I include it here as I find the 

claim of de novo origination plausible on balance [159], but flag it as the most tenuous of these 

cases, as the evidence for the absence of a functional homolog in outgroups is somewhat weak 

[159]. 

 ELFN1-AS1 is expressed in a variety of tumor types, and only at low levels in normal 

tissue [159]. In colon cancer, knockdown has been shown in vitro to decrease cell proliferation 

and migration. Possible high-level mechanisms underlying this effect include its observed 

reduction of Erk activation, decrease of vimentin expression, and increase of E-cadherin 

expression [160]. These may in turn be due, at least in part, to ELFN-AS1 acting as a 

competitive sponge for miRNAs targeting TRIM44 [161], a gene shown to be capable of 

inducing the EMT to facilitate cancer progression [162]. ELFN-AS1 knockdown was also shown 

in in vitro esophageal cancer cells to decrease cell proliferation and migration, again likely by 

competitively sponging miRNAs. Here, these seem to be miRNAs targeting GFTP1, whose 

functional role in downstream oncogenesis is not known [163]. A similar story was again found 

in ovarian cancer, where ELFN-AS1 seems to sponge miRNAs targeting CLDN4 [164], a gene 

known to be involved in cancer cell migration and invasion [165]. 

 

M. musculus Poldi 

 Poldi is a noncoding RNA present in several Mus species, including musculus, and likely 

emerged in the lineage around 3Mya. In M. musculus, it is expressed specifically in the 

postmeiotic round spermatids of the seminiferous tubules. Knockout mice exhibit somewhat 
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decreased sperm motility and testis weight. The mechanisms underlying this phenotype were not 

investigated [166].  

 

Protein-coding genes 

S. cerevisiae MDF1 

 MDF1, one of the first functionally characterized de novo genes [115], is a 153 amino 

acid protein found only in the budding yeast S. cerevisiae, in which it likely originated de novo 

within the last few million years.  

 The overall biological role of MDF1 is to increase vegetative growth in haploid cells 

[115], which it does via at least two mechanisms affecting two different conserved pathways.  

  The first is repression of the mating pathway, which in turn increases vegetative growth 

due to downstream interactions between these pathways. MDF1 binds to the transcription factor 

MATalpha2, which, in diploids, dimerizes with another transcription factor MATa1 to 

cooperatively repress (unnecessary, in diploids) haploid-specific mating pathway genes. In 

alpha-type haploids, MATa1 is not expressed, seemingly leaving MATalpha2 without the 

necessary binding partner to perform this repression of the haploid mating pathway. MDF1 fills 

this void: in alpha haploids, it dimerizes with MATalpha2, forming a complex that binds to the 

same mating pathway promoters as the MATa1-MATalpha2 dimer does in diploids and 

repressing them in like fashion. Overall, MDF1 seems to function by acting as a stand-in for an 

absent MATa1, supplying the interaction partner necessary for MATalpha2, which binds DNA 

only weakly and so requires a binding partner [167], to perform an established regulatory role 

but in a novel condition.   
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 The second route by which MDF1 increases vegetative growth is by shortening lag phase. 

This may occur through MDF1 binding to and repressing the kinase SNF1, preventing its 

glucose repression of fermentation genes and thereby speeding fermentative growth [168]. 

 The regulation of MDF1 has an interesting property. MDF1 is antisense to and partially 

overlaps the conserved gene ADF1. The ADF1 protein, a transcriptional repressor, binds to the 

promoter of MDF1 to suppress its transcription. MDF1 is therefore regulated by the protein 

product of the gene that it happens to lie beneath [115]. This strikes one as a bizarre coincidence: 

such regulation would be natural if mediated by the complementarity present at the RNA level, 

but evidence that it is at the protein level is strong.  

 

 

H. sapiens NYCM 

 NCYM is a 109 amino acid human protein, named for its location antisense to and 

overlapping the oncogene MYCN. It likely emerged either uniquely along the human lineage or 

prior to the split with chimpanzees. It is arguably the best-studied of all de novo genes; a much 

more thorough review of its regulation and function can be found in [169].  

  Among other cancers, MYCN is amplified in human neuroblastoma, where like other 

myc oncogenes it enhances cell proliferation and survival [170]. NCYM is found to be co-

amplified with MYCN in neuroblastoma, where it too has been shown to enhance proliferation 

and survival [171].  

  This effect is at least partly via NYCM acting on MYCN. Knockdown experiments show 

that NCYM stabilizes the MYCN protein in a proteasome-dependent manner. Data suggest that 

NYCM may physically bind to one or both of MYCN and GSK3B, a kinase that phosphorylates 
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and thereby targets MYCN for proteasome degradation, to inhibit this phosphorylation step and 

prevent degradation. 

  NYCM may also stabilize MYCN levels by globally repressing GSK3B: through 

unidentified mechanisms, it seems to promote inhibitory phosphorylation of GSK3B by the 

mTOR pathway [171]. This repression of general GSK3B function is thought to stabilize other 

substrates destabilized by GSK3B that promote oncogenesis, including beta-catenin. NYCM may 

therefore also have oncogenic activity through this MYCN-independent mechanism.     

Finally, NYCM may enhance MYCN activity by increasing the amount of a cleaved form 

of MYCN (“Myc-nick”), which localizes to the cytoplasm and promotes tubulin acetylation. 

Data again suggest that this may occur through NYCM’s direct binding to the complex between 

MYCN and calpain, the protease that performs the cleavage [172].  

 The regulatory interactions between NYCM and MCYN are complex and intriguing. 

NYCM expression is positively regulated by the MYCN protein via an E-box promoter element 

within the NYCM gene body [171]. This site is the same one used by MYCN to positively 

regulate its own expression [173], its dual use enabled by the palindromicity of the E-box and the 

overlap between the two genes. That MYCN protein is in turn stabilized by NYCM makes this a 

feed-forward regulatory loop. Moreover, this interacts with another regulatory loop in which 

MYCN and the neuroblastoma-expressed reprogramming factor Oct4 promote each other’s 

expression. And MYCN also promotes the expression of the other reprogramming factors Nanog 

and Sox2, which together increase the multipotency of stem-like cancer cells like neuroblastoma. 

NYCM, embedded in these networks through its effects on and from MYCN, seems to increase 

the levels of all of these factors [174]. 
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 NCYM also seems to have noncoding functions. The NCYM transcript, in addition to 

the protein, also seems to increase transcription of MYCN, potentially through several 

mechanisms. The NYCM transcript has been shown to increase CTCF-mediated transcription of 

MYCN, possibly through direct CTCF binding and recruitment to the MYCN promoter [175]. In 

virtue of its complementarity, the NYCM transcript also binds directly to the MYCN locus and 

to MYCN RNA, potentially regulating transcription levels, promoter choice, and alternative 

splicing or other forms of RNA processing [176-178]. Although the NCYM peptide emerged in a 

subset of the primate lineage, the locus itself, and potentially the transcript and these noncoding 

functions, is common to mammals [171].  

 

 

H. sapiens PBOV1 

PBOV1 is a 135 amino acid human protein first characterized as being overexpressed in 

prostate and breast cancer [179]. It is antisense to and lies entirely within the intron of the 

conserved gene BIG3. It likely originated de novo in humans or possibly hominid primates.  

In prostate cancer cells [180], PBOV1 overexpression and knockdown lead to increased 

and decreased, respectively, cell proliferation and anchorage-independent growth. 

Overexpression also increases progression through the G1-S checkpoint, the proposed cause of 

this proliferative effect. This may occur via the reduction in levels of G1-S transition inhibitors 

p21 and p27, and increase in levels of activators cyclin d1 [180, 181] and phosphorylated Rb, 

that PBOV overexpression causes though undetermined mechanisms.  

Similar results were found in hepatocellular carcinoma cells [181], where in addition 

PBOV overexpression and knockdown was found to respectively increase and decrease tumor 
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cell migration in vitro and metastasis and vascularization in vivo. This may occur through 

PBOV’s effects on expression of the wnt/beta-catenin regulator HIF1A, epithelial markers 

(alpha-cadherin and E-cahderin), and mesenchymal markers (N-cadherin and vimentin), which 

resemble those in found an EMT transition. PBOV was also shown to positively regulate 

expression of pluripotency factors OCT4, Nanog and c-Myc. Mechanisms for these effects are 

unclear. Finally, PBOV was also found to increase beta-catenin signaling, possibly in part by 

direct binding that prevents inhibitory phosphorylation by GSK3B and allows more efficient 

nuclear localization.  

In ovarian cancer in vitro experiments, somewhat opposite results, in which PBOV 

negatively regulates cancer cell proliferation and tumorigenesis, were observed [182]. Another 

dissimilar role was found in monocytes, where PBOV overexpression was found to decrease 

progression through the G1-S checkpoint. It was also found here to increase monocyte 

differentiation into macrophages [183]. Mechanisms were not explored in these studies.  

 

H. sapiens MYEOV 

 MYEOV is a 313-amino acid protein that emerged in the human lineage [184, 185]. It 

was first identified in a tumorigenicity screen in gastric carcinoma, and then found to be 

upregulated in some multiple myelomas [186]. RNA knockdown of MYEOV in gastric [187], 

colon [188], and neuroblastoma [189] cancer cells in vitro has since been shown to reduce 

proliferation and invasion. In colon cancer, MYEOV levels were also shown to be positively 

regulated by prostaglandin E2 [188]. Mechanisms underlying these results are unknown. 

Although endogenous MYEOV protein has been detected in non-cancerous tissue [184] and 

shown to be translated from transfected plasmids in cell lines [190], these experiments did not 
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assay for the protein product or attempt to determine whether the protein or the transcript was 

responsible for the observed effects. 

In pancreatic cancer, increasing MYEOV expression was shown in vivo to increase 

metastasis and tumorigenesis. Here, there is strong evidence that the MYEOV protein binds to 

the transcription factor SOX9, which among many other regulatory roles has been shown to form 

a homodimer to promote expression of HES1 in breast cancer [191], at a regulatory element 

similar to those used in its more standard biological role in chondrogenesis [192]. The resulting 

MYEOV-SOX9 heterodimer cooperatively binds the HES1 enhancer to increase its expression, 

resulting in the observed oncogenic phenotypes. Although the MYEOV protein was shown to 

bind to the HES1 enhancer on its own, binding was enhanced by SOX9, and increases in HES1 

expression were shown to depend on SOX9 [193]. This suggests that MYEOV serves as a 

necessary interaction partner, akin to the second molecule of SOX9 that forms the dimer in other 

physiological contexts, that enhances insufficient baseline levels of SOX9 binding to drive 

effective transcription factor activity.   

In non-small cell lung cancer, however, the MYEOV protein was shown not to be 

expressed, and the MYEOV transcript shown in vivo to enhance tumor invasion and metastasis 

in a protein-independent manner. There is strong evidence that the MYEOV transcript acts as a 

sponge for one or more miRNAs that target two components of the TGF-B/SMAD pathway, 

USP15 and TGBR2, thereby increasing TGF-B signaling activity and promoting an epithelial-to-

mesenchymal transition [194].  

 MYEOV thus also seems to have both coding and noncoding function. Although the 

protein ORF is unique to humans, the locus itself is present in most primates [185], and 

transcription of the region has been detected in chimpanzee. [184]  
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 Northern gadid AFGP 

 The antifreeze glycoprotein AFGP is essential to the ability of Arctic codfishes (gadids) 

to survive the cold temperatures of their native environment: it is secreted into the blood, where 

it inhibits the formation of ice crystals [195]. AFGP evolved de novo in the gadid lineage about 3 

Mya, presumably in response to the Pliocene glaciation event that occurred at that time [125].  

 The protein consists of a large and variable (20-500) number of Thr-(Ala/Pro)-Ala 

repeats, preceded by a signal peptide allowing for its secretion and a small glutamine-rich 

propeptide that seems to be removed post-translationally [125]. The threonine in each repeat is 

glycosylated with an O-linked N-acetyl-D-galactosamine [195], which presumably occurs via the 

standard O-glycosylation pathway, taking place in the Golgi and specified by the amino acid 

sequence [196].  

 AFGP is currently the only de novo gene for which there is detailed experimental data 

regarding both protein structure and biological function. A recent 2D infrared spectroscopy-

based study indicates that AFGP seems to exist in an ensemble of conformations: mostly random 

coils, polyproline-II helices, and alpha helices [197]. The same study found that application of 

compounds that inhibit or enhance the antifreeze effects of AFGP do not significantly alter 

protein structure, implying that, consistent with previous results [198], its antifreeze activity is 

due largely to ice crystals interacting with hydroxyl groups on the disaccharide additions, rather 

than with the peptide backbone or side chains themselves.  

 While there have been many independent origins of proteins with antifreeze function 

[195], AFGPs in polar fish are an example of particularly precise evolutionary convergence. 

Antarctic notothenioid fish independently evolved an antifreeze glycoprotein with essentially the 
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same sequence as the arctic gadid AFGP. The notothenioid protein is, however, not de novo in 

origin: its 5’ end, including the secretory signal, and part of its 3’UTR -- though not its repetitive 

coding sequence -- were derived from a trypsinogen-like protease [199].  

 

Where did Jacob's argument go wrong? 

I now speculate on what these case studies tell us about how de novo genes solve Jacob’s 

problem: which of its premises have errors, what these errors are, and why I fell into them. 

 

Some functions require only small regions of Watson-Crick complementarity and so are 

common in sequence space 

 Two examples, MYEOV and ELFN1-AS1, work by reducing miRNA suppression of 

existing cellular pathways. They do this by competitively binding to these miRNAs, “sponging” 

them up and thereby depleting the amount of free miRNA available for suppression. 

 The sequence requirements to act as a miRNA sponge are minimal. Generally, an exact 

match of only 6-8 nucleotides is sufficient complementarity for an miRNA to bind a target [200]. 

miRNA sponges are thus an excellent example of a function for which the sparsity premise fails. 

Sequence space should be rife with them.  

 A similar argument should hold for other biological functions for which small numbers of 

complementary nucleotides are sufficient. These should include miRNAs themselves. That no 

miRNA genes have been found to be de novo originated likely reflects ascertainment bias more 

than biological reality.   

 

Overlap with a conserved gene lowers the barrier to expression 
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  The functionality of a gene depends not just on the sequence of its product, but also on 

how it is regulated. The overall abundance of function in sequence space depends on both of 

these features: regulatory elements enabling the gene to be transcribed and translated in a context 

in which it is functional must also be hit upon. While recent experimental work suggests that at 

least minimal regulatory sequences are not terribly uncommon [201, 202], proper regulation 

nonetheless remains a hurdle that must be surmounted en route to de novo birth.  

  Four of the genes described here (NYCM, MDF1, PBOV1, and ELFN1-AS1) overlap 

conserved genes, consistent with previous reports about de novo genes [203, 204]. As noted 

before [203], this likely at least in part reflects ascertainment bias, as it is easier to demonstrate 

de novo emergence in the manner that I have required here for genes that overlap such an 

“anchor gene.” But this may also be a genuine feature reflecting a solution to Jacob’s problem. 

Overlapping an existing gene provides an easy route to expression. It allows the co-option of 

nearby features already in place to drive transcription of the conserved gene, like regulatory 

elements and open chromatin, removing the need for the gene to find its own such elements in 

sequence space [203]. 

 Two examples described here, NCYM and MDF1, are also transcriptionally regulated by 

the protein products of these overlapping genes. While at first this seems an enormous 

coincidence -- why, of all the genes in a genome, should a protein happen to regulate its new 

downstairs neighbor? – we have seen in one case a parsimonious explanation. The same 

palindromic regulatory sequence used by MYCN in autoregulation, which presumably predates 

the emergence of NYCM, falls conveniently within this new gene, driving its regulation. In the 

case of MDF1 and ADF1, there is no evidence for this: ADF1 has not previously been noted to 

regulate its own expression. But this could nonetheless be the case, as ADF1 is poorly-studied; 
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alternatively, such regulation may have been ancestrally present and since lost. I speculate that 

this striking observation of protein-based regulatory interactions between de novo genes and 

their conserved neighbors may just be another form of new genes taking advantage of regulatory 

elements already established in and around existing genes.   

 Here is a clear example of the failure of Jacob’s premise of fair play. Many de novo 

genes do not merely happen to hit upon regulatory elements as they traverse a random sample of 

sequence space. Instead, they avail themselves of perhaps the most decidedly nonrandom 

sequences in the genome: existing genes and the regulatory structures that drive them.  

  

Noncoding function lowers the barrier to coding function 

 Two examples, MYEOV and NCYM, function both as proteins and as noncoding RNAs. 

In both cases, the protein has a recent de novo origin, but the locus itself is largely conserved in 

outgroups. MYEOV in fact seems to be transcribed in chimpanzee. This raises the possibility 

that functionality as a noncoding RNA predates the emergence of the protein.  

 That protein-coding genes may emerge within noncoding RNAs has been previously 

proposed [91, 92, 184, 205], and represents another violation of Jacob’s fair play premise. Rather 

than emerging from unselected sequence, and so needing to find the means of their own 

expression and regulation in sequence space, de novo proteins get these for free by emerging 

from within noncoding RNAs.   

Many non-genic, non-functional ORFs lying within transcripts are translated at low levels 

[91, 155]. This exposes their sequences to selection, and so may cause selection to alter them in 

ways that, while not immediately productive of what I would call function, nonetheless bias them 

toward areas of sequence space in which function is more abundant. The best-supported such 
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example is the finding from Joanna Masel and colleagues that selection seems to act on such 

lowly-translated ORFs to “preadaptively” reduce harmful aggregation propensity [53]. Selection 

on sequences resulting from low-level pervasive expression, insofar as it alters these sequences 

in these or other currently unappreciated ways, could bias the region of sequence space from 

which they emerge toward those enriched for biological function, again violating Jacob’s 

premise of fair play. 

Though I am not sure what to make of the observation, I would be remiss to end a 

discussion of the potential of noncoding function to facilitate the emergence of coding function 

without noting what feels like another striking coincidence. For both MYEOV and NCYM, the 

functions of the protein and the noncoding transcript are very similar -- despite being performed 

by entirely distinct molecules. In the case of NCYM, these two functions have identical 

molecular-level effects: through totally orthogonal mechanisms, both the protein (itself 

apparently acting in at least two independent ways) and the noncoding RNA increase cellular 

levels of MYCN. In the case of MYEOV, the similarity is at a higher level: acting via distinct 

signaling pathways, both the noncoding RNA and the protein promote the epithelial-to-

mesenchymal transition [193, 194].  

Assuming that this observation is not an experimental error resulting from failed controls 

of some kind, why these proteins should have the same effect as the noncoding RNAs whose 

locus they coinhabit is unclear. It does not seem that this must be so. While the locus as a whole 

clearly receives a larger selective benefit from housing two beneficial functions than just one, 

there is no obvious need for those functions to be functionally similar. To speculate, one 

possibility is that some feature of being encoded at the same locus biases the two molecules to 

evolve similar functions: for example, shared expression timing, transcript localization, RNA 



 
 
  

159 

binding proteins, or other interaction partners. Another is that using the locus to produce a new 

protein reduces the amount of noncoding transcript that is available to perform its function – its 

transcripts soaked up by translating ribosomes, or the locus occupied by polymerases making a 

different isoform – thereby putting pressure on the new protein to functionally compensate for 

this loss. Yet another is that there is a selective advantage to functional similarity: a positive 

epistasis in the pathways in which these genes act, in which the benefit of the functions from 

both molecules is greater than their sum.    

We might fruitfully think of all of these examples as altering the map between sequence 

space and function space depending on one’s physical location in the genome. Certain sequences 

may confer a higher selective benefit when found at one locus than at another: for example, loci 

currently occupied by noncoding RNAs may be particularly advantageous.  Considered this way, 

the availability of noncoding transcripts as a substrate for de novo protein birth is another failure 

of Jacob’s fair play premise. De novo genes can emerge on sequences enriched in function to 

avoid the difficulty of an unbiased search of sequence space.  

 

Abundant “attractors” in sequence space increase the probability of function 

 In using the metaphor of sequence space to discuss de novo gene birth, I have implicitly 

considered a new gene being, all at once, assigned to a point in that space. If this point 

corresponds to a functional sequence, gene birth is successful; if not, it fails. In reality, neutral 

sequences perform a random walk through sequence space as they mutate over evolutionary 

time. Mutation thus defines a relationship between points in sequence space that has implications 

for would-be genes occupying them: a nascent gene occupies its current point in sequence space 
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and also has some probability of transitioning to every other point, defined by the mutation 

spectrum.  

A gene need not hit upon a functional sequence ‘immediately’: having a sufficiently high 

probability of being mutated into a functional sequence will suffice. I can think loosely of the 

points in sequence space that are not themselves functional, but that have a comparatively high 

probability of being mutated into functional points, as “attractors”: if a gene hits upon one, it is 

likelier to be “drawn into” the function.   

The probability of a new gene being functional is not just the fraction of sequence space 

that is itself functional, but should also include the fraction of sequence space that are such 

attractors, weighted appropriately by the probability of successful attraction. For some functions, 

while abundance per se in sequence space may be quite low, the abundance of its attractors could 

be high – and so it is not actually so unlikely to be found by a new gene.  

One example of such a function is miRNA sponging. I omitted a wrinkle in the above 

argument about their abundance in sequence space. To meaningfully reduce the effects of a 

miRNA, a sponge must offer enough binding sites to appreciably deplete the cellular miRNA 

pool, which is often appreciable. In addition to a high expression level, this can be achieved by 

having multiple binding sites per transcript, as in the case of MYEOV [194]. The existence of a 

single binding site is, as discussed above, highly abundant in sequence space. And while not 

sufficient for function in a lowly-expressed transcript, it is likely an attractor to it: mutational 

mechanisms like tandem duplication and unequal crossing over at repeat elements make large 

numbers of repeats fairly easily accessible. So, even if sequence space is not quite rife with fully-

operational miRNA sponges, it is nonetheless likely full of “attractors” to them. 
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Another example is AFGP, in which many repeats of the Thr-Ala/Pro-Ala motif are 

essential for function. A single repeat is unlikely to act as an effective antifreeze (otherwise, 

many proteins would have such activity), but a sequence containing one such repeat is, as above, 

an attractor to it. Indeed, analysis of outgroup genomes allowing reconstruction of the 

evolutionary history of the AFGP locus reveals that this is precisely what happened: a single 

ancestral repeat element was extensively duplicated to produce the functional protein [125]. 

Though not de novo originated, the convergently evolved notothenoid AFGP protein also 

produced its many repeats by duplicating a single ancestral element. This shared history suggests 

that this sequence is indeed a strong attractor for antifreeze function. 

The abundance of attractors in sequence space for these, and likely other, functions 

represents a failure of Jacob’s sparsity premise: when considered, function becomes more 

abundant in sequence space.  

 

The cellular context offers many “freeloader functions” that require little more than 

binding and are abundant in sequence space  

 Certain types of biological function are notably absent from the examples here. These 

includes enzymes, motors, and any function primarily effected by the gene itself. Instead, all of 

these examples produce their effects solely by way of interacting with existing cellular 

components to modulate or co-opt their established functions.  

  Moreover, although data are limited, the physical sophistication of these interactions 

seems to be quite low. In contrast to the sorts of finely-tuned molecular motions performed by 

many genes – which are precise, regulated, dynamic – the molecular mechanism of these de 

novo genes seems to be merely to bind to their interaction partners. Sponges bind to miRNAs, 
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perturbing their existing effects on other genes. The NCYM transcript binds to complementary 

RNA, altering the output of existing transcription and translation. The NCYM protein binds to 

MYCN and other proteins, modulating existing interactions to alter their effects. MDF1 and 

MYEOV bind to transcription factors and to their DNA binding sites, facilitating their partners’ 

existing function at the locus. AFGP is bound by existing glycosylation and export machinery, 

giving it the sugar additions and localization necessary to bind to ice crystals.  

 These genes function only a) by modulating existing functions of other cellular 

components and b) doing so though molecularly unsophisticated ‘mere binding.’ I refer to such 

functions as “freeloader” functions. I propose that freeloader functions are dominant in sequence 

space, and so are preferentially found by de novo genes. This is supported anecdotally by the 

examples here, but can I offer an explanation of why it should be so?  

The distribution of function in sequence space cannot be defined in a vacuum. It depends 

on the cellular environment in which the sequences exist. Some functions are comparatively 

‘self-powered’ and independent of this environment, like many catalytic reactions: with the 

substrate present, many enzymes can do their jobs entirely on their own. Other functions are 

much more highly dependent on the details of the cellular environment, requiring the presence of 

many interaction partners, cofactors, local physiological contexts, and so on. 

For each existing functional component in the cellular environment, there is a 

corresponding repertoire of dependent functions: those that can be achieved merely by altering 

that existing function.  The enormous complexity of modern cells, brimming with thousands of 

components carrying out countless functions, thereby offers a correspondingly huge number of 

dependent functions.  
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How abundant are these dependent functions in sequence space? Are they particularly 

easy to come by, or are they as rare as more canonical independent functions? It is easy to 

imagine that many of these dependent functions can be achieved by mere binding: interacting 

with existing cellular components seems like an easy route to impede, alter, or enhance their 

native functions, resulting in a downstream effect. Mere binding, in turn, seems likely to be quite 

abundant in sequence space. All that must be done is sticking. And, arguably, existing proteins, 

in virtue of often having large numbers of interaction partners, have been selected to interact 

with other proteins, priming them for being clung to by new, coarse, unselected partners. 

If these premises are true – that the complicated cellular environment offers many 

dependent functions; that many dependent functions can be achieved by mere binding; and that 

mere binding is common in sequence space – then functions with these properties should be 

abundant in sequence space. That is, freeloader functions should be very abundant. Moreover, I 

argue that they are much more abundant than the independent functions with which I are more 

familiar, and are in fact the most abundant type of function in sequence space. This would 

explain why de novo genes are so enriched for these functions: they are closer to their birth, and 

so a better (though, as I argue here, not perfect) representation of the unbiased distribution of 

function in sequence space, than are older genes, which have had longer to slowly traverse 

sequence space and be led by selection to the rare patches of highly functional space within it. 

Although the aforementioned discovery bias may well be operating, with conservation of 

a gene being arguably a less important criterion in being considered important enough to study in 

cancer biology than other fields, and human cancer genes comparatively likely to be studied 

conservation notwithstanding, the particular abundance of freeloading may also help to explain 

why so many de novo genes function in cancer. To be selected, a gene must exert a beneficial 
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effect. Since existing organisms are fairly optimized, any new interaction is on average likely to 

decrease fitness. This seems especially true in complex multicellular organisms: what could be 

beneficial for a single cell may be detrimental to the organism as a whole: beneficial effects are 

especially rare and hard-fought, needing to perform a tenuous balancing act. Especially in these 

cases, freeloader functions are likely to be harmful, and the corresponding sequences to be 

selected against. In cancer, of course, this breaks down: the whole process is one of functions 

that are beneficial for the cell but detrimental to the organism. It should not be a surprise, then, 

that if freeloader functions are dominant in sequence space, and if they are mostly deleterious, 

new genes to preferentially emerge here.  

 The abundance of freeloader functions represents a failure of Jacob’s sparsity premise. 

Function is indeed much more common in sequence space than one might imagine. I at first 

found sparsity intuitive because when I imagine function, what springs to mind is a very 

particular kind of function: the shining examples of molecular sophistication by which we are 

most awestruck, and which we therefore spend most of our time studying. This bias has led us to 

overlook the less glamorous and less impressive, but much more abundant, repertoire of 

freeloader functions. In conceiving of sequence space, I did not properly appreciate that genes 

find themselves not in the near-vacuum in which my beloved ‘self-powered’ genes can freely 

act, but in the bustling milieu of a cell. And so I underestimated how far the coarse role of mere 

binding might take us.  

 

Final thoughts and outlook 
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 Here I have reviewed what is known about the origins and functions of the very small 

number of de novo genes for which such information is available. Absent any broader 

conclusions, I hope such a survey is interesting and informative in its own right.  

I have also used these examples to speculate on the question with which I opened: where 

and why did Jacob’s argument for the improbability of de novo gene birth -- and those, like 

myself, who nodded along -- go wrong? A proposal of particular interest came from considering 

what these de novo genes suggest about the distribution in sequence space of function in general, 

and of different types of functions in particular. I hypothesize that so-called “freeloader 

functions” are extremely common in sequence space, and that de novo genes therefore 

preferentially access them as a result.  

This hypothesis can be empirically tested. Increasing the number of de novo genes with 

characterized functions would support or undermine it. Experiments testing binding activity of 

random sequences would do the same, as this hypothesis requires that binding is fairly common 

in sequence space. Indeed, random sequence experiments in general are extremely relevant to the 

study of de novo gene birth, independent of any particular hypothesis. There are to date 

relatively few informative studies on the subject; much could be gained by pursuing it.  

With enough such work characterizing de novo genes born at different times, I could 

consider ‘freeloaderness’ as a function of gene age. While freeloader functions seem to be 

enriched in de novo genes, most conserved genes seem to have more sophisticated roles. One 

way to reconcile these observations is to posit a Hertzsprung-Russell diagram of sorts describing 

the time evolution of genes: new genes are likely to be freeloaders, but, as they age and are 

shaped by selection, their functions are gradually refined from this crude starting point into ones 

requiring more molecular specificity and that are more under their own power.  
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Freeloader functions prompt a consideration relevant to the source of much of the interest 

in de novo genes: the hypothesis that, being molecularly novel, they are likely to be involved in 

the evolution of functional novelty, underlying the kinds of striking evolutionary innovations that 

so often capture my attention and imaginations [8, 24]. That de novo genes largely have 

freeloader functions would be pointedly ironic: at least at the molecular level, these functions are 

minimally novel. Of course, molecular novelty and novelty at higher scales need not be related. 

For example, morphological innovations like new appendages in animals are now well known to 

have evolved from redeployment of existing developmental pathways. Nonetheless, the 

abundance of freeloader functions among de novo genes might at least prompt a pause in which I 

reevaluate the widespread assumption that new genes are likely to underlie evolutionary 

innovation. Even in inventing, evolution may yet be a tinkerer.  

 Again, this is mostly wild speculation. The available data are too sparse, and from too 

narrow a taxonomic sample (happening to come from only vertebrates and yeast), to amount to 

anything else. Detailed studies of individual genes that confirm de novo birth and elucidate 

function are few and far between. If we have any hope of understanding the biology of de novo 

genes, we have much farther to go. 
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Supplemental Table 1: Details of annotation pairs considered for all analyses in Chapter 1.  
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Fungi Refseq/Genbank 

Accession ID (if 

applicable)  

Download link (if source not Refseq/Genbank) 

S. 

cerevisiae 

GCF_000146045.2 
 

S. 

paradoxus 

n/a http://www.saccharomycessensustricto.org/current/Sp

ar/Spar.aa 

S. mikatae n/a http://www.saccharomycessensustricto.org/current/S

mik/Smik.aa 

S. 

kudriavzevi

i 

n/a http://www.saccharomycessensustricto.org/current/Sk

ud/Skud.aa 

S. bayanus n/a http://www.saccharomycessensustricto.org/current/Sb

ay/Sbay.aa 

S. castellii GCF_000237345.1 
 

K. waltii n/a https://media.nature.com/full/nature-

assets/nature/journal/v428/n6983/extref/S2_ORFs/pre

dicted_proteins.fasta 

A. 

gossyppii 

GCF_000091025.4 
 

K. lactis GCF_000002515.2 
 

A. nidulans GCA_000149205.2 
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S. pombe GCA_000002945.2 
 

Y. 

lipolytica 

GCA_000002525.1 
 

   
   

Insects 
  

D. 

melanogast

er 

GCF_000001215.4 
 

D. simulans GCF_000754195.2 
 

D. sechelia GCF_000005215.3 
 

D. erecta GCF_000005135.1 
 

D. yakuba GCF_000005975.2 
 

D. 

pseudoobsc

ura 

GCF_000001765.3 
 

D. 

persimilis 

GCF_000005195.1 
 

D. 

willistoni 

GCF_000005925.1 
 

D. virilis GCF_000005245.1 
 

D. 

grimshawi 

GCF_000005155.2 
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D. 

mojavensis 

GCF_000005175.2 
 

M. 

domestica 

GCF_000371365.1 
 

C. capitata GCF_000347755.3 
 

A. aegypti GCF_002204515.2 
 

A. gambiae GCF_000005575.2 
 

Z. 

nevadensis 

GCF_000696155.1 
 

T. 

castaneum 

GCF_000002335.3 
 

A. mellifera GCF_000002195.4 
 

B. 

germanica 

GCA_003018175.1 
 

B. terrestris GCF_000214255.1 
 

B. mori GCF_000151625.1 
 

A. pisum GCF_000142985.2 
 

 

Supplemental Table 2: Sources for protein annotations used in all analyses in Chapter 2.  


