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Abstract 
Programmable C•G-to-G•C base editors (CGBEs) have broad scientific and 

therapeutic potential, but CGBE editing outcomes are unpredictable due to a high degree of 

target sequence dependence. We describe a suite of novel engineered CGBEs paired with 

machine learning models to enable efficient, high-purity C•G-to-G•C base editing. We 

performed a CRISPRi screen targeting 476 genes enriched for those with roles in DNA repair 

to identify factors that affect C•G-to-G•C editing outcomes and used these insights to develop 

CGBEs with diverse editing profiles. We characterized ten promising CGBEs on a library of 

10,638 genomically integrated target sites in mammalian cells and trained machine learning 

models that accurately predict the purity and yield of edited outcomes (R=0.90) using these 

data. These CGBEs enable correction to wild-type coding sequence of 546 disease-related 

transversion SNVs with >90% precision and up to 70% efficiency. We demonstrate that 

computational prediction of optimal CGBE-sgRNA pairs enables high-purity transversion 

base editing at >4-fold more target sites than can be achieved using any single CGBE 

variant.  

 

  



 Single nucleotide variants (SNVs) represent approximately half of currently known 

human pathogenic gene variants1. Base editors, fusions of programmable DNA-binding 

proteins with base-modifying enzymes, enable conversion of individual target nucleotides in 

the genome2-10. The two major classes of base editors are cytosine base editors (CBEs), 

which convert C•G to T•A, and adenine base editors (ABEs), which convert A•T to G•C2,3,8. 

CBEs and ABEs can install transition mutations with high efficiency and product purity (the 

fraction of all edited alleles that contain only the desired edit), but in general cannot efficiently 

install transversion mutations including C•G to G•C2,5,11,12. 

We previously demonstrated that CBE editing byproducts, including C•G-to-G•C or 

C•G-to-A•T transversion outcomes, are inhibited by knockout of cellular uracil DNA N-

glycosylase (UNG) or by fusion of uracil glycosylase inhibitor (UGI)2,7,8,11,12, suggesting that 

transversion byproducts result from an abasic intermediate that is generated by UNG-

catalyzed excision of deaminated target cytosines (Fig. 1a). Consistent with this model, first-

generation C•G-to-G•C base editors (CGBEs) were CBE derivatives that lack UGI domains11. 

These CGBEs, including editors with fusions to UNG and other DNA-repair proteins13-16, can 

provide efficient C•G-to-G•C editing but only at a minority of tested target sites with few 

criteria to identify sites amenable to CGBE editing13-15.  

Previously, we used libraries containing thousands of genomically integrated target 

sites and corresponding guide RNAs in mammalian cells to comprehensively characterize 

CBE and ABE base editing profiles. We used these data to train machine learning models 

(collectively named BE-Hive) that learned the sequence determinants driving CBE and ABE 

base editing outcomes12,17. We envisioned that broad characterization of the sequence 

determinants of CGBE editing outcomes could enable accurate prediction of editing 

efficiencies and product purities, and thus facilitate the broader use of CGBEs.  

To reveal genetic determinants of cytosine transversion base editing, we performed a 

focused CRISPR interference (CRISPRi) screen to identify DNA repair genes that impact 

cytosine base editing efficiency and purity. Guided by these data, we constructed various 

fusions of DNA repair proteins, deaminases, and Cas proteins to engineer novel CGBEs with 

promising C•G-to-G•C editing activities. We characterized ten CGBEs with diverse editing 

profiles using a “comprehensive context library” of 10,638 genomically integrated, highly 

variable target sites in mouse embryonic stem cells (mESCs)12. We used the resulting data to 

train machine learning models that successfully predict CGBE editing efficiency, purity, and 

bystander editing patterns with high accuracy (CGBE-Hive), enabling reliable identification of 



CGBE variants and target sites that together support high-purity C•G-to-G•C editing. We 

show that editing activity is predicted with substantially higher accuracy by deep learning 

models compared to simpler models, indicating that CGBE-Hive has learned complex 

sequence features that play important roles in determining C-to-G editing activity. Notably, 

247 cytosines predicted by CGBE-Hive to be edited by a CGBE with >80% C•G-to-G•C 

editing purity were indeed edited in mammalian cell experiments with an average of 83% 

purity.  

The panel of CGBEs in this study offer diverse editing profiles that collectively expand 

the sequence landscape amenable to high-quality C•G-to-G•C editing by up to 4.1-fold over 

the number predicted to be amenable to editing by any single CGBE. Finally, we demonstrate 

CGBE-mediated correction of 546 disease-associated single-nucleotide variants (SNVs) with 

>90% precision among the resulting edited amino acid sequences. These findings advance 

our understanding of transversion base editing outcomes and provide new CGBEs that 

improve the scope and utility of base editing. 

 
Results 
Exploring the activity of DNA glycosylases in C•G-to-G•C transversion outcomes 

Previous work2,11 suggested that excision of uracil from genomic DNA to form an 

abasic site is an important early step in transversion outcomes. These observations 

suggested that CBE-mediated transversions arise from uracil excision to generate an abasic 

lesion followed by error-prone polymerase activity on the strand opposite the abasic site (Fig. 
1a)2,11,16. Motivated by this model, we sought to develop C•G-to-G•C base editors that 

enhanced uracil excision at CBE-edited nucleotides. We started with a CBE architecture 

lacking UGI (BE4B) (bpNLS–APOBEC1–Cas9 D10A–bpNLS; abbreviated AC), similar to 

other reported CGBEs13-15.  

We fused a variety of known uracil excising and binding enzymes to the C-terminus of 

the BE4B (AC) scaffold and assessed the frequency of C•G-to-G•C edits across five genomic 

loci in HEK293T cells (Fig. 1b). Several glycosylases (i.e., SMUG1, MBD4, and TDG2) did 

not alter editing outcomes, and fusion to UNG led to a reduction of C•G-to-G•C editing yield 

and purity at three out of five targeted sites, consistent with a recent report13. We found that 

fusion of a UNG orthologue from B. smegmatis (UdgX) moderately improved C•G-to-G•C 

product purity by 1.2-fold on average18-20, with the largest improvement at the RNF2 locus 

(56±0.8% with BE4B to 72±2.1% with AC–UdgX; p=0.0002, Student’s two-sided t-test) and 



significant changes observed at HEK site 2 C6, HEK site 3 C5, and EMX1 C6 (p<0.01, 

Student’s two-sided t-test). However, we observed only modest changes to editing yield (1.1-

fold relative to BE4B at the most efficiently edited C across the five tested genomic loci). 

These observations suggested that fusion partners may enhance C•G-to-G•C transversion 

base editing outcomes.  

Next, we asked whether the orientation of the glycosylase fusion impacts editing 

outcomes. We constructed BE4B (AC) fusion variants with either UdgX (abbreviated X) or 

GFP in three orientations: at either the N- or C-terminus (e.g., XAC or ACX) or between the 

deaminase and Cas9 (e.g., AXC). We observed that C•G-to-G•C editing was similar or 

slightly improved for UdgX fusions compared to N- and C-terminal GFP fusions (Fig. 1c). 

However, the editing efficiency and purity of AXC was modestly higher than that of the best 

GFP fusion at a majority of sites (four out of five sites for efficiency; three out of five sites for 

purity). We chose to advance the AXC architecture since it offered similar or better 

performance than the XAC and ACX variants at these test loci. 

 

CRISPRi screen for determinants of base editing outcomes 

Next, we investigated whether other DNA repair or translesion synthesis factors impact 

C•G-to-G•C editing outcomes of AXC. We observed no significant changes in editing purity of 

AXC in individual UNG, APE1/APEX1, MLH1, REV1 knockout cell lines and direct AXC 

fusions to mammalian polymerase domains did not consistently improve editing outcomes 

(Supplementary Figs. 1-2; Supplementary Discussion 1). We thus performed a much 

broader search for genetic modulators that impact cytosine transversion editing.  

We performed a high-throughput CRISPRi-based screen designed to read out editing 

outcomes from BE1 (deaminase–dCas9) and BE4B (AC) editors by DNA sequencing (Fig. 
2a-b, Supplementary Fig. 3a). We targeted 476 genes enriched for regulators of DNA repair 

using a custom sgRNA library comprising 1,513 targeting sgRNAs and 60 non-targeting 

sgRNA controls (Supplementary Table 1). We transduced this library into HeLa cells stably 

expressing the CRISPRi effector protein dSpCas9–KRAB21. After allowing 5 days for gene 

knockdown, we transfected the cells with plasmids encoding SaCas9-based CBEs (either 

SaCas9-BE1 or SaCas9-BE4B) and an SaCas9 sgRNA that targets a sequence adjacent to 

the genomically integrated SpCas9 sgRNA expression cassette. The proximity of the target 

site and CRISPRi sgRNA enabled these features to be read out together by paired-end DNA 

sequencing, linking editing outcomes to CRISPRi perturbation identities (Fig. 2a). Notably, 



we used SaCas9-based CBEs to eliminate guide exchange between the base editors and 

CRISPRi machinery. 

After base editing, we isolated genomic DNA from treated cells, affixed unique 

molecular identifiers (UMIs) to DNA fragments containing both the sgRNA expression 

cassettes and edited target sites, and sequenced the linked sgRNA, target sites, and UMI 

sequences. Comparing frequencies of editing outcomes from each CRISPRi sgRNA with 

those from non-targeting sgRNAs (Fig. 2b, Supplementary Fig. 3a) identified genes that 

promote or suppress various editing outcomes (Supplementary Table 2).  

BE1 and BE4B editors showed strong baseline activity under screening conditions, 

enabling quantitation of editing differences driven by CRISPRi-sgRNAs (Fig. 2, 
Supplementary Fig. 3, Supplementary Fig. 4). To evaluate these outcomes, we calculated 

the effects of all CRISPRi sgRNAs on the frequencies of two major categories of edits: 

outcomes containing any C•G-to-T•A point mutation and outcomes containing any C•G-to-

G•C point mutation (Fig. 2c). For both mutation classes, the effects of individual CRISPRi 

sgRNAs were consistent between replicates (Fig. 2c, upper left and lower right panels).  

Some CRISPRi sgRNAs showed different effects on C•G-to-T•A versus C•G-to-G•C 

outcomes, indicating that specific genes influence partitioning between these outcomes (Fig. 
2c, upper right panel). In the BE4B screen, the clearest differential effects resulted from 

sgRNAs targeting UNG (Fig. 2b, c). Consistent with the effects of UGI fusions and UNG 

loss2,11, UNG knockdown increased frequencies of C•G-to-T•A editing while decreasing 

frequencies of C•G-to-G•C editing. Notably, the effects of UNG repression on BE1 editing 

were not as significant or straightforward (Supplementary Fig. 3a,c), perhaps reflecting 

differences in how nicked versus unnicked target substrates are processed (Fig. 2b and 
Supplementary Fig. 3a). 

Screens with sequencing-based readouts of editing outcomes can detect changes to a 

diverse range of editing products. For example, we observed that CRISPRi-mediated 

depletion of double-strand breaks (DSB) repair genes affect the frequency of rare indels that 

can result from base editing, though these pathway-phenotype relationships were not always 

straightforward (Supplementary Fig. 4a, Supplementary Table 2). For example, while 

knockdown of HDR factors BRCA1, BRCA2, and PALB2 increased AC-generated deletions, 

depletion of the HDR gene BLM decreased them. Moreover, depletion of BRCA2 was among 

the strongest reducers of C•G-to-T•A editing outcomes (Supplementary Fig. 4b). We also 

identified genes that affect the base editing window (Supplementary Figs. 4c, 5; 



Supplementary Discussion 2). These phenotypes suggest a complex interplay between the 

function of these genes and the formation of DSBs by CBEs. 

We also identified genes that specifically promote C•G-to-G•C editing. We calculated 

the relative fraction of sequencing reads containing any C•G-to-G•C edit among all reads 

containing any point mutation of the target for each CRISPRi sgRNA and identified genes 

whose knockdown significantly reduced the C•G-to-G•C editing fraction compared to non-

targeting sgRNAs (Fig. 2d and Supplementary Fig. 4d). The strongest hit was RFWD3, an 

E3 ligase with multiple roles in DNA repair recently identified as required for successful 

translesion synthesis across a variety of genomic lesions 22. In addition to UNG, other hits 

included multiple subunits of the replicative polymerase POLD and replicative clamp loader 

RFC; EXO1; translesion polymerases REV1 and REV3L; and RAD18, an E3 ubiquitin ligase 

involved in translesion synthesis (Supplementary Table 2). The different outcomes for REV1 

knockdown versus our individual knockout cell line may arise from compensatory 

mechanisms that could alter DNA repair outcomes in cells lacking REV1. We also identified 

genes whose knockdown reduced frequencies of both C•G-to-T•A and C•G-to-G•C base 

editing for both BE1 and BE4B (Supplementary Fig. 4e), including ASCC3, which may act 

by affecting accessibility of the target locus, a known determinant of base editing 

efficiency2,3,8. Together, these screen results suggest important roles for DNA replication 

processes, especially translesion synthesis, in modulating C•G-to-G•C base editing 

outcomes. 

 

CBE fusion proteins can alter C•G-to-G•C transversion outcomes 

To further advance the development of CGBEs, we generated new CGBE candidates 

by fusing AXC, the prototype CGBE described above, to proteins encoded by 15 genes 

identified through the CRISPRi screen. These included genes that reduced C•G-to-G•C 

editing following knockdown, including DDX1, EXO1, POLD1, POLD2, POLD3, RAD18, 

RBMX, REV1, RFWD3, and TIMELESS, and several additional genes involved in DNA 

polymerization, some of which also affected editing outcomes in the CRISPRi screen (PCNA, 

POLH, POLK, UBE2I, and UBE2T, Supplementary Table 2). Notably, although replication 

clamp loader RFC components were observed among the genes whose knockdown most 

reduced C•G-to-G•C-specific editing, other members of the RFC ring complex were observed 

to affect C•G-to-T•A and indel outcomes (Fig. 2d, Supplementary Fig. 4b, Supplementary 
Table 2), leading us to exclude RFC factors from subsequent efforts.  



We fused each of these proteins to the N- or C-terminus of AXC to assess their effect 

on C•G-to-G•C editing efficiency or purity and assessed their editing performance at five 

genomic loci in HEK293T cells. Three proteins increased C•G-to-G•C editing purity when 

fused to the N-terminus of AXC (Supplementary Fig. 6a): DNA polymerase D2 (POLD2), 

exonuclease 1 (EXO1), and RNA binding motif protein X-linked (RBMX). Editing 

improvements for fused constructs varied by site. The most pronounced effects were 

observed at the RNF2 locus, where editing purity significantly improved from 54±1.4% with 

AXC to 73±0.4% with RBMX–AXC, 74±1.4% for EXO1–AXC, and 77±0.8% for POLD2–AXC 

(p < 0.001, Student’s two-sided t-test). Marginal improvements in purity were also observed 

at HEK site 2, HEK site 3, and HEK site 4 loci. At RNF2 we also observed a significant 

increase in editing yield from 43±2.4% with AXC to 50±5.2% with RBMX–AXC, 53±3.6% with 

EXO1–AXC, and 55± 5.5% for POLD2–AXC (p < 0.05, Student’s two-sided t-test). C-terminal 

fusions typically did not perform as well as N-terminal fusions (Supplementary Data 1).  

Motivated by these improvements, we developed additional candidate CGBEs 

containing RBMX, EXO1, POLD2, and UdgX as fusions to AXC. We compared single and 

dual pairwise fusion architectures for these components, testing N- and C-terminal dual 

fusions as well as tandem N terminal fusions (N-, N-) using 32-residue linkers identified in a 

linker-testing experiment for these constructs (Supplementary Fig. 7). From a total of 28 

single- and dual-fusion proteins tested, the four dual fusion architectures POLD2–

deaminase–UdgX–nCas9–RBMX, POLD2–deaminase–UdgX–nCas9–UdgX, UdgX–

deaminase–UdgX–nCas9–UdgX, and UdgX–deaminase–UdgX–nCas9–RBMX further 

increased C•G-to-G•C editor yield and purity at some sites (on average, by +10% and +13%, 

respectively) compared to single fusion architectures across nine cytosines in five genomic 

loci (Supplementary Fig. 6b).  

Collectively, these results indicate that CGBEs including fusions to DNA repair 

proteins identified in the CRISPRi screen can affect C•G-to-G•C editing outcomes in a site-

dependent manner. Some base editing applications may prioritize protein size over other 

base editing characteristics. We explored the use of trans-splicing split-inteins as a means to 

reduce the size of large CGBEs into two smaller protein components23, and observe no 

changes in editing outcomes of split-CGBEs compared to their full-length counterparts 

(Supplementary Fig. 8). When necessary, these split CGBE variants yield and purity 

benefits for cytosine transversion outcomes without requiring the expression of full-length 

proteins. 



 

Base editor deaminase and Cas9 domains bias repair outcomes 

We next sought to understand how different deaminase domains affect C•G-to-G•C 

editing in the AXC architecture. Since the base editing window may influence cytosine 

transversion outcomes2,11,12, we examined a panel of catalytically impaired deaminases that 

support different CBE editing windows24 and observed an increase in C•G-to-G•C editing 

purity at three of five tested loci (Fig. 3a). The APOBEC1 R126E R132E (EE)24 deaminase 

showed the greatest improvement, averaging 1.2-fold higher product purity at HEK site 2, 

HEK site 3, and RNF2. Editing yield with these deaminase alternatives varied by locus. We 

observed similar or reduced editing yield compared to AXC at four out of five loci that is likely 

due to the lower catalytic activity of these deaminases, though reduced yield did not correlate 

with altered C•G-to-G•C purity. Editing yield by EE-AXC at the RNF2 locus significantly 

improved (AXC=52±3.2% vs. EE-AXC=66±3.5%, p=0.0070, Student’s two-sided t-test).  

 We also hypothesized that changes to the Cas9 binding domain of CGBEs could alter 

editing windows and C•G-to-G•C editing outcomes by altering the competition between Cas9 

and repair machinery for access to the target locus. We assessed AXC editors that use Cas9 

variants with different binding kinetics, including new variants with combinations of previously 

reported Cas9 mutations (Fig. 3b)25-28. AX–HF-nCas9 substantially improved C•G-to-G•C 

editing at the C9 position of the HEK site 3 locus, increasing yield (AXC=34±1.9% vs. AX–

HF-nCas9=52±1.7%,) and purity (AXC=49±2.2% vs. AX–HF-nCas9=60±1.2%) (p < 0.005 for 

both, Student’s two-sided t-test) (Fig. 3b). AX-Hypa-nCas9 showed similar effects but AX-

HF-nCas9 typically performed modestly better. These results suggest Cas protein binding 

parameters can affect C•G-to-G•C editing yield and purity of CGBEs at some target loci.   

The balance of editing yield and purity among candidate CGBEs and the variability in 

these two measures across different loci suggests that different target sites will be best edited 

by different CGBEs. Therefore, a suite of CGBEs with different kinetics and substrate 

preferences would likely enable efficient and high-purity C•G-to-G•C editing across a broader 

range of diverse target sequences than could be achieved by any single CGBE variant alone.  

 

Combining deaminase, Cas9 domain, and DNA repair fusion proteins into new CGBEs  

 We integrated the above findings from varying protein fusions, deaminases, and Cas 

domains into improved CGBEs. We evaluated the four most promising dual-fusion AXC 

editors (POLD2–AXC–RBMX, POLD2–AXC–UdgX, UdgX–AXC–RBMX, and UdgX–AXC–



UdgX), four single-fusion AXC editors (POLD2–AXC, RBMX–AXC, EXO1–AXC, and UdgX–

AXC), AXCs with deaminase variants of those same editors, and direct deaminase–nCas9 

CGBEs without additional fusion proteins. The five cytidine deaminases tested in these 10 

CGBE architectures included rAPOBEC1, EE, Anc689 (ancestrally-reconstructed APOBEC1 

node 68929), eA3A, and eA3A-T31A12. In addition, we tested both SpCas9 nickase and HF-

Cas9 nickase variants. In total, we evaluated 95 candidate CGBEs at eight genomic loci in 

HEK293T cells.  

No single CGBE outperformed all other candidates at all sites (Fig. 4a). To identify a 

set of the most promising CGBEs, we selected 32 editors that demonstrated improved C•G-

to-G•C editing outcomes at some sites for testing at eight additional genomic loci (Fig. 4b). 

We used these data to identify ten CGBEs with high purity, yield, and maximally distinct 

activities at different endogenous loci using quadratic programming and hierarchical 

clustering (Supplementary Methods): 689–nCas9, UdgX–689–UdgX–nCas9–RBMX, eA3A–

nCas9, RBMX–eA3A–UdgX–HFnCas9, RBMX–eA3A–UdgX–nCas9, EE–nCas9, UdgX–EE–

UdgX–nCas9–UdgX, APOBEC1–nCas9, UdgX–APOBEC1–UdgX–HFnCas9, and POLD2–

APOBEC1–UdgX–nCas9–UdgX.  

To test how this set of CGBEs performed in human cell lines other than HEK293T 

cells, we assayed the ability of each of these CGBEs to edit five target genomic sites in K562, 

U2OS, and HeLa (Supplementary Fig. 9). We observed that while CGBE outcomes vary 

modestly by cell type, the top-performing CGBE variants for each tested site were generally 

the same in all three additional cell lines. These results indicate that deaminase, Cas protein, 

and DNA repair protein variants can improve C•G-to-G•C editing in across different cell types. 

 

Target library characterization of CGBEs 

We observed that different target loci were best edited by different CGBEs, indicating 

that diverse CGBE sequence preferences may be strong determinants of C•G-to-G•C editing 

efficiency and purity. Previously, we used high-throughput analysis of base editing outcomes 

at thousands of genomically integrated target sequences to better understand CBE and ABE 

sequence-activity relationships, and we used these data to train machine learning models 

that facilitate the selection of target sequences amenable to C•G-to-G•C conversion by 

CBEs12. We envisioned that comprehensive characterization of our top ten promising and 

diverse CGBEs could similarly aid in the selection of targets amenable to efficient and high-

purity C•G-to-G•C editing by specific CGBEs. 



 We characterized each of the ten CGBEs using a high-throughput genome-integrated 

library assay of 10,638 matched sgRNA and target pairs in mESCs, previously referred to as 

the “comprehensive context library”12. The target sequences in this library cover all possible 

sequence contexts surrounding the edited C•G with minimal sequence bias (Fig. 5a, Online 

Methods). To detect editing outcomes with high sensitivity, we maintained an average 

coverage of ≥300x per library member throughout the course of the experiment and an 

average sequencing depth of ≥4,000x per target. We collected two biological replicates per 

CGBE characterization experiment. We previously validated that the library assay data has 

strong consistency between biological replicates and is concordant with data from base 

editing endogenous genomic loci12,30. 
 We used the resulting library data to quantify editing windows and product purities for 

each CGBE (Fig. 5b, Online Methods). CGBE editing activity was generally centered around 

protospacer position 6 with editing window widths ranging from 3 nt (EE–nCas9; positions 5-

7) to 8 nt (UdgX–APOBEC1–UdgX–HF-nCas9 nickase; positions 4-11). The editing windows 

of CGBEs with additional components beyond Cas and deaminase domains were shifted by 

up to 3 nt compared to direct deaminase–Cas fusions, indicating that CGBE protein fusions 

can affect editing window size and position. 

Engineered CGBE architectures showed significant improvements in C•G-to-G•C 

product purity compared to simple deaminase–nCas9 fusions. Across the 10,638 target sites 

in the comprehensive context library, the fusion CGBEs POLD2–APOBEC1–UdgX–nCas9–

UdgX, UdgX–EE–UdgX–nCas9–UdgX, and UdgX–689–UdgX–nCas9–RBMX showed 25% 

higher mean C•G-to-G•C purity than their corresponding deaminase–nCas9 counterparts 

within each editor’s editing window (P < 5.1×10-9; Welch’s t-test) (Fig. 5c). We observed large 

variation in CGBE editing efficiency, with mean efficiency ranging from 1.8% by UdgX–EE–

UdgX–nCas9–UdgX to 23.0% by Anc689–nCas9 across the comprehensive context library 

within the same experimental batch. Notably, the protein fusion CGBEs exhibiting increased 

C•G-to-G•C purity also reduced editing yield by 1.4- to 1.6-fold on average. 

C•G-to-G•C editing purity exceeded 90% for at least one of the tested CGBEs at 895 

cytosines across the comprehensive context library. Some cytosines edited with purities as 

high as 90-100% by some CGBEs were edited with purity as low as 0-10% by other CGBEs, 

indicating that these CGBEs indeed offer complementary editing characteristics, and 

confirming that a panel of diverse CGBEs maximizes the utility of C•G-to-G•C base editing 

compared to using any single CGBE (Fig. 5d). We clustered CGBEs by C•G-to-G•C editing 



purity across the comprehensive context library and observed that engineered CGBEs did not 

cluster by deaminase (Fig. 5e), indicating that protein fusion engineering of CGBE 

architectures resulted in distinct sequence preferences governing C•G-to-G•C editing.  

 

Sequence determinants and machine learning modeling of CGBE activity 

C•G-to-G•C product purity of CGBEs varies substantially by sequence context (Fig. 
5f). We observed 24.7±26.3% average C•G-to-G•C purity across all tested CGBEs for 

cytosines positioned near the center of the editing window, with substantial variation across 

target sequences: the top 5% had >79.6% C•G-to-G•C purity while the bottom 5% had 

<1.0%. To decipher the sequence determinants that underly CGBE activity, we computed 

simple motifs for editing efficiency and transversion purity using a logistic regression model 

that considers each nucleotide independently (Fig. 5g, Online Methods)12. These motifs 

revealed that TC is strongly favored while GC is disfavored for editing efficiency across the 

tested CGBEs. We further trained gradient-boosted regression trees to predict CGBE editing 

efficiency sequence context, which achieved good accuracy with R=0.57-0.77 at held-out 

target sites. Consistent with our previous characterization of BE4 variants12, we observed 

sequence motifs that associated RCTA with higher C•G-to-G•C purity (R=A or G) across all 

characterized CGBEs. Cytosines in an ACTA motif were edited with an average C•G-to-G•C 

purity of 68.7% (N=1,760) across CGBEs, substantially higher than the 24.7% average 

across all sequence contexts, indicating a major role for sequence context in determining 

C•G-to-G•C editing outcomes. These simple target sequence motifs predicted 27.0%-53.3% 

of the variation in C•G-to-G•C purity.  

Next, we trained BE-Hive models for these ten CGBEs (termed CGBE-Hive) and 

evaluated the models’ ability to predict C•G-to-G•C editing purity at held-out sequence 

contexts not seen during training. These models explained 58.3%-76.3% of the variance in 

C•G-to-G•C purity in the held-out dataset, a substantial improvement over logistic regression 

described above (27.0%-53.3%) (Fig. 5h). This performance improvement highlights that 

while C•G-to-G•C purity can be predicted using a simple motif such as RCTA that considers 

each nucleotide independently, higher-order interactions between nucleotides learned by 

deep neural networks substantially improve C•G-to-G•C editing purity predictions. 

Collectively, these observations establish that CGBE editing efficiency and purity can be 

accurately predicted by machine learning models. 



To further investigate sequence determinants of CGBE editing outcomes, we 

calculated target sequence motifs for cytosines with the highest C•G-to-G•C efficiency for 

each CGBE (Online Methods). While most CGBEs shared sequence preferences favoring TC 

for overall editing efficiency and RCTA for purity, different CGBEs had distinct motifs that 

correlated with C•G-to-G•C yield. POLD2–APOBEC1–UdgX–nCas9–UdgX favored RCTA for 

C•G-to-G•C yield, while eA3A–nCas9 simply favored TC (Fig. 5i). Interestingly, RBMX–

eA3A–UdgX–nCas9 favored CTC, while UdgX–EE–UdgX–nCas9–UdgX favored TCT, and 

689–nCas9 favored CTA (Fig. 5i). These observations reveal that different CGBEs show 

distinct sequence preferences that influence the yield of C•G-to-G•C outcomes.  

We provide machine learning models trained on up to 10,638 sgRNA-target pairs for 

these ten CGBEs in our online interactive web app (www.crisprbehive.design)12. Users can 

query sgRNAs and target sequences for data-driven predictions on editing outcomes of all 

CGBEs characterized in this study. 

 

Model-guided correction of pathogenic transversion SNVs  

To extend the applicability of these CGBEs, we assessed their compatibility with PAM-

variant Cas9 proteins. We evaluated editing at eight loci by CGBEs using Cas9-NG, an 

engineered SpCas9 variant with broadened PAM compatibility31, and observed similar editing 

purities to SpCas9 CGBEs at NGG PAM substrates (Supplementary Fig. 10, 11). The best 

performing NG-CGBEs at each locus retained >50% yield relative to SpCas9 CGBEs at 

targets with NGG PAMs (Supplementary Fig. 10).  

Given the broadened targeting scope of NG-CGBEs we sought to characterize their 

performance on the “transversion-enriched SNV library”12 in mESCs, which contains 3,400 

sgRNA-target pairs selected by BE-Hive from 18,523 disease-related G•C-to-C•G and A•T-to-

C•G SNVs from the ClinVar and HGMD databases that are targetable by Cas9-NG1,32, 

predicted to be correctable by cytosine transversion base editing with high purity and yield. 

We generated the following NG-CGBEs based on their performance on the comprehensive 

context library: 689–nCas9-NG, APOBEC1–nCas9-NG, eA3A–nCas9-NG, UdgX–689–

UdgX–nCas9-NG –RBMX, and UdgX–APOBEC1–UdgX–HFnCas9-NG. As Cas9-NG 

generally demonstrates reduced editing activity compared to wild-type SpCas931, similar to 

HF-Cas9, we included UdgX–APOBEC1–UdgX–nCas9-NG without the HF modifications as 

an alternative binding-impaired Cas9-fusion variant.  



 All six CGBEs tested on the transversion-enriched SNV library enabled high-purity 

C•G-to-G•C editing at disease-associated SNVs. At 247 cytosines predicted by CGBE-Hive to 

have >80% C•G-to-G•C editing purity, CGBEs demonstrated an average of 83% C•G-to-G•C 

editing purity (Fig. 6a). Each CGBE corrected > 200 SNVs to their wild-type coding sequence 

with >90% precision among edited amino acid sequences (amino acid correction precision; 

Fig. 6b), with a total of 546 unique SNVs across CGBEs. For example, in the genome-

integrated library, eA3A–nCas9-NG corrected the G•C-to-C•G SNV in COL3A1 associated 

with Ehlers-Danlos syndrome33 with 71.4% yield and 92.8% purity, and corrected an SNV in 

BRCA2 associated with familial breast and ovarian cancer34 with 66.5% yield and 82.5% 

purity. The fusion CGBE UdgX–APOBEC1–UdgX–nCas9-NG corrected an SNV in NSD1 

associated with Sotos syndrome35 with 40.0% yield and 73.4% purity and corrected an SNV 

in NIPBL associated with Cornelia de Lange syndrome36 with 38.8% yield and 76.9% purity. 

Collectively, these results reveal efficient and high-purity correction of hundreds of disease-

related SNVs by CGBEs. 

Notably, the UdgX–APOBEC1–UdgX–nCas9 CGBE maintained a similar high purity of 

C•G-to-G•C editing between HF-nCas9 and nCas9-NG variants. UdgX–APOBEC1–UdgX–

nCas9-NG, however, offered substantially better yield of genotype and coding sequence 

corrected G•C-to-C•G SNVs (Fig. 6a,b). These results suggest that fusion of CGBEs to 

Cas9-NG variants may obviate the need to use HF-variant Cas9-proteins to alter their binding 

kinetics to promote C•G-to-G•C editing outcomes. 

 The best-edited targets in the transversion-enriched SNV library varied greatly by 

CGBE. Some SNVs edited with >90% purity by one CGBEs had purity below 5% for other 

CGBEs (Supplementary Fig. 12). CGBE-Hive models accurately accounted for this diversity 

in editing purity in the transversion-enriched SNV library, and accurately predicted the yield of 

exact genotype correction products and of alleles with corrected amino acid sequences 

(R=0.89-0.93 and R=0.91-0.94, respectively, Fig. 6c), as well as the DNA and amino acid 

correction precision (R=0.77-0.85 and R=0.82-0.90, respectively, Fig. 6d), including targets 

with multiple cytosines in the editing window. Since accurately predicting correction yield and 

precision requires accurate predictions for CGBE efficiency, C•G-to-G•C purity, and 

bystander editing patterns, these results establish that CGBE-Hive has learned important 

aspects of CGBE editing activity and can guide the use of CGBEs for high-purity correction of 

disease-related transversion SNVs. 



Using CGBE-Hive to pick the best among the characterized CGBEs to correct each 

SNV should achieve greater C•G-to-G•C correction than applying any single CGBE to a set of 

targets. Indeed, we observed that using CGBE-Hive to choose the three CGBE variants 

predicted to best achieve the desired edit (top-3 performance) increased the number of 

targets corrected with ≥90% precision or to ≥40% efficiency by 4.1- and 5.0-fold, respectively, 

compared to the number of targets that are expected to be corrected with these precision and 

efficiency thresholds by picking any single CGBE (Fig. 6e). These improvements of 4.1- and 

5.0-fold by using the top three CGBE-Hive choices were nearly identical to the performance 

from picking the best CGBE out of all six options in hindsight. CGBE-Hive also displayed 

strong top-1 performance: Using CGBE-Hive to choose just a single CGBE increased the 

number of targets corrected with ≥90% precision or to ≥40% efficiency to 1.7- and 4.0-fold, 

respectively, compared to picking a single CGBE in expectation.  

For correction precision, CGBE-Hive recovered the best performing CGBE variant in 

its top choice in 43.3% of targets and in its top three choices in 84.2% of target sequences. 

For correction yield, CGBE-Hive recovered the best-performing CGBE variant in its top 

choice in 67.5% of targets and in its top three choices in 97.2% of targets. These results 

collectively demonstrate that this panel of CGBEs have diverse editing activities that CGBE-

Hive has learned to predict, to optimize selection of the most promising CGBE variant to use 

for a desired edit. These improvements were also observed at endogenous loci in HEK293T 

cells (Fig. 6f, Supplementary Discussion 3). Thus, CGBE-Hive enables researchers to reap 

the benefits of the diversity of CGBEs developed in this study without the need to test all 

CGBE variants.  
 

Comparisons with recently reported CGBEs, prime editing, and off-target profiling  

Next, we determined whether the CGBE variants described in this work extend the 

scope of C•G-to-G•C base editing beyond those accessible with recently described CGBEs or 

PE. We were encouraged to find that the CGBEs developed in this study extend the scope of 

C•G-to-G•C genome editing by enabling higher yields and product purities at a wider array of 

target sequences compared to the use of previously described CGBEs alone except at loci 

already edited with high yield and purity by deaminase–nCas9 constructs (Supplementary 
Fig. 13; Supplementary Discussion 4). Furthermore, we observed that these novel CGBEs 

complement prime editing (PE) technology37. We found PE typically offers higher product 

purities while editing with CGBEs offers higher editing yields at some loci (Supplementary 



Fig. 14; Supplementary Discussion 5), consistent with recent reports13-15,37. Notably, prime 

editing currently requires extensive optimization of pegRNA features to achieve high-

efficiency edits, while CGBE-Hive prediction obviates CGBE editor selection. CGBEs 

complement prime editing for efficient C•G-to-G•C editing, although additional optimization of 

both technologies may further improve their properties. 

We also sought to characterize potential off-target editing outcomes of CGBEs. Since 

the genome-wide off-targets of base editors that use cytosine deaminase enzymes are 

known to be predominantly sgRNA dependent, we characterized Cas9-dependent off-target 

editing profiles of CGBEs by examining the activity of CGBEs at previously confirmed off-

target loci of corresponding Cas9:sgRNA complexes8. The architectural changes and protein 

fusions used to develop the CGBEs in this study resulted in lower Cas9-dependent off-target 

editing compared to corresponding CGBEs lacking protein fusions (Supplementary Fig. 11, 
15), despite their generally higher on-target editing, perhaps because the more complex 

fusions or architectural changes introduce additional conformational requirements in 

editor:DNA complexes that are not met by some off-target loci (see Supplementary 
Discussion 6). While DNA repair protein CGBE components may result in additional Cas-

independent off-target effects, these are likely to differ by cell type and delivery method, and 

therefore are best assessed for each application. 

 

Discussion 
Understanding and controlling the outcomes of genome editing experiments are 

important challenges for achieving targeted, precise genome manipulation. We investigated 

molecular determinants of transversion base editing, including the effects of the deaminase, 

Cas effector domain, and many DNA repair proteins identified in targeted CRISPRi screens, 

and used these insights to engineer novel CGBEs. We characterized the editing outcomes 

and performance of these reagents using a high-throughput genome-integrated library assay 

in mammalian cells and identified sequence features that affect base editing outcomes of ten 

diverse CGBEs. We showed that C-to-G editing activity is predicted with substantially higher 

accuracy by deep learning models compared to simpler models, indicating that complex 

sequence features drive C•G-to-G•C editing activity. 

We provide trained CGBE-Hive machine learning models which accurately predict 

CGBE efficiency, C•G-to-G•C editing purity, and bystander editing patterns (R=0.90) to 

enable predictable and consistently pure CGBE editing. We demonstrate a machine learning 



workflow using CGBE-Hive to identify optimal CGBE and sgRNA editing strategies to install a 

desired edit and show that this workflow expands high-efficiency and high-purity C•G-to-G•C 

editing to more loci than using any single CGBE by 5.0-fold and 4.1-fold with the top three 

CGBE-nominated choices. We demonstrate CGBE-mediated correction of the amino acid 

sequences of 546 disease-associated single nucleotide variants (SNVs) with >90% precision. 

Furthermore, we demonstrated efficient and pure installation of four disease-relevant SNPs 

and tested the performance of these tools in other mammalian cell lines. Collectively, the 

base editor and computational tools presented in this work substantially improve the targeting 

scope, effectiveness, and utility of CGBE-mediated transversion base editing. 
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Figure 1. Development of prototype C•G-to-G•C base editors. (a) Potential pathway for 
C•G-to-G•C conversion. (b) C•G-to-G•C editing outcomes in HEK293T cells for C-terminal 
fusions of DNA glycosylases to BE4B (AC, APOBEC1 cytidine deaminase–Cas9 nickase). (c) 
Different fusion protein architectures lead to different C•G-to-G•C editing properties in 
HEK293T cells at the HEK3 locus for the Apo-UdgX-Cas9n (AXC) architecture. Values and 
error bars reflect the mean and standard deviation of three biological replicates, shown as 
individual data points. HEK2=HEK site 2; HEK3=HEK site 3; HEK4=HEK site 4. C4, C6, and 
similar annotations indicate the in-window target nucleotides where the SpCas9 PAM is at 
positions 21-23. 
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Figure 2. CRISPRi knockdown screen across 476 genes enriched for those with roles 
in DNA repair identifies candidate regulators of C•G-to-G•C editing. (a) Schematic of 
screen design. (b). Summary of base editing outcomes in BE4B (also AC) screen. Bottom left 
– all editing outcomes containing only point mutations present at >=1% frequency for non-
targeting CRISPRi guides. Line plots above the individual outcomes show the total editing 
frequency (black line) and the frequencies of each single base edit (C-to-T=red, C-to-
G=brown, C-to-A=green, and G-to-C=blue lines) at each position. Line plots to the right show 
frequencies of outcomes for specific CRISPRi guides (blue - average of all non-targeting 
guide +/- standard deviation across individual non-targeting guides; orange - top 2 most 
active UNG guides). Heatmaps show Log2 fold changes in outcome frequencies for top 2 
UNG guides relative to non-targeting guides. (c) Log2 fold changes in frequency of outcomes 
containing C-to-T or C-to-G edits for each CRISPRi guide compared to non-targeting guides. 
Upper left - comparison of changes in C-to-T editing between two biological replicates. Lower 
right - comparison of changes in C-to-G editing between replicates. Upper right - comparison 
of changes in C-to-G editing to changes in C-to-T editing in replicate 1. All guides with at 
least 500 recovered UMIs in each replicate are plotted. Blue dots: individual non-targeting 
guides, orange dots: UNG guides, green dots: ASCC3 guides, red dots: RFWD3 guides, grey 



dots: all other guides. (d) Effects of gene knockdown on relative C-to-G editing frequencies in 
BE4B screen. Each dot represents a gene, with the x-value representing the average of the 
two strongest Log2 fold changes in normalized C-to-G editing for guides targeting the gene 
from the average of all non-targeting guides, and the y-value representing a gene-level p-
value summarizing the combined statistical significance of all guides targeting each gene. 
Rep.=replicate. 
 
 
  



	  
 
Figure 3. Effect of varying the cytidine deaminase and Cas9 components of CGBEs on 
C•G-to-G•C editing outcomes in HEK293T cells. (a) C•G-to-G•C editing outcomes for 
catalytically impaired, narrow-window cytidine deaminases show higher editing purity at 
HEK2 and RNF2. (b) C•G-to-G•C editing outcomes for high-fidelity Cas9 variants show 
altered editing windows and improved CGBE performance at some positions. “Cas9” 
represents the Cas9 D10A nickase variant of each Cas effector. Values and error bars reflect 
the mean and standard deviation of three biological replicates, shown as individual data 
points. HEK2=HEK site 2; HEK3=HEK site 3; HEK4=HEK site 4. C4, C6, and similar 
annotations indicate the in-window target nucleotides where the SpCas9 PAM is at positions 
21-23. 
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Figure 4. Novel engineered CGBEs with various DNA repair proteins, deaminases, Cas 
proteins, and architectures offer diverse editing performance on different target sites. 
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(a) C•G-to-G•C editing performance of CGBEs at eight genomic loci in HEK293T cells. (b) 
Further characterization of C•G-to-G•C editing outcomes for 12 variants from (a) at various 
genomic loci in HEK293T cells. Values and error bars reflect the mean and standard 
deviation of three biological replicates. HEK2=HEK293T cells site 2; HEK3=HEK293T cells 
site 3; HEK4=HEK293T cells site 4. C nucleotide annotations indicate the target nucleotide 
positions in the protospacer, where the SpCas9 PAM is at positions 21-23. Editing 
efficiencies, product purities, and indel frequencies for constructs that were tested but not 
shown in this figure can be found in Supplementary Data 1.  
 
  



 
Figure 5. Target library characterization and machine learning modeling of 10 CGBE 
variants. (a) Overview of genome-integrated target library assay. Libraries of 12,000 or 4,000 



pairs of sgRNAs and corresponding target sites are integrated into the genomes of 
mammalian cells using Tol2 transposase and treated with base editors. Edited cells are 
enriched by antibiotic selection, and library cassettes are amplified for high-throughput 
sequencing. (b) Base editing windows. Values are C•G-to-G•C editing efficiencies normalized 
to a maximum of 100. The protospacer is at positions 1-20, with the SpCas9 PAM at 
positions 21-23. All data are in mES cells except for eA3A-nCas9, which is in HEK293T cells. 
(c) C•G-to-G•C editing purity in the comprehensive context library in mES cells. Box plots 
indicate interquartile range, and black dots indicate mean. Welch’s T-test * P<5.1×10-9. (d) 
Heatmap of observed C•G-to-G•C purities by CGBE in target contexts from the 
comprehensive context library in mES cells. Black nucleotides indicate the cytosine for which 
purity is calculated. Target sites were sorted by outcome variance and manually selected. (e) 
Clustering of CGBEs based on measured C•G-to-G•C purity in core window cytosines across 
the comprehensive context library in mESCs. Values are Pearson correlation. (f) Purity of 
editing outcomes across core window nucleotides in the comprehensive context library, 
ranked by C•G-to-G•C purity, averaged across CGBEs in mESCs. Trend lines and shading 
show the rolling mean and standard deviation across 1% intervals. (g) Representative 
sequence motifs for editing efficiency and C•G-to-G•C purity from logistic regression models. 
The sign of each learned weight indicates a contribution above (positive sign) or below 
(negative sign) the mean activity. Logo opacity is proportional to the motif’s Pearson’s R on 
held-out sequence contexts. (h) Observed C•G-to-G•C purity across CGBEs in mESCs 
compared to CGBE-Hive predictions. Trend lines and shading show the rolling mean and 
standard deviation. (i) Sequence motifs for C•G-to-G•C editing yield.  
  



 
Figure 6. Target library characterization and machine learning modeling of CGBE 
variants. (a) Observed C-to-G purity by CGBE at SNVs predicted to have >80% C-to-G 



purity. Box plot indicates median and interquartile range. (b) Observed number of disease-
related sgRNA-target pairs corrected at varying genotype precision and amino acid precision 
thresholds by various strategies for selecting CGBEs. See Supplementary Table 3. (c) 
Comparison of predicted versus observed correction yield of disease-related transversion 
SNVs in mES cells. Trend lines and shading show the rolling mean and standard deviation. 
(d) Comparison of predicted versus observed correction precision of disease-related 
transversion SNVs in mES cells. Trend lines and shading show the rolling mean and 
standard deviation. (e) Observed number of sgRNA-target pairs containing disease-related 
transversion SNVs corrected at various thresholds for genotype and amino acid precision. (f) 
Installation of disease-associated SNPs using CGBEs. 
 


