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Abstract	47 
	48 
Poor	trans-ethnic	portability	of	polygenic	risk	score	(PRS)	models	is	an	important	issue	caused	49 

in	part	by	Eurocentric	genetic	studies	and	in	part	by	limited	knowledge	of	causal	variants	shared	50 

among	populations.	Hence,	leveraging	noncoding	regulatory	annotations	that	capture	genetic	51 

variation	across	populations	has	the	potential	to	enhance	the	trans-ethnic	portability	of	PRS.	To	52 

this	end,	we	constructed	a	unique	resource	of	707	cell-type-specific	IMPACT	regulatory	53 

annotations	by	aggregating	5,345	public	epigenetic	datasets	to	predict	binding	patterns	of	142	54 

cell-type-regulating	transcription	factors	across	245	cell	types.	With	this	resource,	we	55 

partitioned	the	common	SNP	heritability	of	diverse	polygenic	traits	and	diseases	from	111	56 

GWAS	summary	statistics	of	European	(EUR,	average	N=180K)	and	East	Asian	(EAS,	average	57 

N=157K)	origin.	For	95	traits,	we	were	able	to	identify	a	single	IMPACT	annotation	most	58 

strongly	enriched	for	trait	heritability.	Across	traits,	these	annotations	captured	an	average	of	59 

43.3%	of	heritability	(sem	=	2.8%)	with	the	top	5%	of	SNPs.	Strikingly,	we	observed	highly	60 

concordant	polygenic	trait	regulation	between	populations:	the	same	regulatory	annotations	61 

captured	statistically	indistinguishable	SNP	heritability	(fitted	slope	=	0.98,	sem	=	0.04).	Since	62 

IMPACT	annotations	capture	both	large	and	consistent	proportions	of	heritability	across	63 

populations,	prioritizing	variants	in	IMPACT	regulatory	elements	may	improve	the	trans-ethnic	64 

portability	of	PRS.	Indeed,	we	observed	that	EUR	PRS	models	more	accurately	predicted	21	65 

tested	phenotypes	of	EAS	individuals	when	variants	were	prioritized	by	key	IMPACT	tracks	66 

(49.9%	mean	relative	increase	in	!2).	Notably,	the	improvement	afforded	by	IMPACT	was	67 

greater	in	the	trans-ethnic	EUR-to-EAS	PRS	application	than	in	the	EAS-to-EAS	application	68 

(47.3%	vs	20.9%,	one-tailed	paired	wilcoxon	P	<	0.012).	Overall,	our	study	identifies	a	crucial	69 
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role	for	functional	annotations	such	as	IMPACT	to	improve	the	trans-ethnic	portability	of	70 

genetic	data.		71 

	 	72 
Introduction		73 
	74 

An	important	challenge	for	complex	trait	genetics	is	that	there	is	no	clear	framework	to	75 

transfer	population-specific	genetic	data,	such	as	GWAS	results,	to	individuals	of	other	76 

ancestries1–3.	The	importance	of	this	challenge	is	accentuated	by	the	fact	that	approximately	77 

80%	of	all	genetic	studies	have	been	performed	with	individuals	of	European	ancestry,	78 

accounting	for	a	minority	of	the	world’s	population4.	This	is	exacerbated	by	the	fact	that	79 

population-specific	linkage	disequilibrium	(LD)	between	variants	confounds	inferences	about	80 

causal	cell	types	and	variants	(Figure	1A)5–7.	GWAS	have	the	potential	to	revolutionize	the	81 

clinical	application	and	utility	of	genetic	data	to	the	individual,	exemplified	by	current	polygenic	82 

risk	score	(PRS)	models5,8–16.	However,	while	the	utility	of	PRS	models	relies	on	accurate	83 

estimation	of	allelic	effect	sizes	from	GWAS	and	benefits	from	genetic	similarity	between	the	84 

target	cohort	and	the	training	GWAS	cohort,	recent	studies	have	explicitly	observed	a	lack	of	85 

trans-ethnic	portability2,3,5,8,17,18.	The	Eurocentric	GWAS	bias	has	led	PRS	to	be	more	predictive	86 

in	European	populations,	as	the	largest	training	data	comes	from	European	GWAS3,5,12,19,20.	As	a	87 

result,	variants	used	in	European	PRS	tend	to	be	more	common	among	Europeans	and	less	88 

common	among	non-Europeans.	Common	variants	carry	greater	disease	predictive	power	89 

which	directly	contributes	to	Eurocentric	bias	in	PRS	accuracy3.	The	trans-ethnic	portability	of	90 

PRS	would	not	be	as	critical	an	issue	if	large	GWAS	were	performed	in	all	non-EUR	populations.	91 

Previous	studies	have	extensively	shown	that	functional	annotations	can	improve	PRS	models	92 

when	learned	and	applied	to	the	same	population21,22,	by	introducing	biologically-relevant	93 

priors	on	causal	effect	sizes	and	compensating	for	inflation	of	association	statistics	by	LD.	94 



Figure	1	

 
Figure	1	legend.	Study	design	to	identify	regulatory	annotations	that	prioritize	regulatory	variants	in	a	multi-ethnic	setting.	A)	Population-specific	LD	

confounding	and	subsequent	inflation	of	GWAS	associations	complicate	the	interpretation	of	summary	statistics	and	transferability	to	other	populations;	

functional	data	may	help	improve	trans-ethnic	genetic	portability.	B)	Prism	of	functional	data	in	IMPACT	model:	707	genome-wide	TF	occupancy	profiles	

(green),	5,345	genome-wide	epigenomic	feature	profiles	(blue),	and	fitted	weights	for	these	features	(pink)	to	predict	TF	binding	by	logistic	regression.	Using	

IMPACT	annotations,	we	investigate	111	GWAS	summary	datasets	(yellow)	of	EUR	and	EAS	origin.	C)	Compendium	of	707	genome-wide	cell-type-specific	

IMPACT	regulatory	annotations.	D)	Annotations	that	prioritize	common	regulatory	variants	must	I)	capture	large	proportions	of	heritability	in	both	

populations,	II)	account	for	consistent	marginal	effect	size	estimations	between	populations	and	III)	improve	the	trans-ethnic	application	of	PRS.		

	

	

	
	
	
	

causal	
variant

...GW
AS

	P
va
lu
e	
sig

ni
fic
an
ce

EUR

EAS

...
......

. .
......

. ..........

..
. .....

.. ........ .
. ......

.
...
. .

.

annot 1
2
3

a b c d e f g h i

I. Heritability	in	shared	regulatory	elements II. High	multi-ethnic	marginal	effect	size	correlation

h

e

b

!"#$%

!" #
&'

.
.
.. .

. ..

.
c
f

g

a

d

i
(EUR	lead	SNPs)

(EAS	lead	SNPs)

III.Trans-ethnic	polygenic	risk	score	models

predict
phenotype	in	EAS

IMPACT	PRS:	EUR	PRS	model	with	b,	e,	h
standard	PRS:	EUR	PRS	model	with	a,	d,	i

genomic	coordinate

A

C

+704

D

...

.. .

.

...

...

IMPACT

B

logistic	regression
model	coefficients

(	ℝ70
7

5,345

5,
34

5

3x109

genome-wide	
epigenetic	

features	(	 0,1

3x109
TF	binding

presence	or	absence
(	 0,1

+
EUR	GWAS

summary	statistics

107	variants

EAS	GWAS
summary	statistics

log 1/(1 − 1)	~	!7log 1/(1 − 1)	~	89
:;<=>?=@	@ABA
1 = D(E = 1)

42
69

707
cell-type-specific

transcription
factor

occupancy
profiles

5,345	
epigenetic	features

3	billion	
nucleotides

~ x

Study	Design
%
	h
2	
ca
pt
ur
ed

EUR EAS

annotations

1						2						3

...........

.... ........... .... ...........

.... ...........

.... ...........

.... ........... .... ..........

.... .............. ...........

.... ...........

70
7

1						2						3

PRS	improvement	by	
IMPACT

trans-ethnic

within-pop

EUR	lead

EAS	lead

IMPACT
PRS

standard
PRS

ac
cu
ra
cy



 

4 

However,	the	potential	for	functional	annotations	to	improve	trans-ethnic	PRS	frameworks,	95 

where	the	influences	of	population-specific	LD	are	more	profound,	has	not	yet	been	extensively	96 

investigated.	97 

However,	designing	functional	annotations	that	may	improve	PRS	models	is	challenging.	98 

Functional	annotations	that	best	capture	polygenic	trait	genetic	variation	must	identify	a	large	99 

number	of	functional	variants	genome-wide	without	compromising	specificity	for	trait-relevant	100 

regulatory	programs.	Pinpointing	these	mechanisms	is	especially	difficult	despite	the	fact	that	101 

genome-wide	association	studies	(GWAS)	have	identified	thousands	of	genetic	associations	102 

with	complex	phenotypes8,23–25.	It	has	been	estimated	that	about	90%	of	these	associations	103 

reside	in	protein	noncoding	regions	of	the	genome,	making	their	mechanisms	difficult	to	104 

interpret26,27.	Defining	the	etiology	of	complex	traits	and	diseases	requires	knowledge	of	105 

phenotyping-driving	cell	types	in	which	these	associated	variants	act.	Transcription	factors	(TFs)	106 

are	poised	to	orchestrate	large	polygenic	regulatory	programs	as	genetic	variation	in	their	107 

target	regions	can	modulate	gene	expression,	often	in	cell-type-specific	contexts28,29.	Genomic	108 

annotations	marking	the	precise	location	of	TF-mediated	cell	type	regulation	can	be	exploited	109 

to	elucidate	the	genetic	basis	of	polygenic	traits.		110 

To	overcome	these	challenges,	we	previously	developed	IMPACT,	a	genome-wide	cell-111 

type-specific	regulatory	annotation	strategy	that	models	the	epigenetic	pattern	around	TF	112 

binding	using	linear	combinations	of	functional	annotations30.	In	rheumatoid	arthritis	(RA),	113 

IMPACT	CD4+	T	cell	annotations	captured	substantially	more	heritability	than	functional	114 

annotations	derived	from	single	experiments,	including	TF	and	histone	modification	ChIP-seq6.	115 

In	this	study,	we	expanded	this	approach	by	aggregating	5,345	functional	annotations	with	an	116 

identical	implementation	of	the	IMPACT	model	framework	using	the	same	set	of	optimized	117 
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parameters	as	previously	calibrated.	We	created	a	powerful	and	generalizable	resource	of	707	118 

cell-type-specific	gene	regulatory	annotations	(Web	Resources)	based	on	binding	profiles	of	119 

142	TFs	across	245	cell	types	(Figure	1B,C).	This	study	builds	on	our	previous	work30	in	which	we	120 

created	13	annotations	(13	TF-cell	type	pairs)	based	on	515	functional	annotations;	we	121 

observed	remarkable	consistency	of	IMPACT	predictions	for	the	same	TF-cell	type	pair	despite	122 

different	training	data	and	epigenetic	features	(SF1).	Assuming	that	causal	variants	are	largely	123 

shared	between	populations2,23,	we	hypothesized	that	restricting	PRS	models	to	variants	within	124 

trait-relevant	IMPACT	annotations,	which	are	more	likely	to	have	regulatory	roles	and	less	likely	125 

to	be	solely	associated	via	linkage,	will	especially	improve	their	trans-ethnic	portability.		126 

In	this	study,	we	identify	key	IMPACT	regulatory	annotations	that	capture	genome-wide	127 

polygenic	mechanisms	underlying	a	diverse	set	of	complex	traits,	supported	by	population	non-128 

specific	enrichments	of	genetic	heritability,	multi-ethnic	marginal	effect	size	correlation	(a	129 

possible	mechanism	of	improved	PRS),	and	improved	trans-ethnic	portability	of	PRS	models	130 

(Figure	1D).	Here,	we	defined	and	employed	our	compendium	of	707	IMPACT	regulatory	131 

annotations	to	study	polygenic	traits	and	diseases	from	111	GWAS	summary	datasets	of	132 

European	(EUR)	and	East	Asian	(EAS)	origin.	Assuming	shared	causal	variants	between	133 

populations,	annotations	that	prioritize	shared	regulatory	variants	must	(1)	capture	134 

disproportionately	large	amounts	of	genetic	heritability	in	both	populations,	(2)	be	enriched	for	135 

multi-ethnic	marginal	effect	size	correlation,	and	(3)	improve	the	trans-ethnic	applicability	of	136 

population-specific	PRS	models.	Using	our	compendium	of	regulatory	annotations,	we	137 

identified	key	annotations	for	each	polygenic	trait	and	demonstrated	their	utility	in	each	of	138 

these	three	applications	toward	prioritization	of	shared	regulatory	variants.	Overall,	this	work	139 
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improves	the	interpretation	and	trans-ethnic	portability	of	genetic	data	and	provides	140 

implications	for	future	clinical	implementations	of	risk	prediction	models.	141 

	142 

Results	143 

	144 
Building	a	compendium	of	in	silico	gene	regulatory	annotations	145 

	146 
To	capture	genetic	heritability	of	diverse	polygenic	diseases	and	quantitative	traits,	we	147 

constructed	a	comprehensive	compendium	of	707	cell	type	regulatory	annotation	tracks.	To	do	148 

this,	we	applied	the	IMPACT30	framework	to	707	unique	TF-cell	type	pairs	obtained	from	a	total	149 

of	3,181	TF	ChIP-seq	datasets	from	NCBI,	representing	245	cell	types	and	142	TFs	with	known	150 

sequence	motifs	(Figure	1B,	Online	Methods,	Web	Resources,	ST1,	SF2)31.	We	provide	publicly	151 

available	open-source	software	(see	Web	Resources)	corresponding	to	the	analyses	presented	152 

in	this	manuscript.	We	caution	that	the	707	TF/cell	type	pairs	represented	in	publicly	available	153 

data	is	a	small	fraction	of	the	total	possible	pairs	of	142	TFs	and	245	cell	types	(n	=	34,790),	154 

although	there	are	several	experimental	and	practical	reasons	why	this	theoretical	maximum	is	155 

not	reached	(Discussion).	Briefly,	IMPACT	learns	an	epigenetic	signature	of	active	TF	binding	156 

evidenced	by	ChIP-seq,	differentiating	bound	from	unbound	TF	sequence	motifs	using	logistic	157 

regression.	We	derive	this	signature	from	5,345	epigenetic	and	sequence	features,	158 

predominantly	generated	by	ENCODE32	and	Roadmap33	(Online	Methods,	ST2);	these	data	159 

were	drawn	from	diverse	cell	types,	representing	the	biological	range	of	the	707	candidate	160 

models.	IMPACT	then	probabilistically	annotates	the	genome,	e.g.	on	a	scale	from	0	to	1,	161 

without	using	the	TF	motif,	identifying	regulatory	regions	that	are	similar	to	those	that	the	TF	162 

binds.				163 
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To	assess	the	specificity	of	our	IMPACT	annotations,	we	test	whether	they	(1)	accurately	164 

predict	binding	of	the	modeled	TF,	(2)	share	cell-type-specific	characteristics	with	other	tracks	165 

of	the	same	cell	type,	and	(3)	score	cell-type-specifically	expressed	genes	higher	than	166 

nonspecific	genes.	The	707	models	that	we	defined	had	a	high	TF	binding	prediction	accuracy	167 

with	mean	AUPRC	=	0.54	(sem	=	0.01,	Online	Methods,	SF3)	using	cross-validation.	Annotations	168 

segregated	by	cell	type	rather	than	by	TF,	excluding	CTCF,	suggesting	the	same	TF	may	bind	to	169 

different	enhancers	in	different	cell	types	(Figure	2A).	On	average,	we	observed	that	170 

annotations	of	the	same	cell	types	were	more	strongly	correlated	genome-wide	(Pearson	r	=	171 

0.56,	sem	=	0.02)	than	annotations	of	different	cell	types	(Pearson	r	=	0.48,	sem	=	0.01,	one-172 

tailed	difference	of	means	P	<	0.001,	SF3).	Furthermore,	the	covariance	structure	between	TF	173 

ChIP-seq	training	datasets	is	similar	to	that	of	corresponding	IMPACT	annotations,	indicating	174 

that	the	IMPACT	model	does	not	introduce	spurious	correlations	among	unrelated	ChIP-seq	175 

datasets	(SF3).	Lastly,	for	nine	different	cell	types,	we	examined	cell-type-specifically	expressed	176 

genes	from	Finucane	et	al34	and	corresponding	differential	expression	t-statistics.	For	each	of	177 

nine	cell	types,	we	observed	larger	cell-type-specific	IMPACT	probabilities	at	SNPs	in	and	near	178 

cell-type-specific	genes	compared	to	generally	expressed	genes	(mean	fold-change	across	10	to	179 

99	cell-type-specific	IMPACT	tracks	ranged	from	1.08	to	1.96	across	nine	cell	types,	one-tailed	180 

paired	wilcoxon	P	<	0.04	for	seven	of	nine	cell	types,	Figure	2B,	SF3,	Online	Methods),	181 

suggesting	that	IMPACT	annotates	relevant	cell	type	regulatory	elements.			182 

	183 
Partitioning	common	SNP	heritability	of	111	GWAS	summary	statistics	in	EUR	and	EAS		184 
	185 

We	obtained	summary	statistics	from	111	publicly	available	GWAS	for	diverse	polygenic	186 

traits	and	diseases.	For	narrative	purposes	throughout	the	text,	we	use	five	genetically	187 

uncorrelated	(!#	point	estimates	between	traits	ranged	from	-0.08	to	0.20,	ST3,	although	no	188 



Figure	2 

 
Figure	2	legend.	IMPACT	annotates	relevant	cell	type	regulatory	elements.	A)	Low-dimensional	embedding	and	clustering	of	707	IMPACT	annotations	using	

uniform	manifold	approximation	projection	(UMAP).	Annotations	colored	by	cell	type	category;	TF	groups	indicated	where	applicable.	B)	IMPACT	annotates	

cell	type	specifically	expressed	genes	with	higher	scores	than	nonspecific	genes.	C)	Biologically	distinct	regulatory	modules	revealed	by	cell	type-trait	

associations	with	significantly	nonzero	!*.	Shown	here	are	the	5	representative	EUR	complex	traits	and	the	4	leading	IMPACT	annotations	for	each,	resulting	

in	20	IMPACT	annotations	highlighted	from	707	total.	Color	indicates	!*	value.	D)	Lead	IMPACT	annotations	capture	more	heritability	than	lead	cell-type-

specific	histone	modifications	across	60	of	69	EUR	summary	statistics	for	which	a	lead	IMPACT	annotation	was	identified.	*	indicates	heritability	estimate	

difference	of	means	P	<	0.05.	Gray	segments	indicate	the	95%	CI	around	the	heritability	estimate.			
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!#	was	significantly	different	from	0,	all	two-tailed	z	test	P	>	0.40	after	Bonferroni	correction	189 

for	10	pairs)	and	biologically	diverse	traits	that	capture	the	spectrum	of	summary	statistics	190 

analyzed	in	order	to	exemplify	our	results	in	addition	to	reporting	metrics	averaged	over	all	191 

traits	analyzed.	These	five	traits	include	an	allergic	phenotype:	asthma,	an	autoimmune	disease:	192 

RA,	a	neoplastic	type:	prostate	cancer	(PrCa),	a	hematological	quantitative	trait:	mean	193 

corpuscular	volume	(MCV),	and	an	anthropometric	trait:	height.	These	included	69	from	EUR	194 

participants30,35	(average	N	=	180K,	average	heritability	z-score	=	12.9,	41/69	from	UK	195 

BioBank)6,36	and	42	from	EAS	participants	of	BioBank	Japan3,37–39	(average	N	=	157K,	average	196 

heritability	z-score	=	6.6)24	(ST3).	We	chose	to	focus	our	study	on	EUR	and	EAS	populations,	as	197 

there	is	a	limited	number	of	large	GWAS	in	populations	other	than	EUR	and	EAS4,40,41.	All	of	the	198 

summary	statistics	used	were	generated	from	studies	that	had	a	sample	size	greater	than	199 

10,000	individuals	and	also	had	a	significantly	non-zero	heritability	(z-score	>	1.97).	There	are	200 

29	phenotypes	for	which	we	obtained	summary	statistics	in	both	EUR	and	EAS.	We	were	201 

interested	to	see	if	any	traits	had	a	multi-ethnic	genetic	correlation	that	deviated	from	1.	202 

Therefore,	we	explicitly	tested	this	and	found	that	16	traits	have	multi-ethnic	!#	that	does	not	203 

deviate	from	1	(one-tailed	z	test	P	>	0.05/29	tested	traits),	while	13	traits	have	multi-ethnic	!#	204 

that	does	deviate	from	1	(one-tailed	z	test	P	<	0.05/29	tested	traits).	Overall	we	observed	high	205 

!#	for	most	traits,	supporting	our	assumption	that	causal	variants	are	generally	shared	across	206 

populations	(Online	Methods,	SF4)42.	At	two	extremes,	basophil	count	has	a	low	multi-ethnic	207 

!#	of	0.32	(sd	=	0.10),	while	atrial	fibrillation	has	a	high	multi-ethnic	!#	of	0.98	(sd	=	0.11),	208 

consistent	with	previous	observations	made	using	Popcorn,	but	using	different	parameter	209 

estimation	strategies	(Online	Methods)3.	210 
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We	then	partitioned	the	common	SNP	(minor	allele	frequency	(MAF)	>	5%)	heritability	211 

of	these	111	datasets	using	S-LDSC6	with	an	adapted	baseline-LD	model	excluding	cell-type-212 

specific	annotations30,35	(SF4,	Online	Methods).	Here,	heritability	refers	to	the	inferences	made	213 

by	S-LDSC	about	the	heritability	causally	explained	by	common	SNPs	as	defined	previously6,	as	214 

opposed	to	genotyping-array-based	SNP-heritability43,44	or	other	definitions.	We	caution	that	215 

the	results	presented	herein	are	a	consequence	of	the	analyzed	GWAS	populations,	polygenic	216 

traits	and	diseases,	and	available	experimental	data	to	create	functional	annotations.	Next,	we	217 

tested	each	of	the	traits	against	each	of	the	707	IMPACT	annotations,	assessing	the	significance	218 

of	a	non-zero	%*,	which	is	defined	as	the	proportionate	change	in	per-SNP	heritability	219 

associated	with	a	one	standard	deviation	increase	in	the	value	of	the	annotation	(Online	220 

Methods)35.	Of	707	by	111	(n	=	78,477)	possible	associations	subjected	to	5%	FDR,	we	detected	221 

7,993	associations,	5%	of	which	we	expect	to	be	false	positives.	We	observed	that	95	222 

phenotypes	had	at	least	one	significant	annotation-trait	association	(%*	>	0,	two-tailed	z	test	P	<	223 

0.05	at	5%	FDR,	Ext.	Data	1,	Online	Methods,	ST4-8).	Here,	we	highlight	the	four	leading	224 

IMPACT	annotations	associated	with	EUR	summary	statistics	for	each	of	the	five	exemplary	225 

phenotypes	mentioned	above:	asthma,	RA,	PrCa,	MCV,	and	height	(Figure	2C,	associations	226 

between	all	traits	and	annotations	in	Ext.	Data	1).	Consistent	with	known	biology,	B	and	T	cells	227 

were	strongly	associated	with	asthma45,	RA46,	and	MCV47,48	while	other	blood	cell	regulatory	228 

annotations	predominantly	derived	from	GATA	factors	were	also	associated	with	MCV.	Prostate	229 

cancer	cell	lines	were	associated	with	PrCa,	while	many	cell	types	including	myoblasts49,	230 

fibroblasts50,	and	adipocytes51,52,	lung	cells,	and	endothelial	cells	were	associated	with	height,	231 

perhaps	related	to	musculo-skeletal	developmental	pathways.		232 
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For	each	trait,	we	defined	the	lead	IMPACT	regulatory	annotation	as	the	annotation	233 

capturing	the	greatest	per-SNP	heritability,	e.g.	the	largest,	while	significant,	%*	estimate	(ST9).	234 

With	the	top	5%	of	SNPs,	lead	IMPACT	annotations	captured	an	average	of	43.3%	of	common	235 

SNP	heritability	(sem	=	2.8%)	across	these	95	polygenic	traits	(SF5,	Online	Methods),	with	more	236 

than	25%	of	heritability	captured	for	two-thirds	of	the	tested	summary	statistics	(73/111	traits)	237 

and	more	than	50%	captured	for	28%	(31/111).	Identifying	functional	annotations	that	capture	238 

large	proportions	of	heritability	is	an	important	step	to	understanding	biological	mechanisms	of	239 

genetic	variation.	We	observed	higher	heritability	enrichments	for	autoimmune	diseases	and	240 

hematological	traits,	likely	due	to	the	abundance	of	blood	cell	types	represented	by	our	IMPACT	241 

annotations	and	possibly	due	to	a	single	or	a	few	related	causal	cell	types.	On	the	other	hand,	242 

we	observed	lower	heritability	enrichment	for	brain-related,	lung-related,	and	adrenal	traits,	243 

likely	due	to	the	underrepresentation	of	relevant	tissue	or	cell	types	in	the	TF	ChIP-seq	data	and	244 

possibly	due	to	multiple	different	causal	cell	types.	We	observed	significantly	greater	%*	of	lead	245 

IMPACT	annotations	among	traits	with	lower	estimated	polygenicity	(linear	regression	246 

coefficient	=	-0.11,	P	<	3.97e-5).	Traits	with	higher	polygenicity	may	be	driven	by	more	than	one	247 

causal	cell	type;	therefore	a	single	IMPACT	annotation	may	capture	a	smaller	proportion	of	248 

total	common	SNP	heritability.	Returning	to	our	five	exemplary	phenotypes,	with	the	top	5%	of	249 

EUR	SNPs,	IMPACT	captured	97.1%	(sd	=	17.6%)	of	asthma	heritability	with	the	T-bet	Th1	250 

annotation,	65.9%	(sd	=	12.1%)	of	RA	heritability	with	the	B	cell	TBP	annotation,	60.4%	(sd	=	251 

8.9%)	of	PrCa	heritability	with	the	prostate	cancer	cell	line	(LNCAP)	TFAP4	annotation,	72.4%	252 

(sd	=	6.0%)	of	MCV	heritability	with	the	GATA1	PBMC	annotation,	and	lastly	31.6%	(sd	=	3.0%)	253 

of	height	heritability	with	the	lung	MXI1	annotation	(Figure	2D).	While	the	observed	association	254 
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between	lung	and	height	is	not	intuitive,	within	the	MXI1	gene	lies	a	genome-wide	significant	255 

variant	associated	with	height53.				256 

To	demonstrate	the	value	of	IMPACT	tracks,	we	compared	them	to	annotations	derived	257 

from	single	experimental	assays	and	from	machine	learning	models.	For	example,	since	each	of	258 

the	IMPACT	tracks	was	trained	on	TF	ChIP-seq	data,	we	compared	the	per-annotation	259 

standardized	effect	sizes	(%*	)	achieved	by	both	annotation	types.	We	observed	that	on	average	260 

the	%*	of	lead	IMPACT	annotations	(mean	%*	=	3.53,	sem	=	0.91)	was	greater	than	by	the	261 

analogous	TF	ChIP-seq	used	in	training	(mean	%*	=	1.71,	sem	=	0.94,	across	95	traits	one-tailed	262 

paired	wilcoxon	P	<	2.6e-16).	We	then	compared	IMPACT	tracks	to	histone	marks,	which	are	263 

commonly	used	to	quantify	cell	type	heritability6.	From	220	publicly	available	cell-type-specific	264 

histone	mark	ChIP-seq	annotations	of	EUR	SNPs6,	we	selected	the	lead	histone	mark	track	for	265 

each	of	69	EUR	summary	statistics	(Online	Methods).	Restricting	to	the	top	5%	of	SNPs,	we	266 

observed	that	the	mean	EUR	heritability	captured	by	lead	IMPACT	annotations	(49.5%,	sem	=	267 

3.2%)	was	on	average	greater	than	by	lead	histone	mark	annotations	(29.1%,	sem	=	2.5%,	one-268 

tailed	paired	wilcoxon	P	<	8.8e-12,	Figure	2D,	ST10).	For	example,	the	lead	IMPACT	annotation	269 

for	asthma	captured	64.2%	(sd	=	15.5%)	of	heritability,	1.5x	more	heritability	than	the	lead	270 

histone	mark	annotation	(H3K27ac	in	CD4+	Th2).	Similarly,	IMPACT	captured	1.7x	more	RA	271 

heritability	than	H3K4me3	in	CD4+	Th17s;	IMPACT	captured	1.4x	more	MCV	heritability	than	272 

H3K4me3	in	CD34+	cells;	IMPACT	captured	2.3x	more	PrCa	heritability	than	H3K4me3	in	CD34+	273 

cells;	and	IMPACT	captured	3.1x	more	height	heritability	than	H3K4me3	in	lung	cells.	In	terms	274 

of	%*,	IMPACT	also	captured	more	per-SNP	heritability	than	histone	marks	(one-tailed	paired	275 

wilcoxon	P	<	9.1e-9,	mean	%*	fold	change	across	traits	=	1.38x,	SF6).	We	further	compared	the	276 

heritability	captured	by	IMPACT	to	annotations	created	from	state-of-the-art	deep	learning	277 
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algorithms	trained	to	predict	various	regulatory	element	marks,	Basenji54	and	DeepSEA55.	278 

Performing	a	comprehensive	analysis	is	challenging	for	two	reasons.	First,	there	is	a	limited	set	279 

of	genome-wide	SNP-level	deep	learning	predictions	in	the	public	domain	with	the	exception	of	280 

a	few	studies56.	Second,	as	deep	learning	models	are	specific	to	a	particular	functional	mark,	281 

comprehensive genome-wide cataloging is a combinatorially large problem which grows with 282 

the number of tested cell types, functional marks, and model types.	Therefore,	we	performed	283 

the	most	comprehensive	analysis	that	was	feasible,	focusing	on	the	five	representative	traits.	284 

To	this	end,	we	collected	123	relevant	deep	learning	annotations	to	target	these	traits	(ST11,	285 

Online	Methods)	and	selected	the	lead	deep	learning	track	for	each	trait	(Online	Methods).	We	286 

observed	that	for	each	of	five	traits,	the	lead	IMPACT	annotation	generally	captured	more	287 

heritability	in	the	top	5%	of	SNPs	(mean	=	65.4%,	sem	=	10.9%)	and	resulted	in	generally	larger	288 

%*	(mean	=	4.4,	sem	=	0.70)	than	the	lead	deep	learning	annotations	(heritability	mean	=	39.1%,	289 

sem	=	1.9%,	%*	mean	=	1.6,	sem	=	0.30,	one-tailed	paired	wilcoxon	P	=	0.031	for	both	290 

heritability	and	%*,	SF7).	Although	limited	by	the	availability	of	deep	learning	annotations,	we	291 

further	compared	lead	IMPACT	annotations	to	lead	deep	learning	annotations	across	all	69	EUR	292 

traits	and	in	all	cases	IMPACT	trended	toward	higher	heritability	and	%*	(Basenji	heritability	293 

comparison	one-tailed	paired	wilcoxon	P	<	2.0e-11,	DeepSEA	heritability	comparison	P	<	1.4e-294 

10,	Basenji	%*	comparison	one-tailed	paired	wilcoxon	P	<	3.4e-11,	DeepSEA	%*	comparison	P	<	295 

8.8e-12,	Supplement,	SF8,	ST13).	296 

Since	some	of	our	IMPACT	annotations	are	similar	to	each	other	(SF3),	we	performed	297 

serial	conditional	analyses	in	order	to	identify	IMPACT	annotations	explaining	heritability	298 

independently	from	one	another	(Online	Methods).	This	strategy	might	identify	complex	traits	299 

for	which	several	distinct	biological	mechanisms	are	independently	regulated	by	genetic	300 



 

13 

variation.	Indeed,	we	identified	30	EUR	phenotypes	and	8	EAS	phenotypes	with	multiple	301 

independent	IMPACT	associations	(SF9,	ST14-15).	For	example,	four	IMPACT	annotations	were	302 

independently	associated	with	EUR	PrCa:	prostate	(TFAP4),	prostate	(RUNX2),	mesendoderm	303 

(PDX1),	and	cervix	(NFYB).	Moreover,	for	seven	EUR	traits,	three	IMPACT	annotations	were	304 

independently	associated:	height	(adipocytes,	fibroblasts,	lung),	neutrophil	count	(monocytes,	305 

adipocytes,	B	cells),	osteoporosis	(myoblasts,	mesenchymal	stem	cells,	cervix),	IBD	(T	cells	and	306 

two	B	cell	annotations),	platelet	count	(PBMCs,	hematopoietic	progenitors,	muscle),	systolic	307 

blood	pressure	(endothelial,	mesenchymal	stem	cells,	fibroblasts),	and	white	blood	cell	count	(B	308 

cells,	adipocytes,	hematopoietic	progenitors).	Among	functionally	correlated	traits,	we	309 

observed	consistency	in	the	independently	associated	IMPACT	annotations,	proposing	a	310 

biological	basis	for	genetic	correlation	(Supplement).	In	general,	identifying	functional	311 

concordance	among	traits	with	genetic	correlation	less	than	1	provides	a	quantitative	biological	312 

basis	for	the	dissimilarity	between	traits	that	is	orthogonal	to	genetic	correlation	313 

approaches42,57–60.	We	found	that	the	heritability	z-score,	an	index	correlated	with	the	power	of	314 

S-LDSC6,	is	strongly	predictive	of	the	number	of	independent	regulatory	associations	(linear	315 

regression	coefficient	=	0.06,	P	<	1.2e-5),	while	sample	size	is	not	(linear	regression	P	=	0.59)	316 

(SF10).	Our	findings	suggest	that	multiple	independent	regulatory	programs	can	contribute	to	317 

the	heritability	of	complex	traits,	and	we	can	detect	them	when	phenotypes	are	sufficiently	318 

heritable	and	the	GWAS	provide	accurate	effect	size	estimation.	319 

	320 
Concordance	of	polygenic	regulation	between	European	and	East	Asian	populations	321 

	322 
Previous	studies	have	shown	concordance	of	polygenic	effects	between	EUR	and	EAS	323 

individuals	in	RA1	and	between	EUR	and	African	American	individuals	in	PrCa61.	However,	to	our	324 

knowledge,	the	extent	of	these	shared	effects	has	not	yet	been	comprehensively	investigated	325 
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across	many	functional	annotations	and	in	diverse	traits.	Assuming	shared	causal	variants	in	326 

EUR	and	EAS,	IMPACT	annotations	that	best	prioritize	shared	genomic	regions	regulating	a	327 

phenotype	presumably	also	disproportionately	capture	similar	amounts	of	heritability	in	both	328 

EUR	and	EAS	(Figure	1D-I,	Figure	3A).	Here,	we	quantified	the	SNP	heritability	(%*)	of	29	traits	in	329 

EUR	and	EAS	captured	by	a	set	of	approximately	100	independent	IMPACT	regulatory	330 

annotations	(Figure	3B,	SF11,	Online	Methods).	Briefly,	we	selected	independent	annotations	331 

using	an	iterative	pruning	approach:	for	each	trait,	we	ranked	all	annotations	by	%*	and	332 

removed	any	annotation	correlated	with	Pearson	&2	>	0.5	to	the	lead	annotation	and	then	333 

repeated.	As	IMPACT	annotations	are	independent	of	population-specific	factors	including	LD	334 

and	allele	frequencies	(SF4),	they	are	poised	to	capture	the	genome-wide	distribution	of	335 

regulatory	variation	in	a	population-independent	manner.	We	observed	that	%*	estimates	336 

across	annotations	for	EUR	and	EAS	are	strikingly	similar,	with	a	regression	coefficient	that	is	337 

consistent	with	identity	(slope	=	0.98,	sem	=	0.04).	For	example,	we	observed	a	strong	Pearson	338 

correlation	of	%*	between	EUR	and	EAS	for	asthma	(r	=	0.98),	RA	(r	=	0.87),	MCV	(r	=	0.96),	PrCa	339 

(r	=	0.90),	and	height	(r	=	0.96).	Cross-ancestry	functional	concordance	is	not	specific	to	IMPACT	340 

annotations	as	we	observed	a	similar	relationship	among	cell-type-specific	histone	marks	using	341 

the	same	strategy	(SF12)24.	Additionally	considering	513	cell-type-specifically	expressed	gene	342 

sets	(SEG)24,34,	we	could	not	observe	cross-ancestry	concordance	due	to	too	few	significant	343 

associations	shared	between	populations.	Furthermore,	we	found	that	none	of	our	%*	344 

estimates	show	evidence	of	population	heterogeneity	(all	two-tailed	difference	of	means	P	>	345 

0.56	at	5%	FDR).	This	might	be	a	result	of	noise	around	the	%*	estimates,	such	that	true	346 

heterogeneity	is	too	subtle	to	detect	in	this	regime.	Overall,	our	results	suggest	that	regulatory	347 

variants	in	EUR	and	EAS	populations	are	equally	enriched	within	the	same	classes	of	regulatory	348 



	
Figure	3 

 
Figure	3	legend.	Multi-ethnic	concordance	of	regulatory	elements	defined	by	IMPACT.	A)	Illustrative	concept	of	concordance	versus	discordance	of	!*	
between	populations.	Concordance	implies	a	similar	distribution	of	causal	variants	and	effects	captured	by	the	same	annotation.	The	implications	of	

discordant	!*	are	not	as	straightforward.	B)	Common	per-SNP	heritability	(!*)	estimate	for	sets	of	independent	IMPACT	annotations	across	29	traits	shared	

between	EUR	and	EAS.	Left:	color	indicates	!*	significance	(!*	greater	than	0	at	5%	FDR)	in	both	populations	(blue),	significant	in	only	EUR	(green),	
significant	in	only	EAS	(red),	significant	in	neither	(gray).	Line	of	best	fit	through	annotations	significant	in	both	populations	(dark	purple	line,	95%	CI	in	light	

purple).	Black	dotted	line	is	the	identity	line,	y	=	x.	Right:	color	indicates	association	to	one	of	five	exemplary	traits.		
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elements.	This	does	not	exclude	the	possibility	of	population-specific	variants	or	causal	effect	349 

sizes,	as	evidenced	by	13	traits	with	multi-ethnic	genetic	correlation	significantly	less	than	1	(P	<	350 

0.05/29	tested	traits).	Rather,	these	results	suggest	that	causal	biology,	including	disease-351 

driving	cell	types	and	their	regulatory	elements,	underlying	polygenic	traits	and	diseases,	is	352 

largely	shared	between	these	populations.	353 

	354 

Assessing	variant	prioritization	with	IMPACT	toward	improving	polygenic	risk	score	models	355 
	356 

PRS	models	have	great	clinical	potential:	previous	studies	have	shown	that	individuals	357 

with	higher	PRS	have	increased	risk	for	disease8–12.	In	the	future,	polygenic	risk	assessment	may	358 

become	as	common	as	screening	for	known	mutations	of	monogenic	disease,	especially	as	it	359 

has	been	shown	that	individuals	with	severely	high	PRS	may	be	at	similar	risk	to	disease	as	are	360 

carriers	of	rare	monogenic	mutations12.	However,	since	PRS	heavily	rely	on	GWAS	with	large	361 

sample	sizes	to	accurately	estimate	effect	sizes,	there	is	specific	demand	for	the	transferability	362 

of	PRS	from	populations	with	larger	GWAS	to	populations	underrepresented	by	363 

GWAS2,3,5,8,17,18,22.	As	we	would	like	to	investigate	the	ability	of	IMPACT	annotations	to	improve	364 

the	trans-ethnic	application	of	PRS,	we	chose	pruning	and	thresholding	(P+T)	as	our	model3,8.	365 

P+T	models,	as	the	name	suggests,	select	an	independent	subset	of	all	SNPs	genome-wide	by	366 

pruning	away	SNPs	correlated	by	LD	and	then	further	thresholding	on	GWAS	P	value.	We	367 

elected	to	use	P+T	rather	than	LDpred5,22	or	AnnoPred21,	which	compute	a	posterior	effect	size	368 

estimate	for	all	SNPs	genome-wide	based	on	membership	to	functional	categories.	With	P+T,	369 

we	can	partition	the	genome	by	IMPACT-prioritized	and	deprioritized	SNPs,	whereas	the	370 

assumptions	of	the	LDpred	and	AnnoPred	models	do	not	support	the	removal	of	variants,	371 

making	it	difficult	to	directly	assess	improvement	due	to	IMPACT	prioritization.	Moreover,	372 
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these	models	have	not	been	explicitly	designed	or	tested	for	the	trans-ethnic	application	of	PRS	373 

and	thus	are	beyond	the	scope	of	our	work.	We	conventionally	define	PRS	as	the	product	of	374 

marginal	SNP	effect	size	estimates	and	imputed	allelic	dosage	(ranging	from	0	to	2),	summed	375 

over	M	SNPs	in	the	model.	Conventional	P+T	utilizes	marginal	effect	size	estimates	and	376 

therefore	is	susceptible	to	selecting	a	tagging	variant	over	the	causal	one	guided	by	GWAS	P	377 

values	which	are	inflated	by	LD.	Therefore,	we	hypothesized	that	any	observed	improvement	378 

due	to	incorporation	of	IMPACT	annotations	could	result	from	prioritization	of	variants	with	379 

higher	marginal	multi-ethnic	effect	size	correlation	(Figure	1D-II),	suggesting	these	SNPs	are	less	380 

likely	to	be	solely	associated	by	linkage.		381 

Hence,	we	tested	this	hypothesis	before	assessing	PRS	performance.	We	selected	21	of	382 

29	summary	statistics	shared	between	EUR	and	EAS	with	an	identified	lead	IMPACT	association	383 

in	both	populations.	Then,	using	EUR	lead	IMPACT	annotations	for	each	trait	(ST9),	we	384 

partitioned	the	genome	in	three	ways:	(1)	the	SNPs	within	the	top	5%	of	the	IMPACT	385 

annotation,	(2)	the	SNPs	within	the	bottom	95%	of	the	IMPACT	annotation,	and	(3)	the	set	of	all	386 

SNPs	genome-wide	(with	no	IMPACT	prioritization).	We	then	performed	stringent	LD	pruning	387 

(&2<	0.1	from	EUR	individuals	of	phase	3	of	1000	Genomes62),	guided	by	the	EUR	GWAS	P	value,	388 

to	acquire	sets	of	independent	SNPs	in	order	to	compute	a	EUR-EAS	marginal	effect	size	389 

estimate	correlation	(Online	Methods).		390 

For	example,	in	height,	EUR-EAS	effect	size	estimates	of	SNPs	in	the	top	5%	partition	are	391 

2.1-fold	more	similar	(Pearson	r	=	0.29,	Figure	4A)	than	those	in	the	bottom	95%	partition	(r	=	392 

0.14,	Figure	4B)	and	1.6-fold	more	similar	than	the	set	of	all	SNPs	(r	=	0.18).	For	each	of	17	393 

GWAS	P	value	thresholds,	the	marginal	multi-ethnic	effect	size	correlation	among	the	top	5%	of	394 

IMPACT	SNPs	tended	to	be	greater	than	the	set	of	all	SNPs	genome-wide	across	21	traits	(all	17	395 



	
Figure	4 

 
Figure	4	legend.	Mechanism	by	which	IMPACT	prioritization	of	shared	regulatory	variants	might	improve	trans-ethnic	PRS	performance.	A)	Estimated	effect	

sizes	of	variants	from	genome-wide	EUR	and	EAS	height	summary	statistics	in	the	top	5%	of	the	lead	IMPACT	annotation	for	EUR	height.	Proportions	of	

variants	in	each	quadrant	indicated	in	light	blue.	B)	Estimated	effect	sizes	from	genome-wide	EUR	and	EAS	height	summary	statistics	of	variants	in	the	

bottom	95%	of	the	same	lead	IMPACT	annotation	for	height;	mutually	exclusive	with	SNPs	in	A).	C)	Meta-analysis	of	multi-ethnic	marginal	effect	size	

correlations	between	populations	across	21	traits	shared	between	EUR	and	EAS	cohorts	over	17	GWAS	P	value	thresholds	(with	reference	to	the	EUR	
GWAS).	Vertical	bars	indicate	the	95%	CI	around	the	Pearson	r	estimate.	D)	Number	of	SNPs	(log10	scale)	at	each	P	value	threshold	for	each	partition	of	the	
genome	corresponding	to	C). 
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one-tailed	paired	wilcoxon	P	<	6.9e-4)	(Figure	4C-D).	Furthermore,	this	observation	was	396 

consistent	across	individual	traits	(SF13).	For	comparison,	we	performed	a	similar	analysis	397 

restricted	to	the	five	representative	traits	using	alternative	functional	annotations:	lead	398 

annotations	from	513	cell-type-specifically	expressed	gene	sets	(SEG)34	and	220	cell-type-399 

specific	histone	mark	annotations	(CTS)6	(SF14).	Marginal	effect	size	correlation	with	IMPACT	400 

was	comparable	to	CTS	when	comparing	the	top	5%	of	SNPs	to	the	set	of	all	SNPs	(at	each	of	17	401 

GWAS	P	value	thresholds,	one-tailed	paired	wilcoxon	P	>	0.16,	SF15).	Similarly	assessing	402 

marginal	effect	size	correlation,	IMPACT	prioritization	was	comparable	to	SEG	prioritization	(at	403 

each	of	17	GWAS	P	value	thresholds,	one-tailed	paired	wilcoxon	P	>	0.06,	SF15).	Overall,	our	404 

results	suggest	that	we	might	anticipate	improved	trans-ethnic	portability	of	PRS	models	by	405 

prioritizing	SNPs	in	key	functional	annotations	by	decreasing	the	likelihood	of	selecting	SNPs	406 

solely	associated	by	linkage.	407 

While	increased	concordance	of	marginal	effect	size	estimates	might	lead	to	improved	408 

trans-ethnic	portability,	increased	concordance	of	allelic	heterozygosity	could	also	play	a	role,	409 

as	allele	frequency	greatly	affects	disease	predictive	power.	To	this	end,	we	computed	the	410 

correlation	of	EUR	and	EAS	heterozygosity	(Online	Methods),	defined	as	2pq,	across	the	same	411 

sets	of	variants	and	traits	considered	in	Figure	4.	We	observed	IMPACT-selected	variants	412 

tended	to	have	lower	concordance	of	heterozygosity	than	conventional	P+T	selected	variants	413 

for	each	of	17	GWAS	P	value	thresholds	across	21	traits	(all	one-tailed	paired	wilcoxon	P	<	0.05,	414 

SF16,	SF17).	This	is	likely	due	to	an	enrichment	of	common	variants	among	IMPACT-prioritized	415 

SNPs	and	a	depletion	of	rare	or	low	frequency	variants	(SF16).	We	then	considered	'(),	a	416 

measure	of	the	reduction	of	heterozygosity	and	an	indicator	of	population	divergence,	among	417 

IMPACT-selected	SNPs	(Online	Methods).	Although	'()	trended	higher	among	IMPACT-selected	418 



 

18 

SNPs	than	among	conventional	P+T	selected	variants	across	21	traits	at	each	P	value	threshold	419 

(all	one-tailed	paired	wilcoxon	P	<	0.03),	the	large	confidence	intervals	of	the	meta-analyzed	'()	420 

across	traits	suggest	that	this	trend	does	not	indicate	substantial	differences	(across	each	of	17	421 

P	value	thresholds,	all	two-tailed	difference	of	means	P	>	0.98,	SF18,	SF19).	These	results	422 

suggest	that	neither	increased	concordance	of	heterozygosity	nor	substantial	difference	in	'()	is	423 

a	consequence	of	IMPACT	prioritization.		424 

	425 
Models	incorporating	IMPACT	functional	annotations	improve	the	trans-ethnic	portability	of	426 

polygenic	risk	scores	427 

Finally,	we	addressed	our	hypothesis	that	IMPACT	annotations	improve	the	trans-ethnic	428 

portability	of	PRS	(Figure	1D-III).	For	each	of	the	21	previously	analyzed	traits,	we	built	a	PRS	429 

using	effect	size	estimates	from	EUR	summary	statistics	and	applied	it	to	predict	phenotypes	of	430 

EAS	individuals	from	BioBank	Japan	(BBJ)	(Figure	5A).	Here,	we	compare	two	PRS	models,	both	431 

blind	to	any	EAS	genetic	or	functional	information	and	removing	SNPs	with	LD	&2>	0.2,	432 

according	to	European	individuals	from	phase	3	of	1000		Genomes62:	(i)	standard	P+T	PRS	and	433 

(ii)	functionally-informed	P+T	PRS	using	a	subset	of	SNPs	prioritized	by	the	lead	EUR	IMPACT	434 

annotation	(Online	Methods).	In	functionally-informed	PRS	models,	for	each	trait	separately,	435 

we	a	priori	selected	the	subset	of	top-ranked	IMPACT	SNPs	(top	1%,	5%,	10%,	or	50%)	which	436 

explained	the	closest	to	50%	of	common	SNP	heritability	(Online	Methods).	This	ensures	that	437 

functional	prioritization	captures	approximately	the	majority	of	trait-relevant	genetic	variation	438 

and	the	cumulative	genetic	signal	among	functionally-prioritized	variants	was	consistent	across	439 

traits,	allowing	for	varying	degrees	of	polygenicity.	For	all	PRS	models,	we	report	results	from	440 

the	most	accurate	model	across	nine	EUR	GWAS	P	value	thresholds.		441 



Figure	5	

 
Figure	5	legend.	Identifying	shared	regulatory	variants	with	IMPACT	annotations	to	improve	the	trans-ethnic	portability	of	PRS.	A)	Study	design	applying	EUR	

summary	statistics-based	PRS	models	to	all	individuals	in	the	BBJ	cohort.	(B)	Phenotypic	variance	(R
2
)	of	BBJ	individuals	explained	by	EUR	PRS	using	two	

methods:	functionally-informed	PRS	with	IMPACT	(pink)	and	standard	PRS	(blue).	Error	bars	indicate	95%	CI	calculated	via	1,000	bootstraps.	C)	Phenotypic	

variance	(R
2
)	of	BBJ	individuals	across	5	exemplary	traits	explained	by	EUR	IMPACT	annotations	relative	to	lead	deep	learning	annotations	(DL),	cell-type-

specific	histone	modification	annotations	(CTS),	and	lead	cell-type-specifically	expressed	gene	sets	(SEG). Error	bars	indicate	95%	CI	calculated	via	1,000	
bootstraps.	D)	Study	design	to	compare	trans-ethnic	(EUR	to	EAS)	to	within-population	(EAS	to	EAS)	improvement	afforded	by	functionally-informed	PRS	

models.	For	each	trait,	5,000	randomly	selected	individuals	from	BBJ	designated	as	PRS	samples.	Remaining	BBJ	individuals	used	for	GWAS	to	derive	EAS	

summary	statistics-based	PRS;	no	shared	individuals	between	GWAS	samples	and	PRS	samples.	E)	Improvement	from	standard	PRS	to	functionally-informed	

PRS	compared	between	trans-ethnic	(EUR	to	EAS)	and	within-population	models	(EAS	to	EAS)	using	the	study	design	in	D).	In	boxplots,	center	line	indicates	

the	median	value;	box	limits	indicate	the	upper	(third)	and	lower	(first)	quartiles;	the	length	of	whiskers	indicate	values	up	to	1.5	times	the	interquartile	

range	in	either	direction.		 
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For	each	of	21	tested	traits,	we	observed	that	functionally-informed	PRS	using	IMPACT	442 

captured	more	phenotypic	variance	than	standard	PRS	(49.9%	mean	relative	increase	in	!2,	443 

Figure	5B,	SF20,	ST16-18).	The	mean	phenotypic	variance	explained	across	traits	by	444 

functionally-informed	PRS	(!2=	2.1%,	sem	=	0.4%)	was	greater	than	by	standard	PRS	(!2=	1.5%,	445 

sem	=	0.3%,	one-tailed	paired	wilcoxon	P	<	4.8e-7).	For	19	of	21	traits,	IMPACT-informed	PRS	446 

significantly	outperformed	standard	PRS	(19	one-tailed	difference	of	means	P	<	0.05);	for	447 

platelet	count	P	=	0.052	and	for	basophil	count	P	=	0.40.	Using	10,000	bootstraps	of	the	PRS	448 

sample	cohort,	we	found	that	the	IMPACT-informed	PRS	!2	estimate	was	consistently	greater	449 

than	the	standard	PRS	estimate	for	all	traits	except	basophil	count	(all	bootstrap	P	<	0.004,	450 

ST18).	Intriguingly,	we	found	a	strong	correlation	between	the	IMPACT-informed	PRS	!2	451 

estimate	and	the	EAS	heritability	captured	by	the	top	5%	of	SNPs	according	to	the	lead	EUR	452 

IMPACT	annotation	(Pearson	r	=	0.60,	P	=	0.004,	ST19).	While	EAS	heritability	metrics	did	not	453 

influence	the	choice	of	lead	IMPACT	annotation	(EUR-based),	this	result	is	unsurprising	given	454 

the	strong	multi-ethnic	regulatory	concordance	we	observed	previously	(Figure	3C)	in	which	455 

annotations	that	capture	more	heritability	in	EUR	tend	to	capture	more	in	EAS.	Even	though	456 

IMPACT-informed	PRS	models	include	between	7.5%	and	79.1%	of	the	total	number	of	SNPs	457 

included	in	standard	P+T	models,	the	increased	prediction	!2	indicates	that	prioritization	of	458 

putatively	functional	variants	over	tagging	variation	compensates	for	the	reduction	of	included	459 

loci.	We	observed	the	largest	improvement	for	RA	from	!2	=	1.4%	(sd	=	0.33%)	in	the	standard	460 

PRS	to	!2	=	4.1%	(sd	=	0.53%,	one-tailed	difference	of	means	P	<	9.8e-6)	in	the	functionally-461 

informed	PRS	using	the	B	cell	TBP	IMPACT	annotation.	For	asthma,	!2	=	0.37%	(sd	=	0.10%)	in	462 

the	standard	PRS	versus	!2	=	0.75%	(sd	=	0.14%,	P	<	0.013)	in	the	functionally-informed	PRS.	463 

For	MCV,	!2	=	3.0%	(sd	=	0.10%)	in	the	standard	PRS	versus	!2	=	4.1%	(sd	=	0.12%,	P	<	1.2e-13)	464 
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in	the	functionally-informed	PRS.	For	PrCa,	!2	=	4.5%	(sd	=	0.36%)	in	the	standard	PRS	versus	465 

!2	=	6.4%	(sd	=	0.45%,	P	<	6.1e-4)	in	the	functionally-informed	PRS.	For	height,	!2	=	4.2%	(sd	=	466 

0.10%)	in	the	standard	PRS	versus	!2	=	5.6%	(sd	=	0.12%,	P	<	8.7e-20)	in	the	functionally-467 

informed	PRS.	We	observed	significantly	greater	PRS	improvement	among	traits	with	lower	468 

estimated	polygenicity	(linear	regression	coefficient	=	-0.02,	P	<	0.006).	As	previously	stated,	469 

more	highly	polygenic	traits	may	be	driven	by	multiple	cell	types,	of	which	only	one	may	be	470 

captured	by	the	lead	IMPACT	annotation. 	471 

For	our	five	representative	traits	asthma,	RA,	MCV,	PrCa,	and	height,	we	further	472 

compared	functionally-informed	PRSEUR	using	IMPACT	to	models	using	123	DeepSEA	and	473 

Basenji	deep	learning	annotations54–56,63,	220	cell-type-specifically	expressed	genes	(SEG)34	and	474 

513	cell-type-specific	histone	modification	tracks	(CTS)6	(Figure	5C,	ST11,	ST20,	Online	475 

Methods).	To	our	knowledge,	deep	learning	annotations	have	not	previously	been	applied	to	476 

improving	PRS	model	performance.	IMPACT	explained	greater	phenotypic	variance	on	average	477 

(mean	!2=	4.2%,	sem	=	1.0%)	than	the	top	deep	learning	annotations	(3.2%,	sem	=	0.8%,	one-478 

tailed	paired	wilcoxon	P	=	0.03)	and	was	a	significant	improvement	for	four	of	five	traits	(four	479 

one-tailed	difference	of	means	P	<	0.006),	while	only	trending	higher	for	asthma	(P	=	0.13).	480 

IMPACT	also	explained	greater	phenotypic	variance	on	average	than	SEG	(0.9%,	sem	=	0.2%,	481 

one-tailed	paired	wilcoxon	P	=	0.03)	and	this	difference	was	individually	detected	for	each	of	482 

five	traits	(all	one-tailed	difference	of	means	P	<	3.4e-6).	This	trend	was	not	as	strong	when	483 

comparing	IMPACT	to	CTS	(!2=	2.6%,	sem	=	0.5%,	one-tailed	paired	wilcoxon	P	=	0.06),	484 

although	this	difference	was	individually	detected	for	three	of	five	traits	(three	one-tailed	485 

difference	of	means	P	<	1.1e-4).	We	performed	a	similar	bootstrap	analysis	as	above,	yielding	486 
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similar	results;	for	only	RA	and	asthma	did	IMPACT-PRS	not	produce	consistently	greater	487 

!2	estimates	than	CTS-PRS	(ST20).		488 

Functionally-informed	PRS	might	to	some	extent	compensate	for	population-specific	LD	489 

differences	between	populations.	Hence,	we	hypothesized	that	IMPACT-informed	PRS	would	490 

improve	standard	PRS	moreso	in	the	trans-ethnic	prediction	framework,	in	which	EUR	PRS	491 

models	predict	EAS	phenotypes,	than	in	a	within-population	framework,	in	which	EAS	PRS	492 

models	predict	EAS	phenotypes.	Here,	we	define	within-population	PRS	as	PRSEAS	and	trans-493 

ethnic	PRS	as	PRSEUR	to	avoid	confusion.	In	order	to	directly	compare	PRS	model	improvements	494 

between	PRSEAS	and	PRSEUR,	we	evaluated	prediction	accuracy	on	the	same	individuals.	Briefly,	495 

we	partitioned	the	BBJ	cohort	to	reserve	5,000	individuals	for	PRS	testing,	derived	GWAS	496 

summary	statistics	from	the	remaining	individuals,	and	performed	P+T	PRS	modeling	and	497 

prediction	as	done	above	(Figure	5D,	SF21-23,	ST21-22,	Online	Methods).	For	functionally-498 

informed	PRSEAS,	we	selected	lead	IMPACT	annotations	from	S-LDSC	results	using	GWAS	499 

summary	statistics,	as	done	above,	on	the	partition	of	the	BBJ	cohort	excluding	the	5,000	PRS	500 

test	individuals.	We	defined	improvement	as	the	percent	increase	in	!2	from	standard	to	501 

functionally-informed	PRS;	therefore,	differences	in	PRS	performance	due	to	intrinsic	factors,	502 

such	as	GWAS	power	or	genotyping	platform,	cancel	out.	In	both	scenarios,	we	observed	503 

substantial	positive	improvements:	averaged	across	the	21	traits	in	the	trans-ethnic	setting	504 

(mean	percent	increase	in	!2=	47.3%,	sem	=	8.1%,	one-tailed	z	test	P	<	2.7e-9)	and	in	the	505 

within-population	setting	(mean	percent	increase	in	!2=	20.9%,	sem	=	6.6%,	one-tailed	z	test	P	506 

<	7.5e-4).	Indeed,	this	revealed	a	significantly	greater	improvement	in	the	trans-ethnic	507 

application	than	in	the	within-population	application	across	the	21	traits	(one-tailed	paired	508 

wilcoxon	P	<	0.012,	Figure	5E).	To	ensure	that	the	disease	predictive	power	of	our	PRS	models	509 
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was	not	driven	by	a	few	loci	of	large	effect,	we	performed	a	block	jackknife	over	the	genome	to	510 

establish	confidence	intervals	around	the	!2	estimates	as	well	as	the	relative	improvement	of	511 

IMPACT	PRS	over	standard	P+T	PRS	!2	estimates	(Online	Methods,	SF24).	We	observed	narrow	512 

intervals	around	the	estimates;	for	functionally-informed	PRSEUR	and	functionally-informed	513 

PRSEAS,	we	observed	the	average 95% confidence interval around !2	estimates	to be 0.001 and	514 

around	the	relative	!2	improvement	to	be	0.11	in	PRSEUR		and	0.07	in	PRSEAS.	These	results	515 

suggest	that	the	disease	predictive	power	of	IMPACT-informed	P+T	models	are	not	driven	by	a	516 

few	loci	of	large	effect.	Moreover,	our	results	for	case/control	diseases	are	not	affected	by	517 

estimating	marginal	effect	sizes	on	the	logistic	scale,	rather	than	the	liability	scale64	(Online	518 

Methods,	SF25,	SF26,	Supplement).		519 

Overall,	our	results	reveal	that	functional	prioritization	of	SNPs	using	IMPACT	improves	520 

both	trans-ethnic	and	within-population	PRS	models,	but	is	especially	advantageous	for	the	521 

trans-ethnic	application	of	PRS.	We	believe	there	are	at	least	three	important	mechanisms	at	522 

play	leading	to	this	improvement.	First,	restricting	P+T	PRS	to	variants	that	are	more	likely	to	be	523 

functional	increases	the	likelihood	of	selecting	a	causal	variant	with	disease	predictive	power	in	524 

the	target	population.	Previous	studies	support	that	the	identification	of	causal	variants	can	525 

improve	PRS	accuracy3,5,65.	Second,	as	shown	in	Figure	3B,	the	per-SNP	heritability	captured	by	526 

IMPACT	annotations	tends	to	be	similar	in	EUR	and	EAS	populations,	thereby	ensuring	that	527 

IMPACT-informed	SNP	prioritization	schemes	using	EUR	data	are	still	effective	in	EAS.	Third,	as	528 

shown	in	Figure	4C,	SNPs	prioritized	by	IMPACT	have	more	consistent	multi-ethnic	marginal	529 

effect	sizes,	which	means	that	these	SNPs	are	less	likely	to	be	solely	associated	by	linkage	and	530 

therefore	might	improve	performance.	In	conclusion,	our	results	nominate	the	prioritization	of	531 

SNPs	according	to	functional	annotations,	especially	using	IMPACT,	as	a	potential	tentative	532 
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solution	for	the	lack	of	trans-ethnic	portability	of	PRS	models.	While	individuals	of	European	533 

ancestry	dominate	current	genetic	studies,	population-nonspecific	cell-type-specific	IMPACT	534 

annotations	can	help	transfer	highly	powered	EUR	genetic	data	to	study	still	underserved	535 

populations.		536 

	537 
Discussion	538 
	539 

In	this	study,	we	created	a	compendium	of	707	cell-type-specific	regulatory	annotations	540 

(Web	Resources)	capturing	disproportionately	large	amounts	of	polygenic	heritability	in	95	541 

complex	traits	and	diseases	in	EUR	and	EAS	populations.	We	then	proposed	a	three-step	542 

framework	to	assess	how	well	prioritization	of	regulatory	variants	with	functional	data	can	543 

improve	multi-ethnic	genetic	comparisons.	First,	we	showed	that	heritability-enriched	544 

regulatory	elements	between	EUR	and	EAS	populations	capture	indistinguishable	proportions	545 

of	heritability	across	29	complex	traits.	Second,	we	showed	that	functional	prioritization	of	546 

variants	selects	those	with	more	highly	correlated	marginal	effect	sizes	between	populations,	547 

while	negligibly	affecting	the	distribution	of	'();	this	might	explain	the	improvement	driven	by	548 

functional	prioritization	in	P+T	PRS	models	which	use	marginal	effect	sizes.	Third,	we	showed	549 

that	variant	prioritization	with	IMPACT	annotations	results	in	consistently	improved	PRS	550 

prediction	accuracy,	especially	for	the	trans-ethnic	application;	potentially	due	to	overcoming	551 

large	population-specific	influences	such	as	LD	which	is	an	important	challenge	of	multi-552 

population	models.		553 

Designing	genetic	models	for	each	complex	trait	or	disease	that	capture	risk	for	the	full	554 

diversity	of	the	human	population	will	be	challenging.	This	necessitates	approaches	that	555 

effectively	transfer	predictive	genetic	information	from	well	studied	populations	to	less	well	556 

studied	populations.	Without	such	approaches,	the	potential	clinical	benefits	of	PRS	risk	to	557 
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preferentially	benefit	populations	with	larger	training	GWAS	datasets,	e.g.	European	558 

populations.	As	it	will	ultimately	be	useful	to	develop	PRS	scores	that	can	be	applied	widely	to	559 

many	populations	and	admixed	individuals66,67,	IMPACT	may	have	the	potential	to	be	a	tool	that	560 

can	prioritize	key	variants	for	this	purpose.	We	argue	for	the	use	of	biologically	diverse	IMPACT	561 

annotations	to	capture	relevant	genetic	signal	and	compensate,	to	some	extent,	for	differences	562 

in	LD	across	populations.	To	begin	to	address	this,	we	investigated	PRS	using	EUR	summary	563 

statistics	and	genotyping	data	from	five	populations	(AFR,	AMR,	EAS,	EUR,	and	SAS)	in	1000	564 

Genomes	and	found	that	IMPACT-informed	PRS	moderately	reduces	the	inter-population	565 

variation	of	PRS	values	compared	to	standard	P+T	(one-tailed	paired	wilcoxon	P	=	0.003,	52.0%	566 

reduction	in	mean	F-statistic	for	EUR	PRS	(SF27)	and	one-tailed	paired	wilcoxon	P	=	0.002,	567 

64.6%	reduction	in	mean	F-statistic	for	EAS	PRS	(SF28)),	suggesting	functional	prioritization	can	568 

stabilize	PRS	values	(Online	Methods).	However,	other	challenges	such	as	differences	in	allele	569 

frequencies	will	need	to	be	addressed	in	future	studies.		570 

Our	work	and	that	of	others	advocate	for	larger	genetic	studies	in	understudied	571 

populations3	and	the	use	of	orthogonal	LD-independent	functional	data	to	improve	the	disease	572 

predictive	power	of	genetic	models	in	such	populations,	as	even	increasing	GWAS	power	573 

cannot	mitigate	the	bias	introduced	by	LD.	Our	study	should	not	in	any	way	be	interpreted	as	a	574 

justification	for	reducing	the	emphasis	on	the	need	for	diversity	in	human	genetic	studies.	A	575 

future	which	offers	high	powered	GWAS	in	understudied	populations	will	transform	the	study	576 

of	trans-ethnic	portability	from	an	issue	of	EUR-biased	health	disparities	to	a	question	of	577 

population-specific	genetic	and	environmental	effects.	578 

Our	work	provides	insight	into	the	potential	clinical	implementation	of	PRS	and	broader	579 

genetic	applications	that	aim	to	integrate	multi-ethnic	data.	This	study	suggests	that	functional	580 
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data	may	be	leveraged	to	improve	portability	of	genetic	models;	however,	the	issue	of	581 

portability	need	not	be	restricted	to	two	different	continental	populations	as	shown	in	this	582 

study,	but	rather	will	be	relevant	to	any	PRS	model	in	which	the	target	individual	is	not	583 

perfectly	matched	to	the	ancestry	of	the	training	population.	While	we	did	not	assess	a	PRS	584 

model	using	meta-analyzed	summary	statistics	from	two	or	more	populations	in	this	study,	we	585 

believe	that	this	approach	could	be	effective	in	identifying	shared	regulatory	variants,	especially	586 

for	populations	with	limited	GWAS	sample	size.		587 

We	believe	that	IMPACT	may	prioritize	phenotype-driving	regulatory	variation.	We	have	588 

shown	IMPACT	to	be	more	effective	at	capturing	genetic	variation	of	complex	traits	than	589 

commonly	used	functional	annotations	such	as	experimentally-derived	cell-type-specific	590 

histone	marks,	gene	sets,	and	deep	learning	regulatory	annotations.	We	hypothesize	the	utility	591 

of	IMPACT	comes	from	1)	cell-type-specificity	of	TF	binding	models	which	locate	key	classes	of	592 

regulatory	elements	and	2)	the	integration	of	thousands	of	experimentally-derived	annotations,	593 

which	presumably	removes	noise	and	enriches	for	biological	signal	present	in	each	individual	594 

annotation.	Here,	we	did	not	demonstrate	the	potential	utility	of	IMPACT	to	perform	functional	595 

fine-mapping	to	reduce	credible	sets	beyond	our	previous	work30,	due	to	lack	of	sufficient	gold	596 

standards	with	causal	experimental	validation	and	the	limitation	to	genome-wide	significant	597 

variants.	The	specific	application	of	IMPACT	in	multi-ethnic	fine-mapping	needs	to	be	further	598 

investigated.	599 

We	must	consider	several	important	limitations	of	our	work.	First,	our	functional	600 

insights	are	limited	by	biases	in	publicly	available	TF	ChIP-seq	data,	as	IMPACT	cannot	evaluate	601 

TF-cell	type	pairs	for	which	training	data	does	not	exist.	These	biases	include	preference	toward	602 

workhorse	cell	lines	over	primary	cells	or	cell	types	that	are	rarer	or	more	difficult	to	assay.		603 
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Furthermore,	these	biases	include	preference	toward	TFs	with	evidence	of	cell	type	expression	604 

and	regulation,	specific	antibodies,	and	known	sequence	motifs	for	compatibility	with	IMPACT.	605 

These	biases	directly	affect	our	ability	to	capture	trait-relevant	biology,	leading	to	606 

systematically	better	heritability	enrichment	for	autoimmune	diseases	and	hematological	traits	607 

for	which	the	relevant	cell	type	is	easier	to	assay,	e.g.	blood,	and	worse	enrichment	for	brain-608 

related	traits	for	which	the	relevant	tissue	is	difficult	to	assay.	Future	work	may	be	needed	to	609 

adapt	the	IMPACT	framework	to	model	the	epigenetic	signatures	of	functional	marks	beyond	TF	610 

binding	to	capture	a	broader	array	of	trait-relevant	biological	processes.	In	the	future,	the	cell-611 

type-specific	functional	training	data	for	IMPACT	may	be	replaced	by	newer	experimental	612 

strategies	to	map	enhancers.	For	example,	high-throughput	CRISPR	screens	paired	with	assays	613 

for	open	chromatin	could	be	used	to	precisely	redefine	regulatory	landscapes.	Second,	we	used	614 

multi-ethnic	data	to	argue	for	the	utility	of	our	approach.	However,	the	robustness	of	multi-615 

ethnic	comparisons	for	a	given	phenotype	rely	on	properties	surrounding	the	recruitment	of	616 

individuals	or	the	exact	genotyping	platform	used	in	various	biobanks,	which	may	result	in	617 

cohort-bias	that	inflates	within-population	PRS	prediction	accuracy.	For	example,	BBJ	is	a	618 

disease	ascertainment	cohort,	in	which	each	individual	has	any	one	of	47	common	diseases68,69;	619 

therefore,	BBJ	control	samples	are	not	comparable	to	healthy	controls	of	UKBB.	Other	biases	620 

may	arise	from	clinical	differences	in	phenotyping.	Also,	we	only	considered	a	single	non-EUR	621 

population	in	this	study,	although	the	disparity	in	trans-ethnic	portability,	and	hence	resulting	622 

benefit	from	functional	annotations,	may	be	greater	in	other	non-EUR	populations.	Therefore,	623 

the	results	presented	here	may	only	be	used	to	interpret	the	improved	portability	of	genetic	624 

data	between	EUR	and	EAS	populations.	Further	work	is	required	to	assess	potential	625 

improvements	in	portability	between	EUR	and	other	populations.				626 
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In	conclusion,	we	demonstrated	that	IMPACT	annotations	improve	the	comparison	of	627 

genetic	data	between	populations	and	trans-ethnic	portability	of	PRS	models	using	ancestrally	628 

unmatched	data.	While	a	long-term	goal	of	the	field	must	be	to	diversify	GWAS	and	other	629 

genetic	studies	in	non-European	populations,	it	is	imperative	that	genetic	models	be	developed	630 

that	work	in	multiple	populations.	Such	initiatives	will	necessitate	the	use	of	population-631 

independent	functional	annotations,	such	as	IMPACT,	in	order	to	capture	shared	biological	632 

mechanisms	regulated	by	complex	genetic	variation.		633 
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