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David Melancon

Functionality through multistability:
from deployable structures to soft robots

Inflating a rubber balloon leads to a dramatic shape change: a property that is exploited in
the design of deployable structures and soft robots. On the one hand, inflation can be used to
transform seemingly flat shapes into shelters, field hospitals, and space modules. On the other
hand, fluiddriven actuators capable of complex motion can power highly adaptive and inherently
safe soft robots. In both cases, just like the simple balloon, only one input is required to achieve
the desired deformation. This simplicity, however, brings strict limitations: deployable structures
need continuous supply of pressure to remain upright and soft actuators are restricted to unimodal
and slow deformation.

In this dissertation, I embrace multistability as a paradigm to improve the functionality of in
flatable systems. In particular, I take inspiration from elastic instabilities arising from simple ge
ometric principles—such as folding a 2D sheet of paper or snapping a curved cap to its inverse
shape—to design balloons engineered to have a multiwelled energy landscape.

In the first part of this dissertation, I draw inspiration from origami to design multistable and in
flatable structures at the meter scale. First, I propose a systematic way of building bistable origami
shapes with two compatible and closed configurations. Then, using experiments and numerical
analyses, I demonstrate that under certain conditions, pneumatic inflation can be used to navigate
between the stable states. Finally, I combine the simple shapes to build largescale functional struc
tures such as shelters and archways. Because these deployable systems are multistable, pressure
can be disconnected when they are fully expanded.

In the second part, I again use origami as a platform to create soft actuators capable of mul
timodal and arbitrary deformations based on a single pressure input. I start by focusing on the
classic Kresling origami: a pattern that once folded, takes on the shape of a faceted cylinder that
simply extends, contracts, and twists upon inflation and deflation. By modifying one of the facets,
I show that the module can become bistable, i.e. the modified facet snaps at a certain pressure
threshold. This snapthrough instability breaks the rotational symmetry and unlocks bending as
a deformation mode upon subsequent deflation. By combining multiple of these modified Kres
ling cylinders—each one snapping at different pressure levels—I then build actuators that deform
along vastly different trajectories from one single source of pressure. Guided by experiments and
numerical analyses, I inverse design actuators with prescribed deformation modes to demonstrate
their potential for robotic applications.
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Finally, I exploit snapping instabilities to decouple the input signal from the output deformation
in soft actuators. In particular, I design a soft machine capable of jumping based on the snapping
of spherical shells. As this instability is accompanied with the sudden release of energy at constant
volume, i.e. no influx of fluid is needed to trigger the large deformation, the robot jumps upon
an arbitrarily slow volume input. Using experiment and numerical simulations, I optimize the
actuator’s release of energy and jumping height.
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1
Introduction

“This is going to be fun and easy.” – A first year grad student
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1.1 Multistability as a paradigm for functionality

Balloons are among the most simple engineering systems. Yet this very simplicity—large defor
mation upon the application of internal pressure—makes them an ideal platform for a wide range
of applications, particularly in the fields of deployable structures and soft robots. In the former,
the objective is to transform rapidly and reliably a compact object to a functional shape while max
imizing the expansion ratio along the process [1–4]. In the latter, flexibility of each of the robot’s
components is required to ensure adaptability to unstructured environments and safer humanrobot
interactions [5–7]. This explains why highly sophisticated balloons have been recently used to de
ploy space modules [8] and field hospitals [9] as well as to design pneumatic actuators that make soft
robots bend [10], grip [11,12], crawl [13,14], swim [15,16], and jump [17,18] (see Figure 1.1).

a

b

c

d

Figure 1.1: Engineered balloons. (a) A deployable space module [8]. (b) Inflatable field hospitals [9]. (c) A microflu‐
idic 3D‐printed soft robot [19]. (d) A soft robotic gripper capable of ultragentle manipulation [12].

While these systems are highly complex, their overall response can be essentially captured by
analyzing the pressurevolume relation of a simple spherical balloon where, during inflation, the
internal pressure increases with respect to the input volume* (see blue curve in the top panel of
Figure 1.2a). This monotonic response makes it easy to deploy an inflatable structure or actuate a

*The pressurevolume response shown in Figure 1.2a assumes a Gent material model with stretch
limiting behavior [20].
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soft robot, however, it also severely limits their functionality. These limitations can be highlighted
by plotting the energy landscape associated with a monotonic pressurevolume curve (see red curve
in the bottom panel of Figure 1.2a), which can be calculated as

E =

∫
pdΔV, (1.1)

where E is the elastic energy, p the internal pressure, and ΔV the volume change. Clearly, because
the energy landscape is monostable—i.e. there exists only a single stable state at ΔV = 0—a first
limitation is that typical inflatable structures require a continuous supply of pressure to remain
deployed. Any sudden release of pressure results in unavoidable collapse. Additionally, inflat
able actuators with near linear energy landscapes show a strong coupling between the input signal
(e.g. pressure or volume) and the output deformation, resulting in unimodal deformation and slow
response.

0
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states

Figure 1.2: Advantages of multistable energy landscapes in inflatable systems. Pressure‐volume relations nor‐
malized by atmospheric pressure patm and initial volume V0 (top) and integrated energy landscapes normalized
by shear modulus μ (bottom) of monostable and multistable balloons. (a) Inflating a monostable spherical bal‐
loon stores elastic energy Estored. (b) A multistable inflatable system could be deployed to a second stable state
in which an energy barrier Ebarrier would prevent collapse. (c) A multistable inflatable system driven by pres‐
sure could undergo isobaric snap‐through instabilities to switch between different deformation modes such as
extension, twist, and bending. (d) A multistable inflatable system driven by volume could undergo isochoric
snap‐through instabilities to trigger energy release and fast deformation upon an arbitrary slow volume input.

These limitations could be overcome by designing inflatable systems with multiwelled energy
landscapes—i.e. multiple stable states where the energy is locally minimized. First, leveraging
bistability (i.e. two stable states) could lead to the design of pressuredeployable structures that
lock in place after deploying from a flat to an expanded configuration. In this case, the internal
pressure (instead of simply rising with volume) would eventually become negative upon inflation
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with the enclosed area bellow the xaxis on the pressurevolume curve representing the energy
barrier Ebarrier in the deployed state preventing collapse upon a sudden release of pressure (see
Figure 1.2b). Naturally, by providing enough energy through vacuum, i.e. Evacuum > Ebarrier, the
bistable system could also be brought back to the initial compact state.

Second, a fluidic actuator with a multistable energy landscape could be inflated to undergo non
reversible snapthrough and snapback instabilities to decouple the input signal from the output
deformation (see Figures 1.2cd). In Figure 1.2c, pressure is used as the signal to trigger snap
through transitions and switch between arbitrary modes of deformation such as extension, twisting,
and bending. In Figure 1.2d, the actuator snaps under constant volume, triggering the fast release
of elastic energy upon an arbitrary slow input of volume.

1.2 Objectives

Motivated by these opportunities, this dissertation’s overarching goal is to provide functionality
through multistability with a particular focus on the following objectives:

Objective 1: Design inflatable structures with compact and expanded stable states
Objective 2: Enable multimodal deformation in soft robots based on a single input signal
Objective 3: Enable fast deformation in soft robots based on an arbitrary slow input signal

1.3 Approach

To meet the dissertation’s goal, we leverage simple geometry in inflatable structures and actua
tors to tune their energy landscape. In particular, to accomplish the first two objectives, we take
inspiration from origami, the ancient art form of paperfolding, to realize multistable deployable
structures and multimodal actuators. In the last decade, origami has emerged as a new design
paradigm in architecture and robotics because of its functional properties such as shape morph
ing [21–24], high expansion ratio [25], and easy actuation through selffolding [26,27] or inflation [28–30]

(see examples of origami devices leveraging deployability and multistability in Figure 1.3). More
importantly, the geometry of the crease pattern can be rationally designed to support a multiwelled
energy landscape [31–38]. This dissertation brings together the deployability and multistability of
origamiinspired devices to enable the design of multistable and inflatable structures and fluidic
soft actuators capable of multimodal deformation based on a single input.
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a

b

c

d

Figure 1.3: Deployability and multistability of origami patterns. (a) 3D Stanford bunny (left) folded out of a 2D
creased sheet of paper (right) [24]. (b)Deployable solar panel inspired by origami [39]. (c) The different stable states
of the multistable Kresling pattern [40]. (d) The two stable states of an origami degree‐four vertex [38].

Finally, to realize the third objective of enabling fast deformation in soft robots, we take in
spiration from snapping instabilities as they can decouple the slow input signal from the output
deformation and triggers rapid events [41–45]. Examples of such instabilites are reported in Figure
1.4. In particular, we focused on the snapping of pressurized spherical shells. Importantly, this
fully elastic instability—if the shell is made of a soft material—triggers the sudden release of en
ergy at constant volume. In this dissertation, we harness this isochoric snapthrough transition as a
powerful nonlinear mechanism to decouple the slow input single from the output deformation and
spark rapid events.

5



a

b

c

d

Figure 1.4: Snapping instabilities. (a) The snapping of the Venus flytrap [43]. (b) Ametamaterial made of snapping
beams [46]. (c) A jumping popper [44]. (d) A soft bistable valve [42].

1.4 Dissertation overview

Chapters 2 to 4 constitute the core of this dissertation, with each chapter based on a firstauthor
article published in or submitted to a peer reviewed journal.

Chapter 2 introduces the concept of rigidwalled deployable structures inspired from origami
that are at the same time inflatable and multistable. Guided by simple geometric principles and
experiments, we first show that a polyhedron comprised of rigid triangular facets connected by
elastic hinges can have multiple stable configurations. We then present a library of simple origami
shapes that can be inflated and deflated between stable states. Finally, we combine these units to
build functional structures at the meterscale. The result is a comprehensive, scale independent
platform to design and analyze complex deployable structures that can be actuated by simple air
pressure. Because they have multiple stable states, these structures can remain deployed at atmo
spheric pressure and retracted by applying vacuum.

Still using origami as an inspiration, chapter 3 focuses on fluidic actuators capable of arbitrary
deformation modes based on a single pressure input. The building block of our multimodal actu
ators are based on the Kresling pattern that simply extends when inflated and contracts and twists
when deflated. To enable additional deformation modes, we modify the pattern’s geometry by
adding two valley creases in one of the panels to make it bistable. During inflation the module
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transitions to a second stable state where the panel is snapped outward. In that state, the breakage
of rotational symmetry gives rise to bending upon deflation up until a critical negative pressure is
reached and the module resets to its initial stable state. We then couple multiple of these building
blocks—each having different pressure thresholds at which the modified panel snaps—to create
inflatable actuators capable of complex and multimodal deformation. Finally, guided by a combi
nation of experiments and numerical analyses, we inverse design the actuators’ deformation and
show their potential as smart robotic systems.

In chapter 4, we embrace structural instabilities to enable the fast actuation in fluidic soft ac
tuators. In particular, we draw inspiration from the snapping of elastic shells—an instability that
suddenly releases energy—to design a simple soft machine capable of jumping. As this snap
through instability happens at constant volume, there is no influx of fluid needed to trigger the
energy release, resulting in a quasiinstantaneous and large deformation. Furthermore, using finite
element modelling, we optimize the design of our jumpers to maximize the released energy and,
consequently, jumping height. We also demonstrate the actuator’s ability to be reset to the initial,
undeformed state, enabling cyclic jumping.

Finally, the Outlook in chapter 5 provides a condensed summary of the results and contributions
as well as a description of future directions. A complete list of my publications can be found at the
end of this dissertation.
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2.1 Abstract

From stadium covers to solar sails, we rely on deployability for the design of largescale structures
that can quickly compress to a fraction of their size [1–4]. Historically, two main strategies have
been pursued to design deployable systems. The first and most common approach involves mecha
nisms comprising interconnected bar elements, which can synchronously expand and retract [47–49],
occasionally locking in place through bistable elements [50,51]. The second strategy instead, makes
use of inflatable membranes that morph into target shapes bymeans of a single pressure input [52–54].
Neither strategy however, can be readily used to provide an enclosed domain able to lock in place
after deployment: the integration of protective covering in linkagebased constructions is challeng
ing and pneumatic systems require a constant applied pressure to keep their expanded shape [55–57].
Here, we draw inspiration from origami, the Japanese art of paper folding, to design rigidwalled
deployable structures that are multistable and inflatable. Guided by geometric analyses and exper
iments, we create a library of bistable origami shapes that can be deployed through a single fluidic
pressure input. We then combine these units to build functional structures at the meterscale, such
as arches and emergency shelters, providing a direct pathway for a new generation of largescale
inflatable systems that lock in place after deployment and offer a robust enclosure through their
stiff faces.

2.2 Introduction

Large, deployable structures should ideally (i) occupy the minimum possible volume when folded;
(ii) be autonomous when deploying; (iii) lock in place after deployment; and (iv) provide a struc
turally robust shell (if they are designed to define a closed environment). To satisfy all these require
ments, we here present a novel approach with roots in the Japanese art of paper folding: origami.
Extensively used in robotics [58–62], metamaterials [21,25,63–65] and structures [66–69], origami princi
ples have potential to lead to efficient largescale deployable structures as they offer (i) a versa
tile creasebased approach to shape design [22–24]; (ii) an easy actuation through inflation, if en
closed [28–30]; (iii) selflocking capabilities when designed to support multiple energy wells [31–38];
and (iv) the possibility to create a protective environment through their faces. While previous
origami systems have explored inflatability and multistability separately [28–38], here we show that
these two properties can coexist, unlocking an unprecedented design space of meterscale inflat
able structures that harness multistability to maintain their deployed shape without the need for
continuous actuation (see schematics in Figure 2.1a).
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2.3 Triangular facets as a platform for bistable and inflatable struc
tures

To create inflatable and bistable origami structures, we start by considering a triangular building
block ABC and denote with α and β the internal angles enclosed by the edges ABAC and ABBC,
respectively (see Figure 2.1b). The triangle initially lies in the xyplane and is subsequently de
ployed through a rotation around its edge BC. As shown in Figure 2.1b, this deployment results in
the displacement wA of vertex A along the zdirection as well as in a volume VABC under the triangle

VABC =
wA||AB||2

6
sin α

sin (α+ β)

√
sin2 β−

w2
A

||AB||2
, (2.1)

where ||AB|| indicates the length of AB. By focusing on the xyplane, through simple geometrical
considerations, one can see that if β ∈ [π/4 − α/2, π/2 − α], the projection of vertex A during the
deployment intersects the circle circumscribed to the initial configuration (see Figure 2.1b) when

wA = wc
A = ||AB||

√
1− cos2 β

sin2 (α+ β)
. (2.2)

It follows from the inscribed angle theorem [70] that for wA = wc
A the angle α is recovered on the

xyplane (see the Supplementary Materials, Section A.1 for details). As such, if triangles of this
type are used as building blocks to form origami polyhedra, the assembled systems will have two
distinct compatible configurations: one flat (identified by wA = 0) and one expanded (identified by
wA = wc

A). By contrast, any configuration with 0 < wA < wc
A will be geometrically frustrated, with

incompatibility, ΔABC, that can be estimated as

ΔABC = ||ACxy|| · sin
(
αxy − α

)
, (2.3)

where ACxy and αxy are the projection on the xyplane of edge AC and angle α, respectively (note
that αxy = α only for wA = 0 and wc

A — see the inset in Figure 2.1c).
Therefore, to accommodate geometric frustration and realize closed origami shapes (i.e. shapes

forming a closed inflatable cavity) capable of switching between two compatible configurations,
we connect stiff triangular building blocks to stretchable hinges. Importantly, whereas polyhedra
comprised of rigid triangular faces connected by perfect rotational hinges are known to be either
rigid [71] or volumeinvariant during deployment [72,73], we anticipate our closed origami with stiff
facets and flexible hinges to be bistable. Indeed, for hinges with low enough bending stiffness,
we expect the energy profile of the closed origami to exhibit two local minima in correspondence
of the flat and expanded compatible states (where the energy in the system can only be attributed
to hinge bending), separated by an energy barrier caused by the deformation of the facets and the
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Figure 2.1: Triangular facets as building blocks for large‐scale inflatable and bistable origami structures. (a)
Schematics illustrating the deployment via inflation of a large‐scale origami structure comprising triangular facets.
(b) Deployment of two triangular building blocks with angles (α(1), β(1)) and (α(2), β(2)). (c) Projected view of the
deployment. (d) Evolution of incompatibility, ΔABC, and underlying volume, VABC, as a function of the deployment
height,wA. (e) Evolution of incompatibility,ΔABC, as a function of the underlying volume, VABC. (f‐h)Contourmaps
of the compatible deployment height, wc

A, maximum incompatibility, Δmax
ABC, and inflation constraint, hABC.

hinges required to accommodate geometric incompatibility.
To gain more insights into the behavior of our building blocks, we focus on the deployment of

two triangles with (α(1), β(1)) = (30◦, 50◦) and (α(2), β(2)) = (30◦, 33◦). In Figure 2.1d, we report
the evolution of the incompatibility, ΔABC, and the underlying volume, VABC, as a function of the
deployment height, wA, for both triangles. We find that the triangle with β(1) = 50◦ is characterized
by both larger wc

A and maximum incompatibility, Δmax
ABC = max(ΔABC). However, for this triangle

the expanded compatible state is located after the configuration corresponding to the maximum
underlying volume (wc(1)

A > wVmax
ABC(1)

A ) and, therefore, cannot be reached when VABC is controlled.
As such, whereas we expect a closed origami structure realized using these triangles to have two
stable states with very different internal volume, we cannot use inflation to switch between the two
of them. By contrast, the triangle with β(2) = 33◦ exhibits much smaller Δmax

ABC and wc
A, but can be

deployed when controlling the volume since wc(2)
A < wVmax

ABC(2)
A . This suggests that closed origami

realized using this triangle can be deployed using inflation, but have an expanded configuration
very similar to the flat one. Further, we expect such structures to be only marginally bistable, as
small perturbations are enough to overcome the energy barrier associated to the small Δmax(2)

ABC .
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While in Figures 2.1bd we focus on two geometries, we next consider all deployable triangles
(i.e. triangles with π/4−α/2 ≤ β ≤ π/2−α) and seek for those that can potentially lead to deployable
structures that are simultaneously bistable and inflatable. Towards this end, we use wc

A to estimate
the change in shape between the compatible states and Δmax

ABC to evaluate bistability (i.e. to estimate
the energy required to snap back from the expanded to the flat state). Further, we introduce an
inflation constraint

hABC =
ΓVmax

ABC

Γc
, (2.4)

where ΓVmax
ABC and Γc are the arc lengths measured on the ΔABCVABC curve between the flat stable

state and the state of maximum volume and between the flat and expanded stable configurations,
respectively (see Figure 2.1e). It follows from Eq. 2.4 that only geometries with log hABC ≥ 0 can
be deployed through fluidic actuation as those are the only ones for which the expanded compatible
configuration is reached before the onewithmaximumvolume during inflation (note that log hABC =

−1.46 and 0.322 for the two triangles considered in Figures 2.1bc).
In Figures 2.1fh, we report wc

A, Δmax
ABC, and hABC for all deployable triangles. We find that both

wc
A and Δmax

ABC are maximized in the region close to the upper boundary of the domain (i.e. when
β → π/2 − α). By contrast, the triangles deployable through inflation (for which log hABC ≥ 0) are
all close to the lower boundary of the domain (i.e. when β → π/4−α/2) and exhibit small values of
wc
A and Δmax

ABC. As such, these results indicate that we cannot realize closed origami structures that
are at the same time bistable and inflatable using a single triangle building block.

2.4 Extending the design space to enable deployment via inflation

In an attempt to realize inflatable closed origami structures with stable flat and expanded configura
tions, we turn our focus to systems realized by assembling two different triangles with internal an
gles (α(1), β(1)) and (α(2), β(2)). To beginwith, we arrange 2n triangles of each type to form two identi
cal layers with nfold symmetry and connect them at their outer boundaries (see Figures 2.2a and c).
The resulting starlike structures (reminiscent of an origami waterbomb base [32,74]) define an inter
nal volume V = 2n(V(1)

ABC+V(2)
ABC), exhibit geometric incompatibility Δ = 2n(Δ(1)

ABC+Δ(2)
ABC) and are in

flatable only if log h = log(ΓVmax
/Γc) ≥ 0, where ΓVmax and Γc are the arc lengths measured on the ΔV

curve between the states with V = 0 and V = Vmax = max(V) and between the two stable configura
tions, respectively. However, it is important to note that to realize these starlike structures the pair
of triangles cannot be arbitrarily chosen. This is because geometric compatibility is guaranteed only
if the two triangles have (i) identical deployed compatible height (i.e. wc

A
(1) = wc

A
(2)); (ii) connecting

deployed edges (either AB or AC) of equal length; and (iii) angles that satisfy α(1) + α(2) = π/n.
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Figure 2.2: Bistable and inflatable origami shapes. (a‐f) Examples of (a‐b) Designs I, (c‐d) Design II, and (e‐f)
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incompatibility of the triangular building blocks, Δmax

ABC. (g)Deployment of a triangular building block that has been
initially rotated around its edge BC to have a height wi

A. (h) Contour map of angle β∗IV required to obtain Designs
IV that are both inflatable and bistable. (i) Maximum incompatibility, Δmax, versus the inflation constraint, h, for
500, 000 random geometries of Designs I‐IV. (j) Pressure‐volume curves recorded when testing our centimeter‐
scale prototypes. See Supplementary Information in Section A.1 for rationale behind geometry and material
selection.
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As shown in Figure 2.2a, we first connect the two triangles via their longest edge (||AB(1)|| =
||AB(2)||) and refer to these structures as Designs I. We identify all possible geometries by enforcing
requirements (i)(iii) and find that designs deployable through inflation (for which log h ≥ 0) not
only have a deployed shape almost indistinguishable from the initial flat one (see insets of struc
tures in Figure 2.2b), but are also made of two triangles with very low Δmax

ABC (see area highlighted in
magenta in Figure 2.2b). As such, the inflatable Designs I exhibit very lowmaximum incompatibil
ity Δmax = max(Δ) (see magenta markers in Figure 2.2i for 500, 000 randomly chosen geometries).
To investigate the performance of these inflatable designs, we fabricate and test the geometry with
log h ≥ 0 and the highest Δmax (Design IA with (α(1)IA, β

(1)
IA) = (22◦, 35◦) and (α(2)IA, β

(2)
IA) = (68◦, 14◦)

for which Δmax/||AB|| = 2.67 × 10−2— see magenta circular marker in Figure 2.2i). A centimeter
scale prototype with ||AB(1)|| = ||AB(2)|| = 60 mm is constructed by connecting 3Dprinted stiff
triangular facets with compliant hinges made of thin polyester sheets and an inflatable cavity is
formed by coating it with a 0.5 mmthick layer of silicone rubber (see insets in Figure 2.2j and the
Supplementary Materials, Section A.2 for details). The sample is then deployed by supplying wa
ter at a constant rate of 10 mL/min with a syringe pump (Pump 33DS, Harvard Apparatus), while
monitoring the pressure with a pressuresensor (MPXV7025DP — see the Supplementary Materi
als, Section A.3 for details). We find that the pressure, p, increases monotonically with V until the
maximum volume for the cavity is reached (see Figure 2.2j). As such, our test reveals that the Δmax

of this design is not large enough to make the fabricated structure bistable.
Next, with the goal of increasing the geometric incompatibility of the inflatable designs, we

investigate the response of starlike structures in which the longest edge of one triangle, AB(1), is
connected to the shortest edge of the other one, AC(2) (we refer to these designs as Designs II—
see Figure 2.2c). Again, we impose requirements (i)(iii) to identify all possible geometries and
find that those deployable through inflation comprise two very distinct triangles: a first one with
low Δmax

ABC but log h
(1)
ABC > 0 (see area highlighted in dark red in Figure 2.2d) and a second one with

substantially larger Δmax
ABC but log h

(2)
ABC < 0 (see area highlighted in bright red in Figure 2.2d). Re

markably, we find that the combination of these different triangles results in inflatable designs with
higher maximum incompatibility compared to Designs I (see redmarkers in Figure 2.2i for 500, 000
randomly chosen geometries). As a result, when we fabricate and test the inflatable geometry that
maximizes Δmax (Design IIBwith (α(1)IIB, β

(1)
IIB) = (43.6◦, 25.2◦) and (α(2)IIB, β

(2)
IIB) = (46.4◦, 33.5◦) for

which Δmax/||AB|| = 8.58 × 10−2—see red marker in Figure 2.2i) we observe a negative pressure
region (see red curve in Figure 2.2j). This confirms the presence of an expanded stable configu
ration that can be reached through fluidic actuation (see Figure A.23 for details) and indicate the
existence of a threshold value of Δmax/||AB|| (dependent on materials and fabrication process) that
marks the transition from monostable to bistable behavior.

Whereas the connection of two different triangles side by side enables us to design inflatable
and bistable structures, it limits us to starlike shapes. To expand the range of shapes, we next
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arrange the two triangles on top of each other in the flat configuration and mirror them twice to
form an inflatable cavity (we refer to these structures as Design III—see Figure 2.2e). This leads
to geometries comprising eight triangles that are initially flat and transform into wedgelike shapes
upon deployment. As for Designs I and II, geometric compatibility for Designs III requires a pair
of triangles with wc

A
(1) = wc

A
(2) and ||AB(1)|| = ||AC(2)||, but the closure of the cavity is only possible

if α(1)III = α(2)III . By imposing these constraints and log h ≥ 0, we find that inflatable Designs III can be
realized by combining two triangles with log hABC < 0 and, therefore, substantially larger ΔABC

max (see
areas highlighted in yellow in Figure 2.2f). This is because the internal volume of Designs III is
defined by the difference between V(1)

ABC and V
(2)
ABC (i.e. V = 4(V(1)

ABC−V(2)
ABC)) instead of their sum as for

Designs III. Importantly, by plotting Δmax vs. h for 500, 000 randomly chosen Designs III, we find
that these geometries are characterized by much larger maximum incompatibility in the inflatable
domain. As a result, when we fabricate and test Design IIIC with (α(1)IIIC, β

(1)
IIIC) = (37.1◦, 30.0◦)

and (α(2)IIIC, β
(2)
IIIC) = (37.1◦, 40.6◦), (for which Δmax/||AB|| = 9.93 × 10−2), we record even larger

values of negative pressure (i.e. larger energy barrier preventing the snap back) compared to the
previous bistable Design IIB (see Figure 2.2j).

So far, all identified designs (i.e. Designs IIII) have been realized by assembling triangles that
initially lie in the xyplane and recover their angle α on such plane for wA = wc

A. However, the
triangle in the xyplane can also be seen as the projection of a triangle with internal angles α and β
that has been initially rotated around its edge BC to have a height wi

A and projected angles αixy and
βixy (see Figure 2.2g). In this case, if βixy ∈ [π/4 − αixy/2, π/2 − αixy], the angle αixy is preserved for
two distinct deployment heights, wi

A and wc
A (see inset in Figure 2.2g and Supplementary Materials,

Section A.1 for details). As such, we can use these triangles as building blocks to realize star
like origami shapes with two expanded stable configurations in correspondence of wi

A and wc
A. An

interesting feature of this family of structures (which we refer to as Designs IV) is that, if we select
αixy = π/n (n = 3 , 4 , . . .) and

βIV ≥ β∗IV = tan−1
(√

2 tan βixy
)
, (2.5)

the resulting origami are bistable and inflatable even if made out of a single triangular building
block (see Supplementary Materials, Section A.1 for details). This is because, for βIV ≥ β∗IV, VABC

monotonically decreases when deploying the triangle from wi
A to wc

A, so the compatible state corre
sponding to wc

A can always be reached by deflation. To demonstrate the concept, in Figure 2.2i, we
consider 500, 000 different geometries of Design IV for which αixy = π/4, βixy ∈ [π/4−αIV/2, π/2−αIV],
and βIV ∈ [βixy, π/2[ and find that all geometries with βIV ≥ β∗IV are inflatable. Further, since β∗IV is
not affected by αixy (see map of β∗IV in Figure 2.2h), inflatable origami structure can be realized by
assembling highly incompatible triangles lying near the upper bound of their design space. This re
sults in inflatable designs exhibiting a maximum incompatibility, Δmax, much higher than Designs
IIII and with a flat stable state in the xzplane (since for β = π/2 − α the compatible deployment
height is such that the deployed triangle lies in the orthogonal xzplane with wc

A = ||AC||— see
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Supplementary Materials, Section A.1 for details). In full agreement with these findings, when
we fabricate and test Design IVD with (αIVD, βIVD) = (29◦, 56◦) and (αixy, βixy) = (45◦, 33◦), (for
which Δmax/||AB|| = 2.05× 10−1), we record the largest negative pressure and energy barrier in the
deployed stable state (see green curve in Figure 2.2j).

2.5 Meterscale functional structures

As a next step, we use the simple geometries presented in Figure 2.2 as basis to design functional
and easily deployable structures for realworld applications and build them at the meter scale.

α(1)
III-C θIII-C

b

c

β(1)
III-C

β(2)
III-C
α(2)

III-C

θIII-C'

α(1)
III-C'

α(2)
III-C'β(2)

III-C'

β(1)
III-C'

β(1)
III-C

α(1)
III-C'

α(1)
III-C

β(1)
III-C'

θIII-C

θIII-C'

Design III-C Design III-C'
a

Flat Deployed Flat Deployed

Deflated

Inflated

t

x

x
yz

x
yz

z

30 cmΔV 

d

Figure 2.3: Meter‐scale inflatable archway. (a) The twoDesign III units used to construct the arch. (b) Schematics
illustrating an inflatable archway comprising sixDesign III‐C and sevenDesign III‐C′ units. (c)To facilitate inflation,
we create a single cavity by cutting all units through their xzmirror plane, separating the two resulting parts by a
distance t, and connecting them with rectangular facets. (d) Fabricated meter‐scale inflatable arch in its flat and
deployed stable configurations.

To begin with, we use the expanded wedgelike shapes of Designs III as building blocks to
realize an inflatable archway. Focusing on Design IIIC, we find that in the expanded stable state
it has an opening angle θIIIC = 40◦ (see Figure 2.3a). To design a deployable arch, we couple
this unit with a different geometry of the same design family (which we referred to as Design
IIIC′) that (i) is bistable and deployable through inflation; (ii) has an edge AB of equal length;
(iii) has an opening angle θIIIC′ such that, when we alternate m + 1 units of Designs IIIC′ with
m units of Designs IIIC, we span an angle of 180◦ in the expanded configuration; and (iv) has
the larger triangle (referred to as triangle 1 in Figure 2.2) identical to that of Design IIIC but
mirrored (i.e. α(1)IIIC = β(1)IIIC′ and β(1)IIIC = α(1)IIIC′—see Figure 2.3b) to ensure compactness in the flat
state. By inspecting the database of Figure 2.2j, we find that for m = 6 all above requirements
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are satisfied when Design IIIC’ is characterized by (α(1)IIIC′ , β(1)IIIC′ , α(2)IIIC′ , β(2)IIIC′) = (30◦, 37◦, 30◦,
and 51◦). However, since the resulting archway comprises 13 inflatable cavities, multiple pressure
inputs would be needed to inflate it. To simplify the deployment process, we modify the structure
by cutting it through the xz mirror plane, separating the two resulting parts by a distance t, and
connecting them with rectangular facets (see insets in Figure 2.3c). Since this procedure does not
affect the geometric deployment of the triangles, we expect the additional facets to have negligible
impact on the structure’s multistability, but to facilitate its inflatability by creating a single cavity.
In Figure 2.3d, we show a meterscale version of this archway with ||AB|| = 30 cm and t = 10 cm
constructed out of corrugated plastic sheets (clear 8 ft × 4 ft, 4mm thick sheets from Corrugated
Plastics). To build this structure, we use a digital cutting system (G3 cutter from Zünd) to cut two
parts (each comprising both triangular building blocks and rectangular facets— see Figure A.20)
and pattern the hinges by scoring the sheets to locally reduce the thickness of the material. We then
connect the two digitally cut parts using adhesive tape to form an airtight cavity (see Supplementary
Materials, Section A.2 for details). In the folded configuration, the structure has a height of 20 cm
and a width of 30 cm. Upon pressurization, it inflates into a 60 cm tall and 150 cm wide archway
that, because of its multistability, preserves its shape even when the pressure is suddenly released.
Finally, it can be folded back to the initial flat state by applying vacuum to overcome the energy
barrier.

Another strategy to realize functional shapes is to merge components of different design fami
lies together to form a single cavity. As an example, we can create an inflatable tentlike geometry
by combining one layer of a Design I with another one of a Design IV (see Figure 2.4a). To ensure
successful merging, the two layers must have (i) outer edges BC of equal length, and (ii) the same
xyprojection in the two compatible states (i.e. α(1)I = α(2)I = αixy and β(1)I = β(2)I = βixy). Further,
to realize structures with a fully flat compatible state, we choose the triangles to lie on the upper
boundary of the deployable domain (i.e. triangles with β(1)I = π/2− α(1)I and β(2)I = π/2− α(2)I ). By
imposing these constraints, we can design tentlike structures that can be folded flat and expanded
via inflation (see Figure A.24 for a centimeterscale version), but their compactness is limited by
the long AB edge of the Design IV. To further decrease the occupied volume in the compact state,
we truncate the triangular building blocks of the Design IV layer into quadrilaterals and add addi
tional layers of Design IV, some of which can be folded inwardly. As shown in Figure 2.4b, these
operations do not only reduce the initial volume, but also result in a more livable sheltered space in
the deployed state. To demonstrate this strategy, we fabricate the structure shown in Figure 2.4b at
the meterscale applying the same construction process used for the inflatable archway (see Supple
mentary Materials, Section A.2 for details). As shown in Figures 2.4c and d, the structure can be
folded completely flat (with the ceiling folded inward) to occupy a space of 1× 2× 0.25 m. When
an input pressure is provided, the structure first expands to a stable configuration with the roof
folded inward. Upon further pressurization the roof snaps outward and the final deployed shape of
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Figure 2.4: Meter‐scale inflatable shelter. (a) A tent‐like design can be created by merging one layer of a Design
I with another one of a Design IV. Note in that the initial, zero‐volume configuration of the tent, both layers are
in their compatible expanded state, whereas in the final inflated configuration of the tent, both layers are in their
initial state (flat for Design I and initially rotated for Design IV). (b) The initial volume can be further decreased by
truncating the triangular facets into quadrilaterals and arranging successive layers of Design IV. (c) Schematics
illustrating the deployment process. (d‐e) The fabricated meter‐scale inflatable shelter can be inflated from a
compact state to a fully deployed state. Because of multistability, the door can be opened and make the internal
space accessible.

2.5× 2.6× 2.6m is reached. Importantly, because of the multistability, at this point the door can be
opened without impacting structural integrity, making the internal space accessible. Finally, using
vacuum, the shelter can be folded back to the flat configuration.

2.6 Conclusion

In summary, we demonstrated how geometry can be efficiently exploited to realize inflatable
origami structures characterized by two stable configurations—one compact and one expanded.
The design methodology presented in this work could be extended both to larger and smaller
scales if properly accounting for loading conditions and fabrication challenges [4,52,53,62]. Since
our functional structures are multistable, they can also be designed to achieve target deployment
sequences (Figure A.25). In addition, by introducing building blocks comprising more than two
different facets, we expect to further expand the range of achievable shapes (Figure A.26). To
that end, complementary to our geometric model and experiments, a mechanical model capable
of predicting the full energy landscape [33,75] could provide a useful tool to guide such exploration.
Finally, building on our results, deployable structures able to switch between targeted stable states
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could be efficiently identified by generalizing our design rules to arbitrary origami polyhedra and,
combining them with stochastic optimization algorithms, solve the inverse design problem.

2.7 Methods

Details of the design, materials, and fabrication methods are summarized in Supplementary Mate
rials, Sections A.1 and A.2. The experimental procedure of the inflation with water to measure the
pressurevolume curve is described in Supplementary Materials, Section A.3. Finally, additional
information about extending our methodology to more complex designs is provided in Supplemen
tary Materials, Section A.4.
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3.1 Abstract

Recently, inflatable elements integrated in robotics systems have enabled complex motions as a
result of simple inputs. However, these fluidic actuators typically exhibit unimodal deformation
upon inflation. Here, we present a new design concept for modular, fluidic actuators that can switch
between deformation modes as a response to an input threshold. Our system comprises bistable
origami modules in which snapping breaks rotational symmetry, giving access to a bending defor
mation. By tuning geometry, the modules can be designed to snap at different pressure thresholds,
rotate clockwise or counterclockwise when actuated, and bend in different planes. Due to their
ability to assume multiple deformation modes as response to a single pressure input we call our
systemMuAOri, or Multimodal Actuated Origami. MuAOri provides an ideal platform to design
actuators that can switch between different configurations, reach multiple, predefined targets in
space, and move along complex trajectories.

3.2 Introduction

Deformable and inflatable components have increasingly been integrated into robotic systems, as
they provide complex deformations [76,77], the ability to morph into target shapes [55,57,78–80], and
inherent compliance, which in turn enables safe interactions [81–83]. These, however, suffer from a
common drawback: an intrinsic onetoone relationship between input pressure and output defor
mation. Upon inflation in fact, fluidic actuators exhibit unimodal deformation, which accentuates
as pressure increases [10]. In order to overcome this and create complex functionality, multiple
actuators can be assembled and carefully sequenced [13,84–87], or multiple chambers of a single ac
tuator can be pressurized independently [88,89]. As an alternative route, bidirectional bending has
been achieved by harnessing material inextensibility [90] and nonlinearity [91,92]. However, a de
sign strategy that enables arbitrary deformation modes with a single pressure input is still absent.

In an effort to design novel robotic systems, engineers and scientists have recently explored
origami principles to create machines that are selffoldable [26,27,58] and realizable in a variety of
materials using both planar and 3D fabrication techniques [93–95]. The functionality of such origami
robots can be further expanded if the crease pattern supports a nonconvex energy landscape, which
enables multiple stable states [31,32,34–37,96–98]. For example, selflocking grippers [38] and energy
absorbing components for drones [99] were designed out of multistable origami sheets based on
the tiling of the degreefour vertex; bistable mechanical bits and logic elements were created by
introducing multistability in the classic waterbomb origami pattern [32,100,101] and, finally, bistable
configurations of the Kresling pattern [96,102] were exploited to generate locomotion via peristaltic
motion [103] or differential friction [104], create flexible joints for robotic manipulation [105], and
store mechanical memory [97,106]. All together, these examples show that multistable origami are a
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promising platform to realize fluidic actuators capable of supporting arbitrary deformation modes
when actuated with a single input.

Inspired by the potential of the Kresling pattern in the design of robotic systems, here we em
ploy this classic origami fold as a building block to realize multioutput, but singleinput actuators.
As part of our strategy, we start with a monostable Kresling pattern and make it bistable by intro
ducing two additional valley creases in one of its panels (see Figures 3.1ab). During inflation, this
panel unfolds and snaps outward, breaking the rotational symmetry of the module. Importantly,
upon vacuum such asymmetry gives rise to bending in the opposite direction to the bistable panel
up until a critical negative pressure is reached: at this point the panel snaps inward, resetting the
module to its initial state. We use a combinatorial approach to couple multiple modules and cre
ate actuators with prescribed and complex deformation states that can be reached by controlling a
single pressure input. Given that they output multiple deformation modes with a single input, we
call our devices Multimodal Actuated Origami, or MuAOri. MuAOri offers new opportunities
for the design of robotic systems capable of performing complex tasks despite the simple actuation
scheme, as demonstrated by the design of a land rowing robot.

3.3 The MuAOri building blocks based on Kresling pattern

To realize our nonlinear and reconfigurable MuAOri, we use origami building blocks comprising
one layer of the classic Kresling pattern (also known as nejiri ori) [102]. More specifically, in its
initial, undeformed state, the single module consists of two hexagonal caps with edges of length
l = 30 mm, separated by a distance h = 24 mm, and rotated by an angle α = 30◦ with respect to each
other (see Figure 3.1a). The hexagons are connected at each side by a panel comprising a pair of
triangular facets coupled by alternating mountain (i.e. edges A′B and AB′) and valley (i.e. edge BB′)
creases. Since the Kresling pattern is not rigid foldable [96], any change in its internal volume will
lead to an incompatible configuration. To accommodate the resulting geometrical frustration, we
3Dprint 1mm thick triangular facets out of a compliant material (TPU95A from Ultimaker with
Young’s modulus E = 26MPa) and reduce the thickness locally to 0.4 mm to create the hinges (see
prototype in Figure 3.1a). Further, to facilitate coupling between differentmodules, we 3Dprint the
hexagonal caps out of a stiffer material (PLA from Ultimaker with Young’s modulus E = 2.3 GPa)
and, to form an inflatable cavity, we coat the origami unit with a thin layer of polydimethylsiloxane
(PDMS) (see Supplementary Materials, Section B.1 for fabrication details). Finally, it is worth
noticing that the chosen values of the parameters (h, l, α) yield amonostable origamimodule (i.e. the
Kresling pattern is only stable in its initial, undeformed state).
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Figure 3.1: Bistable origami modules as building blocks for multi‐output, single input inflatable actuators. (a)
Schematics of a monostable module based on the hexagonal‐base Kresling origami pattern, along with a 3D‐
printed prototype. The panels of the monostable modules remain always folded inward. We refer to this state of
deformation as state s0. (b) Bistable module with a modified panel (highlighted in orange) made of four triangular
facets A′BO′, AO′B′, AO′B, and A′B′O′ and characterized by a depth Δ from vertex O to O′, along with a 3D‐
printed prototype displayed in its two stable states: state s0 for which all panels (including the modified panel)
are folded inward; and state s1 for which the modified panel is popped outward (while all other panels are still
folded inward). (c) State diagram of the pressurized origami modules. (d‐e) Pressure vs. bending angle curves for
the monostable and bistable origami modules during inflation and deflation. At the onset of deflation for the
bistable unit, θ is slightly larger than in the monostable module due to the geometrical incompatibility that arises
in the structure when the modified panel is in the outward configuration. (f) Experimental positive and negative
pressure thresholds, p+Δ and p−Δ , as a function of the modified panel’s depth, Δ.

To investigate the response of a single module, we inflate it with water while submerged in
water (to eliminate the effects of gravity  see Supplementary Materials, Section B.2 for details).
As expected [96], the Kresling unit extends and contracts (while twisting at the same time) upon
inflation and deflation (Figure 3.1c) and returns to its undeformed state as soon as the pressure is
removed. This state of deformation, in which all panels are folded inward, is named s0. When in
this state the bending angle, θ, remains close to zero (Figures 3.1de).
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Aiming at unlocking different deformation modes with one single pressure input, we then take
inspiration from bistability in degreefour vertices [35,101,107] and modify one of the original Kres
ling panels by introducing two additional valley creases (i.e. AO and A′Owith O being the midpoint
of crease BB′, see Figure 3.1b). While this effectively creates a degreefour vertex, it results in a
monostable origami unit, as no snapthrough instability is recorded upon inflation (see Supplemen
tary Materials, Section B.2 for details). To increase the geometric incompatibility during deploy
ment and achieve bistability in the unit, we then move the degreefour vertex inward by Δ (see
Figure 3.1b where Δ is the norm of vector OO′ perpendicular to vectors AA′ and BB′). Choosing
Δ = 3 mm, for example, we can fabricate an origami unit that can easily transition between two sta
ble states: state s0 for which all panels are folded inward, and state s1 for which the modified panel
is popped outward (while all other panels are still folded inward). Similar to the unit based on the
classic Kresling pattern, upon inflation this modified module simply extends with all panels bent
inward if p < 26.1± 0.9 kPa. However, at p+3 = 26.1± 0.9 kPa (where the subscript refers to Δ = 3
mm and the superscript refers to positive pressure), the unit snaps from state s0 with the modified
panel folded inward to state s1 where it is popped outward (Figure 3.1c)—a transition which is
accompanied by a discontinuity of the bending angle θ (see zoomin in Figure 3.1d). Finally, a fur
ther increase in pressure causes the unit to elongate until the maximum structural limit is reached.
Afterward, when the input pressure is removed, the modified panel remains popped outward (see
Figure 3.1c) because of bistability. As such, when we apply negative pressure the unit not only
contracts, but also bends (see Figures 3.1c and e), exhibiting a behaviour that radically differs from
that of the Kresling module. Specifically, we find that at first θ monotonically increases until the
two hexagonal caps come into physical contact effectively clipping the available range of bending
deformation to θmax = 21.7 ± 0.3 ◦. As previously mentioned, this bending deformation is caused
by the modified panel, which remains in the popped outward configuration (while the other panels
fold under increasing negative pressure) and breaks the radial symmetry. Finally, when the nega
tive pressure passes the threshold p−3 = −21.2 ± 0.7 kPa (where the superscript refers to negative
pressure), the modified panel snaps back to the inward position (see snapping transition from state
s1 to state s0 in Figure 3.1c) and θ suddenly decreases (dashed orange arrow in Figure 3.1e). If one
continues to apply negative pressure to the module, the unit folds (almost) flat, as clearly shown
by the decreasing trend of θ.

Next, we investigate the effect of the depth Δ of our degreefour vertex panel on the positive
and negative pressure thresholds, p+Δ and p−Δ , as well as the deformed configurations reached upon
snapping. The experimental results reported in Figure 3.1f for Δ = 2, 3, and 4mm indicate that the
absolute value of the pressure thresholds increases with Δ within the considered range. Differently,
we find that the bending angle, the axial displacement of the end caps and their relative twist remain
almost constant with Δ. In fact, the first reaches an upper limit when the caps get in contact with
each other and the other two are dominated by the geometric characteristics of the Kresling pattern
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(see Figure B.7). Note that for Δ < 2 mm, the modules are found to be monostable. This means
that negligible bending is recorded upon application of negative pressure, since the degreefour
vertex panel snaps back immediately. Differently, for Δ ≥ 4 mm, the positive pressure required to
snap the modified panel outward is so high that the module fails (see Figure B.6).

3.4 Extending the design space for complex outputs

After demonstrating that our bistable module can transition between different stable states with
distinct deformation modes (i.e. extension, twisting, and bending), we next combine these units to
form actuators able to achieve complex outputs: the MuAOri. By combining n modules, we can
construct (3× 2× 6+ 1× 2)n = 38n different actuators since for each module k we can select (i)
either a regular Kresling module or a unit comprising a modified, degreefour vertex panel with
depth Δk ∈ {2, 3, 4} mm; (ii) the upper cap to be rotated clockwise or anticlockwise with respect to
the bottom one, ck ∈ {//, \\}, and (iii) the side on which the modified panel is located, fk ∈ {1, . . . , 6}
(see Figure 3.2a). Note that the domain of all constraints is discrete since we choose a limited set
of values for Δ and all end plates to have their sides aligned.

To navigate the vast design space systematically and efficiently, we develop a simple algorithm
that predicts all stable states and snapping transitions for actuators comprising n modules upon
inflation and deflation. First, we extract key geometric features from the experiments conducted
on single units, i.e. height, twisting, and bending angle of the top cap associated to all stable states
and snapping transitions (see Figures B.6B.7). When assuming pressure continuity, these data
allow the prediction of all configurations for the stable states and snapping transitions of any n
units actuator (see Supplementary Materials, Section B.3 for details on the algorithm). Note that
we also assume perfect coupling between units, so that the pressure thresholds, p+/−

Δ , found in the
experimental characterization of Figure 3.1f, remain unchanged and identical for units with the
same geometrical parameters.

As an example, in Figure 3.2a, we consider an actuator comprising n = 2modules characterized
by [Δ1c1f1;Δ2c2f2] = [2//3; 4//6], where we assume the first unit to be the one at the bottom. As
expected, this MuAOri has four stable states at atmospheric pressure, sij (where the subscripts
i, j = 0, 1, refer to the state of the modified panels, with Δ = 2 and 4 mm, respectively), and six
snapping transitions that can be triggered by varying the internal pressure (Fig 3.2b). Whereas the
stable states s10 and s11 can be readily obtained by simply increasing pressure, a more complex
pressure path is required to achieve state s01, as one has to (i) increase pressure above p+4 and then
(ii) decrease it below p−2 . To validate the model, we then conduct experiments on units connected
via 3Dprinted screws (see Figure B.2 for details) and find that they closely match the predictions
(see Fig 3.2b).
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Since our final goal is to build actuators with programmed deformation modes, we further
quantify the deployment of our actuator by recording the vector connecting the caps’ centroids, d,
at each stable state and snapping transition. In Figure 3.2c we report the norm of d normalized
by the height of a single module, ||d||/h, and the angle between each d and the zaxis, θact, for
all 12 configurations supported by the actuator characterized by [Δ1c1f1;Δ2c2f2] = [2//3; 4//6]. We
find that in the positive pressure regime the achievable deformation is limited to simple extension,
resulting in configurations all clustered in a portion of the design space characterized by θact ∼ 5◦

and ||d||/h ∼ 2 (gray and red triangles). By contrast, behaviors characterized by large bending
angles (θact ∼ 20◦) unfold under negative pressure (blue triangles). Importantly, such bending
provides opportunities for the design of actuators that can reach a wider range of configurations.
This becomes even clearer when expanding the range of possible configurations by varying the
parameters Δk, ck, and fk and considering not only n = 2 but also n = 3 building blocks (triangles and
circles in Figure 3.2d, respectively). Once again, we notice that all configurations under positive
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Figure 3.2: Extending the design space. (a) For each k module we define 3 geometrical parameters: Δk, ck, and
fk. Note that, for simplicity, we also assign f1, but only the location of the modified panel relative to its neighbor
is important. (b) State diagram for a 2‐units actuator characterized by [Δ1c1f1;Δ2c2f2] = [2//3; 4//6]: geometrical
model prediction on the left, experimental snapshots on the right. (c) Normalized deployment ||d||/h and angle
θact for every stable state of the 2‐units actuator characterized by [Δ1c1f1;Δ2c2f2] = [2//3; 4//6]. (d) Normalized
deployment ||d||/h and angle θact for every stable state of any possible 2‐units (triangles) and 3‐units (circles)
actuator in the design space.
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and atmospheric pressure cluster on low values of bending angle and a normalized deployment that
is roughly equal to the number of building blocks considered. Differently, in the negative pressure
regime a rich set of deformations unfolds, characterized by a wide range of achievable θact (the
maximum values of θact increases from 40◦ to 50◦ from n = 2 to n = 3) at nearconstant normalized
deployment (||d||/h increases slightly from about 1.5 to 2 from n = 2 to n = 3). These results
indicate that by stacking our origami modules to form arrays, we can realize actuators capable of
supporting a variety of deformation modes, which can be selected by varying the level of applied
pressure.

3.5 Inverse design to reach multiple targets

Motivated by the results in Figure 3.2, we then investigate the behavior of arrays with a larger
number of units. Our goal is to build actuators capable of switching between target deformation
modes when inflated with a single pressure source. However, since the use of n modules leads
to 38n possible actuator designs (i.e. 54, 872 for n = 3 and 2, 085, 136 for n = 4), it is crucial to
use a robust algorithm to efficiently scan the range of responses that can be achieved and identify
configurations leading to the target deformation modes. Toward this end, given the discrete nature
of our design variables, we use a greedy algorithm based on the bestfirst search method [108,109]—a
progressive local search algorithm that, at each iteration, minimizes the cost function by looking
at a set of available solutions (see Figure 3.3). Although there exists many algorithms to solve
this type of discrete optimization problems [110,111], we find that the greedy algorithm provides the
best tradeoff between accuracy and computational cost (see Supplementary Information, Section
B.4 for details and comparison of the different algorithms). Specifically, our greedy algorithm
identifies MuAOri comprising n units built out of ns supercells each with nu modules (so that
n = nu · ns) whose tip can reach a desired set of targets arbitrarily positioned in the surrounding
space. At the first iteration, the algorithm starts by selecting the actuator supercell design that
minimizes

Ψ =
1

ntargets · h

ntargets∑
m=1

min ||d− Tm||, (3.1)

where ntargets is the number of targets, and Tm is the vector connecting themth target with the origin.
Once the first supercell is chosen, the algorithm stores it in memory and starts a second iteration.
This comes to an end when the algorithm identifies a second supercell that, connected to the first,
one minimizes Eq. 3.1. The first two supercells are then stored in memory and the algorithm
advances to the next one. Note that in this study, to balance the number of available designs and
computational cost, we set the greedy algorithm to consider supercells made of 3 units (i.e. nu = 3)
(see Figures B.15 and B.18 for a comparison across supercells madewith different nu) and, to avoid
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fabricating excessively long actuators whose response could be affected by gravity, terminate the
algorithm after stacking 5 supercells.

To demonstrate our approach, we select two distinct sets of targets within the reachable space
(see black and red circular markers in Figure 3.3a and Supplementary Materials Figures B.15
B.19 for additional targets). For the first set of black targets (T1,T2) with small height and radius
of action, we find that the objective function Ψ is minimized for an actuator with ns = 1 and
[Δ1c1f1;Δ2c2f2;Δ3c3f3] = [4\\2; 3//6; 4\\2] (see Figure 3.3b). As this 3unit actuator only comprises
modules with Δ = 3 and 4 mm, its state diagram (shown in Figure 3.3d) is qualitatively similar to
the one reported in Figure 3.2b. To reach the target T1, the internal pressure must first be raised
above p+4 and then lowered to p−3 (see shaded gray line in Figure 3.3c). Successively, the target
T2 is reached by further lowering the pressure to p−4 . It is worth noticing that, in this example,
increasing the pressure above p+4 , decreasing it below p4− and finally bringing it back to zero
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results in a triangular path for the centroid of the top plate, which is spanned in a counterclockwise
direction (Figure 3.3d). Importantly, when we apply this pressure history to a physical sample,
the actuator’s tip follows the predicted trajectory and approaches the two targets very closely (see
Figure 3.3d), confirming the validity of our design strategy. As predicted by our model, the actuator
starts straight, bends toward T1, bends toward T2 and finally returns to the straight configuration O
after reset.

For the second set of red targets (T1,T2,T3), the larger height and radius of action of the targets
lead to an optimal actuator comprising ns = 4 supercells (note that the convex shape of Ψ is due
to a correlation between the optimal number of units and the average distance of the targets from
the origin—see Supplementary Materials Figure B.19). As shown in Figure 3.3b, this 12unit
actuator comprises the classic Kresling module as well as bistable units with Δ = 2, 3, and 4 mm.
This results in 8 stable states, 14 snapping transitions, and a more complex state diagram in which
not all targets are reached consecutively by continuously decreasing pressure (Figure 3.3e). More
specifically, to move from T1 to T2, this actuator has to be reset by decreasing the pressure below
p−3 before increasing above p+4 and then lowering it to p−3 . As such, in this case the centroid of the
top plate of the actuator passes through the straight configuration O when moving from T1 to T2
and its trajectory comprises two disconnected loops, O−T1 and O−T2−T3 (Figure 3.3f). Note that
we can add additional constraints to our greedy algorithm to make sure the targets fall within the
same closed loop on the state diagram. This obviously leads to a different design and may increase
the targets error (see Supplementary Materials Figure B.17 for details). However, the ability to
fully control the actuator’s sequential trajectory makes the platform ideal for robotic applications.

3.6 MuAOri for robotic applications

To show the potential of the MuAOri for robotic applications we take inspiration from the closed
trajectory of a rowing stroke, and use the closed triangular loop of the 3unit actuator in Figure
3.3e to propel a land rowing robot (Figure 3.4a). The robot comprises two symmetric arms (corre
sponding to the 3unit MuAOri in Figure 3.3) connected through a single fluidic line and mounted
on a wheeled chassis. Further, to harnesses the cyclic motion of the actuator and generate positive
mechanical work with the ground, we connect two rigid rods to the outer caps that serve as stroke
amplifiers and attach silicon patches at their ends to increase friction with the ground. When in
creasing the pressure above p+4 and then lowering it to p−3 the two actuators reach T1. At this point
the rigid rods touch the ground. Then, when we further decrease the pressure, the rigid rods move
backward to T2 creating a forward thrust and eventually lift off from the ground, completing the
stroke. Finally, lowering the pressure below p−4 resets the locomotion cycle (see Figures 3.4c and
d). As shown in the experimental snapshots in Figure 3.4e we can harness this particular trajectory
instructed by the model to create locomotion: the robot advances of about 16 cm in 20 cycles. Note
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that, differently from other robotic platforms with similar performance but requiring one or more
actuators per leg with dedicated pressure sources [13,87], our robots operate with a single pressure
input, which largely simplifies its control.
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p = 0 4p > p+ p > p- p = p- p < p-

Figure 3.4: Land rowing robot. (a) Schematics of the robot. (b) Robot prototype. (c)‐(d) Trajectory followed by
the robot’s arms upon inflation and deflation, as predicted by the model (c) and observed in experiments (d). (e)
Experimental snapshots of the robot in the initial configuration and after 10 and 20 cycles.

3.7 Conclusion

To summarize, in this work we have presented a platform to design fluidic origami robots that can
switch between a range of different configurations using only one pressurized input: the MuAOri.
The key characteristics of our platform is an origami building block with a degreefour vertex panel,
which can be geometrically programmed to snap at a certain input threshold, inducing bending.
This, together with the position of the modified panel in the origami module and their direction of
rotation, constitute the parameters of a rich design space that we can efficiently scan with a custom
greedy algorithm. Therefore, instructed by this model, we are able to automatically design and
build optimal robotic arms that can reach a set of defined targets, and actuators capable of tracing
spacial trajectories in a programmed sequence, enabling mechanical tasks and functions. While in
this study we have used a simple geometric model to identify optimal designs, a fully mechanical
model may be needed in order to extend the proposed approach to larger designs for which the
effect of gravity is not negligible. In addition, the current design space could be further expanded
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through investigating the effect of other geometrical parameters (e.g. l, h, and α) on the resulting
deformation of the modules, as well as expanding the range of the considered values of Δ. While
this could lead to more complex deformation modes and enhanced functionality, a drawback is a
more complex state diagram. This means that a given actuator might have to go through a longer
loading history to reach some prescribed targets, increasing the operational timespan. A potential
solution to this is to measure the volume at which the module snaps inward and outward, assume
constant flow rate, and derive the time associated to each snapping transition. This time span could
then be included as variable in the optimization algorithm, in order to find a design that reaches the
target in the shortest possible time. To conclude, we envisage that the MuAOri concept hereby
presented will serve as future strategy for the design of fluidic origami robots able to overcome the
unimodal deformation constraint, despite the simple actuation.

3.8 Methods

Details of the design, materials, and fabrication methods are summarized in Supplementary Mate
rials, Section B.1. The experimental procedure of the inflation with water to measure the pressure
volume curve is described in Supplementary Materials, Section B.2, along with additional experi
mental data. Details on the numerical mode are provided in Supplementary Materials, Section B.3.
Finally, the optimization algorithms used in this study are described in detail in Supplementary
Materials, Section B.4, along with additional data.
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4.1 Abstract

Fluidic soft actuators are enlarging the robotics toolbox by providing flexible elements that can dis
play highly complex deformations. While these actuators are adaptable and inherently safe, their
actuation speed is typically slow as the influx of fluid is limited by viscous forces. To overcome
this limitation and realize soft actuators capable of rapid movements, we focus on spherical caps
that exhibit isochoric snapping when pressurized under volumecontrolled conditions. First, we
note that this snapthrough instability leads to both a sudden release of energy and a fast cap dis
placement. Inspired by these findings, we investigate the response of actuators that comprise such
spherical caps as building blocks and observe the same isochoric snapping mechanism upon infla
tion. Finally, we demonstrate that this instability can be exploited to make these actuators jump
even when inflated at a slow rate. As such, our study provides the foundation for the design of a
new class of fluidic soft devices that can convert a slow input signal into a fast output deformation.

4.2 Introduction

Inflatable soft actuators have emerged as an ideal platform to realize active structures capable of
safe interactions with unstructured environments [5–7]. Their compliance and ability to achieve
complex deformations has enabled the design of flexible machines for a wide spectrum of appli
cations [112], ranging from minimally invasive surgical tools [81] and exoskeletons [82] to warehouse
grippers [113] and addons for video games [83]. However, existing fluidic soft actuators are typi
cally slow, since a significant amount of fluid has to be supplied for their operation, the influx of
which is restricted by viscous forces in tubes and valves. To overcome this limitation, it has been
shown that fast actuation can be achieved either by modifying the geometry to reduce the amount
of fluid needed for inflation [10] or by using chemical reactions to generate explosive bursts of pres
sure [17]. Alternatively, snapping instabilities can also provide a powerful nonlinear mechanism
that decouples the slow input signal from the output deformation and triggers rapid events [41–45].

Inspired by recent progress using snapping instabilities to increase the speed of actuation [41,114],
we investigate the snapping of spherical caps as a mechanism to realize fluidic soft actuators ca
pable of rapid movements. We first show that the snapping of elastomeric spherical caps upon
pressurization results in a sudden release of energy, the amount of which can be controlled by tun
ing the caps’ geometry, material stiffness, and boundary conditions at the edges. We then realize
fluidic soft actuators by combining two spherical caps (see Figure 4.1A) and find that the energy
released upon snapping of the inner cap leads to a rapid inversion of its pole that ultimately en
ables jumping. Finally, we identify geometric and material parameters that result in significant
energy release and jump height, providing a rich design domain for fluidic soft actuators capable
of extremely fast movements regardless of inflation rate.
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4.3 Snapping of spherical caps as a platform for fast fluidic soft robots

To create fast inflatable soft actuators, we start by conducting Finite Element (FE) analyses to in
vestigate the response upon pressurization of elastomeric spherical caps with radius, R, thickness, t,
and polar angle, θ (see Figure 4.1B). In our simulations (which are conducted using the commercial
package ABAQUS 2018/Standard), we assume the deformation to be axisymmetric, discretize the
models with 4node bilinear axisymmetric solid elements, and use an incompressible Gent material
model with initial shear modulus, μ [20]. We pressurize the caps by supplying incompressible fluid
to a cavity above them (highlighted in gray in the inset in Figure 4.1B) and simulate the quasistatic
pressurevolume curve via the modified Riks algorithm [115,116]. In Figure 4.1B, we consider a thin
cap with polar angle θ = 60◦, normalized radius η = R/t = 30, and clamped boundary conditions
at the base. We find that the pressurevolume curve of this cap is qualitatively identical to those
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Figure 4.1: Snapping of spherical caps for fast fluidic soft robots. A. Our soft fluidic actuators comprise two
spherical caps connected at their base. Upon inflation the inner cap snaps and enables our simple device to take
off. B. The pressure‐volume curve, normalized by initial shear modulus μ and radius R, of a given pressurized
spherical cap is characterized by a limit point when inflating under volume‐controlled conditions. This volume
limit point causes an isochoric snapping instability, which leads to a sudden release of energy, ΔE (highlighted
in green), and the inversion of the inner cap (which we characterize by quantifying the distance travelled be
the cap’s pole, Δypole). C. Comparison between the pressure‐volume curves of thin (solid green line) and thick
spherical caps with both clamped (dotted green line) and roller (dashed green line) boundary conditions. Note
that the normalized radius η is defined as the ratio of cap radius over cap thickness (i.e. η = R/t).
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recently reported for pressurized spherical shells [117–119] and is characterized by a limit point when
inflating under volumecontrolled conditions (indicated by a black circular marker in Figure 4.1B).
This volume limit causes an instability leading the system to snap to a point of lower pressure
(white circular marker in Figure 4.1B). This occurs while conserving the volume in the cavity and
results in a partial inversion of the cap, which we characterize by quantifying the distance trav
eled by the pole during the instability, Δypole (see insets in Figure 4.1B). Further, we note that the
isochoric snapping of the cap is accompanied by a sudden release of energy, ΔE, that graphically
corresponds to the green highlighted area in Figure 4.1B and can be obtained as

ΔE =

∫
Γ
p dΔV, (4.1)

where Γ is the equilibrium path that connects the limit point in volume and the corresponding
isochoric point on the lower branch (highlighted by a dashed black line in Figure 4.1B). For the
considered cap, we find ΔE = 1.50× 10−5μR3 and Δypole = 1.31× 10−1R.

Next, to investigate the effect of geometry on ΔE and Δypole, we compare the response of the
thin spherical cap to that of a thicker one with η = 8.5 and both with clamped and roller boundary
conditions at the base. The results reported in Figure 4.1C indicate that the boundary conditions
play a major role on the snapping behavior. The clamped thick cap is characterized by a very
large maximum pressure, but a very small energy release and pole displacement upon snapping
(ΔE = 4.78× 10−6μR3 and Δypole = 6.30× 10−2R). On the other hand, roller boundary conditions
lower the maximum pressure, but lead to a much higher energy release and pole displacement
(ΔE = 8.00× 10−4μR3 and Δypole = 2.67× 10−1R). As a result, our simulations indicate not only that
isochoric snapping of spherical caps provides opportunities to realize systems capable of suddenly
releasing a significant amount of energy through their inversion, but also that by tuning geometry
and boundary conditions we can control and maximize the response of these systems.

4.4 Inflatable soft actuators inspired by shell snapping

Having demonstrated numerically that snapping of a spherical cap results in a sudden energy re
lease and pole displacement, we now investigate the mechanical response of fully soft actuators
comprising two spherical caps connected at their base to form a cavity that we inflate with an
incompressible fluid (see Figure 4.1A). We begin by considering three actuators with inner caps
identical to those introduced in Figure 4.1C (with Ri = 30 mm) with outer caps characterized by
θo = 90◦ and ηo = 16.5 (note that here and in the following the subscripts o and i are used to indi
cate properties of the outer and inner caps, respectively). Specifically, Design A has a thin inner
cap with θi = 60◦ and ηi = 30, while Designs B and C have a thick cap with θi = 60◦ and ηi = 8.5.
Further, while we assume that both caps of Designs A and B are made of the same elastomeric
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material (i.e. μi/μo = 1), for Design C we consider an outer cap made of a softer rubber, resulting
in μi/μo = 5.8. The numerically obtained pressurevolume curves for the three actuators (shown in
Figure 4.2A as blue lines) share many features with those reported in Figure 4.1C for the individual
pressurized caps and are all characterized by a limit point near to the maximum pressure when con
sidering volumecontrolled conditions. As such, our actuators also exhibit isochoric snapping upon
inflation and this again results in a sudden release of elastic energy and the inversion of the inner
cap. By comparing the responses of the three actuators, we find that Design C exhibits the largest
energy release and displacement of the inner cap’s pole (ΔE = 0.875 mJ, 5.67 mJ, and 31.4 mJ for
Designs A, B and C, respectively, whereas Δypole = 7.68 mm, 7.55 mm, and 20.89 mm for Designs
A, B, and C, respectively). These results agree with the trends observed for the individual pres
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surized caps (see Figure 4.1C), as both ΔE and Δypole increase for thicker caps that are allowed to
rotate at their base (note that in our actuators such boundary conditions are not directly controlled,
but rather determined by the outer cap – see Figure C.12). Furthermore, the results highlight the
important role of the outer caps and indicate that both ΔE and Δypole can be enhanced by increas
ing their compliance. This is because compliant outer caps can sustain more deformation prior to
snapping (see insets in Figure 4.2A) and, therefore, enable the actuator to store more elastic energy
that can be potentially released upon instability.

Next, to experimentally validate our analyses, we fabricate the three actuators using molds and
inflate them with water while submerged in water to eliminate the effects of gravity (see Supple
mentary Materials for details). In this experimental analysis, all caps are fabricated out of Zher
mack Elite Double 32 (with green color and initial shear modulus μ = 0.35 MPa), except for the
outer cap of Design C where we use Zhermack Elite Double 8 (with purple color and initial shear
modulus μ = 0.06 MPa). Note that these values are obtained by minimizing the error between
experiments and simulations for Design C and are within the range previously reported in the lit
erature [118,120–122]. In Figure 4.2A, we compare the numerical (blue lines) and experimental (red
lines) pressurevolume curves for the three actuators, while in Figure 4.2B we display snapshots
that are taken during the tests. We find good agreement between simulations and experiments,
with pressure measurements that show a sudden drop near the numerically predicted limit point.
The small discrepancies between experiments and simulations can be attributed to unavoidable
imperfections introduced during fabrication, viscoelasticity of the rubber, and slight asymmetric
buckling of the inner cap. Furthermore, in all of our tests, as observed in the simulations, snapping
is also accompanied by the sudden inversion of the inner cap. While Δypole for Design A is such
that the inner cap’s pole remains above the base plane of the actuator upon snapping, for Designs
B and C the large value of Δypole allows for their inner cap’s pole to cross it (see Figure 4.2B).

Motivated by these results, we investigate how snapping can be exploited to enhance the func
tionality of our simple robots and make them jump even when inflated at a slow rate. To this end,
we position our actuators on a flat surface and slowly inflate them with air (see Supplementary
Materials for details). The snapshots reported in Figure 4.2C reveal that, despite the slow rate of
inflation (10mL/min with a syringe pump), the isochoric snapping makes Design C jump and reach
a maximum height of yjump = 42.9 mm. On the other hand, even though the inner cap of Designs
A and B snaps upon inflation, their ΔE and Δypole are not large enough to enable them to take off.
Although this last set of test was conducted using a compressible fluid (air), the effect of fluid
compressibility on the response of the system energy release is negligible and only leads to a slight
increase of volume during snapthrough (see Figure 4.2A and SupplementaryMaterials for details).
As such, the experiments and analyses conducted using an incompressible fluid can be also used
to understand and improve the performance of our airinflated jumpers.
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4.5 Improving the actuators’ response

Thus far we have shown that the geometry and material properties of the caps strongly affect the
snapping behavior and that by tuning ΔE and Δypole we can harness the instability to make our ac
tuators jump. Motivated by these findings, we proceed by systematically exploring the parameter
space to identify designs that can jump higher than Design C. Figure 4.2C indicates that jump
ing requires large enough ΔE and Δypole and Figure 4.2A that ΔE and Δypole can be enhanced by
combining an inner cap that releases a large amount of energy upon snapping with an outer cap
that stores a large amount of energy prior to snapping. Therefore, we start by considering the two
caps separately and use axisymmetric FE analyses to investigate their behavior for a wide range of
geometric parameters (i.e. 40◦ ≤ θi ≤ 80◦, 5 ≤ ηi ≤ 12.5, 40◦ ≤ θo ≤ 90◦, 5 ≤ ηo ≤ 20).

Focusing on the inner cap, we find that by varying θi and ηi its response undergoes several
transitions (see Figure 4.3AB). For low values of θi and ηi (i.e. for thick and shallow caps), the inner
cap does not exhibit isochoric snapping (see light gray region in Figure 4.3AB). By increasing
θi at constant ηi, snapping is eventually triggered upon inflation. Within this domain both the
energy released by the inner cap, ΔEi, and its pole displacement, Δypole, increase monotonically as
a function of θi, suggesting that the response of our actuators can be enhanced by considering deep
and sufficiently thick inner caps. Finally, for high values of θi and ηi (i.e. for thin and deep caps)
the pressurevolume curves become selfcrossing (see dark gray region in Figure 4.3AB), which
is an indication of the existence of a more favorable asymmetric deformation path with low ΔEi

and Δypole (see Figure C.15).
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Figure 4.3: Mechanical response of the inner and outer caps upon inflation. (a)‐(b) Evolution of the inner cap’s
normalized (a) energy release, ΔEi/(μiR3i ), and (b) pole displacement, Δypole/Ri, upon snapping as a function of
the normalized radius, ηi, and the polar angle, θi. (c) Evolution of the outer cap’s normalized stored energy at
p/μo = 0.5, Eo/(μoR3o), as a function of the normalized radius, ηo, and the polar angle, θo.

Next, we turn our attention to the outer cap and find that its response is less rich and resembles
that of an inflated thin spherical balloon [123,124]. Since the outer cap in our actuators acts as an
energy reservoir, in Figure 4.3C, we report the evolution of the stored energy in the outer cap, Eo,
at a normalized pressure of p/μo = 0.5, as a function of the polar angle θo and the normalized
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radius ηo. The results indicate that Eo increases monotonically with θo (almost irrespective of ηo),
therefore suggesting that the response of our actuators can be enhanced by focusing on deep outer
caps.

While the results of Figure 4.3 enable us to identify promising regions of the design space
(i.e. inner caps with θi ≥ 70◦ and ηi ≤ 8 and outer ones with θo ≥ 76◦), they cannot be directly used
to realize the best possible jumper as they neglect the coupling between the two caps. Therefore, as
next step, we use axisymmetric FE analyses to simulate the response of 4800 actuators constructed
by combining inner and outer caps within the identified promising regions (highlighted by black
contours in Figure 4.3). In Figure 4.4A, we report ΔE and Δypole for all simulated actuators with
both μi/μo = 1 (green markers) and 5.8 (purple markers). Four key features emerge from the plot.
First, by comparing the results with those obtained for the three actuators considered in Figure
4.2 (indicated by square markers in Figure 4.4A) we find that both ΔE and Δypole can be greatly
increased when the geometry is properly tuned. Second, the results show that, on one hand, there is
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Figure 4.4: Improving the response of the actuators. (a) Normalized energy release, ΔE/(μiR3i ), vs. normalized
pole displacement, Δypole/Ri, for actuators with inner polar angle θi ≥ 70◦, normalized inner radius ηi ≤ 8, and
normalized outer radius θo ≥ 76◦. (b) Reduced order mass‐spring model used to predict jump height based on
the numerical results reported in (a). The model comprises two masses mi and mo connected via a spring with
stiffness ks and a dashpot with damping coefficient cd. (c) Normalized jump height, yjump/Ri as a function of
energy release and pole displacement for the 4800 actuators considered in (a).
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a strong correlation between ΔE and Δypole and, on the other hand, there is a disconnection between
them and the drop in pressure associated with the snapping instability. Specifically, by inspecting
the pressurevolume curves for the actuators (shown as insets in Figure 4.4A) we find that for
the designs with large ΔE and Δypole the drop in pressure is small, while the area enclosed by the
pressurevolume curve between the limit point and the corresponding isochoric point on the lower
branch is large. Third, the results confirm the importance of a flexible outer cap as both ΔE and
Δypole are significantly larger for the actuators with μi/μo = 5.8. Fourth, we find that the inner cap
plays a crucial role and that by choosing θi = 80◦ to optimize its response we significantly improve
the performance of the actuators (see black contour markers in Figure 4.4A). At the same time,
however, the results also highlight that for actuators with μi/μo = 5.8 the outer cap geometry is
important, as some design choices lead to noticeably lower ΔE and Δypole.

Our quasistatic FE simulations allow us to efficiently explore the design space and calculateΔE
and Δypole for a large number of designs. However, since they do not account for dynamic effects,
they cannot be used to directly characterize the ability of the actuators to jump. To overcome this
limitation, we establish a simplemassspringmodel that takes the FE results of Figure 4.4A as input
and predicts the jump height, yjump. This reduced order model comprises two concentrated masses,
mi and mo, connected by a spring with stiffness ks and rest length L0 (Figure 4.4B). We choose
mi and mo to be equal to the mass of the inner and outer cap, respectively, and to be located at
their corresponding poles. We then focus on the numerically predicted configurations immediately
before and after snapping and assume that the mechanical system stores an amount of energy equal
to ΔE in the former and is stressfree in the latter. It follows that L0 is equal to the distance between
the poles immediately before snapping and that (see Figure 4.4B)

ks =
2ΔE(
Δypole

)2 . (4.2)

Finally, we consider the spring to be initially precompressed by Δypole and mi to be positioned at
a distance himp from the ground (himp being the numerically predicted distance of the inner cap’s
pole from the ground immediately before snapping). At time t = 0, we release the system and
analytically determine the position of the two masses, yi(t) and yo(t), as a function of time while
accounting for contact with a rigid surface.

To verify the validity of our simplified massspring model, we first focus on three designs with
(ηi, θi, ηo, θo, μi/μo)= (8.5, 60◦, 16.5, 90◦, 5.8) (Design C), (5.4, 80◦, 15.3, 87◦, 5.8), and (5.8, 80◦, 10.5,
85◦, 5.8) and compare the experimentally measured jump heights (hjump = 42.9 mm, 160 mm, and
209 mm, respectively) to the predicted ones. When choosing a coefficient of restitution α = 0.5
and approximating the effect of dissipation with a linear dashpot with damping coefficient cd =

0.4 kg/s, we find excellent agreement between the two sets of data, with the model predicting
yjump = max (yi(t)) = 41.4 mm, 175 mm, and 226 mm (see Supplementary Materials for details). As
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μi/μo)=(6.2, 80◦, 12.1, 82◦, 5.8) and inner cap radius Ri= 30 mm. (b) Experimental snapshots of the actuator upon
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such, these results indicate that our simple massspringmodel, despite the fact that it cannot capture
the complex dynamic behavior typical of shells [44,125,126], can accurately predict the jump height
of our soft jumpers. Having confirmed the validity of our model, we then use it to calculate yjump
for all the 4800 actuators considered in Figure 4.4A. The results reported in Figure 4.4C clearly
indicate that a high jump requires both ΔE and Δypole to be large. Specifically, we find that the
jump height is highest for an actuator with (ηi, θi, ηo, θo, μi/μo)= (6.2, 80◦, 12.1, 82◦, 5.8) for which
ΔE=324 mJ and Δypole=31.7 mm. For such an actuator, our model predicts yjump = 275 mm, a jump
height that is one order of magnitude larger than that previously recorded for Design C. Remark
ably, our experimental results fully confirm the numerical predictions for this design for both the
pressurevolume curve (see Figure 4.5A) and the jump height yjump = 283 mm (see Figure 4.5B),
further reinforcing the validity and efficiency of our numerical scheme to identify actuators with
improved performance.
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4.6 Conclusion

In summary, we have introduced a new family of inflatable soft actuators that harness isochoric
snapping to move rapidly and even jump when inflated slowly. This remarkable behavior is en
coded in their pressurevolume relationship, which exhibits two limit points in volume. While
fluidic actuators are typically characterized by a monotonic pressurevolume curve [10,85], it has
been recently shown that limit points in pressure can be exploited to enhance their functionality
and enable sequencing [84,127,128]. Here, we show that by introducing limit points in volume we can
realize soft robots capable of suddenly releasing a given amount of energy. Since the instability
occurs at constant volume and does not involve transfer of fluid, the release of energy is extremely
fast and enables us to convert the slow input signal into exceptionally rapid events such as jumps.
Finally, our actuators can be simply reset and brought back to the initial configuration through
vacuum and, therefore, can take off repetitively.

Although in this study we have demonstrated the concept for spherical caps at the centimeter
scale, our approach can be extended to any shape and does not depend on size. Remarkably, since
both ΔE and the gravitational potential energy are proportional to the mass, the jump height is in
dependent of size [129]. As such, we expect the relative jump, yjump/Ri, to monotonically increase
as the actuators are scaled down. On the other hand, onboard actuation and control may be em
bedded in larger jumpers (as the mass of these additional elements become negligible compared
to that of the actuators) and open up the way to realworld applications requiring untethered soft
robots [14,130]. Finally, while in this study we have focused on the response of spherical caps under
inflation, similar highly nonlinear behavior (i.e. forcedisplacement curves characterized by limit
points in displacement) has been reported for the indentation of shallow arches [131] and shells with
curved creases [132]. Since structural elements with limit points in force have already been used to
realize mechanical metamaterials with novel properties [46,133–136], we believe that by integrating
these new building blocks into their design we can further expand their modes of functionality.

4.7 Methods

Details of the design, materials, and fabrication methods are summarized in Supplementary Ma
terials, Sections C.1 and C.2. The experimental procedures, including the inflation with water to
measure the pressurevolume curve and the inflation with air to measure jump height are described
in Supplementary Materials, Section C.3. FEA procedures and jumper massspring model are de
tailed in Supplementary Materials, Sections C.4 and C.5. Validation of the FEA model and jumper
massspring model is reported in Supplementary Materials C.6.
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5
Outlook

“We have learned much. There still remains much to learn. We are not going in circles, we are
going upwards. The path is a spiral; we already climbed many steps.”
– H. Hesse, Siddhartha
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5.1 Summary and contributions

In this dissertation, I demonstrated how geometry can be leveraged to tune the energy landscape
of inflatable systems and lead to enhanced functionality. First, in chapters 2 and 3, I focused on
the geometric principles at play when folding origami patterns to realize multistable devices. In
chapter 2, I proposed a systematic way of designing closed origami shapes that can be inflated and
deflated between different stable configurations. I then extended this methodology to realize meter
scale functional structures, including inflatable archways and shelters. Following from this work,
in chapter 3, I showed that multistable origami patterns can be utilized to decouple the input signal
from the output deformation in soft actuators. This led to the design of fluidic actuators capable
of arbitrary and programmable deformation modes from one single pressure source. Finally, in
chapter 4, I exploited elastic instabilities in pressurized shells to trigger fast deformations in soft
robots, regardless of their actuation speed. In particular, I designed and fabricated a soft robot
made of spherical cap that suddenly releases energy and jumps upon arbitrarily slow inflation. The
contributions of this dissertation are illustrated in Figure 5.1.

a b

c

Figure 5.1: Contributions. (a)Meter‐scale inflatable and multistable structures (b)Multimodal soft actuators. (c)
Fast soft robotic jumper.
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5.2 Future directions

The research projects presented within this dissertation show that geometry (rather than chemical
composition) can play a key role in determining the physics of a material or structure. Advanced
numerical methods and datadriven approaches are readily available to tailor the microarchitecture
of materials for targeted properties [137–139]. Instead of avoiding instabilities, we seek them out to
obtain transformable structures than can morph into prescribed and distinct stable shapes [140,141].
We also rely on nonlinearities arising from geometry to simplify actuation and embed intelligence in
soft robots that adapt to their environment and interact safely with humans [5]. However, the design
of these systems still mostly relies on intuition, experience, and proofofconcept demonstrations,
resulting in limited industrial exploitation. Future studies should seek to unite these recent scientific
achievements and focus on multistability to automatize the design and fabrication process across
all scales of materials and structures that are multiform, multifunctional and multipurpose. In
particular, I envision opportunities to:

• Direction 1 Automated design: Solving the inverse design process to find geometries giv
ing rise to prescribed responses at distinct stable states

• Direction 2 MultiScale fabrication: Designing and fabricating across allscales materials
that can switch their properties on demand

• Direction 3 Applications: Building transformable structures that address realworld prob
lems

5.2.1 Direction 1: Automated Design

The biggest challenge in building the next generation of smart materials and structures is to autom
atize the design process to get a prescribed nonlinear and timevarying response. This involves
solving the forward problem to understand and model the effect of geometry as well as the inverse
problem to systematically find the required geometrical features needed for targeted properties.
More efficient materials and structures could be designed by prescribing a nonlinear response at
distinct stable states. Towards this end, datadriven approach based on evolutionary algorithms
and artificial neural networks coupled with finite element and reducedorder models could be used
to automatically generate geometries that lead to (i) Prescribed snapthrough instabilities, (ii) Tar
geted deformations and stable shapes, (iii) Predetermined response history.
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Focusing on the buckling of spherical shells (Figure 5.2a), by simply modifying the geometry,
i.e. the thickness or polar angle of the shell, it is possible to switch from a monotonic relation be
tween pressure and volume to a response where we have both pressure and volume snapthrough
instabilities. In order to get prescribed snapthrough instabilities, one could focus on shell struc
tures of arbitrary geometry, develop a library of geometrydriven instabilities using the finite el
ement method, and use optimization tools such as evolutionary algorithms and machine learning
to solve the inverse design problem. In order to get targeted deformation and stable states, one
could harness cylindrical buckling in soft actuators (Figure 5.2b). By modifying the geometry of
the void and subjecting a soft cylinder to vacuum, it is possible to transition between a mode of
deformation characterized by twisting to a mode characterized by bending. While here the void
geometry is fixed, adaptive void geometry in soft actuators could help to switch from one deforma
tion state to the other. Finally, for the more challenging task of designing materials and structures
with predetermined response history, one could extend the work that I have conducted on multi
modal and multistable soft actuators [142]. The complex state diagram of such actuators is shown
in Figure 5.2c. By setting a specific pressure history, the actuator can switch between different
stable states of deformation. One could expand this concept to design materials and structures that
change their stable states and properties passively (from timevarying environmental stimuli) and
actively (from sudden external inputs).
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Figure 5.2: Direction 1: Automated design. (a) Designing the response through geometry: example
of how the geometry of a pressurized spherical shell impacts its pressure‐volume response, from a
monotonic behavior to a curve exhibiting both isobaric and isochoric snap‐through instabilities. (b)
Designing the deformation through geometry: example of how the void shape of a soft cylinder can lead
to twisting or bending when vacuum is applied. (c)Designing the history through geometry: example of
a 3‐unit inflatable actuator inspired by origami that can transition to and from 8 different stable states
(with the cell popped inward or outward) depending on the applied pressure history.
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5.2.2 Direction 2: MultiScale Fabrication of Multistable Materials and Structures

In parallel to the fundamental research ofDirection 1 AutomatedDesign, it is essential to design and
fabricatematerials and structures, across all scales, that can switch their properties on demand. This
would involve transferring the complex geometries and instabilities found inDirection 1 Automated
Design to real, manufacturable samples. In particular, the goal would be to fabricate:

• Multistable materials that can switch their topology

• Multistable structures capable of shape and volume morphing

It is wellknown that the morphological parameters of architected materials (e.g. nodal con
nectivity, relative density, etc.) influence their mechanical response [143]. Indeed, if the nodal
connectivity is low, the material is said to be bendingdominated and its stiffness, E, and strength,
σcr, scale with relative density, ρ, as E ∝ ρ2 and σcr ∝ ρ1.5. Instead, if the nodal connectivity is
high, the architected material is stretchingdominated and the stiffness and strength scaling is lin
ear. Materials that could switch between the two topologies could be used for multipurposes as
they would offer robust loadbearing functionality in the stretchingdominated state and enhanced
energy absorption in the bendingdominated state. As an example, in Figure 5.3a, I demonstrate
that snapping beams in a hexagonal unit cells could trigger the transition from a bendingdominated
state to a stretchingdominated state. These topologyswitching materials could be fabricated via
multimaterial additive manufacturing technologies.

Furthermore, structures that can change shape and volume on demand could be applied in the
fabrication of transformable acoustic panels made of adaptive Helmholtz resonator unit cells. Tra
ditionally, a Helmholtz resonator is made of a closed cavity with an opening through a narrow neck.
Depending on the cavity volume and neck geometry, the resonator can excite and damp specific
frequencies [144]. By utilizing the design tools developed in Direction 1 Automated Design, one
could fabricate acoustic panels made of Helmholtz resonators that can change shape and volume
to display targeted acoustic properties. In Figure 5.3c, I report initial work on an origamiinspired
multistable Helmholtz resonator. By tessellating the multistable unit, the panels can snap into spe
cific internal volumes to damp out selected frequencies. This research could lead to acoustic panels
that can transform to adapt to different settings and be utilized in various fields including aerospace
and the recording industry.
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Figure 5.3: Direction 2: Multi‐scale fabrication of multistable materials and structures. (a) Topology‐
switching lattices: example of an architected material that harnesses beam buckling and multistability
to switch from a bending‐dominated to a stretching‐dominated topology. (b) Shape and volume mor‐
phing structures: example of an origami‐inspired structure that can modulate its acoustic response
through multistability to damp out prescribed frequencies.

5.2.3 Direction 3: Applications of Transformable Structures

We rely heavily on transformable, deployable structures for the most basic tasks (e.g. folding a
packaging box), for immensely complex feats of engineering (e.g. deploying solar sails for space
craft propulsion) as well as in emergency situations (e.g. quickly creating sheltered space in dis
aster areas). Therefore, robust and autonomous deployment as well as resilience and adaptability
to unexpected disruptions need to be included in the design of transformable systems. One could
apply the results of the research conducted in the previous Directions of Automated Design and
MultiScale Fabrication to build adaptive and transformable structures that exhibit the following
properties:

• Transform from a compact stable state to predetermined, stable, and expanded states

• Deploy robustly and autonomously to reduce setup times

• Consist of rigid walls to provide physical, acoustic, and thermal barriers

• Made of costefficient, environmentalfriendly, and reusable material

• Proven to support extreme loading conditions both numerically and experimentally

To start, one could extend the initial work I have done on building a pressuredeployable and
multistable emergency shelter (Figure 5.4a and [145]). This would include using the design tools
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developed in the first research direction Automated Design to generalize the deployed shapes and
focus on other applications such as deployable space structures, field hospitals, and flood barriers.
In addition, development of rigorous numerical and experimental tools is needed to confirm these
structures can be used in the harshest of environments. Finally, to increase the impact and use
of these structures—particularly in disaster areas and to provide temporary sheltering to alleviate
homelessness—it is important to focus on easy fabrication techniques as well as costefficient,
reusable, and degradable materials.

DEPLOYABLE EMERGENCY SHELTER TRANSFORMABLE DEEP SPACE HABITAT
a b

Deploy UseStore

Figure 5.4: Direction 3: Applications. (a) Concept of a large‐scale pressure‐deployable shelter. Once
inflated, because of the multistability, the pressure supply can be removed to make the internal space
accessible. (b) The shelter made of stiff faces connected by flexible hinges provides physical, acoustic,
and thermal barriers and could be used for emergency response in disaster zones or as a transformable
habitat for deep space exploration.
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A.1 Design

Our origamiinspired deployable structures are made out of stiff triangular facets connected by
compliant hinges. In this section, we first show that the inscribed angle theorem can be utilized
to design triangular building blocks with two compatible states. Next, we demonstrate that assem
bling these building blocks in rational ways leads to a library of inflatable and bistable origami
shapes.

A.1.1 Deployment of an initially flat triangular building block

We start by considering a triangular building block ABC with internal angle α ≡ ∠BAC and β ≡
∠ABC. The triangle is initially flat (i.e. it lies in the xyplane) and is deployed through a rotation
about its edge BC, which leads to a displacement wA of vertex A along the zdirection and a volume
under the triangle, VABC, that can be calculated as

VABC =
1
6
AB ·

(
AC× AAxy

)
=

wA||AB||2

6
sin α

sin (α+ β)

√
sin2 β−

w2
A

||AB||2
, (A.1)

where AAxy is the segment formed by connecting vertex A to its projection on the xyplane, ||AB|| is
the length of edge AB, and wA = ||AAxy|| (see Figure A.1a). Focusing on the xyplane (see Figures
A.1b–c), we see that, if

α ∈ ]αmin, αmax[ =
]
0,

π
2

[
, and β ∈ [βmin, βmax] =

[π
4
− α
2
,
π
2
− α
]
, (A.2)

the projection of the triangle intersects a circle circumscribed to the initial configuration at a dis
placement, wc

A, and volume, Vc
ABC. The displacement wc

A can be obtained as

wc
A =

√
||AC||2 − ||ACc

xy||2 = ||AB||

√
1− cos2 β

sin2(α+ β)
, (A.3)

where ||AC|| is the length of edge AC and ACc
xy is the edge AC projected on the xyplane at the

intersection with the circle, whose length is given by

||ACc
xy|| = ||AB|| cot(α+ β). (A.4)

Further, by substituting Eq. A.3 in Eq. A.1, we get

Vc
ABC =

||AB||3

6
sin α sin β cos β csc(α+ β) cot(α+ β)

√
1− cot2 β cot2(α+ β). (A.5)

It follows from the inscribed angle theorem (which states that, since the angle α inscribed in a
circle is half of the central angle that subtends the same arc, α does not change as its vertex is moved
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on the circle—see Figures A.1de) that for wA = wc
A and VABC = Vc

ABC, the angle α is recovered on
the projected plane. As such, the triangle ABC possesses two states—one flat and one deployed—
for which α = αxy separated by states for which αxy ̸= α (see gray triangle is Figures A.1ab). Using
simple geometry, we can determine αxy as a function of wA as

αxy = arccos
(

ABxy · ACxy

||ABxy|| · ||ACxy||

)
= arccos

 1− 2 w2
A

||AB||2 −
sin(α−β)
sin(α+β)

2
√
1− w2

A
||AB||2

√(
sin β

sin(α+β)

)2
− w2

A
||AB||2

 , (A.6)

where ABxy and ACxy are the edges AB and AC projected on the xyplane, which have length

||ABxy|| =

√
1−

w2
A

||AB||2
, (A.7)

and

||ACxy|| = ||AB||

√
sin2 β

sin2(α+ β)
−

w2
A

||AB||2
. (A.8)
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Figure A.1: Deployment of an initially flat triangular building block. (a‐b) Isometric and projected views of a
triangular building block ABC that recovers its projected angle α during deployment leading to two distinct com‐
patible states. (c) Initially flat triangular building block ABC in the limit cases where β = βmin and β = βmax. (d)
According to the inscribed angle theorem, the angle ∠BAC is half the central angle ∠BOC. (e)Moving the vertex
A on the circle below the edge BC does not change the angle ∠BAC.

In Figure A.2a, we show the evolution of the projected angle variation, i.e. Δα ≡ αxy − α, as a
function of wA for a triangular building block with α = 45◦ and β = 32◦. We find a highly nonlinear
relation characterized by a local maximum

Δαmax ≡ max(Δα) = arccos

 2 cot(α+ β) sin 2β√
csc4(α+ β) sin 2β sin(2(α+ β)) sin2(α+ 2β)

 , (A.9)

at a deployment height
wΔαmax
A = ||AB|| sin β

√
1− cot β cot(α+ β). (A.10)
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and two points (wA = 0 and wA = wc
A) at which Δα = 0.
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Further, the difference between αxy and α can also be quantified by introducing the distance

ΔABC = ||ACxy|| · sin Δα = ||ACxy|| · sin(αxy − α), (A.11)

that we will later use to characterize the geometric incompatibility of the resulting origami struc
tures for 0 < wA < wc

A and, therefore, estimate the energy required for them to snap back from the
expanded to the flat state. In Figure A.2b, we show the evolution of ΔABC as a function of wA for
a triangle with α = 45◦ and β = 32◦. As expected, we find a similar behavior to that reported in
Figure A.2a for Δα, with a local maximum Δmax

ABC ≡ max(ΔABC) at a deployed height w
Δmax
ABC

A and two
points (wA = 0 and wc

A) at which ΔABC = 0.
Next, in Figure A.3 we show the effect of α and β on ΔABC. First, in Figure A.3a we investigate

how β affects the ΔABC vs. wA curve when choosing α = 45◦. We find that

• for β → βmin = π/4− α/2

wc
A → 0, and Δmax

ABC = max (ΔABC) → 0. (A.12)

• for β → βmax = π/2− α, Δmax
ABC largely increases and

wc
A → wΔmax

ABC
A . (A.13)

As shown in Figure A.3b, similar trends are found when increasing the angle α for a fixed value
of β (here we choose β = 45◦). It is also interesting to note that for α = 60◦ ΔABC monotonically
increases and the triangle does not have a deployed compatible state. This is because for α = 60◦ ,
β = 45◦ > βmax = π/2− α.
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To identify triangles that can potentially lead to deployable structures that are inflatable, we
then plot the evolution of ΔABC as a function of VABC. In Figure A.4a we report such curves for
triangles with α = 45◦ and β ∈ [22.5◦, 45◦] and highlight two important volume configurations: the
volume at the deployed compatible state , Vc

ABC (white circular marker), and the maximum volume,
Vmax
ABC (green circular marker), that can be expressed as

Vmax
ABC =

||AB||3

12
sin α sin2 β
sin(α+ β)

. (A.14)
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We find that for low values of β the deployed compatible state with corresponding volume, Vc
ABC,

is reached before the state of maximum volume, Vmax
ABC, enabling actuation through inflation (see

inset on the lower left corner of Figure A.4a). Differently, for large values of β the configuration of
maximum volume is reached before the deployed compatible state and, therefore, that state cannot
be reached through inflation (see inset on the upper left corner of Figure A.4a). Note that these
trends are also found when considering a triangle with β = 27◦ and α ∈ [36◦, 60◦] (see Figure A.4b).
Guided by these results, we then introduce the inflation constraint

hABC =
ΓVmax

ABC

Γc
, (A.15)

where ΓVmax
ABC and Γc are the arc lengths measured on the ΔABCVABC curve between the flat compatible

state and the state of maximum volume and between the flat and expanded compatible configura
tions, respectively (see Figure A.4a). It follows from Eq. A.15 that only triangles with log hABC ≥ 0
can be deployed through fluidic actuation as those are the only ones for which the expanded com
patible configuration is reached before the one with maximum volume during inflation.

βmax

Angle α [°]
0 45 90

A
ng

le
 β

 [
°]

0

45

90

βmin

Deploy. through
inflation

Non-deploy. through
inflation

lo
g 

h A
B

C
 [

-]

-2

2βmax

1

0

-1

Angle α [°]
0 45 90

A
ng

le
 β

 [
°]

0

45

90

βmin

βmax

Angle α [°]
0 45 90

A
ng

le
 β

 [
°]

0

45

90

βmin
6

14x10-2

12
10
8

Δ
A

B
C
/||

A
B

|| 
[-

]
m

ax

c

4
2
0

w
A
/||

A
B

|| 
[-

]

0

8

6

4

2

10x10-1

Inflation
bound

βmax

Angle α [°]
0 45 90

A
ng

le
 β

 [
°]

0

45

90

βmin V
A

B
C
 [

-]
c6

14x10-2

12
10
8

4
2
0

βmax

Angle α [°]
0 45 90

A
ng

le
 β

 [
°]

0

45

90

βmin

0

3x10-2

2

1 V
A

B
C
 [

-]
m

ax

a b c

ed

Figure A.5: Deployment of an initially flat triangular building block: summary of derived results. (a‐e) Contour
maps of (a) the compatible deployment height, wc

A, (b) the volume at the deployed compatible state, Vc
ABC, (c)

the maximum volume, Vmax
ABC, (d) the maximum incompatibility during deployment, Δmax

ABC, and (e) the inflation
constraint, log hABC, as a function of the angles α and β.

55



Finally, in Figure A.5 we summarize the results derived here by reporting contour maps of
the compatible deployment height, wc

A, the compatible deployment volume, Vc
ABC, the maximum

volume, Vmax
ABC, the maximum geometric incompatibility, Δmax

ABC, and the inflation constraint, log hABC.

A.1.2 Deployment of an initially rotated triangular building block

So far, we have focused on triangular building blocks defined by internal angles α and β that initially
lie in the xyplane and recover their projected angle α in a deployed state on such plane for wA = wc

A
and VABC = Vc

ABC. However, the triangle in the xyplane can also be seen as the projection of a
triangle with internal angles α and β that has been initially rotated around its edge BC to have a
deployment height wi

A, volume under the triangle Vi
ABC, and projected angles αixy and βixy (see Figure

A.6). Note that such initially rotated building block is fully defined by the projected angles αixy and
βixy and the internal angle β and that its other geometric parameters, α and wi

A, can be derived from
simple geometric considerations as

α = π − arccos


√
2
(
cos 2 β− sin(αixy+2 βixy)

sin αixy

)
√
−

cos 2 αixy+cos(2 αixy+4 βixy)−2

sin αixy
+4 cos 2 β sin(αixy+2 βixy)

sin αixy

 , (A.16)

and

wi
A =

√
||AC||2 − ||ACi

xy||2 = ||AB|| sin β

√
1−

tan2 βixy
tan2 β

, (A.17)

where ACi
xy is the edge AC projected on the xyplane at the first intersection with the circle, whose

length is given by

||ACi
xy|| = ||AB||

cos β tan βixy
sin(αixy + βixy)

. (A.18)

Further, by substituting Eq. A.17 into Eq. A.1, we find that the volume initially under the triangle
is

Vi
ABC =

||AB||3

6
cos2 β sin αixy sin β tan βixy
sin
(
αixy + βixy

)
cos βixy

√
1−

tan2 βixy
tan2 β

. (A.19)
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Figure A.6: Deployment of an initially rotated triangular building block. (a‐b) Isometric and projected views of
a triangular building block ABC that recovers its projected angle αixy during deployment leading to two distinct
compatible states.

Focusing on the xyplane (see Figure A.6b), we see that, if

αixy ∈
](
αixy
)
min ,

(
αixy
)
max

[
=
]
0,

π
2

[
,

βixy ∈
[(

βixy
)
min

,
(
βixy
)
max

]
=

[
π
4
−

αixy
2
,
π
2
− αixy

]
,

β ∈ [βmin, βmax[=
[
βixy,

π
2

[
,

(A.20)

upon further rotation the projection of the triangle intersects a circle circumscribed to the initial
configuration also at a displacement, wc

A, and volume, Vc
ABC. The displacement wc

A can be obtained
as

wc
A =

√
||AC||2 − ||ACc

xy||2 = ||AB|| sin β
√
1− cot2(αixy + βixy) cot2 β, (A.21)

where ACc
xy is the edge AC projected on the xyplane at the second intersection with the circle, whose

length is given by

||ACc
xy|| = ||AB||

cos β cot
(
αixy + βixy

)
cos βixy

. (A.22)
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Further, by substituting Eq. A.21 in Eq. A.1, we get

Vc
ABC =

||AB||3

6
cos2 β sin(αixy) sin β

sin
(
αixy + βixy

)
tan
(
αixy + βixy

)
cos
(
βixy
)√1− cot2

(
αixy + βixy

)
cot2 β. (A.23)

It follows from the inscribed angle theorem that for wA = wc
A and VABC = Vc

ABC, the projected angle
αixy is recovered on the projected plane. As such, the triangle ABC possesses two states – identified
by wi

A and wc
A – for which αixy = αxy separated by states for which αixy ̸= αxy, where αxy is still given

by Eq. A.6.
In Figure A.7a we show the evolution of the projected angle variation, Δα ≡ αxy − αixy, as a

function of wA for a triangular building block with β = 45◦, αixy = 45◦, and βixy = 32◦ (for which
α = 36.8◦ according to Eq. A.16). We find a nonlinear relationship similar to that obtained for the
initially flat building blocks, characterized by a local maximum

Δαmax ≡ max(Δα) = arccos

 2 cot(αixy + βixy) sin 2βixy√
csc4(αixy + βixy) sin 2βixy sin(2(αixy + βixy)) sin2(αixy + 2βixy)

 , (A.24)

at

wΔαmax
A = ||AB|| sin β

√
1− tan βixy cot2 β cot(αixy + βixy). (A.25)

and two points (wA = wi
A and wA = wc

A) at which Δα = 0.
As for the initially flat building blocks, also in this case we can quantify the difference between

αxy and αixy by introducing the distance

ΔABC = ||ACxy|| · sin(αxy − αixy), (A.26)

where ||ACxy|| is given in Eq. A.8. In Figure A.7b we show the evolution of ΔABC as a function
of wA for a triangular building block with β = 45◦, αixy = 45◦, and βixy = 32◦. Again, we find
a behavior similar to that observed for the initially flat building blocks, with a local maximum
Δmax
ABC ≡ max(ΔABC) at w

Δmax
ABC

A and two points (wA = wi
A and wc

A) at which ΔABC = 0.
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Next, in Figure A.8 we explore the effect of αixy, βixy, and β on ΔABC. First, in Figure A.8a we
investigate how βixy affects the ΔABC vs. wA curve when choosing αixy = 45◦ and β = 45◦. We find
that

• for βixy →
(
βixy
)
min

= π/4− αixy/2

wi
A → wc

A, and Δmax
ABC = max (ΔABC) → 0. (A.27)

• for βixy →
(
βixy
)
max

= π/2− αixy, Δmax
ABC largely increases and

wi
A → 0, and wc

A → wΔmax
ABC

A . (A.28)

As shown in Figure A.8b, we find similar trends when increasing the angle αxy, while keeping
βixy = 32◦ and β = 45◦. However, as expected from Eq. A.17, in this case the initial deployment
height, wi

A, is constant and not affected by αixy. Finally, in Figure A.8c we investigate how β affects
the ΔABC vs. wA curve for triangles with αixy = 45◦ and βixy = 45◦. By varying β over the range
[βixy, π/2[, we find that

• for β → βixy we recover the case of the initially flat triangular building block and

wi
A → 0 (A.29)

• for β → π/2, Δmax
ABC slightly decreases and

wi
A → wc

A. (A.30)
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To identify triangles that can potentially lead to deployable structures that are inflatable, we then
plot the evolution of ΔABC as a function of VABC. In Figure A.9a we report such curves for triangles
with αixy = 45◦, β = 45◦ and βixy ∈ [22.5◦, 45◦] and highlight two important volume configurations:
the volume at the deployed compatible state , Vc

ABC (white circular marker), and the maximum
volume, Vmax

ABC (green circular marker), that can be calculated from Eq. A.14. We find that for
low values of βixy, both deployed compatible state with corresponding volumes, Vi

ABC and Vc
ABC are

reached before the state of maximum volume Vmax
ABC, enabling actuation through inflation (see green

dashed line in Figure A.9a). Differently, for large values of β the configuration ofmaximumvolume
is reached before the deployed compatible state with corresponding volume Vi

ABC and, therefore,
that state cannot be reached through inflation (see green solid line in Figure A.9a). Note that similar
trends are also foundwhen considering a triangle with βixy = 32◦ and β = 45◦ and αixy ∈ [36◦, 60◦] (see
Figure A.9b), although the effect of increasing αixy is substantially smaller than βxy on inflatability.
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To identify initially rotated triangles that can deployed through fluidic actuation, we then use
the inflation constraint defined in Eq. A.15. An interesting feature of the initially rotated building
block is that for any combination of αixy and βixy (within the bounds defined in Eq. A.20), we can
always select β such that log hABC ≥ 0. This is because we can set β = β∗, where β∗ is the angle
resulting in an initial rotated state defined by the deployment wi

A that maximizes the volume under
the triangle, i.e. Vi

ABC = Vmax
ABC (see Figure A.9c where for β = β∗ the black and green markers

coincide). To determine β∗, we first determine the deployment angle, γi, by finding the dihedral
angle (see Figure A.6a) between the planes of the flat and deployed triangles ABC

γi = arccos

(
n0 · nwi

A

||n0|| · ||nwi
A
||

)
= arccos

(√(
1−

w2
A

||AB||2 sin2 β

))
, (A.31)
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where n0 and nwA are the normals of the planes defined by the flat and deployed triangles. Noting
that a triangle maximizes its volume when the deployment angle is γi = π/4 and replacing wA in
Eq. A.31 by the expression of wi

A in Eq. A.17, we find

β∗ = tan−1
(√

2 tan βixy
)
. (A.32)

Importantly, we expect an origami structure made out of initially rotated triangles with β ≥ β∗ to
be bistable and inflatable even if made out of a single building block.

Finally, in Figure A.10 we summarize the results derived here by reporting contour maps of
the maximum geometric incompatibility, Δmax

ABC, the inflation constraint, log hABC, the compatible
deployment heights, wi

A and wc
A, the compatible deployment volumes, Vi

ABC and Vc
ABC, and the max

imum volume, Vmax
ABC for three different values of β, i.e. β = 30◦, 45◦, and 60◦.
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Figure A.10: Deployment of an initially rotated triangular building block: summary of derived results. (a‐c) Con‐
tour maps of the maximum geometric incompatibility, Δmax

ABC, the inflation constraint, log hABC, the compatible
deployment heights, wi

A and wc
A, the compatible deployment volumes, Vi

ABC and Vc
ABC, and the maximum volume,

Vmax
ABC for three different values of β, i.e. (a) β = 30◦, (b) 45◦, and (c) 60◦.
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A.1.3 Inflatable and bistable origami shapes

To realize inflatable origami structures with multiple stable states, we assemble the triangular build
ing blocks discussed above. In this work, we present four different ways of connecting the building
blocks to obtain a library of origami shapes. For three of them (which will be referred to as Design
I, Design II, and Design III) we utilize initially flat building blocks, whereas for the fourth one
(which will be referred to as Design IV) we utilize initially rotated building blocks.

Design I

To realize Design I, we arrange 2n initially flat triangles with angles (α(1), β(1)) with 2n initially
flat triangles with angles (α(2), β(2)) to form two identical layers with nfold symmetry and connect
them at their outer boundaries (see Figure A.11). The resulting starlike structures define an internal
volume

V = 2n(V(1)
ABC + V(2)

ABC), (A.33)

exhibit geometric incompatibility

Δ = 2n(Δ(1)
ABC + Δ(2)

ABC) (A.34)

and are inflatable only if

log h = log
(
ΓVmax

Γc

)
≥ 0, (A.35)

where ΓVmax and Γc are the arc lengths measured on the ΔV curve between the states with V = 0 and
V = Vmax = max(V) and between the two stable configurations, respectively. Note that to ensure
structural integrity, the two triangular building blocks must have

(i) identical compatible deployment heights, i.e. wc(1)
A = wc(2)

A ;

(ii) connecting deployed edges AB of equal length, i.e ||AB(1)|| = ||AB(2)||;

(iii) angles that satisfy α(1) + α(2) = π/n.

Therefore, to realize a Design I structure, we first select the number of symmetric folds, n, and the
angles of the first triangular building blocks α(1) and β(1). It follows from requirements (iiii) that
the second triangular building block must have its internal angles equal to

α(2) = π/n− α(1),

β(2) = arctan

(
sin(α(1) + β(1))
cos β(1) cos α(2)

− tan α(2)
)
.

(A.36)
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In Figures A.11ac, we show an example of a Design I geometry (referred to as Design IA),
with (α(1)IA, β

(1)
IA) = (22◦, 35◦) and (α(2)IA, β

(2)
IA) = (68◦, 14◦) for which Δmax/||AB|| = 2.67 × 10−2

and log h = 0. Finally, in Figure A.11d, we plot the evolution of the maximum incompatibility,
Δmax ≡ max(Δ), as a function of the inflation constraint, log h, for 500, 000 different geometries
with n ∈ [2, 5], α ∈]0, π/n[, and β ∈ [π/4 − α/2, π/2 − α] (note that the increase in brightness of the
data points in Figure A.11d indicates an increase in number of symmetry folds, n, of the origami
geometry).
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Figure A.11: Design I. (a‐b) Isometric and projected views of the two building blocks used to create Design I‐
A. (c) Evolution of the incompatibility, Δ, as a function of the internal volume, V, for Design I‐A. (d) Maximum
incompatibility, Δmax vs. inflation constraint, log h for 500, 000 different Design I geometries for increasing value
of symmetry fold, n.

65



Design II

With the goal of increasing the geometric incompatibility of the inflatable designs, we investigate
the response of starlike structures in which the longest edge of one triangle, AB(1), is connected
to the shortest edge of the other one, AC(2). These geometries must satisfy the same requirements
(iiii) as Design I, except that we impose ||AB(1)|| = ||AC(2)|| instead of ||AB(1)|| = ||AB(2)||. Also in
this case, to realize a Design II structure, we first select the number of symmetric folds, n, and the
angles of the first triangular building block α(1) and β(1). It then follows from requirements (iiii)
that the second triangular building block must have its internal angles equal to

α(2) = π/n− α(1),

β(2) = arctan

(
sin β(1)

cos(α(1) + β(1)) cos α(2)
− tan α(2)

)
.

(A.37)

In Figures A.12ac, we show an example of a Design II geometry (referred to as Design IIB),
with (α(1)IIB, β

(1)
IIB) = (43.6◦, 25.2◦) and (α(2)IIB, β

(2)
IIB) = (46.4◦, 33.5◦) for which Δmax/||AB|| = 8.58 ×

10−2 and log h = 0. Finally, in Figure A.12d, we plot the evolution of the maximum incompatibility,
Δmax, as a function of the inflation constraint, log h, for 500, 000 different geometries with n ∈ [2, 5],
α ∈]0, π/n[, and β ∈ [π/4− α/2, π/2− α].
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Figure A.12: Design II. (a‐b) Isometric and projected views of the two building blocks used to create Design II‐
B. (c) Evolution of the incompatibility, Δ, as a function of the internal volume, V, for Design II‐B. (d) Maximum
incompatibility, Δmax vs. inflation constraint, log h for 500, 000 different Design II geometries for increasing value
of symmetry fold, n.
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Design III

Whereas the connection of two different initially flat triangles side by side enables us to design
inflatable and bistable structures, it limits us to starlike shapes. To expand the range of shapes, we
next arrange the two triangles on top of each other in the flat configuration and mirror them twice
to form an inflatable cavity (see Figure A.13). This leads to geometries comprising eight triangles
that are initially flat and transformed into wedgelike shapes upon deployment. These geometries
define an internal volume

V = 4
(
V(1)
ABC − V(2)

ABC

)
, (A.38)

exhibit geometric incompatibility

Δ = 4
(
Δ(1)
ABC + Δ(2)

ABC

)
(A.39)

and are inflatable only if the constraint given in Eq. A.35 is satisfied. Note that to ensure structural
integrity, the two triangular building blocks must have

(i) identical compatible deployment heights, i.e. wc(1)
A = wc(2)

A ;

(ii) connecting deployed edges of equal length, i.e ||AB(1)|| = ||AC(2)||;

(iii) angles that satisfy α(1) = α(2).

Therefore, to realize a Design III structure, we first select the angle of the first triangular build
ing block α(1) and β(1). It then follows from requirements (iiii) that the second triangular building
blocks must have its internal angles equal to

α(2) = α(1),

β(2) = arctan

(
sin β(1)

cos(α(1) + β(1)) cos α(2)
− tan α(2)

)
.

(A.40)

In Figures A.13ac, we show an example of a Design III geometry (referred to as Design III
C), with (α(1)IIIC, β

(1)
IIIC) = (37.1◦, 30.0◦) and (α(2)IIIC, β

(2)
IIIC) = (37.1◦, 40.6◦) for which Δmax/||AB|| =

9.93 × 10−2 and log h = 0.544. Finally, in Figure A.13d, we plot the evolution of the maximum
incompatibility, Δmax, as a function of the inflation constraint, log h, for 500, 000 different geometries
with α ∈]0, π/2[, and β ∈ [π/4− α/2, π/2− α].
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Design III-C
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Figure A.13: Design III. (a‐b) Isometric and projected views of the two building blocks used to create Design
III‐C. (c) Evolution of the incompatibility, Δ, as a function of the internal volume, V, for Design III‐C. (d)Maximum
incompatibility, Δmax vs. inflation constraint, log h for 500, 000 different Design III geometries.

Design IV

To realize Design IV, we arrange 4n initially deployed triangles with angles α and β to form two
identical layers with nfold symmetry and connect them at their outer boundaries (see Figure A.14).
Note that in this case, since we can choose β > β∗, we can use only one triangular building block to
make bistable and inflatable structures. The resulting starlike structures define an internal volume

V = 4nVABC, (A.41)

exhibit geometric incompatibility
Δ = 4nΔABC, (A.42)

and are inflatable only if

log h = log
(
ΓVmax

Γc

)
≥ 0, (A.43)

where ΓVmax and Γc are the arc lengths measured on the ΔV curve between the states with V = 4nVi
ABC

and V = Vmax = max(V) and between the two stable configurations, respectively. Note that to ensure
structural integrity, the triangular building blocks must have

(i) projected angle αixy = π/n;

(ii) projected angle βixy ∈ [π/4− αixy/2, π/2− αixy];
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(iii) interior angle β ∈ [βixy, π/2[.

Therefore, to realize a Design IV structure, we first select the number of symmetric folds, n, the
projected angle βixy and the interior angle β. Then, we use Eq. A.16 to determine α. Note that to
make the structure deployable through inflation (i.e. log h ≥ 0) we have to select β ≥ β∗.

In Figures A.14ac, we show an example of a Design IV geometry (referred to as Design IVD),
with (αIVD, βIVD) = (29◦, 56◦) and (αixy, βixy) = (45◦, 33◦) for which Δmax/||AB|| = 2.05× 10−1 and
log h = 0.508. Finally, in Figure A.14d, we plot the evolution of the maximum incompatibility,
Δmax, as a function of the inflation constraint, log h, for 500, 000 different geometries with n ∈ [3, 5],
βixy ∈ [π/4− α/2, π/2− α], and β ∈ [βixy, π/2[.
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Figure A.14: Design IV. (a‐b) Isometric and projected views of the triangular building block used to create Design
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A.2 Fabrication

In this study, we fabricate both centimeterscale and meterscale origami structures. This section
gives details of the fabrication methodology used for the two considered scales.

A.2.1 Geometry and material selection

Themain structures built in this study include four simple centimeterscale origami designs, i.e. De
signs IA, IIB, IIIC, and IIID, as well as two meterscale functional designs, i.e. the archway and
the shelter. Designs IA and IIB are both chosen because they maximize the geometric incompati
bility of their respective class while still being inflatable to their expanded stable state, i.e. log h = 0.
Design IIIC is chosen with incompatibility higher than that of Design IIB—to ensure bistability—
and geometry suitable for the realization of the inflatable archway (Design IIIC is one of the units
of our arch—see Figure2.3a). Finally, we select Design IVD to have incompatibility higher than
that of Design IIB (as well as that of Design IIIC) and to have two nonzero volume stable states
(a property that cannot be achieved with Designs IIII).

To provide a robust and protective environment as well as to accommodate geometric frustra
tion during deployment andminimize bending energy in the hinges, we build our origami structures
out of stiff faces and compliant hinges. To realize centimeterscale structures, inspired by recent
works [64,65], we use two different methods based on cardboard and 3Dprinted faces. In the first
method, we connect lasercut cardboard faces with a doublesided adhesive sheet to form the hinges.
The cardboard structures can be fabricated quickly and inexpensively to validate the compatible
shapes coming from our design methodology. However, they do not provide an airtight cavity to
perform experimental testing. To realize inflatable prototypes, in the second method, we assemble
centimeterscale structures by connecting faces 3Dprinted out of a standard rigid material (poly
actic acid) with flexible polyester lasercut sheets to form the hinges. For the meterscale model,
we use corrugated plastic sheets for the faces as they are available in large format (8 ft × 4 ft, 4
mm thick) and have high bending stiffness to weight ratio because of the corrugation. To form the
compliant hinges, we reduce the thickness of the material locally by scoring the plastic sheet (see
archway pattern in Figure A.20). In the case of the shelter, we also engrave the sheets (reducing
the thickness on an area rather than a single line) to further increase the compliance compliance
to the hinges to allow geometric frustration during the deployment (see shelter pattern in Figure
A.20). Details on each fabrication technique are provided below.
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A.2.2 Centimeterscale structures

Structures with cardboard faces

In the first method, we assemble lasercut cardboard facets with doublesided adhesive tape to form
the hinges (see Figure A.15). Below are the eight steps needed to fabricate a cardboard sample (see
Figure A.16):

• Step 1: we cut the different components of the origami structure out of 0.25mm thick card
board sheets (Bristol pad from Blick) with a 150W lasercutter (PLS6.150D from Universal
Laser Systems), using both lasers at 30% power, 30% speed, and 1000 pulses per inch (Step
1a). Step 1b: we obtain a first sheet with trapezoidal shapes cut out to later accommodate
for connection tabs (see Step 3). Step 1c: we obtain another sheet with trapezoidal shapes
both cut out and patterned to later accommodate for connection pockets and tabs (see Step
3). Note that the circular holes are for alignment purposes (see Steps 2 and 3).

• Step 2: we insert the cut sheet obtained in Step 1b on an alignment platform and place
doublesided adhesive tape (0.05mm thick sheet from Graphix) on the origami parts.

• Step 3: we overlay the sheet obtained in Step 1c on top of the sheet with adhesive to create
two layers of triangular facets connected by adhesive tape to form the hinges. Note the tabs
and pockets now have exposed adhesive for connection.

• Step 4: we place the two assembled sheets in the laser cutter at the same location using the
alignment circular holes.

• Step 5: we cut out the perimeter of the origami patterns on the sheets with the lasercutter
and obtain two hinged triangular facet layers with tabs and pockets for connection.

• Step 6: we align the two layers and fold the tabs on the corresponding pockets to create a
closed origami structure.

• Step 7: we insert inlets (for fluidic supply) on two of the faces (designed with an additional
hole to accommodate it).

• Step 8: we deploy the origami structure from the flat stable state to the expanded stable state.
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screwdriver 
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connection tabs

connection pockets

double sided adhesive
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bolts and nuts

Figure A.15: Toolkit of the centimeter‐scale origami structureswith cardboard facets. The tools required to build
the centimeter‐scale origami structures out of cardboard facets and double‐sided adhesive tape hinges.
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step 1a step 1b

step 1c step 2

step 3 step 4

step 5 step 6

step 7 step 8

Figure A.16: Centimeter‐scale fabrication with cardboard facets. Snapshots of the eight steps required to fabri‐
cate the centimeter‐scale origami structures with cardboard facets.
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Structures with 3Dprinted faces

To realize inflatable prototypes, we assemble centimeterscale structures by connecting 3Dprinted
faces with flexible lasercut sheets to form the hinges (see Figure A.17).

bolts and nuts

pliers

laser-cut sheets

pin building blocks

socket building blocks

screwdriver 

fluid inlet

Figure A.17: Toolkit of the centimeter‐scale origami structures with 3D‐printed facets. The tools required to
build the centimeter‐scale origami structures with 3D‐printed facets.

For each face of the structure, we 3Dprint two 0.5mm thick layers (3DUniverse 2.85mmwhite
PLA filament bundle) using an Ultimaker 3 with a 0.25 mm print core with slight modifications
to the fine default settings (travel acceleration lowered to 2000 mm/s2). Note that to facilitate
assembly one layer has a set of pins printed on one of its surfaces, whereas the other has sockets.
The polyester sheets (0.002in thick polyester film fromMcMasterCarr) are cut with a 150W laser
cutter (PLS6.150D from Universal Laser Systems), using both lasers at 8% power, 30% speed, and
1000 pulses per inch. To connect faces together and form a complete origami structure, we snap
the pin and socket connections on the 3Dprinted parts together using pliers. Note that to obtain
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optimal bonding between the faces we use pins with height and diameter equal to 1.5mm and 2.65
mm, respectively, and ring sockets with height, internal, and external diameters equal to 0.5 mm,
2.8mm, 4.3mm, respectively. Finally, to seal the origami structure, we coat it in the deployed state
with a 0.5mmthick layer of silicone rubber (Ecoflex 0030 from SmoothOn). Below are the eight
steps needed to fabricate a sample (see Figure A.18):

• Step 1: we 3Dprint 0.5mm thick faces with pins and sockets out of polyactic acid (3D
Universe 2.85 mm white PLA filament bundle) using a Ultimaker 3.

• Step 2: we lasercut 0.002in thick polyester sheets with a 150 W lasercutter (PLS6.150D
from Universal Laser Systems). Note that holes to allow for the pinsocket connections are
embedded into the sheets.

• Step 3: we insert an inlet (for fluidic supply) on one of the faces (designed with an additional
socket to accommodate it) and snap the corresponding face with pins, while lying the laser
cut sheet in the middle.

• Step 4: we arrange on the two lasercut sheets half of the faces (all oriented in the same
direction as the face with the inlet in Step 3) and snap them together.

• Step 5: we insert another inlet (for pressure measurement) on a face designed with an ad
ditional socket to accommodate it. Note that this face is symmetric to the previous ones
already snapped.

• Step 6: we arrange on the two lasercut sheets the remaining half of the faces (all oriented
in the same direction as the face with the inlet in Step 5) and snap them together to form the
closed origami structure in the flat stable state.

• Step 7: we manually deploy the origami to its expanded stable state.

• Step 8: we coat the origami structure with a thin layer of silicone rubber (Ecoflex 0030
from SmoothOn), hang it, and let it cure for three hours at room temperature. Note that we
repeat the coating process twice and apply two layers.
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step 2

step 4
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Figure A.18: Centimeter‐scale fabrication with the 3D‐printed facets. Snapshots of the eight steps required to
fabricate the centimeter‐scale origami structures with the 3D‐printed facets.

In Section A.1, we demonstrated that we can design bistable and inflatable origami shapes with
flat and expanded stable states. However, our prototypes have a nonzero rest angle in the initial
stable state due to bending energy introduced in the hinges during fabrication. This rotation of
the faces in the initial state is largely determined by the manufacturing technique used to realize
the samples. To emphasize this point, in Figure A.19, we report the initial and expanded stable
configurations for Design IIB (characterized by (α(1)IIB, β

(1)
IIB) = (43.6◦, 25.2◦) and (α(2)IIB, β

(2)
IIB) =
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(46.4◦, 33.5◦)) with cardboard and 3Dprinted faces. While both samples show identical deployed
stable configurations, their initial state is quite different. The cardboard structure is initially almost
flat, but is not airtight (and therefore not inflatable). Differently, the silicone rubber layer thatmakes
the sample with 3Dprinted faces airtight (and therefore inflatable) leads to a more pronounced
rotation of the faces in the initial state.

d

a

b

1 cm

Figure A.19: Initial state for our sample. One of the stable states of our origami shapes can be designed to
be geometrically flat. However, the fabricated structures exhibit a rest angle in the flat state due to the bend‐
ing energy introduced in the hinges during fabrication as well as the finite thickness of the facets. Here, we
show the stable flat state and deployed state of Design II‐B (characterized by (α(1)IIB, β

(1)
IIB) = (43.6◦, 25.2◦) and

(α(2)IIB, β
(2)
IIB) = (46.4◦, 33.5◦)) fabricated with cardboard (a) and 3D‐printed facets (b). While both samples show

identical deployed stable configurations, their initial state is quite different. The cardboard structure is initially
almost flat, but is not airtight (and therefore not inflatable). Differently, the Ecoflex layer that makes the sample
with 3D‐printed faces airtight (and therefore inflatable) leads to a more pronounced rotation of the faces in the
initial state.

A.2.3 Meterscale structures

All meterscale structures tested in this study are made out of corrugated plastic sheets (clear 8 ft
× 4 ft, 4mm thick corrugated plastic sheets from Corrugated Plastics). The origami patterns are
formed on the sheets using a digital cutting system (G3 cutter from Zünd). Note that for the inflat
able arch we use a scoring operation (cutting through 75% of the material along a single line) to
create compliant hinges that allow for the geometric incompatibility during deployment. However,
to account for the larger amount of incompatibility in the shelter design, in addition to scoring, we
engrave the sheets (removing 75% of the material on a localized zone with an engraver) to cre
ate hinges with extra compliance. The cutting patterns for the inflatable archway and emergency
shelter are shown in Figure A.20.
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b c d e f g

Figure A.20: Digital cutting patterns of the meter‐scale archway and emergency shelter. (a) The archway is
fabricated out of two identical cutting patterns where the red and green lines represent through cuts to release
the parts and scoring operations to make the hinges, respectively. (b‐g) The emergency shelter is assembled
from six different cutting patterns that make the roof, walls, and floor of the structure. Here the red, green, and
blue lines represent cutting, scoring, and engraving operations, respectively. Note that the latter give additional
compliance to the hinges to allow geometric frustration during the deployment.

Once the sheets are cut, we assemble them using adhesive tape (transparent duct tape from 3M)
to form an airtight cavity. As an example, our meterscale origami shelter is fabricated using the
following 20 steps (see Figure A.21):

• Step 1: we cut and score the corrugated plastic sheet using a digital cutting system (G3 cutter
from Zünd).

• Step 2: we lay down the eight main panels of the meterscale shelter assembled out of the
cutting patterns in Figures A.20cg.

• Step 3: we apply adhesive tape to the scored hinges to seal the main panels.

• Step 4: we assemble the sheets together to form the eight main panels of the meterscale
shelter.

• Step 5: we combine two of the main panels together by applying adhesive tape in the flat
position.

• Step 6: we deploy these two main panels to finish assembling them.

• Step 7: we repeat Steps 5 and 6 on the next two panels.

• Step 8: we assemble the first four panels to form half of the structure.

• Step 9: we repeat Steps 58 to form the second half of the structure

• Step 10: we combine the two halves.

• Step 11: we apply adhesive tape to the scored hinges to seal the two panels forming the roof
of the structure (assembled out of the cutting pattern in Figure A.21b).
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• Step 12: we attach the roof to the rest of the structure with adhesive tape to form the complete
closed shelter.

• Step 13: we cut through one of the main panels using a guide to create the door of the shelter.

• Step 14: we cut a hole in the bottom part of the shelter and fix a plastic tube for fluid supply.

• Step 15: we connect the shelter to a vacuum pump.

• Step 16: we deflate the shelter to the flat stable state.

• Step 17: we fold the shelter flat.

• Step 18: we bring the shelter back up and connect it to a pressure pump.

• Step 19: we inflate the shelter to the deployed stable state.

• Step 20: we disconnect the pressure supply and the shelter remains deployed.
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step 5 step 6 step 7 step 8

step 9 step 10 step 11 step 12

step 16step 15step 14

step 17 step 18 step 19 step 20

step 13

step 1

Figure A.21: Meter‐scale fabrication. Snapshots of the 20 steps required to fabricate the meter‐scale origami
shelter.
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A.3 Testing

To characterize the response of the fabricated centimeterscale origami structures, we inflate them
with water— to eliminate the influence of air compressibility— andmeasure their pressurevolume
relation. As shown in Figure A.22, we use a syringe pump (Pump 33DS, Harvard Apparatus) to
displace water into the origami structure at 10 mL/min and measure the pressure using a pressure
sensor (MPXV7002DP with a measurement range of ±2 kPa and MPXV7025DP with a measure
ment range of ±25 kPa, both by NXP USA). Note that we submerge the entire structure in a water
tank to eliminate the influence of gravity while eliminating air from all supply tubes and calibrating
the pressure to atmospheric pressure before each measurement cycle.

1

2

3

4

Figure A.22: Experimental setup of the inflation with water. Schematic of the test setup used to characterize
the pressure‐volume curve of the origami structures with (1) syringe pump, (2) pressure sensor, (3) water tank,
and (4) origami structure.

In Figure A.23, we report the experimentally measured pressurevolume curves for Designs
IA, IIB, IIIC, and IVD. To validate repeatability, we test for each design three specimens and
report the mean (solid lines) and standard deviation (shaded region). In addition to the pressure
volume curves, we also report the energylandscape of each structure (dashed lines), obtained by
integrating numerically the pressurevolume curves as

E =

∫
p̄dV̄, (A.44)

where p̄ and V̄ are the average pressure and volume measured during our tests. We find that for
Design IA (Figure A.23a), the energy landscape is convex with a single minimum at V = 0 (iden
tifying a monostasble structure). All other three designs are bistable as they exhibit brief period of
negative pressure and an energy landscape with two local minima. Note that the energy profile of
bistable structures is characterized by two energy barriers: the first one describes the energy cost
for a structure to reach the stable expanded configuration and the second one the energy cost to
snap back to its initial state.
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Figure A.23: Experimental pressure‐volume curves of our origami structures. (a‐d) Measured pressure vs. vol‐
ume relationships and numerically integrated energy vs. volume curves for Designs I‐A, II‐B, III‐C, and IV‐D. We
test for each design three specimens and report the mean pressure‐volume curve (solid lines) with its standard
deviation (shaded region) as well as the energy‐volume curve (dashed lines) numerically integrated from the
mean pressure‐volume curve. Note that the initial non‐zero pressure peak of Design II‐B is coming from noise
filtering of the pressure signal.
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A.4 Additional results

Design I

Design IV

5 cma b c

d e

Figure A.24: Inflatable tent‐like design. (a) By combining one layer of a Design I with (α(1)I , β(1)I ) = (45◦, 45◦) and
(α(2)I , β(2)I ) = (45◦, 45◦) with another one of a Design IV with (α(1)IV , β(1)IV ) = (10◦, 80◦) and (αixy, β

i
xy) = (45◦, 45◦),

we can create an inflatable tent‐like cavity. (b) Centimeter‐scale prototype with near zero volume in the initial
stable state. Note that due to the finite thickness of thematerial, the initial state is not completely flat foldable. (c)
We connect the prototype to a pressure supply. (d) Upon inflation, the tent‐like design snaps into the deployed
position. (e) Even after releasing the pressure, because of its bistability, the tent‐like design remains in the
deployed position.
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a Stable #1 Stable #2 Stable #3 Stable #4b c d

e f g h1 cm

Figure A.25: Multistable origami shapes. Our design methodology can be used to realize origami shapes with
more than two stable states. (a‐d) By merging a layer of a Design IV unit with (α(1)IV , β(1)IV ) = (29◦, 56◦) and
(αixy, β

i
xy) = (45◦, 35◦)with another one of a different Design IV unit with (α(1)IV , β(1)IV ) = (40◦, 42◦) and (αixy, β

i
xy) =

(45◦, 35◦), we can obtain an origami shape with four stable states. (e‐h) The four stable states of a fabricated
centimeter‐scale prototype.

1 cm

Flat Deployeda b

c d

Figure A.26: Closed origami structure comprising eight different triangles. We can further increase our de‐
sign space by connecting more than two different triangles. (a‐b) Flat and deployed compatible states of an
origami design comprising eight different triangles with (α(k), β(k)) = (55◦, 30◦), (21◦, 40◦), (48◦, 24◦), (68◦, 17◦),
(64◦, 21◦), (57◦, 22◦), (57◦, 22◦), (15◦, 52◦), and (32◦, 49◦) for k = 1, . . . , 8. (c‐d) Flat and deployed stable states
of a fabricated centimeter‐scale prototype.
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d

a b3 cm c

e f30 cm

Figure A.27: Deployment of centimeter and meter‐scale arches. The deployment of centimeter‐scale (a‐c) and
meter‐scale (d‐f) arches is qualitatively similar.

a b c d

e f g h

5 cm

50 cm

Figure A.28: Deployment of centimeter and meter‐scale shelters. The deployment of centimeter‐scale (a‐d) and
meter‐scale (e‐h) shelters is qualitatively similar.
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a bFlat Deployed

c d5 cm

Figure A.29: A deployable pagoda‐like structure. By assembling four identical Design III units, we can obtain a
deployable pagoda‐like structure. (a‐b) Flat and deployed states of an origami design comprising four identical
Design III units with (α(1)III , β

(1)
III ) = (37◦, 30◦) and (α(2)III , β

(2)
III ) = (37◦, 40◦). Note that the grey panels in (a‐b) are

added both for aesthetic reasons and to provide additional support. (c‐d) Flat and deployed stable states of a
fabricated centimeter‐scale prototype.
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a Flat

Flat Deployedc

Deployed

Design III-C'

b

5 cm

5 cm

d

Figure A.30: Deployable booms. (a‐b) By stacking Design I units, we can obtain a deployable boom. (a) Flat
and deployed states of an origami boom design realized by connecting two Design I units with (α(1)I , β(1)I ) =

(α(2)I , β(2)I ) = (45◦, 32◦). Note that to avoid single point contact during assembly, we cut the units at 25 % of
their deployed height and connect them with the tabs and pockets system described in Section A.2. (b) Flat and
deployed stable states of a fabricated centimeter‐scale prototype. (c‐d) By assembling Design III units, we can
obtain a bistable and inflatable boom. (c) Flat and deployed states of an origami boom comprising 15 identical
Design III units with parameters (α(1)IIIC′ , β(1)IIIC′ , α(2)IIIC′ , β(2)IIIC′ ) = (30◦, 37◦, 30◦, and 51◦). (d) Flat and deployed
stable states of a fabricated centimeter‐scale prototype.
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Supplementary Information: MuAOri:

Multimodal Actuated Origami

By: Antonio Elia Forte*, DavidMelancon*, LeonM.Kamp, BenjaminGorissen, andKatia Bertoldi.
MuAOri: Multimodal Actuated Origami. arXiv:2112.01366.
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B.1 Fabrication

The actuators tested in this study are constructed by connecting 3Dprinted origami modules. This
section gives details on the design and fabrication of the 3Dprinted modules as well as their as
sembly to create multiunit actuators and robots.

B.1.1 Design of the 3Dprinted origami units

Each origami module is 3Dprinted using a commercially available multimaterial printer (Ulti
maker 3). To account for geometric incompatibility during inflation, we print the 1mm thick
triangular facets out of compliant thermoplastic polyurethane (Ultimaker TPU 95A with tensile
modulus E = 26 MPa). The thickness decreases to 0.4 mm at the junction of the triangular facets
(hinges), to allow more compliance. This value is the lowest possible thickness our printer is able
to print with a 0.4mm print core. Further, to enable rigid connection of different units and increase
bistability, we print the end caps as well as the four triangular facets of the bistable cell out of stiff
polyactic acid (Ultimaker PLA with tensile modulus E = 2.3GPa). As shown in Fig B.1, the single
module consists of two hexagonal caps with edges of length l = 30 mm, separated by a distance
h = 24 mm, and rotated by an angle α = 30◦ with respect to each other. To enable coupling of
different units, we print a screw and a threaded hole on the top and bottom surfaces with length
w = 6 mm an thread size dT = 24 mm.

PLA

TPU 95A

x

z
y

y
z

x
y

l

h

α

dT

w

Figure B.1: 3D‐printed origami modules. Isometric and projected views of the origami module.
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B.1.2 Assembly of an inflatable multiunit actuator

Below are the eight steps needed to fabricate and assemble an inflatable origami actuator sample
made of multiple modules (see Figure B.2):

• Step 1: we 3Dprint (Ultimaker 3) each origami unit out of polyactic acid (Ultimaker PLA)
and thermoplastic polyurethane (Ultimaker TPU 95A), using 0.4 mm print cores with the
fine default setting.

• Step 2: we cut the 3Dprinted adhesion skirt with scissors.

• Step 3: we remove the 3Dprinted support material inside of the origami unit with pliers.

• Step 4: we insert a toric joint on the connection screw to make the unit airtight (see Steps
58).

• Step 5: we assemble multiple units together through the connection screws ensuring a tight
assembly through the toric joints inserted in Step 4.

• Step 6: we coat the sample with a 0.5 mm layer of polydimethylsiloxane (PDMS) and let it
cure for 24 hours.

• Step 7: we fit end caps, making sure to have a tight assembly through the toric joints inserted
in Step 4, to create an airtight cavity. Note that one of the end caps has an inlet for fluidic
actuation.

• Step 8: we test the origami actuator by connecting it to a fluidic supply.
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step 2

step 8

step 6

step 7

step 5

step 4step 3

step 1

Figure B.2: Multi‐unit actuator fabrication and assembly. Snapshots of the eight steps required to fabricate and
assemble inflatable multi‐unit origami actuators.
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B.1.3 Design of the single pressure input origami robot

The origami robot is constructed by mounting two multiunit actuators (each one acting as a crawl
ing arm) on a wheeled chassis made of LEGO bricks (see Figures B.3a and b). To create a single
airtight cavity, we connect the two multiunit actuators through a fluidic line (1/16” soft plastic
tubing and luer lock connectors) and a coupler (1/16” acrylic plate fixed on the chassis). Finally,
we glue 10 cmlong amplifiers (1/4” acrylic plate) on the top caps of the actuators to accentuate the
stroke during inflation and deflation. Note that we add a patch of silicon rubber on the amplifiers’
tip (ecoflex 5 from Smoothon) to increase the friction coefficient when in contact with the ground.

Fluidic line

Chassis

Amplifier

Actuators

xy
z

Silicon patch

4//1

4//1

3\\5

4\\1

4\\1

3//3

actuators

chassis

5 cm

fluidic linecoupler

c d

amplifiers

a b

Figure B.3: Single pressure input origami robot. (a) The two identical actuators forming the arms of the robot.
(b) Schematics of the origami robot. (c) Components of the origami robot. (d) Assembled origami robot.
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B.2 Testing

To characterize the experimental response of the fabricated origami building blocks, we inflate
them with water— to eliminate the influence of air compressibility— and measure their internal
pressure while tracking their height and bending angle. As shown in Figure B.4, we use a syringe
pump (Pump 33DS, Harvard Apparatus) to displace water into the origami unit at 10 mL/min,
measure the pressure using a pressure sensor (ASDXRRX015PDAA5 with a measurement range
of ±15 psi by Honeywell), and track the height, bending angle, and twist angle of the upper cap
using two digital cameras (front and top view with two SONY RX100 V). Note that we submerge
the entire unit in a water tank to eliminate the influence of gravity while eliminating air from all
supply tubes and calibrate the pressure sensor to atmospheric pressure before each measurement
cycle.

1

2

3

4

5

Figure B.4: Experimental setup of the inflation with water. Schematic of the test setup used to characterize
the bending angle vs./ pressure and height vs./ pressure curves of the origami units with (1) syringe pump, (2)
pressure sensor, (3) water tank, (4) origami unit, and (5) digital cameras.

We report in Figure B.5 the experimentally measured pressure, p, as a function of the end caps
displacement, uz, and the bending angle, θ, for the module with Δ = 3mm. Further, we highlight on
the curves the pressure thresholds, p+3 and p−3 , as well as the maximum displacement, umax,±z , and
bending angle, θmax,±, at snapthrough for both the inflation and deflation regime.

We summarize all experimental results in Figure B.6 and plot the pressure, displacement, and
bending angle of each design tested in this study as a function of normalized time, T, for both the
inflation and deflation regime. To validate repeatability, we test for each design three specimens
and report the mean (solid lines) and standard deviation (shaded region). We find that the classic
Kresling module as well as the modifiedpanel module with Δ = 0 mm do not show any snap
through instability. Modules with Δ = 1 mm show a snapping transition during inflation, but
bend marginally when later deflated. Modules with Δ = 2, 3, 4 mm are bistable as they exhibit
discontinuity in their p− T, uz − T, and θ− T curves, and show substantial bending when deflated
from the snapped configuration. Modules with Δ = 5 mm break during the inflation before the
panel snaps outward.
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Figure B.5: Experimentally measured response of the Δ = 3 mm module. (a) State diagram of the pressurized
origami module. (b) Experimentally measured pressure, p, as a function both end caps’ displacement, uz, and
bending angle, θ for the origami module with Δ = 3 mm. In the plot, we highlight the pressure thresholds,
p+3 and p−3 , as well as the maximum displacement, umax,±z , and bending angle, θmax,±, at snap‐through for both
inflation and deflation.
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Figure B.6: Experimental pressure, displacement, and bending angle curves of our origami modules. Experimen‐
tally measured pressure (left vertical axis), end caps displacement (right vertical axis), and bending angle (right
vertical axis) of each design tested in this study as a function of normalized time, T = t/tend (where t is real time
and tend the duration of the test), for both (a) inflation and (b) deflation. To validate repeatability, we test for each
design three specimens and report the mean (solid lines) and standard deviation (shaded region). We find that
the classic Kresling module as well as the modified‐panel module with Δ = 0mm do not show any snap‐through
instability. Modules with Δ = 1 mm show a snapping transition during inflation, but bend marginally when later
deflated. Modules with Δ = 2, 3, 4 mm are bistable as they exhibit discontinuity in their p− T, uz − T, and θ− T
curves, and show substantial bending when deflated from the snapped configuration. Modules with Δ = 5 mm
break during the inflation before the panel snaps outward.
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From the experimental curves, we can extract the pressure thresholds at which the modified
panel snaps outward during inflation, p+Δ and inward during deflation, p−Δ . We summarize the
mean and standard deviation of these pressure thresholds in Figure B.7 for the bistable modules
with Δ = 2, 3, and 4 mm. We also report in Figure B.7, the displacement and the bending angle at
snapthrough, umax,±z and θmax,± for both the inflation and deflation regime.
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Figure B.7: Effects of Δ. Bar chart of the experimentally measured pressure thresholds, p±Δ , end caps displace‐
ment, umax,±z , bending angle, θmax,±, and twist angle, φmax,±, at snap‐through during both inflation (a) and defla‐
tion (b) The values for p±Δ , umax,±z , and θmax,± are extracted from the curves shown in Figure B.6. The values for
φmax,± were obtained measuring the twist angle at each stable configuration and snapping transition during the
experiments.
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B.3 Model

B.3.1 Origami module

We start by using the geometric quantities that we track in our experiments (shown in Figure B.7)
to reconstruct the configuration of the origami module just before and just after each snapping
transition (see Figure B.8).
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Figure B.8: Modeling the stable states and snapping transitions of our origami modules. (a) Typical state diagram
for a origami module with a modified panel of depth Δ. The unit can transition between two stable states: state
s0 when the modified panel is folded inward, and state s1 when the panel is popped outward and stays in that
position even when the input pressure is removed (b‐g) Reconstructed geometry of the origami module at each
stable state and before and after each snapping transition.

B.3.2 Actuator comprising n modules

We can create actuator made of n units by simply combining the different stable states and snapping
transitions found for the single unit model described in Figure B.8. Note that we impose that any
nunits actuator forms a closed, inflatable cavity (i.e. they are all subjected to the same internal
pressure). By combining nmodules, we can construct (3× 2× 6+ 1× 2)n different actuators since
for each module kwe can select (i) either a regular Kresling module or a unit comprising a modified
panel with depth Δk ∈ {2, 3, 4}mm; (ii) the upper cap to be rotated clockwise or anticlockwise with
respect to the bottom one, ck ∈ {//, \\}, and (iii) the side on which the modified panel is located,
fk ∈ {1, . . . , 6} (see Figure B.9).
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Figure B.9: Actuator’s parameters. Our reconfigurable actuators are defined by the modified panel’s depth, Δk,
the initial rotation of the upper cap, ck, and the position of the modified panel, fk, of each their k unit.

For an actuator made of n units, the number of stable states is equal to 2nΔ , where nΔ is the
number of unique modified panel depths Δ. Note that we assume all units with the same Δ snap
synchronously at the pressure thresholds, p+Δ and p−Δ . Since in this study, we consider only the
discrete set Δ ∈ {2, 3, 4} mm, all our actuators have either nΔ = 0, 1, 2, or 3. For each different nΔ,
we report the corresponding state diagram in Figure B.10.
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Figure B.10: State diagrams. (a) State diagram for any n‐units actuator made only of Kresling modules. (b‐d)
State diagram for any n‐units actuator made with 1, 2, and 3 unique modified panel’s depth, i.e. nΔ = 1, 2, and 3,
respectively.

In Figure B.11a we show the state diagram of an actuators comprising two modules charac
terized by [Δ1c1f1;Δ2c2f2] = [2//3; 4\\3] and compare the outputs from the geometric model to the
experiments done on a physical prototype. Further, for each of the stable states and snapping transi
tions in the state diagram, we record the vector connecting the caps’ centroids, d. In Figure B.11b,
we report the normalized deployment, ||d||/h, and angle, θact for each stable state and snapping
transition of the actuator characterized by [Δ1c1f1;Δ2c2f2] = [2//3; 4\\3]. Further, in Figure B.12 we
report ||d||/h and θact for each stable state and snapping transition of every actuator design with
n ∈ 1, 2, 3, 4.
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B.4 Optimization

To identify actuators capable of achieving target deformation modes, we solve the following dis
crete optimization problem

min
Δk,ck,fk

Ψ
(
Δk, ck, fk; n

)
s.t. Δk ∈ {2, 3, 4}mm

ck ∈ {//, \\}
fk ∈ {1, 2, 3, 4, 5, 6}

k ∈ {1, 2, . . . , n}

n ∈ Z+,

(B.1)

where Ψ is the cost function, n is the number of units making the actuator and Δk, ck, and fk are are
the modified panel depth, the orientation of the upper cap with respect to the bottom one, and the
side on which the modified panel is located for the kunit in the array. Note that all design variables
(i.e. Δk, ck, and fk) are constrained to be integer value and, for the sake of simplicity, we solve the
optimization problem multiple times for fixed number of units n ∈ [1, 15].

In the main text we use the optimization algorithm to identify actuators whose tip can approach
a desired set of target points and therefore define the cost function as

Ψ =
1

ntargets · h

ntargets∑
m=1

min ||d− Tm||, (B.2)

where ntargets is the number of targets, and Tm is the vector connecting the mth target with the
origin. Here, we also consider two additional optimization problems and use the algorithm to
identify actuators that

• maximize the angle θact between the vector connecting the cap’s centroids, d, and the zaxis.
For this case we define the cost function as

Ψ
(
Δk, ck, fk; n

)
= −θact. (B.3)

• maximize the deployment height ||d||/h. For this case we define the cost function as

Ψ
(
Δk, ck, fk; n

)
= −||d||/h, (B.4)
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B.4.1 Optimization algorithms

There are many algorithms able to solve an optimization problem with integer constraints such
as the one presented in Eq. B.1. In this study, we used three classic algorithms: (i) the genetic
algorithm with integer constraints [110]; (ii) the integer optimization via a surrogate model [111]; and
(iii) the greedy algorithm based on bestfirst search [109]. Note that given the highdimensionality
and complexity of this optimization problem, there is no guarantee that these algorithms will lead
to a unique global minimum.

Genetic algorithm with integer constraints

We started by using the genetic algorithm with integer constraints [110], which attempts to minimize
a penalty function that depends on the fitness (value of the cost function Ψ) and feasibility (design
variables are integer) of an individual. For this study, we used the Matlab implementation of the
algorithm (Matlab function ga) and imposed the constraint that all design variables, i.e. Δk, ck, and
fk must have integer values with upper and lower bounds reported in Eq. B.1. We ran the function
ga multiple times, each time considering a fixed value of n ∈ [1, 15], using a population size of
200, a max stall generations (i.e. the consecutive number of generations with no change to the cost
function value) of 500 and a maximum number of generations of 1000.

Integer optimization via a surrogate model

Next, we used the surrogate model optimization, which is a derivativefree method that replaces
the complex and nonsmooth objective function by a surrogate (i.e. an approximation of that func
tion), which is created by sampling the objective function. For this study we used the Matlab
implementation of the algorithm (Matlab function surrogateopt) and imposed the constraint
that all design variables, i.e. Δk, ck, and fk, must have integer values with upper and lower bounds
reported in Eq. B.1. We ran the algorithm for fixed values of nwith a maximum number of function
evaluations of 20, 000.

Greedy algorithm based on bestfirst search

For the greedy algorithm, we developed and inhouse Matlab code based on the bestfirst search
method that creates an actuator with n units out of ns supercells, each supercell made of numodules
(so that n = nu · ns). At the first iteration, the algorithm selects the supercell design that minimizes
Ψ and stores it in memory. Then, in the second iteration, we identify a second supercell that, when
connected to the first one, minimizes Ψ. The first two supercells are then stored in memory and
the algorithm advances to the next iteration (see Figure B.13 and Algorithm 1 below).

101



ns = 1

ns = 2

ns = 3

...

...

...

...

ns ≥ 4

min Ψ

min Ψ

54,872 nodes 

fixed

Greedy algorithm

fixed

min Ψ

Figure B.13: Greedy algorithm. Schematic of the greedy algorithm with nu = 3. At each iteration, the algorithm
selects the actuator super‐cell design that minimizes Ψ.

Algorithm 1 Greedy algorithm based on bestfirst search
Set nmax;
Set nu;
Set ns = 0;
While ns · nu ≤ nmax

ns = ns + 1;
if ns = 1 then

· Calculate Ψ for each actuator design with (Δk, ck, fk), k = 1 : ns · nu;
· Find the actuator that minimizes Ψ and set its design variables to (Δk∗ , ck∗ , fk∗)

else
· Calculate Ψ for each actuator design with (Δk, ck, fk), where the set of variables
from k = 1 : (ns − 1) · nu are coming from the previous iteration of (Δk∗ , ck∗ , fk∗) and
k = (ns − 1) · nu + 1 : ns · nu are free.

· Find the actuator that minimizes Ψ and set its design variables to (Δk∗ , ck∗ , fk∗)
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B.4.2 Results

In the following we first compare the performance of the three algorithms and then present addi
tional results obtained using the greedy algorithm.

Comparison between the three algorithms

To test and compare the three algorithms, we considered the set of three targets (T1, T2, T3) shown
in Figure 3.3 and minimized the cost function given in Eq. B.2. In Figure B.14, we report the cost
function value with respect to the number of generations/function evaluations as obtained using the
three algorithms. We find that for all considered values of n both the genetic algorithm with integer
constraints and the surrogate model stall quickly, with a minimum value of the cost function of 1.04
and 1.12 reached for n = 15, respectively. Further, we find that the greedy algorithm with nu = 3
outperforms the genetic algorithm and the surrogate model optimization as it identifies an actuator
design that leads to Ψ = 0.729 for n = 12. Note that, for nu = 3, the greedy algorithm requires
about 2.75×105 evaluations of Ψ to identify the optimal design, whereas the surrogate model takes
about 1×105 evaluations of Ψ (the genetic algorithms requires about 8×105 evaluations of Ψwith a
population size of 200). However, the greedy algorithm does not require any other operation apart
from a simple computation of Ψ during each iteration. Differently, the surrogate algorithm has to
update the underlying model. The simplicity of the greedy algorithm leads to a CPU time of 850
s (parallelized on 24 cores) to solve the algorithm compared to 2, 500 s and 4, 000 s for the genetic
algorithm and the surrogate model, respectively. We therefore use the greedy algorithm to identify
optimal configurations for our actuators.
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Figure B.14: Comparison between optimization algorithms with integer constraints. Comparison of the (a)
generic algorithm, (b) surrogate model, and (c) greedy algorithm based on best‐first search to solve the integer
optimization problem of minimizing the targets error Ψ.
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Additional results generated by the greedy algorithm

In Figure B.15 we present results obtained when the greedy algorithm is programmed to maximize
θact (Figure B.15ac) and ||d||/h (Figure B.15df). Note that we present present results for three
different values of nu (i.e. nu = 1, 2 and 3).

Next, in Figure B.16, we consider a set of three targets (T1,T2,T3) different from that included
in the main text and present the results for the optimal design identified by the greedy algorithm.
Next, in Figure B.17 we show the inverse design of an actuator reaching the same set of three
targets considered in Figure 3.3, but with the additional constraint that the targets much be reached
successively by decreasing pressure.

Finally, in Figure B.18 we show how the minimum value of Ψ found by the greedy algorithm
varies with the number of targets, ntargets, and the units forming a supercell, nu, and in Figure B.19
how the target radius (i.e. the radius of the sphere fitted with the targets) influences the optimal
number of units of the actuator.
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Figure B.15: Greedy algorithm results. Normalized deployment, ||d||/h, and bending angle, θact, for actuators
with ns ∈ {1, 2, 3, 4, 5} and nu ∈ {1, 2, 3}. (a‐c) The greedy algorithm is programmed to maximize θact at each
increment of ns. (d‐f) The greedy algorithm is programmed to maximize ||d||/h at each increment of ns.
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Figure B.16: A 6‐units actuator reaching three targets. For a specific set of three targets, we use the greedy
algorithm to find the actuator design that minimizes Ψ, i.e the error between the targets and the top cap’s
centroid. Note that we fix nu = 3 and consider ns ∈ {1, 2, 3, 4, 5}. (a) Targets error Ψ as a function of total
number of units: the optimal actuator produced by the greedy algorithm for the three targets is reported as (*),
along with the respective parameters for each module. The considered set of targets is shown in the inset. (b)
State diagram for the 6‐units actuator (*) with targets T1, T2, and T3 highlighted. (c) Top and 3D view of the
model and the experimental prototype for the 6‐units actuator reaching the targets.
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Figure B.17: The 12‐units actuator with additional constraint. We focus on the same set of three targets consid‐
ered in Figure 3.3 and further impose that each targets much be reached successively by decreasing pressure.
(a) Targets error Ψ as a function of total number of units: the optimal actuator produced by the greedy algorithm
for the three targets is reported as (*), along with the respective parameters for each module. (b) State diagram
for the optimal 12‐units actuator (*) with targets T1, T2, and T3 highlighted. (c) Top and 3D view of the model
for the 12‐units actuator reaching the targets.
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algorithm to find the number of units that minimizes the error between the target and the top cap’s centroid.
We report here the target radius normalized by the module height, Rtargets/h, as a function of the optimal number
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units to minimize the error Ψ.
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C.1 Design

Our fluidic actuators are made out of two spherical caps: an inner cap that buckles under internal
positive pressure and an outer cap that stretches under the same internal positive pressure. In this
section, we first describe the ideal design in which the two caps are connected through a single
line contact and then detail the modifications introduced to facilitate their fabrication. Note that
throughout this manuscript, we will use the subscripts i and o to indicate the inner and outer caps,
respectively.

C.1.1 Ideal design

Δ y
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7
outer cap

inner cap

inflatable cavity

rigid surface
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Ri

to

ti

θi

θo

Figure C.1: Ideal design of the inflatable actuators. Schematics of the ideal design highlighting the seven points
of the axisymmetric cross‐section.

As shown in Figure C.1, our actuators consist of two axisymmetric spherical caps. As such,
their geometry is fully defined by the opening angles θi and θo, the radii of the spheres Ri and Ro,
the cap thicknesses ti and to, and the centertocenter distance between the two spheres, Δ. More
specifically, the coordinates of the seven points indicated in Figure C.1, which define the cross
section of the actuator are given by
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(x1, y1) =
(
0,Ri

(
1− 1

2ηi

))
(C.1a)

(x2, y2) =
(
0,Ri

(
1+

1
2ηi

))
(C.1b)

(x3, y3) =
(
0,Ro

(
1− 1

2ηo

)
+ Δ

)
(C.1c)

(x4, y4) =
(
0,Ro

(
1+

1
2ηo

)
+ Δ

)
(C.1d)

(x5, y5) =

(
Ro

√(
1+

1
2ηo

)2
− cos2(θo),Ri cos(θi)

)
(C.1e)

(xi6, yi6) =

(
Ri

√(
1+

1
2ηi

)2
− cos2(θi),Ri cos(θi)

)
(C.1f)

(xo6, yo6) =

(
Ro

√(
1− 1

2ηo

)2
− cos2(θo),Ro cos(θo) + Δ

)
(C.1g)

(x7, y7) =

(
Ri

√(
1− 1

2ηi

)2
− cos2(θi),Ri cos(θi)

)
, (C.1h)

(C.1i)

where ηi = Ri/ti and ηo = Ro/to are the normalized radii, and (xi6, yi6) and (xo6, yo6) are the coordinates
of point 6 expressed in terms of the inner cap and outer cap, respectively. However, an inflatable
cavity is formed only if

xi6 = xo6, and yi6 = yo6 (C.2)

and we solve these two equations by substituting equations [C.1f] and [C.1g] to express the radius
of the outer cap, Ro, and the centertocenter distance between the spheres, Δ, as a function of the
other parameters:
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Ro = Ri

√√√√√√√√
(
1+ 1

2ηi

)2
− cos2(θi)(

1− 1
2ηo

)2
− cos2(θo)

, (C.3a)

Δ = Ri

cos(θi)− cos(θo)

√√√√√√√√
(
1+ 1

2ηi

)2
− cos2(θi)(

1− 1
2ηo

)2
− cos2(θo)

 . (C.3b)

It follows that the geometry of the actuators is fully defined by 4 dimensionless and independent
parameters:

θi, θo, ηi =
Ri
ti
, ηo =

Ro
to
. (C.4)

Further, in order for the two caps to not intersect, we need to respect the following inequality
constraints:

θi < θo,

y2 < y3.
(C.5)

C.1.2 Modifications to facilitate fabrication

As shown in Figure C.1, the inner and outer caps are only connected through a line contact, which
provides no structural integrity. To this end, we modify the geometry to enhance the robustness of
the actuator, but also facilitate its fabrication. In particular, we extend the inner cap by introducing
a ring around its base with thickness tring and width wring (see Figure ??). As such, the base of the
inner cap’s cross section is defined by the three vertices:

(x8, y8) =

(
Ri

√(
1− 1

2ηi

)2
− cos2(θi),Ri

(
cos(θi)−

1
t̄ring

))
(C.6a)

(x9, y9) =

(
Ri

√(1+ 1
2ηi

)2
− cos2(θi) +

1
w̄ring

 ,Ri

(
cos(θi)−

1
t̄ring

))
(C.6b)

(x10, y10) =

(
Ri

√(1+ 1
2ηi

)2
− cos2(θi) +

1
w̄ring

 ,Ri cos(θi)

)
, (C.6c)

(C.6d)
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where t̄ring = Ri/tring and w̄ring = Ri/wring.
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C.2 Fabrication

The actuators tested in this study are made of nearly incompressible silicone rubbers. Specifically,
we use both Elite Double 32 from Zhermack (with green color and initial shear modulus μ = 0.35
MPa) and Elite Double 8 from Zhermack (with purple color and initial shear modulus μ = 0.06
MPa). The two caps are casted with a twopart mold, which is designed using NX 12 (Siemens) and
3d printed in VeroClear with a Connex3 Objet500 printer (Stratasys). The inner cap and outer cap
are molded separately and combined afterwards to form an enclosed, inflatable cavity. Specifically,
our actuators are fabricated using the following 12 steps (see Figure C.2):

• Step 1: we coat all inner mold surfaces with a release agent (Ease Release 200 spray, Mann
Release Technologies) to facilitate demolding in a later step.

• Step 2: we fill the bottom halves of the molds with uncured polymer. In the case shown
in Figure C.2, we use Elite Double 32 (Zhermack) for the inner cap and Elite Double 8
(Zhermack) for the outer cap.

• Step 3: we close both molds with pressure clamps to ensure accurate layer thickness and
wait 15 minutes for the polymer to cure.

• Step 4: we remove both cured caps from the molds.

• Step 5: we puncture the outer cap to create an access hole for a tube.

• Step 6: we insert the tube in the outer cap.

• Step 7: we apply glue (SilPoxy Silicone Adhesive) around the edges of the top surface of
the ring at the base of the inner cap.

• Step 8: we connect the outer cap to the inner cap and wait 15 minutes for the glue to cure.

• Step 9: we apply glue (SilPoxy Silicone Adhesive) to fix the tube to the outer cap.

• Step 10: we wait 15 minutes for the glue to cure.

• Step 11: we connect the actuator to a syringe pump.

• Step 12: we inflate the actuator to make sure there are no leaks.
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Figure C.2: Fabrication of the inflatable actuators. Snapshots of the 12 steps required to fabricate our actuators
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As part of this study, we fabricate four prototypes, all with Ri = 30mm, t̄ring = Ri
tring = 30,

w̄ring =
Ri

wring
= 10, and (see Figure C.3)

• Design A: ηi = 30, ηo = 16.5, θi = 60◦, θo = 90◦ and μi/μo = 1;

• Design B: ηi = 8.5, ηo = 16.5, θi = 60◦, θo = 90◦ and μi/μo = 1;

• Design C: ηi = 8.5, ηo = 16.5, θi = 60◦, θo = 90◦ and μi/μo = 5.8;

• Design D: ηi = 6.2, ηo = 12.1, θi = 80◦, θo = 82◦ and μi/μo = 5.8;

where μi/μo is the ratio between the initial shear modulus of the rubber used to fabricate the
inner and outer caps, respectively.

Design A

ηi=30, ηo=16.5, θi=60°, θo=90°, µi /µo=1  ηi=8.5, ηo=16.5, θi=60°, θo=90°, µi /µo=1  

Design B

ηi=6.2, ηo=12.1, θi=80°, θo=82°, µi /µo=5.8  

Design D

ηi=8.5, ηo=16.5, θi=60°, θo=90°, µi /µo=5.8  

Design C

Figure C.3: Baseline designs of the inflatable actuators. Schematics of the four designs fabricated as part of this
study.
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C.3 Testing

In order to fully characterize the response of the fabricated actuators under quasistatic inflation,
we first inflate them with water to measure their pressurevolume relation and then with air to
assess their ability to jump.

C.3.1 Inflation with water

First, to decouple the effect of the geometry of the actuators from that of the compressibility of the
fluid, we determine the pressurevolume curve by inflating the actuators with water. As depicted
in Figure C.4, we use a syringe pump (Pump 33DS, Harvard Apparatus) to displace water into the
actuator at 10 mL/min and measure the pressure using a pressure sensor (MPXV7002DP with a
measurement range of ±2 kPa and MPXV7025DP with a measurement range of ±25 kPa, both by
NXP USA). Note that to eliminate the influence of gravity, we submerge the entire actuator in a
water tank. Moreover, to accurately determine the pressurevolume relation, air is eliminated from
all supply tubes and the pressure is calibrated to atmospheric pressure before each measurement
cycle.

1

2

3

4

Figure C.4: Experimental setup of the inflation with water. Schematic of the test setup used to characterize the
pressure‐volume characteristic of the prototype actuators. (1) Syringe pump. (2) Pressure sensor. (3) Water tank.
(4) Actuator.

In Figure C.5, we report the experimentally measured pressurevolume curves for Designs A
D, with the blue lines corresponding to inflation and the red ones to deflation. To make sure the
response is repeatable, for each design we test three specimens across three inflationdeflation
cycles. The continuous lines correspond to the mean of the responses recorded in all tests and the
shaded region to the standard deviation.
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Figure C.5: Experimental pressure‐volume curves of the inflatable actuators. Pressure vs. volume relationships
measured for Designs A‐D. The shaded region represents the standard deviation obtained from testing three
specimens for each geometry.

C.3.2 Inflation with air

To investigate how snapping can be exploited to make our actuators jump even when inflated at a
slow rate, we position them on a flat surface (to minimize the effect of viscous forces) and slowly
inflate them with air (to minimize the effect of gravity). Specifically, we inflate them with air at 10
mL/min using a syringe pump (Pump 33DS,HarvardApparatus), while capturing their deformation
with a high speed camera (SONY RX100 V) recording at 240 frames per second (see Figure C.6).
The jump height, yjump, is defined as the distance between the flat surface and the lowest point of the
inner cap measured when the actuator reaches its highest point (see Figure C.8). In Figure C.7, we
show frames extracted from the recorded movies for the four different designs that we fabricated
as part of this study. We find that only Designs C and D are able to jump and that yjump = 42.9 mm
and 283 mm for Design C and Design D, respectively.
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Figure C.6: Experimental setup of the inflation with air. Schematic of the test setup used to characterize the
ability of the actuators to jump.
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Figure C.7: Jumping tests of the inflatable actuators. Snapshots of the actuators before inflation, just before
snapping of the inner cap, and at their highest point.

Finally, we note that, although this last set of test was conducted using a compressible fluid
(air), the effect of fluid compressibility on the response of the system energy release is negligible.
To demonstrate this important point, we also measure the pressurevolume curve of Design Cwhile
inflating with air at 10 mL/min and taking into account its compressibility to measure the volume
inside the actuator. Specifically, the current volume of the system (which comprises the actuator,
syringe, and connecting tube), V, at a given pressure p can be expressed as,

V = Vsys
0 + ΔV− ΔVsyringe, (C.7)

where Vsys
0 is the initial pressure and volume of the system (which comprises the actuator, syringe,

and connecting tube), ΔV is the change in volume of the actuator and ΔVsyringe is the amount of
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volume dispense by the syringe. Since our system is a closed one

p0Vsys
0 = pV, (C.8)

which we combine with Eq. C.7 to obtain

ΔV = ΔVsyringe −
(
p− p0

p

)
Vsys
0 . (C.9)

where p0 is the initial pressure of the system. Given the fast timescale of snapping, we can assume
that during the instability ΔVsyringe is constant. Then, it follows that the change in volume of the
actuator during snapping is

ΔV+ − ΔV− =

(
p+ − p0

p+
− p− − p0

p−

)
Vsys
0 =

p0(p+ − p−)
p+p−

Vsys
0 , (C.10)

where the superscripts − and + are used to indicate quantities evaluated immediately before and
after snapping, respectively. Eq. C.10 reveals that the drop in pressure that accompanies snapping
results in a change in the volume of the actuator that scales with the initial volume Vsys

0 .
In Figure C.8 we report the pressurevolume curves for Design C as measured in three different

tests in which we vary the initial volume of air in the syringe (so that Vsys
0 =40, 45 and 100 ml). We

find that in all three cases the response of the actuator is close to that measured when inflating with
air.
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Figure C.8: Effect of air compressibility. Pressure vs. volume relationships measured for Design C inflated with
water and air for three different tests in which we vary Vsys

0 by controlling the initial volume of air in the syringe.
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C.4 Finite element simulations

To gain a deeper understanding of the mechanical response of the inflatable actuators and calculate
their release of energy and pole displacement during snapping, we perform Finite Element (FE)
simulations using the commercial package ABAQUS 2018/Standard. In all our analyses, the re
sponse of the silicone rubber used to fabricate the caps (Elite Double 32 and Elite Double 8 from
Zhermack) is modeled using an incompressible Gent material model [20] with strain energy density
function W given by

W = −μJlim
2

ln
(
1− I1 − 3

Jlim

)
, (C.11)

where μ and Jlim represent the small strain shear modulus and a material parameter related to the
limiting stretch, respectively, and I1 = tr(FTF), F being the deformation gradient. We find that the
response of the pink Elite Double 8 and the green Elite Double 32 is accurately captured using
(μ, Jm) = (0.06 MPa, 24) and (0.35 MPa, 24), respectively. Note that these values are obtained
by minimizing the error between experiments and simulations for Design C and that the obtained
values for the shear modulus are within the range previously reported in the literature [? ? ]. An in
house ABAQUS user subroutine (UHYPER) is used to define the hyperelastic material behavior
given by Eq. C.11 in the FE simulations.

In the following, we present the different types of simulations used to determine the behavior
off the actuator upon quasisatic inflation.

C.4.1 3D simulations

We start by conducting full 3D FE simulations of the actuators. To this end, we create 3D models
and discretize them using a nonstructured mesh of 4node linear tetrahedron elements (ABAQUS
element type: C3D4H), with mesh size adapted to ensure that at least four elements are used to
discretize the thickness of the thinnest cap.

To remove rigid body translations and rotations, we impose a no vertical displacement boundary
condition (uy = 0) at the nodes located on the line of contact between the two caps (defined by point
6 in Figure C.1). All models are inflated via a fluid cavity interaction with an hydraulic fluid (of
density ρ = 1000 kg/m3 and bulk modulus B = 2000 MPa). The volumecontrolled inflation is
driven by a fictitious thermal expansion of the hydraulic fluid, relating to the change in volume ΔV
in the cavity through,

ΔV
Vcav
0

= 3αTΔT, (C.12)

where ΔT is the change in temperature, αT is the coefficient of thermal expansion of the fluid and
Vcav
0 is the initial volume of the cavity. In the simulations, we set αT = 1 m/(m· K) and gradually

119



increase the temperature ΔT until the isochoric snapthrough is reached. We simulate the inflation
using the dynamic implicit solver (using a density of ρ = 1000 kg/m3 for the silicone rubber) and
ensure quasistatic conditions by monitoring the kinetic energy of the model (note that quasistatic
conditions are achieved by using a time period of 1 second, minimum increment size of 1e−10 s,
maximum increment size of 0.01 s, and 10, 000 maximum number of increments).

In Figures C.9, C.10, and C.11 we report the pressure vs. volume curves, pole displacement
vs. volume relations, and numerical snapshots of the deformed configurations for Designs AD.
First, in Figure C.9, we find very good agreement between the pressurevolume curve measured in
experiments and predicted by our simulations, with the numerical analyses that correctly capture
the isochoric snapthrough instability. Second, in in Figure C.10, the numerical predictions for the
evolution of the pole displacement of Designs C and D suggest that the snapthrough instability is
accompanied by a sudden and large change in the displacement of the pole, which ultimately en
ables these Designs to jump. Finally, by looking at the deformation experienced by the actuators
during inflation and deflation (Figure C.11), we find that Designs C and D maintain an axisymmet
ric configurations also during the isochoric snapthrough.
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Figure C.9: Numerical and experimental pressure‐volume curves of the inflatable actuators. Pressure‐volume
relations for Designs A‐D as predicted by our 3D (blue dashed lines for inflation and orange dashed lines for
deflation) and axisymmetric (black line) simulations and measured in experiments (blue solid lines for inflation
and orange solid lines for deflation). The numbers on the plots indicate the deformation states shown in Figure
C10.
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C.4.2 Axisymmetric simulations

While our 3D FE simulations accurately capture and predict the response of our actuators, their
high computational cost prohibits their use for efficient exploration of the design space. To this
end, we assume that the deformation of the actuators is axisymmetric and discretize the models
using using 4node bilinear axisymmetric solid elements (ABAQUS element type: CAX4H), with
the mesh size adapted to make sure the thinnest cap has at least four elements through thickness.
To predict the energy released during the isochoric snapthrough, we determine the full pressure
volume relation using the modified Riks algorithm [115,116] as implemented in Abaqus. As for the
3D simulations, the axisymmetric models are inflated via a fluid cavity interaction with an hy
draulic fluid (of density ρ = 1000 kg/m3 and bulk modulus B = 2000 MPa) and we stop inflating
when the pressure p is equal to

p = 1.5 pc, (C.13)

where pc is the critical pressure for a thin spherical shell and the factor 1.5 is introduced to account
for the fact that most of the caps we are simulating are not thin (i.e. R/t < 25). For a spherical shell
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Figure C.11: 3D simulations of the inflatable actuators. Numerical snapshots showing the deformation of De‐
signs A‐D as predicted by our 3D FE simulations for inflation and deflation. The numbers next to the snapshots
correspond to the numbers indicated in Figures C.10 and C.11.

of radius R and thickness t, such critical pressure can be estimated as [119]

pc =
2E√

3(1− ν2)

( t
R

)2
, (C.14)

where E and ν are the Young’s modulus and Poisson’s ratio, respectively (for the considered incom
pressible hyperelastic material E = 3μ and ν = 0.5).

Full actuators. To simulate the response of the actuators, we impose roller boundary conditions
(ux = 0) on the rotational axis of symmetry. Moreover, to eliminate rigidbody translations and
rotations, we impose a no vertical displacement boundary condition at the point of contact between
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the two caps (Figure C.12A). In Figure C.12, we focus on Design C and report numerical snapshots
at different levels of inflation (Figure C.12B), the pressurevolume curve (Figure C.12C), the evo
lution of the strain energy as a function of volume (Figure C.12D), and the evolution of the pole
displacement as a function of volume (Figure C.12E) as predicted by our axisymmetric simula
tions. Since the Riks analyses is able to trace the entire pressurevolume curve, we can direcly
extract the energy released ΔE during the isochoric snapthrough (see highlighted area in blue in
Figure C.12C and stepbystep method in Figure C.13). Moreover, in Figures C.10 and C.12 we
compare the numerical predictions of our axisymmetric analyses with those of the 3D simulations.
The good agreement between the two sets of data validates the axisymmetric analyses.
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Figure C.12: Axisymmetric simulations of the inflatable actuators. (a) Schematic of the axisymmetric model. (b)
Numerical snapshots of Design C at (1) rest, (2) before snapping, (3) after snapping, and (4) upon further inflation.
(c) Pressure vs. volume relation as predicted by our axisymmetric simulations for Design C. (d) Strain energy vs.
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relation as predicted by our axisymmetric simulations for Design C.
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Figure C.13: Extracting ΔE from the numerical pressure‐volume curves of the full actuators. (a) Highlighted
green region represents the strain energy stored in the system when inflated up to the snapping point (i.e. when
inflated from state (1) to state (2)). (b) Highlighted red region represents the strain energy released from the
system when it moves from state (2) to state (3). (c) Highlighted green region represents the strain energy
stored in the system between when it moves from state (3) to state (4). (d) Highlighted blue region represents
the energy released from the system during the isochoric snap‐through.

Separate inner and outer caps. To gain further insights into the response of our actuators, we
investigate separately the inner and the outer caps via axisymmetric simulations for a wide range
of geometric parameters (i.e. 40◦ ≤ θi ≤ 80◦, 5 ≤ ηi ≤ 12.5, 40◦ ≤ θo ≤ 90◦, 5 ≤ ηo ≤ 20). Similarly
to the actuator, the models in these cases are discretized with 4node bilinear axisymmetric solid
elements (CAX4H element type) with mesh size adapted to ensure at least four elements through
thickness. For both inner and outer caps, we capture the materials response using the Gent model
in Eq. C.11 and impose ux = 0 on the rotational axis of symmetry. Moreover, for the inner cap we
impose uy = 0 at the connection between the base of the cap and the angular ring (inset in Figure
C.14F), whereas for the outer cap we assume that the base is completely fixed (Figure C.16B).

Focusing on the inner cap, the numerical results summarized in Figure C.14AB indicate that
by varying the polar angle θi and the radius to thickness ratio ηi, the response of the cap undergoes
several transitions. For low values of θi and ηi (i.e. for thick and shallow caps), the inner cap does
not exhibit the snapthrough behavior (see light grey region in Figure C.14BC). By increasing
θi at constant ηi, a snapthrough instability is eventually triggered upon inflation, which results in
a sudden release of energy and fast cap’s pole displacement. Within this domain, ΔEi and Δypole
both increase monotonically as a function of θi (see Figure C.14C). Finally, for high values of θi
and ηi (i.e. for thin and deep caps) the pressurevolume curves become selfcrossing (see dark grey
region in Figure C.14B). By comparing the results of axisymmetric and 3D simulations we find
that a highly complex, selfcrossing pressurevolume response indicates the existence of a more
favorable asymmetric deformation path with low energy release upon snapping (Figure C.15).
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Finally, in Figure C.16 we present results for the outer cap. More specifically, in Figure C.16A
we show the evolution of the stored energy at po/μo = 0.5, E0, as a function of the polar angle
θo and the normalized radius ηo. The energy increases monotonically with increasing θo, almost
irrespective of ηo.
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C.5 Massspring model to predict the jump height

Our quasistatic FE simulations allow us to efficiently explore the design space and calculate ΔE
and Δypole for a large number of designs. However, since they do not account for dynamic effects,
they cannot be used to directly characterize the ability of the actuators to jump. To overcome this
limitation, as described in the main text we establish a simple massspring model (see Figure C.17)
that takes the FE results as input and predicts the jump height.
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Figure C.17: Mass‐spring model to predict jump height. (a) Pressure‐volume curve for Design C as predicted
by our FE simulations. (b) Our spring‐mass model comprise two rigid masses, mi and mo, constrained to move
vertically. We choose mi and mo to be equal to the mass of the inner and outer cap, respectively, and to be
located at their corresponding poles. (c) We assume that the mechanical system stores an amount of energy
equal to ΔE in the numerically predicted configuration immediately before snapping. (d) We assume that the
mechanical system is stress‐free in the numerically predicted configuration immediately after snapping.

Specifically, to solve for the jumping height of the actuator we determine the position of the
individual masses, yi(t) and yo(t) as a function of time. The differential equations describing the
motion of the model are[

mi 0
0 mo

][
ÿi
ÿo

]
+

[
cd −cd
−cd cd

][
ẏi
ẏo

]
+

[
ks −ks
−ks ks

][
yi
yo

]
=

[
−mig− ksL0
−mog+ ksL0

]
, (C.15)

where g is the gravitational acceleration (g = 9.81 m/s2). To determine yi(t) and yo(t), we define
vi = ẏi and vo = ẏo and transform Eqs. [C.15] into a firstorder ODE system of the type

Ẏ = AY+ B, (C.16)

where

Y =


yi
yo
vi
vo

 , A =


0 0 1 0
0 0 0 1
−ks
mi

ks
mi

−cd
mi

cd
mi

ks
mo

−ks
mo

cd
mo

−cd
mo

 , B =


0
0

−g− ksL0
mi

−g+ ksL0
mo

 . (C.17)
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We then write the solution for the homogeneous system Ẏ = AY as

Yh = aP1 + b [P1t+ P2] + cP3eλ3t + dP4eλ4t, (C.18)

where λi are the eigenvalues obtained by solving the characteristic equation det (A− λI) = 0

λ1 = λ2 = 0,

λ3 =
−cdmi − cdmo −

√
mi + mo

√
c2dmi + c2dmo − 4ksmimo

2mimo
,

λ4 =
−cdmi − cdmo −

√
mi + mo

√
c2dmi + c2dmo − 4ksmimo

2mimo
,

(C.19)

and Pi are the corresponding eigenvectors

P1 =
[
1 1 0 0

]T
,

P2 =
[
0 0 1 1

]T
,

P3 =
[

2m2
o

cdmi+cdmo+
√
mi+mo

√
c2dmi+c2dmo−4ksmimo

2mimo
cdmi+cdmo+

√
mi+mo

√
c2dmi+c2dmo−4ksmimo

−mo
mi

1
]T

,

P4 =
[

2m2
o

cdmi+cdmo−
√
mi+mo

√
c2dmi+c2dmo−4ksmimo

2mimo
cdmi+cdmo−

√
mi+mo

√
c2dmi+c2dmo−4ksmimo

−mo
mi

1
]T

.

(C.20)

Moreover, a, b, c, d are constants of integration. Next, we determine the particular solution Yp of
the system of ODE through the method of variation of parameters as

Yp = Φ(t)
∫

Φ−1(t)Bdt, (C.21)

where Φ(t) is the fundamental matrix of the system

Φ(t) =
[
P1 P1t+ P2 P3eλ3t P4eλ4t

]
. (C.22)

We then write the general solution of the system of ODE as

Y = Yh + Yp (C.23)

and determine the constants of integration by applying the initial condition

Y0 =
[
y0i y0o v0i v0o

]T
=
[
himp himp + L 0 0

]T
. (C.24)

In all our analyses, we release the system at t = 0 and account for the collision between mi and
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the ground by resetting the variables when a negative height yi(t) is calculated:

if yi(ti) < 0 :

{
yi(ti) = 0
vi(ti) = −α · vi(ti−1)

, (C.25)

where α is the coefficient of restitution. Note that α = 0 is equivalent to a fully plastic collision
and α = 1 corresponds to a fully elastic collision with conservation of linear momentum. In all
our analyses we use α = 0.5, as we find that this gives good agreement between the predicted and
experimentally measured jumping height.

In Figure C.18 we show the evolution of both yi and yo as predicted by the springmass model
for Designs C and D. In the plots, we also compare the analytical solution to that obtained by
integrating Eqs. (C.17) with the numerical solver ODE45 of Matlab and, as expected, find perfect
agreement between the two.
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Figure C.18: Jump height prediction of the inflatable actuators. Evolution of both yi and yo as predicted by
solving Eq. C.17 analytically (continuous lines) and numerically via ODE45 of Matlab (dashed lines) for Designs
C and D.
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C.6 Additional results
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Figure C.19: Validation of the spring‐mass model. To verify the validity of our simple mass‐spring model, we
focus on three designs with ((a)) (ηi, θi, ηo, θo, μi/μo)= (8.5, 60◦, 16.5, 90◦, 5.8) (Design C), ((b)) (5.4, 80◦, 15.3, 87◦,
5.8), and ((c)) (5.8, 80◦, 10.5, 85◦, 5.8) and compare the experimentally measured jump heights (hjump = 42.9 mm,
160 mm, and 209 mm, respectively) to the predicted ones (hjump = 41.4 mm, 175 mm, and 226 mm, respectively).
On the top, for each actuator we show the numerical (blue lines) and experimental (red lines) pressure‐volume
relations. On the bottom, we show experimental snapshots of the actuators before ischoric snap‐through and
at the highest point after jump. The good agreement between numerical and experimental results for all designs
confirms the validity of our analyses.
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Figure C.21: Influence of the outer cap stiffness on the actuators’ response. Energy release vs. ratio of the
caps’ stiffness for an actuator with (ηi, θi, ηo, θo) = (8.5, 60◦, 16.5, 90◦). Note that for μi/μo = 1 and 5.8 the
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