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Single-cell measurement of dynamic cellular behaviors in
development, regeneration, and malignancy

ABSTRACT

While we are now often able to precisely measure the current molecular state of individual cells in mam-

malian tissues using single cell omics technologies, it can still be difficult to study dynamic behaviors such

as differentiation, proliferation, and cell death in situ at a similar level of detail. One general strategy for

characterizing these behaviors within the native tissue context in multicellular organisms is to measure both

current transcriptomic cell state as well as additional information about shared cell ancestry, past molecular

states, etc in the same set of individual cells. During my PhD, I worked on multiple projects in which we

augmented static single-cell phenotype data with additional information on past cell state in order to study bi-

ological systems undergoing rapid cellular changes, such as the bone marrow and the developing mammalian

embryo.

Chapter 1 describes our work investigating the effects of the most common driver mutation (JAK2-V617F)

in myeloproliferative neoplasms on patient hematopoietic stem and progenitor cells. We measured the tran-

scriptome and JAK2 genotype in single cells from bone marrow from these patients and determined that

the mutation had a direct effect on hematopoietic cells, affecting their differentiation behavior and increas-

ing their expression of inflammation-related genes. Additionally, we observed that bone marrow monocytes

with the mutation also had higher expression of some pro-inflammatory genes and expressed a cell surface

marker associated with the development of fibrosis.

In Chapters 2 and 3, we set out to measure hematopoietic stem and progenitor cell differentiation and

division kinetics in vivo using two different experimental strategies. In Chapter 2, we developed a new

system that temporarily labels cells at the top of the differentiation hierarchy using multiple fluorescent pro-
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teins. These proteins are gradually lost due to cell division and degradation after cells differentiate out of the

hematopoietic stem cell (HSC) state, allowing us to estimate the amount of time and number of cell divisions

that have passed since these cells were HSCs. Unfortunately, we were not able to achieve high enough initial

fluorescent protein expression levels for the experimental system to be useful. Instead, we used a comple-

mentary approach, described in Chapter 3, to measure HSC differentiation rates using permanent, inducible

fluorescent labeling of long-term HSCs. We measured the rate of fluorescent label propagation in down-

stream hematopoietic progenitor cell populations and used mathematical modeling to conclude that HSCs

differentiate slowly into downstream cell types.

Finally, in Chapter 4 we investigated the process of cell fate specification during early mouse embryoge-

nesis by measuring both transcriptional state and lineage history information in individual cells just after

gastrulation. To do this, we used a CRISPR barcoding system in which the barcode sequences encoding

lineage information are transcribed and therefore able to be read using scRNA-seq. We found that fate re-

striction occurs gradually during gastrulation and investigated the origins of endothelial cells in different

regions of the mouse embryo.
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0
Introduction

Our ability to quantitatively measure the molecular state of individual cells has dramatically increased over

the last ten years. New developments have enabled characterization of the whole genome1, transcriptome2,3,

and epigenome4,5 of hundreds to thousands of single cells, leading to revolutionary advances in cancer biol-

ogy6,7 and developmental biology8,9. While these experimental techniques are quite useful for cataloguing

single cell phenotypes and discovering differences in cell state under certain conditions or perturbations,

additional tools are often required to answer questions about dynamic changes in cell state. For example,

single-cell RNA sequencing or epigenetic characterization alone can determine what cell types are present

in the developing embryo, but cannot definitively determine which cell types give rise to other cell types

during development. However, in the context of embryonic development, single-cell barcoding has been
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used in combination with these techniques to define differentiation hierarchy structures by providing lineage

history information10,11. More generally, dynamic behavior can often be better assessed in vivo using mul-

tiple single-cell measurements, such as using single cell lineage history12,13, divisional history14, and/or

mutational status15,16 in conjunction with transcriptomic or epigenomic data or combining more than one

single-cell sequencing technique17. These strategies have the potential to address many longstanding ques-

tions, such as how cancer develops from somatic mutations in normal tissues, or what factors regulate tissue

regeneration in health and disease.

During my PhD, I helped develop and use some of these techniques to study phenotypic changes that occur

in individual cells in cancer, regeneration, and development. Chapter 1 of this thesis describes how we used

joint single-cell RNA sequencing and mutation status profiling in bone marrow cells from patients with myelo-

proliferative neoplasms to determine how the most common driver mutation in this cancer (JAK2-V617F)

changes the phenotype and differentiation behavior of hematopoietic cells. Chapters 2 and 3 describe two

methods of experimentally augmenting static cell state measurements using fluorescent reporters to measure

hematopoietic stem and progenitor cell division and differentiation kinetics in vivo. Finally, Chapter 4 de-

scribes how we used single-cell barcoding and RNA sequencing to study proliferation and fate specification

in early mouse embryos.
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1
Single-cell genotyping and transcriptomic

profiling of JAK2-V617F MPNs

FOREWORD

This project originated in Sahand Hormoz’s lab and was conducted primarily under his supervision. My

primary role was to analyze the scRNA-seq data, which was collected by Sean Liu and Max Nguyen in

the Hormoz Lab. They also helped design the experimental protocol for joint single-cell genotyping and

transcriptomic profiling of these samples. Additional follow-up experiments were performed by Baransel

Kamaz and supervised by Ann Mullally, both of whom also contributed greatly to the overall study design
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and analysis. Additional guidance was provided by Chris Reilly and Franziska Michor. In addition to the

scRNA-seq analysis presented here, we performed single-cell whole genome sequencing on hematopoietic

stem cells from some of these patients, which was analyzed mainly by Isidro Cortés-Ciriano and Javi Escabi.

While I did not describe the results from the whole-genome sequencing here because I wasn’t heavily involved

in that part of the project, additional details can be found in our published paper18. This chapter is adapted

from the above-mentioned Cell Stem Cell paper and its preprint19, as well as an additional manuscript in

preparation.

ABSTRACT

Myeloproliferative neoplasms (MPNs) are a group of slow-growing blood cancers that are often caused by

somatic gain-of-function mutations in JAK2. The most common JAK2 driver mutation, JAK2-V617F, causes

constitutive JAK-STAT signaling. In vitro and in vivo mouse experiments have shown that the mutation is

sufficient to increase production of red blood cells and/or platelets and recapitulate the phenotype of differ-

ent MPNs. However, it is still unclear what direct effects the JAK2-V617F mutation has on hematopoietic

progenitors and differentiated cells in MPN patient bone marrow, and how these molecular changes cause

disease in humans. In the past, it has been difficult to identify which individual cells within patient bone mar-

row carry the mutation, making it difficult to directly compare the phenotypes of mutant and wild-type (WT)

cells. We developed a method to simultaneously measure a cell’s transcriptome and determine whether it has

a mutation in JAK2 by specifically amplifying the mutation locus during scRNA-seq sample processing. Us-

ing this approach on bone marrow samples from 7 MPN patients, we compared the gene expression profiles

of JAK2-WT and JAK2-mutant HSPCs and found that JAK2-V617F cells have a megakaryocyte-erythroid

fate bias and have increased expression of proinflammatory and antigen presentation genes. We also found

that bone marrow monocytes have a high JAK2 variant allele fraction, and that JAK2-mutant monocytes

have increased expression of intermediate monocyte genes and of the cell surface marker SLAMF7. Our
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results suggest that JAK2-mutant monocytes may have a role in MPN pathogenesis that should be further

investigated.

1.1 INTRODUCTION

Myeloproliferative neoplasms (MPNs) are a group of chronic blood malignancies that are diagnosed in ap-

proximately 2.7 out of 100,000 people in the US annually20. These malignancies are often diagnosed later in

adulthood and are generally incurable, though patients often live for decades after diagnosis without major

complications21. As their name suggests, MPNs are defined by aberrant myeloid cell proliferation, and there

are three different subtypes of MPN that affect different myeloid cell lineages. Essential thrombocythemia

(ET) is defined by increased platelet counts, polycythemia vera (PV) is defined by increased red blood cell

counts, and primary myelofibrosis (PMF) has variable effects on peripheral blood counts and is defined by

bone marrow fibrosis and extramedullary hematopoiesis. All of these subtypes often have an indolent disease

course; however, PMF is the most aggressive of the three and is most likely to lead to bone marrow failure

or progression to acute leukemia21. Treatment for all of these conditions is often supportive and aimed at

normalizing blood counts, although some newer therapies (e.g., ruxolitinib) target hematopoietic stem cells

(HSCs) that harbor the mutation(s) causing the disease.

Most MPNs are caused by a mutation in one of three genes: JAK2, CALR, and MPL21. Gain-of-function

mutations in JAK2 are the most common driver mutation, especially in PV patients22. JAK2-V617F is the

most common gain-of-function mutation in JAK2, followed by mutations in exon 1222,23. These mutations

lead to constitutive kinase activity and downstream signaling via the JAK-STAT pathway. In mouse models

of Jak2-V617F driven disease, pathogenesis was found to be particularly dependent on the activity of Stat1,

Stat3, and/or Stat524. In MPN patients, the JAK2-V617F mutation increases the expression of STAT1 and

STAT5 targets, including components of the interferon response pathway25. These changes also lead to

activation of the erythropoietin and thrombopoietin response pathways, resulting in cytokine-independent

5



erythroid and megakaryocyte progenitor expansion26. Blocking the effect of the JAK2-V617F mutation can

reverse this phenotype in some cases. The JAK1/2 inhibitor ruxolitinib is used in PV and PMF patients with

persistent symptoms or hematopoietic abnormalities to normalize blood counts and reduce the size of the

JAK2-mutant clone in peripheral blood27,28.

While Jak2 mutations have been experimentally characterized in the context of malignant blood disor-

ders, in vivo models of JAK2-V617F MPNs have some limitations. For example, in both transgenic and

HSC transplant mouse models, the disease phenotype (as determined by red blood cell and platelet counts

and the presence of bone marrow fibrosis) can be hard to predict and control29. Variation in the level of

Jak2-V617F expression, background genotype, and mouse species all contribute to differences in disease

phenotype29. Collecting and analyzing samples directly from MPN patients avoids the problem of setting up

an experimental system that faithfully reproduces the disease, but introduces other challenges. In particular,

it is difficult to study the direct effect of somatic JAK2 mutations in MPN patients, since few techniques can

identify JAK2-mutant and JAK2-WT HSPCs in MPN patient samples and characterize their phenotype on

a single-cell level. To overcome this challenge, we established a single-cell RNA-sequencing (scRNA-seq)

protocol that can measure the whole transcriptome and the genotype at a specific locus in individual cells.

A similar method has been used to characterize the effect of CALR mutations in MPN patients, and showed

that the unfolded protein response and NF-κB pathway activity was upregulated in CALR-mutant HSPCs15.

Here, we studied the effect of the JAK2-V617F mutation in ET and PV patients, and found significant tran-

scriptional changes in HSPCs and bone marrow monocytes with the mutation. More generally, our work

shows that joint genotyping and phenotype measurement at a single cell level can reveal information about

the molecular mechanisms underlying the development of cancer from oncogenic somatic mutations.
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X
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JAK2-V617F
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Joint scRNA-seq and JAK2 genotyping was performed 
on bone marrow from 6 newly-diagnosed MPN patients.

Figure 1.1: Joint single-cell JAK2 genotyping and scRNA-seq was performed on patient bone marrow samples. Schematic
describing experimental procedures. To increase our ability to sequence the site of the JAK2-V617F mutation, JAK2 tran-
scripts (purple)wereamplifiedusing locusspecificprimersaftercellbarcodesareadded (yellowandgreensequences)during
10x library preparation.

1.2 RESULTS

To study the effect of the JAK2-V617F mutation on individual cells in patients with MPNs, we developed a

method that combines single-cell JAK2 genotyping and scRNA-seq (Fig. 1.1, Methods) and used it to com-

pare the transcriptomes of JAK2-mutant and JAK2-WT within the same patient. This experimental method

is a modified version of the standard 10x scRNA-seq protocol, but after cell barcoding, the cDNA library

is split into two parts. One part of the library is prepared with the standard 10x protocol for sequencing of

the whole transcriptome, while the other part undergoes specific PCR amplification of the JAK2 mutation

locus. While the two resulting libraries are sequenced separately, both share the same set of cell barcodes,

allowing later computational processing steps to match up reads from the two libraries that come from the

same cell. Therefore, this method was able to both identify JAK2 mutations and measure the transcriptome

in individual cells.

We applied this method to CD34+ cells from bone marrow aspirates from 7 newly-diagnosed MPN patients-

4 with ET and 3 with PV (Table 1.1). All of these patients had JAK2 mutations detected in peripheral blood;
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ET 1 ET 2 ET 3 PV 1 PV 2 PV 3 ET
V617L

Age/sex 34 M 63 F 41 M 56 M 56 M 69 M 49 F
PB JAK2 VAF 16.6%

(V617F)
25.3%
(V617F)

10.6%
(V617F)

62.7%
(V617F)

68.0%
(V617F)

40.9%
(V617F)

45.0%
(V617L)

Additional PB
mutations

- - - EZH2
(4.2%)

TET2
(32.0%)

TET2
(31.1%)

-

# cells 7868 7349 7091 6732 7472 7911 7704
# JAK2 mutant 174 217 68 308 469 541 107
# JAK2 WT 646 525 567 216 329 687 285

Table 1.1: MPN patient characteristics. Patient PV 1 had an EZH2 E745* mutation, PV 2 had a TET2 S268* mutation, and
patient PV 3 had a frameshift mutation in TET2. Note that PV 3 also had a smaller VAF TET2missense mutation (C1289S)
detected in peripheral blood. Abbreviations used: PB, peripheral blood; VAF, variant allele fraction.

6 had the JAK2-V617F mutation, while 1 ET patient had a variant previously unreported in humans (JAK2-

V617L). Experiments in Ba/F3 cells have previously shown that the JAK2-V617L mutation can induce cy-

tokine independence and constitutive JAK-STAT signaling in vitro30. Two PV patients also had truncating

mutations in TET2 and one patient with PV had a mutation in EZH2; a clinical NGS assay detected no

additional MPN-associated mutations in peripheral blood of these patients31. Two bone marrow samples

from healthy donors (22 and 29 year old females) were also collected and sequenced, though without JAK2

mutation amplification.

We isolated and sequenced 6000-8000 CD34+ enriched bone marrow cells from each patient and were able

to amplify and detect the mutation locus in at least one JAK2 transcript from 5-15% (mean 9.5%) of cells. As

expected, cells with higher JAK2 expression (i.e., more JAK2 transcripts detected in the whole transcriptome

sequencing) were more likely to have the mutation locus detected during amplicon sequencing (Fig. 1.2A). In

particular, cells with a mutant JAK2 transcript call had higher average numbers of JAK2 transcripts detected,

since most JAK2-mutant cells are erythroid and megakaryocyte progenitors (see below, Fig. 1.4), which have

particularly high total transcript counts and hight JAK2 expression (shown later in Fig. 1.9C). In most cells

with a JAK2 mutation locus call, only one JAK2 mutation locus UMI was detected (Fig. 1.2B). This low

coverage of the mutation locus made it challenging to definitively determine whether a cell was JAK2-WT
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A B

Figure1.2: Detectionof the JAK2mutation locus in scRNA-seq librariesdependsonexpressionof JAK2. A.Averagenumber
of JAK2UMIsdetected in thewhole transcriptome library incellswithamutant JAK2ampliconcall (red), aWT JAK2amplicon
call (blue), or no JAK2 amplicon call (grey). Error bars are +/- SEM. B. Number of JAK2mutation locusUMIs detected per cell
by amplicon sequencing. The data include cells from all patients with at least one JAK2 amplicon call.

or had a heterozygous JAK2 mutation. In a cell heterozygous for the mutation, it would be possible that

only WT transcripts were detected, particularly if very few JAK2 UMIs were sequenced. This source of

error would cause us to underestimate the fraction of cells in our single-cell data that have heterozygous

JAK2 mutations. To correct for this, we assumed most cells had only a single JAK2 mutation call and that

patients with peripheral blood JAK2 variant allele fraction (VAF) < 50% had primarily heterozygous JAK2

mutations. Under these assumptions, JAK2-mutant cells have a 50% chance of having only a WT transcript,

so we doubled the fraction of cells in a population that had a JAK2-mutant called to estimate the frequency

of mutant cells. Importantly, we only applied this correction when computing population-level statistics, not

when examining the transcriptomes of individual cells (as in our differential expression analysis).

1.2.1 JAK2-V617F INDUCES AN ERYTHROID/MEGAKARYOCYTE FATE BIAS IN MPN PATIENT HSPCS.

To determine how the JAK2-V617F mutation affects HSPC fate commitment, we first identified HSPC cell

types in the scRNA-seq whole transcriptome data (Fig. 1.3). We first merged the data from all 7 patients and

the healthy controls and performed batch correction to better align cell types between the samples (Fig. 1.3B).

We then clustered the data and manually assigned clusters to HSPC types based on expression of marker genes

9



Figure 1.3: Several HSPC cell types were identified in all scRNA-seq bone marrow samples. A. UMAP of all patients and
healthy controls combined, before batch correction. Colors denote sample ID, as shown in B. B. UMAP of all patients and
healthy controls combined, after batch correctionwith Seurat v3, coloredby sample ID.C.Cell type classifications of all cells
sequenced. D. Expression of selectedmarker genes used to identify cell types in the combined, batch corrected UMAP.

(Fig. 1.3C-D). MPN patients had an HSPC differentiation hierarchy that was similar in overall structure to

that of healthy controls, with the same cell types represented in similar proportions. Of note, a CD14+CD34-

population was captured in our data, which was likely a contaminating bone marrow monocyte population,

as they express typical monocyte marker genes (see Section 1.2.4 of these results for more details).

We used the JAK2 amplicon calls to determine whether cells with the JAK2-V617F mutation produced

different hematopoietic progenitor types than WT cells. In all patients, we found that JAK2-mutant cells and

JAK2-WT cells were found in the same regions of the UMAP plots, suggesting that the transcriptional changes

caused by JAK2 mutations are subtle and do not result in the creation of new, distinct cell types outside of the

normal hematopoietic hierarchy (Fig. 1.4). However, in patients with the JAK2-V617F mutation, cells with

a mutant JAK2 transcript call were more likely to be megakaryocyte, erythroid, or megakaryocyte-erythroid

progenitors (MEPs) (Fig. 1.4B-C). The frequency of cells with a JAK2-V617F transcript out of all cells with
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Figure 1.4: JAK2-V617F HSPCs were more likely to give rise to megakaryocytes and erythroid progenitors thanWT cells.
A. Example UMAP of CD34+ bone marrow cells from patient ET 1 alone, colored by cell type. B. CD34+ cell UMAPs for all
patients individually. The top row is colored by cell type (same colors as in A). The bottom two rows show cells with at least
one JAK2-WT or textitJAK2-mutant transcript detected. C. JAK2-mutant cell frequency of each cell type in MPN patients.
Note that for patients presumed to have heterozygousmutations (ET 1, ET 2, ET 3, PV3, and ETV617L), the fraction of cells
with at least onemutant transcript out of all cellswith a JAK2 amplicon call was doubled to estimate themutant cell fraction.

at least one mutation locus call increased as cells became more committed to an erythroid or megakaryocyte

fate, suggesting that cells with the mutation differentiate faster towards an erythroid/megakaryocyte fate

and/or proliferate faster than WT cells. This observation is consistent with the clinical presentation of MPNs

(increased red blood cell or platelet count), although we did not see substantial differences between patients

with different MPN subtypes (ET and PV). We also found a small number of HSCs with the mutation from

each patient, indicating that the disease-causing mutation originated in an HSC.

Interestingly, JAK2-mutant HSPCs in the ET patient with the noncanonical JAK2-V617L mutation did not

have a fate bias that was discernibly different from WT cells (Fig. 1.4B-C). While the V617L mutation does

not seem to be directly affecting the differentiation behavior of CD34+ HSPCs, the fact that this mutation

has a high peripheral blood allele fraction (45.0%) and was the only MPN-associated mutation found in the

blood of this patient suggests that it may still be causing disease, though perhaps in a different way than the
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assay. Error bars indicate 95%
binomial confidence intervals.

JAK2-V617F mutation would.

The JAK2 mutation VAF in peripheral blood is often used in clinical practice as a diagnostic marker and

as a metric to track disease burden. This test largely samples mature neutrophils, which may have a different

variant allele burden from bone marrow cell populations, particularly those that do not directly produce gran-

ulocytes. In fact, we found that the peripheral blood VAF underestimated the variant transcript fraction in

erythroid progenitors (Fig. 1.5), suggesting that peripheral blood measurements may not adequately reflect

the contribution of the mutant clone to erythropoiesis. Additionally, the JAK2 mutation burden in HSCs was

significantly lower than that measured by peripheral blood sequencing in all patients, indicating that periph-

eral blood VAF also does not accurately reflect disease burden at the very top of the HSPC differentiation

hierarchy.

Our analysis suggests that the JAK2-V617F mutation likely causes disease not by dramatically altering the

structure of the hematopoietic differentiation hierarchy, but rather by changing differentiation, proliferation,

and survival dynamics along the existing differentiation hierarchy. To investigate these phenotypic changes

more closely, we compared the transcriptomes of JAK2-V617F and JAK2-WT cells. To maximize the power

of this comparison, the differential expression analysis was performed with an expanded set of mutation calls

that leveraged single-cell whole-genome sequencing data to identify additional mutations associated with the
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JAK2-V617F HSPC population.

1.2.2 SINGLE-CELL WHOLE GENOME SEQUENCING DATA CAN BE USED TO CONFIDENTLY DETECT SO-

MATIC MUTATIONS IN SCRNA-SEQ DATA.

In a separate part of this study, we sequenced the whole genomes of individual single-HSC-derived colonies

from patients ET 1 and ET 2 to infer the history of expansion of the JAK2-mutant HSCs. While that work

will not be discussed here in detail (see our paper18 for more information), we used the somatic mutations

identified by the whole genome sequencing to improve our ability to identify cells that likely belong to the

JAK2-mutant population. Mutations that were found in JAK2-V617F HSC colonies sequenced and none of

the JAK2-WT colonies most likely represent mutations that are shared by some or all JAK2-mutant cells.

We used these JAK2-associated mutations to improve our identification of JAK2-mutant cells in our scRNA-

seq data from ET 1 and ET 2 in two ways. First, we identified a set of expressed somatic mutations found

exclusively in all JAK2-V617F HSCs and PCR amplified these mutations in the scRNA-seq libraries using a

similar protocol as used to amplify the JAK2 mutation locus. This procedure was performed successfully for

3 mutations in patient ET 1 (in ASHL1, HSPA9, and UPF1) and 1 mutation in ET 2 (in NRROS). Using this

extra amplicon data, we were able to identify an additional 2107 cells with a JAK2-associated mutation call

in the scRNA-seq data from ET 1 and 1057 more cells with a call in ET 2. Example calls for highly-expressed

mutations (UPF1 for ET 1 and NRROS for ET 2) are shown in Fig. 1.6A. JAK2-mutant cells identified us-

ing these additional clade-specific mutations also showed a megakaryocyte-erythroid bias similar to that

observed in the JAK2-mutant cells identified through JAK2 amplicon sequencing (Fig. 1.6A). Also, in cells

which also had a JAK2 amplicon call, around 50% of cells with a mutant non-JAK2 amplicon call had a

JAK2-V617F mutation detected (Fig. 1.6B), which would be expected if all cells that had a JAK2-associated

mutation also were heterozygous for JAK2-V617F.

Second, we looked for these mutations in the raw 10x scRNA-seq data from these patients (Methods). It

13



A

JAK2 amplicon UPF1 amplicon scRNA-seq somatic 
mutations

All combined

2912 cells655 cells1478 cells805 cells

JAK2 amplicon NRROS amplicon scRNA-seq somatic 
mutations

All combined

1777 cells612 cells856 cells720 cells

ET 1 ET 2

B

N
um

be
r o

f c
el

ls
 w

ith
 

m
ut

ai
to

n 
lo

cu
s 

ca
ll

JA
K2

ASHL1
UPF1

HSPA9

so
mati

c

Fr
ac

tio
n 

of
 c

el
ls

 w
ith

 J
A

K
2 

am
pl

ic
on

 m
ut

an
t c

al
l

ASHL1
UPF1

HSPA9

so
mati

c JA
K2

NRROS

so
mati

cN
um

be
r o

f c
el

ls
 w

ith
 

m
ut

at
io

n 
lo

cu
s 

ca
ll

NRROS

so
mati

c

Fr
ac

tio
n 

of
 c

el
ls

 w
ith

 J
A

K
2 

am
pl

ic
on

 m
ut

an
t c

al
l

Figure 1.6: Additional JAK2-V617F HSPCs were identified in the scRNA-seq data by amplifying other somatic mutations
exclusively found in all JAK2-mutant HSCs. A. UMAPs showing cells with WT (blue, top row) or mutant (red, bottom row)
transcript calls from JAK2 amplicon sequencing, textitJAK2-associated amplicon sequencing (UPF1 and NRROS), and raw
10x transcriptome reads (“scRNA-seq somatic mutations”). B. Left panels: number of cells with detectable WT or mutant
transcript calls from amplicon sequencing and direct detection from scRNA-seq reads (“somatic”). Right: Of cells with both
a JAK2 amplicon call and a JAK2-associated mutation locus call, the fraction of cells with a JAK2-V617F call. For cells with
a JAK2-associatedmutation (red bars), approximately 50% of cells should have a JAK2-V617F amplicon call, since the JAK2-
V617F mutation is heterozygous in these patients and most cells have only a single JAK2 transcript sequenced. Blue bars
indicate the fraction of JAK2-V617F amplicon calls in cells with WT calls at JAK2-associated mutation loci. Error bars are
95% binomial confidence intervals.

is ordinarily quite challenging to accurately call somatic mutations directly from scRNA-seq data for many

reasons, some of which are mitigated by our specific objectives and the availability of the single-clone whole

genome sequencing data. One issue is that the low sequencing coverage when using 3’-biased single-cell

transcriptome data makes it difficult to call mutations in most of the genome. However, we are searching for

a specific set of JAK2-V617F-associated mutations in each patient (220 are shared by all JAK2-mutant cells

in ET 1, 398 mutations in ET 2), the detection of any of which marks a cell as part of the JAK2-V617F clade.

By limiting our search to only these known somatic mutations, the overall false discovery rate is reduced.

Another issue is that many single nucleotide variants that are identified in a subset of cells in an scRNA-seq

dataset are caused by PCR or sequencing errors and are not true somatic mutations. This is especially true

for very low-frequency variants, making it especially difficult to confidently detect low-frequency somatic

mutations that are present only in the descendants of a particular HSC, for example. Again, by leveraging the
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Figure 1.7: We identified cells in our scRNA-seq data that are likely descendants of specific individual HSCs or groups of
relatedHSCs. A.Single-cell phylogenies inferred fromsingle colonywhole-genomesequencing. Sequencedcoloniesderived
fromHSCs aredenoted as circles, and thosederived fromMPPs are triangles. Theprocedures used to generate andvalidate
these phylogenies is described elsewhere18. Individual HSC/MPPs (leaves) and inferred common ancestors of HSC subsets
(internal nodes) with unique somatic mutations that could be potentially detected in the scRNA-seq are colored (red: JAK2-
mutant colonies, blue: JAK2-WT colonies, others: inferred ancestors). B. Left: UMAP showing cellswith amutant transcript
corresponding to descendants of a single HSC or an HSC clade. Colors correspond to colors of leaves or nodes in A. Right:
fractionof cellswithamutant transcript corresponding toanHSCcladeoutofall cells inwhicheitheraWTormutantversion
of that clade-specific transcript was detected (top). The fraction of mutant transcripts averaged over all mutations shared
by HSC clades with the same number of HSCs (bottom). The mutant fraction increases with clade size. All error bars are
95%Bayesian credible intervals.

whole genome sequencing data we can restrict our search space for somatic mutations to those which have

previously been confidently identified to be present in one or more HSCs from that patient’s bone marrow

sample, reducing the potential for false positives.

These additional somatic mutation calls from the transcriptome reads were used to identify additional

JAK2-mutant cells (Fig. 1.6). Around 5-10% of cells in the scRNA-seq data had a detectable somatic mutation

locus in the transcriptome (Fig. 1.6B). Cells with a mutation in one of these JAK2-associated mutation loci

have a megakaryocyte-erythroid lineage bias (Fig. 1.6A) and have approximately a 50% JAK2-mutant VAF

(Fig. 1.6B), as would be expected for patients a heterozygous mutation.

In addition to identifying more JAK2-mutant cells for our differential expression analysis, we also used

this method of calling somatic mutations from transcriptome sequencing reads to identify HSPCs that are
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clonal descendants of specific HSCs or groups of HSCs. We detected somatic mutations unique to individual

HSCs or small clades of HSCs in our scRNA-seq data (Fig. 1.7). While we were not able to identify enough

cells per HSC clone to do a full analysis comparing clonal output, we did find that mutations found in more

HSCs in the whole genome sequencing dataset were also found in more cells in the scRNA-seq data, which

we would expect if our method were accurately calling descendants of individual cells (Fig. 1.7B). Improving

detection of somatic mutations specific to individual HSCs by amplifying those mutation loci, for example,

could increase the number of cells we can confidently identify as descendants of a specific stem cell. However,

given that descendants of each individual HSC make up a low fraction of HSPCs overall (<< 1% expected for

each HSC), even with perfect detection of all HSC-specific somatic mutations we would likely have to sample

tens to hundreds of thousands of cells to confidently compare the number and phenotype of differentiated

descendants of specific HSCs, which was beyond the scope of this work.

1.2.3 JAK2-MUTANT HSPCS HAVE INCREASED EXPRESSION OF ANTIGEN-PRESENTATION GENES.

Using the additional JAK2-V617F-associated mutation calls, we compared the transcriptomes of JAK2-

mutant and JAK2-WT HSPCs within individual patients to investigate the cell-intrinsic effect of JAK2 mu-

tations on HSPC function. Some significantly differentially expressed genes were specific to individual pa-

tients, but many were found to be shared across all ET or all PV patients by combining p-values from multiple

patients (Fig. 1.8A-B). Genes previously shown to be upregulated in MPN patient JAK2-V617F hematopoi-

etic progenitors25 were found to be significantly upregulated in our JAK2-V617F MEPs, although we didn’t

detect a similar significant change in HSCs, likely due to the smaller number of sequenced HSCs (Fig. 1.8C-

D). We found that the JAK2-V617F mutation increased the expression of antigen presentation genes in MEPs

and erythroid progenitors, particularly in ET patients (Fig. 1.8A-B, E). The expression of antigen presenta-

tion genes is upregulated by JAK-STAT signaling (particularly through STAT1)32,33, so there is likely a direct

link between constitutive JAK2 activity in these mutant HSPCs and increased MHC expression.
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Figure 1.8: JAK2-mutant and JAK2-WT HSPCs have different gene expression profiles in MPN patient bone marrow. A-B.
Volcano plots showing differential expression results comparing JAK2-mutant and JAK2-WT HSPCs. Log fold changes are
positive if expression is higher in mutant cells, negative if expression is lower in mutant cells. Ribosomal genes are marked
in blue, antigen presentation genes are marked in green, and proteasomal genes are marked in red. Selected significant
genes are also labeled. C-D. Expression scores of a gene set previously found to be upregulated in JAK2-mutantHSPCs25, in
JAK2-V617F (red) and JAK2-WT (blue) HSCs (C) andMEPs (D). White center line is median, box limits are upper and lower
quartiles,whiskersare1.5x interquartile range, pointsareoutliers. * indicatesp<0.05,Wilcoxonranksumtest. E-F.Geneset
enrichment analysis for differentially expressed genes between JAK2-mutant andWTMEPs, using the KEGG 2019Human
Biological Processes gene sets (E) and ChEA/ENCODE transcription factor target sets (F).
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We also found that the JAK2-V617F mutation increased expression of the leptin receptor (LEPR) in ET

patient MEPs (Fig. 1.8A). In normal hematopoiesis, the protein hormone leptin is secreted by bone marrow

adipocytes and supports HSPC proliferation34,35,36. High expression of the leptin receptor in HSCs has

been previously shown to be associated with increased proliferation, self-renewal capacity, and transplant

engraftment potential, as well as a proinflammatory transcriptomic profile37. All of these characteristics are

consistent with the observed phenotype of the malignant JAK2-V617F HSPCs in MPN patients.

Finally, we found an enrichment of MYC/MAX-signaling associated genes in the differential expression re-

sults for MEPs (Fig. 1.8F), suggesting that JAK2 V617F may be associated with dysregulation of MYC/MAX

signaling. MYC and MAX play a key role in controlling cell cycle and specifying cell fate in MEPs38, so

changes in MYC/MAX activity could contribute to the increased megakaryocyte or erythroid progenitor

production found in MPN patients.

While ribosome content and translational activity is crucial to erythroid progenitor differentiation and ex-

pansion39,40, the relative expression of ribosomal genes has been shown to decrease during erythroid differ-

entiation41,42. In our data, we found that JAK2-mutant cells had lower normalized ribosomal gene expression

than WT cells (Fig. 1.8A-B, E), which is consistent with these cells having a more differentiated phenotype.

While we observed a decrease in the normalized fraction of ribosomal transcripts per cell in JAK2-mutant

HSPCs, we also observed an increase in the total number of transcripts detected per cell in JAK2-mutant

HSPCs (Fig. 1.9A-B). Therefore, it is possible that the absolute ribosomal gene expression is not lower in

mutant cells, since these cells have more mRNA transcripts overall. This change in total number of transcripts

is also consistent with a more differentiated phenotype for JAK2-V617F HSPCs, since more differentiated

cell types had greater total transcript counts overall (Fig. 1.9C).
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Figure 1.9: Total transcript count per cell is increased in more differentiated HSPCs and in JAK2-mutant cells. A. Total
number of transcripts per cell detected by scRNA-seq for JAK2WT (blue) and JAK2mutant (red) HSCs andMEPs from each
MPN patient. White center line is median, box limits are upper and lower quartiles, whiskers are 1.5x interquartile range,
points are outliers. * indicates p < 0.05, Wilcoxon rank sum test. B. Total number of transcripts per cell for each HSPC cell
type from healthy donor 1.

1.2.4 JAK2-MUTANT BONE MARROW MONOCYTES HAVE AN INTERMEDIATE MONOCYTE PHENOTYPE

AND MAY DIFFERENTIATE INTO PATHOGENIC FIBROCYTES.

We further characterized the CD34- bone marrow monocyte population, adding scRNA-seq data from two

additional JAK2-V617F MPN patients (one ET and one PV) to the 6 patients with JAK2-V617F mutations an-

alyzed above. As expected, the monocyte cluster was made up of mostly CD14+ CD16- classical monocytes,

with smaller populations of CD16+ CD14low nonclassical monocytes and CD14int CD16int intermediate

monocytes (Fig. 1.10A). In constrast to JAK2-WT monocytes, JAK2-mutant monocytes were mostly inter-

mediate monocytes (Fig. 1.10B-D). Intermediate monocytes are marked by high MHC class II expression43

and may be a transitional state between classical and nonclassical monocytes. While they are dysregulated

in some autoimmune and infectious conditions, their biological role in many contexts remains unclear44,45.

JAK2-mutant PMF patients have higher levels of circulating intermediate monocytes, which have some abnor-

mal cytokine secretion patterns, suggesting these cells may play a direct role in the pathogenesis of MPN46.

We found that JAK2-mutant monocytes had higher expression of proinflammatory/interferon response

genes than WT cells, including MHC genes, STATs, and TNF family genes (Fig. 1.10E-F). Gene set en-

richment analysis showed that these significantly differentially expressed genes are associated with infec-

19



C D E

IFITM3

SLAMF7

FCGR3A (CD16)

TPT1

IRF1

FCGR1A
STAT1

FCGR1B
STAT2

log2 fold change (JAK2-mutant/WT)

lo
g1

0 
B

H
-c

or
re

ct
ed

 p
-v

al
ue

Classical
Intermediate
Nonclassical

JAK2-WT JAK2-mutant

A B

JAK2-mutant

JAK2-WTCD14 FCGR3A (CD16) FCGR1A (CD64)

SLAMF7HLA-DRACD74

0 0 0

>= 70 >= 100

>= 600>= 500 >= 15

>= 100

00 0

G H

F

4

3

2

1

0

1

Figure1.10: The JAK2-V617Fmutation increasedexpressionof inflammation-relatedgenesandSLAMF7 inMPNbonemar-
rowmonocytes. A. Batch corrected combined UMAPs showing expression of marker genes in monocytes from 8MPN pa-
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ing JAK2-mutant and JAK2-WTmonocytes. Log fold changes are positive if expression is higher in mutant cells, negative if
expression is lower in mutant cells. Ribosomal genes are marked in blue, antigen presentation genes are marked in green,
and proteasomal genes are marked in red. Selected significant genes are also labeled. F. Heatmap of log2 mean expression
fold changes in JAK2-mutant vs. JAK2-WTmonocytes frompatients ET 1-3 andPV1-3. Only genes that are significantly dif-
ferentially expressed in the combined dataset between the six patients are shown. Colors denote log2 fold changes, where
positive valuesmean that the gene ismore highly expressed in JAK2-mutant cells. G-H.Gene set enrichment analysis for dif-
ferentially expressed genes between JAK2-mutant andWTmonocytes, using the KEGG 2019 Human Biological Processes
gene sets (G) and ChEA/ENCODE transcription factor target sets (H).
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tious/inflammatory biological processes (Fig. 1.10G), and activation of STAT3 and interferon response fac-

tors (Fig. 1.10H). These gene expression changes were largely consistent between all PV and ET patients

except for patient PV 3 (Fig. 1.10F), who also had a smaller population of sequenced monocytes. Interest-

ingly, we also found increased expression of SLAMF7, a cell surface protein associated with differentiation

of monocytes into fibrocytes in JAK2-V617F PMF47. This finding suggests that JAK2-mutant monocytes

in MPN patients without overt bone marrow fibrosis may have the potential to differentiate into fibrocytes,

leading to disease progression.

In summary, we found that the JAK2-V617F mutation increased expression of antigen presentation and

proinflammatory genes in HSPCs and bone marrow monocytes. In HSPCs, these changes are quite subtle,

suggesting that the main effect of the mutation in MPN patients is to promote differentiation and/or expan-

sion of HSCs and megakaryocyte/erythroid progenitors following largely the same molecular trajectories as

normal HSPCs. On the other hand, our results suggest that JAK2 V617F may lead to a pathogenic monocyte

phenotype, possibly through abnormal cytokine secretion or promoting bone marrow fibrosis.

1.3 DISCUSSION

We developed a high-throughput method to jointly perform scRNA-seq and genotype a specific locus in in-

dividual cells and used this method to investigate the direct effect of JAK2 mutations on the phenotype of

HSPCs in MPN patients. We found that the JAK2-V617F mutation leads to increased production of commit-

ted megakaryocyte and/or erythroid progenitors, although this fate bias (megakaryocyte vs. erythroid) did

not necessarily correspond with MPN subtype. Differential expression analysis revealed that JAK2-V617F

MEPs express higher levels of antigen presentation and other inflammation-associated genes, as well as the

leptin receptor. Additional experimental work is being conducted to further investigate the role of the leptin

receptor in JAK2-mutant MPNs. Follow-up studies are also being performed to better understand the role of

JAK2-mutant monocytes in the pathogenesis of PV and ET. The expression of SLAMF7 we observed in the
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JAK2-V617F monocytes is particularly intriguing for two reasons. First, it represents a possible functional

association of these cells with bone marrow fibrosis47. Second, if the SLAMF7+ monocytes prove to cause

disease progression, treatment with the SLAMF7-targeting monoclonal antibody elotuzumab (currently ap-

proved to treat multiple myeloma) could improve MPN patient outcomes.

Our work has several limitations that affected our ability to measure the effects of the JAK2-V617F muta-

tion in MPN patients. One important limitation was our ability to capture and sequence JAK2 transcripts in

the sampled cells. We were not able to read the JAK2 locus genotype in most cells (85-95%) which we encap-

sulated for scRNA-seq. This was partly due to lack of expression of JAK2 in some cell types. To improve our

genotyping efficiency, we used additional whole genome sequencing information on other mutations shared

by all JAK2-mutant HSCs to identify additional JAK2-mutant or JAK2-WT cells. However, improving the

genotyping efficiency of our experimental method further would increase our ability to detect differences be-

tween mutant and WT cells. Additionally, since many of our patients had heterozygous mutations, some cells

with JAK2-WT transcripts detected likely have heterozygous JAK2-V617F mutations and were misclassified

as JAK2-WT in our differential expression analysis. Increasing the number of JAK2 mutation locus UMIs

detected per cell would improve our ability to distinguish between true JAK2-WT cells and JAK2-mutant

heterozygotes. Finally, given that we only collected a single sample of bone marrow from each patient, the

static nature of the scRNA-seq measurement made it difficult to learn what particular changes in the dynamic

behaviors (differentiation, proliferation, and cell death were caused by the JAK2-V617F mutation.

To further understand the dynamic processes that lead to the development of JAK2-V617F MPN, we also

performed single-colony whole-genome sequencing and phylodynamic analysis on two of the patients (ET 1

and ET 2), which is described fully in our published article18. Briefly, we built single-cell phylogenies from

both JAK2-mutant and JAK2-WT MPPs and HSCs from these patients and used the structure of the JAK2-

mutant clade phylogenies to reconstruct the history of JAK2-V617F HSC expansion from the time at which

the mutation occurred to the time of diagnosis. We estimated the time at which these patients first acquired
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the JAK2 mutation, and found that it occurred decades before MPN diagnosis (approximately 25 years before

diagnosis in ET 1 and 44 years before diagnosis in ET 2). The structures of the inferred phylogenies of the

JAK2-mutant populations were quite different from the phylogenies of WT cells and of HSCs from healthy

individuals8. Using these phylogeny structures, we also found that the JAK2 mutation conferred a fitness

advantage onto HSCs, with an estimated 63% advantage over WT in ET 1 and 44% in ET 2. This part of the

study showed that single-cell lineage information can be used to infer cell population dynamics that occurred

in the past (in this case, during the MPN premalignant phase), which could be a powerful tool when applied

to other cancer types.

More generally, our method combining scRNA-seq and JAK2 genotyping could also be applied to other

cancer types and oncogenic mutations to measure the effects of genomic changes on the phenotype of indi-

vidual cells. This approach has been used by multiple groups to study MPNs15,48 and relapsed CLL49 and

could be extended to solid tumors as well. Ultimately, the results from these studies can be used to better un-

derstand the molecular mechanisms driving clonal expansion and other pathogenic changes that occur during

the development and progression of cancer.

1.4 METHODS

Detailed descriptions of all of the methods can be found either in our published article18 or our preprint19.

Some key methods are summarized here for convenience. Code used for the scRNA-seq analyses can be

found in our GitLab repository.

1.4.1 EXPERIMENTAL PROCEDURES

Bone marrow aspirates were collected from newly-diagnosed MPN patients with a JAK2 mutation detectable

by clinical NGS assay in their peripheral blood, in accordance with DFCI IRB protocol 01-206 and MGH IRB

protocol 13-583. CD34+ mononuclear cells were isolated from the bone marrow samples using the EasySep
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Human CD34 Positive Selection Kit II (StemCell Technologies). The CD34+ cell suspensions were used to

generate cDNA libraries using the 10x Chromium controller and the 10x Chromium Single Cell 3’ Library &

Gel Bead Kit v3. Part of this library was used for whole transcriptomic sequencing according to the standard

10x protocol. Another part was used for targeted amplification and sequencing of the JAK2 mutation locus

using a triple-nested PCR protocol with primers that flank the mutation locus.

1.4.2 IDENTIFICATION OF JAK2-MUTANT AMPLICON SEQUENCING TRANSCRIPTS

The raw sequencing files were initially processed using CellRanger 4.0.0 to generate fastq files for the JAK2

amplicon library. Transcripts with quality < 30, those with low read support, and those that did not match

a whitelisted 10x cell barcode within a 2 bp difference were discarded. Similar cell barcodes (within a 2

bp difference) were error-corrected and merged. Reads with either the expected WT nucleotide or mutant

nucleotide were used to determine whether each transcript had the mutation. Transcripts with >50% mutant

reads were designated as mutant transcripts, and <50% were designated as WT transcripts.

1.4.3 SCRNA-SEQ DATA PREPROCESSING

The raw sequencing files were initially processed using CellRanger 4.0.0 to generate fastq files and count

matrices for the whole transcriptome libraries. Count matrices were loaded and analyzed in scanpy. Genes

expressed in< 3 cells and cells with< 2000 UMIs or> 20% mitochondrial transcripts were filtered out, and

total count normalization was performed. Log-transformed expression values with mitochondrial transcript

percentage and total counts regressed out were used to generate UMAP visualizations and perform clustering.

Clustering was performed on the combined dataset including all MPN patients and healthy controls. This

dataset was batch-corrected using the Seurat v3 integration function50 and was clustered using the Louvain

algorithm. Each cluster was manually assigned to a cell type using its expression level of marker genes.
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1.4.4 DIFFERENTIAL GENE EXPRESSION ANALYSIS

JAK2-mutant and JAK2-WT cell total-count normalized gene expression profiles were compared using the

Wilcoxon rank sum test (scanpy) for each cell type in each patient separately. The resulting p-values were

corrected for multiple hypotheses within each patient using the Benjamini-Hochberg procedure. These ad-

justed p-values for each cell type were combined for groups of patients with the same disease subtype (PV

or ET) using Fisher’s method. The ET patient with the V617L mutation was not included in this combined

analysis. Gene set enrichment analysis on the list of significantly differentially expressed genes for the com-

bined ET or PV patients was performed using GSEApy, using the 2019 KEGG biological processes and the

ChEA/ENCODE transcription factor target gene sets.

1.4.5 CALLING ADDITIONAL SOMATIC MUTATIONS IN SCRNA-SEQ DATA

Cells with somatic mutations associated with JAK2 V617F were identified using the scRNA-seq transcrip-

tome data from patients ET 1 and ET 2. All 10x reads that mapped to genomic locations found to be somati-

cally mutated in JAK2-mutant HSCs from the patient in the whole-genome sequencing data with unambigu-

ous cell barcodes were selected. Reads with base quality greater than 30 were used to determine whether

each transcript had the mutant or WT sequence. To minimize the number of false positive mutant calls, we

eliminated mutation loci which had errant mutant reads identified in a bank of 36 bone marrow or peripheral

blood 10x scRNA-seq datasets from healthy individuals.
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2
Quantitative measurement of in vivo HSPC

dynamics using time-resolved lineage tracing
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ABSTRACT

Quantitative measurement of in vivo differentiation and cell division dynamics in individual hematopoietic

stem and progenitor cells (HSPCs) is challenging, since the cellular processes occurring over time cannot

be easily directly observed in situ. To estimate the rate at which these processes occur in unperturbed

hematopoiesis, we developed an experimental system that uses fluorescent protein degradation to estimate

the amount of time that has elapsed since a differentiation event has occurred in an HSPC and fluorescent

protein dilution to estimate the number of cell divisions that have occurred. We designed and characterized

a fluorescent timer reporter with three fluorescent proteins with different degradation kinetics. While we

initially found that fluorescent protein levels were correlated with time and cell divisions in cell lines in vitro,

we were not able to achieve high enough fluorescent protein expression levels in mouse HSPCs to accurately

measure differentiation kinetics.

2.1 INTRODUCTION

Hematopoietic stem cells (HSCs) are the source of all new blood cells after birth. In order to produce enough

blood cells to maintain homeostasis over the animal’s lifetime and respond to injury and infection, HSCs and

the their hematopoietic progenitor cell (HPC) progeny must divide and differentiate at appropriate rates. Dys-

regulation of this process can lead to cytopenias or malignancy. Understanding the kinetics of hematopoietic

stem and progenitor cell (HSPC) differentiation and the mechanisms that regulate these rates may allow us

to better treat these conditions.

Measuring the rates of dynamic behaviors such as differentiation, cell division, and cell death in vivo is

challenging. Most experimental techniques cannot assess the phenotype of individual cells without remov-

ing them from their native context and/or destroying them. Therefore, methods to measure differentiation

and division in hematopoietic cells in situ often augment static cell state measurements with additional dy-
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namic information. For example, groups have used fluorescent markers to track the progeny of particular cell

populations over time, which can be combined with mathematical modeling to estimate population-level dif-

ferentiation and division rates51,52. To track cell divisions during tissue regeneration, previous studies have

used dilution of fluorescently-tagged histones (e.g., H2B-GFP)53,54. These fluorescently-tagged histones

have a long half-life once they are incorporated into chromatin55 (although recent work has challenged this

notion in HSPCs56). After production of the H2B-conjugated fluorescent protein stops, each division cuts

the amount of fluorescence in each cell by half. Therefore, by measuring the fluorescence in each cell, the

number of divisions that each individual cell has undergone since expression of the protein stopped can be

estimated. Stable cytoplasmic fluorescent dyes such as CFSE can also be used to track divisions, but require

ex vivo cell manipulation and are therefore more useful in the transplant setting57.

While fluorescent proteins that degrade very slowly can be used to track cell divisions, proteins with

shorter half lives can be used to measure the amount of time that has passed since each individual cell has

undergone a specific phenotype change. These shorter-lived proteins degrade in the cell over time according

to predictable first-order kinetics, so by measuring the level of fluorescence in each cell after transcription of

the fluorescent proteins have stopped, we can estimate the amount of time since the cell stopped expressing

the proteins. Simultaneously using two or more proteins with different degradation kinetics improves the ac-

curacy of this estimate and provides a way to correct for fluorescent protein loss through dilution during cell

division. Such a strategy with two fluorescent reporters with different half lives (specifically engineered using

a protein degron sequence) has been used to measure the kinetics of differentiation in intestinal organoids58.

In this intestinal organoid system, expression of the fluorescent reporters was restricted to a specific set of

multipotent enteroendocrine progenitors expressing Neurog3, so the fluorescence measurements were used

to estimate the time since the cell lost Neurog3 expression and differentiated out of the multipotent enteroen-

docrine state. Since most fluorescent proteins have half lives of a few hours to days, this general strategy can

be adapted to assess differentiation kinetics in regenerative tissues in which important differentiation events
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happen over the course of a few days.

Here, we designed an experimental system to measure HSPC kinetics with three fluorescent reporters- one

conjugated to histone H2B with a long degradation half life to measure cell divisions, and two cytoplasmic

proteins used to estimate the amount of time that has passed since expression of the reporters ended. We

intended to use this system to measure division and differentiation kinetics in individual HSCs as they dif-

ferentiate into multipotent progenitors (MPPs) and other fate-restricted hematopoietic cell types. However,

although the system seemed to work in the 293T cell line in vitro, expression of the timing construct was too

low in HSPCs to make the system useful in vivo.

2.2 RESULTS

2.2.1 WE DESIGNED A REPORTER CONSTRUCT WITH MULTIPLE FLUORESCENT PROTEINS TO ESTIMATE

TIME AND NUMBER OF DIVISIONS AFTER DIFFERENTIATION IN VIVO.

To estimate the amount of time that has elapsed since a cell has turned on or off expression of a specific gene,

we designed a fluorescent reporter containing three different fluorescent proteins with different degradation

rates. While the degradation rates of fluorescent proteins in mammalian cells is not well studied, the half lives

of most GFP and RFP derivatives is likely 24 hours or longer59,60,58, suggesting that it would be feasible to

use these proteins to study HSPC differentiation events, many of which likely happen over a few days51. Cells

would constitutively express high levels of these proteins until a differentiation event stops transcription of the

fluorescent reporter. We designed two strategies that control expression of the reporter in response to different

biological events. The first links expression of the reporter to the expression of another gene by knocking

the rtTA tetracycline-inducible transcription factor into the endogenous locus for that gene (Fig. 2.1A). By

choosing a gene expressed exclusively in stem cells, under continuous exposure to doxycycline (dox), stem

cells will build up the fluorescent reporter protein levels. After the cells differentiate and lose expression of
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Figure 2.1: Levels of both cytoplasmic and histone-tagged fluorescent proteins decrease hours after stopping fluorescent
protein expression. A. Genetic architecture of the Tet-On lentiviral fluorescent timer. B-E. Fluorescent protein levels in
293T cells at various timepoints (color legend for panels B-E at bottom) after dox withdrawal following continuous dox ex-
posure.

the gene, transcription of the fluorescent proteins will stop and the timer will start, as the existing fluorescent

proteins in each cell degrade and dilute via cell division. The other approach we used was to flank the

fluorescent protein sequences with loxP sites that cause the intervening sequence to invert irreversibly after

Cre recombination. If Cre expression occurs when the cell starts expressing a protein specific to differentiated

cells, transcription of the fluorescent proteins will turn off upon expression of that gene. We tested both of

these general approaches in 293T cells and mouse HSPCs.

2.2.2 THE LEVEL OF FLUORESCENT TIMER PROTEIN EXPRESSION DECREASES OVER TIME IN A PRE-

DICTABLE WAY IN 293T CELLS IN VITRO.

We started by implemented a drug-inducible timer system and used it to test the kinetics of fluorescent protein

loss in 293T cells in vitro (Fig. 2.1A). When introduced into a cell line with constutitive rtTA transcription

factor expression, all three fluorescent proteins will be expressed as long as the cells are exposed to dox. We

created a lentivirus containing the reporter construct and used it to infect 293T cells stably expressing rtTA.

We found that these cells expressed high levels of mNeonGreen, mApple, and H2B-Cerulean, and that levels
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of all three fluorescent proteins decreased over time after dox withdrawal (Fig. 2.1B-E). mNeonGreen fluo-

rescence dropped off sharply at around 12 hours after dox withdrawal, suggesting a half life of a few hours.

In contrast, mApple fluorescence decreased more slowly, suggesting it is more stable in the cytoplasm of

these cells. mNeonGreen and mApple fluorescence levels were correlated in these cells, further supporting

our hypothesis that degradation of these proteins over time is causing fluorescence loss after dox withdrawal

(Fig. 2.1D). We did not see discrete peaks in the H2B-Cerulean fluorescence corresponding to cell popu-

lations that divided different numbers of times after dox withdrawal (Fig. 2.1E), in contrast to what some

studies with long-lived fluorescent proteins have shown60,53. This might have been due to the low overall

level of H2B-Cerulean fluorescence detected, even when the protein was constitutively expressed. This low

expression may have been due to the fact that the Cerulean fluorescent protein is less bright than most red or

green fluorescent proteins.

2.2.3 HEMATOPOIETIC CELLS DID NOT EXPRESS THE FLUORESCENT TIMER PROTEINS HIGHLY ENOUGH

TO ALLOW FOR ACCURATE ESTIMATION OF TIME OR NUMBER OF DIVISIONS.

Encouraged by the cell line results, we modified the design of the fluorescent timer construct and created a

transgenic mouse that constitutively expressed the reporter in all HSPCs. Rather than use the rtTA transcrip-

tion factor to control expression of the reporter, we flanked the polycistronic fluorescent protein sequence

with loxP sites, so that the coding sequence is inverted irreversibly upon Cre recombination (Fig. 2.2A). To

increase the brightness of the histone-conjugated protein, we switched the Cerulean protein for TagBFP2

and added an inverted iRFP 670 sequence that is expressed in cells only after Cre recombination. If this

construct were stably inserted into cells that express active Cre recombinase upon expression of a cell-type

specific gene, transcription of the fluorescent protein would stop only after differentiation into that cell type.

We used homologous recombination to insert this construct into mouse embryonic stem (ES) cells in the TI-

GRE constitutive expression locus61. These gene-targeted ES cells expressed all three fluorescent proteins,
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Figure 2.2: The fluorescent reporter proteins were expressed at high levels in mouse ES cells but not HSPCs in the trans-
genicmouse. A.Genetic architecture of the transgenicmouse linewith the fluorescent timing construct inserted via homol-
ogous recombination into the TIGRE expression locus. The loxP sites shown cause irreversible inversion of the sequence
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though the H2B-BFP expression was quite low (Fig. 2.2B-C). We injected these ES cells into wild-type

C57BL/6J mouse blastocysts with the intention of creating a stable transgenic mouse line. This line would

then be crossed with a Flt3-Cre mouse line, creating a mouse in which the fluorescent timer would start

recording after expression of Flt3 starts in MPPs62. However, we found that the chimeras that resulted from

the blastocyst injections had low expression overall in bone marrow HSPCs (Fig. 2.2D). We therefore decided
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to abandon this attempt to create a line with this construct inserted into the germline, as the low constitutive

expression of all three fluorescent proteins in HSPCs would make it difficult to accurately estimate the num-

ber of divisions and the amount of time that elapsed after differentiation using fluorescence measurements

alone.

We made one final attempt to stably express the multicolor fluorescent reporter in HSPCs. Since lentiviral

infection produced high expression of a three-protein reporter in 293T cells (Fig. 2.1), we decided to infect

HSPCs ex vivo with lentivirus rather than create a transgenic mouse line. Since we saw relatively low expres-

sion of the H2B-Cerulean division counter in the previous iteration of the lentiviral approach, we created

a new plasmid with H2B conjugated to the brighter Venus fluorescent protein (Fig. 2.3A). Unfortunately,

we found that none of the fluorescent proteins were highly expressed when the lentivirus was used to in-

fect mouse HSPCs, despite a reasonably high infection rate in these cells (Fig. 2.3B). Because of this low

expression, we did not pursue this strategy further.
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2.3 DISCUSSION

We designed and tested an experimental system that uses the degradation and dilution of fluorescent proteins

to estimate the kinetics of HSPC differentiation and division in mice. While the levels of the fluorescent pro-

teins did decrease over time after inserting the fluorescent reporter construct into 293T cells in vitro, we could

not implement a strategy that initially expressed high enough levels of these proteins in HSPCs to make this

a viable strategy to quantitatively measure differentiation and division rates. If we had successfully created

such an experimental system, we would have used it to study the initial events after HSC differentiation in

vivo by starting the timer and division counter just after differentiation into Flt3+ MPPs by using cells with

both the timer and Flt3-Cre. Cells could then be sorted using their fluorescence measurements into popula-

tions that had undergone different numbers of divisions since the cell first differentiated from an HSC to an

MPP (using the H2B-conjugated fluorescent protein) or into populations that had differentiated from HSCs

at different times in the past (using the cytoplasmic timer fluorescent proteins). The single-cell phenotypes of

these sorted populations would then be measured using flow cytometry with surface marker staining and/or

scRNA-seq. We would then use the timing/division estimates and the cell state measurements together to

determine how long it takes for newly-created MPPs to differentiate into downstream HSPC types. These

data could be used to answer questions such as whether cell division is required for specification of particular

hematopoietic lineages57,63 or how division and differentiation kinetics change due to different perturbations.

Several factors could be responsible for the low fluorescent protein expression we observed in mouse

HSPCs using both germline and lentiviral reporter constructs that prevented further development of this

measurement system. Expression of multiple fluorescent proteins at high levels may be detrimental to HSPCs,

leading to silencing of fluorescent protein expression. Cleavage of the P2A and T2A sites linking the three

fluorescent protein sequences together in one continuous mRNA sequence may also be inefficient, leading

to lower protein levels. Changing the fluorescent proteins, the order of the protein coding sequences within
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the construct, and/or the location in the genome in which the constructs inserts might improve expression.

Sufficient cytoplasmic fluorescent protein expression can be achieved with a very similar dual-color reporter

in intestinal organoids in vitro58, which, along with our 293T data, suggests that cell-type specific effects

may limit the expression level of fluorescent reporters. Indeed, recent studies have suggested that, in contrast

to other cell types, HSCs constitutively expressing H2B-conjugated fluorescent proteins have somewhat low

fluorescence levels with considerable intercellular variation64,56.

In general, augmenting single cell phenotypic measurements (scRNA-seq, flow cytometry, etc) with ad-

ditional information on past dynamics using fluorescent proteins is a useful strategy to investigate differen-

tiation and cell division kinetics53,58,54,14. While we had difficulty achieving the high, uniform expression

of these proteins in HSPCs that our experimental system required, other mammalian cell types or reporter

construct designs might prove more amenable to our overall approach. Such strategies allowing for precise

quantification of single-cell kinetics is essential for investigating the molecular factors driving differentiation

in regenerative tissues, cell-cell variation in fate commitment, and coupling of cell division and differentia-

tion.

2.4 METHODS

2.4.1 FLUORESCENT TIMING CONSTRUCT DESIGN AND SYNTHESIS

All fluorescent constructs were designed with two cytoplasmic fluorescent proteins and one human-H2B-

conjugated fluorescent protein all expressed on the same transcript. P2A/T2A linker sequences were used

between the three coding sequences, which are cleaved during translation to produce three separate polypep-

tides. This cleavage also produced polypeptides without methionine at their N-termini, which likely increases

the degradation rate of the protein in the cytoplasm65. Expressing all three proteins from the same transcript

reduces the amount of cell-cell variation when measuring the relative amounts of the two cytoplasmic fluores-
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cent proteins, improving the accuracy of the timing estimates. The designs were commercially synthesized

in a lentiviral backbone by VectorBuilder.

2.4.2 LENTIVIRAL PRODUCTION AND CONCENTRATION

To produce lentivirus that can insert the fluorescent reporter into cells of interest, lentiviral plasmids con-

taining the reporter sequence were transfected into Lenti-X 293T cells (Takara Bio). In each 15 cm plate of

Lenti-X cells, we transfected 27 μg of the fluorescent protein lentiviral plasmid along with the packaging

plasmids psPAX2 (Addgene #12260; 10.8 μg per plate) and pMD2.G (Addgene #12259; 5.4 μg per plate)

using the TransIT-293 Transfection Reagent (Mirus Bio). For each 15 cm plate, 130 μL of TransIT reagent

was mixed with 1 mL Opti-MEM (Gibco) and left at room temperature for 10 min. Then, the TransIT mix-

ture was mixed with the plasmids dissolved in another 1 mL Opti-MEM, and left at room temperature for 15

min. The media in the culture plates was changed to 10 mL DMEM complete (supplemented with 10% FBS,

pen-strep, L-glutamine) and the TransIT-plasmid solution was added to the culture plate dropwise. Cells

were incubated for 48 hours, after which 5 harvests were performed, each 12 hours apart. For each harvest,

the culture supernatant was collected and kept at 4◦C and an additional 12 mL DMEM complete was added

to the culture.

To concentrate the lentivirus, the viral supernatant was filtered through a 0.45 μm filter. Filtered super-

natant was ultracentrifuged at 16,000 rpm for 90 min at 4◦C and the supernatant was discarded. The pellets

were resuspended with the remaining residual liquid and stored at −80◦C.

2.4.3 IN VITRO TIMECOURSE TO TEST KINETICS OF THE LENTIVIRAL TET-ON SYSTEM IN 293T CELLS

Unconcentrated lentivirus was used to produce monoclonal 293T lines stably transfected with the Tet-On

reporter construct (Fig. 2.1A). 293T cells stably expressing rtTA and a puromycin resistance gene were main-

tained in puromycin and infected with viral supernatant at a 1:2 dilution with 5 μg/mL polybrene for 48 hours.
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Doxycycline (1 μg/mL) was then added to induce expression of the fluorescent proteins. Single cells that

highly expressed all three proteins were sorted into individual wells of a 96-well plate and monoclonal lines

were chosen from the surviving single-cell cultures for further experiments.

To assess the kinetics of fluorescent protein loss, clones expressing the reporter and rtTA were kept in

media with 1 μg/mL dox for > 1 week to reach steady-state fluorescent protein concentrations within the

cells. Dox was then withdrawn from the cells and flow cytometry was performed at 6, 12, 24, 48, 72, or 96

hours after withdrawal to measure fluorescent protein levels.

2.4.4 ES CELL GENE TARGETING TO INSERT THE TIMING CONSTRUCT INTO THE TIGRE LOCUS

Gene targeting via homologous recombination was used to insert the Cre-driven reporter construct (Fig. 2.2A)

into the TIGRE expression locus. The targeting vector was created by cloning the reporter sequence into

a TIGRE targeting vector with homology arm sequences (Addgene #92142). 25 μg each endotoxin-free

linearized TIGRE targeting plasmid and a CRISPR spCas9 plasmid based on the PX459 backbone (Addgene

#62988) with TIGRE locus sgRNA sequences were transfected into 5 million C57BL/6J agouti ES cells

using the Mouse Embryonic Stem Cell Nucleofector Kit (Lonza Bioscience). One ES cell clone with PCR-

confirmed targeting that was observed to express all three fluorescent markers was chosen for injection into

C57BL/6J blastocysts for chimera production.

2.4.5 LENTIVIRAL SPIN INFECTION AND FLOW CYTOMETRY OF HSPCS

Bone marrow from a wild-type C57BL/6J was isolated and lineage depleted with MACS Cell Separation

(Miltenyi BIotec), using CD8, CD4, Ter119, B220, and Gr1 biotin-conjugated antibodies and Anti-Biotin

MicroBeads (Miltenyi Biotec). For spin infection, 20,000 Lin- cells were plated in 100 μL F12 media (Gibco)

with 5 μg/mL polybrene. 10 μL of concentrated virus was added and cells were centrifuged at 800xg for

90 min at room temperature. 100 μL F12 media was added to each well and TPO (100 ng/mL; BioLegend),
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SCF (10 ng/mL; Miltenyi), and ITS-X (1X; Gibco) were added and the cells were cultured at 37◦C. 24 hours

later, an additional 10 uL of concentrated virus was added. Flow cytometry was performed on the culture

following fixation with 4% paraformaldehyde 4 days after the initial spin infection.
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3
Mathematical modeling to infer hematopoietic

differentiation kinetics

FOREWORD

Fernando Camargo conceived of and supervised this project. My role was to construct the mathematical

model of hematopoiesis and use it to estimate differentiation and proliferation rates from the experimental

lineage tracing data. The analysis was performed with input and additional supervision from Thomas Höfer

and Franziska Michor. Qi Yu performed all experiments, with initial assistance creating the transgenic mouse

line from Basanta Gurung and Constantina Christodoulou. Qi also performed the initial gating and analysis
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of the flow cytometry data. We will likely use some of these results in a paper with additional data from Hans-

Reimer Rodewald’s lab investigating how hematopoietic stem cell differentiation rates change in response to

various stimuli.

ABSTRACT

While hematopoietic stem cells (HSCs) are the only cell type that can fully reconstitute the entire blood

system, much of the cell proliferation required to maintain sufficient differentiated output is hypothesized

to occur in other downstream hematopoietic cell types. To quantitatively estimate how quickly the least-

differentiated population of HSCs contributes to blood production, we developed a transgenic mouse model

that specifically labels HSCs with a heritable fluorescent marker after administration of tamoxifen. We mea-

sured this fluorescent label frequency in different bone marrow cell types and used a mathematical model

of stem cell differentiation and proliferation to estimate the rate at which HSCs differentiate in their native

context in mouse bone marrow. We found that HSCs differentiate slowly, and that this differentiation rate

is lower in older mice, which is consistent with some previous reports using a similar overall HSC labeling

approach. This new mouse model will be used to assess the impact of different perturbations (e.g., inflam-

mation, irradiation) on HSC output.

3.1 INTRODUCTION

Hematopoietic stem cells are the ultimate source of all blood cells in the adult mammal. However, experimen-

tal data suggest that more downstream hematopoietic progenitors- namely, multipotent progenitors (MPPs)-

are the cells that directly contribute to production of most mature blood cell types over short and intermediate

timescales66,51,67. According to this hypothesis, these downstream transit-amplifying populations proliferate

rapidly to provide sufficient numbers of differentiated cells to maintain homeostasis, while true HSCs are

more quiescent and represent a reserve population of long-lasting stem cells that can be activated in response
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to illness or injury to provide additional hematopoietic support if necessary. In contrast, other studies sug-

gest that HSCs are more active contributors to steady-state hematopoiesis68,69,70. Accurately determining

the contribution of HSCs to steady-state hematopoiesis is important for understanding how factors such as

aging and infection affect hematopoietic output and risk of malignancy.

Many studies that quantitatively measure the contribution of HSCs to unperturbed in vivo hematopoiesis

employ similar lineage tracing strategies, though small differences between each particular mouse model

used may lead to different conclusions. The general approach ideally involves specifically labeling the most

upstream HSCs, which give rise to all other hematopoietic stem and progenitor cell (HSPC) types, with a

heritable marker (often expression of a fluorescent protein). The speed at which downstream populations

acquire labeled descendants of HSCs can be used to estimate the contribution of HSCs to downstream pop-

ulations, and mathematical modeling can be used to provide quantitative estimates of HSC differentiation

rate using these data. However, this approach has some limitations that could contribute to the controversy

surrounding the contribution of HSCs to hematopoiesis. First, some labeling strategies do not specifically

label HSCs, and/or do not label a high enough fraction of HSCs to reliably assess their contribution to down-

stream populations. For example, while the Pdzk1ip1-CreER mouse model initially labels approximately

30% of the most undifferentiated long-term HSCs (LT-HSCs) upon induction with tamoxifen, approximately

10% of short-term HSCs (ST-HSCs) and 3% of MPPs are also labeled68. This initial population of labeled

cells in other compartments can expand and contribute to downstream blood production, interfering with the

estimate of the LT-HSC contribution to hematopoiesis. Second, most approaches to inferring HSC differen-

tiation rates assume that HSPC differentiation rates and the number of HSCs and other stem and progenitor

types are constant over the lifetime of the animal51,68. However, previous studies have shown that older

mice have more HSCs than younger mice52 and that aging affects the rates at which different blood lineage

(e.g., myeloid and lymphoid) are produced71,72, suggesting that an approach that can account for changes in

differentiation rates over time may produce more accurate estimates52.
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To address these issues, we developed a new transgenic mouse model that labels LT-HSCs with a herita-

ble fluorescent marker more specifically than previous models. We used the observed label frequencies in

different HSPC compartments to estimate the rate at which LT-HSCs differentiate into ST-HSCs and thereby

contribute to blood production. The mathematical model we used to infer this rate allows for changes in the

LT-HSC differentiation rate over time. We found that LT-HSCs contribute slowly to blood production, and

that their per capita differentiation decreases over time. We are currently using this lineage tracing mouse

model to determine whether perturbation of the hematopoietic system by infection, inflammatory stimuli, or

irradiation changes LT-HSC differentiation kinetics.

3.2 RESULTS

3.2.1 WE DEVELOPED AN INDUCIBLE LABELING SYSTEM THAT SPECIFICALLY MARKS THE LEAST-

DIFFERENTIATED MDS1+ HSCS.

In order to measure the in vivo rate of HSC differentiation in steady state and perturbed conditions, we

developed a transgenic mouse which specifically marks LT-HSCs and their progeny after induction with

tamoxifen. In this mouse model, cells expressing Mds1, which is a part of a transcription factor complex

(Mds1-Evi1, part of the Mecom locus) expressed specifically in HSCs73, express the fluorescent protein

mEOS2 (Fig. 3.1A). Expression of mEOS2 is restricted to HSPCs that have not yet expressed Flt3, a marker of

differentiation into multipotent progenitors (MPPs) that is not expressed in mouse HSCs62. Cells expresssing

mEOS2 from the Mds1 locus also express FlpOERT2, which causes these Mds+Flt3- HSCs to irreversibly

turn on expression of the tdTomato fluorescent marker upon tamoxifen exposure. A subset of Mds+Flt3-

HSCs is therefore permanently labeled with tdTomato, and this label is eventually propagated to downstream

cell types when Tom+ HSCs divide and differentiate (Fig. 3.1B). We found that, one week after tamoxifen

induction, expression of tdTomato was highly restricted to the population of LT-HSCs (CD150+CD48- Lin-
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Figure 3.1: Our novel inducible fluorescent lineage tracing system specifically labels HSCs in vivo. A. Genetic architecture
of theMds dual color labeling transgenicmousemodel. B. Diagramdescribing fluorescent label propagation after induction
with tamoxifen. Red denotes cells that express tdTomato, while green denote cells that express mEOS2. C. Gating strat-
egy to identify Tom+ HSCs andMPPs from an initial population of live single HSPCs, D. Percent of cells of each HSPC type
expressing tdTomato 1week after label induction with 2mg tamoxifen.

Sca1+cKit+ (LSK) cells) that also expressed mEOS2 (Fig. 3.1C-D). Our model has less nonspecific labeling

of downstream cell compartments, including ST-HSCs (CD150-CD48- LSKs) and MPPs (CD150+/-CD48+

LSKs), than a previously-published mouse model that labeled Tie2+ HSPCs51.

The rate at which the tdTomato label frequency increases in more-differentiated HSPC types is related to

the rate at which HSCs contribute to hematopoiesis. Faster HSC differentiation would lead to faster replace-

ment of Tom- cells in downstream compartments with Tom+ HSC progeny. Unfortunately, we were not able

to repeatedly sample the bone marrow in individual mice multiple times, so we could not determine how the
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Tom+ frequency in bone marrow cell types changed over time within the same mouse. Therefore, to track the

rate of label propagation after tamoxifen induction, we induced Tom labeling in a large cohort of adult mice

(n=49) and sacrificed these mice at different times 1 - 52 weeks after labeling. We then used flow cytometry

to measure how the label frequency in bone marrow HSPC types changed after HSC labeling.

3.2.2 A MATHEMATICAL MODEL OF HSPC DYNAMICS CAN BE USED TO ESTIMATE TIME-DEPENDENT

DIFFERENTIATION AND NET GROWTH RATES OF HSPC TYPES.

We used a deterministic model based on a previously-published method51 to estimate the rates of steady-

state HSPC differentiation and division in mice using our tdTomato labeling data. This model is a system

of differential equations that describe how the frequency of tdTomato labeled cells change over time after

tamoxifen administration. We assumed that each HSPC type could undergo two main types of dynamic

behaviors (Fig. 3.2A):

1. Differentiation, in which a cell from an upstream compartment becomes a different downstream cell
type. Cells spend an exponentially-distributed amount of time in each compartment and differentiation
from compartment i into compartment j at a rate αi→j, which has the same value for all cells in the
compartment.

2. Net growth of cells in the compartment. Cells can undergo symmetric self-renewal, in which a cell
divides into two new cells of the same type, or can be eliminated from the compartment through cell
death. However, we only explicitly model the net growth of cells in the compartment (self-renewal -
cell death). Expansion of the compartment occurs at the net growth rate βi, which has the same value
for all cells in a particular compartment i.

Assuming that Tom+ and Tom- cells have the same differentiation and division rates, the number ni of

labeled or unlabeled cells in a specific compartment is

dni
dt

= αu→inu + (βi − αi→d)ni (3.1)

if compartment i has exactly one contributing upstream compartment u and one downstream compartment

d. The fraction of cells fi =
ni,lab
ni,total

in each compartment with the tdTomato label is governed by the differential
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equation

dfi
dt

= αu→ifu(
nu,total
ni,total

) + (βi − αi→d)fi −
fi

ni,total

dni,total
dt

(3.2)

If we assume that the total (Tom+ and Tom-) number of cells in each compartment is approximately

constant ( dni,total
dt ≈ 0), then51

dfi
dt

=
αu→inu,total

ni,total
(fu − fi). (3.3)

This equation can be used to estimate a constant differentiation rate αu→i into compartment i by using the

experimentally-measured label frequencies of the u and i compartments and the total population sizes of the

two compartments. However, if the upstream compartment size nu,total is not constant, Equation 3.3 can also

be rearranged to provide a time-dependent estimate of the differentiation rate52

α̂u→i =
d̂fi
dt

ni,total
nu,total(fu − fi)

(3.4)

using the numerical derivative of label frequency d̂fi
dt .

3.2.3 HSCS DIFFERENTIATE SLOWLY INTO DOWNSTREAM CELL TYPES.

We measured the frequency of Tom+ cells over time in different HSC types using flow cytometry (Fig. 3.2B).

The least-differentiated HSC population (mEOS+ Mds1+Flt3- LT-HSCs) was the only population with sig-

nificant tdTomato labeling initially, and this label frequency varied between individual mice. The Tom+ cell

frequency in the mEOS+ LT-HSC population did not decrease over time and did gradually increase in all

other HSC compartments, indicating that the mEOS+ LT-HSCs were the ultimate source of all HSC types.

Since label frequency data from all mice were combined to estimate the HSC differentiation rates, we nor-

malized the label frequency in all compartments to the mEOS+ LT-HSC Tom+ frequency to reduce the effect

of interindividual variation in initial label induction efficiency (Fig. 3.2C). While we found that the LT-HSC
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Figure 3.2: Slow propagation of the tdTomato label suggests that LT-HSCs do not contribute much to steady-state
hematopoiesis. A. Differentiation and self-renewal model diagram showing two example compartments (LT-HSCs and ST-
HSCs). Each compartment has a net proliferation rate (β) and a differentiation rate (α) that are assumed to be the same
for all cells (Tom+ and Tom-) in that population. B. Frequency of tdTomato-labeled cells in mEOS+ LT-HSCs (green), mEOS-
LT-HSCs (grey), and ST-HSCs (blue). Each mouse yielded a single measurement per bone marrow cell type (49 total mice).
Error bars are +/- SEM. C. Normalized frequency of tdTomato-labeled cells in mEOS- LT-HSCs (grey), ST-HSCs (blue), and
MPP3/4s (orange), relative to the labeling frequency in mEOS+ LT-HSCs (green). Error bars are +/- SEM. D-E. Fraction of
mEOS+ LT-HSCs (D, light green), mEOS- LT-HSCs (D, grey), all LT-HSCs combined (D, dark green), or ST-HSCs (E, blue) in
bonemarrow. Error bars are +/- SEM. F. Estimated differentiation rate for all LT-HSCs (dark green) or mEOS+ LT-HSCs only
(light green) into ST-HSCs. The shaded regions are bootstrapped 95% confidence intervals (n=1000 samples for each).

population size (in particular, the mEOS+ LT-HSCs) increased over time (Fig. 3.2D), as has been noted

previously52, the ST-HSCs did not seem to monotonically increase in number over time (Fig. 3.2E).

We used Equation 3.4 to estimate the time-dependent rate at which LT-HSCs differentiated into ST-HSCs

from the measured tdTomato label frequencies (Fig. 3.2F). If we assumed that all LT-HSCs directly con-

tributed equally to ST-HSC production, we found that the maximum LT-HSC differentiation rate was rela-

tively low (< 0.7% of the LT-HSC population differentiated into ST-HSCs per day). This differentiation rate

decreased over time. Since the total number of LT-HSCs increased over time (Fig. 3.2D), our results suggest

that the observed HSC expansion that occurs during aging is balanced by a decrease in the per capita HSC

differentiation rate. When we assumed that only mEOS+ LT-HSCs contribute to downstream blood produc-

tion, we estimated an HSC differentiation rate similar to the one estimated assuming all LT-HSCs contribute

equally (Fig. 3.2F). While we cannot formally distinguish between these two possible configurations for
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the hematopoietic differentiation hierarchy from the labeling data alone, the inferred differentiation rates

from both hierarchy structures we tried suggest that LT-HSCs do not directly contribute much to steady-state

hematopoiesis over short timescales.

3.3 DISCUSSION

Using our new lineage tracing mouse model that very specifically labels LT-HSCs, we found that LT-HSCs

differentiate slowly (< 1% per day) to create other hematopoietic progenitor types. This rate decreased over

time, though the total differentiated output of the entire LT-HSC compartment remained relatively constant

during aging since the number of LT-HSCs increased over time. Our inferred differentiation rates are similar

to those estimated recently using a different HSC lineage tracing mouse model52,51, and suggest that expan-

sion in more differentiated compartments (ST-HSCs, MPPs, etc.) drives hematopoietic production at steady

state.

Other direct measurements of HSPC dynamic behaviors could be used in conjunction with our label prop-

agation data to improve our understanding of HSPC division and differentiation kinetics. In particular, or-

thogonal experimental measurements of cell division rates in HSPCs (i.e., EdU labeling) have been recently

used with Tie2 HSC labeling data to improve the accuracy of differentiation rate estimates52. Importantly,

this strategy can also be used to estimate rates of asymmetric division and cell death in HSPCs52, which can-

not be specifically estimated using fluorescent label propagation data alone. Our model could be extended

to incorporate similar measurements of cell division rate.

Our approach and other similar approaches combining fluorescent label propagation and mathematical

modeling share a few important assumptions that limit their ability to accurately describe hematopoietic dif-

ferentiation and division kinetics. First, these approaches require separating HSPCs into discrete cell types

and modeling transitions between these separate populations. While earlier work defined discrete hematopoi-

etic progenitor cell types according to surface marker expression and differentiation potential74, more recent
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single-cell sequencing results suggest that HSPC differentiation is better described by a continuum63. Sec-

ond, this type of compartment model also assumes that all cells within a compartment are equivalent and all

have the same division and differentiation probabilities at all times. Finally, these approaches often require

some prior knowledge of the structure of the hematopoietic differentiation hierarchy. While many parts of

the hierarchy have been well-established experimentally, recent studies have raised questions about the exis-

tence or origin of some HSPC types (e.g., megakaryocyte progenitors67,75, common lymphoid progenitors76).

Strategies that measure differentiation kinetics without resorting to prior knowledge of specific HSPC types

or differentiation hierarchies, such as joint single cell barcoding and scRNA-seq77.

We are currently using this transgenic mouse model to determine how stimuli such as irradiation, inflam-

mation, and infection change the rate of HSPC differentiation and/or cell division. Sublethal irradiation

eliminates many HSPCs, requiring expansion of the surviving cells to compensate for the loss, while infec-

tion and inflammation increase the rate of HSC proliferation to increase the production of immune cells78,79.

Determining which cell types directly respond to these stimuli and what specific kinetic effects they cause

(increased differentiation, proliferation, or cell survival) could help us understand how the HSC compartment

is maintained under stress and how to better treat stress-related cytopenias.

3.4 METHODS

3.4.1 EXPERIMENTAL PROCEDURES

Adult mice (10-12 weeks old) with the germline transgenes shown in (Fig. 3.1A) were induced with 2 mg

tamoxifen via intraperitoneal injection. After 1 - 52 weeks (>= 4 mice per timepoint), these mice were sac-

rificed and bone marrow mononuclear cells from the pelvis, spine, and both femurs and tibiae were isolated.

Flow cytometry was performed to measure the frequency of tdTomato labeling in each HSC type, following

surface staining with the following antibodies:

1. cKit APC
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2. Lineage (Ter119, CD4, CD8, B220, Gr1) BV421

3. Sca-1 PE-Cy7

4. CD150 PE-Cy5

5. CD48 APC-Cy7

HSC/MPP cell types were identified using the gating strategy in Fig. 3.1C, after manual compensation.

3.4.2 ESTIMATION OF HSPC DIFFERENTIATION AND PROLIFERATION RATES

Our modeling approach is adapted from previous work estimating constant51 and time-dependent52 HSPC

differentiation rates from other HSC lineage tracing mouse models. We used Equation 3.4 to numerically

estimate the time-dependent LT-HSC to ST-HSC differentiation rate α̂u→i. We first normalized the Tom+

label frequency with the label frequency of the mEOS+ LT-HSCs so that the normalized mEOS+ LT-HSC

label frequency was 1 for each mouse. Then, we smoothed the mEOS+ and mEOS- LT-HSC and ST-HSC

Tom+ label frequencies over time using local polynomial smoothing (degree = 1). We also smoothed the

measured frequency of these cell types in the bone marrow samples over time using the same local polynomial

smoothing procedure. The time derivative of the ST-HSC Tom+ frequency d̂fi
dt was estimated numerically

using the smoothed frequency data using the symmetric difference quotient. The LT-HSC differentiation

rate was estimated up to one year after label induction using these smoothed curves.

Confidence intervals on the LT-HSC differentiation rate estimates were calculated by bootstrapping. Label

frequency data and total compartment size were resampled 1000 times, preserving the number of samples

from each timepoint during each resampling. Differentiation rates were estimated using the same procedure

outlined above and the empirical 95% confidence intervals were computed from this sampled data.
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4
Single-cell barcoding to characterize

mammalian embryonic development

FOREWORD

This project was conceived by Fernando Camargo and Sarah Bowling. Sarah performed all of the experiments

under Fernando’s supervision. I performed the bulk of the data analysis with input from Sarah and Fernando.

Additional assistance with cell type identification, data preprocessing, and access to mouse embryo atlas

data, as well as general advice, was provided by Mai-Linh Ton, Ivan Imaz-Rosshandler, and Bertie Göttgens.

Help with the computational analysis was also provided by Duluxan Sritharan and Sahand Hormoz, who
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developed the original analysis pipeline for the CARLIN barcoding system80. Experiments, data analysis,

and interpretation of results are still ongoing.

ABSTRACT

Many important cell fate specification events in mammalian embryogenesis occur during gastrulation. While

lineage tracing experiments and single-cell technologies have revealed much about how embryonic progenitor

cells expand and differentiate during this process, questions about the origins and differentiation trajectories

of specific cell types (e.g., hematopoietic cells, endothelium, the heart) remain. To assess the fate potential

and proliferative capacity of all embryonic cell types during gastrulation, we used a CRISPR barcoding

system (CARLIN) to identify the progeny of individual cells that existed at specific timepoints in the early

mouse embryo. The inducible CARLIN barcodes are transcribed and can be captured and amplified during

scRNA-seq library preparation, enabling the joint measurement of the transcriptome and lineage information

in the same set of single cells. We used the data from this system to investigate the kinetics of fate restriction

and the origins of endothelial cells in the early mouse embryo.

4.1 INTRODUCTION

In mouse embryos, specification of most tissue types occurs during gastrulation at approximately embryonic

day (E) 6.5-8.5. During this process, pluripotent cells of the epiblast are thought to first differentiate into the

three germ layers of the embryo proper (endoderm, mesoderm, and ectoderm), which go on to eventually give

rise to all of differentiated tissues of the adult animal81,82. Recently, this highly dynamic developmental event

has been investigated by several groups using single cell omics technologies to determine what cell states are

present in the embryo at different times during development. These studies have revealed new information

about the origins of the germ layers83, blood progenitors84, gut and other endodermal tissues85,84, and the

somites86 in the mouse. One important limitation of most of these single-cell studies that focus on the
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current molecular state of each cell is that they often cannot definitively identify specific cell state changes

that occur during embryogenesis. Instead, often the best they can do is to infer differentiation dynamics

using static phenotype data under some set of restrictive assumptions, usually that cell state changes are

continuous and occur gradually. While these approaches have yielded important new biological insights,

some of which have been formalized into quantitative computational models of development87,88, a more

direct single-cell experimental measurement of cell state changes during early mouse embryogenesis would

allow us to rigorously test these models and findings and may reveal unexpected differentiation behaviors.

To this end, we used a CRISPR-based single-cell inducible barcoding system80 to simultaneously measure

both cell lineage histories and transcriptomic profile in the mouse embryo after gastrulation has completed.

This system is capable of identifying and characterizing the phenotype of the descendants of individual pro-

genitor cells that existed before or during gastrulation, and has more specific temporal control of barcode

editing than a previous CRISPR-barcoding used in mouse embryos89. Using these data, we explored ques-

tions related to the fate potential and expansion kinetics of individual embryonic progenitors, and specifically

investigated the origins of endothelial cells in different regions of the mouse embryo. In the future, we in-

tend to use these data to investigate lineage convergence and divergence in other tissues, as well as to validate

and/or refine other quantitative models of mouse embryonic development that were generated without lineage

data.

4.2 RESULTS

4.2.1 EXPRESSED SINGLE-CELL BARCODING ALLOWS FOR JOINT TRANSCRIPTOMIC AND LINEAGE IN-

FORMATION IN MOUSE EMBRYOS.

To investigate the dynamics of proliferation and cell fate specification in the early mouse embryo, we im-

proved the CARLIN CRISPR-based single-cell barcoding system80 previously developed in the Camargo

52



Lab and used it to uniquely mark clones derived from individual progenitor cells during embryogenesis. To

improve our ability to read out barcodes in each cell in our in scRNA-seq data, an additional CRISPR tar-

get array was added to the TIGRE expression locus61 with the same 10 target sequences as in the original

CARLIN target array (Fig. 4.1A). This TIGRE CARLIN target array provided a second opportunity to cap-

ture lineage information in each cell when performing single-cell transcriptomic profiling, in addition to the

original CARLIN barcodes still present. A single set of 10 matching constitutively expressed guide RNAs

permits random editing of both the original and TIGRE CARLIN arrays when Cas9 expression is induced by

doxycycline (dox) exposure. Therefore, a single pulse of dox creates random barcodes in both target arrays

which uniquely mark the descendants of individual progenitor cells at the time of CARLIN array editing.

By administering dox to early (pre-gastrulation) mouse embryos and using scRNA-seq to simultaneously

read transcriptional phenotype and CARLIN lineage information in individual cells, we determined how

many descendants each individually-barcoded early-stage progenitor had, and measured the phenotype of

these descendants in the embryo after gastrulation and tissue specification (Fig. 4.1B). We induced CARLIN

barcoding in four mouse embryos at three different timepoints in embryonic development (one embryo at

E5.5, SB800; two embryos at E6.5, SB490 and SB361; and one embryo at E7.5, SB984) and performed

scRNA-seq on all embryos at E9.25 (after gastrulation) to determine how the fate potential of individual

progenitors changes during development. It is important to note that this CRISPR editing process occurred

gradually over a period of 36 hours after dox administration in mouse embryos (Fig. 4.1C), suggesting that

the progenitors are likely being marked with CARLIN barcodes several hours after dox administration and

that it is difficult to precisely estimate the time at which each barcode was created. Therefore, the cells in

which the barcodes were originally generated represent a slightly more variable and more mature progenitor

pool than if CARLIN barcoding occurred instantly at the time of dox administration.

By specifically amplifying the CARLIN transcripts in the scRNA-seq libraries (as was performed previ-

ously80), we were able to detect at least one original CARLIN or TIGRE CARLIN array transcript in the
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Figure 4.1: The CARLINCRISPR-Cas9 barcoding systemwas used to investigate the dynamics of earlymouse embryo fate
specification. A.Genomicarchitectureof the transgenicmicewith twoseparateCARLINtargetarrays (originalCARLIN,OC;
andTIGRECARLIN,TC).Editingof thesearrays is inducedbydoxadministration,which leads toCas9expressionandrandom
CRISPR editing of both target arrays. B. Experimental schematic, showing early in utero induction of CARLIN barcodeswith
one dox injection at E5.5, E6.5, or E7.5 and subsequent measurement of single-cell transcriptional phenotype and CARLIN
lineage information using scRNA-seq at E9.25. C. CARLIN barcode editing kinetics in mouse embryos, as measured by bulk
sequencing. Panels B and Cwere usedwith permission from Sarah Bowling.

majority of cells sampled (Fig. 4.2A). The TIGRE CARLIN capture efficiency was slightly higher than that

of the original system, likely because it was expressed at higher levels than the original array. However, only

a minority of CARLIN arrays were edited (Fig. 4.2B), reducing the number of cells with available CARLIN

lineage information. While editing and capture efficiency was variable between embryos, there was not an

obvious systematic effect of barcode induction time on either metric.

Since some CRISPR edit patterns are far more likely to be generated than others (especially deletions of

entire target sequences within an array)80, not all edited barcode sequences were likely to represent unique

editing events that happened in a single progenitor in the embryo at the time of labeling, and therefore would

not mark clonal cell populations. To filter out these high-frequency edits, we estimated the probability of gen-

erating each edit pattern by sequencing a large pool of granulocytes in which CARLIN editing was induced,

and removed CARLIN barcodes that occurred very frequently in this allele bank (Methods)80. Therefore,
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Figure 4.2: Approximately 10-20% of cells have a valid CARLIN barcode call. A. Capture efficiencies for original CARLIN
(green), TIGRE CARLIN (orange), or either target array (blue) in scRNA-seq data from each embryo. B. Editing efficiencies
(fraction of CARLIN transcripts that were edited) for original CARLIN (green) and TIGRE CARLIN (orange). C. Overall frac-
tion of cells in each embryo with an original CARLIN (green), TIGRE CARLIN (orange), or combined OC/TC allele (blue) de-
tected thatwasdetermined tobe a clonal barcode thatmarked thedescendants of a single progenitor at the timeof barcode
induction.

only a small fraction of cells overall (approximately 10-20%) expressed at least one edited CARLIN transcript

that could be used to identify clonal cell populations (Fig. 4.2C).

To maximize the number of cells with available clonal lineage information, we took into account the

sequences of both the original (OC) and TIGRE CARLIN (TC) arrays for each cell to create a unique merged

barcode for each OC/TC allele pair (Methods). For each embryo sequenced, we defined the set of all unique

(OC, TC) allele pairs found in at least one sampled cell as the set of all possible merged CARLIN barcodes.

Cells with both OC and TC transcript calls were assigned to the corresponding merged barcode category,

while cells with only one CARLIN transcript (either OC or TC) detected was assigned a merged barcode
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category at random from the available merged barcodes that share the edited CARLIN transcript that was

detected in the cell. Cells without a valid edited TC or OC call were not assigned a merged barcode and were

therefore discarded from further analyses on CARLIN barcoded clones. For some embryos we sequenced,

this merging procedure nearly doubled the number of cells with a valid barcode detected over using either

OC or TC information alone (Fig. 4.2C).

4.2.2 WE IDENTIFIED CELL TYPES IN OUR MOUSE EMBRYO SCRNA-SEQ DATA WITH THE HELP OF AN

ANNOTATED ATLAS.

We identified embryonic progenitor cell types in our scRNA-seq data from the four embryos sequenced at

E9.25 by mapping our data onto an unpublished E9.25 scRNA-seq atlas from Ivan Imaz-Rosshandler and

the Göttgens Lab. This atlas extends a previous atlas from the same group84 and was generated using similar

experimental and computational methods. We used Harmony90 to integrate our data with the E9.25 atlas data

and assigned each cell in our data the cell type label of its nearest neighbor in the reference atlas (Methods).

After merging some of similar lower-frequency cell types into larger categories, we found that the inferred

cell types represented transcriptionally-similar cells in our dataset (Fig. 4.3A) and expressed appropriate

marker genes (Fig. 4.3B). We also used these cell type labels to identify the germ layer or other general early

progenitor tissue type associated with each cell (Fig. 4.3C).

Cells from different gross anatomical regions of each embryo (head, tail, trunk and yolk sac) were phys-

ically separated and sequenced separately. While some cell types (e.g., erythroid progenitors) were found

predominantly in a specific region of the embryo, most cell types were found in multiple anatomical regions

in the embryo proper (Fig. 4.3D). After batch correction between individual embryos in our dataset (Meth-

ods), there weren’t striking differences in the transcriptional profiles between the four embryos sequenced

(Fig. 4.3E).

Most cell types had similar CARLIN transcript capture efficiencies and editing efficiencies (Fig. 4.4).
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Figure4.3: Weusedamouseembryoatlas to identify cell types inourmergedscRNA-seqdata. A.UMAPofbatch-corrected
scRNA-seq data from four embryos sequenced at E9.25, colored by cell type. B. Mean expression of marker genes in select
cell types. Marker geneswere selected from the published scRNA-seq embryo atlas sampled at earlier developmental times
(E6.5-E8.5)84. Expression levels are scaled so that values for each gene range between0 and1 across the cell types selected.
C.UMAPofmergedembryoscRNA-seqdata, coloredbygerm layer/tissue type identity. D.UMAPofmergedembryoscRNA-
seq data, colored by dissected anatomical region of origin. E. UMAP of merged embryo scRNA-seq data, colored by mouse
embryo.

However, there were a few notable exceptions- erythroid cells had lower CARLIN capture efficiencies and

the extra-embryonic endoderm had unusually low CARLIN editing efficiencies.
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4.2.3 PROGENITORS THAT ARISE EARLIER IN DEVELOPMENT EACH PRODUCE MORE DESCENDANTS

AND HAVE MORE DIVERSE CELL FATES THAN PROGENITORS THAT ARISE LATER.

The frequency of each merged CARLIN barcode is proportional to the number of surviving descendants

produced by the embryonic progenitor cell in which the barcode originated. As expected, embryos in which

barcoding occurred earlier had larger clone sizes and fewer unique clones (Fig. 4.5A), since there is a longer

time window in which these progenitors can expand. In all embryos, there were CARLIN barcodes that were

found in unusually large numbers of cells, which could represent either particularly proliferative progenitors

or CARLIN editing events that occurred very early in the 36-hour CRISPR editing window observed in this

system.

Larger clonal populations were also more likely to contribute to multiple germ layers. Particularly in the

embryo induced at E5.5, barcoded clones that were found in multiple germ layers and/or extra-embryonic

tissue were much larger than unipotent clones (Fig. 4.5B). This could be because progenitors that expanded

more after barcoding arose earlier in development and were therefore less fate restricted, because progenitors

which are more proliferative are also more multipotent, or simply because larger clones are more likely to

be found multiple tissue types by chance. This question could be further investigated by resampling the

CARLIN barcode data to eliminate the statistical impact of larger clone sizes on observed clone potency.

Additionally, embryos that were induced later had more barcoded clonal populations that only contributed

to a single germ layer than embryos that were induced earlier and a smaller fraction of multipotent clones

(Fig. 4.5C). Conversely, the embryo induced at E7.5 (SB984) had a much higher fraction of unipotent clones

than the embryos induced at E6.5 and E5.5. This effect could again be partially due to the smaller clone sizes

in the embryos in which CARLIN editing was induced later. However, this observation is also consistent

with the hypothesis that cells become more fate restricted as development progresses, reducing the diversity

of cell types each progenitor is capable of creating.
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Figure 4.5: Embryos that were induced with dox earlier have larger barcoded clone sizes with more diverse cell fates in
each clone. A. Frequencyof eachCARLINbarcode clone in individual embryos. Boxes showmedian and interquartile ranges,
whiskers are at 1.5x interquartile range. Black dots show all data points. B. Frequency of CARLIN barcodes, according to
their presence in cells from different germ layers or tissue types (x-axis) and mouse embryo (colors: green, SB800; orange,
SB490; red, SB361; purple, SB984; as in A). CARLIN barcode alleles that appeared in more tissue types represent progeni-
torswith less restricted fate potentials at the time of barcode induction. C. Fraction of CARLIN barcodes fromeach embryo
that contribute to different numbers of germ layers/tissue types. Abbreviations used: Ect, ectoderm; End, endoderm; Mes,
mesoderm; ExE, extra-embryonic.

Finally, we found that most cell types sampled had similar numbers of cells per unique CARLIN-barcoded

progenitor (Fig. 4.6), suggesting that proliferation rates of individual progenitors during the period from ap-

proximately E6.0-E8.0 are relatively similar between progenitors with different cell fates. This observation

is consistent with previous results indicating that cells are proliferating exponentially at a uniform rate during

early mouse development91. If proliferation rates are similar across all progenitor cells in the embryo, then

the particularly large clones we observed (Fig. 4.5A) likely represent barcodes that arose earlier during devel-

opment, rather than individual progenitors that were more proliferative. Notably, each individual progenitor
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+/- SEM.
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did give rise to more erythroid cells than to other cell types, particularly when barcodes were induced earlier

in development. This suggests that progenitors (at this stage, mostly yolk sac derived cells) that give rise to

erythroid cells may divide more rapidly than other cells in the embryo.

4.2.4 LINEAGE HISTORY IS ASSOCIATED TRANSCRIPTIONAL SIMILARITY IN EMBRYONIC CELLS SAM-

PLED AFTER GASTRULATION.

Cells with similar transcriptional phenotypes in the developing embryo are thought to have similar lineage

histories and possibly share a recent common ancestor. To investigate the relationship between cell lineage

histories and phenotypic similarity, we computed the correlations between the CARLIN barcode frequency

distributions of different cell types (Fig. 4.7). If the barcode frequencies were highly correlated between

two different cell types, the two cell types likely shared a similar set of progenitors at the time of CARLIN

barcode induction and therefore were closely related in terms of their lineage histories. We found that ec-

todermal cell types had higher lineage correlations with other ectodermal cell types in embryos induced at

E6.5 (Fig. 4.7B-C). Mesodermal cell types may have had shared lineage histories in these embryos as well.

However, similar patterns are harder to discern in the embryo induced at E5.5 (Fig. 4.7A), since there is a

high degree of barcode sharing in general, likely due to the larger average clone size. Similarly, the overall

degree of barcode sharing between cell types was too low in the embryo induced at the latest timepoint to

observe any obvious patterns (Fig. 4.7D). Taken together, these data suggest that progenitors that existed in

the embryo at approximately E6.5-E7.5 exhibited some degree of fate restriction, at least at the level of germ

layers, and that the descendants of each progenitor had similar transcriptional phenotypes.

The lineage correlation analysis was designed to determine whether cells that were transcriptionally sim-

ilar also had similar barcode sharing patterns. A complementary approach to investigating the relationship

between transcriptional similarity and shared lineage history is to determine whether groups of barcodes

that had similar tissue contribution patterns were found in cells that had similar transcriptional phenotypes.
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Figure 4.7: Cell types that originate from the same germ layer have similar CARLIN barcode patterns. A-D. Spearman cor-
relation coefficients of the CARLIN barcode frequencies for each cell type for SB800 (A), SB490 (B), SB361 (C), and SB984
(D). Axes are ordered by germ layer, which is indicated by the colored bars at the left and bottom edges of each heatmap
(red, ectoderm; green, endoderm; purple, extra-embryonic; blue, mesoderm; grey, other).
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Figure 4.8: CARLIN barcodes separate into clusters based on their contribution to different cell types. A-D. UMAPs of
CARLINallele cell type frequencydata for SB800 (A), SB490 (B), SB361 (C), andSB984 (D). Eachpoint is aCARLINallele and
is colored by CARLIN allele cluster membership. Clusters represent CARLIN alleles that have similar contribution patterns
to E9.25 cell types. E-H. UMAPs of transcriptome data for SB800 (E), SB490 (F), SB361 (G), and SB984 (H). Each point is a
single cell, colored by to which CARLIN barcode cluster the CARLIN transcript sequenced for that cell belongs. Colors are
the same as the corresponding plots in A-D. Cells without a CARLIN barcode are shown in grey.

To perform this analysis, we constructed a cell type contribution distribution for each barcoded clone and

used this vector to cluster the barcodes according to their cell type contributions in each embryo. We visu-

alized these relationships between CARLIN barcodes using UMAP (Methods). In this analysis, CARLIN

barcodes that were within the same cluster and located closer together on the UMAP plots had more similar

cell type contribution profiles. We found that these barcode clusters were smaller and more distinct in em-

bryos induced later in development, which is consistent with the observations that clones derived from later

progenitors become smaller and more fate restricted (Fig. 4.8A-D).

Importantly, we also observed that CARLIN barcodes found in the same cluster were generally found in

specific regions of the UMAPs using the scRNA-seq data (Fig. 4.8E-H), suggesting that cells that have similar

transcriptomic profiles also are part of CARLIN barcoded clones that have similar contribution patterns in

the embryo. However, there are some cell types that appear quite transcriptionally homogeneous which

include cells from multiple different barcode clusters. For example, the endoderm/surface ectoderm cluster

at the lower left of each UMAP in Fig. 4.8E-H contains cells belonging to multiple barcode clusters, some of

which also contribute to the mesoderm and/or neural tissue, suggesting there might be distinct populations
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of multipotent progenitors that give rise to these cells. Furthermore, in embryo SB490, there are multiple

barcode clusters contributing to the endothelial cell population in the upper left of the UMAP (Fig. 4.8F),

suggesting that there might be multiple embryonic origins for endothelial cells.

4.2.5 SINGLE-CELL LINEAGE INFORMATION REVEALS THAT ENDOTHELIAL CELLS HAVE MULTIPLE ORI-

GINS.

To further investigate the origins of endothelial cells, we noted that while all endothelial cells had similar

transcriptional phenotypes and formed a single cluster in the transcriptomic data, there were some important

subgroups of endothelial cells we identified. First, our mapping of the scRNA-seq data to the reference

atlas separated our endothelial cells into four transcriptionally-defined subtypes (Fig. 4.9A). Interestingly,

the transcriptionally-defined yolk sac endothelium corresponded with the endothelial cells that were found

in the yolk sac during dissection of these embryos for sequencing (Fig. 4.9B). Endothelial cells that originated

from the three other anatomical regions isolated from the main part of the embryo (head, trunk, and tail) had

similar transcriptional profiles.

However, endothelial cells isolated from different parts of the embryo had different progenitor cells of

origin at E6.5-E7.5. In particular, endothelial cells isolated from the head were more likely to share barcodes

with the cranial mesoderm than endothelial cells from other regions (Fig. 4.9C-D). Likewise, the endothelial

cells from the yolk sac share more CARLIN barcodes with other yolk sac tissues than endothelial cells found

in other parts of the embryo (Fig. 4.9C-D). These results suggest that endothelial cells arise in situ from

separate local progenitor pools that exist at approximately E6.5-E7.5, which subsequently converge to create

transcriptionally similar endothelial cells by the time of sampling at E9.25.
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Figure 4.9: Endothelial cells in different regions of the embryo have different ancestors. A-B. UMAP of endothelial cell
types in merged data from E6.5-induced embryos (SB490 and SB800), colored by endothelial cell type (A) or anatomical re-
gion fromwhere the cell originated (B). C. UMAP ofmerged E6.5 embryo data showing cells which share CARLIN barcodes
with endothelial cells found in the head, tail, trunk, or yolk sac. Colors indicate the normalized density of cells which share
a barcode with the queried endothelial cell type, averaged over the 15 nearest neighbors of each cell. Contours show re-
gions of the UMAP where cranial mesoderm (cyan) or yolk sac cells (yellow) are located (defined as regions within which
60% of cells of that type are located). D. Fraction of CARLIN barcodes found in endothelial cells in each anatomical region
(head, trunk, tail, yolk sac from left to right) that are sharedwith specific cell types or germ layers. Themesoderm and extra-
embryonic categories do not include cranial mesoderm or yolk-sac-derived cells, respectively.

4.3 DISCUSSION

Here, we investigated the dynamics of mouse embryonic development using an expressed CRISPR-Cas9 cell

barcoding system and scRNA-seq. We found that cell fate restriction occurs gradually during gastrulation

(approximately E6.0-E7.5), which is reflected in a correspondence between transcriptional similarity and bar-

code sharing between individual cells in the sampled E9.25 embryo. Furthermore, our results indicated that

there are region-specific lineage histories for endothelial cells, suggesting that there are multiple local multi-

potent progenitor populations that create a population of endothelial cells that is relatively transcriptionally

homogeneous. These findings are consistent with previous studies showing that endothelial cells can arise

in situ from mesodermal progenitors in the allantois and yolk sac84,92, and point to the existence of similar
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local progenitor pools in different regions of the embryo proper.

Our CARLIN barcode data are a direct measurement of lineage relationships and clonal histories in the

developing mouse embryo. Therefore, these data could be compared to existing qualitative and quantitative

models of mouse embryonic development to identify inconsistencies which could indicate weaknesses in

our current understanding of mouse development. To do this, we plan to compare our combined phenotypic

and lineage data to predictions from quantitative computational models of embryonic development created

from scRNA-seq data87. Our collaborators in the Göttgens Lab have built an optimal-transport model93

using their embryo atlas data that computes predicted developmental trajectories of individual embryonic

progenitors over time. These developmental trajectories can be directly compared to our CARLIN data to

assess the accuracy of the optimal transport model, adjust the existing optimal transport model to create a

more accurate description of mouse embryonic development, and to infer previous molecular states of clonal

populations marked by individual CARLIN barcodes. In general, the results from these two approaches

(scRNA-seq developmental time series modeling and ground truth lineage data from barcoding systems)

complement each other well, since the scRNA-seq time series results provide a draft model to which the

sparse barcoding data can be fitted, and the barcoding data provides orthogonal information that can be used

to test the assumptions of the computational model. Consequently, new computational tools that leverage

both lineage tracing and cell state data from the same system can offer additional insights into developmental

dynamics that are not accessible from either data source alone94.

Currently, there are a few features of the CARLIN barcoding system that limit its ability to derive accurate

cell lineage histories. First, while we can detect CARLIN transcripts in the majority of cells using scRNA-

seq, most of these transcripts are not edited and therefore many cells do not contain a barcode that can be

used for identification of clonal populations. Changing the dose or route of doxycycline administration may

improve the editing efficiency, but may also change the editing kinetics unfavorably. Second, the length

of the CRISPR editing period in vivo makes it difficult to precisely estimate when a given progenitor cell
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was barcoded, and means that within a single experiment the barcoded clonal populations all originated at

different times within an approximately 36 hour long window. Unfortunately, the lower bound of the length

of this editing period is set by pharmacokinetics of doxycycline within the mouse, so this period probably

cannot be shortened further. However, lengthening the period of time in which editing occurs by using

different dox dosing strategies (e.g., multiple doses, exposure through drinking water) could enable us to

track developmental dynamics over extended periods of time. These data would allow us to reconstruct

single cell barcode phylogenies and use these trees to estimate rates of dynamic behavior89,95.

In summary, our work using transcribed inducible CRISPR barcodes and scRNA-seq revealed information

about mouse embryogenesis previously unattainable through investigation of static transcriptional profiling

alone. While similar barcoding systems cannot be used in humans to collect single-cell lineage informa-

tion during human development, methods to extract lineage information using somatic mutations either in

the nuclear genome or the mitochondrial genome13 may provide sufficient information to reconstruct major

cell fate decisions. Indeed, this approach has already been used to trace developmental trajectories in the

blood system96 and the brain97 in humans, suggesting the somatic mutation rate is high enough to reliably

reconstruct lineage histories during early development. Combining this lineage information with precise

single-cell phenotype information, as we did in the mouse embryo, could result in a similarly high resolution

map of human developmental dynamics.

4.4 METHODS

4.4.1 EXPERIMENTAL PROCEDURES

Timed pregnancies resulting in transgenic mouse embryos with the genetic architecture delineated in Fig. 4.1A

were set up. At E5.5, E6.5, or E7.5, pregnant females were injected retroorbitally with 25 μg/g of a 10 mg/mL

solution of doxycycline to induce barcode editing. At E9.25, pregnant females were sacrificed and embryos
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were dissected into head, trunk, tail, and yolk sac regions and dissociated. 10X scRNA-seq encapsulation,

library preparation, and sequencing was performed on the single-cell suspensions as published80, with part

of the cDNA library used for whole transcriptome analysis and another part reserved for targeted CARLIN

transcript amplification and sequencing using a nested PCR approach80. 10,000 cells from each embryo

region were sequenced for each embryo.

4.4.2 CARLIN TRANSCRIPT IDENTIFICATION AND ALIGNMENT

Identification and alignment of CARLIN transcript reads were performed as published80, using both original

CARLIN and TIGRE CARLIN primer sequences to identify CARLIN reads.

4.4.3 CARLIN BARCODE FILTERING AND MERGING

To remove highly frequent barcodes that were likely to be independently generated multiple times within a

single embryo, we created and analyzed original CARLIN and TIGRE CARLIN granulocyte allele banks as

previously described80. CARLIN alleles that occurred very frequently in these banks and had a greater than

5% chance of being independently generated more than once in each embryo at the time of barcode induction

were discarded from our scRNA-seq dataset.

To merge the OC and TC alleles into a single, clonal identifier for each cell, we first identified all cells

without a clonal OC or clonal TC allele call as having no valid barcode information. Cells with both an OC

and a TC allele call, with at least one of the two being a valid clonal OC or TC allele call after allele bank

filtering, were assigned the barcode identifier ([OC ALLELE], [TC ALLELE]). Cells with only an OC or only

a TC transcript read were assigned an existing paired barcode identifier from the set of valid barcodes that

included the corresponding sequenced allele call, randomly with probability proportional to the frequency

of each of these barcodes. If no other valid barcodes with the OC or TC allele existed, cells were assigned

the barcode ([OC ALLELE], none) or (none, [TC ALLELE]), respectively.
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4.4.4 SCRNA-SEQ DATA PREPROCESSING AND VISUALIZATION

Transcriptome reads were aligned to mm10 using CellRanger v6.1.0 and processed in scanpy. Scrublet98

was used to identify cell doublets, and cells with doublet score > 0.15 were discarded. Cells with fewer than

200 genes or more than 1000 genes expressed were discarded, along with cells with more than 5000 UMIs.

Cells with mitochondrial read fraction greater than 5% or less than 0.05% were also discarded. After total

count normalization, data from all four embryos were merged and batch corrected using Harmony90. These

batch-corrected coordinates were used to generate all UMAP plots.

4.4.5 EMBRYO CELL TYPE IDENTIFICATION

Cell types were identified in our scRNA-seq data by mapping the data onto an annotated E9.25 reference

atlas (unpublished, from Ivan Imaz-Rosshandler and Bertie Göttgens). The atlas had been previously batch

corrected using fastMNN99. We centered and scaled the batch-corrected atlas data and our total-count nor-

malized transcriptome data so that each gene had mean 0 and variance 1, and then batch corrected the com-

bined CARLIN embryo data with the atlas using Harmony. Cell type labels were directly transferred from

the nearest neighbor in the atlas to each cell in the CARLIN dataset.

4.4.6 CLUSTERING OF CARLIN BARCODE PATTERNS

For each OC/TC merged CARLIN barcode in each embryo, we computed the fraction of cells with that

barcode that was in each of the 57 cell types. These cell type frequency vectors for each CARLIN barcode

were used as a data matrix for clustering and UMAP visualization in scanpy. Using scanpy, the neighborhood

graph and UMAP coordinates were computed for the barcodes in each embryo. Louvain clustering was used

to identify groups of barcodes with similar cell type contribution profiles.
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5
Conclusion

During my PhD, I worked on multiple projects with the goal of characterizing differentiation and/or cell

division within intact multicellular tissues. The capacity to quantitatively study these behaviors is especially

important for understanding biological systems in which individual cell phenotypes change rapidly, such as

in regenerative tissues (e.g., hematopoiesis, see Chapters 1-3) or in development (e.g., mammalian embryo-

genesis, see Chapter 4). Not only are these measurements important for describing unperturbed biological

systems, but they are also valuable to determine how specific conditions affect these dynamic behaviors (e.g.,

malignancy, mutations, exposure to drugs or environmental stimuli). There are some general strategies and

themes that emerge from the work I did during my PhD regarding quantitative measurement of cell dynamics.
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5.1 COMMON THEMES AND FUTURE OUTLOOK

Since intact mammalian tissues often are not amenable to direct longitudinal observation of individual cell-

level behaviors, direct measurement of changes in individual cell phenotype (e.g., differentiation) often rely

on simultaneously measuring current cell state and estimating previous cell state in the same sample. This

can be done either by collecting additional naturally-occurring phenotypic information from each cell to learn

about the past, or by designing an experimental system to specifically record useful information about cell

histories.

5.1.1 INFERRING MOLECULAR OR CELL DIVISION HISTORIES IN UNALTERED TISSUES

Some biological processes naturally occur at longer timescales or cause permanent molecular changes and

therefore contain information about the previous state of a cell. By measuring both current cell state and this

naturally-occurring historical record in the same population of cells, we can directly relate prior molecular

events to current phenotype. For example, the pattern of somatic mutations in the human genome provide

a (sparse) record of past transcriptional state over the lifetime of the organism, and can be used to infer the

cell-of-origin of tumors years after they were initiated100,101. This general approach is particularly important

when studying human tissues, since the capacity for experimental manipulations using human samples is

often limited. For instance, in Chapter 1, we developed and implemented a strategy to measure both genotype

and transcriptional phenotype information at a single cell level. While we used this method in our work

mostly to discover transcriptional differences between cells with and without a particular driver mutation

in myeloproliferative neoplasm patients, the general approaches we developed to detect naturally-occurring

somatic mutations in scRNA-seq data could be used to identify lineage relationships in developing human

tissues or human cancer samples.
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5.1.2 EXPERIMENTAL SYSTEMS FOR RECORDING PAST EVENTS

New experimental systems designed to record prior molecular information can enable more efficient and

accurate observation of cell histories than would be possible from unmodified tissues. For example, multiple

groups have developed single-cell barcoding systems to track cell lineage histories95,89,102 similar to the one

we developed to study mammalian embryogenesis in Chapter 4. These barcoding systems have predictable

and tunable barcode generation kinetics that often result in higher-resolution lineage maps than could be

reconstructed from somatic mutation data alone. Other systems can record the time at which specific events

occurred in the past, such as differentiation of a stem cell (e.g., HSC differentiation, as studied in Chapter 2),

exposure to a particular stimulus103, or even prior interactions with other cells104. However, these approaches

have their own challenges. First, a bespoke system must often be designed for each new event to be recorded,

each biological context, etc, and tracking multiple events in the same cell can often be difficult. Furthermore,

estimating the precise time at which the molecular and cellular event in question occurred in the past can be

difficult in these systems, since in many cases these historical events are recorded with a single permanent

change (e.g., CRISPR editing, Cre recombination). Therefore, developing better techniques to measure time

in cells and record information in a time-resolved manner, such as systems based on degradation of fluorescent

proteins58 (also see Chapter 2) could substantially improve our ability to measure differentiation and cell

division rates.

In summary, our work developing and implementing quantitative measurement techniques to characterize

dynamic cell behaviors in situ could be used in the future to study regeneration, development, and malignancy

in humans and/or model organisms. These particular biological processes are fundamentally defined by

changes in cell state (e.g., differentiation, cell division, and cell death), so directly investigating dynamic

behavior on a single-cell level is required to fully understand them.
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