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Abstract

A fundamental challenge of visual cortical neuroscience is to understand how sensory represen-

tations are transformed within and across layers of primary visual cortex (V1). Visual signals are

thought to propagate in a feedforwardmanner from the retina to the thalamus and then through

the layered structure of V1, from layer 4 (L4) to layer 2/3 to layer 5. Here, we address one ma-

jor step of visual processing: how are representations transformed within L4, the primary input

layer of V1? We first developed a strategy to label neurons in L4. To understand computations

during visual processing in awake animals, we then employed influencemapping, an approachde-

veloped by our lab to causally manipulate neural activity using in vivo single-neuron optical per-

turbations. We performed simultaneous two-photon optogenetic photostimulation of targeted

individual neurons while imaging the responses of neighboring populations. By relating the in-

fluence of a neuron on other cells to their visual tuning properties, the computational function

of neural activity patterns can then be inferred. Using this technique, we found that excitatory

neurons in L4 strongly recruited activity fromnearby but not distant cells, whichwas dependent

on similarity in activity and certain tuning features such as preferred orientation and receptive

field overlap. This result supports the idea that L4 amplifies visual signals via a feature-specific

like-excites-like motif. These experiments have advanced our understanding of local transforma-

tions within L4 of V1. In addition, the technical approaches developed serve as a foundation for

future studies of laminar cortical mechanisms that underlie visual processing, including compar-

ing the transformations that occur within and between layers.
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1
Introduction

Understanding the neural mechanisms underlying visual processing requires probing the com-

putations and function of microcircuits in cortical layers. How visual representations differ be-

tween layers and howneurons reshape these representations locally or by transforming incoming

information is a primary question of cortical physiology. Here, we aim to understand detailed

laminar cortical transformations in the context of visual perception. By using new technologies

for targeted spatiotemporal neural perturbationswhilemonitoring population responses, we can

derive mechanistic circuit-based theories of laminar sensory transformations. By causally char-
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acterizing the principles of circuit computations in V1, and L4 in particular, we aim to provide

insight into the fundamental mechanisms that support vision.

1.1 Laminar substructure of cortex

V1 is known to process sensory information through a layered architecture. Decades of anatomi-

cal and physiological studies have led to the classicmodel of information flow in cortex: thalamus

sends ascending projections to L4, which strongly innervates layer 2/3 (L2/3), and then L2/3

passes input to layer 5 (Douglas andMartin, 2004; Felleman andVan Essen, 1991; Gilbert, 1983;

Harris and Shepherd, 2015; Lefort et al., 2009;Miller, 2016; Thomson, 2007). Support for feed-

forward processing also comes in part from work showing that L4 receives little feedback excita-

tory input (Coogan andBurkhalter, 1993;Harris et al., 2019; Lefort et al., 2009); this anatomical

pathway is also consistent with function, as optogenetic stimulation of L2/3 pyramidal neurons

does not generate activity in L4 (Adesnik and Scanziani, 2010).

Substantial evidence from studies across species highlights the cellular specializationwithin corti-

cal layers, as cell densities vary across layers, distinctmolecular markers can robustly label individ-

ual layers, and different cell types can be further classified by their morphology, electrophysiol-

ogy, and transcriptomic profiles (Douglas andMartin, 2004; Harris and Shepherd, 2015; Keller

et al., 2018; Tasic et al., 2016, 2018). For example, L4 of mouse V1 can be genetically labeled

with Cre lines forNr5a1, Rorb, and Scnn1a (Harris et al., 2019; Madisen et al., 2010), and con-

tains mostly spiny neurons with a pronounced apical dendrite (e.g., star pyramids or pyramidal

neurons), some of which have tufts in L1 (Gouwens et al., 2019; Scala et al., 2019).
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1.2 Tuning properties within V1

V1 neurons fire in response to visual stimuli and show tuning to different visual features. Layers

inV1 show some degree of functional specialization, as silicon probe recordings and two-photon

calcium imaging have provided evidence that visual receptive field structure and response proper-

ties can vary across layers. For example, in cat V1, deeper thalamorecipient layers contain mostly

simple cells, whereas cells inmore superficial layers tend to be complex andhave heterogeneous re-

ceptive field structures that are stereotypedby laminar position (Gilbert, 1977;Hubel andWiesel,

1962;Martinez andAlonso, 2001;Martinez et al., 2005). In tree shrewV1, orientation tuning in

L4 is largely absent but is present in superficial layers (Chisum et al., 2003; Mooser et al., 2004).

Inmouse V1, L4 shows higher direction selectivity compared to L2/3 and L5 (Niell and Stryker,

2008; Sun et al., 2016; de Vries et al., 2020). Additional evidence for the idea that response prop-

erties vary as a function of layer has been shown across sensory modalities in studies of rodent

visual, somatosensory, and auditory cortices (Barbour and Callaway, 2008; Brecht et al., 2003;

Shepherd, 2005; de Vries et al., 2020). Cortical layers may therefore receive feedforward input

and also locally transform incoming signals, such that each stage of processingmay have a unique

functional role.

1.3 Organization of thalamocortical and cortico-cortical connec-

tivity

Significant effort has gone toward characterizing the principles of sensory cortical connectivity.

Neurons in cortex are highly interconnected and show recurrent activity, with the largest synap-

tic input coming fromneighboring cells (BenshalomandWhite, 1986; Binzegger, 2004;Douglas
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and Martin, 2004; Rodney et al., 1995; Seeman et al., 2018; Thomson, 2007). Visual informa-

tion is relayed to V1 via thalamic dorsolateral geniculate nucleus (dLGN) inputs to L4, with

thalamocortical projections to L4 in cat striate cortex constituting <10% of synapses (da Costa

andMartin, 2009) and 15-30% in L4 of mouse V1, primary somatosensory cortex (S1), and pri-

mary motor cortex (Arkhipov et al., 2018; Bopp et al., 2017). This suggests that the majority

of excitatory inputs come from other local cortico-cortical connections, although L4 neurons

are also strongly driven by thalamic inputs (Harris and Mrsic-Flogel, 2013; Petersen, 2007). In

general, connections between V1 L4 neurons appear to be sparser but stronger than between

neurons within L2/3 (Cossell et al., 2015; Ko et al., 2011; Seeman et al., 2018)

Of interest is whether connections and their strengths are random throughout cortical popula-

tions. In vitro slice work has addressed pairwise monosynaptic connectivity between cell types

and cortical layers and demonstrated that neurons show nonrandom connections. Through si-

multaneous whole-cell recordings in rat V1 L5, reciprocal network motifs and mutually con-

nected triplets have been found to be present at above-random chance within small distances;

further, synaptic strengths are skewed and follow a lognormal distribution, such that most ex-

citatory postsynaptic potentials are small and weights are strongest among a limited number of

connections (Song et al., 2005). This non-uniform connectivity has also been found in other

layers and in barrel cortex (Feldmeyer et al., 2002; Lefort et al., 2009; Markram et al., 1997). Mu-

tual interconnection motifs in larger sets of neurons distributed over greater areas are also over-

represented and are best described by a clustering rule, where neurons that share more common

neighbors also have a higher connection probability (Perin et al., 2011). Other studies have also

provided evidence for higher-order patterns within cortical networks. Connected pairs inmouse

V1 L4 share more dLGN inputs than unconnected pairs, and connected pairs of L4 and L2/3

4



neurons are contacted by the same thalamocortical axons (Morgenstern et al., 2016). In addi-

tion, subnetworks of fast-spiking interneurons in rat V1 preferentially connect to L2/3 pyrami-

dal neurons that provide them with excitatory input, and both connected L2/3 pyramidal cells

and reciprocally connected excitatory-inhibitory pairs share common excitatory input from L4

and within L2/3 (Yoshimura and Callaway, 2005; Yoshimura et al., 2005).

1.4 Relationship of connectivity to tuning properties

Connectivity is also related to function, as excitatory neurons that are synaptically connected

tend to have similar visual response properties. Studies combining in vivo two-photon calcium

imaging with in vitrowhole-cell recording in L2/3 of mouse V1 have shown that excitatory neu-

rons follow a “like-to-like” connectivity principle: nearby (i.e., <250 μm apart) neurons with

similar orientation tuning have a higher probability of connecting (Ko et al., 2011), and the few

strong connections that exist are between cells with similar spatial receptive fields and response

correlation (Cossell et al., 2015). Of note is that this connectivity architecture in mice does not

require spatial clustering of neurons with shared orientation selectivity as in V1 of other species

such as primates or cats (Ohki et al., 2005). A study using functional imaging and large-scale

electron microscopy (EM) reconstruction in an excitatory network in mouse V1 L2/3 provided

confirmation of previous imaging and electrophysiology work, showing that pyramidal neurons

preferentially synapse onto other neurons with similar orientation selectivity, and these synapses

are also larger (Lee et al., 2016). Another set of studies inmouseV1used transsynaptic retrograde

tracingwith two-photon imaging and found that presynaptic networks of single L2/3 pyramidal

neurons form layer-specific modules, as cells within each layer exhibit similar motion direction

tuning, and these are also sometimes locked to the preference of the starter postsynaptic cell
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(Wertz et al., 2015); furthermore, presynaptic excitatory neurons in L4 and L2/3 are distributed

coaxially in cortical space to the postsynaptic neuron’s preferred orientation (Rossi et al., 2020).

Together, these data suggest that fine-scale cortical subnetworks that are co-tuned for particular

visual features mediate processing of sensory information.

1.5 Theories of cortical computation in L4

A next step after characterizing connectivity and neural functional properties is to understand

howconnections give rise to computations, or processes bywhich representations of information

are transformed into a new form, and what those computations are. Within recurrent cortical

circuits, relating the functional properties of a neuron (e.g., visual tuning) to its relationship on

the activity of other cells in the population can then be used to infer the computational function

of amicrocircuit. Layer-specificmanipulations canbeused to test hypotheses aboutwhat cortical

layers may compute during processing of sensory information.

Computations within L4 and L2/3 of V1 have been well-studied in other species, and L2/3 has

beenheavily studiedwithin the context ofmouseV1, but there is comparatively less knownabout

mouse V1 L4. A number of studies in mice have shown that LGN contains neurons that are

already orientation selective (Li et al., 2013b; Lien and Scanziani, 2013; Marshel et al., 2012; Pis-

copo et al., 2013; Scholl et al., 2013; Zhao et al., 2013), and recent work has used two-photon in

vivo calcium imaging of LGN axons in V1 L4 to determine whether thalamic inputs in cortex

are selective. One study found that∼18% of LGN inputs were orientation selective (Kondo and

Ohki, 2016), and another found that ∼50% of boutons in thalamorecipient L4 are orientation-

and direction-tuned; moreover, the preferred tuning of L4 neurons is strongly biased towards

those of the thalamic inputs (Sun et al., 2016), suggesting that tuned thalamic inputs directly
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contribute to tuning in cortex. However, selectivity is not identical between LGN boutons and

L4 neurons, as cortical neurons show sharper tuning and greater diversity of preferred orienta-

tion and direction than thalamocortical boutons, pointing towards the hypothesis that recurrent

computations within L4 further transform incoming sensory information. A related proposed

model of information processing in L4 is that intracortical connections amplify thalamic inputs.

Two studies of mouse V1 L4 (Li et al., 2013b; Lien and Scanziani, 2013) have assessed the role

of thalamic and excitatory intracortical circuits by isolating thalamocortical projections. Corti-

cal excitatory recurrence was silenced by activating channelrhodopsin-expressing parvalbumin

inhibitory neurons, which densely innervate pyramidal cells. Thalamic and cortical tuning for

orientation and temporal phase are the same, and thalamic excitation to a L4 neuron contributes

∼30% of the total excitation (i.e., recurrent cortical connectivity provides the remaining 70% of

excitation within L4). Intracortical excitation linearly amplifies current amplitude from thala-

mic inputs without changing orientation or direction tuning properties, and L4 receptive field

size increases without changing shape. Together, these results suggest that L4 amplifies inputs

from thalamus, although the mechanism by which this occurs has not been fully elucidated ex-

perimentally.

Computational models constrained by experimental measurements have proposed that L4 selec-

tivity arises from convergent LGN inputs and recurrent excitatory like-to-like connectivity that

amplifies thalamic signals; excitation is also then counteracted by local inhibition (Arkhipov et

al., 2018; Billeh et al., 2020; Rodney et al., 1995; Somers et al., 1995; Van Vreeswijk and Som-

polinsky, 1996). One of these studies constructed a model of mouse V1 L4 using a network of

biophysically-realistic models of individual neurons (Arkhipov et al., 2018), finding that many

properties of the final model were consistent with previously demonstrated experimental results
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(Li et al., 2012; Reinhold et al., 2015; Yoshimura et al., 2005), including that the levels of orienta-

tion selectivity in L4 are similar to thosemeasured physiologically. Together, the aforementioned

experimental and theoretical results suggest that regardless of the exact information content of

thalamocortical signals, intracortical circuits in L4 amplify components of feedforward thalamic

inputs. This proposed mechanism for amplification is also supported by in vitro experiments

showing that connected pairs of L4 neurons share more thalamic inputs than unconnected pairs

(Morgenstern et al., 2016). Cortical subnetworks are generally tuned for similar sensory features,

so recurrent excitation can increase the number of neurons that respond to a given stimulus,

prolonging sensory responses. This mechanism increases efficacy and allows for more efficiently

driving downstream targets, which has the added benefit of making the system more robust to

noise. However, an open question is whether L4 actually contains like-excites-like motifs, in

which neurons preferentially excite other neurons with similar responses to specific visual fea-

tures. Although an amplification model has been proposed by previous work, it has not been

directly tested experimentally because it requires a functional and causal measure of one neu-

ron’s influence on another.

1.6 New technologies for probing microcircuit computations

1.6.1 Background

Theoretical studies and anatomy or connectivity-based experiments using techniques such as

tracing, electrophysiology, EM, or in vivo recordings to understandV1 circuits have generated hy-

potheses forpotential cortical transformations, butmappingmicrocircuits at the level of synapses

or single cells has been a significant technological challenge. Characterizing recurrent connectiv-

ity is difficult because the majority of synaptic connections are weak and sparse (Lefort et al.,
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2009; Scala et al., 2019; Seeman et al., 2018; Song et al., 2005). Using paired recording experi-

ments to predict functional responses and how activity in a neuron affects local networks is dif-

ficult and low-throughput due to limitations in the number of neurons (up to∼10) that can be

patched simultaneously (Cossell et al., 2015; Guzman et al., 2016; Peng et al., 2019). In addition,

long-range connections in brain slices are often not maintained. It is unclear whether principles

for the logic of cortical computations as determined from analyzing small numbers of neurons

generalize to larger networks. Furthermore, contributions from sources such as polysynaptic

pathways, nonlinear processing in dendrites, or intrinsic neuronal properties are also unknown.

Studies of V1 circuits have also often used perturbations with coarse spatial and temporal reso-

lution or lacked causal manipulations entirely. In addition, observations of neural activity are

unable to provide causal explanations for themechanisms that underlie sensory processing. Nev-

ertheless, the extensive literature on the physiology of cortical circuits, as well as more recent

optogenetics and imaging studies, have produced a multitude of testable hypotheses.

To obtain a full understanding of cortical computations, the ideal requisite tools include nonin-

vasively recording frommany neurons across layers and identifying their cell type, perturbations

that allow targeting of specific neurons with fine spatiotemporal precision, and obtaining behav-

ioral data such as runningpatterns or arousal/attention. In addition to sophisticated genetic tools

for rodents that enable the dissection of cell type-specific circuits, newer experimental methods

for two-photon cellular-resolution optical manipulation and readout of neural activity are now

available. Advantages include the ability to target individual neurons with specific functional

properties and usingmore physiological stimulation patterns, unlike in one-photon optogenetic

experiments in which an entire genetically-defined cell population is illuminated simultaneously.

These technologies have opened promising new avenues for interrogating microcircuit compu-
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tations.

1.6.2 Previous work on two-photon single-neuron stimulation

Numerous approaches for simultaneous two-photon optogenetics and calcium imaging have re-

cently been developed and applied to study neural circuits (Bègue et al., 2013; Chettih and Har-

vey, 2019; Daie et al., 2021; Dalgleish et al., 2020; Gill et al., 2020; Marshel et al., 2019; Packer et

al., 2012, 2015; Pégard et al., 2017; Rickgauer and Tank, 2009; Robinson et al., 2020). Broadly,

these can be divided by differences in genetically-encoded calcium indicators, optogenetic actua-

tors, and stimulation and imaging methods. To use opsins in combination with GCaMP, many

studies have used red-shifted opsins. Methods for photostimulation can be split by scanning

or parallel illumination. Scanning involves sweeping a diffraction-limited spot across the soma

(Packer et al., 2012; Prakash et al., 2012; Rickgauer and Tank, 2009), whereas parallel illumi-

nation (e.g., with computer-generated holography or generalized phase contrast and temporal

focusing) sculpts light into multiple spots or extended patterns, including in 3D (Andrasfalvy

et al., 2010; Bègue et al., 2013; Chaigneau et al., 2016; dal Maschio et al., 2017; Hernandez et

al., 2016; Mardinly et al., 2018; Papagiakoumou et al., 2010; Pégard et al., 2017; Shemesh et

al., 2017). Studies have also combined spatial light modulator-based light patterning with gal-

vanometer (galvo) scanning, where excitation spots are focused on multiple cells and galvos are

used to scan the beamlets over an area corresponding to cell bodies (Packer et al., 2015; Yang et

al., 2018). Imaging in single planes or volumes can be achieved with a number of approaches,

including sequential and parallelized scanning (dal Maschio et al., 2017; Duemani Reddy et al.,

2008; Grewe et al., 2010; Katona et al., 2012; Lu et al., 2017; Prevedel et al., 2016; Song et al.,

2017; Vladimirov et al., 2018; Yang et al., 2018).
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1.6.3 Characterizing neuron-neuron influence tounderstand compu-

tations

Our lab has built upon optical methods for manipulating neural activity with high spatiotem-

poral specificity and developed a technique called influence mapping to causally probe compu-

tations in local cortical networks in awake, behaving animals (Chettih and Harvey, 2019). Influ-

ence mapping involves targeted two-photon photostimulation of single cells while monitoring

the resulting spiking activity of the neighboring neural population with known tuning. This

technique iswell-suited for uncovering cortical transformations because it bridgesmultiple levels,

from monosynaptic and polysynaptic to causal functional connectivity, while also dramatically

increasing the total number of neurons that can be considered. Ultimately, we are not neces-

sarily interested in the explicit biophysical connectivity of a microcircuit, but rather the nature

of the computations that result from the underlying structure. In other words, what cortical

transformations exist, and how are those functionally used to support sensory perception and

behavior? Influencemapping provides a convenient level of abstraction for being able to address

these questions.

The previous study from our lab applied influence mapping to L2/3 of mouse V1 and found

that photostimulating single neurons reduced responses in the non-targeted neural population.

Influencewas negatively related to signal correlations between pairs of targeted and non-targeted

neurons, and tuning components such as preferred orientation contributed to negative influ-

ence. Together, these results provide causal experimental evidence that one computation L2/3

performs is feature competition, where excitatory neurons with similar visual tuning properties

inhibit each other in a like-suppresses-like motif, which had previously not been described in
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studies that used observations of neural activity. This work demonstrated the feasibility of using

the influencemapping technique to uncover cortical computations, which could be extended to

other cell types, layers, and behavioral conditions.

1.7 Roadmap

Using influence mapping, we investigated the relationships between V1 L4 excitatory neurons

with known tuning properties. In Chapter 2, we discuss previous work on two-photon photo-

stimulation and the development of influence mapping in our lab. We also describe our strategy

for labeling neurons and the general setup andmethodology for influencemapping experiments

in L4. Chapter 3 describes our application of influence mapping to understanding cortical com-

putations within L4 of V1 of awake, behaving mice. We find that using single-neuron perturba-

tions in L4 reveals signatures of amplification, in which neurons with certain activity patterns

and visual feature preferences recruit other neurons with similar properties. Chapter 4 includes

discussion of extensions to the current study of L4 in V1, as well as potential future areas of

investigation using influence mapping.
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2
Single-Neuron Photostimulation in L4

2.1 Contributions

This chapter includes material modified from work published in Kafashan, Jaffe, Chettih et al.,

2021.

Author contributions: A.W.J. and S.N.C. performed the experiments; M.K., R.N., I.A.-R., R.M.-

B., and J.D. developed the theory; andM.K., A.W.J., S.N.C., and J.D. analyzed the data.
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2.2 Introduction

Here, we describe the all-optical approach we used to probe microcircuit computations within

L4 of V1, as it is the primary input layer from the thalamus, and other work has generated predic-

tions about the types of computations that may be occurring within it. We built upon previous

work utilizing two-photon calcium imaging and photostimulation, includingwork from our lab

on influence mapping.

2.3 Distinctivepopulationactivity inCaMKII-tTA;tetO-GCaMP6smice

To perform calcium imaging and photostimulation, co-expression of both an indicator of neu-

ral activity and an opsin is required. We tested a number of different strategies for labeling L4

neurons in V1, as typical GCaMP mouse lines (e.g., Thy1-GCaMP) or conventional adeno-

associated viral vectors do not robustly label neurons in L4. One genetic mouse line that we

initially tested was the CaMKII-tTA;tetO-GCaMP6s transgenic, which densely labels neurons

across cortical layers (Wekselblatt et al., 2016). We performed a set of pilot experiments in which

we imagedL2/3orL4while awakemicewere presentedwith 10%or 20%contrast drifting grating

stimuli.

2.3.1 Comparing neural activity across mouse lines

WecomparedL2/3visual tuningbetween theCaMKII-tTA;tetO-GCaMP6smice,Thy1-GCaMP6s

transgenic mice (which also show cortical expression), and C57BL/6J (wild-type) mice injected

with viral GCaMP6s by presenting low-contrast drifting gratings. We found that the direction

and orientation tuning of individual neurons looked comparable across all mouse lines (Figure
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2.1a). We then examined the relationship between signal correlations, calculated as the correla-

tion in themean deconvolved response, and noise correlations, calculated as themean-subtracted

residual response, between pairs of neurons. For signal and noise correlations, there was typi-

cally a weakly positive mean relationship with wide scatter. However, in the CaMKII-tTA;tetO-

GCaMP6s data, the same gradual linear relationship was present, but with an additional compo-

nent of many neuron pairs with highly correlated signal and noise correlations, indicating that

a large number of pairs of neurons had very similar activity (Figure 2.1b). When we manually

examined highly correlated neuron pairs within the CaMKII-tTA;tetO-GCaMP6s datasets, we

found that the pairs came from different neurons, were in different parts of the imaging field of

view, and many showed reasonable visual tuning.

We further analyzed these data as part of a study to understand how sensory information in V1

scales and if it saturates within large neural populations (Kafashan et al., 2021). In this study,

we examined howV1 neurons encoded information about the drift direction of a moving visual

stimulus. We compartmentalized information-limiting correlations to extrapolate information

growth with population size and estimated how many neurons are required to capture 95% of

the total asymptotic information (N95). In the CaMKII-tTA;tetO-GCaMP6s mice,N95 was 1-2

orders of magnitude lower compared to Thy1-GCaMP6s mice and wild-type mice expressing

viral GCaMP (data not shown). Presumably, this difference arises from redundancy that causes

information content to saturate much more quickly in the CaMKII-tTA;tetO-GCaMP6s mice.

We also repeated the same experiments in L4 in a separate set of CaMKII-tTA;tetO-GCaMP6s

mice and saw similar results as in L2/3 described above.

We concluded that although single-neuron activity appeared to be normal, activity at the pop-
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Figure 2.1: Comparison of visual responses and activity correlations in L2/3 between mouse lines.
a, Example mice: left column, C57BL/6J (wild-type) mouse expressing viral GCaMP6s; middle column,
Thy1-GCaMP6s transgenicmouse; right column, CaMKII-tTA;tetO-GCaMP6s transgenicmouse. Cor-
relation of V1 L2/3 neuron responses to different directions of low-contrast drifting grating stimulus.
Across all mouse lines, orientation and direction tuning is evident from higher correlations along the di-
agonal and off-diagonal comparisons. b, Correlation between signal correlation and noise correlation for
pairs of neurons. Wild-type and Thy1-GCaMP6s mice show a weak positive correlation between signal
and noise correlation (R = 0.16, R = 0.12). CaMKII-tTA;tetO-GCaMP6s shows a stronger positive rela-
tionship (R = 0.36) due to the presence of many pairs of neurons with highly correlated signal and noise
correlations.
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Doxycycline 
(mg/ml)

Time on doxycycline 
(starting from birth) GCaMP expression in L2/3

2 5+ weeks, 9+ weeks
(includes before pregnancy)

Unusable; does not recover even 2+ 
months after doxycycline removal

0.2 1 week Sparse, too low
2.5 weeks Sparse, too low

0.04 1.5 weeks Expression is fine, but same correlation issue

Table 2.1: Doxycycline treatments for CaMKII-tTA;tetO-GCaMP6s mice.

ulation level was qualitatively different in the CaMKII-tTA;tetO-GCaMP6s mice compared to

the other lines. Furthermore, the neuron pairs with highly-correlated signal and noise correla-

tions in these mice appeared to be abnormal not only compared to our measurements in other

mouse lines, but also to other work on correlations across species, brain areas, and behavioral

tasks. These studies showed that there is a positive relationship between tuning similarity and

trial-to-trial variability in activity, as we also observed in all experimental cases, but none de-

scribed the presence of neuron pairs with highly-correlated signal and noise correlations as we

observed in CaMKII-tTA;tetO-GCaMP6s mice (Averbeck and Lee, 2003; Bartolo et al., 2020;

Kohn and Smith, 2005; Okun et al., 2015).

2.3.2 Doxycycline treatment

Weattempted tomitigate concernsof aberrantneural population activity in theCaMKII-tTA;tetO-

GCaMP6s mice by raising mothers and pups from breeding pairs on doxycycline (Table 2.1) to

suppress GCaMP expression until later in development. To evaluate whether doxycycline treat-

ments were effective, we performed the same imaging experiments as described above after pups

reached at least 8 weeks of age. Mice received doxycycline orally in drinking water with 5% su-

crose (Steinmetz et al., 2017).

Under the highest dosage of doxycycline tested (2mg/ml), we found that raising pregnant moth-
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ers and pups on this dosage for even five weeks resulted in GCaMP levels that were too low to be

usable for imaging and did not increase to reasonable levels even aftermonths following cessation

of doxycycline treatment. We then decreased doxycycline concentration by tenfold (0.2 mg/ml),

as well as decreased the treatment duration, which started only after pups were born rather than

during pregnancy. However, althoughwe found thatGCaMP expression levels were adequate in

L4, expression in L2/3 was sparse and labeled at most only tens of cells, as opposed to hundreds

within a typical imaging field of view. The final cohort of mice received doxycycline diluted

another tenfold (0.04 mg/ml) for a similar duration of time as the previous group. Although

GCaMP expression levels across layers were reasonable, after conducting the same visual tuning

experiments as described above, we found the same type of correlational structure we had pre-

viously observed in the CaMKII-tTA;tetO-GCaMP6s mice without doxycycline treatment. In

summary, under the conditions tested, we were either unable to have GCaMP expression levels

high enough across cortical layers to be usable for imaging, or expression was adequate but we

were unable to eliminate the presence of neurons with highly correlated signal and noise correla-

tions. In addition, due to the long timescale of testing–months for each iteration–we ultimately

chose to pursue a different approach for labeling L4 neurons in V1.

2.4 Setup for single-neuron photostimulation experiments

We used the L4-specific Scnn1a-Tg3-Cre mouse line (Madisen et al., 2010) to label excitatory

neurons in L4 (Figure 2.2a). We usedCre-dependent adeno-associated viral vectors to co-express

the calcium indicator jGCaMP7f (Dana et al., 2019) and soma-localized ChRmine, a sensitive

red-shifted channelrhodopsin (Marshel et al., 2019), to be able to perform simultaneous calcium

imaging and two-photon photostimulation, respectively, within L4 (Figure 2.2c). Retinotopic
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Figure 2.2: Labeling strategy for L4 single-neuron photostimulation experiments. a, 3D stack, coro-
nal view of V1 in an Scnn1a-Tg3-Cre mouse expressing eGFP in L4 excitatory neurons. b, Left, top sur-
face view of cortex (left, lateral; right, medial; top, anterior; bottom, posterior) template showing mean
field sign map (n = 79 mice) and area parcellation, from the Allen Institute. Circle shows positioning of
3.5 mm cranial window used for experiments. Right, field sign retinotopic maps overlaid on vasculature
from 6 example mice. Blue regions denote V1 and areas with highest expression, from which experimen-
tal fields of view were chosen. c, Images of example field of view in L4, with orange and blue arrows
denoting neuron and control photostimulation sites, respectively. Left, jGCaMP7f expression. Middle,
soma-localized ChRmine tagged with mScarlet. Right, overlay of jGCaMP7f (green) and ChRmine (ma-
genta) expression.
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maps were collected prior to beginning experiments to inform what portion of V1 was being

imaged for each session (Figure 2.2b).

We built a custom microscope that contains two independent scan paths, one for two-photon

photostimulation and another for two-photon imaging (Figure 2.4). The photostimulationpath

contained a pair of galvanometric mirrors for beam steering. We considered multiple configura-

tions for photostimulation and chose to use a scanning-based approach for a number of reasons:

rapidly scanning a nearly diffraction-limited spot in a spiral-like pattern over each neuron (Chet-

tih and Harvey, 2019; Packer et al., 2012; Yang et al., 2018) is straightforward to implement

and has improved resolution (Rickgauer and Tank, 2009), works well to drive action potentials

relatively quickly in potent opsins such as ChRmine (Marshel et al., 2019), used here, and re-

quires less average laser power than scanless holographic approaches (Yang et al., 2018), reducing

concerns about heat-induced effects on cell health (Podgorski and Ranganathan, 2016). In com-

parison, holography uses refocusing of the beam into a soma-sized spot, which degrades axial

resolution but can be compensated for using temporal focusing (Oron et al., 2005; Papagiak-

oumou et al., 2020; Pégard et al., 2017; Zhu et al., 2005), although this methodology is more

involved and requires additional optical components.

To further try andmaximize photostimulation resolution, we used viral constructs that included

soma-targeting sequences (such as Kv2.1) to enhance opsin expression at the soma andminimize

expression in other cell compartments, which have been shown to reduce off-target stimulation

of axons or dendrites of other neurons (Baker et al., 2016; Lim et al., 2000; Marshel et al., 2019).

We also attempted to use lower laser powers for photostimulation such that neurons could be

reliably activated and without excess activation failures. With the photostimulation conditions
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Figure 2.3: Photostimulation responses of targeted sites. a, Single-trial responses (colored lines,
smoothed for visualization) andmean response (black line) for an example targeted neuron (n=180 trials).
b, Photostimulation responses averaged over trials (n = 180) for all targeted neurons (n = 25) in one exam-
ple session. Note that all neurons increase their activity in response to stimulation. c, Trial-averaged pho-
tostimulation responses for significantly photostimulated targeted neurons across all sessions (n = 1,345
of 1,398 total neurons; 96.2% significantly responsive to stimulation). d, Photostimulation-triggered av-
erage fluorescence image for a single targeted neuron, with black arrow indicating photostimulation target
location. e, Photostimulation-triggered average fluorescence images centered on either target (n = 25) or
control sites (n = 5), n = 180 trials per site.
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used, opsin-expressing neurons in L4 of V1 in awake mice reliably responded to photostimula-

tion on individual trials (Figure 2.3a), with nearly all neurons being responsive to photostimu-

lation when responses were averaged over all stimulation trials (Figure 2.3b, c). To check the

resolution of stimulation, we also computed photostimulation-triggered average (PTA) fluores-

cence images for each targeted site. If the resolution is poor, wewould expect that thePTA images

would show diffuse activation of neurons both centered at and adjacent to the targeted location,

whereas if the resolution is good, we would expect to see higher fluorescence in the shape of a

cell with a sharp outline at the center targeted site. We confirmed that photostimulation induced

cell-shaped increases in fluorescence at the targeted site, but not at control sites where we tar-

geted regions that lacked opsin expression, which we used to account for effects as a result of

non-specific photostimulation laterally or axially (Figure 2.3d-e). Thus, we concluded that we

were able to photostimulate neurons with reasonable resolution, although this could be further

improved with alternative viral approaches to restrict opsin expression to a sparser subset of L4

neurons.

2.5 Methods

2.5.1 Animals and surgery

All experimental procedureswere approved by theHarvardMedical School Institutional Animal

Care and Use Committee (IACUC).

Scnn1a-Tg3-Cremice used in experiments were generated bymatingmale Scnn1a-Tg3-Cremice

with female C57BL/6J mice, obtained from The Jackson Laboratory (C57BL/6J, stock num-

ber 000664; Scnn1a-Tg3-Cre, stock number 009613) and genotyped by Transnetyx. Mice were
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housed at 65–75°F with 35–65% humidity and on a 12-h reverse light/dark cycle. Mice were

used for imaging experiments between 3 and 6months of age. Prior to imaging, mice underwent

surgery to implant a chronic cranial window and headplate. Mice were injected intraperitoneally

with dexamethasone (3 μg per g bodyweight) 3–6 h before surgery to reduce brain swelling. Dur-

ing surgery, mice were stably anesthetized with isoflurane (1–2% in air). A titanium headplate

was attached to the skull using dental cement (C&BMetabond, Parkell). A ∼3.5-mm diameter

craniotomy was made over left V1 (stereotaxic coordinates: 2.5 mm lateral, 3.4 mm posterior

to bregma). A virus mixture of AAV9-syn-FLEX-jGCaMP7f-WPRE (Addgene 104492, Dana

et al., 2019) and either channelrhodopsin construct of AAV9-CAG-DIO-ChRmine-mScarlet-

Kv2.1-WPRE-hGHorAAV9-hSyn-DIO-ChRmine-mScarlet-Kv2.1-WPRE-hGH(custom, syn-

thesized by GenScript; virus prepared by Boston Children’s Hospital Viral Core) was diluted

into phosphate-buffered saline at final titers of ∼1.35 × 1012 gc/ml and ∼2 × 1012 gc/ml, and

mixed 10:1 with 0.5% Fast Green FCF dye (Sigma-Aldrich) for visualization. Virus was injected

in a 3 × 3 grid with 350 μm spacing near the center of the craniotomy at 400 μm below the dura,

with ∼75 nl at each site. Injections were made slowly (over 2–5 min) and continuously using

beveled glass pipettes and a custom air pressure injection system. The pipette was left in place

for an additional 2–5 min after each injection. Following injections, the dura was removed. A

glass plug consisting of two 3.5-mmcoverslips and one 4.5-mmcoverslip (1 thickness,Warner In-

struments) glued together withUV-curable transparent optical adhesive (NorlandOptics, NOA

81) was inserted into the craniotomy and cemented in place with cyanoacrylate (Insta-Cure, Bob

Smith Industries) and metabond mixed with carbon powder (Sigma-Aldrich) to prevent light

contamination from the visual stimulus. An aluminum ring was then cemented on top of the

headplate, which interfaced with the objective lens of themicroscope through black rubber light

23



shielding to provide additional light-proofing. Imaging datasets were collected at least 2 weeks

post-surgery, and data collection was discontinued once baseline GCaMP levels and expression

in nuclei appeared to be high.

2.5.2 Visual stimuli for experiments comparingneural activity across

mouse lines

Visual stimuli were presented as described in Kafashan et al., 2021. Stimuli consisted of square-

wave gratings presented on a gray background to match average luminance across stimuli. Grat-

ings were windowed outside of a central circle of radius 20° with a Gaussian of 19° standard

deviation to preventmonitor edge artifacts. Grating drift directions were pseudo-randomly sam-

pled from 45° to 360° in 45° increments at 10 or 20% contrast, spatial frequency of 0.035 cycles

per degree, and temporal frequency of 2 Hz. Stimuli were presented for 500 ms, followed by a

500 ms gray stimulus during the inter-stimulus interval (1 Hz presentation). The visual stimulus

was designed to be minimally sensitive to the small eye movements typical of mice (Keller et al.,

2012; Saleem et al., 2013). In addition to using a full field grating, the stimulus presentation of

500 ms and temporal frequency of 2 Hz was chosen so that each trial consisted of exactly one

complete cycle. The effect of fixational eye movements was thus mostly a small shift in phase of

the perceived stimulus, which should have little impact on spike counts summed over the full

stimulus presentation.

2.5.3 Widefield retinotopic imaging

Retinotopic maps were collected using widefield imaging as described previously (Driscoll et

al., 2017; Minderer et al., 2019). Mice were anesthetized with isoflurane (0.5–1.25% in air). A
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tandem-lens epifluorescencemacroscope with an inverted camera lens was used to reflect filtered

light onto the brain and collect emission light from GCaMP fluorescence, imaged by a second

camera lens onto a CMOS camera. A spherically-corrected periodic black and white checkered

moving barwas presented on amonitor positioned in front of themouse’s right eye at a 30° angle.

Retinotopic maps were computed from the temporal Fourier transform of the imaging data at

each pixel with the signal phase at the stimulus frequency subtracted, and then smoothed with a

Gaussian filter. Field sign maps were aligned to an image of the vasculature pattern at the brain

surface taken under the same field of view.

2.5.4 Microscope design

Data were collected using a custom-built two-photon microscope with two independent scan

paths, one for imaging andone for photostimulation, thatweremerged through aNikon16 × 0.8

NAwater immersion objective (Figure 2.4). For the imaging path, a Ti:Sapphire laser (Coherent

Chameleon Vision II) was used to deliver 935 nm excitation light for calcium imaging at 30 Hz,

with the scan head consisting of a resonant-galvonometric scanning mirror pair separated by a

scan lens-based relay. The photostimulation path used either a Fidelity-2 fiber laser (Coherent)

at 1,070 nm or a custom low repetition rate (2MHz) Spark fiber laser at 1,060 nm to deliver exci-

tation through a galvonometric-galvanometric pathway using the same scan lens-based relay as in

the imaging path. Note that the microscope contained an electrically tunable lens (ETL) in the

imaging path that was conjugated to the back aperture of the objective, which allows the control

current to the ETL to linearly change the focal plane in the sample space independently from

the photostimulation path and therefore enables imaging in z-volumes separated by hundreds

of microns (e.g., in both L4 and L2/3) nearly simultaneously (Grewe et al., 2010; Vladimirov et
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al., 2018; Yang et al., 2018). The microscope also included a spatial light modulator (SLM) with

sub-3 ms refresh time to generate holographic patterns in the photostimulation path, allowing

for 3D stimulation, but this and theETLwerenot utilized for volumetric imaging or holographic

stimulation in the experiments described here. The imaging and photostimulation paths were

merged before the objective with a longpass dichroic mirror with 1,000 nm cut-on (Thorlabs

DMLP1000L) and co-aligned to the same focal plane by imaging a pollen sample through each

pathway. Collection optics were housed in a light-tight aluminumbox to prevent contamination

from visual stimuli. Green and red emitted light were separated by a dichroic mirror (580 nm

longpass, Semrock) and was filtered (525/50 or 641/75 nm, Semrock) and collected by GaAsP

photomultiplier tubes (Hamamatsu). Microscope hardware was controlled by ScanImage 2018

(Vidrio Technologies). Rotation of the spherical treadmill along three axes was monitored by a

pair of optical sensors (ADNS-9800) embedded into the treadmill support communicatingwith

amicrocontroller (Teensy, 3.1). The treadmill wasmounted on anXYZ translation stage (Dover

Motion) to position the mouse under the objective.

2.5.5 Photostimulation protocol

The photostimulation protocol used either a spiral scan or log-spiral scan (Chettih and Harvey,

2019) of a diffraction-limited spot across an area similar to the size of each targeted neuron (∼10

μm), with 10 × 10-ms spirals for a total of 100 ms stimulation. The power used for photostimu-

lation of each neuron was typically∼6 mW, but ranged from 4.5 to 12 mW.
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Figure 2.4: Optical layout of the custom-built ETL- and SLM-based two-photon in vivo photostim-
ulation microscope. HWP, half-wave plate; PC, Pockels cell; T, telescope; ETL, electrically tunable lens;
R, relay; RM, resonantmirror; X-GM, Y-GM, galvanometers; SL, scan lens; TL, tube lens; ZB, zero-order
block; D1, D2, D3, dichroics; PMT, photomultiplier tube; OBJ, objective.
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2.5.6 Imaging data pre-processing

Imaging frames were first motion-corrected using custom MATLAB code (https://github.

com/HarveyLab/Acquisition2P_class) on sub-frame, full-frame, and long (minutes tohours)

timescales. Batches of 1,000 frames were corrected for rigid translation using subpixel image reg-

istration, after which frames were corrected for non-rigid warping on sub-frame timescales using

a Lucas-Kanade method. Non-rigid deformation on long timescales was corrected by selecting

a global alignment reference image (average of a 1000-frame batch) and aligning other batches

by fitting a rigid 2D translation, followed by an affine transform and then nonlinear warping.

Motion-corrected data was then input to Suite2p to extract sources and associated fluorescence

traces. To classify sources, similar to previous work (Chettih and Harvey, 2019; Minderer et

al., 2019), we re-trained an existing 3-layer convolutional neural network in MATLAB. Each

source’s spatial footprint was cropped into a 25 × 25 pixel image (∼0.88 μm per pixel) as input

to the network, which was constructed with 3 convolutional layers (5×5 filter size; numbers of

filters per layer, 32, 16, 16; stride 1), a 256-unit fully connected layer, and a 2-unit softmax output

layer. We used an additional 6,626 manually annotated L4 sources, further augmented 20-fold

by rescaling, rotation, and reflection. Sources were classified as cell bodies or other. Only data

from cell bodies were used in analyses. Predictions for an example L4 session are shown in Figure

2.5.

To obtain ΔF/F traces, we estimated baseline fluorescence by examining the distribution of fluo-

rescence in a two-minute window around each sample time point and normalizing by the 20th

percentile value. Traceswere deconvolved using the constrainedAR-1OASISmethod (Friedrich

et al., 2017) and individually optimized decay constants.
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Figure 2.5: Sources and labels from CNN for an example L4 session. Left, cell source predictions.
Right, non-cell source predictions.
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3
Influence Mapping Shows Signatures of

Amplification in V1 L4

3.1 Introduction

L4 is known to be visually tuned to features such as stimulus direction and orientation (Niell and

Stryker, 2008; Sun et al., 2016; de Vries et al., 2020). Previous work has shown that L4 amplifies

thalamocortical inputs without altering their tuning (Li et al., 2013b; Lien and Scanziani, 2013),
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suggesting that neurons form subnetworks in which recurrent excitation increases responses be-

tween cells with shared preferred stimuli. However, it has not been tested whether amplifica-

tion within L4 occurs via like-to-like functional motifs, and if so, whether it is feature-specific.

Given the recurrent nature of cortical circuits and technical limitations with previous methods,

these questions are difficult to address. This motivates using influence mapping, as it uses single-

neuron perturbations that enable causal, direct estimation of functional architectures. We in-

vestigated how local circuitry within L4 of V1 transforms representations by photostimulating

individual neurons while imaging responses of hundreds of neighboring neurons of known tun-

ing.

3.2 Experimental design

Within each experimental session in head-fixed awake mice free to run on a styrofoam trackball,

we used separate blocks to measure influence and visual tuning properties of the imaged neural

population in L4 of V1 (Figure 3.1). We first used a short seeding block, in which 100% contrast

drifting gratings were presented, to quickly visualize which neurons showed responsiveness to

visual stimuli and tuning to orientation and direction. Themaps generated from this block were

then used in combination with online manual judgment of GCaMP and opsin co-expression

levels to select neuron targets for photostimulation in subsequent blocks. In influence measure-

ment blocks, we photostimulated individual targeted neurons or control sites, where there was

lower or a lack of clear opsin expression, while imaging the responses of all neighboring neurons

within the field of view. To understand influence within the context of visual processing rather

than complete darkness, each photostimulation trial occurred simultaneous to the onset of low-

contrast drifting grating stimuli (10% contrast, eight directions spaced 45° apart, fixed spatial fre-
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quency and temporal frequency). Two separate visual tuning blocks were used. One consisted

of presentation of high-contrast drifting gratings and another consisted of contrast-modulated

Gaussian noise movies (see descriptions below).

3.2.1 Magnitude of neural responses during experimental blocks

We wanted to ensure that the magnitude of responses to photostimulation were still in a rea-

sonable range compared to the neuron’s responses in the visual tuning blocks. Compared to

neural activity in the influencemeasurement block during presentation of 10% contrast gratings

without photostimulation, adding photostimulation of targeted neurons during visual stimuli

resulted in greater responses. These photostimulation-evoked activity levels were slightly lower

than those during the preferred stimulus in the high-contrast random gratings tuning block, and

substantially lower than responses to the Gaussian noise movies (Figure 3.2). Together, these

results indicated that photostimulation was able to further boost activity on top of the response

to a low-contrast visual stimulus, and that themagnitude of photostimulation fell within physio-

logical levels, as it was still lower than responses to other visual stimuli that were presented.

3.3 Calculation of influence

We needed to quantify how photostimulation of a given target site affected the activity of non-

targeted neurons in the imaging field of view. As in previous work, we used deconvolved neural

activity to calculate a ΔActivity influence metric, which is similar to a z-score and was defined

as the response of non-targeted neurons on single photostimulation trials with their average re-

sponse on control trials with the same grating subtracted, and then normalized by the standard

deviation of the difference over all trials (Chettih and Harvey, 2019). To get an influence value
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Figure 3.1: Schematic of experimental protocol. Top row, seeding block: high-contrast gratings used
to extract orientation and direction tuning, used in combination with online judgment of GCaMP and
opsin co-expression to select neuron targets for photostimulation. Second row, influence block: sites are
photostimulated concurrent with low-contrast drifting gratings while imaging responses of all neurons
within a given experimental session’s field of view. Third row, random gratings tuning block: each vi-
sual stimulus parameter (direction, spatial frequency, temporal frequency) were randomly sampled on
each trial. Responses were used to extract visual tuning properties such as direction, orientation, spatial
frequency, and temporal frequency preference. Bottom row, contrast-modulated Gaussian noise movie
block: the stimulus was sinusoidally contrast-modulated over 10 seconds from gray to gray, after which
linear RFs were obtained by reverse correlation of neural responses to the sequence of movies (scale bars:
RF, 20°; a.u., arbitrary units).
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Figure 3.2: Themagnitude ofV1L4 targetedneuron responses to photostimulation and visual stim-
uli. a, Each row shows an example cell’s response during an influence block (left column), gratings tuning
block (middle column), or Gaussian noise movie tuning block (right column). Red asterisks denote times
at which that cell was photostimulated. b, Comparison of responses of individual targeted neurons (n =
1,345) between all combinations of influence blocks with no photostimulation (visual stimulus only), in-
fluence block with photostimulation and visual stimulus, preferred stimulus in the high-contrast random
gratings tuning block, or preferred stimulus in the Gaussian noise movie tuning block. c, Responses of
targeted neurons during the influence block with visual stimulus only (blue) or with visual stimulus and
photostimulation (orange), preferred visual stimulus in the gratings block (green), and preferred visual
stimulus in the Gaussian noise movie block (red). Influence block with photostimulation vs. preferred
visual stimulus in the tuning block, influence block with photostimulation vs. preferred visual stimulus
in the Gaussian noise movie block: P = 0.0436, P = 2.65 × 10−107, Mann–Whitney U test (n = 1,345
neurons). d, Average targeted neuron response to each of the four conditions, as in b-c. Data shown as
mean ± s.e.m., calculated by bootstrap.
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for each target-nontarget neuron pair, we averaged a neuron’s ΔActivity over all photostimula-

tion trials for the target. In all influence-related analyses, we excluded target-nontarget pairs that

were less than 25 μm apart (although changing the cutoff yielded qualitatively similar results) in

order to limit the effect of potential off-target photostimulation. The distribution of influence

values within L4 was centered near zero and included both positive and negative values (Figure

3.3a), which corresponded to excitatory and inhibitory effects, respectively.

We then visualized photostimulation-triggered average images at the locations of non-targeted

neurons, split by positive or negative influence. For neurons that were positively influenced (i.e.,

positive ΔActivity), we would expect to see a cell-shaped increase in fluorescence, and negative

fluorescence for neurons that were negatively influenced (i.e., negative ΔActivity). For both pos-

itive and negative influence values, we found that these indeed corresponded to cell-shaped flu-

orescence changes in raw images averaged over center locations of non-targeted neurons (Fig-

ure 3.3b), indicating that there was true recruitment or suppression of non-targeted neurons

through photostimulation of targeted neurons. Furthermore, the absolute value of average non-

targeted neuron fluorescence changes was much smaller than those of neurons directly targeted

for stimulation, which is expected given that we aimed to avoid using excessively strong laser

powers for photostimulation.

After visually verifying that target photostimulation induced cell-shaped changes in fluorescence

at non-targeted neuron sites, we then compared influence between photostimulation of either

neuron sites or control sites. Control sites were areas in the imaging field of view that either

lackedor had lowopsin expression,which could showwhether influence could result from lateral

or axial off-target photostimulation, and served as a within-session comparison against neuron
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targets. Non-zero control site influence values could potentially be accounted for by dense opsin

labeling in L4 neurons and off-target effects from imperfect single-cell resolution of photostim-

ulation, as well as by the sampling of noisy or random neural activity. However, although both

neuron and control sites showed negative and positive influence, influence of targeted neurons

was more positive compared to that of control sites (Figure 3.3c). In addition, the magnitude of

influence values was greater for neuron site photostimulation by ∼4% (Figure 3.3d). When ex-

amining the signed mean influence in neuron versus control site stimulation, the positive mean

bias indicated that this effect was in part driven by neuron targets positively influencing other

neurons, whereas control site photostimulation influence was of mixed sign and therefore was

approximately zero (Figure 3.3e). Furthermore, the standard deviation of influence values from

neuron sites was greater by ∼9% than that of control sites (Figure 3.3f). This result would be

expected if stimulation of targeted neurons consistently recruited other neurons with specific

properties, which should then show a greater spread of influence value variability compared to

if noise was being sampled instead, as would be expected during control site photostimulation.

Together, these observations provide evidence that there was measurable influence from photo-

stimulating L4 neurons. Furthermore, the greater dispersion in influence values from neuron

site photostimulation suggested that there could be structure to this influence, which may be

related to properties of the target-nontarget neuron pairs.
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Wenext analyzed influencewith respect to the anatomical distance between target-nontarget neu-

ron pairs. Influence varied as a function of distance (Figure 3.3g). Net influence was strongly ex-

citatory compared to control for neurons that were less than 100 μm apart. Inmore intermediate

distances through 450 μm, influence was slightly negative, although the relative magnitude was

much smaller than that of the local excitatory influence. At the longest distances of >450 μm to

∼550 μm, net influence was near zero. Control site influence showed a similar but weaker spa-

tial structure, consistent with potential effects from off-target stimulation. Furthermore, in line

with this idea, when we performed a median split of neuron site influence by the magnitude of

the photostimulated neuron, we found that the influence–distance relationship for targeted sites

that were more weakly photostimulated was left-shifted towards the curve for control site stim-

ulation (Figure 3.3h). We concluded that the distance between a target and non-target neuron

pair was a factor that contributed to influence, especially at shorter distances.

3.4 Tuningwithin L4

After quantifying influence, we then sought to test whether neurons with similar tuning amplify

each other’s activity by characterizing visual tuning of L4V1neurons, in order to relate influence

to functional properties in the same cells. We used two different sets of stimuli, drifting gratings

and Gaussian noise movies, to probe visual tuning of the recorded neurons.

3.4.1 Random gratings tuning and Gaussian process regression

If sampling widely within a range of possible values for parameters of a drifting gratings visual

stimulus, using the conventional method of showing many stimulus repeats is infeasible due to

the number of possible combinations and the corresponding amount of increased experimen-
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Figure 3.3 (following page): Influence characterization in L4. a, Distribution of influence (ΔActiv-
ity) values across all target-nontarget neuron and control pairs (n = 502,858 pairs). b, Photostimulation-
triggered fluorescence images, centered at all non-targetedneuron locations for target-nontarget pairswith
ΔActivity > 0.15 (left; n = 17,006) or ΔActivity < -0.15 (right; n = 8,814). The additional halo in the exci-
tatory non-targeted PTAmay be due to dense labeling of neurons and strong local influence overmultiple
non-targeted neurons. c, Fraction of target-non-target pairs with an influence value greater than each x-
axis influence value, for neuron sites (n=386,799) and control sites (n=116,059). d, Influencemagnitude
(|ΔActivity|) of photostimulation for all neuron target sites (n = 386,799) or control sites (n = 116,059).
Non-zero influencemagnitude is expected for control sites due to dense opsin labeling in L4 neurons and
potential off-target effects, as well as random sampling of neural activity on control site photostimulation
trials. Data shown as mean ± s.e.m. calculated by bootstrap. Neuron sites vs. control sites: P = 5.7040 ×
10−4, Kolmogorov–Smirnov test. e, Single-target influence bias is the average of signed ΔActivity values
across all non-targeted neurons. Data shown as mean ± s.e.m. calculated by bootstrap across all neuron
(n = 1,345) or control target sites (n = 400). P = 0.0870, Kolmogorov–Smirnov test. f, Single-target influ-
ence dispersion is the standard deviation of ΔActivity across all non-targeted neurons for each individual
target. P = 6.9298 × 10−16, Kolmogorov–Smirnov test. g, Influence bias (ΔActivity) versus anatomical
distance between pairs of targeted neuron photostimulation and non-targeted neurons, for neuron (n =
386,799) versus control (n = 116,059) sites. Shading is mean ± s.e.m. calculated by bootstrap, using a bin
half-width of 30 μm. h, Left: influence bias (ΔActivity) versus distance, as in g, with data from influence
fromneuron target sites split into stronger versusweaker responses to direct photostimulation, using ame-
dian split of photostimulation significance. For strong versus weak photostimulation groups, the mean
response over targeted neuronswas 0.65ΔF/F or 1.5ΔF/F, respectively. Dashed-line box denotes zoomed-
in region, as displayed on the right panel. Note that the influence versus distance dependence for weakly
photostimulated target neurons is shifted towards the control photostimulation curve, consistent with
reduced but not non-zero activation when targeting control sites, which can occur from factors such as
brain motion or suboptimal photostimulation resolution.
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Figure 3.3: (continued)
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tal time. Therefore, in one experimental block without photostimulation within each session,

we presented high-contrast drifting gratings with randomly sampled drift direction, spatial fre-

quency, and temporal frequency over a given range for each feature. We then used Gaussian pro-

cess (GP) regression, a Bayesian nonparametric smoothingmethod, to estimate neural responses

to our visual stimulus that did not contain repeats (Figure 3.4, Figure 3.5). GP regression esti-

mates the responses by generating a high-dimensional distribution under the assumption that

neural activity is a smooth function across trials with similar stimulus parameters. From the re-

sulting fitted model, a 1D tuning curve can then be extracted for each visual feature dimension.

For an example pair of a target and non-targeted neuron, visualizing two dimensions of drift di-

rection and spatial frequency, with each dot representing one trial and colored by themagnitude

of the response, we see that theGPmodel prediction doeswell at capturing the data (Figure 3.4a),

and the corresponding tuning curves for eachdimension from the resultingmodel fits canbe seen

(Figure 3.4b). Tuning similarity, or signal correlation, betweenneuronswas computed as the cor-

relation between single-trial GP predictions of the visual response for each neuron. Similarity in

trial to trial variability, or noise correlations, between neurons was computed as the correlation

between residuals of single trials after GP predictions were subtracted (Figure 3.4c).

GP model fit quality was distributed and fairly uniform over the field of view for each imaging

experiment (Figure 3.5a). We compared GP model prediction quality on training data and on

held-out data to check for the presence of overfitting, whichwe did not observe given that thema-

jority of neurons fell along the unity line (Figure 3.5b). To determine how significantly a neuron

was tuned to a particular stimulus dimension, we used its tuning curve and the variance of the

GPmodel’s posterior distribution over tuning values to compute a depth ofmodulation (DOM)

index, where larger values indicate stronger tuning. The distributions of DOM were different

40



for the tuning dimensions of direction, spatial frequency, temporal frequency, and the mouse’s

running speed (Figure 3.5c). A subset of neurons showed no drift direction modulation, with

many others with appreciable modulation >5. A majority of neurons showed spatial frequency

modulation, whereas many neurons were not modulated by temporal frequency. As would be

expected from literature linking running speed to modulation of V1 activity and depolarizing

membrane potential across layers inmice (Ayaz et al., 2013; Niell and Stryker, 2010; Polack et al.,

2013; Saleem et al., 2013), many neurons exhibited moderate modulation to the animal’s run-

ning speed, although a large fraction of neurons also showed no or low modulation. Similar to

the DOMdistributions, the distribution of tuning curves of neurons significantly tuned to each

dimension were also varied across features, with tuning differentially tiling the ranges of values

(Figure 3.5d). Neurons showed strong orientation and direction tuning over all drift directions,

with greater representation at the cardinal directions. Spatial frequency tuning was distributed

over the entire range of the frequencies tested in the gratings stimulus set. Temporal frequency

tuning was concentrated in the lowest and highest frequencies presented. Running speed tun-

ing was distributed over the full range of running speeds, with a subset of neurons more con-

centrated at stillness or the lowest and highest speeds, and with a large subset that showed wider

tuning curves over a range of intermediate to faster speeds.

3.4.2 Gaussian noise movies and receptive field measurement

In addition to measuring tuning features such as orientation, direction, spatial frequency, and

temporal frequency using drifting gratings, we also were interested in understanding how visual

feature preference from receptive fields (RFs), which includes attributes such as retinotopic po-

sition, could be related to influence in L4. Tomeasure linear RFs, we generated stochastic Gaus-
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Figure 3.4: Example tuning and activity characterization of L4 neurons usingGaussian processes. a,
For a pair of a targeted and non-targeted neuron (as defined by the separate influence experimental block),
tuning for spatial frequency and grating drift direction. Each point is a single trial, with color indicating
the mean activity throughout the duration of the visual stimulus on that trial. GP model predictions on
held-out trials (bottom row) were consistent with the actual data (top row). b, Tuning curves from GP
predictions for the targeted and non-targeted neuron in a. c, Signal correlation (left) and noise correlation
(right) for the neuron pair in a and b.
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Figure 3.5: Characterization of V1 L4 tuning using GP regression. a, Position of each recorded
neuron relative to the field of view of each experiment, color-coded by GP model fit quality (Pearson
correlation with held-out data). Fit quality was similar across all positions. b, Density heatmap of GP
model prediction quality (on training data; “train data accuracy”) and fit quality (on held-out data; “test
data accuracy”). Most data lie on the unity line, indicating themodel is not overfitting to the training data
and is able to make good predictions on test data. c, Distributions of the DOM, or tuning significance
(see Methods), for all neurons passing model fit criteria for each individual tuning dimension of gratings
drift direction, spatial frequency, temporal frequency, or the animal’s running speed. Each dimension
showed different distribution shapes. d, Tuning curves (z-scored) for each tuning dimension for neurons
that passed model fit criteria and were significantly modulated (DOM >2) for that dimension. Tuning
properties were distinct for each dimension.

43



sian noise movies with defined spatiotemporal frequency spectra, which are a dense but struc-

tured visual stimulus that have been shown to robustly induce neural responses across layers of

V1 (Niell and Stryker, 2008). The movies were contrast-modulated from a gray background

to full-contrast and back again over a 10 second period, in order to try and counteract habitua-

tion of neural responses and maintain high firing rates over the course of the tuning block. We

calculated the spike-triggered average (STA), or reverse correlation, from the noise movies and

spike trains of deconvolved activity for each neuron to extract RFs (Chichilnisky, 2001; Jones

and Palmer, 1987; Niell and Stryker, 2008), which were highly diverse within the imaged popu-

lation, as expected (Bonin et al., 2011; Cossell et al., 2015; Niell and Stryker, 2008; Smith and

Häusser, 2010). Note that because the noise movies were limited in spatial frequency, residual

noise in the STA RFs was also frequency-limited and thus showed a speckled-like appearance

similar to that of the movies.

We fitted Gabor functions to parameterize the raw STAs (Figure 3.6a). For all subsequent analy-

ses, Gabors (also referred to as “RFs” or “linear RFs”) rather than the raw STA images were used

unless otherwise stated. For these analyses, only neurons with both a significant raw STA and

fittedGabor that passed a threshold for spatial correlationwith the raw STAwere used (seeMeth-

ods). From theGabors, in addition to the x- and y-coordinates of the center, the relative position

ofONandOFF subfieldswere extracted (Figure 3.6b). From the subfields, we calculated an over-

lap metric for ON, OFF, ON+OFF subfields, or a single field (i.e., the combination of ON and

OFF subfields into one merged subfield) between pairs of neurons (Figure 3.6c). We quantified

similarity between pairs of RFs as the pixel-to-pixel Pearson’s correlation coefficient between the

fitted Gabors. The majority of spatial RF correlations between target-nontarget neuron pairs

were close to zero, with far fewer pairs showing highly correlated or anti-correlated RFs (Figure
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3.6d). When examining RF similarity split by different types of subfield overlap, RF correlation

was positively related to the degree of ON, OFF, and ON+OFF subfield overlap (R = 0.60, R =

0.49, R = 0.76; Figure 3.6e), but not single-field overlap (R = 0.04), as would be expected given

that there are pairs with both highly correlated and anti-correlated RFs, which would show a

V-shaped relationship between overlap and RF correlation.

As an additional check of the STAs that were computed and the resulting Gabor fits, we verified

that there was a positive relationship between the distance separating neuron pairs in anatomical

space and the distance between their Gabor centers, as would be expected given the retinotopic

organizationofV1 (Figure 3.6f, g). The amountofRFoverlapbetweenneuronpairs alsodecayed

with greater anatomical distances (ON overlap, R = -0.11; OFF overlap, R = -0.11; ON+OFF

overlap, R = -0.17; data not shown), which follows naturally from increased distance between

RF centers in neurons that are farther apart in space (Bonin et al., 2011). We also estimated

cortical magnification, which has been reported to be ∼6-10 degrees/100 μm in azimuth and

∼4-5 degrees/100 μm in elevation (Billeh et al., 2019; Bonin et al., 2011; Kalatsky and Stryker,

2003), as the slope of a linear regressionmodel fit toGabor center distance versus cortical distance

between pairs and confirmed that the values were within expected ranges (Figure 3.6h).
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3.5 Influence regression

To understand how the metrics described above—anatomical distance, signal and noise correla-

tions, tuning, andRF-related properties—related to influence, we used two different approaches.

For visualization purposes, we computed influence as a function of individual metrics (Figure

3.7f-l). Because metrics were correlated with each other, such as stronger influence at shorter

anatomical distances between neuron pairs (Figure 3.3g) and the positive relationship between

signal and noise correlations (Figure 3.7a, b), we also used a multiple linear regression-based ap-

proach to dissociate the contributions of each predictor to influence in a principledmanner. The

regression coefficients describe the relationship of each predictor with influence while holding

the other variables constant. A positive or negative coefficient for a given predictor shows the

directionality of its correlation with influence, and the magnitude describes the strength of that

relationship. We also used interaction terms between activity metrics and distance to capture

nonlinear effects (e.g., differences in relationships between influence and metrics at varying dis-

tances between neurons).
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Figure 3.6 (following page): Gaussian noise movies and linear RF characterization. a,Raw STARFs
and fitted Gabors for an example experimental session in L4. Only significant RFs and Gabors with cor-
relation >0.3 with raw STA shown. b, For two example cells, the raw STA, fitted Gabor, and extracted
ON (red) and OFF (blue) subregions are shown. c, For two example pairs of targeted and non-targeted
neurons, the fitted Gabors and overlay are shown, along with the corresponding overlap metrics for ON,
OFF, ON+OFF, and single-field subfields, as well as the pixel-to-pixel Pearson’s correlation between RFs
(“spatial correlation”). d, Distribution of spatial RF correlations between all L4 target-nontarget neuron
pairs across experiments. Inset, example Gabors for two pairs of targeted and non-targeted neurons, with
their correlation coefficients. Pairs with negative correlations typically showed similar overlap and orienta-
tion, but with reversed phase preference (i.e., swapped ON and OFF subfield locations). e, Relationship
between RF similarity and subfield overlap metrics. The amount of ON, OFF, and ON+OFF subfield
overlap (see Methods) between target-nontarget neuron pairs was strongly correlated to the RF similar-
ity, as measured by the pixel-to-pixel correlation (ON: R = 0.60; OFF: R = 0.49; ON+OFF: R = 0.76),
whereas single-field overlap is not, as expected (single-field: R = 0.04). f, Distance between the center
of fitted Gabors (in degrees) versus distance between cell centers in anatomical space (μm) for all target-
nontarget neuron pairs (n = 2,388) passing fit criteria in an example session; R = 0.54. g, Distribution
of correlation coefficients between anatomical and retinotopic distance between target-nontarget neuron
pairs for each session, shown for sessions with >100 pairs (n = 47), median R = 0.30. h, Calculation of
visual field representation (in degrees) as a function of cortical space, using slope from a linear regression
model for each experimental session (as in f ). Median slope = 4.0°/100 μm, comparable to previous re-
ports.
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Figure 3.6: (continued)
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For distance predictors, influence regression showed that neuron pairs that were closer together

(<150 μm) had a negative slope with a positive offset, and intermediate and long-range pairs had

a slope near zero with a slightly negative offset that was much smaller in magnitude compared to

that of nearby pairs (Figure 3.7c). This result was consistent with the results for influence and

distance described earlier, where there was a strong local excitatory relationship with influence

between neuron pairs at closer distances that fell off when neurons were farther apart (Figure

3.3g).

Although common inputs are believed to be a primary source of shared variability between neu-

rons, it is still relatively unclearwhether noise correlations can also emerge from recurrent dynam-

ics of local circuitry. From the regression analysis, noise correlations showed a positive relation-

ship with influence at short distances, but the interaction term between noise correlations and

distance was negative, which indicated that this relationship was not present at greater distances

between neuron pairs (Figure 3.7c, right; Figure 3.7g). Across these short distances, noise corre-

lations are therefore driven not only by shared external inputs over a more spatially global level,

but also arise from the connectivity of local cortical networks (Malina et al., 2016; Rosenbaum

et al., 2017).

If the sign of the coefficient for signal correlation is non-negative, there are two main interpreta-

tions. A positive relationship between signal correlation and influence would provide evidence

for the presence of feature amplification within L4, indicating that neurons with similar activity

profiles tend to excite one another. If this relationship is present only at shorter distances between

neuron pairs, then this could be attributed in part to greaterRF overlap between neurons located

in closer lateral proximity. Alternatively, a negative coefficient would support feature competi-

49



Figure 3.7 (following page): Relationship between cortical distance, activitymetrics, tuning compo-
nents, RF components, and influence. a, Probability density function, estimated by kernel smoothing
for signal correlation, for all data used in influence regression (n = 264,182 pairs). Pairs were split by noise
correlation quartiles and separate densities were estimated for each group. Signal correlations for neuron
pairs of varying noise correlations were largely overlapping, but distinct (e.g., signal correlations for pairs
with high noise correlations were right-shifted relative to pairs with lower noise correlations). These re-
lationships between signal and noise correlations motivate using a regression approach to separate their
contributions to influence. b, Two-dimensional probability density functions for pairs of activity met-
rics, estimated by kernel smoothing, for all data used in influence regression, as in a (n = 264,182 pairs).
Spearman correlation coefficients between pairs of metrics (c) are overlaid on each plot. Signal correlation
vs. distance, c = -0.021, P = 4.8147 × 10−264; noise correlation vs. distance, c = -0.067, P = 7.7929 ×
10−28; noise correlation vs. signal correlation, c = 0.307, P < 1 × 10−100. c, Left, piecewise linear distance
predictors. 25–150 μm, offset P < 1 × 10−4, slope P < 1 × 10−4; 150–450 μm, offset P < 1 × 10−4, slope
P = 0.6598; >450 μm, offset P = 0.0024, slope P = 0.089. Influence regression coefficient estimates and
P values based on bootstrap. Grey line, median; box, 25–75% interval; whiskers, 1–99% interval. Right,
activity predictors from the same model. Signal correlation, P = 0.0114; signal × distance, P = 0.4814;
noise correlation, P = 0.4622; noise × distance, P < 1 × 10−4; signal × noise, P = 0.7466; n = 264,182
pairs. d, Coefficient estimates from separate models, based on c, using the specified tuning component
correlation instead of signal correlation, and pairs inwhich both neurons exhibited tuning for that feature.
Direction, P = 0.9538, n = 158,855 pairs; orientation, P = 0.014, n = 158,855; spatial frequency, P = 0.83,
n = 202,941; temporal frequency, P = 0.0.0026, n = 59,228; running speed, P = 0.1516, n = 106,000. e,
Coefficient estimates from separate models for components related to raw spike-triggered average recep-
tive fields or features extracted from fitted Gabors. n = 113,794 pairs for each feature. STA correlation, P
= 0.0068; Gabor correlation, P = 0.0.047; distance between Gabor centers, P = 0.0.0604; ON overlap, P
= 0.0.7548; OFF overlap, P = 0.0.0004; ON+OFF overlap, P = 0.0.012; single-field overlap, P = 0.2926.
f, Influence versus signal correlation. Percentile bins, 15% half-width. Shading, mean ± s.e.m. calculated
by bootstrap. g, Influence versus noise correlation, for nearby (black, n = 49,942) or distant (gray, n =
214,240) pairs. Percentile bins, 20% half-width. Qualitatively similar results were obtained when varying
distance thresholds by up to 50 μm (not shown). h, Influence versus difference in preferred orientation.
Value bins, 15° half-width. i, Influence versus STA correlation. Percentile bins, 15% half-width. j, Influ-
ence versus fitted Gabor correlation. Percentile bins, 15% half-width. k, Influence versus OFF overlap.
Percentile bins, 15% half-width. l, Influence versus ON+OFF overlap. Percentile bins, 15% half-width.
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Figure 3.7: (continued)
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tion, as has been shown in experiments in L2/3 of V1 (Chettih and Harvey, 2019). Influence

was significantly positively related to signal correlation and was either negative or zero at more

negative correlation values (Figure 3.7c, right; Figure 3.7f), supporting the idea that excitatory

neurons in L4 show amplification when activity is similar. Furthermore, the interaction term

for signal correlation and distance was near zero, such that the positive relationship between sig-

nal correlation and anatomical distance remains constant even at greater distances (Figure 3.7c,

right) and suggesting that factors beyondRFoverlap contribute to excitatory influence over these

longer spatial scales. Thus, neurons preferentially recruited responses from other cells with sim-

ilar activity profiles from across hundreds of microns in a given imaging field of view.

Although pairwise response correlations are useful in that they encompass information about

shared activity, which could come from either features that we did not measure or visual tuning-

related properties, they are unable to directly reveal what components may be contributing to

similar responses between neurons. We therefore examinedwhich tuning andRF featuresmight

contribute to the positive relationship between signal correlations and influence. To do so, in a

separate regression model, we replaced the signal correlation term with the correlations between

neuron pairs of their tuning curves for direction, orientation, spatial frequency, and temporal fre-

quency. We also included the mouse’s running speed as a predictor due to studies showing that

locomotionmodulates V1 responses, although a prioriwe anticipated that visual tuning features

would be more likely to contribute to influence given that they are generated and shaped in V1,

whereas running-related activitymay simplybe reflective of external inputs. Of these tuning com-

ponents, direction, spatial frequency, and running speed were unrelated to influence, although

neurons were still tuned to these features (Figure 3.5c, d). This suggests that while these features

are represented in the local population, transformations of this information content do not ap-
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pear to occur within L4. However, orientation tuning and temporal frequency were positively

related to influence (Figure 3.7d, h), reproducing the positive relationship between signal corre-

lation and influence described above. Recurrence in L4 may therefore selectively transform this

subset of visual features.

We also sought to relate influence to RF features in the same manner. The raw STA correlation,

Gabor correlation, OFF overlap, and ON+OFF overlap between pairs of neurons were signifi-

cantly positively related to influence (Figure 3.7e, i-l). Influence was also close to zero or negative

whenRF correlations or overlapmetrics were dissimilar or close to zero, suggesting that neurons

with more similar RFs amplify each other’s activity, while neurons with dissimilar RFs either

have no influence or tend towards suppression. These results are consistent with the result that

influence is more positive for higher signal correlations, as these RF metrics reflect a shared pref-

erence for portions of visual space between neurons.

Wefind that strong excitationbetweennearbyneuronpairs, a positive relationshipwithnoise cor-

relations at shorter distances, and a positive relationship with signal correlations and specific vi-

sual tuning properties that persists over spatial scales all contribute to influence between neurons.

Excitatory influence can therefore be attributed in part to neurons with certain shared visual tun-

ing and RF characteristics, suggesting that recurrent local microcircuit computations within L4

amplify responses via like-to-like functional connectivity along specific feature axes.
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3.6 Methods

3.6.1 Visual stimuli

Visual stimuli were displayed on a gamma-corrected 27-inch IPS LCD gaming monitor (ASUS

MG279Q). The monitor was positioned at an angle of 30° relative to the animal and such that

the closest point to the mouse’s right eye was ∼24 cm away, with visual field coverage ∼103° in

width and ∼71° in height. Visual stimuli were generated using PsychoPy (Peirce, 2007) or Psy-

chtoolbox. Prior to each experiment, using the retinotopic map from widefield imaging and a

movable flashing square stimulus, the monitor was moved such that stimuli in the center of the

monitor strongly drove neurons in the field of view imaged in that experiment. Seeding blocks

to visualize orientation- and direction-tuned neurons and assist inmanual selection of targets for

photostimulation consisted of 100% contrast square-wave gratings with drift direction 45° apart

presented for 3 seconds, followed by 3 seconds of gray. The visual stimuli in influence blocks

consisted of square-wave drifting gratings at 10% contrast, direction from 45° to 360° in 45° in-

crements, spatial frequency of 0.04 cycles per degree, and temporal frequency of 2 Hz (2 cycles

per second). Stimuli were presented for 500 ms, followed by a 500 ms gray stimulus during the

inter-stimulus interval (1 Hz presentation). The random gratings tuning measurement block

used 80% contrast sine-wave gratings presented for 2 seconds with a 1 second gray inter-stimulus

interval, with grating parameters sampled from the following uniform distributions: 0-360° for

direction, 0.01-0.16 cycles per degree for spatial frequency, and 0.5-4Hz for temporal frequency.

Both sets of gratings were presented on a gray background to match average luminance across

stimuli and windowed gradually with a Gaussian aperture mask. The contrast-modulated Gaus-

sian white noise (Niell and Stryker, 2008) tuning block consisted of movies with a 10 second
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sinusoidally contrast-modulated period from gray to full-contrast to gray, with a random spa-

tiotemporal spectrum in the Fourier domain, 1/f power spectrum with spatial frequency maxi-

mum at 0.12 cycles per degree, and flat temporal frequency spectrum with a cutoff at 4 Hz. For

influence blocks, the computer controlling the visual stimuli output digital triggers that initiated

simultaneous photostimulation. For all blocks, digital triggers from the computer controlling vi-

sual stimuli were recorded simultaneously with the output of the ScanImage frame clock for

offline alignment.

3.6.2 Experimental protocol

Before data acquisition, mice were habituated to handling, head-fixation on a spherical treadmill

(Harvey et al., 2012), and visual stimuli for 2–4 days. For each experiment, a field of view (FOV)

was selected based on expression levels of GCaMP and opsin. An average power of ∼100 mW

(measured after the objective) was used for imaging in L4. For the water immersion lens, we

used water that was boiled and then cooled, as we found that this prevented bubble formation

over the long experiments and improved imaging stability. Multiple experiments conducted in

each animal were performed at different locations within V1 or different depths within layer 4

(290–390 μm below the brain surface, median 336 μm). Before each experiment, the monitor

position was adjusted such that a movable flashing stimulus or drifting grating in the center of

the screen drove the strongest responses in the imaged FOV, as determined by online observa-

tion of neural activity. Once a FOV was chosen, a baseline image from the resonant imaging

path (∼575 × 575 μm) was stored and used throughout the entire experiment to compare with a

live image of the current FOV andmanually correct for axial and lateral drift (typically <3 μm be-

tween blocks and <10 μm over the full experiment) by adjusting the stage. A single experiment
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consisted of a seeding block of ∼5 minutes, three influence blocks of 40–60 minutes each, a

random gratings tuning block of 1 hour, and a contrast-modulated Gaussian white noise movie

block of 35–40 minutes. Together with tuning maps for direction and orientation from seed-

ing blocks, images from both the imaging and photostimulation pathway were used to visual-

ize GCaMP and opsin expression and select regions of interest for photostimulation. Within

each photostimulation block, each stimulation target was pseudo-randomly selected without re-

placement and activated at 1 Hz, such that all targets were activated in near-random order with

an identical number of repeats (180 trials per site, typically 7,200–9,000 trials total per experi-

ment). Drift and image quality stability of the experiment were verified post hoc by examining

1,000 × sped-up movies of the entire experiment after motion correction and temporal down-

sampling, and experiments that were unstable were discarded without further analysis.

The full dataset consisted of 48 experiments from 3 male and 8 female mice, with 400 control

sites and 1,398 neuron photostimulation sites, where 1,345 were significantly photostimulated

(96.2%). In total, 13,950 neurons were recorded, resulting in 392,813 pairs of target and non-

targeted neuron responses. Of the recorded neurons, 11,524 passed Gaussian process regression

fit quality criteria (described below), Of all pairs, 4,196 pairs were excluded by a local 25 μm dis-

tance threshold, and an additional 1,818 pairs were excluded by spatial overlap (described below).

This left 264,182 pairs that passed all criteria for targeted and non-targeted neurons. Note that

we refer to “non-targeted” neurons as those that were not directly targeted for photostimulation

on that subset of trials, but a targeted neuron could become a non-targeted neuron on a different

set of trials, and vice versa. Data from experimentswere stored and analyzed using a custom-built

pipeline within the DataJoint framework inMATLAB (Yatsenko et al., 2018).
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3.6.3 Seeding block-specific processing

Images from seeding blocks weremotion-corrected using a 2D cross correlation-based technique

and then synchronized to visual stimulus frames. The circular variance, used as a measure of se-

lectivity, was calculated from responses to each grating (7 different drift directions) in the orien-

tation and direction domains and summed vectorially for each pixel in the field of view (Ringach

et al., 2002). These vectors were displayed as amapwhere color corresponded to angle of the pre-

ferred orientation or direction of the resultant, and color intensity reflected the magnitude (i.e.,

selectivity for that angle) of the resulting vector (Bonhoeffer and Grinvald, 1993). The pixel

maps were then used in combination with manual online examination of GCaMP and opsin

expression to select neuron targets for photostimulation for each experimental session.

3.6.4 Photostimulation-specific pre-processing

We manually examined all sources identified near the location of each target photostimulation

site, andwhenwedidnot observe anunambiguousmatchbetween aneuron source and intended

target, we labeled that target as “unmatched” and excluded it from further analysis (195 photo-

stimulation targets). For eachmatchedphotostimulation target, we calculatedphotostimulation-

triggered average (PTA)fluorescence images for each experimental session’s FOVusing 25 frames

(∼825ms) before versus 27 frames (∼890ms) after photostimulation (e.g., Figure 2.3d). Because

a photostimulated neuron’s processes could potentially overlap with other non-targeted cellular

sources and contaminate the activity traces of those sources, we used a binarized version of the

PTA to create a spatial footprint for the targeted neuron and excluded any target-nontarget pairs

that overlapped. This primarily removed overlapping pairs that were <100 μm apart.
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3.6.5 Neuronresponsemagnitudetophotostimulationandrandomgrat-

ings

Photostimulation responsemagnitudewas calculated as the averageΔF/F for 0-825ms following

photostimulation onset, minusΔF/F for 200 to 33ms before photostimulation. For this analysis

only, each neuron’s ΔF/F trace for the random gratings tuning block and Gaussian noise movie

block was smoothed to reduce the impact of imaging noise using a Savitzky-Golay filter of poly-

nomial order 5 and a frame length of 2 seconds. The magnitude of responses to optimal visual

stimuli during the random gratings block and Gaussian noise movies block was then calculated

as the 95th percentile of the distribution of the difference between the 99th and 1st percentiles

of each trace over all trials (3 seconds and 10 seconds each, respectively).

3.6.6 Influence calculations

To quantify influence, we used a ΔActivity metric as previously described (Chettih and Harvey,

2019). For each neuron, single-trial responseswere calculated as the average value of deconvolved

activity over 31 imaging frames (1 second) from photostimulation onset. For a given neuron n

on photostimulation trial i, ΔActivityi,n, or single-trial residual, was calculated as the difference

between the activity on that trial and the average activity on control site photostimulation trials

j in which the low-contrast grating stimulus was the same as on trial i, excluding trials where the

stimulated neuron was within 25 μm. This corresponds to:

ΔActivityi,n = Activityi,n −
⟨
Activityj,n

⟩
j
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This single-trial influence value was then normalized by dividing by the neuron’s standard devia-

tionover all trials i in order to standardize relative to the variability in activity for eachneuron. For

an individual photostimulation target site, influence was calculated as the average ΔActivityi,n

over all trials i in which the target was photostimulated. For analysis of control site influence, for

each control site in an experiment, we used a leave-one-out procedure in which one control site

was excluded from trials j used in the calculation described above.

To determine whether a target was significantly photostimulated, we used a parametric shuffle

estimate in which we computed 100,000 random permutations of trial number and photostim-

ulation target (excluding trials with target photostimulation within 25 μm of a neuron), and

compared those to average photostimulation responses to individual targets over all trials. A

threshold of 5 standard deviations above shuffle was used for significance, and only photostimu-

lation of neuron sites where the average responsewas 5 standard deviations greater than expected

in the shuffled distribution were used in influence-related analyses.

3.6.7 Gaussian process regression and tuning

We used a random gratings tuning measurement block, where the parameters for the visual stim-

ulus presented on each trial were randomly sampled over a wide range of values for each feature

(drift direction, spatial frequency, and temporal frequency). Although this allowed us to cover a

broader range of stimulus parameters as compared to conventional experiments in which a set of

stimuli are repeated many times, because no two stimuli were identical, there were no repeats of

a stimulus over the course of a session andwe thus could not average responses over repeats. As a

result, we turned toGaussian process (GP) regression as amethod to interpolate neural responses

between highly similar, but not identical trials (Chettih and Harvey, 2019). GP regression is a
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nonparametric Bayesian modeling approach that aims to find a probability distribution or func-

tion that models similarities between data points in a high-dimensional space. We therefore fit

GP regression models to the data, which consisted of four dimensions: gratings drift direction,

gratings spatial frequency, gratings, temporal frequency, and the mouse’s running speed. Single-

trial responses for each neuron, whichwere computed as the average of deconvolved activity over

61 frames of visual stimulus presentation (∼2 seconds), after which a square-root transformwas

performed to approximately stabilize the noise variance (Yu et al., 2009), were considered as noisy

observations of a 4D latent function that specifies the tuning of a neuron, which the GP model

predicts. Models were built using the GPML MATLAB toolbox, version 4.2 (Rasmussen and

Williams, 2006).

The GPmodel is specified by a covariance function and its hyperparameters, which specifies the

distance or similarity of function values between data points in the 4D tuning space. We used

a squared exponential covariance kernel function k(x, x′), one of the most widely used, as it is

used to model smooth functions. All hyperparameters were selected by optimizing the marginal

likelihood. The hyperparameters include the scale of the covariance function σ2c , as well as indi-

vidual length scales that are defined for each input tuning dimension (note that drift direction

was first projected into the complex plane) in diagonalmatrixP with entries λ21 , · · · , λ24, for which

larger values mean that the function is smoother and shows less sharp tuning. This is formalized

as:

k(x, x′) = σ2c exp(−(x− x′)P−1(x− x′))

We used a Gaussian likelihood function with a hyperparameter for the level of response variabil-

ity, such that finite samples of the latent function and noisy observations at arbitrary locations
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have joint Gaussian distributions. By conditioning the joint Gaussian distribution on the obser-

vations (the training set), we can then sample from the joint posterior distribution to generate

values at unobserved locations (the test set).

As ametric formodel accuracy, we divided each neuron’s responses in the gratings block (∼1,200

trials) into 20 subsets and predicted responses for each subset (“test”) using data from the other

19 subsets (“train”), and then correlated the predictions with actual recorded data. We com-

pared model train and test accuracy to visualize overfitting (Figure 3.5b) and draw a threshold

for which neurons to consider for GP tuning-based analyses. Signal correlations were computed

as the Pearson’s linear correlation coefficient between GP model single-trial test predictions on

held-out data (using 20-fold cross-validation for predictions on all trials) for each pair of neurons.

We considered these to be equivalent to the standard definition for signal correlations computed

on mean responses to a discrete set of stimuli, as the GP predictions are average responses in-

ferred from interpolation between trials of similar stimulus parameters. Noise correlations were

computed as the Pearson’s linear correlation of single-trial residuals, calculated from model pre-

dictions on test data and actual single-trial responses, using the same procedure on held-out data

described above. Using the same reasoning as for signal correlations, this definition for noise cor-

relations is also equivalent to the typical definition. Because signal and noise correlations were

based onGPmodel fits, we removedneuronswithpoorly-fitmodels from subsequent analyses by

setting the following inclusion criteria: each neuron in a photostimulation target-nontarget pair

needed to have model accuracies (Pearson correlation between predicted and actual responses)

of >0.2 and a difference between train and test accuracies of <0.15 to exclude overfit neurons, as

described above. Note that these inclusion criteria applied only to analyses in which tuning was

considered (i.e., not to analyses of influence and distance, neuron versus control site influence,
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etc.).

Because the GP model fits to neural responses were in the form of a nonlinear 4D tuning func-

tion, we extracted 1D tuning curves by examining a dimensionwhile fixing the other dimensions

at the values that each showed the highest response, and repeating this for all dimensions. For

example, we fixed spatial frequency, temporal frequency, and the mouse’s running speed at the

values that drove the highest amount of neural activity, and then looked at drift direction tuning.

To do so, we found the location where the latent response was maximized by starting at the lo-

cation of the maximal single-trial prediction, and then using a grid search over nearby locations

in 4D. Once this location was determined, we then fixed three dimensions and varied the fourth,

as described above, to extract a tuning curve. Preferred stimulus values were also extracted from

these tuning curves. The tuning curves were also used to determine how strongly each neuron

was tuned to each tuning dimension by calculating a depth ofmodulation indexDOMd for each

dimension d, which was defined as follows:

DOMd =
max(td)−min(td)√
σ2max(td)

+ σ2min(td)

where td is the tuning curve for a neuron for the dth dimension, and σ2max(td) and σ2min(td) are the

variance of the posterior distribution at the maximum and minimum tuning value locations,

respectively. Neuronswith aDOM>2 for a givendimensionwere considered significantly tuned.

When tuning for individual features was considered in an analysis, only neurons passing this

significance threshold were used (Figure 3.5, Table 3.1).
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Tuning dimension Number of neurons % of tuned neurons % of all neurons
Drift direction 8,099 78 64

Spatial frequency 10,175 88 73
Temporal frequency 5,701 49 41

Running speed 7,254 63 52

Table 3.1: Significantly tuned neurons for each tuning dimension, from GP regression. Number
of neurons: neurons passing GP fit criteria and DOM > 2; percentage of tuned neurons, denominator is
total number of neurons passing GP fit criteria; percentage of all neurons, denominator is total number
of recorded neurons.

3.6.8 Gaussian noise movies

In addition to the influence and gratings tuning blocks described above, we also included an ex-

perimental block in which we displayed contrast-modulated Gaussian noise movies (Niell and

Stryker, 2008) for ∼40 minutes to estimate linear receptive fields (RFs). The movies were gen-

erated with a random spatiotemporal frequency spectrum in the Fourier domain. Spatial fre-

quency dropped off as A(f) ∼ 1/(f+ fc), where fc = 0.05 cycles per degree (cpd) and with a max-

imum spatial frequency of 0.12 cpd. The temporal frequency spectrum was flat with a sharp

cutoff at 4 Hz. The spectrum was inverted to generate a spatiotemporal movie at 2560 × 1440

pixels and displayed at 60 frames per second. Each movie was 10 seconds long and cycled sinu-

soidally from 0% to 100% contrast and back to 0% contrast. A total of∼240movies were played,

for∼40 minutes of total presentation.

3.6.9 Receptive field measurement

Linear RFs were estimated from the Gaussian noise movie tuning block. The movie resolution

was downsampled by a factor of 3 for computational efficiency and the movies were shifted by

3 frames (∼100 ms) to account for lag (e.g., from the delay between visual stimulus generation

and display on themonitor, latency in spikes from the retina to the brain, GCaMPfluorescence).
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The spike-triggered average (STA) images, or linear RFs, of the contrast-modulated noise movie

responses was calculated as the reverse correlation of deconvolved neuronal activity with the im-

ages. To determine whether the RF for a given neuron was significant, we adapted a previously

described procedure (Cossell et al., 2015). For each neuron, we randomly shuffled the response

vector of spiking activity to the movie sequence and repeated the reverse correlation. This pro-

cedure was repeated 100 times to produce 100 shuffled RFs, from which the mean (μshuffle) and

standard deviation (σshuffle) were calculated. RFs that contained any pixels with absolute values

> μshuffle + 5 ∗ σshuffle, where 5 denotes the number of standard deviations from the mean, were

defined as significant. Using this definition, the fraction of neurons with significant RFs was

42.7% (5,954/13,950, range over sessions: 22.2%–65.2%).

We parameterized RFs by fitting a two-dimensional elliptical Gaussian function, hereafter re-

ferred to as Gabor. The general function is described by

G(x, y) = A0 + A exp[−(a(x− x0)2 + 2b(x− x0)(y− y0) + c(y− y0)2)]

where

a =
cos2 θ
2σ2X

+
sin2 θ
2σ2Y

b =
sin 2θ
4σ2X

+
sin 2θ
4σ2Y

c =
sin2 θ
2σ2X

+
cos2 θ
2σ2Y

and A0 is a constant term, A is the amplitude, (x0, y0) is the center of the Gaussian, σX and σY

are standard deviations of the Gaussian perpendicular and parallel to the grating axis, and θ is

orientation.
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To ensure that only Gabors that were well-fitted to the raw STAs were used for analysis, we im-

posed an additional criterion that the pixel–pixel Pearson’s correlation coefficient between a neu-

ron’s raw STA and fitted Gabor needed to be >0.3. Under this requirement, 29.3% of neurons

(n= 4,086) bothwere significant and passed this fit quality controlmeasure. TheGabor fits were

also used to define ON and OFF subregions (Figure 3.6). ON subfields were defined as regions

of the fittedGaborwith pixels that were >20% of themaximum absolute value of theGabor, and

OFF subfields were defined as regions of the fitted Gabor with pixels that were <20% of the neg-

ative of the maximum absolute value of the Gabor (Cossell et al., 2015). The amount of overlap

(0 ≤ overlap ≤ 1) between a target-nontarget neuron pair was defined as

|A ∩ B|
|A ∪ B|

or

OverlapON+OFF =
|(AON ∩ BON) + (AOFF ∩ BOFF)|
|(AON ∪ BON) + (AOFF ∪ BOFF)|

where A and B are the regions of visual space covered by a target and non-targeted neuron’s ON,

OFF, or both (ON+OFF) subfields. We also developed an overlap metric that we called “single-

field overlap,” inwhichwe combined theONandOFF subfields into one subfield and computed

overlap in the same way as described above. For RF-associated analyses, a total of 113,794 pairs

(113,794/386,799 = 29.4%) of target-nontarget RFs (where targeted neurons were significantly

photostimulated, showed no overlap with non-target neuron sources, were at least 25 μm away,

each neuron’s raw STA RF was significant, and the fitted Gabor had a correlation coefficient of

>0.3with the rawSTA)were used. When adding in an additional requirement that these neurons

needed to also pass GP fit quality criteria as described above, 83,997 pairs (21.7%) were used in
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analysis.

3.6.10 Influence regression and associated analyses

We used two approaches to analyze influence values. First, we used multiple linear regression

(Figure 3.7c-e) to understand the relationship between activitymetrics (anatomical distancewith

signal or noise correlations) and influence. The columns of the designmatrix included piecewise

linear terms for distance (<150 μm, 150–450μm, and>450 μm segments), linear terms for signal

correlation and noise correlation and an interaction term between them, and linear interaction

terms between signal correlation and noise correlation with log-transformed distance. Predic-

tors were z-scored so that coefficient magnitudes could be fairly compared. We estimated regres-

sion coefficients for each predictor from 10,000 data points that were resampled for each. From

these bootstrapped distributions, we obtained median coefficients, confidence intervals, and P

values (described below). For tuning and RF components regression, we constructed separate

alternate regression models in which signal correlation and interactions were replaced by tuning

curve correlations or RF features. For each of these features, data were restricted to neuron pairs

that passed photostimulation and tuning criteria (i.e., >25 μm apart, no spatial footprint overlap,

GP fit quality criteria described above, or RF fit quality criteria described above). Note that the

GP regressionmodel predicted grating drift direction over 360°, sowe extracted direction tuning

curves by computing the difference across both directions (0-180° and 181-360°) over each orien-

tation, and extracted orientation tuning curves by averaging tuning curves across both directions

for each orientation.

We also computed running averages for influence versus different metrics (Figure 3.7f-l). We

chose center locations to span the full range of values for the metric, and manually specified
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bin width in either percentile space or real value space. In each plot, x values were the average

value of the smoothed variable within a bin, and standard error for each bin was estimated using

bootstrapping. The 1D average plots were used as a complementary visualization to themultiple

linear regression analyses.

3.6.11 Statistics

The statistical tests used were generally non-parametric. To calculate standard errors, we re-

calculated a test statistic (e.g., mean or standard deviation) on 1,000 samples from the full dataset

with replacement, and then took the standard deviation over bootstraps. To determine signif-

icance of coefficients from influence regression, we repeated the influence regression calcula-

tion 10,000 times on resampled data. Plots showing regression coefficients (Figure 3.7c-e) are

shown as the percentiles of this bootstrap distribution. P values reported are calculated as two

times the fraction of the distribution where the coefficient was 0 or opposite sign of the median

value.
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4
Discussion and Future Experiments

4.1 Feature-specific amplificationwithin V1 L4

4.1.1 Summary

By manipulating activity in neurons with identified tuning properties, we have explored the lo-

cal transformations that L4 of V1, the main input layer from thalamus, performs during visual

processing. We first developed an approach to co-express an opsin and a calcium indicator in

excitatory L4 neurons. During visual stimulus presentation to awake mice, we used two-photon
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optogenetic stimulation of individual cells while imaging responses of the local population. Sep-

arately, we characterized the activity and tuning profiles of L4 neurons to different sets of visual

stimuli in order to build an understanding of how functional properties relate to neuron-neuron

influence. Using the influence mapping technique, we have shown that L4 contains signatures

of feature-specific amplification.

Multiple components contributed to influence in L4. First, excitatory neurons showed strong

local influence, which decayed over greater anatomical distances between neuron pairs. This ef-

fect could be related to amplification based on greater similarity in representations of visual field

position. Second, influence was also positively related to noise correlations at short but not long

intersomatic distances, pointing towards a role of local connectivity in driving shared variability

in nearby neurons, in combination with common feedforward inputs that also affect broader

spatial scales. Third, signal correlations also had a positive relationship with influence, but in a

distant-invariant manner, such that neurons with similar activity profiles tended to recruit activ-

ity from one another regardless of their distance apart. Not all tuning properties examined were

related to amplification. This is perhaps unsurprising, as having highly constrained excitatory

connectivity over many features would lead to very little action potential generation and would

likely be an unusable circuit architecture. We found that amplification was specific to neurons

with certain preferred visual stimulus features and sharedRFproperties. The specificity in ampli-

fication for features such as orientation, temporal frequency, and RF overlap provides support

for the idea that these representations are locally transformed within L4, unlike others that are

instead reflective of inputs to L4. Together, these factors that contribute to influence provide

new causal evidence for the existence of a like-excites-like computation in L4.
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4.1.2 Comparison to previous results

Anatomy-informed computational modeling studies have proposed that recurrent intracortical

excitation in L4 amplifies incoming thalamic signals (Douglas et al., 1995; Somers et al., 1995;

Van Vreeswijk and Sompolinsky, 1996). Previous experimental studies have supported this idea

and shown that L4 in V1 amplifies the magnitude of incoming weak thalamic sensory responses

without altering their tuning (Li et al., 2013b; Lien and Scanziani, 2013). Similar observations

of intracortical excitation of thalamocortical inputs have also been made in L4 of auditory cor-

tex (Li et al., 2013a). In addition, visual RFs in L4 were shown to be smaller but with the same

shape when cortical activity was silenced, suggesting that expansion of RFs occurs from horizon-

tal intracortical excitatory circuitry recruiting additional inputswith a bias along the L4 cell’s pre-

ferred orientation (Li et al., 2013b). However, the exact mechanism by which these phenomena

occur has not been shown. A recent study with biophysically-detailed modeling has proposed

that like-to-like functional connectivity is necessary in L4 to reach physiological levels of tuning

selectivity (Arkhipov et al., 2018). Prior to our workwith influencemapping in L4, how this am-

plification can occur had not been directly tested or shown experimentally. Our result that L4

performs feature-specific amplification is consistent with these studies and, to our knowledge,

provides the first direct causal evidence that this computation arises via like-to-like functional

connectivity.

4.1.3 Function of amplification

Amplificationwithin L4 could increase the gain of responses to sensory stimuli, such that the sig-

nal of stimulus-relevant information is boosted and has higher fidelity before then being relayed

to downstream targets. This type of computation in L4 could also be important for performing
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pattern completion from noisy or degraded sparse inputs to expand and stabilize the representa-

tion of visual information content. Once this reliable neural code is establishedwithin the cortex

in L4, downstream recipient neurons in L2/3 could then use these more robust inputs to do in-

ference of the underlying visual stimulus properties. This process could be further aided by local

L2/3 circuitry employing feature competition to suppress redundant information and create a

more efficient neural code, as has been proposed by previous work (Chettih and Harvey, 2019;

Olshausen and Field, 1997, 2004).

4.2 Utility of influence mapping

Influence mapping is not a replacement for approaches that measure anatomical connectivity

such as structuralmicroscopy or physiology, but serves as a complementary technique that builds

upon this type of work and provides functional, causal measurements of microcircuit architec-

ture in vivo that may not have been intuitive otherwise. For example, a neural network with a

particular connectivity structure might operate in fundamentally different regimes depending

on factors such as the visual inputs it receives or more general modulatory processes like atten-

tion and arousal. Predicting computations in vivo may therefore not be directly possible from

connectivity measurements alone, demonstrating a need for methods that use manipulations to

study functional interactions between neurons. One in silico demonstration of this comes from

a recent study that used simulated optogenetic perturbations in a model of V1 constrained by

experimental data (Cai et al., 2020). In general, there were transitions between like-to-like excita-

tion and inhibition (i.e., robustness versus redundancy reduction) depending on visual stimulus

contrast. These results demonstrate that within recurrently-connected networks with fixed con-

nectivity, perturbation-based techniques can reveal computations that differ based on network

71



state, highlighting the need for these types of causal methods to understand functional neural

architectures.

4.3 Modifications and additional experimental directions

There are a number of possible modifications to the influence mapping experiments that have

been described in the previous chapters. As would be predicted from computational studies,

it is also plausible that depending on the types of perturbations used (e.g., multi-neuron pho-

tostimulation), visual stimuli and their parameters (e.g., high contrast stimuli, natural images),

or behavioral context (e.g., visual detection or discrimination tasks), different types of computa-

tions may be revealed. This work acts as a foundation for future studies to further characterize

the functional structure of V1.

4.3.1 Influence at the population versus single-neuron level

Because influence measurements from individual neuron pairs were noisy in our experiments,

we chose to focus on analyses at a population level by pooling data over the thousands of pairs

recorded in each experimental session. Subsequent experiments could instead focus on photo-

stimulating fewer targets but increasing the total number of stimulation trials per target, in order

to build up statistical significance on a single-pair basis rather than relying on averaging over large

populations. This approach would then allow for claims about the influence of individual neu-

rons.
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4.3.2 Decreasing opsin density to improve photostimulation resolu-

tion

Weused fairly dense expressionof opsin inL4neurons. To improve resolution and further reduce

effects from off-target photostimulation, an alternative expression strategy is to still express Cre-

dependent GCaMP in Scnn1a-Tg3-Cre mice, but use Cre-dependent Flp with Flp-dependent

opsin. GCaMP expression would continue to be dense, but the sparseness of opsin expression

could be tuned independently fromGCaMP,whichwas not possible with the labeling approach

used in the experiments described in previous chapters.

4.3.3 Alternative visual stimuli

During influence blocks, mice passively viewed low-contrast drifting gratings. Computations

within V1 may depend on the intensity of visual stimulation (i.e., low or high contrast), which

could recruit different relative levels of excitation and inhibition for visual detection versus dis-

crimination modes (Polat et al., 1998). Under conditions of increasing visual stimulus contrast,

computations may shift from amplification, which may be beneficial for detection, to competi-

tion in order to suppress runaway excitation and sharpen tuning for discrimination. It therefore

would be of importance to conduct experiments under different stimulus contrasts to probe

these types of questions. In addition, although drifting gratings have commonly been used to

study V1, they are a simplistic stimulus and are not fully representative of scenes that an animal

might encounter in its lifetime. To understand influence during presentation of a more etholog-

ically relevant visual stimulus, an alternative could be to show natural movies (David et al., 2004;

de Vries et al., 2020; Yoshida and Ohki, 2020) during photostimulation.
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4.3.4 Inhibition in L4

We did not examine the role of inhibition within L4. However, to build up amore complete pic-

ture of the functional architecture of L4, it will be important to understand whether inhibitory

neurons act as gain control or response normalization of excitatory activity (Hofer et al., 2011;

Kerlin et al., 2010; Packer and Yuste, 2011), although this seems unlikely given the specificity of

influence, or instead interactwith excitatory neurons in amore structuredmanner (Runyan et al.,

2010;Wilson et al., 2012; Yoshimura and Callaway, 2005; Znamenskiy et al., 2018). Possibilities

for future experiments include photostimulating L4 excitatory neurons while imaging responses

in both excitatory and inhibitory neurons, including a nuclear label for the latter (e.g., with the

mDlx enhancer) to differentiate between cell types online; another variant is to instead stimulate

inhibitory neurons to understand their influence on the local network with respect to tuning.

Because previous studies have proposed different roles for inhibitory neuron subtypes such as

parvalbumin, somatostatin, and vasoactive intestinal peptide-expressing interneurons (Adesnik

et al., 2012; Chen et al., 2015; Dipoppa et al., 2018; El-Boustani and Sur, 2014; Fu et al., 2014;

Khan et al., 2018; Kvitsiani et al., 2013; Ma et al., 2010; Makino and Komiyama, 2015; Pakan

et al., 2016; Pfeffer et al., 2013; Pi et al., 2013; Poort et al., 2015; Wilson et al., 2012; Xu et al.,

2013; Yang et al., 2016), these experiments could be combined with post-hoc immunostaining,

transgenic mouse lines with inhibitory neuron-specific Cre expression, or viruses with subtype-

specific enhancer elements. Interneuron subtypes may show distinct structures of influence,

which could support unique roles in contributing to cortical computations. For example, rep-

resentations could be sharpened with tuned inhibition in like-inhibits-unlike motifs. Another

possibility is that inhibition could influence excitatory inputs to generate newproperties, such as

direction selectivity. By combining excitatory and inhibitory influence mapping analyses, it may
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be possible to understand how the interplay of cell type-specific influence contributes to cortical

computations in L4.

4.3.5 Transformations between cortical layers

Understanding how information is transformed between cortical layers is an open area of re-

search. One classical proposed transformation comes from influential early studies fromHubel

and Wiesel, in which the generation of complex cells in superficial layers was proposed to arise

from integration of feedforward simple cell inputs from deeper layers (Hubel andWiesel, 1962).

Work in anesthetized cats demonstrated that inactivating L4 suppressed L2/3 complex cell ac-

tivity (Martinez and Alonso, 2001). In mouse V1, the distribution of simple and complex cells

across layers is skewed such that complex cells are more numerous in L2/3 than in L4 (Li et

al., 2015), consistent with the model in which complex cells are synthesized from summation

of convergent simple cell inputs. Photostimulating ON/OFF phase-offset iso-oriented L4 sim-

ple cells, which would be predicted to activate neurons with phase-invariant complex activity

in L2/3, would directly test these long-standing hypotheses about the mechanism of complex

cell RF formation. Another test could be to stimulate L4 cells with spatially offset RFs, which

might recruit L2/3 neurons with elongated receptive fields. Using influence mapping experi-

ments, we can build upon existing literature using causal, functionally-defined manipulations

to understand at a single-neuron level how higher-order representations are constructed in the

visual system.

Another related line of exploration is understanding more generally how L4 neurons influence

each other versus how they influence L2/3 neurons, which are proposed to be the primary recip-

ients of feedforward excitation from L4. Are there similar like-to-like motifs between L2/3 and
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L4 as we have observed in local L4 experiments, and are there signatures of how selectivity for

different tuning features might arise across layers? Connected L2/3 neurons have been shown

to share common excitatory input from L4, which could explain inheritance of visual selectiv-

ity across layers (Yoshimura and Callaway, 2005; Yoshimura et al., 2005). Recent studies using

transsynaptic retrograde tracing with two-photon imaging in mouse V1 found that presynaptic

L4 networks exhibit similar orientation and direction tuning, which can match the preference

of a starter postsynaptic L2/3 cell (Rossi et al., 2020;Wertz et al., 2015). Furthermore, L2/3 neu-

rons are proposed to inherit orientation tuning fromL4 inputswith similar preferred orientation

that are arranged along the same axis in retinotopic space (Rossi et al., 2020). In a study ofmouse

L2/3 V1 combining in vivo calcium imaging with in vitrowhole-cell recordings, ON+OFF over-

lap, OFF overlap, and RF correlation (in addition to response correlation) were found to best

predict connection amplitude between pairs of neurons (Cossell et al., 2015) – the same features

that we found to be positively related to influence in L4. One possibility is that L4 neurons recur-

rently amplify activity from other local neurons sharing those features, and this transformation

is then inherited by L2/3. Together, these data suggest that fine-scale cortical subnetworks that

are co-tuned for particular visual features combine to mediate processing of visual information

and give rise to feature selectivity. Influence mapping could be applied to functionally-defined

subsets of neurons to validate these models of how information is reshaped between cortical

layers. To understand whether interlaminar computations are facilitated by inputs with similar

functional properties and specific anatomical organization, it would be possible to photostimu-

late L4 neurons with defined functional properties while simultaneously imaging responses in

L2/3.
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4.3.6 Other extensions

Here, we have primarily discussed experiments to understand transformations within the pri-

mary input layer in V1, L4, and its main targets in L2/3. Future work could also examine the

computations in cells labeled depending on their projection patterns or in downstream output

layers 5 and 6 that project to other areas in the brain, which could therefore contain unique orga-

nizational motifs. Along a similar vein, it may also be interesting to perform influence mapping

on different transcriptomic cell types. More generally, influencemapping could be used to probe

computations in neural populations throughout processes that evolve over time, such as during

development or learning.

4.4 Conclusion

InChapter 2 and 3, we have demonstrated the application of influencemapping in combination

with characterizing visual tuning to understanding local computations within L4 of V1, and

we show that L4 performs feature-specific amplification. Previous techniques have lacked the

ability to link synaptic and functional levels. Understanding how low-level features contribute

to computations is also still relativelyunknown,withmanymodeling studies frequently omitting

these to limit complexity, which further motivates studying recurrent cortical networks without

directly taking connectivity into account. The influence mapping approach is therefore a much-

needed accompaniment to existing technologies and theoretical studies for understanding neural

computations, and can be extended to many different lines of investigation.
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