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Abstract: 
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in 
quantitative data. The patterns identified by ML could be used for exploratory inductive or 
abductive research, or for post-hoc analysis of regression results to detect patterns that may have 
gone unnoticed. However, ML models should not be treated as the result of a deductive causal test. 
To demonstrate the application of ML for pattern discovery, we implement ML algorithms to study 
employee turnover at a large technology company. We interpret the relationships between variables 
using partial dependence plots, which uncover surprising patterns that may have gone unnoticed 
using traditional methods. To guide readers evaluating such pattern discovery, we provide guidance 
for evaluating model performance, illustrate human decisions in the process, and warn of common 
misinterpretation pitfalls. An online appendix provides code and data to implement the algorithms 
demonstrated in the paper. 
 
 
 
Managerial Summary: 
Supervised machine learning (ML) methods are a powerful toolkit that might help managers and 
researchers discover interesting patterns in large and complex data. We demonstrate this by using 
several ML algorithms to investigate the drivers of employee turnover at a large technology 
company. We evaluate the performance of the models, and use visual tools to interpret the patterns 
revealed. These patterns can be useful in understanding turnover, but we caution not to confuse 
correlation with causation. These methods should be viewed as “exploratory” and not conclusive 
proof of relationships in the data. Our guidance can be helpful for managers evaluating analysis 
conducted by data scientists in their organizations.  
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1. INTRODUCTION 

Machine learning (ML) methods represent an exciting but underutilized toolkit for strategy and 

management researchers.2 Greater adoption of these methods could be facilitated by illustrating 

relevant applications of ML to research in our fields. This paper attempts to make progress in this 

direction by using real-world data to demonstrate a specific application of supervised ML methods: 

as an exploratory tool to discover robust patterns in quantitative data. These patterns can be used as an 

“observation” for further exploratory inductive or abductive research. These observations can help 

researchers formulate better hypotheses grounded in data, which can later be deductively tested 

using traditional econometric tools. The pattern discovery capabilities of ML could also be helpful 

during post-hoc analysis of traditional regression results to detect patterns that may have gone 

unnoticed. 

In addition to demonstrating the application of ML as a useful tool for pattern discovery, 

this paper also provides guidance for readers to evaluate the work of researchers who use this tool. 

As a new methodological framework in our fields, it is important to establish a basis for how to 

evaluate whether researchers made appropriate choices when applying machine learning methods. In 

other words, what should readers look for in the methods section of the paper that uses ML 

methods for pattern discovery?  In summary, while the first goal of this paper is to illustrate the use 

machine learning for exploratory pattern discovery, the second goal is to provide guidance for 

readers to evaluate such work. 

 Using ML for pattern discovery should be viewed as a complement (not a substitute) to 

traditional econometric hypothesis testing (Mullainathan and Spiess, 2017). In the traditional 

econometric approach, researchers typically specify a linear model, which yields coefficients that 

 
2 To date, ML has mostly been used to classify meaning embedded in unstructured text and image data to use as 
variables in traditional econometric models (Kaplan & Vakili, 2015; Choudhury, Wang, Carlson, & Khanna, 2019; Gross, 
2018; Menon, Choi, & Tabakovic, 2018; Furman & Teodoridis, 2020). 



Strategic Management Journal (forthcoming) 

3 
 

represent the best-fitting linear relationships between 𝑦 and 𝑋. This procedure imposes strict 

functional form assumptions, but yields statistically consistent, interpretable coefficients that can be 

used to test hypotheses (e.g. rejecting a null hypothesis). This is the preferred approach when 

researchers can pre-specify clear hypotheses and an appropriate linear model to test.  

In contrast, ML methods can be used for discovery-driven (e.g. inductive or abductive) 

research. This is because, unlike traditional methods, ML algorithms can reveal complex patterns in 

𝑋 that relate to 𝑦 using structure that was not specified a priori. Unlike econometric hypothesis 

testing, ML algorithms build models with flexible functional forms that maximize a model’s 

performance using explanatory variables (𝑋) to predict an outcome (𝑦̂). The resulting functional 

forms of the models can highlight surprising underlying relationships in the data. In other words, 

rather than deductively testing a model specified ex ante by the researcher (as is the case with 

traditional econometric analysis focused on inference), ML algorithms inductively build a model 

from the data to reveal patterns. These properties also make ML a useful tool in post-hoc analysis of 

traditional regression results to detect patterns that may have gone unnoticed. 

Thus ML methods can potentially bring quantitative empirical researchers closer to the 

tradition of grounded theory in which researchers identify patterns in the data and build models 

based on data (Glaser & Strauss, 1967; Eisenhardt, 1989, Bamberger and Ang, 2016). In the broader 

literature in organization science, Mantere and Ketokivi (2013) state the act of reasoning on the part 

of managers and researchers alike takes three forms:  deduction, induction and abduction. Deductive 

reasoning takes the rule and the explanation as premises and derives the observation. Inductive 

reasoning combines the observation and the explanation to infer the rule, thus moving from the 

particular to the general. Abduction begins with the rule and the observation; the explanation is inferred 

if it accounts for the observation in light of the rule. For example, if marbles in a bag are white (rule) 

and I am given a white marble (observation), then perhaps the marble came from the bag (explanation) 
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(Mantere and Ketokivi 2013). We argue that ML methods could provide researchers with a novel 

and robust observation. The ML methods do not build theory itself—rather they represent tools which 

can generate an observation that aids the process of building theory. The process may be inductive 

or abductive, depending on which is taken as given—the explanation or the rule. 

 To illustrate the use of ML for pattern discovery, we implement several ML algorithms using 

employee turnover data from a large technology company. Most ML-built models do not yield 

familiar linear coefficients, so interpretation can be difficult. Fortunately, regardless of the algorithm 

used to build a model, we can visualize the relationship between 𝑦 and 𝑋 by using partial dependence 

plots (Friedman 2001; Zhao and Hastie 2018). This tool displays how the predicted outcome changes 

in response to a variable, conditional upon all other variables in the model. For our dataset, partial 

dependence plot visualizations of the models uncover an interesting pattern in the data that is robust 

across algorithms. A small group of employees who scored poorly in onboarding training were 

dramatically more likely to leave in their first six months at the company. If we had estimated a naïve 

linear model, we would have found a statistically significant negative relationship between training 

performance and turnover probability. In fact, only the small subset of employees who scored 

poorly during training were more likely to leave, and only during the first six months. This effect was 

large enough to drive a negative global effect at odds with the true positive effect for the majority of 

employees. A well-trained econometrician might discover these or similar patterns in the data 

without ML methods, but it would be difficult and time consuming to do so in a systematic way, 

especially with a larger number of covariates and a large set of possible interactions or nonlinearities.  

This example serves as a proof-of-concept that ML can be useful for discovering meaningful 

patterns in the data that may have gone unnoticed—potentially leading to imprecise measurement 

and incomplete views of empirical relationships. 
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 We also provide guidance on evaluating empirical work that use ML methods for pattern 

discovery. First, we summarize and provide guidance on making effective decisions at each step of 

the ML process, from selecting covariates to evaluating model performance. These guidelines can be 

helpful to both researchers and readers of work that uses ML methods for pattern discovery. 

Second, to evaluate performance of models, we discuss various metrics and illustrate the use of two 

plots: (1) a plot that compares training and validation loss (i.e. error); and (2) a receiver operating 

characteristic (ROC) plot, which is a graphical comparison of the rate of true and false positives. 

Third, we warn of pitfalls that often lead to misinterpretation of ML results and emphasize 

throughout the paper that ML is not a license to bypass rigorous causal thinking. ML analysis should 

be considered exploratory rather than as a result of a causal test. Furthermore, we caution against 

testing ML-identified patterns using the same dataset as though they were pre-specified hypotheses. 

This would be a form of hypothesizing after the results are known (HARKing), which is a violation 

of the assumptions of deductive hypothesis testing. 

 In summary, effective use of ML requires human agency and expertise. The name “machine 

learning” should not be taken literally—as we illustrate, human researchers using these methods 

make meaningful decisions in every step of the analysis (summarized in Table 1). The guidelines 

summarized in our paper can be helpful for researchers attempting to implement these methods, 

and for readers to hold them to a high standard. We now illustrate the use of ML methods for 

robust pattern discovery and how to visualize, interpret, and evaluate such patterns. The online 

appendix provides code and simulated data to help readers apply these tools.3 

 

2. GUIDANCE FOR IMPLEMENTING AND EVALUATING ML IN RESEARCH 

 
3 Python version of code: https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-python; 
R version of code: https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-r 

https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-python
https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-r
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In this section we provide general intuition, and a step-by-step framework for understanding ML 

implementation for pattern discovery. In the next section we demonstrate a concrete example.  

2.1 What is Machine Learning? Some Intuition. 

 First, we provide some intuition on ML methods (for technical foundations of ML, see 

Hastie et al. 2009). Consider the task of identifying chairs in images (example from Autor 2015). We 

can feed an ML algorithm thousands of example images marked as “chair” or “not chair”. The 

algorithm discovers complex nonlinear and interdependent relationships in pixel clusters that are 

correlated with images labeled as a “chair”. The algorithm is adjusted to build many different models 

of these correlations. Finally, the model that performs best on out-of-sample images is selected as 

the final model.4 

 A strength of ML models is the capacity to discover complex relationships, but it is also 

important that models are generalizable. The best model to predict in-sample outcomes for any data 

would simply specify the actual outcome for each data point. Yet such a model would not be 

generalizable, and would perform very poorly out-of-sample. Instead, ML algorithms attempt to find 

a model that best fits a sample dataset without overfitting, so the model performs well out-of-sample. 

The tension between fitting the in-sample data perfectly and generalizing to out-of-sample data is 

known as the bias-variance trade-off (see Figure 1). As a model is overfit (i.e. relies on idiosyncrasies 

of in-sample data for prediction), its bias decreases but its variance increases, making it less 

generalizable. An underfit model is biased because it is too simple to describe the data. 

-------------------------------------- 
Insert Figure 1 about here 

      -------------------------------------- 

 
4 Contrast that approach with a linear regression, in which we specify the functional form of a model that estimates a 
linear coefficient for each variable. Regardless of the true relationships in the data, this procedure will find the best fit for 
the specified model, with no flexibility in functional form. We could explore new model structures by manually adding 
interaction or polynomial terms, but trying all the possible combinations would be difficult, time consuming, and non-
exhaustive. Furthermore, if we intend to make inferences, trying many models would quickly violate the assumptions of 
using pre-specified hypotheses. 
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 The ML approach includes an arsenal of techniques such as cross-validation and 

regularization (discussed later) that limit a model’s capacity to describe in-sample data. These 

limitations are necessary for the model to perform well out-of-sample. An important idea in 

implementing ML is experimenting with different constraints on model descriptive capacity to find 

the model that performs best out-of-sample.5 

Showing the actual mathematical details of ML implementation is beyond the scope of this 

paper. However, it is helpful to understand a few terms for the sake of intuition. The mathematical 

objective of any ML algorithm is to build a model that minimizes a loss function (aka objective 

function or error function). The loss function is simply a way to measure the error of a model—to punish 

models for predictions that do not match the observed data. Certain loss functions are better for 

certain tasks. For example, we might want the loss function for a medical diagnosis algorithm to 

punish models for false negatives more than false positives. In practice, the default loss functions 

provided by statistical packages are usually sufficient. Throughout this paper, we use a loss function 

foundational for many classification problems: the log-loss function.6  

It is also important to clarify differences between the following terms: “algorithm”, the 

“model”, and the “loss function”. In this paper, we refer to the “algorithm” as the computational 

procedure that is used to build the “model”. The “model” is simply a function that produces a 

 
5 Once we have a model built by an ML algorithm, why can’t we use the model to make inferences about underlying 
relationships in our data? The reason is that ML algorithms build a model based on how well it predicts the outcome, 
not whether the model is “correct”. The algorithm may substitute the true explanatory variable with a highly correlated 
variable that has no effect on the outcome in the real world.  There are other issues as well, such as the fact that it is 
difficult to calculate standard errors that account for how the model was selected. Thus ML algorithms’ strength 
(flexibility fitting many different functional forms) can be an “Achilles’ heel” for inference (Mullainathan and Spiess, 
2017). Though causal inference is not the focus of this paper, there has been some notable progress in designing ML 
methods that can be helpful for causal inference under certain conditions. (Athey and Imbens, 2015; Zhao and Hastie, 
2018) 

6 The log-loss function is ℒ(𝜃) = − 
1

𝑛
∑ 𝑦𝑖 log[ℎ𝜃(𝑥𝑖)] + (1 − 𝑦𝑖) log[1 − ℎ𝜃(𝑥𝑖)]𝑖 . The term 𝜃 represents the model 

parameters. The term ℎ𝜃(𝑥𝑖), the “hypothesis”, represents the predicted probabilities of the model given an observation 

𝑥𝑖 . The terms 𝑦𝑖 and 𝑛 represent the outcome variable and the number of observations. 
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prediction when given an input of observed data. The “loss function” is used to evaluate the 

performance of the “model”. The online appendix (Appendix 1) provides greater detail for 

conceptually understanding the loss function. 

2.2 Step-by-step implementation framework 

Armed with some foundational intuition, we now provide a step-by-step framework designed to 

guide researchers implementing or evaluating ML. These steps outline a structured process for 

adjusting algorithms until they produce models that perform well in out-of-sample data. Although 

the term “machine” learning evokes images of machine autonomy, each step of the process requires 

considerable human input. Table 1 summarizes the steps of the ML process, human decisions 

required at each step, and guidance for how to evaluate the decisions that have been made.  

-------------------------------------- 
Insert Table 1 about here 

      -------------------------------------- 
Step 1: Select data and explanatory variables  

Arguably, the first step of any empirical analysis is to select a dataset and the set of variables to 

consider. As with other forms of empirical analysis, ML researchers are guided by prior literature in 

selecting the universe of variables to analyze. This decision is affected by the same sets of 

considerations and biases affecting researchers of prior methods, even in highly qualitative inductive 

research. As Suddaby (2006) states, “grounded theory is not an excuse to ignore the 

literature……constantly remind yourself that you are only human and what you observe is a 

function of both who you are and what you hope to see” (Suddaby, 2006; pages 634-635). 

Researchers using ML for pattern discovery should heed the same caution in selecting variables, and 

should document and motivate which variables selected. While the set of variables chosen can be 

motivated by prior literature, the patterns (i.e. relationships between the variables) illuminated in the 

inductive exercise may be novel.  

Step 2: Select an algorithm 
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The next step is to select an algorithm that will build the predictive model. The algorithm attempts 

to find a model that minimizes error (i.e. the output of the loss function). In this paper, we will 

implement three ML algorithms: decision tree, random forest, and neural network. Each algorithm 

uses a different computation procedure to build models for predicting 𝑦̂ and has unique strengths 

and weaknesses. 

There is no secret recipe for selecting the algorithm that best fits a particular situation. In 

practice, even experienced data scientists do not know ex ante which algorithm to use. Nevertheless, 

in this step we provide rule-of-thumb guidance. Table 2 lays out the strengths and typical uses of 

some of the most popular ML algorithms. Considerations for algorithm selection include:  

Regression or classification? It is important to distinguish between regression problems (a 

continuous real-number dependent variable, such as stock price) and classification problems (a 

categorical dependent variable, such as filing for bankruptcy).7 Some algorithms are suitable for both 

types of problems; they are simply used to minimize different loss functions. For example, a 

decision tree classifier minimizes the log-loss function, but a decision tree regression minimizes 

mean squared error.8 However, using a decision tree classifier for a continuous dependent variable 

or a decision tree regression for a categorical dependent variable will not produce optimal results. 

-------------------------------------- 
Insert Table 2 about here 

      -------------------------------------- 

(For classification problems) Linear separability. Some algorithms (e.g. support vector 

machines) are designed to isolate data points of one classification from data points of another 

 
7 Classification problems may entail two categories (binomial classification) or more than two categories (multiclass 
classification). 

8 Mean squared error is 
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 . It is technically possible to define custom loss functions, but that topic is 

beyond the scope of this paper. We merely want to clarify that many models can be used for both regression and 
classification, depending on the loss function in question. In software implementations such as Python and R, 
implementing a model automatically minimizes a default loss function (often log-loss for classification and mean-squared 
error for regression). 
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classification by the widest possible margin. This method is used when classifications of data points 

are linearly separable—that is, in which it is possible to draw a line (or a plane/hyperplane) that 

separates the classes. In contrast, algorithms that use the log-loss function may perform better when 

classes are not linearly separable. For example, a plot with overlapping points labeled 𝑦 = 1 and 𝑦 =

0  with no clear line of separation between the two is not linearly separable. 

(For classification problems) Labels or predicted probabilities? Predicting actual labels is a 

common task in practice (e.g. loan will default). However, researchers using ML classification for 

exploratory pattern discovery may be more interested in the model’s predicted probabilities (e.g. 

loan has 0.26 probability of defaulting). Predicted probabilities are translated into a label using a 

decision threshold (e.g., loans with predicted probabilities >0.1 are labeled “default”). Algorithms 

that use the log-loss function are more appropriate for probabilistic interpretation than, for example, 

support vector machine (SVM) algorithms (which excel at hard categorization between distinct 

classes). Later, in this paper’s demonstration, we will stop one step before assigning a label using a 

decision threshold. This is because it is nearly impossible to predict the exact time period when a 

specific person will leave a company. Instead, we compare what drives the relative probabilities of 

turnover in each time period.  

Consideration: model capacity vs. number of observations in data. With more data 

observations, we can use algorithms with greater “model capacity”. Model capacity means fitting 

highly flexible functional forms to achieve higher predictive performance. For example, a neural 

network algorithm has high potential model capacity, and can theoretically be used to represent any 

nonlinear relationship. However, algorithms like neural networks with higher model capacity require 

more data and expertise to prevent overfitting. A highly complex neural network trained on a few 

hundred observations would inevitably overfit the data. In fact, high capacity models like neural 

networks can underperform other algorithms unless they are trained using large amounts of data.  
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Step 3: Choose regularization and other hyperparameters 

For each algorithm, we will set algorithm-specific constraints on the models it can build. 

Regularization is any constraint that restricts the descriptive capacity of a model—essentially 

smoothing the functional form to prevent overfitting (recall Figure 1). This is done by tuning (i.e., 

adjusting the values of) the regularization hyperparameters of the algorithm. A hyperparameter is any 

parameter of the algorithm that is set before estimating the model. Hyperparameters are not learned 

from the data; they are assigned to the model by the researcher. The ML algorithms we implement 

later in this paper all have specific hyperparameters, which can be “tuned” (i.e., adjusted) to avoid 

under- and overfitting. For example, decision trees have “stopping rules” that limit the growth of 

the tree. 

For some algorithms, an important hyperparameter is the choice of a “regularization term” 

(or “penalty term”) to add to the loss function. Adding regularization terms to a loss function 

controls for overfitting by punishing the loss function for putting too much predictive weight on a 

variable. An example perhaps familiar to some researchers is the LASSO regression. Online 

appendix, section 1 describes how a regularization term in the loss function prevents overfitting.  

What are the optimal values for the hyperparameters? Tuning hyperparameters is a delicate 

balancing act between bias (underfitting) and variance (overfitting). To find this balance, we try 

many hyperparameter values and see which combination produces a model that performs best out 

of sample. 

Step 4: Partition the data for out-of-sample model evaluation (training, validation, and testing) 

To evaluate out-of-sample performance, we see how well the model performs on a “validation 

sample” distinct from the “training sample” used to train (i.e. estimate) the model. We tune the 

hyperparameters of the algorithm that is “learning” from training data until its predictive 
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performance on the validation data is optimized. A final sample of data, the holdout test set, is kept 

separate from both the training set and the validation set. We use this sample to get a final estimate 

of predictive performance on data that were not used to train or validate the model (see step 7). A 

reasonable rule of thumb is to partition the data randomly into either three subsets (~60% training, 

~20% validation, and ~20% holdout test) or into two subsets (~70% training-validation and ~30% 

holdout test) to be used for k-folds cross-validation.9 

Throughout this paper we use the second option, k-folds cross-validation. This method of 

cross-validation is less sensitive to the idiosyncrasies of training and validation set selection, though 

it is more computationally intensive. In k-folds cross-validation, the training-validation data are split 

randomly into k equal-sized subsets of data. One by one, each of the k subsets is used as the 

validation data; the other k-1 subsets are used to train the model. The resulting k estimates of the 

validation error (i.e. output of loss function) from each model are averaged for the measurement of 

model performance. Taking an average is what makes model performance evaluation less subject to 

idiosyncrasies in any single split of the data. Throughout this paper, we use 10-fold cross-validation 

(k = 10), a common choice for k.  

Step 5: Apply preprocessing steps 

Preprocessing the data—including “feature engineering”.10 and handling missing data11—is 

also important for model predictive performance. It can be necessary to scale variables (i.e. features) 

 
9 The relative size of the validation and test data can be smaller for large datasets. The key point is that the size of the 
validation/test set is large enough to give reliable estimates of model performance. For example, if my dataset has a 
billion observations, I may only need a thousand data points as a holdout test—much smaller than 20%. 
10 “Feature” is another word for variables or functions of variables. “Feature engineering” refers to scaling, creating, or 
modifying features (e.g., bucketing a continuous variable or interacting variables).  
11 Handling missing data can heavily influence model performance. Dropping observations with missing values can 
severely limit the number of observations and may be misleading if the excluded data are systematically related to the 
outcome variable. As a solution, missing values can be imputed. Missing numerical values can simply be replaced with 
the variable’s mean or median value, and missing categorical values can be replaced with the mode. Alternatively, missing 
values can be replaced with an estimated value—that is, run a regression model to learn what values predict the value for 
non-missing observations and fill in missing observations with the predicted values. If a variable has many missing 
values and is not central to the prediction, it may be best to simply drop the variable. 
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for algorithms that calculate distance between points (e.g. neighbor methods like KNN or support 

vector machines) or for algorithms that use a regularization term (e.g. neural networks and LASSO). 

If not scaled, variables with larger magnitudes will overwhelm variables with smaller magnitudes as 

the algorithm assigns weights. Variables are commonly divided by “z-scores” or “minmax” scores, 

which strip units so that all numerical magnitudes are comparable across variables. 

 These preprocessing steps (e.g. normalizing values or missing value imputation) can leak 

information from the validation or test data into the training data. Leakage causes the out-of-sample 

evaluation metrics are overly optimistic about the performance of the model. Therefore, these 

preprocessing steps should be done after splitting the data into training/validation/test partitions. 

Each preprocessing step should be “learned” from the training data, then applied to the validation 

and test data. For example, if a variable is to be normalized by a “z-score”, then each observation in 

the training, validation, and test set should apply the following calculation: 
𝑥−𝑚𝑒𝑎𝑛(𝑥𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

𝑠𝑑(𝑥𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
. In the 

companion code for this paper, we demonstrate how to preprocess the data in a pipeline, which 

makes implementation simple. 

Step 6: Fit the model on the training set and evaluate predictive performance on the validation set 

Finally, we can use the algorithm to fit (i.e. estimate) a model. Statistical software like R and Python 

make it relatively easy to fit the model (see online appendix for examples). Under the hood, an 

optimization algorithm finds the function that minimizes error (output of loss function) in the 

training data, subject to the hyperparameter choices and model constraints.  

In-depth discussion of optimization algorithms is beyond the scope of this paper—we leave 

that to the statistical software. However, it is useful to be aware that some complex models (e.g., 

neural networks), may locate local rather than global optima.12 A signal of the presence of multiple 

 
12 For example, one common algorithm is the gradient descent algorithm. Imagine that loss (i.e. error) as a function of 

variables 𝑋 is represented in 3D space by a landscape where peaks represent high loss and valleys represent low loss. The 
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local optima is that the model’s fit results vary significantly with the choice of initial parameter 

values. Although there is no simple solution to this problem, it can sometimes be addressed with a 

better choice of initial parameter values or stronger regularization.  

The fitted model is used to predict outcomes in the validation data, and the resulting 

predictions are evaluated against the true outcomes in the validation data using a performance 

metric. Throughout this paper, we use the log-loss score (i.e., our model’s error) as the measure of 

model performance. 

Step 7: Repeat steps 1–5, varying the algorithm, features, hyperparameters, and regularization choices to maximize 

predictive performance on validation set 

It is difficult to know a priori the combination of algorithm, features, and hyperparameters 

that will yield the best model. We try many different combinations, with the goal of finding the 

model with the least error on the validation set. Often ML practitioners try as many combinations as 

is feasible, starting with the simplest algorithms.  

Though the objective is to minimize the model’s loss (i.e. error) on the validation set, this 

validation loss should not significantly diverge from the training loss. Divergence of training and 

validation loss is a sign that the model overfits the in-sample data at the expense of performance on 

out-of-sample data. Figure 2 plots the training and validation loss of the random forest model 

predictions as a function of one of its hyperparamters, “tree depth”. We trained and evaluated the 

model (using 10-folds cross validation) eight separate times, varying the “tree-depth” 

hyperparameter values from 1 through 8. The orange (upper) line represents the validation loss, and 

blue (lower) line represents the training loss of the model predictions across these eight 

 
gradient descent algorithm finds the steepest route down from whatever hill it is initially positioned on, and it stops 
when it cannot descend any farther. Thus, for non-convex optimization problems (e.g. rugged landscapes with multiple 
performance “peaks”) like neural nets, the initial values assigned to an algorithm can lead to substantially different 
predicted models. For other algorithms, the loss function is convex (i.e. a landscape with one performance “peak”) by 
virtue of the linear hypotheses; thus, this problem is not encountered. In general, however, the problem of multiple local 
minima can be quite challenging. 
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hyperparameter values. Because the random forest algorithm has unbounded descriptive capacity in-

sample, the training loss approaches 0 as regularization is eliminated. It appears that the best choice 

for tree depth would be around 3 or 4—the choice at which both training and validation losses are 

low, but validation loss has not diverged from training loss. 

-------------------------------------- 

Insert Figure 2 about here 

-------------------------------------- 

 Rather than manually tuning one hyperparameter at a time, many statistical packages include 

support for “grid search” or “random search” techniques. These systematically fit and evaluate the 

model using many combinations of a user-specified set of hyperparameter values. Despite these 

tools, it is sometimes impossible to try every possible combination of algorithm, feature, and 

hyperparameter values. The actual process of tuning hyperparameters can be messy and iterative in 

nature. The code in the online appendix gives a more detailed guide for implementing this process in 

practice. 

Step 8: Evaluate final predictive performance, and interpret model 

After selecting the best-performing model (in the validation data), we can evaluate final predictive 

performance by applying the model to the holdout test set. Because this sample was not used to 

train or validate in the previous steps, it represents the purest out-of-sample test available to evaluate 

model performance. Performance of the model can be evaluated using various metrics and 

visualizations (which we demonstrate on our data in section 3). Ideally the holdout test performance 

should be statistically indistinguishable from the training/validation loss. If it is significantly worse 

than the training and validation scores, then the model has been overfit to the training/validation 

data. Therefore the holdout test set is a primary safeguard against overfitting. 

When applying ML for exploratory pattern discovery (the focus of this paper), we can now 

attempt to understand the model’s structure. ML-built models can be hard to interpret when they 
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contain nonlinearities and interdependencies among explanatory variables. However, visualization 

tools like partial dependence plots can be extremely helpful (we demonstrate this in section 3). We 

cannot always take patterns in the models at face value, or treat them as causal relationships. But the 

patterns that are robust across multiple ML algorithms can be very informative.  

 

3. DEMONSTRATION: DISCOVERING PATTERNS IN EMPLOYEE TURNOVER 

3.1 Data and Setting 

In our demonstration, we attempt to discover employee turnover patterns in a large Indian 

technology firm, TECHCO. The internal dataset covers the 1,191 entry-level employees that were 

deployed to any of TECHCO’s nine geographically dispersed production centers in 2007. The data 

are structured as a panel of one observation for each month that an individual is employed at the 

company for up to 40 months. The data include 36,978 observations from 1,191 employees total; 

25,925 observations from 833 employees in training/validation; and 11,053 observations from 358 

employees in the holdout test sample. The dependent variable, Turnover, indicates whether the 

employee left during that time period (𝑦 = 1 if turnover, 𝑦 = 0  if non-turnover). Our goal is to 

estimate the relative probability (i.e. hazard) of turnover for a given employee at a given time.  

Choice of explanatory variables was motivated by considerations outlined in the prior 

theoretical (Jovanovich, 1979) and empirical literature (e.g. Campbell, et al., 2012; Carnahan, 

Kryscynski and Olson, 2017) on employee turnover. These include employees’ performance scores 

in an intensive three-month onboarding training course (Training Performance), the time in months 

spent at the company (Time), university verbal and math test scores (Verbal Score and Logical Score), 

date of arrival at the company (Month Arrived), and demographic information. The data also include 

the assigned production center’s age (Production Center Age), its distance from the employee’s 

hometown (Distance), and the similarity of the prevailing language in the production center’s region 
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in India to that of the employee’s hometown (Language Similarity). Table 3 provides basic summary 

statistics.  

-------------------------------------- 
Insert Table 3 about here 

      -------------------------------------- 
3.2 Stylized implementation: decision tree algorithm 

To develop intuition for how ML algorithms work, we apply a decision tree (a relatively simple ML 

algorithm) to our data. We will also fit two other algorithms, a random forest and a neural network, 

to compare patterns in the data across multiple algorithms.13 Conceptual and implementation details 

(including code) for those algorithms are included in the online appendix.  

The decision tree algorithm builds a model by repeatedly splitting the data into two distinct 

subsets based on the values of one explanatory variable. Each subset is assigned a single value for 

the predicted outcome. Each split is determined based on what will minimize the model’s total error 

(i.e. output of the loss function). Within each new subset, the procedure is repeated, splitting the 

data along one variable at a time to minimize the error within each subset. Each split can be 

represented visually as a node with two branches, creating the overall impression of a tree. A “root 

node” represents the first split, and “leaves” are terminal nodes with a predicted value for each 

subset of the data. To control for overfitting, the model is regularized by “stopping rule” 

hyperparameters that limit growth of the tree—for example by limiting the maximum depth of the 

tree. 

 
13 We chose these three algorithms for two reasons. First, they are widely used general purpose algorithms that 
pedagogically demonstrate a variety of ML algorithm attributes: the decision tree is easily interpretable, the random 
forest is a highly useful general-purpose algorithm that demonstrates ensemble techniques, and the neural network is the 
basis of many modern technological applications of ML. Second, these algorithms all optimize the log-loss function. The 
log-loss function is suitable to our data because we are most interested in comparing the probabilities of turnover rather 
than the predicted outcome labels. Because the probability of any given employee leaving in a particular month is 
extremely low, it is very difficult to predict exactly when someone will leave. The purpose is not to draw clear boundaries 

between classes (i.e., binary predictions such as 𝑦̂ = 1 or 𝑦̂ = 0), but to learn relative probabilities. 
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Figure 3 is a visual representation of the decision tree model applied to the TECHCO 

turnover data.14 One of the desirable attributes of decision tree algorithms is the ease of visualization 

of the resulting model. For example, the top node (the “root node”) of the tree in Figure 3 is labeled 

Training Performance <= 3.995. Thus, the single split that maximized predictive performance was to 

separate the data into the 25,557 observations whose training performance score exceeded 3.995 

from the 338 observations whose scores were below 3.995.15  Following the left-hand branch of the 

tree (labeled “True”), we see that within the 338 observations with low training performance, the 

split that maximizes predictive performance splits observations with Time <= 6.5 (months) from 

those > 6.5 (months) and so on.  

-------------------------------------- 
Insert Figure 3 about here 

      -------------------------------------- 
This decision tree reveals an interesting pattern: the tree splits along only two dimensions, 

Training Performance and Time. This pattern is indicative that these dimensions may be characterized 

by important nonlinearities and interactions. Furthermore, the terminal nodes on the bottom left 

(with Training Performance <= 3.995, Time <= 6.5, and Time > 4.5) have a much higher proportion of 

turnover than any other terminal nodes. This offers clues about interesting heterogeneous effects in 

subsets of the data. But for now, we avoid too much interpretation based on this figure alone. The 

specific branches and leaves of a single decision tree can look dramatically different for different 

samples of the same dataset. 

 
14 After tuning the model by trying many combinations of possible hyperparameter values, our best performing decision 
tree model used the ‘entropy’ criterion of determining splits, required each leaf to have at least 27 observations, and 
allowed splits only if the decrease in loss (error) was greater than 0.0004. 
15 These numbers represent those in the training data sample, out of the full sample of 36,978. Also, although our dataset 
is based on 1,191 employees tracked over 40 months, the number of observations is not a full panel of 1,191*40 = 
47,640. This is because the data stops tracking employees who leave, so those who leave before month 40 have fewer 
than 40 observations. 

about:blank
about:blank
about:blank


Strategic Management Journal (forthcoming) 

19 
 

To triangulate these insights with other models, we also implemented a random forest 

(essentially a combination of many decision trees) and a neural network. For details on those 

algorithms, see the online appendix. We will compare all three models’ performance and structure in 

the following sections of the paper.  

3.3 Metrics and Visualizations for Evaluating Model Predictive Performance  

Evaluating a model’s predictive performance is essential not only for prediction problems, 

but also for evaluating how useful a model is for exploratory pattern discovery. Before examining 

the structure of models for exploratory data analysis, models should be optimized to perform well. 

This helps ensure that researchers are using models based on some objective criteria rather than 

simply selecting the ones that confirm their priors. Final performance on a holdout test set can be 

reported using various metrics. Common metrics include: mean squared error (for regression), log-

loss score (for classification), accuracy, precision, recall, the F1 score, and the area under the curve 

(AUC) score.   

It is common to think of predictive performance in terms of accuracy (
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙
). 

Yet accuracy can be misleading, particularly when there is imbalance in the classes. For example, 

consider a sample in which only 1 percent of observations are blue and 99 percent are red. A model 

that always predicts “red” will be highly accurate at 99 percent. But that model will not be very 

useful, especially if it is very important to detect which observation is “blue”.  

-------------------------------------- 
Insert Table 4 about here 

      -------------------------------------- 
In many situations, a better way to think about predictive performance is to visualize a 

confusion matrix (see Table 4). For example, when the downsides of missing true positives is high 

(e.g. detecting rare diseases) recall (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
) may be the most relevant metric. 

Conversely, when recommending TV shows, precision (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
) may be more 
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useful. Metrics like F1 or AUC (described in detail later) can balance precision and recall. In addition 

to metrics, there are also useful plots that can be helpful for evaluating model performance. 

Plot of ROC Curve 

Like the confusion matrix, the receiver operating characteristics (ROC) curve helps us visualize how 

well the model distinguishes between different classes (Figure 4). The curve compares the model’s 

true positive rate (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
) against the false positive rate 

(
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
), varying the cutoff threshold for distinguishing between classes. For 

example, in the bottom left-hand corner no observations are classified as 𝑦̂ = 1 because the 

predicted probability of 𝑦 = 1 would have to be >1. The classification threshold is lowered until in 

the top right corner the predicted probability of 𝑦 = 1  is ≥0, so everyone is classified as 𝑦̂ = 1.  

-------------------------------------- 
Insert Figure 4 about here 

      -------------------------------------- 

 Intuitively, a model that classified each point randomly would produce points along the 

dotted 45° line (i.e. equally likely to classify an observation as a true or false positive). Points above 

the diagonal line represent better-than-random classification results, and points below the line 

represent a classification results that are worse than random. A perfect predictive model would 

include a point in the very top left corner, representing a model that could give no false negatives 

and no false positives.  

The area under the curve (AUC) metric can be used to summarize the ROC curve. The AUC 

score represents the actual area under the ROC curve. This number can also be interpreted as the 

probability that the model will rank a randomly chosen 𝑦 = 1 observation higher than a randomly 

chosen 𝑦 = 0 observation. In Figure 4, the random forest model has an AUC score of 0.746. 

Achieving a significantly better score may not be possible because there is no hard boundary 
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between turnover (𝑦 = 1) and non-turnover (𝑦 = 0) observations. That is, the underlying 

probability of turnover is less than 1 for all observations, rather than 1 in some regions and 0 in 

other regions. 

Plot of training and cross-validation error (loss) 

When a model’s error (loss) on the training set is significantly lower than the validation set, 

the model may be overfitted. Figure 5 plots the training and validation loss of each model. For 

comparison, the plot also includes the loss from a baseline logistic regression that includes a linear 

term for each explanatory variable and month fixed effects. The position of points on the plot 

indicates the training and cross-validation loss of each model; error bars are calculated from a 

standard deviation variation among k-folds. The figure helps us clearly visualize which models may 

be overfitted; anything above the dashed line has higher validation loss than training loss (relative to 

the logistic regression), a sign of overfitting. It appears that the random forest could be in danger of 

having been overfitted to the training data (it is above and to the left of the dashed line). However, 

the performance on the holdout test loss was 0.0633—very close to the validation loss. This 

mitigates the concern that the model’s overfitting is hurting its out-of-sample performance. 

-------------------------------------- 
Insert Figure 5 about here 

      -------------------------------------- 
The figure show that random forest and decision tree algorithms both offer small 

performance increases over the baseline logistic regression. The explanation for such small gains in 

performance is that meaningful interactions and nonlinearities among variables are only relevant for 

a small subset of the data. Furthermore, points labeled as turnover events (𝑦 = 1) significantly 

overlap with points labeled as non-turnover events (𝑦 = 0), making it difficult to predict precisely 

which points are one or the other. In this case, these ML models may be more useful for pattern 

discovery than for predictive performance gains.  
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3.4 Interpreting Models using Variable Importance and Partial Dependence Plots 

After finding a high performing model, we can use the model to find interesting patterns. Many ML 

models are complex and can be difficult to interpret (the decision tree in Figure 3 is an exception). 

Some models (e.g. LASSO) return familiar coefficients, and some (e.g. random forest) return 

relatively easily interpretable measures of variable importance. Other algorithms (e.g. neural networks) 

contain no intrinsic measure of for how much each variable impacted the predicted outcome. 

However, regardless of the algorithm or the complexity of the model, we can interpret a model 

using partial dependence plots. These plots can be used to visualize the marginal effect of one or 

two variables on the predicted outcome of the model (Friedman 2001; Zhao and Hastie 2018). 

Variable importance  

Although not as rich as partial dependence plots, examining variable importance (when 

possible) is a reasonable first step for interpreting ML models. Variable importance can be calculated 

in different ways for different algorithms.16 The scale is not meaningful—only relative comparisons 

matter. Figure 6 plots relative variable importance for our random forest model. These variable 

importance values should not be interpreted like econometric coefficients, but can be used to give 

clues for which variables to explore. Figure 6 clearly shows that Training Performance and Time warrant 

further exploration using partial dependence plots. 

One-way partial dependence plots and individual conditional expectation (ICE) plots 

One-way partial dependence plots (PDPs) show how a model’s predicted outcome varies in 

response to changes in a single explanatory variable (conditional upon other variables). A major 

 
16For tree-based algorithms, it is often calculated as the average decrease in node impurity each time a variable was used 
to split a node. Node impurity is a measure of the likelihood of misclassifying an element in the subset if it were 
randomly labeled according to the distribution of labels in the subset. Intuitively, a node for which all the data are 
labeled as “1” has low impurity. A node for which half the data are labeled “1” and half labeled “0” would be high 
impurity. 
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advantage of these plots is that they can show the shape of the relationship between the variable and 

the outcome. Intuitively, the partial dependence function at a particular point on the x-axis 

represents the average prediction if all data points had that x value.  

Yet taking an average can hide heterogeneous effects among individuals. Instead, we can plot 

the predicted outcome’s dependence on an explanatory variable separately for each individual in the 

data. This method is known as the individual conditional expectation (ICE) plot (Goldstein et al. 

2015). Each line of an ICE plot shows what the model predicts for an individual if we changed the 

values of one particular variable. The PDP is simply the average of all the lines of an ICE plot. ICE 

plots are particularly useful tool for detecting when a variable’s effect on the outcome is highly 

interdependent with other variables. When individual ICE lines are parallel this signifies that there 

are no complex interdependent relationships with that variable in the model. 

Figure 7 displays the overall PDP and individual ICE lines as a function of a few select 

variables in our random forest model. We also plot a linear model side-by-side for comparison. For 

this comparison, we used a logistic regression with each of our explanatory variables and Time fixed 

effects. Figure 7 demonstrates how, by definition, the predicted outcome has a linear relationship 

with each variable (except Time fixed effects). 

By contrast, the random forest model reveals interesting nonlinear relationships. In this 

model, Training Performance was unrelated to probability of turnover, except for a sharp discontinuous 

jump for scores lower than 4.0. In the Time plot, there are a few ICE lines that have drastically 

higher probability of turnover at around 6 months. This hints at heterogeneous effects for Time that 

are interdependent with the values of other explanatory variables. We can use two-way partial 

dependence plots to explore these interdependencies.  

Two-way partial dependence plots 
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To explore nonlinear interactions between two explanatory variables’ effect on the predicted 

outcome, we can use two-way partial dependence plots. The intuition is the same as one-way PDPs. 

We average the model’s predicted outcomes for each combination of values between two variables 

for each individual (holding other variable values constant). The advantage of this approach is it is 

easy to see interactions between explanatory variables. The disadvantage is we cannot see whether 

these effects are heterogeneous between individuals (as in the ICE plots). 

Figure 8 displays the predicted probability of employee turnover for each ML model as a 

function of Training Performance and Time. Again, for comparison we include a baseline logistic 

regression that includes each explanatory variable and Time fixed effects. We discover several 

interesting patterns. In the decision tree model plot, a conspicuous line separates Training Performance 

<= 3.995 from Time <= 6.5 (exactly as in Figure 3). The random forest model offers similar 

insights—that the hazard of turnover tends to increase over time, and that hazard is much higher for 

those with a training score below about 4, especially around 6 months. The global negative effect of 

training performance on turnover estimated by the logistic model (see Figure 7) must have been 

driven by the narrow yellow strip of employees with training scores below 4 at about month 6.  

3.5 Comparing ML models to a baseline regression model 

How does a baseline regression model fare discovering patterns from these data? A striking insight 

from Figure 8 is how poorly the logistic regression modeled the probability of turnover as a function 

of Training Performance and Time. The other models all predicted dramatically higher turnover 

probabilities for employees with low training scores during their first months on the job. The logistic 

regression model, however, can only yield a linear fit as constrained by the linear functional form we 

specified for the model. It can only tell us that on average those with lower Training Performance tend 

to have a higher probability of turnover (with constants added for each time interval from the Time 

fixed effects).  
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In fact, this negative relationship only exists for a very small fraction of the sample (the 40 

out of 833 who had training scores below 4 in the training sample).   The relationship between 

Training Performance and probability of turnover appears to be positive for the majority of the 

population. The logistic regression fails to capture important nuances because Training Performance 

was not explicitly modeled as a function of Time in the specified model. This finding demonstrates 

the potential cost of naively estimating global linear relationships when there are many unknowns in 

the data. 

Of course, it is possible to use the logistic regression to test nonlinear or interactive 

relationships by adding transformed variables to the model. For example, we may add a quadratic 

term to test a U-shaped relationship, or multiply two variables to test an interaction effect. But, 

which terms should be included? Researchers informed by theory may model such complexities 

based on known relationships. However, it is often unknown a priori how best to model each 

variable, and the number of combinatorial possibilities increases rapidly as more variables are 

considered. ML presents a solution to the problem of knowing how to model the data. 

 

4. AVOIDING COMMON MISINTERPRETATION PITFALLS  

Like any tool, ML can be used well or used poorly. In addition to the guidance we have 

given throughout the paper, it is worth explicitly stating a few common misinterpretation pitfalls. 

Many of these pitfalls are not inherent properties of ML, but rather result from misinterpretation of 

ML by its users and audiences.  

Confusing correlation with causation is perhaps the biggest potential problem of using ML. The 

patterns uncovered by the algorithm should be considered merely correlational until convincingly 

proven to be causal, using other means. This paper advocates for ML to explore, not test, 
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relationships in data. That said, there are certain circumstances under which we can use PDP and 

other tools to causally interpret ML models (Zhao and Hastie 2018).17  

Algorithmic bias.18 Data can be inherently biased, for example when the data is selected based 

on convenience, or suffers from the feedback loop of prior human biases (Cowgill & Tucker, 2019). 

This can also occur when the data suffer from “input incompleteness”— gaps in the data input 

related to incentives of human agents, that lead to biased prediction (Choudhury, Starr, & Agarwal, 

2020). Effective ML users should be familiar with the data-generating process and research context 

to avoid biased interpretations. For an excellent review of how to address issues of algorithmic bias, 

see Cowgill & Tucker (2019). 

Over-interpreting variable weights of ML models is also a common mistake. The effects of 

variables in ML models may heavily depend on other variables in the model. In the wrong hands, 

negative weight on a variable in an ML model can have “enormous, undeserved rhetorical heft” 

(Cowgill and Tucker, 2019; page 43). For example, Amazon was ridiculed for using an algorithm that 

included a negative weight for graduates of two all-women’s colleges. Yet it was unclear how they 

were weighted relative to other women’s or men’s colleges.19  

Cherry picking or data dredging. Data dredging the practice of cherry-picking interesting 

relationships from a large set of variables (Selvin and Stuart 1966). Data dredgers try to draw 

attention to the cherry-picked relationships without acknowledging the process by which they were 

found. This can easily lead to identifying spurious relationships. 

 
17 Specifically, Zhao and Hastie (2018) propose that a partial dependence plot captures the causal effect if it can be 
shown that the “backdoor criterion” is met. That is, adjusting for all factors that influence both X and y allows a causal 
interpretation of PDPs.   
18 Note that “algorithmic bias” refers to biased data—not the same as balancing the bias-variance tradeoff 
19 “Amazon scraps secret AI recruiting tool that showed bias against women,” Reuters 2018, as quoted in Cowgill and 
Tucker (2019) 
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Multi-collinearity arises when variables in a model are highly correlated. For example, when 

many highly correlated variables are included in a LASSO regression, the model structure will be 

highly unstable (Mullainathan and Spiess 2017).  Highly correlated variables contribute redundant 

information to a model, so algorithms may randomly assign weight in the model to one variable or 

another. In our data, for example, if the employees’ Verbal Score had been highly correlated with 

Training Performance, some models might have indicated a large effect of Verbal Score on turnover and 

none in Training Performance. The problem of multicollinearity becomes more serious with more 

variables and more highly correlated variables. To mitigate this problem, it can help to include a 

table of correlations between variables (which we do in the online appendix). It also helps to 

demonstrate that patterns are robust across models built by multiple different algorithms. 

P-hacking. In general, p-hacking refers to the practice of adjusting models until they 

statistically confirm some desired effect. Relative to traditional methods, ML is less likely to be 

susceptible to p-hacking because it has built-in safeguards—the validation and holdout test sets. 

After all, p-hacking is essentially the same as overfitting the training sample, and any model that is 

overfit on the training data will perform poorly on the validation and/or holdout test set.  

Comparing the training performance to the validation data and/or holdout test set informs us how 

well the model generalizes to out-of-sample data. Models that have not been overfit will have similar 

error for training, validation, and holdout test samples. For this reason, we recommend that 

reviewers always require these comparisons. It is still possible that a researcher would select among a 

handful of different models which perform equally well on the holdout test set. Therefore we also 

suggest triangulating on an underlying model by presenting models from multiple ML algorithms. 

HARKing. Furthermore, we caution against testing ML-identified patterns using the same 

dataset as though they were pre-specified hypotheses. This would be a form of hypothesizing after 

the results are known (HARKing), which is a violation of the assumptions of deductive hypothesis 
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testing (Kerr 1998). Instead, newly generated hypotheses should be tested on new data with 

exogenous variation to prove causal claims. 

5. DISCUSSION AND CONCLUSION 

This paper began with two goals: 1) to demonstrate the application of supervised machine 

learning methods for discovering robust patterns in quantitative data, and 2) to provide guidance on 

evaluating research that uses such methods. Discovering new and robust empirical patterns can help 

management scholars by acting as an “observation” for engaging in abductive or inductive research. 

These patterns can later be deductively validated using traditional causal inference techniques. 

Pattern discovery can also be used in post-hoc analysis of traditional regression results to detect 

patterns that may have gone unnoticed. 

We are not the first to suggest that ML methods can be used for pattern discovery in 

research. In the physical sciences, researchers have used ML methods to uncover underlying 

relationships in physical phenomena (Ruff et al., 2017; Rudy, Alla, Brunton, & Kutz, 2018; Hirsh, 

Brunton, & Kutz, 2018). In the social sciences, researchers have evangelized what they call ‘forensic 

social science’ (Goldberg 2015; McFarland et al. 2016).  They argue that rather than testing 

variations of pre-specified hypotheses, ML can help us make new discoveries using digital trace data. 

Management scholars are also beginning to promote the idea that ML can help inductively develop 

new theory (Puranam et al. 2020).  

Yet to date, there has been lack of guidance for transparently and effectively applying these 

methods in our fields. Given the guidance in this paper, we are excited about the potential future of 

ML methods. One exciting future application is the use of ML as new tools to aid researchers in 

theorizing from quantitative data. This brings quantitative empirical researchers closer to the 

tradition of grounded theory in which researchers theorize models based on patterns in data (Glaser 

& Strauss, 1967; Eisenhardt, 1989, Bamberger and Ang, 2016).  In our view the ML methods do not 
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build theory itself—rather they represent observational tools which the researcher can use to build 

theory. A related recent paper pairs ML with qualitative case studies to develop new theory about 

optimal revenue models in iOS apps (Tidhar and Eisenhardt 2020). 

As an increasing number of management scholars use these methods for pattern discovery in 

their research, it is important to evaluate the choices made by researchers in using these methods. To 

reiterate, the implementation of ML methods for pattern discovery involves human agency and the 

researcher has to make important choices relative to several actions: (i) selecting data, (ii) selecting 

algorithms, (iii) setting hyper-parameters, (iv) splitting training and validation data, (v) preprocessing, 

and (vi) selecting metrics to measure predictive performance of the models. We provide guidance on 

all these choices. Additionally, given that ML methods do not generate the familiar coefficients with 

confidence intervals, we illustrate tools such as partial dependence plots, plots of training and 

validation loss and the ROC curve that could be used both by the researcher and the reader to 

visualize, interpret and evaluate the robustness of patterns discovered. 

 Throughout this paper we have highlighted that because ML algorithms do not produce 

statistically consistent coefficient estimates or reliable standard errors, they should not be used for 

traditional deductive hypothesis testing (Mullainathan & Spiess, 2017). Rather, the use of ML models 

to discover patterns should be seen as an exploratory exercise. Thus, we present ML as a 

complement to, not a substitute for, traditional econometric methods. Misunderstanding this point 

can lead to severe misinterpretation. We also repeatedly caution against common pitfalls such as 

being subject to biases in the data, data dredging, p-hacking, and HARKing. 

In conclusion, we demonstrate how ML methods can be a helpful exploratory tool to 

identify robust patterns in quantitative data. These patterns can be helpful for researchers engaged in 

data-driven abductive or inductive scientific discovery. We provide tools for implementing and 

visualizing ML analyses, and guidance for interpretation and evaluation. We also provide detailed 
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code to help future researchers. We look forward to the potential of ML as a methodological 

framework in future empirical management research. 
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Notes: Machine learning excels at balancing the bias variance trade-off. The left panel illustrates a 
high bias/low variance fit of the points, the right panel illustrates a high variance/low bias fit, and 
the middle represents a reasonable balance between bias and variance. 
  

FIGURE 1. Illustrative depiction of bias-variance trade-off 
 
 

 
Notes: The blue (lower) and orange (upper) lines represent training loss and validation loss for each 

value (1–8) of the tree depth hyperparameter. Error bars represent cross-validation standard error 

confidence intervals. The figure demonstrates the “elbow” where validation loss diverges from the 

training loss. Increasing the tree depth removes constraint from the model, allowing it to better 

describe the data and thereby decrease loss. However, removing too much constraint (i.e., increasing 

tree depth) can cause overfitting—where the model predicts well in the training data but not in the 

validation data. It appears that setting the tree depth hyperparameter to 3 or 4 would yield the best 

generalizable predictions. Note that for illustrative purposes, this random forest algorithm does not 

contain any regularization other than tree depth. The random forest algorithm used later in the 

paper differs slightly due to adjustment of other regularization hyperparameters. 

FIGURE 2. Training and validation loss as a function of the random forest “tree depth” 

hyperparameter 
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Notes: This image depicts a decision tree model that was trained to predict the dependent variable 

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 (1 if turnover occurs in a given time interval, 0 otherwise). The label Samples within each 
node denotes the number of observations within the subset of data represented by that node. For 
example, the top “root node” contains all 25,925 training observations. Adding all the values of 
Samples in the terminal “leaf nodes” also sums to 25,925. The label Value within each node denotes 
the number of non-turnover events and the number of turnover events within that node. For 
example, the terminal node on the bottom left reads value=[28,10]. This indicates that of the 38 
observations, 28 were non-turnover (y = 0) and 10 were turnover (y = 1). The probability of 
turnover for these observations can be represented as a probability of turnover (10 / 38 = 0.26) 
given the attributes on the path to the node. This image was created by graphviz in python (see 
online appendix code). 

FIGURE 3. Decision tree model 
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Notes: This plot displays the training and validation loss for each model. The plot on the left displays 
absolute training and validation loss. The plot on the right displays loss relative to the baseline 
logistic regression model (i.e. each point represents the average difference in total training and 
validation loss compared to the logistic regression model, which helps cancel out variation). Points 
toward the lower-left corner are better predictions (lower loss). Error bars represent a standard 
deviation variation in predictions yielded by the k-folds cross-validation. The dashed line represents 
a point at which the loss from the training set is equal to the loss on the validation set (relative to the 
baseline logistic regression). Points above and to the left of the line represent models for which the 
validation loss is higher than training loss, indicating that the model may be overfitted on the 
training data. 
 
FIGURE 4. Plots of training and validation loss for each model relative to logistic regression 

 

 

Notes: The blue line plots the true positive rate (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
) and false positive rate 

(
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
) as the classification threshold is varied. The red dotted 45° line 

represents a model that randomly classifies each point (that is equally likely to classify someone as a 
true or false positive). Points above the diagonal line represent better-than-random classification 
results, and points below the line represent a classification results that are worse than random. A 
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perfect predictive model would have a point in the very top-left corner, representing a model that 
gave no false negatives and no false positives. The area under the curve (AUC score) of 0.746 means 
that there is a 0.746 probability that the random forest model will rank a randomly chosen positive 

observation higher than a randomly chosen negative observation. For our data, this is probably close 
to the highest possible score with any model because there is no hard boundary between y=1 and 
y=0 observations (i.e., the underlying hazard of turnover is less than 1 for all observations, rather 
than 1 in some regions and 0 in other regions). 

FIGURE 5. ROC curve 
 
 

 

Notes: This figure represents the “variable importance” (aka “feature importance”) of each 
variable in the random forest model. This is calculated as the average decrease in node 
impurity across all the variable’s nodes, weighted by the probability of reaching that node 
(i.e. number of samples that reach that node divided by total samples). Variables with 
higher values are more important. Scale is relative, and the sum of all values adds up to 1. 

FIGURE 6. Variable Importance 
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Logistic Regression PDPs 
 

 

 

 

Random Forest PDPs 

Notes: This figure overlays a one-way partial dependence (PDP) plot and individual conditional 

expectation (ICE) lines. The dependent variable is employee turnover (𝑦 = 1 if employee left in that 
period). Logistic regression predictions appear in the left-hand plots; random forest predictions 
appear in the right-hand plots. Each vertical axis is on the same scale, with units as the log of the 
odds ratio of the predicted probability of turnover. The ICE lines were generated by randomly 
selecting 500 samples from the full dataset and, for each sample, predicting the outcome using 40 
values of the variable across the entire variable range while holding all other variable values fixed. 
The predictions from each sample are represented by an orange (solid) line across the entire range. 
The result is a distribution of 500 orange ICE lines, one for each sampled observation. Each plot 
also shows the average of the ICE lines (the overall PDP) as the dotted blue line.  

FIGURE 7. One-way partial dependence plots 
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Notes: These two-way partial dependence plots represent the probability of turnover predicted by 
each model along the dimensions Training Performance and Time. Higher probabilities of turnover are 
represented in yellow; the lowest probabilities are represented in dark blue. All plots are on the same 
scale. For each observation in the dataset, we used our models to predict the hazard of turnover for 
each point represented by each combination of 40 evenly spaced values of both Training Performance 
and Time (resulting in a grid of 1,600 points total). The final estimated probability for each point on 
the grid is the average estimated probability across all observations for that point on the grid. Other 
plots did not reveal meaningful interactions or nonlinearities for different variables. 

FIGURE 8. Two-way partial dependence plots  
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TABLE 1. ML for pattern discovery: Guidance for evaluating human decisions 
Step Human decisions Guidance for evaluation 

Step 1: select data  
Which universe of variables to 

consider and which to include 
Specify which variables were used out 

of set of possible variables, and why 

Step 2: select 
algorithm 

Choose a loss function (usually use 
default in statistical package) 

Which set of algorithms to try 
Prioritize objectives—for example 

predictive accuracy vs. model 
interpretability 

Explicitly state the loss function 
 
Disclose all algorithms used 
Explain objectives and purpose of 

analysis 

Step 3: set 
regularization and 
other 
hyperparameters 

Which set of hyperparameter values 
to try  

State which hyperparameters and 
hyperparameter values were used 

Step 4: partition data 
for training, 
validation, and 
testing 

How to split the training/validation 
and holdout test sets 

 
How many folds for cross-validation  

 Enough data for reliable validation and 
testing (perhaps 70% for training/ 
validation and 30% for holdout test).  

10-fold cross-validation is common. 
More folds can yield better results 
but take longer / more computation. 

Step 5: Apply 
preprocessing steps 

Applying “feature engineering” to 
variables (including scaling) 

How to treat missing data (e.g. drop 
observations, impute values etc.) 

Describe manipulations of variable 
values 

Report how sensitive results are to 
different choices of treating missing 
data 

Step 6: fit model on 
training set and 
evaluate predictive 
performance on 
validation set 

Which metric of predictive 
performance to use. For example, 
log-loss score, AUC score, F1 
score, accuracy, precision, recall 
etc. 

Log-loss is a common default for ML 
classification and mean-squared error 
is a common choice for ML 
regression. In special cases, the 
metric can align with costs of 
inaccurate prediction. For example, 
when the costs of inaccurate 
prediction are high (e.g. predicting 
rare diseases) consider using recall. 
When they are low (e.g. 
recommending TV shows), precision 
may be more useful. Metrics like 
AUC or F1 can balance these 
considerations.  

Step 7: repeat steps 1-
5, varying choices to 
maximize predictive 
performance 

When to stop repeating the steps—
when is good enough? 

Ideally, stop when you reach a 
saturation point—the tweaks only 
yield very small improvements to 
performance.  

Step 8: evaluate final 
predictive 
performance and 
interpret model 

Predictive performance evaluation: 
Which metrics and visualizations of 
predictive performance to use  

 

Report comparisons of the 
performance on the holdout test set. 
Compare to the same performance 
metric as training / validation. Can 
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Model interpretation: Which variables 

and combinations of variables to 
plot partial dependence 

also plot visualizations of predictive 
performance 

Start by plotting variables with high 
“variable importance”. For a small 
number of variables, look at all of 
them—create a loop that plots the 
partial dependence and two-way 
dependence of all variables. When 
presenting results, state which plots 
you include and do not include, and 
why (e.g. we presented all with 
nonlinear or interactive patterns) 

 

TABLE 2. Guidance for selecting supervised machine learning algorithms 
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Notes Common Uses 

Decision Tree* Both      

Highly interpretable due to 
visualization of tree and 
variable importance 

Quick understanding of 
important features and 
partitions in data 

Random Forest* Both      

Versatile and generally 
performs better than decision 
tree. Relative to gradient 
boosted trees, it is easy to 
tune and low memory 
footprint. Can also estimate 
trees in parallel. 

General purpose 

Neural Network* Both ✓     

Highly flexible functional 
form; difficult to tune. More 
reliable and useful with big 
data. Generally harder to 
interpret. 

Image recognition, 
language processing, 
forecasting, and more 

K-nearest neighbors 
(KNN) 

Both ✓     

Lazy nonparametric 
estimation based entirely 
from values of K neighboring 
observations; high memory 
requirements; if used with 
panel data, time interval is a 
tunable hyperparameter 

Useful when little is 
known about the 
distribution and 
structure of the data 

Gradient Boosted Tree Both      

Estimates trees sequentially; 
often outperforms random 
forest but harder to tune, 

General purpose high 
performance; especially 
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slower, and more memory 
needed 

good for unbalanced 
data 

Support Vector 
Machine 

Both ✓     

Uses hinge loss function—
good for drawing optimal 
boundaries between linearly 
separable classes; reliable with 
relatively few observations 
and many features 

Image recognition (for 
example, character 
recognition) and text 
categorization 

LASSO or Ridge  Both ✓     

Easy to understand and 
interpret for those with 
econometrics background. 
Highly interpretable linear 
coefficients. For classification, 
use generalized linear model 
(e.g. logit) rather than OLS. 

Simple methods for 
reducing overfitting and 
complexity for linear 
models.  

Naïve Bayes C      

Minimal structure; strongly 
assumes independence of 
features so cannot exploit 
interactions; scalable for large 
data and reliable with few 
observations  

Multiclass classification; 
text classification, such 
as assigning emails to 
“spam” or “not spam” 

* Demonstrated in this paper 

 Low  Medium  High 
Notes: These comparisons are broad generalizations that may change frequently according to 
circumstance. The meaning of each column in the table is as follows: (R)egression or (C)lassification: the 
“R” indicates that the algorithm is used for regression and “C” indicates the algorithm is used for 
classification. Many of these algorithms can be used for both. For example, when used for 
regression, the decision tree may be used to minimize the squared error (or “mean squared error”) 
loss function; when used for classification, it may be used to minimize the log-loss function. It is 
also possible to use other loss functions or even customize loss functions. Scale Features: the check 
indicates that the algorithm is sensitive to feature scaling—that is, features (variables or functions of 
variables) should be transformed to a standardized scale either by using “z-score” or “minmax.” 
Capacity: refers to the algorithm’s capacity to achieve high predictive performance, usually by 
building a nuanced model with highly flexible functional form. Note this is highly dependent on the 
specific dataset. Simple algorithms can outperform complex ones on certain datasets. Interpretability: 
how easy is it to conceptualize or interpret the algorithm’s resulting predictive model. Speed: refers to 
computational speed of training a model (though, of course, these comparisons depend heavily on 
the data being used). Ease of tuning: generally corresponds to fewer hyperparameter choices and 
models that do not require as much nuanced expertise to avoid overfitting. For similar resources, see 
Microsoft (2019) and Scikit Learn (2018). 
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TABLE 3. Summary statistics 

 
 Training/Validation 

Sample 
 

Holdout Test Sample 

  N Mean SD  N Mean SD 

Turnover (left this month)  25,925 0.013 0.113  11,053 0.013 0.115 

Time (months since start)  25,925 17.569 10.560  11,053 17.530 10.545 

Training Performance  25,925 4.546 0.320  11,053 4.528 0.328 

Logical Score  25,925 4.777 3.658  11,053 4.899 3.674 

Verbal Score  25,925 4.255 4.012  11,053 4.409 3.630 

Average Home Region 
Literacy 

 
25,925 76.755 8.126 

 
11,053 76.219 8.210 

Production-Center Age  25,925 14.742 7.576  11,053 14.940 7.621 

Distance  25,925 0.764 0.692  11,053 0.808 0.684 

Language Similarity  25,925 60.867 35.362  11,053 58.223 34.829 

Male  25,925 0.652 0.476  11,053 0.633 0.482 

 
Notes: This table includes summary statistics for the unbalanced panel used throughout the paper. 
The total sample had 36,978 panel observations, one for each employee-month. The table displays 
separate summaries to compare the training/validation and test holdout samples. In the table, N 
refers to the number of observations, Mean refers to the mean value, and SD refers to standard 
deviation of the values. 

 
 

TABLE 4. Confusion matrix 
  Predicted 

  Negative (𝒚̂ = 𝟎) Positive (𝒚̂ = 𝟏) 

Actual 
Negative (𝒚 = 𝟎) True Negative False Positive 

Positive (𝒚 = 𝟏) False Negative True Positive 

 
Notes: The confusion matrix is an important tool for evaluating performance when ML 

predictions are for actual classification labels (e.g., assigning each observation a label 𝑦̂ = 1 

or 𝑦̂ = 0 based on a decision threshold for predicted probabilities). For the demonstration 

in this paper, we are more interested in predicted probabilities than in assigning labels (𝑦̂ =
1 or 𝑦̂ = 0). 

 


