
Machine Learning for Pattern Discovery in
Management Research

Citation
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern
Discovery in Management Research." Strategic Management Journal 42, no. 1 (January 2021):
30–57.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371300

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371300
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Machine%20Learning%20for%20Pattern%20Discovery%20in%20Management%20Research&community=1/3345929&collection=1/3345930&owningCollection1/3345930&harvardAuthors=7beb6e4a7b4bfbc7c8df4f6c08ffb800&department
https://dash.harvard.edu/pages/accessibility

Strategic Management Journal (forthcoming)

1

Machine learning for pattern discovery in management research

Prithwiraj Choudhury,1 Ryan Allen,1 and Michael G. Endres

Abstract:
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in
quantitative data. The patterns identified by ML could be used for exploratory inductive or
abductive research, or for post-hoc analysis of regression results to detect patterns that may have
gone unnoticed. However, ML models should not be treated as the result of a deductive causal test.
To demonstrate the application of ML for pattern discovery, we implement ML algorithms to study
employee turnover at a large technology company. We interpret the relationships between variables
using partial dependence plots, which uncover surprising patterns that may have gone unnoticed
using traditional methods. To guide readers evaluating such pattern discovery, we provide guidance
for evaluating model performance, illustrate human decisions in the process, and warn of common
misinterpretation pitfalls. An online appendix provides code and data to implement the algorithms
demonstrated in the paper.

Managerial Summary:
Supervised machine learning (ML) methods are a powerful toolkit that might help managers and
researchers discover interesting patterns in large and complex data. We demonstrate this by using
several ML algorithms to investigate the drivers of employee turnover at a large technology
company. We evaluate the performance of the models, and use visual tools to interpret the patterns
revealed. These patterns can be useful in understanding turnover, but we caution not to confuse
correlation with causation. These methods should be viewed as “exploratory” and not conclusive
proof of relationships in the data. Our guidance can be helpful for managers evaluating analysis
conducted by data scientists in their organizations.

Keywords: machine learning, supervised machine learning, induction, abduction, exploratory data

analysis, pattern discovery, decision trees, random forests, neural networks, ROC curve, confusion

matrix, partial dependence plots

1 Harvard Business School. Corresponding author: Prithwiraj (Raj) Choudhury (email: pchoudhury@hbs.edu). The
authors thank Kathy Eisenhardt, Connie Helfat, Dan Levinthal, Rory McDonald, Joe Mahoney, Evan Starr, Ron Tidhar,
participants at the 2018 Academy of Management and the 2018 Strategy Science conference held at the Wharton School
and two anonymous reviewers for helpful comments on a prior draft. All errors remain ours.

mailto:pchoudhury@hbs.edu

Strategic Management Journal (forthcoming)

2

1. INTRODUCTION

Machine learning (ML) methods represent an exciting but underutilized toolkit for strategy and

management researchers.2 Greater adoption of these methods could be facilitated by illustrating

relevant applications of ML to research in our fields. This paper attempts to make progress in this

direction by using real-world data to demonstrate a specific application of supervised ML methods:

as an exploratory tool to discover robust patterns in quantitative data. These patterns can be used as an

“observation” for further exploratory inductive or abductive research. These observations can help

researchers formulate better hypotheses grounded in data, which can later be deductively tested

using traditional econometric tools. The pattern discovery capabilities of ML could also be helpful

during post-hoc analysis of traditional regression results to detect patterns that may have gone

unnoticed.

In addition to demonstrating the application of ML as a useful tool for pattern discovery,

this paper also provides guidance for readers to evaluate the work of researchers who use this tool.

As a new methodological framework in our fields, it is important to establish a basis for how to

evaluate whether researchers made appropriate choices when applying machine learning methods. In

other words, what should readers look for in the methods section of the paper that uses ML

methods for pattern discovery? In summary, while the first goal of this paper is to illustrate the use

machine learning for exploratory pattern discovery, the second goal is to provide guidance for

readers to evaluate such work.

 Using ML for pattern discovery should be viewed as a complement (not a substitute) to

traditional econometric hypothesis testing (Mullainathan and Spiess, 2017). In the traditional

econometric approach, researchers typically specify a linear model, which yields coefficients that

2 To date, ML has mostly been used to classify meaning embedded in unstructured text and image data to use as
variables in traditional econometric models (Kaplan & Vakili, 2015; Choudhury, Wang, Carlson, & Khanna, 2019; Gross,
2018; Menon, Choi, & Tabakovic, 2018; Furman & Teodoridis, 2020).

Strategic Management Journal (forthcoming)

3

represent the best-fitting linear relationships between 𝑦 and 𝑋. This procedure imposes strict

functional form assumptions, but yields statistically consistent, interpretable coefficients that can be

used to test hypotheses (e.g. rejecting a null hypothesis). This is the preferred approach when

researchers can pre-specify clear hypotheses and an appropriate linear model to test.

In contrast, ML methods can be used for discovery-driven (e.g. inductive or abductive)

research. This is because, unlike traditional methods, ML algorithms can reveal complex patterns in

𝑋 that relate to 𝑦 using structure that was not specified a priori. Unlike econometric hypothesis

testing, ML algorithms build models with flexible functional forms that maximize a model’s

performance using explanatory variables (𝑋) to predict an outcome (𝑦̂). The resulting functional

forms of the models can highlight surprising underlying relationships in the data. In other words,

rather than deductively testing a model specified ex ante by the researcher (as is the case with

traditional econometric analysis focused on inference), ML algorithms inductively build a model

from the data to reveal patterns. These properties also make ML a useful tool in post-hoc analysis of

traditional regression results to detect patterns that may have gone unnoticed.

Thus ML methods can potentially bring quantitative empirical researchers closer to the

tradition of grounded theory in which researchers identify patterns in the data and build models

based on data (Glaser & Strauss, 1967; Eisenhardt, 1989, Bamberger and Ang, 2016). In the broader

literature in organization science, Mantere and Ketokivi (2013) state the act of reasoning on the part

of managers and researchers alike takes three forms: deduction, induction and abduction. Deductive

reasoning takes the rule and the explanation as premises and derives the observation. Inductive

reasoning combines the observation and the explanation to infer the rule, thus moving from the

particular to the general. Abduction begins with the rule and the observation; the explanation is inferred

if it accounts for the observation in light of the rule. For example, if marbles in a bag are white (rule)

and I am given a white marble (observation), then perhaps the marble came from the bag (explanation)

Strategic Management Journal (forthcoming)

4

(Mantere and Ketokivi 2013). We argue that ML methods could provide researchers with a novel

and robust observation. The ML methods do not build theory itself—rather they represent tools which

can generate an observation that aids the process of building theory. The process may be inductive

or abductive, depending on which is taken as given—the explanation or the rule.

 To illustrate the use of ML for pattern discovery, we implement several ML algorithms using

employee turnover data from a large technology company. Most ML-built models do not yield

familiar linear coefficients, so interpretation can be difficult. Fortunately, regardless of the algorithm

used to build a model, we can visualize the relationship between 𝑦 and 𝑋 by using partial dependence

plots (Friedman 2001; Zhao and Hastie 2018). This tool displays how the predicted outcome changes

in response to a variable, conditional upon all other variables in the model. For our dataset, partial

dependence plot visualizations of the models uncover an interesting pattern in the data that is robust

across algorithms. A small group of employees who scored poorly in onboarding training were

dramatically more likely to leave in their first six months at the company. If we had estimated a naïve

linear model, we would have found a statistically significant negative relationship between training

performance and turnover probability. In fact, only the small subset of employees who scored

poorly during training were more likely to leave, and only during the first six months. This effect was

large enough to drive a negative global effect at odds with the true positive effect for the majority of

employees. A well-trained econometrician might discover these or similar patterns in the data

without ML methods, but it would be difficult and time consuming to do so in a systematic way,

especially with a larger number of covariates and a large set of possible interactions or nonlinearities.

This example serves as a proof-of-concept that ML can be useful for discovering meaningful

patterns in the data that may have gone unnoticed—potentially leading to imprecise measurement

and incomplete views of empirical relationships.

Strategic Management Journal (forthcoming)

5

 We also provide guidance on evaluating empirical work that use ML methods for pattern

discovery. First, we summarize and provide guidance on making effective decisions at each step of

the ML process, from selecting covariates to evaluating model performance. These guidelines can be

helpful to both researchers and readers of work that uses ML methods for pattern discovery.

Second, to evaluate performance of models, we discuss various metrics and illustrate the use of two

plots: (1) a plot that compares training and validation loss (i.e. error); and (2) a receiver operating

characteristic (ROC) plot, which is a graphical comparison of the rate of true and false positives.

Third, we warn of pitfalls that often lead to misinterpretation of ML results and emphasize

throughout the paper that ML is not a license to bypass rigorous causal thinking. ML analysis should

be considered exploratory rather than as a result of a causal test. Furthermore, we caution against

testing ML-identified patterns using the same dataset as though they were pre-specified hypotheses.

This would be a form of hypothesizing after the results are known (HARKing), which is a violation

of the assumptions of deductive hypothesis testing.

 In summary, effective use of ML requires human agency and expertise. The name “machine

learning” should not be taken literally—as we illustrate, human researchers using these methods

make meaningful decisions in every step of the analysis (summarized in Table 1). The guidelines

summarized in our paper can be helpful for researchers attempting to implement these methods,

and for readers to hold them to a high standard. We now illustrate the use of ML methods for

robust pattern discovery and how to visualize, interpret, and evaluate such patterns. The online

appendix provides code and simulated data to help readers apply these tools.3

2. GUIDANCE FOR IMPLEMENTING AND EVALUATING ML IN RESEARCH

3 Python version of code: https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-python;
R version of code: https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-r

https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-python
https://www.kaggle.com/ryanthomasallen/online-appendix-for-cae-2020-r

Strategic Management Journal (forthcoming)

6

In this section we provide general intuition, and a step-by-step framework for understanding ML

implementation for pattern discovery. In the next section we demonstrate a concrete example.

2.1 What is Machine Learning? Some Intuition.

 First, we provide some intuition on ML methods (for technical foundations of ML, see

Hastie et al. 2009). Consider the task of identifying chairs in images (example from Autor 2015). We

can feed an ML algorithm thousands of example images marked as “chair” or “not chair”. The

algorithm discovers complex nonlinear and interdependent relationships in pixel clusters that are

correlated with images labeled as a “chair”. The algorithm is adjusted to build many different models

of these correlations. Finally, the model that performs best on out-of-sample images is selected as

the final model.4

 A strength of ML models is the capacity to discover complex relationships, but it is also

important that models are generalizable. The best model to predict in-sample outcomes for any data

would simply specify the actual outcome for each data point. Yet such a model would not be

generalizable, and would perform very poorly out-of-sample. Instead, ML algorithms attempt to find

a model that best fits a sample dataset without overfitting, so the model performs well out-of-sample.

The tension between fitting the in-sample data perfectly and generalizing to out-of-sample data is

known as the bias-variance trade-off (see Figure 1). As a model is overfit (i.e. relies on idiosyncrasies

of in-sample data for prediction), its bias decreases but its variance increases, making it less

generalizable. An underfit model is biased because it is too simple to describe the data.

Insert Figure 1 about here

4 Contrast that approach with a linear regression, in which we specify the functional form of a model that estimates a
linear coefficient for each variable. Regardless of the true relationships in the data, this procedure will find the best fit for
the specified model, with no flexibility in functional form. We could explore new model structures by manually adding
interaction or polynomial terms, but trying all the possible combinations would be difficult, time consuming, and non-
exhaustive. Furthermore, if we intend to make inferences, trying many models would quickly violate the assumptions of
using pre-specified hypotheses.

Strategic Management Journal (forthcoming)

7

 The ML approach includes an arsenal of techniques such as cross-validation and

regularization (discussed later) that limit a model’s capacity to describe in-sample data. These

limitations are necessary for the model to perform well out-of-sample. An important idea in

implementing ML is experimenting with different constraints on model descriptive capacity to find

the model that performs best out-of-sample.5

Showing the actual mathematical details of ML implementation is beyond the scope of this

paper. However, it is helpful to understand a few terms for the sake of intuition. The mathematical

objective of any ML algorithm is to build a model that minimizes a loss function (aka objective

function or error function). The loss function is simply a way to measure the error of a model—to punish

models for predictions that do not match the observed data. Certain loss functions are better for

certain tasks. For example, we might want the loss function for a medical diagnosis algorithm to

punish models for false negatives more than false positives. In practice, the default loss functions

provided by statistical packages are usually sufficient. Throughout this paper, we use a loss function

foundational for many classification problems: the log-loss function.6

It is also important to clarify differences between the following terms: “algorithm”, the

“model”, and the “loss function”. In this paper, we refer to the “algorithm” as the computational

procedure that is used to build the “model”. The “model” is simply a function that produces a

5 Once we have a model built by an ML algorithm, why can’t we use the model to make inferences about underlying
relationships in our data? The reason is that ML algorithms build a model based on how well it predicts the outcome,
not whether the model is “correct”. The algorithm may substitute the true explanatory variable with a highly correlated
variable that has no effect on the outcome in the real world. There are other issues as well, such as the fact that it is
difficult to calculate standard errors that account for how the model was selected. Thus ML algorithms’ strength
(flexibility fitting many different functional forms) can be an “Achilles’ heel” for inference (Mullainathan and Spiess,
2017). Though causal inference is not the focus of this paper, there has been some notable progress in designing ML
methods that can be helpful for causal inference under certain conditions. (Athey and Imbens, 2015; Zhao and Hastie,
2018)

6 The log-loss function is ℒ(𝜃) = −
1

𝑛
∑ 𝑦𝑖 log[ℎ𝜃(𝑥𝑖)] + (1 − 𝑦𝑖) log[1 − ℎ𝜃(𝑥𝑖)]𝑖 . The term 𝜃 represents the model

parameters. The term ℎ𝜃(𝑥𝑖), the “hypothesis”, represents the predicted probabilities of the model given an observation

𝑥𝑖 . The terms 𝑦𝑖 and 𝑛 represent the outcome variable and the number of observations.

Strategic Management Journal (forthcoming)

8

prediction when given an input of observed data. The “loss function” is used to evaluate the

performance of the “model”. The online appendix (Appendix 1) provides greater detail for

conceptually understanding the loss function.

2.2 Step-by-step implementation framework

Armed with some foundational intuition, we now provide a step-by-step framework designed to

guide researchers implementing or evaluating ML. These steps outline a structured process for

adjusting algorithms until they produce models that perform well in out-of-sample data. Although

the term “machine” learning evokes images of machine autonomy, each step of the process requires

considerable human input. Table 1 summarizes the steps of the ML process, human decisions

required at each step, and guidance for how to evaluate the decisions that have been made.

Insert Table 1 about here

Step 1: Select data and explanatory variables

Arguably, the first step of any empirical analysis is to select a dataset and the set of variables to

consider. As with other forms of empirical analysis, ML researchers are guided by prior literature in

selecting the universe of variables to analyze. This decision is affected by the same sets of

considerations and biases affecting researchers of prior methods, even in highly qualitative inductive

research. As Suddaby (2006) states, “grounded theory is not an excuse to ignore the

literature……constantly remind yourself that you are only human and what you observe is a

function of both who you are and what you hope to see” (Suddaby, 2006; pages 634-635).

Researchers using ML for pattern discovery should heed the same caution in selecting variables, and

should document and motivate which variables selected. While the set of variables chosen can be

motivated by prior literature, the patterns (i.e. relationships between the variables) illuminated in the

inductive exercise may be novel.

Step 2: Select an algorithm

Strategic Management Journal (forthcoming)

9

The next step is to select an algorithm that will build the predictive model. The algorithm attempts

to find a model that minimizes error (i.e. the output of the loss function). In this paper, we will

implement three ML algorithms: decision tree, random forest, and neural network. Each algorithm

uses a different computation procedure to build models for predicting 𝑦̂ and has unique strengths

and weaknesses.

There is no secret recipe for selecting the algorithm that best fits a particular situation. In

practice, even experienced data scientists do not know ex ante which algorithm to use. Nevertheless,

in this step we provide rule-of-thumb guidance. Table 2 lays out the strengths and typical uses of

some of the most popular ML algorithms. Considerations for algorithm selection include:

Regression or classification? It is important to distinguish between regression problems (a

continuous real-number dependent variable, such as stock price) and classification problems (a

categorical dependent variable, such as filing for bankruptcy).7 Some algorithms are suitable for both

types of problems; they are simply used to minimize different loss functions. For example, a

decision tree classifier minimizes the log-loss function, but a decision tree regression minimizes

mean squared error.8 However, using a decision tree classifier for a continuous dependent variable

or a decision tree regression for a categorical dependent variable will not produce optimal results.

Insert Table 2 about here

(For classification problems) Linear separability. Some algorithms (e.g. support vector

machines) are designed to isolate data points of one classification from data points of another

7 Classification problems may entail two categories (binomial classification) or more than two categories (multiclass
classification).

8 Mean squared error is
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 . It is technically possible to define custom loss functions, but that topic is

beyond the scope of this paper. We merely want to clarify that many models can be used for both regression and
classification, depending on the loss function in question. In software implementations such as Python and R,
implementing a model automatically minimizes a default loss function (often log-loss for classification and mean-squared
error for regression).

Strategic Management Journal (forthcoming)

10

classification by the widest possible margin. This method is used when classifications of data points

are linearly separable—that is, in which it is possible to draw a line (or a plane/hyperplane) that

separates the classes. In contrast, algorithms that use the log-loss function may perform better when

classes are not linearly separable. For example, a plot with overlapping points labeled 𝑦 = 1 and 𝑦 =

0 with no clear line of separation between the two is not linearly separable.

(For classification problems) Labels or predicted probabilities? Predicting actual labels is a

common task in practice (e.g. loan will default). However, researchers using ML classification for

exploratory pattern discovery may be more interested in the model’s predicted probabilities (e.g.

loan has 0.26 probability of defaulting). Predicted probabilities are translated into a label using a

decision threshold (e.g., loans with predicted probabilities >0.1 are labeled “default”). Algorithms

that use the log-loss function are more appropriate for probabilistic interpretation than, for example,

support vector machine (SVM) algorithms (which excel at hard categorization between distinct

classes). Later, in this paper’s demonstration, we will stop one step before assigning a label using a

decision threshold. This is because it is nearly impossible to predict the exact time period when a

specific person will leave a company. Instead, we compare what drives the relative probabilities of

turnover in each time period.

Consideration: model capacity vs. number of observations in data. With more data

observations, we can use algorithms with greater “model capacity”. Model capacity means fitting

highly flexible functional forms to achieve higher predictive performance. For example, a neural

network algorithm has high potential model capacity, and can theoretically be used to represent any

nonlinear relationship. However, algorithms like neural networks with higher model capacity require

more data and expertise to prevent overfitting. A highly complex neural network trained on a few

hundred observations would inevitably overfit the data. In fact, high capacity models like neural

networks can underperform other algorithms unless they are trained using large amounts of data.

Strategic Management Journal (forthcoming)

11

Step 3: Choose regularization and other hyperparameters

For each algorithm, we will set algorithm-specific constraints on the models it can build.

Regularization is any constraint that restricts the descriptive capacity of a model—essentially

smoothing the functional form to prevent overfitting (recall Figure 1). This is done by tuning (i.e.,

adjusting the values of) the regularization hyperparameters of the algorithm. A hyperparameter is any

parameter of the algorithm that is set before estimating the model. Hyperparameters are not learned

from the data; they are assigned to the model by the researcher. The ML algorithms we implement

later in this paper all have specific hyperparameters, which can be “tuned” (i.e., adjusted) to avoid

under- and overfitting. For example, decision trees have “stopping rules” that limit the growth of

the tree.

For some algorithms, an important hyperparameter is the choice of a “regularization term”

(or “penalty term”) to add to the loss function. Adding regularization terms to a loss function

controls for overfitting by punishing the loss function for putting too much predictive weight on a

variable. An example perhaps familiar to some researchers is the LASSO regression. Online

appendix, section 1 describes how a regularization term in the loss function prevents overfitting.

What are the optimal values for the hyperparameters? Tuning hyperparameters is a delicate

balancing act between bias (underfitting) and variance (overfitting). To find this balance, we try

many hyperparameter values and see which combination produces a model that performs best out

of sample.

Step 4: Partition the data for out-of-sample model evaluation (training, validation, and testing)

To evaluate out-of-sample performance, we see how well the model performs on a “validation

sample” distinct from the “training sample” used to train (i.e. estimate) the model. We tune the

hyperparameters of the algorithm that is “learning” from training data until its predictive

Strategic Management Journal (forthcoming)

12

performance on the validation data is optimized. A final sample of data, the holdout test set, is kept

separate from both the training set and the validation set. We use this sample to get a final estimate

of predictive performance on data that were not used to train or validate the model (see step 7). A

reasonable rule of thumb is to partition the data randomly into either three subsets (~60% training,

~20% validation, and ~20% holdout test) or into two subsets (~70% training-validation and ~30%

holdout test) to be used for k-folds cross-validation.9

Throughout this paper we use the second option, k-folds cross-validation. This method of

cross-validation is less sensitive to the idiosyncrasies of training and validation set selection, though

it is more computationally intensive. In k-folds cross-validation, the training-validation data are split

randomly into k equal-sized subsets of data. One by one, each of the k subsets is used as the

validation data; the other k-1 subsets are used to train the model. The resulting k estimates of the

validation error (i.e. output of loss function) from each model are averaged for the measurement of

model performance. Taking an average is what makes model performance evaluation less subject to

idiosyncrasies in any single split of the data. Throughout this paper, we use 10-fold cross-validation

(k = 10), a common choice for k.

Step 5: Apply preprocessing steps

Preprocessing the data—including “feature engineering”.10 and handling missing data11—is

also important for model predictive performance. It can be necessary to scale variables (i.e. features)

9 The relative size of the validation and test data can be smaller for large datasets. The key point is that the size of the
validation/test set is large enough to give reliable estimates of model performance. For example, if my dataset has a
billion observations, I may only need a thousand data points as a holdout test—much smaller than 20%.
10 “Feature” is another word for variables or functions of variables. “Feature engineering” refers to scaling, creating, or
modifying features (e.g., bucketing a continuous variable or interacting variables).
11 Handling missing data can heavily influence model performance. Dropping observations with missing values can
severely limit the number of observations and may be misleading if the excluded data are systematically related to the
outcome variable. As a solution, missing values can be imputed. Missing numerical values can simply be replaced with
the variable’s mean or median value, and missing categorical values can be replaced with the mode. Alternatively, missing
values can be replaced with an estimated value—that is, run a regression model to learn what values predict the value for
non-missing observations and fill in missing observations with the predicted values. If a variable has many missing
values and is not central to the prediction, it may be best to simply drop the variable.

Strategic Management Journal (forthcoming)

13

for algorithms that calculate distance between points (e.g. neighbor methods like KNN or support

vector machines) or for algorithms that use a regularization term (e.g. neural networks and LASSO).

If not scaled, variables with larger magnitudes will overwhelm variables with smaller magnitudes as

the algorithm assigns weights. Variables are commonly divided by “z-scores” or “minmax” scores,

which strip units so that all numerical magnitudes are comparable across variables.

 These preprocessing steps (e.g. normalizing values or missing value imputation) can leak

information from the validation or test data into the training data. Leakage causes the out-of-sample

evaluation metrics are overly optimistic about the performance of the model. Therefore, these

preprocessing steps should be done after splitting the data into training/validation/test partitions.

Each preprocessing step should be “learned” from the training data, then applied to the validation

and test data. For example, if a variable is to be normalized by a “z-score”, then each observation in

the training, validation, and test set should apply the following calculation:
𝑥−𝑚𝑒𝑎𝑛(𝑥𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)

𝑠𝑑(𝑥𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
. In the

companion code for this paper, we demonstrate how to preprocess the data in a pipeline, which

makes implementation simple.

Step 6: Fit the model on the training set and evaluate predictive performance on the validation set

Finally, we can use the algorithm to fit (i.e. estimate) a model. Statistical software like R and Python

make it relatively easy to fit the model (see online appendix for examples). Under the hood, an

optimization algorithm finds the function that minimizes error (output of loss function) in the

training data, subject to the hyperparameter choices and model constraints.

In-depth discussion of optimization algorithms is beyond the scope of this paper—we leave

that to the statistical software. However, it is useful to be aware that some complex models (e.g.,

neural networks), may locate local rather than global optima.12 A signal of the presence of multiple

12 For example, one common algorithm is the gradient descent algorithm. Imagine that loss (i.e. error) as a function of

variables 𝑋 is represented in 3D space by a landscape where peaks represent high loss and valleys represent low loss. The

Strategic Management Journal (forthcoming)

14

local optima is that the model’s fit results vary significantly with the choice of initial parameter

values. Although there is no simple solution to this problem, it can sometimes be addressed with a

better choice of initial parameter values or stronger regularization.

The fitted model is used to predict outcomes in the validation data, and the resulting

predictions are evaluated against the true outcomes in the validation data using a performance

metric. Throughout this paper, we use the log-loss score (i.e., our model’s error) as the measure of

model performance.

Step 7: Repeat steps 1–5, varying the algorithm, features, hyperparameters, and regularization choices to maximize

predictive performance on validation set

It is difficult to know a priori the combination of algorithm, features, and hyperparameters

that will yield the best model. We try many different combinations, with the goal of finding the

model with the least error on the validation set. Often ML practitioners try as many combinations as

is feasible, starting with the simplest algorithms.

Though the objective is to minimize the model’s loss (i.e. error) on the validation set, this

validation loss should not significantly diverge from the training loss. Divergence of training and

validation loss is a sign that the model overfits the in-sample data at the expense of performance on

out-of-sample data. Figure 2 plots the training and validation loss of the random forest model

predictions as a function of one of its hyperparamters, “tree depth”. We trained and evaluated the

model (using 10-folds cross validation) eight separate times, varying the “tree-depth”

hyperparameter values from 1 through 8. The orange (upper) line represents the validation loss, and

blue (lower) line represents the training loss of the model predictions across these eight

gradient descent algorithm finds the steepest route down from whatever hill it is initially positioned on, and it stops
when it cannot descend any farther. Thus, for non-convex optimization problems (e.g. rugged landscapes with multiple
performance “peaks”) like neural nets, the initial values assigned to an algorithm can lead to substantially different
predicted models. For other algorithms, the loss function is convex (i.e. a landscape with one performance “peak”) by
virtue of the linear hypotheses; thus, this problem is not encountered. In general, however, the problem of multiple local
minima can be quite challenging.

Strategic Management Journal (forthcoming)

15

hyperparameter values. Because the random forest algorithm has unbounded descriptive capacity in-

sample, the training loss approaches 0 as regularization is eliminated. It appears that the best choice

for tree depth would be around 3 or 4—the choice at which both training and validation losses are

low, but validation loss has not diverged from training loss.

Insert Figure 2 about here

 Rather than manually tuning one hyperparameter at a time, many statistical packages include

support for “grid search” or “random search” techniques. These systematically fit and evaluate the

model using many combinations of a user-specified set of hyperparameter values. Despite these

tools, it is sometimes impossible to try every possible combination of algorithm, feature, and

hyperparameter values. The actual process of tuning hyperparameters can be messy and iterative in

nature. The code in the online appendix gives a more detailed guide for implementing this process in

practice.

Step 8: Evaluate final predictive performance, and interpret model

After selecting the best-performing model (in the validation data), we can evaluate final predictive

performance by applying the model to the holdout test set. Because this sample was not used to

train or validate in the previous steps, it represents the purest out-of-sample test available to evaluate

model performance. Performance of the model can be evaluated using various metrics and

visualizations (which we demonstrate on our data in section 3). Ideally the holdout test performance

should be statistically indistinguishable from the training/validation loss. If it is significantly worse

than the training and validation scores, then the model has been overfit to the training/validation

data. Therefore the holdout test set is a primary safeguard against overfitting.

When applying ML for exploratory pattern discovery (the focus of this paper), we can now

attempt to understand the model’s structure. ML-built models can be hard to interpret when they

Strategic Management Journal (forthcoming)

16

contain nonlinearities and interdependencies among explanatory variables. However, visualization

tools like partial dependence plots can be extremely helpful (we demonstrate this in section 3). We

cannot always take patterns in the models at face value, or treat them as causal relationships. But the

patterns that are robust across multiple ML algorithms can be very informative.

3. DEMONSTRATION: DISCOVERING PATTERNS IN EMPLOYEE TURNOVER

3.1 Data and Setting

In our demonstration, we attempt to discover employee turnover patterns in a large Indian

technology firm, TECHCO. The internal dataset covers the 1,191 entry-level employees that were

deployed to any of TECHCO’s nine geographically dispersed production centers in 2007. The data

are structured as a panel of one observation for each month that an individual is employed at the

company for up to 40 months. The data include 36,978 observations from 1,191 employees total;

25,925 observations from 833 employees in training/validation; and 11,053 observations from 358

employees in the holdout test sample. The dependent variable, Turnover, indicates whether the

employee left during that time period (𝑦 = 1 if turnover, 𝑦 = 0 if non-turnover). Our goal is to

estimate the relative probability (i.e. hazard) of turnover for a given employee at a given time.

Choice of explanatory variables was motivated by considerations outlined in the prior

theoretical (Jovanovich, 1979) and empirical literature (e.g. Campbell, et al., 2012; Carnahan,

Kryscynski and Olson, 2017) on employee turnover. These include employees’ performance scores

in an intensive three-month onboarding training course (Training Performance), the time in months

spent at the company (Time), university verbal and math test scores (Verbal Score and Logical Score),

date of arrival at the company (Month Arrived), and demographic information. The data also include

the assigned production center’s age (Production Center Age), its distance from the employee’s

hometown (Distance), and the similarity of the prevailing language in the production center’s region

Strategic Management Journal (forthcoming)

17

in India to that of the employee’s hometown (Language Similarity). Table 3 provides basic summary

statistics.

Insert Table 3 about here

3.2 Stylized implementation: decision tree algorithm

To develop intuition for how ML algorithms work, we apply a decision tree (a relatively simple ML

algorithm) to our data. We will also fit two other algorithms, a random forest and a neural network,

to compare patterns in the data across multiple algorithms.13 Conceptual and implementation details

(including code) for those algorithms are included in the online appendix.

The decision tree algorithm builds a model by repeatedly splitting the data into two distinct

subsets based on the values of one explanatory variable. Each subset is assigned a single value for

the predicted outcome. Each split is determined based on what will minimize the model’s total error

(i.e. output of the loss function). Within each new subset, the procedure is repeated, splitting the

data along one variable at a time to minimize the error within each subset. Each split can be

represented visually as a node with two branches, creating the overall impression of a tree. A “root

node” represents the first split, and “leaves” are terminal nodes with a predicted value for each

subset of the data. To control for overfitting, the model is regularized by “stopping rule”

hyperparameters that limit growth of the tree—for example by limiting the maximum depth of the

tree.

13 We chose these three algorithms for two reasons. First, they are widely used general purpose algorithms that
pedagogically demonstrate a variety of ML algorithm attributes: the decision tree is easily interpretable, the random
forest is a highly useful general-purpose algorithm that demonstrates ensemble techniques, and the neural network is the
basis of many modern technological applications of ML. Second, these algorithms all optimize the log-loss function. The
log-loss function is suitable to our data because we are most interested in comparing the probabilities of turnover rather
than the predicted outcome labels. Because the probability of any given employee leaving in a particular month is
extremely low, it is very difficult to predict exactly when someone will leave. The purpose is not to draw clear boundaries

between classes (i.e., binary predictions such as 𝑦̂ = 1 or 𝑦̂ = 0), but to learn relative probabilities.

Strategic Management Journal (forthcoming)

18

Figure 3 is a visual representation of the decision tree model applied to the TECHCO

turnover data.14 One of the desirable attributes of decision tree algorithms is the ease of visualization

of the resulting model. For example, the top node (the “root node”) of the tree in Figure 3 is labeled

Training Performance <= 3.995. Thus, the single split that maximized predictive performance was to

separate the data into the 25,557 observations whose training performance score exceeded 3.995

from the 338 observations whose scores were below 3.995.15 Following the left-hand branch of the

tree (labeled “True”), we see that within the 338 observations with low training performance, the

split that maximizes predictive performance splits observations with Time <= 6.5 (months) from

those > 6.5 (months) and so on.

Insert Figure 3 about here

This decision tree reveals an interesting pattern: the tree splits along only two dimensions,

Training Performance and Time. This pattern is indicative that these dimensions may be characterized

by important nonlinearities and interactions. Furthermore, the terminal nodes on the bottom left

(with Training Performance <= 3.995, Time <= 6.5, and Time > 4.5) have a much higher proportion of

turnover than any other terminal nodes. This offers clues about interesting heterogeneous effects in

subsets of the data. But for now, we avoid too much interpretation based on this figure alone. The

specific branches and leaves of a single decision tree can look dramatically different for different

samples of the same dataset.

14 After tuning the model by trying many combinations of possible hyperparameter values, our best performing decision
tree model used the ‘entropy’ criterion of determining splits, required each leaf to have at least 27 observations, and
allowed splits only if the decrease in loss (error) was greater than 0.0004.
15 These numbers represent those in the training data sample, out of the full sample of 36,978. Also, although our dataset
is based on 1,191 employees tracked over 40 months, the number of observations is not a full panel of 1,191*40 =
47,640. This is because the data stops tracking employees who leave, so those who leave before month 40 have fewer
than 40 observations.

about:blank
about:blank
about:blank

Strategic Management Journal (forthcoming)

19

To triangulate these insights with other models, we also implemented a random forest

(essentially a combination of many decision trees) and a neural network. For details on those

algorithms, see the online appendix. We will compare all three models’ performance and structure in

the following sections of the paper.

3.3 Metrics and Visualizations for Evaluating Model Predictive Performance

Evaluating a model’s predictive performance is essential not only for prediction problems,

but also for evaluating how useful a model is for exploratory pattern discovery. Before examining

the structure of models for exploratory data analysis, models should be optimized to perform well.

This helps ensure that researchers are using models based on some objective criteria rather than

simply selecting the ones that confirm their priors. Final performance on a holdout test set can be

reported using various metrics. Common metrics include: mean squared error (for regression), log-

loss score (for classification), accuracy, precision, recall, the F1 score, and the area under the curve

(AUC) score.

It is common to think of predictive performance in terms of accuracy (
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙
).

Yet accuracy can be misleading, particularly when there is imbalance in the classes. For example,

consider a sample in which only 1 percent of observations are blue and 99 percent are red. A model

that always predicts “red” will be highly accurate at 99 percent. But that model will not be very

useful, especially if it is very important to detect which observation is “blue”.

Insert Table 4 about here

In many situations, a better way to think about predictive performance is to visualize a

confusion matrix (see Table 4). For example, when the downsides of missing true positives is high

(e.g. detecting rare diseases) recall (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
) may be the most relevant metric.

Conversely, when recommending TV shows, precision (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
) may be more

Strategic Management Journal (forthcoming)

20

useful. Metrics like F1 or AUC (described in detail later) can balance precision and recall. In addition

to metrics, there are also useful plots that can be helpful for evaluating model performance.

Plot of ROC Curve

Like the confusion matrix, the receiver operating characteristics (ROC) curve helps us visualize how

well the model distinguishes between different classes (Figure 4). The curve compares the model’s

true positive rate (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) against the false positive rate

(
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
), varying the cutoff threshold for distinguishing between classes. For

example, in the bottom left-hand corner no observations are classified as 𝑦̂ = 1 because the

predicted probability of 𝑦 = 1 would have to be >1. The classification threshold is lowered until in

the top right corner the predicted probability of 𝑦 = 1 is ≥0, so everyone is classified as 𝑦̂ = 1.

Insert Figure 4 about here

 Intuitively, a model that classified each point randomly would produce points along the

dotted 45° line (i.e. equally likely to classify an observation as a true or false positive). Points above

the diagonal line represent better-than-random classification results, and points below the line

represent a classification results that are worse than random. A perfect predictive model would

include a point in the very top left corner, representing a model that could give no false negatives

and no false positives.

The area under the curve (AUC) metric can be used to summarize the ROC curve. The AUC

score represents the actual area under the ROC curve. This number can also be interpreted as the

probability that the model will rank a randomly chosen 𝑦 = 1 observation higher than a randomly

chosen 𝑦 = 0 observation. In Figure 4, the random forest model has an AUC score of 0.746.

Achieving a significantly better score may not be possible because there is no hard boundary

Strategic Management Journal (forthcoming)

21

between turnover (𝑦 = 1) and non-turnover (𝑦 = 0) observations. That is, the underlying

probability of turnover is less than 1 for all observations, rather than 1 in some regions and 0 in

other regions.

Plot of training and cross-validation error (loss)

When a model’s error (loss) on the training set is significantly lower than the validation set,

the model may be overfitted. Figure 5 plots the training and validation loss of each model. For

comparison, the plot also includes the loss from a baseline logistic regression that includes a linear

term for each explanatory variable and month fixed effects. The position of points on the plot

indicates the training and cross-validation loss of each model; error bars are calculated from a

standard deviation variation among k-folds. The figure helps us clearly visualize which models may

be overfitted; anything above the dashed line has higher validation loss than training loss (relative to

the logistic regression), a sign of overfitting. It appears that the random forest could be in danger of

having been overfitted to the training data (it is above and to the left of the dashed line). However,

the performance on the holdout test loss was 0.0633—very close to the validation loss. This

mitigates the concern that the model’s overfitting is hurting its out-of-sample performance.

Insert Figure 5 about here

The figure show that random forest and decision tree algorithms both offer small

performance increases over the baseline logistic regression. The explanation for such small gains in

performance is that meaningful interactions and nonlinearities among variables are only relevant for

a small subset of the data. Furthermore, points labeled as turnover events (𝑦 = 1) significantly

overlap with points labeled as non-turnover events (𝑦 = 0), making it difficult to predict precisely

which points are one or the other. In this case, these ML models may be more useful for pattern

discovery than for predictive performance gains.

Strategic Management Journal (forthcoming)

22

3.4 Interpreting Models using Variable Importance and Partial Dependence Plots

After finding a high performing model, we can use the model to find interesting patterns. Many ML

models are complex and can be difficult to interpret (the decision tree in Figure 3 is an exception).

Some models (e.g. LASSO) return familiar coefficients, and some (e.g. random forest) return

relatively easily interpretable measures of variable importance. Other algorithms (e.g. neural networks)

contain no intrinsic measure of for how much each variable impacted the predicted outcome.

However, regardless of the algorithm or the complexity of the model, we can interpret a model

using partial dependence plots. These plots can be used to visualize the marginal effect of one or

two variables on the predicted outcome of the model (Friedman 2001; Zhao and Hastie 2018).

Variable importance

Although not as rich as partial dependence plots, examining variable importance (when

possible) is a reasonable first step for interpreting ML models. Variable importance can be calculated

in different ways for different algorithms.16 The scale is not meaningful—only relative comparisons

matter. Figure 6 plots relative variable importance for our random forest model. These variable

importance values should not be interpreted like econometric coefficients, but can be used to give

clues for which variables to explore. Figure 6 clearly shows that Training Performance and Time warrant

further exploration using partial dependence plots.

One-way partial dependence plots and individual conditional expectation (ICE) plots

One-way partial dependence plots (PDPs) show how a model’s predicted outcome varies in

response to changes in a single explanatory variable (conditional upon other variables). A major

16For tree-based algorithms, it is often calculated as the average decrease in node impurity each time a variable was used
to split a node. Node impurity is a measure of the likelihood of misclassifying an element in the subset if it were
randomly labeled according to the distribution of labels in the subset. Intuitively, a node for which all the data are
labeled as “1” has low impurity. A node for which half the data are labeled “1” and half labeled “0” would be high
impurity.

Strategic Management Journal (forthcoming)

23

advantage of these plots is that they can show the shape of the relationship between the variable and

the outcome. Intuitively, the partial dependence function at a particular point on the x-axis

represents the average prediction if all data points had that x value.

Yet taking an average can hide heterogeneous effects among individuals. Instead, we can plot

the predicted outcome’s dependence on an explanatory variable separately for each individual in the

data. This method is known as the individual conditional expectation (ICE) plot (Goldstein et al.

2015). Each line of an ICE plot shows what the model predicts for an individual if we changed the

values of one particular variable. The PDP is simply the average of all the lines of an ICE plot. ICE

plots are particularly useful tool for detecting when a variable’s effect on the outcome is highly

interdependent with other variables. When individual ICE lines are parallel this signifies that there

are no complex interdependent relationships with that variable in the model.

Figure 7 displays the overall PDP and individual ICE lines as a function of a few select

variables in our random forest model. We also plot a linear model side-by-side for comparison. For

this comparison, we used a logistic regression with each of our explanatory variables and Time fixed

effects. Figure 7 demonstrates how, by definition, the predicted outcome has a linear relationship

with each variable (except Time fixed effects).

By contrast, the random forest model reveals interesting nonlinear relationships. In this

model, Training Performance was unrelated to probability of turnover, except for a sharp discontinuous

jump for scores lower than 4.0. In the Time plot, there are a few ICE lines that have drastically

higher probability of turnover at around 6 months. This hints at heterogeneous effects for Time that

are interdependent with the values of other explanatory variables. We can use two-way partial

dependence plots to explore these interdependencies.

Two-way partial dependence plots

Strategic Management Journal (forthcoming)

24

To explore nonlinear interactions between two explanatory variables’ effect on the predicted

outcome, we can use two-way partial dependence plots. The intuition is the same as one-way PDPs.

We average the model’s predicted outcomes for each combination of values between two variables

for each individual (holding other variable values constant). The advantage of this approach is it is

easy to see interactions between explanatory variables. The disadvantage is we cannot see whether

these effects are heterogeneous between individuals (as in the ICE plots).

Figure 8 displays the predicted probability of employee turnover for each ML model as a

function of Training Performance and Time. Again, for comparison we include a baseline logistic

regression that includes each explanatory variable and Time fixed effects. We discover several

interesting patterns. In the decision tree model plot, a conspicuous line separates Training Performance

<= 3.995 from Time <= 6.5 (exactly as in Figure 3). The random forest model offers similar

insights—that the hazard of turnover tends to increase over time, and that hazard is much higher for

those with a training score below about 4, especially around 6 months. The global negative effect of

training performance on turnover estimated by the logistic model (see Figure 7) must have been

driven by the narrow yellow strip of employees with training scores below 4 at about month 6.

3.5 Comparing ML models to a baseline regression model

How does a baseline regression model fare discovering patterns from these data? A striking insight

from Figure 8 is how poorly the logistic regression modeled the probability of turnover as a function

of Training Performance and Time. The other models all predicted dramatically higher turnover

probabilities for employees with low training scores during their first months on the job. The logistic

regression model, however, can only yield a linear fit as constrained by the linear functional form we

specified for the model. It can only tell us that on average those with lower Training Performance tend

to have a higher probability of turnover (with constants added for each time interval from the Time

fixed effects).

Strategic Management Journal (forthcoming)

25

In fact, this negative relationship only exists for a very small fraction of the sample (the 40

out of 833 who had training scores below 4 in the training sample). The relationship between

Training Performance and probability of turnover appears to be positive for the majority of the

population. The logistic regression fails to capture important nuances because Training Performance

was not explicitly modeled as a function of Time in the specified model. This finding demonstrates

the potential cost of naively estimating global linear relationships when there are many unknowns in

the data.

Of course, it is possible to use the logistic regression to test nonlinear or interactive

relationships by adding transformed variables to the model. For example, we may add a quadratic

term to test a U-shaped relationship, or multiply two variables to test an interaction effect. But,

which terms should be included? Researchers informed by theory may model such complexities

based on known relationships. However, it is often unknown a priori how best to model each

variable, and the number of combinatorial possibilities increases rapidly as more variables are

considered. ML presents a solution to the problem of knowing how to model the data.

4. AVOIDING COMMON MISINTERPRETATION PITFALLS

Like any tool, ML can be used well or used poorly. In addition to the guidance we have

given throughout the paper, it is worth explicitly stating a few common misinterpretation pitfalls.

Many of these pitfalls are not inherent properties of ML, but rather result from misinterpretation of

ML by its users and audiences.

Confusing correlation with causation is perhaps the biggest potential problem of using ML. The

patterns uncovered by the algorithm should be considered merely correlational until convincingly

proven to be causal, using other means. This paper advocates for ML to explore, not test,

Strategic Management Journal (forthcoming)

26

relationships in data. That said, there are certain circumstances under which we can use PDP and

other tools to causally interpret ML models (Zhao and Hastie 2018).17

Algorithmic bias.18 Data can be inherently biased, for example when the data is selected based

on convenience, or suffers from the feedback loop of prior human biases (Cowgill & Tucker, 2019).

This can also occur when the data suffer from “input incompleteness”— gaps in the data input

related to incentives of human agents, that lead to biased prediction (Choudhury, Starr, & Agarwal,

2020). Effective ML users should be familiar with the data-generating process and research context

to avoid biased interpretations. For an excellent review of how to address issues of algorithmic bias,

see Cowgill & Tucker (2019).

Over-interpreting variable weights of ML models is also a common mistake. The effects of

variables in ML models may heavily depend on other variables in the model. In the wrong hands,

negative weight on a variable in an ML model can have “enormous, undeserved rhetorical heft”

(Cowgill and Tucker, 2019; page 43). For example, Amazon was ridiculed for using an algorithm that

included a negative weight for graduates of two all-women’s colleges. Yet it was unclear how they

were weighted relative to other women’s or men’s colleges.19

Cherry picking or data dredging. Data dredging the practice of cherry-picking interesting

relationships from a large set of variables (Selvin and Stuart 1966). Data dredgers try to draw

attention to the cherry-picked relationships without acknowledging the process by which they were

found. This can easily lead to identifying spurious relationships.

17 Specifically, Zhao and Hastie (2018) propose that a partial dependence plot captures the causal effect if it can be
shown that the “backdoor criterion” is met. That is, adjusting for all factors that influence both X and y allows a causal
interpretation of PDPs.
18 Note that “algorithmic bias” refers to biased data—not the same as balancing the bias-variance tradeoff
19 “Amazon scraps secret AI recruiting tool that showed bias against women,” Reuters 2018, as quoted in Cowgill and
Tucker (2019)

Strategic Management Journal (forthcoming)

27

Multi-collinearity arises when variables in a model are highly correlated. For example, when

many highly correlated variables are included in a LASSO regression, the model structure will be

highly unstable (Mullainathan and Spiess 2017). Highly correlated variables contribute redundant

information to a model, so algorithms may randomly assign weight in the model to one variable or

another. In our data, for example, if the employees’ Verbal Score had been highly correlated with

Training Performance, some models might have indicated a large effect of Verbal Score on turnover and

none in Training Performance. The problem of multicollinearity becomes more serious with more

variables and more highly correlated variables. To mitigate this problem, it can help to include a

table of correlations between variables (which we do in the online appendix). It also helps to

demonstrate that patterns are robust across models built by multiple different algorithms.

P-hacking. In general, p-hacking refers to the practice of adjusting models until they

statistically confirm some desired effect. Relative to traditional methods, ML is less likely to be

susceptible to p-hacking because it has built-in safeguards—the validation and holdout test sets.

After all, p-hacking is essentially the same as overfitting the training sample, and any model that is

overfit on the training data will perform poorly on the validation and/or holdout test set.

Comparing the training performance to the validation data and/or holdout test set informs us how

well the model generalizes to out-of-sample data. Models that have not been overfit will have similar

error for training, validation, and holdout test samples. For this reason, we recommend that

reviewers always require these comparisons. It is still possible that a researcher would select among a

handful of different models which perform equally well on the holdout test set. Therefore we also

suggest triangulating on an underlying model by presenting models from multiple ML algorithms.

HARKing. Furthermore, we caution against testing ML-identified patterns using the same

dataset as though they were pre-specified hypotheses. This would be a form of hypothesizing after

the results are known (HARKing), which is a violation of the assumptions of deductive hypothesis

Strategic Management Journal (forthcoming)

28

testing (Kerr 1998). Instead, newly generated hypotheses should be tested on new data with

exogenous variation to prove causal claims.

5. DISCUSSION AND CONCLUSION

This paper began with two goals: 1) to demonstrate the application of supervised machine

learning methods for discovering robust patterns in quantitative data, and 2) to provide guidance on

evaluating research that uses such methods. Discovering new and robust empirical patterns can help

management scholars by acting as an “observation” for engaging in abductive or inductive research.

These patterns can later be deductively validated using traditional causal inference techniques.

Pattern discovery can also be used in post-hoc analysis of traditional regression results to detect

patterns that may have gone unnoticed.

We are not the first to suggest that ML methods can be used for pattern discovery in

research. In the physical sciences, researchers have used ML methods to uncover underlying

relationships in physical phenomena (Ruff et al., 2017; Rudy, Alla, Brunton, & Kutz, 2018; Hirsh,

Brunton, & Kutz, 2018). In the social sciences, researchers have evangelized what they call ‘forensic

social science’ (Goldberg 2015; McFarland et al. 2016). They argue that rather than testing

variations of pre-specified hypotheses, ML can help us make new discoveries using digital trace data.

Management scholars are also beginning to promote the idea that ML can help inductively develop

new theory (Puranam et al. 2020).

Yet to date, there has been lack of guidance for transparently and effectively applying these

methods in our fields. Given the guidance in this paper, we are excited about the potential future of

ML methods. One exciting future application is the use of ML as new tools to aid researchers in

theorizing from quantitative data. This brings quantitative empirical researchers closer to the

tradition of grounded theory in which researchers theorize models based on patterns in data (Glaser

& Strauss, 1967; Eisenhardt, 1989, Bamberger and Ang, 2016). In our view the ML methods do not

Strategic Management Journal (forthcoming)

29

build theory itself—rather they represent observational tools which the researcher can use to build

theory. A related recent paper pairs ML with qualitative case studies to develop new theory about

optimal revenue models in iOS apps (Tidhar and Eisenhardt 2020).

As an increasing number of management scholars use these methods for pattern discovery in

their research, it is important to evaluate the choices made by researchers in using these methods. To

reiterate, the implementation of ML methods for pattern discovery involves human agency and the

researcher has to make important choices relative to several actions: (i) selecting data, (ii) selecting

algorithms, (iii) setting hyper-parameters, (iv) splitting training and validation data, (v) preprocessing,

and (vi) selecting metrics to measure predictive performance of the models. We provide guidance on

all these choices. Additionally, given that ML methods do not generate the familiar coefficients with

confidence intervals, we illustrate tools such as partial dependence plots, plots of training and

validation loss and the ROC curve that could be used both by the researcher and the reader to

visualize, interpret and evaluate the robustness of patterns discovered.

 Throughout this paper we have highlighted that because ML algorithms do not produce

statistically consistent coefficient estimates or reliable standard errors, they should not be used for

traditional deductive hypothesis testing (Mullainathan & Spiess, 2017). Rather, the use of ML models

to discover patterns should be seen as an exploratory exercise. Thus, we present ML as a

complement to, not a substitute for, traditional econometric methods. Misunderstanding this point

can lead to severe misinterpretation. We also repeatedly caution against common pitfalls such as

being subject to biases in the data, data dredging, p-hacking, and HARKing.

In conclusion, we demonstrate how ML methods can be a helpful exploratory tool to

identify robust patterns in quantitative data. These patterns can be helpful for researchers engaged in

data-driven abductive or inductive scientific discovery. We provide tools for implementing and

visualizing ML analyses, and guidance for interpretation and evaluation. We also provide detailed

Strategic Management Journal (forthcoming)

30

code to help future researchers. We look forward to the potential of ML as a methodological

framework in future empirical management research.

REFERENCES

Athey, S., & Imbens, G. W. (2015). Machine learning methods for estimating heterogeneous causal
effects. stat, 1050(5), 1-26.

Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace
automation. Journal of economic perspectives 29.3: 3-30.

Bamberger, P., & Ang, S. (2016). The quantitative discovery: What is it and how to get it published.
Campbell, B. A., Ganco, M., Franco, A. M., & Agarwal, R. (2012). Who leaves, where to, and why

worry? Employee mobility, entrepreneurship and effects on source firm performance.
Strategic Management Journal, 33(1), 65-87.

Carnahan, S., Kryscynski, D., & Olson, D. (2017). When does corporate social responsibility reduce
employee turnover? Evidence from attorneys before and after 9/11. Academy of Management
Journal, 60(5), 1932-1962.

Choudhury, P., Starr, E., & Agarwal, R. (2018). Machine learning and human capital: Experimental
evidence on productivity complementarities. Working Paper, Harvard Business School,
Boston, MA. Retrieved from https://www.hbs.edu/faculty/Publication%20Files/18-
065_c065462c-0791-4356-8e09-46e1b251c1c8.pdf

Choudhury, P., Wang, D., Carlson, N. A., & Khanna, T. (2019). Machine learning approaches to
facial and text analysis: Discovering CEO oral communication styles. Strategic Management
Journal, 40(11), 1705-1732.

Cowgill, B., & Tucker, C. E. (2019). Economics, fairness and algorithmic bias. Journal of Economic
Perspectives.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Management Review,
14(4), 532–550.

Friedman, Jerome H. “Greedy function approximation: A gradient boosting machine.” Annals of
statistics (2001): 1189-1232

Furman, J. L., & Teodoridis, F. (2020). Automation, research technology, and researchers’
trajectories: Evidence from computer science and electrical engineering. Organization
Science, 31(2), 330-354.

Glaser, B. S., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New
Brunswick, NJ: AldineTransaction.

Goldberg, A. (2015). In defense of forensic social science. Big Data & Society, 2(2),
2053951715601145.

Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking inside the black box: Visualizing
statistical learning with plots of individual conditional expectation. Journal of Computational and
Graphical Statistics, 24(1), 44-65.

Gross, D. (2018). Creativity under fire: The effects of competition on creative production (NBER
Working Paper No. 25057). Retrieved from National Bureau of Economic Research website:
https://www.nber.org/papers/w25057

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference,
and prediction. Springer Science & Business Media.

https://www.hbs.edu/faculty/Publication%20Files/18-065_c065462c-0791-4356-8e09-46e1b251c1c8.pdf
https://www.hbs.edu/faculty/Publication%20Files/18-065_c065462c-0791-4356-8e09-46e1b251c1c8.pdf

Strategic Management Journal (forthcoming)

31

Hirsh, S. M., Brunton, B. W., & Kutz, J. N. (2018). Data-driven spatiotemporal modal
decomposition for time frequency analysis. Working Paper, University of Washington,
Seattle, WA. Retrieved from https://arxiv.org/pdf/1806.08739.pdf

Jovanovic, B. (1979). Job matching and the theory of turnover. Journal of Political Economy, 87(5, Part
1), 972-990.

Kaplan, S., & Vakili, K. (2015). The double‐edged sword of recombination in breakthrough
innovation. Strategic Management Journal, 36(10), 1435–1457.

Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social
Psychology Review, 2(3), 196-217.

Mantree, S., & Ketokivi, M. (2013). Reasoning in organization science. Academy of Management Review,
38(1), 70–89.

McFarland, D. A., Lewis, K., & Goldberg, A. (2016). Sociology in the era of big data: The ascent of
forensic social science. The American Sociologist, 47(1), 12-35.

Menon, A., Choi, J., & Tabakovic, H. (2018). What you say your strategy is and why it matters:
Natural language processing of unstructured text. In G. Atinc (Eds.), Academy of Management
Proceedings. Retrieved from
https://journals.aom.org/doi/10.5465/AMBPP.2018.18319abstract

Microsoft. (2019). How to choose algorithms. Retrieved from https://docs.microsoft.com/en-
us/azure/machine-learning/studio/algorithm-choice

Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach. Journal of
Economic Perspectives, 31(2), 87–106.

Puranam, P., Shrestha, Y. R., He, V. F., & von Krogh, G. (2020). Algorithm Supported Induction
for Building Theory: How Can We Use Prediction Models to Theorize?

Rudy, S., Alla, A., Brunton, S. L., & Kutz, J. N. (2018). Data-driven identification of parametric
partial differential equations. Working Paper. Retrieved from
https://arxiv.org/abs/1806.00732

Ruff, C. T., Lacoste, A., Nordio, F., Fanola, C. L., Silverman, M. G., Argentinis, E., Spangler, S., &
Sabatine, S. (2017). Classification of cardiovascular proteins involved in coronary
atherosclerosis and heart failure using Watson’s cognitive computing technology. Circulation,
136(S1), A16678.

Scikit Learn. (2018). Choosing the right estimator. Retrieved from https://scikit-
learn.org/stable/tutorial/machine_learning_map/index.html

Selvin, H. C., Stuart, A. (1966). Data-dredging procedures in survey analysis. The American Statistician,
20(3), 20-23.

Suddaby, R. (2006). From the editors: What grounded theory is not.
Tidhar, R., & Eisenhardt, K. M. (2020). Get rich or die trying… finding revenue model fit using

machine learning and multiple cases. Strategic Management Journal.
Zhao, Q., & Hastie, T. (2019). Causal interpretations of black-box models. Journal of Business &

Economic Statistics, 1-10.

https://arxiv.org/pdf/1806.08739.pdf
https://arxiv.org/abs/1806.00732

Strategic Management Journal (forthcoming)

32

Notes: Machine learning excels at balancing the bias variance trade-off. The left panel illustrates a
high bias/low variance fit of the points, the right panel illustrates a high variance/low bias fit, and
the middle represents a reasonable balance between bias and variance.

FIGURE 1. Illustrative depiction of bias-variance trade-off

Notes: The blue (lower) and orange (upper) lines represent training loss and validation loss for each

value (1–8) of the tree depth hyperparameter. Error bars represent cross-validation standard error

confidence intervals. The figure demonstrates the “elbow” where validation loss diverges from the

training loss. Increasing the tree depth removes constraint from the model, allowing it to better

describe the data and thereby decrease loss. However, removing too much constraint (i.e., increasing

tree depth) can cause overfitting—where the model predicts well in the training data but not in the

validation data. It appears that setting the tree depth hyperparameter to 3 or 4 would yield the best

generalizable predictions. Note that for illustrative purposes, this random forest algorithm does not

contain any regularization other than tree depth. The random forest algorithm used later in the

paper differs slightly due to adjustment of other regularization hyperparameters.

FIGURE 2. Training and validation loss as a function of the random forest “tree depth”

hyperparameter

Strategic Management Journal (forthcoming)

33

Notes: This image depicts a decision tree model that was trained to predict the dependent variable

𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 (1 if turnover occurs in a given time interval, 0 otherwise). The label Samples within each
node denotes the number of observations within the subset of data represented by that node. For
example, the top “root node” contains all 25,925 training observations. Adding all the values of
Samples in the terminal “leaf nodes” also sums to 25,925. The label Value within each node denotes
the number of non-turnover events and the number of turnover events within that node. For
example, the terminal node on the bottom left reads value=[28,10]. This indicates that of the 38
observations, 28 were non-turnover (y = 0) and 10 were turnover (y = 1). The probability of
turnover for these observations can be represented as a probability of turnover (10 / 38 = 0.26)
given the attributes on the path to the node. This image was created by graphviz in python (see
online appendix code).

FIGURE 3. Decision tree model

Strategic Management Journal (forthcoming)

34

Notes: This plot displays the training and validation loss for each model. The plot on the left displays
absolute training and validation loss. The plot on the right displays loss relative to the baseline
logistic regression model (i.e. each point represents the average difference in total training and
validation loss compared to the logistic regression model, which helps cancel out variation). Points
toward the lower-left corner are better predictions (lower loss). Error bars represent a standard
deviation variation in predictions yielded by the k-folds cross-validation. The dashed line represents
a point at which the loss from the training set is equal to the loss on the validation set (relative to the
baseline logistic regression). Points above and to the left of the line represent models for which the
validation loss is higher than training loss, indicating that the model may be overfitted on the
training data.

FIGURE 4. Plots of training and validation loss for each model relative to logistic regression

Notes: The blue line plots the true positive rate (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) and false positive rate

(
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
) as the classification threshold is varied. The red dotted 45° line

represents a model that randomly classifies each point (that is equally likely to classify someone as a
true or false positive). Points above the diagonal line represent better-than-random classification
results, and points below the line represent a classification results that are worse than random. A

Strategic Management Journal (forthcoming)

35

perfect predictive model would have a point in the very top-left corner, representing a model that
gave no false negatives and no false positives. The area under the curve (AUC score) of 0.746 means
that there is a 0.746 probability that the random forest model will rank a randomly chosen positive

observation higher than a randomly chosen negative observation. For our data, this is probably close
to the highest possible score with any model because there is no hard boundary between y=1 and
y=0 observations (i.e., the underlying hazard of turnover is less than 1 for all observations, rather
than 1 in some regions and 0 in other regions).

FIGURE 5. ROC curve

Notes: This figure represents the “variable importance” (aka “feature importance”) of each
variable in the random forest model. This is calculated as the average decrease in node
impurity across all the variable’s nodes, weighted by the probability of reaching that node
(i.e. number of samples that reach that node divided by total samples). Variables with
higher values are more important. Scale is relative, and the sum of all values adds up to 1.

FIGURE 6. Variable Importance

Strategic Management Journal (forthcoming)

36

Logistic Regression PDPs

Random Forest PDPs

Notes: This figure overlays a one-way partial dependence (PDP) plot and individual conditional

expectation (ICE) lines. The dependent variable is employee turnover (𝑦 = 1 if employee left in that
period). Logistic regression predictions appear in the left-hand plots; random forest predictions
appear in the right-hand plots. Each vertical axis is on the same scale, with units as the log of the
odds ratio of the predicted probability of turnover. The ICE lines were generated by randomly
selecting 500 samples from the full dataset and, for each sample, predicting the outcome using 40
values of the variable across the entire variable range while holding all other variable values fixed.
The predictions from each sample are represented by an orange (solid) line across the entire range.
The result is a distribution of 500 orange ICE lines, one for each sampled observation. Each plot
also shows the average of the ICE lines (the overall PDP) as the dotted blue line.

FIGURE 7. One-way partial dependence plots

Strategic Management Journal (forthcoming)

37

Notes: These two-way partial dependence plots represent the probability of turnover predicted by
each model along the dimensions Training Performance and Time. Higher probabilities of turnover are
represented in yellow; the lowest probabilities are represented in dark blue. All plots are on the same
scale. For each observation in the dataset, we used our models to predict the hazard of turnover for
each point represented by each combination of 40 evenly spaced values of both Training Performance
and Time (resulting in a grid of 1,600 points total). The final estimated probability for each point on
the grid is the average estimated probability across all observations for that point on the grid. Other
plots did not reveal meaningful interactions or nonlinearities for different variables.

FIGURE 8. Two-way partial dependence plots

Strategic Management Journal (forthcoming)

38

TABLE 1. ML for pattern discovery: Guidance for evaluating human decisions
Step Human decisions Guidance for evaluation

Step 1: select data
Which universe of variables to

consider and which to include
Specify which variables were used out

of set of possible variables, and why

Step 2: select
algorithm

Choose a loss function (usually use
default in statistical package)

Which set of algorithms to try
Prioritize objectives—for example

predictive accuracy vs. model
interpretability

Explicitly state the loss function

Disclose all algorithms used
Explain objectives and purpose of

analysis

Step 3: set
regularization and
other
hyperparameters

Which set of hyperparameter values
to try

State which hyperparameters and
hyperparameter values were used

Step 4: partition data
for training,
validation, and
testing

How to split the training/validation
and holdout test sets

How many folds for cross-validation

 Enough data for reliable validation and
testing (perhaps 70% for training/
validation and 30% for holdout test).

10-fold cross-validation is common.
More folds can yield better results
but take longer / more computation.

Step 5: Apply
preprocessing steps

Applying “feature engineering” to
variables (including scaling)

How to treat missing data (e.g. drop
observations, impute values etc.)

Describe manipulations of variable
values

Report how sensitive results are to
different choices of treating missing
data

Step 6: fit model on
training set and
evaluate predictive
performance on
validation set

Which metric of predictive
performance to use. For example,
log-loss score, AUC score, F1
score, accuracy, precision, recall
etc.

Log-loss is a common default for ML
classification and mean-squared error
is a common choice for ML
regression. In special cases, the
metric can align with costs of
inaccurate prediction. For example,
when the costs of inaccurate
prediction are high (e.g. predicting
rare diseases) consider using recall.
When they are low (e.g.
recommending TV shows), precision
may be more useful. Metrics like
AUC or F1 can balance these
considerations.

Step 7: repeat steps 1-
5, varying choices to
maximize predictive
performance

When to stop repeating the steps—
when is good enough?

Ideally, stop when you reach a
saturation point—the tweaks only
yield very small improvements to
performance.

Step 8: evaluate final
predictive
performance and
interpret model

Predictive performance evaluation:
Which metrics and visualizations of
predictive performance to use

Report comparisons of the
performance on the holdout test set.
Compare to the same performance
metric as training / validation. Can

Strategic Management Journal (forthcoming)

39

Model interpretation: Which variables

and combinations of variables to
plot partial dependence

also plot visualizations of predictive
performance

Start by plotting variables with high
“variable importance”. For a small
number of variables, look at all of
them—create a loop that plots the
partial dependence and two-way
dependence of all variables. When
presenting results, state which plots
you include and do not include, and
why (e.g. we presented all with
nonlinear or interactive patterns)

TABLE 2. Guidance for selecting supervised machine learning algorithms

Algorithm (R
)e

gr
es

si
o

n
 o

r
(C

)l
as

si
fi

ca
ti

o
n

?

 S
ca

le
 F

ea
tu

re
s?

C
ap

ac
it

y

In
te

rp
re

ta
b

ili
ty

S
p

ee
d

E
as

e
o

f
tu

n
in

g

Notes Common Uses

Decision Tree* Both

Highly interpretable due to
visualization of tree and
variable importance

Quick understanding of
important features and
partitions in data

Random Forest* Both

Versatile and generally
performs better than decision
tree. Relative to gradient
boosted trees, it is easy to
tune and low memory
footprint. Can also estimate
trees in parallel.

General purpose

Neural Network* Both ✓

Highly flexible functional
form; difficult to tune. More
reliable and useful with big
data. Generally harder to
interpret.

Image recognition,
language processing,
forecasting, and more

K-nearest neighbors
(KNN)

Both ✓

Lazy nonparametric
estimation based entirely
from values of K neighboring
observations; high memory
requirements; if used with
panel data, time interval is a
tunable hyperparameter

Useful when little is
known about the
distribution and
structure of the data

Gradient Boosted Tree Both

Estimates trees sequentially;
often outperforms random
forest but harder to tune,

General purpose high
performance; especially

Strategic Management Journal (forthcoming)

40

slower, and more memory
needed

good for unbalanced
data

Support Vector
Machine

Both ✓

Uses hinge loss function—
good for drawing optimal
boundaries between linearly
separable classes; reliable with
relatively few observations
and many features

Image recognition (for
example, character
recognition) and text
categorization

LASSO or Ridge Both ✓

Easy to understand and
interpret for those with
econometrics background.
Highly interpretable linear
coefficients. For classification,
use generalized linear model
(e.g. logit) rather than OLS.

Simple methods for
reducing overfitting and
complexity for linear
models.

Naïve Bayes C

Minimal structure; strongly
assumes independence of
features so cannot exploit
interactions; scalable for large
data and reliable with few
observations

Multiclass classification;
text classification, such
as assigning emails to
“spam” or “not spam”

* Demonstrated in this paper

 Low Medium High
Notes: These comparisons are broad generalizations that may change frequently according to
circumstance. The meaning of each column in the table is as follows: (R)egression or (C)lassification: the
“R” indicates that the algorithm is used for regression and “C” indicates the algorithm is used for
classification. Many of these algorithms can be used for both. For example, when used for
regression, the decision tree may be used to minimize the squared error (or “mean squared error”)
loss function; when used for classification, it may be used to minimize the log-loss function. It is
also possible to use other loss functions or even customize loss functions. Scale Features: the check
indicates that the algorithm is sensitive to feature scaling—that is, features (variables or functions of
variables) should be transformed to a standardized scale either by using “z-score” or “minmax.”
Capacity: refers to the algorithm’s capacity to achieve high predictive performance, usually by
building a nuanced model with highly flexible functional form. Note this is highly dependent on the
specific dataset. Simple algorithms can outperform complex ones on certain datasets. Interpretability:
how easy is it to conceptualize or interpret the algorithm’s resulting predictive model. Speed: refers to
computational speed of training a model (though, of course, these comparisons depend heavily on
the data being used). Ease of tuning: generally corresponds to fewer hyperparameter choices and
models that do not require as much nuanced expertise to avoid overfitting. For similar resources, see
Microsoft (2019) and Scikit Learn (2018).

Strategic Management Journal (forthcoming)

41

TABLE 3. Summary statistics

 Training/Validation

Sample

Holdout Test Sample

 N Mean SD N Mean SD

Turnover (left this month) 25,925 0.013 0.113 11,053 0.013 0.115

Time (months since start) 25,925 17.569 10.560 11,053 17.530 10.545

Training Performance 25,925 4.546 0.320 11,053 4.528 0.328

Logical Score 25,925 4.777 3.658 11,053 4.899 3.674

Verbal Score 25,925 4.255 4.012 11,053 4.409 3.630

Average Home Region
Literacy

25,925 76.755 8.126

11,053 76.219 8.210

Production-Center Age 25,925 14.742 7.576 11,053 14.940 7.621

Distance 25,925 0.764 0.692 11,053 0.808 0.684

Language Similarity 25,925 60.867 35.362 11,053 58.223 34.829

Male 25,925 0.652 0.476 11,053 0.633 0.482

Notes: This table includes summary statistics for the unbalanced panel used throughout the paper.
The total sample had 36,978 panel observations, one for each employee-month. The table displays
separate summaries to compare the training/validation and test holdout samples. In the table, N
refers to the number of observations, Mean refers to the mean value, and SD refers to standard
deviation of the values.

TABLE 4. Confusion matrix
 Predicted

 Negative (𝒚̂ = 𝟎) Positive (𝒚̂ = 𝟏)

Actual
Negative (𝒚 = 𝟎) True Negative False Positive

Positive (𝒚 = 𝟏) False Negative True Positive

Notes: The confusion matrix is an important tool for evaluating performance when ML

predictions are for actual classification labels (e.g., assigning each observation a label 𝑦̂ = 1

or 𝑦̂ = 0 based on a decision threshold for predicted probabilities). For the demonstration

in this paper, we are more interested in predicted probabilities than in assigning labels (𝑦̂ =
1 or 𝑦̂ = 0).

