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Abstract

We develop a method for maximizing potential in the sports analytics picking

winners problem. We do so by: i) leveraging BERT-based, large-scale sentiment anal-

ysis of tweets about players. ii) statistical modeling incorporating sentiment analysis,

weather, stadium, and other professional projections to create player projections. iii)

an integer programming algorithm to construct player lineups. Our experiments show

that this method outperforms similar lineup creation using solely existing professional

projections by an order of magnitude, with player projections alone outperforming

professional projections by nearly 30%. These results suggest a new approach to

sports prediction modeling that relies on natural language processing and state-of-

the-art language models to incorporate the wisdom of the crowd.
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Chapter I.

Introduction

There is a rapidly growing industry in generating predictions from the vast

amount of data our world produces and stores. The variety of recently developed

techniques to use that data in a predictive context is astounding, and humanity is

just getting started. Of course, some things are more straightforward to predict than

others. Still, there is a particular class of predictions we will focus on here: projecting

an ideal ensemble of individual items after assembling predictions for those items.

This multi-layer prediction problem mirrors many real-world scenarios: assem-

bling a stock market portfolio requires first projecting individual stock performance,

and then assembling a set of such stocks that ideally maximize overall returns; pro-

ducing a film requires first finding and hiring a cast that’s affordable given the film’s

budget, and then actually building the story from their work to make the movie as

good as it can be; lastly, playing fantasy sports (and fantasy football in particular)

requires predicting individual player’s performance, then combining multiple players

into a lineup that maximizes the potential total points scored (Hunter et al., 2019).

The picking winners problem and related solutions apply to all these examples,

where a selection of entries is needed (new movies for a studio or player lineups for fan-

tasy sports) that maximizes the probability of any single selection having exceptional

performance (Hunter et al., 2019). While part of the picking winners problem, this

entry selection under constraint has strong similarities to various covering problems
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(Hunter, 2016). This similarity is essential as it reveals a solution mechanism to solve

such problems, namely a dynamic programming approach that can generate solutions

in polynomial time (Karp, 1975). These selection problems are classified as NP-hard,

but through probabilistic approximations, unexpected solutions can be found deter-

ministically (Karp, 1975). These probabilistic approximations are essentially greedy

solutions, in which entries are constructed under constraints by maximizing expected

value while respecting the given restrictions.

Before finding dynamic programming solutions to ensemble creation, though,

we will need individual projections. These should be as accurate as possible, which

begs the question: where should these predictions be sourced? While specialists in

most fields could represent an expert opinion: broker to help with stock portfolio

creation; an executive producer who’s made many films; pro sports analyst who is

paid to evaluate players; the expert opinion is not necessarily the most accurate!

As is described by Surowiecki, ”we feel the need to ”chase the expert.” The

argument [here] is that chasing the expert is a mistake, and a costly one at that. We

should stop hunting and ask the crowd (which, of course, includes the geniuses as well

as everyone else) instead.” (p. 15) (Surowiecki, 2004). To ask the crowd would mean

turning to the wealth of data available on the Internet, particularly on social media

sites such as Twitter, where everyday people share thoughts and ideas about anything

one can think of. Individuals regularly comment and attempt to project outcomes for

various events within these online social spheres, from player performance for fantasy

sports to company outlooks concerning the stock market.

Furthermore, professional projections are typically costly to produce and are

therefore not typically updated in real-time. By not being updated in real-time,

breaking news about an entity, which would affect such a professional projection, is

not accounted for when the projection is most needed: when assembling a lineup as
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part of the picking winners problem. More importantly, the black-box nature of these

projections means that consumers don’t know what factors have been accounted for

and what factors haven’t.

In the specific case of fantasy sports, there is a plethora of social activity sur-

rounding individual players on platforms like Twitter, which can provide last-minute

information about a player’s upcoming performance that professional projections may

not include. In addition, injuries are common in professional sports. They can hap-

pen just hours, or even minutes, before a contest, meaning that social media may

be the only place such critical information is available. By leveraging the crowd’s

wisdom in real-time, a professional projection can be strengthened, as mentioned

by Dunnington (Dunnington, 2015). Furthermore, retrieving such information in a

sports context was shown to be possible in Aloufi and El Saddik’s work. They used

sentiment analysis on a 54,000 soccer Tweet corpus, finding several methods with

reasonable accuracy in determining sentiment specific to the game of soccer (Aloufi

& Saddik, 2018).

Many factors affect an NFL player’s game day performance, and predictions

will never be 100% accurate given the truly stochastic nature of professional NFL

football. For example, as described by Dunnington, NFL players have a high chance

of injury, a low number of games in which coaches vary usage of key players based on

plans they do not publicize, and large roster sizes. All these factors make projections

more complicated than less constrained projection spaces like professional basketball

or hockey (Dunnington, 2015).

Another critical factor is the weather, where adverse conditions have been

shown to affect athletic performance and have shown correlations to betting outcomes

in NFL games. Specifically, home-field advantage, in which a team may be better

acclimatized to cold or hot conditions, plays a role in player performance and should
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be something we account for (Borghesi, 2007). Furthermore, home-field entails a fan

advantage, where a team’s fans will try to disrupt the opponent team with loud cheers

during their offensive huddles, making it harder to hear plays being called (Schalter,

2013). That advantage, though, was not present in the 2020 season given the COVID-

19 pandemic and the playing of all NFL games in empty stadiums (Schalter, 2021).

Both significant factors, injury, and weather, are typically discussed in social

media just before games, especially on Twitter which provides near real-time dis-

semination of information. As shown by Sinha et al., Twitter is a vibrant space for

data about NFL games, with a substantial volume of tweets appearing shortly before

games, leading to the latest up-to-the-minute information (Sinha et al., 2013). Before

diving into the effectiveness of using this online sentiment data for projections, we will

review other work in the area and ensure all readers have a shared understanding of

the core game concepts needed to understand the ensuing experimentation. The rest

of this thesis is therefore structured as follows. In Chapter 2, we review related work

in three core areas leveraged in subsequent experiments, notably Natural Language

Processing, Sports Analytics, and Data Modeling. In Chapter 3, we dive deeper into

fantasy football itself, followed by Chapter 4, discussing the specific problem at hand

and its formulation. Then, Chapters 5 through 8 describe the data, feature selection,

algorithms, and experimental results. Finally, we conclude with Chapter 9.
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Chapter II.

Related Work

There are three significant research areas from which we draw, with areas of

overlap that we will attempt to exploit. First is Natural Language Processing (NLP),

specifically in the subdomain of sentiment analysis when applied to online social data

(such as tweets from Twitter). The second is sports analytics, with a focus on NFL

football. The third is in data modeling via regression and neural networks.

2.1. Natural Language Processing

Social media, especially Twitter, is becoming an ever-growing component of

keeping up with sports news and events. As described by Hirsh et al. in their research,

fantasy sports players are seeking information on Twitter and other discussion forums

to help them play (Hirsh et al., 2012).

Identifying sentiment from Twitter data is standard practice; it is especially

interesting in the sports context for various reasons, some separate from the projec-

tion goals of this thesis. For example, Gratch et al. took 2014 World Cup tweets to

evaluate what makes a sporting event exciting and what factors affect the fan emo-

tional response (Gratch et al., 2015). An interesting finding from this work is that

excitement relates most to negative sentiment within the fan reactions, which makes

sense in today’s outrage-fueled social media world.

Furthermore, Gratch et al.’s work shows how to leverage tweets for sentiment

5



analysis. By drawing a sample and manually annotating them to compare against

the sentiment model’s classification, Gratch et al. showed a validation mechanism to

ensure the sentiment analysis matched human expectations. Given the use of ”off the

shelf” sentiment analysis, this could reveal potential idiosyncrasies in sports-related

tweets (Gratch et al., 2015).

It would seem like there will be such idiosyncrasies in NFL player-related

tweets, given the domain dependency challenges present in this NLP task (Islam &

Zibran, 2017). An example of this domain dependency is Islam and Zibran’s work

in recognizing sentiment from software engineering oriented text. Islam and Zibran

improved upon state-of-the-art sentiment analysis tools by adding a lexicon-based

classifier, which has a specific software engineering lexicon consisting of several lists

of words such as list of booster words, list of phrases, list of negations, sentimental

words (Islam & Zibran, 2017).

Many different techniques can be used to classify sentiment from text, as shown

from the Figure 2.1 (Medhat et al., 2014).

The primary focus for this thesis was the Neural Network approach within

the Machine Learning approach sub-tree. However, based on Islam and Zibran’s

findings, a lexicon-based model may provide more accurate sentiment classification.

Our approach, though, follows from the work of Vaswani et al., who found a new

transformer-based neural network architecture without any recurrence nor convolu-

tion (Vaswani et al., 2017). This simplified transformer architecture is the basis of

Devlin et al.’s work on a bidirectional encoder representation of these transformers,

a natural language model more commonly known as BERT (Devlin et al., 2019).

This model, developed by Google, has seen continued iteration by both Google and

other research teams since its introduction, IBM most recently using PoWER-BERT,

a BERT model variation with significant inference acceleration while only minimal
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Figure 2.1: Tree of sentiment analysis techniques, ranging from lexicon based to
machine learning
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accuracy loss, using progressive word-vector elimination (Goyal et al., 2020). It is

with PoWER-BERT, via IBM Cloud’s APIs, that we will evaluate sentiment from

tweets.

Others have also used sentiment analysis on sports tweets for various other

reasons. For example, Xu and Yu looked at player-generated tweets from the NBA

to evaluate whether polarity in their tweets could be related to in-game performance

(Xu & Yu, 2015). This work leveraged a lexicon from Finn Arup Nielson, which

includes over 2400 words with manually labeled scores between -5 and 5 for polarity

(Årup Nielsen, 2011). This approach showed a strong correlation between extracted

mood (via sentiment analysis) and in-game performance, especially when mood was

extracted the same day as the game (Xu & Yu, 2015). We will attempt to leverage

this temporal locality by searching for Tweets as close to the game’s start time as

possible.

While player emotion may relate to the game outcome, Twitter is also a public

forum where we should glean ”wisdom of the crowd” insights. Similar to Sinha et al.’s

work, Kampakis and Adamides used hashtag-based searches to retrieve their initial

Twitter corpus (Sinha et al., 2013)(Kampakis & Adamides, 2014). These searches

provide significantly more tweets than what any individual produces on their own,

with three months of soccer games generating roughly 2 million tweets (Kampakis &

Adamides, 2014). Kampakis and Adamides revealed an important insight, though:

hashtag based searches may bundle results from separate entities together, for exam-

ple, ”Saints,” a nickname for Southampton FC in the English Premier League, which

is the name of an NFL team, the New Orleans Saints (Kampakis & Adamides, 2014).
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2.2. Sports Analytics

However, there has been little work identifying tweets for individual players,

similar to the mentioned team-based hashtag approach. Additionally, as noted by

King, there has generally not been much writing about Daily Fantasy Sports player

projections, in any sports, likely due to the lack of motivation to make such work

public when these models can provide advantages in online games with real money

on the line (King & Leboulluec, 2017). Interestingly, many papers claim to be the

first in their respective area, which is partially true, yet conceals the deep connective

tissue between this work.

One key area of research within Daily Fantasy (DFS) has been attempts to

show DFS to be a game of skill and not simply gambling (Rychlak, 1992). By using

her lineup construction logic to generate random lineups to evaluate their performance

against optimized lineups, Sarah Newell showed that winning in DFS is not random

(Newell, 2017).

While King did evaluate both regression models and a neural network model

for individual players, the narrow scope of quarterbacks only combined with limited

results for neural networks makes this an exciting area for further investigation (King

& Leboulluec, 2017).

The primary dataset used for this research was the 2020 NFL season, which

adds an interesting caveat to our use of stadium and fan features, given that for much

of the season, stadiums were empty due to COVID-19. These ”ghost games” have

been shown to have an impact in a variety of ways, from players to referees (Fischer

et al., 2020). However, given the difficulty in acquiring data for multiple seasons, we

will leave performing a similar analysis on a season without ”ghost games” to the

reader.
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Ever since Moneyball revolutionized the baseball world just twenty years ago,

there has been an ever-increasing momentum shift towards measuring professional

athletes in various ways to maximize performance. By leveraging players’ statistical

performance to determine which players to select for a team and which players to

play, Billy Beane ignited an analytics revolution that now has players wearing activity

trackers at all times in most professional sports leagues (Lewis, 2004). In addition,

there are now conferences dedicated to the topic, such as the MIT Sloan Sports

Analytics Conference running since 2005.

Since before Moneyball, there has been analytics, although the catalyst shifted

focus from team analysis to individual player analysis. Prediction in sports has a long

history; linear statistical models were already being used in the 1970s to attempt to

predict game outcomes (Harville, 1980). Later, Hal Stern provided a normal random

variable approximation for game outcomes in 1991 that is still in use today (Stern,

1991). Pro Football Reference has extended this model to be able to evaluate win

probabilities within a game by adding further information to the model about the

current game situation (down/distance/field position) (PFR, 2021).

Projections for individual players have received less attention, and although

many sports websites produce such estimates, they do not reveal how they assembled

them. Some writing has been looking to model player performance; for example, Lutz

showed how using support vector regression and neural networks to model player

performance can be effective. These results were limited, however, to a small set of

players, positions (Lutz, 2015). Interestingly, using a similar approach as King by

only looking at quarterbacks, the neural network approach provided less predictive

power than the regression approach. Given the expansive nature of neural network

types and data formulations, it is likely that this was not a failure of the approach

generally but of these authors’ specific chosen path. Furthermore, given the limited
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available data, it could simply be a problem of not providing the neural network with

enough examples to train.

2.3. Data Modeling

While there is a dearth of data, that has never stopped enthusiasts from throw-

ing their hat into the arena. As mentioned in the introduction, Hunter et al. devel-

oped an integer programming approach to assembling full DFS lineups with minimal

player projections modeling. Instead, Hunter et al. relied on existing professional

website projections from RotoGrinders and Daily Fantasy Nerd (Hunter et al., 2019).

Using a similar integer programming approach, Sarah Newell showed another way of

constructing lineups leveraging standard deviation of player projections as a critical

feature and showing through stochastic lineup generation that DFS is not a game of

chance at all (Newell, 2017).

There have been several other examples of integer programming use cases in

the sports world. For instance, Sharp et al. constructed cricket lineups (Sharp et al.,

2011), or Özlü and Sokol, who used integer programming to schedule MLB scouts

(Özlü & Sokol, 2016).

Haugh & Singal took a different route than most, though, and explicitly at-

tempted to model opponent behavior to help construct lineups, something that Hunter

eschewed to focus on optimizing for lineup mean projection (Haugh & Singal, 2019).

Using Dirichlet regression, Haugh & Singal found success in DFS contests with many

other entrants. Modeling opponent behavior in combination with modeling the play-

ers’ potential points is a unique approach not taken by others. That said, most

integer programming lineup explorations described relied on fixed projections from

other sources, an opportunity to further improve upon these modeling strategies for

DFS contests.
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Tangentially, neural networks have seen an explosion of use cases in recent

times, an example of which being statistical language modeling. These models have

state-of-the-art performance in their respective domains (De Mulder et al., 2015),

as do neural networks used in machine understanding of images and video media.

In the sports context, these models have been used for predictions of soccer game

outcomes (Zhang et al., 2021). There are many neural networks types, ranging from

Convolutional Neural Networks (CNNs) to Recurrent Neural Networks (RNNs). We

will focus on a specific form of RNNs called Long Short Term Memory (LSTM) that

have time-series-based characteristics that are interesting for predicting performance

for a repeating entity. These models are nonlinear, unlike regression, which could

be better suited to sports contests where existing raw data does not capture the

multitudes of potential factors players may face (Zhang et al., 2021).
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Chapter III.

What is Fantasy Football

Fantasy football is a derivative game atop actual professional American foot-

ball player performance. This derivative game originated shortly after World War II

(Green, 2014), only 20 or so years after the first pro football league was formed (His-

tory.com, 2009). In this game, individual players are selected to create a ”lineup,”

whose actual in-game performance dictates scores and outcomes in the fantasy world.

Today, most professional sports have a fantasy version, with Fantasy Basketball,

Baseball, Hockey, Soccer, and Football all being highly popular in the United States.

While all fantasy sports are generally similar, we will further focus on fantasy football

going forward.

In countries outside the US, fantasy football typically relates to soccer, but

fantasy football refers to the NFL in the US. This proved frustrating in our research,

given the many ”fantasy football” papers found that were actually about soccer!

Regardless, the NFL is the largest professional sports league in the world in

terms of yearly revenue. As a result, it has spawned an immense fantasy sports

industry reliant upon this success. Over five years ago, the industry was already

estimated to total $26 Billion in annual spending across the US and Canada, which

has only grown since then (Wong, 2015).
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3.1. NFL Football

NFL Football has been around in the United States for almost 100 years and

is a game where two teams, each with more than 50 players, compete in a highly

physical athletic contest. Each team has only 11 players on the field at any time, but

there are many opportunities to rotate players out and three different ”units” that

each team needs to field: offense, defense, and special teams. Offensive and defensive

players make up the bulk of where fantasy points are scored, but special teams are

often critical to game outcomes.

While similar to rugby in its physicality, American football has far more stop-

page in play, which creates an extremely high pace of play while the ball is in motion,

paired with many moments of ”rest” in-between plays. A game is 60 minutes, com-

prised of four 15-minute quarters, and each offense typically gets on average 60 plays

per game to try and win. Of course, the number of plays is highly variable, depending

on many in-game circumstances, but this average helps to show just how few oppor-

tunities there are in a football game to have an impact. Unlike a sport like soccer or

basketball, which is far more free-flowing, there are far more limited opportunities in

NFL football to score, making fantasy football so interesting.

3.2. Fantasy Football

There are now many forms of fantasy football, but we will focus on a spe-

cific type: Daily Fantasy Football. In this particular fantasy sports type, players are

selected for their performance in a single game and earn points based on their perfor-

mance in that game. The better they play, generally, the more points they will score.

Other forms of fantasy football focus on creating a team for an entire season, while

other forms focus more on game outcomes themselves instead of individual players.
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In all cases, projections for individual players are critical.

To create these projections, let’s first look at how points are scored in fantasy

football to understand better what needs to be projected. NFL football is a highly

complex sport, with several distinct positions filled by players with a wide range of

talents. On the field at any one time are 22 players, 11 on offense and 11 on defense.

Daily fantasy football relies primarily on offensive players and only provides a choice

of an entire defensive team, leading to two distinct sets of scoring rules.

Defensive units are scored based on their ability to stop opposing offenses

and earn the most points when they can score points themselves – for example, by

intercepting a pass and scoring a touchdown. Offensive players are scored based on

their ability to score points, including the progress down the field it takes to do so.

For context, a touchdown, or the scoring of 6 points by an offensive squad, is awarded

whenever a player reaches the end zone (each end of a football field) with the ball.

This can happen either by running the ball into the end zone or catching a pass in

the end zone.

Running and catching help describe the primary offensive NFL positions, as

players specialize in one or the other. Quarterbacks (QB) are throwing specialists

responsible for throwing passes to other players to score points. Wide receivers (WR)

are catching specialists, and are responsible for catching passes from QBs, hopefully

in the end zone! Running backs (RB) are running specialists and are handed the ball

by QBs to run the ball for a touchdown. These three offensive positions make up

most fantasy points in a daily fantasy football game. Tight ends (TE) are another

player position type, similar to WRs. However, they are typically bigger and stronger

to help them act as blockers for RBs in run situations. An offensive unit of 11 players

typically includes five linemen, imposing and powerful players that block defensive

players to prevent QBs, WRs, and RBs from getting tackled. These players, however,
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Offense

Action Points
Passing TD +4 Pts
25 Passing Yards +1 Pt (+0.04 Pts/Yards)
300+ Yard Passing Game +3 Pts
Interception -1 Pt
Rushing TD +6 Pts
10 Rushing Yards +1 Pt (+0.1 Pts/Yards)
100+ Yard Rushing Game +3 Pts
Receiving TD +6 Pts
10 Receiving Yards +1 Pt (+0.1 Pts/Yards)
100+ Yard Receiving Game +3 Pts
Reception +1 Pts
Punt/Kickoff/FG Return for TD +6 Pts
Fumble Lost -1 Pt
2 Pt Conversion (Pass, Run, or Catch) +2 Pts
Offensive Fumble Recovery TD +6 Pts

Table 3.1: DraftKings Offense Scoring Rules

are not selectable in DFS contests.

With that context, Table 3.1 shows the specific scoring rules DraftKings uses

for offense, which we will refer to going forward (DraftKings, 2021). Also, Table 3.2

shows the specific scoring rules for defense.

To better visualize how these rules would apply, Figure 3.1 shows a lineup with

player in-game performance along with their fantasy points scored on DraftKings.

Estimating the size of the fantasy football market is tricky, as there are so

many aspects to consider. In 2015, total annual spending on fantasy football was

estimated at $26B, but this doesn’t account for all time spent doing fantasy activities

(Wong, 2015). By leveraging data about the average income of fantasy players and

estimating the amount of time spent, the tangible and intangible economic activity

may surpass $50B. This number is larger than the NFL’s revenues and provides a

complex market acting as a fantastic testbed for various analytical research projects,
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Defense

Action Points
Sack +1 Pt
Interception +2 Pts
Fumble Recovery +2 Pts
Punt/Kickoff/FG Return for TD +6 Pts
Interception Return TD +6 Pts
Fumble Recovery TD +6 Pts
Blocked Punt or FG Return TD +6 Pts
Safety +2 Pts
Blocked Kick +2 Pts
2 Pt Conversion/Extra Point Return +2 Pts
0 Points Allowed +10 Pts
1-6 Points Allowed +7 Pts
7-13 Points Allowed +4 Pts
14-20 Points Allowed +1 Pt
21-27 Points Allowed +0 Pts
28-34 Points Allowed -1 Pt
35+ Points Allowed -4 Pt

Table 3.2: DraftKings Defense Scoring Rules
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Figure 3.1: Screenshot of sample DraftKing lineup
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but has received seemingly little academic interest thus far (Goff, 2013).

The following evaluation of modeling methods for fantasy football projections

will show that while it may appear like a gambling game, there is an ability to, with

skill, improve your chances in these large game formats (FSGA, 2021). DraftKings

makes this explicit, sharing data that a small subset of players, often thought of as

sharks, win the majority of contests from the majority of contestants, thought of as

minnows.

The approach to model player projections is to leverage as many relevant data

sources as possible, including one representing ”the crowd,” to improve existing, pro-

fessional fantasy platform projections. Two modeling approaches will be attempted:

regression and neural networks. These will leverage features from these various sources

and several engineered features based on data from those sources.
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Chapter IV.

Problem Statement

We intend to develop an algorithm that will produce projections for fantasy

football players and use those projections with another algorithm we will develop to

create an ensemble from those projections. The first algorithm will take an ensemble

approach, leveraging data from other existing models and retrieving information, and

applying natural language processing techniques, specifically sentiment analysis, to

that data.

Specifically, we will retrieve tweets about NFL players and retrieve sentiment

about those players from their respective tweets using IBM Cloud’s NLP tools. This

data will then be combined with multiple other data sources, including modeled data

from NFL.com and FantasyData.io.

The resulting dataset we can refer to as X , where each row contains infor-

mation about a specific player for a particular game. The label vector y contains

the actual points scored by that player for a given row in X . We will then apply a

machine learning algorithm to X and y to produce a function Φ, for which the input

is a row xi of X resulting in Φ(xi) = yi.

Given these projections, we can then construct a team, with an objective to

maximize projected score while respecting the positional and salary constraints im-

posed by the game. So from X we aim to assemble a 9-player team, in the DraftKings

game the positions must match:
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p1 → QB1 p2 → RB1 p3 → RB2

p4 → WR1 p5 → WR2 p6 → WR3

p7 → TE1 p8 → F1 p9 → D1


There is an associated cost for each player, represented by their salary, which

we can denote as follows:

p =



p1

p2
...

p9


s =



s1

s2
...

s9


In addition, the lineups’ salary sum must remain under the $50,000 DraftKings

salary cap.

Consider, then, that pk is represented by xi, a row in our dataset X , with

an associated salary sk, then using our function ϕ we can note the construction of a

lineup as:

max
9∑

k=1

ϕ(xi)

over all i subject to
9∑

k=1

sk ≤ 50, 000

This formulation is a form of the knapsack problem, so an integer programming

solution leveraging dynamic programming will help produce ideal lineups given the

projections from our regression step. We are looking to solve these several steps in

the following chapters.
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Chapter V.

Data Sources & Processing

Data used for this analysis was the entirety of the 2020 season via several

sources: NFL.com, Draftkings, FantasyData.io, Twitter, IBM Cloud, WeatherData

Github repository.

All of this data is organized in a single location through a coordinated set of

scripts, with 8,498 data points representing 17 weeks of football across 32 teams, 256

games, and roughly 500 players per week.

There are only 16 games that any single player could potentially play within

this dataset, limiting the amount of data we can use to model future player perfor-

mance. For a point of comparison, NBA & NHL players have an 82 game regular

season, and MLB players have a 162 game regular season, providing far more game

data per player. In addition, injuries are more common in NFL football than in most

other pro sports, leading to very few players even playing an entire 16 game season.

In our dataset, including over 900 players who participated in the 2020 NFL season,

only 18, or 2%, have 16 data points available. Note that there are 17 weeks in an

NFL season (as of 2021, there are now 18 weeks with 17 games), but each team only

plays 16 games with a bye week as a semi-random point of the season.
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5.1. NFL.com

This source is powered by a Python scraper with two main phases, each phase

having two separate scripts for offensive players and defensive teams. First is a bash

script that saves raw CURL HTML output into text files, followed by a python script

that reads the text file and converts it into a CSV of players or teams. There are two

pairs of scripts, one that fetches all offensive players and the other that fetches all

defensive teams.

This data source provides projections from an existing model from NFL.com,

which has no public information available, so it must be treated as a black box.

However, it is reasonable to believe that this model may already account for features

we include within our approach.

5.2. Draftkings

This source is powered by manual intervention to download a CSV file on the

Draftkings website each week, performed weekly during the 2020 season. This CSV

contains the weekly set of players available to draft and their salaries. Furthermore, a

second CSV was downloaded each week of the 2020 season with the results from the

primary contest, which includes actual fantasy points scored by each player, along

with the percentage of contest entrants who drafted them.

5.3. FantasyData.io

FantasyData.io is a subscription-based API data source. It allows for free

historical access, so the data used for this research was free, but data for the current

season would have incurred a cost. A set of projections for all players in the 2020

season was retrieved using this API.
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5.4. Weather Data Repository

URL: https://github.com/ThompsonJamesBliss/WeatherData/tree/master/data

This source is an open-source repository with 2020 weather data for all NFL

stadiums during the regular season, with an easy-to-download CSV file available. All

stadium-based and weather features originated from this data source.

5.5. Big Data: Twitter

This source is powered by the Twitter API, which is subscription-based but

has an Academic Access lane that we used to retrieve up to 10 million tweets per

month for free. Over 30 million tweets were gathered, capturing tweets about all

players, during each week of the 2020 season, within the 24-hour window before

Sunday NFL games. This API provides JSON output, which we saved in raw form

for more flexibility in further analysis.

Unlike the other data sources, which primarily deal with small amounts of data,

this was the sole big data source used. In addition, the 24-hour window was selected

to reduce the sheer number of tweets retrieved to accelerate processing. It would

be possible, though, and potentially beneficial to search for all tweets within a given

week about a player, but this would require increased data caps from Twitter, which

could be expensive. So instead, we relied solely on the Academic Access provided for

free, which limited us to 10M tweets/month.

5.6. Data Processing

IBM Cloud was used to process all 30M+ tweets gathered via Twitter and

generate sentiment data from these tweets. Initial processing was performed locally

on a Macbook Pro. Then, IBM’s API took that processed tweet data and retrieved
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Figure 5.1: Diagram depicting all data sources employed in thesis

JSON objects, including document and entity sentiment, from that tweet data. While

this is a paid API, our usage levels did not incur any costs.

Several additional Python scripts transform the disparate data sources de-

scribed so far into a single, organized CSV file per game week, with rows representing

players and a standard set of columns with 26 features to be used in modeling.

The unique key used to match up data from most of these various sources

is simply the player name, with the team name as a second key used for stadium

and weather features. Since all sources are saved in CSV files before cleaning, this

aggregation script primarily reads many different CSV files from disk to produce a

single, aggregated version of all of that data.

Figure 5.1 shows the feature columns and their respective sources.
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Chapter VI.

Feature Engineering

With so many data sources, it was critical to find the optimal set of features

that could be used to impact projection potential materially within our regression

model. However, before finding such an optimal set, experimentation was needed

to evaluate various features and their derivatives to see which ones had the most

significant impact during regression. Therefore, limiting the number of features given

our limited data was critical to ensure regression had enough examples per bin.

There is an uneven distribution of features, with 9 features (4 engineered) from

DraftKings, 7 features (1 engineered) from the weather data source, 6 features (all

engineered) from IBM + Twitter, 2 (non engineered) from FantasyData, and lastly

1 non-engineered feature from NFL.com. This distribution is worth calling out from

the initial set of 26 features as the distribution of features in the final models that

were optimal is not the same.

The feature engineering is primarily based on the statistical analysis of the

fantasy points scored by players, generating a few derivatives such as point average,

min and max, and variance. There is also considerable feature engineering for the

sentiment-based features, described further below. As mentioned in Landers and

Duperrouzel, ”the features used by previous investigations are inherently encoded

within the fantasy points themselves and a rich feature set can be obtained by study-

ing these derivative elements alone” (Landers & Duperrouzel, 2019). Furthermore,
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Features
ID Feature Name Type Engineered Source
1 week Numerical False DraftKings
2 player name Categorical False DraftKings
3 salary Numerical False DraftKings
4 position Categorical False DraftKings
5 document sentiment Numerical True IBM + Twitter
6 player sentiment Numerical True IBM + Twitter
7 total count Numerical True IBM + Twitter
8 unique count Numerical True IBM + Twitter
9 total unique ratio Numerical True IBM + Twitter
10 sentiment matches Categorical True IBM + Twitter
11 avg points Numerical True DraftKings
12 max points Numerical True DraftKings
13 min points Numerical True DraftKings
14 variance points Numerical True DraftKings
15 team Categorical False DraftKings
16 is home Categorical False Weather
17 opponent team Categorical False Weather
18 stadium name Categorical False Weather
19 stadium surface Categorical False Weather
20 stadium wind Numerical False Weather
21 stadium temp Numerical False Weather
22 stadium conditions Categorical False Weather
23 is extreme weather Numerical True Weather
24 projected points Numerical False NFL.com
25 dk projected points Numerical False FantasyData
26 ppr projected points Numerical False FantasyData

Table 6.1: Full Feature Set

27



professional point projections likely incorporate features in this set, making it essen-

tial to reduce the feature set to the collection of features without such overlap.

6.1. Large Scale Sentiment Feature Engineering

Several engineered features derive from data gathered via Twitter’s API. In

addition, unlike the work of Sinha et al., we will not only be retrieving Tweets based

on teams but based on specific players as well. To perform this search, we use the

Twitter API search functionality with a player name (or team name, for defenses) as

the keyword, bound to a single day.

While the ideal solution would have been to compute a time range of tweets to

search for by player’s game time, we fetched Tweets from Saturdays, given that most

games happen on Sundays. There are weekly Thursday and Monday games, though,

so we would expect improved model performance if further research takes this extra

search step.

This approach allowed us to retrieve all Tweets about a player on each game

week’s Saturday, which are then concatenated into a single string after de-duplication,

followed by a couple of further preprocessing steps: (1) remove all emojis, (2) remove

all punctuation and tokenize, (3) remove digits and symbols, (4) remove emails and

websites, (5) remove empty spaces, (6) standardize all stopwords into lowercase, (7)

join all tokens back together and lemmatize.

The resulting string is then passed to IBM Cloud’s natural language under-

standing API, which as input, takes a text blob up to 50,000 characters. Finally, it

outputs a JSON blob including document sentiment scores, recognized entities, and

respective sentiment scores.

Unlike in Gratch’s work, where every individual Tweet was run through sen-

timent analysis, where a manual annotation could compare the accuracy of polarity
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Figure 6.1: Screenshot of a sampling from input to sentiment analysis, preprocessed
tweet data.

recognition, an aggregation of Tweets is used here (Gratch et al., 2015). Manual

annotation is possible on individual Tweets, but with each player having an average

of 4,100 tweets per week, the preprocessed text being analyzed looks something like

what is shown in Figure 6.1.

IBM Cloud provides an NLP API that leverages an underlying neural net-

work based on the pre-trained BERT-Base, English Uncased model, fine-tuned on

IBM Claim Stance Dataset (Google, 2020)(Bar-Haim et al., 2017). The core BERT

model is a 12-layer, 768-hidden layer, 110M parameter model (Google, 2020). IBM

benchmarked the model against Sentiment140 and IMDB Reviews datasets, the for-

mer composed of Tweets. On this Twitter-based dataset, IBM’s model has over 80%

recall, especially impressive given the dataset was not used for training at all (IBM,
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Number of Tweets
Week Average Max
1 7508 167825
2 6728 194193
3 5950 135327
4 5052 185808
5 6250 123013
6 5647 123013
7 4708 127807
8 4368 146047
9 4228 139789
10 3282 77953
11 3892 87001
12 4523 136604
13 4384 127868
14 3279 123025
15 3560 90101
16 4751 150491
17 4987 220690

Table 6.2: Number of Tweets
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2021).

Through all the above, we arrive at the six engineered features from this data:

(1) document sentiment, which represents the IBM Cloud sentiment score for the

entire preprocessed tweet text blob, (2) player sentiment, which represents the IBM

Cloud sentiment score for the recognized player (which was impressively recognized

in 100% of attempts), (3) sentiment matches, a derived Boolean representing whether

document sentiment and player sentiment share the same sign (as in, they are both

positive, or both negative, or not), (4) total count, which represents the total number

of Tweets captured for the given player in that game week, (5) unique count, which

represents the total number of Tweets captured after de-duplication, and lastly (6)

total unique ratio, which represents the ratio between total and unique counts.

6.2. Weather & Stadium Features

Weather and stadium information was largely unmodified, with a single en-

gineered feature developed to reduce all weather features into one. Specifically,

is extreme weather is an engineered Boolean representing whether or not the stadium

is outdoors AND either (1) the wind speed is above 15 MPH, or (2) the tempera-

ture is below 35 degrees Fahrenheit. These thresholds were approximated based on

prior analysis, which showed a clear difference in performance at these thresholds

(Mancuso, 2019)(Cheema, 2020)
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Chapter VII.

Algorithms

The primary algorithm used is simple, ordinary least squares regression. Mul-

tiple variations of input features and training/test splits were attempted with this

modeling approach. An LSTM RNN was also used to model this data, where hyper-

parameters were tuned to uncover the best LSTM for the 2020 NFL season dataset.

Both algorithms employed a shared validation function, which measured R2 of pre-

dicted results against the R2 of professional sports site projections. Therefore, an

algorithm’s success was measured in the improvement of R2 over existing professional

predictions.

7.1. Regression

With ordinary least squares the function ϕ(xi) = yi is better represented by:

yi = β1xi1 + β2xi2 + ...+ βpxip + ϵi

Where xip represents the pth feature for that player column. The coefficients

βp are best known as the intercept in a single variable regression and what needs

to be determined first for the model to be used. The previous equation can also be

formulated in terms of matrices:

y =Xβ + ϵ

where:
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X =



X11 X12 . . . X1p

X21 X22 . . . X2p

...
... . . .

...

Xn1 Xn2 . . . Xnp


β =



β1

β2

...

βp


y =



y1

y2
...

yn


Which yield the following quadratic minimization function to find optimal β

coefficients:

β̂ = argβminS(β) with S(β) =
∑n

i=1 |yi −
∑p

j=1 Xijβj|

∴ β̂ = β + ((XTX)−1XT ϵ

Once we solve this, we can use β̂ in y =Xβ + ϵ to create predictions, and we

can evaluate those predictions by calculating the coefficient of determination R2:

R2 =
∑

(ŷi−ȳ)2∑
(yi−ȳ)2

= 1− RSS
TSS

We are looking to maximize R2 within its [0,1] range.

7.2. Neural Network

An LSTM is a neural network aimed at maintaining memory while projecting

values from a sequence of data, for which a season of week-by-week data is seemingly

an ideal match. Unlike a traditional neural network, an LSTM can process data

sequentially and maintain its hidden state throughout. This is done via hidden states

within an LSTM gate, as seen in Figure 7.1.

There are several different types of LSTMs, we will leverage a many to one

LSTM, where multiple weeks of player data are input, and a single week’s projection

is output. A basic example of one of these can be seen in Figure 7.2

To perform training for this type of neural network, we need to apply a stochas-

tic optimization algorithm, for which Adam has become a popular choice. Adam

provides a more computationally efficient alternative to standard gradient descent by
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Figure 7.1: Gate architecture of LSTM network

Figure 7.2: LSTM Many to One type diagram
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combining the advantages of both AdaGrad and RMSProp (Kingma & Ba, 2017).

This optimizer is also the default for Google’s BERT language model.
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Chapter VIII.

Experimental Results

8.1. Big Data: Twitter

As previously described, we used IBM Cloud’s NLP tools to perform sentiment

analysis on fetched tweets. Still, some experimentation was needed to optimize the

rest of our modeling output. The 30M tweets mentioned were split into weekly folders,

each containing a JSON file for each player. These files were quite rarely empty; only

3-5 players had no tweets returned per week from roughly 300 players we searched for

tweets for. The largest of these files was over 500MB, with thousands and thousands

of Tweets retrieved, in this case for the Browns defense. As shown in table 6.2, the

average number of tweets per player was never less than 3,000 tweets per player per

week, with the max often over 100,000. By using file size as a proxy for the number

of tweets, it is visible that the more ”popular” a player, the more tweets there will be.

This top-heavy distribution of tweets was not seen to be an issue, given the top-heavy

nature of fantasy sports generally.

These JSON files were essentially JSON arrays, with each element representing

a Tweet under Twitter’s API definition, as shown in Figure 8.1. The search API and

its full documentation can be found at https://developer.twitter.com/en/docs/twitter-

api/tweets/search/api-reference/get-tweets-search-all.

The Twitter API has rate limits in place for both security of their data and to

ensure their servers don’t get overloaded, which drastically slowed down our acquisi-
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Figure 8.1: Twitter JSON Format

tion of tweets. Given a 10M tweet per month quota, this retrieval process was split

up into three distinct chunks, with our script built such that it would resume from

where it had last been paused. Each of the 10M tweet fetches we made in consecutive

months took several days to complete.

Each request was limited to a maximum of 500 results. However, we found

that the Twitter API had a considerably higher error rate when doing so and that

100 results per request was the sweet spot where Twitter’s API finally started to

error out only rarely. With a cap of 1 request per second, and 300 requests every 15

minutes, we were limited to retrieving 120,000 results per hour.

300requests

15minutes
∗ 60minutes

1hour
∗ 100results

1request
= 120, 000

results

hour

To hit the 10M tweet cap, then, it typically took 80 hours, often more because

of random errors that could throw off the long-running script, which would happen

to coincide when Twitter was particularly active, or some big news event broke.
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8.2. Natural Language Processing

While many fields could be of interest, the primary focus was entirely on the

”text” field, which contains the Tweet content viewed on the platform, so text files

were created that collated all tweet text together. These were then used as input for

sentiment analysis, but not before performing preprocessing on these tweet dumps.

Our first attempt simply ran lemmatization over the raw collated tweet text

and dumped that into IBM Cloud’s sentiment analysis. This yielded the expected

sentiment scores for each player as desired, which we could then use for the rest of

our modeling.

However, upon further analysis, we discovered that there was still a lot of junk

in the tweet text that IBM was analyzing by only doing lemmatization. We also

learned just how many duplicates there were. Given that IBM’s API only supports

sentiment analysis in chunks of 50,000 characters, and some players had hundreds of

thousands if not millions of characters of tweets, this indicated that information was

likely not getting analyzed within this input.

We therefore de-duplicated tweets in preprocessing, noting the total count and

unique count of tweets as features that could be useful in subsequent modeling steps,

since the ratio between total and unique could potentially indicate something about

a player’s expected performance, for example, if a lot of people were re-tweeting

(essentially duplicating) the same tweet.

In addition, several other standard NLP preprocessing steps were taken, given

the high volume of punctuation and emojis within these tweets that were unlikely

to provide value in sentiment analysis. So, in addition to lemmatization and de-

duplication, we removed all emojis, tokenized all tweets, and removed punctuation,

stop words, websites and email addresses, symbols, digits, and stopwords. Doing so
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reduced helped increase the amount of data processed by IBM Cloud’s NLP API. As

shown in the next section, this helped increase the predictive power of our regression

model thanks to the improved sentiment scores output from the NLP performed by

IBM Cloud.

There is, of course, room to explore further here, as we might have gotten

too aggressive in removing characters to fit under the 50,000 character limit imposed

by IBM’s API. Similarly, we could have attempted to chain multiple requests to the

NLP API in 50,000 character chunks, blending the results to achieve a single sentiment

score per player, but this goes beyond our current scope.

One of the engineered features, F10, was shown to be of critical value as it

helped reveal the difference between the document as a whole, as in the full content

of tweets fetched for a player, and what IBM Cloud’s API recognized as the player

and the sentiment associated with that specific entity. The feature simply represents

whether the two sentiment scores matched in sign and proved more valuable to our

regression model than any other Twitter-derived feature we constructed.

8.3. Regression

We will leverage the first few weeks of the 2020 season to build trust around

performance, without the need to retrieve additional data from previous seasons (Lan-

ders & Duperrouzel, 2019). We take two approaches in splitting data between train

and test sets: (1) use all preceding weeks as train data, (2) use only preceding 4 weeks

of data as training data. With 17 weeks in the 2020 season, this means there are 13

folds of data on which we perform testing and training.

Of the 26 features described, only a subset would prove valuable in improving

predictive power. We evaluated predictive power by comparing the R2 value of our

regression output against the R2 value of the NFL.com projections we use as an input
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Figure 8.2: Graph of R2 values for single feature regression models

feature.

Given the number of base features would make combinatorial exploration of

all feature combinations computationally expensive, we took a manual approach to

retain control of feature combinations to leverage our understanding of the game. We

began by creating a regression model with each of the 26 features to establish a single

feature baseline R2 value that we could use to rank features by predictive power on

an individual basis, shown in Figure 8.2.

A full combinatorial expansion of features was attempted but quickly ran into

the combinatorial explosion. The 6-feature selection combinatoric expansion took

over 18 hours on a high-end laptop (new M1 Max Macbook Pro).

From this, the initial model was selected to include all features with positive

R2 values, which included the majority of features. The feature set was then trimmed
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1-Feature Models
Feature R2 Diff to Overall

avg points 0.6684 0.0934
ppr projected points 0.6396 0.0644
dk projected points 0.6394 0.0642

max points 0.6319 0.0567
variance points 0.6227 0.0475
min points 0.5973 0.0221

player sentiment 0.5915 0.0163
stadium conditions 0.591 0.0158

stadium wind 0.5907 0.0155
total count 0.5905 0.0153
stadium type 0.5904 0.0152
unique count 0.59 0.0148

sentiment matches 0.5899 0.0147
projected points 0.5898 0.0146

is home 0.5897 0.0145
stadium temp 0.5897 0.0145

salary 0.5897 0.0145
total unique ratio norm 0.5896 0.0144

total unique ratio 0.5896 0.0144
is extreme weather 0.589 0.0138

position 0.5889 0.0137
stadium surface 0.588 0.0128

document sentiment 0.5876 0.0124
opponent team 0.5746 -0.0006
stadium name 0.5684 -0.0068

team 0.5658 -0.0094

Table 8.1: Single Feature Regression Modeling Results
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down to the set of F3, F4, F6, F7, F9, F10, F11, F20, F22, F24, F26

This set of features yielded an R2 improvement over NFL.com projections of

0.1308, 0.5752 vs. 0.4444, which is also 0.0820 greater than the R2 of projections from

FantasyData.io, which had an R2 of 0.4932. This is a 29% increase in R2 compared

to NFL.com 17% increase compared to FantasyData.

This set of features was further validated by exploring model combinations,

exploring all remaining combinations of two features in addition to locked model

features. This progressively locked more and more features until improved R2 stopped

improving, which occurred when adding the 12th feature to the model, leaving us with

the 11 feature model as described above.

To be more precise, the method used to explore various feature combinations

for these models was to set a specific set of features as ”locked”, and then use an iter-

ation utility to create all 2 feature combinations for the remaining unlocked features,

and then generate regression models with each of these feature combinations to find

the best ones. We iteratively did this, gradually locking more features as they showed

up repeatedly when reviewing results from the 2 feature model combinations. This

allowed us to quickly explore the feature space and find improvements in R2 without

having to explore all feature combinations.

Further experimentation revealed the power of the included sentiment feature,

where improvement over NFL.com projections decreased when skipping tweet pre-

processing steps and only lemmatization was performed. We found the overall R2

improvement of 0.1337, 2.2% higher than 0.1308 previously found. It would be in-

teresting to see further variations of text preprocessing steps and their effect on the

model, as these variations have shown an impact.

To further cross-validate our results, we removed features from each data

source to evalute the best model with a limited set of features. When removing
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N-Feature Models
Features Feature Count R2 Diff to Overall
F11, F26 2 0.6839 0.1087
F11, F25 2 0.6837 0.1085
F11, F3 2 0.6394 0.0978

F11, F3, F4, F26 4 0.6971 0.1219
F11, F3, F4, F25 4 0.6964 0.1212
F11, F3, F7, F26 4 0.6945 0.1193

F11, F3, F6, F4, F26 5 0.7001 0.1249
F11, F3, F22, F4, F26 5 0.6996 0.1244
F11, F3, F7, F4, F26 5 0.6996 0.1244

F3, F4, F11, F6, F26, F7, F9, F22, F10, F20 10 0.706 0.1308
F3, F4, F11, F6, F26, F7, F9, F22, F27, F20 10 0.706 0.1308
F3, F4, F11, F6, F26, F7, F9, F22, F20, F24 10 0.706 0.1308

F3, F4, F11, F6, F26, F7, F9, F22, F10, F20, F27 11 0.706 0.1308
F3, F4, F11, F6, F26, F7, F9, F22, F27, F20, F24 11 0.706 0.1308
F3, F4, F11, F6, F26, F7, F9, F22, F20, F24, F27 11 0.705 0.1307

Table 8.2: Combinatorial Expansion Result Highlight

FantasyData data, we found a 13 feature model as the one with the greatest R2 im-

provement of 0.0977 (features: F3, F4, F5, F6, F7, F9, F10, F11, F16, F20, F22, F24,

F26).

When removing sentiment data from Twitter, we found a 10 feature model as

the one with the greatest R2 improvement of 0.0875 (features: F3, F4, F11, F12, F13,

F16, F20, F22, F26, F24)

When ONLY using data from Twitter, we surprisingly still got results that

performed better than NFL.com projections! While not as large an R2 improvement

as the models mentioned above, just using features from Twitter led to an R2 im-

provement over NFL.com projections of 0.0179 (features: F3, F5, F6, F7, F8, F9, F10).

While not as powerful a result as our other models, this provides a key insight: us-

ing just Twitter data, we can assemble projections for entities that perform similarly

to professional projections. This could prove useful in other domains, such as stock

43



Positions
Position R2 Diff to Overall

QB 0.663 0.0878
WR 0.5239 -0.0513
RB 0.5986 0.0234
TE 0.5002 -0.075
DEF 0.1096 -0.4656

Table 8.3: Positional Results Split Out

market projections, where a streamlined process could be created to project price

movements from social media data alone.

Interestingly, when removing weather and stadium data, we found an 8-feature

model with an improved R2 of 0.1350, another 1% better than previously found.

Features for that model: F3, F4, F5, F7, F10, F11, F24, F26.

Another interesting finding was that 4 weeks of data was the optimal look-

back window for training, yielding the most significant improvement in R2 compared

to NFL.com projections. However, when using the whole season of data available

in preceding weeks, weeks later in the season showed weaker projection accuracy.

Further evaluation of the 4-week number could yield further improvements; different

positions can potentially use other lookback windows. We break down the positional

differences next.

8.3.1 Positional Differences

The analysis was then extended to review whether predictive power varied

based on the player’s position. This revealed drastic positional differences:

While most positions are roughly centered around the average R2 for all po-

sitions, defenses have a very low R2, indicating a different modeling strategy may

be ideal for such a different player type. Given that all other positions represent an
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individual player, while the defense position represents an entire team, requiring a dif-

ferent modeling strategy seems intuitive. It is also interesting that quarterbacks and

running backs are the only positions with better position-specific R2 than average.

When connecting these results to the general media’s focus when discussing

NFL teams, their performance, and how that relates to the fantasy world, it’s no

surprise that the position that gets talked about the most is quarterbacks. What’s

also interesting, though, is that offensive lines, which make up almost half the offensive

team but score no fantasy points directly, are also a critical factor. These players’

performance is not directly modeled in the work that we have done, but they play

a crucial role in the success of quarterbacks and every other offensive player. This

suggests that using information about an offensive line’s performance, such as their

overall rank relative to other teams, could provide further projection power to aid in

the projections of other fantasy players.

Similarly, defensive teams, which have very low R2 values, are likely impacted

by the matching offensive line they are playing against. A defense playing a weak

offensive line is more likely to score more points since a weak offensive line will not

protect their quarterback as effectively, and disruptions to the quarterback result in

points for the defensive unit. Therefore, while there is potential to separate players by

position to improve projections, offensive line data should be valuable for predictions

for all positions.

8.4. Neural Network

To create an LSTM neural net, we first had to heavily manipulate our simple

regression data frame into the necessary input format for a neural network. Precisely,

we needed to create individual data frames per player, which revealed an uneven

distribution of data points per player – some had 12 weeks of data, others only 8,
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and yet others 16. This was addressed by setting a threshold for the number of data

points a player needed to be included, determined by the number of players it left

included in the dataset. The value that worked best was 12, leaving roughly half of

all players for the 2020 season (480 of 950). All players were then given 0 padding

to reach 17 weeks, such that all player data frames were symmetric.

Furthermore, encoding had to be done before this separation to ensure all

categories were considered during 1-hot encoding and all values considered within

the scaled distribution. Categorical variables were one-hot encoded, and numerical

variables were scaled using the standard scaler (std-mean scaling), leaving us with

164 columns.

An initial batch was selected randomly, with 32 players, over 4 weeks, providing

an input array of size 32x4x164. Hyper-parameters such as # of neurons and #

of epochs were tested linearly, neuron-count not showing any material difference in

results through variation, and epoch count showing a leveling off in the 20-50 epoch

range for most models created.

The rest of the player set was then tested against this neural net, providing a

projection for each player and therefore an R2 against their actual scores, which were

not shown to be better than professional projections.

8.5. Integer Programming

With projections in hand from our regression model, which outperformed ex-

isting NFL.com projections, unlike our neural network-based projections, we then

turn to an integer programming algorithm to create lineups. While an existing IP

solver could be leveraged by formulating constraints in the solver’s constraint lan-

guage, a custom solver was instead explicitly built for this purpose. By doing so, our

solver had mechanisms to lock and exclude players manually as part of the lineup cre-
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ation process, which provided easy ways to test variations to the input set of players

to observe the variation in lineups.

This custom solver was coded as a dynamic programming solution to the knap-

sack problem with a few extra custom constraints, such as the positional constraints

set by DFS platforms. It took a data frame of players with their salaries, projected

points, and positions and output the top 10 lineups. On my personal laptop, this

typically completed in under 30 seconds, especially after discovering that the bottom

half of players available in any given week were duds and unlikely to be worthy of

making a 9-player lineup. We significantly accelerated the solver by excluding the

bottom half of players by projected points.

Admittedly, this solver is not provably optimal, and this can be seen by the

non-idempotent output given a shuffled input set of players. Shuffling the input

player list and sorting by different factors (projections, ratio of projections to salary,

salary) revealed that the best lineups were output from an initially sorted list by

projection. Existing available IP solvers likely do this input shuffling automatically.

From our findings, using a sorted input produced the best results and was far less

computationally expensive than iterating over multiple input orderings.

To evaluate the effectiveness of the regression-based projections, we tasked the

solver with creating lineups for both sets of projections for the 2020 season, evaluated

against actual DraftKings DFS results to determine the success of lineups in relation

to the best lineups created for that week. Note that only weeks 5-17 were evaluated

since the regression model uses the past 4 weeks of data to train on, so week 5 was

the first week for which we could generate projections using this model.

Using the NFL.com projections, 13 lineups averaged a projected outcome of

146.8 points against an actual outcome of 122.1 points. This meant an average per-

centile finish in weekly $1 million DraftKings DFS contests of 34.57%, earning an
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average of $19.23 per week (on a $20 entry fee). While not bad, these projections fed

through our solver earned just under the break-even point and would not be deployed

further.

Using our regression model’s projections, 13 generated lineups averaged a pro-

jected outcome of 156.4 points against an actual outcome of 187.0 points. This meant

an average percentile finish of 6.98%, earning an average of $246.54. This is an out-

standing 1100% potential return on $260 (13 * 20) in entry fees.

Given the increased accuracy of our regression model’s projections, it is not

surprising that these performed better when assembled into a lineup. Still, the mag-

nitude of improvement is far more substantial than expected for a marginal improve-

ment in accuracy. This would suggest that further accuracy improvements, as small

as they may be, could provide a significant advantage in lineup creation for DFS

contests.
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Chapter IX.

Conclusion

9.1. Natural Language Processing

Acquiring, processing, and storing 30M+ tweets was performed on a single

laptop; however, due to the rate-limiting imposed by Twitter’s API, there are inherent

restrictions on what can be done with Twitter data. Nevertheless, all tweets were

successfully processed and then analyzed through IBM Cloud’s sentiment analysis,

providing valuable features for our regression modeling. Impressively, IBM Cloud’s

NLP tools, which leverage a custom trained BERT-based model, recognized the player

entity in all tweets, providing both a document and entity sentiment score for each

player.

Our processing approach to the 30M+ tweets was admittedly very rough,

paired with search queries that likely included a lot of noise. Nevertheless, there is

ample opportunity to add more validation to input tweets for each player to ensure

they are of a certain quality and are referencing the right player. This is especially

true for the DEF position, for which the ”player name” search query returned results

for the whole team and not just the defense.

Several other features could be extracted from Twitter, though. First of all,

many players are on Twitter themselves, and many are pretty active. Given the

highly emotional nature of professional sports, extracting sentiment from a player’s

tweets could provide insights into the mental state of that player that our model could
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then leverage. Furthermore, many professionals in the sports industry often provide

critical updates but aren’t players. While their input has likely been codified into

professional website projections like NFL.com, extracting sentiment from these pros

has the opportunity to be a valuable feature.

Outside of purely extracting sentiment, specific keywords could be monitored

to identify injuries to players. For example, if many tweets have the word ”OUT” and

a player’s name, the player is likely injured. Furthermore, it’s possible that injury is

late-breaking and therefore not considered within the professional website projections.

This would then be a precious source of players to exclude from modeling should they

not be playing.

Furthermore, as was shown by our model that only used features derived

from Twitter data, our modeling approach can potentially prove valuable in contexts

outside of fantasy sports where only tweets are readily available. This suggests that

for any entity for which projections are helpful, if there are tweets about that entity,

our modeling approach could be leveraged to create projections for those entities,

such as stocks or companies to invest in.

9.2. Modeling: Regression & Neural Networks

While we were able to successfully create improved projections via our basic

regression model, there are countless other models we could have attempted that likely

could result in similar, if not better, results. Neural networks were tried, and while we

successfully created an LSTM that generated realistic projections, the performance

of these projections was still measurably worse than NFL.com projections. That does

not mean that LSTMs can’t work for these types of projections, though, and indicate

that we likely needed more data for an LSTM and that perhaps a simpler neural

network may have performed better. An example of such a more straightforward
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model would be an Auto-Regressive neural network, which could take advantage of

the time-series properties of LSTMs without needing as much input data.

We could improve our projections for our regression model, boosted decision

trees, random forests, or other boosting mechanisms. These have been used by others

assembling fantasy projections with success.

In addition, it is possible that splitting up players by position to create separate

models is advantageous for all kinds of models, given the significant variation in

positional projection accuracy we found. Such an approach could quickly exacerbate

the problem of scarce data, though, which could be compensated by using more

historical data. That said, our regression model performed best with less data vs.

more, with our best regression model only requiring the previous 4 weeks of data.

Additional features could also be engineered and experimented with, in addi-

tion to the aforementioned potential improvements to twitter-based features. Specifi-

cally, the avg points feature proved highly valuable, and this simply represented that

player’s average points over the past 4 weeks. We did not attempt variations on this

number of weeks included, though, nor did we have multiple average values, which

could provide further insight for our model as to the trajectory of this player of the

past few games. Additionally, given the nature of sports, there is a lot of ”momen-

tum” that can be built up by a team. As such, a trailing 2-week, 3-week, and 4-week

average may show differences that highlight that momentum for both a team and

individual players, which could further improve projections.

9.3. Integer Programming

Creating lineups via integer programming is effective, but several aspects could

be improved or modified. First, creating a custom integer programming solver for

fantasy football provided additional flexibility in debugging and experimentation but
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potentially did not yield the most optimal results. Given the prevalence of commer-

cial and open-source linear programming solvers, employing one of these could have

reduced the scope of new code writing while providing stronger guarantees around

the output.

Using such an online solver would have likely made it easier to create multiple

lineups while limiting their correlation. Unfortunately, this proved more difficult than

anticipated within the created IP solver and prevented us from attempting this lineup

portfolio creation that would provide the best chances of winning a DFS contest.

Lastly, it is possible that a neural network could be trained directly on previ-

ously completed DFS contests and their entries (and results) to bypass the majority of

this thesis’ data collection and modeling steps. This is likely to be quite tricky to set

up, though, given the vast number of players who are ”new” every game week, with

some of these players outperforming expectations and therefore being key to consider

for lineups, but for which a neural network trained on previous contests would have

no knowledge of.

Aside from these potential further research areas, we have shown that lineup

creation when using improved projections can yield positive outcomes in the Daily

Fantasy Football game space. The potential profitability of our model illustrates the

financial potential in a limited context, which could be further broadened. However,

in the context of fantasy football, these results also help show how winning in fantasy

football is not random, which is what one would expect should the game be a gamble.

Instead, we see that a positive expected value can be achieved through careful, delib-

erate selection, indicating fantasy football is more a game of skill than pure gambling.

The stochastic nature of sports will always leave things up to chance, though, which

perhaps is by default how gambling is defined, but unlike the lottery, there are clear

actions one can take to improve one’s chances of winning.
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Especially in the current explosion of fantasy football and related advertising,

there is a perception that fantasy football is gambling. It should be considered such

for the vast majority of players since they do not employ the techniques discussed in

this research. However, there is a game of skill to be played for the few who use these

techniques, with potentially large winnings available to the best out there.

9.4. Final Remarks

Overall, our method proved effective to improve professional site projections

and generate strong lineups to compete in daily fantasy picking winners contests. The

key to our success was the combination of state-of-the-art natural language process-

ing models to provide sentiment analysis and ensemble models using that sentiment

data to create projections. With so many pieces to our system built for this re-

search, countless variations could be attempted going forward. Of those pieces, the

BERT NLP model proved quite effective in providing sentiment classification, but

perhaps a BERT model specifically pre-trained on sports lexicons may perform even

better. Our linear regression model uses a prevalent statistical modeling approach,

and the projections it output showed a 30% improvement over existing professional

projections.

Another step for this work is to engineer the data collection process to happen

live quickly. Then, these projections can be leveraged in actual contests instead of

just retrospectively on previously conducted contests. Before that can happen, 2021

season data should be assembled to validate these models further. Hopefully, this

analysis also shows how such an approach could be used in other domains, as men-

tioned. Using our newly developed method combined with faster and more efficient

computational resources makes it possible to compute models on a single multi-core

machine that used to require supercomputers. There is simply a need for more re-
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search in this area, which we hope will occur based on these findings, whether for use

in fantasy football or not. We live in a vast acceleration of our ability to capture,

analyze, and model data. We’ll need as much research into these methods as possible

to understand and expand on these models in the future.
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Årup Nielsen, F. (2011). A new anew: Evaluation of a word list for sentiment analysis

in microblogs. https://arxiv.org/abs/1103.2903.
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