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Chemical exchange saturation transfer (CEST) MRI has positioned itself as a promis-

ing contrast mechanism, capable of providing molecular information at sufficient res-

olution and amplified sensitivity. However, it has not yet become a routinely

employed clinical technique, due to a variety of confounding factors affecting its

contrast-weighted image interpretation and the inherently long scan time. CEST MR

fingerprinting (MRF) is a novel approach for addressing these challenges, allowing

simultaneous quantitation of several proton exchange parameters using rapid acquisi-

tion schemes. Recently, a number of deep-learning algorithms have been developed

to further boost the performance and speed of CEST and semi-solid macromolecule

magnetization transfer (MT) MRF. This review article describes the fundamental the-

ory behind semisolid MT/CEST-MRF and its main applications. It then details super-

vised and unsupervised learning approaches for MRF image reconstruction and

describes artificial intelligence (AI)-based pipelines for protocol optimization. Finally,

practical considerations are discussed, and future perspectives are given, accompa-

nied by basic demonstration code and data.
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1 | INTRODUCTION

Semisolid magnetization transfer (MT) and chemical exchange saturation transfer (CEST) MRI have proven to be powerful tools for detecting

changes in semisolid macromolecular components (e.g., myelin sheets or membranes and lipids) and solute molecules (e.g., mobile proteins, pep-

tides, and metabolites) in numerous disease pathologies.1–7 However, most currently used imaging protocols are not able to provide quantitative

measurement of tissue parameters and acquire semisolid MT and CEST-weighted images only. In addition, the observed CEST contrast is a com-

plex overlay of contributions from different proton pools, including amide, amine, semisolid MT, and/or relayed nuclear Overhauser enhancement

(rNOE), which can sometimes bias the biological interpretation of the observed signal changes. For instance, amide proton transfer (APT) imaging,

a variant of CEST MRI, has shown promise in brain cancer detection, diagnosis, and treatment-response assessment.8–11 These studies have

established that increased cytosolic protein content in gliomas can cause an APT hyperintensity, as revealed by proteomics and in vivo MRS.12,13

However, some recent preclinical14,15 and clinical16,17 studies of brain tumors, which observed a hyperintense tumor APT signal, demonstrated a

decreased tumor amide CEST contrast after separating out the contributions to the APT signal from the semisolid MT and rNOE proton pools.

This decreased tumor amide CEST signal may be due to the significant tumor edema or due to differences in the RF saturation parameter or analy-

sis method used. Thus, the complex nature of the CEST contrast can challenge the interpretation of the underlying disease pathology in some

cases.18

Similarly, the magnetization transfer ratio (MTR) metric conventionally used in semisolid MT imaging is influenced by relaxation effects, thus

limiting the detection of the specific tissue composition.4,19 Even worse, the weighted signals or image contrasts are highly dependent on the

image acquisition parameters (e.g., TR, RF saturation powers, durations, frequency offsets, saturation labeling strategies, etc.) and data analysis

methods.20 These differences presumably contribute in part to the inconsistencies observed across studies. Consequently, the development of

quantitative semisolid MT and CEST imaging methodologies could provide correct proton exchange parameter estimates, independent of the

above-mentioned confounds, experimental settings, and data analysis approaches, and improve the repeatability and reproducibility of the mea-

surements across different imaging platforms.

Currently, the semisolid MT and CEST communities have a great interest in quantifying exchangeable proton concentrations and exchange

rates as surrogate biomarkers of protein/metabolite/lipid composition and intracellular pH, respectively. One of the most promising exchange

quantification methods fits the CEST signals using the steady-state analytical solution of the Bloch–McConnell (BM) equations.21 However, it

requires long scan and computation times. Over the past decade, although many quantification methodologies have been developed to address

the challenges discussed above, a tremendous leap in acquisition and reconstruction times was only recently made by integrating semisolid MT

and CEST with MR fingerprinting (MRF). Furthermore, recent advances in deep learning provide a new paradigm for solving ill posed inverse prob-

lems in MRF reconstruction. Herein, we provide readers with an overview of semisolid MT and CEST-MRF acquisition, reconstruction, optimiza-

tion, and interpretation strategies. The scope and organization of this review are described in Supporting Information Figure S1.

2 | CEST MRI BACKGROUND

2.1 | CEST-weighted imaging

CEST-weighted signals are usually obtained from the Z-spectrum using an MTR asymmetry analysis at certain frequency offsets, where MTRasym

is given by3

MTRasym ¼ Sð�ΔωÞ�SðþΔωÞ
S0

¼Zð�ΔωÞ�ZðþΔωÞ ð1Þ

S(±Δω) is the signal measured with saturation at offset ±Δω, and S0 is a reference signal acquired without saturation. In the case of APT imaging,

MTRasym is evaluated at an amide chemical shift of 3.5 ppm from the water resonance. However, due to the contribution to MTRasym from the

nuclear Overhauser enhancement (NOE) effect of aliphatic protons of mobile cellular macromolecules with a chemical shift of around �3:5ppm,

including the inherent semisolid MT asymmetry, the APT signals are reduced and do not provide a clean quantification of the amide proton signal.

In addition, the fast-exchanging amine protons of glutamate, at a chemical shift of around 3 ppm, and guanidinium protons in proteins and

creatine, resonating at around 2 ppm, can make contributions to the APT signal, particularly for high RF saturation power levels. Various methods

were developed for separating the desired APT effects from the background semisolid MT and NOE signals. These include the three-offset

approach, which estimates the MT and direct water saturation contribution using a linear approximation,22 and its later refinement using

relaxation-based direct saturation correction (DISC).23 In a different work, a two-pool BM equation-based fitting with super-Lorentzian line shape,

called extrapolated semisolid MT reference (EMR),24,25 which subtracts the fitted semisolid MT signal from the acquired Z-spectrum, has been

proposed. Furthermore, a multi-pool Lorentzian fitting analysis of the Z-spectrum can also be used to better separate the different spectral
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components.26,27 Nevertheless, dilution effects on the measured APT signal from direct water and semisolid MT saturations still remain due to

the non-linear contributions from the different proton pool components (water, semisolid MT, APT, and other CEST components) of the Z-spec-

trum, which changes with the RF saturation parameters. In addition, these approaches cannot completely disentangle the coupled parameters of

exchange rate and concentration. All of the above challenges have motivated a considerable effort to develop truly quantitative CEST imaging

techniques, as described below.

2.2 | Non-MRF quantitative CEST imaging

In light of the detailed review papers for CEST quantification,28–32 this section aims to briefly describe the general concept underlying previous

quantitative approaches and highlight the motivation to develop CEST-MRF methodology.

One of the first in vivo measurements of chemical exchange rate was performed using the water exchange spectroscopy (WEX) method for

the quantification of the amide proton exchange rate from endogenous mobile proteins.33 An exchange rate of about 30 Hz was estimated from

the mixing-time evolution of the amide signal in the WEX spectrum using a simple two-pool exchange model (free bulk water and amide proton

pools). Relatively long mixing times for the water labeling preparation were used in the study, limiting the detection of fast-exchanging amide pro-

tons. The amide proton concentration of approximately 72 mM was calculated by solving the two-pool-based APT ratio equation with the

exchange rate estimated from the WEX spectrum. Moreover, the use of a high saturation power in the WEX experiment would increase the spill-

over effect of direct water saturation and semisolid MT. Therefore, the amide exchange rate and concentration reported from the WEX experi-

ment may not necessarily be accurate for all amide protons.

Quantification of exchange rate using varying saturation power (QUESP) and saturation time (QUEST) methods were proposed to estimate the

exchange rate using a simplified analytical solution of the two-pool BM equations.34 The methods estimate and correct for spillover water saturation

by applying a saturation pulse on the opposite side of water from the exchangeable protons to calculate the proton transfer ratio (PTR). However,

the result may be corrupted by upfield NOE as well as semisolid MT signals for in vivo applications. In addition, the analytical solution used in

QUESP/QUEST assumes complete saturation under a strong B1 saturation power, which can significantly increase direct water saturation and semi-

solid MT signal contributions, and thus is less accurate for measuring fast exchange rates. Recently, refined QUESP/QUEST analytical equations

were introduced for inefficient saturation conditions.35 In addition, an empirical solution, which also considers the direct water saturation (spillover)

effect, was derived.36,37 However, this approach is sensitive to water relaxation, and requires voxel-wise mapping of the T1 and T2 relaxation times.29

Finally, the acquisition of multiple Z-spectra with various saturation pulse powers and durations requires very long acquisition times, although an

acceleration is feasible using multi-echo length and offset varied saturation (MeLOVARS),38 progressive saturation for quantifying exchange rates

using saturation times (PRO-UEST),39 and a post-processing solution for quasi-steady-state (QUASS) saturation time and relaxation delays.40

The apparent exchange-dependent relaxation (AREX) method41 was demonstrated for measuring an inverse exchange rate (from a free bulk

water proton pool to a labile proton pool) using an inverse Z-spectrum metric with known water T1. Using this metric, an in vivo quantification of

solute concentrations can be further estimated, following the use of a phantom calibration study and by acquiring multiple Z-spectra,42 or assum-

ing a fixed volume fraction of the solute pool.41 However, the simple analytical solution used for the AREX method could be a poor approximation

of the full BM-equation solution at strong RF saturation and low spectral resolution (clinical field strength) conditions.31,43

Additional prominent CEST quantification methods include omega-plots,44,45 full BM equation fitting,21 ratiometric analysis,46,47 and fre-

quency labeled exchange (FLEX).48,49 However, these approaches are either challenging to apply in vivo,50 require a long processing time,51

involve exogeneous media injection,52 or are mostly appropriate for saturating fast-exchanging protons.49

3 | SEMISOLID MT/CEST MRF

The differential Bloch equation is complex, and its inverse can have multiple solutions for an observed MR signal. In a multiple-pool exchange

model, finding a unique solution to the inverse problem of the Bloch equation coupled by exchange terms is even more challenging. Recently, a

novel, quantitative MRF53 paradigm was introduced with a completely different approach to image acquisition and reconstruction. Instead of

exploiting steady-state signals for the characterization of individual parameters of interest, as in conventional quantitative MRI, MRF uses a

pseudorandomized acquisition that causes MR signals from different tissue properties to have unique signal trajectories (so-called fingerprints).

For reconstruction, a pattern-matching algorithm is used to find different tissue-type parameters against a pre-calculated dictionary (or database)

from Bloch simulations with a wide range of tissue parameter combinations. The best match is then used for practically solving the inverse prob-

lem of the Bloch equations.

Originally introduced for water T1 and T2 relaxation, B0 shift, and proton density quantification, MRF has gradually expanded for the quantifi-

cation of additional tissue parameters,54 such as blood flow velocity,55 perfusion,56 and Bþ
1 .

57 Importantly, the MRF framework can be adapted to

estimate multiple proton-exchange components such as semisolid MT and CEST parameters. A significant effort is currently ongoing to develop a
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robust, quantitative semisolid MT and CEST MRF imaging framework using pseudorandomized RF saturation and acquisition schedules, and a

database matching process for reconstruction. Figure 1 shows the primary components of the semisolid MT/CEST-MRF: image acquisition, dictio-

nary generation, reconstruction, and visualization.

3.1 | Dictionary matching for semisolid MT/CEST-MRF reconstruction

A preliminary CEST “fingerprinting-like” experiment was performed by Geades et al,58 where a numerically simulated look up table was used to

extract the NOE, amide, and semisolid MT quantitative proton volume fractions from Z-spectra acquired with three different saturation powers.

However, the simulations were performed for a very restrictive parameter space, with only eight different proton concentration values considered

for each pool, a fixed proton exchange rate, and a total acquisition time of 24 min.

The first CEST-MRF experiments with rapid fingerprinting acquisition schedules and densely simulated dictionaries were demonstrated by

Cohen et al59 and Zhou et al60 using CEST phantoms and/or in vivo rat brain. For the study of Cohen et al,59 a pseudorandom acquisition sched-

ule of 30 saturation pulse powers was used while other scan parameters such as the RF saturation time, frequency offset, and TR were kept fixed.

For reconstruction of the concentration and exchange rate maps of the exchangeable proton, the experimental signal trajectories were matched

to a simulated dictionary using a correlation-based metric (dot product). The estimated exchange parameters for the L-arginine phantom

(Figure 2) were shown to be in good agreement with results from the QUESP method. Although reasonable in vivo semisolid MT and amide

parameter maps were obtained from a wild-type in vivo rat, this approach is limited by the use of a single acquisition schedule with a fixed fre-

quency offset (3.5 ppm), which is sub-optimal for assessing the semisolid MT exchange parameters and separating it from the amide-related signal

contribution.15 In addition, the B0 field inhomogeneity was not considered.

The study of Zhou et al60 reported a CEST-MRF sequence for the quantification of creatine amine proton exchange rates in a three-pool cre-

atine/agarose phantom, which explored methods for removing the semisolid component from the amine CEST signal at 2 ppm and correcting for

B0 inhomogeneity. Prior to the dictionary matching, the semisolid MT effects were estimated by measuring saturated signals at the opposite

F IGURE 1 General pipeline of a semisolid MT/CEST MRF experiment. (A), Initially, a pseudo-random imaging protocol is designed, where at
least one acquisition parameter is being varied, to produce a set of N images. Importantly, a pre-saturation block needs to be implemented, where
at least the saturation pulse power (B1), duration (Tsat), or frequency offset (ωrf) should vary, for sufficient encoding of the chemical exchange
parameters. The protocol typically includes a rapid readout, e.g., using echo planar imaging or turbo spin echo, with either a fixed or varied flip

angle and recovery time (Trec). (B), The designed protocol is then loaded into a computerized BM-equation-based signal simulator, which produces
the signal trajectories expected for a large number of tissue parameter combinations. The same CEST-MRF acquisition protocol is fed as an
instruction file to the MRI scanner, allowing the acquisition of N molecular information encoding images, where each pixel series comprises an
experimentally acquired trajectory (e[1]–e[N]). (C), Each trajectory (e[n]) is then compared with all dictionary entries (d[n]), via a pattern recognition
algorithm (such as the dot-product metric), for the determination of the best match. Importantly, this step can be accelerated and improved using
a deep neural network (DNN). (D), Finally, simultaneous pixel-wise quantification of the proton exchange rates (k) and volume fractions (f) for a
single or several metabolite/protein/lipid pools of interest can be made, based on the NN output, or the best-matched dictionary entry
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F IGURE 2 Disentangling proton exchange rate and concentration using CEST-MRF. Proton density images of L-arginine phantoms with
varying concentrations (A) and pH (D) along with the associated quantitative chemical exchange rate (B and E) and L-arginine concentration
(C and F) maps generated from MRF dot-product matching. The CEST-MRF reconstruction was able to correctly detect and quantify the different
proton exchange rates and concentrations. Reproduced and modified with permission from Cohen et al., Magn Reson Med. 2018;80:2449-2463.59

F IGURE 3 Semisolid MT correction for CEST-MRF. (A), The reference dictionary (solid) and reference signal (dashed) are different in the
presence of the semisolid MT effect. (B), Signal attenuation due to the semisolid MT effect can be estimated by comparing the reference
dictionary and reference signal. (C), The label dictionary is generated by simulating two-pool BM equations with known T1 and T2 values. (D), The
corrected label dictionary can be generated by adding the semisolid MT effect (B) to the dictionary (C). Reproduced with permission from Zhou
et al., Magn Reson Med. 2018;80(4):1352-1363.60
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frequency offset (�2ppm), upfield from the water resonance, and removed using a pre-calculated dictionary (Figure 3). However, the estimation

of semisolid MT signals from the opposite frequency offset might be biased, particularly for in vivo tissue, due to asymmetric semisolid MT and

NOE contributions. To allow for retrospective correction of B0 field inhomogeneities, the CEST-MRF image acquisition was also repeated at multi-

ple frequency offsets. However, this prolonged the total scan time to approximately 10min.

Conventional dictionary-matching-based MRF reconstruction methods, however, have certain challenges and limitations. First, the dictionary

generation time, which is built on the numerical solution of the BM equations, is exceedingly long and may take hours, or even days, depending

on the available hardware and complexity of the CEST imaging scenario.15 Second, the reconstructed parameters are discrete, and their resolution

is limited by the size of the dictionary. Third, large dictionaries with millions of entries are needed for complicated multi-pool CEST scenarios,

requiring expansive computational storage. Finally, the quantitative image reconstruction may take many hours, making it infeasible for use in clin-

ical settings, where rapid decisions must sometimes be made.

The first attempt to overcome the limitations of dictionary matching methods was demonstrated by Heo et al,61 where the acquired MRF tra-

jectories were fit to a multiple-pool exchange model using a non-linear least-square procedure. The dictionary-free reconstruction method was

demonstrated on CEST phantoms and healthy volunteer human brains at 3 T (Figure 4). Although the model-based fitting approach has almost

unlimited tissue parameter range and precision for estimating semisolid MT and CEST parameters, it may be affected by the parameter initializa-

tion conditions and prone to local minima errors. Moreover, it still suffers from a long reconstruction time.61 This important consideration has

therefore motivated the exploration of alternative, deep-learning-based MRF reconstruction methods for fast tissue parameter quantification.

F IGURE 4 Quantitative proton exchange parameter maps of ammonium chloride (NH4Cl) phantoms and a healthy human volunteer obtained

using dictionary-free CEST-MRF.61 (A), CEST phantom validation experiments. MTRasym (2.5 ppm) maps with RF saturation powers of 1, 1.5,
2, 2.5, and 3 μT. A phantom with four compartments: (1) pH 4.5, 0.5 M NH4Cl + 1% agarose + PBS, (2) pH 5.0, 0.5 M NH4Cl + 1% agarose +

PBS, (3) pH 4.6, 1 M NH4Cl + 1% agarose + PBS, and (4) pH 7.0, 1% agarose + PBS. RF saturation power dependences of the direct water
saturation, semisolid MTC, and CEST signals can be seen clearly in the MTRasym (2.5 ppm) maps. (B), CEST exchange rate (ksw) and concentration
(M0s) maps of the phantom from the dictionary-free CEST-MRF. (C), Quantitative semisolid MT exchange rate (kmw) and concentration (M0m), and
amide proton exchange rate (ksw) and concentration (M0s) maps of a healthy volunteer human brain. Reproduced and modified with permission
from Heo et al. NeuroImage. 2019;189:202-213.61
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F IGURE 5 Legend on next page.
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3.2 | Deep learning for semisolid MT/CEST-MRF reconstruction

The recent improvements in deep-learning capabilities have created unique opportunities for medical imaging. While the most familiar examples

include accurate pathology detection,62 segmentation,63 and classification64 at the post-processing stage, an evident benefit lies in utilizing deep

learning for improving image reconstruction. In addition to being able to approximate and represent complex non-linear relations,65 a significant

advantage of using deep learning compared with earlier machine-learning approaches is its ability to automatically learn and optimize the classifi-

cation features, thereby reducing the need for domain expertise and manual feature selection/design.66,67 However, the main practical limitation

for using deep learning in medical imaging is the need to acquire large quantities of training data for high performance. While large databases are

available for natural scene images,68 only a few, much smaller MRI data repositories have been made publicly available (e.g., ref.69). Luckily, the

MRF reconstruction approach is based on artificially synthesized data, allowing the generation of data sets of any desired size. This characteristic

has rendered the combination of deep learning and MRF an attractive means for rapid reconstruction of MR images, as demonstrated for water

T1 and T2. By feeding a fully connected neural network (FCNN) voxel-wise with MRF trajectories (acquired using a pseudorandom sequence with

varied flip angles and repetition times), Cohen et al67 were able to reconstruct water relaxation times in less than 100 ms. Can deep learning be

similarly applied in the molecular imaging and semisolid MT/CEST realm?

As mentioned in Section 2.1, CEST-related signals are commonly measured from the Z-spectrum. It is therefore not surprising that the first

reported combination of neural network (NN) and CEST data for quantitative exchange parameter mapping has used this intuitive signal as the

input source for an artificial neural network (dubbed ANNCEST).70 By training four ANNCESTs (Figure 5A) with the Z-spectra generated using the

BM equation, the phosphocreatine exchange parameters of the human skeletal muscle (Figure 6B) and the B0/B1 field inhomogeneities were suc-

cessfully quantified in vivo. Although this approach was not originally reported as an MRF experiment,70 the use of a simulated dictionary for the

neural-network training, together with an input signal that encodes for CEST changes, allow this approach to be considered as a CEST-MRF

variant.

F IGURE 5 Supervised machine-learning architectures for semisolid MT/CEST MRF. (A), Quantification of phosphocreatine exchange
parameters using an artificial NN composed of a single hidden layer.70 The input layer was fed with Z-spectrum measurements, analogous to a
CEST-MRF schedule where the varied parameter is the saturation pulse frequency offset ωrf), and the output was either the phosphocreatine
proton volume fraction (fs), exchange rate (ksw), B0, or transmit field (B1). The NN had four variants that were fed with the same input but trained
to output each of the four different sought-after parameters, using a simulated dictionary. (B), Brain semisolid MT exchange parameter
quantification and background semisolid MT (Zref) contrast image synthesis,71 using a fully connected NN. The input MRF schedule varied the
saturation pulse power (B1), duration (Tsat), ωrf, and the recovery time (Trec). The output included the semisolid MT parameters, and a synthesized
MT reference image at 3.5 ppm, calculated by plugging in the resulting parameters and the water T2 values obtained from a separate protocol in
the two-pool BM equations solution. (C), Sequential and deep CEST and semisolid MT quantification in the brain.15 A semisolid MT-oriented MRF
acquisition schedule, which varies ωrf and B1, yields 30 images that are fed voxelwise into the first NN, together with the quantitative water pool
and field homogeneity maps (T1, T2, B0). This NN maps the semisolid MT pool exchange parameters, which are then fed, together with the
previously obtained quantitative data, into the second NN, ultimately yielding the amide proton fs and ksw

F IGURE 6 Phosphocreatine concentration mapping in the exercised human leg muscle. (A), T2-weighted anatomy image. (B, C),

Phosphocreatine concentration maps obtained by ANNCEST (B) are in good agreement with the dynamics observed using 31P 2D MRS (C).
Reproduced and modified from Chen et al., Nat Commun. 2020;11:1072.70
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While the semisolid MT pool can be treated as a spatially homogeneous proton pool in the leg muscle (as performed in the ANNCEST

approach), its properties vary markedly across the brain.72 Given that changes in semisolid MT exchange parameter values are useful for the diag-

nosis of several diseases (the best-known example is multiple sclerosis),73 there is a clear motivation for developing rapid semisolid MT quantifica-

tion methods. Accordingly, Kim et al71 developed a deep-learning approach for simultaneously quantifying semisolid MT proton exchange rate,

volume fraction, and transverse relaxation, as well as the water longitudinal relaxation, demonstrated in the brain of healthy volunteers at 3 T. A

dynamic MRF schedule that varied the saturation pulse power, duration, frequency offset, and relaxation recovery time was used to train deep

NNs (Figure 5B). Furthermore, using the tissue parameters estimated from MRF and the acquired water T2 relaxation, accurate semisolid MT sig-

nal intensities were able to be estimated at certain CEST frequency offsets (e.g., 3.5 ppm and �3:5ppm for APT and NOE imaging, respectively),

allowing for a clean separation of the semisolid MT and CEST signals.

There is a clear value in the ability to accurately de-bias CEST-weighted brain images from the semisolid MT and water contribution. Never-

theless, a fully quantitative and rapid estimation of the amide proton volume fraction and exchange rate would provide an ideal means for

assessing the underlying molecular phenomena and pathology, as discussed in Section 2. However, for this application, there are at least three

prominent compound pools involved (amide, semisolid MT, and water), whose parameters all vary simultaneously with disease progression. This

complex and highly multi-dimensional parameter space imposes a considerable challenge. Accordingly, trying to employ a single NN with a single

parameter encoding acquisition schedule in tumor bearing mice has resulted in very noisy and poorly discriminating parameter maps.74 The first

deep-learning-based CEST-MRF method that fully quantified these parameters in the brain disease environment was recently reported by Perl-

man et al.15 The key element responsible for this progress was a sequential deep-learning pipeline (Figure 5C), aimed to obtain both semisolid MT

and amide quantitative information, while reducing the complexity of each quantification step, by relying on the results of the former. The method

was explored in the context of neuro-oncology applications and was used for monitoring the treatment response of glioblastoma multiforme

TABLE 1 Literature values of the brain white/gray matter semisolid MT and amide proton volume fractions (fss/fs) and exchange rates (kssw/
ksw)

Brain tissue fss (%) kssw (Hz) fs (%) ksw (Hz) Method

WM 12.2 ± 1.7 48.6 ± 2.4 0.76 ± 0.09 47.9 ± 11.6 Dictionary-correlation matched CEST MRF59

GM 8.1 ± 1.1 47.1 ± 4.0 0.61 ± 0.13 34.8 ± 11.7 (rat at 4.7 T)

WM 11.2 ± 0.7 29 ± 4 0.19 ± 0.02 162 ± 16 Sub-grouping proton exchange models61

GM 6.3 ± 0.7 40 ± 5 0.24 ± 0.02 365 ± 19 (human at 3 T)

WM 16.9 ± 1.3 10.3 ± 0.9 — — Deep semisolid MT MRF with synthetic signal validation71

GM 10.6 ± 1.5 12.5 ± 2.0 — — (human at 3 T)

WM 15.2 ± 2.0 14.0± 2.4 — — Unsupervised semisolid MT MRF75

GM 10.2 ± 1.1 16.3 ± 1.6 — — (human at 3 T)

WM 9.4 ± 3.0 14.0 ± 6.9 0.31 ± 0.02 42.3 ± 2.9 Sequential and deep semisolid MT/CEST MRF15

GM 4.2 ± 4.4 35.1 ± 15.4 0.32 ± 0.07 34.6 ± 9.5 (human at 3 T)

WM 19.8 ± 0.5 43.9 ± 2.4 0.40 ± 0.27 73.0 ± 51.1 AutoCEST76

GM 12.8 ± 0.8 56.5 ± 3.1 0.29 ± 0.16 61.0 ± 29.3 (mouse at 9.4T)

WM 13.9 ± 2.8 23 ± 4 — — Two-pool model fitting of semisolid MT72

GM 5.0 ± 0.5 40 ± 1 — — (bovine at 3 T)

WM 8.9 ± 0.3 — 0.21 ± 0.03 — Numerically simulated look up table with three Z-spectra58

GM 4.4 ± 0.4 — 0.20 ± 0.02 — (human at 7 T)

WM 6.2 ± 0.4 67.5 ± 7.0 0.22 ± 0.04 281.2 ± 0.6 Four-pool model fitting77

GM 3.4 ± 0.4 63.5 ± 4.5 0.25 ± 0.05 281.9 ± 0.9 (human at 7 T)

WM 13.48 ± 0.37 — — — Semisolid MT proton fraction mapping78

GM 5.77 ± 0.34 — — — (human at 3 T)

WM — — — — WEX33

GM — — — 28.6 ± 7.4 (rat at 4.7 T)

WM 11.4 ± 1.2 11 ± 2 — — Selective inversion recovery based quantitative semisolid MT79

GM 7.5 ± 0.7 15 ± 6 — — (human at 3 T)

WM 17.6 ± 1.3 14.5 ± 1.5 — — Selective inversion-recovery-based quantitative semisolid MT80

GM 10.3 ± 1.6 24.4 ± 4.4 — — (human at 7 T)

WM/GM — — — 350-400 FLEX imaging49 (human at 3 T)
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(GBM) bearing mice to oncolytic virotherapy (Figure 7). The translation of this method to a 3 T clinical scanner has demonstrated good agreement

with previous literature reports in a healthy human volunteer (Table 1).

All the NN strategies discussed so far can be associated with the machine-learning branch of supervised learning, where labeled ground-truth

information is paired to each input signal during the system's training. In the context of MRF, these data pairs are obtained via an extensive

numerical dictionary generation step, which may take hours, depending on the complexity and number of pools involved in the simulated scenario

and the availability of computational resources (number of CPUs/GPUs, RAM, etc.). In addition, the accuracy of the quantification is highly depen-

dent on the model used for dictionary simulation, which is not guaranteed to accurately reflect the experimentally measured data. To address

F IGURE 7 Quantitative imaging of apoptosis following oncolytic virotherapy using sequential and deep semisolid MT/CEST MRF. (A),
Conventional T2-weighted image of a mouse treated with oncolytic virotherapy, 72 h after virus inoculation, is incapable of detecting treatment
responsive apoptotic regions. (B), Semisolid macromolecule proton volume fraction (fss) map, where a decreased volume fraction represents
tumor-related edema and a change in the lipid composition of tumor tissue relative to normal brain tissue. (C, D), Amide proton exchange rate
(ksw, C) and volume fraction (fs, D) maps. Regions of decreased intracellular pH and mobile protein concentration, respectively, are indicative of
apoptosis. (E–H), Histology and immunohistochemistry images validate the MR findings with cleaved caspase-3 positive tumor regions and
decreased Coomassie blue protein staining, indicative of apoptosis, colocalizing with the regions of decreased exchange rate and mobile protein
concentration. Reproduced with permission from Springer Nature, Perlman et al. Nat Biomed Eng. 2021. https://doi.org/10.1038/s41551-021-
00809-7.15

F IGURE 8 Unsupervised machine-learning approach for semisolid MT/CEST MRF. The raw MRF images are given as input to an eight-layer
CNN, yielding quantitative semisolid MT exchange parameter and water T1 maps. Gray boxes represent feature spaces with the depth of the
spaces indicated above each box. Colored arrows show the receptive field size of the kernel and the activation function. The estimated
quantitative maps, the MRF schedule parameters, and a separately acquired water T2 map are plugged into the BM equations' analytical solution,
generating an estimation of the original semisolid MT MRF raw images. These output images are compared with the experimentally acquired raw
MRF data (using the L2 loss function), allowing for the optimization of the semisolid MT parameter maps. Reproduced and modified with

permission from Kang et al. Magn Reson Med. 2021;85:2040-2054.75
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these challenges, Kang et al75 have recently proposed an unsupervised learning approach for quantifying the semisolid MT exchange parameters

(Figure 8). Instead of presenting the NN with pairs of simulated MRF trajectories and the corresponding ground truth tissue parameters, the con-

volutional neural network (CNN) architecture was trained to minimize the difference between “real” experimentally acquired MRF trajectories

(input) and synthesized MRF trajectories (output) by solving the BM equations. By defining the loss as the L2 distance between the “real” MRF

trajectories and the simulated counterparts, the CNN iteratively optimizes its quantification ability. The CNN in the unsupervised fashion out-

performed supervised NN at lower signal to noise ratios (SNRs), in terms of robustness to noise, which could be beneficial to estimate low-

concentration CEST parameters. However, the unsupervised learning has limited generalization ability because the deep-learning framework was

trained with a limited range of tissue parameter in healthy volunteers. In particular, pathological cases that include a distinctly different combina-

tion of tissue (and exchange) parameters are not expected to be accurately mapped, unless sufficiently represented in the CNN parameter optimi-

zation. While the dictionary generation required for training the NN in the supervised approach is time consuming, it could, in principle, take place

only once and include a huge number of parameter combinations, potentially sufficient for many different pathologies (e.g., brain cancer, stroke,

etc.).

3.3 | Optimization of MRF acquisition schedules

The ability to discriminate different exchange parameters is sensitive to the acquisition schedule used (Figure 9). Thus, it is crucial to tailor and

optimize the properties of the imaging protocol for the biological imaging scenario of interest.

A basic means for understanding the influence of the acquisition parameters on the discrimination ability of CEST-MRF and for comparing dif-

ferent schedules is to employ a similarity-based loss metric, such as the dictionary Frobenius norm dot-product loss.59,81,82 Intuitively, such met-

rics compare the correlation between different pairs of simulated signal trajectories associated with a given MRF dictionary, assuming that

minimal correlation is a predictor for improved parameter discrimination ability. Using this metric, it was demonstrated that different molecular

F IGURE 9 Comparing different CEST-MRF acquisition schedules. A phantom containing three vials of 50 mM L-arginine at pH 4, 4.5, and
5 was imaged using a 9.4 T scanner. The dot-product matched L-arg concentration (D–F) and amine proton exchange rate (G–I) are shown for
three different acquisition schedules, including the random acquisition schedule used by Cohen et al.59 (A, D, G), a different random acquisition
schedule of similar length (B, E, H), which also varied the saturation pulse duration, the repetition time, and the readout flip angle, and a schedule
based on a Z-spectrum obtained using a fixed saturation power of 2 μT, at 7 to �7 ppm with 0.25 increments (C, F, I)

PERLMAN ET AL. 11 of 22



scenarios, such as endogenous amide imaging and exogenous fast-exchanging CEST agent imaging, require distinctly different MRF schedules

(Figure 10).82 While similarity metrics, such as the dot product and Euclidean distance, can also serve as predictors of the encoding capability of

CEST-MRF acquisition schedules, it was recently shown that an improved pH quantification prediction could be obtained by using the Cramer–

Rao bound.83

Another approach for acquisition protocol optimization is Monte Carlo simulations of noise propagation.84 Here, a dictionary with a particular

imaging protocol is repeatedly generated with random noise perturbations. As the noisy trajectories are matched to the original “clean” dictionary,
the proton exchange rate and volume fraction quantification error can be calculated. Based on this strategy, a numerical evaluation predicted that

a CEST-MRF schedule could be shortened by more than 60%, with only a minor decrease in reconstruction accuracy. The finding was then suc-

cessfully confirmed using an experimental phantom study.82

The main limitation of the numerical optimization strategies mentioned above is the need to calculate a particular loss (or quantification error)

for each acquisition-schedule candidate. Given the very large parameter space involved in CEST-MRF, where at least five scan parameters (satura-

tion pulse power, duration, frequency offset, readout flip angle, and repetition time) could be varied, and a huge dictionary of biophysical parame-

ter combinations must be synthesized for each schedule, it is virtually impossible to explore all (or most) of the acquisition parameter space.

In an attempt to bypass the time-consuming dictionary generation requirement, and improve the chances of finding a global solution, a pre-

liminary work by Cohen85 has developed a schedule optimization network (SCONE), aiming to learn the direct functional mapping between the

acquisition schedule and the corresponding reconstruction error. In the first step, a mapping from the raw dictionary signals associated with an

MRF protocol to the corresponding quantitative parameters is performed, using a supervised learning approach, similar to that described in

Section 3.2. The process is repeated for a few thousand random schedules, creating pairs of scan parameter combinations and their associated

reconstruction errors. These pairs are then used as the input and output data for training a second NN. SCONE could predict the performance of

unseen acquisition schedules in less than a second, allowing a drastic expansion of the evaluated acquisition parameter space. In addition, SCONE

can be used in combination with computational optimization solvers. Although the combined T1/T2/CEST/semisolid MT reconstruction using the

SCONE-optimized schedule was able to improve the tumor contrast in a mouse GBM model,86 there were some deviations in the quantitative

parameter values compared with the literature, warranting additional optimization and validation.

Recently, a more unified framework termed AutoCEST was developed, allowing an end-to-end automated discovery of semisolid MT/CEST

MRF acquisition protocols and quantitative deep reconstruction (Figure 11).76 Its key component was treating each acquisition schedule

F IGURE 10 Dependence of the discrimination loss on the acquisition parameters used in CEST-MRF. The surface plots with projected loss
iso-contours describe the effect of the maximal saturation power (B1max) and the saturation time (Tsat) (A, B) or the flip angle and TR (C, D) on the
loss, for a three-pool water/amide/semisolid MT imaging scenario (A, C) and a two-pool scenario with a dilute solute in the medium to fast
exchange rate regime (B, D). In all images, the z-axis represents the loss (lower values indicate improved parameter discrimination ability), which is
also color coded from blue to yellow. The optimal combination for each examined parameter pair is given in the surface plots. (E–H). A similar
analysis was performed using the Euclidean distance instead of the dot-product reconstruction metric with a loss function based on Euclidean
distance. Note the different optimal parameters obtained. Reproduced and modified with permission from Perlman et al. Magn Reson Med.
2020;83:462-478.82
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parameter similarly to an NN node weight, thereby allowing its efficient optimization. To enable such optimization, the CEST saturation block was

represented as a computational graph (Figure 11B), based on the analytical solution of the two-87 or three-88 proton-pool BM equations. Next,

the readout and relaxation blocks were similarly represented using the Bloch equations with a discrete-time state-space model in the rotating

frame (Figure 11C), allowing for the calculation of the expected MR signal for a randomly initialized set of acquisition parameters. These signals

are then directly fed into a quantitative reconstruction network (Figure 11D), trained to output the desired semisolid MT/CEST exchange parame-

ters. To obtain efficient and simultaneous optimization of the acquisition and reconstruction parameters involved in deep CEST-MRF, all computa-

tional graphs were serially connected. This enables a “single-click” optimization using automatic differentiation and stochastic gradient descent.

AutoCEST was used for discovering optimized amide and semisolid MT acquisition schedules and yielded amide and semisolid MT exchange

parameters in good agreement with previous reports (Table 1).

The potential and strength of using a supervised deep-learning strategy, combined with a loss function that directly evaluates tissue quantifi-

cation error for MRF schedule optimization, was recently further substantiated by Kang et al.89 A framework for learning-based optimization of

F IGURE 11 An end-to-end AI-based framework for automatic optimization of semisolid MT/CEST MRF acquisition protocols and
quantitative deep reconstruction (AutoCEST). (A), Schematic representation of the optimization pipeline. A broadly defined tissue-parameter
scenario serves as input to the pipeline, which consists of sequential simulations of the CEST saturation (purple), readout and recovery (green),
and deep reconstruction (yellow). AutoCEST outputs an optimized acquisition schedule and a reconstruction network (orange). (B), CEST
saturation block as a computational graph. The blue rectangles represent the input tissue parameters: initial magnetization (M0), water relaxation

rates (R1a, R2a), solute transverse relaxation (R2b), exchange-rate (kb), and volume fraction (fb). The orange rectangles represent the dynamically
updated protocol parameters: saturation time (Tsat), saturation power (ω1), and saturation frequency offset (ωrf). The graph is used to calculate the
magnetization at the end of the saturation block Mz[nþ]. (C), Bloch-equation-based image readout as a computational graph. The blue rectangles
represent the water-pool parameters, while the orange rectangles represent the dynamically updated protocol parameters: flip angle and recovery
time (Trec), which is embedded in the appropriate relaxation step. Note that this is a partial display due to space limitations. (D), Deep
reconstruction network for decoding the “ADC” MR signals (purple circles), obtained in C, into CEST quantitative parameters (fb and kb, blue
circles). Reproduced from Perlman et al. Magn. Reson. Med. 2022.76
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the acquisition schedule (LOAS) was developed to optimize RF saturation-encoded MRF acquisition with a minimal number of scan parameters

for tissue parameter quantification (Figure 12). The BM-based numerical phantom and in vivo studies showed that the LOAS outperforms existing

indirect optimization methods, such as the Cramer–Rao lower bound90 and interior point (IP),81 in terms of quantification accuracy and acquisition

efficiency.

3.4 | Practical considerations in semisolid MT/CEST-MRF studies

There are several practical issues to consider in the development of the semisolid MT/CEST-MRF methodologies. The performance of the MRF

methods must be rigorously evaluated in terms of their accuracy, repeatability, and reproducibility across subjects, vendors, and imaging sites, and

assessed with the certainty of the estimated tissue parameters.

3.4.1 | Accuracy

For the MRF reconstruction (or tissue parameter quantification), deep-learning NNs can be trained with a huge dataset that covers all possible

combinations of tissue properties. Then, the reconstruction accuracy of the deep-learning NNs can be evaluated on a never-before-seen test

dataset. Furthermore, the semisolid MT/CEST-MRF method can be demonstrated using well controlled phantoms with known proton concentra-

tion and pH. For instance, the amide proton exchange rate has a one-to-one correspondence with pH because the exchange rate of –NH groups

is base catalyzed and decreases with decreasing pH.3 Thus, an estimated proton exchange rate can be indirectly evaluated by observing signal

changes at different pH values and deriving empirical calibration formulas to relate exchange rate to pH. Several important NMR and MRI

methods have been developed to directly estimate proton exchange rates by measuring the temperature-dependent linewidth, fitting the Z-

F IGURE 12 A schematic diagram of the LOAS. Semisolid MT-MRF signals synthesized using initialized scan parameters (RF saturation power,
B1, frequency offset, Ω, saturation time, Ts, relaxation delay time, Td), noise, and tissue parameters (Input) are fed to the FCNN. The FCNN
outputs tissue parameter estimates (Output). The loss function is defined as the mean square error between the ground truths and estimated
tissue parameters. The calculated loss was back-propagated with an ADAM optimizer to update the scan parameters. APT and NOE images were
calculated by subtracting the synthesized semisolid MT image at 3.5 ppm from the acquired saturated image at ±3.5 ppm. Reproduced and
modified with permission from Kang et al., NMR Biomed 2021:e4662.89
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spectrum with the BM equations,21 QUESP,34 WEX,33 or Omega plot.44,45 The estimation of semisolid MT and CEST parameters reported in the

literature is shown in Table 1. Although the methods are promising as a reference standard, the measurement of the absolute in vivo exchange

rate remains challenging and there is no widely accepted “gold standard” method regarding the measurement. To enable effective validation, pre-

vious studies performed synthetic MRI analysis (Figure 13) to evaluate the reconstruction accuracy. Various contrast-weighted images were syn-

thesized with the tissue parameters estimated by deep-learning semisolid MT-MRF by solving the BM equations with new RF saturation

parameters and relaxation delay time (Td). Good agreement between the synthetic and actually acquired images was found, which may guarantee

stable solutions (tissue parameters) of the inverse problem of semisolid MT-MRF. In the absence of a ground truth, synthetic MRI could be useful

for validation of in vivo tissue parameters and applied to CEST-MRF or other quantification methods. In addition, histology and immunohisto-

chemistry images can be used to confirm any assumptions made based on proton exchange parameters (e.g., apoptosis, tumor/healthy tissue, total

F IGURE 13 Synthetic MRI analysis for validation of the semisolid MT-MRF method. Synthetic contrast-weighted images are generated using
all the tissue parameters obtained from the DNN, which can then be compared with the experimentally acquired images as the standard of
reference. Tissue parameters are quantified from an acquisition schedule consisting of 40 dynamic MRF images (a corresponding MRF schedule is
shown on the top right) using the DNN, and then a new acquisition schedule (middle right) is used for synthesizing 10 dynamic MRF images by
inserting the tissue parameters obtained from the DNN into the forward BM transform. The synthesized images showed a high degree of
agreement with the experimentally acquired images, as seen in the difference image. Reproduced and modified with permission from Kim et al.,
NeuroImage. 2020;221:117165.71
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protein content, etc.). Notably, such measurements should be carefully analyzed, as they do not directly reflect the exchangeable proton volume

fraction or exchange rate.

3.4.2 | Repeatability and reproducibility

As in any other quantitative MRI, it is important to ensure that tissue parameters estimated from semisolid MT/CEST-MRF methods are repeat-

able and reproducible.91 While a conventional MRF method has demonstrated high repeatability and reproducibility of water T1 and T2 relaxation

times, there is unfortunately sparse literature studying the repeatability and reproducibility of semisolid MT/CEST-MRF measurements due to

their relative novelty. A standardized phantom must be used to determine the repeatability for each scanner and between-scanner reproducibility.

For human studies, an interesting approach called “the traveling heads”92 was recently introduced to improve the reproducibility of quantitative

MRI.93 The same two subjects were imaged on different scanners at multiple sites, comprising multiple repetitions at each scanner to assess inter-

site and intra-site reproducibility. This approach could be adapted to the semisolid MT/CEST-MRF experiments for longitudinal or multicenter

studies. A recent study94 evaluated the reproducibility of sequential and deep15 amide and semisolid MT in the healthy brain across three sites

with different scanner platforms, but the same vendor. Although quantitative reproducibility metrics (e.g., intra-class correlation coefficient and

coefficient of variation) were not reported, the study demonstrated the feasibility of reproducibility assessment across multiple sites for semisolid

MT/CEST-MRF, as shown in Figure 14.

3.4.3 | Uncertainty

In deep-learning semisolid MT/CEST-MRF, uncertainty must be considered in the error analysis, which is a quantitative metric of variability in the

tissue estimates. There are possible sources of uncertainty in the estimation of tissue parameters, including variance in the noise level and tissue

F IGURE 14 Reproducibility study of deep CEST-MRF in healthy human volunteers. Semisolid MT proton volume fraction (fss, first column),
exchange rate (kssw, second column), amide proton volume fraction (fs, third column), and exchange rate (ksw, fourth column) for measurements at
a 3 T Prisma in Tübingen (first row), 3 T Prisma in Boston (second row), and 3 T Trio in Erlangen (third row). Reproduced and modified from Herz
et al. Magn Reson Med. 2021;86:1845-1858.94

16 of 22 PERLMAN ET AL.



parameter coverage in the training dataset, and size of training dataset. In particular, quantifying semisolid MT exchange rate is very challenging

due to insignificant MRF signal discrimination between different exchange rates.75 This poor signal discrimination is even worse in the estimation

of CEST exchange rate, due to the lower concentrations of solute molecules and lower signal intensity levels (vulnerable to noise) around the

water resonance. Therefore, uncertainty quantification could provide surrogate estimates of the errors from deep-learning models and confidence

measures for tissue estimates. Recently, Glang et al95 have proposed a deep-learning framework for incorporating an uncertainty measure in

multiple-pool Lorentzian fitting of CEST-MRI. A probabilistic output layer in the NN was used to represent the “trustworthiness” of each esti-

mated Lorentzian parameter, learned without the use of additional certainty targets (or ground truth) but by using a modified Gaussian likelihood

function. Even though the approach was used to demonstrate the uncertainty in the quantification of multiple-pool Lorentzian model parameters

(amplitude, linewidth, and peak position), it could be incorporated for a semisolid MT/CEST-MRF framework to provide an estimation of the

uncertainty of the tissue exchange parameters.

3.4.4 | Open source for semisolid MT/CEST-MRF

One of the main drivers for widespread implementation of a new MRI technique is the availability of open-source tools.96 Publicly available data

and processing codes will facilitate reproducibility and allow research groups to quickly build upon the project, and further advance the research

field. For instance, aligned with this principle, Chen et al70 have linked the ANNCEST code to their manuscript, as well as human leg and phantom

data. Perlman et al76 have made the raw and analyzed AutoCEST data publicly available.97 For comparison and validation of CEST acquisition and

processing techniques across scanners and sites, Yao et al98 have designed a physical phantom, validated its temporal stability, and made the com-

puter automated design (CAD) files for creating the physical phantom available online. To improve the ability to reproduce acquisition protocol

across different sites and vendors, Herz et al94 have developed a CEST definition standard using an open format, which allows a complete descrip-

tion and reproduction of the acquisition schedule used in previous CEST-based literature including MRF.15,59,61 Finally, to support readers in

implementing the basic steps of semisolid MT/CEST-MRF reconstruction, demonstration code and sample data are provided at https://github.

com/operlman/cest-mrf.

TABLE 2 A summary of semisolid MT/CEST MRF methods

Method Advantages Limitations

Dictionary-correlation matched CEST

MRF59
Rapid acquisition Prolonged reconstruction for large

dictionaries, discrete output parameters

CEST-MRF for exchange rate

quantification60
Removal of MT effects prior to dictionary matching Potential bias from NOE effects in vivo due

to the use of the upfield spectrum signal,

discrete output parameters

Sub-grouping proton exchange

models61
Least-square fitting is used instead of dot-product

matching for continuous quantification of amide and MT

parameters; circumvents the need for lengthy dictionary

generation

Long reconstruction time

ANNCEST70 Rapid CEST acquisition and reconstruction, B0 and B1
mapping

Unsuitable for brain applications where the

MT parameters vary

Deep semisolid MT MRF with synthetic

signal validation71
Quantification of MT parameters and water T1; allows the

removal of MT effects from CEST signals

Amide and NOE reconstruction is semi-

quantitative and requires separate water

T2 mapping

Sequential and deep semisolid

MT/CEST MRF15
Quantitation of both MT and amide parameters, rapid

reconstruction

Two acquisition schedules required as well

as T1, T2, and B0 mapping

Unsupervised semisolid MT MRF75 No need for dictionary generation, noise robustness limited generalization ability for unseen

pathologies

Acquisition schedule optimization using

discrimination ability/SNR efficiency

based metrics82,83

Faster than Monte Carlo simulations, enables prediction of

the encoding capability of different schedules

Time consuming for complicated in vivo

scenarios

LOAS for semisolid MT MRF89 Directly computes quantitative tissue parameter errors,

outperforms Cramer–Rao lower bound based

optimization, quantitates MT parameters and water T1

Based on the analytical solution of the BM

equations, which might be less accurate

than the numerical solution

Semisolid MT/CEST MRF acquisition

protocols discovery and deep

parameter quantification

(AutoCEST)76

An end-to-end fully automatic procedure, yielding short

acquisition schedules and trained NNs for quantitative

semisolid MT and CEST reconstruction

Based on the analytical solution of the BM

equations, which might be less accurate

than the numerical solution
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4 | CONCLUSIONS AND FUTURE PERSPECTIVES

The limited availability of expert-labeled clinical data and the recent developments in deep-learning methodologies have motivated the use of syn-

thetic data for augmenting and improving the training of machine-learning models for medical imaging.99 Within this approach, MRF lies on the

extreme edge of the spectrum, as it builds solely on synthetic, physical-model-based generated signals. Therefore, the success of MRF is heavily

dependent on the ability of the physical model to accurately depict the real-world measured signals. Although both the classical Bloch

equations,100 used for “conventional” water T1/T2 MRF, and the BM equations,101 used for semisolid MT/CEST MRF, were intensively investi-

gated in the past decades, the latter contain a considerably larger number of parameters, as each of the proton pools involved contains its own

transverse and longitudinal relaxation times, concentration, and exchange rates with the other pools. Therefore, as semisolid MT-MRF, and espe-

cially CEST-MRF, contain a large number of “moving parts”, they are more prone to inaccuracies caused by model imperfections. An exception to

the general MRF concept is the use of unsupervised learning (Section 3.2.2), which does not involve synthesized dictionaries at all. Instead, the

training is performed using “real” experimentally acquired images. However, a model is still an integral part of this approach and is considered as

the ground truth reference.75 We postulate that in the future a hybrid deep-learning method, trained using both experimental and synthesized

data, could reap the benefits of both worlds.

The performance of semisolid MT/CEST MRF is also expected to further improve due to “third-party” developments, stemming from each of

the three parents of this technique: water T1/T2 MRF; deep-learning algorithms; and classical CEST theory. In particular, water T1/T2 MRF is an

increasingly investigated field,54,102 where new acquisition schemes and novel reconstruction approaches are continuously suggested and evalu-

ated.103-105 However, the unique attributes of the CEST-MRF contrast mechanism will mandate careful adaptations to any conventional MRF

inspired approach and will require additional and separate research efforts.

The exponential growth in deep-learning applications and methods, and the vast international resources allocated for artificial intelligence

(AI) research, are expected to keep expanding the capabilities of deep-learning-based parameter estimation. In the context of the future transla-

tion of CEST-MRF for routine clinical care, the topic of explainable AI, which is aimed at uncovering what happens “under the hood” in a deep-

learning system, is of particular importance.106–108

Last but not least, new investigations into the exact biophysical properties of various CEST compounds are routinely conducted,109–111 and

are expected to improve the accuracy of the semisolid MT/CEST MRF models. Such studies might also assist in clearing the fog of uncertainty

concerning the semisolid MT/CEST quantitative ground truth. As demonstrated in Table 1, although some similarities exist between the exchange

parameters obtained by various groups, there is a substantial variance for some of the exchange parameters (most strikingly seen for the amide

proton exchange rate), for both MRF-based and non-MRF quantitative evaluations. This variability is likely rooted in the different model variants

used by different methods (e.g., the use of the analytical or the numerical solution of the BM equations), the assumptions made regarding the bio-

physical environment (e.g., the number of simulated proton pools and the values of the fixed parameters), the sensitivity and discrimination ability

of the particular acquisition schedule used (as discussed in Section 3.3), and the resolution/size of the dictionary/data used for image reconstruc-

tion and NN training. A related summary of the key concepts and pros and cons of each semisolid MT/CEST MRF method described throughout

this review is available in Table 2.

An additional open subject in quantitative semisolid MT/CEST is the required performance. Is it sufficient to obtain a 10 mM mean squared

error in estimating the compound concentration? A 20 Hz resolution for proton exchange rate estimation? A 10% mean absolute error for any

parameter? Arguably, the minimal performance should allow the reasonable detection of disease and its classification into various stages/

treatment response.

The clinical imaging field is slowly but steadily transitioning to rely on quantitative instead of qualitative measures.112 The effort in converting

CEST and semisolid MT to become fully quantitative methods for obtaining molecular information could constitute an important component in

this transition to quantitative MRI. Given that deep semisolid MT/CEST-MRF provides a drastically shorter scan time, a simultaneous estimation

of quantitative biophysical parameters, and a simplified and objective means of analysis, we anticipate that it could play a substantial role in the

efforts to make semisolid MT and CEST-MRI an integral part of the clinical imaging routine.
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