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Abstract

Over the past decade, complex tools such as deep learning models have been increasingly

employed in high-stakes domains such as healthcare and criminal justice. Furthermore,

these models achieve state-of-the-art accuracy at the expense of interpretability. As a result,

practitioners, end users, and regulators have expressed a strong desire to increase the avail-

ability of post hoc explanation methods or ways to explain complex model architectures

after the model is trained and deployed. Unfortunately, given the nascence of the field of ex-

plainability, there is little to no work on comparing and analyzing the behavior of popular

post hoc methods.

This work introduces the disagreement problem in explainable machine learning. Through

a series of user studies and offline experiments, we establish that the most common post

hoc methods deployed on tabular, vision, and language datasets exhibit significant disagree-

ment. Once established, we aim then to resolve the disagreement problem within graph

neural network and deep learning recommendation models. To this end, we formalize

novel metrics to test the efficacy of explainability methods. Starting with evaluating ex-
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plainability for graph neural networks, we show under what dataset and model conditions

various post hoc explainability methods operate best. We then move to the recommenda-

tion modeling space, formulating explainability as a joint task of interpreting embedding

layers and neural layers. In addition to presenting a novel method, we conduct offline and

online experimentation to also present which methods are preferred by target users.
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0
Introduction

Machine learning’s widespread use has combined with the fast-paced nature of data collec-

tion and big data practices. That is, due to the readily available data present today in vision,

healthcare, business, criminal justice, and other domains, complex models have become the

norm. Due to the large amount of data they process, these models have also become increas-

ingly black box. Practitioners are long past the days of linear regression and interepretable,

viii



small decision trees. Today, the most impressive accuracy results come from the millions of

unintelligible weights of a neural network.

Due to their impressive test accuracy, many of these models are increasingly being de-

ployed in high-stake domains. Whether it is setting the bail of those accused or deciding

priority in treatment for various patients with diabetes, models are being used in ways that

have an incredible impact on the livelihood of humans. And, because of the complexity of

these models, it is often impossible to understand the model simply from its parameters. In-

stead, several techniques have been proposed in recent literature to explain complex models

in a post hoc fashion.

Most of the popular methods focus on explaining individual predictions (i.e., local ex-

planations) of any given model and can be broadly categorized into local or global methods

along with model-agnostic or model-dependent methods. There have been a variety and

somewhat disorganized attempts to quantify the notion of explainability. While these met-

rics have attempted to analyze the correctness of explanations, a lack of ground truth often

makes it difficult to agree on the notion of correctness of explanations. Owing in part to

the fact that explainability has diverse definitions in the machine learning community, the

metrics to measure the same are also diverse and disparate.

As a result of disparate metrics for explainability, there are no clear guidelines on which

state-of-the-art explainability methods to use in practice. For instance, practitioners do not
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typically rely on a single explanation method, but instead employ multiple such methods

simultaneously to understand the underlying models. This approach however is predicated

on consistent outputs from the most commonly used post hoc methods. However, popular

post hoc explanation methods such as LIME and SHAP output different explanations (or

feature attributions). This is a prime example of the disagreement problem in explainable

machine learning.

Given all of the above, it is critical not only to understand and quantify how often expla-

nations output by state-of-the-art methods disagree with each other, but also to study how

such disagreements are currently being resolved by machine learning practitioners. We hy-

pothesize that state-of-the-art disagreement methods disagree and will test this hypothesis

in chapter 3 of this thesis.

Armed with the knowledge that machine learning explainability methods have nontriv-

ial, and often significant, areas of disagreement, we begin the arduous but important work

of resolving that disagreement. We approach this by resolving disagreement in explainabil-

ity for the model class of graph neural networks and for the application area of recommen-

dation modeling. Our choice in model class and application area come from looking at

machine learning areas that have received considerably less attention when it comes to post

hoc explainability.

We begin the task of resolving the disagreement by focusing on graph neural networks.
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In recent years, graph neural networks (GNNs) have demonstrated breakthroughs in nu-

merous domains that involve complex graph structures (e.g., recommender systems, drug

discovery, NLP, etc.)13,26,59. However, due to their message-passing mechanisms, GNNs

lack transparency in predictions. In order to make these black box models more transpar-

ent, numerous GNN explainability methods have been proposed that tackle node feature,

node, and edge attribution63. Explainability for GNNs is particularly important given prac-

titioner’s hesitancy to utilize models and the often human-centric problems that GNNs

tackle.

In the face of a wide array of explainability techniques, use cases, and deployment en-

vironments, there is little to no standardization in evaluation. To date, no universal set of

quantitative metrics has been proposed that not only evaluates the explainability method’s

performance, but also accounts for critical real-world deployment objectives such as fair-

ness and scalability. In this work, we identify, define, and compute a set of method-agnostic

metrics that can be used to evaluate explainability methods along these desiderata.

Another challenge unaddressed by current literature is the evaluation of these metrics in

the context of use case. The explanation results heavily depend on the input GNNmodel,

the dataset structure, and explanation technique chosen, and thus must be compared us-

ing these factors as a frame of reference. To the best of our knowledge, this will be the first

work to explore the interaction between explainability method performance and the GNN
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model and dataset it was trained upon. It will also be the first work which analyzes when to

use a variety of explainability methods in what situations (i.e. types of datasets or models).

We then move to resolving the disagreement problem in the recommendation model-

ing space. Recommendation models are one of the most consistent, significant, and wide-

reaching applications of modern machine and deep learning. A combination of new de-

vices to collect data and wide-spread use of information has lead to an exponential growth

of data available on the web in spheres of commerce, healthcare, and more. As a result,

users must choose between more products such as restaurants, movies, and travel locations

than ever before. In order to better equip users to make these decisions, personalization is

more important than ever which has meant recommendation engines have become perva-

sive across web domains such as social media and e-commerce. For example, 80 % of movies

watched on Netflix came from recommendations45, and 60 % of video clicks came from

home page recommendation in YouTube9. Moreover, 35 % of what customers purchase

on Amazon comes from product recommendations and at Airbnb, Search Ranking and

Similar Listings drive 99 % of all booking conversions32.

Recently, many companies have employed deep learning to further improve their recom-

mendation quality. Developers at Youtube have presented a deep neural network-based

recommendation algorithm for video recommendations.9. Cheng et al. proposed an App

recommender system for Google Play with a wide and deep model6. Shumpei et al. pre-
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sented an RNN-based news recommender system for Yahoo! News ? . In both offline met-

rics such as accuracy and online metrics such as impressions and clicks, these methods have

shown significant improvement over traditional collaborative and content filtering models.

Furthermore, the number of publications on deep learning-based recommendation meth-

ods has increased exponentially recently since the mid 2010’s, providing evidence that the

community both academically and in industry has moved away from traditional models.

The leading international conference on recommender system, RecSys, began organizing

regular workshop on deep learning for recommender systems in 2016. Today, there is over

40 trillion gigabytes of data generated each day, which consists of social media data, emails,

and internet searches, meaning only a greater drive towards deep learning systems1.

Explainability in recommender systems has never been more important. First, recent

studies have shown that recommender systems have the possibility of having harmful nudges

in social media contexts. For example, whether it is political polarization and radicalization

or causing deep mental health problems in at-risk populations such as adolescents, under-

standing why recommendations are made is a necessity7. Second, a variety of national and

international regulators have moved towards mandating explainability in machine learn-

ing models utilized. For instance, the European Union’s General Data Protection Regula-

tions for AI includes language mandating the transparency of artificial intelligence54. With

knowledge of these benefits, practitioners must employ post hoc methods. However, given
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the existence of the disagreement problem, we understand that these methods need to be

studied further.

Ultimately, this thesis hopes to be the start of and the inspiration for more work in the

disagreement space. If our state-of-the-art machine learning models constantly disagreed

on a prediction, we would immediately understand the severity of the situation. As the

current machine learning community move towards using more and more complex data,

resolving this problem is the first step. A complete list of our contributions split into the

three sections of this thesis.

The first contribution of this thesis will be to formalize the disagreement problem. This

work was done in collabration with the AI4LIFE lab. The specific contributions were as

follows:

1. We first obtain practitioner inputs on what constitutes explanation disagreement,
and the extent to which they encounter this problem in their day-to-day workflow.
To this end, we conduct semi-structured interviews with data scientists (N = 25)
who regularly work with explainability tools.

2. Using the insights obtained from the aforementioned interviews, we formalize the
notion of explanation disagreement, and propose a novel evaluation framework
which can quantitatively measure the disagreement between any two explanations
that explain the same model prediction.

3. We leverage the aforementioned framework to carry out a rigorous empirical analysis
with real-world data to quantify the level of disagreement between popular post hoc
explanation methods. To this end, we experiment with four real-world datasets span-
ning three data modalities?, six state-of-the-art explanation methods, and various
popular predictive models (e.g., logistic regression, tree based models, deep neural
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networks, recurrent neural networks such as LSTMmodels, and convolutional neu-
ral networks such as ResNet).

4. Lastly, we study how explanation disagreements are currently resolved in practice..
To this end, we carry out an online user study with data scientists (N = 24) where we
show them pairs of explanations that disagree with each other, and ask them which
explanation (if any) would they rely on and why. At the end of this survey, we also
ask our study participants to provide a high-level description of the strategies they
use to resolve explanation disagreements in their day-to-day workflow.

For graph neural network, work was done in collaboration with Samuel Hsia. For graph

neural networks, we achieve the following:

1. We identify, define, and compute a set of method-agnostic metrics critical to real-
world deployment objectives.

2. We propose an evaluation framework to characterize explanation quality along the
unique decision boundaries from different GNNmodels and graph datasets.

3. Based on our empirical analysis, we identify method weaknesses and propose general
innovations for improvement.

Finally, for recommendation models, we accomplish the following:

1. We first develop novel methods to explain latent dimensions or embedding layers
that are present in virtually all deep learning methods. We create post hoc methods
that are easily deployable and understandable to practitioners.

2. We adapt current post hoc methods such as LIME, SHAP, and Vanilla Gradients to
work specifically in neural recommendation contexts, switching the input to be em-
bedding layers. Combining this with the previous step, we create multiple possible
post hoc explanation methods for neural recommendation models.

3. We generate offline metrics and test our combination of methods among these of-
fline methods for two most commonly used neural recommender architectures: neu-
ral collaborative filtering and wide deep.
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4. We conduct a user survey to test the online efficacy of our methods, achieving over
N = 50 diverse samples.

5. Lastly, we combine the results of our offline and online experimentation to discuss
which methods to use in which contexts. Thus, we take important steps in resolving
the disagreement problem within explainable recommender systems.
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1
RelatedWork

1.1 Explainability and interpretability

It is important for our purposes to create a distinction between explainability and inter-

pretability in machine learning applications. We treat intereptability as a method towards

achieving explainability. Explainabile AI refers or XAI refers to models in which resutls

can be understood my normal humans. However, this does not mean that the model needs
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to be inherently interpretable. That is, there are two classes: models that are interpretable

and non-interpretable. Interpretable models include linear regression, logistic regression,

decision trees, and set of rules. Practitioners are able to easily discern how the model is out-

putting either its label or value. Then, there are series of non-interpretable models includ-

ing random forrests, feed forward neural networks, and deep learning architectures used

for image processing and natural languge processing. For these, we utilize post hoc expla-

nations in which we attempt to understand the path through which the complex model

used to make the decision after the prediction has been made. This often through analyz-

ing gradients of the model or developing surrogate models to approximate behavior in local

regions. More of this discussed in the next subsection.

In general, the distinction between interpretability and explainability follows human

thought processes as well. For instance, sometimes, humans utilize careful, logical rea-

soning before coming to a conclusion. Thus, the reasoning can be inspected step-by-step.

Other times, people make intuition-based decisions first on the basis of complex data from

long timespans. The humans then seek an explanation for a decision similar to how we uti-

lize post hoc explanations on black box models. Understanding which approach is better

for explainable AI likely requires significant breakthroughs in human cognitive science and

our understanding about how the human brain works.
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1.2 post hoc methods to achieve explainability

We want to explain the predictions of a machine learning model. To achieve this, we need

to conceptualize what it means to generate an explanation. An explanation usually relates

the feature values of an instance to its model prediction in a humanly understandable way,

such as stating that certain features are more important than each other or stating how an

input feature can positively or negatively impact the magnitude of the output. Explana-

tions do not only need to relate to feature importance. For instance, they can also be spe-

cific instances or sets of instances that are influential. They can be sets of rules or natural

English languages. Indeed, it is the diversity of types of explanations that creates challenges

in homogeneous evaluation. Ultimately, throughout this thesis, we utilize the feature im-

portance definition primarily.

Given that we would like to focus on complex recommendation modeling, specifically

neural-based approaches, we focus our thesis work on post hoc methods. Post hoc methods

can be categorized as model-agnostic or model-dependent and global or local.

Model-dependent interpretation tools are specific to a single model or group of models.

In contrast, model-agnostic tools can be used on any machine learning model no matter

how complicated. These agnostic methods usually work by analyzing feature input and

output pairs. Model-agnostic methods often benefit from the fact that some practitioners

may not have access to the specific weights and parameters of the original model.
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Global methods describe the average behavior of a machine learning model. Global

methods are often expressed as expected values based on the distribution of the data. Local

interpretation methods explain individual predictions. Local methods can often be roughly

aggregated into global methods. In the following paragraphs, we discuss certain archetype

examples of each type of method.

1.2.1 GlobalMethods:

Below we list two examples of global methods. However, this thesis will focus primarily

on local methods given they are mode wide-spread and can often be units to eventually be

used to create a global method.

Partial Dependence Plot:

Figure 1.1: Example of partial dependence plots showing how three features (temperature, humidity, wind speed) have a
relationship with the target of number of bikes

A partial dependence plot (PDP) shows the marginal effect one or a few features have on

xx



the outcome predicted by a model.

The partial dependence function for regression is defined as:

f̂S (xS) = EXC

[̂
f (xS,XC)

]
=

∫
f̂ (xS,XC) dP (XC)

The xS are the features for which the partial dependence function should be plotted, and

xC are the other features used in the machine learning model f̂, which are here treated as

random variables. The feature(s) in S are those for which we want to know the effect on the

prediction. The feature vectors xS and xC combined make up the total feature space x. This

method makes use of the statistical method of marginalization in which we marginalize

only over one or two features in S instead of the entire distribution of features in C.

The partial function f̂S is estimated by calculating averages in the training data, also

known as the Monte Carlo method15:

f̂S (xS) =
1
n

n∑
i=1

f̂
(
xS, x(i)C

)

.

Global Surrogate Model:

A global surrogate model is an interpretable model that is trained to approximate the

predictions of a black box model. We can draw conclusions about the black box model by
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interpreting a simpler, inherently explainable model.

Perform the following steps to obtain a surrogate model48:

1. We either take the original training dataset for our complex or black box model or
generate a new dataset. The new dataset can be generated as a subset or as a data with
added noise as long as it is from the same distribution

2. Generate new or use existing predictions

3. Select an interpretable model, often either a linear regression model or a decision tree

4. Train the model and interpret coefficients or leaves

Local Methods:

LIME:

Figure 1.2: Visual representation of LIME creating a local linear approximation of a non‐linear, complex decision bound‐
ary

LIME or local interpretable model-agnostic explanations is one of the most well-known

post hoc methods. The idea of LIME is to create a surrogate model in a local region near
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a specific target point to explain the importance of the input features. This is often more

accurate than a global surrogate model, as complex black boxes tend to exhibit more linear

or simple behavior in local neighborhoods. For LIME, we create new samples by adding

normally distributed noise to a target sample, and thereby creating a local neighborhood.

We then follow a similar process as with the global method, opting to only use a linear

model.40.

KernelSHAP:

Shapley values rest on the idea that a prediction can be explained by assuming that each

feature value of the instance is a ’player’ in a game where the prediction is the payout. Shap-

ley values – a method from coalitional game theory – tells us how to fairly distribute the

“payout” among the features.

A player can be an individual feature value such as demographics for tabular data. A

player can also be a group of feature values. For example to explain an image, pixels can

be grouped to super pixels and the prediction distributed among them, much to mirror

the way convolution acts on groups of features. One innovation that SHAP brings to the

table is that the Shapley value explanation is represented as an additive feature attribution

method, a linear model. SHAP specifies the explanation as:

g (z′) = φ0 +
M∑
j=1

φjz
′
j
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where g is the explanation model, z′ ∈ {0, 1}M is the coalition vector, M is the maximum

coalition size, and φj ∈ R is the feature attribution for a feature j, the Shapley values. A

coalition vector simply refers to simplified or chosen features. In the coalition vector, an en-

try of 1 means that the corresponding feature value is ”present” and 0 that it is ”absent”. To

compute Shapley values, we simulate that only some features values are present and some

are not. The representation as a linear model of coalitions is a trick for the computation of

the φ ’s. For x, the instance of interest, the coalition vector x ’ is a vector of all 1 ’s, i.e., all

feature values are ”present”. The formula simplifies to:

g (x′) = φ0 +
M∑

φj

KernelSHAP estimates for an instance x the contributions of each feature value to the

prediction. KernelSHAP’s estimation is the result of the fact that it is often computation-

ally infeasible to fully calculate SHAP values, especially given the exponential relationship

the complexity has with the number of input features. KernelSHAP consists of 5 steps30:

1. Sample coalitions z′k ∈ {0, 1}M, k ∈ {1, . . . ,K} (1 = feature present in coalition,
0 = feature absent).

2. Get prediction for each z′k by first converting z′k to the original feature space and then
applying model f̂ : f̂ (hx (z′k))

3. Compute the weight for each z′k with the SHAP kernel.

4. Fit weighted linear model.
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5. Return Shapley values φk, the coefficients from the linear model

Vanilla Gradients:

The Vanilla Gradient method was first created as a pixel attribution method. Often uti-

lized to explain convolutional models, the method can extend to models on tabular data.

We calculate the gradient of the loss function for the class we are interested in with respect

to the input values, be those of pixels or other data. This gives us an array of the sizes of the

input features with negative to positive values. The steps are as follows35:

1. Perform a forward pass of the target input

2. Compute the gradient of class score of interest with respect to the input:

Egrad (I0) =
δSc
δI

∣∣∣∣
I=I0

Here we set all other classes to zero.

3. Visualize the gradients. You can either show the absolute values or highlight negative
and positive contributions separately.

Mathematically, given some input I and a complex black model that gives it a score Sc(I)

for class c, the idea behind using the gradient is that we can approximate this score by apply-

ing a first order Taylor expansion

Sc(I) ≈ wTI+ b
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where w is the derivative of our score:

w =
δSC
δI

∣∣∣∣
I0

1.3 Evaluation of explainability

In general, there are two main types of evaluation methods for explainability10:

1. Online experiments. Online experiments can be application level or human level.
Application level explanations are put into the product or use-case and tested by a
real end user. Human-level tend to be surveys or simplified applications used by any
layman.

2. Offline metrics or function-level evaluation (proxy task) does not require humans.
This works best when the class of model used has already been evaluated by someone
else in a human level evaluation. In creating a function level evaluation, we next con-
sider preferable desidrata of explanation methods and then individual explanations.

For formalizing the disagreement problem, we conduct both online and offline experi-

ments. Similarly, we do offline and online experiments for analyzing post hoc explainability

in recommendation models. For graph neural networks, we only conduct offline exper-

iments. This is because it is not intrinsically clear that there is one application or even a

small representative set of applications that would lend itself to the entire model class.

Next, we move onto offline properties of individual explanations that are desirable. It is

important to note, these are in addition to desirable desiderata of normal machine learning

models such as accuracy42.
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1. Fidelity: How well does the explanation approximate the prediction of the black
box model? Fidelity is often measured by masking the explanation’s outputed most
important features and checking if the output of the mdoel has altered.

2. Consistency: Howmuch does an explanation differ between models that have been
trained on the same task and that produce similar predictions? One may check be-
tween models that have similar hyperparameters or similar model classes.

3. Stability: How similar are the explanations for similar instances? While consistency
compares explanations between models, stability compares explanations between
similar instances for a fixed model.

We test each of these for both the resolution of the graph neural network disagreement

and the recommendation model disagreement. However, we also add two additional met-

rics: scalability and fairness (fairness only for graph neural networks). This is because we

think, especially as we consider explainability methods being deployed in real-world applica-

tions, these are key desiderata that must be considered.

With regard to online experiments, many user studies assess how well humans can un-

derstand and utilize explanations10. Kaur et al. 25 show that data scientists do not have a

good understanding of the state-of-the-art interpretability techniques, and are unable to

effectively leverage them in debuggingMLmodels. Bhatt et al. 4 , conduct a survey to under-

stand the use-cases for local explanations.

Hong et al. 21 conduct a similar survey to identify a variety of stakeholders across the

model lifecycle, and higlight core goals: improving the model, making decisions, and build-

ing trust in the model. Furthermore, Lakkaraju & Bastani 28 study if misleading explana-
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tions can fool domain experts into deploying racially biased models. Similarly, Poursabzi-

Sangdeh et al. 39 find that supposedly-interpretable models can lead to a decreased ability to

detect and correct model mistakes. Lage et al. 27 use insights from rigorous human-subject

experiments to inform regularizers used in explanation algorithms. However, none of these

works focus on understanding if and how often practitioners face explanation disagreement

and how they resolve it.

1.4 Explainability in GNNs

Awide range of post hoc explanation methods have been proposed for GNNs. These meth-

ods specifically look to understand the importance of input nodes, edges, and node fea-

tures within graphs. At a high level, we can group these methods into four main families:

gradient/feature-based, perturbation based, decomposition methods, and surrogate meth-

ods63.

Gradient/feature-based methods such as Guided-BP62 and CAM37 use gradients and

hidden layer transformed features as proxies for input importance. Perturbation methods

such as GNNexplainer61 and PGexplainer31 study output variations with respect to input

perturbations. Decomposition methods such as Excitation BP37 , LRP2, and GNN-LRP47

measure feature importance by taking predictions and splitting them into several terms.

Surrogate methods such as GraphLIME23 and PGM-explainer56 employ interpretable,
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small models to approximate complex predictions.

In order to evaluate method performance, a few metrics such as accuracy, fidelity/faithfulness,

and stability have been proposed46,63,38. However, these existing metrics lack a consistent

mathematical definition generalizable to all methods and fail to address real-world deploy-

ment challenges such as bias, lack of ground truth explanations, and computation time.

Furthermore, little work has been done to empirically evaluate these metrics across various

datasets and GNNmodels. To our knowledge, only one recent work46 evaluated the perfor-

mance of gradient/feature-based methods along this GNNmodel and dataset framework.

However, this work only considers one family of explainability methods and does not ad-

dress the limitations of attribution (e.g. inability to jointly consider graph structure and

node feature information) with respect to other methods of explainability.

1.5 Recommendation models:

A recommender system is a subclass of information filtering system that seeks to predict

the rating or preference a user would give to an item. In any recommender system, the most

basic unit is a user-item interaction.

The earliest recommender systems used content-based filtering methods or memory-

based collaborative filtering methods14. In user-based collaborative filtering, we postulate

that users with similar historical ratings should also have similar interests. Thus, if a cer-
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tain user needs to decide whether to consume a new item, we aggregate information from

those similar users. There are three steps. First, we calculate similar users which can be done

through euclidean distance, cosine similarity, or some other metric of rating vectors. Sec-

ond, we find the K nearest neighbors based on that distance. Third, we aggregate ratings of

the neighbors to predict rating of the item.

Figure 1.3: Differences between collaborative and content‐based recommendation models

As machine learning became more widespread, model-based approaches to collaborative
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filtering appeared64. Specifically, memory based content filtering is not suitable for practical

applications when dealing with large amounts of users and items. Although there are a

variety of model methods for approaching collaborative filtering, the most commonly used

was matrix factorization. In matrix factorization, users and items are projected into a latent

space. Each user and item are represented by a latent vector. Then, to understand how a

user would rate a certain item, matrix factorization proposes utilizing the inner product of

the latent vectors.

With the advent of larger and larger data sources for recommendation systems, especially

in e-Commerce or social media platforms, practitioners have moved past simple collabora-

tive filtering models towards neural-based methods. Neural based methods are often either

non-temporal or temporal.

For non-temporal methods, neural based methods tend to have two components: repre-

sentation learning and interaction modeling64. Beginning with representation learning, the

objective is to learn a user embedding matrix P and an item embeddingQ, with pu and

qi denote the representation parameters for user u and item i, respectively. Differences

in the representation approach depend on both the type of input data and the modeling

technique. Generally, there are three primary representation learning techniques: history

behavior aggregation enhanced models, autoencoder-based models, and graph learning ap-

proaches.

xxxi



1.6 Explainability in recommendation models

Existing explainable recommendation research is divided into the following two types: one

is the way to display the explanation, and the other is a model that generates explainable rec-

ommendations. There are a variety of explainable styles67. Prototypical examples include

text explanations with reasons why a recommendation was given (e.g, ”because you are a

17 year old...”), word clouds, or potentially listing examples instances or users that were

influential in the recommendation.

In terms of methodologies to explain recommendations, we touch on factorization mod-

els, topic models, graph models, deep learning based approaches, and finally post hoc ex-

plainability methods.

In matrix factorization explainability methods, the aformentioned matrix factorization

algorithms are extended to explain the latent representations of users and items. In the earli-

est iteration of explainability for matrix factorization, Zhang et al. proposed Explicit Factor

Models (EFM)68. The idea here is to discover a user’s favorite item features and then utilize

those as explanations. Specifically, the proposed approach extracts explicit product fea-

tures from user reviews, and then aligns each latent dimension of matrix factorization with

an explicit feature. Then, the explanation becomes: “we think you would enjoy this prod-

uct because you are interested in X feature.” Chen et al. (2016) further extended the EFM

model to tensor factorization and utilized textual reviews to construct a user-item feature
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cube5. Learn to rank was then utilized on the cube to pairwise optimize user preferences on

features and items. Further extensions included the use of multi-task learning and attention

techniques to tune the user attention distribution over features on different items67.

A Topic Model (TM) is a statistical model which aims to discover and annotate large text

corpora with thematic information. The first kind of topic model was the Latent Dirichlet

Allocation technique (LDA)24. The basic idea is that every document is about several top-

ics and that each word in the document can be associated with one of these topics. Every

topic is seen as a probability distribution over the corpus dictionary, and every document

can be represented with a probability distribution over. Similarly a recommendation can be

seen as a document of past history.

Because many user-item relationships can be represented as graphs, many explainabil-

ity methods in recommendation model specifically focus on graphical methods. He et al.

(2015) introduced a tripartite graph structure to model the user-item-aspect ternary rela-

tions for top-N recommendation19. In TriRank, explanations are attributed to the top

ranked aspects that match the target user and the recommended item. Heckel et al. (2017)

conducted over-lapping co-clustering based on user-item bipartite graph. Unlike the previ-

ous algorithm, this does not require textual reviews19.

The least explored but potentially most promising method is deep learning methods for

recommendation explainability. Seo et al. (2017) proposed to model user preferences and
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item properties using convolutional neural networks49. When predicting the user-item

rating, the model selectively chooses review words with different attention weights when

then allows the explanation to focus on the words that are the most important. Wu et al.

(2019) extended this to provide content summaries as opposed to just key words60. Rather

than highlighting review words as explanations, Costa et al. (2018) proposed a method for

automatically linguistic explanations based on character-level RNNwhich has later been

extended to include visual data as well8.

Finally, we focus on post hoc methods. Post hoc methods have become increasingly

more important given the widespread use of deep learning recommendation models. Meth-

ods described above which often focus on aligning latent dimensions of matrix factoriza-

tion models with review data can often not be applied when those latent dimensions go

through a series of fully connected layers. Peake andWang (2018) provided an association

rule mining approach. The authors treated an arbitrary recommendation model as the cen-

ter of their method to make it model-agnostic36. Singh and Anand (2018) used a surrogate

method52. Technically, the authors first train a black box ranker and then use the ranking

labels produced by the ranker as secondary training data to train an explainable tree-based

model. The tree-based model is the post hoc explanation model to generate explanations

for the ranking list. Wang et al. (2018) proposed a model-agnostic reinforcement learning

method58.
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2
The Disagreement Problem: Offline

Online Experiments

2.1 Understanding and measuring disagreement between model explanations

In this section, we discuss practitioner perspectives on what constitutes disagreement be-

tween two explanations, and then formalize the notion of explanation disagreement. To
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this end, we first describe the study that we carry out with data scientists to understand

what constitutes explanation disagreement, and the extent to which they encounter this

problem in practice. We then discuss the insights from this study, and leverage these in-

sights to propose a novel framework which can quantitatively measure the disagreement

between any two explanations.

2.1.1 Characterizing Explanation Disagreement Using Practitioner Inputs

Interviews with Practitioners: Study Details

We conducted 30-minute long semi-structured interviews with 25 data scientists who em-

ploy explainability techniques to understand model behavior and explain it to their cus-

tomers and managers. All of these data scientists were employed in for-profit organizations,

and worked for various companies in the technology and financial services sectors in the

United States. Furthermore, all the participants used state-of-the-art (local) post hoc ex-

planation methods such as LIME, SHAP, and gradient based methods in their day-to-day

workflow. 19 of these participants (76%) were male, and 6 of them (24%) were female. 16

participants (64%) had more than 2 years of experience working with explainability tech-

niques, and the remaining 9 (36%) had about 8 to 12 months of experience. Our interviews

included the following major research questions:

1. RQ 1: How often do you use multiple explanation methods to understand the same
model prediction?
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2. RQ 2: What constitutes disagreement between two explanations that explain the
same model prediction?

3. RQ 3: How often do you encounter disagreements between explanations output by
different methods for the same model prediction?

2.1.2 Findings and Insights

Our study revealed a wealth of information about how data scientists utilize explanation

methods and their perspectives on disagreement between explanations. 22 out of the 25

participants (88%) said that they almost always use multiple explanation methods to under-

stand the same model prediction. Furthermore, 21 out of the 25 participants (84%) men-

tioned that they have often run into some form of disagreement between explanations out-

put by different methods for the same prediction. They also elaborated on when they think

two explanations disagree:

Top features are different: Most of the popular post hoc explanation methods (e.g.,

LIME, SHAP, Gradient based methods) return a feature importance value associated with

each feature. These values indicate which features contribute the most either positively or

negatively (i.e., the top features) to the prediction. 21 out of the 25 participants (84%) in

our study mentioned that such a set of top features is “the most critical piece of information”

that they rely on in their day-to-day workflow. They also noted that they typically look at
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the top 5 to 10 features provided by an explanation for each prediction. When two explana-

tions have different sets of top features, they consider it to be a disagreement.

Ordering among top features is different: 18 out of 25 participants (72%) in our study

indicated that they also consider the ordering among the top features very carefully in their

workflow. Therefore, they consider a mismatch in the ordering of the top features provided

by two different explanations to be a disagreement.

Direction of top feature contributions is different: 19 out of 25 participants (76%)

mentioned that the sign or direction of the feature contribution (is the feature contribut-

ing positively or negatively to the predicted class?) is another critical piece of information.

Any mismatch in the signs of the top features between two explanations is a sign of disagree-

ment. As remarked by one of the participants, “I saw an explanation indicating that a top

feature bankruptcy contributes positively to a particular loan denial, and another explanation

saying that it contributes negatively. That is a clear disagreement. The model prediction can

be trusted with the former explanation, but not with the latter.”.

Relative ordering of certain features is different: 16 of our study participants (64%)

indicated that they also look at relative ordering between certain features of interest; and

if explanations provide contradicting information about this aspect, then it is considered

a disagreement. For example, one of the participants remarked, “I often check if salary is

more important than credit score in loan approvals. If one explanation says salary is more
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important than credit score, and another says credit score is more important than salary; then

it is a disagreement.”

A very striking finding from our study is that participants typically characterize explana-

tion disagreement based on factors such as mismatch in top features, feature ordering, and

directions of feature contributions, but not on the feature importance values output by dif-

ferent explanation methods. 24 out of 25 participants (96%) in our study opine that feature

importance values output by different explanation methods are not directly comparable.

They also note that this is due to the fact that while LIME outputs coefficients of a linear

model as feature importance values, SHAP outputs Shapley values as feature attributions

which sum to the probability of the predicted class. So, they don’t try to base explanation

disagreement on these numbers not being equal or similar. One of our participants suc-

cinctly summarized practitioners’ perspective on this explanation disagreement problem

– “The values generated by different explanation methods are clearly different. So, I would

not characterize disagreement based on that. But, I would at least want the explanations they

output to give me consistent insights. The explanations should agree on what are the most im-

portant features, the ordering among them and so on for me to derive consistent insights. But,

they don’t!”
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2.1.3 Formalizing the Notion of Explanation Disagreement

Our study indicates that ML practitioners consider the following key aspects when they

think about explanation disagreement: a) the extent to which explanations differ in the top-

k features, the signs (or directions of contribution) and the ordering of these top-k features,

and b) the extent to which explanations differ in the relative ordering of certain features

of interest. To capture these intuitions about explanation disagreement, we propose six

different metrics, namely, feature agreement, rank agreement, sign agreement, signed rank

agreement, rank correlation, and pairwise rank agreement. While the first four metrics cap-

ture disagreement w.r.t. the top-k features of the explanations, the last two metrics capture

disagreement w.r.t. a selected set of features which could be provided as input by an end

user.

Measuring Disagreement w.r.t. Top-k Features

We now define four metrics, which capture specific aspects of explanation disagreement

w.r.t. the top-k features.* For all metrics, lower values indicate higher disagreement.

Feature Agreement: ML practitioners in our study clearly indicated that a key notion

of disagreement between a pair of explanations is that they output different top-k features.

To capture this notion, we introduce the feature agreement metric which computes the

*The top-k features of an explanation are typically computed only based on the magnitude of the feature
importance values and not the signs.
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fraction of common features between the sets of top-k features of two explanations. Given

two explanations Ea and Eb, the feature agreement metric can be formally defined as:

FeatureAgreement(Ea,Eb, k) =
|top_features(Ea, k) ∩ top_features(Eb, k)|

k

where top_features(E, k) returns the set of top-k features (based on the magnitude of the

feature importance values) of the explanation E. If the sets of top-k features of explanations

Ea and Eb match, then FeatureAgreement(Ea,Eb, k) = 1.

Rank Agreement: Practitioners in our study also indicated that if the ordering of the top-

k features is different for two explanations (even if the feature sets are the same), then they

consider it to be a disagreement. To capture this notion, we introduce the rank agreement

metric which computes the fraction of features that are not only common between the sets

of top-k features of two explanations, but also have the same position in the respective rank

orders. Rank agreement is a stricter metric than feature agreement since it also considers

the ordering of the top-k features. Given two explanations Ea and Eb, the rank agreement

metric can be formally defined as:

|
⋃

s∈S {s | s ∈ top features (Ea, k) ∧ s ∈ top features (Eb, k) ∧ rank (Ea, s) = rank (Eb, s)} |
k

where S is the complete set of features in the data, top_features(E, k) is defined as above,
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and rank(E, s) returns the position (or the rank) of the feature s according to the explana-

tion E. If the rank-ordered lists of top-k features of explanations Ea and Eb match, then

RankAgreement(Ea,Eb, k) = 1.

Sign Agreement: In our study, practitioners also mentioned that they consider two expla-

nations to disagree if the feature attribution signs or the directions of feature contribution

(does a feature contribute positively or negatively to the prediction?) do not align for the

top-k features. To capture this notion, we introduce the sign agreement metric which com-

putes the fraction of features that are not only common between the sets of top-k features

of two explanations, but also share the same sign (direction of contribution) in both expla-

nations. Sign agreement is a stricter metric than feature agreement since it also considers

signs (directions of contributions) of the top-k features. More formally:

∣∣⋃
s∈S {s | s ∈ top features (Ea, k) ∧ s ∈ top features (Eb, k) ∧ sign (Ea, s) = sign (Eb, s)}

∣∣
k

where sign(E, s) returns the sign (direction of contribution) of the feature s according to

the explanation E.

Signed Rank Agreement: This metric fuses together all the above notions, and computes

the fraction of features that are not only common between the sets of top-k features of two

explanations, but also share the same feature attribution sign (direction of contribution)

and position (rank) in both explanations. Signed rank agreement is the strictest compared
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to all the aforementioned metrics since it considers both the ordering and the signs (direc-

tions of contributions) of the top-k features. More formally, SignedRankAgreement(Ea,Eb, k)

can be written as:

|
⋃
s∈S

{s | s ∈ top_features(Ea, k) ∧ s ∈ top_features(Eb, k) ∧ sign(Ea, s) = sign(Eb, s) ∧ rank(Ea, s) = rank(Eb, s)}|

k

where top_features, sign, rank are all as defined above. SignedRankAgreement(Ea,Eb, k) =

1 if the top-k features of two explanations match on all aspects (i.e., features, feature attribu-

tion signs, rank ordering) barring the exact feature importance values.

Measuring Disagreement w.r.t. Features of Interest

Practitioners also indicated that they consider two explanations to be different if the rel-

ative ordering of features of interest (e.g., salary and credit score) differ between the two

explanations. To formalize this notion, we introduce the two metrics below.

Rank Correlation: We adopt a standard rank correlation metric (i.e., Spearman’s rank

correlation coefficient) to measure the agreement between feature rankings provided by

two explanations for a selected set of features. In practice, this selected set of features cor-

responds to features that are of interest to end users, and can be provided as input by end
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users. Given two explanations Ea and Eb, rank correlation can be computed as:

RankCorrelation(Ea,Eb, F) = rs(Ranking(Ea, F),Ranking(Eb, F))

where F is a selected set of features potentially input by an end user, rs computes Spear-

man’s rank correlation coefficient, andRanking(E, F) assigns ranks to features in F based

on explanation E. Lower values indicate higher disagreement.

Pairwise Rank Agreement: Pairwise rank agreement takes as input a set of features that

are of interest to the user, and captures if the relative ordering of every pair of features in

that set is the same for both the explanations i.e., if feature A is more important than B ac-

cording to one explanation, then the same should be true for the other explanation. More

specifically, this metric computes the fraction of feature pairs for which the relative order-

ing is the same between two explanations. More formally:

PairwiseRankAgreement(Ea,Eb, F) =

∑
i,j for i<j

1[RelativeRanking(Ea, fi, fj) = RelativeRanking(Eb, fi, fj)](|F|
2
)

where F = {f1, f2 · · · } is a selected set of features input by an end user,RelativeRanking(E, fi, fj)

is an indicator function which returns 1 if feature fi is more important than feature fj ac-

cording to explanation E, and 0 otherwise.

The feature agreement metric captures what fraction of features are common between
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the sets of top-k features corresponding to two explanations. For example, Feature agree-

ment measures the concordance of two sets of top-k features computed using two explana-

tions based on shared features. It calculates the proportion of shared features between the

two sets of top-k features, out of k features. Specifically,

FeatureAgreement(Ea,Eb, k) =
|TopFeatures(Ea, k) ∩ TopFeatures(Eb, k)|

k
,

where TopFeatures computes the top-k features using explanation Ea or Eb. By definition,

when k = |F|,

FeatureAgreement(Ea,Eb, k) = 1.

2.2 Empirical analysis of explanation disagreement

We leverage the metrics outlined in Section 3 and carry out a comprehensive empirical anal-

ysis with six state-of-the-art explanation methods and four real-world datasets to study the

explanation disagreement problem. In this section, we describe the datasets that we use

(Section 2.2.1), our experimental setup (Section 2.2.2), and key findings (Section 2.2.3).

2.2.1 Datasets

To carry out our empirical analysis, we leverage four well known datasets spanning three

different data modalities (tabular, text, and images). For tabular data, we use the Correc-
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tional Offender Management Profiling for Alternative Sanctions (COMPAS) dataset3 and

the German Credit dataset11. This dataset comprises of seven features capturing informa-

tion about the demographics, criminal history, and prison time of 4,937 defendants. Each

defendant in the data is labeled either as high-risk or low-risk for recidivism based on the

COMPAS algorithm’s risk score. The German Credit dataset contains twenty features

capturing the demographics, credit history, bank account balance, loan information, and

employment information of 1,000 loan applicants. The class label here is a loan applicant’s

credit risk (high or low). For text data, we use Antonio Gulli (AG)’s corpus of news arti-

cles (AG_News)66. The dataset contains 127,600 sentences (collected from 1,000,000+

articles from 2,000+ sources with a vocabulary size of 95,000+ words). The class label is

the topic of the article from which a sentence was obtained (World, Sports, Business, or

Science/Technology). For image data, we use the ImageNet−1k43,44 object recognition

dataset. It contains 1,381,167 images belonging to 1000 object categories. We experiment

with images from PASCAL VOC 201212 which provides segmentation maps that can be

directly used as super-pixels for the explanation methods.

2.2.2 Experimental Setup

We train a variety of black box models on the data. In case of tabular data, we train four

models: logistic regression, densely-connected feed-forward neural network, random forest,

and gradient boosted trees. In case of text data, we train a widely-used vanilla LSTM-based
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text classifier on AG_News65 corpus. For image data, we use the pre-trained ResNet-1818

for ImageNet.

Next, we apply six state-of-the-art post hoc explanation methods to explain the black box

models’ predictions for a set of test data points. We apply two perturbation-based explana-

tion methods (41 and30), and four gradient-based explanation methods (51,50,55, and53). In

case of explanation methods with a sample size hyper-parameter, we either run the explana-

tion method to convergence (i.e., select a sample size such that an increase in the number

of samples does not significantly change the explanations) or use a sample size that is much

higher than the sample size recommended by previous work.

We then evaluate the (dis)agreement between the explanation methods using the metrics

described in Section 2.1.3. For tabular and text data, we apply rank correlation and pairwise

rank agreement across all features; and feature agreement, rank agreement, sign agreement,

signed rank agreement across top-k features for varying values of k. For image data, metrics

that operate on the top-k features are more applicable to super-pixels. Thus, we apply the

six disagreement metrics on explanations output by LIME and KernelSHAP (which lever-

age super pixels), and calculate rank correlation (across all pixels as features) between the

explanations output by gradient-based methods.

2.2.3 Results and Insights

We discuss the results of our empirical analysis for each of the three data modalities.
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Figure 2.1: Disagreement between explanation methods for neural network model trained on COMPAS dataset mea‐
sured by six metrics: rank correlation and pairwise rank agreement across all features, and feature, rank, sign, and signed
rank agreement across top k = 5 features. Heatmaps show the average metric value over test set data points for each
pair of explanation methods, with lighter colors indicating stronger disagreement. Across all six heatmaps, the standard
error ranges between 0 and 0.009.

Figure 2.2: Disagreement between explanation methods for neural network model trained on COMPAS dataset mea‐
sured by rank agreement (top row) and signed rank agreement (bottom row) at top‐k features for increasing values of k.
Each cell in the heatmap shows the metric value averaged over test set data points for each pair of explanation methods,
with lighter colors indicating stronger disagreement. Across all six heatmaps, the standard error ranges between 0 and
0.003.
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Tabular Data:

Figure 2.1 shows the disagreement between various pairs of explanation methods for the

neural network model trained on COMPAS dataset. We computed the six metrics outlined

in Section 2.1.3 where we used k = 5 (out of 7 features) for metrics that focus on the top

features. Each cell in the heatmap shows the metric value averaged over the test data points

for each pair of explanation methods with lighter colors indicating more disagreement. We

see that explanation methods tend to exhibit slightly higher values on pairwise rank agree-

ment and feature agreement metrics, and relatively lower values on other metrics (indicat-

ing more disagreement).

We next study the effect of the number of top features on the degree of disagreement.

Figure 2.2 shows the disagreement of explanation methods for the neural network model

trained on COMPAS dataset. We computed rank agreement (top row) and signed rank

agreement (bottom row) at top-k features for increasing values of k. We see that as the num-

ber of top-k features increases, rank agreement and signed rank agreement decrease. This

indicates that, as k increases, top-k features of a pair of explanation methods are less likely to

contain shared features with the same rank (as measured by rank agreement) or shared fea-

tures with the same rank and sign (as measured by signed rank agreement). These patterns

are consistent across other models trained on the COMPAS dataset.

In addition, across all metrics, values of k, and models, the specific explanation method
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pairs of Grad-SmoothGrad and Grad*Input-IntGrad consistently exhibit strong agree-

ment while the pairs of Grad-IntGrad, Grad-Grad*Input, SmoothGrad-Grad*Input and

SmoothGRAD-IntGrad consistently exhibit strong disagreement. This suggests a dichotomy

among gradient-based explanation methods, i.e., certain gradient-based explanation meth-

ods are consistent with one another while others are inconsistent with one another.

Furthermore, there are varying degrees of disagreement among pairs of explanation

methods. For example, for the neural network model trained on the COMPAS dataset,

rank correlation displays a wide range of values across explanation method pairs, with 10

out of 15 explanation method pairs even exhibiting negative rank correlation when explain-

ing multiple data points. This is shown in the left panel of Figure 4.15, which displays the

rank correlation over all the features among all pairs of explanation methods for neural net-

work model trained on COMPAS dataset.

All the patterns discussed above are also generally reflected in the German Credit dataset.

However, explanation methods tend to display stronger disagreement for the German

Credit dataset than for the COMPAS dataset. For example, rank agreement and signed

rank agreement are lower for the German Credit dataset than for the COMPAS dataset at

top 25%, 50%, 75%, and 100% of features for both logistic regression and neural network

models. One possible reason is that the German Credit dataset has a larger set of features

than the COMPAS dataset, resulting in a larger number of possible ranking and sign com-
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binations assigned by a given explanation method and making it less likely for two explana-

tion methods to produce consistent explanations.

Lastly, explanation methods display trends associated with model complexity. For ex-

ample, the disagreement between explanation methods is similar or stronger for the neural

network model than for the logistic regression model across metrics and values of k, for

both COMPAS and German Credit datasets. In addition, explanation methods show sim-

ilar levels of disagreement for the random forest and gradient-boosted tree models. These

trends suggest that disagreement among explanation methods may increase with model

complexity. As the complexity of the black box model increases, it may be more difficult

to accurately approximate the black box model with a simpler model (LIME’s strategy, for

example) and more difficult to disentangle the contribution of each feature to the model’s

prediction. Thus, the higher the model complexity, the more difficult it may be for differ-

ent explanation methods to generate the true explanation and the more likely it may be for

different explanation methods to generate differently false explanations, leading to stronger

disagreement among explanation methods.

Text Data:

In the case of text data, we deal with a high-dimensional feature space where words are

features. We plot the six metrics for k = 11 which is 25% of the average text length of a

sentence (data point) in the dataset (Figure 2.4). As can be seen, we observe severe disagree-
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Figure 2.3: Distribution of rank correlation over all features for neural network model trained on COMPAS (left), and
rank correlation across all features (middle) and signed rank agreement across top‐11 features (right) for neural network
model trained on AG_News.

Figure 2.4: Disagreement between explanation methods for the LSTM model trained on the AG_News dataset using
k = 11 features for metrics operating on top‐k features, and all features for other metrics. Each heatmap shows the
metric value averaged over test data for each pair of explanation methods. Lighter colors indicate more disagreement.
Standard error ranges from 0.0 to 0.0025 for all six metrics.

ments across all the six disagreement metrics. Rank agreement and signed rank agreement

are the lowest between explanations with values under 0.1 for most cases indicating dis-

agreement in over 90% of the top-k features. Trends are quite similar for rank correlation
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and feature agreement with better agreement between gradient based explanation methods,

such as a feature agreement of 0.61 for Grad*Input and Gradient method.

In addition to the overall disagreements, we also notice specific patterns of agreement be-

tween a group of explanation methods. Based on middle and right panels of Figure 4.15, we

notice that there is a high rank correlation between pairs of gradient based explanations.

Although Integrated Gradients has the lowest correlation with the rest of the gradient

methods, still this correlation is significantly higher compared to its correlation with Ker-

nelSHAP and LIME.We also notice that disagreement is lower between LIME and other

explanation methods compared to KernelSHAP and other methods (e.g., rank correlation

of 0.4-0.6 for LIME as opposed to 0.2-0.4 for KernelSHAP. Finally, we see a higher dis-

agreement in explanation methods for text compared to tabular data which suggests that

disagreement may worsen as the number of features increases. We also observe a similar

agreement pattern between LIME and other methods which was also observed earlier in

our experiments with tabular datasets, hence, indicating that LIME explanations are most

aligned with other post hoc explanation methods.

Image Data:

While LIME and KernelSHAP consider super pixels of images as features, gradient based

methods consider pixels as features. Furthermore, the notion of top-k features and the met-

rics we define on top-k features are not semantically meaningful when we consider pixels as
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features. Given this, we compute all the six metrics to capture disagreement between expla-

nations output by LIME and KernelSHAP with super pixels as features. We also compute

rank correlation on all the pixels (features) to capture disagreement between explanations

output by gradient based methods.

Unlike earlier trends with tabular and text data, we see higher agreement between Ker-

nelSHAP and LIME on all the six metrics: rank correlation of 0.8977, pairwise rank agree-

ment of 0.9302, feature agreement of 0.9535, rank agreement of 0.8478, sign agreement of

0.9218 and signed rank agreement of 0.8193. However, the trends are quite opposite when

we compute rank correlation at pixel-level for gradient-based methods. For instance, rank

correlation between Integrated Gradients and SmoothGrad is 0.001 (indicating high dis-

agreement). The disagreement is similarly quite high in case of other pairs of gradient based

methods. This suggests that disagreement could potentially vary significantly based on the

granularity of image representation.

2.3 Resolving the disagreement problem in practice: a qualitative study

In order to understand how practitioners resolve the disagreement problem, we conduct a

qualitative user study targeted towards explainability practitioners. We now describe our

user study design and discuss our findings.

liv



2.3.1 User Study Design

In total, 25 participants participated in our study, 13 from academia and 12 from industry.

Participants from academia were graduate students, and postdoctoral researchers, while par-

ticipants from industry were data scientists andML engineers from three different firms.

20 of these participants indicated that they have used explainability methods in their work

in a variety of ways, including doing research, helping clients explain their models, and de-

bugging their own models. Following the setup in Section 2.2, we asked participants to

compare the output of five pairs of explainability methods on the predictions made by the

neural network we trained on the COMPAS dataset. We chose the COMPAS dataset be-

cause it only has 7 features, making it easy for participants to understand the explanations.

First, the participants are shown an information page explaining the COMPAS risk score

binary prediction setting and various explainability algorithms. We indicate that we trained

a neural network to predict the COMPAS risk score (low or high) from the seven COM-

PAS features. We also give a brief description of each of these seven features to the partic-

ipant and tell them to assume that the criminal defendant’s risk of recidivism is correctly

predicted to be high risk. In this information page, we also briefly introduce and summarize

the six explainability algorithms we use in the study (LIME, KernelSHAP, Gradient, Gradi-

ent*Input, SmoothGrad, and Integrated Gradients). Finally, we provide links to the papers

describing each of the algorithms.
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Next, each of the participants is shown a series of 5 prompts, a sample of which is shown

in Figure 2.5. Each prompt presents two explanations of our neural network model’s pre-

diction corresponding to a particular data point generated using two different explanation

methods (e.g., LIME and KernelSHAP in Figure 2.5). For each of the 15 pairs of expla-

nation methods, we chose a different data point from COMPAS to run the two methods

on, giving us a set of 15 prompts. These prompts were picked to showcase various levels

of agreement. We display the full set of k = 7 COMPAS features, showing the feature

importance of each feature. Red and blue bars indicate that the feature contributes nega-

tively and positively respectively to the predicted class. The participants were first asked the

question “To what extent do you think the two explanations shown above agree or disagree

with each other?” and given four choices: completely agree, mostly agree, mostly disagree, and

completely disagree. If the participant indicated any level of disagreement (any of the lat-

ter 3 choices), we then asked “Since you believe that the above explanations disagree (to some

extent), which explanation would you rely on?” and presented with three choices: the two

explainability methods shown and “it depends”. They were then asked to explain their re-

sponse. The users were allowed to take as much time as they wanted to complete the study.
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Figure 2.5: The user interface for a prompt. The user is shown two explanations for a COMPAS data point, showing
the feature importance value of each of the 7 features. Red and blue indicate negative and positive feature values,
respectively. See the text for more details.
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3
Graph Neural Networks

3.1 Preliminaries

Here we define important GNN terminology. First, letG denote a graph on edges E and

nodesV that are associated with node featuresX = {x1, . . . , xn} , xi ∈ Rd. In this paper,

we focus on node classification, which is formulated by approximating the following func-

tion: f : V 7→ {1, . . . ,C}. Thus, let yi represent the original class prediction for node i
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.

We use a GNN to approximate the function represented by φ. GNNs have three main

computation steps that are present in a wide range of model architectures; the ultimate goal

is to calculate embedding representations of every node throughout the network. The first

step is a message calculation that is computed by a neural network for every pair of node

hidden representations. Second, we have an aggregation which essentially pools together

all the hidden representations. Finally, there is a neural update function that combines the

target node’s hidden representation with the aggregated message. The final hidden repre-

sentations can be used for node classification.

We consider the general problem of an explanation method E creating some feature at-

tribution A that assigns importance scores to each of the d -dimensional node features

X = {x1, . . . , xn} , xi ∈ Rd.Thus the attribution vector is also d-dimensional. Often,

we use attribution vectors to mask features. Specifically, letmi,k represent the feature mask

with only the top k important features and 1−mi,k represent the feature mask that removes

the top k important features. In the future we can extend this to node attribution that is of

size |V| or edge attribution which is of size |E|.
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3.2 Problem statement methodology

Given our goal is to develop a way to compare, contrast, and chose explainability methods

given a wide array of use cases, we decompose our problem statement into three specific

questions.

1. How do we quantitatively evaluate explainability methods to cover varied metrics of
success?

2. What is the “best” explainability method suited for a particular circumstance?

3. What are general improvements for each method based on a certain metric?

We characterize the quality of three representative explainability methods on different

GNN use-cases – more specifically, on unique decision boundaries generated from differ-

ent GNNmodels and graph datasets. We propose a set of quantitative metrics that can be

used the evaluate explanations along the following properties: fidelity, consistency, stability*,

fairness and scalability.

3.2.1 Metrics:

Fidelity: The difference between the original predictions and the new predictions after

masking out important input features.

As mentioned in Preliminaries, let yi represent the original prediction for node i from

the GNN and y1−mi,k
i represent the new prediction for node i from the GNNwith k impor-

*Model stability is covered in the Appendix.
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tant features masked.

Fidelity =
1
|V|

|V|∑
i=1

1(yi = y1−mi,k
i ) (3.1)

Intuitively, good explainability methods should identify the most important features to a

prediction. Thus, when the most important features are occluded, the prediction difference

should be large.

Consistency: The similarity of explanations under fixed conditions.

LetR be the number of runs, k be the number of top features selected by each explana-

tion,mr
i,k be the importance mask for run r, and

∑R
r=1 I(Ar

j = 1) be the number of times

feature jwas selected by the r explanations.

Consistency =
1
|V|

|V|∑
i=1

1
R

R∑
r=1

∑
j∈mr

i,k

∑R
r=1 I(Ar

j = 1)

R · k
(3.2)

Intuitively, a good explanation should be consistent across numerous runs using the same

GNNmodel, dataset, and method parameters. The higher the consistency, the better – the

maximum value of 1 is achieved when each of theR explanations chooses the same top k

features and the minimum value of 1/R is achieved when each explanation chooses disjoint

top k features.

Data Stability: The difference in explanation once input features are slightly perturbed,
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conditional on class label remaining unchanged.

Let X′
i = Xi + ε s.t. φ(X′

i) = φ(Xi). Then let Ai = E(f′i,G) and A′
i = E(f′i,G) for some

explainer E and fixed graphG.

DataStability =
1
|V|

|V|∑
i

< Ai,A′
i >

||Ai|| ||A′
i||

(3.3)

Intuitively, a good explanation should be invariant to small changes that do not affect the

predictions of the model. The degree of change in the explanation should be small.

Fairness: The presence of a sensitive attribute in the explanation (if a prediction is bi-

ased). The similarity of predictions using the generated explanations as a feature mask

when a sensitive attribute is perturbed (if a prediction is unbiased). A prediction’s bias is

determined by whether or not the prediction changes when the sensitive attribute of a node

is flipped.

Let a ∈ {0, 1} be the sensitive attribute we aim to protect, yi,a be the original prediction

for node iwith sensitive attribute a from the GNN, and yi,ã be the prediction for node i

with the flipped sensitive attribute 1− a.

Fairness(biased) =
1∑

i 1(yi,a 6= yi,ã)
∑

i:yi,a ̸=yi,̃a

1(a ∈ mi,k) (3.4)

Fairness(unbiased) =
1∑

i 1(yi,a = yi,ã)
∑

i:yi,a=yi,̃a

1(ymi,k
i,a = ymi,k

i,ã ) (3.5)
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Intuitively, an explainability method should be as biased as the underlying GNN. A fair

explainability method should accurately convey the amount of bias in the underlying GNN

model’s predictions.

Scalability: The feasibility of generating accompanying explanations with model predic-

tions in at-scale machine learning use-cases.

Let tpred(n), texpl(n) be the time it takes to generate n predictions and explanations re-

spectively.

Scalability(n) =
texpl(n)
tpred(n)

(3.6)

Intuitively, an explainability method should be able to generate large amounts of expla-

nations along with predictions under strict latency requirements (i.e., SLA targets in the

milliseconds range)17,16,22.

Many of the most impactful machine learning use-cases are deployed at-scale under strict

latency requirements. For example, over 80% of machine learning inference cycles on Face-

book’s datacenter fleet are devoted to recommendation ranking under specific latency tar-

gets17,16,34,22. In these cases, in order to generate an accompanying explanation to a predic-

tion, the time that it takes to formulate the explanation must be considered. We plan on

evaluating this by first characterizing the FLOPs (floating point operations) and memory

accesses associated with each explainability method then investigating the amount of ex-
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ploitable parallelism for each explainability method.

3.3 GNN explanation methods

1. GNNExplainer is a perturbation-basedmethod that has three steps. First, a initial
mask is chosen for node features and treated as a trainable variable. Second, the mask
is combined with the node. Finally, the mask is optimized to maximize mutual infor-
mation between the original node and the masked node.

2. GraphLIME is a surrogate methodwhich extends LIME to GNNs. GraphLIME
has three steps. First,N-hop neighboring nodes of a target node are considered as
the local region for explanation. Second, Hilbert-Schmidt Independence Criterion
(HSIC) Lasso is utilized as the local surrogate model. Third, feature importance is
assigned based on magnitudal weights of HSIC Lasso coefficients.

3. Sensitivity Analysis (SA) utilizes squared gradients as measures of feature impor-
tance. Utilizing backpropagation, input features are used as targets instead of weights.

3.4 Datasets

Classes Features Nodes Edges Average Node Degree Edge Density
Cora 7 1433 2708 10556 3.9 0.00287
Pubmed 3 500 19717 88648 4.5 0.000456
NBA 2 96 403 16570 41.12 0.204

3.4.1 GNNModels:

We analyze three canonical GNNs: Graph Convolutional Networks (GCNs), GraphSAGE,

and Graph Attention Networks (GATs). The first two leverage the graph convolution op-
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erator for aggregation – GCNs spectrally and GraphSAGE spatially; GATs leverage the

attention mechanism for aggregation.

3.5 Experimental results

3.5.1 Fidelity Analysis

Figure 3.1: Fidelity of different explainability methods on Pubmed and Cora. GNNExplainer is more successful on large
k (i.e., # of features in explanation) while SA is more successful for small k.

As shown in the KDE plots in Figure 3.1, SA performs well for low values of k, while

GNNExplainer performs well for high values of k. GraphLIME tends to have the poorest

performance, most especially for complex datasets with high number of nodes and number

of features per node. The intuition behind the difference in performance for SA versus GN-

NExplainer lies in the importance of neighboring node features. That is, for low values of k,

the features of the target node themselves are the key attribution to importance magnitudes.

However, as we increase k and consider the importance of other features in the target node,

how neighboring node features and specifically the hidden layer embedding representations
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of those features contribute to target features in a larger way.

Figure 3.2: Fidelity of different explainability methods across datasets (Left) and GNN models (Right).

Next, we consider dataset based analysis. As seen in Figure 3.2 (Right), SA has higher fi-

delity on datasets with higher number of node features but lower node degree (i.e., Cora).

Meanwhile, GNNExplainer tends to perform better on datasets with higher node degrees

and node features (i.e., NBA, Pubmed). The intuition is that GNNExplainer takes better

account of spatial information in a N-hop neighborhood. Thus, with higher node degree,

GNNExplainer can better account for relationships between nodes. Meanwhile SA’s ob-

jective function is based solely on a target node’s input feature. Hence it is better able to

parse importance when there is a high number of node features. Similarly as seen in Figure

3.2 (Right), when comparing performance across models, GNNExplainer performs well on

spatial models like GraphSAGE while SA performs better on spectral models like GCN. In

a spectral graph convolution, we perform an Eigen decomposition of the LaplacianMatrix

of the graph while in spatial we use N-hop to aggregate nodes.
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Finally, GraphLIME’s overall low fidelity can be attributed to a loss in information using

its local approximation and surrogate model. That is, not only is the N-hop restrictive, but

HSIC-Lasso simply cannot approximate the spatial-based and non-linear GNN target func-

tion for complex datasets. Interestingly enough, we see that there is no clear correlation

between model accuracy and explanation fidelity As expected, our explanation fidelities

increase when we are able to pick more features in our explanations.

3.5.2 Fairness Analysis

Biased
Top 5 Top 10 Top 20

GraphLIME 0.664 0.885 0.915
GNNExplainer 0.488 0.518 0.554
SA 0 0.028 0.133

Unbiased
Top 5 Top 10 Top 20

GraphLIME 0.750 0.675 0.662
GNNExplainer 0.852 0.817 0.770
SA 0.996 0.956 0.948

Table 3.1: Overall Fairness Metrics

Figure 3.3: a) Scatterplot of average fairness and 1‐infidelity scores, b) GNN Explainer fairness scores (biased), c) GNN
Explainer fairness scores (unbiased).

From Figure 3.3, we see a positive correlation between fairness and fidelity when the

prediction is unbiased. Intuitively, this makes sense because when the model is unbiased,

fidelity becomes a proxy for fairness; the sensitive attribute is not used to make the predic-
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tion, and thus the explanation’s bias is dependent on its faithfulness to the model. Thus,

we observe that Sensitivity Analysis, shown in Table 3.1 and in green in Figure ??, has both

the highest average fidelity and fairness (unbiased) scores.

Next, Table 3.1 reveals that GraphLIME is the fairest method for biased predictions, i.e.

it most frequently identified the sensitive attribute as an important feature. This can be

attributed to GraphLIME’s use of both the prediction’s neighborhood and node feature

importance targets. On one hand, GNN Explainer exploits graph structure through the

N-hop neighborhood, but focuses less on finding useful features, thus hindering its ability

to identify the sensitive attribute. On the other hand, SA solely focuses on node features

as targets, but does not explicitly learn a latent representation of the node’s neighborhood.

This prevents a sufficient explanation because similar people tend to be connected to each

other, and the GNNmessage passing mechanisms exacerbate those dependencies33,29,57.

Lastly, we hypothesize that synergies between explainability method and GNNmodel

result in high fairness. As shown in the first two graphs of figure 3.3, GNN-Explainer and

GATs perform extremely well together, as both methodologies involve localizing through

edge-wise mechanisms. GNN-Explainer learns an edge mask to find a local subgraph to

explain predictions, and GATs’ aggregation function similarly attends over neighborhoods

and learns different importance weights to assign to different neighbors. Thus, two are able

to complement each other and find the fairest explanations.
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3.5.3 Consistency Analysis

Cora
Top 5 Top 10 Top 20

GraphLIME 1.0 1.0 1.0
GNNExplainer 0.429 0.561 0.682
SA 1.0 1.0 1.0

Pubmed
Top 5 Top 10 Top 20

GraphLIME 1.0 1.0 1.0
GNNExplainer 0.467 0.572 0.709
SA 1.0 1.0 1.0

Table 3.2: Overall Consistency Metrics

As shown in Table 4.1, SA and GraphLIME demonstrate perfect consistency across both

Cora and Pubmed and all top k features, whereas GNNExplainer performs significantly

worse across the board†. Regarding SA, we see complete consistency due to its determin-

istic back-propagation algorithm; given a fixed seed, model, dataset, and target node, the

gradient and weight update computations are independent from the number of times the

method is run. Similarly, GraphLIME exhibits perfect consistency, as it employs the ker-

nelized nonlinear explanation model HSIC LASSO and optimizes with least angle regres-

sion, both of which perform deterministically under fixed conditions mentioned previ-

ously. Lastly, we see that GNNExplainer demonstrates the poorest consistency across both

datasets and all top k features. Different from GraphLIME and SA, GNNExplainer’s ob-

jective function jointly learns graph structural and node feature information to generate an

explanation. Thus, variability within edge masks across runs significantly affects the consis-

tency of the node feature masks learned. In the future, we plan to conduct further analysis
†The same conclusion holds for different datasets and models
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on the consistency of edge mask learning and how this affects the node feature mask.

Interestingly, when analyzing consistency across the top k features, we see that GNNEx-

plainer’s performance improves as the number of features selected increased. Because our

consistency metric does not compare the weights assigned to each feature but instead the

set of top k features chosen, this suggests that GNNExplainer is able to identify a consistent

batch of features which are important to the prediction, but is not consistent in assigning

the relative importance of the top features.

3.5.4 Scalability Analysis

Figure 3.4: Even though off‐the‐shelf explainability methods are generally orders of magnitude slower than GNN infer‐
ence, some are more amenable to parallelism.

Figure 3.4 depicts our observations on the feasibility of serving explanations at-scale

along with predictions. Recall that Scalability(n) =
texpl(n)
tpred(n)

is a ratio where larger values

indicate longer relative times to generate explanations. We see that this ratio is often in the

103 ∼ 106 range. Between explainability methods, however, we see variations in time to
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explanation: SA (black), which primarily relies on backpropagation to find gradients, is the

fastest; GNNExplainer (blue), which requires an exploration phase to find the best edge

mask, is slowest. Beyond direct measurements of latency to explanation, we see that SA

is also more amenable to parallelism. That is, as we generate more explanations in a batch

(x-axis), the average time per explanation decreases; intuitively, this is because backpropaga-

tion is easier to run in parallel comapred with exploration/perturbation (GNNExplainer)

and training a surrogate model (GraphLIME).
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4
RecommendationModeling

In our objective of understanding how and whether the explainability of recommendation

systems provides benefits to the target user, we pursue two types of experiment. The first

consists of traditional offline experiments in which pre-determined, mathematical metrics

are deployed to measure the effectiveness of our methods. We cross-apply many of the same

metrics present in the graph neural network section. In the online experiments, we survey a
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representative population of target users to understand how, if at all, explainability impacts

effectiveness of recommendation systems.

4.1 Recommendation models

We utilize two types of neural-based recommendation systems to generalize trends in offline

experimentation. We select these models as they are considered state-of-the-art and some of

the most widely used models in the field64.

Neural Collaborative Filtering:

Figure 4.1: Illustration of neural collabrative filtering model architecture

The main benefit of a neural collaborative filtering model as compared to a standard ma-

trix factorization models comes from the ability to model non-linear relationships between

the item and user latent vector. That is, while standard matrix factorization simply utilizes
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an inner product between the two to determine predicted rankings, neural collaborative

filtering can extend this relationship to any functional form utilizing a multilayer percep-

tron20.

The first layer of the model serves as the input. The input consists of two feature vectors

vUu and vIi that describe user u and item i, respectively; they can be customized to support a

wide range of modelling of users and items. Above the input layer is the embedding layer; it

is a fully connected layer that projects the sparse representation to a dense vector. The ob-

tained user (item) embedding can be seen as the latent vector for user (item) in the context

of latent factor model. Following, neural collaborative filtering consists of two side-by-side

set of layers. The first is a generalized matrix factorization section and the next is a multi-

layer perceptron section. The output of both sets of layer are then concatenated and fed

into one last fully-connected layer. The final output layer is the predicted score ŷui, and

training is performed by minimizing the pointwise loss between ŷui and its target value yui.

Thus, NCF’s predictive model is formulated as:

ŷui = f
(
PTvUu ,QTvIi | P,Q,Θf

)

We now speak a bit more about the two sections of NCF. The GMF, simply aims to

mimic a matrix factorization model. More formally, let the user latent vector pu be PTvUu

and item latent vector qi beQTvIi . We define the mapping function of the first neural CF
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layer as:

φ1 (pu, qi) = pu � qi

where� denotes the element-wise product of vectors. We then project the vector to the

output layer:

ŷui = aout
(
hT (pu � qi)

)
,

where aout and h denote the activation function and edge weights of the output layer, re-

spectively. Intuitively, if we use an identity function for aout and enforce h to be a uniform

vector of 1 , we can exactly recover the MFmodel.

Formally, the MLPmodel under our NCF framework is defined as

z1 = φ1 (pu, qi) =

 pu

qi


φ2 (z1) = a2

(
WT

2z1 + b2
)

. . .

φL (zL−1) = aL
(
WT

LzL−1 + bL
)

ŷui = σ
(
hTφL (zL−1)

)
whereWx, bx, and ax denote the weight matrix, bias vector, and activation function for the

x-th layer’s perceptron, respectively.
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Wide & Deep Model:

Figure 4.2: Illustration of Wide & Deep model architecture

Wide &Deep models are based on the idea that humans are able to generalize and both

memorize. Thus, this model architecture utilizes a wide section to memorize and a deep

section to generalize for recommendations6.

The wide component is a generalized linear model of the form y = wTx+bwhere y is the

prediction, x = [x1, x2, . . . , xd] is a vector of d features,w = [w1,w2, . . . ,wd] are the model

parameters and b is the bias. The feature set includes raw input features and transformed

features. One of the most important transformations is the cross-product transformation,

which is defined as:

φk(x) =
d∏
i=1

xckii cki ∈ {0, 1}

where cki is a boolean variable that is 1 if the i-th feature is part of the k-th transformation
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φk, and 0 otherwise. The deep learning component of the wide and deep model is equiva-

lent to the MLP layer of a neural collaborative filtering model.

Ultimately, the wide component and deep component are combined using a weighted

sum of their output log odds as the prediction, which is then fed to one common logistic

loss function for joint training.

4.2 Explainability methods

For all of the models above, embedding layers play a distinctive role. That is, for the neural

collaborative filtering model, all of the inputs are eventually fed into an embedding layer.

This is because features such as userid or itemid are too sparse to be utilized in a meaningful

way in the model. Similarly, while some of the inputs for the Wide &Deep model have

intuitive meaning, such as the cross-features, the deep part of the model too contains an

embedding layer. Thus, given the existence of the embedding layer as being instrumental in

any deep-learning recommendation system, explainability method tackling the problem

must be able to handle this component.

Most explainability methods, especially those that are post hoc, emphasize feature im-

portance as the final goal. That is, many of the methods discussed in section 2.2, such as

LIME and SHAP, focus on outputting coefficients that describe what inputs are the most

influential. The difficulty in recommendation systems comes from the fact that there are

lxxvii



often very few inputs. For instance, neural collaborative filtering only has two inputs in

the model: userid or itemid. It would be meaningless for LIME to say that a userid is more

important than an itemid or vice versa. Moreover, it is not an individual item or user that

influences the prediction of a recommendation, rather the patterns and sum of similar users

and similar items. Thus, we must adapt our current understanding of post hoc explanation

methods beyond their traditional application to input features.

Our proposal is that instead of applying our traditional post hoc explainability meth-

ods to the raw inputs of recommendation models, we apply them to the outputs of the

embedding layer because embedding outputs represent traditional input features in other

applications. These embedding vectors are often larger than just two inputs, so there can be

meaningful comparison between which indices of the embedding vectors are more or less

important.

Of course, the primary issue here is that embedding layers are inherently uninterpretable.

They are a series of trained weights that do not correspond to features. Thus, we develop

two novel methods to also explain embedding layers in a post hoc fashion. The combina-

tion of explaining what each weight of an embedding layer does and how the neural net-

work utilizes the embedding layer creates a formula for us to fully explain black box recom-

mendation systems.
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4.2.1 Preliminaries

Consider the rating prediction problem where the input spaceX consists of a vector of

usersU = [ u1, u2, . . . um] and set of items I = [ i1, i2, . . . , in] , and the output spaceY is

the set of possible ratings. LetR = {z1, z2, . . . , zn} be a set of observed user-item ratings,

where zj =
(
uj, ij, yj

)
∈ X × Y .Without loss of generality, we define L

(
zj, θ

)
as the

loss function at
(
uj, ij

)
. The LFM is trained based onR and the model parameters θ̂ on

convergence satisfies: θ̂ def
= argminθ

1
n
∑n

j=1 L
(
zj, θ

)
. Problem. Finally, assume that for

each user there is a corresponding vector of auj of some fixed size swhich corresponds to all

aspects of a user where each entry is between 0 and 1. Similarly, a aij of a fixed size twhere

each entry is between 0 and 1. All models will have a learned EU and EI of sizem × d and

n× d respectively where d is a pre-determined embedding size.

4.2.2 Methods to Explain the Latent Dimension:

To our knowledge, we propose two novel methods for post hoc explainability on latent

dimension layers. Under each method, we separate based on two inputs. In our effort to

create explainability methods that generalize to all recommendation systems, not just those

with textual reviews, the first type of input is universally present in all recommendation

models: neighboring items and users. That is, we explain user embeddings by referring to

the most important users towards that explanation and explain item embeddings by pin-
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pointing most important items. All collaborative filtering, and thus modern recommenda-

tion systems, contain user and item pair history.

The second type of input is also often present in most modern recommendation sys-

tems. These inputs are the traditional inputs to content filtering methods. We use user-level

descriptive aspects such as age and gender to explain user embeddings. We use item-level

descriptive aspects such as genre to explain item embeddings.

Ultimately, the goal in this stage is to align each individual or group of individual weights

in the embedding layer to an important item/user or item aspect/user aspect.

Our problem statement is to utilizeR along with the aspect vectors AU and AI to output

a ranked vectorV of size d of explanation users, items, user aspects, or item aspects. In the

case of explanations for Eu, each input in the ranked vector can either be uj or Auj and in the

case of Ei each input in the ranked vector can either be uj or Auj

When looking at neighbor-based approaches:

1. The first step in the surrogate model is to initialize an input matrix for our surrogate
model. For each uj ∈ Uwe create a vector of sizem. Thus the matrixMu is of size
m×m For each ij ∈ Iwe create a vector of sizem. Thus, the matrixMi is size n× n.
The matrix is initialized with zeroes.

2. We iterate through the training data orR = {z1, z2, . . . , zn}. Beginning with some
user u∗, we find all data here zj =

(
u∗, ij, yj

)
. We make a list of every ij corresponding

to that user. Similarly in matrix, for every i∗ corresponding to zj =
(
uj, i∗, yj

)
, we

make a list of all uj.

3. Once again iterating through our training set, we find other users who have rated the
same ij or movies as the target user u∗. We take the average of their appearances and

lxxx



update the corresponding user index in row u∗ ofMu. We do a similar process for
the item index in row i∗ ofMi

4. We iterate through each index of Eu for a total of d target vectors where the target
is the weight value in the embedding vector. We run d simple linear regressions of
Mu as the independent values and the ith row of Eu. Similarly we run d simple linear
regressions ofMi as the independent values and the ith row of Ei. Ultimately, we get
a 2 ∗ d lists of coefficients.

5. For each weight in the embedding layer, we select the top k coefficients. Thus, for
the users, we can explain every index in the embedding layer by most influential users
and vice versa for the item embedding layer.

When looking at aspect-based explanations as opposed to neighbor based explanations:

1. For each uj ∈ Uwe create a vector of size s. Thus the matrixMu is of sizem × s For
each ij ∈ Iwe create a vector of size t. Thus, the matrixMi is size n × t. The matrix
is initialized with zeroes.

2. For each row corresponding to a user in theMu, we fill it with their attributes found
in auj . Similiar proccess occurs ofMi and aij

3. We iterate through each index of Eu for a total of d target vectors where the target
is the weight value in the embedding vector. We run d simple linear regressions of
Mu as the independent values and the ith row of Eu. Similarly we run d simple linear
regressions ofMi as the independent values and the ith row of Ei. Ultimately, we get
a 2 ∗ d lists of coefficients.

4. For each weight in the embedding layer, we select the top k coefficients. Thus, for the
users, we can explain every index in the embedding layer by most influential user or
item attributes.

Note, we only conduct explanations for the embedding layer for neural collabrative fil-

tering. This is because Wide &Deep comes with pre-defined explanations for each input
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already. Meanwhile the embeddings of the former model are inherently created by a black

box.

4.2.3 Methods to Explain the NeuralModels

Once we have an intuitive explanation method for each individual index in our embedding

layer, we can then utilize adapted methods of traditional post hoc layers.

To apply LIME or KernelSHAP to deep-learning recommendation systems similar to

neural collaborative filtering or Wide &Deep, we go through the following process:

1. Re-create your original modelMwith a newmodelM∗ to delete input layers and
thus create new input layers that take the embeddings as inputs

2. Similar take your test set of ratings and then iterate through each and replace the uj
and ij with their corresponding values in the Eu and Ei matrix so you haveR∗.

3. Run traditional LIME or traditional KernelSHAP onR∗ andM∗

For vanilla gradients, we simply calculated the first-order gradients with respect to the

embedding layers as opposed to the input.

4.3 Offline explainability metrics

In this section we will describe four general offline metrics we will utilize to measure the

performance of both our novel explanation methods for latent dimensions as well as the

adapted methods for explaining the neural layers. In general, we have five primary offline
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metrics to judge the accuracy of both our latent explainability methods and neural explain-

ability methods:

Fidelity: The difference between the original predictions and the new predictions af-

ter masking out important input features. Intuitively, good explainability methods should

identify the most important features to a prediction. Thus, when the most important fea-

tures are included, the prediction difference should be large.

For our latent method, we delete the majority of the instances that our method says are

important from our train set. For instance, the most important user or item or deleting a

group of users or items corresponding to the most important aspect. We then see the aver-

age ratio between the new embedding at index i and the old embedding.

For neural methods, we first mask out or set to zero the top k arguments of our embed-

dings as ranked by each of our explainability methods. We then calculate the mean squared

difference between the new and old predictions across the test set.

Infidelity: The difference between the original predictions and the new predictions after

masking out the least important input features. Intuitively, good explainability methods

should be able to differentiate between the most and least important features. Thus, when

the least important features are excluded, the prediction difference should be minimal.

For our latent method, we delete the majority of the instances that our method says are

least important from our train set. For instance, the least significant user or item or delet-
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ing a group of users or items corresponding to the least significant aspect. We then see the

average ratio between the new embedding at index i and the old embedding.

For neural methods, we first mask out or set to zero the bottom k arguments of our em-

beddings as ranked by each of our explainability methods. We then calculate the mean abso-

lute difference between the new and old predictions across the test set.

Consistency: The similarity of explanations under fixed conditions. Intuitively, a good

explanation should be consistent across numerous runs using the same recommendation

model, dataset, and method parameters.

For both types of explainability, we simply re-run the explainability method k times. We

then calculate the cosine similarity between the new and original coefficients. We then take

the average similarity across the k trials.

Data Stability: The difference in explanation once the input features are slightly per-

turbed, conditional on class label remaining unchanged. Intuitively, a good explanation

should be invariant to small changes that do not affect the model’s predictions. The degree

of change in the explanation should be small.

For latent methods, we perturb k percent of the input ratings for each user. We then

calculated the cosine similarity between the original coefficients and the new coefficients.

For neural methods, we perturb k percent of the embedding values by some small ε. That is,

we multiply the randomly selected indices by 1 + ε. We then calculate the cosine similarity
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between the original coefficients and new coefficients.

Scalability The feasibility of generating accompanying explanations with model predic-

tions in at-scale machine learning use-cases. Intuitively, an explainability method should be

able to generate large amounts of explanations along with predictions under strict latency

requirements (i.e., SLA targets in the milliseconds range).

For both methods, we simply look at the time it takes to generate explanations in sec-

onds.

4.4 Model & dataset paramters

For the neural collaborative filtering model, we tune over the following set of embedding

layer sizes: 4, 8, 16, 32, 64, 128. Ultimately, 16 achieves the highest hit rate. This is likely

due to the fact that the embedding layer achieves the most ability to represent the user and

item history while not leading to overfitting. In addition to our embedding layer, we chose

our MLP layers to have four dense layers of sizes: 64, 32 16, 8 with interspersing drop-out

layers. For the Wide &Deep model, we tune over the same set of embedding layers. We also

find that 16 achieves a similarly high hit rate. In addition to our embedding layer, we chose

our MLP layers to have ten dense layers with interspersing dropout layers.

For our surrogate function to predict the importance of both neighbors and aspects, we

utilize Ridge Regression with α = 1. This minimized the mean squared error.
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For our adapated LIME, for both models, we want to ensure that our explanation method

achieves convergence on its output explanations. To test this, we rerun the method to have

250, 500, 1000, 2000, 4000 perturbed samples.

For KernelSHAP, we train our approximate function to predict feature contribution

on the entirety of the train set, and thus convergence poses no problem. Similarly, for

vanilla gradients, there is no sample size parameter and thus convergence does not need

to be tested.

4.4.1 Offline Results: Neural ExplanationMethods

Fidelity:

Figure 4.3: Neural collaborative filtering fidelities as measured by mean squared difference in prediction value for the
top k ranked features based on various methods and for various k’s
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In general, for the neural collaborative filtering models, the SHAPmethod have the high-

est fidelity followed by the LIME and gradient methods in that order. LIME and SHAP

tend to have similar fidelities across all k’s, wheres the vanilla gradient method suffers com-

paratively. Regardless, all three methods tend to outperformmuch better than the random

method, especially at lower k values.

We see LIME comparatively performs better on smaller k’s, but SHAP tends to outper-

form on higher valued k’s. This is likely because LIME’s regression task is able to specifi-

cally pinpoint one or two major inputs whereas SHAP’s problem formulation of coalitions

is better able to identify larger groups of features that are important.

Infidelity:

Figure 4.4: Neural collaborative filtering infidelities as measured by mean squared difference in prediction value for the
top k ranked features based on various methods and for various k’s
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Similar trends are seen for infidelity in that the SHAPmethod tends to have the smallest

change in performance for its lowest-ranked coefficients as compared to LIME and vanilla

gradients. Vanilla gradients tends to be the closest to random, but all are quite distant from

randomly chosen indices.

One may wonder why vanilla gradients performs much poorly compared to SHAP and

LIME on both the fidelity and infidelity metrics. One reason may be vanishing gradients

through the multi-layer perceptron layers. Another may be that vanilla gradients struggles

due to the first-order approximation it relies on not being sufficient.

Figure 4.5: Wide & Deep fidelities as measured by mean squared difference in prediction value for the top k ranked
features based on various methods and for various k’s

ForWide &Deep fidelities, we get less promising results. While SHAP tends to perform
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a significant margin above random, though less than its counterpart for neural collabora-

tive filtering, both vanilla gradients and LIME tend to have more similar fidelity values to

randomly selecting coefficients.

There are two possible explanations for why wide and deep tends to have lower fidelities

than neural collaborative filtering. The first is that wide and deep has a relatively more com-

plex neural architecture, making it more difficult for post hoc methods. The second is that

wide and deep does not consider any feature that extracts historical data. That is, the only

input in the model are demographic or item level information. This results in the model

performing worse and likely having worse explainability.

Figure 4.6: Wide & Deep infidelities as measured by mean squared difference in prediction value for the top k ranked
features based on various methods and for various k’s
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ForWide &Deep infidelities, we see slightly better results in that every method performs

above random, though again at a margin that is much smaller than neural collaborative fil-

tering. It is interesting to note that in this case, SHAP performs much better than LIME

than in the neural collaborative filtering case. This is likely because coalitions of inputs (i.e

demographics and item-level features) are much more important than in the neural collabo-

rative filtering case that does not consider demographics.

Consistency

Method Average Consistency
LIME 0.997
SHAP 1.0
Vanilla Gradient 1.0

Table 4.1: Neural Collaborative Filtering Consistency

The neural collaborative filtering method tends to have extremely high consistency.

There is no randomness in the method for vanilla gradients, hence the reasonable result

that across all trials the output was the same. However, for SHAP, the high level of consis-

tency points to why the method is likely so successful in fidelity. Finally, as expected, LIME

has a consistency that is slightly less than one due to the inherent randomness of perturb-

ing samples to create a local neighborhood. We can examine the consistency of LIME with

greater depth with the boxplots below.

In the box plots, we see how LIME is converging to stable coefficients with larger num-

ber of perturbations. That is, both the average euclidean distance between the outputted
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Figure 4.7: Box plots illustrating convergence for adapted LIME for neural collabrative filtering

coefficients and the spread as measured by interquartile range decreases with larger number

of perturbations. At the end, we still see a nonzero difference, meaning that while LIME

has almost converged, there will always be room for a non-perfect consistency unless we use

theoretically infinite perturbations.

Method Average Consistency
LIME 0.965
SHAP 1.0
Vanilla Gradient 1.0

Table 4.2: Wide & Deep Consistency

We see similar trends in consistency for Wide &Deep. LIME tends to have a slightly

lower consistency. We can examine the boxplots for convergence to understand why this

occurs.

Figure 4.8: Box plots illustrating convergence for adapted LIME for Wide & Deep
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As seen above, the convergence, while still occurring, is at a rate that is slower than the

convergence of our LIME coefficients for neural collaborative filtering.

Data Stability

% Perturbed LIME SHAP Vanilla Gradient
5 0.996 0.999 0.920
10 0.996 0.999 0.918
15 0.996 0.999 0.915
20 0.996 0.999 0.914

Table 4.3: Neural collaborative filtering data stability

Perturbation slightly of data tends to have minimal impact on SHAP and LIME as com-

pared to vanilla gradients. Vanilla gradients tends to see a nontrivial amount of alteration

in outputted coefficients based on small changes to the input. This is likely due to the fact

that the neural network model is much more sensitive to small changes then the surrogate

models that SHAP or LIME employ. That is, the gradient of the input likely change based

on small changes to the input.

One could pinpoint this as a possible reason for low fidelity for vanilla gradients. That is,

if vanilla gradients is so susceptible to small changes in the input, then its ability to general-

ize trends and patterns of explanations between similar data is likely worse.

For Wide &Deep, SHAP performs with near perfect data stability. LIME and vanilla

gradients perform particularly worse. LIME’s worse performance for wide & deep is in line

with its comparatively worse performance on the fidelity metric as well.
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% Perturbed LIME SHAP Vanilla Gradient
5 0.942 0.999 0.910
10 0.942 0.999 0.905
15 0.942 0.999 0.895
20 0.942 0.999 0.894

Table 4.4: Wide & Deep data stability

Scalability

Figure 4.9: Neural collaborative scalability for LIME, SHAP, VanillaGrad respectively

The scalability trends point to LIME and SHAP having similar explanation generation

times as compared to vanilla gradients. SHAP, however, in its need to also generate coali-

tions in addition to build a surrogate model, tends to take longer. One can then realize

there may be an accuracy and scalibility trade-off ever-present in machine learning tasks.

While LIME and SHAP tend to have better fidelity and data stability, they both are com-

paratively much more resource-intensive tasks. Regardless, all seem to have linear orO(n)

computational complexities.
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Figure 4.10: Wide & Deep scalability for LIME, SHAP, VanillaGrad respectively

In the case of Wide &Deep, the scalability of all tasks is still linear, although the coeffi-

cient for SHAP is much higher.

4.4.2 Offline Results: Latent explanationMethods

Fidelity & Infidelity

Neighbor-based:

Embedding Layer Fidelity Infidelity
GMFUser 1.51 0.85
GMF Item 1.9 0.54
MLP User 1.45 0.86
MLP Item 1.05 0.95

Table 4.5: Neighbor‐based embedding explanation fidelities and infidelities

Aspect-based:

In general the fidelities tend to be much better for the GMF layers than the MLP lay-
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Embedding Layer Fidelity Infidelity
GMFUser 1.11 0.91
GMF Item 1.10 0.98
MLP User 1.01 0.99
MLP Item 1.01 0.99

Table 4.6: Aspect‐based embedding explanation fidelities and infidelities

ers. That is, it is easier for us to explain the GMF embedding layers than the MLP with our

methods. This is likely due to two reasons. First, the GMF layer, in optimal, has a smaller

embedding size which may be easier to explain. Second, the MLP embedding layer is ulti-

mately connected a variety of neural network layers, which means that the embedding layer

itself might not as naturally lend itself to interpretable inputs.

Moreover, we see that the neighbor-based method for all embedding layers has much

higher fidelity than the aspect-based. This is logical as neural collaborative filtering is based

on the idea that we can understand recommendations based on neighbors. Meanwhile, we

don’t specifically encode demographic or item-subject level information in our neural col-

labrative filtering model like the Wide &Deep model. Moreover, we also understand that

the aspect-based approach may suffer due to unequal representation of various demograph-

ics.

For infidelities we observe similar trends. Indeed, as expected, the infidelities act almost

as recriprocals of the fidelities.

Data Stability:
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Embedding Layer Data Stability Average Data Stability Variance
GMFUser 0.998 1.471 ∗ 10−6

GMF Item 0.924 9.572 ∗ 10−5

MLPUser 0.995 1.704 ∗ 10−6

MLP Item 0.893 3.922 ∗ 10−4

Table 4.7: Data stability for neighbor‐based explanations

Embedding Layer Data Stability Average Data Stability Variance
GMFUser 0.927 1.471 ∗ 10−6

GMF Item 0.989 9.572 ∗ 10−5

MLPUser 0.903 1.704 ∗ 10−6

MLP Item 0.981 3.922 ∗ 10−4

Table 4.8: Data stability for aspect‐based explanations

Interestingly, we see higher data stability for user embedding layers in the neighbor-based

approach, and higher for item embedding layers in the aspect-based approach. This would

imply that adding additional item-user pairs has large impacts on the way we explain items,

but doesn’t have as large of an impact on groups of types of items. The vice versa applies for

users. There are more item-level features, which likely means adding an additionl one does

not have as large of an impact.

Scalability

We see the scalability trends for both aspect and neighbor methods have the same trends.

The item explanations tend to take longer than users significantly. For the neighbor case

this is likely because each item has more corresponding users than each user having more

corresponding items. Moreover, for the aspect-based method, there are more item-level
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Figure 4.11: Top is scalability for neighbor‐based explanations. Bottom is scalability for aspect‐based explanations.
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features than user-level features.

The scalability of the aspect method is clearly much less than the neighbor-based method.

This is because for the neighbor-based method we have to search through an individual’s

neighbors but we do not have to complete this process with the aspect method.

However, both are still linear processes, which creates room for scalability.

4.5 SurveyMotivation

Ultimately, human explainability is best defined by the target user or practitioner. Because

explainability in AI is both a new field and because explainability for recommendation

modeling is not widespread, we aim to test our methods utilizing the target users: con-

sumers. Our survey aims to solve three primary goals:

1. RQ1: Do users prefer explainable recommendations as compared to non-explainable
recommendations?

2. RQ2: What format of explanations do users most prefer? What post hoc explaianbil-
ity method do users most prefer?

3. RQ3: What is the relationship between recommendation accuracy and howmuch a
target user cares about explainability of the recommendation” recommendations?
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4.6 Survey design

Our survey consists of three main subparts. The first is a demographic questionnaire. The

purpose of the personal information questionnaire is to analyze any trends in explainabil-

ity dependent on demographics. The second is profile selection in order for users to select

candidates in our dataset that are similar to them. Finally, we go through the final section

where we compare our explainability methods for generated recommendation movies.

Figure 4.12: Figure depicts flow of survey

Demographics SectionThe demographic section aims to analyze trends based on age

and gender. Moreover, we would like to ensure trends that are present in our study are

readily extendable to a generalizeable population. As you can see for gender we allow three
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options, understanding the exclusionary practice of the gender binary. For age, we allow

a user to enter any number they desire. We only ask these two questions to minimize the

privacy invasive nature of our survey. We understand that recent research by Dr. Latanya

Sweeney has shown that adding additional questions such as zip code or occupation means

we have the capacity to almost fully re-identify all participants in our study. Our final ques-

tion of the three asks about technical experience to see if explainability in recommendation

modeling is especially important to anyone or mainly those understanding the disagree-

ment problem.

In the next section, survey users are given a list of four profiles each with four previously

high-ranked movies. Each user is asked to select the profile that they most feel are similar to

their own preferences.

Instead of letting users input or select their own movies, we use profiles for three primary

reasons:

1. Users would have to input a large number of movies for the model to truly be accu-
rate on them.

2. If users inputted their own movies or selves, we would have to not only re-train the
model, but re-train every explanation method. This would be severe time bottleneck,
making the survey less accessible.

3. Selecting movies would be especially difficult for younger users given that Movie-
Lens datasets primarily consist of movies from before 2000.

To select the candidates that we profile from theMovielens dataset, we take the following
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process. In the first step, we select the users that our model successfully includes their test

movie rating in the test set. This is because we only want to select users that our model is

accurate on. Next, of the approximately 700 potential candidates, we select the 100 which

have the highest average fidelity over our LIME, SHAP, and Gradient methods. Once again,

we only want to select users that have a baseline level of accuracy in our explanations as well

as the model itself. Finally, from our remaining hundred, we select four that have diverse

enough demographics. That is, each profile is randomly selected with the constraint that

the age, occupation, and gender are different. From there, we run our user and every item

in the MovieLens dataset through the neural collabrative filtering model trained in part 4

and select the top 2 predicted movies for each profile.

Comparison In our final part of the survey, we collect the important data. First and

foremost, for each of the two movies that are recommended to the user, we ask if the user

believes this is an accurate recommendation based on the profile they selected. It is impor-

tant the user utilizes the profile data rather than their personal beliefs. This question aims

to connect to RQ3.

The next question compares the three type of explainable formats. These are explaining

based on a neighboring item, explaining based on a user aspect, and explaining based on an

item aspect. We exclude a user neighbor as in this case that may be privacy invasive, though

we understand there may be social networking applications in which a user neighbor would
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be sufficient. We also include a no explanation choice. We then ask each user to explain

their answer. This in hopes of answering both RQ1 and RQ2.

Following, we compare the explanations generated by LIME, SHAP, and VanillaGrad.

For each post hoc method, we include an aspect explanation and a neighbor explanation.

We once agian ask the user to explain their answer. This in hopes of answering both RQ1

and RQ2.

4.7 Survey results

Ultimately we were able to survey n = 50 members of the Harvard community and beyond

to conduct our online testing. We believe that surveying the Harvard community would

still be representative enough to understand the preferences of recommendation explana-

tions as the survey in itself requires no technical expertise. Moreover, students at Harvard

don’t in themselves posess a statistical bias in regards to recommendation explainability.

Our demographics included 54% female, 42%male, and 2 non-gender binary. Our aver-

age age was 25 with a standard deviation of 8.

Comparison of Methods:

In total, we first compared the number of users who preferred any aspect-based expla-

nation, neighbor-based explanation, or no explanation. Only 20.6% of users preferred no

explanation as compared to 33.3% of users who preferred aspect-based explanations, and
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45.0% of users who preferred neighbor-based explanations.

In terms of head-to-head comparisons or the first question of each section, we see there

is a slight preference towards user aspects rather than item aspects. That is 18.1% of respon-

dents preferred user-level aspects such as age or occupation as compared to the 15.1% that

preferred item-level aspect information.

Figure 4.13: Figure shows breakdown of preference between neighbor and aspect latent explanations for each post hoc
explanation

In general, when comparing the methods, the LIMEmethod tends to gain more clicks as

compared to a more equally clicked SHAP and VanillaGradient method. Moreover, while

the neighbor explanation is preferred for LIME and Vanilla Gradients, SHAP sees a closer

to equal split between the two latent explainability methods.

We then looked at relationship between what respondents thought of the accuracy of

the recommendation with respect to the types of explanations they preferred. In general,
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neighbor-based explanations were preferred when users perceived higher accuracy of rec-

ommendations while aspect-based recommendations were preferred with lower ranked

recommendations. Intuitively, it may be easier to see an explanation is right if the ranking is

right when it comes to similar movies. However, when a ranking seems wrong, a user may

chalk that up to a demographic-level explanation they do not fully understand. In terms of

trends when connecting post hoc method to recommendation quality, the most prominent

is that VanillaGrad explanations are preferred at lower quality recommendations.

Figure 4.14: Figure shows breakdown of preference over neighbor or aspect explanations for various perceived recom‐
mendation qualities

When we asked users to explain why they clicked certain explanations, we see a few emerg-

ing themes.

First and foremost, users who chose not to receive an explanation did so because they

were able to perceive incorrectness of the explanation methods. For instance, recommend-
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Figure 4.15: Figure shows breakdown of preference over LIME, SHAP, or VanillaGrad explanations for various perceived
recommendation qualities

ing a movie because someone is age ”30” even if they’re profile is supposed to be in the

”60’s.” This underscores the importance of resolving the disagreement problem. It is not

just sufficient to explain, but correct explanations are vital. One example quotation was “I

don’t think the movie is similar to The Rock andMarvins room (2nd choice) and it is not

a horror movie (4th choice). I’m not an artist or an engineer (3rd choice), so the 1st choice

seemed most natural and likely to me.”

Second, it is more easy to perceive an incorrect explanation in aspect-based methods.

One example quotation was “it’s like a preview of what people 25-31 like... even though

I’m 69.” In addition, others seem not to chose demographic information given that it may

be privacy-invasive as some users claimed they liked explanations that lacked “demographic

information.”
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Third, many view the neighbor-based explanations as algorithmic or trustworthy. One

example quotation included “a rom-com seems like an amalgamation of most of the movies

in that profile, even though I don’t know if I’ll like this one particularly.” Another example

quotation included “I would probably not like the movie, but I would be more accepting if

it was supposed to be similar to other movies I have seen.”

Thus, ultimately we achieve the following answers. For research question 1, we do find a

significant difference between recommendations with explainability and recommendations

without explainability. It is clear users prefer explainable recommendations. For research

question 2, we find users prefer neighbor-based explanations generated by LIME. Finally,

for research question 3, we find in both the format of the explanation and the post hoc

method, there are significant trends between quality of recommendation and preferred

explanation.
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5
Conclusion

5.1 The Disagreement Problem conclusions

We introduced and studied the disagreement problem in explainable ML. More specifically,

we formalized the notion of disagreement between explanations, analyzed how often such

disagreements occur in practice, and how practitioners resolve these disagreements. We

conducted interviews with data scientists to understand what constitutes disagreement
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between explanations, and introduced a novel quantitative framework to formalize this

understanding. We then leveraged this framework to carry out a rigorous empirical anal-

ysis with four real-world datasets, six state-of-the-art post hoc explanation methods, and

eight different predictive models, to measure the extent of disagreement between the expla-

nations generated by various popular explanation methods. We also carried out an online

user study with data scientists to understand how they resolve explanation disagreements.

Our results indicate that state-of-the-art explanation methods often disagree in terms of

the explanations they output, and worse yet, there do not seem to be any principled ap-

proach that ML practitioners employ to resolve these disagreements. For instance, 84%

of our interview participants reported encountering the disagreement problem in their

day-to-day workflow. Our empirical analysis with real world data further confirmed that

explanations generated by state-of-the-art methods often disagree with each other, and that

this phenomenon persists across various models and data modalities. Furthermore, 86% of

our online user study responses indicated that ML practitioners either employed arbitrary

heuristics (e.g., choosing a favorite method) or just simply did not know how to resolve the

disagreement problem.

We shed light on a unique problem that poses a critical challenge to adopting post hoc

explanations in practice and pave the way for several interesting future research directions.

First, it would be interesting to systematically study the reasons behind the occurrence of
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the explanation disagreement problem. Second, it would be interesting to propose novel

approaches to address this problem. One way to do this is to come up with principled eval-

uation metrics which can help practitioners readily discern a reliable explanation from an

unreliable one when there is a disagreement. Third, it would also be interesting to rethink

the problem of explainingML from scratch, and potentially develop a whole new set of

algorithms that are built on a common set of guiding principles to avoid these kinds of

disagreements. Lastly, it would be also be incredibly important to regularly educate data

scientists and practitioners about state-of-the-art approaches (e.g., novel evaluation metrics)

that can be used to resolve disagreements between explanations.

5.2 Graph neural network conclusions

Next, we presented present the first holistic set of metrics to evaluate GNN explainability

method performance along critical real-world objectives. We then propose an evaluation

framework which calculates these metrics along the unique decision boundaries generated

by the underlying dataset and model.

Through our analysis, we discovered the effect of dataset properties on explanation per-

formance, synergies between certain explainability methods and underlying GNNmodels,

and overall trends and trade-offs across metrics based on the use case.

We were able to identify and resolve the disagreement probelm successfully by discussing
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in what situations certain classes of explaianbility methods should be applied. Below, we are

also able to utilize our set of metrics to explain how these models could be improved so that

their disagreement is not as widespread.

We first present an innovation for GNNExplainer. From our empirical analysis, we dis-

covered GNNExplainer’s main weakness lies in consistency due to its convexity assump-

tion. That is, because the loss is not convex, GNNExplainer finds many adequate local

minimum rather than a global minimum. The innovation is to include an additional hy-

perparameterNt that accounts for howmany times one should run a GNNExplainer for

a target node then take the average of the feature importance. This will create more consis-

tent and better estimator of true feature importance, however scalability would be a major

issue given GNNExplainer already slow attribution time. Indeed, GNNExplainer lacks the

ability to parallelize operations making this computationally difficult for large values ofNt

We also present a new innovation for Sensitivity Analysis. From our empirical analysis,

we discovered SA’s weakness in that it does not explicitly learn a latent representation of a

prediction’s N-hop neighborhood. Thus, instead of SA’s current method of taking the gra-

dients w.r.t just one prediction, we propose taking the gradients w.r.t. numerous neighbor-

ing predictions, weighting them according to similarity of node features, and aggregating

them for a final importance measure. Because this method now considers the predictions

of a node’s neighbors, SA may experience better fidelity and fairness. However, this comes
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at a trade-off of stability and scalability, as small changes across neighbors may be amplified

through aggregation and additional computation is required.

In terms of an innovation for GraphLIME, we realized from our empirical analysis that

there were two limitations: 1) training on only the k-hop neighborhood and 2) using HSIC

LASSO as the surrogate model. For the first point, we can also incorporate “important”

global nodes (i.e., nodes with high edge degrees) in our neighborhood construction – this

will allow GraphLIME explanations to also capture global characteristics of the graph

dataset. Second, we can use models that are more akin to graph-tasks but still lightweight

and interpretable. For example, we can use a one-layer GAT as the surrogate model. These

modifications will increase fidelity at a cost of scalability (training more complex models

takes more time).

5.3 Recommendation modeling conclusions

Following, we extended our list of holistic metrics to evaluate recommendation model ex-

plainability. In our pursuit of testing and evaluating recommendation post-hoc explainabil-

ity, we formulated recommendation explainability as a two-step process: latent dimension

explainability and network explainability. For the former, we proposed a completely new

methodology and for the latter we adapted current state-of-the art methods.

We conducted the first user study testing recommendation model explainability. We
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discovered that users unequivocally prefer recommendations with explanations and began

to understand the format and types of explanations that they prefer.

Ultimately, our goal was to resolve the disagreement problem. While a resolution to the

disagreement problem will always be application-specific, we propose that those who use

recommendation models similar to neural collabrative filtering utilize a combination of

neighbor-based explanations for latent dimensions combined with an adapted post-hoc

LIME. In general, this results in high user clicks, high offline fidelity and data stability, and

scalability that is useful for real-world applications.

However, for models that are similar to Wide &Deep, we propose using the post-hoc

method of SHAP. This is because the fidelity for LIME and VanillaGrad tends to be con-

cerning low. Because only demographic-level information is inputted into manyWide &

Deep models, we also propose the innovation of encoding historical user ratings as well.

This will likely result in a better latent dimension explanation method through the neighbor-

based method.

5.4 Future work

In this work, we have identified a critical disagreement problem in the literature on explain-

able machine learning, and have proposed strategies to resolve this problem for graph neu-

ral networks. Going forward, we plan to propose novel methods to address the disagree-
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ment problem for different classes of models (e.g., recurrent neural networks) and domains

(e.g., natural language processing). We also hope to propose newmetrics which are more

aligned with practical use cases to evaluate post hoc explanations. We plan to expand our

metrics to incorporate the notions of fairness and scalability, and potentially add other met-

rics such as privacy.
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