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Abstract

The task of de novomolecular generation involves creating newmolecular structures in order

to optimize a certain objective, and it is extremely useful in the context of drug discovery. A key

challenge in this task is that in many cases, it is not possible to frequently perform ground-truth

evaluation of molecules because this evaluation must be done in a wet lab and is therefore resource

intensive. In this thesis, I propose a de novo generation method that first trains a Graph Neural Net-

work predictor for the property to optimize and then uses this predictor as a scoring function (in-

stead of ground truth scoring) in a Graph-Based Genetic Algorithm generation method. I use batch

Bayesian Optimization to create the training dataset for the predictor, and do so iteratively and with

realistically sized batches. This training dataset also provides high quality molecules to use as a start-

ing point for the Genetic Algorithm. I evaluate this method on the task of generating molecules that

dock well to the human Dopamine Receptor D3 and observe that using Bayesian Optimization to

create the training dataset frequently leads to better top molecules generated by the Genetic Algo-

rithm on average compared to using random dataset creation. Additionally, the top molecules gen-

erated by the Genetic Algorithm are on average better than the top molecules in the training dataset

of the predictor. This highlights the utility of the Genetic Algorithm as an additional optimization

iii



Thesis advisors: Professors Marinka Zitnik and David C. Parkes Varun Tekur

step after Bayesian Optimization.
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0
Introduction

The task of de novomolecular generation involves generating newmolecules that maximize certain

properties and/or meet certain constraints. De novo generation is a central task in the drug discovery

process, and the key property that researchers often care about is how well a generated drug can-

didate molecule docks, or binds, to a target protein [5]. This a necessary property to optimize for

because binding to the target can disrupt its activity and therefore potentially cure or reduce the
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severity of a disease associated with the target.

In recent years, there has been lots of work published on using machine learning and other al-

gorithmic methods to perform the task of de novomolecular generation for drug discovery. These

methods have the potential to provide value because they can explore the molecular space quickly

and effectively in order to find a small number of high-quality drug candidates.

One of the most challenging aspects of developing these methods is getting them to work with

limited amounts of labeled data (pairs of molecules and their scores for the properties being opti-

mized) and realistic procedures for collecting this data. This is because many useful molecular prop-

erties, such as how well a molecule docks to a target protein, can only be determined in a wet lab

experiment. Wet lab experiments are resource-intensive, which limits the number of data points that

can be labeled. These experiments are also conducted on batches of many molecules at a time. This

latter point is particularly relevant to many recently published methods for de novo generation (e.g.,

based on reinforcement learning [30], MCMC sampling [27], and genetic algorithms [13]), which

rely on iteratively querying ground-truth property scores for one or small numbers of molecules at a

time.

An approach for de novo generation under these constraints is to first train a machine learning

model to predict the property that needs to be optimized using a realistic amount of labeled data

and then query this model as a proxy for ground-truth scores in an iterative generation algorithm [9]

[19]. A straightforward way to do this would be to randomly query n data points from an existing

library of drug-like molecules for wet-lab labeling and then train a model once using this data.

I instead explore the idea of using Bayesian Optimization for iterative training dataset generation.
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For a training dataset size of n, this method involves b rounds of 1) selecting n/bmolecules to label

and add to the training set and 2) re-training the model on the new, larger training dataset. The n/b

molecules selected for each round are chosen from a library of drug-like molecules to maximize of a

function of a) predicted score and b) epistemic uncertainty (uncertainty due to lack of training data)

as estimated by the model. The motivation behind adding molecules with high predicted property

scores to the training dataset is that many of these molecules will have high ground-truth property

scores. This can allow the model to have finer-grained accuracy in high-property score regions of the

input space, which may be useful to the downstream de novo generation algorithm that uses it. This

can also allow the generation algorithm to use high property score molecules as starting points that

can be improved upon. The motivation behind adding molecules with high epistemic uncertainty

to the training dataset is to improve the model’s accuracy on regions of the input space for which it

has less data in, which can improve its overall accuracy. This could improve the overall performance

of the de novo generation algorithm that uses it and also improve the model’s ability to identify high

property score molecules during subsequent rounds of data collection.

In this thesis, I present a method for de novomolecule generation using a realistic data-labeling

scheme that first trains a Graph Neural Network property prediction model [29] using Bayesian

Optimization for iterative training dataset creation and then uses this predictor as a scoring function

in a Graph-Based Genetic Algorithm [13] for molecule generation. I evaluate the method’s effec-

tiveness on the task of generating molecules that dock effectively to the human Dopamine Receptor

D3 (DRD3). In order to simulate data labeling using wet lab experiments, I use AutoDock Vina

[25], a computational docking software that generates a chemistry-based estimate (docking score) of
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Figure 1: A high level illustration of the method presented in this thesis

how well an arbitrary input molecule binds to a target protein with a known structure. I find that

the method is able to generate molecules that have higher docking scores than those in the training

dataset and also show the benefit of using Bayesian Optimization for training dataset creation. Ad-

ditionally, I find that the method works best when the molecules with the highest docking scores in

the collected training dataset are used as the starting population for the Genetic Algorithm. Figure 1

illustrated a high level diagram of this method.
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1
Problem: De NovoGeneration of Molecules

for Drug Discovery

The task of de novomolecule generation involves designing newmolecules in order to meet a par-

ticular objective. In the context of drug discovery, this objective is to cure or weaken the severity of

a particular disease. Since the space of all possible drug candidate molecules is extremely large and
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wet-lab experiments to determine the efficacy of candidates are resource intensive, it is not possible

to use a brute-force search approach to find ideal candidates. Therefore, computational methods

that generate a reasonable number of high-quality drug candidates whose efficacy can then be tested

using wet lab experiments are very useful to the drug discovery process [12]. In this chapter, we de-

scribe the concept of a molecule docking to a target protein, which is an important property for

these computational generation methods to optimize and is the property that we focus on in this

thesis. We also discuss computational docking software, which allows us to noisily estimate how

well molecules dock to certain targets. Finally, we briefly describe some other properties that are

important to optimize in the drug discovery process that are not covered by our experiments.

1.1 Property to Optimize: Docking to a Target

Many diseases are caused by the activity of particular proteins in an individual’s body. Therefore,

a way to cure or lessen the severity of these diseases is to disrupt the activity of these proteins by

using drug molecules that are smaller than the target proteins to physically bind to them. For exam-

ple, enzymes are proteins that have pockets called active sites. These pockets can physically take in

molecules involved in a chemical reaction in order to help the reaction occur successfully. If the re-

action that a particular enzyme is involved with contributes to a disease, binding a small molecule to

that active site can potentially lessen the severity of the disease because it can disrupt the occurrence

of this reaction [4]. This means that a property that de novomethods for drug discovery need to be

able to optimize is the effectiveness with which a generated molecule docks to a target protein of in-
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terest [5] [25], and we focus on this propety in this thesis. An illustration of docking can be seen in

Figure 1.1.

In particular, the experiments in this thesis evaluate docking to the human Dopamine Receptor

D3 (DRD3). Dopamine receptors are common drug targets for neuropsychiatric (brain-related)

diseases [28]. DRD3 was chosen because its structure is known, so the ability of molecules to dock

to it can be estimated by computational docking software (explained in the next subsection), and

this software for DRD3 was easily available through the Therapeutics Data Commons library [12].

It is worth noting that many recent papers on machine learning methods for de novo generation

evaluate these methods using different metics, which commonly include LogP (octanol-water parti-

tion coefficient), QED (a drug-likeness metric), and the inhibition of kinases GSK3β and JNK3 as

predicted by a random forest model. The first two metrics have been criticised for not being similar

to objectives optimized in real drug discovery processes [5] [6]. The latter two metrics are drug-

discovery objectives in nature, but they use a machine learning model for evaluation, which may fail

to generalize well beyond its training distribution and therefore may not be an accurate reflection of

ground truth evaluation.

1.2 Measuring this Property: Computational Docking Software

In an ideal world, we would only evaluate the docking ability of molecules to target proteins using

wet lab experiments. However, this would make the development of methods extremely slow be-

cause it would require a wet lab experiment for every round of method evaluation.
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Figure 1.1: An illustration of a small molecule docking to a target molecule [11]

A viable alternative is to use computational docking software as a proxy for wet lab experiments

during initial method development, and this is the approach that we take in this thesis. This soft-

ware estimates the strength with which a small molecule (ligand) binds to a target molecule (recep-

tor) and structure of the receptor/ligand pair after binding using the structures of the ligand and

receptor and properties of chemistry. For each input ligand, it outputs a single number (docking

score), and a lower (more negative) docking score indicates that a ligand binds better to a receptor.

The docking software that we use is AutoDock Vina [25], which is accessible through the pyscreener

python wrapper [10] (which is called using another wrapper, the Therapeutics Data Commons [12]

python library). We also note that docking software only provides an estimate of how well a ligand

binds to a receptor (and can therefore be noisy), and it is also computationally intensive (for exam-

ple, it can take about an average of 10 seconds per molecule to find docking scores for molecules in

the ChEMBL dataset [20]). However, it is useful as a first step in method development, and meth-

ods that evaluate well on it can then be further evaluated using wet lab experiments.
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1.3 Other DrugDevelopment Considerations

Despite its utility for finding drug candidates, finding docking scores is not the sole focus of drug

discovery [25]. Researchers also need to determine if drug candidates affect the activity of targets

that they bind to in specific ways in order to reduce the severity of a disease [4], and the candidates

eventually need to be tested in animals/humans for both efficacy and safety.

Some additional properties that can be optimized or required to meet a certain threshold by gen-

eration methods are synthesizability and side effects to molecules/processes in the body other than

the target molecule [12]. In the future, it would be interesting to test this thesis’s method and re-

lated methods on the task of multi-objective optimization of these properties and docking scores.
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2
Methods: Molecular Property Prediction

and Bayesian Optimization

We now discuss the first stage of our method for de novomolecule generation: training a property

predictor that can be used as a scoring function in a generation method. While we train a predic-

tor of docking scores to human Dopamine Receptor D3, this training procedure can be used for a
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model that needs to predict any numerical property of molecules.

2.1 Loss Functions for Regression and Uncertainty Quantification

2.1.1 Mean Squared Error

For models that only need to predict a molecular property, we use the mean squared error (MSE)

loss function, a standard regression loss function,

1
n

N∑
i=1

(yi − F(xi))2,

defined here for a batch ofNmolecules {xi}Ni=1, true docking scores {yi}Ni=1, and regression

model F.

2.1.2 Evidential Regression

For Bayesian Optimization (described in a later section), we need models to be able to perform prop-

erty prediction and quantify the epistemic uncertainty for each input molecule. Epistemic uncer-

tainty is a measure of model uncertainty due to lack of training data. For an input x, epistemic un-

certainty should be high if the model has not been trained on many data points that are similar to

x. The model is uncertain, or has low confidence, for input x in this case because its predictions are

unlikely to be very accurate on regions of the input space that it has not been trained well on.

While there are many methods for quantifying the epistemic uncertainty of a deep regression

model, one method that has been shown to work well [22] for molecular property predictors (and
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in particular the D-MPNN archiecture that we used) is deep evidential regression [1]. In evidential

regression, we assume that each regression target y is sampled from a normal distribution with mean

μ and variance σ2, as in traditional MSE regression. However, unlike MSE regression, we assume

that μ is sampled from a normal distribution and σ2 is sampled from an invese gamma distribution,

the parameters for which are a function of the input x:

μ ∼ N
(
γ, σ2v−1) σ2 ∼ Γ−1(α, β)

And F(x) = (γ, v, α, β) for regression model F. The loss function that used is the sum of the

negative logarithm of the marginal likelihood, p(y|F(x)), and a regularization term. The goal of

minimizing this loss function is to find the model parameters that best explain the observed data

(assuming the data generation process described above) and associate uncertainty with error.

We fill first explain the marginal likelihood loss term. It is known that when the assumed distri-

butions on μ and σ2 are normal and inverse-gamma, respectively, the distribution of the marginal

likelihood is the Student-t distribution:

p (y | F(x)) = St
(
y; γ,

β(1+ v)
vα

, 2α
)
.

So, we can find the negative log marginal likelihood using the Student-t PDF,

1
2
log
(π
v

)
− α log(Ω) +

(
α+

1
2

)
log
(
(y− γ)2 v+Ω

)
+ log

(
Γ(α)

Γ
(
α+ 1

2
)) ,
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where Ω = 2β(1+ v).

The following regularization term is also used:

|y− γ|(2v+ α).

When v increases, then the variance of μ decreases, and when α increases the mean and variance of

σ2 (based on the inverse gamma distribution) both decrease. Intuitively, this indicates when (2v+ α)

increases, then we have parameters that indicate more total evidence for the prediction E[μ] = γ. So,

the regularization term causes high loss values when (2v + α) is high and the absolute error is high

because we do not want parameters that indicate high confidence when the model is incorrect.

The total loss is the sum of the negative log marigial likelihood term and λ times the regulariza-

tion term. More detailed derivations of these loss terms can be found in the deep evidential regres-

sion paper [1].

Training a model using this loss function allows us to use the predicted parameters to estimate

y as E[μ] = γ and the epistemic uncertainty of this prediction asVar[μ] = β
v(α−1) . The intuition

behind this variance term as epistemic uncertainy is that if we haven’t seen many data points near

some input x, then we are likely to not be confident in the distribution of its regression target y,

which is parameterized with mean μ.
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2.2 D-MPNNModel Architecture

We now describe the architecture of the models that we train with the above loss functions. The

ideas of the model architecture that we use, D-MPNN, were initially proposed by Dai et al. [7], and

D-MPNNwas shown to work well for the task of molecular property prediction by Yang et al [29].

In our experiments, we trained our models using the chemprop python package, which implements

this arhitecture for the standardMSE regression case, as well as the codebase of Amini et al. [1],

which implements it for the evidential regression case. D-MPNN is an example of aGraph Neural

Network, which applies the ideas of neural networks to graph structures. For molecular property

prediction, the nodes of the input graph are atoms and the edges are chemical bonds. We note that

the model is trained using minibatch gradient descent/backpropogration, the learning rate is up-

dated using a Noam learning rate scheduler (the idea for this is explained in Vaswani et al. [26]), and

the Adam optimizer is used [17]. The architecture consists of the following four steps (as explained

in Yang et al.).

2.2.1 Initial Directed EdgeHidden States

Nodes in the graph are connected by directed edges going in both directions, and each directed edge

has a hidden state, or vector, associated with it. On each forward pass of the model, the starting

hidden state for the directed edge from node a to b is computed as:

h0ab = relu(Wicat(xa, eab)).

14



In this formula, xa and eab are chemistry-informed features for atom a (e.g., atomic number,

atomic mass) and the bond from atom a to atom b (e.g., bond type, if the bond is in a ring or not),

cat is vector concatenation, relu is the standard relu activation function (relu(x) = x if x ≥ 0

and 0 otherwise), andWi is a parameter matrix (updated on each model backward pass) of size

s× |xa|+ |eab| (s is the size of hidden states, a hyperparameter).

2.2.2 Directed EdgeMessage Passing

The model then performs t (a hyperparameter) rounds of message passing in order to iteratively

update the hidden states for each directed edge. For round i+ 1, this means that the hidden state for

the edge from a to b gets updated as:

hi+1
ab = relu(h0ab +Wm

∑
c∈N(a)\b

hica).

In this formula,N(a) are the neighbors of a andWm is a parameter matrix of size s × s. The

intuition behind performing n rounds of message passing is that the representation for each directed

bond edge should be informed by its context, or the structure of the graph around it. If we iteratively

set its the hidden representation to be a function of the bonds connected to it, then information

from bonds multiple edges away from it will eventually be passed to it.

2.2.3 NodeHidden States

After t rounds of message passing, we can then compute hidden states for each node:

15



ha = relu(Wncat(xa,
∑

b∈N(a)

htba))

In this formula,Wn is a square parameter matrix.

2.2.4 Aggregation and Property Prediction

Finally, we can compute a full graph representation by adding the hidden states for all nodes to-

gether and then passing this sum into a feed forward neural network that uses the relu activation

function to obtain an output value. For standard regression, this output value is a single number,

and for evidential regression, this output value is a vector of size 4.

An illustration of the model can be seen in Figure 2.1.

2.3 Bayesian Optimization for Training Data Collection

We now describe the process used to select molecules to be labeled with a property score and added

to the training dataset. The most direct way to construct a training dataset of size n from a pool of

unlabeled molecules is to randomly sample n of the molecules and then label them (ideally using

a wet-lab experiment, but in our experiments using computational docking software as described

in Chapter 1). We instead make use of batch Bayesian Optimization [8] for dataset creation. Batch

Bayesian Optimization with batch size b involves n/b iterations of selecting the b data points from

a pool of unlabeled data points that maximize an acquisition function. This acquisition function is

generally a function of a property score and an uncertainty measure, each of which are estimated
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Figure 2.1: Figure 1 from Yang et al.[29], with caption: ”Illustration of bond‐level message passing in our proposed
D‐MPNN. (a) Messages from the orange directed bonds are used to inform the update to the hidden state of the red
directed bond. By contrast, in a traditional MPNN, messages are passed from atoms to atoms (for example, atoms 1, 3,
and 4 to atom 2) rather than from bonds to bonds. (b) Similarly, a message from the green bond informs the update to
the hidden state of the purple directed bond. (c) Illustration of the update function to the hidden representation of the
red directed bond from diagram (a).”
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by a model that has been trained on the previously labeled data points. In the case of molecular

properties with ground truth values determined using wet lab experiments, bmust be a number of

molecules that researchers can reasonably run an experiment with. So, it cannot be too large because

researchers may not have the resources to run an experiment of this size. It also cannot be too small

(e.g., it doesn’t make sense to run a wet lab experiment using only one or a handful of molecules).

Similarly, the size of n (total molecules) is constrained by researcher resources. Below, we describe

the acquisition function that we use in our experiments, molecule libraries that we select from, and

motivation behind this method of data collection.

2.3.1 Upper Confidence Bound Batch Bayesian Optimization

As in Bertin et al. [2] and Soleimany et al. [22], we use the upper confidence bound (UCB) acquisi-

tion function, which follows the form

a ∗ score+ b ∗ uncertainty.

In our experiments, score and uncertainty are the negative (since lower docking scores are better)

of the predicted docking score and the epistemic uncertainty, respectively, output by a D-MPNN

trained using an evidential regression loss function. Hyperparameter a is generally 1, although we

also tested the case when a = 0 (also known as Active Learning).

On the first iteration of data collection, n/b points are selected randomly from a molecule library.

On each subsequent iteration, n/b points are selected from a selection pool to maximize the UCB

18



function. This selection pool is a random sample (without replacement) from the library or the

whole library itself. Once these n/b points are selected, they are removed from the library (so that

they cannot be selected again).

The hyperparameters in this process are a, b and the size of the selection pool.

2.3.2 ZINC and ChEMBL Libraries

We run experiments using both the ZINC 250K [24], [18] and the GuacaMol ChEMBL [20], [3]

molecule libraries, which are meant for searching for molecules for drug discovery purposes. The

GuacaMol ChEMBL library is larger (about 1.5 million molecules vs 250K) and is also known to

have other potential advantages like having larger and exclusively previously synthesized molecules.

ZINC 250K can be downloaded using the Thereapautics Data Commons python package [12] and

GuacaMol ChEMBL can be downloaded from a link in the GuacaMol paper [3]. Not all molecules

in the libraries were used. For example, molecules that caused the docking software to raise errors

were discarded, and a random set of 3k molecules was removed from ZINC 250K for predictor

validation/testing during the initial stages of method development.

2.3.3 Motivation Behind Approach

Bayesian Optimization for the collection of training data can offer several possible advantages over

random training data collection in the pipeline of training a model and then using it as a scoring

function for a generation method:

1. If data points with high predicted values for a property are selected, then many of these
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points may have high ground-truth values for that property. If the training dataset has many
high-docking score molecules, then the model uses more data points to learn a regression
function in high docking score than low docking score regions of the input space, poten-
tially leading to higher accuracy in the former. This may lead to better performance by the
generation method because it can more accurately differentiate between which molecules
are “good” vs. “very good”. These fine-grained predictions are likely to matter less in “bad”
regions of the input space as long as points here are labeled as “bad”.

2. If top molecules in the training dataset have higher docking scores, then these better molecules
can provide a better starting point for a Genetic Algorithmmolecule generation method,
which we use. The Genetic Algorithm will be explained in more detail in chapter 3, but this
advantage can be thought of as a generation method being given a better inductive bias.

3. The uncertainty term in the UCB acquisition function as well as sampling a fraction of the
full library to be used as a selection pool can allow for selection of more diverse data points.
The former can allow for this because data points with a higher epistemic uncertainty quan-
tification will be dissimilar to existing points in the training dataset. So, adding these points
to the training dataset can allow the model to improve its predictions on input areas about
which it has little knowledge. The latter can help with this by helping Bayesian Optimization
data collection not over-rely on the knowledge of the model. If points are selected from the
entire molecule library to maximize the acquisition function, then these points are likely to
correspond to the model’s current idea of a high acquisition function molecule. If points are
instead selected from a random sample of the library, then points which the model does not
believe are optimal will be selected. If some of these points are optimal (and the model was
wrong about them), the training dataset will gain molecules about which the model had less
knowledge.

A more diverse set of data points is important because it can allow the model to cover more
area in the input space for a given training set size, potentially increasing its performance.
This can be useful for both the downstream generation method as well as subsequent itera-
tions of Bayesian Optimization (due to higher accuracy acquisition function predictions).
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3
Methods: De NovoMolecular Generation

Wewill now describe the method used for de novo generation, a Graph-Based Genetic Algorithm

(Graph GA) that was presented by Jensen et al. [13]. We use this algorithm with a D-MPNNmolec-

ular property predictor output that is trained as described in Chapter 2 as the scoring function. In

our experiments, we used the version of this algorithm implemented by the GuacaMol team [3] and

adapted it to work with a D-MPNN scoring function. We also briefly highlight other recently pub-
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lished de novomolecule generation methods, which can similarly make use of a property predictor as

a scoring function.

3.1 Graph-Based Genetic Algorithm

AGenetic Algorithm is a technique to find data points in a space that maximize a function [23], and

it generally follows the following pseudocode :

Algorithm 1 Genetic Algorithm
Set starting population
Evaluate scores of starting population
while not converged do

Sample molecules weighted by score
Offspring←Crossover andMutation of sampled molecules
Evaluate scores of offspring
Population← top scoring molecules between offspring and old population

end while

Once the algorithm terminates, the population, and particularly the highest-scoring member, is

the algorithm’s solution to the optimization. We break down these different steps in the context of

Jensen et al.’s Graph GA [13] and using a D-MPNN property predictor for scoring.

3.1.1 Starting population and score evaluation

The starting population of molecules is either a random sample of size population_size from the

molecule library used for training the D-MPNN property predictor (either ZINC 250K or Gua-

caMol ChEMBL), or it is the top population_size scoring molecules based on grouth-truth collected

scores in the training dataset of the property predictor. Score evaluation involves assigning the
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property predictor’s estimated score to each member of the population. For docking scores, since

a smaller docking score is better, we use -1 times the output of the property predictor for score evalu-

ation.

3.1.2 Sample molecules weighted by score

For the current population, we subtract the minimum score in the population from each score (let

us call this new score sampling_score), and then sample offspring_sizemolecules from the popula-

tion with replacement where molecule i is sampled with probability sampling_scorei∑
k∈pop sampling_scorek

.

3.1.3 Crossover/Mutation and new population creation

Crossover involves randomly choosing two members of the sampled molecules in the previous

step, randomly splitting each molecule into two pieces, exchanging these pieces between the two

molecules, and then putting the new pieces for each molecule together. One of the newly created

molecules is added to a candidate list if it has certain chemical properties (e.g., fewer than five heavy

atoms, see Jensen et al. for the complete list [13]).

Mutation involves, with some probabilitymutation_rate, changing the structure of the molecule

created by crossover. Examples of mutations include adding and deleting atoms from the graph,

and the type of mutation is chosen at random, with roughly equal probability for each type. See

Jensen et al. for the complete list of mutation types [13]. Again, mutated molecules must have cer-

tain chemical properties (same as described above), and they are removed by the algorithm if they do

not.
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The new population is set to be the population_sizemolecules with the highest scores between

the old population and the candidate list from crossover/mutation.

3.1.4 Convergence

The algorithm is considered to be converged if for patience (a hyperparameter) iterations, the scores

of the population do not change. The algorithm also terminates after generations (a hyperparame-

ter) iterations if it has not converged by then.

3.1.5 Ground Truth Evaluation

Once the algorithm terminates, we can compute an estimate of the ground-truth docking scores of

the final population of molecules using docking software.

3.2 RelatedWork

There are also a wide variety of other recent approaches for de novomolecular generation. One cat-

egory of these approaches is iterative methods such as the Graph GA. Some other examples in this

category are based onMarkov ChainMonte Carlo sampling, [27] Reinforcement Learning [30],

identifying molecule subgraphs (rationales) that contribute to meeting property constraints and

then generating molecules using these subgraphs [16], and using gradient-based optimization by

creating scaffolding trees of molecules that are differentiable [9]. Another category involves learning

a generative model of the molecular space. For example, Jin et al. [14] use Bayesian Optimization

in the latent space of a variational autoencoder based model. Additionally, Segler et al. suggest the
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Figure 3.1: Figure 1 from Jensen et al. [13] illustrating the crossover process. The ”cuts” section illustrates splitting
the molecules into pieces, and the ”children” are created as a result of the pieces being put back together after ex‐
change. The molecules with a red cross do not meet the chemical criteria to be considered for the population while the
molecules with a green check mark do.
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strategy of pretraining an LSTM based model using a large set of molecules, fine-tuning it using

molecules with ideal values for properties of interest, and then generating molecules with the hope

that they will also have ideal values for these properties.
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4
Results and Discussion

We now describe the experiments that we ran to test the performance of the de novomolecule gen-

eration pipeline that first trains a predictor using Bayesian Optimization and then uses it as a scor-

ing function in a Graph-Based Genetic Algorithm (Graph GA) for generation. We compare this

method to training a predictor using a randomly collected training dataset and using it as a scoring

function during generation (in order to investigate the benefits of Bayesian Optimization for data
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collection). Additionally, we investigate the performance of Graph GA in these pipelines when a

randomly selected starting population is used compared to when the starting population is set to the

best molecules in the training dataset of the predictor. The performance of the generation pipeline

for each particular data collection method is evaluated by reporting the ground truth docking scores

of top generated molecules averaged across several trials (three runs of data collection and predictor

training and three runs of Graph GA for each trained predictor). In all experiments, we use a train-

ing dataset size of n = 5000, and in Bayesian Optimization, we use a batch size of b = 1000. As a

reminder, we also emphasize that a lower (more negative) docking score is better.

We also credit the codebases used to perform these experiments. The chemprop python package

(based on the architecture and training described in Yang et al.[29]) and codebase from Soleimany et

al. [22] were used for training and inference of D-MPNNmodels using MSE and evidential regres-

sion loss functions, respectively. We also used the GuacaMol baselines [3] implementation of Graph

GA and adapted it to use a D-MPNN for docking score prediction as the score function.

4.1 D-MPNNhyperparameter optimization

We optimized parameters using a 5,000 molecule training set and 1,000 molecule validation set (for

testing) set that were both sampled from ZINC 250K and labeled using docking software. For each

parameter setting, we ran 5 instances of training with an 80/20 training/validation split and aver-

aged the root mean squared error (RMSE, measure of accuracy that we used) accross these instances

to determine a score for that parameter setting.
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For models trained using the MSE loss function, we ran a grid search over hidden state vec-

tor size = 300,600,1000, number of layers in the feed forward neural network (last stage of the

model) = 2,3, and number of message passing steps = 3-5 and found that 300, 2, and 5 were the best

choices for these parameters, respectively. Then, using this architecture, we searched over epochs =

35,50,75,100 and found 50 to be the best choice.

Models that are trained using the evidential loss function have some additional considerations

since they are used for Bayesian Optimization: 1) they are trained on dataset sizes of 1k,2k,3k,4k,and

5k (each iteration of Bayesian Optimization), and 2) both accuracy (RMSE) and epistemic uncer-

tainty calibration are important to optimize. Following Soleimany et al. [22], we quantified epis-

temic uncertainty calibration using the Spearman rank correlation coefficient between RMSE and

epismetic uncertainty. This is motivated by the fact that for uncertainty quantification that is well

calibrated, a model will be less accurate (high RMSE) on high uncertainty points (because it has not

seen much training data like this) and more accurate (low RMSE) on low uncertainty points.

We first optimized architecture parammeters using the same search space as for D-MPNNMSE

training, and we found that the same parameters as above (hidden size = 300, feed forward network

layers = 2, and message passing steps = 5) had both very good accuracy (RMSE = 0.700) and uncer-

tainty calibration (rank correlation coefficient = 0.238) relative to other parameter settings.

Then, we jointly found values for the evidential regularization coefficient λ (search space = 0.01,

0.05, 0.1, 0.2) and epochs (search space = 35,50,75,100) for each data size. We usedMinMax scal-

ing to re-scale RMSE and uncertainty rank correlation coefficient and created a “score” for each

parameter setting as the re-scaled rank correlation coefficient - re-scaled RMSE. For data size = 1k-4k,
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we selected the parameters with the largest score (data size: (λ, epochs), = 1k: (0.01, 50), 2k: (0.05,

35), 3k: (0.05, 50),4: (0.05, 35)). For data size = 5k, we set λ = 0 and trained for 50 epochs (same

as the MSE trained models) because uncertainty quantification isn’t necessary for the final model

that is used as a scoring function in Graph-GA (it is only used during Bayesian Optimization data

collection).

4.2 ZINC 250K Bayesian Optimization + Graph GA

4.2.1 Initial hyperparameter filtering

We first searched over a large number of parameters for Bayesian Optimization in order to identify

some sets of parameters to execute multiple runs for. We did this because the Bayesian optimization

experiments take a very long time to run (about 15 hours for ZINC 250K as the dataset), so we

wanted to select only the most promising parameter sets to run multiple trials and report results for.

Recall that we use the upper confidence bound (UCB) acquisition function during Bayesian

optimization, which is of the form:

a ∗ score+ b ∗ uncertainty

Additionally, recall that during each iteration of Bayesian Optimization, we select points that

maximize the UCB acqisition function from a random sample of the molecule library being used

(in this case, ZINC 250K). For batch size b, we define hyperparameter d as b/d = size of the random

sample that is used. This means that d represents the percent of the sample that we are selecting to
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add to the training set during each iteration of Bayesian Optimization. For convenience, we also de-

fine d = −1 to mean that we did not randomly sample at all and instead computed the acquisition

function on the all of the molecules in the library that remain.

We first trained one model for each combination of d ∈ −1, 0.04, 0.2 and (a, b) ∈ {(1, 0), (1, 2),

(1, 5), (0, 1)} and then used that model as the scoring function in three runs of Graph GA for each

starting population type (randommolecules or the best molecules in the training dataset) with

the following parameters: population_size = 100, offspring_size = 200, generations = 300,

mutation_rate = 0.1, patience = 5 (all runs of Graph GA reported in the paper use these param-

eters). Then, for each starting population type, we selected the six parameter settings that resulted

in the largest average docking score for top-ten generated molecules (averaged across the three runs

of Graph GA). We then ran two more instances of Bayesian Optimization training with each of

these parameter settings in order to be able to report results averaged across both runs of Bayesian

Optimization training and runs of Graph GA (since these algorithms are both sources of variation).

We report results for only these parameter settings for which we performed multiple instances of

Bayesian Optimization training.

As mentioned above, for each predictor data collection method (a specific Bayesian Optimization

parameter setting or random selection of the whole training dataset at once), we report results aver-

aged across three trained docking score predictors and three runs of Graph GA for each predictor.

We evaluate the molecules output by Graph GA by computing the Top docking score, the average

of the Top 10 docking scores, and the average of the Top 100 docking scores (which are all of the

docking scores generated, since the we use a population size of 100). When computing these metrics
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for each trial, we drop molecules that the docking software did not work for from the average (the

number of molecules that fell into this category was very small, and was at most an average of 0.556

across all reported parameter settings in the ZINC 250K experiments).

4.2.2 Graph GA Starting Population: Random vs Best in Training Data

We first analyze the difference between setting the starting population of Graph GA to random

molecules sampled from ZINC 250K and setting it to the molecules in the D-MPNN predictor’s

training dataset with the highest ground truth docking scores (Table 4.1). For each start type, met-

rics are averaged across all Bayesian Optimization parameter settings. By examining Table 4.1, we

can see that using the best molecules in the training dataset as the starting population leads to the

best results. This is also true when random data collection is used for training the predictor. So, we

report further metrics for only this starting population type.

4.2.3 Bayesian Optimization vs. RandomData Collection

We then analyze the advantage of using Bayesian Optimization over random selection for training

data collection. Table 4.2 displays the docking score metrics of molecules generated by Graph GA

for all Bayesian Optimization parameter settings as well as for random training data collection of

the predictor used by Graph GA. Bayesian Optimization appears to have an advantage in generating

high-quality candidate molecules: the Top 10 average and Top 100 average docking score is better

for all Bayesian Optimization parameter settings except one, and the Top 1 docking score is better

for all parameter settings except two.
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4.2.4 Graph GAMolecules vs. BestMolecules in Training Dataset

Finally, we illustrate the advantages of using Graph GA as an extra optimizing step after initial data

collection from ZINC 250K. Table 4.3 displays docking score metrics for molecules in D-MPNN

predictor training datasets. By comparing this to Table 4.2, we can see that for each training data col-

lection type, the Top 1 and Top 10 average docking score of molecules generated by Graph GA are

always better than the Top 1 and Top 10 average docking score of molecules in the training dataset.

However, the Top 100 average docking score of Graph GA generated molecules is always lower than

the Top 100 average docking score of the training dataset molecules. This indicates that Graph GA

is able to improve upon the 100 molecules it receives as input by generating some molecules that are

better than all molecules in this input, but on average the molecules that it generates are worse than

those input to it.

Comparing Table 4.4 to Table 4.3 can shed some insight into why this may be happening. We can

see that the predicted (by the D-MPNN predictor model) docking metrics of molecules generated

by Graph GA are similar to the docking metrics for the best molecules in the training dataset of that

predictor. This means that Graph GAmay be generating molecules that have similar structure and

chemical properties to the best molecules in the training dataset of the D-MPNN predictor it uses.

This seems plausible because the D-MPNN predictor (scoring function) only has knowledge of the

training data, so it is likely to most consistently indicate that molecules similar to the best ones in the

training data have high docking scores (in addition to indicating this for some molecules that are far

from the training data due to model error). We hypothesize that this is occurring and is analogous
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to slightly changing properties of the best molecules in the training dataset (and also incorrectly

labeling some molecules far from the training data as having high docking scores), leading to some

generated molecules that are better than the best in the training dataset but also many molecules

that are worse.

Overall, since the goal of drug discovery is to eventually find a single or a few molecules to use

as a drug, we believe that Graph GA provides an advantage on top of Bayesian Optimization be-

cause it seems to be capable of generating several top molecules that are improvements upon the best

molecules found during data collection.

Starting Population Type Top 1 Top 10 Avg Top 100 Avg
Best in Collected Training Data -13.05 -12.52 -10.60

Random Sample from ZINC 250K -12.05 -11.46 -9.58

Table 4.1: Top 1, Top 10 Average, and Top 100 Average ground truth docking scores of molecules generated by Graph
GA for each starting population type (averaged across all Bayesian Optimization parameter settings) using ZINC 250K
molecule library. Note that a lower docking score is better.

4.3 GuacaMol ChEMBL Bayesian Optimization + Graph GA

We also ran experiments to test this method using the GuacaMol ChEMBLmolecule library. We

performed these experiments in order to see if the advantages of our method would be apparent

when using a larger molecule library. We also wanted to see if the best results using GuacaMol

ChEMBL are better than the best results using ZINC 250K (since this library is considered to have

advantages over ZINC [3]).

Since d = 0.2 seemed to preform worse than the other settings of d in the previous experiments,
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Bayes Opt Parameters (d,a,b) or Random Top 1 Top 10 Avg Top 100 Avg
(0.04,1,2) -13.34 -12.75 -11.05
(-1,1,0) -13.17 -12.62 -11.13
(-1,1,5) -13.16 -12.61 -10.55
(-1,1,2) -13.03 -12.59 -11.02
(0.04,1,0) -13.14 -12.55 -10.89
(0.04,0,1) -12.97 -12.49 -10.30
(0.2,0,1) -13.00 -12.43 -9.49
(0.2,1,2) -12.91 -12.37 -10.55

Random Train Data Collection -12.94 -12.28 -9.91
(0.2,1,5) -12.73 -12.26 -10.40

Table 4.2: Top 1, Top 10 Average, and Top 100 Average ground truth docking scores of molecules generated by Graph
GA using best molecules in training data as starting population and ZINC 250K molecule library for different data
collection methods. Data collection methods are ranked by Top 10 Avg. Note that a lower docking score is better.

Bayes Opt Parameters (d,a,b) or Random Top 1 Top 10 Avg Top 100 Avg
(0.04,1,2) -12.13 -11.83 -11.26
(-1,1,0) -12.37 -12.00 -11.53
(-1,1,5) -12.20 -11.90 -11.27
(-1,1,2) -12.33 -12.02 -11.45
(0.04,1,0) -12.17 -11.84 -11.30
(0.04,0,1) -12.17 -11.73 -10.96
(0.2,0,1) -12.03 -11.62 -10.91
(0.2,1,2) -12.23 -11.69 -10.96

Random Train Data Collection -11.67 -11.23 -10.47
(0.2,1,5) -11.90 -11.48 -10.90

Table 4.3: Top 1, Top 10 Average, and Top 100 Average ground truth docking scores of molecules present in the training
dataset using ZINC 250K molecule library for different data collection methods. We emphasize that these are scores
of molecules from the data collection phase of the generation pipeline, which occurs before the Graph GA generation
phase. Note that a lower docking score is better.

we discarded this parameter value. Instead, we replaced it with d = 0.006. We chose this value

because it leads to a selection pool that is approximately 1/10 of the training dataset size (roughly 1.5

Million), which is also the case for d = 0.04 in the previous experiments (for a data size of roughly
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Bayes Opt Parameters (d,a,b) or Random Top 1 Top 10 Avg Top 100 Avg
(0.04,1,2) -12.09 -11.91 -11.63
(-1,1,0) -12.12 -11.99 -11.75
(-1,1,5) -12.11 -11.84 -11.51
(-1,1,2) -12.19 -11.98 -11.69
(0.04,1,0) -12.03 -11.83 -11.52
(0.04,0,1) -11.75 -11.56 -11.26
(0.2,0,1) -11.74 -11.54 -11.20
(0.2,1,2) -11.68 -11.55 -11.29

Random Train Data Collection -11.68 -11.49 -11.16
(0.2,1,5) -11.67 -11.42 -11.11

Table 4.4: Top 1, Top 10 Average, and Top 100 Average predicted (by the D‐MPNN predictor) docking scores of
molecules generated by Graph GA using best molecules in training data as starting population and ZINC 250K molecule
library for different predictor training methods. Note that a lower docking score is better.

250K). Using this value as well as d = 0.04 allowed us to test two different interpretations of the

d parameter: using it to dictate the size of size(batch)/size(selection_pool) and using it to dictate the

size of size(selection_pool)/size(molecule_library).

In these experiments, D-MPNN training and Graph GA used the same hyperparameters as in

the ZINC 250K experiments. Also, results are reported for Graph GAwith a starting population

of the best molecules in the training data instead of a random starting population. This is because

the average docking score metrics for both Bayesian Optimization (averaged across all parameter

settings) data collection and random data collection were better when the best molecules in the

training data were used as a starting population compared to when a random starting population

was used.

Table 4.5 contains docking score metrics for molecules generated by Graph GA for different

data collection methods and Table 4.6 contains docking score metrics for the best molecules in the
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training dataset for these same data collection methods. Interestingly, when random data collection

is used, the Graph GA generated molecules have lower Top 1 and Top 10 average docking scores

than the molecules in the training dataset. However, when Bayesian Optimization data collection

is used, the Graph GA generated molecules have higher values for these metrics than the training

dataset molecules (as in the ZINC 250K experiments). Additionally, the Graph GA generated

molecules have higher values of docking score metrics than when random data collection is used

for all Bayesian Optimization parameter settings (as in the ZINC 250K experiments). Finally, the

best docking score metrics for Graph GA generated molecules in these experiments are better than

the best docking score metrics when ZINC 250K is used as the molecule library. These findings

once again highlight the advantages of our method over using random data collection and also show

improved top results due to a better library (GuacaMol ChEMBL) from which data is collected.

Bayes Opt Parameters (d,a,b) or Random Top 1 Top 10 Avg Top 100 Avg
(-1,1,0) -13.64 -13.22 -11.60
(-1,1,2) -13.54 -13.01 -11.28

(0.006,1,0) -13.44 -12.98 -11.55
(0.004,1,0) -13.19 -12.70 -11.31
(0.006,1,2) -13.18 -12.56 -9.49
(0.004,1,2) -13.17 -12.45 -10.06

Random Train Data Collection -11.99 -11.19 -8.81

Table 4.5: Top 1, Top 10 Average, and Top 100 Average ground truth docking scores of molecules generated by Graph
GA using best molecules in training data as starting population and GuacaMol ChEMBL molecule library for different
data collection methods. Data collection methods are ranked by Top 10 Avg. Note that a lower docking score is better.
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Bayes Opt Parameters (d,a,b) or Random Top 1 Top 10 Avg Top 100 Avg
(-1,1,0) -13.33 -12.92 -12.28
(-1,1,2) -13.27 -12.68 -11.62

(0.006,1,0) -13.17 -12.69 -11.98
(0.004,1,0) -13.13 -12.55 -11.67
(0.006,1,2) -12.93 -12.20 -11.27
(0.004,1,2) -12.70 -11.93 -10.96

Random Train Data Collection -12.37 -11.59 -10.79

Table 4.6: Top 1, Top 10 Average, and Top 100 Average ground truth docking scores of molecules present in the training
dataset using GuacaMol ChEMBL molecule library for different data collection methods. We emphasize that these
are scores of molecules from the data collection phase of the generation pipeline, which occurs before the Graph GA
generation phase. Note that a lower docking score is better.

4.4 Effect of Bayesian OptimizationHyperparameters

Finally, we briefly comment on the effect of Bayesian Optimization hyperparameters in both the

ZINC 250K and GuacaMol ChEMBL experiments. Larger selection pool sizes seem to be better

than smaller ones, as three of the four top results in the ZINC experiments and the top two results

in the ChEMBL experiments used the full molecule library as the selection pool (d = −1). Ad-

ditionally, it seems as though using no uncertainty b = 0 in the UCB acquisition function may

potentially work better than using uncertainty because this works best for all selection pool sizes

in GuacaMol ChEMBL experiments and for d = −1 in the ZINC experiments (although not for

d = 0.04 in these experiments). However, more experiments should be done in order to validate

these claims.
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5
Conclusion

5.1 Method and Results Overview

In this thesis, we proposed a two-stage method for de novomolecular generation and evaluated it

on the task of generating molecules that dock well to the target protein DRD3. This pipeline first

trains a Graph Neural Network based model to predict docking scores and quantify uncertainty,

using Bayesian Optimization for training data collection. This predictor was then used as a scoring
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function in a Graph-Based Genetic Algorithm (Graph GA) for molecule generation, as it is not prac-

tical to query ground truth docking scores in this algorithm (due to the resource-intensive nature of

running wet lat experiments). Additionally, the best molecules in the training dataset of the predic-

tor were used as the starting population for Graph GA, which appeared to work better than using a

randomly sampled starting population.

We observed that on average, this method with Bayesian Optimization training data collec-

tion resulted in better Top 1, Top 10 average, and Top 100 average docking scores of generated

molecules than this same method with random data collection for most parameter settings across

both molecule libraries tested (ZINC 250K and GuacaMol ChEMBL). Additionally, for all Bayesian

Optimization parameter settings across both molecule libraries tested, molecules generated by

Graph-GA had better Top 1 and Top 10 average docking scores than the collected training data.

However, these generated molecules always had worse top 100 average docking scores than the col-

lected training data.

Overall, these results indicate that the proposed method could be a way to realistically integrate

Graph-GA, an iterative method that requires many calls to a scoring function for which ground

truth values are determined in a wet lab, into a de novo generation pipeline. In particular, Graph

GA seems to improve upon the performance of Bayesian Optimization and can be seen as an extra

optimizing step on top of it. Once the ground truth docking scores of the molecules generated by

Graph GA are determined in a wet lab, the best molecules in this set can serve as drug leads than can

be further investigated and improved.
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5.2 ANote on Evaluation

We note that using a property predictor as a scoring function is not the only way to realistically in-

tegrate an iterative generation method into a de novo generation pipeline. Another way to do this is

to use computational docking software as a scoring function. This software is computationally in-

tensive, but it can still serve as a good (but noisy) proxy for a wet lab experiment. However, it is not

straightforward to evaluate this method compared to the method proposed in this thesis without

using wet lab experiments. This is because in our experiments, we used the output of computational

docking software as if it were the result of a wet lab experiment, meaning that we treated it as if it

was not noisy. Therefore, simply running Graph GAwith this same docking software as a scoring

function and comparing it to our method is not an accurate comparison, as this comparison would

treat the Graph GA as if it is able to arbitrarily query the results of a wet lab experiment (which is

not realistic).

One way to potentially compare these methods without using any wet lab experiments is to as-

sume some noise distribution of the docking software (e.g., a normal distribution with mean 0 and

some standard deviation σ). Then, Graph GA can be run with a scoring function that is the output

of the docking software plus a value sampled from the noise distribution, and its results could be

compared to our method. However, the most accurate way to compare the two methods is to run

the method proposed in this thesis using a wet lab for data labeling and compare it to using a dock-

ing software scoring function in Graph GA.
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5.3 Extensions

It would be interesting to also investigate the performance of using Bayesian Optimization to find

an ideal starting population for Graph GA, as in our pipeline, and then using docking software

instead of a trained predictor as the scoring function in Graph GA. Additionally, it could be inter-

esting to use samples from a generative model (e.g., [15], [21]) trained on a molecule library instead

of the molecule library itself as a data source to select points from. The sampling from the generative

model could perhaps result in better molecules than those present in the library being available for

selection. Finally, it would be interesting to see how iterative de novo generation methods other than

Graph GA perform when using a Bayesian Optimization trained property predictor as a scoring

function.
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