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Abstract

For patients with medically refractory epilepsy (MRE) who do not respond to anti-seizure medicine,

invasive intracranial EEG (icEEG) and resective surgery are used to respectively identify and remove

epileptogenic zones (EZ). Advances in signal processing and network analysis have sparked inter-

est in the processing and interpretation of icEEG data for more accurate identification of the EZ.

The aim of this study is to use functional connectivity centrality measures extracted from interictal

icEEG recording to localize seizure onset zones (SOZ) and predict post-surgical outcomes. The SOZ

is the most reliable estimator for EZ with observable ground truth, and the current standard prac-

tice relies on clinicians to visually identify individual electrodes as SOZ during every ictal recording,

which is an inaccurate and inefficient method. This paper analyzed five minutes of interictal icEEG

data from 40MRE patients who underwent surgery at Boston Children’s Hospital. First, classifi-

cation models using centrality measures were able to robustly identify SOZ regions (AUC 0.70).

Then, using likelihood-based diagnostic models and proportion of resection, we were able to predict

post-surgical outcome with AUC 0.74. Our results suggest that functional connectivity centrality

measures are efficient and useful features for clinicians in the treatment of MRE.
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1
Introduction

1 Background and definitions

Epilepsy is a chronic electrophysiological disorder of the brain that currently affects over 50 million

people worldwide, with around 5 million new diagnosed cases every year.1 Untreated epilepsy can

increase the risk of premature death by up to three times. 50% of epilepsy cases begin in childhood
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or adolescence. Epilepsy is characterized by recurrent seizures, which are episodes of excessive neural

firing that can lead the patient into prolonged convulsions. The cause of epilepsy is unknown for

about 50% of the cases.*

Many treatment methods have been developed for epilepsy. While up to 70% of epilepsy patients

can become seizure free after taking anti-seizure medicine, 30% of the patients do not respond to

medical therapy and are considered as affected by medically refractory epilepsy (MRE).11 The most

effective treatment for MRE is surgical resection of the epileptogenic zone (EZ), which is defined as

the brain tissue that is responsible for generating seizures in the patient.

Clinicians diagnose epilepsy patients and develop surgical plans by referring to electroencephalogra-

phy (EEG) recordings of neural activity. Non-invasive EEG recording involves placing small metal

discs on the scalp of the patient. For some patients, invasive intracranial EEG (icEEG) recording is

also required, which consists of either placing subdural grids of electrodes directly on the surface of

the brain (electrocorticography, or ECoG) or depth electrodes inside the target brain areas (stereo-

electroencephalography, or sEEG). The goal of EEG recordings is to localize the seizure onset zone

(SOZ), which as the name suggests describe the neural region of earliest onset of epileptic activ-

ity during at least one seizure observed during EEGmonitoring. Since the EZ cannot be directly

observed, the SOZ is considered as one of the most reliable guides for determining surgical resec-

tion areas. However, it is also widely understood that the observed SOZ often does not completely

coincide with the EZ for a variety of reasons, and as a result, only 27%-67% of the patient become

*Statistics taken from https://www.who.int/news-room/fact-sheets/detail/epilepsy and
collected by theWorld Health Organization (WHO).
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seizure-free post surgery.16

An EEG recording is ictal if it is recorded while the patient is undergoing a seizure, whereas a record-

ing is interictal if it is made between seizures. While ictal recordings contain more information of

neural pathology, oftentimes they can only be captured by prolonged continuous EEGmonitor-

ing. Although such an approach often captures many seizures, it requires heavy maintenance and

processing and is therefore undesirable.5

2 Functional connectivity and relatedwork

To this day, visual inspection of EEG recordings remain the standard practice for determining

SOZ. However, recent advances in computer-assisted data analysis methods has revolutionized the

study of brain function and presents many new possibilities for the analysis of EEG recordings in

determining the SOZ, which can improve the success rate of epilepsy surgery. The technological

advances are manifold. To start, while the icEEG data can be interpreted by visual inspection, the

process can be inaccurate time-consuming, whereas automated methods have been developed to ef-

ficiently capture high frequency oscillations charactieristic to epileptogenic zone.7,1 Moreover, such

methods can be applied to ictal and interictal periods alike, where the latter is much more abundant

yet not as meaningful to a human inspector.21 Most importantly, graph-based approaches have

proven to be important for understanding the the functional organization of the brain in terms of

functional connectivity.

Functional connectivity between neurons is defined as the “temporal coincidence of spatially dis-
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tant neurophysiological events.”17 In recent year, the EZ is increasingly considered as a network of

neurons rather than a localized region of the brain, so understanding the functional network of the

brain has become important in predicting the EZ.19 A region of the brain has high centrality if it is

significant in the brain connectivity network on a local and global scale. Locally,mean connectivity

is a centrality measure that captures the average functional connectivity between a given electrode

and all other electrodes. In addition to showing increased connectivity in certain frequency bands,

epileptic brains do not have the healthy small-world topology of healthy brains and rather exhibit

organizational patterns that allow for fast propagation of seizures.20 Since mean connectivity is only

able to capture network features on a local scale, we extract the minimum spanning tree (MST) on

the functional connectivity graph. TheMST retains the most important paths on which neural

signals travel, thereby giving a more global picture.

Four kinds of centrality measures can be defined for a graphG = (V,E)with adjacency matrix

representation of edgesA in order to characterize its topology:

• Degree: the number of electrodes coming from a vertex,14 i.e.

di =
∑
j∈V

aij .

• Betweenness: the percentage of shortest pathways that pass through the vertex,14 i.e.

bi =
∑

j,k∈V,j ̸=k

njk(i)

njk
,

where njk denotes the number of shortest paths from j to k, and njk(i) denotes the number
of shortest paths from j to k passing through i. In anMST, njk = 1 so an vertex is either
leaf if bi = 0 or central if bi = 1.
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• Closeness: the reciprocal of average distance to other electrodes,3 measured as

ci =
N∑

j∈V d(i, j)
,

whereN = |V | and d(i, j) is the distance between vertices i and j.†

• Eigenvector: the eigenvector corresponding to the greatest eigenvalue of the adjacency ma-
trix,6 i.e. the vector e corresponding to the largest λ such as the following system has a solu-
tion

ei = λ−1
∑
j∈V

ai,jej ⇔ Ae = λe

By the Perron-Frobenius theorem, for any nonnegative, irreducible matrix, there exists an
eigenvector with nonnegative entries such that its corresponding eigenvalue is positive and
greater than or equal to the absolute value of any other eigenvalue,18 so this definition is
almost always unique on empirical data.

Studies have shown that high betweenness centrality on the gamma frequency band (30-50 Hz) is

correlated with electrode resection among patients with good post-surgical outcome21. Hubs, i.e.

regions of dense connections, have also been shown to characterize with epileptogenic zone and are

more likely to stand out with high centrality measure in a MST21,12. In our study, we measure the

functional connectivity centrality of measures, which we expect to be predictive on

3 Overview of our contributions

This paper studies functional connectivity centrality measures that can be used to localize the SOZ

and predict post-surgical epilepsy-freedom for MRE patients. Firstly, SOZ electrodes are demon-

strated to have higher centrality measures than non-SOZ electrodes. Secondly, centrality measures

†By the original definition, the denominator of ci isN −1 to account for there beingN −1 vertices other
thanN , but for largeN these two definitions give very similar measures.
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are used to predict SOZ electrodes. Finally, based on the difference between the distribution of cen-

trality measures of SOZ and non-SOZ electrodes, diagnostic models are proposed for measuring

the epileptogenicity of individual electrodes, and the proportion of resection among epileptogenic

electrodes is used to predict the post-surgical outcome of MRE patients. This paper analyzes the

performance of our methodology on a retrospective profile of 40 patients who underwent epilepsy

resection surgery at the Boston Children’s Hospital.

The paper is divided into five chapters. Chapter 1 provides the background information on the defi-

nitions of epilepsy, functional connectivity, and centrality, as well as a literature review on previous

studies showing that high centrality characterize the EZ. Chapter 2 gives an overview of the major

models used in this study. Chapter 3 elaborates on the feature extraction process for our dataset and

how the models are applied to the data. Chapter 4 gives the results from our analysis. Chapter 5

concludes the contributions of the paper and presents directions for future work.
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2
Models and approaches

We give brief overview of the motivations and mathematical foundations of the models we employ

in Chapter 3.
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1 Logistic regression (LR)

Logistic regression is a generalized linear model often used for binary classification.2 Given feature

vector xi = (xi1, . . . , xip) ∈ Rp for data points i = 1, . . . , n, a logistic regression model hypothe-

sizes that Yi ∼ Bern(πi)with

πi =
exp

(∑p
j=1 βjxij

)
1 + exp

(∑p
j=1 βjxij

) , or logit (πi) = log

(
πi

1− πi

)
=

p∑
j=1

βjxij

for some coefficient vector β = (β1, . . . , βp)
T ∈ Rp. The choice of logit as the link function is

motivated by the fact that logit symmetrically maps [0, 1] to the real line. In GLM terminology, we

observe that πi = F (
∑p

j=1 βjxij)where F (z) = ez/(1 + ez) is the CDF of the logisitic distribu-

tion, which is an exponential family distribution. The maximum likelihood estimator (MLE) of β is

the solution to the likelihood equations ∂L(β)/∂βj = 0, which in this case simplifies to

∂L

∂βj
=

n∑
i=1

ni (yi − πi)xij = 0.

While there is no closed form solution to this equation, a numerical solution can be approximated

using the Newton-Raphson algorithm, which iteratively computes

π
(t)
i =

exp
(∑p

j=1 β
(t)
j xij

)
1 + exp

(∑p
j=1 β

(t)
j xij

) ,
β(t+1) = β(t) +

{
XTDiag

[
niπ

(t)
i

(
1− π

(t)
i

)]
X

}−1
XT

(
s− µ(t)

)
.
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In this study, logistic regressions are fitted using the LogisticRegression function from the

scikit-learn package (version 0.24.2) in Python.

2 Gradient-boosted trees (XGB)

Gradient tree boosting is the product of a long line of tree-based ensemble models. Efficient, flexible

(non-linear), and robust to overfitting, it has become one of the most popular methods in the data

science community, producing state-of-the-art performance in all types of challenges ranging from

Kaggle to industry benchmarks.4

Given observations x1, . . . , xn, a tree ensemble model predicts

ŷi = ϕ(xi) =
K∑
k=1

fk(xi),

where fk(x) = w
(k)
q(x) is a regression tree, where q(x) reflects the tree strucure andw

(k) is the

vector of predictions at the leaf nodes. Training the regression involves optimizing a regularized

objective

L(ϕ) = ℓ(ŷi, yi) +
∑
k

Ω(fk),Ω(fk) = γT +
1

2
λ∥w(k)∥2,

whereΩ is a penalty function on the complexity of the regression tree. Such a model is trained ad-

ditively, i.e. in the t-th iteration, if the current predictions are ŷ(t)i , then we seek to add a regression
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tree ft to our current tree in order to minimize the objective

L(t) =
n∑

i=1

ℓ
(
yi, ŷ

(t−1)
i + ft (xi)

)
+Ω(ft) .

We find the optimal ft in a two-step process. Fixing the tree structure q and using a second order

approximation for the loss function, we can compute the optimal leaf nodes. Fixing the leaf node

predictions, we can greedily add branches to the tree (call this a split) and keep the one that intro-

duces the decrease in the loss. Additional methods such as column subsampling, which forces each

regression tree to only use a subsample of the features, can also help prevent overfitting.

Similar to the extension from linear model to binary classification, gradient tree boosting models

can be extended to make binary predictions, which fits our use case. In this study, gradient boosted

trees are fitted using the XGBClassifier function from the xgboost package (version 1.5.0) in

Python.

3 Principal component analysis (PCA)

Principal component analysis is a dimensional reduction method.10 Given column-wise zero-meaned

dataX ∈ Rn×p, the top principal component can be found by finding the variance-maximizing di-

rection of projection

w(1) = arg max
∥w∥2=1,w∈Rp

n∑
i=1

(xiw)2 = arg max
∥w∥2=1

∥Xw∥2.
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WhenXTX is full rank, we know thatw(1) is the eigenvector corresponding to the largest eigen-

value λ1 ofXTX . Then, the first principal component of all datasets isXw(1) ∈ Rn, where

xiw(1) is the dimensional reduced representation of xi. To compute further principal components,

assume that we have already computed the first k components. Then, we can remove their effect

by computing X̂k = X −
∑k−1

s=1 Xw(s)w
T
(s) and proceed as before to extract the next compo-

nent.

For high-dimensional data, extracting the first few principal components gives us meaningful latent

space representations because it preserve as much of the data variation as possible. The choice of

howmany components to extract is usually determined heuristically based on our understanding of

the data set and the cumulative explained variances, i.e.
∑k

i=1 λk for the first k components.

4 Kernel density estimation (KDE)

Kernel density estimation is a non-parametric model for estimating probability distribution. Given

observations x1, . . . ,xn, the kernel density estimator gives the distribution

f̂h(x) =
1

nh

n∑
i=1

K

(
∥x− xi∥

h

)
,

where h is a smoothing parameter andK is the kernel. A common choice for the kernel is the pdf

of the multivariate normal distribution with identity covariance. Due to the localized nature of the

construction of KDE, it does not have good performance when the data is sparse and/or in high-

dimensions.
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5 Variational autoencoder (VAE)

A variational autoencoder is a probabilistic graphical model that models the distribution of a dataset

on the high-dimensional input space using a parmetrized distribution and a low-dimensional la-

tent space.8 Denote the observed, input data by x and the unobserved, latent representation by z,

and let the joint distribution be pθ(x, z). pθ(x|z) is typically taken to be some Gaussian distribu-

tionN (f(z), σ2I) for some function f , where the output variance σ2 is hyperparameter of our

model. pθ(z|x) = pθ(x, z)/pθ(x) is hard to compute because pθ(x) =
∫
z pθ(x|z)pθ(z)dz is

intractable. The goal is to find a function qϕ(z|x) that best approximates pθ(z|x)with respect to

Kullback-Leibler (KL) divergence. The naive architecture of a VAE, depicted in Fig. 2.1a, contains a

probabilistic encoder and probabilistic decoder that sample from qϕ(z|x) (conditioning on input)

and pθ(x|z) (conditioning on latent representation), respectively.

The KL divergence can be further expanded as

KL(qϕ(z|x)||pθ(z|x))

=Eq[log(qϕ(z|x))]− Eq[log(pθ(z|x))]

=Eq[log(qϕ(z|x))]− Eq

[
log

pθ(x, z)

pθ(x)

]
=Eq[log(qϕ(z|x))− log pθ(x, z)] + log pθ(x)

=Eq[log(qϕ(z|x))− log pθ(z)− log pθ(x|z)] + log pθ(x)

=KL(qϕ(z|x)||pθ(z))− Eq[log pθ(x|z)] + log pθ(x),

12



which we can rewrite as

log pθ(x) = KL(qϕ(z|x)||pθ(z|x)) + (Eq[log pθ(x|z)]−KL(qϕ(z|x)||pθ(z)))

= KL(qϕ(z|x)||pθ(z|x)) + Eq

[
log

pθ(x, z)

qϕ(z|x)

]
,

where the second term on the right is the evidence lower bound (ELBO) of log pθ(x). Therefore,

minimizing

Lθ,ϕ = − log pθ(x) + KL(qϕ(z|x)||pθ(z|x)) = −ELBO

simultaneously maximizes ELBO (and therefore the likelihood on observed data pθ(x)) and mini-

mizes the KL divergence between qϕ(z|x) and pθ(z|x).

Finally, we reparametrize qθ so that it can our loss can be minimized using backpropagation and

stochastic gradient descent. We assume that qϕ(z|x) is realllyN (µ, σ2), where µ and σ2 are output

by the encoder. The modified VAE architecture is given in Fig. 2.1b. This completes the construc-

tion of the model.

It is empirically known that a well-trained VAEs can identify clusters from the input space in the

latent space even if the input space is high-dimensional and there is high noise in the data. This is

because a VAEmodel can distinguish between high and low relative density. These good properties

make VAE a suitable candidate for dimensional reduction and likelihood estimation.

The VAE we use in this study is modified from an implementation in PyTorch from Yaniv Jacoby.

13



(a)Naive VAE

(b)Reparameterized VAE

Figure 2.1: Architecture of VAE. Images taken from https://en.wikipedia.org/wiki/Variational_
autoencoder
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3
Dataset and methodology

1 Patients and feature extraction

In this study, we retrospectively analyze 40 pediatric patients (age: 2-21 years) with medical refrac-

tory epilepsy who underwent treatment at Boston Children’s Hospital. All patients included meet

the following criteria:

15



• Availability of high-quality pre-surgical and post-surgical MRI recordings, which allow us to
build a 3Dmodel of the brain and measure the Euclidean distance between each electrode
and the closest margin of the resected area.* Adjustments are made to account for brain
shifts and other factors that could introduce inaccuracies in our measurements.

• Availability of five continuous minutes of high-quality interictal epileptiform icEEG record-
ings, which allow us to model the functional connectivity of the brain as a graph of the elec-
trode network;

• Labelling of whether electrodes are in seizure onset zone (SOZ) as determined by clinicians
by ictal recordings. SOZ labels are generated independently from our study; they are ob-
served from seizures that are not included in the five minutes of icEEG recording that we use
to measure functional connectivity. Moreover, since the total number of recorded seizures
vary greatly between patients and are not necessarily recorded, the number and relative fre-
quency of seizure onsets is not used in our study. For future studies, this information can
become useful if we develop ways to standardize it properly between different patients.

• Engel surgical outcome scale as determined by clinicians during post-surgical follow-ups,
where class 1 (completely seizure free) are considered as good outcome and all other classes
are considered as poor outcome. Among the patients in our dataset, 25 had good outcome
and 15 had poor outcome.

The five minutes of recording is further divided into 100 disjoint three-second epochs, and feature

extractions are performed on a per-epoch basis.

1.1 Spike, hybrid, and silent data

An experienced reader is tasked with identifying spikes on every three-second epoch. For a visualiza-

tion of spikes as captured by EEG, see Figure 3.1. The presence of spikes is almost always indicative

of pathological behavior in the brain13. Epochs are classified as spike and silent depending on the

*For the purpose of our study, we consider electrodes with Euclidean distance< 5mm to the resection
zone as resected.
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presence and absence of spikes. Using this classification, we obtain three different datasets: 1) spike

data, which contains only spike epochs, 2) silent data, which contains only silent epochs, and 3)

hybrid data, which contains both. The proportion of spike and silent epochs vary greatly between

the patients, two of which have no spike epochs and one of which have no silent epochs. As a re-

sult, when performing analysis on spike data and silent data, we are considering one or two fewer

patients.

1.2 Functional connectivity and centrality

Within each epoch, we perform Fourier transform and divide our coefficients into four frequency

bands: high-delta (3-4 Hz), spike (4-35 Hz), ripple (80-250 Hz), and fast-ripple (250-500 Hz). Rip-

ple and fast-ripple frequency oscillations are collectively known as high-frequency oscillations and

considered as an important biomarker for epileptogenic tissue.23,15 We compute the squared cor-

relation of the spectral density between every pair of electrodes to measure functional connectivity.

Mathematically, if we denote the signal of electrode i at time t as xi(t), then for each three-second

epoch [tℓ, tℓ+1], we can compute

x̂
(ℓ)
i (f) =

∫ tℓ+1

tℓ

e−i2πftxi(t)dt

S
(ℓ)
i,j (b) =

∫ ub

lb

x
(ℓ)
i (f)x

(ℓ)
j (f)df

C
(ℓ)
i,j (b) =

S
(ℓ)
i,j (b)

2

S
(ℓ)
i,i (b)S

(ℓ)
j,j (b)

,
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where lb and ub denote the lower and upper bound of frequency band b, andC
(ℓ)
i,j (b) is our estimate

of the functional connectivity between electrodes i and j during [tℓ, tℓ+1]within the frequency

band b. The measure is then averaged over all time epochs in the dataset for a given patient.

For each frequency band, we first compute the mean connectivity of every electrode of the patient.

Then, the functional connectivity matrix of the patient is converted into a graph consisting of the

electrodes as vertices and the inverse of functional connectivity measures as edge weights following

the approach described by [19]. Under this set-up, edges with the smallest weight correspond to

higher synchronization between electrodes, so that edge weights model costs of signals to travel and

shortest paths in the graph correspond to more likely routes through which the neurons communi-

cate. TheMST of the graph is computed using Kruskal’s algorithm,9 and we generate a subgraph

using all edges of the MST with weight set to 1. Four cenrtality measures–degree, betweenness,

closeness, and eigenvector–are computed on the MST. Across all frequency bands, this gives us

(5 measures)× (4 bands) = 20 features.

As another variant to the features, we de-noise the connectivity graph via fuzzy thresholding. More

concretely, we create a subgraph using only the edges that have the 25%, 50% or 75%most func-

tional connectivity, a.k.a. the lightest edge weights by our construction, and we set the weight of all

kept edges as 1. We then similarly compute the four centrality measures by extracting a MST from

the subgraph. This gives us (4 measures) × (4 bands) × (3 thresholds) = 48more features, for

a total of 68 features.

Finally, we normalize each feature of all electrodes within the patient to have mean 0 and standard
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deviation 1. This step is especially necessary because the number of electrodes varies greatly for the

patients, so measures of centrality that scale with the size of the graph, such as mean connectivity

and degree, need to be properly standardized in order to be meaningfully compared between the

patients.

Figure 3.1: Common spikes as observed in EEG. Image taken from https://eastneurology.com.au/
eeg-electroencephalogram-brain-wave-tests/.

2 SOZ prediction

The first goal of our study is to understand whether the features we have extracted are predictive of

whether an electrode is in the SOZ.
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2.1 Single feature analysis

For a simple sanity check on whether our features contain information about whether electrodes

are in SOZ, we verify that the SOZ and non-SOZ electrodes exhibit significant differences in the

derived features. In particular, many studies suggest that high-centrality electrodes are associated

with the epileptogenic zone.21,12 Since such measures cannot be compared between patients, all

comparisons must be made with paired data, i.e., between the SOZ and non-SOZ electrodes for

each patient. As such, we compute the mean for each of our 68 features and run hypothesis tests

with one-sided alternative of SOZ electrode feature means being greater than the means of non-SOZ

electrodes.

Differences between SOZ and non-SOZ electrodes could also depend on the patient outcome. To

assess this, we compute for each patient the difference between the mean of the feature value for

SOZ electrodes and the same mean for non-SOZ electrodes. The distribution of this statistic among

good- and poor-outcome patients is then compared.

2.2 Classification

Since single functional connectivity measures can predict whether an electrode is SOZ, the next step

is combine these measures to build a model for classification. As previously discussed, identification

of SOZ electrodes helps clinicians decide which sections of the brain to resect for the patient to

become seizure-free. As such, accurate classification of SOZ electrodes from short time periods of

EEG recording is clinically significant.
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For all of the experiments below, we take a leave-one-out approach on the patients: for each pa-

tient i, we train our model on the electrodes of all patients except i, and use the trained model to

make predictions on all electrodes of patient i. To prevent overfitting, we also train iterations of

our model using subsets of the features. Specifically, we compare the results of a logistic regression

model using:

• All features.

• Only the functional connectivity from the raw graph and not any of the features derived
from the de-noised graph. Denote this by lr_fc. We can similarly do this for any of the vari-
ations below, in which case we use _thd to denote that we are also considering the threshold
graph and the absence thereof to denote that we are only considering the raw graph features.

• Use only features from a particular frequency band, i.e. one of high-delta, spike, ripple and
fast ripple. Denote this by lr_BAND.

• Use only features from a particular functional connectivity measure, i.e. one of mean connec-
tivity, betweenness, closeness, degree, and eigenvalue. Denote this by lr_FCMEASURE.

• Use the top four principal components. The choice of four components is due to evidence
from Section 1 and Section 4.1 in Chapter 4. Denote this by lr_pca.

• Use extreme gradient-boosted trees instead of logistic regression. Denote this by xgb.

AUC values from different models are compared to determine the relative predictive power from

each of the approaches. To evaluate the performance of actual predictions rather than predictde

probabilities, we choose the threshold that maximizes the Youden’s index22, a common heuristic

that measures

J = sensitivity+ specificity− 1.
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We remark that many other criteria exist for the choice of thresholds, and using the one index is

hardly sufficient for summarizing the performance of a diagnostic model. In this paper we will use

AUC as the metric for comparing the performance between different models rather than dwelling

on statistics derived from the confusion matrix produced by a specific threshold.

2.3 Dimensional reduction and clustering

In addition to conventional supervised classification methods, we are interested in asking whether

unsupervised clustering methods can give us useful insights via dimensional reduction. There are

two possible outcomes from this approach. In the first scenario, the latent space representation

of the data shows clear, visual clusters that we can attribute to either SOZ or non-SOZ. In the sec-

ond scenario, we discover that latent space representation of SOZ and non-SOZ electrodes show

distinct yet overlapping distributions. In this case, clean clustering is not possible, but the latent

space representation remain useful in predicting the relative epileptogenicity of an electrode. See

Section 3.

To check for clustering, PCA, TSNE, and VAE are trained on all electrodes, and the latent space

is visualized. To test for differences between the distribution of SOZ and non-SOZ electrodes,

the models are also fitted only on SOZ electrodes, and the resulting latent space representation of

SOZ and non-SOZ electrodes are compared. In particular, after fitting a PCA on the non-SOZ

electrodes and then transforming all electrodes, we can consider the distribution of the Maha-

lanobis distance of SOZ and non-SOZ electrodes on the latent space. Given observations that fol-
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low a distribution with meanµ and covarianceΣ, the Mahalanobis distance is then defined as

d(x) =
√
x− x̄)TΣ−1(x− x̄).10 Mahalanobis distance can be considered as a generaliza-

tion of the z-score. In particular, it is most interpretable when x is normally distributed, so that

p(x) ∝ exp
(
−d(x)2/2

)
and data points with larger Mahalanobis distance land in lower-density

regions. Therefore, if SOZ electrodes have significantly larger Mahalanobis distances than non-SOZ

electrodes in the latent space derived from PCA fitted to non-SOZ electrodes, then we can conclude

that the distribution of SOZ and non-SOZ electrodes are quite different. Similarly, for a VAEmodel

trained on non-SOZ electrodes, we can use Monte Carlo methods to estimate the likelihood of all

electrodes and then compare the likelihood of SOZ and non-SOZ electrodes.

3 Outcome prediction

Since the primary application of our study is to provide guidance for determining the resection zone,

one may ask whether the models we have derived thus far can help achieve this goal. Indeed, both

the predicted SOZ probability from classification models and the distribution of centrality features

on the latent space can be used to estimate epileptogenicity of the inidividual electrode. More con-

cretely, denote the set of all electrodes for patient i by Si and denote the set of resected electrodes

byRi. Assume that we can use fuzzy inference to establish a criterion for whether an electrode is

considered epileptogenic based on our features above; call this setEi. Then, good-outcome patients

are expected to have higher proportion of resection among the epileptogenic electrodes, which we

denote by rei = |Ei ∩ Ri|/|Ei|, whereas the proportion of non-resection among the nonepilep-
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togenic electrodes, denote by rni = |EC
i ∩ Ri|/|EC

i |, should not be different between good- and

poor-outcome patients.

The choice of (rei, rni) as the features to study here is motivated by a variety of factors. On one

hand, they are very interpretable and align with clinical understanding of epilepsy treatment: SOZ

electrodes are more likely to be epileptogenic, and the removal or most epileptogenic electrodes

increase the likelihood of the patient becoming epilepsy-free post surgery. On the other hand, the

predictive power of single feature is easy to measure, whereas involving multiple features can eas-

ily lead to overfitting and unstable predictions given the size of the dataset. An alternative feature

we have considered is to take the mean of the epileptogenicity feature within or outside the resec-

tion zone, and taking their difference. However, there is not significant evidence that any feature

derived along this route has a different distribution between good- and poor-outcome patients. In

the future, with the inclusion of more patient profiles, there is room for developing more complex

interpretable features and models for combining the features.

The following features of epileptogenicity are explored:

• SOZ labels provided by the dataset;

• predicted SOZ probability from classification models trained on SOZ labels;

• Mahalanobis distance of latent space representation from PCA trained on non-SOZ elec-
trodes, where larger Mahalanobis distance are associated with out-of-distribution data points,
higher SOZ probability, and higher epileptogenicity;†

†The results from training the PCAmodel on SOZ electrodes only is not included because the resulting
latent space representation does not approximately follow a multivariate normal distribution in shape, and
Mahalanobis distance measured on such datasets is not very meaningful.
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• Estimated likelihood from VAE and KDE trained on non-SOZ electrodes, where lower likeli-
hood is associated with higher SOZ probability and higher epileptogenicity;

• Estimated likelihood from VAE and KDE trained on SOZ electrodes, where higher likeli-
hood is associated with higher SOZ probability, and higher epileptogenicity.

We remark that the inclusion of KDE alongside VAE is due to the fact that both provide likelihood

estimates for the data. However, VAE is expected to have better performance because KDE does not

perform as well in high dimensions. We also observe that in when SOZ labels are only used to select

our training set, our epileptogenicity predictions are more robust to noise in the SOZ labels that can

distract the model from the true goal.

The predictive power of rei and rni for patient outcome are measured in AUC.When the feature

of epileptogenicity is continuous, we establish a concrete threshold for epileptogenicity by grid

searching over the 20-quantiles of the distribution of the feature.
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4
Results

1 Data exploration

AKolmogorov-Smirnov test is applied to all 68 features in Table 4.1 and shows that the features are

not normally distributed. Therefore, nonparametric hypothesis tests such as Wilcoxon signed rank

andMann-Whitney U rank are used in place of t-tests, as the latter has less power when the data
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does not follow a normal distributed.

Correlation is measured across frequency bands, centrality measures, and de-noising thresholds for

all patient’s electrodes in hybrid datain an effort to understand the relationship between features.

Select results are given in Appendix A and they reflect the general trend. Centrality measures are

highly correlated within the same frequency band, whereas centrality measures from different fre-

quency bands are largely uncorrelated. Different de-noising thresholds produce similar centrality

measures, which are quite different from those produced without de-noising.

2 SOZ predictions

2.1 Single feature analysis

For spike data, 60 out of 68 features show significant difference (p-value<0.05), and 46 show

highly significant difference (p-value<0.001), as is recorded in Section 2.1. For hybrid data 58 out

of 68 features are significantly different, and for silent data include number out of 51 features are

significantly different. As expected, spike data has the highest centrality measure difference between

SOZ and non-SOZ electrodes, though hybrid and silent data still have many significantly differ-

ent features. This suggests that SOZ electrodes exhibit differences even in the absence of epileptic

activity. Such findings are valuable for most patients for whom silent and hybrid epochs are more

frequent.

As seen in Section 2.1, most features do not exhibit a significant difference in the centrality mea-

sure difference between SOZ and non-SOZ electrode between good- and poor-outcome patients.
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p < 0.05 p < 0.01 p < 0.001

spike 66 63 61
hybrid 64 63 62
silent 63 62 62

Table 4.1: Counts of significant p-value among 68 features fromKolmogorov-Smirnov test for feature normality. Small

p-value indicates that the features are not normal.

p < 0.05 p < 0.01 p < 0.001

spike 60 55 49
hybrid 58 57 42
silent 51 42 32

(a)Counts of significant p-value among 68 features from
one-sidedWilcoxon signed-rank test between themean

feature values of SOZ and non-SOZ electrodes. Small p-
value indicates that SOZ electrodes have higher value than

non-SOZ electrodes.

p < 0.05 p < 0.01 p < 0.001

hybrid 2 0 0
spike 3 1 0
silent 3 1 0

(b)Counts of significant p-value among 68 features from
two-sidedMann-Whitney U rank test between good- and

poor-outcome patients. Small p-value indicates that the dis-
tinction between SOZ and non-SOZ electrodes is different

between good- and poor-outcome patients.

Table 4.2: Counts from single-feature tests on SOZ versus non-SOZ electrodes and good- versus poor-outcome patients.

The few that do are likely due to p-value having the uniform distribution under the null hypothesis.

Therefore, we have reason to believe that for the purpose of identifying SOZ electrodes, we do not

need to consider the distinction between good- and poor-outcome patients.

3 Supervised classification of SOZ electrodes

The logistic regression model is trained for up to 500 iterations until convergence. For XGB, the

parameters are determined using a grid-search with five-fold cross-validation on all patient electrodes

with area under ROC as the evaluation metric. Since this process is computationally expensive, we

only do it once. While this is not standard practice, it is the best we can do given that we do not have
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Act.
Pred. non-SOZ SOZ

non-SOZ 2157 1193
SOZ 197 438

Table 4.3: Confusionmatrix of SOZ electrode predictions on spike data using logistic regressionmodel on all features.

enough data to split into training, validation, and testing sets for this purpose.

Performance metrics of different models for SOZ classification are given in Table B.1 and visualized

in Figure 4.1. Using spike data generally gives us the best performance with AUC 71.0% and AUC-

PR 27.7%. The logisitic regression model using all features shows better performance across all

datasets than almost other models by these metrics. Lastly, the non-linear XGBmodel does not

show significant performance gain over the logistic regression.

Table 4.3 gives the confusion matrix from the all-feature logistic regression model using the Youden’s

index-maximizing threshold on hybrid data. This model gives sensitivity 0.271, specificity 0.910,

positive predictive value 0.620, negative predictive value 0.686, and accuracy 0.675. To put these

values in context, we remark that only 16% of the electrodes are actually SOZ, so we are inflating the

proportion of epileptogenic electrodes. However, Section 5.1 show that obsessing over a good fit of

the SOZ electrodes is in fact not in line with our ultimate goal of predicting whether a patient has

good post-surgical outcome. Therefore, our predictions here, though imperfect with respect to the

ground truths that they are trained on, can potentially remain meaningful.
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(a) spike data

(b) hybrid data

(c) silent data

Figure 4.1: AUC and PR curves across many different models for spike data, silent data, and hybrid data.

30



4 Dimensional reduction for unsupervised clustering

4.1 Using top principal components

We start off with the linear PCAmodel. Graphing the explained variance ratio for hybrid data, we

get Figure 4.2a, which along with the interpretability of the data coming from four frequency band-

widths prompts us to consider the first four components, which explain 66% of the variance in our

data. A pair plot of these four components is given in Figure 4.2b. We applied the same methodol-

ogy to spike data and silent data, which gave similar results that we omit here.

Nevertheless, there is significant evidence of a difference between the distribution of SOZ and non-

SOZ electrodes. TheMahalanobis distance of the latent representations of all electrodes from a

PCA trained on non-SOZ electrodes is plotted in Figure 4.3. Applying two-sidedMann-Whitney

U rank test shows highly significant difference (p-value<0.001) for spike dataand significant differ-

ence for (p-value<0.05) for hybrid data and silent data. Therefore, larger Mahalanobis distance can

imply a higher probability for an electrode to be in the seizure onset zone.

4.2 Using nonparametric methods

ATSNEmodel with perplexity 30 on hybrid data gives the following fit, which again fails to show

clear clustering. Applying TSNE to silent data and hybrid data similarly shows no clustering.
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(a) Explained variance of top 20 components.

(b) Pair plot of the top 4 components.

Figure 4.2: Results from applying PCA to hybrid data.
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Figure 4.3: Mahalanobis distance on PCA four-component latent space for SOZ (orange) and non-SOZ (blue) electrodes.

4.3 Using the latent space from VAE

Finally, we consider a VAEmodel. We use a decoder and an encoder with three hidden fully con-

nected layers of 50 electrodes and leaky ReLU activation. We use a grid search to tune hyperpa-

rameters: we split all our data into a training set (roughly two-thirds of the patients) and testing

set (roughly one-third of the patients), and then we select the model that gives the best estimated

likelihood on the test set while having the smallest latent dimension. This ensures that we achieve

a good fit while minimizing overfitting. We end up with the optimal latent dimension of 4, output

variance of 0.25.

Training it on all electrodes in hybrid datagives latent representation in Figure 4.5, which again

shows no meaningful clustering. Nevertheless, similar to Section 4.1, if we graph the estimated like-

lihood of all electrodes from a VAE trained only on non-SOZ we again have evidence of a difference

in distribution between SOZ and non-SOZ electrodes, as demonstrated in Figure 4.6.
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Figure 4.4: Reduction of hybrid data to two dimensions using TSNE.

5 Identification of patient outcome

For simplicity, we will only present results from hybrid data, as it exists for all 40 patients.

As a sanity check, we first observe that among the 40 patients, the proportion of resected electrodes

ri = |Ri|/|Si| is predictive of post-surgical outcome with AUC 70.4%; a histogram is given in

Figure 4.7. In particular, all patients with ri > 40% have good outcome, whereas all patients with

ri < 10% are significantly more likely to have poor outcome. When ri is very large (small), both

rei and rni are inflated/deflated, which confounds the performance of our approach. Therefore, we

truncate our dataset and only consider patients with 10% ≤ ri ≤ 40%, as within this range, there

is an even mixture of patients with good and poor post-surgical outcome, and we expect prediction

based on rei to be most interesting. Among these 28 patients, ri only has 52.8%AUC.
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Figure 4.5: Four-dimensional latent space fromVAE trained on hybrid data.
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Figure 4.6: Estimated log likelihood of all electrodes fromVAE trained on non-SOZ elecrodes hybrid data.

The summarized results from the following different criteria for epileptogenicity are given in Fig-

ure 4.8 and Table B.2.

5.1 Supervised classification

When SOZ labels are used to determine epileptogenic electrodes, the AUC from rei and rni are

53.9% and 56.1%, respectively, which shows us that our SOZ labels do not give very meaningful

predictions of patient outcome. We then consider using the probability of being SOZ as predicted

by logistic regression and extreme gradient-boosted trees. Since SOZ electrodes are more likely to be

epileptogenic, we consider an electrode as epileptogenic if its predicted SOZ probability is above a

certain threshold. This approach does do not have significant prediction power because the AUC of

re lingers around 0.5 and is often less than the AUC of rn.
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Figure 4.7: Proportion of resected electrodes |Ri|/|Si| for all 40 patients in hybrid data.

5.2 Dimensionality reduction and probabilistic methods

An optimal KDE bandwidth is chosen using 20-fold grid search with the objective of maximizing

the estimated likelihood on the data. The hyperparameters for the remaining models are as described

previously.

The results are visualized in Figure 4.8 and detailed in Table B.2. The AUC of re is 0.744while

the AUC of rn is 0.500when we consider the top 10%most epileptogenic electrodes as measured

by a PCA. Also, the AUC of re is 0.656while the AUC of rn is 0.533when we consider the top

25%most epileptogenic electrodes as measured by a VAE trained on non-SOZ electrodes. Using

Youden’s index as a heuristic for choosing the threshold, the VAEmodel gives sensitivity 0.611,

specificity 0.8, positive predictive value 0.846, negative predictive value 0.533, and accuracy 0.679.
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The PCAmodel gives sensitivity 0.556, specificity 1.0, positive predictive value 1.0, negative predic-

tive value 0.556, and accuracy 0.714. See the confusion matrix in Table 4.4.

VAE PCA

act.
pred. poor good poor good

poor 8 2 10 0
good 7 11 8 10

Table 4.4: Confusionmatrix for VAE- and PCA-derived outcome predictions.
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Figure 4.8: AUC of rei and rni in predicting patient outcome under different metric and threshold of epileptogenicity.
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5
Conclusion

There are two major contributions of this paper. First, it demonstrates that functional connectivity

centrality measures extracted from five minutes of interictal icEEG recording contain valuable infor-

mation (AUC 0.70) for identifying the SOZs. The current standard practice relies on clinicians to

visually identify individual electrodes as SOZ during every ictal recording. This is both inaccurate

due to the human factor and inefficient because ictal recordings are sparse and not every represen-
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tative pattern of seizure onset is guaranteed to be recorded by the icEEGs. Our approach provides a

huge improvement over the standard practice and can be used to advise future clinicians in epilepsy

surgery. Second, this paper reveals that likelihood-based diagnostic models on functional connec-

tivity centrality can predict patient outcome. In particular, our model scores the epileptogenicity

of individual electrodes, and the proportion of resection among predicted epileptogenic electrodes

is predictive of patient post-surgical outcome (AUC 0.74) when the naive proportion of resection

among all electrodes or only SOZ electrodes is not (AUC 0.53, 0.54). This suggests that our model

can overcome the insufficiency of clinically determined SOZ labels and offer a better understand-

ing of the EZ. Our diagnostic model can provide useful insights for the success of resective surgery,

thereby opening new doors for MRE treatment.

For future work, many interesting approaches can also be tried with the inclusion of more data. For

instance if we can collect more patient profiles, deep neural networks can potentially give us even

better performance on SOZ classification. With our current dataset size of 4000 data points, deep

neural networks are likely to overfit, whereas simpler networks are unlikely to perform better than

the models we have already attempted. Meanwhile, our current analysis of the functional connec-

tivity network produces centrality measures for each individual electrode. While the centrality mea-

sures that we use do incorporate information about the network on a less local scale, a full holistic

understanding of the impact of resective surgery on the patient’s functional connectivity network

remains amiss. Recent advances in machine learning such as graph neural networks, which process

data that is best represented using the graph data structure, is suitable for our use case. However,
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at the current dataset size of 40 patients, training such complex models is largely intractable. In

general, the field of epilepsy research is limited by the lack of standardized guidelines for data col-

lection. Researchers often use patient data from the university and/or hospital with which they are

affiliated. Such datasets are usually not public, whereas public datasets often do not fit the criteria

for inclusion in order to be used for specific studies. Nonetheless, functional connectivity network

analysis in MRE treatment is a burgeoning field of research, and the continued development of new

approaches for analyzing the network hold promises for finding the cure for epilepsy.
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A
Centrality measures correlations
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Figure A.1: Correlation between frequency bands.
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Figure A.2: Correlation between centrality measures.
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Figure A.3: Correlation between de-noising thresholds using degree as centrality measure.
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B
Performance metrics
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1 AUC from SOZ predictions

roc pr
epoch hybrid silent spike hybrid silent spike
model

lr_all 0.696509 0.639746 0.710392 0.276770 0.243700 0.303476
lr_mean_conn 0.648716 0.623944 0.623485 0.245934 0.220346 0.246927
lr_betweenness 0.500349 0.508362 0.508020 0.180441 0.184184 0.192873
lr_betweenness_thd 0.645562 0.621908 0.652452 0.254231 0.223734 0.261836
lr_closeness 0.458478 0.526260 0.409452 0.143725 0.167978 0.130809
lr_closeness_thd 0.685354 0.627606 0.697428 0.252322 0.218047 0.273960
lr_degree 0.532299 0.517873 0.529877 0.192450 0.175009 0.194284
lr_degree_thd 0.683940 0.634267 0.694821 0.259754 0.222260 0.278531
lr_eigenvector 0.410077 0.469889 0.392998 0.144474 0.152003 0.140940
lr_eigenvector_thd 0.672573 0.632542 0.684020 0.255690 0.229391 0.272253
lr_fast-ripple 0.600338 0.588345 0.568696 0.208429 0.193478 0.203627
lr_fast-ripple_thd 0.616017 0.591855 0.577069 0.231883 0.199183 0.223145
lr_fc 0.652596 0.621077 0.633501 0.244182 0.232723 0.250817
lr_good 0.690377 0.640188 0.690368 0.275493 0.242655 0.275487
lr_high-delta 0.490998 0.483207 0.464266 0.168033 0.156533 0.163057
lr_high-delta_thd 0.648179 0.600130 0.668664 0.221482 0.197867 0.235556
lr_pca 0.673497 0.636124 0.684465 0.255178 0.225327 0.268663
lr_ripple 0.654129 0.623562 0.626420 0.247475 0.226218 0.241778
lr_ripple_thd 0.656594 0.626379 0.649645 0.249188 0.231735 0.251089
lr_spike 0.616016 0.571107 0.601803 0.212819 0.194315 0.217304
lr_spike_thd 0.682202 0.628115 0.684652 0.258819 0.219549 0.265314
xgb 0.691471 0.591837 0.674136 0.284699 0.215016 0.255578

Table B.1: Area under the ROC and the PR curve across many different models for spike data, silent data, and hybrid data.
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2 AUC from outcome predictions

lr pca vae,nonsoz vae,soz kde,nonsoz kde,soz
quantile re rn re rn re rn re rn re rn re rn

0.000 0.528 0.500 0.528 0.500 0.528 0.500 0.528 0.500 0.528 0.500 0.528 0.500
0.050 0.556 0.403 0.578 0.394 0.533 0.564 0.533 0.558 0.544 0.414 0.528 0.500
0.100 0.550 0.511 0.556 0.411 0.544 0.531 0.556 0.536 0.558 0.525 0.528 0.500
0.150 0.528 0.539 0.567 0.519 0.544 0.539 0.511 0.622 0.550 0.536 0.528 0.500
0.200 0.511 0.461 0.567 0.478 0.550 0.558 0.528 0.664 0.558 0.533 0.511 0.683
0.250 0.544 0.467 0.556 0.467 0.550 0.525 0.483 0.644 0.567 0.514 0.514 0.708
0.300 0.531 0.511 0.572 0.494 0.558 0.511 0.494 0.611 0.544 0.497 0.522 0.708
0.350 0.500 0.517 0.583 0.522 0.528 0.539 0.522 0.617 0.536 0.519 0.539 0.653
0.400 0.517 0.539 0.644 0.458 0.556 0.519 0.506 0.675 0.550 0.522 0.542 0.628
0.450 0.531 0.531 0.628 0.483 0.550 0.511 0.522 0.650 0.561 0.525 0.544 0.589
0.500 0.500 0.544 0.686 0.481 0.519 0.536 0.506 0.639 0.556 0.572 0.544 0.561
0.550 0.500 0.528 0.647 0.483 0.553 0.597 0.506 0.633 0.542 0.589 0.558 0.553
0.600 0.514 0.511 0.572 0.500 0.583 0.583 0.514 0.578 0.528 0.561 0.528 0.561
0.650 0.506 0.506 0.528 0.528 0.600 0.558 0.525 0.578 0.550 0.575 0.558 0.556
0.700 0.506 0.539 0.586 0.506 0.617 0.561 0.481 0.594 0.614 0.522 0.575 0.517
0.750 0.486 0.553 0.564 0.517 0.656 0.533 0.489 0.572 0.614 0.522 0.589 0.550
0.800 0.494 0.572 0.619 0.506 0.556 0.578 0.492 0.586 0.614 0.522 0.508 0.572
0.850 0.519 0.594 0.667 0.494 0.597 0.550 0.494 0.567 0.614 0.522 0.522 0.550
0.900 0.453 0.572 0.744 0.500 0.556 0.558 0.478 0.556 0.614 0.522 0.539 0.561
0.950 0.553 0.536 0.694 0.528 0.539 0.539 0.356 0.567 0.614 0.522 0.417 0.544
1.000 0.528 0.528 0.500 0.528 0.500 0.528 0.500 0.528 0.614 0.522 0.500 0.528

Table B.2: AUC of rei and rni in predicting patient outcome under different metric and threshold of epileptogenicity.
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