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Abstract

Electronic health records (EHR) data has become crucial resources for a growing num-

ber of data-driven biomedical studies such as automated disease diagnosis and genotype-

phenotype translation studies. Nevertheless, power of EHR analysis is usually impeded

by the limited size of local data and the essential challenges in aggregating EHR data from

multiple sources. Statistical challenges of multi-site EHR analysis are mainly due to co-

variate shift and model heterogeneity across the sites, missing or not properly handling of

which can result in bias and poor transportability and generalizability. Meanwhile, both

data high dimensionality and privacy concern arise in recent EHR studies and increase

the difficulty in handling these challenges. In this paper, we develop novel methods to

overcome the statistical and privacy challenges of multi-site EHR data aggregation. Our

proposed methods facilitate efficient, transportable and generalizable analysis of large and

noisy biomedical data frommulti-sites.

In Chapter 1, we propose a novel approach for data shielding high-dimensional Integra-

tive regression (SHIR). Our method protects individual data through summary-statistics-

based integrating procedure, accommodates between study heterogeneity in both the co-

variate distribution and model parameters, and attains consistent variable selection. We
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show SHIR is statistically more efficient than existing integrative regression approaches.

Furthermore, the estimation error incurred by aggregating summary data is negligible com-

pared to the statistically optimal rate and SHIR is shown to be asymptotically equivalent

in estimation to the ideal estimator obtained by sharing all data. The finite-sample perfor-

mance of our method is studied and compared with existing approaches via extensive sim-

ulation settings. We further illustrate the utility of SHIR to derive phenotyping algorithms

for coronary artery disease using EHR data frommultiple chronic disease cohorts.

In Chapter 2, we propose a data shielding integrative large-scale testing (DSILT) method

for signal detection allowing between-study heterogeneity and not requiring the sharing

of individual level data. Assuming the underlying high dimensional regression models of

the data differ across studies yet share similar support, the proposed method incorporates

proper integrative estimation and debiasing procedures to construct test statistics for the

overall effects of specific covariates. We also develop a multiple testing procedure to iden-

tify significant effects while controlling the false discovery rate (FDR) and false discovery

proportion (FDP). Theoretical comparisons of the new testing procedure with the ideal

individual–level meta–analysis (ILMA) approach and other distributed inference meth-

ods are investigated. Simulation studies demonstrate that the proposed testing procedure

performs well in both controlling false discovery and attaining power. The newmethod is

applied to a real example detecting interaction effects of the genetic variants for statins and

obesity on the risk for type II diabetes.

Importance weighting, as a natural and principle strategy to adjust for covariate shift, has

been commonly used in the field of transfer learning. However, it is not robust to model

misspecification or excessive estimation error. In Chapter 3, we propose an augmented
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transfer regression learning (ATReL) approach that introduces an imputation model for

the targeted response, and uses it to augment the importance weighting equation. With

novel semi-non-parametric constructions and calibrated moment estimating equations

for the two nuisance models, our ATReLmethod is less prone to (i) the curse of dimen-

sionality compared to nonparametric approaches, and (ii) model mis-specification than

parametric approaches. We show that our ATReL estimator is n1/2-consistent when at least

one nuisance model is correctly specified, estimation for the parametric part of the nui-

sance models achieves parametric rate, and the nonparametric components are rate doubly

robust. We also propose ways to enhance the intrinsic efficiency of our estimator and to

incorporate modern machine learning methods with our proposed framework.
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1.1 Introduction

1.1.1 Background

Synthesizing information frommultiple studies is crucial for evidence based medicine and

policy decision making. Meta-analyzing multiple studies allows for more precise estimates

and enables investigation of generalizability. In the presence of heterogeneity across stud-

ies and high dimensional predictors, such integrative analysis however is highly challeng-

ing. An example of such integrative analysis is to develop generalizable predictive models

using electronic health records (EHR) data from different hospitals. In addition to high

dimensional features, EHR data analysis encounters privacy constraints in that individual-

level data typically cannot be shared across local hospital sites, which makes the challenge

of integrative analysis even more pronounced. Breach of Privacy arising from data shar-

ing is in fact a growing concern in general for scientific studies. Recently, Wolfson et al.

(2010) proposed a generic individual-information protected integrative analysis framework,

named DataSHIELD, that transfers only summary statistics* from each distributed local

site to the central site for pooled analysis. Conceptually highly valued by research commu-

nities (Jones et al., 2012; Doiron et al., 2013, e.g.), the DataSHIELD facilitates important

data co-analysis settings where individual-level data meta-analysis (ILMA) is not feasible

due to ethical and/or legal restrictions (Gaye et al., 2014). In the low dimensional setting,

a number of statistical methods have been developed for distributed analysis that satisfy

the DataSHILED constraint (Chen et al., 2006; Wu et al., 2012; Liu & Ihler, 2014; Lu

*For estimation of some low dimensional parametric regression model, the summary statistics to transfer
are usually taken as the locally fitted regression coefficient and its Hessian matrix (Duan et al., 2019, 2020,
e.g.).
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et al., 2015; Huang &Huo, 2015; Han & Liu, 2016; He et al., 2016; Zöller et al., 2018;

Duan et al., 2019, 2020, e.g). Distributed learning methods for high dimensional regression

have largely focused on settings without between-study heterogeneity as detailed in Section

1.1.2. To the best of our knowledge, no existing distributed learning methods can effec-

tively handle both high-dimensionality together with the presence of model heterogeneity

across the local sites.

1.1.2 RelatedWork

In the context of high dimensional regression, several recently proposed distributed infer-

ence approaches can be potentially used for the meta-analysis under the DataSHIELD con-

straint. Specifically, Tang et al. (2016), Lee et al. (2017) and Battey et al. (2018) proposed

distributed inference procedures aggregating the local debiased LASSO estimators (Zhang

& Zhang, 2014; Van de Geer et al., 2014; Javanmard &Montanari, 2014). By including de-

biasing procedure in their pipelines, the corresponding estimators can be used for inference

directly. Lee et al. (2017) and Battey et al. (2018) proposed to further truncate the aggre-

gated dense debiased estimators to achieve sparsity; see also Maity et al. (2019). Though this

debiasing-based strategy can be extended to fit for our heterogeneous modeling assump-

tion, it still loses statistical efficiency due to the failure to account for the heterogeneity of

the information matrices across different sites. In addition, the use of debiasing procedure

at local sites incurs additional error for estimation, as detailed in Section 4.4.

Besides, Lu et al. (2015) and Li et al. (2016) proposed distributed approaches for ℓ2-

regularized logistic and Cox regression, which rely on iterative communications across the

studies. Their methods require sequential communications between local sites and the cen-
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tral machine, which may be time and resource consuming, especially since human effort

is often needed to perform the computation and data transfer in many practical settings.

Chen & Xie (2014) proposed to estimate high dimensional parameters by first adopting

majority voting to select a positive set and then combining local estimation of the coeffi-

cients belonging to this set. Wang et al. (2014) proposed to aggregate the local estimators

through their median values rather than their mean, shown to be more robust to poor es-

timation performance of local sites with insufficient sample size (Minsker, 2019). More

recently, Wang et al. (2017) and Jordan et al. (2019) presented a communication-efficient

surrogate likelihood framework for distributed statistical learning that only transfers the

first order summary statistics, i.e. gradient between the local sites and the central site. Fan

et al. (2019) extended their idea and proposed two iterative distributed optimization algo-

rithms for the general penalized likelihood problems. However, their framework, as well as

others summarized in this paragraph, is restricted to homogeneous scenarios and cannot be

easily extended to the settings with heterogeneous models or covariates.

1.1.3 Our Contribution

In this chapter, we fill the methodological gap of high dimensional distributed learning

methods that can accommodate cross-study heterogeneity by proposing a novel data-

ShieldingHigh-dimensional IntegrativeRegression (SHIR) method under the DataSHIELD

constraints. While SHIR can be viewed as analogous to the integrative analysis of debiased

local LASSO estimators, it achieves debiasing without having to perform debiasing for the

local estimators. SHIR solves LASSO problem only once in each local site without requir-

ing the inverse Hessian matrices or the locally debiased estimators and only needs one turn
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in communication. Statistically, it serves as the tool for the integrative model estimation

and variable selection, in the presence of high dimensionality and heterogeneity in model

parameters across sites. In addition, under ultra-high dimensional regime where p can grow

exponentially with n, SHIR is shown to theoretically achieve asymptotically equivalent

performance with the estimator obtained by the ideal individual patient data (IPD) pooled

across sites and attain consistent variable selection. Such properties are not readily available

in the existing literature and some novel technical tools are developed for the theoretical

verification. We also show that SHIR is statistically more efficient than the approach based

on integrating and truncating locally debiased estimators (Lee et al., 2017; Battey et al.,

2018, e.g.) through theoretical investigation. Our numerical studies further verify this by

comparing our method with the existing approaches. It demonstrates that SHIR enjoys

close numerical performance as the ideal IPD estimator and outperforms the other meth-

ods.

1.1.4 Outline of the chapter

The rest of this chapter is organized as follows. We introduce the setting in Section 1.2 and

describe SHIR, our proposed approach in Section 1.3. Theoretical properties of SHIR are

studied in Section 1.4. We derive the upper bound for its prediction and estimation risks,

compare it with the existing approach and show that the errors incurred by aggregating

derived data is negligible compared to the statistical minimax rate. When the true model

is ultra-sparse, SHIR is shown to be asymptotically equivalent to the IPD estimator and

achieves sparsistency. Section 1.5 compares the performance of SHIR to existing methods

through simulations. We apply SHIR to derive classification models for coronary artery
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disease (CAD) using EHR data from four different disease cohorts in Section 1.6. Section

1.7 concludes the chapter with a discussion. Technical proofs of the theoretical results are

provided in Appendix A.

1.2 Problem Statement

Throughout, for any integer d, [d] = {1, . . . , d}. For any vector x = (x1, x2, . . . , xd)T ∈

Rd and index set S = {j1, . . . , jk : j1 < · · · < jk} ⊆ [d], xS = (xj1 , . . . , xjk)T, x−1 =

(x2, . . . , xd)T, ∥x∥q denotes the ℓq norm of x and ∥x∥∞ = maxj∈[d] |xj|. Suppose there

areM independent studies and nm subjects in themth study, form = 1, . . . ,M. For the

ith subject in themth study, let Y(m)

i andX(m)

i respectively denote the response and the p-

dimensional covariate vector,D(m)

i = (Y(m)

i ,X(m)T

i )T, Y(m) = (Y(m)

1 , . . . ,Y(m)
nm )

T, andX(m) =

(X(m)

1 ,X(m)

2 , . . . ,X(m)
nm )

T. We assume that the observations in studym,D (m) = {D(m)

i , i =

1, . . . , nm}, are independent and identically distributed. Without loss of generality, assume

thatX(m)

i includes 1 as the first component andX(m)

i,−1 has mean 0. Define the population

parameters of interests as

β(m)

0 = argmin
β(m)

Lm(β(m)), whereLm(β(m)) = E{f(β(m)TX(m)

i ,Y(m)

i )}, β(m) = (β(m)

1 , β(m)

2 , . . . , β(m)

p )T

for some specified loss function f. Let βj = (β(1)
j , . . . , β(M)

j )T, β(•) = (β(1)T, . . . , β(M)T)T, and

β0j, β
(•)
0 denote the true values of βj, β

(•). We consider the ultra-high dimensional setting,

under which the number of covariates p could grow in the exponential rate of the sample

sizeN =
∑M

m=1 nm.

For each j, we follow the typical meta-analysis to decompose β(m)

j as β(m)

j = μj + α(m)

j with
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αj = (α(1)
j , . . . , α(M)

j )T and we set 1TM×1αj = 0 for identifiability. Here μj represents average

effect of the covariate Xj and αj captures the between study heterogeneity of the effects. Let

μ = (μ1, . . . , μp)
T, α(•) = (α(1)T, . . . , α(M)T)T, α(•)

−1 = (α(1)T
−1 , . . . , α

(M)T

−1 )T, and μ0 and α
(•)
0 be

the true values of μ and α(•), respectively. Consider the empirical global loss function

L̂(β(•)) = N−1
M∑

m=1

nmL̂m(β(m)), where L̂m(β(m)) = n−1
m

nm∑
i=1

f(β(m)TX(m)

i ,Y(m)

i ), m = 1, . . . ,M.

Minimizing L̂(β(•)) is obviously equivalent to estimating β(m) usingD (m) only. To improve

the estimation of β(•)
0 by synthesizing information fromD (•) and overcome the high dimen-

sionality, we employ penalized loss functions, L̂(β(•)) + λρ(β(•)), with the penalty function

ρ(·) designed to leverage prior structure information on β(•)
0 . Under the prior assumption

that μ0 is sparse and α
(1)
0,−1, . . . , α

(M)

0,−1 are sparse and share the same support, we impose a

mixture of LASSO and group LASSO penalty: ρ(β(•)) =
∑p

j=2 |μj| + λg
∑p

j=2 ∥αj∥2,

where λg ≥ 0 is a tuning parameter. Similar penalty has been used in Cheng et al. (2015).

Our construction differs slightly from that of Cheng et al. (2015) where ∥αj,−1∥2 was used

instead of ∥αj∥2. This modified penalty leads to two main advantages: (1) the estimator is

invariant to the permutation of the indices of theM studies; and (2) it yields better theoret-

ical estimation error bounds for the heterogeneous effects detailed as in the proofs. Then

an idealized IPD estimator for β(•)
0 can be obtained as

β̂
(•)

IPD
= argmin

β(•)
Q̂(β(•)), where Q̂(β(•)) = L̂(β(•)) + λρ(β(•)), (1.1)

with some tuning parameter λ ≥ 0. However, the IPD estimator is not feasible under the

DataSHIELD constraint. Our goal is to construct an alternative estimator that asymptot-
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ically attains the same efficiency as β̂
(•)

IPD
but only requires sharing summary data. When p

is not large, the sparse meta analysis (SMA) approach by He et al. (2016) achieves this goal

via estimating β(•) as β̂
(•)

SMA
= argminβ(•) Q̂SMA(β(•)), where Q̂SMA(β(•)) = N−1∑M

m=1(β
(m) −

β̆
(m)

)TV̆−1
m (β(m)−β̆

(m)

)+λρ(β(•)), β̆
(m)

= argminβ(m) L̂m(β(m)) and V̆m = {n−1
m ∇2L̂m(β̆

(m)

)}−1.

Their proposed method is DataSHIELD since the derived β̆
(m)

and V̆m used for integrative

regression cannot be used to identify any individual level data. Although the SMA attains

oracle property for a relatively small p, it fails when p is large due to the failure of β̆
(m)

.

1.3 data-ShieldingHighDimensional Integrative Regression (SHIR)

1.3.1 SHIRMethod

In the high dimensional setting, one may overcome the limitation of the SMA approach by

replacing β̆
(m)

with the regularized LASSO estimator,

β̂
(m)

LASSO
= argmin

β(m)

L̂m(β(m)) + λm∥β(m)

−1∥1 (1.2)

However, aggregating {β̂
(m)

LASSO
,m ∈ [M]} is problematic with large p due to their inherent

biases. To overcome the bias issue, we build the SHIRmethod motivated by SMA and the

debiasing approach for LASSO (Van de Geer et al., 2014, e.g.) yet achieve debiasing without

having to perform debiasing forM local estimators. Specifically, we propose the SHIR

estimator for β(•)
0 as β̂

(•)

SHIR
= argminβ(•) Q̂SHIR(β(•)), where

Q̂SHIR(β(•)) = N−1
M∑

m=1

nm
{
β(m)TĤmβ(m) − 2β(m)Tĝm

}
+ λρ(β(•)), (1.3)

8



Ĥm = ∇2L̂m(β̂
(m)

LASSO
) is an estimate of the Hessian matrix and ĝm = Ĥmβ̂

(m)

LASSO
−∇L̂m(β̂

(m)

LASSO
).

Our SHIR estimator β̂
(•)

SHIR
satisfy the DataSHIELD constraint as Q̂SHIR(β(•)) depends on

D (m) only through summary statistics D̂m = {nm, Ĥm, ĝm}, which can be obtained within

themth study, and requires only one round of data transfer from local sites to the central

node.

With {Ĥm, ĝm,m = 1, ...,M}, we may implement the SHIR procedure using coordi-

nate descent algorithms (Friedman et al., 2010) along with reparameterization. Let

Q̂SHIR(μ, α(•)) = L̂SHIR(μ, α(•)) + λρ(μ, α(•); λg),

where ρ(μ, α(•); λg) = ∥μ−1∥1 + λg∥α(•)
−1∥2,1, ∥α

(•)
−1∥2,1 =

∑p
j=2 ∥αj∥2 and

L̂SHIR(μ, α(•)) = N−1
M∑

m=1

nm
{
(μT + α(m)T)Ĥm(μ+ α(m))− 2ĝT

m(μ+ α(m))
}
.

Then the optimization problem in (1.3) can be reparameterized and represented as:

(μ̂
SHIR

, α̂(•)
SHIR) = argmin

(μ,α(•))
Q̂SHIR(μ, α(•)), s.t. 1TM×1αj = 0, j ∈ [p],

and β̂
SHIR

is obtained with the transformation: β(m)

j = μj + α(m)

j for every j ∈ [p]. To help

understand our proposal, we present the above described estimation procedure as a pseudo-

algorithm in Section A.5 of Appendix A.

Remark 1.1. The first term in Q̂SHIR(β(•)) is essentially the second order Taylor expansion

of L̂(β(•)) at the local LASSO estimators β̂
(•)

LASSO
. The SHIRmethod can also be viewed as

approximately aggregating local debiased LASSO estimators without actually carrying

9



out the standard debiasing process. To see this, let Q̂dLASSO(β(•)) = N−1∑M
m=1 nm(β

(m) −

β̂
(m)

dLASSO
)TĤm(β(m) − β̂

(m)

dLASSO
) + λρ(β(•)), where β̂

(m)

dLASSO
is the debiased LASSO estimator for the

mth study with

β̂
(m)

dLASSO
= β̂

(m)

LASSO
− Θ̂m∇L̂m(β̂

(m)

LASSO
), for m = 1, . . . ,M, (1.4)

and Θ̂m is a regularized inverse of Ĥm. We may write

Q̂dLASSO(β(•))=N−1
M∑

m=1

{
nm
[
β(m)TĤmβ(m) − 2β(m)TĤmβ̂

(m)

dLASSO

]
+ Cm

}
+ λρ(β(•))

≈ N−1
M∑

m=1

{
nm
[
β(m)TĤmβ(m) − 2β(m)Tĝm

]
+ Cm

}
+ λρ(β(•))

= Q̂SHIR(β(•)) +N−1
M∑

m=1

Cm,

where we use Θ̂mĤm ≈ I in the above approximation and the term

Cm = nm
{
Ĥmβ̂

(m)

LASSO
− ĤmΘ̂m∇L̂m(β̂

(m)

LASSO
)
}T {

β̂
(m)

LASSO
− Θ̂m∇L̂m(β̂

(m)

LASSO
)
}

does not depend on β(•). We only use Θ̂mĤm ≈ I heuristically above to show a connection

between our SHIR estimator and the debiased LASSO, but the validity and asymptotic prop-

erties of the SHIR estimator do not require obtaining any Θ̂m or establishing a theoretical

guarantee for Θ̂mĤm being sufficiently close to I.

Remark 1.2. Compared with existing debiasing-type methods (Lee et al., 2017; Battey et al.,

2018), the SHIR is also computationally and statistically efficient as it is performed without
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relying on the debiased statistics (1.4) and achieves debiasing without calculating Θ̂m, which

can only be estimated well under strong conditions (Van de Geer et al., 2014; Janková & Van

De Geer, 2016).

1.3.2 Tuning Parameter Selection

The implementation of SHIR requires selection of three sets of tuning parameters, {λm,m ∈

[M]}, λ and λg. We select {λm,m ∈ [M]} for the LASSO problem locally via the standard

K-fold cross validation (CV). Selecting λ and λg needs to balance the trade-off between the

model’s degrees of freedom, denoted by DF(λ, λg), and the quadratic loss in Q̂SHIR(β(•)). It

is not feasible to tune λ and λg via the CV since individual-level data are not available in the

central site. We propose to select λ and λg as the minimizer of the generalized information

criterion (GIC) (Wang & Leng, 2007; Zhang et al., 2010), defined as

GIC(λ, λg) = Deviance(λ, λg) + γNDF(λ, λg),

where γN is some pre-specified scaling parameter and

Deviance(λ, λg) = N−1
M∑

m=1

nm
{
β̂
(m)T

SHIR
(λ, λg)Ĥmβ̂

(m)

SHIR
(λ, λg)− 2ĝT

mβ̂
(m)

SHIR
(λ, λg)

}
.

Following Zhang et al. (2010) and Vaiter et al. (2012), we define DF(λ, λg) as the trace of

[
∂2
Ŝμ,Ŝα

Q̂SHIR(μ̂SHIR
, α̂(•)

SHIR)
]−1 [

∂2
Ŝμ,Ŝα

L̂SHIR(μ̂SHIR
, α̂(•)

SHIR)
]
,

11



where Ŝμ = {j : μ̂
SHIR,j(λ, λg) ̸= 0}, Ŝα = {j : ∥α̂SHIR,j(λ, λg)∥2 ̸= 0}, the operator ∂2

Ŝμ,Ŝα

is defined as the second order partial derivative with respect to (μT

Ŝμ
, α(2)T

Ŝα
, . . . , α(M)T

Ŝα
)T, after

plugging α(1) = −
∑M

m=2 α(m) into Q̂SHIR(μ, α(•)) or L̂SHIR(μ, α(•)).

Remark 1.3. As discussed in Kim et al. (2012), γN can be chosen depending on the goal with

commonly choices including γN = 2/N for AIC (Akaike, 1974), γN = logN/N for BIC

(Bhat & Kumar, 2010), γN = log log p logN/N for modified BIC (Wang et al., 2009) and

γN = 2 log p/N for RIC (Foster & George, 1994). We used the BIC with γN = logN/N in

our numerical studies.

Remark 1.4. For linear models, it has been shown that the proper choice of γN guarantees

GIC’s model selection consistency under various divergence rates of the dimension p (Kim

et al., 2012). For example, for fixed p, GIC is consistent if NγN → ∞ and γN → 0. When p

diverges in polynomial rate Nξ, then GIC is consistent provided that γN = logN/N (BIC) if

0 < ξ < 1/2; γN = log log p logN/N (modified BIC) if 0 < ξ < 1. When p diverges in

exponential rate O(exp(κNξ)) with 0 < ν < ξ, GIC is consistent as γN = Nν−1. These results

can be naturally extended to more general log-likelihood functions.

1.4 Theoretical Results

In this section, we present theoretical properties of β̂
(•)

SHIR
for ρ(β(•)) = ρ(β(•)) but discuss

how our theoretical results can be extended to other sparse structures in Section 1.7. In

Sections 1.4.2 and 1.4.3, we derive theoretical consistency and equivalence for the predic-

tion and estimation risks of the SHIR, under high dimensional sparse model and smooth

loss function f. In Section 1.4.4, we compare the risk bounds for SHIR with an estima-

tor derived based on those of the debiasing-based aggregation approaches (Lee et al., 2017;

12



Battey et al., 2018). In addition, Section 1.4.5 shows that the SHIR achieves sparsistency,

i.e., variable selection consistency, for the non-zero sets of μ0 and α
(•)
0 . We begin with some

notation and definitions that will be used throughout this chapter.

1.4.1 Notation and definitions

Let o{α(n)},O{α(n)}, ω{α(n)}, Ω{α(n)} and Θ{α(n)} respectively represent the se-

quences that grow in a smaller, equal/smaller, larger, equal/larger and equal rate of the

sequence α(n). Similarly, we let oP,OP, ωP, ΩP and ΘP represent each of the correspond-

ing rates with probability approaching 1 as n → ∞. For any vector v0 ∈ Rd, denote

the ℓ2-ball around v0 with radius r > 0 asBr(v0) = {v ∈ Rd : ∥v − v0∥2 ≤ r}.

Following Vershynin (2018), we define the sub-Gaussian norm of a random variable X as

∥X∥ψ2 := supq≥1 q
−1/2(E|X|q)1/q, and for any random vector X = (X1, . . . ,Xd)

T, its

sub-Gaussian norm defined as ∥X∥ψ2 = supv∈B1(0)∥v
TX∥ψ2 . For any symmetric matrixX,

let Λmin(X) and Λmax(X) denote its minimum and maximum eigenvalue respectively. For

a ∈ R, denote by sign(a) the sign of a, and for event E , denote by I(E) the indicator for E .

Denote by Sμ = {j : μ0j ̸= 0}, Sα = {j : ∥α0j∥2 ̸= 0}, S0 = Sμ ∪ Sα, sμ = |Sμ|,

sα = |Sα| and s0 = |S0|. Let f′1(a, y) = ∂f(a, y)/∂a and f′′1 (a, y) = ∂2f(a, y)/∂a2. Also,

letH(β(•)) = N−1bdiag{n1H1(β(1)), n2H2(β(2)), . . . , nMHM(β(M))}, Ĥ = H(β̂
(•)

LASSO
),

H̄m(β(m)) = E[Hm(β(m))], and H̄m = H̄m(β(m)

0 ). At last, we introduce the Compatibility

Condition (Ccomp) as below.

Definition 1.1. Compatibility Condition (Ccomp): The Hessian matrixH(β(•)) and the

index set S satisfy the Compatibility Condition with constant t > 0, if there exists constant
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φ0{t,S,H(β(•))} such that for all (μT

Δ, α
(•)T
Δ )T = (μT

Δ, α
(1)T
Δ , . . . , α(M)T

Δ )T ∈ C(t,S),

(∥μΔ∥1 + λg∥α(•)T
Δ ∥2,1)2 ≤ N−1

M∑
m=1

nm|S|∥H1/2
m (β(m))(μΔ + α(m)

Δ )∥22/φ0{t,S,H(β(•))},

where C(t,S) = {(uT, v(•)T)T = (uT, v(1)T, . . . , v(M)T)T : v(1) + · · · + v(M) = 0, ∥uS c∥1 +

λg∥v(•)S c ∥2,1 ≤ t(∥uS∥1 + λg∥v(•)S ∥2,1)} for any t and S , and φ0{t,S,H(β(•))} represents the

compatibility constant ofH(β(•)) on the set S .

1.4.2 Prediction and Estimation Consistency

To establish theoretical properties of the SHIR estimators in terms of estimation and pre-

diction risks, we first introduce some sufficient conditions. Throughout the following anal-

ysis, we assume that nm = Θ(N/M) form ∈ [M] and λg = Θ(M−1/2).

Condition 1.1. There exists an absolute constant φ0 > 0 such that for all δ1 = Θ{(s0M log p/N)1/2},

β(•) = (β(1)T, . . . , β(M)T)T satisfying β(m) ∈ Bδ1(β
(m)

0 ), the Hessian matricesH(β(•)) and the

index set S0 satisfy Ccomp (Definition 1.1) with compatibility constant φ0{t,S0,H(β(•))} ≥

φ0.

Condition 1.2. For all m ∈ [M], X(m)

ij f′1(β
(m)T

0 X(m)

i ,Y(m)

i ) is sub-Gaussian, i.e. there exists

some positive constant κ = Θ(1) such that ∥X(m)

ij f′1(β
(m)T

0 X(m)

i ,Y(m)

i )∥ψ2 < κ. In addition, there

exists B > 0 such thatmaxm∈[M],i∈[nm] ∥X
(m)

i ∥∞ ≤ B.

Condition 1.3. There exists positive CL = Θ(1) such that |f′′1 (a, y)− f′′1 (b, y)| ≤ CL|a− b|

for all a, b ∈ R.

Remark 1.5. Condition 1.1 is in the similar spirit as the restricted eigenvalue or restricted

strong convexity condition introduced by Negahban et al. (2012). Our following Proposi-
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tion 1.1 states that Condition 1.1 holds for sub-Gaussian weighted design with regular Hes-

sian matrix. The first part of Condition 1.2 controls the tail behavior of X(m)

ij f′1(a, y) so that

the random error∇L̂m(β(m)

0 ) can be bounded properly and the method could be benefited

from the group sparsity of α(•) (Huang & Zhang, 2010). This condition can be easily veri-

fied for sub-gaussian design and an extensive class of models, e.g. the logistic model. In ad-

dition, the conditionmaxm∈[M],i∈[nm] ∥X
(m)

i ∥∞ ≤ B holds for bounded design with B =

Θ(1) and for sub-gaussian design with B = Θ[{log(pN)}1/2]. Condition 1.3 assumes

a smooth function f to guarantee that the empirical Hessian matrix∇2L̂m(β̂
(m)

LASSO
) is close

enough to∇2L̂m(β(m)

0 ), and the term ĝm = [Ĥmβ̂
(m)

LASSO
− ∇L̂m(β̂

(m)

LASSO
)] is close enough to

[∇2L̂m(β(m)

0 )β(m)

0 −∇L̂m(β(m)

0 )].

Proposition 1.1. Assume that nm = Θ(N/M), λg = Θ(M−1/2), s0 = o{N/(M log p)},

Condition 1.3 holds, and there exists absolute constants κx,Cx > 0, such that for all m ∈ [M],

C−1
x ≤ Λmin(H̄m) ≤ Λmax(H̄m) ≤ Cx,maxx∈B1(0) E[xTX(m)

i ]4 ≤ Cx; and for any δ1 =

Θ{(s0M log p/N)1/2} and β(m) ∈ Bδ1(β
(m)

0 ), it holds that ∥X(m)

i {f′′1 (β
(m)TXi,Y(m)

i )}1/2∥ψ2 ≤

κx. Condition 1.1 is satisifed with probability approaching 1.

Remark 1.6. As an important example in practice, it is not hard to verify that for logistic

model, i.e. f(a, y) = ya − log(1 + ea), and sub-Gaussian covariatesX(m)

i , the key assumption

on weighted design: ∥X(m)

i {f′′1 (β
(m)TXi,Y(m)

i )}1/2∥ψ2 ≤ κx in Proposition 1.1 is satisfied. Note

that for linear model, the sub-Gaussian covariates assumption onX(m)

i has been commonly

used to establish the compatibility of the sample covariance matrix (Rivasplata, 2012).

We prove Proposition 1.1 in Section A.1 of Appendix A. We further assume in Con-

dition 1.4 that the local LASSO estimators achieve the minimax optimal error rates to a

logarithmic scale (Raskutti et al., 2011; Negahban et al., 2012).
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Condition 1.4. The local estimators satisfy thatmaxm∈[M] ∥β̂
(m)

LASSO
−β(m)

0 ∥1 = OP{s0(log p/nm)1/2},

andmaxm∈[M] ∥β̂
(m)

LASSO
−β(m)

0 ∥2 ≍ maxm∈[M] ∥X(m)(β̂
(m)

LASSO
−β(m)

0 )∥2 = OP{(s0 log p/nm)1/2}.

Remark 1.7. Extensive literatures, such as Van de Geer et al. (2008), Bühlmann&Van

De Geer (2011) and Negahban et al. (2012), have established a complete theoretical frame-

work regarding to this property. See, for example, Negahban et al. (2012), in which Condition

1.4 can be proved under for strongly convex loss function f.

Next, we present the risk bounds for the SHIR including the prediction risk ∥Ĥ1/2(β̂
(•)

SHIR
−

β(•)
0 )∥2 and estimation risk ∥μ̂

SHIR
− μ0∥1 + λg∥α̂(•)

SHIR − α(•)
0 ∥2,1.

Theorem 1.1. (Risk bounds for the SHIR)Under Conditions 1.1–1.4 and assume nm =

Θ(N/M) for all m ∈ [M]. There exists λ = Θ({(log p+M)/N}1/2 + Bs0M log p/N) and

λg = Θ(M−1/2) such that

∥Ĥ1/2(β̂
(•)

SHIR
− β(•)

0 )∥2 = OP({s0(log p+M)/N}1/2 + Bs3/20 M log p/N);

∥μ̂
SHIR

− μ0∥1 + λg∥α̂(•)
SHIR − α(•)

0 ∥2,1 = OP(s0{(log p+M)/N}1/2 + Bs20M log p/N).

The second term in each of the upper bounds of Theorem 1.1 is the error incurred by ag-

gregation noise of derived data instead of raw data. These terms are asymptotically negli-

gible under sparsity as s0 = o({N(log p + M)}1/2/[BM log p]). Then β̂
(•)

SHIR
achieves the

same error rate as the ideal estimator β̂
(•)

IPD
obtained by combining raw data as shown in the

following section, and is nearly rate optimal.
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1.4.3 Asymptotic Equivalence in Prediction and Estimation

Under specific sparsity assumptions, we show the asymptotic equivalence, with respect to

prediction and estimation risks, of the SHIR and the ideal IPD estimator β̂
(•)

IPD
or alterna-

tively defined as

(μ̂
IPD
, α̂(•)

IPD) = argmin
(μ,α(•))

L̂(μ, α(•)) + λ̃ρ(μ, α(•); λg), s.t. 1TM×1αj = 0, j ∈ [p],

where λ̃ is a tuning parameter.

Theorem 1.2. (Asymptotic Equivalence)Under assumptions in Theorem 1.1 and assume

s0 = o({N(log p + M)}1/2/[BM log p]), there exists λ̃ = Θ{(log p + M)/N}1/2 and

λg = Θ(M−1/2) such that the IPD estimator β̂
(•)

IPD
satisfies

∥Ĥ1/2(β̂
(•)

IPD
− β(•)

0 )∥2 = OP({s0(log p+M)/N}1/2);

∥μ̂
IPD

− μ0∥1 + λg∥α̂(•)
IPD − α(•)

0 ∥2,1 = OP(s0{(log p+M)/N}1/2).

Furthermore, for some λΔ = o(λ̃), the IPD and the SHIR defined by (1.3) with λ = λ̃ + λΔ

are equivalent in prediction and estimation in the sense that

∥Ĥ1/2(β̂
(•)

SHIR
− β(•)

0 )∥2 ≤ ∥Ĥ1/2(β̂
(•)

IPD
− β(•)

0 )∥2 + oP({s0(log p+M)/N}1/2);

∥μ̂
SHIR

− μ0∥1 + λg∥α̂(•)
SHIR − α(•)

0 ∥2,1 ≤ ∥μ̂
IPD

− μ0∥1 + λg∥α̂(•)
IPD − α(•)

0 ∥2,1 + oP(s0{(log p+M)/N}1/2).

Theorem 1.2 demonstrates the asymptotic equivalence between β̂
(•)

SHIR
and β̂

(•)

IPD
with respect

to estimation and prediction risks, and hence implies strict optimality of the SHIR. Specif-
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ically, when s0 = o({N(log p + M)}1/2/[BM log p]), the excess risks of β̂
(•)

SHIR
compared

to β̂
(•)

IPD
are of smaller order than those of IPD, i.e. the minimax optimal rates (up to a loga-

rithmic scale) for multi-task learning of high dimensional sparse model (Huang & Zhang,

2010; Lounici et al., 2011). Similar equivalence results was given in Theorem 4.8 of Bat-

tey et al. (2018) for the truncated debiased LASSO estimator. However, to the best of

our knowledge, in the existing literatures, such results have not been established yet for

the LASSO-type estimators obtained directly from a sparse regression model. Compared

with Battey et al. (2018), our result does not require the Hessian matrix Ĥm to have a sparse

inverse since we do not actually rely on the debiasing of β̂
(m)

LASSO
. Consequently, the proofs

of Theorem 1.2 are much more involved than those in Battey et al. (2018). The technical

difficulties are briefly discussed in Section 1.7 and new technical skills are developed and

presented in detail in Appendix A.

1.4.4 Comparisonwith the debiasing-based strategy

To compare to existing approaches, we next consider an extension of the debiased LASSO

based procedures proposed in Lee et al. (2017) and Battey et al. (2018) to incorporating

between study heterogeneity. Specifically, at themth site, we derive the debiased LASSO

estimator β̂
(m)

dLASSO
as defined in (1.4) and send it to the central site, where Θ̂m is obtained via

nodewise LASSO (Javanmard &Montanari, 2014). At the central site, compute μ̂
dLASSO

=

M−1∑M
m=1 β̂

(m)

dLASSO
, α̂(m)

dLASSO = β̂
(m)

dLASSO
− μ̂

dLASSO
and α̂(•)

dLASSO = (α̂(1)
dLASSO, . . . , α̂

(M)

dLASSO)
T. The

final estimator for μ and α can be obtained by thresholding μ̂
dLASSO

and α̂(•)
dLASSO as μ̂L&B

=

Tμ(μ̂dLASSO
; τ1) and α̂(•)

L&B = Tα(α̂(•)
dLASSO; μ2), by Lee et al. (2017) and Battey et al. (2018),
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where

Tμ(μ; τ1) = {μ1, μ
h+
2 (τ1), . . . , μh+

p (τ1)}T or {μ1, μ
s+
2 (τ1), . . . , μs+

p (τ1)}
T

Tα(α(•); τ2) = vec{[α1, α
h+
2 (τ2), . . . α

h+
p (τ2)]T} or vec{[α1, α

s+
2 (τ2), . . . α

s+
p (τ2)]T},

for any vector x = (x1, ..., xd)T and constant τ, xh+ = xI(∥x∥2 > τ) and xs+ = x(1 −

∥x∥−1
2 τ)I(∥x∥2 > τ) respectively denote the hard and soft thresholded counterparts of x,

and vec(A) vectorize the matrixA by column.

The error rates of {μ̂
L&B

, α̂(•)
L&B} can be derived by extending Lee et al. (2017) and Battey

et al. (2018). We outline the results below and provide details in Section A.3.4 of Appendix

A. Denote by H̄m(β(m)) = E[Hm(β(m))], H̄m = H̄m(β(m)

0 ), Θ̄m = {θ̄mjℓ}p×p = H̄−1
m and

s1 = maxm∈[M]j∈[p] |{ℓ ̸= j : θ̄mjℓ ̸= 0}|. Then in analog to Theorem 1.1, one can obtain

that

∥μ̂
L&B

− μ0∥1 + λg∥α̂(•)
L&B − α(•)

0 ∥2,1 = OP(s0{(log p+M)/N}1/2 + Bs0(s0 + s1)M log p/N),

(1.5)

where B is as defined in Condition 1.2. Compared with the error rates of SHIR as pre-

sented in Theorem 1.1, {μ̂
L&B

, α̂(•)
L&B} shares the same “first term”, s0{(log p + M)/N}1/2,

representing the error of individual level empirical process. However, its second term in-

curred by data aggregation can be larger than that of SHIR as s1 = ω(s0), which could

happen due to the complex design in practice.

In addition, SHIR could be more efficient than the debiasing-based strategy even when

the impact of the additional error term, which depends on s1 in (1.5), is asymptotically neg-

ligible. Consider the setting when all β(m)’s are the same, i.e., β(m) = β, and p is moderate
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or small so that the regularization is unnecessary and the maximum likelihood estimator

(MLE) for β is feasible and asymptotically Gaussian. In this case, SHIR can be viewed as

the inverse variance weight estimation with asymptotic variance ΣSHIR = {
∑M

m=1 nmΘ̄
−1
m }−1,

while the debiasing-based approach outputs an estimator of variance ΣL&B = M−2∑M
m=1 n−1

m Θ̄m.

It is not hard to show that ΣSHIR ⪯ ΣL&B, where the equality holds only if all Θ̄m’s are in cer-

tain proportion. Thus, SHIR is strictly more efficient than debiasing-based approach un-

der the low dimensional setting with heterogeneous Θ̄m, which commonly arises in meta-

analysis as the distributions ofX(m)’s are typically heterogeneous across the local sites. In

the high-dimensional setting, similarly, SHIR is expected to benefit from the “inverse vari-

ance weight” construction, and our simulation results in Section 1.5 support this point.

1.4.5 Sparsistency

In this section, we present theoretical results concerning the variable selection consistency

of the SHIR . We begin with some extra sufficient conditions for the sparsistency result.

Condition 1.5. LetHm,S0(β
(m)) denote the submatrix ofHm(β(m)) corresponding to its rows

in S1 and columns in S2. There exists δ2 = ω{(s0M log p/N)1/2} and Cmin = Θ(1) such that

for all β(m) satisfying ∥β(m) − β(m)

0 ∥2 < δ2, Λmin{Hm,S0(β
(m))} > Cmin.

Condition 1.6. Let the weighted designW(β(•)) and Irrepresentable Condition CIrrep be as

defined in Section A.2 and Definition A.2 of Appendix A. There exists δ3 = ω{(s0M log p/N)1/2}

and ε = Θ(1) such that for all β(•) = (β(1)T, . . . , β(M)T)T satisfying ∥β(m) − β(m)

0 ∥2 < δ3,

W(β(•)) satisfiesCIrrep on Sfull with constant ε.

Condition 1.7. Let ν = min{minj∈Sμ |μ0j|,M
−1/2 minj∈Sα ∥α0j∥2}. For the ε defined in

Condition 1.6, [{s0(log p+M)/N}1/2 + Bs3/20 M log p/N]/(νε) → 0, as N → ∞.
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Remark 1.8. Conditions 1.5–1.7 are sparsistency assumptions similar to those of Zhao &

Yu (2006) and Nardi et al. (2008). Condition 1.5 requires the eigenvalues for the covariance

matrix of the weighted design matrix corresponding to S0 to be bounded away from zero, so

that its inverse behaves well. Condition 1.6 adopts the commonly used Irrepresentable Condi-

tion (Zhao & Yu, 2006) to our mixture penalty setting. Roughly speaking, it requires that the

weighted design corresponding to Sfull cannot be represented well by the weighted design for

S c
full. Compared to Nardi et al. (2008), CIrrep is less intuitive but essentially weaker. We jus-

tify such condition on several common correlation structures and compare it with Zhao & Yu

(2006) in Section A.2 of Appendix A. Condition 1.7 assumes that the minimummagnitude

of the coefficients is large enough to make the non-zero coefficients recognizable. It requires es-

sentially weaker assumption on the minimummagnitude than local LASSO (Zhao & Yu,

2006). This is because we leverage the group structure of β(m)

0 ’s to improve the efficiency of vari-

able selection.

Theorem 1.3. (Sparsistency) Let Ŝμ = {j : μ̂
SHIR,j ̸= 0} and Ŝα = {j : ∥α̂SHIR,j∥2 ̸= 0}.

Denote the eventOμ = {Ŝμ = Sμ} andOα = {Ŝα = Sα}. Under Conditions 1.1–1.7 and

assume that

λ = o(ν/s1/20 ) and λ = ε−1ω({(log p+M)/N}1/2 + Bs0M log p/N),

with the existence of λ following from Condition 1.7. We have P(Oμ ∩ Oα) → 1 as N → ∞.

Theorem 1.3 establishs the sparsistency of SHIR. When s0 = o({N(log p+M)}1/2/[BM log p]),

Condition 1.7 turns out to be νε = ω({s0(log p + M)/N}1/2), the corresponding sparsis-

tency assumption for the IPD estimator. In contrast, a similar condition, which could be as
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strong as νε = ω{(s0M log p/N)1/2}, is required for the local LASSO estimator (Zhao &

Yu, 2006). Compared with the local one, our integrative analysis procedure can recognize

smaller signal under some sparsity assumptions. In this sense, the structure of β(•)
0 helps us

to improve the selection efficiency over the local LASSO estimator. Different from the ex-

isting work, we need carefully address the mixture penalty ρ and the aggregation noise of

the SHIR, which introduce technical difficulties to our theoretical analysis.

In both Theorems 1.2 and 1.3, we allowM, the number of studies, to diverge while still

preserving theoretical properties. The growing rate ofM is allowed to be

M = min
(
o{(N/ log p)1/2/(Bs0)}, o{N/(Bs0 log p)2}

)
for the equivalence result in Theorem 1.2 and

M = min
(
o{Nεν/(Bs3/20 log p)}, o{N(εν)2/s0}

)

for the sparsistency result in Theorem 1.3.

1.5 Simulation Study

We present simulation results in this section to evaluate the performance of our proposed

SHIR estimator and compare it with several other approaches. Codes for running these

analyzes could be found at https://github.com/moleibobliu/SHIR. We letM ∈ {4, 8}

and p ∈ {100, 800, 1500} and set nm = n = 400 for eachm. For each configuration,

we summarize results based on 200 simulated datasets. We consider three data generating

mechanisms:
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(i) Sparse precision and correctly specified model (strong and sparse signal):

Across all studies, we let Sμ = {1, 2, . . . , 6} for μ, Sα = {3, 4, . . . , 8} for α,

S = Sμ∪Sα and S c = [p]\S . For eachm ∈ [M], we generateX(m) from a zero-mean

multivariate normal distribution with covarianceC(m), whereC(m)

S cS c = Rp−8(rm),

C(m)

S cS = Rp−8(rm)Γp−8,8(rm, 15) andC(m)

SS = I8+ΓT

p−8,8(rm, 15)Rp−8(rm)Γp−8,8(rm, 15)

where Iq denotes the q×q identity matrix,Rq(r) denotes the q×q correlation matrix

of AR(1)with correlation coefficient r, Γq1,q2(r, s1) denotes the q1 × q2 matrix with

each of its column having randomly picked s1 entries set as r or−r in random and

the remaining being 0, and rm = 0.4(m − 1)/M + 0.15. GivenX(m), we generate

Y(m) from the logistic model P(Y(m) = 1 | X(m)) = expit{X(m)T

Sμ
μSμ

+ X(m)T

Sα
α(m)

Sα
}with

μSμ
= 0.5(1,−1, 1,−1, 1,−1)T and α(m)

Sα
= 0.35(−1)m · (1, 1, 1,−1,−1,−1)T.

(ii) Sparse precision and correctly specified model (weak and sparse signal): Use

the same data generation mechanism as in (i) except relatively weak signals μSμ
=

0.2(1,−1, 1,−1, 1,−1)T and α(m)

Sα
= 0.15(−1)m · (1, 1, 1,−1,−1,−1)T.

(iii) Sparse precision and correctly specified model (strong and dense signal):

Use the same mechanism as in (i) except more dense supports: Sμ = {1, 2, . . . , 18},

and Sα = {7, 8, . . . , 24}.

(iv) Sparse precision and correctly specified model (weak and dense signal): Use

the same mechanism as in (ii) except more dense supports: Sμ = {1, 2, . . . , 18}, and

Sα = {7, 8, . . . , 24}.

(v)Dense precision and wrongly specified model: Let S = {1, 2, . . . , 5}, S ′ =

{6, . . . , 50}, and S ′′ = [p]\(S∪S ′). For eachm ∈ [M], we generateX(m) from zero-
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mean multivariate normal with covariance matrixC(m), whereC(m)

(S′∪S′′)(S′∪S′′) =

bdiag{R45(rm),Rp−50(rm)},C(m)

SS′′ = 0,C(m)

S′S = R45(rm)Γ45,5(rm, 45) andC(m)

SS =

I5 + ΓT

45,5(rm, 45)R45(rm)Γ45,5(rm, 45). GivenX(m), we generate Y(m) from a logistic

model with P(Y(m) = 1 | X(m)) = expit{
∑5

j=1{0.25 + 0.15(−1)m}{X(m)

j +

0.2(X(m)

j )3}+ 0.1
∑4

j=1 X
(m)

j X(m)

j+1}.

Across all settings, the distribution ofX(m) and model parameters of Y(m) | X(m) differ

across theM sites to mimic the heterogeneity of the covariates and models. The hetero-

geneity ofX(m) is driven by the study-specific correlation coefficient rm in its covariance

matrixC(m). Under Settings (i)–(iv), the fitted logistic loss corresponds to the likelihood

under a correctly specified model with the support of μ and that of α(m) overlapping but not

exactly the same. Under Setting (v), the fitted loss corresponds to a mis-specified model but

the true target parameter β(m) remains approximately sparse with only first 5 elements being

relatively large, 45 close to zero and remaining exactly zero. For each j ∈ S , there are 15

non-zero coefficients on average in the j-th column (except j itself) of the precision Θm un-

der Settings (i)–(iv), and 45 non-zero coefficients under Setting (v). So we can use Settings

(i)–(iv) to simulate the scenario with sparse precision on the active set and use Setting (v) to

simulate relatively dense precision.

For each simulated dataset, we obtain the SHIR estimator as well as the following alter-

native estimators: (a) the IPD estimator β̂
(•)

IPD
= argminβ(•) Q̂(β(•)); (b) the SMA estimator

(He et al., 2016), following the sure independent screening procedure (Fan & Lv, 2008)

that reduces the dimension to n/(3 log n) as recommended by He et al. (2016); and (c) the

debiasing-based estimator β̂
(•)

L&B
as introduced in Section 1.4.4, denoted by DebiasL&B. For

β̂
(•)

L&B
, we used the soft thresholding to be consistent with the penalty used by IPD, SMA
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and SHIR. We used the BIC to choose the tuning parameters for all methods.

In Figures 1.1 and 1.2, we present the relative average absolute estimation error (rAEE),

∥β(•) − β(•)
0 ∥1, and the relative prediction error (rPE), ∥X(β(•) − β(•)

0 )∥2, for each estima-

tor compared to the IPD estimator, respectively. Consistent with the theoretical equiva-

lence results, the SHIR estimator attains very close estimation and prediction accuracy as

those of the idealized IPD estimator, with rPE and rAEE around 1.03 under Setting (i),

1.02 under (ii), 1.06 under (iii), 1.04 under (iv), and 1.07 under (v). The SHIR estimator

is substantially more efficient than the SMA under all the settings, with about 50% reduc-

tion in both AEE and PE on average. This can be attributed to the improved performance

of the local LASSO estimator β̂
(m)

LASSO
over the MLE β̆

(m)

on sparse models. The superior

performance is more pronounced for large p such as 800 and 1500, because the screening

procedure does not work well in choosing the active set, especially in the presence of corre-

lations among the covariates. Compared with DebiasL&B, SHIR also demonstrates its gain

in efficiency. Specifically, relative to SHIR, DebiasL&B has 20% ∼ 29% higher AEE and

27% ∼ 42% higher PE under the five settings. This is consistent with our theoretical re-

sults presented in Section 1.4.4 that SHIR has smaller error compared to DebiasL&B due to

the heterogeneous hessians and aggregation errors. In addition, compared to Settings (i)–

(iv), the excessive error of DebiasL&B is larger in Setting (v) where the the inverse Hessian

Θ̄m is relatively dense. This is consistent with conclusion in Section 1.4.4.

In Figure 1.3, we present the average misclassification number for recovering the support

of β(•), i.e. |{j : I(β̂j = 0) ̸= I(β0,j = 0)}|, under Settings (i)–(iv) where the model for Y is

correctly specified. SMA performs poorly and has larger numbers of misclassification under

nearly all the settings, specially for p = 800, 1500 and dense signals. Both IPD and SHIR
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have good support recovery performance with the misclassification numbers below 2.5

under all settings with sparse signal, and below 7.5 under those with dense signal. These

two methods attain similar misclassification numbers with the absolute differences less than

0.8 across all settings. Compared with IPD and SHIR, DebiasL&B shows significantly worse

performance when p ∈ {800, 1500}. For weak signal,M = 4 and p ∈ {800, 1500}, the

misclassification numbers of DebiasL&B are about two to four times as large as those of IPD

and SHIR. For strong signal orM = 8, the gap between DebiasL&B and SHIR is smaller

but still exists. For example, under Setting (i) withM = 8, DebiasL&B has about 0.8 more

misclassification than SHIR when p = 800, and 1.5 more misclassification when p = 1500

on average. In addition, we present the average true positive rate (TPR) and false discovery

rate (FDR) for recovering the support of β(•) in Figures A.1 and A.2 of Appendix A. When

comparing the TPRs and FDRs of different approaches, we observe similar patterns and

results as above and briefly summarize them in Section A.5 of Appendix A.
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Figure 1.1: The average absolute estimation error (AEE) of IPD, SHIR, DebiasL&B and SMA relative to those of IPD
under differentM ∈ {4, 8}, p ∈ {100, 800, 1500} and data generation mechanisms (i)–(v) introduced in Section 1.5.
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Figure 1.2: The prediction error (PE) of IPD, SHIR, DebiasL&B and SMA relative to those of IPD under differentM ∈
{4, 8}, p ∈ {100, 800, 1500} and data generation mechanisms (i)–(v) introduced in Section 1.5.
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Figure 1.3: The average number of missclassification (to null/non‐null) on the original coefficients β(•) of IPD, SHIR,
DebiasL&B and SMA, differentM ∈ {4, 8}, p ∈ {100, 800, 1500} and data generation mechanisms (i)–(iv) intro‐
duced in Section 1.5.
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1.6 Application to EHR Phenotyping inMultiple Disease Cohorts

Linking EHR data with biorepositories containing “-omics” information has expanded the

opportunities for biomedical research (Kho et al., 2011). With the growing availability of

these high–dimensional data, the bottleneck in clinical research has shifted from a paucity

of biologic data to a paucity of high–quality phenotypic data. Accurately and efficiently

annotating patients with disease characteristics among millions of individuals is a critical

step in fulfilling the promise of using EHR data for precision medicine. Novel machine

learning based phenotyping methods leveraging a large number of predictive features have

improved the accuracy and efficiency of existing phenotyping methods (Liao et al., 2015;

Yu et al., 2015).

While the portability of phenotyping algorithms across multiple patient cohorts is of

great interest, existing phenotyping algorithms are often developed and evaluated for a spe-

cific patient population. To investigate the portability issue and develop EHR phenotyping

algorithms for coronary artery disease (CAD) useful for multiple cohorts, Liao et al. (2015)

developed a CAD algorithm using a cohort of rheumatoid arthritis (RA) patients and ap-

plied the algorithm to other disease cohorts using EHR data from Partner’s Healthcare

System. Here we performed integrative analysis of multiple EHR disease cohorts to jointly

develop algorithms for classifying CAD status for four disease cohorts including type 2 di-

abetes mellitus (DM), inflammatory bowel disease (IBD), multiple sclerosis (MS) and RA.

Under the DataSHIELD constraint, our proposed SHIR algorithm enables us to let the

data determine if a single CAD phenotyping algorithm can perform well across four disease

cohorts or disease specific algorithms are needed.
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For algorithm training, clinical investigators have manually curated gold standard labels

on the CAD status used as the response Y, for n1 = 172 DM patients, n2 = 230 IBD pa-

tients, n3 = 105MS patients and n4 = 760 RA patients. There are a total of p = 533

candidate features including both codified features, narrative features extracted via natu-

ral language processing (NLP) (Zeng et al., 2006), as well as their two-way interactions.

Examples of codified features include demographic information, lab results, medication

prescriptions, counts of International Classification of Diseases (ICD) codes and Current

Procedural Terminology (CPT) codes. Since patients may not have certain lab measure-

ments and missingness is highly informative, we also create missing indicators for the lab

measurements as additional features. Examples of NLP terms include mentions of CAD,

current smoking (CSMO), non smoking (NSMO) and CAD related procedures. Since the

count variables such as the total number of CAD ICD codes are zero-inflated and skewed,

we take log(x + 1) transformation and include I(x > 0) as additional features for each

count variable x.

For each cohort, we randomly select 50% of the observations to form the training set

for developing the CAD algorithms and use the remaining 50% for validation. We trained

CAD algorithms based on SHIR, DebiasL&B and SMA. Since the true model parameters

are unknown, we evaluate the performance of different methods based on the prediction

performance of the trained algorithms on the validation set. We consider several standard

accuracy measures including the area under the receiver operating characteristic curve

(AUC), the brier score defined as the mean squared residuals on the validation data , as well

as the F-score at threshold value chosen to attain a false positive rate of 5% (F5%) and 10%

(F10%), where the F-score is defined as the harmonic mean of the sensitivity and positive
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predictive value. The standard errors of the estimated prediction performance measures

are obtained by bootstrapping the validation data. We only report results based on tuning

parameters selected with BIC as in the simulation studies but note that the results obtained

from AIC are largely similar in terms of prediction performance. Furthermore, to verify the

improvement of the performance by combining the four datasets, we include the LASSO

estimator for each local dataset (Local) as a comparison.

In Table 1.1, we present the estimated coefficients for variables that received non-zero

coefficients by at least one of the included methods. Interestingly, all integrative analysis

methods set all heterogeneous coefficients to zero, suggesting that a single CAD algorithm

can be used across all cohorts although different intercepts were used for different disease

cohorts. The magnitude of the coefficients from SHIR largely agree with the published

algorithm with most important features being NLPmentions and ICD codes for CAD as

well as total number of ICD codes which serves as a measure of healthcare utilization. The

SMA set all variables to zero except for age, non-smoker and the NLPmentions and ICD

codes for CAD, while DebiasL&B has more similar support to SHIR.

The point estimates along with their 95% bootstrap confidence intervals of the accuracy

measures are presented in Figure 1.4. The results suggest that SHIR has the best perfor-

mance across all methods, nearly on all datasets and across all measures. Among the inte-

grative methods, SMA and DebiasL&B performed much worse than SHIR on all accuracy

measures. For example, the AUCwith its 95% confidence interval of the CAD algorithm

for the RA cohorts trained via SHIR, SMA and DebiasL&B is respectively 0.93 (0.90,0.95),

0.88 (0.84,0.92) and 0.86 (0.82,0.90). Compared to the local estimator, SHIR also per-

forms substantially better. For example, the AUC of SHIR and Local for the IBD cohort
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is 0.93 (0.88,0.97) and 0.90 (0.84,0.95). The difference between the integrative procedures

and the local estimator is more pronounced for the DM cohort with AUC being around

0.95 for SHIR and 0.90 for the local estimator trained using DM data only. The local es-

timator fails to produce an informative algorithm for the MS cohort due to the small size

of the training set. These results again demonstrate the power of borrowing information

across studies via integrative analysis.

Table 1.1: Detected variables and magnitudes of their fitted coefficients for homogeneous effect μ. A:B denotes the
interaction term of variables A and B. The log(x + 1) transformation is taken on the count data and the covariates are
normalized.

Variable DebiasL&B SHIR SMA
Prescription code of statin 0.14 0.07 0
Age 0.09 0.26 0.28
Procedure code for echo 0 -0.10 0
Total ICD counts -0.38 -0.75 0
NLPmention of CAD 0.97 1.34 0.81
NLPmention of CAD procedure related concepts 0 0.02 0
NLPmention of non-smoker -0.07 -0.25 -0.42
ICD code for CAD 1.00 0.67 0.35
CPT code for stent or CABG 0 0.05 0
NLPmention of current-smoker 0 -0.03 0
Any NLPmention 0.06 0.05 0
ICD code for CAD:Procedure code for echo 0 -0.04 0
NLPmention of CAD:NLPmention of possible-smoker 0 -0.02 0
Oncall:NLPmention of non-smoker 0.09 0 0
Indication for NLPmention of non-smoker -0.53 0 0
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Figure 1.4: The mean and 95% bootstrap confidence interval of AUC, Brier Score, F5% and F10% of DebiasL&B, Local,
SHIR and SMA on the validation data from the four studies.
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1.7 Discussion

In this chapter, we proposed a novel approach, the SHIR, for integrative analysis of high

dimensional data under the DataSHIELD framework, where only summary data is allowed

to be transferred from the local sites to the central site to protect the individual-level data.

As we demonstrated via both theoretical analyses and numerical studies, the SHIR estima-
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tor is considerably more efficient than the estimators obtained based on the debiasing-based

strategies considered in literatures (Lee et al., 2017; Battey et al., 2018). Also, our method

accommodates heterogeneity among the design matrices, as well as the coefficients of the

local sites, which is not adequately handled under the ultra high dimensional regime in

existing literature. Our approach only solves LASSO problem once in each local site with-

out requiring the computation of Θ̂
(m)

or debiasing. Consequently, since there is actually

no debiasing procedure in our method, the SHIR cannot be directly used for uniformly

consistent estimation, hypothesis testing and confidence interval construction (Caner &

Kock, 2018a,b, e.g.). Future work lies on developing statistical approaches for such pur-

poses under DataSHIELD, high-dimensionality and heterogeneity; see Liu et al. (2021a).

In addition, sparsistency of our estimator relies on the Irrepresentable Condition (Condi-

tion 1.6) that has been commonly used in literature (Yuan & Lin, 2006; Nardi et al., 2008,

e.g.) but is hard to rigorously verify for random design or non-linear models. To achieve

variable selection consistency without such condition, one could use non-concave (group)

sparse penalty like group adaptive lasso (Wang & Leng, 2008) and group bridge (Zhou &

Zhu, 2010) in our framework.

For the choice of penalty, we focus primarily on the mixture penalty, ρ(β(•)) =
∑p

j=2 |μj|+

λg
∑p

j=2 ∥αj∥2. Nevertheless, other penalty functions, such as group lasso (Huang & Zhang,

2010) and hierarchical lasso (Zhou & Zhu, 2010), can be incorporated into our framework

provided that they effectively leverage certain prior knowledge. Similar techniques used

for deriving the theoretical results of SHIR with the mixture penalty can be used for other

penalty functions, with some technical details varying according to different choices on

ρ(·). See Section A.4 of Appendix A for further justifications.
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By Theorem 1.1, our method requires s0 = o{(N/M log p)1/2}, to guarantee ℓ1-consistency

of SHIR. In our real example, we have that (N/M log p)1/2 ≈ 7, and one may note the cor-

responding sparsity assumption s0 ≪ 7 is somewhat strong. In practice, the users should

also be aware of the sparsity assumption on their datasets and do similar calculation to get

some sense about the reliability of SHIR. However, as shown in Section 1.4.4, the sparsity

assumption of our approach is already weaker than those in existing literature (Battey et al.,

2018, e.g.). Also, our method shows good numerical performance in the real example. On

the other hand, it is of interests to see the possibilities of reducing the rate of aggregation

error. One potential way is to use multiple rounds of communications such as Fan et al.

(2019). Detailed analysis of this approach warrants future research.

36



2
Integrative High Dimensional Multiple

Testing with Heterogeneity under Data

Sharing Constraints
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2.1 Introduction

2.1.1 Background

High throughput technologies such as genetic sequencing and natural language process-

ing have led to an increasing number and types of predictors available to assist in predic-

tive modeling. A critical step in developing accurate and robust prediction models is to

differentiate true signals from noise. A wide range of high dimensional inference proce-

dures have been developed in recent years to achieve variable selection, hypothesis testing

and interval estimation (Van de Geer et al., 2014; Javanmard &Montanari, 2014; Zhang &

Zhang, 2014, e.g.). However, regardless of the procedure, drawing precise high dimensional

inference is often infeasible in practical settings where the available sample size is too small

relative to the number of predictors. One approach to improve the precision and boost

power is through meta-analyzing multiple studies that address the same underlying scien-

tific problem. This approach has been widely adopted in practice in many scientific fields,

including clinical trials, education, policy evaluation, ecology, and genomics (DerSimonian,

1996; Allen et al., 2002; Card et al., 2010; Stewart, 2010; Panagiotou et al., 2013, e.g.), as a

tool for evidence-based decision making. Meta-analysis is particularly valuable in the high

dimensional setting. For example, meta-analysis of high dimensional genomic data from

multiple studies has uncovered new disease susceptibility loci for a broad range of diseases

including Crohn’s disease, colorectal cancer, childhood obesity and type II diabetes (Houl-

ston et al., 2008; Bradfield et al., 2012; Franke et al., 2010; Zeggini et al., 2008, e.g.).

Integrative analysis of high dimensional data, however, is highly challenging especially

with biomedical studies for several reasons. First, between study heterogeneity arises fre-
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quently due to the difference in patient population and data acquisition. Second, due to

privacy and legal constraints, individual level data often cannot be shared across study sites.

Instead, only summary statistics can be passed between researchers. For example, patient

level genetic data linked with clinical variables extracted from electronic health records

(EHR) of several hospitals are not allowed to leave the firewall of each hospital. In addi-

tion to high dimensionality, attention to both heterogeneity and data sharing constraints

are needed to performmeta-analysis of multiple EHR-linked genomic studies.

The aforementioned data sharing mechanism is referred to as DataSHIELD (Data ag-

gregation through anonymous Summary-statistics fromHarmonised Individual levEL

Databases) in Wolfson et al. (2010), which has been widely accepted as a useful strategy

to protect patient privacy (Jones et al., 2012; Doiron et al., 2013). Several statistical ap-

proaches to integrative analysis under the DataSHILED framework have been developed

for low dimensional settings (Gaye et al., 2014; Zöller et al., 2018; Tong et al., 2020, e.g.).

In the absence of cross-site heterogeneity, distributed high dimensional estimation and in-

ference procedures have also been developed that can facilitate DataSHIELD constraints

(Lee et al., 2017; Battey et al., 2018; Jordan et al., 2019, e.g.). Recently, Cai et al. (2021)

proposed an integrative high dimensional sparse regression approach that accounts for

heterogeneity. However, their method is limited to parameter estimation and variable se-

lection. To the best of our knowledge, no hypothesis testing procedures currently exist to

enable identification of significant predictors with false discovery error control under the

setting of interest. In this chapter, we propose a data shielding integrative large-scale testing

(DSILT) procedure to fill this gap.
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2.1.2 Problem statement

Suppose there areM independent studies and themth study contains observations on an

outcome Y(m) and a p-dimensional covariate vector X(m), where Y(m) can be binary or con-

tinuous, and without loss of generality we assume that X(m) contains 1 as its first element.

Specifically, data from themth study consist of nm independent and identically distributed

random vectors,D(m) = {D(m)
i = (Y(m)

i ,X
(m)T

i )T, i = 1, ..., nm}. LetN =
∑M

m=1 nm and

n = N/M. We assume a conditional mean model E(Y(m) | X(m)) = g(β(m)T

0 X(m)) and that the

true model parameter β(m)

0 is the minimizer of the population loss function:

β(m)

0 = argmin
β(m)∈Rp

Lm(β(m)), whereLm(β(m)) = E{f(X(m)T

i β(m),Y(m)
i )}, f(x, y) = φ(x)− yx,

where φ̇(x) ≡ dφ(x)/dx = g(x). When φ(x) = log(1 + ex), this corresponds to a logistic

model if Y is binary and a quasi-binomial model if Y ∈ [0, 1] is a continuous probability

score sometimes generated from an EHR probabilistic phenotyping algorithm. One may

take φ(x) = ex for some non-negative Y such as the count (or log-count) of a diagnos-

tic code in EHR studies *. As detailed in Assumptions 2.2-2.3 of Section 2.3.1, our pro-

cedure allows for a broad range of models provided that g(·) is smooth and the residuals

Y(m)
i − g(β(m)T

0 X(m)
i ) are sub-Gaussian, although not all generalized linear models satisfy these

assumptions.

Under the DataSHIELD constraints, the individual-level dataD(m) is stored at themth

data computer (DC) and only summary statistics are allowed to transfer from the dis-

*Though a Poisson distribution does not satisfy the required sub-Gaussian residual Assumption 2.3, the
counts of EHR diagnostic codes are usually less heavy-tailed than Poisson and are accommodated by our
analysis.
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tributed DCs to the analysis computer (AC) at the central node. Our goal is to develop

procedures under the DataSHIELD constraints for testing

H0,j : β0,j ≡ (β(1)
0,j, . . . , β

(M)

0,j)
T = 0 v.s. Ha,j : β0,j ̸= 0 (2.1)

simultaneously for j ∈ H to identifyH1 = {j ∈ H : β0,j ̸= 0}, while controlling the

false discovery rate (FDR) and false discovery proportion (FDP), whereH ⊆ {2, . . . , p}

is a user-specified subset with |H| = q ≍ p and |A| denotes the size of any setA. Here

β0,j = 0 indicates that Xj is independent of Y given all remaining covariates. To ensure

effective integrative analysis, we assume that β(1)
0 , ..., β(M)

0 are sparse and share similar support.

Specifically, we assume that |S0| ≪ p and s(m) ≍ s form = 1, 2, . . . ,M, where S0 = {j =

2, ..., p : β(m)

0,j ̸= 0} = ∪M
m=1S (m), S (m) = {j = 2, ..., p : β(m)

0,j ̸= 0}, s(m) = |S (m)|, and s = |S0|.

2.1.3 Our contribution and the relatedwork

We propose in this chapter a novel DSILT procedure with FDR and FDP control for the

simultaneous inference problem (2.1). The proposed testing procedure consists of three

major steps: (I) derive an integrative estimator on the AC using locally obtained summary

statistics from the DCs and send the estimator back to the DCs; (II) construct a group ef-

fect test statistic for each covariate through an integrative debiasing method; and (III) de-

velop an error rate controlled multiple testing procedure based on the group effect statis-

tics.

The integrative estimation approach in the first step is closely related to the group infer-

41



ence methods in the literature. Denote by βj = (β(1)
j , ..., β(M)

j )T, β(•) = (β(1)T, . . . , β(M)T)T,

L̂(m)(β(m)) = n−1
m

nm∑
i=1

f(β(m)TX(m)
i ,Y(m)

i ) and L̂(•)(β(•)) = N−1
M∑

m=1

nmL̂m(β(m)).

Literature in group LASSO and multi-task learning (Huang & Zhang, 2010; Lounici et al.,

2011, e.g.) established that, under the setting s(m) ≍ s as introduced in Section 2.1.2, the

group LASSO estimator with tuning parameter λ: argminβ(•) L̂
(•)(β(•)) + λ

∑p
j=2 ∥βj∥2,

benefits from the group structure and attains the optimal rate of convergence. In this chap-

ter, we adopt the same structured group LASSO penalty for integrative estimation, but

under data sharing constraints. Recently, Mitra et al. (2016) proposed a group structured

debiasing approach under the integrative analysis setting, where they restricted their anal-

ysis to linear models and required that the precision matrices of the covariates be group-

sparse across the distributed datasets. In contrast, our method accommodates non-linear

models and imposes no sparsity or homogeneity structures on the covariate distributions

from different local sites (see Assumption 2.1 in Section 2.3.1).

The second step of our method, i.e., the construction of the test statistics for each of

the hypotheses, relies on the group debiasing of the above integrative estimation. For de-

biasing of M-estimation, nodewise LASSO regression was employed in the earlier work

(Van de Geer et al., 2014; Janková & Van De Geer, 2016, e.g), while the Dantzig selector

type approach was proposed more recently (Belloni et al., 2018; Caner & Kock, 2018b,

e.g). We develop in this article a cross-fitted group Dantzig selector type debiasing method,

which requires weaker inverse Hessian assumptions (see Assumption 2.1 in Section 2.3.1)

than the aforementioned approaches. In addition, the proposed debiasing step achieves
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proper bias rate under the same model sparsity assumptions as the ideal individual-level

meta-analysis (ILMA) method. Compared with the One-shot distributed inference ap-

proaches (Tang et al., 2016; Lee et al., 2017; Battey et al., 2018), the proposed method ad-

ditionally considers model heterogeneity and group inference; it further reduces the bias

rate by sending the integrative estimator to the DCs to derive updated summary statistics,

which in turn benefits the subsequent multiple testing procedure. See Section 2.3.4 for

detailed comparisons.

As the last step, simultaneous inference with theoretical error rates control is performed

based on the group effect statistics. The test statistics are shown to be asymptotically chi-

square distributed under the null, and the proposed multiple testing procedure asymptot-

ically controls both the FDR and FDP at the pre-specified level. Multiple testing for high

dimensional regression models has recently been studied in the literature (Liu & Luo, 2014;

Xia et al., 2018a,b; Javanmard et al., 2019, e.g). Our testing step for FDR control as a whole

differs considerably from these existing procedures in the following aspects. First, the pro-

posed test statistics, the key input to the FDR control procedure, are brand new and the

resulting estimation of false discovery proportion differs fundamentally from those of the

literature. Second, we consider a more general M-estimation setting which can accommo-

date different types of outcomes. Third, we allow the heterogeneity in both the covariates

and the coefficients. Fourth, the existing testing approaches developed for individual-level

data are not suitable for the DataSHIELD framework. Last, because there are complicated

dependence structures among the integrative chi-squared statistics under the DataSHIELD

constraints, the theoretical derivations are technically much more involved. Hence, our

proposal makes a useful addition to the general toolbox of simultaneous regression infer-
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ence.

We demonstrate here via numerical experiments that the proposed DSILT procedure

attains good power while maintaining error rate control. In addition, we demonstrate how

our new approach outperforms existing distributed inference methods and enjoys similar

performance as the ideal ILMA approach.

2.1.4 Outline of the chapter

The rest of this chapter is organized as follows. We detail the DSILT approach in Section

2.2. In Section 2.3, we present asymptotic analysis on the false discovery control of our

method and compare it with the ILMA and One-shot approach. In Section 2.4, we sum-

marize finite sample performance of our approach along with other methods from simula-

tion studies. In Section 2.5, we apply our proposed method to a real example. Proofs of the

theoretical results and additional technical lemmas and simulation results are collected in

Appendix B.

2.2 Data shielding integrative large-scale testing procedure

2.2.1 Notation

Throughout, for any integer d, any vector x = (x1, x2, . . . , xd)T ∈ Rd, and any set

S = {j1, . . . , jk} ⊆ [d] ≡ {1, . . . , d}, denote by xS = [xj1 , . . . , xjk ]′, x‐j the vec-

tor with its jth entry removed from x, ∥x∥q the ℓq norm of x and ∥x∥∞ = maxj∈[d] |xj|.

For any d-dimensional vectors {a(m) = (a(m)
1 , . . . , a(m)

d )
T,m ∈ [M]} and S ⊆ [d], let

a(•) = (a(1)T, . . . , a(M)T)T, a(•)
S = (a(1)T

S , . . . , a(M)T

S )T, aj = (a(1)
j , . . . , a(M)

j )T, and a(•)
‐j =

(a(1)T
‐j , . . . , a(M)T

‐j )T. Let ej be the unit vector with jth element being 1 and remaining elements
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being 0 and e(•)j = (eTj , . . . , eTj )T. Denote by ∥a(•)∥2,1 =
∑d

j=1 ∥aj∥2 and ∥a(•)∥2,∞ =

maxj∈[d] ∥aj∥2 the ℓ2/ℓ1 and ℓ2/ℓ∞ norm of a(•) respectively. For any K-fold partition

of [nm], denoted by {I (m)

k , k ∈ [K]}, let I (m)
‐k = [nm] \ I (m)

k , I (•)
k = {I (m)

k : m ∈

[M]}, I (•)
‐k = {I (m)

‐k : m ∈ [M]}. For any index set I (•) = {I (m) ⊆ [nm],m ∈

[M]},D(m)

I (m) = {D(m)
i : i ∈ I (m)}, andD(•)

I(•) = {D(m)

I (m) : m ∈ [M]}. Let φ̈(θ) =

d2φ(θ)/dθ2 ≥ 0. Denote by β0,j and β
(•)
0 the true values of βj and β

(•) respectively. For any

I (•) and β(•), define the sample measure operators P̂I (m)ηβ(m) = |I (m)|−1∑
i∈I (m) ηβ(m)(D(m)

i )

and P̂I(•)ηβ(•) = |I (•)|−1∑M
m=1
∑

i∈I (m) ηβ(m)(D(m)
i ), and the population measure operator

P (m)ηβ(m) = Eηβ(m)(D(m)
i ), for all integrable functions ηβ(•) = {ηβ(m) ,m ∈ [M]} parameterized

by β(•) or β(m).

For any given β(m), we define θ(m)

i = X(m)T

i β(m), θ(m)

0,i = X(m)T

i β(m)

0 , and the residual ε
(m)
i :=

Y(m)
i − φ̇(θ(m)

0,i). Similar to Cai et al. (2019) andMa et al. (2020), given coefficient β(m), we can

express Y(m)
i ∼ X(m)

i in an approximately linear form:

Y(m)
i − φ̇(θ(m)

i ) + φ̈(θ(m)

i )θ
(m)

i = φ̈(θ(m)

i )X
(m)T

i β(m)

0 + ε(m)
i + R(m)

i (θ
(m)

i ),

whereR(m)
i (θ(m)

i ) is the reminder term andR(m)
i (θ(m)

0,i) = 0. For a given observation setD and

coefficient β, we let θ = XTβ, Yβ = φ̈− 1
2 (θ) {Y− φ̇(θ) + φ̈(θ)θ},Xβ = φ̈

1
2 (θ)X. Note

that for the logistic model, we have Var(Yβ|Xβ) = 1, andXβ and Yβ can be viewed as the

covariates and responses adjusted for the heteroscedasticity of the residuals.

2.2.2 Outline of the proposed testing procedure

We first outline in this section the DSILT procedure in Algorithm 2.1 and then study the

details of each key step later in Sections 2.2.3 to 2.2.5. The procedure involves partitioning
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ofD(m) intoK folds {I (m)

k : k ∈ [K]} form ∈ [M], where without loss of generality we

letK ≥ 2 be an even number. With a slight abuse of notation, we writeD(m)
[k] = D(m)

I (m)
k
,

D(•)
[k] = D(•)

I(•)
k
,D(m)

[‐k] = D(m)

I (m)
‐k
, andD(•)

[‐k] = D(•)

I(•)
‐k
.

Algorithm 2.1 DSILT Algorithm.
Input: D(m) at themth DC form ∈ [M].

Step 2.1 For each k ∈ [K], fit integrative sparse regression under DataSHIELDwithD(•)
[‐k] :

(a) At themth DC, construct cross-fitted summary statistics based on local LASSO
estimator, and send them to the AC;

(b) Obtain the integrative estimator β̃
(•)

[‐k] at AC and send them back to each DC.

Step 2.2 Obtain debiased group test statistics:

(a) For each k, at themth DC, obtain the updated summary statistics based on β̃
(•)

[‐k]

andD(m)
[k] , and send them to the AC;

(b) At the AC, construct cross-fitted debiased group estimators {ζ̆j, j ∈ H}.

Step 2.3 Construct a multiple testing procedure based on the test statistics from Step 2.2.

2.2.3 Step 2.1: Integrative sparse regression

As a first step, we fit integrative sparse regression under DataSHIELDwithD(•)
[‐k] following

similar strategies as given in Cai et al. (2021). To carry out Step 2.1(a) of Algorithm 2.1, we

split the index set I (m)
‐k intoK′ folds I (m)

‐k,1, . . . , I
(m)

‐k,K′ . For k ∈ [K] and k′ ∈ [K′], we construct

local LASSO estimator with tuning parameter λ(m): β̂
(m)

[‐k,‐k’] = argminβ(m)∈Rp P̂I (m)
‐k \I (m)

‐k,k′
f(XTβ(m),Y)+

λ(m)∥β(m)

‐1∥1.WithD(m)
[‐k], we then derive summary data S (m)

[‐k] = {|I (m)
‐k |, ξ̂

(m)

[‐k], Ĥ(m)
[‐k]}, where

ξ̂
(m)

[‐k] = K′−1
K′∑
k′=1

P̂I (m)
‐k,k′

Xβ̂
(m)

[‐k,‐k’]
Yβ̂

(m)

[‐k,‐k’]
, Ĥ(m)

[‐k] = K′−1
K′∑
k′=1

P̂I (m)
‐k,k′

Xβ̂
(m)

[‐k,‐k’]
XT

β̂
(m)

[‐k,‐k’]
. (2.2)
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In Step 2.1(b) of Algorithm 2.1, for k ∈ [K], we aggregate theM sets of summary data

{S (m)
[‐k],m ∈ [M]} at the central AC and solve a regularized quasi-likelihood problem to

obtain the integrative estimator with tuning parameter λ:

β̃
(•)

[‐k] = argmin
β(•)

|I (•)
‐k |−1

M∑
m=1

|I (m)
‐k |
(
β(m)TĤ(m)

[‐k]β
(m) − 2β(m)Tξ̂

(m)

[‐k]

)
+ λ∥β(•)

‐1 ∥2,1. (2.3)

TheseK sets of estimators, {β̃
(•)

[‐k] , k ∈ [K]}, are then sent back to the DCs. The summary

statistics introduced in (2.2) can be viewed as the covariance terms ofD(m)
[‐k] with the local

LASSO estimator plugged-in to adjust for the heteroscedasticity of the residuals. Cross-

fitting is used to remove the dependence of the observed data and the fitted outcomes - a

strategy frequently employed in high dimensional inference literatures (Chernozhukov

et al., 2018a,b). As in Cai et al. (2021), the integrative procedure can also be viewed in such

a way that β(m)TĤ(m)

[‐k]β
(m) − 2β(m)Tξ̂

(m)

[‐k] provides a second order one-step approximation to the

individual-level data loss function 2P̂I (m)
‐k
f(XTβ(m),Y) initializing with the local LASSO esti-

mators. In contrast to Cai et al. (2021), we introduce a Cross-fitting procedure at each local

DC to reduce fitting bias and this in turn relaxes their uniformly- bounded assumption on

X(m)T

i β(m) for each i andm, i.e., Condition 4(i) of Cai et al. (2021).

2.2.4 Step 2.2: Debiased group test statistics

We next derive group effect test statistics in Step 2.2 by constructing debiased estimators for

β(•)
0 and estimating their variances. In Step 2.2(a), we construct updated summary statistics

ξ̃
(m)

[k] = P̂I (m)
k
Xβ̃

(m)

[‐k]
Yβ̃

(m)

[‐k]
, H̃(m)

[k] = P̂I (m)
k
Xβ̃

(m)

[‐k]
XT

β̃
(m)

[‐k]
and J̃(m)

[k] = P̂I (m)
k
XXT

{
Y− φ̇(XTβ̃

(m)

[‐k])
}2
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at themth DC, for k ∈ [K]. ThesemK sets of summary statistics are then sent to the AC in

Step 2.2(b) to be aggregated and debiased. Specifically, for each j ∈ H and k ∈ [K], we solve

the group Dantzig selector type optimization problem:

û(•)
j,[k] = argmin

u(•)
max
m∈[M]

∥u(m)∥1 s.t. ∥H̃(•)
[k]u

(•) − e(•)j ∥2,∞ ≤ τ, (2.4)

to obtain a vector of projection directions for some tuning parameter τ, where H̃(•)
[k] =

diag{H̃(1)
[k], . . . , H̃

(M)

[k]}. Combining across theK splits, we construct the cross-fitted group

debiased estimator for β(m)

j by β̆
(m)

j = K−1∑K
k=1

{
β̃

(m)

j,[‐k] + û(m)T

j,[k] (̃ξ
(m)

[k] − H̃(m)

[k]β̃
(m)

[‐k])
}
.

In Section 2.3.2, we show that the distribution of n1/2m (β̆
(m)

j − β0,j) is approximately nor-

mal with mean 0 and variance (σ(m)
0,j)

2, estimated by (̂σ(m)

j )
2 = K−1∑K

k=1 û
(m)T

j,[k] J̃
(m)

[k]û
(m)

j,[k]. Fi-

nally, we test for the group effect of the j-th covariate acrossM studies based on the stan-

dardized sum of square type statistics

ζ̆j =
M∑

m=1

nm{β̆
(m)

j /σ̂
(m)

j }2, for j ∈ H.

We show in Section 2.3.2 that, under mild regularity assumptions, ζ̆j is asymptotically

chi-square distributed with degree of freedomM under the null. This result is crucial to

ensure the error rate control for the downstreammultiple testing procedure.

2.2.5 Step 2.3: Multiple testing

To construct an error rate controlled multiple testing procedure for

H0,j : β0,j = 0 versusHa,j : β0,j ̸= 0, j ∈ H ⊆ {2, . . . , p},
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we first take a normal quantile transformation of ζ̆j, namelyNj = Φ̄−1
{
F̄χ2M (̆ζj)/2

}
,

where Φ is the standard normal cumulative distribution function, Φ̄ = 1−Φ, and F̄χ2M(·) is

the survival function of χ2M. Based on the asymptotic χ2M distribution of ζ̆j as will be shown

in Theorem 2.1, we present in the proof of Theorem 2.2 thatNj asymptotically has the

same distribution as the absolute value of a standard normal random variable. Thus, to test

a single hypothesis ofH0,j : β0,j = 0, we reject the the null at nominal level α > 0 whenever

Ψα,j = 1, where Ψα,j = I
{
Nj ≥ Φ̄−1

(α/2)
}
.

However, for simultaneous inference across q hypotheses {H0,j, j ∈ H}, we shall fur-

ther adjust the multiplicity of the tests as follows. For any threshold level t, letR0(t) =∑
j∈H0

I(Nj ≥ t) andR(t) =
∑

j∈H I(Nj ≥ t) respectively denote the total number of

false positives and the total number of rejections associated with t, whereH0 = {j ∈ H :

β0,j = 0}. Then the FDP and FDR for a given t are respectively defined as

FDP(t) =
R0(t)

R(t) ∨ 1
and FDR(t) = E{FDP(t)}.

The smallest t such that FDP(t) ≤ α, namely t0 = inf
{
0 ≤ t ≤ (2 log q)1/2 : FDP(t) ≤ α

}
would be a desirable threshold since it maximizes the power under the FDP control. How-

ever, since the null set is unknown, we estimateR0(t) by 2Φ̄(t)|H0| and conservatively

estimate |H0| by q because of the model sparsity. We next calculate

t̂ = inf
{
0 ≤ t ≤ tq :

2qΦ̄(t)
R(t) ∨ 1

≤ α
}

where tq = (2 log q− 2 log log q)
1
2 (2.5)

to approximate the ideal threshold t0. If (2.5) does not exist, we set t̂ = (2 log q)1/2. Finally,

we obtain the rejection set {j : Nj ≥ t̂, j ∈ H} as the output of Algorithm 2.1. The
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theoretical analysis of the asymptotic error rates control of the proposed multiple testing

procedure will be studied in Section 2.3.3.

Remark 2.1. Our testing approach is different from the BH procedure (Benjamini &Hochberg,

1995) in that, the latter obtains the rejection set {j : Nj ≥ t̂BH, j ∈ H} with t̂BH =

inf
{
t ≥ 0 : 2qΦ̄(t)/{R(t) ∨ 1} ≤ α

}
. Note that, first, the range [0, tq] in our procedure

is critical, because when t ≥ (2 log q − log log q) 1
2 , R0(t) is no longer consistently estimated

by 2qΦ̄(t). As a result, the BHmay not able to control the FDP with positive probability. Sec-

ond, in the proposed approach, if t̂ is not attained in the range, it is crucial to threshold it at

(2 log q)1/2, instead of tq, because the latter will cause too many false rejections, and as a result

the FDR cannot be properly controlled.

2.2.6 Tuning parameter selection

In this section, we detail data-driven procedures for selecting the tuning parameters η =

{λ(•) = (λ(1), . . . , λ(M))T, λ, τ}. Since our primary goal is to perform simultaneous test-

ing, we follow a similar strategy as that of Xia et al. (2018b) and select tuning parame-

ters to minimize a ℓ2 distance between R̂0(t)/{2|H0|Φ̄(t)} and its expected value of 1,

where R̂0(t) is an estimate ofR0(t) from the testing procedure. However, unlike Xia et al.

(2018b), it is not feasible to tune η simultaneously due to DataSHIELD constraints. We

instead tune λ(•), λ and τ sequentially as detailed below. Furthermore, based on the the-

oretical analyses of the optimal rates for η given in Section 2.3, we select ηwithin a set of

candidate values that are of the same order as their respective optimal rates.

First for λ(•) in Algorithm 2.1, we tune λ(m) via cross validation within themth DC. Sec-

ond, to select λ for the integrative estimation in (2.3), we minimize an approximated gener-
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alized information criterion that only involves derived data fromM studies. Specifically, we

choose λ as the minimizer of GIC
(
λ, β̃

(•)

[‐k],λ

)
= Dev

(
β̃
(•)

[‐k],λ

)
+ γDF

(
λ, β̃

(•)

[‐k],λ

)
,where γ

is some pre-specified scaling parameter, β̃
(m)

[‐k],λ is the estimator obtained with λ,

Dev
(
β(•)
)
= |I‐k|−1

M∑
m=1

|I (m)
‐k |
(
β(m)TĤ(m)

[‐k]β
(m) − 2β(m)Tξ̂

(m)

[‐k]

)
and

DF
(
λ, β(•)

)
=
[
∂2
Ŝ

{
Dev

(
β(•)
)
+ λ∥β(•)

‐1 ∥2,1
}]−1 [

∂2
ŜDev

(
β(•)
)]

,

are respectively the approximated deviance and degree of freedommeasures, Ŝ is the set of

non-zero elements in β(•) and the operator ∂2
Ŝ denotes the second order partial derivative

with respect to β(•)

Ŝ
. Common choices of γ include 2|I‐k|−1 (AIC), |I‐k|−1 log |I‐k| (BIC),

|I‐k|−1 log |I‐k| log log p (Wang et al., 2009, modified BIC) and 2|I‐k|−1 log |I‐k| log p (Foster

& George, 1994, RIC). For numerical studies in Sections 2.4 and 2.5, we use BIC which

appears to perform well across settings.

At the last step, we tune τ by minimizing an ℓ2 distance between R̂0,null(t | τ)/{2qΦ̄(t)}

and 1, where R̂0,null(t | τ) is an estimate ofR0(t)with a given tuning parameter τ, and we

replaceH0 by q as in Xia et al. (2018b). Our construction of R̂0,null(t | τ) differs from that

of Xia et al. (2018b) in that we estimateR0(t) under the complete null to better approxi-

mate the denominator of 2qΦ̄(t). As detailed in Algorithm 2.2, we construct β̆
(m)

j,null as the

difference between the estimator obtained with the firstK/2 folds of data and the corre-

sponding estimator obtained using the secondK/2 folds of data, which is always centered

around 0 rather than β(m)

0j . Since the accuracy of R̂0,null(t | τ) for large t is most relevant to

the error control, we construct the distance measure d̂(τ) in Algorithm 2.2 focusing on t

around Φ̄−1
[Φ̄{(2 log q)1/2}ι] for some values of ι ∈ (0, 1].
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Algorithm 2.2 Selection of τ for multiple testing.

Step 2.1 For any given τ and each j ∈ H, calculate ζ̆j,null(τ) =
∑M

m=1 nm{β̆
(m)

j,null(τ)/σ̂
(m)

j }2 with

β̆
(m)

j,null(τ) =K−1
K∑
k=1

(−1)k>K/2
{
β̃

(m)

j,[‐k] + û(m)T

j,[k] (τ)
(
ξ̃
(m)

[k] − H̃(m)

[k]β̃
(m)

[‐k]

)}
,

where û(•)
j,[k](τ) is the debiasing projection direction obtained at tuning value τ.

Step 2.2 Define R̂0,null(t | τ) =
∑

j∈H I[F̄χ2M{ζ̆j,null(τ)} ≤ 2Φ̄(t)] and a modified measure

d̂(τ) =
∫ 1

0

[
R̂0,null{Φ̄

−1
(x) | τ}/(2qx)− 1

]2
dω̂(x),

where ω̂(x) = H−1∑H
h=1 I(Φ̄{(2 log q)1/2}h/H ≤ x) andH > 0 is some specified

constant.

2.3 Theoretical Results

2.3.1 Notation and assumptions

For any semi-positive definite matrixA ∈ Rd×d and i, j ∈ [d], denote byAij the (i, j)th

element ofA andAj its jth row, Λmin(A) and Λmax(A) the smallest and largest eigenvalue

ofA. Define the sub-gaussian norms of a random variable X and a d-dimensional random

vector X, respectively by ∥X∥ψ2 := supq≥1 q
−1/2(E|X|q)1/q and ∥X∥ψ2 := supx∈Sd−1 ∥xTX∥ψ2 ,

where Sd−1 is the unit sphere inRd. For c > 0 and a scalar or vector x, define B(x, c) :=

{x′ : ∥x′ − x∥1 ≤ c} as its ℓ1 neighbor with radius c. Denote by Σ(m)
0 = P (m)XXT,H(m)

β =

P (m)XβXT
β , J(m)

β = P (m)XXT{Y − φ̇(XTβ)}2 andU(m)

β = {H(m)

β }−1. For simplicity, letH(m)
0 =

H(m)

β(m)
0
, J(m)

0 = J(m)

β(m)
0

and denote by u(m)
0,j the jth row ofU(m)

β(m)
0
. In our following analysis, we

assume that the Cross-fitting foldsK′,K = O(1), nm ≍ N/M ≡ n for allm ∈ [M]. Here
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and in the sequel we useO(1) andOP(1) denote order 1. Next, we introduce assumptions

for our theoretical results. For Assumption 4, we only require either 4(a) or 4(b) to hold.

Assumption 2.1 (Regular covariance). (i) There exists absolute constant CΛ > 0 such that

for all m ∈ [M], C−1
Λ ≤ Λmin(Σ(m)

0 ) ≤ Λmax(Σ(m)
0 ) ≤ CΛ, C−1

Λ ≤ Λmin(H(m)
0 ) ≤ Λmax(H(m)

0 ) ≤

CΛ and C−1
Λ ≤ Λmin(J(m)

0 ) ≤ Λmax(J(m)
0 ) ≤ CΛ. (ii) There exist CΩ > 0 and δ > 0 that for

all m ∈ [M] and β ∈ B(β(m)

0 , δ), ℓ1 norm of each row ofU(m)

β is bounded by CΩ.

Assumption 2.2 (Smooth link function). There exists a constant CL > 0 such that for all

θ, θ′ ∈ R, |φ̈(θ)− φ̈(θ′)| ≤ CL|θ− θ′|.

Assumption 2.3 (Sub-Gaussian residual). For any x ∈ Rp, ε(m)
i is conditional sub-Gaussian,

i.e. there exists κ(x) such that ∥ε(m)
i ∥ψ2 < κ(x) givenX(m)

i = x. In addition, there exists some

absolute constant Cε > 0 such that, almost surely for m = 1, 2 . . . ,M, κ(X(m)
i ) ≤ Cε and

φ̈−1(X(m)T

i β(m)

0 )κ
2(X(m)

i ) ≤ Cε.

Assumption 2.4 (Sub-Gaussian design). X(m)
i is sub-Gaussian, i.e. there exists some constant

κ > 0 that ∥X(m)
i ∥ψ2 < κ.

Assumption 2.5 (Bounded design). ∥X(m)
i ∥∞ is almost surely bounded by some absolute

constant.

Remark 2.2. Assumptions 2.1 (i) and 2.4 (or 2.5) are commonly used technical conditions

in high dimensional inference in order to guarantee rate optimality of the regularized re-

gression and debiasing approach (Negahban et al., 2012; Javanmard &Montanari, 2014).

Assumptions 2.4 and 2.5 are typically unified by the sub-Gaussian design assumption (Ne-

gahban et al., 2012). In our analysis, they are separately studied, since ∥X(m)
i ∥∞ affects the
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bias rate, which leads to different sparsity assumptions under different design types. Similar

conditions as our Assumption 2.1 (ii) were used in the context of high dimensional precision

matrix estimation (Cai et al., 2011) and debiased inference (Chernozhukov et al., 2018b;

Caner & Kock, 2018b; Belloni et al., 2018). Compared with their exact or approximate spar-

sity assumption imposed on the inverse Hessian, this ℓ1 boundness assumption is essentially less

restrictive. As an important example in our analysis, logistics model satisfies the smoothness

conditions for φ(·) presented by Assumption 2.2. As used in Lounici et al. (2011) and Huang

& Zhang (2010), Assumption 2.3 regularizes the tail behavior of the residuals and is satisfied

in many common settings like logistic model.

2.3.2 Asymptotic properties of the debiased estimator

We next study the asymptotic properties of the group effect statistics ζ̆j, j ∈ H. We shall

begin with some important prerequisite results on the convergence properties of β̃
(•)

[‐k] and

the debiased estimators {β̆
(m)

j , j ∈ H,m ∈ [M]} as detailed in Lemmas 2.1 and 2.2.

Lemma 2.1. Under Assumptions 2.1-2.3, 2.4 or 2.5, and that s = o{n(log p)−1}, there exist

a sequence of the tuning parameters

λ(m)

n ≍ (log p) 1
2

n 1
2

and λN ≍ (M+ log p)
1
2

n 1
2M

+
sM− 1

2 (log p+ logN)a0 log p
n

,

with a0 = 1/2 under Assumption 2.4 and a0 = 0 under Assumption 2.5, such that, for each

k ∈ [K], the integrative estimator satisfies

∥β̃
(•)

[‐k] − β(•)
0 ∥2,1 = OP(sMλN), and ∥β̃

(•)

[‐k] − β(•)
0 ∥22 = OP(sM2λ2N).
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Remark 2.3. Lemma 2.1 provides the estimation rates of the integrative estimator β̃
(•)

[‐k] . In

contrast to the ILMAmethod, the second term in the expression of λN quantifies the addi-

tional noise incurred by using summary data under the DataSHIELD constraint. Similar

results can be observed through debiasing truncation in distributed learning (Lee et al., 2017;

Battey et al., 2018) or integrative estimation under DataSHIELD (Cai et al., 2021). When

s = o{n1/2(log p + logN)−a0(M + log p)−1(log p)−1/2} as assumed in Lemma 2.2, the

above mentioned error term becomes negligible. The DSILTmethod allows for any degree

of heterogeneity across sites with respect to both the magnitude and support of β(m)

0 . However,

the cross-site similarity in the support determines the estimation rates as shown in Lemma 2.1

above. Specifically, the DSILT estimator for β(•) attains a rate-M improvement over the local

methods (Lounici et al., 2011; Huang & Zhang, 2010, e.g.) if s ≍ s(m) and has the same rate

as that of the local estimators if s ≍
∑M

m=1 s(m).

We next present the theoretical properties of the group debiased estimators.

Lemma 2.2. Under the same assumptions of Lemma 2.1 and assume that

s = o

{
n 1

2

(log p+ logN)a0(M+ log p)(log p) 1
2
∧ n
M4(log p)4(M+ log p)

}
,

we have β̆
(m)

j − β(m)

0,j = V(m)
j + Δ(m)

j with V(m)
j = K−1∑K

k=1 P̂I (m)
k
u(m)T

0,j Xε converging to a

normal random variable with mean 0 and variance n−1
m (σ(m)

0,j)
2, where (σ(m)

0,j)
2 = u(m)T

0,j J(m)
0 u(m)

0,j.

In addition, there exists τ ≍ (M+ log p)1/2n−1/2 such that, simultaneously for all j ∈ H, the
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bias term Δ(m)
j and the variance estimator (̂σ(m)

j )
2 satisfy that

|Δ(m)
j | ≤

M∑
m=1

|Δ(m)
j | = oP

{
(n log p)−

1
2

}
and

∣∣∣(̂σ(m)

j )
2 − (σ(m)

0,j)
2
∣∣∣ = oP

{
(log p)−1} .

Remark 2.4. The sparsity assumption in Lemma 2.2 is weaker than the existing debiased

estimators forM-estimation where s is only allowed to diverge in a rate dominated by N 1
3

(Janková & Van De Geer, 2016; Belloni et al., 2018; Caner & Kock, 2018b). This is benefited

by the Cross-fitting technique, through which we can get rid of the dependence on the conver-

gence rate of ∥u(m)
0,j − û(m)

j,[k]∥1.

Finally, we establish in Theorem 2.1 the main result of this section regarding to the

asymptotic distribution of the group test statistic ζ̆j under the null.

Theorem 2.1. Under all assumptions in Lemma 2.2, simultaneously for all j ∈ H0, we

have ζ̆j = Sj + oP(1), where Sj =
∑M

m=1 nm[V
(m)
j /σ(m)

0,j]
2. Furthermore, if M ≤ C log p and

log p = o(n1/C′
) for some constants C > 0 and C′ > 6, we have

sup
t
|P(Sj ≤ t)− P(χ2M ≤ t)| → 0, as n, p → ∞.

The above theorem shows that, the group effect test statistics ζ̆j is asymptotically chi-

squared distributed under the null and its bias is uniformly negligible for j ∈ H0.

2.3.3 False discovery control

We establish theoretical guarantees for the error rate control of the multiple testing proce-

dure described in Section 2.2.5 in the following two theorems.
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Theorem 2.2. Assume that q0 = |H0| ≍ q. Then under all assumptions in Lemma 2.2

with log p = o(n1/10) andM = O(log p), we have

lim sup
(N,p)→∞

FDR(̂t) ≤ α, and lim
(N,p)→∞

P{FDP(̂t) ≤ α + ε} = 1 for any ε > 0.

Remark 2.5. Assumption 2.1 (i) ensures that most of the group estimates {ζ̆j, j ∈ H0} are

not highly correlated with each other. Thus the the variance of R̂0(t) can be appropriately

controlled, which in turn guarantees the control of FDP. It is possible to further relax the con-

dition log p = o(n1/10) to log p = o(nζ) for some 0 < ζ < 3/23, See, for example, Liu &

Shao (2014) and Belloni et al. (2018), where they used moderate deviation technique to have

tighter truncations and normal approximations for t-statistics. Because we used chi-squared

type test statistics with growingM, the technical details on moderate deviation are much more

involved and warrant future research.

As described in Section 2.2.5, if t̂ in equation (2.5) is not attained in the range [0, (2 log q−

2 log log q)1/2], then it is thresholded at (2 log q)1/2. The following theorem states a weak

condition to ensure the existence of t̂ in such range. As a result, the FDP and FDRwill con-

verge to the pre-specified level α asymptotically.

Theorem 2.3. Let Sρ =
{
j ∈ H :

∑M
m=1 nm[β

(m)

0,j]
2 ≥ (log q)1+ρ

}
. Suppose for some ρ > 0

and some δ > 0, |Sρ| ≥ {1/(π1/2α) + δ}(log q)1/2. Then under the same conditions as in

Theorem 2.2, we have, as (N, p) → ∞,

FDR(̂t)
αq0/q

→ 1,
FDP(̂t)
αq0/q

→ 1 in probability.
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In the above theorem, the condition on Sρ only requires very few covariates to have the

signal sum of squares across the studies
∑M

m=1[β
(m)

0,j]
2 exceeding the rate (log q)1+ρ/nm for

some ρ > 0, and is thus a very mild assumption.

2.3.4 Comparisonwith alternative approaches

To study the advantage of our testing approach and the impact of the DataSHIELD con-

straint, we next compare the proposed DSILTmethod to a One-shot approach and the

ILMA approach, as described in Algorithms 2.3 and 2.4, through a theoretical perspective.

The One-shot approach in Algorithm 2.3 is inspired by existing literature in distributed

learning (Lee et al., 2017; Battey et al., 2018, e.g.) , and is a natural extension of existing

methods to the problem of multiple testing under the DataSHIELD constraint. The debi-

asing step of the One-shot approach is performed locally as in the existing literature.

Algorithm 2.3 One-shot approach.

Step 2.1 At each DC, obtain the cross-fitted debiased estimator by solving a Dantzig selector
problem locally, where β(m) is estimated by local LASSO.

Step 2.2 Send the debiased estimators to the AC and obtain the group statistics.

Step 2.3 Performmultiple testing procedure as described in Section 2.2.5.

Following similar proofs of Lemma 2.2 and Theorems 2.2 and 2.3, the One-shot, ILMA,

and DSILT can attain the same error rate control results under the sparsity assumptions of

s = o(γ1 ∧ γ2), (One-shot) and s = o{(γ1M) ∧ γ2} (ILMA/DSILT),

where under the high dimensional regime of log n = O(log p) and the assumptions of
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Algorithm 2.4 individual-level meta-analysis (ILMA).

Step 2.1 Integrate all individual-level data at the AC.

Step 2.2 Construct the cross-fitted debiased estimator by (2.4) using individual-level integra-
tive estimator analog to (2.3), and then obtain the overall effect statistics.

Step 2.3 Performmultiple testing procedure in Section 2.2.5.

M = O(log p) and log p = o(n1/10) as required in Theorems 2.2 and 2.3,

γ1 =
n 1

2

M(log p+ log n)a0(log p) 3
2
≍ n 1

2

M(log p)a0+ 3
2
, γ2 =

n
M4(log p)5

,

and a0 = 1/2 for sub-Gaussian design and a0 = 0 for bounded design as in Lemma

2.1. If additionallyM = o{n1/6(log p)a0/3−7/6}which directly implies γ1 = o(γ2), then

the respective sparsity conditions for One-shot and ILMA/DSILT reduce to s = o(γ1)

and s = o{(γ1M) ∧ γ2}. Hence, whenM grows with n and p at a slower rate ofM =

o{n1/6(log p)a0/3−7/6}, we have γ1 = o{(γ1M) ∧ γ2}, which implies that the ILMA and

DSILTmethods require strictly weaker sparsity assumption than the One-shot approach.

On the other hand, ifM = o(n1/6(log p)a0/3−7/6) is not satisfied, then the rate γ2 domi-

nates the rate of s and the three methods share the same sparsity condition s = o(γ2). Be-

sides the sparsity condition comparisons in terms of the validity of tests, we learn from Cai

et al. (2021) that the estimation error rate of our integrative sparse regression in Step 2.1 is

equivalent to the idealized method with all raw data and is smaller than the local estimator.

Hence, we anticipate the power gain of the DSILT over the One-shot approach in finite-

sample studies as the former uses more accurate estimator than the latter to derive statis-

tics for debiasing. This advantage is also verified in our simulation studies in Section 2.4.
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Moreover, it is possible to follow the debiasing strategies proposed in Zhu et al. (2018) and

Dukes & Vansteelandt (2019) that adapts to model sparsity, and construct a correspond-

ing DSILT procedure with additional theoretical power gain compared with the One-shot

method.

Table 2.1: Sparsity assumptions required by different methods under the conditions in Theorem 2.2 and the con‐
ditionM = o(n1/6(log p)a0/3−7/6), for the bounded and sub‐Gaussian design respectively, where γ1 =

n1/2M−1(log p)−3/2, γ2 = n1/2(log p)−3/2, γ3 = nM−4(log p)−5, and b = (log p+ logN)−1/2.

DSILT ILMA One-shot

Bounded s = o(γ2 ∧ γ3) s = o(γ2 ∧ γ3) s = o(γ1)
Sub-Gaussian s = o{(bγ2) ∧ γ3} s = o{(bγ2) ∧ γ3} s = o(bγ1)

Remark 2.6. Our DSILT approach involves transferring data twice from the DCs to the AC

and once from the AC to the DCs, which requires more communication efforts compared to the

One-shot approach. The additional communication gains lower bias rate than the One-shot

approach while only requiring the same sparsity assumption as the ILMAmethod as discussed

above. Under its sparsity condition, each method is able to draw inference that is asymptoti-

cally valid and has the same power as the ideal case when one uses the true parameters in con-

struction of the group test statistics. This further implies that to construct a powerful and valid

multiple testing procedure, there is no necessity to adopt further sequential communications

between the DCs and the AC as in the distributed methods of Li et al. (2016) andWang et al.

(2017).

2.4 Simulation Study

We evaluate the empirical performance of the DSILT procedure and compare it with the

One-shot and the ILMAmethods. Throughout, we letM = 5, nm = 500, and vary p from
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500 to 1000. For each setting, we perform 200 replications and set the number of sample

splitting foldsK = 2,K′ = 5 and false discovery level α = 0.1. The tuning strategies

described in Section 2.2.6 are employed withH = 10.

The covariate X of each study is generated from either the (i) Gaussian auto-regressive

(AR) model of order 1 and correlation coefficient 0.5; or (ii) HiddenMarkov model (HMM)

with binary hidden variables and binary observed variables with the transition probability

and the emission probability both set as 0.2. We choose {β(m)

0 } to be heterogeneous in mag-

nitude across studies but to share the same support with

β(m)

0 = μ
{
(ν(m)

1 + 1)ψ1, (ν
(m)
2 + 1)ψ2, . . . , (ν

(m)
s + 1)ψs, 0p−s

}T

where the sparsity level s is set to be 10 or 50, and {ψ1, ...,ψs} are independently drawn

from {−1, 1}with equal probability and are shared across studies, while the local signal

strength ν(m)
j ’s vary across studies and are drawn independently fromN{0, (μ/2)2}. To

ensure the procedures have reasonable power magnitudes for comparison, we set the overall

signal strength μ to be in the range of [0.21, 0.42] for s = 10, mimicking a sparse and strong

signal setting; and [0.14, 0.35] for s = 50, mimicking a dense and weak signal setting. We

then generate binary responses Y(m) from logitP(Y(m) = 1 | X(m)) = β(m)T

0 X(m).

In Figure 2.1, we report the empirical FDR and power of the three methods with varying

p, s, and μ under the Gaussian design. Results for the HMMdesign have almost the same

pattern and are included in Appendix B. Across all settings, DSILT achieves almost the

same performance as the ideal ILMA in both error rate control and power. All the methods

successfully control the desired FDR at α = 0.1. When s = 10 or the signal strength μ is

weak, all the methods have conservative error rates compared to the nominal level. While
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for s = 50 with relatively strong signal, our method and the ideal ILMA become close

to the exact error rate control empirically. This is consistent with Theorem 2.3 that if the

number of relatively strong signals is large enough, our method tends to achieve exact FDR

control. In contrast, the One-shot method fails to borrow information across the studies,

and hence requires stronger signal magnitude to achieve exact FDR control. As a result, we

observe consistently conservative empirical error rates for the One-shot approach.

Figure 2.1: The empirical FDR and power of our DSILT method, the One‐shot approach and the ILMA method under the
Gaussian design, with α = 0.1. The horizontal axis represents the overall signal magnitude μ.
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In terms of the empirical power, the difference between DSILT and ILMA is less than

1% in all cases. This indicates that the proposed DSILT can accommodates the DataSHIELD

constraint at almost no cost in power compared to ideal method. This is consistent with

our theoretical result in Section 2.3.4 that the two methods require the same sparsity as-

sumption for simultaneous inference. Furthermore, the DSILT and ILMAmethods dom-

inate the One-shot strategy in terms of statistical power. Under every single scenario, the

power of the former two methods is around 15% higher than that of the One-shot ap-
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proach in the dense case, i.e., s = 50, and 6% higher in the sparse case, i.e, s = 10. By

developing testing procedures using integrative analysis rather than local estimations, both

DSILT and ILMAmethods utilize the group sparsity structure of the model parameters

β(•) more adequately than the One-shot approach, which leads to the superior power per-

formance of these two methods. The power advantage is more pronounced as the sparsity

level s grows from 10 to 50. This is due to the fact that, to achieve the same result, the One-

shot approach requires a stronger sparsity assumption than the other two methods, and is

thus much more easily impacted by the growth of s. In comparison, the performance of our

method and the ILMAmethod is less sensitive to sparsity growth because the integrative

estimator employed in these two methods is more stable than the local estimator under the

dense scenario.

2.5 Real Example

Statins are the most widely prescribed drug for lowering low-density lipoprotein (LDL)

and the risk of cardiovascular disease (CVD), with over a quarter of adults 45 years or

older receiving the drug in the United States. Statins lower LDL by inhibiting 3-hydroxy-

3-methylglutaryl-coenzyme A reductase (HMGCR) (Nissen et al., 2005). The treatment

effect of statins can also be causally inferred based on the effect of the HMGCR variant

rs17238484 – patients carrying the rs17238484-G allele have profiles similar to individuals

receiving statin, with lower LDL and lower risk of CVD (Swerdlow et al., 2015). While the

benefit of statins have been consistently observed, they are not without risk. There has been

increasing evidence that statins increase the risk of type II diabetes (T2D) (Rajpathak et al.,

2009; Carter et al., 2013). Swerdlow et al. (2015) demonstrated via both meta analysis of
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clinical trials and genetic analysis of the rs17238484 variant that statins are associated with

a slight increase of T2D risk. However, the adverse effect of statins on T2D risk appears

to differ substantially depending on the number of T2D risk factors patients have prior to

receiving the statin, with adverse risk higher among patients with more risk factors (Waters

et al., 2013).

To investigate potential genetic determinants of statin treatment effect heterogeneity, we

studied interactive effects of the rs17238484 variant and 256 SNPs associated with T2D,

LDL, high-density lipoprotein (HDL) cholesterol, and the coronary artery disease (CAD)

gene which plays a central role in obesity and insulin sensitivity (Kozak & Anunciado-

Koza, 2009; Rodrigues et al., 2013). A significant interaction between SNP j and the statin

variant rs17238484would indicate that SNP jmodifies the effect of statin. Since the LDL,

CAD and T2D risk profiles differ greatly between different racial groups and between male

and female, we focus the analysis on the black sub-population and fit separate models for

female and male subgroups.

To efficiently identify genetic risk factors that significantly interact with rs17238484,

we performed an integrative analysis of data from 3 different studies, including the Mil-

lion Vetern Project (MVP) from the Veteran Health Administration (Gaziano et al., 2016),

Partners Healthcare Biobank (PHB) and the UK Biobank (UKB). Within each study, we

have both a male subgroup indexed by subscriptm, and a female subgroup indexed by sub-

script f, leading toM = 6 datasets denoted byMVPF,MVPM, PHBF, PHBM,UKBF and

UKBM. Since T2D prevalence within the datasets varies greatly from 0.05% to 0.15%, we

performed a case control sampling with 1:1 matching so each dataset has equal numbers of

T2D cases and controls. Since MVP has a substantially larger number of male T2D cases
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than all other studies, we down sampled its cases to match the number of female cases in

MVP so that the signals are not dominated by the male population. This leads to sample

sizes of 216, 392, 606, 822, 3120 and 3120 at PHBM, PHBF, UKBM, UKBF, MVPM and

MVPF, respectively. The covariate vector X = (XT

main,XT

int)
T is of dimension p = 516, where

Xmain consists of the main effects of rs17238484, age and the aforementioned 256 SNPs,

and Xint consists of the interactions between rs17238484 and age, as well as each of the 256

SNPs. All SNPs are encoded such that the higher value is associated with higher risk of

T2D.We implemented the proposed testing method along with the One-shot approach

as a benchmark to performmultiple testing of q = 256 coefficients corresponding to the

interaction terms in Xint at nominal level of α = 0.1 with the model chosen as logistics

regression and the sample splitting foldsK = 2 andK′ = 5.

As shown in Table 2.2, our method identifies 5 SNPs significantly interacting with the

statin SNP while the One-shot approach detects only 3 SNPs, all of which belong to the

set of SNPs identified by our method. The presence of non-zero interactive effects demon-

strates that the adverse effect of statin SNP rs17238484-G on the risk of T2D can differ sig-

nificantly among patients with different levels of genetic predisposition to T2D. In Figure

2.2, we also present 90% confidence intervals obtained within each dataset for the interac-

tive effects between rs17238484-G and each of these 5 detected SNPs. The SNP rs581080-

G in the TTC39B gene has the strongest interactive effect with the statin SNP and has all

interactive effects estimated as positive for most studies, suggesting that the adverse effect

of statin is generally higher for patients with this mutation compared to those without. In-

terestingly, a previous report finds that a SNP in the TTC39B gene is associated with statin

induced response to LDL particle number (Chu et al., 2015), suggesting that the effect of
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statin can be modulated by the rs581080-G SNP.

Table 2.2: SNPs identified by DSILT to interact with the statin genetic variants rs17238484‐G on the risk for T2D. The
second column presents the name of the gene where the SNP locates. The third column presents the minor allele fre‐
quency (MAF) of each SNP averaged over the three sites. The last three columns respectively present the p‐values
obtained using One‐shot approach with all theM = 6 studies, One‐shot with solely the datasetsMVPf andMVPm
and the proposed method with all theM = 6 studies. The p‐values shown in black fonts represent the SNPs selected
by each method.

SNP Gene MAF One-shot MVP-only DSILT

rs12328675-T COBLL1 0.13 1.1× 10−3 2.3× 10−3 6.0× 10−4

rs2200733-T LOC729065 0.18 3.7× 10−2 5.7× 10−3 6.2× 10−4

rs581080-G TTC39B 0.22 3.6× 10−6 1.1× 10−6 2.6× 10−6

rs35011184-A TCF7L2 0.22 1.9× 10−2 5.2× 10−2 8.6× 10−4

rs838880-T SCARB1 0.36 6.7× 10−4 6.0× 10−5 6.2× 10−4

Results shown in Figure 2.2 also suggest some gender differences in the interactive ef-

fects. For example, the adverse effect of the statin is lower for female patients carrying the

rs12328675-T allele compare to female patients without the allele. On the other hand,

the effect of the statin appear to be higher for male patients with the rs12328675-T allele

compared to those without genetic variants associated with a various of phenotypes related

to T2D. The variation in the effect sizes across different data sources illustrates that it is

necessary to properly account for heterogeneity of β in the modeling procedure. Compar-

ing the lengths of confidence intervals obtained based on the One-shot approach to those

from the proposed method, we find that the DSILT approach generally yields shorter confi-

dence intervals, which translates to higher power in signal detection. It is important to note

that since MVP has much larger sample sizes, the width of the confidence intervals from

MVP are much smaller than those of UKB and PHB. However, the effect sizes obtained

fromMVP also tend to be much smaller in magnitude and consequently, using MVP alone
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would only detect 2 of the 5 SNPs by multiple testing with level 0.1. This demonstrates the

utility of the integrative testing involvingM = 6 data sources.

2.6 Discussion

In this chapter, we propose a DSILTmethod for simultaneous inference of high dimen-

sional covariate effects in the presence of between-study heterogeneity under the DataSHIELD

framework. The proposed method is able to properly control the FDR and FDP in theory

asymptotically, and is shown to have similar performance as the ideal ILMAmethod and to

outperform the One-shot approach in terms of the required assumptions and the statistical

power for multiple testing. Our method allows most distributional properties of the data

D(m) to differ across theM sites, such as the marginal distribution of X(m), the conditional

variance of Y(m) given X(m), and the magnitude of each β(m)

j . The support S
(m) is also allowed

to vary across the sites as well, but the DSILTmethod is more powerful when S (1), ..., S (M)

are more similar to each other. We demonstrate that the sparsity assumptions of the pro-

posed method are equivalent to those for the ideal method but strictly weaker than those

for the One-shot approach. As the price to pay, our method requires one more round of

data transference between the AC and the DCs than the One-shot approach. Meanwhile,

the sparsity condition equivalence between the proposed method and ILMAmethod im-

plies that there is no need to include in our method further rounds of communications or

adopt iterative procedures as in Li et al. (2016) andWang et al. (2017), which saves a great

deal of human effort in practice.

The proposed approach also adds technical contributions to existing literature in several

aspects. First, our debiasing formulation helps to get rid of the group structure assump-
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Figure 2.2: Debiased estimates of the log odds ratios and their 90% confidence intervals in each local site for the inter‐
action effects between rs17238484‐G and the 5 SNPs detected by DSILT, obtained respectively based on the One‐shot
and the DSILT approaches.

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

rs12328675−T

lo
g(

O
R

)

PHBM UKBM MVPM PHBF UKBF MVPF

DSILT
One−shot

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

rs2200733−T
lo

g(
O

R
)

PHBM UKBM MVPM PHBF UKBF MVPF

DSILT
One−shot

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

rs581080−G

lo
g(

O
R

)

PHBM UKBM MVPM PHBF UKBF MVPF

DSILT
One−shot

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

rs35011184−A

lo
g(

O
R

)

PHBM UKBM MVPM PHBF UKBF MVPF

DSILT
One−shot

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

rs838880−T

lo
g(

O
R

)

PHBM UKBM MVPM PHBF UKBF MVPF

DSILT
One−shot

68



tion on the covariatesX(m) at different distributed sites. Such an assumption is not satisfied

in our real data setting, but is unavoidable if one uses the node-wise group LASSO (Mitra

et al., 2016) or group structured inverse regression (Xia et al., 2018b) for debiasing. Second,

compared with the existing work on joint testing of high dimensional linear models (Xia

et al., 2018b), our method considers model heterogeneity and allows the number of studies

M to diverge under the data sharing constraint, resulting in substantial technical difficul-

ties in characterizing the asymptotic distribution of our proposed test statistics ζ̆j and their

correlation structures for simultaneous inference.

We next discuss the limitation and possible extension of the current work. First, the pro-

posed procedure requires transferring of Hessian matrix withO(p2) complexity from each

DC to the AC. To the best of our knowledge, there is no natural way to reduce the order

of complexity for the group debiasing step, i.e., Step 2.2, as introduced in Section 2.2.4.

Nevertheless, it is worthwhile to remark that, for the integrative estimation step, i.e., Step

2.1, the communication complexity can be reduced toO(p) only, by first transferring the

locally debiased LASSO estimators from each DC to the AC and then integrating the de-

biased estimators with a group structured truncation procedure (Lee et al., 2017; Battey

et al., 2018, e.g.) to obtain an integrative estimator with the same error rate as β̃
(•)

[‐k]. How-

ever, such a procedure requires greater efforts in deriving the data at each DC, which is

not easily accomplished in some situations such as in our real example. Second, we assume

q = |H| ≍ p in the current chapter as we have q = p/2 in the real example of Section 2.5.

We can further extend our results to the cases when q grows slower than p. In such scenar-

ios, the error rate control results in Theorems 2.2 and 2.3 still hold. Meanwhile, the model

sparsity assumptions and the conditions on p andN can be further relaxed because we have
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fewer number of hypotheses to test in total and as a result the error rate tolerance for an

individual testH0,j can be weakened. Third, for the limiting null distribution of the test

statistics ζ̆j and the subsequent simultaneous error rate control, we requireM = O(log p)

and log p = o(n1/10). Such an assumption is naturally satisfied in many situations as in

our real example. However, when the collaboration is of a larger scale, sayM ≫ log p or

M > nm, developing an adaptive and powerful overall effect testing procedure (such as

the ℓ∞-type test statistics), particularly under DataSHIELD constraints, warrants future

research. Fourth, the sub-Gaussian residual Assumption 2.3 in our theoretical analysis does

not hold for Poisson or negatively binomial response. Inspired by existing work (Jia et al.,

2019; Xie & Xiao, 2020, e.g.), our framework can be potentially generalized to accommo-

date more types of outcome models. Last, our method may be modified by perturbing the

weighted covariatesX(m)

β̂
and response Y(m)

β̂
, and transferring the summary statistics derived

from the perturbed data. Designing such a method with more convincing privacy guar-

antees, as well as similar estimation and testing performance as in our current framework

warrants future research.
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3
Augmented Transfer Regression Learning

with Semi-non-parametric Nuisance

Models
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3.1 Introduction

3.1.1 Background

The shift in the predictor distribution, often referred to as covariate shift, is one of the key

contributors to poor transportability and generalizability of a supervised learning model

from one data set to another. An example that arises often in modern biomedical research

is the between health system transportability of prediction algorithms trained from elec-

tronic health records (EHR) data (Weng et al., 2020). Frequently encountered heterogene-

ity between hospital systems include the underlying patient population and how the EHR

system encodes the data. For example, the prevalence of rheumatoid arthritis (RA) among

patients with at least one billing code of RA differ greatly among hospitals (Carroll et al.,

2012). On the other hand, the conditional distribution of the disease outcome given all im-

portant EHR features may remain stable and similar for different cohorts. Nevertheless,

shift in the distribution of these features can still have a large impact on the performance of

a prediction algorithms trained in one source cohort on another target cohort (Rasmy et al.,

2018). Thus, correcting for the covariate shift is crucial to the successful transfer learning

across multiple heterogeneous studying cohorts.

Robustness of covariate shift correction is an important topic and has been widely stud-

ied in recent literature of statistical learning. A branch of work includingWen et al. (2014);

Chen et al. (2016); Reddi et al. (2015); Liu & Ziebart (2017) focused on the covariate shift

correction methods that are robust to the extreme importance weight incurred by the

high dimensionality. Main concern of their work is the robustness of a learning model’s

prediction performance on the target data to a small amount of high magnitude impor-
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tance weight. However, there is a paucity of literature on improving the validity and effi-

ciency of statistical inference under covariate shift, with respect to the robustness to the

mis-specification or poor estimation of the importance weight model. In this chapter, we

propose an augmented transfer regression learning (ATReL) procedure in the context of

covariate shift by specifying flexible machine learning models for the importance weight

model and the outcome model. We establish the validity and efficiency of the proposed

method under possible mis-specification in one of the specified models. We next state the

problem of interest and then highlight the contributions of this chapter.

3.1.2 Problem Statement

The source data, indexed by S = 1, consist of n labeled samples with observed response Y

and covariates X = (X1, . . . ,Xp)while the target data, indexed by S = 0, consist ofN un-

labeled samples with only observed on X. We write the full observed data as {(SiYi,Xi, Si) :

i = 1, 2, . . . , n + N}, where without loss of generality we let the first n observations

be from the source population with Si = I(1 ≤ i ≤ n) and remaining from the tar-

get population. We assume that (Y,X) | S = s ∼ ps(x)q(y | x), where ps(x) denotes

the probability density measure of X | S = s and q(y | x) is the conditional density

of Y given X, which is the same across the two populations. The conditional distribution

of Y | X, shared between the two populations, could be complex and difficult to spec-

ify correctly. In practice, it is often of interest to infer about a functional of μ(X) such as

E(Y | A, S = 0), where A ∈ Rd is a sub-vector of X. More generally, we consider a working

modelE0(Y | A) = g(ATβ) and define the regression parameter β0 as the solution to the
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estimating equation in the target population S = 0:

E [A{Y− g(ATβ)} | S = 0] ≡ E0[A{Y− g(ATβ)}] = 0, (3.1)

whereEs is the expectation operator on the population S = s and g(·) is a link function,

e.g. g(θ) = θ represents linear regression and g(θ) = 1/(1 + e−θ) for logistics regres-

sion. Directly solving an empirical estimating equation for (3.1) using the source data to

estimate β0 may result in inconsistency due to the covariate shift as well as potential model

mis-specification of the modelE0(Y | A) = g(ATβ). It is important to note that even when

E0(Y | A) = g(ATβ0) holds,E1{A(Y − g(ATβ0)}may not be zero in the presence of co-

variate shift. To correct for the covariate shift bias, it is natural to incorporate importance

sampling weighting and estimate β0 as β̂IW
, the solution to the weighted estimating equation

1
n

n∑
i=1

ω̂(Xi)Ai{Yi − g(AT

i β)} = 0, (3.2)

where ω̂(X) is an estimate for the density ratiow(X) = p0(X)/p1(X). However, the validity

of β̂
IW
heavily relies on the consistency of ω̂(X) forw(X) and can perform poorly when the

density ratio model is mis-specified or not well estimated.

Remark 3.1. Our goal is to infer the conditional model of Y on A, a low dimensional subset

of covariates in X. In practice, there are a number of such cases in which one would be inter-

ested in a “submodel” Y ∼ A rather than the “full model” Y ∼ X. For example, in EHR

studies, A may represent widely available codified features and other elements of X may in-

clude features extracted from narrative notes via naturally language processing (NLP), which

can be available for research studies but too costly to include when implementing risk models
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for broad patient populations. Also, when predicting the risk of developing a future event Y at

baseline, A may represent baseline covariates while the remaining elements of X may include

post baseline surrogate features that can be used to“impute” Y but not meaningful as risk fac-

tors.

In this chapter, we propose an augmented transfer regression learning (ATReL) method

for optimizing the estimation of a potentially mis-specified regression model. Building on

top of the augmentation method in the missing data literature, our method leverages a flex-

ible semi-non-parametric outcome modelm(X) imputing the missing Y for the target data

and augments the importance sampling weighted estimating equation with the imputed

data. It is doubly robust (DR) in the sense that the ATReL estimator approaches the tar-

get β0 when either the importance weight model ω(X) or the imputation modelm(X) is

correctly specified.

3.1.3 Literature review and our contribution

Doubly robust estimators have been extensively studied for missing data and causal infer-

ence problems (Bang & Robins, 2005; Qin et al., 2008; Cao et al., 2009; van der Laan &

Gruber, 2010; Tan, 2010; Vermeulen & Vansteelandt, 2015). Estimation of average treat-

ment effect on the treated can be viewed as analog to our covariate shift problem. To im-

prove the DR estimation for average treatment effect on the treated, Graham et al. (2016)

proposed a auxiliary-to-study tilting method and studied its efficiency. Zhao & Percival

(2017) proposed an entropy balancing approach that achieves double robustness without

augmentation and Shu & Tan (2018) proposed a DR estimator attaining local and intrinsic

efficiency. Besides, existing work like Rotnitzky et al. (2012) and Han (2016) are similar
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to us in the sense that their parameters of interests are multidimensional regression coeffi-

cients. Properties including intrinsic efficiency and multiple robustness has been studied

in their work. These methods used low dimensional parametric nuisance models in their

constructions, which is prone to bias due to model mis-specification.

To improve robustness to model mis-specifications, Rothe & Firpo (2015) used local

polynomial regression to estimate the nuisance functions in constructing the DR estimator

for an average treatment effect. Chernozhukov et al. (2018a) extended classic nonpara-

metric constructions to the modern machine learning setting with cross-fitting. Their pro-

posed double machine learning (DML) framework facilitates the use of general machine

learning methods in semiparametric estimation. This general framework has also been

explored for semiparametric models with non-linear link functions (Semenova & Cher-

nozhukov, 2020; Liu et al., 2021b, e.g.). In contrast to the parametric approaches, the fully

nonparametric strategy is free of mis-specification of the nuisance models. However, it is

impacted by the excessive fitting errors of nonparametric models with higher complexity

than parametric models, and thus subject to the so called “rate double robustness” assump-

tion (Smucler et al., 2019). Typically, classic nonparametric regression methods like ker-

nel smoothing could not achieve the desirable convergence rates even under a moderate

dimensionality. Though such “curse of dimensionality” could be relieved by modern ma-

chine learning methods like random forest and neural network, theoretical justification on

the performance of these methods are inadequate. Even their asymptotic convergence are

sometimes justifiable, these machine learning approaches still requires particularly large

sample sizes to ensure good finite sample performances, which could be seen from our nu-

merical studies. This drawback has became a main concern about the nonparmatric or ma-
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chine learning approaches.

Our proposed semi-non-parametric strategy in constructing the nuisance models can be

viewed as a mitigation of the parametric and nonparamertic methods, which is more flex-

ible and powerful. In specific, it specifies the two nuisance models as the generalized par-

tially linear models combining a parametric function of some features in X and a nonpara-

metric function of the other features, to achieve a better trade-off in model complexity. It

is more robust to model estimation errors compared to the fully nonparametric approach,

and less susceptible to model mis-specification than the parametric approach. Our method

is not a trivial extension of the two existing strategies as we construct the moment equa-

tions more elaborately to calibrate the nuisance models, and remove the over-fitting bias.

We take semi-non-parametric models with kernel or sieve estimator as our main example

for realizing this strategy, and present other possibilities including the high dimensional

regression and machine learning constructions. We show that the proposed estimator is

n1/2-consistent and asymptotically normal when at least one nuisance model is correctly

specified, the parametric components in the two models are n1/2-consistent, and both non-

parametric components attain the error rate op(n−1/4).

In existing literature of semiparametric inference, one alternative and natural way to

mitigate the model misspecification and the curse of dimensionality is to construct the

nuisance models with some high dimensional non-linear basis of X. In relation to this,

a number of recent works has been developed to construct model doubly robust estima-

tors using high dimensional sparse nuisance models (Smucler et al., 2019; Tan, 2020; Ning

et al., 2020; Dukes & Vansteelandt, 2020; Ghosh & Tan, 2020; Liu et al., 2021b, e.g.). The

central idea of these approaches is to impose certain moment conditions on the nuisance
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models to remove their first order (or over-fitting) bias under potential model misspecifi-

cation, which is referred as calibrating (Tan, 2020). Technically, our calibrating procedure

is in similar spirits with this idea. Different from their strategies to fit regularized high di-

mensional regression with all covariates, we treat the parametric and the nonparametric

parts in the nuisance model differently. And our parametric part can be specified by arbi-

trary estimating equations. This provides us more flexibility on model specification, as well

as possibility to achieve better intrinsic efficiency as discussed in Section 3.6. More impor-

tantly, our framework allows for the use of nonparmatric or machine learning methods like

kernel smoothing and random forest, while these existing methods are restricted to high

dimensional parametric models. In addition, our target is a regression model, which has

larger complexity than the single average treatment effect parameter studied in the previous

work, and incurs additional challenges like irregular weights.

A similar idea of constructing semi-non-parametric nuisance models has been considered

by Chakrabortty (2016) and Chakrabortty & Cai (2018) using this to improve the effi-

ciency of linear regression under a semi-supervised setting with no covariate shift between

the labeled and unlabeled data. They proposed a refitting procedure to adjust for the bias

incurred by the nonparametric components in the imputation model while our method

can be viewed as their extension leveraging the importance weight and imputation mod-

els to correct for the bias of each other, which is substantially novel and more challenging.

As another main difference, we use semi-non-parametric model in estimating the paramet-

ric parts of the nuisance models, to ensure their correctness and validity. Chakrabortty

(2016) and Chakrabortty & Cai (2018) did not actually elaborate on this point and only

used parametric regression to estimate the parametric part, which does not guarantee the
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model double robustness property achieved by our method.

3.1.4 Outline of the chapter

Remaining of the chapter will be organized as follow. In Section 3.2, we introduce the gen-

eral doubly robust estimating equation, our semi-non-parametric framework and specific

procedures to estimate the parametric and nonparametric components of nuisance models.

In Section 3.3, we present the large sample properties of our proposed ATReL estimator,

i.e. its double robustness concerning model specification and estimation. In Section 3.4, we

present simulation results evaluating the finite sample performance of our ATReL estima-

tor and its relevant performance compared with existing methods under various settings.

In Section 3.5, we apply our ATReL estimation on transferring a phenotyping algorithm

for bipolar disorder across two EHR cohorts. Finally, we propose and comment on some

potential strategies for improving and extending our method in Section 3.6.

3.2 Method

3.2.1 General form of the doubly robust estimating equation

Letm(x) denote an imputation model used to approximate μ(x) = E(Y|X = x) =

E0(Y|X = x) = E1(Y|X = x), and m̂(x) denote the estimate ofm(x) by fitting the model

to the labeled source data. We augment the importance sampling weighted estimating equa-

tion (3.2) with the term

1
N

N+n∑
i=n+1

Ai{m̂(Xi)− g(AT

i β)} −
1
n

n∑
i=1

ω̂(Xi)Ai{m̂(Xi)− g(AT

i β)}, (3.3)
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which results in the augmented estimating equation:

ÛDR(β) ≡
1
n

n∑
i=1

ω̂(Xi)Ai{Yi − m̂(Xi)}+
1
N

N+n∑
i=n+1

Ai{m̂(Xi)− g(AT

i β)} = 0. (3.4)

We denote its solution as β̂
DR
. Construction (3.4) is in the similar spirit with the DR esti-

mators of the average treatment effect on the treated studied in existing literature (Graham

et al., 2016; Shu & Tan, 2018, e.g.). When the density ratio model is correctly specified and

consistently estimated, equation (3.4) converges toE0[Ai(Yi − g(AT

i β)}] = 0 and hence

β̂
DR
is consistent for β0. When the imputation model is correct, the first term of ÛDR(β) in

(3.4) converges to 0 and the second term converges toE0[Ai{E0(Yi | Xi) − g(AT

i β)}] =

E0[Ai{Yi − g(AT

i β)}] and hence β̂DR
is also expected to be consistent for β0. Thus, the aug-

mented estimating equation (3.4) is doubly robust to the specification of the two nuisance

models.

3.2.2 Semi-non-parametric nuisance models

Now we introduce a semi-non-parametric construction for the nuisance models in (3.4)

that captures more complex effects inw(X) and μ(X) from a subset of X, denoted by

Z ∈ Rpz , along with simpler effects for the remainder of X that can be explained via linear

effects on a finite set of pre-specified functional bases for approximatingw(X) and μ(X),

respectively denoted by ψ ∈ Rpψ and φ ∈ Rpφ . In EHR data analysis, Zmay represent

measures of healthcare utilization which may differ greatly across healthcare systems and

have complex effects on patient outcome. Under this framework, we specify the following

80



semi-non-parametric nuisance models forw(X) and μ(X),

ω(X) = exp{ψTα + h(Z)} and m(X) = g{φTγ+ r(Z)}, (3.5)

where ψTα and φTγ represent parametric components, the unknown functions h(z) and

r(z) represent the nonparametric components, and g(·) is a pre-specified smooth strictly

increasing link function. Without loss of generality, let the first element in both ψ and

φ be constant 1. Correspondingly, we denote their estimation used in (3.4) as ω̂(X) =

exp{ψTα̂ + ĥ(Z)} and m̂(X) = g{φTγ̂ + r̂(Z)}. Here and in the sequel, we let β̂
ATReL

denote the ATReL estimator derived from (3.4) with this specific construction of m̂(·) and

ω̂(·).

Unlike α̂ and γ̂, estimation errors of ĥ(·) and r̂(·) are larger in rate than the desirable

parametric rate n−1/2 since they are estimated using non-parametric approaches like ker-

nel smoothing. In addition, removing the large non-parametric estimation biases from the

biases of the resulting β̂
ATReL

is particularly challenging due to the bias and variance trade-

off in non-parametric regression. To motivate our strategy for mitigating such biases, we

consider the estimation of cTβ0, an arbitrary linear functional of β0 where ∥c∥2 = 1, and

study the first order (over-fitting) bias incurred by ĥ(·) and r̂(·) in cTβ̂
ATReL

. The essential

bias terms of n1/2(cTβ̂
ATReL

− cTβ0) arising from the non-parametric components can be
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asymptotically expressed as

Δ1 =
1√
n

n∑
i=1

ω̄(Xi)κi,β0 {Yi − m̄(Xi)} {ĥ(Zi)− h̄(Zi)};

Δ2 =
1√
n

n∑
i=1

ω̄(Xi)κi,β0 ğ{m̄(Xi)}{̂r(Zi)− r̄(Zi)}

−
√
n

N

N+n∑
i=n+1

κi,β0 ğ{m̄(Xi)}{̂r(Zi)− r̄(Zi)},

(3.6)

where κi,β = cTJ−1
β Ai ğ(a) = ġ{g−1(a)}, ġ(x) = dg(x)/dx > 0, Jβ = E0{ġ(ATβ)AAT} is

the limit of Ĵβ = N−1∑n+N
i=n+1 ġ(A

T

i β)AiAT

i , ω̄(X) = exp{ψTᾱ + h̄(Z)}, m̄(X) = g{φTγ̄ +

r̄(Z)}, h̄(Z), r̄(Z), ᾱ, γ̄, and β̄ are the respective limits of ĥ(Z), r̂(Z), α̂, γ̂ and β̂
ATReL

. These

limiting values are not necessarily true model parameter values due to potential model mis-

specification.

Whenm(X) and ω(X) are specified fully nonparametrically as those in Rothe & Firpo

(2015) and Chernozhukov et al. (2018a), a standard cross-fitting strategy can removing

terms like Δ1 and Δ2 by leveraging m̄(X) = μ(X) and ω̄(X) = w(X) and utilizing the

orthogonality between the “residual” of S or Y on the covariates X and the functional space

of X. However, simply adopting cross-fitting is not sufficient for the current setting be-

cause such orthogonality does not hold due to the potential mis-specifications ofm(·) and

ω(·) in (3.5). To overcome this challenge, we impose moment condition constraints on the

nonparametric components r̄(Z) and h̄(Z) in that: for any measurable function f(·) of the
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covariates Z,

E1
[
w(X)κβ0

(Y− g {ΦTγ̄+ r̄(Z)}) f(Z)
]
= 0; (3.7)

E1
[
exp{ψTᾱ + h̄(Z)}κβ0

ğ{μ(X)}f(Z)
]
= E0

[
κβ0

ğ{μ(X)}f(Z)
]
. (3.8)

Remark 3.2. When the density ratio model is correct, moment condition (3.8) is naturally

satisfied and solving (3.8) for h̄(·) leads to the true h0(·). Constructing r̄(·) under the moment

condition (3.7) will enable us to remove excess bias arising from the empirical error in estimat-

ing h̄(·). On the other hand, when the imputation model m(X) is correct, condition (3.7) holds

and solving (3.7) for r̄(·) leads to r0(·). And similarly, constructing h̄(·) under (3.8) will en-

able us to remove bias from the error in estimating r̄(·). See our theoretical analyses given in

Section 3.3 and Appendix C.1 for more details on these points.

3.2.3 Estimation Procedure for β̂
ATReL

We next detail estimation procedures for β̂
ATReL

under the constraints of the moment con-

ditions (3.7) and (3.8). Here we mainly focus on classic local regression approaches for low

dimensional and smooth nonparametric components r(·) and h(·). In Appendix C.3.2,

we propose a more general construction procedure that can learn r(·) and h(·) using ar-

bitrary modern machine learning algorithms (e.g. random forest and neural network).

Similar to Chernozhukov et al. (2018a), we adopt cross-fitting on the source sample to

eliminate the dependence between the estimators and the samples on which they are eval-

uated, and remove the first order bias Δ1 and Δ2 through concentration. Specifically, we

randomly split the source samples intoK equal sized disjoint sets, indexed by I1, . . . , IK,
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with {1, ..., n} = ∪K
k=1Ik and denote I‐k = {1, .., n} \ Ik.

Equations (3.7) and (3.8) involve not only r(·) and h(·) but also other unknown param-

eters that needed to be estimated. To this end, first obtain preliminary estimators for ω(X)

andm(X) via standard semiparametric regression as ω̃[‐k](X) = exp{ψTα̃[‐k] + h̃[‐k](Z)} and

m̃[‐k](X) = g{φTγ̃[‐k] + r̃[‐k](Z)} on I‐k ∪ {n + 1, . . . , n + N}, where the nonparametric

components can be estimated with either sieve (Beder, 1987) or profile kernel/backfitting

(Lin & Carroll, 2006). Here, we take sieve as an example. Let b(Z) be some basis function

of Zwith growing dimension, e.g. Hermite polynomials as specified by Assumption C.3 in

Appendix C.2. Denote by Ψ = (ψT, b(Z)T)T and Φ = (φT, b(Z)T)T. We solve

K
n(K− 1)

∑
i∈I‐k

Ψi exp(θTwΨi) + λ1(0, θTw,‐1)T =
1
N

n+N∑
i=n+1

Ψi; with θw = (αT, ηT)T (3.9)

K
n(K− 1)

∑
i∈I‐k

Φi {Yi − g(θTmΦi)}+ λ2(0, θTm,‐1)
T = 0, with θm = (γT, ξT)T (3.10)

to obtain the estimators θ̃
[‐k]
w = (α̃[‐k]

T

, η̃[‐k]
T

)T, θ̃
[‐k]
m = (̃γ[‐k]

T

, ξ̃
[‐k]T

)T for θw and θm, and

h̃[‐k](Z) = bT(Z)η̃[‐k], r̃[‐k](Z) = bT(Z)̃ξ
[‐k]

. Here we include ridge penalties to improve the

training stability, with the two tuning parameters λ1, λ2 = op(n−1/2). Suppose that ω̃[‐k](X)

and m̃[‐k](X) approach some limiting models denoted as ω∗(X) = exp{ψTα∗ + h∗(Z)} and

m∗(X) = g{φTγ∗ + r∗(Z)}. Certainly, we have that ω∗(X) = w(X)when the density ratio

model is correctly specified, andm∗(X) = μ(X)when imputation model is correct. Then

we solve the estimating equation for β:

K
n(K− 1)

∑
i∈I‐k

ω̃[‐k](Xi)Ai{Yi − m̃[‐k](Xi)}+
1
N

N+n∑
i=n+1

Ai{m̃[‐k](Xi)− g(AT

i β)} = 0,
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Denote its solution as β̃
[‐k]

, a preliminary estimator consistent for β0 when at least one nui-

sance model is correct but typically not achieving the desirable parametric rate as our final

goal.

One might improve the convergence rate of the remainder bias of α̃[‐k] and γ̃[‐k] by fur-

ther using cross-fitting on the nonparametric components in estimating equations (3.9)

and (3.10); see Newey & Robins (2018). While the so called “plug-in” or simultaneous

M-estimation α̃[‐k] and γ̃[‐k] can be shown to be n1/2-consistent and asymptotically normal

under certain smoothness and regularity conditions (Shen, 1997; Chen, 2007), and thus

satisfy our requirement (see Assumption 3.3 and Proposition 3.1). Therefore, one could

simply set α̂[‐k] = α̃[‐k] and γ̂[‐k] = γ̃[‐k] as the estimator of the parametric components in the

final nuisance models. Consequently, their limiting (true) values are also identical: ᾱ = α∗

and γ̄ = γ∗. In the following part of this section, we choose this construction.

Remark 3.3. Equations (3.9) and (3.10) are not the only choices for specifying α and γ. In

our framework, α and γ could be estimated through any estimating equations ensuring their

n1/2-consistency for some limiting parameters equal to the true ones when the corresponding

nuisance models are correct. This flexibility is particularly useful when the intrinsic efficiency

(Tan, 2010; Rotnitzky et al., 2012) of our estimator is further desirable, i.e. cTβ̂
ATReL

is the

most efficient among all the doubly robust estimators when ω(·) is correct and m(·) has some

wrong specification. Interestingly, we find that one could elaborate an estimating procedure

for γ to realize this property and shall leave relevant details in Appendix C.3.3.

Then we construct the calibrated estimating equations for the nonparametric nuisance

components based on α̂[‐k], γ̂[‐k] and the preliminary estimators. LetK(·) represent some

kernel function satisfying
∫
Rpz K(z)dz = 1 and define thatKh(z) = K(z/h). Localizing the
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terms in (3.7) and (3.8) withKh(·), we solve for r(z) and h(z) respectively from

1
|I‐k|

∑
i∈I‐k

Kh(Zi − z)κ̂i,̂β[‐k]ω̃
[‐k](Xi)

[
Yi − g

{
φT

i γ̂
[‐k] + r(z)

}]
= 0;

1
|I‐k|

∑
i∈I‐k

Kh(Zi − z)κ̂i,̂β[‐k] ğ{m̃
[‐k](Xi)} exp

{
ψT

i α̂
[‐k] + h(z)

}
=

1
N

n+N∑
i=n+1

Kh(Zi − z)κ̂i,̂β[‐k] ğ{m̃
[‐k](Xi)}.

(3.11)

where κ̂i,β = cT̂J
−1
β Ai. Equations in (3.11) calibrate the nonparametric components to en-

sure the orthogonality between their score functions and the functional space of Z, which

is necessary for removing the bias terms introduced in (3.6). In contrasts, the parametric

component could include different sets of covariates from Z, and there is no need to cali-

brate them. This substantially distinguishes our framework from existing methods (Smu-

cler et al., 2019; Tan, 2020, e.g.) utilizing a similar calibration idea to handle high dimen-

sional sparse nuisance models .

Remark 3.4. If the weights κ̂i,̂β[‐k] = cT̂J
−1
β̃
[‐k]Ai have the same sign for a majority of the subjects

i ∈ I‐k ∪ {n + 1, . . . , n + N}, both equations in (3.11) have an unique solution for each

z, denoted as r̂[‐k](Z) and ĥ[‐k](Z). In practice, it is more likely that κ̂i,̂β[‐k] can be positive for

some subjects and negative for others, in which case (3.11) can be irregular and ill-posed, lead-

ing to inefficient estimation. One simple strategy to overcome this is to expand the nuisance

imputation models to allow h and r to differ among those with κ̂i,̂β[‐k] ≥ 0 versus those with
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κ̂i,̂β[‐k] . Specifically, we may solve for

1
|I‐k|

∑
i∈I‐k

Î[‐k]+,i

Î[‐k]−,i

Kh(Zi − z)κ̂i,̂β[‐k]ω̃
[‐k](Xi)

[
Yi − g

{
φT

i γ̂
[‐k] + Î[‐k]+,ir+(z) + Î[‐k]−,ir−(z)

}]
= 0;

1
|I‐k|

∑
i∈I‐k

Î[‐k]+,i

Î[‐k]−,i

Kh(Zi − z)κ̂i,̂β[‐k] ğ{m̃
[‐k](Xi)} exp

{
ψT

i α̂
[‐k] + Î[‐k]+,ih+(z) + Î[‐k]−,ih−(z)

}

=
1
N

n+N∑
i=n+1

Î[‐k]+,i

Î[‐k]−,i

Kh(Zi − z)κ̂i,̂β[‐k] ğ{m̃
[‐k](Xi)},

(3.12)

where Î[‐k]+,i = I(κ̂i,̂β[‐k] ≥ 0) and Î[‐k]−,i = I(κ̂i,̂β[‐k] < 0). Then we take m̂[‐k](Xi) = g{φT

i γ̂
[‐k] +

Î[‐k]+,ir+(Zi) + Î[‐k]−,ir−(Zi)} and ω̂[‐k](Xi) = exp
{
ψT

i α̂
[‐k] + Î[‐k]+,ih+(Zi) + Î[‐k]−,ih−(Zi)

}
. With

this modification, our construction still effectively removes Δ1 andΔ2 as one could trivially

analyze the two disjoint set of samples separately, and combine their convergence rates at last.

After obtaining r̂[‐k](·) and ĥ[‐k](·) for each k ∈ {1, 2, . . . ,K}, we take ω̂[‐k](Xi) =

exp{ψT

i α̂
[‐k] + ĥ[‐k](Zi)}, m̂[‐k](Xi) = g{φT

i γ̂
[‐k] + r̂[‐k](Zi)}, m̂(Xi) = K−1∑K

k=1 m̂[‐k](Xi),

and plug them into the cross-fitted version of the estimating equation (3.4) written as:

1
n

K∑
k=1

∑
i∈Ik

ω̂[‐k](Xi)Ai
{
Yi − m̂[‐k](Xi)

}
+

1
N

N+n∑
i=n+1

Ai{m̂(Xi)− g(AT

i β)} = 0. (3.13)

Let the solution of (3.13) be β̂
ATReL

and we take cTβ̂
ATReL

as the estimation for cTβ0. For in-

terval estimation of cTβ0, we use bootstrap, which appears to have better numerical perfor-

mance than using the asymptotic variance estimated directly by the moment estimator.
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3.3 Theoretical analysis

Assume that ρ = n/N = O(1),K = O(1). For any vector a, let ∥a∥2 represent its ℓ2-norm.

LetZ andX represent the domains of Z and X respectively. Assume that dimensionality of

A, pφ and pψ are fixed. We then introduce three sets of assumptions as follows.

Assumption 3.1 (Regularity conditions). There exists a constant CL > 0 such that |ġ(a) −

ġ(b)| ≤ CL|a − b| for any a, b ∈ R. β0 belongs to a compact space. Ai belong to a compact

set and has a continuous differential density on both populations S and T . There exists a

constant CU > 0 such thatEj|Y|2 +E1ω̄4(X) +Ejğ4{m̄(X)}+Ej∥φ∥42 +Ej∥ψ∥82 < CU, for

j ∈ {0, 1}. The information matrix Jβ0 has its all eigenvalues bounded away from 0 and∞.

Assumption 3.2 (Specification of the nuisance models). At least one of the following two

conditions holds: (i)w(X) = exp{ψTα0 + h0(Z)} for some α0 and h0(·); or (ii) μ(X) =

g{φTγ0 + r0(Z)} for some γ0 and r0(·).

Assumption 3.3 (Estimation error of the nuisance models). The nuisance estimators satisfy

that (i) n1/2(α̂[‐k] − ᾱ) and n1/2(̂γ[‐k] − γ̄) is asymptotically normal with mean 0 and finite

variance; (ii) for every k ∈ {1, 2, . . . ,K} and j ∈ {0, 1}:

E1{ĥ[‐k](Z)− h̄(Z)}2 + Ej{̂r[‐k](Z)− r̄(Z)}2 = op(n−1/2);

sup
z∈Z

|ĥ[‐k](z)− h̄(z)|+ |̂r[‐k](z)− r̄(z)| = op(1).

Remark 3.5. Assumption 3.1 is reasonable and commonly used for asymptotic analysis of M-

estimation such as logistic regression (Van der Vaart, 2000). Assumption on the compactness of

the domain of Ai could be relaxed to accommodate unbounded covariates with regular tail
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behaviours. Assumption 3.2 assumes that at least one nuisance model is correctly specified, and

the nonparametric component in the possibly wrong model satisfies the moment constraints

(3.7) or (3.8). Similar to the classic double robustness condition for the parametric nuisance

models (Bang & Robins, 2005; Qin et al., 2008), the parametric part from the wrong model

in our method could be arbitrarily specified.

Assumption 3.3(ii) assumes that both the nonparametric components have their mean

squared errors (MSE) below op(n−1/2), known as the rate doubly robust assumption (Smu-

cler et al., 2019). With a similar spirit to Chernozhukov et al. (2018a), our Assumption 3.3

is imposed directly on the calibrated estimators ĥ[‐k](·) and r̂[‐k](·) regardless of their spe-

cific estimation procedures, to preserve the generality. Justification of Assumption 3.3 for

the nuisance estimators obtained through smooth regression introduced in Section 3.2.3 is

not standard because the estimating equations in (3.11) involve the nuisance preliminary

estimators impacting the calibrated estimator through their empirical errors. We present

this result as Proposition 3.1 and its proof in Appendix C.2, leveraging existing literature

about sieve and kernel approaches (Fan et al., 1995; Carroll et al., 1998; Shen, 1997; Chen,

2007).

Proposition 3.1. Under Assumption 3.1 and Assumptions C.1–C.3 presented in Appendix

C.2 about regularity, smoothness and specification of the sieve and kernel functions, Assump-

tion 3.3 holds for our mainly proposed nuisance estimators in Section 3.2.3.

Different from the sieve and kernel approaches introduced in Section 3.2.3, when there

is high dimensional Z and the nonparametric components are estimated using modern ma-

chine learning approaches like lasso and random forest, our debiased method introduced in
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Appendix C.3 is used to construct the parametric nuisance components. We demonstrate

in Appendix C.3 that such debiased estimation will satisfy Assumptions 3.3(i) when the

machine learning estimators for the nonparametric components have good quality.

Now we present the main theoretical results about the consistency and asymptotic valid-

ity of our estimator cTβ̂
ATReL

in Theorem 3.1 with its proof found in Appendix C.1.

Theorem 3.1. Under Assumptions 3.1 to 3.3, it holds that ∥β̂
ATReL

− β0∥2 = op(1) and

√
n(cTβ̂

ATReL
− cTβ0) =

1√
n

n∑
i=1

FSi +

√
n

N

n+N∑
n+1

FTi +
√
nζTα(α̂− ᾱ) +

√
nζTγ (̂γ− γ̄) + op(1),

where FSi = ω̄(Xi)Ai {Yi − m̄(Xi)}, FTi = Ai{m̄(Xi)− g(AT

i β)},

ζα = E1ω̄(X)κβ0
[Y− g{φTγ̄+ r̄(Z)}]ψ,

ζγ = E1ω̄(X)κβ0
ğ{m̄(X)}φ− E0κβ0

ğ{m̄(X)}φ,

α̂ = K−1∑K
k=1 α̂

[‐k], and γ̂ = K−1∑K
k=1 γ̂

[‐k]. Consequently, n1/2(cTβ̂
ATReL

− cTβ0) weakly

converges to Gaussian distribution with mean 0 and variance of order 1.

Remark 3.6. When Assumption 3.2(i) holds, i.e. the density ratio is correctly specified, one

have that ζγ = 0 so γ̂[‐k] − γ̄ has no impact on the asymptotic expansion cTβ̂
ATReL

. Similarly,

when the imputation model is correct, ζα = 0 and α̂[‐k] − ᾱ has no impact on cTβ̂
ATReL

. When

both nuisance models are correctly specified, cTβ̂
ATReL

is a semiparametric efficient estimator for

cTβ0 in our case of covariate shift regression (Hahn, 1998).
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3.4 Simulation studies

We conduct simulation studies to investigate the performance of the ATReLmethod and

compare it with existing doubly robust approaches. We consider four different data gen-

erating mechanisms concerning specification of the nuisance models. Throughout, we let

n = 500 andN = 1000. To generate the data, we first generateV = (V1,V2, ...,V7)
T

fromN (0,ΣV)where ΣV = (σij)7×7, σij = 1 when i = j, σij = 0.3 when (i, j) or (j, i) ∈

{(1, 2), (1, 3), (3, 4), (3, 5)}, σij = 0.15 when (i, j) or (j, i) ∈ {(1, 6), (1, 7), (5, 6), (5, 7)},

and σij = 0 otherwise. Then we obtain each X̃j by truncatingVj with (−1.5, 1.5) and stan-

dardizing it, and take

W =

{
1, exp(0.5X̃1),

X̃2

1+ exp(X̃3)
,

(
X̃1X̃3

5
+ 0.6

)3

, X̃4, ..., X̃7

}T

as a nonlinear transformation of X̃ = (1, X̃1, X̃2, . . . , X̃7)
T. Based on this, we consider four

configurations for the underlying data generating mechanisms introduced below as the

configurations indexed by (i)–(iv). First, we set Z = X̃1 and generate the source indication S

given X̃ by P(S = 1 | X̃) = g{aTwW+ aTx X̃+ hx(Z)}where

(i) aw = (−1, 0,−0.4,−0.4,−0.15,−0.15, 0, 0)T, ax = 0, and hx(Z) = 0.6Z2 ·

I(|Z| < 1.5) + {0.6(|Z| − 1.5) + 1.35} · I(|Z| ≥ 1.5).

(ii) The same as Configurations (i).

(iii) aw = 0, ax = (0,−0.2,−0.4,−0.4,−0.2,−0.2, 0, 0)T, and hx(Z) = 0.5|Z|3 ·

I(|Z| < 1.5) + {0.5 · 1.53 + (|Z| − 1.5)} · I(|Z| ≥ 1.5).
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(iv) aw = 0, ax = (0,−0.4,−0.4,−0.4,−0.15,−0.15, 0, 0)T, and hx(Z) = 0.

In Configurations 1 and 2, set the observed covariates as X = (1,X1,X2, . . . ,X7)
T where

X̃2 = 0.8X2 − 0.2sin(
3
4
πZ) · I(S = 0); X̃3 = 0.8X3 − 0.2sin(

3
4
πZ) · I(S = 0),

and Xj = X̃j for all j ̸= 2, 3. While in Configurations 3 and 4, we simply set X = X̃. Then

we generate Y given X by P(Y = 1 | X) = g{bT
wW+ bT

xX+ rx(Z)}, where

(i) bw = 0, bx = (0, 0.5, 0.5, 0.5, 0.3, 0.3, 0.15, 0.15)T, rx(Z) = −0.4 · sin( 34πZ).

(ii) bw = 0, bx = (0, 0.5, 0.5, 0.5, 0.3, 0.3, 0.15, 0.15)T, rx(Z) = 0.

(iii) bw = (−0.5, 0.5, 0.8, 0.3,−0.3,−0.2, 0.15, 0.15)T, bx = 0, rx(Z) = −0.6 ·

sin( 34πZ).

(iv) bw = (−0.8, 0.5, 0.5, 0.5, 0.3, 0.3, 0.15, 0.15)T, bx = 0, rx(Z) = −0.4 · sin( 34πZ).

In all the four configurations, we set A = (1,X1, ...,X3)
T. For each generated dataset, we fit

the following nuisance models to estimate β0:

(a) Parametric nuisance models (Parametric): the importance weight model is chosen as

the logistic model of S against Ψ = X and the imputation model is specified as the

logistic model of Y against Φ = X.

(b) Semi-non-parametric nuisance models (ATReL): P(S = 1 | X) = g{ΨTα + h(Z)}

and P(Y = 1 | X) = g{ΦTγ+ r(Z)}, where Ψ = X, Φ = X, and Z = X1.

(c) Double machine learning with flexible basis expansions (DMLBE): the nuisance

models regress Y or S on features combining together X, natural splines of each Xj
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with order 4 and all the interaction terms of these natural splines. Due to high di-

mensionality of the bases, we use a combination of ℓ1 and ℓ2 penalties for regulariza-

tion.

(d) Double machine learning with kernel machine (DMLKM): both models are estimated

using support vector machine with the radial basis function kernel.

Our data generation and model specification have a similar spirit as Kang & Schafer

(2007) and Tan (2020). In Configurations (i) and (ii), our semi-non-parametric imputation

model correctly characterizes Y | Xwhile our importance weight model is mis-specified.

Parametric approach (a) has its imputation model correctly specified under Configuration

(ii) but misses the nonlinear function r(Z) under (i). Also note that under (ii), nonpara-

metric component included in the imputation model of our method is redundant for the

logistic linear model of P(Y = 1 | X). Similar logic applies to Configurations (iii) and (iv)

with the status of the imputation model and importance weight model interchanged. More

implementing details of (a)–(d) are presented in Appendix C.4.

Performance of the four approaches are evaluated through (root) mean square error, bias

and coverage probability of the 95% confidence interval in terms of estimating and inferring

β0, β1, β2, β3, as summarized in Tables C.1–C.4 of Appendix C.4 for configurations (i)–(iv)

respectively. The mean square error and absolute bias averaged over the target parameters,

and the maximum deviance of the coverage probability from the nominal level 0.95 among

all parameters are summarized in Table 3.1.

Under all configurations, ATReL achieves better performance, especially at least 48%

smaller average bias, than the two double machine learning approaches. Also, ATReL

performs well in interval estimation with coverage probabilities on all parameters under
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Table 3.1: Average root mean square error (RMSE), average absolute bias (|Bias|), and maximum deviance of coverage
probability (CP) of the constructed CI from its nominal level 0.95 over all parameters of the doubly robust estimators
with different modeling strategies for the nuisance models: Parametric, ATReL, DMLBE and DMLKM under Configura‐
tions (i)–(iv), as introduced in Section 1.5.

Configurations Parametric ATReL DMLBE DMLKM

(i) Average RMSE 0.141 0.123 0.179 0.153
Average |Bias| 0.065 0.030 0.108 0.058
Deviance of CP 0.04 0.02 0.11 0.10

(ii) Average RMSE 0.117 0.123 0.186 0.148
Average |Bias| 0.005 0.016 0.114 0.061
Deviance of CP 0.04 0.02 0.13 0.05

(iii) Average RMSE 0.207 0.134 0.142 0.144
Average |Bias| 0.092 0.019 0.036 0.062
Deviance of CP 0.13 0.02 0.02 0.09

(vi) Average RMSE 0.131 0.122 0.145 0.128
Average |Bias| 0.005 0.009 0.058 0.044
Deviance of CP 0.01 0.02 0.22 0.09

all configurations falling in±0.02 of the nominal level. In comparison, the Parametric

method fails obviously on interval estimation of β1 under (iii) because in the importance

weighting model, nonparametric component is placed on the corresponding predictor.

The two double machine learning approaches fail apparently on interval estimation of cer-

tain parameters, for example, Additive approach fails on interval estimation of β0 under

Configuration (i), (ii) and (iv) and Kernel machine fails on β1 under Configuration (i), (iii)

and (iv). These demonstrate that our method achieves better balance on the model com-

plexity than the fully nonparametric/machine learning constructions, leading to consis-

tently better performance on point and interval estimation.

Our method has significantly smaller root mean square error than Parametric under

94



(i) (relative efficiency being 0.89) and (iii) (relative efficiency being 0.65), with nonlinear

effects in the nuisance models captured by our method and missed by the parametric ap-

proach. Under these two configurations, our method also has (55% under (i) and 79% un-

der (iii)) smaller average absolute bias than Parametric. While for (ii) and (iv) with the non-

parametric components in our construction being redundant, performance of our method

is close to the parametric approach. Thus, our nonparametric components modeling help

to reduce bias and improve estimation efficiency in the presence of nonlinear effects while

they basically do not hurt the efficiency when being redundant.

3.5 Transfer EHR phenotyping of rheumatoid arthritis across different time

windows

Growing availability of EHR data opens more opportunities for translational biomedical

research (Kohane et al., 2012). However, a major obstacle to realizing the full translational

potential of EHR is the lack of precise definition of disease phenotypes needed for clini-

cal studies. With a small number of gold standard labels for phenotypes, machine learn-

ing phenotyping algorithms based on both codified EHR features and clinical note men-

tions extracted using natural language processing (NLP) have been derived to improve the

phenotype definition Liao et al. (2019). For example, several phenotyping algorithms for

rheumatoid arthritis (RA), a common autoimmune disease, have been developed and vali-

dated at multiple institutions in recent years (Liao et al., 2010; Carroll et al., 2012; Yu et al.,

2017). Once the phenotyping algorithms become available, they are used to classify disease

status for downstream tasks such as genomic association studies using EHR linked biobank

data (Kohane, 2011).
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Once a phenotyping algorithm is developed, it is often used repeatedly to classify disease

status for patients in an EHR database which are often updated over time. For example, the

RA algorithm developed by Liao et al. (2010) at Mass General Brigham (MGB) was trained

in 2009 and validated again in 2020 Huang et al. (2020). Significant changes have occurred

between 2009 and 2020: the EHR system at MGB was switched to EPIC and the Inter-

national Classification of Diseases (ICD) system was changed from version 9 to version 10

around 2015 - 2016. Although the algorithm trained in Liao et al. (2010) appears to have

stable performance for the 2020 data Huang et al. (2020), we investigated to what extent

transfer learning can be used to automatically update the phenotyping algorithm over time.

To this end, we considered training an RA EHR phenotyping algorithm to classify RA

status for patients with EHR data from 2016 at MGB using training data from 2009.

There are a total of 200 labeled patients with true RA status, Y, manually annotated via

chart review. There are a total of p = 9 demographic or EHR features, X, available for

training RA algorithm, including the total healthcare utilization (X1), NLP count of RA

(X2), NLP mention of tumor necrosis factor (TNF) inhibitor (X3), NLP mention of bone

erosion (X4), age (X5), gender (X6), ICD count of RA (X7), presence of TNF inhibitor pre-

scription (X8), and tested negative for rheumatoid factor (X9), where we use x → log(x+ 1)

transformation for all count variables. Since NLPmentions of clinical terms are less sensi-

tive to changes to the EHR coding system, we aim to develop an NLP feature only model

for predicting Y using A = (X1,X2,X3,X4)
T, for the EHR cohort of 2016 using labeled

data from 2009 via transfer learning. Due to the co-linearity among A, we convert X2 into

its orthogonal complement to X1. For simplicity, we still denote the transformed covariates

as (X1,X2,X3,X4)
T.
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We implemented the doubly robust transfer learning approaches introduced in Section

1.5, including Parametric, ATReL, DMLBE and DMLKM. Specific construction of the nui-

sance models in the four approaches are presented in Appendix C.5. We also include the

logistic model for Y ∼ A simply fitted on the source data without adjusting for covariate

shift, named as Source. For our proposed ATReL, we choose Z as the NLP count of RA

for non-parametric modeling since it is the most predictive feature in A.

To evaluate the performance of the transfer learning, we additional performed chart re-

view on 150 subjects from the target population in 2016, denoted asL16. We fit a logistic

regression Y ∼ A using these labeled observations inL16 and denote the estimate for β as

β̂
Valid

to serve as gold standard benchmark. Fitted intercepts and coefficients of all methods

are presented in Table C.5 of Appendix C.5. To evaluate the estimation performance of a

derived estimator β̂ according to our practical needs, we calculate the following metrics:

AUC. Area under the receiver operating characteristic (ROC) curve evaluated with

the labels. For the Target estimator β̂
Valid

, we use repeated sample-splitting for evalua-

tion.

RMSPE. Relative mean square prediction error to β̂
Valid

evaluated on the target data:

Ê0{g(ATβ̂
Valid

)− g(ATβ̂)}2

Ê0{g(ATβ̂
Valid

)}2
.

CCwith β̂
Valid

. Classifier’s correlation with that of β̂
Valid

:

Ĉorr0
{
I
(
g(ATβ̂

Valid
) ≥ Ê0[g(ATβ̂

Valid
)]
)
, I
(
g(ATβ̂) ≥ Ê0[g(ATβ̂)]

)}
,
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FCR v.s. β̂
Valid

. False classification rate of β̂’s classifier against that of β̂
Valid

:

P̂0

{
I
(
g(ATβ̂

Valid
) ≥ Ê0[g(ATβ̂

Valid
)]
)
̸= I
(
g(ATβ̂) ≥ Ê0[g(ATβ̂)]

)}
.

Here Ê0, P̂0, and Ĉorr0(·, ·) represent the empirical expectation, probability measure, and

pearson correlation on the target population. Evaluation results obtained with the tar-

get data and the validation labels are presented in Table 3.2. Our ATReLmethod attains

the smallest estimation error among all the methods under comparison, with its relative

efficiency of RMSPE being 0.21 to the naive source estimator, 0.23 to doubly robust es-

timator with parametric nuisance models, 0.17 to double machine learning with flexible

basis expansions, and 0.46 to double machine learning with kernel machine. Also, among

Source and all the transfer learning estimators, ATReL produces the largest AUC, as well as

the closest classifiers to the gold standard target data estimator, i.e. attaining the largest CC

with β̂
Valid

and smallest FCR v.s. β̂
Valid

. Thus, by trading-off the parametric and nonparamet-

ric modeling strategies in a better way to adjust for the covariate shift, our method achieves

better estimation performance than all existing methods.

3.6 Discussion

Contribution and limitation. In this chapter, we propose ATReL, a transfer re-

gression learning approach using an imputation model to augment the importance weight-

ing equation to achieve double robustness. Moreover, we propose a novel semi-non-parametric

framework to construct the two nuisance models that achieves a better model complexity

trade-off than existing doubly robust or double machine learning approaches. We show
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Table 3.2: Estimation performance of the source or transfer learning estimators evaluated with the validation labeled
data and validation estimator denoted as Target. All included methods are as described in Sections 1.5 and 1.6. The
evaluation metrics, as introduced in Section 1.6, include AUC: area under the ROC curve; RMSPE: relative mean square
prediction error; CC with β̂

Valid
: classifier’s correlation with that of β̂

Valid
; FCR v.s. β̂

Valid
: false classification rate against

β̂
Valid

.

Source Parametric ATReL DMLBE DMLKM Target

AUC 0.908 0.904 0.916 0.907 0.911 0.922
RMSPE 0.052 0.048 0.011 0.064 0.024 0

Prevalence 0.376 0.336 0.323 0.329 0.330 0.340

CCwith β̂
Valid

0.890 0.880 0.970 0.910 0.930 1
FCR v.s. β̂

Valid
0.050 0.060 0.010 0.050 0.030 0

that n1/2-consistency of our proposed estimator is guaranteed by a hybrid of the model

double robustness of the parametric component and the rate double robustness of the non-

parametric component. Simulation studies and the real example also demonstrate that our

method is more robust and efficient than the existing fully parametric and double machine

learning estimators. In our current approach, choice and specification of the nonparamet-

ric covariates Z really depend on one’s prior knowledge or some preliminary analysis. Since

it is crucial for us to properly choose the set of covariates in Z as well as its modeling strat-

egy, it is desirable to further develop data-driven approaches to select the set and model

of Z in our framework, to make ATReLmore stable and usable in practice. We also no-

tice some potential directions to generalize or enhance our current proposal and introduce

them shortly as below with more details presented in Appendix C.3.

Sieve or modern machine learning estimation of the nonparametric parts.

We also propose some other choices in constructing the nuisance estimators alternative to
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the kernel smoothing method introduced in Section 3.2.3. Detailed construction proce-

dures under these choices, including sieve and modern (black-box) machine learning algo-

rithms are presented in Appendix C.3. First, we note that sieve can be naturally incorpo-

rated with our framework and achieve basically the same convergence properties as kernel

smoothing. As an advantage, it is practically easier to implement than the kernel method,

especially for constructing the intrinsic efficient estimator introduced below. More im-

portantly, we propose a construction procedure using arbitrary modern (nonparametric)

machine learning algorithms to learn the nonparametric components in the nuisance mod-

els under our framework. This is substantially more challenging than the kernel or sieve

constructions since we consider arbitrary black-box machine learning algorithms with no

special forms, and thus it becomes more involving to derive nuisance estimators satisfying

the moment conditions (3.7) and (3.8). To our best knowledge, similar problem has not

been solved in existing literature.

TheN ≫ n scenario. In many application fields like EHR phenotyping studied

in this chapter, sample size of unlabeled dataN can usually be much larger than the size

of labeled data n. Analysis of our method under such aN ≫ n scenario is of particu-

lar interests. It has been established that semi-supervised learning withN ≫ n unla-

beled samples enables estimating varies types of target parameters more efficiently than

the supervised method (Kawakita & Kanamori, 2013; Azriel et al., 2016; Gronsbell & Cai,

2018; Chakrabortty & Cai, 2018; Gronsbell et al., 2020, e.g.). However, existing work is

restricted to the setting where the unlabeled and labeled data are from the same popula-

tion. In the presence of covariate shift, it is of interests to further investigate whether hav-

ingN ≫ n (unlabeled) target samples would benefit our estimator. As we could tell, when
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the importance weight model is correct, similar results as Kawakita & Kanamori (2013)

should apply in our case and the asymptotic variance of ATReL could be reduced com-

pared with the estimator obtained under theN ≍ n orN < n scenarios. Study of this

problem warrants future work.

Intrinsic efficient estimator. When the importance weight model is correctly

specified while the imputation model may be wrong, asymptotic variance of our estimator

is dependent of the parameters γ̄ and r̄(·). For purely fixed dimensional parametric nui-

sance models, there exists certain moment equations for the imputation parameters that

grants one to get the most efficient doubly robust estimator among those with the same

specification of the imputation model. This property is referred as intrinsic efficiency (Tan,

2010; Rotnitzky et al., 2012). Under our semi-nonparemetric framework, flexibility on

specifying the parametric parts of the nuisance models makes the intrinsic efficiency of our

proposed estimator worthwhile considering. In Appendix C.3.3, we introduce a modified

construction procedure for m̂[‐k](·) that calibrates its nonparametric part, and ensures the

intrinsic efficiency of the estimator of cTβ0, or more generally, any given smooth function

of β0.
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A
Appendix of Chapter 1

In the supplement, we provide justifications for the Compatibility Condition of random

(sub-gaussian) design in our case; introduce the Irrepresentable Condition and derive it for

some common correlation structures for illustration; present detailed proofs of Theorems

1.1–1.3 and the rate property of (μ̂
L&B

, α̂L&B); outline theoretical analyses of SHIR for var-

ious penalty functions; and include additional tables and figures. Throughout, we define
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themodel complexity adjusted effective sample size for each study as neff
m = nm/(s0 log p)

and neff = N/[s0(log p + M)], which are the main drivers for the rates of the proposed

estimators.

A.1 Justification of the Compatibility Condition

We provide in this section justification for Proposition 1.1.

Proof. First, we show that for any β(m) satisfying ∥β(m) − β(m)

0 ∥2 = o(1),

(2Cx)
−1 ≤ Λmin{H̄m(β(m))} ≤ Λmax{H̄m(β(m))} ≤ 2Cx. (A.1)

By maxx∈B1(0) E[xTX(m)

i ]4 ≤ Cx, for any x ∈ B1(0) and β(m) satisfying ∥β(m)−β(m)

0 ∥2 = o(1),

∣∣xTH̄m(β(m)

0 )x− xTH̄m(β(m))x
∣∣

=
∣∣E(xTX(m)

i )2
{
f′′1 (X

(m)T

i β(m)

0 ,Y(m)

i )− f′′1 (X
(m)T

i β(m),Y(m)

i )
}∣∣

≤E
[
(xTX(m)

i )2CL|X(m)T

i (β(m)

0 − β(m))|
]
≤ CL

(
E[xTX(m)

i ]4E[X(m)T

i (β(m)

0 − β(m))]2
)1/2

≤CL

(
E[xTX(m)

i ]4 max
v∈B1(0)

E[vTX(m)

i ]2∥β(m)

0 − β(m)∥22
)1/2

≤ CxCL∥β(m)

0 − β(m)∥2 = o(1).

So by C−1
x ≤ Λmin(H̄m) ≤ Λmax(H̄m) ≤ Cx, equation (A.1) holds. For any δ1 =

Θ{(s0M log p/N)1/2} and β(•) = (β(1)T, . . . , β(M)T)T satisfying β(m) ∈ Bδ1(β
(m)

0 ), since s0 =

o{N/(M log p)}, we have ∥β(m) − β(m)

0 ∥2 = o(1) and thus (2Cx)
−1 ≤ Λmin{H̄m(β(m))} ≤

Λmax{H̄m(β(m))} ≤ 2Cx for allm ∈ [M]. Let X̃(m)

i = X(m)

i {f′′1 (β
(m)TXi,Y(m)

i )}1/2, and by the

assumption in Proposition 1.1, we have that ∥X̃(m)

i ∥ψ2 ≤ κx.

Now we follow similar procedures as the proof of Theorem 1.6 in Rudelson & Zhou
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(2012) to show thatH(β(•)) satisfies Ccomp with probability approaching 1, for the mixture

penalty in our case. To start with, we define the complexity measure of any set V ⊆ B1(0)

as follow.

Definition A.1. For any V ⊆ B1(0), define cd(V) = E supv∈V |g
Tv|, where g = (g1, g2, . . . , gd)T

and g1, g2, . . . , gd are independentN(0, 1) variables.

We recall that

C(t,S) =
{
(uT, v(•)T)T = (uT, v(1)T, . . . , v(M)T)T : v(1) + · · ·+ v(M) = 0,

∥uS c∥1 + λg∥v(•)S c ∥2,1 ≤ t(∥uS∥1 + λg∥v(•)S ∥2,1)
}
,

as introduced in Definition 1.1. Denote by

B̃1 =
{
(uT, v(•)T)T = (uT, v(1)T, . . . , v(M)T)T : ∥u∥22 + λ2g∥v(•)∥22 = 1

}
,

C̄t = C(t,S0) ∩ B̃1, and define that

Γt =
{

1
N1/2

[
n1/21 (μΔ + α(1)

Δ )TH̄1/2
1 (β(1)), . . . , n1/2M (μΔ + α(M)

Δ )TH̄1/2
M (β(M))

]T
: (μT

Δ, α
(1)T
Δ , . . . , α(M)T

Δ )T ∈ C̄t
}
,

which is a subset ofRMp. We now provides bound for cMp(Γt), the complexity measure of

Γt. Let g(•) = (g(1)T, g(2)T, . . . , g(M)T)T where g(m) = (g(m)

1 , g(m)

2 , . . . , g(m)
p )T are independent
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gaussian vectors and g(m)

1 , . . . , g(m)
p ∼ N(0, 1) are independent. We have

cMp(Γt) ≤E sup

{
1

N1/2

M∑
m=1

n1/2m (μΔ + α(m)

Δ )TH̄1/2
m (β(m))g(m) : (μT

Δ, α
(1)T
Δ , . . . , α(M)T

Δ )T ∈ C̄t

}

≤E sup

{
∥μΔ∥1

∥∥∥∥∥ 1
N1/2

M∑
m=1

n1/2m H̄1/2
m (β(m))g(m)

∥∥∥∥∥
∞

: (μT

Δ, α
(•)T
Δ )T ∈ C̄t

}

+ E sup

{
∥α(•)

Δ ∥2,1
∥∥∥∥ 1
N1/2

[
n1/21 g(1)TH̄1/2

1 (β(1)), . . . , n1/2M g(M)TH̄1/2
M (β(M))

]T∥∥∥∥
2,∞

: (μT

Δ, α
(•)T
Δ )T ∈ C̄t

}
,

where the ∥ · ∥2,∞ norm is defined as

∥∥∥∥ 1
N1/2

[
n1/21 g(1)TH̄1/2

1 (β(1)), . . . , n1/2M g(M)TH̄1/2
M (β(M))

]T∥∥∥∥
2,∞

= max
j∈[p]

√√√√ 1
N

M∑
m=1

nm
[
H̄1/2

1 (β(m))g(m)

]2
j
.

By nm = Θ(N/M), Λmax{H̄1/2
M (β(M))} ≤ 2Cx for allm ∈ [M] and that g(•) is gaussian,

and similar to the derivation below the proof of Lemma A.1, we can show there exists an

absolute constant Cg > 0 such that

E

∥∥∥∥∥ 1
N1/2

M∑
m=1

n1/2m H̄1/2
m (β(m))g(m)

∥∥∥∥∥
∞

≤ Cg
√
log p;

E

∥∥∥∥ 1
N1/2

[
n1/21 g(1)TH̄1/2

1 (β(1)), . . . , n1/2M g(M)TH̄1/2
M (β(M))

]T∥∥∥∥
2,∞

≤ Cg

√
M+ log p

M
,

through some calculation on the order statistics of gaussian or χ2-type (quadratic form of

gaussian) variables. These combined with λg = Θ(M−1/2) lead to that there exists absolute

constant C > 0 such that

cMp(Γt) ≤ C
√

log p+M sup
{
∥μΔ∥1 + λg∥α(•)

Δ ∥2,1 : (μT

Δ, α
(•)T
Δ )T ∈ C̄t

}
. (A.2)
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And following that C̄t = C(t,S0) ∩ B̃1, we have

sup
{
∥μΔ∥1 + λg∥α(•)

Δ ∥2,1 : (μT

Δ, α
(•)T
Δ )T ∈ C̄t

}
≤ sup

{
(t+ 1)2|S0|

(
∥μΔ∥

2
2 + λ2g∥α

(•)
Δ ∥22

)
: (μT

Δ, α
(•)T
Δ )T ∈ C̄t

}
= (t+ 1)2s0

So by (A.2), we come to cMp(Γt) ≤ C(t + 1)
√

s0(log p+M). Now similar to Rivasplata

(2012), we introduce the following theorem fromMendelson et al. (2007, 2008) (adapted

to our notation and setting), as the foundation of our proof.

Theorem A.1 (Mendelson et al. (2007, 2008)). Recall that

H(β(•)) = N−1bdiag{n1H1(β(1)), . . . , nMHM(β(M))}

whereHm(β(m)) = n−1
m
∑nm

i=1 X̃
(m)

i X̃(m)T

i . Then if there exists constants κx > 0 and C′ > 0

such that ∥X̃(m)

i ∥ψ2 ≤ κx and N > C′c2Mp(Γt), there exists a constant φ0 > 0 depending only

on κx and C′, such that with probability approaching 1,H(β(•)) and S0 satisfy the Compati-

bility Condition Ccomp with the compatibility constant φ0{t,S0,H(β(•))} ≥ φ0.

Theorem A.1 could be viewed as a special case of Corollary 2.7 and Theorem 2.1 in

Mendelson et al. (2008) with the complexity measure and Ccomp specific to our case. As

we assume that s0 = o{N/(M log p)} ≤ o{N/(M + log p)}, and it has been shown

cMp(Γt) ≤ C(t+ 1)
√

s0(log p+M), we haveN > C′c2Mp(Γt) for any constant C′ > 0 when

N is large enough. Combining this with ∥X̃(m)

i ∥ψ2 ≤ κx and Theorem A.1, we finally prove

Proposition 1.1.
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A.2 The Irrepresentable Condition and its justification

We first introduce the Irrepresentable Condition used in Condition 1.6. For any matrix

A = [A1, . . . ,Ad] ∈ Rn×d and index set S1,S2 ⊆ [d], letAj• andA•j respectively denote

the jth row and column ofA,AS1S2 denote the submatrix corresponding to rows in S1 and

columns in S2,A•S = [A•j1 , . . . ,A•jk ]. The weighted design matrix corresponding to

L̂SHIR(μ, α(•))with respect to θ = (μ, α(2)T, . . . , α(M)T)T after setting α(1) = −
∑M

m=2 α(m) can

be expressed as

W(β(•)) = bdiag{Ω1/2
1 (β(1)), . . . ,Ω1/2

M (β(M))}Z,

where “bdiag” is the block diagonal operator, Ωm(β) = diag{f′′1 (β
TX(m)

1 ,Y(m)

1 ), . . . , f′′1 (β
TX(m)

nm ,Y
(m)
nm )}

is a nm × nm dimensional matrix,Z = Z[p],[p], and for any S1,S2 ⊆ [p],

ZS1,S2 =



X(1)
•S1

−X(1)
•S2

−X(1)
•S2

· · · −X(1)
•S2

X(2)
•S1

X(2)
•S2

0 · · · 0

X(3)
•S1

0 X(3)
•S2

· · · 0
...

...
... . . . ...

X(M)

•S1
0 0 · · · X(M)

•S2


.

For any S1,S2 ⊆ [p], letHm,S1(β
(m)) represent the sub-matrix ofHm(β(m)) := ∇2L̂m(β(m))

with its rows and columns corresponding to S1, andWS1,S2(β
(•)) denote the sub-matrix

ofW(β(•)) corresponding to ZS1,S2 and (μT

S1
, α(2)T

S2
, . . . , α(M)T

S2
)T. Let Sfull = {Sμ,Sα} and

WSfull
(β(•)) = WSμ,Sα(β

(•)). Also, denote byT = (1(M−1)×1, I(M−1)×(M−1))
T and define

∥x∥T := ∥Tx∥2 for x ∈ RM−1 and its conjugate norm as ∥x∥T̃ := ∥T(TTT)−1x∥2.
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Definition A.2. Irrepresentable Condition (CIrrep): The design matrixW(β(•)) satisfies

the Irrepresentable Condition on Sfull = (Sμ,Sα) with parameter ε > 0, if for all j ∈ S c
μ and

j′ ∈ S c
α,

sup
u∈GSμ ,v(•)∈GSα

{∣∣∣(uT, λgv(•)T)
[
WT

Sfull
(β(•))WSfull

(β(•))
]−1WT

Sfull
(β(•))Wj,∅(β(•))

∣∣∣} ≤ 1− ε;

sup
u∈GSμ ,v(•)∈GSα

{∥∥∥(uT, λgv(•)T)
[
WT

Sfull
(β(•))WSfull

(β(•))
]−1WT

Sfull
(β(•))W∅,j′(β(•))

∥∥∥
T̃

}
≤ λg(1− ε),

where

GSμ =

{
u = (u1, · · · , u|Sμ|)

T ∈ R|Sμ| : max
j∈[|Sμ|]

|uj| ≤ 1
}
,

GSα =

{
v(•) = (v(2)T, . . . , v(M)T)T ∈ R(M−1)|Sα| : max

j∈[|Sα|]
∥vj∥T̃ ≤ 1, vj = (v(2)j , . . . , v(M)

j )T
}

represent the sub-gradient space corresponding to Sμ and Sα of the mixture penalty.

Next, we demonstrate that Condition 1.6 is a reasonable assumption and is similar to

those required for the sparsistency of LASSO and group LASSO (Zhao & Yu, 2006; Nardi

et al., 2008). Specifically, we present detailed justifications for the Irrepresentable Condi-

tion CIrrep of the weighted design matrixW(β(•))when the local Hessian matrix satisfies two

commonly seen correlation structures, the constant positive correlation and auto-regressive

correlation defined respectively by

Cons(r) = {rI(i̸=j)}p×p and AR(ρ) = {ρ|i−j|}p×p.

To see the design matrix associated with θ = (μT, α(2)T, . . . , α(M)T)T, letA be the transforma-
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tion operator between β(•) and θ such that β(•)
S = AS,SθS,S , where β(•)

S = (β(1)T
S , . . . , β(M)T

S )T.

For any S1,S2 ⊆ [p], let θS1,S2 = (μT

S1
, α(−1)T

S2
)T, and α(−1)

S2
= (α(2)T

S2
, . . . , α(M)T

S2
)T. Then

it follows that ZS,S = XSAS,S , whereXS = bdiag{X(m)

•S }Mm=1. For simplicity, we take

Sμ = Sα = S0, s = |S0| and n1 = n2 = . . . = nM = n in our following analysis. Denote

by h = λg/(1/M1/2).

A.2.1 Constant correlation structure

First, we consider the scenario that the local Hessian matrices satisfyHm(β(m)) = D(m)Cons(rm)D(m),

where rm ∈ (0, 1) andD(m) = diag{dm1, . . . , dmp}with dmj > 0, form ∈ [M], in

analog to Corollary 1 of Zhao & Yu (2006). Without loss of generality, we assume S0 =

{1, 2, . . . , |S0|}.

Proposition A.1. LetHm(β(m)) = D(m)Cons(rm)D(m) with 0 ≤ rm ≤ r andD(m) =

diag{dm1, . . . , dmp} for all m ∈ [M]. Define that δ = maxm∈[M],j∈S c
0,k∈S0 dmj/dmk. Then

Condition 1.6 holds with constant ε ∈ (0, 1) if

δrs(1+ h)
1+ (s− 1)r

≤ 1− ε and
δrs{2(1+ h−2)} 1

2

1+ (s− 1)r
≤ 1− ε.

Remark A.1. If we further simplify Proposition A.1 by setting δ = 1 and h = 1, i.e. λg =

1/M1/2, then the condition on r can be relaxed and simplified to r ≤ (1− ε)/(1+ s).
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Proof. Let d(m) = (dm1, . . . , dmp)
T and d̆(m) = (d−1

m1, . . . , d−1
mp)

T. First, for any j ∈ S c
0,

[
WT

Sfull
(β(•))WSfull

(β(•))
]−1WT

Sfull
(β(•))Wj,∅(β(•))

=
[
AT

Sfull
bdiag{D(m)

S0,S0
[Cons(rm)]S0,S0D

(m)

S0,S0
}Mm=1ASfull

]−1

· AT

Sfull

{
d1j[Cons(r1)]TS0,jD

(1)
S0,S0

, . . . , dMj[Cons(rM)]TS0,jD
(M)

S0,S0

}T

=[ASfull
]−1bdiag

{
[D(m)

S0,S0
]−1[Cons(rm)]−1

S0,S0

}M
m=1

{
d1j[Cons(r1)]TS0,j, . . . , dMj[Cons(rM)]TS0,j

}T

.

(A.3)

Then recallT = (1(M−1)×1, I(M−1)×(M−1))
T, ∥x∥T := ∥Tx∥2 and ∥x∥T̃ := ∥T(TTT)−1x∥2,

it follows that for any u ∈ GSμ , v(•) ∈ GSα :

∣∣∣(uT, λgv(•)T)
[
WT

Sfull
(β(•))WSfull

(β(•))
]−1WT

Sfull
(β(•))Wj,∅(β(•))

∣∣∣
=

∣∣∣∣∣(uT, λgv(•)T)[ASfull
]−1

(
r1d1jd̆(1)

S0

1+ (s− 1)r1
, . . . ,

rMdMjd̆(M)

S0

1+ (s− 1)rM

)T
∣∣∣∣∣

≤
|S0|∑
k=1

∣∣∣∣(uk, λgvTk) [AS0[k],S0[k]
]−1
(

r1d1j/d1k
1+ (s− 1)r1

, . . . ,
rMdMj/dMk

1+ (s− 1)rM

)T∣∣∣∣ ,
(A.4)

where vk = (v(2)k , . . . , v(M)

k )T, S0[k] represents the k-th element in S0 and the “≤” follows

from the fact thatASfull
is blocked-diagonal inAS0[k],S0[k]. Note that

[
AS0[k],S0[k]

]−1
=



M−1 M−1 M−1 . . . M−1

−M−1 1−M−1 −M−1 . . . −M−1

−M−1 −M−1 1−M−1 . . . −M−1

...
...

... . . . ...

−M−1 −M−1 −M−1 . . . 1−M−1


.
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Let
[
AS0[k],S0[k]

]−1
−1,• denote the second to theM-th rows of

[
AS0[k],S0[k]

]−1 and

r̃k = (̃rk1, . . . , r̃kM)T =
(

r1d1j/d1k
1+ (s− 1)r1

, . . . ,
rMdMj/dMk

1+ (s− 1)rM

)T

.

Recall that λg = h/M1/2 and dmj/dmk ≤ δ for j ∈ S c
0 and k ∈ S0, we have that

∣∣∣(uT, λgv(•)T)
[
WT

Sfull
(β(•))WSfull

(β(•))
]−1WT

Sfull
(β(•))Wj,∅(β(•))

∣∣∣
≤

|S0|∑
k=1

|uk|

{
M−1

M∑
m=1

r̃km

}
+ λg

|S0|∑
k=1

∥vk∥T̃
∥∥∥[AS0[k],S0[k]

]−1
−1,• r̃k

∥∥∥
T

≤sM−1
M∑

m=1

r̃km + sλg
∥∥̃rTk,−1

∥∥
2 ≤

δrs(1+ λg
√
M− 1)

1+ (s− 1)r
≤ δrs(1+ h)

1+ (s− 1)r
≤ 1− ε,

(A.5)

where we use the factT
[
AS0[k],S0[k]

]−1
−1,• = (0, IM−1)

T for the second “≤”.

While for j′ ∈ S c
α and u ∈ GSμ , v(•) ∈ GSα , define that ṽk = (̃v(1)k , . . . , ṽ(M)

k )T =

λgT(TTT)−1vk and similar to (A.3) and (A.4),

∥∥∥(uT, λgv(•)T)
[
WT

Sfull
(β(•))WSfull

(β(•))
]−1 WT

Sfull
(β(•))W∅,j′(β(•))

∥∥∥
T̃

≤
|S0|∑
k=1

∥∥∥(uk, λgvTk) [AS0[k],S0[k]
]−1

(̃rk11M−1, diag{̃rk2, . . . , r̃kM})T
∥∥∥
T̃

=

|S0|∑
k=1

∥∥(uk, ṽTk)(M−11M, IM)T (̃rk11M−1, diag{̃rk2, . . . , r̃kM})T
∥∥
T̃ .

Due to the fact that |uk| ≤ 1, ∥ṽk∥2 ≤ λg, 1Tṽk = 0, and note that xT(TTT)−1x is the
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sample variance of x, which is smaller or equal to ∥x− c∥22 for any constant c, we have that

∥∥∥(uT, λgv(•)T)
[
WT

Sfull
(β(•))WSfull

(β(•))
]−1WT

Sfull
(β(•))W∅,j′(β(•))

∥∥∥
T̃

≤
|S0|∑
k=1

inf
c∈R,c⊥t

[∑
t̸=1

(M−1u1̃rk1 +M−1u1̃rkt +M−1ṽ(1)k r̃k1 + ṽ(t)k r̃kt − c)2
] 1

2

≤
|S0|∑
k=1

[∑
t̸=1

r̃2kt(M−1u1 + ṽ(t)k )2

] 1
2

=

|S0|∑
k=1

δr
1+ (s− 1)r

[∑
t̸=1

2M−2u21 + 2(̃v(t)k )2

] 1
2

≤ sδr
1+ (s− 1)r

(
2M−1 + 2λ2g

) 1
2
=

{2(1+ h−2)} 1
2λgsδr

1+ (s− 1)r
≤ λg(1− ε).

A.2.2 Auto-regressive correlation structure

Now we turn to the auto-regressive correlation structure, i.e.,Hm(β(m)) = D(m)AR(ρm)D
(m),

where ρm ∈ (−1, 1) andD(m) = diag{dm1, . . . , dmp}with dmj > 0, form ∈ [M], in analog

to Corollary 3 of Zhao & Yu (2006).

Proposition A.2. LetHm(β(m)) = D(m)AR(ρm)D
(m) withD(m) = diag{dm1, . . . , dmp} and

0 ≤ ρm ≤ ρ for all m ∈ [M]. Again denote by δ = maxm∈[M],j∈S c
0,k∈S0 dmj/dmk. Then

Condition 1.6 holds with constant ε ∈ (0, 1) if

2δρ(1+ h)
1+ ρ2

≤ 1− ε and
2δρ{2(1+ h−2)} 1

2

1+ ρ2
≤ 1− ε.

Remark A.2. If we again simplify Proposition A.2 by setting δ = 1 and h = 1, i.e. λg =
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1/M1/2, then the condition on ρ can be simplified to

ρ ≤ 1
2+

√
4− (1− ε)2

,

which can be approximated by ρ ≤ 2−
√
3 ≈ 0.27 if we set ε ≈ 0.

Proof. Again denote by d(m) = (dm1, . . . , dmp)
T. Let S0 = {k1, . . . , ks}where k1 < . . . <

ks. Without loss of generality, we let ks+1 = p if ks < p. For j ∈ S c
0 satisfying kℓ < j < kℓ+1,

similar to the proof of Corollary 3 in Zhao & Yu (2006), we have that the kℓ+1-th element

of [D(m)

S0,S0
]−1[AR(ρm)]

−1
S0,S0

dmj[AR(ρm)]S0,j is dmj/dmkℓ+1 · (ρkℓ+1−j
m − ρj−kℓ+1

m )/(ρkℓ+1−kℓ
m −

ρkℓ−kℓ+1
m ), and the kℓ-th element is dmj/dmkℓ · (ρj−kℓ

m − ρkℓ−j
m )/(ρkℓ+1−kℓ

m − ρkℓ−kℓ+1
m ), while the

remaining elements are all 0. Then similar to (A.5) as shown in the proof of Proposition

A.1, for any u ∈ GSμ , v(•) ∈ GSα , we have

∣∣∣(uT, λgv(•)T)
[
WT

Sfull
(β(•))WSfull

(β(•))
]−1WT

Sfull
(β(•))Wj,∅(β(•))

∣∣∣
≤

∑
t∈{ℓ,ℓ+1}

|ut|M−1
M∑

m=1

dmj

dmkt
·
∣∣∣∣ ρkt−j

m − ρj−kt
m

ρkℓ+1−kℓ
m − ρkℓ−kℓ+1

m

∣∣∣∣+ ∑
t∈{ℓ,ℓ+1}

λg∥vj∥T̃

∥∥∥∥[A(1)
S0[j],S0[j]

]−1

−1,•
ρ̃t

∥∥∥∥
T

≤ 2δρ
1+ ρ2

+
∑

t∈{ℓ,ℓ+1}

λg∥ρ̃Tt,−1∥2 ≤
2δρ

1+ ρ2
+ λg

√
2(∥ρ̃Tℓ,−1∥22 + ∥ρ̃Tℓ+1,−1∥22)

≤
2δρ(1+ λgM

1
2 )

1+ ρ2
=

2δρ(1+ h)
1+ ρ2

≤ 1− ε,

where ρ̃t = 0 if t /∈ {ℓ, ℓ+ 1},

ρ̃t = (̃ρt1, . . . , ρ̃tM)
T =

(
d1j
d1kt

∣∣∣∣∣ ρkt−j
1 − ρj−kt

1

ρkℓ+1−kℓ
1 − ρkℓ−kℓ+1

1

∣∣∣∣∣ , . . . , dMj

dMkt

∣∣∣∣∣ ρkt−j
M − ρj−kt

M

ρkℓ+1−kℓ
M − ρkℓ−kℓ+1

M

∣∣∣∣∣
)T

,
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when t ∈ {ℓ, ℓ+ 1} and we use the fact that ρ̃t1, . . . , ρ̃tM ≤ δρ/(1+ ρ2).

While for j′ ∈ S c
α and u ∈ GSμ , v(•) ∈ GSα , we again define that ṽk = (̃v(1)k , . . . , ṽ(M)

k )T =

λgT(TTT)−1vk and similar to the proof of Proposition A.1, we have

∥∥∥(uT, λgv(•)T)
[
WT

Sfull
(β(•))WSfull

(β(•))
]−1 WT

Sfull
(β(•))W∅,j′(β(•))

∥∥∥
T̃

≤
∑

k∈{ℓ,ℓ+1}

inf
c∈R,c⊥t

[∑
t ̸=1

(M−1u1ρ̃1 +M−1u1ρ̃t +M−1ṽ(1)k ρ̃1 + ṽ(t)k ρ̃t − c)2
] 1

2

≤
∑

k∈{ℓ,ℓ+1}

[∑
t̸=1

ρ̃2t (M
−1u1 + ṽ(t)k )2

] 1
2

≤ 2δρ
1+ ρ2

(
2M−1 + 2λ2g

) 1
2

≤λg{2(1+ h−2)}
1
2

2δρ
1+ ρ2

≤ λg(1− ε),

which finishes the proof.

A.2.3 Conclusion

For both constant correlation structure and auto-regressive correlation structure, our Ir-

representable Condition CIrrep is comparable to that of the LASSO estimator as in Corol-

laries 1 and 3 of Zhao & Yu (2006). Specifically, we both have the upper bound for r in

the Cons(r) structure decaying with a rate of s−1, and both have constant rate for ρ in the

AR(ρ) structure. Note that in terms of the multiplicative constants for the rates on r or ρ,

our assumptions seem to be stronger. This is due to the fact that the supports of μ0 and α
(•)
0

are set to be the same for the simplicity of construction, and as a result it produces more

regularization bias than the simple LASSO case.
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A.3 Proof of the main theorems

A.3.1 Outline of the proof

Due to the lengthy proof, we begin with the outline of the main steps as below.

1) To account for the randomness of∇L̂•(β(•)
0 ) = (∇L̂1(β(•)

0 )T, . . . ,∇L̂M(β(•)
0 )T)T,

bound

∥∇L̂•(β(•)
0 )∥2,∞ := max

j∈[p]

N−1

√√√√ M∑
m=1

[
nm∇jL̂m(β(•)

0 )
]2 and

∥∥∥∥∥N−1
M∑

m=1

nm∇L̂m(β(m)

0 )

∥∥∥∥∥
∞

using Condition 1.2 and Lemma A.1, where∇jL̂m(β(•)
0 ) is the jth element of∇L̂m(β(•)

0 ).

This is a crucial step to control the empirical process∇L̂•(β(•)
0 )(β̂

(•)

SHIR
−β(•)

0 ) by the terms

∥∇L̂•(β(•)
0 )∥2,∞, ∥N−1∑M

m=1 nm∇L̂m(β(m)

0 )∥∞, and ∥μ̂
SHIR

− μ0∥1 + λg∥α̂(•)
SHIR − α(•)

0 ∥2,1.

2) Bound the additional noise terms from the integrating process using Conditions 1.2,

1.3 and 1.4.

3) Start from the basic inequality Q̂SHIR(β̂
(•)

SHIR
) ≤ Q̂SHIR(β(•)

0 ), use the Condition Ccomp and

the results of Steps 1) and 2) to prove Theorem 1.1.

4) To prove Theorem 1.2, base on the inequality Q̂SHIR(β̂
(•)

SHIR
) ≤ Q̂SHIR(β̂

(•)

IPD
) to compare

β̂
(•)

SHIR
and β̂

(•)

IPD
directly and use the fact that β̂

(•)

IPD
minimizes the individual level objective

function to simplify the inequality Q̂SHIR(β̂
(•)

SHIR
) ≤ Q̂SHIR(β̂

(•)

IPD
).

5) To prove Theorem 1.3, follow the similar strategy used in Zhao & Yu (2006) and Nardi

et al. (2008). In specific, verify the Karush–Kuhn–Tucker (KKT) conditions corre-

sponding to the true Sμ and Sα, separately for the zero and non-zero parts of (μ̂T

IPD
, α̂(•)T

IPD ).
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A.3.2 Proofs of Theorem 1.1

Proof. First, we expand∇L̂m(β̂
(m)

LASSO
) around∇L̂m(β(m)

0 ) inspired by (Feng et al., 2014).

For a vector or matrixA(t)whose (i, j)-entry being Aij(t), a function of the scalar t ∈ [0, 1],

define
∫ 1
0 A(t)dt as the vector or matrix with its (i, j)-entry being

∫ 1
0 Aij(t)dt. We then have

∇L̂m(β̂
(m)

LASSO
) = ∇L̂m(β(m)

0 )+

∫ 1

0
∇2L̂m

(
β(m)

0 + t[̂β
(m)

LASSO
− β(m)

0 ]
)
(β̂

(m)

LASSO
−β(m)

0 )dt, (A.6)

Thus, the gradient term ĝm in equation (1.3) can be expressed as

∇L̂m(β̂
(m)

LASSO
)− Ĥmβ̂

(m)

LASSO
=∇L̂m(β(m)

0 )− Ĥmβ(m)

0

+

∫ 1

0

{
∇2L̂m

(
β(m)

0 + t[̂β
(m)

LASSO
− β(m)

0 ]
)
− Ĥm

}
(β̂

(m)

LASSO
− β(m)

0 )dt.

(A.7)

The third term of (A.7)’s right hand side can be seen as the noise term introduced by our

integrating procedure. Now we bound this term using Conditions 1.2, 1.3 and 1.4. For

t ∈ [0, 1], Conditions 1.2 and 1.3 lead to

∥∥∥{∇2L̂m

(
β(m)

0 + t[̂β
(m)

LASSO
− β(m)

0 ]
)
− Ĥm

}
(β̂

(m)

LASSO
− β(m)

0 )
∥∥∥
∞

=n−1
m

∥∥∥X(m)T

[
Ωm

(
β(m)

0 + t[̂β
(m)

LASSO
− β(m)

0 ]
)
−Ωm(β̂

(m)

LASSO
)
]
X(m)(β̂

(m)

LASSO
− β(m)

0 )
∥∥∥
∞

≤
maxi,j,m

∣∣∣X(m)

ij

∣∣∣
nm

nm∑
i=1

∣∣∣X(m)T

i (β̂
(m)

LASSO
− β(m)

0 )
∣∣∣ · CL

∣∣∣(1− t)X(m)T

i (β̂
(m)

LASSO
− β(m)

0 )
∣∣∣

≤BCL

nm

∥∥∥X(m)(β̂
(m)

LASSO
− β(m)

0 )
∥∥∥2
2
,
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which implies that

∥∥∥∥∫ 1

0

{
∇2L̂m

(
β(m)

0 + t[̂β
(m)

LASSO
− β(m)

0 ]
)
− Ĥm

}
(β̂

(m)

LASSO
− β(m)

0 )dt
∥∥∥∥
∞

≤ BCL

nm

∥∥∥X(m)(β̂
(m)

LASSO
− β(m)

0 )
∥∥∥2
2
.

(A.8)

Then by the fact that Q̂SHIR(β̂
(•)

SHIR
) ≤ Q̂SHIR(β(•)

0 ), we have

N−1
M∑

m=1

nm(β̂
(m)

SHIR
− β(m)

0 )TĤm(β̂
(m)

SHIR
− β(m)

0 ) + λρ(β̂
(•)

SHIR
)

≤ −2N−1
M∑

m=1

nm(β̂
(m)

SHIR
− β(m)

0 )T∇L̂m(β(m)

0 )

+ 2N−1
M∑

m=1

nm(β̂
(m)

SHIR
− β(m)

0 )T
∫ 1
0 ∇2L̂m

(
β(m)
0 +t[̂β

(m)

LASSO−β(m)
0 ]

)
(β̂

(m)

LASSO
− β(m)

0 )dt+ λρ(β(•)
0 )

=: ξ1 + ξ2 + λρ(β(•)
0 ).

(A.9)

Now we bound ξ1 and ξ2 using Lemma A.1, in terms of ∥μ̂
SHIR

− μ0∥1 + λg∥α̂(•)
SHIR − α(•)

0 ∥2,1.

Let λ1 ≥ 2max
{
λ01, λ02/(λgM1/2)

}
, we have that with probability approaching 1,

|ξ1| ≤2

∥∥∥∥∥N−1
M∑

m=1

nm∇L̂m(β(m)

0 )

∥∥∥∥∥
∞

∥μ̂
SHIR

− μ0∥1 + 2∥∇L̂•(β(•)
0 )∥2,∞∥α̂(•)

SHIR − α(•)
0 ∥2,1

≤λ1
2
(∥μ̂

SHIR
− μ0∥1 + λg∥α̂(•)

SHIR − α(•)
0 ∥2,1)

We let λ2 = 4max(1, λgM1/2)ClocCLBs0 log p/minm∈[M] nm, where the constant Cloc satis-

fies maxm∈[M] ∥X(m)(β̂
(m)

LASSO
− β(m)

0 )∥2 ≤ (Clocnm/neff
m)

1/2 with probability approaching 1 by
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Condition 1.4. Then we have

|ξ2| ≤2N−1
M∑

m=1

BCL∥X(m)(β̂
(m)

LASSO
− β(m)

0 )∥22∥μ̂SHIR
− μ0∥1

+ max
m∈M

∥X(m)(β̂
(m)

LASSO
− β(m)

0 )∥22 ·
2M 1

2BCL∥α̂(•)
SHIR − α(•)

0 ∥2,1
N

≤λ2
2
(∥μ̂

SHIR
− μ0∥1 + λg∥α̂(•)

SHIR − α(•)
0 ∥2,1).

Then we let λ = λ1 + λ2 in (A.9) and see that

∥μ̂
SHIR,−1∥1+λg

p∑
j=2

∥α̂SHIR,j∥2 ≤
1
2
(∥μ̂

SHIR
−μ0∥1+λg∥α̂(•)

SHIR−α(•)
0 ∥2,1)+∥μ0∥1+λg∥α(•)

0 ∥2,1.

This and 1 ∈ S0 yield that

∥μ̂
SHIR,S c

0
∥1 + λg∥α̂(•)

SHIR,S c
0
∥2,1 ≤ 3(∥μ̂

SHIR,S0
− μ0,S0

∥1 + λg∥α̂(•)
SHIR,S0

− α(•)
0,S0

∥2,1). (A.10)

Note that α̂(1)
SHIR−α(1)

0 +· · ·+ α̂(M)

SHIR−α(M)

0 = 0, we have (μ̂T

SHIR
−μT

0, α̂
(•)T
SHIR−α(•)T

0 )T ∈ C2(3,S0).

Combining Condition 1.4: ∥β̂
(m)

LASSO
− β(m)

0 ∥2 = OP{(1/neff
m)

1/2}with Condition 1.1 yields

that S0 and Ĥ satisfy Ccomp. Then we have

N−1∥Ĥ
1
2 (β̂

(•)

SHIR
− β(•)

0 )∥22 ≤
3λ
2
(∥μ̂

SHIR
− μ0∥1 + λg∥α̂(•)

SHIR − α(•)
0 ∥2,1)

≤ 3λ
2

√
N−1s0∥Ĥ

1
2 (β̂

(•)

SHIR
− β(•)

0 )∥22/φ0.

Since λg = Θ(M−1/2) and nm = Θ(N/M) for allm ∈ [M], we have λ = λ1 + λ2 =

Θ(1/(s0neff)1/2 + B/neff
m). Then we conclude that ∥Ĥ

1
2 (β̂

(•)

SHIR
− β(•)

0 )∥2 = OP{(1/neff)
1
2 +

Bs
1
2
0 /neff

m}. For estimation error, again by Condition 1.1 and using the fact thatM−1∥β̂
(•)

SHIR
−
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β(•)
0 ∥1 = O(∥μ̂

SHIR
−μ0∥1+λg∥α̂(•)

SHIR− α(•)
0 ∥2,1),we have ∥μ̂SHIR

−μ0∥1+λg∥α̂(•)
SHIR− α(•)

0 ∥2,1 =

OP{(s0/neff)
1
2 + Bs0/neff

m} andM−1∥β̂
(•)

SHIR
− β(•)

0 ∥1 = OP{(s0/neff)
1
2 + Bs0/neff

m}.

A.3.3 Proof of Theorem 1.2

To establish the equivalence between β̂
(•)

SHIR
and β̂

(•)

IPD
, we need to compare these two estima-

tors directly via an inequality similar to (A.9), which is shown in (A.13) in the following

proof. The way we utilize (A.13) to prove Theorem 1.2 is similar to (A.9) in Theorem 1.1

but this is more elaborative since the two estimators are not necessarily as sparse as β(•)
0 .

Specifically, based on the results and proof procedures of Theorem 1.1, we prove Theorem

1.2 as follows.

Proof. Let λ1 and λ2 be as defined in the proof of Theorem 1.1. First, using the conclusion

of Negahban et al. (2012), proof of which actually implements similar steps as in the proofs

of Theorem 1.1, we have that there exists λ̃ = Θ(λ1) as defined in the proof of Theorem

1.1, the IPD estimator β̂
(•)

IPD
satisfies that

∥Ĥ
1
2 (β̂

(•)

IPD
−β(•)

0 )∥2 = OP{(1/neff)
1
2}; ∥μ̂

IPD
−μ0∥1+λg∥α̂(•)

IPD−α(•)
0 ∥2,1 = OP{(s0/neff)

1
2}.

To control the additional noise introduced by integrating the summarized statistics, which

is characterized by λ2 as defined in the proof of Theorem 1.1, λ need to be larger than λ̃ by

some λΔ = λ − λ̃ > 0. Under the assumptions in Theorem 1.2, such λΔ can be selected

to have smaller order than λ̃ but still control the aggregation noise. Thus the difference

between the prediction and estimation risks of the two estimators is also of smaller order
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than the risks themselves. Now we demonstrate this intuition by the rigorous proofs as

below.

Since s0 = o{(neff
m)

2/(B2neff)}, λ2 = Θ(B/neff
m), and λ̃ = Θ{1/(s0neff)1/2}, we have

λ2 = o(λ̃). So there exists λΔ satisfying λΔ = ω(λ2) and λΔ = o(λ̃). Then asN is large

enough, λ = λ̃ + λΔ ≥ λ1 + λ2. So by Theorem 1.1, we have ∥μ̂
SHIR

− μ0∥1 + λg∥α̂(•)
SHIR −

α(•)
0 ∥2,1 = OP{(s0/neff)

1
2 + Bs0/neff

m} andM−1∥β̂
(•)

SHIR
− β(•)

0 ∥1 = OP{(s0/neff)
1
2 + Bs0/neff

m}.

Similar to Theorem 1.1, Taylor expansion on∇L̂m(β̂
(m)

LASSO
) around the IPD β̂

(m)

IPD
yields

that

∇L̂m(β̂
(m)

LASSO
)− Ĥmβ̂

(m)

LASSO
=∇L̂m(β̂

(m)

)− Ĥmβ̂
(m)

+

∫ 1

0

{
∇2L̂m

(
β̂
(m)

+ t[̂β
(m)

LASSO
− β̂

(m)

]
)
− Ĥm

}
(β̂

(m)

LASSO
− β̂

(m)

)dt.

(A.11)

Similar to (A.8) in proof of Theorem 1.1 and by λ2 = o(λΔ), we then have

ξ3 :=
2
N

M∑
m=1

nm(β̂
(m)

SHIR
− β̂

(m)

IPD
)T
∫ 1

0

{
∇2L̂m

(
β̂
(m)

+ t[̂β
(m)

LASSO
− β̂

(m)

]
)
− Ĥm

}
(β̂

(m)

LASSO
− β̂

(m)

)dt

≤N−1CLB
(
max
m∈[M]

∥X(m)(β̂
(m)

LASSO
− β̂

(m)

IPD
)∥22
)
∥β̂

(•)

SHIR
− β̂

(•)

IPD
∥1

=OP (Bs0 log p/N)OP{M(s0/neff)1/2} = oP{λΔ(s0/neff)1/2}.

(A.12)
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Then by Q̂SHIR(β̂
(•)

SHIR
) ≤ Q̂SHIR(β̂

(•)

IPD
), (A.11) and (A.12), we have

N−1
M∑

m=1

nm(β̂
(m)

SHIR
− β̂

(m)

IPD
)TĤm(β̂

(m)

SHIR
− β̂

(m)

IPD
) + λρ2(β̂

(m)

SHIR
)

≤2N−1
M∑

m=1

nm(β̂
(m)

IPD
− β̂

(m)

SHIR
)T∇L̂m(β̂

(m)

IPD
) + ξ3 + λρ2(β̂

(•)

IPD
),

(A.13)

which enables us to compare the two estimators. Note that

(μ̂
IPD
, α̂(•)

IPD, ζ̂IPD) = argmin
μ,α(•),ζ

L̂(β(•)) + λ̃ρ2(μ, α
(•); λg) + ζT(α(1) + · · ·+ α(M)),

where ζ ∈ Rp is the Lagrangian multiplier for the constraint: α(1)+ · · ·+α(M) = 0. By KKT

condition for the above optimization problem, we have

2∇μL̂(β̂
(•)

IPD
)

2∇αL̂(β̂
(•)

IPD
)

+ (λ − λΔ)

∇μρ2(μ̂IPD
, α̂(•)

IPD; λg)

∇αρ2(μ̂IPD
, α̂(•)

IPD; λg)

+

0p×1

ζ̂
(•)

IPD

 = 0,

where∇μL̂(β(•)) = ∂L̂(β(•))/∂μ,∇αL̂(β(•)) = ∂L̂(β(•))/∂α,∇μρ2 and∇αρ2 are the

sub-gradients of ρ2 on μ̂IPD
and α̂(•)

IPD, and ζ̂
(•)

IPD = (̂ζ
T

IPD, . . . , ζ̂
T

IPD)
T is theM-time replication of

the Lagrangian multiplier ζ̂IPD. We note that for j = 1, the sub-gradient equals to 0 and for

j ∈ {2, 3, . . . , p},

• |∇μjρ2(μ̂IPD
, α̂(•)

IPD; λg)| ≤ 1,∇μjρ2(μ̂IPD
, α̂(•)

IPD; λg) = sign(μ̂
SHIR,j)when μ̂SHIR,j ̸= 0;

• ∥∇αjρ2(μ̂IPD
, α̂(•)

IPD; λg)∥2 ≤ λg,∇αjρ2(μ̂IPD
, α̂(•)

IPD; λg) = λgα̂IPD,j/∥α̂IPD,j∥2 when

∥α̂IPD,j∥2 ̸= 0.

From α̂(1)
SHIR− α̂(1)

IPD+ · · ·+ α̂(M)

SHIR− α̂(M)

IPD = 0, we have (α̂(•)T
SHIR− α̂(•)T

IPD )̂ζ
(•)

IPD=0. By the sub-gradient
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condition and Cauchy-Schwarz inequality,

μ̂T

SHIR
∇μρ2(μ̂IPD

, α̂(•)
IPD; λg) + α̂(•)T

SHIR∇αρ2(μ̂IPD
, α̂(•)

IPD; λg)

≤∥μ̂
SHIR

∥1 + ∥α̂(•)
SHIR∥2,1 = ρ2(μ̂SHIR

, α̂(•)
SHIR; λg).

Thus, we have

− 2N−1
M∑

m=1

nm(β̂
(m)

SHIR
− β̂

(m)

IPD
)T∇L̂m(β̂

(m)

IPD
)

=(λ − λΔ)(μ̂T

SHIR
− μ̂T

IPD
)∇μρ2(μ̂IPD

, α̂(•)
IPD; λg) + (λ − λΔ)(α̂(•)T

SHIR − α̂(•)T
IPD )[∇αρ2(μ̂IPD

, α̂(•)
IPD; λg) + ζ̂

(•)

IPD]

≤(λ − λΔ)[ρ2(μ̂SHIR
, α̂(•)

SHIR; λg)− ρ2(μ̂IPD
, α̂(•)

IPD; λg)].

Substituting this into (A.13), we have

N−1∥Ĥ
1
2 (β̂

(•)

SHIR
− β̂

(•)

IPD
)∥22 + λΔρ2(μ̂SHIR

, α̂(•)
SHIR; λg) ≤ ξ3 + λΔρ2(μ̂IPD

, α̂(•)
IPD; λg). (A.14)

Consequently, by (A.12), Theorem 1.1 and λΔ = o(λ̃), we have

N−1∥Ĥ
1
2 (β̂

(•)

SHIR
− β̂

(•)

IPD
)∥22 ≤ ξ3 + λΔ

(
∥μ̂

SHIR
− μ̂

IPD
∥1 + λg∥α̂(•)

SHIR − α̂(•)
IPD∥2,1

)
≤oP{λΔ(s0/neff)

1
2}+ λΔ

(
∥μ̂

SHIR
− μ0∥1 + λg∥α̂(•)

SHIR − α(•)
0 ∥2,1 + ∥μ̂

IPD
− μ0∥1 + λg∥α̂(•)

IPD − α(•)
0 ∥2,1

)
=oP{λ̃(s0/neff)

1
2} = oP(1/neff).

Thus, we finish proving the equivalence of prediction risk:

N− 1
2∥Ĥ

1
2 (β̂

(•)

SHIR
− β(•)

0 )∥2 ≤ N−1∥Ĥ
1
2 (β̂

(•)

IPD
− β(•)

0 )∥2 + oP{(1/neff)
1
2}.

122



For estimation equivalence, we will first show by contradiction that

ρ2(μ̂IPD,S0
− μ̂

SHIR,S0
, α̂(•)

IPD,S0
− α̂SHIR,S0 ; λg)

≤∥μ̂
IPD,S0

− μ̂
SHIR,S0

∥1 + λg∥α̂(•)
IPD,S0

− α̂(•)
SHIR,S0

∥2,1 = oP{(s0/neff)
1
2}.

We assume that there exists a subsequence ofN (for simplicity, we still denote it asN) and

constants C1 > 0 and 0 < q < 1 that with probability at least q,

∥μ̂
SHIR,S0

− μ̂
IPD,S0

∥1 + λg∥α̂(•)
SHIR,S0

− α̂(•)
IPD,S0

∥2,1 ≥ C1(s0/neff)
1
2 . (A.15)

Then using the error rates of the IPD and SHIR estimators, we have that there exists con-

stant C2 that with probability at least q,

∥μ̂
SHIR,S c

0
− μ̂

IPD,S c
0
∥1 + λg∥α̂(•)

SHIR,S c
0
− α̂(•)

IPD,S c
0
∥2,1 ≤ C2(s0/neff)

1
2

≤C2

C1
(∥μ̂

SHIR,S0
− μ̂

IPD,S0
∥1 + λg∥α̂(•)

SHIR,S0
− α̂(•)

IPD,S0
∥2,1).

Since α̂(1)
SHIR − α̂(1)

IPD + · · ·+ α̂(M)

SHIR − α̂(M)

IPD = 0, (μ̂T

SHIR
− μ̂T

IPD
, α̂(•)T

SHIR − α̂(•)T
IPD )T ∈ C2(t1,S0), where

t1 = C2/C1. So using Condition 1.1, there exists constant C3 > 0,

∥μ̂
SHIR,S0

− μ̂
IPD,S0

∥1 + λg∥α̂(•)
SHIR,S0

− α̂(•)
IPD,S0

∥2,1

≤∥μ̂
SHIR

− μ̂
IPD
∥1 + λg∥α̂(•)

SHIR − α̂(•)
IPD∥2,1

≤C3(s0/N)
1
2∥Ĥ

1
2 (β̂

(•)

SHIR
− β̂

(•)

IPD
)∥2 = oP{(s0/neff)

1
2},
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which contradicts what we assumed in (A.15), asN is large enough. Thus,

∥μ̂
SHIR,S0

− μ̂
IPD,S0

∥1 + λg∥α̂(•)
SHIR,S0

− α̂(•)
IPD,S0

∥2,1 = oP{(s0/neff)
1
2}.

It follows that

∥μ̂
SHIR,S0

− μ0,S0
∥1 + λg∥α̂(•)

SHIR,S0
− α(•)

0,S0
∥2,1

≤∥μ̂
IPD,S0

− μ0,S0
∥1 + λg∥α̂(•)

IPD,S0
− α(•)

0,S0
∥2,1 + oP{(s0/neff)

1
2}.

(A.16)

By (A.14) we have

λΔρ2(μ̂SHIR,S c
0
, α̂(•)

SHIR,S c
0
; λg)

≤|ξ3|+ λΔρ2(μ̂IPD,S c
0
, α̂(•)

IPD,S c
0
; λg) + λΔρ2(μ̂SHIR,S0

− μ̂
IPD,S0

, α̂(•)
SHIR,S0

− α̂(•)
IPD,S0

; λg).

Combine this with (A.12) and adding the difference of intercept term to the right hand

side, we have

∥μ̂
SHIR,S c

0
∥1 + λg∥α̂(•)

SHIR,S c
0
∥2,1

≤ξ3/λΔ + ∥μ̂
SHIR,S0

− μ̂
IPD,S0

∥1 + λg∥α̂(•)
SHIR,S0

− α̂(•)
IPD,S0

∥2,1 + ∥μ̂
IPD,S c

0
∥1 + λg∥α̂(•)

IPD,S c
0
∥2,1

≤oP{(s0/neff)
1
2}+ ∥μ̂

IPD,S c
0
∥1 + λg∥α̂(•)

IPD,S c
0
∥2,1.

Since μ0,S c
0
= 0 and α0,S c

0
= 0, we combine this with (A.16) and obtain that

∥μ̂
SHIR

− μ0∥1 + λg∥α̂(•)
SHIR − α(•)

0 ∥2,1 ≤ ∥μ̂
IPD

− μ0∥1 + λg∥α̂(•)
IPD − α(•)

0 ∥2,1 + oP{(s0/neff)
1
2},

which finishes the proof.
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A.3.4 Excessive risk for the debiased LASSO based approaches

We outline below the key steps to derive the error rate for the debiased LASSO based esti-

mators (Lee et al., 2017; Battey et al., 2018) introduced in Section 1.4.4. First, by Lee et al.

(2017) and Battey et al. (2018), we have

β̂
(m)

dLASSO
− β(m)

0 = ϕ(m)/
√
nm + OP{B(s0 + s1) log p/nm},

where ϕ(m) is a sub-gaussian vector of mean 0 satisfying ∥ϕ(m)∥ψ2 = Θ(1). Then using the

concentration results similar to Lemma A.1, for λg = Θ(1/M1/2), we have

∥μ̂
dLASSO

− μ0∥∞ ≤ OP{(log p/N)
1
2}+ OP{B(s0 + s1) log p/nm}

λg∥α̂(•)
dLASSO − α(•)

0 ∥2,∞ ≤ OP{[(log p+M)/N]
1
2}+ OP{B(s0 + s1) log p/nm},

where α̂(•)
dLASSO = (α̂(1)T

dLASSO, . . . , α̂
(M)T

dLASSO)
T. Then following a similar procedure as Theorem 4.3

of Battey et al. (2018) and Theorem 22 of Lee et al. (2017), one can obtain the following

bound for both hard and soft thresholding estimators:

∥μ̂
L&B

− μ0∥1 + λg∥α̂(•)
L&B − α(•)

0 ∥2,1 = OP{(s0/neff)
1
2 + B(s0 + s1)/neff

m}.

A.3.5 Proof of Theorem 1.3

Selection consistency (or sparsistency) of the linear model with LASSO and group LASSO

penalty has been established by Zhao & Yu (2006) and Nardi et al. (2008), respectively.

Compared with their proof procedures, our theoretical analysis takes into consideration of
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the additional aggregation noise terms bounded in (A.8) and the techniques for handling

the mixture penalty ρ2. We prove Theorem 1.3 as follows.

Proof. For anym and S1,S2 ⊆ [p], let α(−1)
S2

= (α(2)T
S2

, . . . , α(M)T

S2
)T, θS1,S2 = (μT

S1
, α(−1)T

S2
)T,

θ = θ[p],[p] and similarly we define θ̂SHIR and θ0. For anym and θ̂SHIR, after substituting α(1)

with the remaining α(m)’s, by (A.7), we can express the corresponding KKT condition as

2N−1WT(β̂
(•)

LASSO
)W(β̂

(•)

LASSO
)

 μ̂
SHIR

− μ0

α̂(−1)
SHIR − α(−1)

0

−2

Υ[p],∅

Υ∅,[p]

−2

Ξ[p],∅

Ξ∅,[p]

+λ

η[p],∅

η∅,[p]

 = 0,

(A.17)

where the sub-gradient η = (ηT

[p],∅, η
T

∅,[p])
T and the gradients Υ = (ΥT

[p],∅,Υ
T

∅,[p])
T and

Ξ = (ΞT

[p],∅,Ξ
T

∅,[p])
T are defined as follow: (i) For any S1,S2 ⊆ [p], denote by ηS1,∅ and

η∅,S2
the sub-gradient corresponding to μS1

and α(−1)
S2

, satisfying the sub-gradient condition:

ηj,∅ = sign(μj) if μj ̸= 0 and |ηj,∅| ≤ 1 for all j ∈ [p]; η∅,j = λgTTTαj/∥αj∥T if αj ̸= 0 and

∥η∅,j∥T̃ ≤ λg for all j ∈ [p]. (ii) LetA be the transformation matrix between β(•) and θ such

that β(•) = Aθ.

Then Υ and Ξ defined in above equation could be written as:

Υ = N−1AT


n1∇L̂1(β(1)

0 )

...

nM∇L̂M(β(M)

0 )

 and Ξ = AT


Ψ1

...

ΨM

 ,
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where we denote by

Ψm =
nm
N

∫ 1

0
{∇2L̂m(β(1)

0 + t[̂β
(m)

LASSO
− β(m)

0 ])− Ĥm}(β̂
(m)

LASSO
− β(m)

0 )dt.

For any S1,S2 ⊆ [p], let ΥS1,∅ and ΞS1,∅ be the sub-vector of the gradients Υ and Ξ corre-

sponding to μS1
while Υ∅,S2 and Ξ∅,S2 corresponds to α

(−1)
S2

. Denote by Ψ = (Ψ1, . . . ,ΨM)
T,

Φm =
{
f′1(X

(m)T

1 β(m)

0 ,Y(m)

1 ), . . . , f′1(X(m)T
nm β(m)

0 ,Y(m)
nm )
}T and Φ = (ΦT

1 ,Φ
T

2, . . . ,Φ
T

M)
T, then

Υ = N−1ATXTΦ and Ξ = ATΨ.

Recall that Sfull = {Sμ,Sα}. By the KKT condition in (A.17) and note the fact that we

can reparameterize β(•) with θ for arbitrarym ∈ [M] and the KKT equations are essentially

equivalent with differentm ∈ [M], the eventOμ ∩ Oα holds if and only if the following

events hold:

• The estimator θ̂SHIR,Sfull
obtained from

θ̂SHIR,Sfull
= θ0,Sfull

+N
[
WT

Sfull
(β̂

(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
]−1
(
ΥSfull

+ ΞSfull
− λ

2
ηSfull

)
,

(A.18)

satisfies that max{∥μ̂
SHIR,Sμ

− μ0,Sμ
∥∞, ∥α̂(•)

SHIR,Sα
− α(•)

0,Sα
∥2,∞} < ν.

127



• For any j ∈ S c
μ, the sub-gradient ηj,∅ obtained from

ληj,∅ =2Υj,∅ + 2Ξj,∅

−WT

j,∅(β̂
(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
[
WT

Sfull
(β̂

(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
]−1 (

2ΥSfull
+ 2ΞSfull

− ληSfull

)
,

(A.19)

satisfies that |ηj,∅| < 1.

• For any j ∈ S c
α, the term η∅,j obtained from

λη∅,j =2Υ∅,j + 2Ξ∅,j

−WT

∅,j(β̂
(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
[
WT

Sfull
(β̂

(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
]−1 (

2ΥSfull
+ 2ΞSfull

− ληSfull

)
,

(A.20)

satisfies that ∥η∅,j∥T̃ < λg.

Note that θ̂SHIR,Sfull
is the unique solution to (A.17) and is the minimizer of Q̂SHIR(β(•))

whenever (A.18), (A.19) and (A.20) are satisfied for all j, with η satisfying the subgradient

condition. So we only need to show that

P(∥μ̂
SHIR,Sμ

− μ0,Sμ
∥∞ < ν; M− 1

2∥α̂(•)
SHIR,Sα

− α(•)
0,Sα

∥2,∞ < ν) → 1, (A.21)

and that asN → ∞,

P(∀ j ∈ S c
μ, |ηj,∅| < 1; ∀j ∈ S c

α, ∥η∅,j∥T̃ < λg) → 1. (A.22)

128



Similar to the proof of Theorem 1.1, there exists constant CΨ such that

M−1
M∑

m=1

∥Ψm∥∞ ≤ CΨB/neff

m ; ∥Ψm∥∞ ≤ CΨB/neff

m . (A.23)

And in the following deductions, we base on (A.18), (A.19) and its corresponding sub-

gradient condition of ηSfull
, to define θ̂SHIR,Sfull

and η to show (A.21) and (A.22). Here note

that S0 = Sμ ∪ Sα. For (A.21), we will prove its sufficient condition:

P(∥μ̂
SHIR,S0

− μ0,S0
∥∞ < ν; M− 1

2∥α̂(•)
SHIR,S0

− α(•)
0,S0

∥2,∞ < ν) → 1 (A.24)

To prove this, denote by S̃0 = {S0,S0} and let

θ̂
SHIR,S̃0

= θ0,S̃0
+N

[
WT

S̃0
(β̂

(•)

LASSO
)WS̃0

(β̂
(•)

LASSO
)
]−1
(
ΥS̃0

+ ΞS̃0
− λ

2
ηS̃0

)
.

Recall Ĥm,S0 = n−1
m X(m)T

•S0
Ωm(β̂

(m)

LASSO
)X(m)

•S0
, ημ = ∇μρ2(μ̂SHIR

, α̂(•)
SHIR; λg) and ηα(m) =

∇α(m)ρ2(μ̂SHIR
, α̂(•)

SHIR; λg). We first get back to the KKT condition for β̂
(m)

SHIR,S0
:

β̂
(m)

SHIR,S0
= β(m)

0,S0
+ Ĥ−1

m,S0

[
2MN−1X(m)T

S0• Φm + 2Ψm,S0 + λ(ημ,S0
+ ηα(m),S0

)
]

Combining this with β(m) = μ+ α(m) and α(1) + · · ·+ α(M) = 0, we then have

μ̂
SHIR,S0

= μ0,S0
+M−1

M∑
m=1

Ĥ−1
m,S0

[
2MN−1X(m)T

S0• Φm + 2Ψm,S0 + λ(ημ,S0
+ ηα(m),S0

)
]
;

α̂(m)

SHIR,S0
= α(m)

0,S0
+ (μ0,S0

− μ̂
SHIR,S0

) + Ĥ−1
m,S0

[
2MN−1X(m)T

S0• Φm + 2Ψm,S0 + λ(ημ,S0
+ ηα(m),S0

)
]
.

(A.25)
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Now, we base on (A.25) to prove (A.24). Combining Condition 1.5 and Condition 1.4

that ∥β̂
(m)

LASSO
− β(m)

0 ∥2 = OP{(1/neff
m)

1/2}, we have Λmax

(
Ĥ−1

m,S0

)
≤ (Cmin)

−1 with proba-

bility approaching 1. Also, by Condition 1.6,W(β̂
(•)

LASSO
) satisfies the Irrepresentable Condi-

tion CIrrep (Definition A.2). Then it follows from (A.8) and λg = Θ(M−1/2) < 1 that for

m ∈ [M],

∥∥∥Ĥ−1
m,S0

[
2Ψm,S0 + λημ,S0

+ ληα(m),S0

]∥∥∥
∞

≤
∥∥∥Ĥ−1

m,S0

∥∥∥
2

(
2 ∥Ψm,S0∥2 + λ

∥∥∥ημ,S0
+ ηα(m),S0

∥∥∥
2

)
≤(Cmin)

−1√s0
(
2 ∥Ψm,S0∥∞ + λ

∥∥∥ημ,S0
+ ηα(m),S0

∥∥∥
∞

)
≤ 2(Cmin)

−1√s0
(
∥Ψm,S0∥∞ + λ

)
.

(A.26)

By Condition 1.2 and similar to Lemma A.1, we can prove the concentration result: there

exists positive constant C4 that with probability approaching 1,

∥∥∥∥∥M−1
M∑

m=1

Ĥ−1
m,S0

N−1MX(m)T

S0• Φm

∥∥∥∥∥
∞

≤
C4

√s0
Cmin

·
√

log s0
N

≤
C4

√s0
Cmin

·
√

log p
N

;

max
j∈[s0]

M− 1
2

√√√√ M∑
m=1

(
2MN−1

[
Ĥ−1

m,S0
X(m)T

S0• Φm

]
j

)2

≤
C4

√s0
Cmin

√
M+ log s0

N
≤

C4
√s0

Cmin

√
M+ log p

N
.

(A.27)

By Condition 1.7 and combining (A.23), the first equation of (A.25), (A.26) and the first
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row of (A.27),

1
ν

∥∥∥μ̂
SHIR,S0

− μ0,S0

∥∥∥
∞

≤ 1
ν

(∥∥∥∥∥M−1
M∑

m=1

Ĥ−1
m,S0

N−1MX(m)T

S0• Φm

∥∥∥∥∥
∞

+M−1
M∑

m=1

∥∥∥Ĥ−1
m,S0

[
2Ψm,S0 + λημ,S0

+ ληα(m),S0

]∥∥∥
∞

)

≤
(Cmin)

−1√s0
ν

[
C4

√
log p
N

+
CΦB
neff
m

+ 2λ

]
=

√s0
ν

Θ

(√
log p
N

+
Bs0M(log p)

N
+ λ

)
→ 0,

with probability tending to 1. For α̂(•)
SHIR,S0

, again by Condition 1.7 and combining (A.23),

the second equation of (A.25), (A.26) and the second row of (A.27), we have that with

probability tending to 1,

1√
Mν

∥α̂(•)
SHIR,IPD,S0

− α(•)
0,IPD,S0

∥2,∞

≤ 1
ν

∥∥∥μ̂
SHIR,S0

− μ0,S0

∥∥∥
∞
+

1
ν
max
j∈[s0]

M− 1
2

√√√√ M∑
m=1

(
2MN−1

[
Ĥ−1

m,S0
X(m)T

S0• Φm

]
j

)2

+
1√
Mν

√√√√ M∑
m=1

∥∥∥Ĥ−1
m,S0

[
2Ψm,S0 + λημ,S0

+ ληα(m),S0

]∥∥∥2
∞

≤
(Cmin)

−1√s0
ν

[
C4

√
M+ log p

N
+

CΦB
neff
m

+ 2λ

]
=

√s0
ν

Θ

(√
M+ log p

N
+

Bs0M(log p)
N

+ λ

)
→ 0.

Given S0 = Sμ ∪ Sα, these yield that

P(∥μ̂
SHIR,Sμ

− μ0,Sμ
∥∞ < ν; M− 1

2∥α̂(•)
SHIR,Sα

− α(•)
0,Sα

∥2,∞ < ν) → 1, asN → ∞.

Then we adopt similar approaches in Zhao & Yu (2006); Nardi et al. (2008) to bound the
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terms on the right hand side of (A.19). Note that for any x ∈ RM−1,

∥x∥2T̃ = xT(TTT)−1x ≤ ∥x∥22/Λmin(TTT) = ∥x∥22.

Then by Lemma A.1 and that nm = Θ(N/M), there exists some constant C5 > 0 that

with probability approaching 1,

|Υj,∅| ≤ ∥N−1
M∑

m=1

nm∇L̂m(β(m)

0 )∥∞ ≤ C5λ01;

∥Υ∅,j∥T̃ = ∥T(TTT)−1Υ∅,j∥2 ≤ 2∥∇L̂•(β(•)
0 )∥2,∞ ≤ C5M− 1

2λ02.

(A.28)

And again using (A.23), we have that for j ∈ [p],

|Ξj,∅| ≤ CΨB/neff

m ; ∥Ξ∅,j∥T̃ ≤ ∥Ξ∅,j∥2 ≤ CΨB/(
√
Mneff

m). (A.29)

We letU = 2ΥS c
full
+ 2ΞS c

full
and

V = N−1WT

S c
full
(β̂

(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
[
N−1WT

Sfull
(β̂

(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
]−1

(2ΥSfull
+ 2ΞSfull

)

Note that by (A.28) and (A.29),

(C5λ01)−1ΥSμ,∅ ∈ GSμ ; [CΨB/neff

m ]
−1 ΞSμ,∅ ∈ GSμ ;

(C5M− 1
2λ02λ−1

g )−1λ−1
g Ξ∅,Sα ∈ GSα ; λ−1

g

[
CΨB/(λg

√
Mneff

m)
]−1

Ξ∅,Sα ∈ GSα .
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Then using Condition 1.6, we have that with probability approaching 1, for each j ∈ S c
μ,

|Uj,∅| ≤2C5λ01 + 2CΨB/neff

m ;

|Vj,∅| ≤2(1− ε)max
{
C5λ01, C5M− 1

2λ02λ−1
g , CΨB/neff

m , CΨB/(λg
√
Mneff

m)
}

Since λg = Θ(M−1/2), λ01 = Θ({log p/N}1/2) and nm = Θ(N/M), we then have

|Uj,∅|+ |Vj,∅| = OP

(√
log p+M

N
+

Bs0M log p
N

)
. (A.30)

And for j ∈ [p], we have

∥U∅,j∥T̃ ≤ 2C5M− 1
2λ02 + 2CΨB/(

√
Mneff

m);

∥V∅,j∥T̃ ≤ 2λg(1− ε)max
{
C5λ01, C5M− 1

2λ02λ−1
g , CΨB/neff

m , CΨB/(λg
√
Mneff

m)
}

with probability converging to 1. Given λg = Θ(M−1/2), this yields that

∥U∅,j∥T̃ + ∥V∅,j∥T̃ = λg · OP

(√
log p+M

N
+

Bs0M log p
N

)
. (A.31)

Then combining (A.19) and (A.30) and using Condition 1.6, ηSμ,∅ ∈ GSμ , λ
−1
g η∅,Sα

∈ GSα

and
1
λε

(√
log p+M

N
+

Bs0M log p
N

)
→ 0,
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we have that asN is large enough, for any j ∈ S c
μ

|ηj,∅| =λ−1OP

(√
log p+M

N
+

Bs0M log p
N

)

+

∣∣∣∣WT

j,∅(β̂
(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
[
WT

Sfull
(β̂

(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
]−1

ηSfull

∣∣∣∣
≤ ε
2
+ 1− ε = 1− ε

2
< 1,

with probability converging to 1. For any j′ ∈ S c
α, since λg = Θ(M−1/2), by (A.20) and

again by Condition 1.6, we have that for any j ∈ S c
μ,

λ−1
g ∥η∅,j∥T̃ =λ−1OP

(√
log p+M

N
+

Bs0M log p
N

)

+ λ−1
g

∥∥∥∥WT

∅,j′(β̂
(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
[
WT

Sfull
(β̂

(•)

LASSO
)WSfull

(β̂
(•)

LASSO
)
]−1

ηSfull

∥∥∥∥
T̃

≤ ε
2
+ 1− ε = 1− ε

2
< 1.

Therefore, we have

P(∀ j ∈ S c
μ, ∥ηj,∅∥∞ < 1; ∀j ∈ S c

α, ∥η∅,j∥T̃ < λg) → 1,

and Theorem 1.3 thus follows.

A.3.6 Technical Lemmas

In this section, we present the technical lemmas used in the proofs. Some of them are sim-

ple consequences of the existing results, and we provide brief introductions and outline

their proofs.
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Lemma A.1. Under Condition 1.2 and assume log p = o(N/M), there exists λ01 =

Θ{(log p/N)1/2} and λ02 = Θ{[(M+log p)/N]1/2} such that, with probability approaching

1,

2

∥∥∥∥∥N−1
M∑

m=1

nm∇L̂m(β(m)

0 )

∥∥∥∥∥
∞

≤ λ01; 2∥∇L̂•(β(•)
0 )∥2,∞ ≤ λ02/M1/2.

Proof. Let Φm :=
{
f′1(X

(m)T

i β(m)

0 ,Y(m)

i )
}nm
i=1 and Φ = (ΦT

1 ,Φ
T

2, . . . ,Φ
T

M)
T. Note that

E[nm∇L̂m(β(m)

0 )] = E[X(m)TΦm] = 0.

Under Condition 1.2, each element ofX(m)

i f′1(X
(m)T

i β(m)

0 ,Y(m)

i ) is sub-Gaussian. Then by

log p = o(N/M), there exists λ01 = Θ{(log p/N)1/2} that with probability approaching 1,

2

∥∥∥∥∥N−1
M∑

m=1

nm∇L̂m(β(m)

0 )

∥∥∥∥∥
∞

=

∥∥∥∥∥2N−1
M∑

m=1

X(m)TΦm

∥∥∥∥∥
∞

≤ λ01.

Referring to Theorem 1 of Hsu et al. (2012), under Condition 1.2, there exists λ02 =

Θ{[(log p + M)/N]1/2}, with probability approaching 1, 2∥∇L̂•(β(•)
0 )∥2,∞ ≤ λ02/M1/2.

We remark here that the bound of 2∥∇L̂•(β(•)
0 )∥2,∞ relies on maximum chi-squared tail

of the sub-Gaussian noise, which is different from the commonly used maximumGaussian

tail inequality, in ultra-high dimensional regime. Detailed proof of this result is given by

Hsu et al. (2012). Here we provide a simplified example to intuitively explain the results in

Lemma A.1. Let ε(m) = (ε(m)

1 , . . . , ε(m)
nm )

T and∇L̂•(β(•)
0 ) = (ε(1)T, . . . , ε(m)T)T/N1/2, where
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the ε(m)

i are i.i.d N(0, 1). For j ∈ [p], we let zj =
∑M

m=1{ε
(m)

j }2. Since zj ∼ χ2M, which is

sub-exponential with meanM, we have

∥∇L̂•(β(•)
0 )∥22,∞ =

maxj∈[p](zj −M) +M
N

≤ c log p+M
N

,

for some constant c. Therefore, we have ∥∇L̂•(β(•)
0 )∥2,∞ = ΘP{[(log p+M)/N]1/2}.

A.4 Outline of the theoretical analysis with other penalty functions

In this section, we outline the theoretical analyses for the risk bounds of SHIR with the fol-

lowing penalty functions ρ(·). (i) Group LASSO: ρ(β(•)) =
∑p

j=2 ∥βj∥2; (ii) Hierarchical

LASSO (Zhou & Zhu, 2010): ρ(β(•)) =
∑p

j=2 ∥βj∥
1/2
1 and (iii) Mixture sparse penalty:

ρ(β(•)) = ∥μ−1∥1 + λg
∑M

m=1 ∥α
(m)

−1∥1.

A.4.1 Penalty functions (i) and (iii)

We outline the technical analyses for (i) and (iii) together since they are all convex and de-

composable as defined by Negahban et al. (2012). Again, start from the basic inequality

(A.9):

N−1
M∑

m=1

nm(β̂
(m)

SHIR
− β(m)

0 )TĤm(β̂
(m)

SHIR
− β(m)

0 ) + λρ(β̂
(•)

SHIR
)

≤ −2N−1
M∑

m=1

nm(β̂
(m)

SHIR
− β(m)

0 )T∇L̂m(β(m)

0 ) + 2N−1
M∑

m=1

nm(β̂
(m)

SHIR
− β(m)

0 )Tη(m)

SHIR
+ λρ(β(•)

0 )

=: ξ1 + ξ2 + λρ(β(•)
0 ),
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where η(m)

SHIR
:=
∫ 1
0 ∇

2L̂m

(
β(m)

0 + t[̂β
(m)

LASSO
− β(m)

0 ]
)
(β̂

(m)

LASSO
−β(m)

0 )dt and η(•)
SHIR

= (η(1)T
SHIR

, . . . , η(M)T

SHIR
)T.

Following the paradigm for analyzing high dimensional regularizedM-estimator (Bühlmann

& Van De Geer, 2011; Negahban et al., 2012), one can bound ξ1 by |ξ1| = O(M−1ρ(β(•))ρ⊥{∇L̂•(β(•)
0 )}),

where ρ⊥ represents the conjugate norm of the convex and decomposable ρ(·). For (i),

ρ(β(•)) =
∑p

j=2 ∥βj∥2 andM
−1ρ⊥{∇L̂•(β(•)

0 )} ≃ ∥∇L̂•(β(•)
0 )∥2,∞. For (iii), we let

λg = Θ(M−1/2) and have

M−1ρ⊥{∇L̂•(β(•)
0 )} ≃ M− 1

2∥∇L̂•(β(•)
0 )∥∞ +M−1

∥∥∥∥∥
M∑

m=1

∇L̂m(β(m)

0 )

∥∥∥∥∥
∞

.

As a result, one can choose λ accordingly to control this term. For SHIR, we need to han-

dle the additional error term ξ2. Similar to |ξ1|, we can bound ξ2 by |ξ2| = O{M−1ρ(β(•))ρ⊥(η(•)
SHIR

)}.

By (A.8) and Condition 1.4, ∥η(•)
SHIR

∥∞ = Op(1/neff
m). Then we can further use ∥η(•)

SHIR
∥∞ to

control ρ⊥(η(•)
SHIR

). For both (i) and (iii), we have ρ⊥(η(•)
SHIR

) = O(∥η(•)
SHIR

∥∞). Consequently,

to control the aggregation error, one can increase λ with CM−1ρ⊥(η(•)
SHIR

) = Op(1/{Mneff
m})

for some large enough constant C > 0. Then the following procedures again fall into the

paradigm of Negahban et al. (2012).

A.4.2 Penalty function (ii)

The technical details for analyzing hierarchical LASSO penalty ρ(β(•)) =
∑p

j=2 ∥βj∥
1/2
1 ,

or the more general group bridge penalty (Huang et al., 2009), is different from (i) and (iii)

because it is non-convex. Here, we followHuang et al. (2009) and Zhou & Zhu (2010), and

consider the regime where p grows in a polynomial rate of the sample size. Theorems 2 and

3 of Zhou & Zhu (2010) established that the convergence rate for the ℓ2-error of hierarchi-
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cal LASSO estimator is (p/n)1/2. Consistent with them, we assume that p4/n = o(1) and

the tuning parameter λ is taken to satisfy that λ/n1/2 = O(1) and n1/4p/λ = o(1).

Roughly speaking, the proofs of Theorems 2 and 3 in Zhou & Zhu (2010) also com-

pared their estimator and the true coefficients on the penalized loss function via the basic

inequality (A.9). Again, the additional challenge of analyzing SHIR is to handle ξ2 =

2N−1∑M
m=1 nm(β̂

(m)

SHIR
− β(m)

0 )Tη(m)

SHIR
. Inspired by their way to deal with ξ1, we propose to

control ξ2 by

|ξ2| = O{p1/2∥η(•)
SHIR

∥∞∥β̂
(•)

SHIR
− β(•)

0 ∥2} = Op(p1/2/neff

m) · ∥β̂
(•)

SHIR
− β(•)

0 ∥2,

which is equal to op{(p/n)1/2}∥β̂
(•)

SHIR
− β(•)

0 ∥2 since it is assumed that p4/n = o(1). Then

combining this with the proofs in Zhou & Zhu (2010), we obtain that the error term in-

curred by ξ2 is asymptotically negligible, and consequently, SHIR has the same error rate as

IPD.

A.5 Supplement Figures and Tables

In this section, we present additional tables and figures as supplements to the main text.

In specific, we present the pseudo-algorithm of our proposed method in Algorithm A.5,

and the true positive rate (TPR) and false discovery rate (FDR) on detecting β(•) under the

simulation Settings (i)–(iv) in Figures A.1 and A.2, respectively. Again, SMA performs

poorly under nearly all the settings with either low TPR or high FDR, specially when

p = 800, 1500. Both IPD and SHIR have good support recovery performance with all

TPRs above 0.91 and FDRs below 0.13 under the strong signal setting, and all TPRs above
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0.74 and FDRs below 0.05 under the weak signal setting. The IPD and SHIR attained

similar TPRs and FDRs with absolute differences less than 0.02 across all settings. Com-

pared with IPD and SHIR, DebiasL&B shows worse performance. For example, under Set-

ting (i), the TPR of DebiasL&B is consistently lower than that of SHIR by about 0.13 while

the FDR of DebiasL&B is generally higher than that of SHIR except that when p = 100

DebiasL&B attained very low FDR due to over shrinkage. Under the weak signal Setting (ii)

withM = 4, DebiasL&B is substantially less powerful than SHIR in recovering true signals

with TPR lower by as much as 0.52 while its average FDR is comparable to that of SHIR.

WhenM = 8, DebiasL&B attained comparable TPR as that of SHIR but generally has

substantially higher FDR.

Algorithm A.5 Procedure to obtain the SHIR estimator.
Input: Observed individual data {X(m),Y(m)} at themth local site form ∈ [M].

• Form ∈ [M], at the local sitem:

1. Fit β̂
(m)

LASSO
= argminβ(m) L̂m(β(m)) + λm∥β(m)

−1∥1;

2. Calculate Ĥm = ∇2L̂m(β̂
(m)

LASSO
) and ĝm = Ĥmβ̂

(m)

LASSO
− ∇L̂m(β̂

(m)

LASSO
). Send the

summary statistics D̂m = {nm, Ĥm, ĝm} to the central node.

• At the central node, obtain β̂
(•)

SHIR
by minimizing:

Q̂SHIR(β(•)) = N−1
M∑

m=1

nm
{
β(m)TĤmβ(m) − 2β(m)Tĝm

}
+ λρ(β(•)).

Output: The SHIR estimator β̂
(•)

SHIR
.
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Figure A.1: The average true positive rate (TPR) on the original coefficients β(•) of IPD, SHIR, DebiasL&B and SMA,
differentM ∈ {4, 8}, p ∈ {100, 800, 1500} and data generation mechanisms (i)–(iv) introduced in Section 1.5.
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Figure A.2: The average false discovery rate (FDR) on the original coefficients β(•) of IPD, SHIR, DebiasL&B and SMA,
differentM ∈ {4, 8}, p ∈ {100, 800, 1500} and data generation mechanisms (i)–(iv) introduced in Section 1.5.

0.0

0.1

0.2

0.3

0.4

0.5

M = 4, p = 100 M = 4, p = 800 M = 4, p = 1500 M = 8, p = 100 M = 8, p = 800 M = 8, p = 1500

Fa
ls

e 
di

sc
ov

er
y 

ra
te

Method

IPD
SHIR
Debias
SMA

Sparse Precision and Correct Model (strong and sparse signal)

0.0

0.1

0.2

0.3

0.4

0.5

M = 4, p = 100 M = 4, p = 800 M = 4, p = 1500 M = 8, p = 100 M = 8, p = 800 M = 8, p = 1500

Fa
ls

e 
di

sc
ov

er
y 

ra
te

Method

IPD
SHIR
Debias
SMA

Sparse Precision and Correct Model (weak and sparse signal)

0.0

0.1

0.2

0.3

0.4

0.5

M = 4, p = 100 M = 4, p = 800 M = 4, p = 1500 M = 8, p = 100 M = 8, p = 800 M = 8, p = 1500

Fa
ls

e 
di

sc
ov

er
y 

ra
te

Method

IPD
SHIR
Debias
SMA

Sparse Precision and Correct Model (strong and dense signal)

0.0

0.1

0.2

0.3

0.4

0.5

M = 4, p = 100 M = 4, p = 800 M = 4, p = 1500 M = 8, p = 100 M = 8, p = 800 M = 8, p = 1500

Fa
ls

e 
di

sc
ov

er
y 

ra
te

Method

IPD
SHIR
Debias
SMA

Sparse Precision and Correct Model (weak and dense signal)

141



B
Appendix of Chapter 2

In this supplement we provide proofs for the theoretical results in the paper, collect techni-

cal lemmas that are used in the proofs and present additional simulation results.
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B.1 Proof

In this section, we present proofs of the theoretical results in the paper. Technical lemmas,

Lemmas B.1-B.6, used in the proofs will be collected in Section B.2.

Throughout, for a vector or matrixA(t) = [Aij(t)], a function of the scalar t ∈ [0, 1],

define
∫ 1
0 A(t)dt = [

∫ 1
0 Aij(t)dt]. For any matrixA = [Aij], ∥A∥max = maxij |Aij|. Addi-

tionally, we define the Restricted Eigenvalue Condition (CRE) for data fromM studies as

follows.

Definition B.1. Restricted Eigenvalue Condition (CRE): Let C(t,S) = {u(•) ∈ Rp×M :

∥u(•)
S c ∥2,1 ≤ t∥u(•)

S ∥2,1}. The covariance matrices Σ = diag{Σ(1),Σ(2), . . . ,Σ(m)} and set S ⊆

[p] satisfy Restricted Eigenvalue Condition with some constant t: if there exists φ0(t,S,Σ), for

any δ(•) ∈ C(t,S),

∥δ(•)∥22 ≤ φ−1
0 (t,S,Σ) · ∥δ(•)∥2Σ.

Here φ0(t,S,Σ) > 0 is a parameter depending on t, Σ and S , and ∥δ(•)∥Σ = (δ(•)TΣδ(•)) 1
2 .

B.1.1 Proof of Lemma 2.1

Proof. First, by Assumption 2.4 or 2.5, there exists positive constants c4 and C4 such that

with probability at least 1− c4M/p,

max
i,j,m

|X(m)
ij | ≤ C4(log pN)a0 , where a0 = 1/2 under 2.4 and a0 = 0 under 2.5.
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Let L̂(m)
‐k,k’(β

(m)) = P̂I (m)
‐k,k’
f(XTβ(m),Y) and we expand∇L̂(m)

‐k,k’(β̂
(m)

[‐k,‐k’]) around β
(m)

0 to obtain

∇L̂(m)
‐k,k’(β̂

(m)

[‐k,‐k’]) = ∇L̂(m)
‐k,k’(β

(m)

0 ) +

∫ 1

0
∇2L̂(m)

‐k,k’

(
β(m)

0 + t[̂β
(m)

[‐k,‐k’] − β(m)

0 ]
)
(β̂

(m)

[‐k,‐k’] − β(m)

0 )dt

= ∇L̂(m)
‐k,k’(β

(m)

0 ) + Ĥ(m)
[‐k,k’](β̂

(m)

[‐k,‐k’] − β(m)

0 ) + υ(m)
k,k’,

where Ĥ(m)
[‐k,k’] = P̂I (m)

‐k,k’
Xβ̂

(m)

[‐k,‐k’]
XT

β̂
(m)

[‐k,‐k’]
, and

υ(m)
k,k’ =

∫ 1

0

{
∇2L̂(m)

‐k,k’

(
β(m)

0 + t[̂β
(m)

[‐k,‐k’] − β(m)

0 ]
)
− Ĥ(m)

[‐k,k’]

}
(β̂

(m)

[‐k,‐k’] − β(m)

0 )dt.

To bound υ(m)
k,k’, we note that under Assumptions 2.2 and 2.4 or 2.5, there exists constants

c4,C4 > 0 such that with probability at least 1− c4M/p,

∥∥∥∥∫ 1

0

{
∇2L̂(m)

‐k,k’

(
β(m)

0 + t[̂β
(m)

[‐k,‐k’] − β(m)

0 ]
)
− Ĥ(m)

[‐k,k’]

}
(β̂

(m)

[‐k,‐k’] − β(m)

0 )dt
∥∥∥∥
∞

≤ max
t∈[0,1]

∥∥∥{∇2L̂(m)
‐k,k’

(
β(m)

0 + t[̂β
(m)

[‐k,‐k’] − β(m)

0 ]
)
− Ĥ(m)

[‐k,k’]

}
(β̂

(m)

[‐k,‐k’] − β(m)

0 )
∥∥∥
∞

≤max
i,j,m

|X(m)
ij | · max

t∈[0,1]
P̂I (m)

‐k,k’

{∣∣∣XT(β̂
(m)

[‐k,‐k’] − β(m)

0 )
∣∣∣ · CL

∣∣∣(1− t)XT(β̂
(m)

[‐k,‐k’] − β(m)

0 )
∣∣∣}

≤C4(log pN)a0 · P̂I (m)
‐k,k’

{∥∥∥XT(β̂
(m)

[‐k,‐k’] − β(m)

0 )
∥∥∥2
2

}
.

Then we note that when β̂
(m)

[‐k,‐k’] is independent ofX
(m)
i for i ∈ I (m)

‐k,k’,X
(m)T

i (β̂
(m)

[‐k,‐k’] − β(m)

0 ) is sub-

gaussian and E
∥∥∥X(m)T

i (β̂
(m)

[‐k,‐k’] − β(m)

0 )
∥∥∥2
2
≤ C3CΛs log p/nm for allm ∈ [M]with probability

1− c3M/p by Lemma B.1. Thus there exists c5,C5 > 0 such that

∥∥υ(m)
k,k’

∥∥
∞ ≤ C5sM(log pN)a0 log p

N
with probability at least 1− c5M/p. (B.1)
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Based on (2.3), we have

|I‐k|−1
M∑

m=1

|I (m)
‐k |(β̃

(m)

[‐k] − β(m)

0 )
TĤ(m)

[‐k](β̃
(m)

[‐k] − β(m)

0 ) + λN
∥∥∥β̃(•)

[‐k],‐1

∥∥∥
2,1

≤− 2|I‐k|−1
M∑

m=1

|I (m)
‐k |(β̃

(m)

[‐k] − β(m)

0 )
T(K′)−1

K′∑
k′=1

[
∇L̂(m)

‐k,k’(β
(m)

0 ) + υ(m)
k,k’

]
+ λN∥β(•)

0 ∥2,1.

(B.2)

We next follow procedures similar to Huang & Zhang (2010); Lounici et al. (2011); Ne-

gahban et al. (2012) to derive the bound for β̃
(•)

[‐k] −β(•)
0 . First, by Lemma B.1 and the sparsity

condition, ∥β̂
(m)

[‐k,‐k’] − β(m)

0 ∥2 is bounded by any absolute constant whenN is sufficiently large.

From Lemma B.2 and the factK′ = O(1), there exists a constant φ0, such that Ĥ
(•)
[‐k] satisfies

CRE on any |S| ≤ swith parameter φ0{t,S, Ĥ
(•)
[‐k]} ≥ φ0 whenN is sufficiently large. By

Assumption 2.3, there exists constant c6,C6 > 0 that

1√
M

∥∥∥∇L̂(•)
k,k’(β

(•)
0 )
∥∥∥
2,∞

≤ C6

√
1+M−1 log p

n
with probability at least 1− c6/p,

where∇L̂(•)
k,k’(β(•)

0 ) = {L̂(1)T
k,k’ (β(1)

0 ), . . . , L̂(m)T

‐k,k’ (β(M)

0 )}T. Combining this with (B.1), we have

∥∥∥∇L̂(•)
k,k’(β

(•)
0 ) + υ(•)k,k’

∥∥∥
2,∞

≤ C6

√
M+ log p

n
+

C5sM
1
2 (log pN)a0 log p

n
.

Then we take λ = 2M−1∥∇L̂(•)
k,k’(β(•)

0 ) + υ(•)k,k’∥2,∞, which has the same rate as that given

in Lemma 2.1. Adopting similar techniques used in Lounici et al. (2011); Negahban et al.

(2012); Cai et al. (2021), we can prove that with probability converging to 1,

∥β̃
(•)

[‐k]−β(•)
0 ∥2,1 ≤ C8sMλN and ∥β̃

(•)

[‐k]−β(•)
0 ∥22 ≤ C8sM2λ2N, for some constant C8 > 0.
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B.1.2 Proof of Lemma 2.2

Proof. From linearized expression of Y(m)
i given in section 2.2.3, we may write β̆

(m)

j − β(m)

0,j =

V(m)
j + Δ(m)

j1 + Δ(m)
j2 + Δ(m)

j3 with

V(m)
j =K−1

K∑
k=1

P̂I (m)
k
u(m)T

0,j Xε, Δ(m)
j1 = K−1

K∑
k=1

P̂I (m)
k

(
û(m)

j,[k] − u(m)
0,j

)T

Xε

Δ(m)
j2 =K−1

K∑
k=1

{
û(m)

j,[k]H̃
(m)
[k] − ej

}
(β(m)

0 − β̃
(m)

[‐k]), Δ(m)
j3 = K−1

K∑
k=1

P̂I (m)
k

{
û(m)T

j,[k] XR(X
Tβ̃

(m)

[‐k])
}
,

whereR(·) is the remainder term defined in Section 2.2.1. We next bound
∑M

m=1 |Δ
(m)
jt | for

t = 1, 2, 3 separately. First, for |Δ(m)
j2 | and |Δ(m)

j3 |, by Lemma 2.1 and (2.4) in the paper, we

have

M∑
m=1

|Δ(m)
j2 | ≤K−1

K∑
k=1

∥∥∥û(•)
j,[k]H̃

(•)
[k] − ej

∥∥∥
2,∞

∥∥∥β(•)
0 − β̃

(•)

[‐k]

∥∥∥
2,1

=OP

{(
M+ log p

n

) 1
2
}

· OP

{
s
(
M+ log p

n

) 1
2

+
s2M 1

2 (log pN)a0 log p
n

}

=OP

{
s(M+ log p)

n
+

s2M 1
2 (M+ log p) 1

2 (log pN)a0 log p
n 3

2

}
,

(B.3)

uniformly for all j = 2, . . . , p and that

M∑
m=1

|Δ(m)
j3 | ≤ K−1max

i,j,m
|X(m)

ij |max
k,m

∥û(m)

j,[k]∥1
K∑
k=1

M∑
m=1

P̂I (m)
k
R(XTβ̃

(m)

[‐k]),
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respectively. By Assumption 2.2 and mean value theorem, for i ∈ I (m)

k , there exists θ̆
(m)

ki lying

betweenX(m)T

i β(m)

0 andX(m)T

i β̃
(m)

[‐k], such that

|R(m)
i (X

(m)T

i β̃
(m)

[‐k])| =
∣∣∣φ̇(X(m)T

i β(m)

0 )− φ̇(X(m)T

i β̃
(m)

[‐k])− φ̈(X(m)T

i β̃
(m)

[‐k])X
(m)T

i

(
β(m)

0 − β̃
(m)

[‐k]

)∣∣∣
=
∣∣∣φ̈(X(m)T

i β̃
(m)

[‐k])− φ̈(θ̆
(m)

ki )
∣∣∣ ∣∣∣X(m)T

i

(
β(m)

0 − β̃
(m)

[‐k]

)∣∣∣ ≤ CL

{
X(m)T

i

(
β(m)

0 − β̃
(m)

[‐k]

)}2
.

SinceX(m)
i is sub-gaussian and β̃

(m)

[‐k] is independent of {X
(m)
i , i ∈ I (m)

k }, it follows from concen-

tration bounds like Theorem 3.4 in Kuchibhotla & Chakrabortty (2018) that

K∑
k=1

M∑
m=1

P̂I (m)
k
R(XTβ̃

(m)

[‐k]) ≤ CL

K∑
k=1

M∑
m=1

P̂I (m)
k

{
XT

(
β(m)

0 − β̃
(m)

[‐k]

)}2

≤CL

K∑
k=1

M∑
m=1

E

[{
X(m)T

i

(
β(m)

0 − β̃
(m)

[‐k]

)}2
∣∣∣∣∣β̃(m)

[‐k]

](
1+ OP{n−

1
2}
)

=
(
CL + OP{n−

1
2}
) K∑

k=1

M∑
m=1

(β(m)

0 − β̃
(m)

[‐k])
TPm(XXT)(β(m)

0 − β̃
(m)

[‐k]),

for n is sufficiently large. It then follows that under Assumption 2.4 or 2.5, Lemma 2.1 and

Lemma B.3,

M∑
m=1

|Δ(m)
j3 | =OP{(log pN)a0} · OP

(∥∥∥β(•)
0 − β̃

(•)

[‐k]

∥∥∥2
2

)
=OP

{
s(log pN)a0(M+ log p)

n
+

s3M(log p)2(log pN)3a0

n2

}
,

(B.4)

uniformly for all j = 2, . . . , p. We next derive the rate of
∑M

m=1 |Δ
(m)
j1 |. Since û

(m)

j,[k] only

depends on {X(m)
i , i ∈ I (m)

k } and data complement to the fold k, we have E(ε(m)
i |û(m)

j,[k],X(m)
i ) =
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0 when i ∈ I (m)

k . Thus

E
{

P̂I (m)
k
(û(m)

j,[k] − u(m)
0,j)

TXε
∣∣∣X, û(m)

j,[k]

}
= 0. (B.5)

We denote the conditional variance of (n/K) 1
2P̂I (m)

k
(û(m)

j,[k] − u(m)
0,j)

TXε givenX(m) and û(m)

j,[k] as

δ(m)

j,k and by Assumption 2.3, δ(m)

j,k satisfies

δ(m)

j,k ≤
(
û(m)

j,[k] − u(m)
0,j

)T {
P̂I (m)

k
XXTφ̈(XTβ(m)

0 )
}(

û(m)

j,[k] − u(m)
0,j

)
·max

i,m
φ̈−1(X(m)

i β
(m)

0 )κ
2(X(m)

i ).

It then follows from Assumption 2.3 that there exists constant C10, with probability 1,

δ(m)

j,k ≤Cε

(∥∥∥û(m)

j,[k]

∥∥∥
1
+
∥∥∥u(m)

0,j

∥∥∥
1

)
·
∥∥∥{P̂I (m)

k
XXTφ̈(XTβ(m)

0 )
}(

û(m)

j,[k] − u(m)
0,j

)∥∥∥
∞

≤C10

∥∥∥{P̂I (m)
k
XXTφ̈(XTβ(m)

0 )
}
u(m)
0,j −

{
P̂I (m)

k
XXTφ̈(XTβ̃

(m)

[‐k])
}
û(m)

j,[k]

∥∥∥
∞
+

+ C10

∥∥∥P̂I (m)
k
XXT{φ̈(XTβ(m)

0 )− φ̈(XTβ̃
(m)

[‐k])}
∥∥∥
max

∥∥∥û(m)

j,[k]

∥∥∥
1
.

(B.6)

Again using Assumption 2.2, we have

∥∥∥P̂I (m)
k
XXT{φ̈(XTβ(m)

0 )− φ̈(XTβ̃
(m)

[‐k])}
∥∥∥
max

≤ max
r,j∈[p]

{
P̂I (m)

k
|XrXj|

∣∣∣φ̈(XTβ(m)

0 )− φ̈(XTβ̃
(m)

[‐k])
∣∣∣} ≤ max
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(
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] 1

2
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Again using Theorem 3.4 in (Kuchibhotla & Chakrabortty, 2018) and when n > log p,

∥∥∥P̂I (m)
k
XXT{φ̈(XTβ(m)

0 )− φ̈(XTβ̃
(m)

[‐k])}
∥∥∥
max

≤CL max
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[(
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{
(log p) 1

2

n 1
2

})
{P (m)|X2

rX2
j |}(β

(m)

0 − β̃
(m)

[‐k])
T {P (m)(XXT)} (β(m)

0 − β̃
(m)

[‐k])

] 1
2

=OP

{
s 12 (M+ log p) 1

2

n 1
2

+
s 32M 1

2 (log pN)a0 log p
n

}
.

(B.7)

It can be verified that

s3M(log pN)2a0(log p)2

n2
≤ O

{
s(M+ log p)

n

}
, as s = o

{
n 1

2

(M+ log p)(log pN)a0(log p) 1
2

}
.

By the proof of Lemma B.3, it then follows that

∥∥∥{P̂I (m)
k
XXTφ̈(XTβ(m)

0 )
}
u(m)
0,j −

{
P̂I (m)

k
XXTφ̈(XTβ̃

(m)

[‐k])
}
û(m)

j,[k]

∥∥∥
∞
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{
s 12 (M+ log p) 1

2

n 1
2

}
.

Consequently δ(m)

j,k = OP

{
s 12 (M+ log p) 1

2n− 1
2

}
by Lemma B.3. Combining this with

(B.5) and the concentration bound, we have that uniformly for all j = 2, . . . , p,

M∑
m=1

|Δ(m)
j1 | =M · OP

{
s 14 (M+ log p) 1

4

n 1
4

· (log p)
1
2

n 1
2

}
= OP

{
s 14M(log p) 1

2 (M+ log p) 1
4

n 3
4

}
.

Combining this with (B.3), (B.4) and the assumption that

s = o

{
n 1

2

(log pN)a0(M+ log p)(log p) 1
2
∧ n
M4(log p)4(M+ log p)

}
,

149



we can derive the rate for the bias term
∑M

m=1 |Δ
(m)
j |:

M∑
m=1

|Δ(m)
j | ≤

M∑
m=1

(|Δ(m)
j1 |+ |Δ(m)

j2 |+ |Δ(m)
j3 |)
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{
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}
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n
+

s3M(log pN)3a0(log p)2

n2

}
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{
1

(n log p) 1
2

}
,

In above equation, we again use that as s = o
{
n 1

2 (log p)− 1
2 (log pN)−a0(M+ log p)−1

}
,

s2M 1
2 (log pN)a0(M+ log p) 1

2 log p
n 3

2
≤ O

{
s(log pN)a0(M+ log p)

n

}
;

and
s3M(log pN)3a0(log p)2

n2
≤ O

{
s(log pN)a0(M+ log p)

n

}
.

Then we finish showing the result for
∑M

m=1 |Δ
(m)
j |. At last, we prove that

∣∣∣(̂σ(m)

j )
2 − (σ(m)

0,j)
2
∣∣∣ =

oP {(log p)−1} uniformly for all j = 2, . . . , p. Recalling that (̂σ(m)

j )
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k=1 û
(m)T

j,[k] J̃
(m)

[k]û
(m)

j,[k],

we only need to prove that
∣∣∣û(m)T
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(m)

[k]û
(m)

j,[k] − (σ(m)
0,j)

2
∣∣∣ = oP {(log p)−1}. To prove this, we let
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Ê (m)
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j,[k] and first note that
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+
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∣∣∣∣
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∣∣∣∣ .

(B.8)

Using Taylor series expansion, there exists θ̆
(m)

ki lying betweenX
(m)T

i β(m)

0 andX(m)T

i β̃
(m)

[‐k],

∣∣∣φ̇(X(m)T

i β(m)

0 )− φ̇(X(m)T
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)∣∣∣
≤
∣∣∣φ̈(θ̆(m)
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i β(m)
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∣∣∣
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∣∣∣ ,
where we again use Assumption 2.2 for the last inequality. Then similar to (B.7) where

we use the concentration results, using Assumptions 2.1, 2.4 or 2.5 and the boundness of
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∥∥∥û(m)

j,[k]

∥∥∥
1
, we have
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∣∣∣∣P̂I (m)
k
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using the sparsity assumption of Lemma 2.2 at last. Combining this with (B.7), we have
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(B.9)
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Then use Assumption 2.3 and results in (B.6) and (B.7) to derive that uniformly for all

m, j, k:
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where we again use the fact that ∥û(m)

j,[k]∥1 and ∥u(m)
0 ∥1 are bounded by some absolute con-

stant, as well as Theorem 3.4 in (Kuchibhotla & Chakrabortty, 2018) to concentrate the

zero-mean sum asOP{(log p)
1
2n− 1

2} simultaneously. Combining this with (B.9) and again

using the assumption for s, we have
∣∣∣(̂σ(m)

j )
2 − (σ(m)

0,j)
2
∣∣∣ = oP {(log p)−1}.

B.1.3 Proof of Theorem 2.1

Proof. Let Z(m)
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i /σ(m)
0,j for i ∈ [nm],
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To bound the difference between the test statistic ζ̆j =
∑M

m=1(W
(m)
j )

2 and its asymptotic

representation Sj =
∑M
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(m)
j )

2, we first note that

max
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j | = OP{(log p)

1
2n−

1
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Under the null β(m)

0,j = 0 and using lemma 2.2, we have
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{
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n
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}
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{
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1
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2

}
,

which indicates that ζ̆j = Sj + oP(1) under the null β0,j = 0, uniformly for all j ∈ H.

Lemma 2.2 and the above derivations also indicate thatW(m)
j = U(m)

j + op{(log p)−1/2}.

We next show that

sup
t
|P(Sj ≤ t)− P(χ2M ≤ t)| → 0, as n, p → ∞.

It is equivalent to show that, for any t,

P
{ M∑

m=1

(U(m)
j )

2 ≤ t
}
→ P(χ2M ≤ t). (B.10)

By Assumptions 2.1 (i), 2.3 and 2.4 or 2.5, there exists some constant c > 0 such that

P(maxj∈H max1≤i≤nm |Z(m)
ij | ≥ τn) = O{(p + n)−2}with τn = c log(p + n). Define

U(m)
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1
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(m)
ij,τn , Z

(m)
ij,τn = Z(m)

ij I(|Z(m)
ij | ≤ τn)− E{Z(m)

ij I(|Z(m)
ij | ≤ τn)}. By Assumptions
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2.3, 2.4 or 2.5, it can be easily seen that

max
j∈H

n−1/2
m

nm∑
i=1

E[|Z(m)
ij |I{|Z(m)
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≤Cn1/2m max
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P
{
max
j∈H

|U(m)
j − U(m)

j,τn | ≥ (log p)−2
}
≤ P
(
max
j∈H
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By the fact that
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2,

it suffices to prove that, for any t, simultaneously for all j ∈ H,

P
{ M∑

m=1

(U(m)
j,τn)

2 ≤ t
}
→ P(χ2M ≤ t). (B.12)

It follows from Theorem 1 in Zaïtsev (1987) that

P
(∣∣∣n−1/2

m

nm∑
i=1

Z(m)
ij,τn

∣∣∣ ≥ t
)
≤ 2Φ̄{t−εn,p(log p)−1)}+ c1 exp

{
−
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c2τn(log p)

}
, (B.13)
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and that

P
(∣∣∣n−1/2

m

nm∑
i=1

Z(m)
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∣∣∣ ≥ t
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≥ 2Φ̄{t+εn,p(log p)−1)}− c1 exp
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, (B.14)

where c1 > 0 and c2 > 0 are constants, εn,p → 0 which will be specified later. Because

log p = o(n1/C′
) andM ≤ C log p for some constants C > 0 and C′ > 6, by Lemma B.4,

we let εn,p = O{(log p)(6−C′′)/2} for some constant C′′ ∈ (6,C′). This yields that

c1 exp

{
−

n1/2m εn,p
c2τn(log p)

}
= O(p−B)

for sufficiently large B > 0, and

P
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2 ≥ t
}
= (1+ o(1))P(χ2M ≥ t). (B.15)

Hence (B.12) is proved.

B.1.4 Proof of Theorem 2.2

Proof. Recall thatNj = Φ̄−1
{
FM(̆ζj)/2

}
. We shall first show that

P
[∑
j∈H0

I{Nj ≥ (2 log q)1/2} = 0
]
→ 1 as (n, p) → ∞,

and then we focus on the event that t̂ in (2.5) exists. Then we will show the FDP result by

dividing the null set into small subsets and controlling the variance ofR0(t) for each subset.
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The FDR result will follow as well. To this end, we first note that

P
[∑
j∈H0

I{Nj ≥ (2 log q)1/2} ≥ 1
]
≤ q0max

j∈H0
P{Nj ≥ (2 log q)1/2},
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Hence, it is enough to show that

max
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∑

j∈H0
{I(Mj ≥ tι)− G(tι)}

q0G(tι)

∣∣∣∣∣ ≥ ε

]

≤ 1
vq

∫ tq

0
P

{∣∣∣∣∣
∑

j∈H0
I(Mj ≥ t)

q0G(t)
− 1

∣∣∣∣∣ ≥ ε

}
dt+

b∑
ι=b−1

P

[∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ tι)− G(tι)}

q0G(tι)

∣∣∣∣∣ ≥ ε

]
.

Thus, it suffices to show, for any ε > 0,

∫ tq

0
P

[∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ t)− P(Mj ≥ t)}

q0G(t)

∣∣∣∣∣ ≥ ε

]
dt = o(vq). (B.16)
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Note that

E

∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ t)− P(Mj ≥ t)}

q0G(t)

∣∣∣∣∣
2

=

∑
j1,j2∈H0

{P(Mj1 ≥ t,Mj2 ≥ t)− P(Mj1 ≥ t)P(Mj2 ≥ t)}
q20G2(t)

.

Let [v(m)
i,j ]p×p = U(m)

0 J(m)
0 U(m)

0 and ξ(m)

i,j = v(m)
i,j/(v(m)

i,iv(m)
j,j )

1/2 for i, j = 1, . . . , p. By Assumption 2.1

andU(m)
0 = [H(m)

0 ]
−1, we have C−1

Λ ≤ Λmin(U(m)
0 J(m)

0 U(m)
0 ) ≤ Λmax(U(m)

0 J(m)
0 U(m)

0 ) ≤ CΛ. For some

small enough constant γ > 0, define

Γj(γ) = {i : |v(m)
ij | ≥ (log q)−2−γ, for somem = 1, . . . ,M}.

It yields that maxj∈H0 |Γj(γ)| = o(qτ) for any τ > 0, and that maxi<j |ξ(m)

i,j | ≤ ξ for some

constant ξ ∈ (0, 1).

We divide the indices j1, j2 ∈ H0 into three subsets: H01 = {j1, j2 ∈ H0, j1 = j2},

H02 = {j1, j2 ∈ H0, j1 ̸= j2, j1 ∈ Γj2(γ), or j2 ∈ Γj1(γ)}, which contains the highly

correlated pairs, andH03 = H0 \ (H01 ∪H02). Then we have

∑
j1,j2∈H01

{P(Mj1 ≥ t,Mj2 ≥ t)− P(Mj1 ≥ t)P(Mj2 ≥ t)}
q20G2(t)

≤ C
q0G(t)

. (B.17)

For the subsetH03, in whichMj1 andMj2 are weakly correlated with each other. Sim-

ilarly as (B.13) and (B.14), by choosing εn,p = 1/(log p)2, based on the condition that
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log p = o(n1/10), it is easy to check that,

c1 exp

{
−

n1/2m εn,p
c2τn(log p)

}
= O(p−B)

for sufficiently large B > 0. By Lemma B.4, it is easy to obtain that max1≤j≤p Fj = o{(log p)1+ε}

for any sufficiently small constant ε > 0. Because max1≤j≤p Fjεn,p(log p)−1 = o{(log p)εεn,p},

and again by Lemma B.4 and the fact that

G(t(1+ O(εn,p/(log p)1−ε))) = (1+ O((log p)εεn,p))G(t),

uniformly in 0 ≤ t ≤ (2 log q)−1/2, we have

max
j1,j2∈H03

P(Mj1 ≥ t,Mj2 ≥ t) = [1+ O{(log q)−1−γ}]G2(t).

Thus we have

∑
j1,j2∈H03

{P(Mj1 ≥ t,Mj2 ≥ t)− P(Mj1 ≥ t)P(Mj2 ≥ t)}
q20G2(t)

= O{(log q)−1−γ}. (B.18)

Similarly asH03, by Lemma B.6 and Lemma 6.2 in Liu (2013), and the condition that

log p = o(n1/10), we have

∑
j1,j2∈H02

{P(Mj1 ≥ t,Mj2 ≥ t)− P(Mj1 ≥ t)P(Mj2 ≥ t)}
q20G2(t)

≤ C
q1+τt−2 exp{−t2/(1+ ξ1)}

q2G2(t)
≤ C

q1−τ{G(t)}2ξ1/(1+ξ1)
, (B.19)

where ξ1 is a constant that satisfies 0 < ξ < ξ1 < 1.
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Therefore, by combining (B.17), (B.18) and (B.19), Equation (B.16) follows.

B.1.5 Proof of Theorem 2.3

Proof. Note that, by the assumptions of Theorem 2.3, we have that with probability tend-

ing to 1, ∑
j∈H

I{Nj ≥ (2 log q)1/2} ≥ {1/(π1/2α) + δ}(log q)1/2.

Therefore, with probability going to one, we have

q∑
j∈H I{Nj ≥ (2 log q)1/2}

≤ q{1/(π1/2α) + δ}−1(log q)−1/2.

Recall that tq = (2 log q−2 log log q)1/2. By the fact that Φ̄(tq) ∼ 1/{(2π)1/2tq} exp(−t2q/2),

we have P(1 ≤ t̂ ≤ tq) → 1 according to the definition of t̂ in (2.5). That is, we have

P(̂t exists in [0, tq]) → 1.

Hence, Theorem 2.3 is proved based on the proof of Theorem 2.2.

B.2 Technical Lemmas

In this section, we collect technical lemmas that were used in the previous proofs.

Lemma B.1. Under assumptions of Lemma 2.1, there exists constants c3, c′3,C3 > 0 and

λ(m)

n ≍ (log p/n) 1
2 that when nm ≥ c3s log p, with probability at least 1 − c′3M/p, the local
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LASSO estimator satisfies

∥β̂
(m)

[‐k,‐k’] − β(m)

0 ∥1 ≤ C3s

√
log p
nm

and ∥β̂
(m)

[‐k,‐k’] − β(m)

0 ∥
2
2 ≤

C3s log p
nm

for all m ∈ [M].

Proof. By Assumption 2.2, the conditional variance of Y(m)
i givenX(m)

i is upper-bounded by

Cu. Then under Assumptions 2.1-2.3 and 2.4 or 2.5, Lemma B.1 is a result of Section 4.4 in

Negahban et al. (2012).

Lemma B.2. Under Assumptions in Lemma 2.1, for any constant t > 0 and given β(•)

satisfying ∥β(m) − β(m)

0 ∥2 = o(1) for m ∈ [M], there exists constants C2, c2 > 0 and φ0 >

0 such that: as N ≥ C2Ms log p, with probability at least 1 − c2M/p, CRE is satisfied for

Ĥ(•)

β(•)
= diag{Ĥ(1)

β(1)
, . . . , Ĥ(M)

β(M)} on any |S| ≤ s with parameter φ0{t,S, Ĥ
(•)

β(•)
} ≥ φ0.

Proof. By Assumption 2.4 or 2.5,X(m)
i is sub-gaussian with covariance matrix of eigenvalues

bounded away from 0 and∞. By Lemma B.5,H(m)

β(m) has bounded eigenvalues away from 0

and∞. Then we can refer to Negahban et al. (2012) (restricted strong convexity) for the

proof of Lemma B.2.

Lemma B.3. Under the assumptions of Lemma 2.2, there exists

τ ≍ M 1
2 (M+ log p) 1

2

N 1
2

such that, with probability converging to 1, the group dantzig selector type problem (2.4) has a

feasible solution withmaxm ∥û(m)

j,[k]∥1 bounded by some absolute constant for all j ∈ {2, ..., p},
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m ∈ [M] and k ∈ [K].

Proof. For simplicity, we use ũ(m)

j to represent the jth row of the inverse of the population

covariance matrixU(m)

β̃
(•)
[‐k]

= [H(m)

β̃
(•)
[‐k]

]−1, weighted with the plugged-in estimator β̃
(•)

[‐k] and let

ũ(•)
j = (ũ(1)T

j , . . . , ũ(M)T

j )T. First, we prove that there exists τ ≍
√

M(log p+M)/N, with

probability converging to 1, ũ(m)

j belongs to the feasible set of (2.4) for all j = 2, . . . , p. Since

∥β̃
(•)

[‐k] − β(m)

0 ∥2 = oP(1) by Lemma 2.1 and s = o{N[M(log p + M)]−1}, by Lemma B.5,

we haveX(m)

i,̃β
(•)
[‐k]

is sub-gaussian given β̃
(•)

[‐k] , with probability converging to 1. Then there exists

constant C9 > 0 that with probability converging to 1,

∥H̃(•)
[k] ũ

(•)
j − e(•)j ∥2,∞ ≤ C9

√
M(log p+M)

N
,

which indicates that problem (2.4) has feasible solution. Since (2.4) minimizes maxm∈[M] ∥u(m)
j ∥1

and ũ(•)
j belongs to the feasible set, we have maxm∈[M] ∥û(m)

j,[k]∥1 ≤ maxm∈[M] ∥ũ(m)

j ∥1 and then

the boundness of maxm∈[M] ∥û(m)

j,[k]∥1 follows from Assumption 2.1 (i).

Lemma B.4 (Zolotarev (1961)). Let Y be a nondegenerate gaussian mean zero random

variable (r.v.) with covariance operator Σ. Let σ2 be the largest eigenvalue of Σ and d be the

dimension of the corresponding eigenspace. Let σ2i , 1 ≤ i < d′, be the positive eigenvalues of

Σ arranged in a nonincreasing order and taking into account the multiplicities. Further, if

d′ < ∞, put σ2i = 0, i ≥ d′. Let H(Σ) :=
∏∞

i=d+1(1− σ2i /σ2)−1/2. Then for y > 0,

P{∥Y∥ > y} ∼ 2Aσ2yd−2 exp(−y2/(2σ2)), as y → ∞,

where A := (2σ2)−d/2Γ−1(d/2)H(Σ) with Γ(·) the gamma function.
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Lemma B.5. Under the same assumptions of Lemma 2.1, for any m ∈ [M] and any given

β(m) satisfying ∥β(m) − β(m)

0 ∥2 = o(1), there exists constant C0 > 0 such that

C−1
0 ≤ Λmin

{
H(m)

β(m)

}
≤ Λmax

{
H(m)

β(m)

}
≤ C0.

Proof. For any x ∈ Rp satisfying ∥x∥2 = 1, by Assumption 2.2, we have

|xTH(m)

β(m)
0
x− xTH(m)

β(m)x| = |E(xTX(m)
i )

2{φ̈(X(m)T

i β(m)

0 )− φ̈(X(m)T

i β(m))}|

≤E(xTX(m)
i )

2CL|X(m)
i {β

(m)T

0 − β(m)T}| ≤ CL
(
E[xTX(m)

i ]
4 · E[X(m)

i {β
(m)T

0 − β(m)T}]2
) 1

2 .

By Assumption 2.1 (i) and Assumption 2.4 or 2.5, we have that E[xTX(m)
i ]

4 is bounded by

some absolute constant for all x and E[X(m)
i {β(m)T

0 −β(m)T}]2 = o(1) since ∥β(m)−β(m)

0 ∥2 = o(1).

Thus, we have

|xTH(m)

β(m)
0
x− xTH(m)

β(m)x| = o(1),

and the conclusion follows directly from Assumption 2.1 (i).

Lemma B.6 (Berman (1962)). If X and Y have a bivariate normal distribution with expec-

tation zero, unit variance and correlation coefficient ρ, then

lim
c→∞

P(X > c,Y > c)

{2π(1− ρ)1/2c2}−1 exp
(
− c2

1+ρ

)
(1+ ρ)1/2

= 1,

uniformly for all ρ such that |ρ| ≤ δ, for any δ, 0 < δ < 1.
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B.3 Additional Numerical Results

In this section, we present additional numerical results for binary hidden markov model.

Figure B.1 illustrates that, the false discovery rate and power results for hidden markov

model design has almost the same pattern as those of the Gaussian design.

Figure B.1: The empirical FDR and power of our DSILT method, the one–shot approach and the ILMA method under
the binary HMM design, with α = 0.1. The horizontal axis represents the overall signal magnitude μ.
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C
Appendix of Chapter 3

C.1 Proof of Theorem 3.1

Proof. Let ∥ · ∥∞ represent the maximum norm of a vector or matrix. Without loss of

generality, assume ∥c∥2 = 1. First, we derive the error rate for the whole β̂
ATReL

vector, which

is above the parametric rate but useful in analyzing the second order error terms. Inspired
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by Chen et al. (2016), we expand the left side of (3.13) as

1
n

K∑
k=1

∑
i∈Ik

ω̂[‐k](Xi)Ai
{
Yi − m̂[‐k](Xi)

}
+

1
N

N+n∑
i=n+1

Ai{m̂(Xi)− g(AT

i β)}

=
1
n

n∑
i=1

ω̄(Xi)Ai {Yi − m̄(Xi)}+
1
N

N+n∑
i=n+1

Ai{m̄(Xi)− g(AT

i β)}

+
1
n

K∑
k=1

∑
i∈Ik

{ω̂[‐k](Xi)− ω̄(Xi)}Ai{m̂[‐k](Xi)− m̄(Xi)}

+
1
n

K∑
k=1

∑
i∈Ik

ω̄(Xi)Ai{m̂[‐k](Xi)− m̄(Xi)} −
1
N

N+n∑
i=n+1

Ai{m̂(Xi)− m̄(Xi)}

+
1
n

K∑
k=1

∑
i∈Ik

{ω̂[‐k](Xi)− ω̄(Xi)}Ai {Yi − m̄(Xi)}

=:V(β) + Δa + Δb + Δc.

(C.1)

By Assumption 3.3, independence between ω̂[‐k](·) and data from Ik or data from the tar-

get population, and using the central limit theorem (CLT), we have that: for each k,

K
n
∑
i∈Ik

{ω̂[‐k](Xi)− ω̄(Xi)}2 − E1{ω̂[‐k](X)− ω̄(X)}2 = op(n−1/2);

K
n
∑
i∈Ik

{m̂[‐k](Xi)− m̄(Xi)}2 − E1{m̂[‐k](X)− m̄(X)}2 = op(n−1/2);

1
N

N+n∑
i=n+1

{m̂(Xi)− m̄(Xi)}2 − E0{m̂(X)− m̄(X)}2 = op(n−1/2)
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Also, by Assumption 3.3 and Assumption 3.1, we have that: for each k,

E1{ω̂[‐k](X)− ω̄(X)}2 = E1

[
ω̄(X)

{
ω̂[‐k](X)
ω̄(X)

− 1

}2]

=E1

[
ω̄2(X)

(
∥Ψ∥22∥α̂

[‐k] − ᾱ∥22 +
{
ĥ[‐k](Z)− h̄(Z)

}2
+ ∥Ψ∥42∥α̂

[‐k] − ᾱ∥42 +
{
ĥ[‐k](Z)− h̄(Z)

}4
)]

≤E1
[
{ω̄4(X) + ∥Ψ∥42 + ∥Ψ∥82 + Op(n−1)}

]
∥α̂[‐k] − ᾱ∥22 + {1+ op(1)}E1

[
ω̄2(X){ĥ[‐k](Z)− h̄(Z)}2

]
=Op

(
E1

[
ω̄2(X){ĥ[‐k](Z)− h̄(Z)}2

]
+ n−1

)
= op(n−1/2),

and that each j ∈ {0, 1},

Ej{m̂[‐k](X)− m̄(X)}2

=E1

[
ğ2{m̄(X)}

(
∥Φ∥22∥γ̂

[‐k] − γ̄∥22 +
{̂
r[‐k](Z)− r̄(Z)

}2)
+ C2

L

(
∥Φ∥42∥γ̂

[‐k] − γ̄∥42 +
{̂
r[‐k](Z)− r̄(Z)

}4) ]
=Op

(
E1
[
ğ2{m̄(X)}{̂r[‐k](Z)− r̄(Z)}2

]
+ n−1) = op(n−1/2).

Thus, we have K
n
∑

i∈Ik{ω̂
[‐k](Xi)− ω̄(Xi)}2 = op(n−1/2), Kn

∑
i∈Ik{m̂

[‐k](Xi)− m̄(Xi)}2 =

op(n−1/2) and 1
N
∑N+n

i=n+1{m̂(Xi) − m̄(Xi)}2 = op(n−1/2). Combining these with Assump-
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tion 3.1, we have that

∥Δa∥∞ ≤n−1 max
i

∥Ai∥∞
K∑
k=1

∑
i∈Ik

{ω̂[‐k](Xi)− ω̄(Xi)}2 + {m̂[‐k](Xi)− m̄(Xi)}2 = op(n−1/2);

∥Δb∥∞ ≤max
i

∥Ai∥∞

[
n−1

K∑
k=1

∑
i∈Ik

ω̄2(Xi)

] 1
2
[
n−1

K∑
k=1

∑
i∈Ik

{m̂(Xi)− m̄(Xi)}2
] 1

2

+max
i

∥Ai∥∞

[
N−1

N+n∑
i=n+1

{m̂(Xi)− m̄(Xi)}2
] 1

2

= op(n−1/4);

∥Δc∥∞ ≤max
i

∥Ai∥∞

[
n−1

K∑
k=1

∑
i∈Ik

Y2
i + m̄2(Xi)

] 1
2
[
n−1

K∑
k=1

∑
i∈Ik

{ω̂(Xi)− ω̄(Xi)}2
] 1

2

= op(n−1/4).

Thus, β̂
ATReL

solves: V(β) + op(n−1/4) = 0. Let the solution of EV(β) = 0 be β̄. When

ω̄(·) = w(·),

EV(β) =E1w(X)X{Y− g(ATβ)}+ [E1w(X){g(ATβ)− m̄(X)} − E0{g(ATβ)− m̄(X)}]

=E0X{Y− g(ATβ)}+ 0.

As m̄(·) = μ(·), EV(β) = 0 + E0{μ̄(X) − g(ATβ)}. Both cases lead to that β0 solves

EV(β) = 0. So under Assumption 3.2, we have β̄ = β0. By Assumption 3.1,V(β) is

continuous differential on β. Then using Theorem 8.2 of Pollard (1990), we have ∥β̂
ATReL

−

β0∥2 = op(n−1/4) = op(1).

Then we consider the asymptotic expansion of cTβ̂
ATReL

. Noting that β̂
ATReL

is consistent

for β0, by Theorem 5.21 of Van der Vaart (2000), we expand (C.1) with respect to cTβ̂
ATReL
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as:

√
n(cTβ̂

ATReL
− cTβ0)

=n−
1
2

n∑
i=1

ω̄(Xi)cT̂J
−1
β̆ Ai {Yi − m̄(Xi)}+

√ρ
√
N

N+n∑
i=n+1

cT̂J
−1
β̆ Ai{m̄(Xi)− g(AT

i β0)}

+ n−
1
2

K∑
k=1

∑
i∈Ik

{ω̂[‐k](Xi)− ω̄(Xi)}cT̂J
−1
β̆ Ai {Yi − m̄(Xi)}

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)cT̂J
−1
β̆ Ai{m̂[‐k](Xi)− m̄(Xi)} −

n 1
2

N

N+n∑
i=n+1

cT̂J
−1
β̆ Ai{m̂(Xi)− m̄(Xi)}

+ n−
1
2

K∑
k=1

∑
i∈Ik

cT̂J
−1
β̆ Ai{ω̂[‐k](Xi)− ω̄(Xi)}{m̂[‐k](Xi)− m̄(Xi)}

=:V+ Ξ1 + Ξ2 + Δ3,

(C.2)

where β̆ is some vector lying between β0 and β̂ATReL
. First, we shall show that ∥̂J−1

β̆ −J−1
β0
∥∞ =

Op(n−1/4). Since the dimensionality ofA, d is fixed, we have

∥∥∥̂J−1
β̆ − J−1

β0

∥∥∥
∞

=
∥∥∥̂J−1

β̆ J−1
β0
(̂Jβ̆ − Jβ0)

∥∥∥
∞

≤ d3
∥∥∥̂J−1

β̆

∥∥∥
∞

∥∥∥J−1
β0

∥∥∥
∞

∥∥∥̂Jβ̆ − Jβ0
∥∥∥
∞
.

Denote byAi = (A1i, . . . ,Adi)
T. By Assumption 3.1 and CLT, there exists a constant
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C > 0 such that for j, ℓ ∈ {1, . . . , d},

∣∣∣∣∣N−1
n+N∑
i=n+1

AjiAℓiġ(AT

i β̆)− E0AjiAℓiġ(AT

i β0)

∣∣∣∣∣
≤

∣∣∣∣∣N−1
n+N∑
i=n+1

AjiAℓi{ġ(AT

i β̆)− ġ(AT

i β0)}

∣∣∣∣∣+
∣∣∣∣∣N−1

n+N∑
i=n+1

AjiAℓiġ(AT

i β0)− E0AjiAℓiġ(AT

i β0)

∣∣∣∣∣
≤

∣∣∣∣∣N−1
n+N∑
i=n+1

|AjiAℓi|CL|AT

i β̆− AT

i β0|

∣∣∣∣∣+ Op(n−1/2) ≤ C∥β̂
ATReL

− β0∥2 + Op(n−1/2) = op(n−1/4).

Also noting that ∥J−1
β0
∥∞ is bounded by Assumption 3.1, we have

∥∥∥̂J−1
β̆ − J−1

β0

∥∥∥
∞

= op(n−1/4). (C.3)

Under Assumption 3.2, and similar to the deduction above, the expectation of

n−
1
2

n∑
i=1

ω̄(Xi)Ai {Yi − m̄(Xi)}+
√ρ
√
N

N+n∑
i=n+1

Ai{m̄(Xi)− g(AT

i β0)}

is 0. So by Assumption 3.1, equation (C.3), CLT and Slutsky’s Theorem, we have thatV

weakly converges toN(0, σ2)where σ2 represents the asymptotic variance ofV and is order
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1. We then consider the remaining terms separately. First, we have

Ξ1 =n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)cT̂J
−1
β̆ Ai [Yi − g{φTγ̄+ r̄(Z)}]

[
ψT

i (α̂
[‐k] − ᾱ) + Op({ψT

i (α̂
[‐k] − ᾱ)}2)

]
+ n−

1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)κi,β0 [Yi − g{φTγ̄+ r̄(Z)}]Δh[‐k](zj)

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)cT(̂J
−1
β̆ − J−1

β0
)Ai [Yi − g{φTγ̄+ r̄(Z)}]Δh[‐k](zj)

=:U1 + Δ11 + Δ12,

(C.4)

where Δh[‐k](zj) = ĥ[‐k](Zi)− h̄(Zi) + Op({ĥ[‐k](Zi)− h̄(Zi)}2). Recall that

ζα = E1ω̄(X)κβ0
[Y− g{φTγ̄+ r̄(Z)}]ψ.

Again using (C.3) and Assumption 3.1, we have that

n−1
K∑
k=1

∑
i∈Ik

ω̄(Xi)cT̂J
−1
β̆ Ai [Yi − g{φTγ̄+ r̄(Z)}] p−→ ζα.

Combining this with Assumption 3.1, Assumption 3.3 that
√
n(α̂[‐k] − ᾱ) is asymptotic

normal with mean 0 and covariance of order 1, and using Slutsky’s Theorem, we have that

U1 is asymptotically equivalent with
√
nζTα(α̂ − ᾱ), which weakly converges to normal dis-

tribution with mean 0 and variance of order 1.
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For Δ11, by Assumption 3.2, the moment condition:

E1

[
ω̄(X)κβ0

(Y− g{ΦTγ̄+ r̄(Z)})
∣∣∣Z] = 0

holds because under Assumption 3.2(i), both limiting parameters ω∗(·) = ω̄(·) = ω(·) and

r̄(·) solves (3.7) while under 3.2(ii), E1[Y|X] = g{ΦTγ̄+ r̄(Z)}, leading to

E1

[
ω̄(X)κβ0

(Y− g{ΦTγ̄+ r̄(Z)})
∣∣∣X] = 0.

Combining this with the fact that ĥ[‐k](·) is independent of the data in Ik due to the use of

cross-fitting, we haveE1Δ11 = E1[Δ11 | ĥ[‐k](·)] = 0 + n1/2Op({ĥ[‐k](Zi) − h̄(Zi)}2). By

Assumptions 3.1 and 3.3(ii), we have that

Var1
(
ω̄(Xi)κi,β0 [Yi − g{φTγ̄+ r̄(Z)}] {ĥ[‐k](Zi)− h̄(Zi)}

∣∣∣ĥ[‐k](·))
=O(E1[ω̄2(Xi) + Y2

i + m̄2(Xi)]) · op(1) = op(1),

where Var1 and Var0 represent the variance operator of the source and target population

respectively. Then by CLT and Assumption 3.3(ii), we have that

Δ11 =
(
Δ11 − E1[Δ11|ĥ[‐k](·)]

)
+E1[Δ11|ĥ[‐k](·)] = op(1)+n1/2Op({ĥ[‐k](Zi)−h̄(Zi)}2) = op(1).

For term Δ12, by (C.3) and Assumptions 3.1 and 3.3, there exists constant C12 > 0 such
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that

|Δ12| ≤ C12max
i

∥Ai∥∞
∥∥∥̂J−1

β̆ − J−1
β0

∥∥∥
∞

[
n−1

K∑
k=1

∑
i∈Ik

ω̄2(Xi){ĥ[‐k](Zi)− h̄(Zi)}2
] 1

2

+ op(1) = op(1).

Therefore, we come to that Ξ1 is asymptotically equivalent with
√
nζTα(α̂ − ᾱ). Similarly, we

write the term Ξ2 as

Ξ2 =n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)cT̂J
−1
β̆ Aiğ{m̄(Xi)}

[
φT

i (̂γ
[‐k] − γ̄) + Op({φT

i (̂γ
[‐k] − γ̄)}2)

]
− n 1

2

N

N+n∑
i=n+1

cT̂J
−1
β̆ Aiğ{m̄(Xi)}

[
K−1

K∑
k=1

φT

i (̂γ
[‐k] − γ̄) + Op({φT

i (̂γ
[‐k] − γ̄)}2)

]

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)κi,β0 ğ{m̄(Xi)}Δr[‐k](Zi)−
n 1

2

N

N+n∑
i=n+1

κi,β0 ğ{m̄(Xi)}Δr(Zi)

+ n−
1
2

K∑
k=1

∑
i∈Ik

ω̄(Xi)cT
[̂
J
−1
β̆ − J−1

β0

]
Aiğ{m̄(Xi)}Δr[‐k](Zi)

− n 1
2

N

N+n∑
i=n+1

cT
[̂
J
−1
β̆ − J−1

β0

]
Aiğ{m̄(Xi)}Δr(Zi)

=:U2 + Δ21 + Δ22,

(C.5)

where Δr[‐k](Zi) = r̂[‐k](Zi)−r̄(Zi)+Op({̂r[‐k](Zi)−r̄(Zi)}2), Δr(Zi) = K−1∑K
k=1 Δr[‐k](Zi),

U2 represents the difference of the first two terms, and Δ22 represents the difference of the

last two terms. Similar toU1, by (C.3) and Assumption 3.1,

1
n

K∑
k=1

∑
i∈Ik

ω̄(Xi)cT̂J
−1
β̆ Aiğ{m̄(Xi)}φi −

1
N

N+n∑
i=n+1

cT̂J
−1
β̆ Aiğ{m̄(Xi)}φi

p−→ ζγ.
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Again, combining this with Assumptions 3.1 and Assumption 3.3, and using Slutsky’s

Theorem, we have thatU2 is asymptotically equivalent with
√
nζTγ (̂γ − γ̄), which weakly

converges to normal distribution with mean 0 and variance of order 1.

For Δ21, by Assumptions 3.2 and 3.3, as well as the use of cross-fitting, we have that

E1

(
1
n

K∑
k=1

∑
i∈Ik

ω̄(Xi)κi,β0 ğ{m̄(Xi)}Δr[‐k](Zi)

)
− E0

(
1
N

N+n∑
i=n+1

κi,β0 ğ{m̄(Xi)}Δr[‐k](Zi)

)
= op(n−1/2).

Here, we follow the same idea as that for Δ11: if Assumption 3.2(i) holds, we have ω̄(·) =

w(·) and

E1
[
exp{ΨTᾱ + h̄(Z)}κβ0

ğ{m̄(X)}f(X)
]
= E0

[
κβ0

ğ{m̄(X)}f(X)
]

holds for all measurable function of X, f(·); when Assumption 3.2(ii) holds, we have that

m∗(·) = m̄(·) = μ(·) and thus h̄(·) solves (3.8). Also note that

Var1
(
ω̄(Xi)κi,β0 ğ{m̄(Xi)}{̂r[‐k](Zi)− r̄(Zi)}

∣∣∣̂r[‐k](·))
=O(E1[ω̄2(Xi) + ğ2{m̄(Xi)}]) · op(1) = op(1);

Var0
(
κi,β0 ğ{m̄(Xi)}{̂r[‐k](Zi)− r̄(Zi)}

∣∣∣̂r[‐k](·)) = O(E1ğ2{m̄(Xi)}) · op(1) = op(1);

Then similar to Δ12, we come to Δ22 = op(1). Thus, the term Ξ2 is asymptotically equiv-

alent with
√
nζTγ (̂γ − γ̄), which weakly converges to normal distribution with mean 0 and

variance of order 1.

Finally, we consider Δ3 in (C.2). By Assumption 3.1, the boundness of |cT̂J−1
β̆ Ai| and our

derived bounds for n−1∑K
k=1
∑

i∈Ik{ω̂
[‐k](Xi)− ω̄(Xi)}2 and n−1∑K

k=1
∑

i∈Ik{m̂
[‐k](Xi)−
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m̄(Xi)}2,

|Δ3| =O

(
n−

1
2

K∑
k=1

∑
i∈Ik

|ω̂[‐k](Xi)− ω̄(Xi)||m̂[‐k](Xi)− m̄(Xi)|

)

≤
√
nO

[n−1
K∑
k=1

∑
i∈Ik

{ω̂[‐k](Xi)− ω̄(Xi)}2
] 1

2
[
n−1

K∑
k=1

∑
i∈Ik

{m̂[‐k](Xi)− m̄(Xi)}2
] 1

2
 = op(1).

Combining this with the asymptotic properties derived forV, Ξ1 and Ξ2 and the expansion

(C.2), we finish the proof for the asymptotic expansion and distribution of
√
n(cTβ̂

ATReL
−

cTβ0).

C.2 Additional assumptions and justification of Proposition 3.1

In this section, we present the additional assumptions and justification for Proposition 3.1

that establishes the convergence rates and asymptotic behaviour of our mainly studied nui-

sance estimators defined in Section 3.2.3. Our results are largely based on existing literature

of local regression and sieve like Fan et al. (1995), Shen (1997), Carroll et al. (1998) and

Chen (2007).

Denote byG(x) =
∫ x
−∞ g(t)dt. Let Λα∗ , Λγ∗ , Λh∗ , Λr∗ , Λh̄ and Λr̄ represent the pa-

rameter space of α∗, γ∗, h∗, r∗, h̄ and r̄ respectively. LetZ be the domain of Z ∈ Rpz and

Ck(Z) represent all the k-times differentiable continuous functions onZ . The Hölder (or

ν-smooth) class Σ(ν,L) is defined as the set of functions f ∈ C[ν](Z)with its [ν]-times

derivative satisfying

sup
z1,z2∈Z

∥f([ν])(z1)− f([ν])(z2)∥2
∥z1 − z2∥2

≤ L.
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Assumption C.1. (i) φ, ψ and Z have compact domain and continuous differentiable prob-

ability density functions (as given for discrete variables).

(ii) There exists C1 > 0 that for all z ∈ Z ,

∥α∗∥∞, ∥γ∗∥∞, |h∗(z)|, |r∗(z)|, |h̄(z)|, |̄r(z)| ≤ C1.

(iii) There exists C2 > 0 such that

C−1
2 ≤

∂
∂τE1 exp{ψT[α1 + τ(α2 − α1)] + h1(Z) + τ[h2(Z)− h1(Z)]}

∥α1 − α2∥22 + E1[h1(Z)− h2(Z)]2
≤ C2;

C−1
2 ≤

∂
∂τE1G{φT[γ1 + τ(γ2 − γ1)] + r1(Z) + τ[r2(Z)− r1(Z)]}

∥γ1 − γ2∥22 + E1[r1(Z)− r2(Z)]2
≤ C2,

for any τ ∈ [0, 1], α1, α2 ∈ Λα∗ , h1, h2 ∈ Λh∗ , γ1, γ2 ∈ Λγ∗ , and r1, r2 ∈ Λr∗ .

(iv) It holds that κβ0 ≥ 0 with probability 1. There exists C3 > 0 that for all z ∈ Z ,

C−1
3 ≤

∣∣h−pzE1Kh(Z− z)ω∗(X)κβ0 ġ {φ
Tγ̄+ r̄(z)}

∣∣ ≤ C3;

C−1
3 ≤

∣∣h−pzE1Kh(Z− z) exp(ψTᾱ)κβ0 ğ{m
∗(X)} exp{h̄(z)}

∣∣ ≤ C3.

Assumption C.2. There exists ν,L > 0 such that all population-level nonparametric compo-

nents h∗(z), r∗(z), h̄(z) and r̄(z) belong to the Hölder class Σ(ν,L) with the degree of smooth-

ness ν satisfying ν > pz.

Assumption C.3 (Specification of the sieve and kernel functions). (i) The basis function
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b(Z) is taken as the tensor product of bj(Zj) for j = 1, 2, . . . , pz, where each bj(Zj) is the

Hermite polynomial basis of the univariate Zj with its order s ≍ n1/(pz+ν). (ii) The kernel

function K is symmetric, bounded, and of order [ν] and the bandwidth h ≍ n−1/(pz+2ν). The

tuning parameters λ1, λ2 = o(n−1/2).

Remark C.1. Similar to Assumption 3.1 in the main paper, Assumptions C.1(i) and C.1(ii)

are used to regular the distribution of X and the parameter spaces. Assumption C.1(iii) is in

a similar spirit of Condition 4.5 in Chen (2007), used to control the asymptotic variance of
√
n(α̃[‐k] − α∗) and

√
n(α̃[‐k] − α∗). Assumption C.1(iv) requires the weighting term κβ0

to be positive-definite to ensure the regularity of the calibration equations. As we remark in

Remark 3.4, this assumption can be granted by splitting the samples by the sign of κβ̃ when

it is not always positive or always negative. Assumption C.2 imposes the common smoothness

conditions on the nuisance nonparametric components that are also used in semiparamet-

ric inference existing literature like Rothe & Firpo (2015) and Chakrabortty & Cai (2018).

In Assumption C.3, we choose the order of sieve of the preliminary nuisance estimators to be

under-smoothed optimal since
√
n-consistency of the parametric part in these models are re-

quired. While the bandwidth h used in the calibrated estimating equation (3.11) can be rate-

optimal since we do not need to estimate the parametric components in this step.

Proof of Proposition 3.1. Since we simply pick α̂[‐k] = α̃[‐k] and γ̂[‐k] = γ̃[‐k] in Section

3.2.3, Assumptions 3.1 and C.1–C.3 are sufficient for Assumption 3.3(i) by Lemma C.3(b)

presented and justified in this section. And Assumption 3.3(ii) is directly given by Lemma

C.4 that is proved based on Lemmas C.1–C.3.
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Lemma C.1 establishes the desirable convergence properties of the preliminary nuisance

estimators based on the existing analysis of sieve M-estimation (Shen, 1997; Chen, 2007).

Lemma C.1 ((Shen, 1997; Chen, 2007)). Under Assumptions 3.1 and C.1–C.3, the prelimi-

nary nuisance estimators solved from equations (3.9) and (3.10) satisfy that:

(a) For j ∈ {0, 1},

E1{̃r[‐k](Z)− r∗(Z)}2 + Ej{h̃[‐k](Z)− h∗(Z)}2 = op(n−1/2);

sup
z∈Z

|̃r[‐k](z)− r∗(z)|+ |h̃[‐k](z)− h∗(z)| = op(1);

(b)
√
n(α̃[‐k] − α∗) and

√
n(α̃[‐k] − α∗) weakly converge to gaussian distributuon with mean

zero and finite variance.

Proof. We based on Theorem 3.5 of Chen (2007) to show (a) of Lemma C.1. First, note

that for both preliminary nuisance models, Conditions 3.9, 3.10, 3.11 and 3.13 of Chen

(2007) are implied by Assumptions 3.1, C.1(i) and C.1(ii). Their Condition 3.12 is implied

by Assumption C.1(iii). Then by their Theorem 3.5, it holds that

∥γ̃[‐k] − γ∗∥22 + E1{̃r[‐k](Z)− r∗(Z)}2 = Op

(
kn
n

+ ρ22n

)
;

∥α̃[‐k] − α∗∥22 + E1{h̃[‐k](Z)− h∗(Z)}2 = Op

(
kn
n

+ ρ22n

)
,

where kn and ρ22n respectively characterize the variance and approximation bias of sieve to

be specified as follows. Inspired by Proposition 3.6 of Chen (2007), under our Assump-
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tions C.2 and C.3(i), the specific rate of kn and ρ22n is given by

kn ≍ spz , ρ2n ≍ s−ν, where s is the order of each bj(Zj).

Then by Assumption C.2 that ν > pz and Assumption C.3(i) that s ≍ n1/(pz+ν), we have

∥γ̃[‐k] − γ∗∥22 + E1{̃r[‐k](Z)− r∗(Z)}2 = op(n−1/2);

∥α̃[‐k] − α∗∥22 + E1{h̃[‐k](Z)− h∗(Z)}2 = op(n−1/2).

Similarly, it is not hard to justify that our Assumptions 3.1 and C.1–C.3 imply Conditions

3.1, 3.2, 3.4 and 3.5M of Chen (2007), which are sufficient for the consistency of sieve M-

estimation according to their Remark 3.3, i.e.,

sup
z∈Z

|̃r[‐k](z)− r∗(z)|+ |h̃[‐k](z)− h∗(z)| = op(1).

So we finish proving (a) of Lemma C.1.

Next, we prove (b) based on (a) and using Theorem 4.3 of Chen (2007) (or early works

like Shen (1997)). Their Conditions 4.1(iii) and 4.4 are as given in our standard non-linear

M-estimation case. Since “f(θ)” in Chen (2007) are simply the parametric parts γ or α in

our case, their Conditions 4.1(i) and 4.2(ii) are trivially satisfied. Their Condition 4.5 is im-

plied by our Assumption C.1(iii) that actually indicates
√
n(α̃[‐k] − α∗) and

√
n(α̃[‐k] − α∗)

will have bounded asymptotic variance. And their Conditions 4.2’ and 4.3’ are implied

by Assumption C.1(i) and the continuity of the link function g. Therefore, we can com-

bine our Lemma C.1(a) and Theorem 4.3 of Chen (2007) to finishe the proof of Lemma
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C.1(b).

Using Lemma C.1 and that at least one nuisance model is correctly specified (i.e., As-

sumption 3.2), Lemma C.2 establishes the op(n−1/4) convergence of the preliminary estima-

tor β̃
[‐k]

to the true β0.

Lemma C.2. Under Assumptions 3.1, 3.2 and C.1–C.3,

Ej{m̃[‐k](X)−m∗(X)}2 + E1{ω̃[‐k](X)− ω∗(X)}2 + ∥β̃
[‐k]

− β0∥
2
2 = op(n−1/2).

Proof. It immediately follows from Lemma C.1 that

Ej{m̃[‐k](X)−m∗(X)}2 + E1{ω̃[‐k](X)− ω∗(X)}2 = op(n−1/2).

Then ∥β̃
[‐k]

− β0∥
2
2 = op(n−1/2) can be proved by following the same proof procedures in

Theorem 3.1 for analyzing the terms defined in (C.1).

For each z ∈ Z , let the estimators r̆[‐k](z) and h̆[‐k](z) respectively solve:

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)κi,β0
[
Yi − g

{
φT

i γ̄+ r(z)
}]

= 0;

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z) exp(ψT

i ᾱ)κi,β0 ğ{m
∗(Xi)} exp{h(z)}

=
1

Nhpz

n+N∑
i=n+1

Kh(Zi − z)κi,β0 ğ{m
∗(Xi)},

(C.6)

i.e. the “oracle” version of the estimating equations in (3.11), obtained by replacing all the
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preliminary estimators plugged in (3.11) with their limits (true values). Also recall that h̄(z)

and r̄(z) are defined as the solutions to equations (3.7) and (3.8).

We introduce Lemma C.3 to give the consistency op(n−1/4) convergence of h̆[‐k](z) and

r̆[‐k](z) to h̄(z) and r̄(z), as a standard result of the higher–order kernel (or local polyno-

mial) estimating equation (Fan et al., 1995).

Lemma C.3. Under Assumptions 3.1, 3.2 and C.1–C.3,

E1{r̆[‐k](Z)− r̄(Z)}2 + E1{h̆[‐k](Z)− h̄(Z)}2 = op(n−1/2);

sup
z∈Z

|̆r[‐k](z)− r̄(z)|+ |h̆[‐k](z)− h̄(z)| = op(1).

Proof. By Assumption 3.2, at least one nuisance model is correctly specified. When the im-

portance weighting model is correct, w∗(x) = w̄(x) = w(x). So the first equation of (C.6)

is (asymptotically) valid for r̄(Z) that solves (3.7). Also, sincew(x) = exp(ψTα0 + h0(z))

and ᾱ = α0 when the importance weighting model is correct, the second equation of (C.6)

is valid for h̄(z) = h0(z) that solves (3.8). So both equations in (C.6) are valid. Similarly,

this also holds when the imputation model is correct. Then by Assumptions 3.1, and C.1–

C.3 and following Appendix A of Fan et al. (1995), we can derive that supz∈Z |̆r[‐k](z) −

r̄(z)|+ |h̆[‐k](z)− h̄(z)| = op(1) and

E1{r̆[‐k](Z)− r̄(Z)}2 + E1{h̆[‐k](Z)− h̄(Z)}2 = Op

(
1

nhpz
+ h2ν

)
= op(n−1/2),

as the standard consistency and convergence results of kernel smoothing.

Note that (Fan et al., 1995) studied the local polynomial regression approach that is not

exactly the same as our used [ν]-th order kernel; see Assumption C.3(ii). While the deriva-
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tion of these two approaches are basically the same due to the orthogonality between a [ν]-

th order kernel function and the polynomial functions of the order up to [ν].

Finally, we come to Lemma C.4 for the asymptotic properties of r̂[‐k](Z) and ĥ[‐k](Z).

Lemma C.4. Under Assumptions 3.1, 3.2 and C.1–C.3, the calibrated nuisance estimators

satisfy:

E1{̂r[‐k](Z)− r̄(Z)}2 + E1{ĥ[‐k](Z)− h̄(Z)}2 = op(n−1/2);

sup
z∈Z

|̂r[‐k](z)− r̄(z)|+ |ĥ[‐k](z)− h̄(z)| = op(1).

Proof. We compare the estimating equations in (3.11) with those in (C.6) to analyze the

additional errors incurred by the preliminary estimators in (3.11). By Assumption 3.1 and
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equation (C.3) derived in the proof of Theorem 3.1, we have that for each z,

0 =
K

n(K− 1)hpz
∑
i∈I‐k

Kh(Zi − z)ω̃[‐k](Xi)cT̂J
−1
β̃
[‐k]Ai

[
Yi − g

{
φT

i γ̂
[‐k] + r̂[‐k](z)

}]
=

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)κi,β0
[
Yi − g

{
φiγ̄+ r̂[‐k](z)

}]
+

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)κi,β0
[
g
{
φT

i γ̄+ r̂[‐k](z)
}
− g
{
φT

i γ̂
[‐k] + r̂[‐k](z)

}]
+

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)cT
[̂
J
−1
β̃
[‐k] − J−1

β0

]
Ai

[
Yi − g

{
φT

i γ̂
[‐k] + r̂[‐k](z)

}]
+

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z){ω̃[‐k](Xi)− ω∗(Xi)}cT̂J
−1
β̃
[‐k]Ai

[
Yi − g

{
φT

i γ̂
[‐k] + r̂[‐k](z)

}]
=

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)κi,β0
[
Yi − g

{
φT

i γ̄+ r̂[‐k](z)
}]

+ Op

([
E1{ω̃[‐k](X)− ω∗(X)}2

] 1
2
+ ∥β̃

[‐k]
− β0∥2 + ∥γ̂[‐k] − γ̄∥2 + n−1/2

)
=

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)κi,β0
[
Yi − g

{
φT

i γ̄+ r̂[‐k](z)
}]

+ op(n−1/4),

Comparing this with the estimating equation (C.6) for r̆[‐k](·), we have:

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)κi,β0
[
g
{
φT

i γ̄+ r̆[‐k](z)
}
− g
{
φT

i γ̄+ r̂[‐k](z)
}]

= op(n−1/4),

which combined with Assumption 3.1 that ġ(·) is Lipsitz, leads to

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)κi,β0 ġ
{
φT

i γ̄+ r̄(z)
} ∣∣̆r[‐k](z)− r̂[‐k](z)

∣∣
=op(n−1/4) + Op

(
[̂r[‐k](z)− r̄(z)]2 + [̆r[‐k](z)− r̄(z)]2

)
.
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Using Assumption 3.1(iv) and the weak law of large numbers, we can show that

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z)ω∗(Xi)κi,β0 ġ
{
φT

i γ̄+ r̄(z)
}
≍ 1.

Then by Lemma C.3, we conclude that |̂r[‐k](z) − r̄(z)| = op(1) uniformly for all z ∈ Z ,

and E1{̂r[‐k](Z)− r̄(Z)}2 = op(n−1/2).

For ĥ[‐k](·), we follow the same strategy to consider the difference between the second

equation of (3.11) and equation (C.6), to derive that

K
n(K− 1)hpz

∑
i∈I‐k

Kh(Zi − z) exp(ψT

i ᾱ)κi,β0 ğ{m
∗(Xi)} exp{h̄(z)}

∣∣∣h̆[‐k](z)− ĥ[‐k](z)
∣∣∣

=Op

([
E1{m̃[‐k](X)−m∗(X)}2

] 1
2 + ∥β̃

[‐k]
− β0∥2

)
+ Op

(
[ĥ[‐k](z)− h̄(z)]2 + [h̆[‐k](z)− h̄(z)]2

)
=op(n−1/4) + Op

(
[ĥ[‐k](z)− h̄(z)]2 + [h̆[‐k](z)− h̄(z)]2

)
.

Again combining this with Assumption 3.1(iv) and Lemma C.3, we can derive that

sup
z∈Z

|ĥ[‐k](z)− h̄(z)| = op(1); E1{ĥ[‐k](Z)− h̄(Z)}2 = op(n−1/2).

Thus we have finished proving Lemma C.4.
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C.3 Details of the extension discussed in Section 3.6

C.3.1 Sieve estimator

First, we consider using sieve to model and calibrate the nonparametric components: r(Z) =

ξTb(Z) and h(Z) = ηTb(Z)where b(Z) represents some prespecified basis function of Z,

e.g. natural spline or Hermite polynomials with diverging dimensionality, and η and ξ rep-

resent their coefficients to estimate. In analog to (3.11), we propose to estimate the coeffi-

cients ξ and η by solving

K
n(K− 1)

∑
i∈I‐k

ω̃[‐k](Xi)cT̂J
−1
β̃
[‐k]Aib(Zi)

[
Yi − g

{
φT

i γ̂
[‐k] + ξTb(Zi)

}]
= 0;

K
n(K− 1)

∑
i∈I‐k

cT̂J
−1
β̃
[‐k]Aiğ{m̃[‐k](Xi)} exp{ψT

i α̂
[‐k] + ηTb(Zi)}b(Zi)

=
1
N

n+N∑
i=n+1

cT̂J
−1
β̃
[‐k]Aiğ{m̃[‐k](Xi)}b(Zi).

For one-dimensional Zi occurring in our numerical studies, this sieve approach should have

similar performance as kernel smoothing. While if pz > 1 and Zi = (Zi1, . . . ,Zipz)
T, classic

nonparametric approaches like kernel smoothing and sieve could have poor performance

due to the curse of dimensionality. We recommend using additive model of Zi1, . . . ,Zipz

(constructed with the basis {bT(Zi1), . . . , bT(Zipz)}T) instead of the fully nonparametric

model for Zi, to avoid excessive model complexity.
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C.3.2 General machine learning method

Given a response A, predictors C, and an arbitrary blackbox learning algorithmL, we let

ÊL[A | C] and P̂L(A | C) denote the conditional expectation and conditional probability

density (or mass) function of A on C estimated using the learning algorithmL. Here, we

neglect the index of training samples in our notation for simplicity while in general, one

should follow the established work like Chernozhukov et al. (2018a), to adopt cross-fitting,

and ensure that ÊL[A | C] and P̂L(A | C) are estimated using training data independent

with their plug-in samples.

Without loss of generality, we assume that knowing X is sufficient to identify Z, φ and ψ.

Now we propose procedures usingL to estimate and calibrate the nuisance models. First,

we regress Y on X on S using learning algorithmL to obtain ÊL[Y | X], and regress S on X

to obtain P̂L(S = 1 | X). Also, we useL to learn P̂L(X | Z, S = 1), i.e. the conditional

distribution of X given Z on the source population. Then we solve:

K
n(K− 1)

∑
i∈I‐k

φi

{
ÊL[Yi | Xi]− g[φT

i γ+ r(Zi)]
}
= 0,∫

x∈X∩{z}
P̂L(x | Z = z, S = 1)

{
ÊL[Y | X = x]− g[φT

i γ+ r(z)]
}
dx = 0, for z ∈ Z,

(C.7)

to obtain the preliminary estimators γ̃[‐k] and r̃[‐k](·), where x ∈ X ∩ {z} represents the

set of X belonging to its domainX and satisfying Z = z for the fixed z. To solve (C.7)

numerically, we adopt a monte carlo procedure introduced as follow. LetM be some pre-

specified number much larger than n, says 1000n. For each i ∈ I [‐k], sample Xi,1, Xi,2,...,
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Xi,M independently from the estimated P̂L(Xi | Zi, Si = 1) given Zi,m = Zi for each

m ∈ {1, . . . ,M}. Then solve the estimating equation:

K
nM(K− 1)

∑
i∈I‐k

M∑
m=1

φi,m

{
ÊL[Yi,m | Xi,m]− g(φT

i,mγ+ ri)
}
= 0,

1
M

M∑
m=1

ÊL[Yi,m | Xi,m]− g(φT

i,mγ+ ri) = 0, for i ∈ I [‐k],

to obtain the estimators γ̃[‐k] and r̃i, and set r̃[‐k](Zi) = r̃i for each i ∈ I [‐k]. Based on

these estimators, we construct the debiased estimator for γ generally satisfying Assumption

3.3(i). In specific, we useL to obtain the estimators ÊL[φġ{(̃γ[‐k])Tφ + r̃[‐k](Z)}|Z, S = 1]

and ÊL[g{(̃γ[‐k])Tφ+ r̃[‐k](Z)}|Z, S = 1]. Then we let

δ̃i = (̃δi1, . . . , δ̃ipφ)T = φi −
ÊL[φiġ{(̃γ

[‐k])Tφi + r̃[‐k](Zi)}|Zi, Si = 1]
ÊL[g{(̃γ[‐k])Tφi + r̃[‐k](Zi)}|Zi, Si = 1]

,

solve

w̃[‐k]
j = min

w

K
n(K− 1)

∑
i∈I‐k

ġ{(̃γ[‐k])Tφi + r̃[‐k](Zi)}
(
δ̃ij − wTδ̃i,‐j

)2
,

for each j ∈ {1, . . . , pφ}, and let ε̃i = (̃εi1, . . . , ε̃ipφ)T, where ε̃ij = δ̃ij − (w̃[‐k]
j )Tδ̃i,‐j, and

σ̃2j =
K

n(K− 1)
∑
i∈I‐k

ε̃2ijġ
{
(̃γ[‐k])Tφi + r̃[‐k](Zi)

}
.

Then we construct the debiased estimator γ̂[‐k] = (̂γ[‐k]1 , . . . , γ̂[‐k]pφ )T through:

γ̂[‐k]j = γ̃[‐k]j +
K

n(K− 1)
∑
i∈I‐k

ε̃ij
σ̃j

[
Yi − g{(̃γ[‐k])Tφi + r̃[‐k](Zi)}

]
. (C.8)
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Finally, the calibrated estimator of the nuisance component r(·) is obtained by solving r̂i

from:

1
M

M∑
m=1

ω̃[‐k](Xi,m)cT̂J
−1
β̃
[‐k]Ai,m

[
ÊL[Yi,m | Xi,m]− g

{
φT

i,Mγ̂
[‐k] + ri

}]
= 0,

for each i, and set r̂[‐k](Zi) = r̂i, where β̃
[‐k]

is again solved through:

K
n(K− 1)

∑
i∈I‐k

ω̃[‐k](Xi)Ai{Yi − m̃[‐k](Xi)}+
1
N

N+n∑
i=n+1

Ai{m̃[‐k](Xi)− g(AT

i β)} = 0.

Noting that our above introduced procedure is applicable to any semi-non-parametric M-

estimation problem, so the preliminary estimator ω̃[‐k](Xi) and the calibrated estimator for

α and h(·) can be obtained in the same way.

Remark C.2. Our construction procedure proposed in this section involves estimation of the

probability density function, which is typically more challenging than purely estimating the

conditional mean for a machine learning method. Note that for linear, log-linear and lo-

gistic model, one can avoid estimating probability density function to construct the doubly

robust (double machine learning) estimators; see Dukes & Vansteelandt (2020); Ghosh &

Tan (2020); Liu et al. (2021b). Thus, when the link function g(a) = a, g(a) = ea or

g(a) = ea/(1 + ea), our construction actually does not require estimating the probability

density function withL.

At last, we provide discussion and justification towards the n1/2-consistency and asymp-

totic normality of the debiased estimator γ̂[‐k]. In specific, we take γ̄ = γ∗, and write (C.8)
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as:

γ̂[‐k]j =γ̃[‐k]j +
K

n(K− 1)
∑
i∈I‐k

ε̃ij
σ̃j

[
Yi − E1[Yi | Xi] + E1[Yi | Xi]− g{(γ∗)Tφi + r∗(Zi)}

+ g{γ̄Tφi + r∗(Zi)} − g{(̃γ[‐k])Tφi + r̃[‐k](Zi)}

]
.

Note that Yi − E1[Yi | Xi] is orthogonal to ε̃ij and its estimation error since the latter is

deterministic on Xi. According to our moment equation for γ∗ and r∗(·), E1[Yi | Xi] −

g{(γ∗)Tφi + r∗(Zi)} is orthogonal to arbitrary (regular) function of Zi and linear function

of φi, so is also orthogonal to ε̃ij and its estimation error. In addition, by our construction,

E1

(
φi −

E1[φiġ{(γ
∗)Tφi + r∗(Zi)} | Zi]

E1[ġ{(γ∗)Tφi + r∗(Zi)} | Zi]

)
= 0,

and ε̃ij is orthogonal to any linear function of φi,‐j and δi,‐j. So the first order error in g{γ̄
Tφi+

r∗(Zi)}−g{(̃γ[‐k])Tφi+r̃[‐k](Zi)}, i.e. ġ{γ̄Tφi+r∗(Zi)}{(̃γ[‐k]−γ̄)Tφi+r∗(Zi)−r̃[‐k](Zi)}, is

orthogonal to ε̃ij for each j. Thus, all the first order error terms in γ̂[‐k]j − γ̄ could be removed

through our (Neyman) orthogonal construction.

Inspired by Appendix C of Liu et al. (2021b), when the mean squared error of machine

learning algorithmL has the convergence rates op(n−1/2)with respect to all the learning

objectives included in this section, i.e. the rate double robustness property, the machine

learning estimator r̂[‐k](·) satisfies Assumption 3.3(ii). Also, the second order error of

γ̂[‐k]j − γ̄ could be removed asymptotically. And consequently, γ̂[‐k] satisfy Assumption

3.3(i). Again, these arguments are applicable to the nuisance estimators for α and h(·) de-

rived in the same way. Therefore, our proposed nuisance estimators introduced in this sec-
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tion tend to satisfy Assumption 3.3.

C.3.3 Intrinsic efficient construction

In this section, we introduce the intrinsic efficient construction of the imputation model

under our framework. For simplicity, we consider a semi-supervised setting with n labeled

source samples andN ≫ n unlabeled target samples. The augmentation approach pro-

posed by Shu & Tan (2018) could be used for extending our method to theN ≍ n case.

For some given h(·), let the estimating equation of α̃[‐k] be

∑
i∈{n+1,...,n+N}∪I‐k

S{δi,Xi; α, h(·)} = 0,

with S{δi,Xi; α, h(·)} representing the score function. For example, one can take

S{δi,Xi; α, h(·)} = δi exp{ψT

i α + h(Zi)}ψi − |I‐k|(1− δi)ψi/N.

Denote that Si = S{δi,Xi; α̃[‐k], h̃[‐k](·)} and let ΠI‐k(εi; Si) be the empirical projection

operator of any variable εi to the space spanned by Si on the samples I‐k and Π⊥
I‐k(εi; Si) =

εi − ΠI‐k(εi; Si). When the importance weight model is correctly specified andN ≫ n,

the empirical asymptotic variance for cTβ̂
ATReL

with nuisance parameters γ and r(·) can be

expressed as

K
n(K− 1)

∑
i∈I‐k

[
ω̃[‐k](Xi)Π⊥

I‐k

(
cT̂J

−1
β̃
[‐k]Ai[Yi − g{φT

i γ+ r(Zi)}]; Si
)]2

. (C.9)
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Then the intrinsically efficient construction of the imputation model is given by minimiz-

ing (C.9) subject to the moment constraint:

1
|I‐k ∩ Ia|

∑
i∈I‐k∩Ia

Kh(Zi − z)ω̃[‐k](Xi)cT̂J
−1
β̃
[‐k]Ai

[
Yi − g

{
φT

i γ+ r(Z)
}]

= 0,

which is the same as the first equation of (3.11) except that both γ and r(Z) are unknown

here. This optimization problem could be solved with methods like profile kernel and

back-fitting (Lin & Carroll, 2006). Alternatively and more conveniently, one could use

sieve, as discussed in Appendix C.3.1, to model r(Zi) and use a constrained least square

regression: let b(Z) be some basis function of z and solve

min
γ,ξ

∑
i∈I‐k

[
ω̃[‐k](Xi)Π⊥

I‐k

(
cT̂J

−1
β̃
[‐k]Ai[Yi − g{φT

i γ+ bT(Zi)ξ}]; Si
)]2

;

s.t.
∑

i∈I‐k∩Ia

b(Zi)ω̃[‐k](Xi)cT̂J
−1
β̃
[‐k]Ai

[
Yi − g

{
φT

i γ+ bT(Zi)ξ
}]

= 0,

to obtain γ̃[‐k] and r̃[‐k](Z) = bT(Z)̃ξ
[‐k]

simultaneously. To get the intrinsic efficient es-

timator for a nonlinear but differentiable function ℓ(β0), with its gradient being ℓ̇(·), we

first estimate the entries β0i using our proposed method for every i ∈ {1, 2, . . . , d} and

use them to form a preliminary
√
n-consistent estimator β̂(init). Then we estimate the lin-

ear function βT

0 ℓ̇{β̂(init)}with the intrinsically efficient estimator and utilize the expansion

ℓ(β0) ≈ ℓ{β̂(init)}+ {β0 − β̂(init)}
Tℓ̇{β̂(init)} for an one-step update.
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C.4 Implementing details and additional results of simulation

To obtain the preliminary estimators ω̃[‐k](·) and m̃[‐k](·) of our method, we use semipara-

metric logistic regression with covariates including the parametric basis and the natural

splines of the nonparametric components Zwith order [n1/4] for the imputation model

and [(N + n)1/4] for the importance weight model. In this process, we add ridge penalty

tuned by cross-validation with tuning parameter of order n−2/3 (below the parametric rate)

to enhance the training stability.

We set the loading vector c as (1, 0, 0, 0)T, (0, 1, 0, 0)T, (0, 0, 1, 0)T, and (0, 0, 0, 1)T

to estimate β0, β1, β2, β3 separately. For β1, β2, β3, the weights c
T̂J

−1
β̃
[‐k]Ai’s are not positive

definite so we split the source and target samples as I+ = {i : cT̂J
−1
β̃
[‐k]Ai ≥ 0} and

I− = {i : cT̂J
−1
β̃
[‐k]Ai < 0} as introduced in Remark 3.4, and use (3.12) to estimate

their nonparametric components. For β0, we find that c
T̂J

−1
β̃
[‐k]Ai is nearly positive definite

under all configurations but these weights are sometimes of high variation. So we also split

the source/target samples by cutting the cT̂J
−1
β̃
[‐k]Ai’s with their median, to reduce the vari-

ance of weights at each fold and improve the effective sample size. We use cross-fitting with

K = 5 folds for our method and the two double machine learning estimators. And all the

tuning parameters including the bandwidth of our method and kernel machine and the

coefficients of the penalty functions are selected by 5-folded cross-validation on the train-

ing samples. We present the estimation performance (mean square error, bias and coverage

probability) on each parameter in Tables C.1–C.4, for the four configurations separately.
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Table C.1: Estimation performance of the methods on parameters β0, β1, β2, β3 under Configuration (i) described in
Section 3.4. Parametric: doubly robust estimator with parametric nuisance models; ATReL: our proposed doubly robust
estimator using semi‐non‐parametric nuisance models; DMLBE: double machine learning with flexible basis expansions;
DMLKM: double machine learning with kernel machine. RMSE: root mean square error; CP: coverage probability of the
95% confidence interval.

Estimator
Covariates Parametric ATReL DMLBE DMLKM

β0
RMSE 0.102 0.110 0.168 0.116
Bias −0.007 0.0005 0.112 0.010
CP 0.95 0.95 0.84 0.93

β1
RMSE 0.181 0.124 0.160 0.198
Bias −0.146 −0.056 −0.104 −0.163
CP 0.91 0.93 0.92 0.85

β2
RMSE 0.133 0.126 0.191 0.134
Bias 0.059 0.032 −0.109 −0.017
CP 0.99 0.97 0.94 0.98

β3
RMSE 0.137 0.133 0.195 0.150
Bias 0.049 0.030 −0.108 −0.040
CP 0.99 0.97 0.96 0.97
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Table C.2: Estimation performance of the methods on parameters β0, β1, β2, β3 under Configuration (ii) described in
Section 3.4. Parametric: doubly robust estimator with parametric nuisance models; ATReL: our proposed doubly robust
estimator using semi‐non‐parametric nuisance models; DMLBE: double machine learning with flexible basis expansions;
DMLKM: double machine learning with kernel machine. RMSE: root mean square error; CP: coverage probability of the
95% confidence interval.

Estimator
Covariates Parametric ATReL DMLBE DMLKM

β0
RMSE 0.108 0.114 0.186 0.124
Bias −0.004 0.004 0.136 0.018
CP 0.92 0.94 0.82 0.90

β1
RMSE 0.107 0.118 0.144 0.122
Bias −0.001 −0.015 −0.062 −0.046
CP 0.99 0.95 0.95 0.98

β2
RMSE 0.129 0.131 0.209 0.166
Bias −0.006 −0.024 −0.136 −0.084
CP 0.98 0.96 0.94 0.95

β3
RMSE 0.124 0.128 0.200 0.171
Bias −0.008 −0.019 −0.123 −0.097
CP 0.98 0.97 0.94 0.96
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Table C.3: Estimation performance of the methods on parameters β0, β1, β2, β3 under Configuration (iii) described in
Section 3.4. Parametric: doubly robust estimator with parametric nuisance models; ATReL: our proposed doubly robust
estimator using semi‐non‐parametric nuisance models; DMLBE: double machine learning with flexible basis expansions;
DMLKM: double machine learning with kernel machine. RMSE: root mean square error; CP: coverage probability of the
95% confidence interval.

Estimator
Covariates Parametric ATReL DMLBE DMLKM

β0
RMSE 0.113 0.112 0.134 0.114
Bias −0.052 −0.014 −0.064 −0.026
CP 0.93 0.95 0.93 0.95

β1
RMSE 0.341 0.151 0.152 0.189
Bias −0.300 −0.047 −0.043 −0.135
CP 0.82 0.93 0.95 0.86

β2
RMSE 0.145 0.133 0.141 0.133
Bias −0.006 −0.011 −0.035 −0.054
CP 0.95 0.94 0.95 0.91

β3
RMSE 0.143 0.137 0.139 0.131
Bias −0.008 0.004 0.003 −0.033
CP 0.94 0.95 0.95 0.91
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Table C.4: Estimation performance of the methods on parameters β0, β1, β2, β3 under Configuration (iv) described in
Section 3.4. Parametric: doubly robust estimator with parametric nuisance models; ATReL: our proposed doubly robust
estimator using semi‐non‐parametric nuisance models; DMLBE: double machine learning with flexible basis expansions;
DMLKM: double machine learning with kernel machine. RMSE: root mean square error; CP: coverage probability of the
95% confidence interval.

Estimator
Covariates Parametric ATReL DMLBE DMLKM

β0
RMSE 0.103 0.107 0.189 0.109
Bias −0.003 0.010 0.151 0.027
CP 0.95 0.95 0.73 0.95

β1
RMSE 0.140 0.128 0.132 0.156
Bias −0.008 0.008 0.035 0.100
CP 0.94 0.93 0.94 0.86

β2
RMSE 0.137 0.126 0.127 0.121
Bias −0.004 −0.004 −0.025 0.000
CP 0.96 0.96 0.95 0.90

β3
RMSE 0.139 0.126 0.121 0.122
Bias 0.005 0.015 0.022 0.050
CP 0.95 0.97 0.96 0.93
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C.5 Implementing details and additional results of real example

The specific nuisance model constructions are described as follows.

Method Importance weighting Imputation
Parametric Logistic model with

Ψ = (XT,X1X2,X1X3,X2X3)
T

Logistic model with Φ = X

ATReL (our method) Logistic model with
Ψ = (XT,X1X2,X1X3,X2X3)

T

and set Z = X2 for nonpara-
metric modeling

Logistic model with Φ = X
and set Z = X2 for nonpara-
metric modeling

Double machine learn-
ing with flexible basis
expansions

ℓ1 + ℓ2 regularized regression
including basis terms: X, natu-
ral splines of X1, X2 and X6 of
order 5 and interaction terms
of these natural splines

ℓ1 + ℓ2 regularized regression
including basis terms: X, natu-
ral splines of X1, X2 and X6 of
order 5 and interaction terms
of these natural splines

Double machine learn-
ing with kernel machine

Support vector machine with
the radial basis function kernel

Support vector machine with
the radial basis function kernel
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We present the fitted coefficients of all the included approaches in Table C.5.

Table C.5: Estimators of the target model coefficients. β0, β1, β2, β3, β4 represent respectively the intercept, coef‐
ficient of the total healthcare utilization (X1), coefficient of the log(NLP+1) of RA (X2), coefficient of the indicator for
NLP mention of tumor necrosis factor (TNF) inhibitor (X3), and coefficient of the indicator for NLP mention of bone
erosion (X4). Parametric: doubly robust estimator with parametric nuisance models; ATReL: our proposed doubly robust
estimator using semi‐non‐parametric nuisance models; DMLBE: double machine learning with flexible basis expansions;
DMLKM: double machine learning with kernel machine.

Source Parametric ATReL DMLBE DMLKM Target

β0 -5.70 -5.08 -5.75 -8.88 -5.73 -5.03

β1 0.03 0.12 -0.19 0.01 0.05 -0.31

β2 1.73 1.39 1.56 2.64 1.61 1.35

β3 0.69 0.62 0.78 0.77 0.66 0.94

β4 0.60 0.62 0.44 0.62 0.35 0.14

199



References

Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on
automatic control, 19(6), 716–723.

Allen, M., Bourhis, J., Burrell, N., &Mabry, E. (2002). Comparing student satisfaction
with distance education to traditional classrooms in higher education: A meta-analysis.
The American Journal of Distance Education, 16(2), 83–97.

Azriel, D., Brown, L. D., Sklar, M., Berk, R., Buja, A., & Zhao, L. (2016). Semi-supervised
linear regression. arXiv preprint arXiv:1612.02391.

Bang, H. & Robins, J. M. (2005). Doubly robust estimation in missing data and causal
inference models. Biometrics, 61(4), 962–973.

Battey, H., Fan, J., Liu, H., Lu, J., Zhu, Z., et al. (2018). Distributed testing and estima-
tion under sparse high dimensional models. The Annals of Statistics, 46(3), 1352–1382.

Beder, J. H. (1987). A sieve estimator for the mean of a gaussian process. The Annals of
Statistics, 15(1), 59–78.

Belloni, A., Chernozhukov, V., Chetverikov, D., Hansen, C., & Kato, K. (2018). High-
dimensional econometrics and regularized GMM. arXiv preprint arXiv:1806.01888.

Benjamini, Y. &Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Statist. Soc. B, 57, 289–300.

Berman, S. M. (1962). A law of large numbers for the maximum in a stationary Gaussian
sequence. Ann.Math. Statist., 33(1), 93–97.

Bhat, H. S. & Kumar, N. (2010). On the derivation of the bayesian information criterion.
School of Natural Sciences, University of California.

200



Bradfield, J. P., Taal, H. R., Timpson, N. J., Scherag, A., Lecoeur, C., Warrington, N. M.,
Hypponen, E., Holst, C., Valcarcel, B., Thiering, E., et al. (2012). A genome-wide associa-
tion meta-analysis identifies new childhood obesity loci. Nature genetics, 44(5), 526.

Bühlmann, P. & Van De Geer, S. (2011). Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media.

Cai, T., Li, H., Ma, J., & Xia, Y. (2019). Differential markov random field analysis with an
application to detecting differential microbial community networks. Biometrika, 106(2),
401–416.

Cai, T., Liu, M., & Xia, Y. (2021). Individual data protected integrative regression analysis
of high-dimensional heterogeneous data. Journal of the American Statistical Association,
(pp. 1–15).

Cai, T., Liu, W., & Luo, X. (2011). A constrained l1 minimization approach to sparse
precision matrix estimation. Journal of the American Statistical Association, 106(494),
594–607.

Caner, M. & Kock, A. B. (2018a). Asymptotically honest confidence regions for high
dimensional parameters by the desparsified conservative lasso. Journal of Econometrics,
203(1), 143–168.

Caner, M. & Kock, A. B. (2018b). High dimensional linear GMM. arXiv preprint
arXiv:1811.08779.

Cao, W., Tsiatis, A. A., & Davidian, M. (2009). Improving efficiency and robustness of
the doubly robust estimator for a population mean with incomplete data. Biometrika,
96(3), 723–734.

Card, D., Kluve, J., &Weber, A. (2010). Active labour market policy evaluations: A meta-
analysis. The economic journal, 120(548), F452–F477.

Carroll, R. J., Ruppert, D., &Welsh, A. H. (1998). Local estimating equations. Journal of
the American Statistical Association, 93(441), 214–227.

Carroll, R. J., Thompson, W. K., Eyler, A. E., Mandelin, A. M., Cai, T., Zink, R. M.,
Pacheco, J. A., Boomershine, C. S., Lasko, T. A., Xu, H., et al. (2012). Portability of an
algorithm to identify rheumatoid arthritis in electronic health records. Journal of the
AmericanMedical Informatics Association, 19(e1), e162–e169.

201



Carter, A. A., Gomes, T., Camacho, X., Juurlink, D. N., Shah, B. R., &Mamdani, M. M.
(2013). Risk of incident diabetes among patients treated with statins: population based
study. Bmj, 346, f2610.

Chakrabortty, A. (2016). Robust Semi-Parametric Inference in Semi-Supervised Settings.
PhD thesis, Harvard University.

Chakrabortty, A. & Cai, T. (2018). Efficient and adaptive linear regression in semi-
supervised settings. The Annals of Statistics, 46(4), 1541–1572.

Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. Handbook
of econometrics, 6, 5549–5632.

Chen, X., Monfort, M., Liu, A., & Ziebart, B. D. (2016). Robust covariate shift regres-
sion. In Artificial Intelligence and Statistics (pp. 1270–1279).

Chen, X. & Xie, M.-g. (2014). A split-and-conquer approach for analysis of extraordinar-
ily large data. Statistica Sinica, (pp. 1655–1684).

Chen, Y., Dong, G., Han, J., Pei, J., Wah, B. W., &Wang, J. (2006). Regression cubes
with lossless compression and aggregation. IEEE Transactions on Knowledge and Data
Engineering, 18(12), 1585–1599.

Cheng, X., Lu, W., & Liu, M. (2015). Identification of homogeneous and heterogeneous
variables in pooled cohort studies. Biometrics, 71(2), 397–403.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. K., &
Robins, J. (2018a). Double machine learning for treatment and causal parameters. The
Econometrics Journal, 21(1), C1–C68.

Chernozhukov, V., Newey, W., & Robins, J. (2018b). Double/de-biased machine learning
using regularized riesz representers. arXiv preprint arXiv:1802.08667.

Chu, A. Y., Giulianini, F., Barratt, B. J., Ding, B., Nyberg, F., Mora, S., Ridker, P. M.,
& Chasman, D. I. (2015). Differential genetic effects on statin-induced changes across
low-density lipoprotein–related measures. Circulation: Cardiovascular Genetics, 8(5),
688–695.

DerSimonian, R. (1996). Meta-analysis in the design and monitoring of clinical trials.
Statistics in medicine, 15(12), 1237–1248.

202



Doiron, D., Burton, P., Marcon, Y., Gaye, A., Wolffenbuttel, B. H., Perola, M., Stolk,
R. P., Foco, L., Minelli, C., Waldenberger, M., et al. (2013). Data harmonization and fed-
erated analysis of population-based studies: the BioSHaRE project. Emerging themes in
epidemiology, 10(1), 12.

Duan, R., Boland, M. R., Liu, Z., Liu, Y., Chang, H. H., Xu, H., Chu, H., Schmid,
C. H., Forrest, C. B., Holmes, J. H., et al. (2020). Learning from electronic health records
across multiple sites: A communication-efficient and privacy-preserving distributed algo-
rithm. Journal of the AmericanMedical Informatics Association, 27(3), 376–385.

Duan, R., Boland, M. R., Moore, J. H., & Chen, Y. (2019). ODAL: A one-shot dis-
tributed algorithm to perform logistic regressions on electronic health records data from
multiple clinical sites. In PSB (pp. 30–41).: World Scientific.

Dukes, O. & Vansteelandt, S. (2019). Uniformly valid confidence intervals for con-
ditional treatment effects in misspecified high-dimensional models. arXiv preprint
arXiv:1903.10199.

Dukes, O. & Vansteelandt, S. (2020). Inference on treatment effect parameters in poten-
tially misspecified high-dimensional models. Biometrika, 108(2), 321––334.

Fan, J., Guo, Y., &Wang, K. (2019). Communication-efficient accurate statistical estima-
tion. arXiv preprint arXiv:1906.04870.

Fan, J., Heckman, N. E., &Wand, M. P. (1995). Local polynomial kernel regression for
generalized linear models and quasi-likelihood functions. Journal of the American Statisti-
cal Association, 90(429), 141–150.

Fan, J. & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature
space. Journal of the Royal Statistical Society: Series B (StatisticalMethodology), 70(5),
849–911.

Feng, C., Wang, H., Chen, T., Tu, X. M., et al. (2014). On exact forms of taylor’s theorem
for vector-valued functions. Biometrika, 101(4), 1003–1003.

Foster, D. P. & George, E. I. (1994). The risk inflation criterion for multiple regression.
The Annals of Statistics, 22(4), 1947–1975.

Franke, A., McGovern, D. P., Barrett, J. C., Wang, K., Radford-Smith, G. L., Ahmad, T.,
Lees, C. W., Balschun, T., Lee, J., Roberts, R., et al. (2010). Genome-wide meta-analysis
increases to 71 the number of confirmed crohn’s disease susceptibility loci. Nature genet-
ics, 42(12), 1118.

203



Friedman, J., Hastie, T., & Tibshirani, R. (2010). A note on the group lasso and a sparse
group lasso. arXiv preprint arXiv:1001.0736.

Gaye, A., Marcon, Y., Isaeva, J., LaFlamme, P., Turner, A., Jones, E. M., Minion, J., Boyd,
A. W., Newby, C. J., Nuotio, M.-L., et al. (2014). DataSHIELD: taking the analysis to
the data, not the data to the analysis. International journal of epidemiology, 43(6), 1929–
1944.

Gaziano, J. M., Concato, J., Brophy, M., Fiore, L., Pyarajan, S., Breeling, J., Whitbourne,
S., Deen, J., Shannon, C., Humphries, D., et al. (2016). Million veteran program: A
mega-biobank to study genetic influences on health and disease. Journal of clinical epi-
demiology, 70, 214–223.

Ghosh, S. & Tan, Z. (2020). Doubly robust semiparametric inference using regularized
calibrated estimation with high-dimensional data. arXiv preprint arXiv:2009.12033.

Graham, B. S., Pinto, C. C. d. X., & Egel, D. (2016). Efficient estimation of data com-
bination models by the method of auxiliary-to-study tilting (ast). Journal of Business &
Economic Statistics, 34(2), 288–301.

Gronsbell, J., Liu, M., Tian, L., & Cai, T. (2020). Efficient estimation and evaluation
of prediction rules in semi-supervised settings under stratified sampling. arXiv preprint
arXiv:2010.09443.

Gronsbell, J. L. & Cai, T. (2018). Semi-supervised approaches to efficient evaluation of
model prediction performance. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 80(3), 579–594.

Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estima-
tion of average treatment effects. Econometrica, 66(2), 315–331.

Han, J. & Liu, Q. (2016). Bootstrap model aggregation for distributed statistical learning.
In Advances in Neural Information Processing Systems (pp. 1795–1803).

Han, P. (2016). Intrinsic efficiency and multiple robustness in longitudinal studies with
drop-out. Biometrika, 103(3), 683–700.

He, Q., Zhang, H. H., Avery, C. L., & Lin, D. (2016). Sparse meta-analysis with high-
dimensional data. Biostatistics, 17(2), 205–220.

204



Houlston, R. S., Webb, E., Broderick, P., Pittman, A. M., Di Bernardo, M. C., Lubbe, S.,
Chandler, I., Vijayakrishnan, J., Sullivan, K., Penegar, S., et al. (2008). Meta-analysis of
genome-wide association data identifies four new susceptibility loci for colorectal cancer.
Nature Genetic, 40(12), 1426–1435.

Hsu, D., Kakade, S., & Zhang, T. (2012). A tail inequality for quadratic forms of sub-
gaussian random vectors. Electronic Communications in Probability, 17, 1–6.

Huang, C. &Huo, X. (2015). A distributed one-step estimator. arXiv preprint
arXiv:1511.01443.

Huang, J., Ma, S., Xie, H., & Zhang, C.-H. (2009). A group bridge approach for variable
selection. Biometrika, 96(2), 339–355.

Huang, J. & Zhang, T. (2010). The benefit of group sparsity. The Annals of Statistics,
38(4), 1978–2004.

Huang, S., Huang, J., Cai, T., Dahal, K. P., Cagan, A., He, Z., Stratton, J., Gorelik, I.,
Hong, C., Cai, T., et al. (2020). Impact of icd10 and secular changes on electronic medical
record rheumatoid arthritis algorithms. Rheumatology, 59(12), 3759–3766.

Janková, J. & Van De Geer, S. (2016). Confidence regions for high-dimensional general-
ized linear models under sparsity. arXiv preprint arXiv:1610.01353.

Javanmard, A., Javadi, H., et al. (2019). False discovery rate control via debiased lasso.
Electronic Journal of Statistics, 13(1), 1212–1253.

Javanmard, A. &Montanari, A. (2014). Confidence intervals and hypothesis testing for
high-dimensional regression. The Journal ofMachine Learning Research, 15(1), 2869–
2909.

Jia, J., Xie, F., Xu, L., et al. (2019). Sparse poisson regression with penalized weighted
score function. Electronic Journal of Statistics, 13(2), 2898–2920.

Jones, E., Sheehan, N., Masca, N., Wallace, S., Murtagh, M., & Burton, P. (2012).
DataSHIELD–shared individual-level analysis without sharing the data: a biostatistical
perspective. Norsk epidemiologi, 21(2).

Jordan, M. I., Lee, J. D., & Yang, Y. (2019). Communication-efficient distributed statisti-
cal inference. Journal of the American Statistical Association, 526(114), 668–681.

205



Kang, J. D. & Schafer, J. L. (2007). Demystifying double robustness: A comparison of
alternative strategies for estimating a population mean from incomplete data. Statistical
science, 22(4), 523–539.

Kawakita, M. & Kanamori, T. (2013). Semi-supervised learning with density-ratio estima-
tion. Machine learning, 91(2), 189–209.

Kho, A. N., Pacheco, J. A., Peissig, P. L., Rasmussen, L., Newton, K. M., Weston, N.,
Crane, P. K., Pathak, J., Chute, C. G., Bielinski, S. J., et al. (2011). Electronic medi-
cal records for genetic research: results of the emerge consortium. Science translational
medicine, 3(79), 79re1–79re1.

Kim, Y., Kwon, S., & Choi, H. (2012). Consistent model selection criteria on high di-
mensions. Journal ofMachine Learning Research, 13(Apr), 1037–1057.

Kohane, I. S. (2011). Using electronic health records to drive discovery in disease ge-
nomics. Nature Reviews Genetics, 12(6), 417–428.

Kohane, I. S., Churchill, S. E., &Murphy, S. N. (2012). A translational engine at the na-
tional scale: informatics for integrating biology and the bedside. Journal of the American
Medical Informatics Association, 19(2), 181–185.

Kozak, L. & Anunciado-Koza, R. (2009). Ucp1: its involvement and utility in obesity.
International journal of obesity, 32(S7), S32.

Kuchibhotla, A. K. & Chakrabortty, A. (2018). Moving beyond sub-gaussianity in high-
dimensional statistics: Applications in covariance estimation and linear regression. arXiv
preprint arXiv:1804.02605.

Lee, J. D., Liu, Q., Sun, Y., & Taylor, J. E. (2017). Communication-efficient sparse regres-
sion. Journal ofMachine Learning Research, 18(5), 1–30.

Li, W., Liu, H., Yang, P., & Xie, W. (2016). Supporting regularized logistic regression
privately and efficiently. PloS one, 11(6), e0156479.

Liao, K. P., Ananthakrishnan, A. N., Kumar, V., Xia, Z., Cagan, A., Gainer, V. S., Gory-
achev, S., Chen, P., Savova, G. K., Agniel, D., et al. (2015). Methods to develop an elec-
tronic medical record phenotype algorithm to compare the risk of coronary artery disease
across 3 chronic disease cohorts. PLoS One, 10(8), e0136651.

206



Liao, K. P., Cai, T., Gainer, V., Goryachev, S., Zeng-treitler, Q., Raychaudhuri, S.,
Szolovits, P., Churchill, S., Murphy, S., Kohane, I., et al. (2010). Electronic medical
records for discovery research in rheumatoid arthritis. Arthritis care & research, 62(8),
1120–1127.

Liao, K. P., Sun, J., Cai, T. A., Link, N., Hong, C., Huang, J., Huffman, J. E., Gronsbell,
J., Zhang, Y., & Ho, Y.-L. (2019). High-throughput multimodal automated phenotyping
(map) with application to phewas. Journal of the AmericanMedical Informatics Associa-
tion, 26(11), 1255–1262.

Lin, X. & Carroll, R. J. (2006). Semiparametric estimation in general repeated measures
problems. Journal of the Royal Statistical Society: Series B (StatisticalMethodology), 68(1),
69–88.

Liu, A. & Ziebart, B. D. (2017). Robust covariate shift prediction with general losses and
feature views. arXiv preprint arXiv:1712.10043.

Liu, M., Xia, Y., Cho, K., & Cai, T. (2021a). Integrative high dimensional multiple testing
with heterogeneity under data sharing constraints. Journal ofMachine Learning Research,
22(126), 1–26.

Liu, M., Zhang, Y., & Zhou, D. (2021b). Double/debiased machine learning for logistic
partially linear model. The Econometrics Journal, 24(3), 559–588.

Liu, Q. & Ihler, A. T. (2014). Distributed estimation, information loss and exponential
families. In Advances in neural information processing systems (pp. 1098–1106).

Liu, W. (2013). Gaussian graphical model estimation with false discovery rate control.
Ann. Statist., 41(6), 2948–2978.

Liu, W. & Luo, S. (2014). Hypothesis testing for high-dimensional regression models.
Technical report.

Liu, W. & Shao, Q.-M. (2014). Phase transition and regularized bootstrap in large-scale
t-tests with false discovery rate control. The Annals of Statistics, 42(5), 2003–2025.

Lounici, K., Pontil, M., Van De Geer, S., Tsybakov, A. B., et al. (2011). Oracle inequalities
and optimal inference under group sparsity. The Annals of Statistics, 39(4), 2164–2204.

Lu, C.-L., Wang, S., Ji, Z., Wu, Y., Xiong, L., Jiang, X., & Ohno-Machado, L. (2015).
Webdisco: a web service for distributed cox model learning without patient-level data
sharing. Journal of the AmericanMedical Informatics Association, 22(6), 1212–1219.

207



Ma, R., Tony Cai, T., & Li, H. (2020). Global and simultaneous hypothesis testing for
high-dimensional logistic regression models. Journal of the American Statistical Associa-
tion, 116(534), 1–15.

Maity, S., Sun, Y., & Banerjee, M. (2019). Communication-efficient integrative regression
in high-dimensions. arXiv preprint arXiv:1912.11928.

Mendelson, S., Pajor, A., & Tomczak-Jaegermann, N. (2007). Reconstruction and sub-
gaussian operators in asymptotic geometric analysis. Geometric and Functional Analysis,
17(4), 1248–1282.

Mendelson, S., Pajor, A., & Tomczak-Jaegermann, N. (2008). Uniform uncertainty prin-
ciple for bernoulli and subgaussian ensembles. Constructive Approximation, 28(3), 277–
289.

Minsker, S. (2019). Distributed statistical estimation and rates of convergence in normal
approximation. Electronic Journal of Statistics, 13(2), 5213–5252.

Mitra, R., Zhang, C.-H., et al. (2016). The benefit of group sparsity in group inference
with de-biased scaled group lasso. Electronic Journal of Statistics, 10(2), 1829–1873.

Nardi, Y., Rinaldo, A., et al. (2008). On the asymptotic properties of the group lasso
estimator for linear models. Electronic Journal of Statistics, 2, 605–633.

Negahban, S. N., Ravikumar, P., Wainwright, M. J., Yu, B., et al. (2012). A unified frame-
work for high-dimensional analysis ofm-estimators with decomposable regularizers. Sta-
tistical Science, 27(4), 538–557.

Newey, W. K. & Robins, J. R. (2018). Cross-fitting and fast remainder rates for semipara-
metric estimation. arXiv preprint arXiv:1801.09138.

Ning, Y., Sida, P., & Imai, K. (2020). Robust estimation of causal effects via a high-
dimensional covariate balancing propensity score. Biometrika, 107(3), 533–554.

Nissen, S. E., Tuzcu, E. M., Schoenhagen, P., Crowe, T., Sasiela, W. J., Tsai, J., Orazem, J.,
Magorien, R. D., O’Shaughnessy, C., & Ganz, P. (2005). Statin therapy, ldl cholesterol,
c-reactive protein, and coronary artery disease. New England Journal ofMedicine, 352(1),
29–38.

Panagiotou, O. A., Willer, C. J., Hirschhorn, J. N., & Ioannidis, J. P. (2013). The power
of meta-analysis in genome-wide association studies. Annual review of genomics and hu-
man genetics, 14, 441–465.

208



Pollard, D. (1990). Empirical processes: theory and applications. InNSF-CBMS regional
conference series in probability and statistics (pp. i–86).: JSTOR.

Qin, J., Shao, J., & Zhang, B. (2008). Efficient and doubly robust imputation for
covariate-dependent missing responses. Journal of the American Statistical Association,
103(482), 797–810.

Rajpathak, S. N., Kumbhani, D. J., Crandall, J., Barzilai, N., Alderman, M., & Ridker,
P. M. (2009). Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Dia-
betes care, 32(10), 1924–1929.

Raskutti, G., Wainwright, M. J., & Yu, B. (2011). Minimax rates of estimation for high-
dimensional linear regression over lq-balls. IEEE transactions on information theory,
57(10), 6976–6994.

Rasmy, L., Wu, Y., Wang, N., Geng, X., Zheng, W. J., Wang, F., Wu, H., Xu, H., & Zhi,
D. (2018). A study of generalizability of recurrent neural network-based predictive mod-
els for heart failure onset risk using a large and heterogeneous ehr data set. Journal of
biomedical informatics, 84, 11–16.

Reddi, S. J., Poczos, B., & Smola, A. (2015). Doubly robust covariate shift correction. In
Twenty-Ninth AAAI Conference on Artificial Intelligence.

Rivasplata, O. (2012). Subgaussian random variables: An expository note. Internet publi-
cation, PDF.

Rodrigues, A. C., Sobrino, B., Genvigir, F. D. V., Willrich, M. A. V., Arazi, S. S., Dorea,
E. L., Bernik, M. M. S., Bertolami, M., Faludi, A. A., Brion, M., et al. (2013). Genetic
variants in genes related to lipid metabolism and atherosclerosis, dyslipidemia and atorvas-
tatin response. Clinica Chimica Acta, 417, 8–11.

Rothe, C. & Firpo, S. (2015). Semiparametric two-step estimation using doubly robust
moment conditions.

Rotnitzky, A., Lei, Q., Sued, M., & Robins, J. M. (2012). Improved double-robust esti-
mation in missing data and causal inference models. Biometrika, 99(2), 439–456.

Rudelson, M. & Zhou, S. (2012). Reconstruction from anisotropic randommeasure-
ments. In Conference on Learning Theory (pp. 10–1).

Semenova, V. & Chernozhukov, V. (2020). Debiased machine learning of conditional
average treatment effects and other causal functions. The Econometrics Journal, 24(2),
264––289.

209



Shen, X. (1997). On methods of sieves and penalization. The Annals of Statistics, 25(6),
2555–2591.

Shu, H. & Tan, Z. (2018). Improved estimation of average treatment effects on
the treated: Local efficiency, double robustness, and beyond. arXiv preprint
arXiv:1808.01408.

Smucler, E., Rotnitzky, A., & Robins, J. M. (2019). A unifying approach for doubly-
robust ℓ1-regularized estimation of causal contrasts. arXiv preprint arXiv:1904.03737.

Stewart, G. (2010). Meta-analysis in applied ecology. Biology letters, 6(1), 78–81.

Swerdlow, D. I., Preiss, D., Kuchenbaecker, K. B., Holmes, M. V., Engmann, J. E., Shah,
T., Sofat, R., Stender, S., Johnson, P. C., Scott, R. A., et al. (2015). Hmg-coenzyme a
reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and
randomised trials. The Lancet, 385(9965), 351–361.

Tan, Z. (2010). Bounded, efficient and doubly robust estimation with inverse weighting.
Biometrika, 97(3), 661–682.

Tan, Z. (2020). Model-assisted inference for treatment effects using regularized calibrated
estimation with high-dimensional data. Annals of Statistics, 48(2), 811–837.

Tang, L., Zhou, L., & Song, P. X.-K. (2016). Method of divide-and-combine in regular-
ized generalized linear models for big data. arXiv preprint arXiv:1611.06208.

Tong, J., Duan, R., Li, R., Scheuemie, M. J., Moore, J. H., & Chen, Y. (2020). Robust-
odal: Learning from heterogeneous health systems without sharing patient-level data. In
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, volume 25 (pp.
695).: World Scientific.

Vaiter, S., Deledalle, C., Peyré, G., Fadili, J., & Dossal, C. (2012). The degrees of freedom
of the group lasso. arXiv preprint arXiv:1205.1481.

Van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R., et al. (2014). On asymptotically
optimal confidence regions and tests for high-dimensional models. The Annals of Statis-
tics, 42(3), 1166–1202.

Van de Geer, S. A. et al. (2008). High-dimensional generalized linear models and the lasso.
The Annals of Statistics, 36(2), 614–645.

van der Laan, M. J. & Gruber, S. (2010). Collaborative double robust targeted maximum
likelihood estimation. The international journal of biostatistics, 6(1).

210



Van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge University Press.

Vermeulen, K. & Vansteelandt, S. (2015). Bias-reduced doubly robust estimation. Journal
of the American Statistical Association, 110(511), 1024–1036.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in
data science, volume 47. Cambridge University Press.

Wang, H. & Leng, C. (2007). Unified lasso estimation by least squares approximation.
Journal of the American Statistical Association, 102(479), 1039–1048.

Wang, H. & Leng, C. (2008). A note on adaptive group lasso. Computational statistics &
data analysis, 52(12), 5277–5286.

Wang, H., Li, B., & Leng, C. (2009). Shrinkage tuning parameter selection with a diverg-
ing number of parameters. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 71(3), 671–683.

Wang, J., Kolar, M., Srebro, N., & Zhang, T. (2017). Efficient distributed learning with
sparsity. In Proceedings of the 34th International Conference onMachine Learning-Volume
70 (pp. 3636–3645).

Wang, X., Peng, P., & Dunson, D. B. (2014). Median selection subset aggregation for
parallel inference. In Advances in neural information processing systems (pp. 2195–2203).

Waters, D. D., Ho, J. E., Boekholdt, S. M., DeMicco, D. A., Kastelein, J. J., Messig, M.,
Breazna, A., & Pedersen, T. R. (2013). Cardiovascular event reduction versus new-onset
diabetes during atorvastatin therapy: effect of baseline risk factors for diabetes. Journal of
the American College of Cardiology, 61(2), 148–152.

Wen, J., Yu, C.-N., & Greiner, R. (2014). Robust learning under uncertain test distribu-
tions: Relating covariate shift to model misspecification. In ICML (pp. 631–639).

Weng, C., Shah, N. H., &Hripcsak, G. (2020). Deep phenotyping: Embracing com-
plexity and temporality—towards scalability, portability, and interoperability. Journal of
Biomedical Informatics, 105, 103433.

Wolfson, M., Wallace, S. E., Masca, N., Rowe, G., Sheehan, N. A., Ferretti, V., LaFlamme,
P., Tobin, M. D., Macleod, J., Little, J., et al. (2010). DataSHIELD: resolving a conflict in
contemporary bioscience—performing a pooled analysis of individual-level data without
sharing the data. International journal of epidemiology, 39(5), 1372–1382.

211



Wu, Y., Jiang, X., Kim, J., & Ohno-Machado, L. (2012). Grid binary logistic re gression
(glore): building shared models without sharing data. Journal of the AmericanMedical
Informatics Association, 19(5), 758–764.

Xia, Y., Cai, T., & Cai, T. T. (2018a). Two-sample tests for high-dimensional linear re-
gression with an application to detecting interactions. Statistica Sinica, 28, 63–92.

Xia, Y., Cai, T. T., & Li, H. (2018b). Joint testing and false discovery rate control in high-
dimensional multivariate regression. Biometrika, 105(2), 249–269.

Xie, F. & Xiao, Z. (2020). Consistency of ℓ1 penalized negative binomial regressions.
Statistics & Probability Letters, (pp. 108816).

Yu, S., Chakrabortty, A., Liao, K. P., Cai, T., Ananthakrishnan, A. N., Gainer, V. S.,
Churchill, S. E., Szolovits, P., Murphy, S. N., Kohane, I. S., et al. (2017). Surrogate-
assisted feature extraction for high-throughput phenotyping. Journal of the American
Medical Informatics Association, 24(e1), e143–e149.

Yu, S., Liao, K. P., Shaw, S. Y., Gainer, V. S., Churchill, S. E., Szolovits, P., Murphy, S. N.,
Kohane, I. S., & Cai, T. (2015). Toward high-throughput phenotyping: unbiased auto-
mated feature extraction and selection from knowledge sources. Journal of the American
Medical Informatics Association, 22(5), 993–1000.

Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (StatisticalMethodology), 68(1),
49–67.

Zaïtsev, A. Y. (1987). On the Gaussian approximation of convolutions under multidi-
mensional analogues of SN Bernstein’s inequality conditions. Probab. Theory Rel., 74(4),
535–566.

Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., de Bakker, P. I.,
Abecasis, G. R., Almgren, P., Andersen, G., et al. (2008). Meta-analysis of genome-wide
association data and large-scale replication identifies additional susceptibility loci for type
2 diabetes. Nature genetics, 40(5), 638.

Zeng, Q. T., Goryachev, S., Weiss, S., Sordo, M., Murphy, S. N., & Lazarus, R. (2006).
Extracting principal diagnosis, co-morbidity and smoking status for asthma research: eval-
uation of a natural language processing system. BMCmedical informatics and decision
making, 6(1), 30.

212



Zhang, C.-H. & Zhang, S. S. (2014). Confidence intervals for low dimensional param-
eters in high dimensional linear models. Journal of the Royal Statistical Society: Series B
(StatisticalMethodology), 76(1), 217–242.

Zhang, Y., Li, R., & Tsai, C.-L. (2010). Regularization parameter selections via generalized
information criterion. Journal of the American Statistical Association, 105(489), 312–323.

Zhao, P. & Yu, B. (2006). On model selection consistency of lasso. Journal ofMachine
learning research, 7(Nov), 2541–2563.

Zhao, Q. & Percival, D. (2017). Entropy balancing is doubly robust. Journal of Causal
Inference, 5(1).

Zhou, N. & Zhu, J. (2010). Group variable selection via a hierarchical lasso and its oracle
property. arXiv preprint arXiv:1006.2871.

Zhu, Y., Bradic, J., et al. (2018). Significance testing in non-sparse high-dimensional linear
models. Electronic Journal of Statistics, 12(2), 3312–3364.

Zöller, D., Lenz, S., & Binder, H. (2018). Distributed multivariable modeling for signa-
ture development under data protection constraints. arXiv preprint arXiv:1803.00422.

Zolotarev, V. M. (1961). Concerning a certain probability problem. Theory Probab. Appl.,
6(2), 201–204.

213


