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Dynamics of Algorithmic Fairness

Abstract

The rise of machine learning-based predictive models in making decisions of profound social im-
pact has spurred study of those technical properties that may bear on the moral and political char-
acter of their deployment. One area of normative concern that has received particularly heightened
scrutiny is the fairness of the outcomes that data-based classification tools issue. Much computer sci-
ence and mathematics-based research in the fields of algorithmic fairness and fair machine learning
looks to diagnose when classifiers may be engaging in discrimination or otherwise generating unfair
outputs and to prevent such outcomes using a variety of methods that seeks to alter the classifier’s
behavior and thus the outcomes it produces.

This dissertation comprises contributions to the burgeoning field of algorithmic fairness that,
rather than focusing on the internal workings of an algorithmic system itself, centers instead the in-
teraction between machine classifications and the broader societal contexts within which data-based
predictive tools are embedded. Each of these works thus conceive of algorithmic tools as only one
component of a larger sociotechnical system that distributes key social benefits and burdens. Over
the span of the three projects contained within—“Disparate Effects of Strategic Manipulation,” “A
Short-term Intervention for Long-term Fairness,” and “Fair Classification and Social Welfare”—it
considers changes to institutional incentive structures that data-based classification introduces, the
strategic responses of agents who interact with such systems, and the welfare impacts of various fair-
ness constraints that have been proffered in the field. Approaching the fairness problem with this
wider lens of analysis builds in a broader and longer-term perspective from the start and necessar-
ily draws on methods and insights beyond that of applied mathematics and computer science. In
so doing, this research makes distinctive contributions to matters that are central in the scholarly
discourse in algorithmic fairness, such as debate about fairness-accuracy trade-offs in algorithmic
decision-making and the strategic interplay between machine classifications and agent behaviors.
This dissertation therefore both advocates for and itself exemplifies a reorientation to questions
of fairness by shifting focus from the machine as the central object of interest in favor of a broader
vantage that addresses the broader social dynamics of algorithmic fairness. This approach not only
challenges the standard methodological tacks taken in the field of algorithmic fairness but also gen-
erates insights that track more closely to how these tools actually operate in the world to effect key
social outcomes. It thus is better suited to guiding work in algorithmic fairness towards the kinds of
interventions we will need to construct a more equitable society.
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1
Introduction

Before there was anything nearing a fully-fledged discipline or an established research community

dedicated to studying the so-called fairness properties of algorithmic systems, a small group of schol-

ars identified a risk of using machine classification tools in decision procedures that distribute key

social benefits and burdens. Works such as Dwork et al.’s “Fairness Through Awareness”30 and

Kamishima et al.’s “Fairness-aware Learning through Regularization Approach”53 drew out a po-

tential problem inherent to the task of machine-based classification. The aim of these classification
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systems is to draw distinctions among individuals, sorting them into types vis-à-vis some outcome

of interest, and labeling them accordingly. But not all ways of differentiating individuals are per-

missible; some are morally wrongful and even legally prohibited. This raises a challenge: How can

we make sure that data-based classifiers, tools that are optimized to be highly discriminating in-

struments of classification, do not discriminate in the wrongful sense on the basis of salient social

groups like sex and race? How can those who design machine learning systems ensure that when

they are deployed in systems that distribute important social goods such as access to loans, employ-

ment opportunities, and second-chances at public life, that they do not systematically exclude indi-

viduals on account of their race, sex, religion, and so on? How would we even know whether and

when the highly complex patterns and distinctions that data-based algorithms trace out constitute

unfair or discriminatory classification? And most importantly, how can we prevent classifiers from

engaging in such discrimination?

These are the 10,000 foot questions of algorithmic fairness. Early works in computer science

formalized this problem in distinctive ways by defining mathematical or computational notions

of “fairness” or “unfairness” or “discrimination,” and then providing approaches to resolving fair-

ness problems or describing conditions under which solutions could or could not be found. The

framework set by these early papers for how to approach technical questions of algorithmic fairness

has remained highly influential to this day. These works also set the foundation upon which, in the

following several years, what I will call the first wave of research on algorithmic fairness took place.

This wave of works investigated formal properties of the classification system as the primary site of

fairness or discrimination concerns. Seminal works such as Hardt et al.’s “Equality of Opportunity

in Supervised Learning” and Zafar et al.’s “Fairness Constraints: Mechanisms for Fair Classification”

probe the internal dynamics of classification and ask questions such as: How does the classifier treat

the data inputs it receives? How well does a classifier’s output meet various mathematical criteria of

fairness? Research in this vein typically centers on a machine’s optimization problem or a model of
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classifier behavior and then devises methods to ensure some formal fairness definition is met given

a set of assumptions about the classifier setup. This overall approach has contributed greatly to our

understanding of the many ways that algorithmic systems can raise concerns of discrimination. Such

work has offered up many mathematical formalizations of fairness that have intuitive appeal and can

be implemented in practice, illuminated the different sources of bias in models constructed from

data, and shown the prospects and limitations of various de-biasing methods, among other key in-

sights.

These formalizations of the problem, however, abstract from an important feature of algorithmic

decision-making in practice. Socially impactful algorithms do not do anything on their own. They

are embedded within existing institutions, plug into other pipelines of decision-making and into

larger systems of rules and procedures. This integration with other features of social life is crucial to

explaining how numbers and code in a machine can reach out into the world to bestow benefits or

inflict harms on real people. Work that approaches fairness by looking to explicitly account for these

factors outside of the machine make for what I will call a second wave of research in algorithmic

fairness. And I take the works contained in this dissertation to be a small part of this overall effort.

I have titled this dissertation “Dynamics of Algorithmic Fairness” because the approach that I

take to questions of fairness is centrally concerned with developing a perspective on fair machine

learning that centers the interplay between machines, humans, institutions, and social structures.

Importantly, however, my research project is still rooted in a mathematical perspective despite its

emphasis on the so-called “sociotechnical” nature of algorithmic systems. I take sociotechnical fea-

tures as a starting point of my analyses but proceed with a primarily mathematical and computa-

tional orientation, using tools from, as examples, learning theory and game theory. Still, while the

works in this dissertation are in conversation with computer scientists working in the first wave of

research in algorithmic fairness, rather than taking their setups and questions as given, I develop a

distinctive formulation of longer-standing problems by highlighting the definite forms that algorith-
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mic decision-making takes when such systems are embedded in a dynamic social world.

This shifted orientation gives rise to two themes that run through my research projects in algo-

rithmic fairness, and I will now discuss each in turn. The first conveys a distinctive methodological

tack taken in the chapters that follow. Since I am centrally interested in what arises out of the in-

terplay between our algorithmic systems and the social systems within which they are embedded,

the lens I take to the problem of fairness has a notably wider scope. I analyze classifier behavior and

outputs by considering how agents interact with machine classification against a background social

structure and set of institutions. This wider lens of analysis comprises of three key features:

1. Agents who interact with machines are strategic and heterogeneous.

2. Ours is a world characterized by persistent social inequalities.

3. Classification outcomes plug into and affect other features of social systems.

The first point reminds us that machine classifiers draw on data that are produced by individuals

who are not just random draws from a probability distribution. They are reactive; they are strategic.

Their behaviors are a function of their interests and their environment. Insofar as agents have differ-

ent environments and often different interests, these data are heterogeneous in a deep sense. Models

of machine behavior must explicitly account for the fundamentally social nature of data.

Second, if the world is indeed characterized by social inequality, then that fact must have some

origin, some story that explains how it is so, which must be accounted for explicitly in one’s model

of it. One cannot address social inequality, in my view, without having a theory for how it arises and

why it continues to be such a seemingly permanent fixture in our world.

The third point ties all this together: the social system is a system that links together agents, in-

stitutions, actions, beliefs, across time. Presently observed data are the product of a long lineage of

previous social choices and conditions, and by the same token, a classification system’s issued out-

comes will serve to have ripple effects into the future. A dynamic model incorporates these features
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of temporality to string together a continuous picture of the world to explain why data look the

way they do now, why people and in turn, why data-based machines behave the way they do, and

what inertial forces exist to lock us into various steady state equilibria. My claim is that we can only

make sense of these crucial facts if we pursue a dynamic and historical understanding of our social

systems.

Two projects within this dissertation are illustrative of this wider lens of analysis. In Chapter 2, ti-

tled “The Disparate Effects of Strategic Manipulation,” Nicole Immorlica, JennWortman Vaughan,

and I probe the fairness properties of data-based classifiers that are optimized for a setting of strate-

gic classification. We develop a model of strategic interaction between, on the one hand, those can-

didateswho are being classified, and on the other, the learner who is doing the classifying. Candi-

dates in our model are heterogeneous in their strategic behaviors; their ability to respond strategi-

cally to a classifier is a function of the costs they face when looking to “trick” a learner by manipu-

lating their features. In cases of real world classification, an agent’s costs are not simply a function of

their personal interest in receiving a positive classification but is bound up in a complex web of so-

cial factors that affect her ability to pursue certain action responses. In a setting of social inequality,

those in disadvantaged groups face systematically higher costs than those in advantaged groups. Our

results show that whenever one group’s costs are higher than the other’s in the strategic classification

game, the learner’s equilibrium strategy exhibits an inequality-reinforcing phenomenon wherein

the learner erroneously admits some candidates who are members of the advantaged group, while

erroneously excluding some candidates who are members of the disadvantaged group.

The fact that interplay between a classifier and the broader strategic environment within which

it is embedded may result in inequality-reinforcing feedback loops is a theme that runs also through

the following chapter, titled “A Short-term Intervention for Long-term Fairness in the Labor Mar-

ket.” In this chapter, Yiling Chen and I build a dynamic reputational model of firms and agents

contracting in a labor market, which shows how unequal group outcomes may be immovable even
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when employers’ hiring decisions are bound by an input-output notion of “individual fairness.”

This is precisely because the interaction between heterogeneous agents belonging to different social

groups and firms generates feedback effects resulting from groups’ divergent accesses to resources

and as a result, investment choices, which then serve to reinforce asymmetric outcomes over time.

To counter this outcome, we construct a dual labor market composed of a Temporary Labor Mar-

ket (TLM), in which firms’ hiring strategies are constrained to ensure statistical parity of workers

granted entry into the pipeline, and a Permanent Labor Market (PLM), in which firms hire top

performers as desired. Individual worker reputations produce externalities for their group; the cor-

responding feedback loop raises the collective reputation of the initially disadvantaged group via a

TLM fairness intervention that need not be permanent. The feedback mechanism of the dynamic

system is thus co-opted to bring about a regime of group-equitable outcomes.

The second theme that is characteristic of my works in this dissertation concerns a set of ques-

tions about trade-offs that have been central to the field of algorithmic fairness since its inception

and on which my approach sheds, I think, distinctive and illuminating light. Questions of trade-offs

concern how different desiderata of predictive algorithms should be weighed against each other.

How should an interest in accuracy be traded-off for a concern for fairness? Some researchers have

taken the existence of such trade-offs—the fact that one cannot simultaneously make progress on

a system’s fairness properties without losing progress on the accuracy front—to be ”inevitable”

features of machine classification24,36,61. Others have taken trade-offs to be an artifact of label bias

or some other contingent assumption about the data that are not true in many cases91,29. More

broadly, the debate centers the question of whether in the realm of algorithmic decision-making,

we are essentially in a game of compromises, or whether, under certain circumstances, a win-win is

possible. This matter has been taken to be one of the most fundamental disputes in the field.

An analysis that takes a dynamic approach and embeds algorithms in particular social and eco-
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nomic contexts shows the limitations of the standard framings of the trade-offs question, guides

towards more interesting dimensions of the question, and also lends new insight into the problem

more generally. My works enter the debate by bringing to light two facts and from there, analyz-

ing questions of trade-offs from quite a different angle. First, once we take the problem of fairness

to be a problem that emerges out of the interaction between algorithms and the network of social

institutions within which they are embedded, the field’s standard notions of fairness and accu-

racy no longer appear as the only central values at stake. Other values—values such as welfare and

efficiency—emerge as normatively significant as well and how these values trade-off against fairness

and accuracy is not well understood. For example, as I show in an extension of the strategic classi-

fication model in Chapter 2, even when members of a disadvantaged group have their higher costs

subsidized by the learner, they are not necessarily made better-off by their greater ability to manipu-

late. Here we prove a rather paradoxical result about trade-offs: there exist cases in which providing

a subsidy improves only the learner’s utility while actually making both candidate groups worse-

off—even the disadvantaged group that receives the subsidy.

Second, conceiving of algorithms as a part of a dynamic social system that inherits data from the

past and produces results that play a hand in influencing outcomes well into the future reveals the

standard trade-offs conversation to be besot with a troubling ambiguity. When precisely are we to

evaluate an algorithm’s ”fairness” and ”accuracy”? What does it mean to claim that an algorithm

is fair? At what time horizon are we even evaluating an algorithm’s fairness or accuracy? If, as dy-

namic models show, the accuracy and fairness features of some system change over time, then there

is no sense in which an algorithm just is or is not fair, or is or is not accurate. Fairness and accuracy

claims that may hold at a given point in time do not hold necessarily for any later point in time. This

is exemplified in our model of the labor market in Chapter 3 within which the fairness constraint

that we propose does not immediately realize fair outcomes; it only generates group-equitable out-

comes at steady-state in the long-term. Still, we show that the move to the group-fair regime may be
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desirable even for those who care only about the efficiency of the labor market or the welfare of em-

ployers. We prove that there exist market conditions under which the group-equitable equilibrium

Pareto-dominates the group-inequitable ones arising from strategies that statistically discriminate or

employ a “group-blind” criterion. Hence, the trade-off story in this setting is certainly more compli-

cated but also more optimistic.

I tackle the relationship between fairness and welfare head on in Chapter 4’s “Fair Classification

and Social Welfare,” a project in which Yiling Chen and I present a welfare-based analysis of fair clas-

sification regimes. We ask about the broad set of works that adopt formal parity-based definitions

of fairness the following question: How do leading notions of fairness as defined by computer sci-

entists map onto longer-standing notions of social welfare? Our main findings assess the welfare

impact of fairness-constrained empirical risk minimization programs on the individuals and groups

who are subject to their outputs. Our method of analysis, which maps changes in “fairness” space

into changes in “welfare” space, assesses whether and which fair learning procedures result in classifi-

cation outcomes that make groups better-off welfare-wise. Do gains in fairness always result in gains

in the welfare of disadvantaged groups and losses in the welfare of advantaged group? In a surpris-

ing result, we show that applying stricter fairness criteria codified as parity constraints can worsen

welfare outcomes for both groups. More generally, always preferring “more fair” classifiers does not

abide by the Pareto Principle—a fundamental axiom of social choice theory and welfare economics.

This makes for another complication in the standard ”trade-offs” narrative: improving along the axis

of “fairness” may not necessarily translate into actually improved outcomes for any individuals or

groups. This raises an important question: what exactly are gains in fairness for?

The works in this dissertation build upon while also challenging paradigms in the algorithmic

fairness literature. Even in the short time that has passed since the field’s first significant wave of

work, many scholars in the field have recognized the need to consider classifier behaviors as only one
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aspect of sociotechnical systems, which must as a whole be the target of inquiry into matters of fair-

ness and discrimination. I take this to be a healthy sign of a growing consensus within the commu-

nity about the limitations of an approach to fairness that considers only the computational features

of some classifier or algorithm and an indication of the field’s continued development. I thus close

this dissertation with some reflections on the field’s progression in the time I have been fortunate to

contribute to it, and some suggestions for fruitful next steps that the community of scholars work-

ing on algorithmic fairness can take on in the coming years to both build on past strands of research

as well as grow in new directions.
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2
Disparate Effects of Strategic Manipulation

2.1 Introduction

The expanding realm of algorithmic decision-making has not only altered the ways that institutions

conduct their day-to-day operations, but has also had a profound impact on how individuals in-

terface with these institutions. It has changed the ways we communicate with each other, receive

crucial resources, and are granted important social and economic opportunities. In theory, algo-
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rithms have great potential to reform existing systems to become both more efficient and equitable,

but as exposed by various high-profile investigations87,77,6,34, prediction-based models that make

or assist with consequential decisions are, in practice, highly prone to reproducing past and current

patterns of social inequality.

While few algorithmic systems are explicitly designed to be discriminatory, there are many un-

derlying forces that drive socially biased outcomes. For one, since most of the features used in these

models are based on proxy, rather than causal, variables, outputs often reflect the various structural

factors that bear on a person’s life opportunities rather than the individualized characteristics that

decision-makers often seek. Much of the previous work in algorithmic fairness has examined a par-

ticular undesirable proxy effect in which a classifier’s features may be linked to socially significant

and legally protected attributes like race and gender, interpreting correlations that have arisen due to

centuries of accumulated disadvantage as genuine attributes of a group of people marked as mem-

bers of some social category.51,80,60,43

But algorithmic models do not only generate outcomes that passively correlate with social ad-

vantages or disadvantages. These tools also provoke a certain type of reactivity, in which agents see a

classifier as a guide to action and actively change their behavior to accord with the algorithm’s pref-

erences. On this view, classifiers both evaluate and animate their subjects, transforming static data

into strategic responses. Just as an algorithm’s use of certain features differentially advantages some

populations over others, the room for strategic response that is inherent in many automated sys-

tems also naturally favors social groups of privilege. Admissions procedures that heavily weight SAT

scores motivate students who have the means to take advantage of test prep courses and even take

the exammultiple times. Loan approval systems that rely on existing lines of credit as an indication

of creditworthiness encourage those who can to apply for more credit in their name.

Thus an algorithm that scores applicants to determine how a resource should be allocated sets a

standard for what an ideal candidate’s features ought to be. A responsive subject would look to alter
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how she appears to a classifier in order to increase her likelihood of gaining the system’s approval.

But since reactivity typically requires informational and material resources that are not equally ac-

cessible to all. Thus, even when an algorithm draws on features that seem to arise out of individual

effort, these metrics can be skewed to favor those who are more readily able to alter their features.

In the machine learning literature, agent reactivity to a classifier is termed “strategic manipula-

tion.” Since previous work in strategic classification has typically depicted interactions between the

agent who selects the classifier, the so-called learner, and those candidates who are being classified

as antagonistic, such actions are usually viewed as distortions that aim to undermine the published

classifier.15,44 As shown in Hardt et al.,44 a learner who anticipates these responses can, under cer-

tain formulations of agent costs, adapt to protect against the misclassification errors that would

have resulted frommanipulation, recovering an accuracy level that is arbitrarily close to the theo-

retical maximum. These results are welcome news for a learner who correctly assesses agents’ best-

responses. Indeed in most strategic manipulation models, agents are depicted as equally able to

pursue manipulation, allowing the learner who knows their costs to accurately preempt strategic

responses. While there are occasions in which agents do largely face homogeneous costs—an even

playing field, as it were—in many other social uses of machine learning tools, agents encounter dif-

fering costs of altering the attributes that are ultimately observed and assessed by the classifier. As

such, in this chapter we ask, “What are the effects of strategic classification and manipulation in a

world of social stratification?”

As in previous work in strategic classification, we cast the problem as a Stackelberg game in which

the learner moves first and publishes her classifier before candidates best-respond and manipulate

their features.15,44,4,25 But in contrast with the models in previous work by Brückner and Scheffer15

and Hardt et al.,44 we formalize the setting of a society comprised of social groups that not only may

differ in terms of distributions over unmanipulated features and true labeling functions but also

face different costs to manipulation. This extra set of differences brings to light questions that favor
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an analysis that focuses on the welfares of the candidates who must contend with these classifiers:

Do classifiers formulated with strategic behavior in mind impose disparate burdens on different

groups? If so, how can a learner mitigate these adverse effects? The altered gameplay and outcomes

of strategic classification raise questions of fairness that are intertwined with those of optimality.

Though our model is quite general, we obtain technical results that reveal important social ram-

ifications of using classification in systems marked by inequality and a potential for manipulation.

Our analysis shows that, under our model, even when the learner knows the costs faced by differ-

ent groups, her equilibrium classifier will always act to reinforce existing inequalities by mistakenly

excluding qualified candidates who are less able to manipulate their features while also mistakenly

admitting those candidates for whommanipulation is less costly, perpetuating the relative advantage

of group already advantaged in the social structure. We delve into the cost disparities that generate

such inevitable classification errors.

Next, we consider the impact of providing subsidies to lighten the burden of manipulation for

individuals who are in the disadvantaged group that faces higher costs. We find that such an inter-

vention can improve the learner’s classification performance as well as mitigate the extent to which

her errors are inequality-reinforcing. However, we show that there exist cases in which providing

subsidies enforces an equilibrium learner strategy that actually makes some individual candidates

worse-off without making any better-off. Paradoxically, in these cases, paying a subsidy to the disad-

vantaged group actually benefits only the learner while both candidate groups experience a welfare

decline! Further analysis of these scenarios reveals that, in many cases, all parties would have pre-

ferred a world in which manipulation of features was not possible for any candidates.

Our chapter’s agent-centric analysis views data points as representing individuals and classifi-

cations as impacting those individuals’ welfares. This orientation departs from the dominant per-

spective in learning theory, which privileges a vendor’s predictive accuracy, and instead evaluates

classification regimes in light of the social consequences of the outcomes they issue. By incorpo-
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rating insights and techniques from game theory and economics, domains that consider deeply the

effects of various policies on agents’ behaviors and outcomes, we hope to broaden the perspective

that machine learning takes on socially-oriented tools. Presenting more democratically-inclined

analysis has been central to the field of algorithmic fairness, and we hope our work sheds new light

on this generic setting of classification with strategic agents.

2.1.1 RelatedWork

While many earlier approaches to strategic classification in the machine learning literature have

tended to view learner-agent interactions as adversarial,55,9 our work does not assume inherently

antagonistic relationships, and instead, shares the Stackelberg game-theoretic perspective akin to

that presented in Brückner and Scheffer15 and built upon by Hardt et al.44 Departing from these

models’ focus on static prediction and homogeneous manipulation costs, Dong et al.27 propose

an online setting of strategic classification in which agents appear sequentially and have individual

costs for manipulation that are unknown to the learner. Unlike our work, they take a traditional

learner-centric view, whereas our concerns are with the welfare of the candidates.

Agent features and potential manipulations in the face of a learner classifier can also be inter-

preted as serving informational purposes. In the economics literature on signaling theory, agents

interact with a principal—the counterpart to our learner—via signals that convey important infor-

mation relevant to a particular task at hand. Classic works, such as Spence’s paper on job-market

signaling, focus their analysis on the varying quality of information that signals provide at equilib-

rium.85 The emphasis in our analysis on different group costs shares features with a recent update

to the signaling literature by Frankel and Kartik,39 who also distinguish between natural actions,

corresponding to unmanipulated features in our model, and “gaming” ability, which operate sim-

ilarly to our cost functions. The connection between gaming capacity and social advantage is also

explicitly discussed in work by Esteban and Ray33 who consider the effects of wealth and lobby-
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ing on governmental resource allocation. While most works in the economics signaling literature

center on the decay of the informativeness of signals as gaming and natural actions become indistin-

guishable, some recent work in computer science has also considered the effect of costly signaling on

mechanism design.58,59 In contrast to both of these perspectives, our work highlights the effect of

manipulation on a learner’s action and as a consequence, on the agents’ welfares.

In independent, concurrent work byMilli et al.73 also consider the social impacts of strategic

classification. Whereas our model highlights the interplay between a learner’s Stackelberg equilib-

rium classifier and agents’ best-response manipulations at the feature level, their work traces the

relationship between the learner’s utility and the social burden, a measure of agents’ manipulation

costs. They show that an institution must select a point on the outcome curve that trades off its pre-

dictive accuracy with the social burden it imposes. In their model, an agent with an unmanipulated

feature vector x has a likelihood ℓpxq of having a positive label and can manipulate to change her

original feature vector to any vector ywith ℓpyq ď ℓpxq at zero cost, or to ywith ℓpyq ą ℓpxq for

a positive cost. This assumption, which the authors call “outcome monotonicity,” allows them to

reason about manipulations in (one-dimensional) likelihood space rather than feature space, since

the optimal learner strategies amount to thresholds on likelihoods. In contrast, we allow features

to be differently manipulable (perhaps a student can boost her SAT score via test prep courses, but

can do nothing to change her grades from the previous year, and cannot freely obtain a higher SAT

score in exchange for a worse record of extracurricular activities), which affects the forms of both the

learner’s equilibrium classifier and agents’ best-response manipulations. Despite these differences in

model and focus, their analysis yields results that are qualitatively similar to ours. Highlighting the

differential impact of classifiers on social groups, they also find that overcoming stringent thresholds

is more burdensome on the disadvantaged group.
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2.2 Model Formalization

As in Brückner and Scheffer15 and Hardt et al.,44 we formalize the Strategic Classification Game as

a Stackelberg competition in which the learner moves first by committing to and publishing a binary

classifier f. Candidates, who are endowed with “innate” features, best respond by manipulating their

feature inputs into the classifier. Formally, a candidate is defined by her d-dimensional feature vector

x P X “ r0, 1sd and group membership A or B, with A signifying the advantaged group and B the

disadvantaged. Group membership bears on manipulation costs such that a candidate from group

mwho wishes to move from a feature vector x to a feature vector ymust pay a cost of cmpyq ´ cmpxq.

We note that these cost function forms are similar to the class of separable cost functions considered

in Hardt et al.44 We assume that higher feature values indicate higher quality to the learner, and thus

restrict our attention to manipulations such that y ě x, where the symbol ě signifies a component-

wise comparison such that y ě x if and only if @i P rds, yi ě xi. Throughout this chapter, we study

non-negative monotone cost functions such that the cost of manipulating from a feature vector x to

a feature vector y increases as x and y get further apart.

To motivate this distinction between features and costs, consider the use of SAT scores as a signal

of academic preparedness in the U.S. college admissions process. The high-stakes nature of the SAT

has encouraged the growth of a test prep industry dedicated to helping students perform better on

the exam. Test preparation books and courses, while also exposing students to content knowledge

and skills that are covered on the SAT, promise to “hack” the exam by training students to internal-

ize test-taking strategies based on the format, structure, and style of its questions. One can view SAT

scores as a feature used by a learner building a classifier to select candidates with sufficient academic

success according to some chosen standard. The existence of test prep resources then presents an

opportunity for some applicants to inflate their scores, which might “trick” the tool into classifying

the candidates as more highly qualified than they are in fact. In this example, a candidate’s strategic
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manipulation move refers to her investment in these resources, which despite improving her exam

score, do not confer any genuine benefits to her level of academic preparation for college.

Just as access to test prep resources tends to fall along income and race lines, we view candidates’

different abilities to manipulate as tied to their group membership. We model these group differ-

ences with respect to availability of resources and opportunity by enforcing a cost condition that

orders the two groups. We suppose that for all x P r0, 1sd and y ě x,

cApyq ´ cApxq ď cBpyq ´ cBpxq. (2.1)

Manipulating from a feature vector x to y is always at least as costly for a member of group B as

it is for a member of group A. We believe our model’s inclusion of this cost condition reflects an

authentic aspect of our social world wherein one group is systematically disadvantaged with respect

to a task in comparison to another.

In our setup, we also allow groups to have distinct probability distributionsDA andDB over

unmanipulated features and to be subject to different true labeling functions hA and hB defined as

hApxq “

$

’

’

&

’

’

%

1, @x such that
řd

i“1 wA,ixi ě τA,

0, @x such that
řd

i“1 wA,ixi ă τA,
(2.2)

hBpxq “

$

’

’

&

’

’

%

1, @x such that
řd

i“1 wB,ixi ě τB,

0, @x such that
řd

i“1 wB,ixi ă τB.
(2.3)

We assume that hApxq “ 1 ùñ hBpxq “ 1 for all x P r0, 1s. Returning to the SAT example,

research has shown that scores are skewed by race even before factoring in additional considerations

such as access to manipulation.18 In such cases, the true threshold for the disadvantaged group is
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lower than that for the advantaged group. We leave this generality in our model to acknowledge and

account for the influence that various social and historical factors have on candidates’ unmanipu-

lated features and not, we emphasize, as an endorsement of a view that groups are fundamentally

different in ability. A formal description of the Strategic Classification Game with Groups is given

in the following definition.

Definition 1 (Strategic Classification Game with Groups). In the Strategic Classification Game

with Groups, candidates with features x P r0, 1sd and group memberships A or B are drawn from

distributionsDA andDB. The population proportion of each group is given by pA and pB where pA `

pB “ 1. A candidate from group m pays cost cmpyq ´ cmpxq to move from her original features x

to y ě x. There exist true binary classifiers hA and hB, for candidates of each group. Probability

distributions, cost functions, and true binary classifiers are all common knowledge. Gameplay proceeds

in the following manner:

1. The learner issues a classifier f generating outcomes t0, 1u.

2. Each candidate observes f and manipulates her features x to y ě x.

A group m candidate with features x who moves to y earns a payoff

fpyq ´ pcmpyq ´ cmpxqq.

The learner incurs a penalty of

CFP
ÿ

mPtA,Bu

pmPx„Dmrhmpxq “ 0, fpyq “ 1s ` CFN
ÿ

mPtA,Bu

pmPx„Dmrhmpxq “ 1, fpyq “ 0s,

where CFP and CFN denote the cost of a false positive and a false negative respectively.

The learner looks to correctly classify candidates with respect to their original features x, whereas
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each candidate hopes to manipulate her features to attain a positive classification, expending as little

cost as possible in the process. Under this setup, candidates are only willing to manipulate their

features if it flips their classification from 0 to 1 and if the cost of the manipulation is less than 1. We

note that defining the utility of a positive classification to be 1 can be considered a scaling and thus is

without loss of generality.

This learner-candidate interaction is very similar to that studied in Hardt et al.44 However, our

inclusion of groups with distinct manipulation costs leads to an ambiguity regarding a candidate’s

initial features that does not exist when all candidates have an equal opportunity to manipulate.

In very few cases can a vendor distinguish among candidates based on their group membership for

the explicit purpose of issuing distinct classification policies, especially if that group category is a

protected class attribute. As such, in our setup, we require that a learner publish a classifier that is

not adaptive to different agents based on their group memberships.

It is important to note that the positive results in Hardt et al.’s44 formulation of the Strategic

Classification Game, wherein for separable cost functions, the learner can attain a classification er-

ror at test-time that is arbitrarily close to the optimal payoff attainable, do not carry over into this

setting of heterogeneous groups and costs. Even when hA “ hB, the existence of different costs

of agent manipulation, even when separable as in our model, introduces a base uncertainty to the

learning problem that generates errors that cannot be extricated so long as the learner must publish a

classifier that does not distinguish candidates based on their group memberships. Second, an analy-

sis of the learner’s strategy and performance, the perspective typically taken in most learning theory

papers, contributes only a partial view of the total welfare effect of using classification in strategic

settings. The main objective of this chapter is to offer a more thorough and holistic inspection of

all agents’ outcomes, paying special heed to the different outcomes experienced by candidates of the

two groups. Insofar as all social behaviors are impelled by goals, interests, and purposes, we should

view data that is strategically generated to be the rule rather than the exception in social machine
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learning settings.

Remark on the assumption that hA and hB are known.

Our assumption that the learner has knowledge of groups’ true labeling functions is not central

to our analysis. We make such an assumption to highlight the pure effect of groups’ differential

costs of manipulation on equilibrium gameplay and consequent welfares rather than the potential

side effects due to a learner’s noisy estimation of the true classifiers. Our general findings do not

substantially rely on this feature of the model, and the overall results carry through into a setting in

which the learner optimizes from samples.

Remark on unequal group costs

The differences in costs cA and cB encoded by the cost condition is not restricted to referring only to

differences in the monetary cost of manipulation. Instead, as is common in information economics

and especially signaling theory, “cost” reflects the multiplicity of factors that bear on the effort exer-

tion required by feature manipulation.85,86,66,10 To demonstrate the generality of our formulation

of distinct group costs, we show that the cost condition given in (2.1) is equivalent to a more explicit

derivation of the choice that an agent faces when deciding whether to manipulate her feature.

A rational agent with feature xwill only pursue manipulation if her value for a positive classifica-

tion minus her cost of manipulation exceeds her value for a negative classification:

vpfpxq “ 0q ď vpfpyq “ 1q ´ upcpyq ´ cpxqq. (2.4)

The monotone function u translates the costs borne by a candidate to manipulate from x to y into

her “utility space,” i.e., it reflects the value that she places on that expenditure. We can rewrite the
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previous inequality to be

cpyq ´ cpxq ď u´1`vpfpyq “ 1q ´ vpfpxq “ 0q
˘

. (2.5)

Substituting in k “ u´1`vpfpyq “ 1q ´ vpfpxq “ 0q
˘

, we have cpyq ´ cpxq ď k. Since the

same cost expenditure is valued more highly by the disadvantaged group than by the advantaged

group, the function u is more convex for group B than for group A. Thus all else equal, we have

cApyq ´ cApxq ď cBpyq ´ cBpxq as desired. More generally, the functions v, c, and umay each be

different for the groups. As such, the disadvantage encoded in the cost condition can arise due to

differences in valuations of classifications (v), differences in costs (c), or differences in valuations of

those costs (u).

2.3 Equilibrium Analysis

We begin by studying agents’ best-response strategies in the basic Strategic Manipulation Game

with Groups in which candidates belong to one of two groups A and B, and the cost condition

holds so that group Bmembers face greater costs to manipulation than group Amembers. To build

intuition, we first consider best-response strategies in the one-dimensional case in which candidates

have features x P r0, 1s and group cost functions are of any non-negative monotone form. We

then move on to consider the d-dimensional case in which candidate features are given as vectors

x P r0, 1sd and manipulation costs are assumed to be linear.

2.3.1 One-dimensional Features

In the d “ 1 case, the cost condition given in (2.1) may be written as c1Apxq ď c1Bpxq for all x P r0, 1s.

Since the true decision boundaries are linear, in the one-dimensional case, they may be written as

threshold functions where thresholds τA and τB are constants in r0, 1s and for agents in groupm,

21



hmpxq “ 1 if and only if x ě τm. A university admissions decision based on a single score is an

example of such a classifier. Although the SAT does not act as the sole determinant of admissions in

the U.S., in countries such as Australia, Brazil, and China, a single exam score is often the only factor

of applicant quality that is considered for admissions.

When the learner has access to τA and τB, and group costs cA and cB satisfy the cost condition, the

following proposition characterizes the space of undominated strategies for the learner who seeks to

minimize any error-penalizing cost function.

Proposition 1 (One-D Undominated Learner Strategies). Given group cost functions cA and cB and

true label thresholds τA and τB where τB ď τA, there exists a space of undominated learner threshold

strategies rσB, σAs Ă r0, 1s where σA “ c´1
A pcApτAq ` 1q and σB “ c´1

B pcBpτBq ` 1q. That is, for any

error penalties CFP and CFN, the learner’s equilibrium classifier f is based on a threshold σ P rσB, σAs

such that for all manipulated features y,

fpyq “

$

’

’

&

’

’

%

1, @y ě σ,

0, @y ă σ.
(2.6)

To understand this result, first notice that if the learner were to face only those candidates from

group A, she would achieve perfect classification by labeling as 1 only those candidates with unma-

nipulated feature x ě τA. This strategy is enacted by considering candidates’ best-response manipu-

lations. A rational candidate would only be willing to manipulate her feature if the gain she receives

in her classification exceeds her costs of manipulation. The learner would like to guard against ma-

nipulations by candidates with x ă τA but still admit candidates with x ě τA, so she considers the

maximummanipulated feature y that is attainable by a rational candidate with x “ τA who is will-

ing to spend up to a cost of one in order to secure a better classification, as illustrated in Figure 2.1.

The maximum such y value is σA, and thus, the learner sets a threshold at σA, admitting all those
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with y ě σA and rejecting all those with y ă σA. The same reasoning applies to a learner facing only

group B candidates, and the learner sets a threshold at σB, admitting all those candidates with y ě σB

and rejecting all those with y ă σB.

It can be shown that for all valid values of τA, τB, cA, and cB, necessarily σB ď σA. Then all clas-

sifiers with threshold σ ă σB are dominated by σB, in the sense that for any arbitrary error penalties

CFP and CFN, the learner would suffer higher costs by setting her threshold to be σ rather than σB.

In the same way, all thresholds σ ą σA are dominated by σA, thus leaving rσB, σAs to be the space of

undominated thresholds. For an account of the full proof of this result (and all omitted proofs), see

the appendix.

Even without committing to a particular learner cost function, the space of optimal strategies

characterized in Proposition 1 leads to an important consequence. A rational learner in the Strategic

Classification Game always selects a classifier that exhibits the following phenomenon: it mistakenly

admits unqualified candidates from the group with lower costs and mistakenly excludes qualified

candidates from the group with higher costs. This result is formalized in Proposition 2.

To state the proposition, the following definition is instructive. Whereas the true thresholds τA

and τB are a function of unmanipulated features, the learner only faces candidate features that may

have been manipulated. In order to make these observed features commensurable with τA and τB, it

is helpful for the learner to “translate” a candidate’s possibly manipulated feature y to its minimum

corresponding original unmanipulated value.

Definition 2 (Correspondence with unmanipulated features). For any observed candidate feature

y P r0, 1s, the minimum corresponding unmanipulated feature is defined as

ℓApyq “ maxt0, c´1
A pcApyq ´ 1qu,

ℓBpyq “ maxt0, c´1
B pcBpyq ´ 1qu

(2.7)
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Figure 2.1: Group cost functions for a one‐dimensional feature x. τA and τB signify true thresholds on unmanipulated
features for group A and B, but a learner must issue a classifier on manipulated features. The threshold σA perfectly
classifies group A candidates; σB perfectly classifies group B candidates. A learner selects an equilibrium threshold
σ˚ P rσB, σAs, committing false positives on group A (red bracket) and false negatives on group B (blue bracket).

for a candidate belonging to group A and group B respectively.

The corresponding values ℓApyq and ℓBpyq are defined such that a candidate who presents feature

ymust have as her true unmanipulated feature x ě ℓApyq if she is a group Amember and x ě ℓBpyq

if she is a group B member.

Proposition 2 (Learner’s Cost in 1 Dimension). A learner who employs a classifier f based on a

threshold strategy σ P rσB, σAs only commits false positives errors on group A and false negatives errors

on group B. The cost Cpσq of such a classifier is

CFNpBPx„DB

“

x P rτB, ℓBpσqq
‰

` CFPpAPx„DA

“

x P rℓApσq, τAq
‰

,

where false negative errors entail penalty CFN, and false positive errors entail penalty CFP.
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A learner who commits to classifying only one of the groups correctly bears costs given by the

following corollaries.

Corollary 1. A classifier based on σA perfectly classifies group A candidates and bears cost CpσAq “

CFNpBPx„DB

“

x P rτB, ℓBpσqq
‰

.

Corollary 2. A classifier based on σB perfectly classifies group B candidates and bears cost CpσBq “

CFPpAPx„DA

“

x P rℓApσq, τAq
‰

.

Notice that the learner’s errors always cut in the same direction—by unduly benefiting group A

candidates and unduly rejecting group B candidates, these errors act to reinforce the existing social

inequality that had generated the unequal group cost conditions in the first place. Since these errors

arise out of the asymmetric group costs of manipulation, the Strategic Classification Game can be

viewed as an interactive model that itself perpetuates the relative advantage of group A over group B

candidates.

Within the undominated region rσB, σAs, the equilibrium learner threshold σ˚ is attained as the

solution to the optimization problem

σ˚ “ argmin
σPrσB,σAs

Cpσq. (2.8)

In the game’s greatest generality where candidates are drawn from arbitrary probability distribu-

tions, groups bear any costs that abide by the cost condition, and the learner has arbitrary error

penalties, the equilibrium learner threshold σ˚ cannot be specified any further. However, under

some special cases of candidate cost functions and probability distributions, the equilibrium thresh-

old can be characterized more precisely. Specifically, when candidates from both groups are as-

sumed to be drawn from a uniform distribution over unmanipulated features in r0, 1s, an error-

minimizing learner seeks a threshold value σ˚ that minimizes the length of the interval of errors,
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given by the following quantity:

σ˚ “ argmin
σPrσB,σAs

ℓBpσq ´ ℓApσq.

From here, one natural assumption of candidate cost functions would have that groups A and B

bear costs that are proportional to each other. In this case, the curvature of the cost functions is

determinative of a learner’s equilibrium threshold.

Proposition 3. Suppose group cost functions are proportional such that cApxq “ qcBpxq for q P p0, 1q,

thatDA andDB are uniform on r0, 1s, and that CFN “ CFP and pA “ pB “ 1
2 . Let σ

˚ be the

learner’s equilibrium threshold.

When cost functions are strictly concave, σ˚ “ σB. When cost functions are strictly convex, σ˚ “ σA.

When cost functions are affine, the learner is indifferent between all σ˚ P rσB, σAs.

2.3.2 General d-Dimensional Feature Vectors

In the general d-dimensional case of the Strategic Classification Game, candidates are endowed with

features that are given by a vector x P r0, 1sd and can choose to manipulate and present any feature

y ě x to the learner. In this section, we consider optimal learner and candidate strategies when

group costs are linear such that they may be written as

cApxq “

d
ÿ

i“1
cA,ixi; cBpxq “

d
ÿ

i“1
cB,ixi (2.9)

for groups A and B respectively. Now, the cost condition cApyq ´ cApxq ď cBpyq ´ cBpxq for all

y ě x—defined component-wise as before—implies that @i P rds, cA,i ď cB,i. In d dimensions,

the true classifiers hA and hB have linear decision boundaries such that for a group A candidate with
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feature x,

hApxq “

$

’

’

&

’

’

%

1
řd

i“1 wA,ixi ě τA,

0
řd

i“1 wA,ixi ă τA,
(2.10)

and for a group B candidate with feature x,

hBpxq “

$

’

’

&

’

’

%

1
řd

i“1 wB,ixi ě τB,

0
řd

i“1 wB,ixi ă τB.
(2.11)

We assume that all components xi contribute positively to an agent’s likelihood of being classified as

1 so that wA,i,wB,i ě 0 for all i. To ensure that the cost of manipulation is always non-negative, all

cost coefficients are positive: cB,i, cA,i ě 0 for all i P rds.

A candidate may nowmanipulate any combination of the d components of her initial feature

x to reach the final feature y that she presents to the learner. Despite this increased flexibility on

the part of the candidate, we are still able to characterize the performance of undominated learner

classifiers, generalizing the result in Proposition 2. All potentially optimal classifiers exhibit the

same inequality-reinforcing property inherent within the one-dimensional interval of undominated

threshold strategies, trading off false positives on group A candidates with false negatives on group B

candidates. Before we formally present this result, we first describe candidates’ best-response strate-

gies. Here, a geometric view of the space of potential manipulations is informative.

Suppose a candidate endowed with a feature vector x faces costs
řd

i“1 cixi and is willing to ex-

pend a total cost of 1 for manipulation. Then she can move to any y ě x contained within the

d-simplex with orthogonal corner at x and remaining vertices at x ` 1
ci ei where ei is the ith standard

basis vector. This region is given by

Δpxq “

!

x `

d
ÿ

i“1

ti
ci
ei P r0, 1sd

ˇ

ˇ

ˇ

d
ÿ

i“1
ti ď 1 ; ti ě 0 @i

)

. (2.12)
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Figure 2.2: The forward simplex. A candidate in group A with unmanipulated feature vector x can manipulate to reach
any feature vector y P ΔApxq at a cost of at most 1.

Δpxq, depicted in Figure 2.2, gives the space of potential movement for a candidate with unmanip-

ulated feature xwho is willing to expend a total cost of 1. Notice that ti can be interpreted as the

cost that a candidate expends on movement in the ith direction. Thus
řd

i“1 ti gives the total cost

of manipulation. Moving beyond the range of possible moves, in order to describe how a rational

candidate will best-respond to a learner, we must consider the published classifier.

Suppose a learner publishes a classifier f based on a hyperplane
řd

i“1 giyi “ g0, so that fpyq “ 1 if

and only if
řd

i“1 giyi ě g0. A best-response manipulation occurs along the direction that generates

the greatest increase in the value
řd

i“1 gipyi ´ xiq for the least cost. As such, a candidate will move in

any directions i P argmaxiPrds

gi
ci . This result is formalized in the following lemma.

Lemma 1 (d-D Candidate Best Response). Suppose a learner publishes the classifier fpyq “ 1 if and

only if
řd

i“1 giyi ě g0. Consider a candidate with unmanipulated feature vector x and linear costs
řd

i“1 cixi. If fpxq “ 1 or if for all i P rds, fpx ` 1
ci eiq “ 0, the candidate’s best response is to set y “ x.

Otherwise, letting K “ argmaxiPrds

gi
ci , her manipulation takes the form

y “ x `

d
ÿ

i“1

ti
ci
ei

for any t such that ti ě 0 for all i P rds, ti “ 0 for all i R K, and
řd

i“1 gipxi ` ti
ci q “ g0.
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Figure 2.3: A perfect classifier for group A. Every candidate with unmanipulated feature vector x on or above the true
decision boundary for group A is able to manipulate to a point y P ΔApxq on or above the blue decision boundary
depicted here. No candidate with an unmanipulated feature vector below the true decision boundary is able to do so.
The kink in the blue decision boundary arises due to the restriction of features to r0, 1sd. A perfect classifier for group
A does not need to have this kink; for example, a more lenient perfect classifier can be formed by “straightening” it out.

While in the d-dimensional case, a candidate has many more choices of manipulation directions

to pursue, a best response strategy will always lead her to increase her feature in those components

that are most valued by the learner and least costly for manipulation. That is, she behaves according

to a “bang for your buck” principle, in which the optimal manipulations are in the direction or

directions where the ratio gi
ci is highest.

Despite the fact that the optimal manipulation may not be unique, as in the cases where there are

multiple equivalently good directions for a candidate to move in, a learner who knows candidates’

costs can still anticipate best-response manipulations and avoid errors on that group. As such, we are

once again able to construct a perfect classifier for candidates of group A and a perfect classifier for

candidates of group B.

Theorem 1 (d-D Space of Dominant Learner Strategies). In the general d-dimensional Strategic

Classification Game with linear costs, there exists a classifier that perfectly classifies group A and a

classifier that perfectly classifies group B. All undominated classifiers commit no false positive errors on
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group A and no false negative errors on group B.

A full exposition of the proof appears in the appendix, but here we present an abbreviated expla-

nation of the result.

For each groupm, the learner computes an optimal boundary that perfectly classifies all of its

members by considering the set of simplices tΔmpxqu anchored at the vectors x̄ that satisfyw⊺
mx̄ “

τm and drawing the strictest hyperplane that intersects each simplex. That is for all hyperplanes

gi :
řd

j“1 gi,jxj “ gi,0 that are constructed to intersect each simplex, then g1 :
řd

j“1 g1,jxj “ g1,0 is

the strictest if for all x P r0, 1sd,

d
ÿ

j“1
g1,jxj “ g1,0 ùñ

d
ÿ

j“1
gi,jxj “ gi,0 ě gj,0

for all gi. Due to the cost ordering, for any x P r0, 1sd, ΔBpxq Ď ΔApxq, and thus wherever a

comparison is possible, the group A boundary is at least as strict as the group B boundary. Figure

2.3 gives a visualization of a boundary formed by connecting the simplices Δpx̄q; the corresponding

classifier perfectly classifies the group.

As in the one-dimensional general costs case, learner strategies necessarily entail inequality-

reinforcing classifiers: a rational learner equipped with any error-penalizing cost function will se-

lect an equilibrium strategy that trades off undue optimism with respect to group A for undue

pessimism with respect to group B. We note that except in the extreme case in which there exists a

perfect classifier for all candidates in the population, this result implies that the classifier for group A

issues false negatives on group B, and the classifier for group B issues false positives on group A. In

order to formalize this result, we would like to generalize the idea behind the minimum correspon-

dence unmanipulated features given by ℓAp¨q and ℓBp¨q in (2.7) for general d-dimensions and linear

costs.

A learner who observes a possibly manipulated feature vector ymust consider the space of unma-
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nipulated feature vectors that the candidate could have had. Thus we can make use of the simplex

idea of potential manipulation; however in this case, the learner seeks to project a simplex “back-

ward” to “undo” the potential candidate manipulation. Since groups are subject to different costs,

simplices Δ´1
A pyq and Δ´1

B pyq—a depiction is given in Figure 2.4—which represent the region from

where a candidate could have manipulated, will differ based on the candidate’s group membership,

with

Δ´1
A pyq “

!

y ´

d
ÿ

i“1

ti
cA,i

ei P r0, 1sd
ˇ

ˇ

ˇ

d
ÿ

i“1
ti ď 1 ; ti ě 0 @i

)

, (2.13)

Δ´1
B pyq “

!

y ´

d
ÿ

i“1

ti
cB,i

ei P r0, 1sd
ˇ

ˇ

ˇ

d
ÿ

i“1
ti ď 1 ; ti ě 0 @i

)

. (2.14)

We can now use these constructs in order to define d-dimensional generalizations of ℓApyq and

ℓBpyq.

Definition 3 (Correspondence with Unmanipulated Features in d-D). For any observed candidate

feature y P r0, 1sd, the minimum corresponding unmanipulated feature vectors are given by

ℓApyq “
␣

x P Δ´1
A pyq X r0, 1sd

ˇ

ˇEx̂ P Δ´1
A pyq such that x̂ ă x

(

, (2.15)

ℓBpyq “
␣

x P Δ´1
B pyq X r0, 1sd

ˇ

ˇEx̂ P Δ´1
B pyq such that x̂ ă x

(

(2.16)

for a candidate belonging to group A and group B respectively.

The corresponding values ℓApyq and ℓBpyq are defined such that a candidate who presents feature

ymust have had a true unmanipulated feature vector x ě x̄ for some x̄ P ℓApyq if she is a group A

member and x ě x̄ for some x̄ P ℓBpyq if she is a group Bmember.

For any hyperplane decision boundary g containing vectors y, the minimum corresponding fea-

ture vectors given by ℓApyq and ℓBpyq are helpful for determining the effective thresholds that g
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Figure 2.4: The backward simplex. A candidate in group A with manipulated feature vector y could have started with
any feature vector x P Δ´1

A pyq and paid a cost of at most 1.

generates on unmanipulated features for groups A and B.

Lemma 2. Suppose a learner classifier f is based on a hyperplane g :
řd

i“1 gixi “ g0. Construct the set

Lmpgq “

#

argmin
xPℓmpyq

d
ÿ

i“1
gixi

ˇ

ˇ

ˇ
@y s. t.

d
ÿ

i“1
giyi “ g0

+

(2.17)

Then a group m agent with feature x can move to some y with fpyq “ 1 and cmpyq ´ cmpxq ď 1 if and

only if x ě ℓ for some ℓ P Lmpgq.

By definition, for any two ℓ1, ℓ2 P Lmpgq,

ÿ

i“1
giℓ1,i “

ÿ

i“1
giℓ2,i “ g0 ´

gkm
cm,km

,

where km P argmaxi“rds

gi
cm,i

. Thus a learner who cares only about the true label of presented fea-

tures, will construct her decision boundary g such that all ℓ P Lmpgq have the same true label.

A cost-minimizing learner who publishes a classifier f based on a hyperplane g on manipulated

features will commit errors on those candidates with unmanipulated features x P r0, 1sd con-

tained within the boundaries given byLApgq andLBpgq. This space can be understood as the d-

dimensional generalization of the rℓApσq, ℓBpσqs error interval in one-dimension.
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Proposition 4 (Learner’s Cost in dDimensions). A learner who publishes an undominated classifier

f based on a hyperplane g⊺x “ g0 can only commit false positives on group A candidates and false

negatives on group B candidates. The cost of such a classifier is

CFNPx„DB

”

x P
`

g⊺x ă g0 ´
gkB
ckB

č

w⊺
Bx ě τB

˘

ı

` CFPPx„DA

”

x P
`

w⊺
Ax ă τA

č

g⊺x ě g0 ´
gkA
ckA

˘

ı

,

where kB P argmaxiPrds

gi
cB,i and kA P argmaxiPrds

gi
cA,i .

2.4 Learner Subsidy Strategies

Since in our setting, the learner’s classification errors are directly tied to unequal group costs, we

ask whether she would be willing to subsidize group B candidates in order to shrink the manipula-

tion gap between the two groups and as a result, reduce the number of errors she commits. In this

section, we formalize subsidies as interventions that a learner can undertake to improve her classi-

fication performance. Although in many high-stakes classification settings, the barriers that make

manipulation differentially accessible are non-monetary—such as time, information, and social

access—in this section, we consider subsidies that are monetary in nature to alleviate the financial

burdens of manipulation.

We introduce these subsidies for the purpose of analyzing their effects on not only the learner’s

classification performance but also candidate groups’ outcomes. Since subsidies mitigate the in-

herent disparities in groups’ costs and increase access to manipulation, one might expect that their

implementation would surely improve group B’s overall welfare. In this section, we show that in

some cases, optimal subsidy interventions can surprisingly have the effect of lowering the welfare of

candidates from both groups without improving the welfare of even a single candidate.
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2.4.1 Subsidy Formalization

There are different ways in which a learner might choose to subsidize candidates costs. In the main

text of this chapter, we focus on subsidies that reduce each group B candidate’s costs such that the

agent need only pay a β fraction of her original manipulation cost.

Definition 4 (Proportional subsidy). Under a proportional subsidy plan, the learner pays a propor-

tion 1 ´ β of each group B candidate’s cost of manipulation for some β P r0, 1s. As such, a group B

candidate who manipulates from an initial feature vector x to a final feature vector y bears a cost of

β
`

cBpyq ´ cBpxq
˘

.

In the appendix, we also introduce flat subsidies in which the learner absorbs up to a flat α amount

from each group B candidate’s costs, leaving the candidate to pay maxt0, cBpyq´ cBpxq´αu. Similar

results to those shown in this section hold for flat subsidies.

When considering proportional subsidies, the learner’s strategy now consists of both a choice of β

and a choice of classifier f to issue. The learner’s goal is to minimize her penalty

CFP
ÿ

mPtA,Bu

pmPx„Dm

“

hmpxq “ 0, fpyq “ 1
‰

` CFN
ÿ

mPtA,Bu

pmPx„Dm

“

hmpxq “ 1, fpyq “ 0
‰

` λcostpf, βq,

where costpf, βq is the monetary cost of the subsidy, CFP and CFN denote the cost of a false positive

and a false negative respectively as before, and λ ě 0 is some constant that determines the relative

weight of misclassification errors and subsidy costs for the learner.

For ease of exposition, the remainder of the section is presented in terms of one-dimensional

features. In Section A.1.3 of the appendix, we show that in many cases, the d-dimensional linear

costs setting can be reduced to this one-dimensional setting.

As an analog of (2.7), we define ℓβBpyq “ pβcBq´1pβcBpyq´1q, giving the minimum corresponding

unmanipulated feature x for any observed feature y. Under the proportional subsidy, for a given y,
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the group B candidate must have x ě ℓ
β
Bpyq. From this, we define σβB such that ℓ

β
BpσβBq “ τB.

In order to compute the cost of a subsidy plan, we must determine the number of group B can-

didates who will take advantage of a given subsidy benefit. Since manipulation brings no benefit

in itself, candidates will only choose to manipulate and use the subsidy if it will lead to a positive

classification. For a published classifier fwith threshold σ, we then have

costpf, βq “
`

1 ´ β
˘

ż σ

ℓ
β
Bpσq

`

cBpσq ´ cBpxq
˘

Px„DBpxqdx.

Although the learner’s optimization problem can be solved analytically for various values of λ, we

are primarily interested in taking a welfare-based perspective on the effects of various classification

regimes on both the learner and candidate groups. In the following section, we analyze how the im-

plementation of a subsidy plan can alter a learner’s classification strategy and consider the potential

impacts of such policies on candidate groups.

2.4.2 GroupWelfare Under Subsidy Plans

While a learner would choose to adopt a subsidy strategy primarily in order to reduce her error rate,

offering cost subsidies can also be seen as an intervention that might equalize opportunities in an

environment that by default favors those who face lower costs. That is, if costs are keeping group

B down, then one might believe that reducing costs will surely allow group B a fairer shot at ma-

nipulation, and, as a result, a fairer shot at positive classification. Alas we find that mitigating cost

disparities by way of subsidies does not necessarily lead to better outcomes for group B candidates.

In fact, an optimal subsidy plan can actually reduce the welfares of both groups. Paradoxically, in

some cases, the subsidy plan boosts only the learner’s utility, whereas every individual candidate

from both groups would have preferred that she offer no subsidies at all.

The following theorem captures the surprising result that subsidies can be harmful to all candi-
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dates, even those from the group that would appear to benefit.

Theorem 2 (Subsidies can harm both groups). There exist cost functions cA and cB satisfying the cost

conditions, learner distributionsDA andDB, true classifiers with threshold τA and τB, population pro-

portions pA and pB, and learner penalty parameters CFN, CFP, and λ, such that no candidate in either

group has higher payoff at the equilibrium of the Strategic Classification Game with proportional sub-

sidies compared with the equilibrium of the Strategic Classification Game with no subsidies, and some

candidates from both group A and group B are strictly worse off.

We note that a slightly weaker version of the theorem holds for flat subsidies. In particular, there

exist cases in which some individual candidates have higher payoff at the equilibrium of the Strategic

Classification Game with flat subsidies compared with the equilibrium with no subsidies, but both

group A and group B candidates have lower payoffs on average with the subsidies.

To prove the theorem, it suffices to give a single case in which both candidate groups are harmed

by the use of subsidies. However, to illustrate that this phenomenon does not arise only as a rare

corner case, we provide one such example here plus two in the appendix, and discuss general con-

ditions under which this occurs. In each example, we consider a particular instance of the Strategic

Classification Game and compare the welfares of candidates at equilibrium when the learner is able

to select a proportional subsidy with their welfares at equilibrium when no subsidy is allowed.

Example 1. Suppose that a learner is error-minimizing such that CFN “ CFP “ 1 and λ “ 3
4 .

Suppose that unmanipulated features for both groups are uniformly distributed with pA “ pB “ 1
2 .

Let group cost functions be given by cApxq “ 8
?
x ` x and cBpxq “ 12

?
x; note that the cost condition

c1Apxq ă c1Bpxq holds for x P r0, 1s. Let the true group thresholds be given by τA “ 0.4 and τB “ 0.3.

When subsidies are not allowed, the learner chooses a classifier with threshold σ˚ “ σB « 0.398

at equilibrium. This threshold perfectly classifies all candidates from group B, while permitting false

positives on candidates from group A with features x P r0.272, 0.4q.
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If the learner decides to implement a proportional subsidies plan, at equilibrium the learner chooses

a classifier with threshold σ˚
prop “ σA « 0.546 and a subsidy parameter β˚ “ 0.558. Her new

threshold now correctly classifies all members of group A, while committing false negatives on group B

members with features x P r0.3, 0.348q.

Some candidates in group B are thus strictly worse-off, while none improve. Without the subsidy

offering, group B members had been perfectly classified, but now there exist some candidates who are

mistakenly excluded. Further, one can show that candidates who are positively classified must pay more

to manipulate to the new threshold in spite of receiving the subsidy benefit. This increased cost is due

to the fact that the higher classification threshold imposes greater burdens on manipulation than the β

subsidy alleviates.

Group A candidates are also strictly worse-off since the threshold increase eliminates false positive

benefits that some members had previously been granted in the no-subsidy regime. Moreover, all can-

didates who manipulate must expend more to do so, since these candidates do not receive a subsidy

payment. Only the learner is strictly better off with the implementation of this subsidy plan.

Additional examples in the appendix show cases in which both groups experience diminished

welfare when they bear linear costs. Even when the learner has an error function that penalizes false

negatives twice as harshly as false positives and thus is explicitly concerned with mistakenly exclud-

ing group B candidates, an equilibrium subsidy strategy can still make both groups worse-off.

We thus highlight two consequences of subsidy interventions: On the one hand, with reduced

cost burdens, more candidates from the disadvantaged group should be able to manipulate to reach

a positive classification. However, subsidy payments also allow a learner to select a classifier that is

at least as strict as the one issued without offering subsidies. These are opposing forces, and these

examples show that without needing to distort underlying group probability distributions or the

learner’s penalty function in extreme ways, the effect of mitigating manipulation costs may be out-

weighed by the overall impact of a stricter classifier.
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This result can also be extended to show that a setup in which candidates are unable to manipu-

late their features at all can be preferred by all three parties—groups A and B as well as the learner—

to both the manipulation and subsidy regimes. We provide an informal statement of this propo-

sition below and defer the interested reader to its formal statement and demonstration in the ap-

pendix.

Proposition 5. There exist general cost functions such that the outcomes issued by a learner’s equilib-

rium classifier under a non-manipulation regime is preferred by all parties—the learner, group A, and

group B—to outcomes that arise both under her equilibriummanipulation classifier and under her

equilibrium subsidy strategy.

2.5 Discussion

Social stratification is constituted by forms of privilege that exist along many different axes, weaving

and overlapping to create an elaborate mesh of power relations. While our model of strategic ma-

nipulation does not attempt to capture this irreducible complexity, we believe this work highlights

a likely consequence of the expansion of algorithmic decision-making in a world that is marked by

deep social inequalities. We demonstrate that the design of classification systems can grant undue re-

wards to those who appear more meritorious under a particular conception of merit while justifying

exclusions of those who have failed to meet those standards. These consequences serve to exacerbate

existing inequalities.

Our work also shows that attempts to resolve these negative social repercussions of classifica-

tion, such as implementing policies that help disadvantaged populations manipulate their features

more easily, may actually have the opposite effect. A learner who has offered to mitigate the costs

facing these candidates may be encouraged to set a higher classification standard, underestimating

the deeper disadvantages that a group encounters, and thus serving to further exclude these popu-
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lations. However, it is important to note that these unintended consequences do not always arise.

A conscientious learner who offers subsidies to equalize the playing field can guard against such

paradoxes by making sure to classify agents in the same way even when offering to mitigate costs.

Other research in signaling and strategic classification has considered models in which manipula-

tion is desirable from the learner’s point of view.39,62 Though this perspective diverges from the one

we consider here, we acknowledge that there do exist cases in which manipulation serves to improve

a candidate’s quality and thus leads a learner to encourage such behaviors. It is important to note,

however, that although this account may accurately represent some social classification scenarios,

differential group access to manipulation remains an issue, and in fact, cases in which manipulation

genuinely improves candidate quality may present even more problematic scenarios for machine

learning systems. As work in algorithmic fairness has shown, feedback effects of classification can

lead to deepening inequalities that become “justified” on the basis of features both manipulated and

“natural”.32

The rapid adoption of algorithmic tools in social spheres calls for a range of perspectives and ap-

proaches that can address a variety of domain-specific concerns. Expertise from other disciplines

ought to be imported into machine learning, informing and infusing our research in motivation,

application, and technical content. As such, our work seeks to investigate, from a theoretical learn-

ing perspective, some of the potential adverse effects of what sociology has called “quantification,” a

world increasingly governed by metrics. In doing so, we bring in techniques from game theory and

information economics to model the interaction between a classifier and its subjects. This chapter

adopts a framework that tries to capture the genuine unfair aspects of our social reality by model-

ing group inequality in a population of agents. Although this perspective deviates from standard

idealized settings of learner-agent interaction, we believe that so long as machine learning tools are

designed for deployment in the imperfect social world, pursuing algorithmic fairness will require

us to explicitly build models and theory to address critical issues such as social stratification and un-
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equal access.
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3
A Short-term Intervention for Long-term

Fairness

3.1 Introduction

As algorithms are increasingly deployed to make social decisions that have previously been under

the sole purview of humans, a growing body of work has challenged the reigning primacy of op-
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timality and efficiency when issues of bias and discrimination are potentially at stake. Research in

the growing field of algorithmic fairness has sought to address these concerns about the machine

decision-making process by examining and manipulating standard tasks such as ranking or classi-

fication under generalized constraints of “fairness.” Such computational notions of fairness have

been varied but two broad opposing perspectives have proposed solutions that either defend fair-

ness at the individual level (similar individuals are treated similarly)30 or at the group level (groups

are awarded proportional representation).53,35 While this chapter similarly adopts a constraint-

based intervention to achieve fairness, we depart from standard accounts of fairness that consider

static domain-general algorithms and instead develop a dynamic model for the specific domain of

decision-making in the labor market. Our work considers the role that firms’ hiring practices play

in perpetuating economic inequalities between social groups by way of the disparate outcomes that

groups experience in their employment opportunities and wage prospects. We address the issue by

building upon a dynamic model of worker and firm behavior that has been shown to generate the

asymmetric group outcomes that are observed empirically between black and white workers in the

United States16,5,41 and appending a constraint on firms’ hiring practices that successfully induces a

group-equitable equilibrium.

As we focus on the particular domain of labor market dynamics, our chapter draws upon an ex-

tensive literature in economics. The theory of statistical discrimination, originally set forth in two

seminal papers by Phelps78 and Arrow,8 explains disparate group outcomes as the result of ratio-

nal agent behaviors that lock a system into an unfavorable equilibrium. In the basic model, workers

compete for a skilled job with wage w. Skill acquisition requires workers to expend an investment

cost of c, which is distributed according to a function F. A worker’s investment decision is an as-

sessment of her expected wage gain compared with her investment cost. Firms seek information

about a worker’s hidden ability level but can only base hiring decisions on observable attributes:

her noisy investment signal and group membership. The firm’s response to this missing informa-
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tion problem is to update its beliefs about a worker’s qualifications by drawing on its prior for her

group’s ability levels. Therefore if a firm holds different priors for different groups, it will also set

different group-specific hiring thresholds. Further, since these distinct thresholds are observed and

internalized by workers, they adjust their own investment strategies accordingly—individuals within

the unfavored group will lower their investment levels, and individuals in the favored group will

continue to invest at a high level. Notably, even when the distribution of investment costs F is the

same for each group*, an asymmetric equilibrium can arise in which groups invest at different levels,

further informing firms’ distinct priors and reinforcing disparate employment prospects. In other

words, rational workers and firms best respond in ways that exactly confirm the others’ beliefs and

strategies, and thus, the discriminatory outcome is “justified.”

A proponent of “individual fairness” may diagnose the problem of statistical discrimination as

a failure to treat candidates of similar investments similarly†. After all, the mistaken inference of

unequal group ability levels indeed appears to be the origin of firms’ inequitable hiring decisions.

Moreover, when investment level is positively correlated with likelihood of being qualified, hiring

based solely on investments is both rational and individually-fair. However, this group-blind solu-

tion fails to take into account a critical aspect of workers’ investments—namely that they are choices

rather than givens. Failure to recognize the upstream causes of observed data features brings to light

the prickly notion of “ground truth” that has, from the start, plagued work on machine learning

bias. Within a system as complex as the labor market, an input-output account of fairness that as-

sesses the mapping of workers’ investment levels to their hiring outcomes does not resolve the un-

derlying source of inequalities that drives the differences in attributes between groups. Because both

*This has been the standard assumption in the economics literature since Arrow.8
†In the exposition of “individual fairness” proposed by Dwork et al.,30 the built-in flexibility of the

generic similarity metric between persons can include group membership and even be used to justify “fair
affirmative action.” However, within an economic signaling environment where firms’ hiring standards affect
workers’ investments, a more flexible metric approach that compares quality within and across groups still
fails to account for the strategy and incentive features of the labor market and thus the group coordination
failure that characterizes many statistical discrimination equilibria.
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statistical discrimination and machine learning rely on data that harbor historical inequalities, local

fairness checks are often incapable of addressing the self-perpetuating nature of biases. Even without

group biases, the paradox remains: the cyclic equilibrium ensures local procedural fairness—fairness

with respect to investment choices—while maintaining global disparate outcomes.

The difficulty in pinpointing a particular cause of observed system-wide asymmetric outcomes

challenges our mission in designing constraints to ensure fairness within the domain. If the out-

comes themselves are trapped in a feedback loop, a successful fairness constraint should first jolt the

system out of its current steady-state, and second, launch it on a path towards a preferable equilib-

rium. As such, a successful approach must consider fairness in situ. This chapter presents a domain-

specific dynamic model with an intervention that effects system-wide impact, guaranteeing a group-

equitable equilibrium that is stable and self-sustaining.

In our model, workers invest in human capital, enter first a Temporary Labor Market (TLM)

and then transition into a Permanent Labor Market (PLM)‡. We use this partition to impose a con-

straint on TLM hiring practices that enforces group statistical parity representation. However, the

restriction need not apply in the PLMwhere firms select natural best response hiring strategies. Our

employment model is reputational—aworker carries an individual reputation, which is a summary

of her past job performances and belongs to a group with a collective reputation, which is a measure

of the proportion of its members producing “good” outcomes.

Working within this model, we show that by imposing this constraint on firms’ hiring strategies

in the TLM, the resulting steady-state in the PLM is symmetric such that an equal proportion of

workers in the two groups produce good outcomes and are thus hired. The labor market at equilib-

rium, both procedurally and in outcomes, satisfies leading notions of “fairness”–group, individual,

meritocratic35,30,57—discussed in the algorithmic fairness literature. Furthermore, we show that

‡Contracting in a segmented market is common in the labor economics literature. Of these, our work is
most similar to Kim and Loury,70 but notably they model the effects of statistical discrimination, while ours
explicitly requires group-equitable outcomes.
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under particular labor market conditions, it Pareto-dominates the asymmetric outcomes that arise

under two unconstrained rational hiring strategies: group-blind hiring and statistical discriminatory

hiring. Our fairness intervention exploits the complementary nature of individual and collective

reputations such that the system produces its own feedback loop that incrementally addresses initial

inequalities in group social standing. As such, the TLM intervention need not be permanent—

statistical parity of hired workers becomes the natural result of firms’ optimal hiring strategies once

group equality is restored and the fairness constraint becomes obsolete.

This chapter’s constraint-based approach to achieving equitable group outcomes in a reputa-

tional model of labor market interactions melds the perspectives and techniques of labor economics

with the motivations of algorithmic fairness. However, our system-wide view also challenges a

thread of work in the literature that characterizes notions of fairness as input-output-based prop-

erties of a decision-making function. By casting workers and firms as strategic agents in a dynamic

game, we incorporate complexities of the labor market dynamic such as agents’ expectations, incen-

tives, and externalities that are otherwise difficult to encapsulate in a static classification setting. We

advocate for an intervention that addresses the root of disparities between black and white workers’

positions in the labor market and society—not only positions of unequal prospects and outcomes

but as important, positions of unequal opportunities and, as a result, qualifications. Ensuring pro-

cedural fairness in the hiring decision alone is insufficient for this greater task. Our proposed con-

straint is designed to perturb a labor market at asymmetric equilibrium by co-opting the system’s

own cyclic effects to install group-equality that is self-sustaining in the long-term.

In Section 2, we present a standard model of labor market dynamics and introduce our fairness

intervention. Section 3 contains an overview of the equilibria results of the constrained-hiring

model along with a comparison against equilibria arising from two rational hiring strategies free

from such a constraint. The chapter ends with a reflection on the equilibrium tendencies of discrim-

ination and their implications on the design of fairness constraints. We also offer some comments
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on the dynamic feedback effects that are inherent features of persistent inequalities and the chal-

lenges they issue upon future work in algorithmic fairness.

3.1.1 RelatedWork

Within the algorithmic fairness literature, Zemel et al.97 address group and individual notions of

fairness by constructing a mapping of agent data to an intermediate layer of clusters that each pre-

serve statistical parity while obfuscating protected attributes. A second map taking cluster assign-

ments to their final classifications then allows “similar” agents to be treated similarly. This dual-map

approach roughly corresponds to the roles of the TLM and PLM in our model. Related work has

sought distance metrics to guide the initial mapping,30 but since criteria for similarity vary by do-

main, general approaches often face obstacles of application. Our chapter’s concentrated treatment

of labor market dynamics aims to addresses this concern. We answer a call by Friedler et al.40 to

specify a particular world view of fairness within a domain and classification task. Our model starts

with an assumption of inherent equality between groups. As such, differences in observable invest-

ment decisions or job outcomes are due to unequal societal standing, producing secondary effects of

inequality, rather than fundamental differences in the nature of the individuals.

Labor market discrimination has been of long-standing interest in economics due to the per-

sistent inequalities in employment prospects among groups of different race, gender, and other

socially-salient attributes.16,5,41 Since most explicit forms of wage discrimination are now illegal in

the U.S. and genetic accounts of group differences have been largely discredited,76 modern theories

of labor market discrimination have updated the classical works—Becker’s “taste-based” discrimina-

tion12 and Phelps’ model of exogenous group productivity differences78—by examining the social

sources of asymmetric outcomes. Research in the field has produced models that consider temporal

dynamics, utilize distinct group cost functions, and develop wages endogenously.19,7 We follow in

this line of work by incorporating a dynamic group reputation parameter into an individual’s cost
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function, a modeling choice informed by the vast empirical literature showing the differential ex-

ternalities produced by groups of differential social standing. Our model is not the first that makes

explicit this linkage. In research examining the impact of neighborhood segregation on agents’ ac-

cesses to resources for skill acquisition, Bowles, Loury, and Sethi14 include a group “skill share”

metric that functions similarly to our notion of group reputation in its effect on individuals’ costs.

This chapter also frames the hiring process as reputational in nature, following a distinct liter-

ature on collective reputation.88,92 Of these, our work shares most in common with the model

proposed by Levin,67 in which workers carry an individual reputation that contributes to their

group’s reputation. Levin shows that even when cost conditions evolve stochastically, reputations

can produce a persistent feedback effect that leads to convergence to an asymmetric equilibrium

in which groups occupy distinct social standings. Unlike in Levin, the notion of collective reputa-

tion in our model bears not only on workers’ forward-looking expectations and incentives but also

explicitly impacts future generations’ investment costs. Additionally, since our work has in mind

the information-processing capabilities of artificial intelligence agents, we formalize the concept

of “individual reputation” as composed of a total history of previous outcomes. These additional

“data,” while potentially overwhelming for human decision-makers, can be handled by an algorith-

mic decision-maker. Since the functionality of machine learning in the hiring process is ultimately

based in a form of “rational” statistical discrimination of worker data and job histories, this strand

of economics literature is particularly relevant for considerations of algorithmic fairness in the labor

market.

3.2 Model

We highlight the role of the fairness constraint within the rest of the standard labor market dynam-

ics of the model by utilizing a dual labor market setup composed of a Temporary Labor Market
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(TLM) and a Permanent Labor Market (PLM). In the former, a hiring constraint is established to

ensure statistical parity, and in the latter, firms hire according to their best response hiring practices

in a reputational model applied to the particular setting of employment.

This partition does little to impinge upon the standard dynamics of the labor market—workers

flow from the TLM to the PLM, wages are labor-market-wide, and individual worker reputations in

the PLM produce externalities for the collective group reputations that play a key role in individuals’

pre-TLM investment decisions.

3.2.1 General Setup

Consider a society of nworkers who pass through the labor market sequentially at times t “ 0, 1, ....

The labor markets maintain a constant relative size: m proportion of the workers reside in the TLM,

and 1´m reside in the PLM.Movement is governed by Poisson processes—workers immediately re-

place departing ones in the TLM, transition from the TLM to the PLM according to the parameter

κ, and leave the PLM at rate λ.

Each worker belongs to one of two groups μ P tB,Wu with population share σB and 1 ´ σB re-

spectively. We assume that these subpopulation proportions of workers are stable such that a worker

of group μwho leaves the labor market is replaced via the birth of a new worker of the same group.

The distribution of individual abilities, described by the CDF Fpθq, is stable over time and identical

across groups. In contrast, societal reputation varies with time and by group. A group’s time t rep-

utation πμt gives the proportion of all individuals in group μwho are producing “good” outcomes

in the labor market, over the interval timespan rt ´ τ, ts, where the parameter τ ě 0 controls the

time-lag effect of a group’s previous generations’ performance on its present reputation.

Prior to entering the labor market, workers select education investment levels η, weighing the cost

of investment with its expected reward. Firms hire and pay workers based on expected performance,

awarding wage wpgtq for a “good” worker, where gt gives the proportion of “good” workers in the
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PLM at time t. To prevent constant fluctuation at each time step, the wage wt “ wpgt1q updates in

a Poisson manner such that t1 ă t gives the time of the last wage change. The hiring process is for-

malized by assigning workers to either skilled or unskilled tasks with distinct wages. For simplicity,

workers who do not pass particular hiring thresholds may still be considered “hired,” but they are

assigned to an unskilled task and paid a wage normalized to 0.

As a function, the wage premium wt is decreasing in gt, since as the relative supply of “good”

workers increases, imperfect worker substitutability lowers their marginal productivity, thus de-

creasing wage. We impose a minimumwage w such that limgtÑ8 wpgtq “ w and a maximumwage

w such that limgtÑ0 wpgtq “ w. In the context of the model, minimum and maximumwages should

not be considered as only products of labor laws, rather they also act to track the supply of “good”

workers relative to firms’ demand.

3.2.2 Temporary LaborMarket

Aworker i of group μ chooses to invest in human capital ηi ě 0 according to her expected wage

gain of being in the skilled labor market wt
§ and her personal cost function for investment, cπμt pθi, ηiq,

which is a function decreasing in her individual ability θi and increasing in her selected level of

investment ηi. The incorporation of group reputation πμ into an individual’s cost function re-

flects the differential externalities produced by groups of differential social standing.14 We posit

that a worker belonging to a group with a superior societal reputation has improved cost con-

ditions relative to her counterparts with equal ability in the lower reputation group. Formally,

@πμt ă πνt , cπμt pθi, ηiq is a positive monotonic transformation of cπνt pθi, ηiq.

Investment in human capital operates as an imperfect signal, and workers have a hidden true

type: qualified or unqualified, ρ P tQ,Uu. Let γ : Rě0 Ñ r0, 1s be a monotonically increas-

ing function that maps a worker’s investment level to her probability of being qualified. Unlike in

§Workers are boundedly rational and unable to anticipate future wage dynamics.
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Figure 3.1: Timeline of worker and firm interactions throughout the labor market pipeline.

Spence’s original work on education signaling84 in which investment confers no productivity ben-

efits and thus operates purely as a signal to employers, in our model, a worker’s chosen investment

level η has intrinsic value insofar as it is positively correlated with her likelihood of being qualified

γpηq.

Given this setup, a firm’s TLM hiring strategy is a mappingHT : Rě0
Ś

μ Ñ t0, 1u such that

the hiring decision for worker i is based only her observable investment level ηi P Rě0 and group

membership μ. A worker who is hired into the TLM enters the pipeline and is eligible to compete

for a PLM skilled job; a worker who does not pass the TLM hiring stage remains in the market but is

permanently excluded from candidacy for the skilled wage. In this chapter, we mainly consider only

those workers who successfully enter the skilled hiring pipeline, considering all others as “not hired.”

As such, we use the terms “skilled” and “hired” interchangeably.

3.2.3 Permanent LaborMarket

Labor market dynamics follow in the style of repeated principal-agent interactions with hidden ac-

tions (effort exertion) but observable histories (reputation of outcomes). Once hired into the TLM,

a worker i exerts on-the-job effort—choosing either high (H) or low (L) effort—which stochasti-

cally produces an observable good (G) or bad (B) outcome that affects her individual reputation

and thus future reward. Exerting L is free, but exertingH bears cost eρpθiq, which is a function

of qualification ρ P tQ,Uu and ability level θi. Effort is more costly for unqualified individuals:

@θi, eUpθiq ą eQpθiq. We emphasize here that the notions of ability level θ and qualification status
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ρ are distinct worker qualities. A high ability worker is one who has the general attributes that bear

on success in the realms of education and work, whereas a qualified worker is one who has the ap-

propriate training and skills for a given job. We may say, very crudely, that a worker is “born” with

an ability level and “earns” a qualification status. In our model, a worker’s ability level precedes her

investment decision, which begets a qualification status.

High effort increases the probability of a good outcomeG. If pρ,k gives the probability of achiev-

ing outcomeGwith qualifications ρ and effort level k, then the following inequalities hold.

pQ,H ą pQ,L; pU,H ą pU,L; pQ,L ą pU,L

Since the effect of qualifications on exerting high effort is already incorporated in its cost, pQ,H “

pU,H, we write both quantities as pH. We then simplify pQ,L and pU,L to pQ and pU respectively.

We emphasize the distinction between the effort exertion cost functions ep¨q here and the previ-

ous investment cost functions cp¨q—the former are pertinent to workers already in the labor market

and differ by qualification status, whereas the latter relate to pre-labor-market decisions and differ

by group membership. Separate cost functions allow for a finer analysis of the salient factors that

influence agent behavior at distinct points of the labor market pipeline. The inclusion of group

membership into human-capital investment costs reflects the genuine differences in resources avail-

able to workers of different groups in their paths to education attainment¶.

A worker keeps the same TLM job until the Poisson process with parameter κ selects her to move

into the PLM, where at each time step, she cycles through jobs, exerting a chosen effort level, pro-

ducing an observable outcome, and accumulating a history of past performances that includes her

TLM outcome. At each time step, firms in the PLMwant to hire all and only those workers who

¶We do not claim that group membership ceases to be a relevant factor impacting agent behavior once
workers are in the labor market, but we note that a worker’s qualifications, or the extent to which her skill
investment proved to be successful, becomes an overriding determinant. Insofar as education investment
bears on qualification status, a worker’s group membership continues to impact her labor market outcomes.
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consistently exert effort. To do so, firms distill a worker’s history of observable outcomes into her

“individual reputation” Πt
i, which gives the proportion of outcomesG in her recent length-t his-

tory. In a labor market system of repeated worker-firm contracting, firms have the power to use

these observable individual reputations to set self-enforcing relational contracts. A firm’s PLM hir-

ing strategy is a mappingHP : r0, 1s Ñ t0, 1u such that the decision is solely a function of Πt
i.

Figure 3.1 depicts a timeline of how workers move through the labor market pipeline and interact

with firms.

While “fairness” is a notoriously thorny ethical concept to define, the goal here of achieving long-

term fairness is equivalent to attaining group equality in labor market outcomes. Since groups do

not differ in fundamental or intrinsic ways, their job and wage prospects should also not systemati-

cally diverge at a fair steady-state.

Table 3.1: Table of notation

Notation Significance
Fpθq CDF of ability levels θ
πμ group μ reputation
σμ group μ population share
wt wage at time t

gμt
proportion of group μworkers
producing good outcomes at time t

η investment level
pH, pQ, pU probability of producingG given effort level
cπμt pθ, ηq cost of investment
γpηq probability of being qualified
ρ P tQ,Uu hidden qualification status
eρpθq cost of effort exertion
Πt

i individual reputation at time t
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3.3 Results

Reputation-based labor market models, such as the one described in this chapter, can generate asym-

metric group outcomes when firms utilize rational strategies such as statistical discrimination or

group-blind hiring.8,22,7,19 Since this chapter examines the effect of our proposed intervention on

system-wide dynamics and outcomes, in the following section, we consider only those strategies and

equilibria outcomes that arise in this fairness-constrained setting.

3.3.1 Equilibrium Strategies and Steady-States

We start by describing TLM strategies resulting from the fairness constraint, then move onto the

PLM and analyze firms’ and workers’ best response strategies together. Gameplay in the PLMmir-

rors repeated principal-agent interactions wherein firms have the power to enforce contracts by

monitoring individual reputations, and thus we consider strategies that constitute a sequential equi-

librium.

Since a firm in the TLM prefers candidates who are more likely to be qualified, optimal hiring

follows a threshold strategy: Given a hiring threshold η̂, @i such that ηi ě η̂,HT piq “ 1, and

inversely, @i such that ηi ă η̂,HT piq “ 0. However, since firms must abide by the statistical parity

hiring rule, their optimal threshold strategy is uniquely determined: if a firm aims to hire a fraction

ℓ of all workers, its investment thresholds will be implicitly defined and group-specific, so that in the

TLM, skilled employees from groups μ and νwill constitute σμℓ and p1 ´ σμqℓ proportions of the

full worker population respectively.

A worker of group μ, observing her group-specific TLM investment threshold pημ, will weigh her

cost of investment with her expected wage gain wt. All workers iwith cπμt pθi, pημq ď wt will choose to

invest exactly at the level ηi “ pημ and be hired for the skilled position in the TLM; all other workers

will invest at level ηi “ 0 and fail to enter the pipeline to compete for the skilled job. Workers who
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pass the first hiring stage know that their future PLM opportunities will depend on their observable

outcome in the TLM, and as such they exert effort in a one-shot game. A worker iwith qualification

status ρ exerts high effort on the job if and only if eρpθiq ď wtppH ´ pρq.

As previously shown, while the statistical parity constraint preserves the fundamental equality

of ability distributions Fpθq between groups, the group-specific investment thresholdspημ generate

group-specific investment strategies. As consequence, since investment has positive returns on qual-

ification status, groups may have differing proportions of qualified candidates in the PLM pool. We

denote by γμt the proportion of candidates in group μwho are qualified at time t, leaving 1 ´ γμt who

are unqualified. Then the proportion of group μworkers in the TLMwho produce good outcomes

follows the recursive model

gμt “pHr1 ´ Fp pθQqγμt ´ Fp pθUqp1 ´ γμt qs ` pQFp pθQqγμt ` pUFp pθUqp1 ´ γμt q (3.1)

where pθρ “ e´1
ρ pwtppH ´ pρqq and gt1 “ σμℓg

μ
t1 ` p1 ´ σμqℓgνt1

with wt “ wpgt1q where t1 gives the time of the last wage update.

It is important to note that gμt gives the proportion of workers in the skilled labor market who

at time t are producing good outcomes in their jobs. This quantity does not exactly coincide with

group reputation, πμt , which gives a (time-interval average) normalized metric that scales with the

proportion of allmembers in group μ–including those who are not granted entry into the skilled

job pipeline–who are producing good outcomes.

A PLMworker’s future-anticipatory strategy is a selection of time, reputation, wage, and hiring

threshold-dependent probabilities of effort exertion εpΠt1
i q with Πt1

i P tΠt1u where the index i of

Πt1
i denotes a particular individual reputation level in the set of all possible reputation levels tΠu

and t1 tracks the length of time that has passed since the last wage update. Supposing that workers

engage inN-depth reasoning whereN " t1, this quantity may be computed via backward induction
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on the continuation value for a given individual reputation,VpΠt1
i q. With this setup, the continua-

tion valueVpΠNq “ 0, and the agent with ability θ and qualification ρ solves the following dynamic

programming problem

VpΠt1
i , Π̂

t1
,wtq “ sup

εpΠt1
i qPr0,1s

!

p1 ´ λqrVpΠt1`1
i ,GqrεpΠt1

i qppH ´ pρq ` pρs

` VpΠt1`1
i ,Bqrp´εpΠt1

i qqppH ´ pρq ` 1 ´ pρss ` 1
Πt1

i ěΠ̂t1wt

)

whereVpΠt1
i ,Gq “ Vp

Πt1
i t1 ` 1
t1 ` 1

, Π̂t1
,wtq andVpΠt1

i ,Bq “ Vp
Πt1

i t1

t1 ` 1
, Π̂t1

,wtq

and @t,wt “ wT when the agent looks forward from time T

where the worker solves for optimal effort exertion probabilities εpΠt1
i q for each possible reputation

Πt1
i P tΠt1u, and high effort is only optimal at time t ifVpΠt1

i ,GqppH ´ pρq ě eρpθq.

If firms seek those workers who appear willing and able to exert high effort upon being hired,

their equilibrium strategy is to select a reputation threshold Π̂t1
“ pH ´ Δt1 when facing a worker

with history length t1 since the last wage update. Δt1 ą 0 acts as the firm’s optimistic forgiveness

buffer, permitting a worker’s recent time t1 reputation to be slightly under the pH threshold, to en-

sure that it does not penalize workers who exert high effort but are unlucky and receive B outcomes.

An optimal choice of Δt1 monotonically decreases in t1 toward 0 as the reputation of a worker con-

sistently exerting high effort converges to pH as t1 Ñ 8. Note that the firmmust also take care

not to decrease Δt1 too slowly, lest workers are able to exert low effort and continue to be hired.

Thus the firm optimizes its hiring threshold Π̂t1
“ pH ´ Δt1 by decreasing Δ just enough at each

time step to motivate consistent high effort from workers who can afford it. All other workers exert

low effort in each round. Thus given a firm’s reputation threshold Π̂t1 , its equilibrium PLM hir-

ing strategyHP is a mapping such that if and only if the worker’s accumulated reputation since the

last wage update Πt1
i exceeds the threshold Π̂

t1 ,HPpΠt1
i q “ 1, and the worker is hired. Otherwise
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HPpΠt1
i q “ 0, and the worker does not earn the wage premium. This strategy is summarized in the

following Proposition, and we defer the interested reader to the Appendix for its proof.

Proposition 6. There exists a pair of PLM equilibrium strategies pH, Eq of firm-hiring and worker-

effort respectively such that

(i) A firm’s hiring strategyH is a selection of a reputation threshold function of the form Π̂t1
“

pH ´ Δt1 , where Δt1 is a monotonically decreasing function in t1, such thatHpΠt1q “ 1 if and

only ifΠt1
i ě Π̂t1 , otherwiseHpiq “ 0.

(ii) A worker’s effort strategy E is a selection of effort levels that considers only the wage wt and cost

of effort such that Epwtq “ H if and only if eρpθq ď wtppH ´ pρq, else Epwtq “ L.

Interestingly, the strategies employed in the repeated worker-firm interactions in the PLM gen-

erate a recursive relationship of the proportion of “good” workers for each group that mirrors the

structure of (3.1). PLM firms’ stringent threshold reputation hiring strategy imposes the same type

of “pressure” on workers at each round of employment as does the single-shot game in the TLM. In

both labor markets, every outcome “counts.”

Having elaborated upon the dynamics of both the TLM and PLM, we incorporate worker move-

ment and combine the results to obtain a recursive relationship that governs the sequence of work-

ers’ performance results from an initial wage w0. Note that the multiplicity of possible firm hiring

strategies produces a multiplicity of dynamic paths of outcomes tpgμt , gνt qu8
0 to steady-state, but

given that in our model, firms are willing to hire only and all workers who consistently exert high

effort, firm and worker equilibrium strategies are as described in Proposition 1, there is a unique se-

quence of group outcome pairs pgμt , gνt q such that there exists a time t “ Twith the property that

@t ě T, pgμT, g
ν
Tq “ pgμt , gνt q.

Theorem 3. Under the described labor market conditions in which ℓ proportion of workers gain entry

into the TLM and firms abide by the statistical parity hiring constraint, the proportion of all workers
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in group μ producing good outcomes at time t, gμt in the full labor market follows the recursive system

gμt`1 “ pHr1 ´ FpθQqγμt ´FpθUqp1 ´ γμt qs ` pQFpθQqγμt ` pUFpθUqp1 ´ γμt q (3.2)

where πμt “
σμℓ
τ

t
ÿ

j“t´τ
gμj , (3.3)

γμt “ φppημpπμt qq, (3.4)

θρ “ e´1
ρ pwtppH ´ pρqq, (3.5)

gt “ σμℓg
μ
t ` p1 ´ σμqℓgνt , (3.6)

where φ and pημ in Eq. 3.4 are monotonically increasing functions whose composition combines the

labor market’s reputational feedback effect with firms’ TLM constrained group-investment thresholds.

Then there exists a unique stable symmetric steady-state equilibrium and convergence time T, wherein

π̃μt “ π̃νt “ π̃,@t ą T, satisfying system-wide fairness, with a corresponding unique stable wage w̃.

To understand why the existence of this unique stable symmetric equilibrium is guaranteed when

TLM firms are bound to the statistical parity requirement, consider the two variables that affect a

group μworker i’s likelihood of producing a good outcome: her ability level θi and her probability

of being qualified PpQ|η̂μq “ γμ. Since there are positive returns to investment, γμ is increasing in

πμ: As her group μ social standing rises, cost conditions improve, and as a result, workers in future

generations are more likely to be qualified. With the imposition of the TLM hiring constraint, firms

recognize the groups’ different costs of investment and hire in a manner that retains equality be-

tween the two groups’ underlying ability distributions Fpθq within the labor market, which assures

that the proportions of workers producing good outcomes in each group gμ do not diverge within

the skilled labor market pipeline. Moreover, the statistical parity hiring constraint requires that firms

hire in a manner such that workers from a disadvantaged group μ are not inequitably blocked from

entering the skilled labor market and always constitute σμℓ of the TLM. As a result of maintaining
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both identical ability distributions Fpθq and proportional representation σμ in the TLM, statisti-

cal parity hiring ensures that as group outcomes in the skilled labor market converge, so do group

reputations. Thus, the γt-generated positive feedback loop that pushes towards diverging group out-

comes is always constrained, allowing the natural reputational feedback on group investment cost

functions cπμ to drive the convergence of group outcomes and thus group reputations to a single

steady-state value. Importantly, throughout the path of tpgμt , gνt qu outcomes toward this symmet-

ric steady-state, the “severity” of the TLM fairness constraint on firms’ hiring strategies continually

slackens until it recedes into disuse. For a full exposition of the proof, see the Appendix.

Under statistical parity hiring in the TLM, groups with unequal initial social standing will grad-

ually approach the same reputation level according to time-lag τ. The constraint has the effect of

co-opting the “self-confirming” loop for group reputation improvement—collective reputation pro-

duces a positive externality, lowering individual group members’ cost functions, thus improving in-

vestment conditions for future workers, further raising individual and group reputation. We point

out that the empirically-validated link between group reputations and members’ investment costs

makes a TLM statistical parity constraint a more efficient means of addressing group inequalities

than a similar intervention in the PLM. Since the TLM represents the entry point into the market,

enforcing statistical parity at the onset ensures that lower reputation workers are not disproportion-

ately excluded from the pipeline as a whole.

We next compare this steady-state under the TLM constraint with long-term outcomes of other

rational hiring strategies that are not bound by any fairness constraints and show that under particu-

lar market conditions, the fair steady-state is Pareto-dominant.

3.3.2 Comparative Statics with UnconstrainedHiring Strategies

In the absence of any constraint, firms are free to select any strategy that will maximize their prob-

ability of employing high-ability, qualified workers. Two such common strategies are group-blind,
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sometimes called “meritocratic,” and statistical discriminatory hiring. We provide an overview of

each practice and then continue on to comparing their long-term equilibria outcomes with the sym-

metric steady-state that arises under our TLM hiring constraint.

Consider a group-blind TLM hiring strategy that is individual-based, operating under an equal-

treatment philosophy. Without considering agent group membership— suppose again μ P tB,Wu—

the firm hires a proportion ℓ of workers by selecting a single investment level threshold η̃ for all

workers, implicitly defined as

ℓ “ p1 ´ σBq

´

1 ´ Fpc´1
πWpη̃ppH ´ pρqq

¯

` σB
´

1 ´ Fpc´1
πB pη̃ppH ´ pρqq

¯

where σB and 1 ´ σB give the proportion of individuals in groups B andW respectively, and the

function cπμp¨q determines the group μ investment level. Pragmatically under this strategy, the firm

will examine the broad distribution of all investment levels and select a threshold above which it is

willing to employ workers. This strategy is also rationalized by the fact that the threshold η̃maxi-

mizes the expected number of hired workers who are qualified.

An alternative class of firm hiring strategies employ statistical discrimination, in which priors

regarding a worker’s observable attributes, such as group membership, are used to infer a particular

individual’s hidden attributes. In particular, if TLM firms hold priors ξB and ξW about the two

groups’ capabilities, upon observing an applicant’s group μ and investment level η, they will update

their beliefs of the prospective employee’s qualifications according to:

PpQ|μ, ηq “
pQpηqξμ

pQpηqξμ ` p1 ´ ξμqpUpηq

where pQpηq and pUpηq give the probability of a qualified and unqualified worker having investment

level η respectively.
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Theorem 4. In a PLMwith unsaturated demand (w “ w̄) for skilled workers, the TLM constraint

leads to a symmetric steady-state equilibrium that Pareto-dominates the asymmetric equilibria that

arise under group-blind and statistical discriminatory hiring.

We present an abbreviated exposition of the underlying factors that drive unconstrained hiring

strategies to Pareto-dominated outcomes. For the full account of the proof, see the Appendix.

Group-blind hiring satisfies neither of the two key constrained hiring guarantees described in

the proof explanation for Theorem 3—namely, groups no longer share equal ability distributions

Fpθq nor are they proportionally represented in the market according to their demographic shares

σμ. The violation of both of these criteria contribute to group reputation divergence and thus the

existence of persistent asymmetric outcomes between groups.

At the asymmetric steady-state, groups retain distinct investment costs that, under a group-blind

investment threshold, generate group-specific ability level thresholds rθB and ĂθW. If group reputation

πB ă πW, then these ability thresholds may be ranked with respect to the threshold θ̄ that arises un-

der the fairness constraint: ĂθW ă θ̄ ă rθB. These hiring strategies inequitably bound the proportion

of able and qualified workers in group Bwho are eligible to compete for skilled jobs, leaving behind

an untapped source of group B individuals who would have otherwise been hired. Under PLM con-

ditions in which demand for skilled workers is unsaturated and the wage wpgtq “ w̄, workers in

groupWwho are barred from entering the labor market in the proposed fair regime are not hired

at equilibrium under group-blind hiring anyway. With strictly better-off employment outcomes for

group Bworkers and no worse outcomes for groupWworkers, the constrained-hiring equilibrium

Pareto-dominates the group-blind hiring equilibrium.

Similarly, statistical discriminatory hiring leads to group-specific ability thresholds and does not

guarantee statistical parity. As Coate and Loury22 show, self-confirming asymmetric equilibria also

exist under this regime, wherein lower investment levels within the group with lower social standing

are justified by firms’ more stringent hiring standards. These effects have consequences that mirror

60



the Pareto-dominated results under group-blind hiring.

3.4 Discussion

Describing disparate outcomes in employment as caused by rational agent best response strategies

suggests that the field of algorithmic fairness should consider the labor market’s inherent dynamic

setting in its approach to potential interventions. Fairness constraints that are conceived as isolated

procedural checks have a limited capacity to install system-wide fairness that is self-sustaining and

long-lasting. The problem of fairness in the labor market is fundamentally tied to historical factors.

Within nearly all societal domains in which fairness is an issue, past and current social relations dif-

ferentially impact subjects, producing distinct sets of resources, options, and opportunities that

continue to mark agents’ choices and outcomes today. Empirical evidence points to what economist

and social theorist Glenn Loury has called “development bias,” in which black members of society

have reduced chances of realizing their potential, as the greater source of racial inequality in welfare

outcomes than discriminatory hiring.71 This perspective challenges the notion that assuring “indi-

vidual fairness” of the actual procedure of hiring should be the primary concern in assuring a labor

market that is unbiased as a whole.

Not only is the standard learning theory formulation of the problem, in which agent attributes

are treated as a priori givens, inadequate to attend to development bias, it also neglects the (ar-

guably) meritocratic goals of the labor market. In economic settings, rewarding merit primarily

serves an instrumental purpose—to incentivize investment and effort—rather than existing simply

to pass along desert-based awards to candidates. Framing the problem as one of clustering or clas-

sification fails to understand the labor market as an incentive-oriented system. Fairness criteria that

solely assess an algorithm’s treatment of workers’ qualifications similarly fall into the trap of view-

ing hiring decisions only as rewards to meritorious individuals without considering the incentive
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purposes of the reward system at-large.

In contrast, a dynamic model recognizes the ripple effect of development bias in the past and

calls for a fairness intervention with incentive features that carries momentum into the future. The

labor market as a source of economic opportunity is an ideal setting for a notion of fairness that is

oriented toward a future beyond the short timeline of firm hiring cycles. It is precisely our focus

on steady-state outcomes that allows for this long-term conception of fairness. However, it should

be noted that the employment outcomes along the path to the symmetric equilibrium are by no

means guaranteed to satisfy any notions of fairness, neither individual nor group. But we claim

that conceiving of fairness in this way—as a project that aims to achieve permanent societal group-

egalitarianism—is an ambition that is not only a worthy goal in itself but also one that we showmay

be economically socially optimal.

Our model of individual reputations as a sequence of previous outcomes in the PLM fits within

the hiring regime today, in which employers have increased access to worker data. Since algorithms

will be largely responsible for making sense of this historical data, future work should consider

how systems that sift through a worker’s history should be designed to determine when group

membership-related considerations, such as the ones embedded in the TLM constraint proposed

here, should be taken into account. As machine decision-makers are deployed increasingly through-

out hiring processes, we must grapple with a long tradition of explicit and implicit human biases

that have rendered the labor market prone to discriminatory practices. We hope that this work can

suggest ways that algorithmic fairness interventions can shift these hiring strategies towards con-

tributing to a better, fairer future.

While this chapter has shown that imposing the TLM hiring constraint ultimately leads to a

group-symmetric outcome, we do not claim that ours is the only intervention able to produce such

an equilibrium. The labor market pipeline in reality is an elaborate sequence of agent choices and

social stages that is much more complex and heterogeneous than our model’s pre-TLM, TLM, and
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PLM periods. The true space of possible policy interventions dwarfs those considered in this work.

Interventions aimed at reducing the economic inequalities that exist between black and white com-

munities have been implemented at a variety of junctures in the standard social pipeline, ranging

from direct governmental subsidy programs for childhood education costs in high-poverty areas to

private companies’ attempts at diversifying hiring by partnering with historically black colleges. As

such, there may exist a multiplicity of intervention-types that all ultimately lead to group-egalitarian

outcomes. Further analysis of the costs and efficiencies associated with each of these regimes will

produce a richer understanding of potential fairness interventions and their concomitant welfare

effects. Insofar as work in labor market fairness ought to inspire action and policy in the real world,

these open questions will require both theoretical and empirical attention.
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4
Fair Classification and Social Welfare

4.1 Introduction

In his 1979 Tanner Lectures, Amartya Sen noted that since nearly all egalitarian theories are founded

on an equality of some sort, the heart of the issue rests on clarifying the “equality of what?” prob-

lem.83 The field of fair machine learning has not escaped this essential question. Does machine

learning have an obligation to assure probabilistic equality of outcomes across various social groups?35,45
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Or does it simply owe an equality of treatment?30 Does fairness demand that individuals (or groups)

be subject to equal mistreatment rates?95,11 Or does being fair refer only to avoiding some intolera-

ble level of algorithmic error?

Currently, the task of accounting for fair machine learning cashes out in the comparison of myr-

iad metrics—probability distributions, error likelihoods, classification rates—sliced up every way

possible to reveal the range of inequalities that may arise before, during, and after the learning pro-

cess. But as shown in work by Chouldechova20 and Kleinberg et al.,61 fundamental statistical in-

compatibilities rule out any solution that can satisfy all parity metrics. Fairness-constrained loss

minimization offers little guidance on its own for choosing among the fairness desiderata, which

appear incommensurable and result in different impacts on different individuals and groups. We are

thus left with the harsh but unavoidable task of adjudicating between these measures and methods.

How ought we decide? For a given application, who actually benefits from the operationalization of

a certain fairness constraint? This is a basic but critical question that must be answered if we are to

understand the impact that fairness constraints have on classification outcomes. Much research in

fairness has been motivated by the well-documented negative impacts that these systems can have on

already structurally disadvantaged groups. But do fairness constraints as currently formulated in fact

earn their reputation as serving to improve the welfares of marginalized social groups?

When algorithms are adopted in social environments—consider, for example, the use of predic-

tive systems in the financial services industry—classification outcomes directly bear on individuals’

material well-beings. We, thus, view predictions as resource allocations awarded to individuals and by

extension, to various social groups. In this chapter, we build out a method of analysis that takes in

generic fair learning regimes and analyzes them from a welfare perspective.

Our main contributions, presented in Section 3, are methodological as well as substantive in

the field of algorithmic fairness. We show that how “fair” a classifier is—how well it accords with a

group parity constraint such as “equality of opportunity” or “balance for false positives”—does not
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neatly translate into statements about different groups’ welfares are affected. Drawing on techniques

from parametric programming and finding a SVM’s regularization path, our method of analysis

finds the optimal ε-fair Soft-Margin SVM solution for all values of a fairness tolerance parameter

ε P r0, 1s. We track the welfares of individuals and groups as a function of ε and identify those

ranges of ε values that support solutions that are Pareto-dominated by neighboring ε values. Further,

the algorithmic implementation of our analyses is computationally efficient, with a complexity on

the same order as current standard SVM solvers that fit a single SVMmodel, and is thus practical as

a procedure that translates fairness constraints into welfare effects for all ε.

Our substantive results show that a classifier that abides by a stricter fairness standard does not

necessarily issue improved outcomes for the disadvantaged group. In particular, we prove two re-

sults: first, starting at any nonzero ε-fair optimal SVM solution, we express the range of Δε ă 0

perturbations that tighten the fairness constraint and lead to classifier-output allocations that are

weakly Pareto dominated by those issued by the “less fair” original classifier. Second, there are

nonzero ε-fair optimal SVM solutions, such that there exist Δε ă 0 perturbations that yield clas-

sifications that are strongly Pareto dominated by those issued by the “less fair” original classifier. We

demonstrate these findings on the Adult dataset. In general, our results show that when notions of

fairness rest entirely on leading parity-based notions, always preferring more fair machine learning

classifiers does not accord with the Pareto Principle, an axiom typically seen as fundamental in social

choice theory and welfare economics.

The purposes of our work are twofold. The first is simply to encourage a welfare-centric un-

derstanding of algorithmic fairness. Whenever machine learning is deployed within important so-

cial and economic processes, concerns for fairness arise when societal ideals are in tension with a

decision-maker’s interests. Most leading methodologies have focused on optimization of utility or

welfare to the vendor but have rarely awarded those individuals and groups who are subject to these

systems the same kind of attention to welfare effects. Our work explicitly focuses its analysis on the
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latter.

We also seek to highlight the limits of conceptualizing fairness only in terms of group-based par-

ity measures. Our results show that at current, making a system “more fair” as defined by popular

metrics can harm the vulnerable social populations that were ostensibly meant to be served by the

imposition of such constraints. Though the Pareto Principle is not without faults, the frequency

with which “more fair” classification outcomes are welfare-wise dominated by “less fair” ones occurs

is troublesome and should lead scholars to reevaluate popular methodologies by which we under-

stand the impact of machine learning on different social populations.

4.1.1 RelatedWork

Research in fair machine learning has largely centered on computationally defining “fairness” as

a property of a classifier and then showing that techniques can be invented to satisfy such a no-

tion.53,30,97,35,96,52,45,79,17,64,60,95,11,56,28,3 Since most methods are meant to apply to learning prob-

lems generally, many such notions of fairness center on parity-based metrics about a classifier’s be-

havior on various legally protected social groups rather than on matters of welfare.

Most of the works that do look toward a welfare-based framework for interpreting appeals to

fairness sit at the intersection of computing and economics. Mullainathan75 also makes a compar-

ison between policies as set by machine learning systems and policies as set by a social planner. He

argues that algorithmic systems that make explicit their description of a global welfare function are

less likely to perpetrate biased outcomes and are more successful at ameliorating social inequalities.

Heidari et al.48 propose using social welfare functions as fairness constraints on loss minimization

programs. They suggest that a learner ought to optimize her classifier while in Rawls’ original posi-

tion. As a result, their approach to social welfare is closely tied with considerations of risk. Rather

than integrate social welfare functions into the supervised learning pipeline, we claim that the result

of an algorithmic classification system can itself be considered a welfare-impacting allocation. Thus,
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our work simply takes a generic ε-fair learning problem as-is, and then considers the welfare impli-

cations of its full path of outcomes for all ε P r0, 1s on individuals as well as groups. Attention to

the potential harms of machine learning systems, is not new, of course. Within the field of algorith-

mic fairness, Corbett-Davies and Goel23 and Liu et al.68 both devote most of their analyses to the

person-impacting effects of classificatory systems.

The techniques that we use to translate fair learning outcomes into welfare paths are related to a

number of existing works. The proxy fairness constraint in our instantiation of the ε-fair SVM prob-

lem original appeared in Zafar et al.’s work on restricting the disparate impact of machine classi-

fiers.96 Their research introduces this particular proxy fairness constrained program and shows that

it can be efficiently solved and well approximates target fairness constraints. We use the constraint

to demonstrate our overall findings about the effect of fairness criteria on individual and group

welfares. We share some of the preliminary formulations of the fair SVM problem with Donini et

al.28 though they focus on the statistical and fairness guarantees of the generalized ERM program.

Though this area seems far afield from questions of fairness and welfare, our analysis on the effect of

Δε fairness perturbations on welfare makes use of these general methods.26,46,90,89,54

4.2 Problem Formalization

Our framework and results are motivated by those algorithmic use cases in which considerations

of fairness and welfare stand alongside those of efficiency. Because our chapter connects machine

classification and notions of algorithmic fairness with conceptions of social welfare, we first provide

an overview of the notation and assumptions that feature throughout our work.

In the empirical loss minimization problem, a learner seeks a classifier h that issues the most accu-

rate predictions when trained on set of n data points txi, zi, yiuni“1. Each triple gives an individual’s
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feature vector xi P X , protected class attribute zi P t0, 1u, and true label yi P t´1,`1u.* A classifier

that assigns an incorrect label hpxiq ‰ yi incurs a penalty.

The empirical risk minimizing predictor is given by

h˚ :“ argmin
hPH

n
ÿ

i“1
ℓphpxiq, yiq

where hypothesis h : X Ñ R gives a learner’s model, the loss function ℓ : R ˆ t´1,`1u Ñ R gives

the penalty incurred by a prediction, andH is the hypothesis class under the learner’s consideration.

Binary classification systems issue predictions hpxq P t´1,`1u.

Notions of fairness have been formalized in a variety of ways in the machine learning literature.

Though Dwork et al.’s30 initial conceptualization remains prominent and influential, much work

has since defined fairness as a parity notion applied across different protected class groups.45,20,61,95,28,3

The following definition gives the general form of these types of fairness criteria.

Definition 5. A classifier h satisfies a general group-based notion of ε-fairness if

|Ergpℓ, h, xi, yiq|Ezi“1s ´ Ergpℓ, h, xi, yiq|Ezi“0s| ď ε (4.1)

where g is some function of classifier h performance, and Ezi“0 and Ezi“1 are events that occur with

respect to groups z “ 0 and z “ 1 respectively.

Further specifications of the function g and the events E instantiate particular group-based fair-

ness notions. For example, when gpℓ, h, xi, yiq “ hpxiq and Ezi refers to the events in which yi “ `1

for each group zi P t0, 1u, Definition 5 gives an ε-approximation of equality of opportunity.45 When

gpℓ, h, xi, yiq “ ℓphpxiq, yiq and Ezi refers to all classification events for each group zi, Definition

*Though individuals in a dataset will typically be coded with many protected class attributes, in this
chapter we will consider only a single sensitive attribute of focus.
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5 gives the notion of ε-approximation of overall error rate balance.20 Notice that as ε increases, the

constraint loosens, and the solution is considered “less fair.” As ε decreases, the fairness constraint

becomes more strict, and the solution is considered “more fair.”

Mapping classification outcomes to changes in individuals’ welfares gives a useful method of

analysis for many data-based algorithmic systems that are involved in resource distribution pipelines.

In particular, we consider tools that issue outcomes uniformly ranked, or preferred, by those indi-

viduals who are the subjects of the system. That is, individuals agree on which outcome is preferred.

Examples of such systems abound: applicants for credit generally want to be found eligible; can-

didates for jobs generally want to be hired, or at least ranked highly in their pool. These realms are

precisely those in which fairness considerations are urgent and where fairness-adjusted learning

methods are most likely to be adopted.

4.3 Welfare Impacts of Fairness Constraints

The central inquiry of our work asks how fairness constraints as popularized in the algorithmic

fairness community relate to welfare-based analyses that are dominant in economics and policy-

making circles. Do fairness-adjusted optimization problems actually make marginalized groups

better-off in terms of welfare? In this section, we work from an empirical risk minimization (ERM)

program with generic fairness constraints parametrized by a tolerance parameter ε ą 0 and trace

individuals’ and groups’ welfares as a function of ε. We assume that an individual benefits from

receiving a positive classification, and thus we define group welfare as

Wk “
1
nk

ÿ

i|zi“k

hpxiq ` 1
2

, k P t0, 1u (4.2)

where nk give the number of individuals in group z “ k. We note thatWk can be defined in ways

other than (4.2), which assumes that positive classification are always and only welfare-enhancing.
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Other work has considered the possibility that positive classifications may in fact make individuals

worse-off if they are false positives.68 The definition ofWk can be generalized to account for these

cases.

First, in Section 4.3.1, we present an instantiation of the ε-fair ERM problem with a fairness

constraint proposed in prior work in algorithmic fairness. We work from the Soft-Margin SVM pro-

gram and derive the various dual formulations that will be of use in the following analyses. In Sec-

tion 4.3.2, we move on to show how Δε perturbations to the fairness constraint in the ε-fair ERM

problem yield changes in classification outcomes for individuals and by extension, how they impact

a group’s overall welfare. Our approach, which draws a connection between fairness perturbations

and searches for an optimal SVM regularization parameter, tracks changes in an individual’s classifi-

cation by taking advantage of the codependence of variables in the dual of the SVM. By perturbing

the fairness constraint, we observe changes in not its own corresponding dual variable but in the

corresponding dual of the margin constraints, which relay the classification fates of data points.

Leveraging this technique, we plot the “solution paths” of the dual variable as a function of ε,

which in turn allows us to compute group welfares as a function of ε and draw out substantive re-

sults on the dynamics of how classification outcomes change in response to ε-fair learning. We prove

that stricter fairness standards do not necessarily support welfare-enhancing outcomes for the disad-

vantaged group. In many such cases, the learning goal of ensuring group-based fairness is incompat-

ible with the Pareto Principle.

Definition 6 (Pareto Principle). Let x, y be two social alternatives. Let ľi be the preference ordering

of individuals i P rns, and ľP be the preference ordering of a social planner. The planner abides by the

Pareto Principle if x ľP y whenever x ľi y for all i.

In welfare economics, the Pareto Principle is a standard requirement of social welfare functionals—

it would appear that the selection of an allocation that is Pareto dominated by an available alterna-
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tive would be undesirable and even irresponsible! Nevertheless, we show that applying fairness crite-

ria to loss minimization tasks in some cases do just that. We perform our analysis on the Soft-Margin

SVM optimization problem and, for concreteness, work with a well-known fairness formulation in

the literature. However, we note that our methods and results apply to fairness-constrained convex

loss minimization programs more generally.

We also show that this method of analysis can form practical tools. In Section 4.3.3, we present a

computationally efficient algorithmic implementation of our analyses, fitting full welfare solution

paths for all ε P r0, 1s values in a time complexity that is on the same order as that of a single SVM

fit. We close this section by working from the shadow price of the fairness constraint to derive local

and global sensitivities of the optimal solution to Δε perturbations.

4.3.1 Setting up the ε-fair ERM program

The general fairness-constrained empirical loss minimization program can be written as

minimize
h P H

ℓphpxq, yq

subject to fhpx, yq ď ε
(4.3)

where ℓphpxq, yq gives the empirical loss of a classifier h P H on the datasetX . To maximize accu-

racy, the learner ought to minimize 0-1 loss; however because the loss function ℓ0´1 is non-convex,

a convex surrogate loss such as hinge loss (ℓh) or log loss (ℓlog) is frequently substituted in its place

to ensure that globally optimal solutions may be efficiently found. fhpx, yq ď ε gives a group-

based fairness constraint of the type given in Definition 5, where ε ą 0 is the unfairness “tolerance

parameter”—a greater ε permits a greater group disparity on a metric of interest; a smaller εmore

tightly restricts the level of permissible disparity.

We examine the behavior of fairness-constrained linear SVM classifiers, though we note that our
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techniques generalize to nonlinear kernels SVMs, since interpretations of the dual of the SVM and

the full SVM regularization path are the same with kernels.46 Our learner minimizes hinge loss with

L1 regularization; equivalently, she seeks a Soft-Margin SVM that is “ε-fair.” Both SVMmodels and

“fair training” approaches are in broad circulation. The fair empirical risk minimization program is

thus given as

minimize
θθθ, b

1
2
∥θθθ∥2 ` C

n
ÿ

i“1
ξi

subject to yipθθθ⊺xi ` bq ´ 1 ` ξi ě 0, (ε-fair Soft-SVM)

ξi ě 0,

fθθθ,bpx, yq ď ε

where the learner seeks SVM parameters θθθ, b; ξi are non-negative slack variables that violate the mar-

gin constraint in the Hard-Margin SVM problem yipθθθ⊺xi ` bq ´ 1 ě 0, and C ą 0 is a hyperparam-

eter tunable by the learner to express the trade-off between preferring a larger margin and penalizing

violations of the margin. fθθθ,bpx, yq is the group parity-based fairness constraint.

The abundant literature on algorithmic fairness presents a long menu of options for the various

forms that fθθθ,b could take, but generally speaking, the constraints are non-convex. As such, much

work has enlisted methods that depart from directly pursuing efficient constraint-based convex pro-

gramming techniques in order to solve them.53,11,3,95 Researchers have also devised convex proxy

alternatives, which have been shown to approximate the intended outcomes of original fairness

constraints well.96,28,93 In particular, in this chapter, we work with the proxy constraint proposed

by Zafar et al.,96 which constrains disparities in covariance between group membership and the
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(signed) distance between individuals’ feature vectors and the hyperplane decision boundary:

fθθθ,bpx, yq “ | 1
n

n
ÿ

i“1
pzi ´ z̄qpθθθ⊺xi ` bq| ď ε (4.4)

z̄ reflects the bias in the demographic makeup ofX : z̄ “ 1
n
řn

i“1 zi. Let (ε-fair-SVM1-P) be the

Soft-Margin SVM program with this covariance constraint. The corresponding Lagrangian is

LPpθθθ, b, ξξξ,λλλ,μμμ, γ1, γ2q “
1
2
∥θθθ∥2 ` C

n
ÿ

i“1
ξi ´

n
ÿ

i“1
λi ´

n
ÿ

i“1
μipyipθθθ

⊺xi ` bq ´ 1 ` ξiq

´ γ1
`

ε ´
1
n

n
ÿ

i“1
pzi ´ z̄qpθθθ⊺xi ` bq

˘

(ε-fair-SVM1-L)

´ γ2
`

ε ´
1
n

n
ÿ

i“1
pz̄ ´ ziqpθθθ⊺xi ` bq

˘

where θθθ P Rd, b P R, ξξξ P Rn are primal variables. The (non-negative) Lagrange multipliers

λλλ,μμμ P Rn correspond to the n non-negativity constraints ξi ě 0 and the margin-slack constraints

yipθθθ⊺xi ` bq ´ 1 ` ξi ě 0 respectively. The multipliers γ1, γ2 P R correspond to the two linearized

forms of the absolute value fairness constraint. By complementary slackness, dual variables reveal

information about the satisfaction or violation of their corresponding constraints. The analyses in

the subsequent two subsections will focus on these interpretations.

By the Karush-Kuhn-Tucker (KKT) conditions, at the solution of the convex program, the gra-

dients ofLwith respect to θθθ, b, and ξi are zero. Plugging in these conditions, the dual Lagrangian

is

LDpμμμ, γq “ ´
1
2
∥

n
ÿ

i“1
μiyixi ´

γ
n

n
ÿ

i“1
pzi ´ z̄qxi∥2 `

n
ÿ

i“1
μi ´ |γ|ε (4.5)

where γ “ γ1 ´ γ2. The dual maximizes this objective subject to the constraints μi P r0,Cs for all
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i P rns and
ř

i“1 μiyi “ 0. We thus arrive at the Wolfe dual problem

maximize
μμμ, γ,V

´
1
2
∥

n
ÿ

i“1
μiyixi ´

γ
n

n
ÿ

i“1
pzi ´ z̄qxi∥2 `

n
ÿ

i“1
μi ´ Vε

subject to μi P r0,Cs, i “ 1, . . . , n, (ε-fair-SVM1-D)
n
ÿ

i“1
μiyi “ 0,

γ P r´V,Vs

where we have introduced the variableV to eliminate the absolute value function |γ| in the objec-

tive. Notice that when γ “ 0 and neither of the constraints bind, we recover the standard dual SVM

program. Since we are concerned with fair learning that does alter an optimal solution, we consider

cases whereV is strictly positive. We introduce additional dual variables β
´
and β

`
, corresponding

to the γ P r´V,Vs constraint and derive the Lagrangian

Lpμμμ, γ,V, β
´
, β

`
q “ ´

1
2
∥

n
ÿ

i“1
μiyixi ´

γ
n

n
ÿ

i“1
pzi ´ z̄qxi∥2 `

n
ÿ

i“1
μi

´ Vε ` γpβ
´

´ β
`

q ` Vpβ
´

` β
`

q

Under KKT conditions, β
´

` β
`

“ ε and

γ˚ “
npnpβ

´
´ β

`
q `

řn
i“1 μiyixxi, uyq

∥u∥2
(4.6)

where u “
řn

i“1pzi ´ z̄qxi geometrically gives some group-sensitive “average” of x P X . We can

now rewrite (ε-fair-SVM1-D) as
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maximize
μμμ,β´,β`

´
1
2
∥

n
ÿ

i“1
μiyipI ´ Puqxi∥2 `

n
ÿ

i“1
μi `

2n
ř

i μiyixxi, uy ` n2pβ
´

´ β
`

q

2∥u∥2
pβ

´
´ β

`
q

subject to μi P r0,Cs, i “ 1, . . . , n,
n
ÿ

i“1
μiyi “ 0, (ε-fair SVM2-D)

β
´
, β

`
ě 0,

β
´

` β
`

“ ε

where I,Pu P Rdˆd. The former is the identity matrix, and the latter is the projection matrix

onto the vector u. As was also observed by Donini et al., the ε “ 0 version of (ε-fair SVM2-D)

is equivalent to the standard formulation of the dual SVM program with KernelKpxi, xjq “

xpI ´ Puqxi, pI ´ Puqxjy.28

Since we are interested in the welfare impacts of fair learning when fairness constraints do have

an impact on optimal solutions, we will assume that the fairness constraint binds. For clarity of

exposition, we assume that the positive covariance constraint binds, and thus that β
´

“ 0 and

β
`

“ ε in (ε-fair SVM2-D). This is without loss of generalization—the same analyses apply when

the negative covariance constraint binds. The dual ε-fair SVM program becomes

minimizeμμμ
1
2
∥

n
ÿ

i“1
μiyipI ´ Puqxi∥2 ´

n
ÿ

i“1
μi `

nεp2
ř

i μiyixxi, uy ´ nεq
2∥u∥2

subject to μi P r0,Cs, i “ 1, . . . , n, (ε-fair SVM-D)
n
ÿ

i“1
μiyi “ 0
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Wewill work from this formulation of the constrained optimization problem for the remainder of

the chapter.

4.3.2 Impact of Fair Learning on

Individuals’ Welfares

We nowmove on to investigate the effects of perturbing a fixed ε-fair SVM by some Δε on the clas-

sification outcomes that are issued. We ask, “How are individuals’ and groups’ classifications, and

thus their welfares, impacted when a learner tightens or loosens a fairness constraint?” The key insight

that drives our methods and results is that rather than perform sensitivity analysis directly on the

dual variable corresponding to the fairness constraint—which, as we will see in Section 4.3.4, only

gives information about the change in the learner’s objective value—we track changes in the classi-

fier’s behavior by analyzing the effect of Δε perturbations on another set of dual variables: μi that

correspond to the primal margin constraints. Each of these n dual variables indicate whether its cor-

responding vector xi is correctly classified, lies in the margin, or incorrectly classified. Leveraging

how these μi change as a function of ε thereby allows us to track the solution paths of individual

points and by extension, compute group welfare paths.

Define a function ppεq : R Ñ R that gives the optimal value of the ε-fair loss minimizing pro-

gram in (ε-fair SVM1-P), which by duality is also the optimal value of (ε-fair SVM-D). We begin at a

solution ppεq and consider changes in classifications at the solution ppε ` Δεq, where Δε are pertur-

bations can be positive or negative, so long as ε ` Δε ą 0. At an optimal solution, the classification

fate of each data point xi is encoded in the dual variable μ˚
i , which is a function of ε. μipεq is the ε-

parameterized solution path of μi such that at any particular solution ppεq, the optimal value of the

dual variable μ˚
i “ μipεq. As a slight abuse of notation, we reserve notation μipεq for the functional

form of the solution path and write μεi ; to refer to the value of the dual variable at a given ε.
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Lemma 3. The dual variable paths μipεq for all i P rns are piecewise linear in ε.

Though this lemma seems merely of technical interest, it is a workhorse result for both our

methodological contributions—our analytical results and our computationally efficient algorithm,

which converts fairness constraints to welfare paths—as well as our substantive fairness results about

how fairness perturbations impact individual and learner welfares. The algorithm we present in Sec-

tion 4.3.3, performs full welfare analysis for all values of ε in a computationally efficient manner by

taking advantage of the piecewise linear form of individual and group welfares. Piecewise linearity

also sets the stage for the later substantive results about the tension between fairness improvements

and the Pareto Principle. We thus walk through the longer proof of this key result in the main text

of the chapter as it provides important exposition, definitions, and derivations for subsequent re-

sults.

Proof. LetDε be the value of the objective function in (ε-fair SVM-D). By the dual formulation of

the Soft-Margin SVM, we can use the value of BDε

Bμj
to partition the set of indices j P rns in a way that

corresponds to the classification fates of individual vectors xj at the optimal solution:

BDε

Bμj
ą 0 ÝÑ μεj “ 0, and j P F ε (4.7)

BDε

Bμj
“ 0 ÝÑ μεj P r0,Cs, and j P Mε (4.8)

BDε

Bμj
ă 0 ÝÑ μεj “ C, and j P E ε (4.9)

Hence, xj are either correctly classified free vectors (4.7), vectors in the margin (4.8), or error vectors

(4.9). We track membership in these sets by letting tF ,M, Euε be the index set partition at the ε-

fair solution. To analyze the impact that applying a fairness constraint has on individuals’ or groups’

welfares, we track the behavior of BDε

Bμj
and observe how vector index membership in setsF ε,Mε,
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and E ε change under a perturbation to ε. This information will in turn reveal how classifications

change or remain stable upon tightening or loosening the fairness constraint.

Fairness perturbations do not always shuffle data points across the different membership sets

F ε,Mε, and E ε. It is clear that for j P tF , Euε, so long as a perturbation of Δε does not cause BDε

Bμj

to flip signs or to vanish to 0, jwill belong to the same set and hεpxjq “ hε`Δεpxjq where hεpxjq gives

the ε-fair classification outcome for xj. In these cases, an individual’s welfare is unaffected by the

change in the fairness tolerance level from ε to ε ` Δε.

In contrast, vectors xj with j P Mε are subject to a different condition to ensure that they stay in

the margin: BDε

Bμj
“ BDε`Δε

Bμj
“ 0, i.e., perturbing by Δε does not lead to any changes in BDε

Bμj
:

BDε

Bμj
“

n
ÿ

i“1
μiyipI ´ PuqxiyjpI ´ Puqxj `

nεyjxxj, uy

∥u∥2
` byj ´ 1 “ 0 (4.10)

for all j P Mε. Let rε,Δεj be the change in μεj upon perturbing ε by Δε, then we have

με`Δε
j “ μεj ` rε,Δεj (4.11)

recalling that μεj is the value of μj at the optimal solution ppεq. Let rrrε,Δε P Rn`1 be the vector of μεi

sensitivities to perturbations Δεwith rε,Δε0 as the change in the offset b. For all unshuffled j P Mε,

we can compute rε,Δεj by taking the finite difference of (4.10) with respect to a Δε perturbation,

n
ÿ

i“1
rε,Δεi yiyjxpI ´ Puqxi, pI ´ Puqxjy ` rε,Δε0 yj “

´nyjΔε
∥u∥2

xu, xjy

It is clear that rε,Δεi “ 0 for all i that are left unshuffled in the partition tF , Euε. For these “stable

ranges” where no i changes its index set membership, we can simplify the previous expression by
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summing over only those rε,Δεi where i P Mε:

ÿ

iPMε

rε,Δεi yiyjxpI ´ Puqxi, pI ´ Puqxjy ` rε,Δε0 yj “
´nyjΔε
∥u∥2

xu, xjy

Thus we can compute rε,Δεi by inverting the matrix

Kε “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 y1 y2 . . . y|Mε|

y1

... yiyjxpI ´ Puqxi, pI ´ Puqxjy

y2

y|Mε|

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P Rp|Mε|`1qˆp|Mε|`1q (4.12)

where indices are renumbered to only reflect i, j P Mε. This matrix is invertible so long as the

margin is not empty and the KernelKpxi, xjq “ xpI ´ Puqxi, pI ´ Puqxjy forms a positive definite

matrix. Since the objective function in (ε-fair SVM-D) is quadratic, a sufficient condition forKε to

be invertible is that the objective is strictly convex—we assume this as a technical condition.† The

†Wemention the case in which the margin is empty in Section 3.3, though we refer the interested reader
to the Appendix for a full exposition of how μεj are updated when the margin is empty and as a result, we
cannot compute how imove across index sets via the sensitivities rrr.
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sensitivities of μεj for j P Mε to Δε perturbations are given by

rrrε,Δε “ pKεq´1
´

´n
∥u∥2

v
¯

loooooooomoooooooon

rrrε

Δε, where v “

»

—

—

—

—

—

—

—

–

0
...

yjxu, xjy
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P R|Mε|`1 (4.13)

Plugging this back into (4.11), we have

με`Δε
j “ μεj `

´

`

Kε˘´1` ´n
∥u∥2

v
˘

¯

j
loooooooooomoooooooooon

rεj

Δε (4.14)

Hence, for all j P Mε that stay in the margin, the solution path function μjpεq is linear in ε. For

j P tF , Euε that stay in their partition sets, μjpε ` Δεq “ μjpεq, so the function is constant.

When Δε perturbations do result in changes in the partition, there are four ways that indices

could be shuffled across sets:

1. j P E ε moves intoMε`Δε

2. j P F moves intoMε`Δε

3. j P Mε moves intoF ε`Δε

4. j P Mε moves into E ε`Δε

Since index transitions only occur by way of changes to the margin, we need now only confirm that

each of these transitions maintains continuous μjpεq paths for all j P rns in order to conclude the

proof that the paths are piecewise-linear.

The linearity of paths μjpεq for j P Mε gives conditions on the ranges of εwherein individuals’
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classification outcomes do not change. As such, for any given tolerance parameter ε, we can com-

pute the Δε perturbations that yield no changes to individuals’ welfares. The following Proposition

gives the analytical form of these stable regions, where although fairness appears to be “improving”

or “worsening,” the adjusted learning process has no material effects on the classificatory outcomes

that individuals receive.

Proposition 7. Denote the optimal μ˚
j values at an ε-fair SVM solution as μεj for j P rns. Let

rj “

´

pKεq´1p
´n
∥u∥2

vq

¯

j
with Kε and v as defined in (4.12) and (4.13),

dj “
ÿ

iPMε

riyiyjxpI ´ Puqxi, pI ´ Puqxjy ` r0yj

gj “ 1 ´

´

n
ÿ

i“1
μεiyipI ´ PuqxiyjpI ´ Puqxj `

nεyjxxj, uy

∥u∥2
` byj

¯

(4.15)

All perturbations of ε in the range Δε P
`

maxjmj,minjMj
˘

where

mj “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’
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’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

$

’

’

&

’

’

%

gj
dj , j P F ε, dj ą 0

´8, j P F ε, dj ă 0

mint
C´μεj
rj ,

´μεj
rj u, j P Mε

$

’

’

&

’

’

%

´8, j P E ε, dj ą 0

gj
dj , j P E ε, dj ă 0

Mj “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’
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’

’
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’

’

’

’
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%
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’

’

&

’

’

%

8, j P F ε, dj ą 0

gj
dj , j P F ε, dj ă 0

mint
C´μεj
rj ,

´μεj
rj u, j P Mε

$

’

’

&

’

’

%

gj
dj , j P E ε, dj ą 0

8, j P E ε, dj ă 0

(4.16)

yield no changes to index memberships in the partition tF ,M, Euε.

We defer the interested reader to the Appendix for the full proof of this Proposition, though we

provide a sketch here. The result follows from observing that the sensitivities rεi ‰ 0 for i P Mε

defined in (4.13) affect the values BDε

Bμj
for all j P rns, and additional conditions must hold to ensure
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that the vectors that are not on the margin are also unshuffled by the fairness perturbation. Define

gεj “ 1 ´

´

n
ÿ

i“1
μεiyipI ´ PuqxiyjpI ´ Puqxj `

nεyjxxj, uy

∥u∥2
` byj

¯

(4.17)

dεj “
BDε

BμjBε
“

ÿ

iPMε

rεiyiyjxpI ´ Puqxi, pI ´ Puqxjy ` rε0yj (4.18)

The Δε condition for stability of vectors xj for j R Mε is given by

gεj
dεj

(4.19)

Recall the conditions of membership in setsF and E as given in (4.7) and (4.9) respectively. The

following observations are critical to computing the bounds of the stable region:

For j P F ε, perturbations Δε that increase gεj do not threaten j’s exiting the set; if Δε decreases gεj ,

then j can enterMε`Δε.

Inversely, for j P E ε, perturbations Δε that decrease gεj ensure that j stays in the same partition, i.e.,

j P E ε`Δε. Perturbations that increase gεj can cause j to shuffle intoMε`Δε.

For j P Mε to stay in the margin, we need με`Δε
j P r0,Cs. Once μεj hits either endpoint of the

interval, j risks shuffling across toF ε`Δε or E ε`Δε.

Computing these transition inequalities results in a set of conditions that ensure that a partition

is stable. Since Δε can be either positive or negative, we take the maximum of the lower bounds (mj)

and the minimum of the upper bounds pMjq to arrive at the range of stable perturbations given in

(4.16). We call the bounds of this interval the “breakpoints” of the solution paths.

This Proposition reveals a mismatch between the ostensible changes to the fairness level of an

ε-fair Soft-Margin SVM learning process and the actual felt changes in outcomes by the individuals

who are subject to the system. This results from the simple fact that the optimization problem cap-

tures changes in the learner’s optimal solution but does not offer such fine-grained information on
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how individuals’ outcomes vary as a result of Δε perturbations. So long as the fairness constraint is

binding and its associated dual variable γ ą 0, then tightening or loosening a fairness constraint

does alter the loss of the optimal learner classifier—the actual SVM solution changes—yet analyzed

from the perspective of the individual agents xi, so long as the Δε perturbation occurs within the

range given by (4.16), classifications issued under this ε`Δε-fair SVM solution are identical to those

under the ε-fair solution. Thus despite the apparent more “fair” signal that a classifier abiding by

ε ` Δε ă ε sends, agents are made no better off in terms of welfare. This result is summarized in the

following Corollary.

Corollary 3. Let tppεq,W0pεq,W1pεqu be a triple expressing the welfares of the learner, group z “ 0,

and group z “ 1 under the ε-fair SVM solution. Then for any Δε P pmaxjmj, 0q where mj is defined

in (4.16), tppεq,W0pεq,W1pεqu Á tppε ` Δεq,W0pε ` Δεq,W1pε ` Δεqu.

Once we have demarcated the limits of Δε perturbations that yield no changes to the partition,

i.e., tF ,M, Euε “ tF ,M, Euε`Δε, we can move on to consider the welfare effects of Δε pertur-

bations that exceed the stable region outlined in Proposition 7. At each such breakpoint when Δε

reaches maxjmj or minjMj as defined in (4.16), the margin set changes: Mε ‰ Mε`Δε. As such,

rε`Δε
j for j P Mε`Δε must be recomputed via (4.13). These sensitivities hold until the next break-

point when the setM updates again.

We can associate a group welfare with the classification scheme at each of the breakpoints. As al-

ready illustrated, index partitions are static in the stable regions around each breakpoint, so group

welfares will also be unchanged in these regions. As such, we need only compute welfares at break-

points to characterize the paths for ε P r0, 1s. This method of analysis allows practitioners to

straightforwardly determine whether the next ε breakpoint actually translates into better or worse

outcomes for the group as a whole.

Of the four possible events that occur at a breakpoint, index transitions between the partitions
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M and E correspond to changed classifications that affect group utilities. The following Proposi-

tion characterizes those breakpoint transitions that effect welfares triples tppεq,W0pεq,W1pεqu for

the learner, group z “ 0, and group z “ 1, that are strictly Pareto dominated by the welfare triple at

a neighboring ε breakpoint. The full proof is left to the Appendix.

Proposition 8. Consider the welfare triple at the optimal ε-fair SVM solution given by tppεq,W0pεq,W1pεqu.

Let bL “ maxjmj ă 0 be the neighboring lower breakpoint where index ℓ “ argmaxjmj; let

bU “ minjMj ą 0 be the neighboring upper breakpoint where index u “ argminjMj, assuming

uniqueness in the argmax and argmin. If ℓ P E ε and yℓ “ ´1, or if ℓ P Mε and yℓ “ `1, then

tppε ` bLq,W0pε ` bLq,W1pε ` bLquu ă tppεq,W0pεq,W1pεqu

If u P E ε and yu “ `1, or if u P Mε and yu “ ´1, then

tppεq,W0pεq,W1pεqu ă tppε ` bUq,W0pε ` bUq,W1pε ` bUqu

Thus minimizing loss in the presence of stricter fairness constraints need not correspond to

monotonic gains or losses in the welfare levels of social groups. Fairness perturbations do not have

a straightforward effect on classifications. Further, these results do not only arise as an unfortunate

outcome of using the particular proxy fairness constraint suggested by Zafar et al.96 So long as the ε

parameter appears in the linear part of the dual Soft-Margin SVM objective function, the μjpεq paths

exhibit a piecewise linear form characterized by stable regions and breakpoints. Hence, these results

apply to many proxy fairness criteria that have so far been proposed in the literature.28,93,96 Even

when the dual variable paths are not piecewise linear, so long as they are non-monotonic, fairer clas-

sification outcomes do not necessarily confer welfare benefits to the disadvantaged group. Mono-

tonicity in welfare space is mathematically distinct frommonotonicity in fairness space.
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The preceding analyses show that although fairness constraints are often intended to improve

classification outcomes for some disadvantaged group, they in general do not abide by the Pareto

Principle, a common welfare economic axiom for deciding among social alternatives. That is, ask-

ing that an algorithmic procedure abide by a more stringent fairness criteria can lead to enacting

classification schemes that actually make every stakeholder group worse-off. Here, the supposed

“improved fairness” achieved by decreasing the unfairness tolerance parameter ε fails to translate into

any meaningful improvements in the number of desirable outcomes issued to members of either

group.

Theorem 5. Consider two fairness-constrained ERM programs parameterized by ε1 and ε2 where

ε1 ă ε2. Then a decision-maker who always prefers the classification outcomes issued under the “more

fair” ε1-fair solution to those under the “less fair” ε2-fair solution does not abide by the Pareto Principle.

4.3.3 Algorithm and Complexity

We build upon the previous section of translating fairness constraints into individual welfare out-

comes by considering the operationalization of our analysis and its practicality. The algorithmic

procedure presented in this section computes ε breakpoints and tracks the solution paths of the

μjpεq for all individuals. Hence, the procedure enables the comparison of different social groups’

welfares—where welfare is determined by the machine’s allocative outcome—by aggregating the

classification outcomes of all individuals j in a group z. Algorithm 1 outputs two useful fairness-

relevant constructs that have as yet not been explored in the literature: 1) solution paths μjpεq for

j P rns tracking individuals’ welfares, and 2) full ε parameterized curves tracking groups’ welfares.

The analysis of the previous section forms the backbone of the main update rules that construct

the μjpεq paths in Algorithm 1. In particular the values rεj , gεj , and dεj as defined in (4.13), (4.17),

and (4.18) respectively are key to computing the ε breakpoints, which in turn fully determine the

86



piecewise linear form of μjpεq. There is, however, one corner case that the procedure must check

that was not discussed in the preceding section. We had previously required that the matrixKε be

invertible, which is the case whenever our objective function is strictly convex. But if the margin is

empty, the standard update procedure, which computes sensitivities rεj andKε, will not suffice. The

KKT optimality condition
řn

i“1 μiyi “ 0 requires that the multiple indices moving in the margin at

once must be positive and negative examples. For this reason we must refer to a different procedure

to compute the ε breakpoint at which this transition occurs. For continuity of the main text of this

chapter, the full exposition of this analysis is given in the Appendix.

The following complexity result highlights the practicality of implementing the fairness-to-

welfare mapping in Algorithm 1 to track the full solution paths of an ε-fair SVM program. We note

that standard SVM algorithms such as LibSVM run inOpn3q, and thus once the algorithm has been

initialized with the unconstrained SVM solution, the complexity of computing both the full indi-

vidual solution paths μjpεq and the full group welfare curves tW0pεq,W1pεqu is on the same order as

that of computing a single SVM solution.

Theorem 6. Each iteration of Algorithm 1 runs in Opn2 ` |M|2q. For breakpoints on the order of n,

the full run time complexity is Opn3 ` n|M|2q.

Proof. Each iteration of the fairness-to-welfare algorithm requires the inversion of matrixKε P

R|Mε|`1 and the computations of rεj P R|Mε| for j P Mε, and gεj and dεj for j P tF , Euε.

The standard Gauss-Jordan matrix inversion technique runs inOp|M|3q, but we take advantage

of partition update rules to lower the number of computations: Since at each new breakpoint, the

partition tends to change because of additions or eliminations of a single index j from the setM,

we can use the Cholesky decomposition rank-one update or downdate to ease the need to recom-

pute the full matrix inverse at every iteration, thereby reducing the complexity of the operation to

Op|M|2q. Computing the stability region conditions for j P tF , Eu requiresO
`

pn ´ |M|q|M|
˘
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steps. As such, at each breakpoint, the total computational cost isOp|M|2 ` n2q.

The number of breakpoints for each full run of the algorithm depends on the data distribution

and how sensitive the solution is to the constraint. As a heuristic, datasets whose fairness constraints

bind for smaller ε have fewer breakpoints. Previous empirical results on the full SVM path for

L1 and L2 regularization have found that the number of breakpoints tends to be on the order of

n.46,90,89,54 Thus after initialization with 0-fair SVM solution, the final complexity for the algorithm

isOpn3 ` n|M|2q.

4.3.4 Impact of Fair Learning on

Learner’s Welfare

Having proven the main welfare-relevant sensitivity result for groups, we return to more standard

analysis of the effect of Δε perturbations on the learner’s loss. In this case, we directly solve for the

dual variable of the fairness constraint. Recall γ˚ from (A.13):

γ˚ “ γ˚
1 ´ γ˚

2 “
npnpβ

´
´ β

`
q `

řn
i“1 μiyixxi, uyq

∥u∥2
(4.20)

By complementary slackness, one of β
´
and β

`
is zero, and the other is ε. In particular, if β

´
“ 0,

then β
`

“ ε, then we know that γ ą 0. Thus the original fairness constraint that binds is the upper

bound on covariance, suggesting that the optimal classifier must be constrained to limit its positive

covariance with group z “ 1. If β
`

“ 0, then β
´

“ ε and γ ă 0, and the classifier must be

constrained to limit its positive covariance with group z “ 0.

We can interpret the value of the dual variable Lagrange multiplier as the shadow price of the

fairness constraint. It gives the additional loss in the objective value that the learner would achieve

if the fairness constraint were infinitesimally loosened. Whenever a fairness constraint binds, its

shadow price is readily computable and is given by |γ˚|. It bears noting that because (ε-fair Soft-
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SVM) is not a linear program, |γ˚| can only be interpreted as a measure of local sensitivity, valid only

in a small neighborhood around an optimal solution. But through an alternative lens of sensitivity

analysis, we can derive a lower bound on global sensitivity due to changes in the fairness tolerance

parameter ε. By writing ε as a perturbation variable, we can perform sensitivity analysis on the same

ε-constrained problem. Returning to the perturbation function ppεq, we have

ppεq ě sup
μμμ,γ

tLpμμμ˚, γ˚q ´ ε|γ˚|u (4.21)

whereLpμμμ˚, γ˚q gives the solution to the 0-fair SVM problem.

Lpμμμ˚, γ˚q “ max
μμμPr0,Csn,γ

´
1
2
∥

n
ÿ

i“1
μiyipI ´ Puqxi∥2 `

ÿ

i“1
μi (4.22)

The perturbation formulation given in (4.21) is identical in form to the original program (ε-fair-

SVM1-P) but gives a global bound on ppεq for all ε P r0, 1s. Since (4.21) gives a lower bound, the

global sensitivity bound yields an asymmetric interpretation.

Proposition 9. If Δε ă 0 and |γ˚| " 0, then ppε ` Δεq ´ ppεq " 0. If Δε ą 0 and |γ˚| ă δ for

small δ, then ppε ` Δεq ´ ppεq P r´δΔε, 0s, and is thus also small in magnitude.

Proposition 9 shows that tightening the fairness constraint when its shadow price is high leads to

a great increase in learner loss, but loosening the fairness constraint when its shadow price is small

leads only to a small decrease in loss.

4.4 Experiments

To demonstrate the efficacy of our approach, we track the impact of ε-fairness constrained SVM

programs on the classification outcomes of individuals in the Adult dataset. The target variable in

the dataset is a binary value indicating whether the individual has an annual income of more or less
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than $50,000. If such a dataset were used to train a tool to be deployed in consequential resource

allocation—say, for the purpose of determining access to credit—then classification decisions di-

rectly impact individuals’ welfares.

Individual solution paths and relative group welfare changes are given in Figure 1. As ε increases

from left to right, the fairness constraint is loosened, and outcomes become “less fair.” In the case

of the ε-fair SVM solution to the Adult dataset, the fairness constraint ceases to bind at the optimal

solution when ε « 0.175. The top panel shows example individual piecewise linear paths of dual

variables μipεq, providing a visual depiction of how individual points can transition across index sets:

from μi “ 0, i P F and being correctly labeled, to μi P p0, 1q, i P M, being correctly labeled but in

margin; to μi “ 1, i P E and being incorrectly labeled. Solid paths indicate individuals coded female;

dashed paths indicate those coded males. As the top panel of Figure 1 shows, the actual “journey” of

these paths are varied as ε changes.

As expected, tightening the fairness constraint in the ε-fair program does tend to lead to im-

proved welfare outcomes for females as a group (more female individuals receive a positive classifi-

cation), while males experience a relative decline in group welfare (receiving fewer positive classifica-

tions). However, as suggested by our results in Section 3.2, these welfare changes are not monotonic

for either group. Tightening the fairness constraint could lead to declines in both groups’ welfares,

demonstrating that preferring more fair solutions in this predictive model does not abide by the

Pareto Principle. We highlight an instance of this result in the bottom panel of Figure 1, where or-

ange dashed lines to the left of black ones mark off solutions where “more fair” outcomes (orange)

are Pareto-dominated by “less fair” (black) ones. A practitioner working in a domain in which wel-

fare considerations might override parity-based fairness ones may prefer the outcomes of a fair learn-

ing procedure with ε « 0.045 to one with ε « 0.015. Additional plots showing absolute changes in

group welfare and optimal learner value are given in the Appendix.
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Figure 4.1: Fairness‐to‐welfare solution paths for individuals (top panel) and groups (bottom panel) on the Adult dataset.

4.5 Discussion

The question that leads off this chapter—How do leading notions of fairness as defined by computer

scientists map onto longer-standing notions of social welfare?—sets an important agenda to come

for the field of algorithmic fairness. It asks that the community look to disciplines that have long

considered the problem of allocating goods in accordance with ideals of justice and fairness. For

example, the notion of welfare in this chapter draws from work in welfare and public economics.

The outcomes issued by an optimal classifier can, thus, be interpreted using welfare economic tools

developed for considerations of social efficiency and equity. In an effort to situate computer scien-

tists’ notions of fairness within a broader understanding of distributive justice, we also show that

loss minimization problems can indeed be mapped onto welfare maximization ones and vice versa.

For reasons of continuity, analyses of this correspondence do not appear in the main text—we defer

the interested reader to the Appendix—though we present an abbreviated overview here. We en-
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courage readers to consider the main results of this chapter, which construct welfare paths out of

fair learning algorithms, as a part of this larger project of bridging the two approaches.

4.5.1 Bridging FairMachine Learning and

SocialWelfareMaximization

To highlight the correspondence between the machine learning and welfare economic approaches

to allocation, we show that loss minimizing solutions can be understood as welfare maximizing ones

under a particular social welfare function. In the Planner’s Problem, a planner maximizes social

welfare represented as the weighted sum of utility functions, where each individual’s weight repre-

sents the value placed by society on her welfare. Inverting the Planner’s Problem of social welfare

maximization generates a question concerning social equity: “Given a particular allocation, what is

the presumptive social weight function that would yield it as optimal?” We show that the set of pre-

dictions issued by the optimal classifier of any loss minimization task can be given as the set of allo-

cations in the Planner’s Problem over the same individuals endowed with a set of welfare weights.

These weights lie at the heart of debates over fairness of distribution in economics. Analyzing the

distribution of implied weights of individuals and groups offers a welfare economic way of consider-

ing the “fairness” of classifications.

4.5.2 InterpretingWelfare Alongside Fairness

Welfare economics can lend particular insights into formalizing notions of distributional fairness

and general insights into building a technical field and methodology that grapples with normative

questions. The field is concerned with what public policies ought to be, how to improve individ-

uals’ well-beings, and what distribution of outcomes are preferable. Answers to these questions

appeal to values and judgments that refer to more than just descriptive or predictive facts about the
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world. The success of fair machine will largely hang on how well it can adapt to a similar ambitious

task.

However, welfare economics is not the only—nor should it even serve as the main—academic

resource for thinking through how goods ought to be provisioned in a just society. In this moment

of broad appeal to the prowess of algorithmic systems, researchers in computing are called on to

advise on matters beyond their specialized expertise and training. Many of these matters require

explicit normative, political, and social-scientific reasoning. Insights and methods from across the

arts, humanities, social sciences, and natural sciences bear fruit in answering these questions.

This chapter does not look to contribute a new fair learning algorithm or a new fairness defini-

tion. We take a popular classification algorithm, the Soft Margin SVM, append a parity-based fair-

ness constraint, and analyze its implications on welfare. The constraint that we center in the chapter

is just one concretization of a large menu of fairness notions that have been offered up to now. The

method of analysis developed in the chapter applies generally to any convex formulations of these

constraints, including versions of balance for false positives, balance for false negatives, and equality

of opportunity that have circulated in the literature.93,28,3 It is important future work to investigate

the welfare implications of state-of-the-art fair classification algorithms that the community contin-

ues to develop, which can deal with a wider range of models and constraints, including non-convex

ones.

This chapter asks that researchers in fair machine learning reevaluate not only their lodestars of

optimality and efficiency but also their latest metrics of fairness. By viewing classification outcomes

as allocations of a good, we incorporate considerations of individual and group utility in our anal-

ysis of classification regimes. The concept of “utility” in evaluations of social policy remains con-

troversial, but in many cases of social distribution, utility considerations provide a partial but still

important perspective on what is at stake within an allocative task. Utility-based notions of welfare

can capture the relative benefit that a particular good can have on a particular individual. If machine
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learning systems are in effect serving as resource distribution mechanisms, then questions about

fairness should align with questions of “Who benefits?” Our results show that many parity-based

formulations of fairness in machine learning do not ensure that disadvantaged groups benefit. Pre-

ferring a classifier that better accords with a fairness measure can lead to selecting allocations that

lower the welfare for every group. We note that nevertheless, there are several reasons in favor of lim-

iting levels of inequality not reflected in utilitarian calculus. In some cases, the gap between groups

is itself objectionable, and considerations of relational equality between groups overrides gains to

the absolute utility level of disadvantaged groups. But without acknowledging and accounting for

these reasons, well-intentioned optimization tasks that seek to be “fairer” can further disadvantage

social groups for no reason but to satisfy a given fairness metric.

94



ALGORITHM 1: Fairness-to-welfare solution paths as a function of ε
Input: setX of n data points txi, zi, yiu
Output: solutions paths μμμpεq and group welfare curves tW0pεq,W1pεqu

μμμ0 = argminμμμ Dpμμμq of (0-fair SVM-D);
ε “ 0, Δε “ 0;
|n0| “

řn
i“1 1rzi “ 0s, |n1| “

řn
i“1 1rzi “ 1s;

while ε ă 1 do
W0 “ 0,W1 “ 0;
for each μεi do

update tF ,M, Euε according to (4.7), (4.8), (4.9);
if (μi ă C& yi “ 1q || pμi “ C& yi “ 0q then

Wzi “ Wzi ` 1;
end

end
W0pεq “ W0

n0 ;W1pεq “ W1
n1 ;

if |Mε| “ 0 then
Δε “ mini Mi as given in (A.16);
update tF ,M, Euε according to (A.18) and (A.19);
ε “ ε ` Δε;

end
compute rrrε, dddε according to (4.13), (4.18);
Δε “ miniMi as given in (4.16);
με`Δε
i “ μεi ` rεiΔε for i P Mε, μεi “ με`Δε

i for i P tF , Euε;
ε “ ε ` Δε;

end
return pμμμpεq,W0pεq,W1pεqq
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5
Conclusion

The orientation that I adopt towards algorithmic fairness in this dissertation is one that focuses on

the interaction between machine classifications and the broader societal contexts within which they

are embedded. I consider changes to the incentive structures that data-based classification intro-

duces, the strategic responses of agents who interact with such systems, and the welfare impacts of

various fairness constraints that have been proffered in the field. Hence, the common theme that

knits these works together is that of a perspective that foregrounds the dynamics of algorithmic fair-
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ness. Through the works contained in this dissertation, I hope to have shown the virtues of taking

this approach. Models that re-embed algorithms in their social and economic environments provide

insight into fairness that:

• inform how these tools actually operate in the real world to impact social outcomes,

• challenge standard wisdom in algorithmic fairness,

• better equip us to design systems that work against social inequality.

In the past several years, researchers in the field have increasingly come to adopt a broader so-

ciotechnical framing of the problem of algorithmic fairness. One upshot of this gradual shift in

perspective is that the dynamics-focused, wider lens analysis that I take in this dissertation is less

distinctive than it was six years ago, when I first embarked on work in this area. I therefore want to

conclude this dissertation by pivoting to propose new paths forward for theorizing about fair classi-

fication and thus, fair distribution, at a higher level of abstraction that also makes connections with

some of my philosophical work on topics adjacent to algorithmic fairness.

My first suggestion is one that may be surprising given the field’s shift in recent years away from

putting forth new technical definitions of fairness and my preceding comments about these pro-

posals. While I agree that all such formal accounts suffer from serious defects and fail as “defini-

tions” of fairness, their introduction into the discourse has nevertheless been fruitful. They have

forced us to articulate precisely what might be wrong with notions such as, say,meritocratic fair-

ness57 or equalized odds45 or counterfactual fairness64—not just from a technical perspective about

their effects on predictive accuracy or their difficulty in being translated into convex constrained

optimization problems but from a distinctively normative perspective: why such notions are not

adequate conceptions of fairness on moral and political grounds. Works such as Mitchell et al.’s

“Algorithmic Fairness: Choices, Assumptions, and Definitions”74 and Reubin Binns’ “Fairness in

Machine Learning: Lessons from Political Philosophy”13 uncover and elucidate what value-laden
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modeling choices and assumptions are embedded in technical accounts of fairness and thus what

their substantive ethical content is. Laying out formal definitions of fairness to be scrutinized in this

manner thus yields generative cross-disciplinary dialogue, which is beneficial to the field as a whole.

In the present world within which we live, machine learning algorithms play a crucial function in

many important resource allocation pipelines. Computer scientists have thus been unwittingly cast

as partial social planners. Given this state of affairs, it is paramount that the values that structure

algorithm design are made explicit to broader society as well as to the engineers who build the sys-

tems themselves. Furthermore, technical formalization of fairness contributes also to our normative

thinking about what constitutes fairness. For example, the field’s so-called fairness “impossibility

results” have spurred significant discussion about which if any of the three fairness criteria of cal-

ibration, balance for false positives, or balance for false negatives is necessary and/or sufficient for

fairness47,69. The results have also prompted scholars to renovate accounts of discrimination in the

law, consider which remedies towards fairness might be compatible with or at odds with what equal

protection in the law requires, and evaluate which approaches to fairness are more likely to in fact

make headway in addressing social inequalities72,49,94. Much of this progress was spurred by com-

puter scientists’ proposals of fairness definitions. Though they might have themselves been shown

to be deficient, these formalizations generated fruitful critical discussion and exchange that both

deepens our understanding of the normative matters at stake as well as strengthens our ability to

build tools that may better meet our aims towards “fairness”. More work that follows in this vein

can thus be constructive for the field’s development.

Second, the rapid rise of artificial intelligence and machine learning tools and the sheen of an ex-

citing “newness” of these technologies can often make it seem as though the questions at the heart

of the field of algorithmic fairness are also new and newly urgent. In truth, a field that is method-

ologically not so far off from our own, that of welfare economics, has for decades been concerned

with the development of technical tools to probe social and fundamentally value-laden ethical ques-
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tions of resource distribution. And so welfare economics, in my view, stands out as a natural point

of connection for technical research in algorithmic fairness. The discipline can both provide specific

insights into formalizing substantive notions of fairness in distribution and also general insights into

how to build a technical field and methodology that more effectively grapples with normative ques-

tions. Welfare economics is carved out as the branch of economics that is explicitly concerned with

what public policies ought to be, how to maximize individuals’ well-beings, and what types of dis-

tributive outcomes are preferable. Answers to these questions appeal to values and judgments that

do not refer only to descriptive or predictive facts about a state of affairs. It would appear that the

success of fair machine will largely hang on how well it can adapt to a similar ambitious task. Since

notions of fairness are invariably context-dependent and always informed by background normative

views, it is unsurprising that there has been such wide disagreement within the community about

which of the many fairness definitions is the “right” one. Insofar as developing a unified framework

of analysis of these competing formal notions, their compatibilities with each other, and their im-

pacts on other social values such as efficiency are key disciplinary aims for both algorithmic fairness

and welfare economics, each community has great potential to grow from engagement with the

other.

Finally, work on causal inference that studies the causal effects of social categories such as race

and sex shares significant overlap with concerns about the discriminatory potential of machine

learning systems. Much research in causal inference in the social sciences looks to identify race or

sex causal estimands from observational data and thereby claims to quantify the extent of discrimi-

nation on the basis of race or sex. It is thus no surprise that causal methods have been imported into

approaches towards fairness in data-based predictive systems.

Causal inference about race and sex has notoriously been the subject of decades-long method-

ological and conceptual disputes, which continues to this day. In recent works, prominent causal

inference practitioners have debated whether one can even quantify the effect that race has on a
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decision that takes place downstream of other decisions that were themselves causally affected by

race.63,42,98 Cases of such multi-stage race-inflected decision-making processes abound. As an exam-

ple, if race influences who police decide to stop such that administrative records of police encounters

embody a selection effect, then certain race-causal estimands on outcomes downstream from stops

will be biased absent strong untestable assumptions. This problem clearly bears directly on the use

of any such data in machine learning-based classification systems. Work on the methodological chal-

lenges to producing unbiased estimates of such race-causal estimands and bounding such effect

estimates will greatly inform the extent to which machine learning systems can take biased input

data at “face-value”. But furthermore, the problem of upstream racial bias presents also a concep-

tual problems for the prospect of quantifying the amount of ”taint” that data have and thus the

extent to which one can claim that an algorithm’s outputs are not causally influenced by race. I ar-

gue elsewhere with legal scholar Issa Kohler-Hausmann that if causal inference practitioners start

with the premise that there exists a race selection effect (i.e., racial discrimination or bias) on obser-

vational data from which their methods draw, then race-causal estimands quantified using such data

aremisdefined, because of a violation of the consistency axiom of causal inference.50 Those who

work in causal inference frequently debate which assumptions about the data generation process

are necessary and/or sufficient in order for causal identification to be sound. Research in algorith-

mic fairness stands to greatly benefit from further contact with such work, as the methodological

and conceptual problems at issue there are central too in our field. This is a line of research that I

am pursuing in my own philosophical work, where I hope that bringing my technical and analytical

tools to tackle foundational questions in causal reasoning in the (social) sciences can cross over to

make an impact on how we think about what constitutes fairness and discrimination in algorithms.
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Appendices

A.1 Appendix for Chapter 2

A.1.1 Proofs from Section 2.3.1

Proof of Proposition 1

We first construct the optimal learner classifier when facing only candidates of a single group. Sup-

pose the learner encounters only group A candidates. Then using her knowledge that the true classi-

fier hA is based on a threshold τA P r0, 1s, she can construct a classifier that admits those candidates

with scores x ě τA and rejects candidates x ă τA. Since the maximal manipulation cost that any

candidate would be willing to undertake is 1, for all x P r0, 1s, cApyq ´ cApxq ď 1 and therefore

y ď c´1
A pcApxq ` 1q

Thus a candidate with feature x “ τA would be able to move to any feature y ď σA where σA “

c´1
A pcApτAq ` 1q.

Repeating the same reasoning for group B, a candidate with feature x “ τB would be willing to

move to any feature y ď σB where σB “ c´1
B pcBpτBq ` 1q.

Now we want to show that rσB, σAs marks an interval of undominated strategies. First we prove

the ordering that σB ď σA for all cost functions cB and cA and all thresholds τB ď τA. Recall that

since hApxq “ 1 ùñ hBpxq “ 1, we have τB ď τA. Although we cannot order cBpτBq and cApτAq,
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we have, by monotonicity of cB

cBpτBq ď cBpτAq.

Let Δ “ cBpτAq ´ cBpτBq. Notice that if Δ ě 1, cBpτBq ` 1 ď cBpτAq, and so

σB “ c´1
B pcBpτBq ` 1q ď τA ă σA,

where the last inequality is due to monotonicity of cA. ✓

Let us consider the Δ P p0, 1q case. By the cost condition, we can write c1BpτAq ě c1ApτAq. This

implies that

c´1
B pcBpτAq ` 1q ď c´1

A pcApτAq ` 1q

Substituting in cBpτAq “ cBpτBq ` Δ, we have

c´1
B pcBpτBq ` Δ ` 1q ď c´1

A pcApτAq ` 1q “ σA.

By monotonicity of cB, the left hand side is ě σB, and we have that σB ď σA as desired. ✓

Notice that for all σ ă σB, the learner commits false positive errors on candidates from group B,

since σB is optimal for group B classification. She commits more false positives on group A candi-

dates as well and does not commit any fewer false negatives because of the monotonicity of cB and

cA. Thus for any error function with CFP ą 0, the threshold classifier σB dominates σ.

Similarly, for all σ ą σA, the learner commits false negative errors on candidates from group

A, since σA is optimal for group A classification. She also commits more false negatives on group B

while committing no fewer false positives. Thus for any error function with CFN ą 0, the threshold

classifier σA dominates σ.

For all σ P rσB, σAs, the learner trades off false negatives on group B for false positives on group A,
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and we call this range of threshold strategies undominated.

Proof of Proposition 2

We compute the cost of a learner’s threshold strategy σ P rσB, σAs by first examining its performance

on each group individually.

Recall from Proposition 1 that the optimal learner threshold that perfectly classifies all B candi-

dates is σB. Thus for all threshold strategies based on σ P pσB, σAs, the learner commits false negative

errors on group B.

To compute which members of group B are subject to these errors, consider a learner classifier f

based on a threshold σ. In order to manipulate to reach the feature threshold σ, a group B candidate

must have an unmanipulated x such that

cBpσq ´ cBpxq ď 1,

x ě c´1
B pcBpσq ` 1q “ ℓBpσq.

We know that τB ď ℓBpσq by monotonicity of cB, and thus for all group B candidates with feature

x P rτB, ℓBpσqq, the learner issues classification fpxq “ 0, even though hBpxq “ 1. These are the false

negative errors issued on group B for which the learner bears cost

CFNpBPx„DB

“

x P rτB, ℓBpσqq
‰

(A.1)

Following the same reasoning, notice that since σA is the optimal threshold policy for a learner

facing only group A candidates, a classifier f based on any σ P rσB, σAq commits false positive errors

on some group A candidates. Then repeating the steps that we carried out for group B, we see that
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for all group A candidates with x such that

x ě c´1
A pcApσq ` 1 “ ℓApσq

the classifier f issues a positive classification; fpxq “ 1. Since ℓApσq ď τA, candidates with features

x P rℓApσq, τAq, have true label hApxq “ 0, and the learner commits false positive errors that bear

cost

CFPpAPx„DA

“

x P rℓApσq, τAq
‰

(A.2)

Combining (A.1) and (A.2), the total cost of any classifier f based on a threshold σ P rσB, σAs, we

obtain our desired result.

Proofs of Corollaries 1 and 2

These results follow by considering strategies σB, which commits no errors on group B and thus only

bears the cost given in (A.2), and σA, which commits no errors on group A and thus only bears the

cost given in (A.1).

Proof of Proposition 3

Under the assumption of uniform feature distributions for both groups, minimizing a classifier’s

probability of error amounts to choosing the threshold σ as

argmin
σPrσB,σAs

ℓBpσq ´ ℓApσq.
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With proportional group costs cApxq “ qcBpxq for q P p0, 1q, we have that

ℓ1
Bpσq “

pcBq1pσq
´

cB
¯1´

`

cB
˘´1`cBpσq ´ 1

˘

¯

“
pcBq1pσq

´

cB
¯1´

ℓBpσq

¯

and

ℓ1
Apσq “

pcAq1pσq
´

cA
¯1´

`

cA
˘´1`cApσq ´ 1

˘

¯

“
pqcBq1pσq

´

qcB
¯1´

`

cA
˘´1`cApσq ´ 1

˘

¯

“
pcBq1pσq

´

cB
¯1´

`

cA
˘´1`cApσq ´ 1

˘

¯

“
pcBq1pσq

´

cB
¯1´

ℓApσq

¯
.

When cA and cB are strictly concave, since ℓBpσq ą ℓApσq, pcBq1pℓApσqq ą pcBq1pℓBpσqq and

therefore ℓ1
Apσq ă ℓ1

Bpσq for all σ P rσB, σAs, and the quantity ℓBpσq ´ ℓApσq is monotonically

increasing in σ. Thus the optimal classifier threshold is σ˚ “ σB.

Similarly, when cA and cB are strictly convex, ℓ1
Apσq ą ℓ1

Bpσq for all σ P rσB, σAs, and the quantity

ℓBpσq ´ ℓApσq is monotonically decreasing in σ. Thus the optimal classifier threshold is σ˚ “ σA.

Thus the optimal classifier threshold is σ˚ “ σA.

Finally, when cA and cB are affine, ℓ1
Apσq “ ℓ1

Bpσq for all σ P rσB, σAs, and the quantity ℓBpσq ´

ℓApσq is constant for all σ P rσB, σAs. Thus the learner is indifferent between all thresholds σ P

rσB, σAs.
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A.1.2 Proofs from Section 2.3.2

Proof of Lemma 1

Consider a candidate with unmanipulated feature x P r0, 1sd and manipulation cost
řd

i“1 cixi who

faces a classifier fpyq with linear decision boundary given by
řd

i“1 giyi “ g0. Recall that the utility a

candidate receives for presenting feature y ě x is given by fpyq ´ cpx, yq. When fpxq “ 1, it is trivial

that the candidate’s best response to select y “ x. ✓

Notice that if for all i P rds, fpx ` 1
ci eiq “ 0, then we have that g⊺x `

gk
ck ă g0, so

ckpg0 ´ g⊺xq

gk
ą 1

The manipulation from x to y “ x `
ř

iPK
ti
ci ei such that g

⊺y “ g0 entails cost

cpyq ´ cpxq “
ÿ

iPK
ti “

ckpg0 ´ g⊺xq

gk
ą 1

and manipulating to achieve a positive classification using only components inKwould require a

cost ą 1. By definition, keeping the sum
ř

iPK ti, but selecting different ti such that some i R K,

ti ą 0 would yield an even lower value g⊺x `
řd

i“1
giti
ci .

Thus manipulating from x to y such that fpyq “ 1 entails a cost cpyq ´ cpxq ą 1, and the candi-

date would not move at all, since the utility for moving 1 ´ pcpyq ´ cpxqq ă 0 makes her worse-off

than being subject to a negative classification without expending any cost on feature manipulation.

Thus she selects y “ x. ✓

Nowwe consider the case where fpxq “ 0 and there exists i P rds such that fpx ` 1
ci eiq “ 1.

Let k P K “ argmaxiPrds

gi
ci . We prove that the best-response manipulation for candidates with
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these xmoves to

y “ x `

d
ÿ

i“1

ti
ci
ei (A.3)

where ti ě 0, tj “ 0 for all j R K, and g⊺px `
ř

iPK
ti
ci eiq “ g0. Note that such a ymay not be

unique—there may be multiple best-response manipulated features that achieve the same candidate

utility, since they all result in the same candidate cost, and thus regardless of choices i P K, we have

that
ÿ

iPK
ti “

ckpg0 ´ g⊺xq

gk
(A.4)

The utility of any move to y satisfying (A.3) is given by

fpy˚q ´ cpx, y˚q “ 1 ´
ÿ

i“1
ti

Let us pick any such y and call it y˚ since we will show that all other manipulations that are not of

the form given in (A.3) generate lower utility for the candidate than y˚.

We now show that for any manipulation to y,
řd

i“1 ti ď 1. By assumption, for some i, we have

fpx `
1
ci
eiq “ 1 ùñ g⊺x `

gi
ci

ě g0

Thus by (A.4), we have that
ř

iPK ti ď
ck

gi
ci

gk . By definition of k, this is at most one since gk
ck ě

gi
ci for

all i P rds. ✓

Suppose on the contrary that there exists another manipulated feature ŷ ‰ y˚ that is optimal and

is not of the form (A.3):

fpŷq ´ pcpŷq ´ cpxqq ě 1 ´
ckpg0 ´ g⊺xq

gk
ě 0

Then it must be the case that moving to ŷ achieves a positive classification with a lower cost bur-
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den. We write

ŷ “ x `
ÿ

i“1
t̂iei

where ei is the ith standard basis vector, and t̂j “ ŷj ´ xj to highlight the components that have been

manipulated from x to ŷ.

First, we suppose that ŷ is such that there exists some component ŷj ą 0 where j R K “

argmaxiPrds

gi
ci . Now we construct a feature ŷ1 by selecting this component, and decreasing t̂j “ 0

and increasing a component k P K by cĵtj
ck . That is

ŷ1 “ ŷ ´ t̂jej `
cĵtj
ck
ek

The cost of manipulation from x to ŷ1 is the same as that for manipulation to ŷ:

cpŷ1q ´ cpxq “

d
ÿ

i“1
ciŷi ´ t̂jcj ` ck

cĵtj
ck

“

d
ÿ

i“1
ciŷi

Notice that now we have

d
ÿ

i“1
giŷ1

i “

d
ÿ

i“1
giŷi ´ gĵtj `

gkcĵtj
ck

ą

d
ÿ

i“1
giŷi ě g0.

Thus the candidate can manipulate to ŷ1 by expending the same cost with

d
ÿ

i“1
giŷ1

i ą g0

Then by continuity of g, there must exist some ȳ ď ŷ1 such that
řd

i“1 giȳi P rg0,
řd

i“1 giŷ1
iq. Thus

since costs are monotonically increasing, cpx, ȳq ă cpx, ŷq and since ȳ reaches the same classification,

and we have shown that ŷ could not have been optimal, which is a contradiction. ✓
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Nowwe consider the case where ŷ “ x `
řd

i“1 t̂iei is such that t̂j “ 0 for all j R K, but

g⊺ŷ ‰ g0. If g⊺ŷ ă g0, then ŷ is negatively classified and thus trivially receives a lower utility than

manipulating to any feature y that is positively classified and associated with total cost
ř

i ti ď 1.

If g⊺ŷ ą g0, then there are two possibilities: If cpŷq ´ cpxq ě 1, then once again, she receives at

most a utility of 0, and thus manipulating to ŷ is a suboptimal move. If cpŷq ´ cpxq ă 1, then we

show the optimal manipulation is the one that moves from x to

y “ x `
ÿ

i“1
tiei

where g⊺y “ g0 and tj “ 0, @j R K—the move dictated by (A.3). This feature y also achieves a

positive classification, but we argue that it does so at a lower cost than ŷ. Since g⊺ŷ ą g0, we can

define

Δ “ g⊺ŷ ´ g0 ą 0

The manipulation from x to ŷ ´ Δ
gk ek for any choice of k attains a higher utility since it receives the

same classification since

g⊺pŷ ´
Δ
ck
ekq “ g0

but does so at a cost

cpyq ´ cpxq “ cpŷq ´ cpxq ´ Δ

Since we already showed that all manipulations to y of the form given in (A.3) bear the same cost,

then we have shown that all such y are preferable to ŷ. By monotonicity of cpyq´cpxq and
řd

i“1 gixi,

all manipulations with lower cost entail a negative classification and thus a lower utility, and such

only those manipulations to y are optimal.
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Proof of Theorem 1

We first prove that a learner who has access to the linear decision boundary for the true classifier

can construct a classifier that commits no errors on any candidates from a single group; thus, in our

setting, perfect classifiers exist for groups A and B. We then prove that all undominated classifiers

commit no false positives on group B and no false negatives on group A.

Suppose true classifiers are given by hA and hB based on decision boundaries
řd

i“1 wA,ixi “ τA

and
řd

i“1 wB,ixi “ τB, costs are cApxq “
řd

i“1 cA,ixi and cBpxq “
řd

i“1 cB,ixi.

Claim 1: When facing candidates from a single group, a learner who has access to true decision

boundary
řd

i“1 wixi “ τ and manipulation costs
řd

i“1 cixi can construct a perfect classifier.

Proof. Consider those features x̄ P r0, 1sd that lie on the true decision boundary
řd

i“1 wixi “ τ

and thus have true labels 1. For each of these x̄, we construct Δpx̄q as defined in (2.12) to represent

the candidate’s space of potential manipulation to form the set tΔpx̄qu for all x̄ on the boundary.

Notice that when all candidates face the same cost, the set of jth vertices of each of the simplices

Δpx̄q, given by vjpx̄q “ x̄ ` 1
cj ej, are coplanar. Each of these hyperplanes can be described as a set

#

y :
d
ÿ

i“1
wiyi “ τ `

wj

cj

+

.

Let k P argmaxj
wj
cj . We define g1 to be a notational shortcut for the hyperplane corresponding to

feature k, so

g1 “

$

&

%

y :
d
ÿ

j“1
g1,jyj “ g1,0

,

.

-

,

where g1,0 “ τ `
wk
ck and g1,i “ wi for all i P t1, ..., du. We define a classifier f1 based on the
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hyperplane g1:

f1pyq “

$

’

’

&

’

’

%

1
řd

j“1 g1,jyj ě g1,0,

0
řd

j“1 g1,jyj ă g1,0.
(A.5)

To show that f1 is a perfect classifier of all candidates with these generic costs, we show that it

commits no false positive errors and no false negative errors. Notice that since g1 was constructed to

be precisely the hyperplane that contains all vertices vkpx̄q “ x̄ ` 1
ck of the simplices Δpx̄q where

k P argmaxjPrds

wj
cj , then all x̄ on the true decision boundary

řd
i“1 wixi “ τ can indeed manipulate

to vkpx̄q and reach g1 to gain a positive classification.

Similarly, all candidates with features x such that
řd

i“1 wixi ą τ, can move to the kth vertex of the

simplex Δpxq given by vkpxq “ x ` 1
ck ek in order to be classified positively since

d
ÿ

i“1
wivk,ipxq ą τ `

wk
ck

ùñ

d
ÿ

i“1
g1,jvk,ipxq ą g1,0.

Thus f1 correctly classifies all these candidates positively and permits no false negatives. ✓

Consider the optimal manipulation for all true negative candidates x. By Lemma 1, the optimal

manipulation would be either to not move at all, guaranteeing a negative classification, or to move x

to some point y “ x `
řd

i“1
ti
ci ei where tj “ 0 for all j R argmaxjPrds

g1,j
cj . But since

řd
i“1 wixi ă τ,

then for all such y,

d
ÿ

i“1
wiyi ď

d
ÿ

i“1
wixi `

wk
ck

ă τ `
wk
ck

ùñ

d
ÿ

i“1
g1,jyj ă g1,0

and thus the classifier based on the hyperplane g1 also issues a classification f1pxq “ 0 and admits no

false positives. ✓

Thus we have shown that the hyperplane g1 supports a perfect classifier f1 as defined in (A.5).
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Nowwe move on to group-specific claims, where groups have distinct costs and potentially dis-

tinct true decision boundaries, but we continue to use the constructions of f1 and g1 from Claim

1.

Claim 2: Let fA1 be the classifier based on boundary g1 for group A, and let fB1 be the classifier

based on boundary g1 for group B, as in (A.5), but with group-specific costs and true decision

boundary parameters. Then @y P r0, 1sd,

fA1 pyq “ 1 ùñ fB1 pyq “ 1.

Proof. We first prove the claim for the case in which hA “ hB with decision bounday
řd

i“1 wixi “

τ. We then show that it also holds when the two are not equal.

By the cost condition that cApyq ´ cApxq ď cBpyq ´ cBpxq for all x P r0, 1sd and y ě x, we know

that for any given x,

ΔBpxq Ď ΔApxq.

Let kA P argmaxjPrds

wj
cA,j and kB P argmaxjPrds

wj
cB,j , so that g

A
1 and gB1 are defined as

d
ÿ

i“1
wiyi “ τ `

wkA
cA,kA

ðñ gA1 :
d
ÿ

j“1
gA1,jyj “ gA1,0,

d
ÿ

i“1
wiyi “ τ `

wkB
cB,kB

ðñ gB1 :
d
ÿ

j“1
gB1,jyj “ gB1,0.

Then since for all i P rds, cA,i ď cB,i, we must have that

τ `
wkA
cA,kA

ě τ `
wkB
cA,kB

ě τ `
wkB
cB,kB

,

and thus gA1,0 ě gB1,0. Since fA1 is the classifier based on gA1 and fB1 is based on gB1 , we have that @y P
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r0, 1sd,

fA1 pyq “ 1 ùñ fB1 pyq “ 1.

Now consider the case in which hA and hB differ. Recall the assumption hApxq “ 1 ùñ

hBpxq “ 1 for all x P r0, 1sd. Thus for all x P r0, 1sd,

ÿ

i“1
wA,ixi ě τA ùñ

ÿ

i“1
wB,ixi ě τB. (A.6)

Recall that the hyperplanes gA1 , gB1 are constructed as shifts of
ř

i“1 wA,ixi ě τA and
ř

i“1 wB,ixi ě

τB by the set of simplices tΔApx̄Aqu and tΔBpx̄Bqu for x̄A such that
ř

i“1 wA,ix̄A,i “ τA and x̄B such

that
ř

i“1 wB,ix̄B,i “ τB. Since ΔBpxq Ď ΔApxq, gA1 and gB1 support classifiers fA1 and fB1 such that

fA1 pyq “ 1 ùñ fB1 pyq “ 1.

Claim 3: All undominated classifiers commit no false negative errors on group Amembers and

no false positive errors on group Bmembers when candidates best respond.

Proof. Fix a classifier f and consider a group A candidate with true feature vector x̄who manipulates

to best response ȳ such that hApx̄q “ 1 but fpȳq “ 0. Thus the classifier fmakes a false negative

error on this candidate. We show that we can construct another classifier f̂ that correctly classifies x̄

under its optimal manipulation with respect to f̂.

We prove that f̂ commits no more errors than does f and commits strictly fewer errors since it

commits no false negatives on group A candidates.
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Construct the classifier f̂ such that

f̂pyq “

$

’

’

&

’

’

%

1 fpyq “ 1 or fA1 pyq “ 1,

0 otherwise,
(A.7)

where fA1 pyq is based on the boundary
ř

j“1 gA1,jyj “ gA1,0.

We first argue that f and f̂make exactly the same set of false positive errors.

Consider a potential false positive error that f̂ issues on a candidate with feature x from group

A. Such a candidate cannot manipulate to a feature y to “trick” classifier fA1 , since we have shown in

Claim 1 that fA1 perfectly classifies all group A candidates, and thus does not admit false positives.

Thus any potential false positive error must be due to fpyq “ 1, in which case f̂ and f issue the same

false positive error.

Now we consider a potential false positive error that f̂ issues on a candidate with feature x from

group B. By Claim 2, fA1 pyq “ 1 ùñ fB1 pyq “ 1, and thus we would have that the candidate with

feature xwas able to manipulate to some feature y such that fB1 pyq “ 1. But this is a contradiction,

since we know that fB1 commits no false positives on group Bmembers, and thus fA1 pyq does not

commit false positives on group B. Thus if f̂ commits a false positive, then it must be the case that f

committed the same false positive.

Consider a potential false negative error that f̂ issues on a candidate with feature x from group B.

Then it must be the case that x can manipulate to some y such that both fpyq “ 0 and fA1 pyq “ 0,

and thus it be the case that f commits the same false negative.

Lastly, consider a potential false negative error on a candidate from group A. By claim 1, this

candidate must have been able to manipulate to some feature vector y such that fA1 pyq “ 1, since

fA1 commits no errors on group Amembers. Thus when a candidate with unmanipulated feature x

can manipulate to some y such that fA1 pyq “ 1 yet can only present a (possibly different) feature y
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such that fpyq “ 0, then f̂ correctly classifies this candidate positively, even when f does not. Thus f̂

makes no false negative errors on group B.

Thus f̂ commits strictly fewer errors than f—none of which are false negatives on group Amembers—

and f is dominated by f̂. ✓

The second half of the claim can be proved through an analogous argument.

Combining Claims 1 and 3, we conclude that we can construct perfect classifiers for group A

that commit only false negative errors on group B and perfect classifiers for group B that commit

only false positive errors on group A. fA1 and fB1 are examples of such classifiers, though they are not

unique.

Proof of Lemma 2

ùñ direction: Assume a groupm candidate with feature x can move to y such that fpyq “ 1 and

cmpyq ´ cmpxq ď 1, we show that necessarily x ě ℓ for some ℓ P Lmpgq.

If x can move to y, then x P Δ´1pyq. By the definition of ℓmpyq, x ě x̄ for some x̄ P ℓmpyq.

Then by monotonicity of g, we have that

d
ÿ

i“1
gixi ě

d
ÿ

i“1
gix̄i ě min

xPℓmpyq

d
ÿ

i“1
gixi

Thus x ě ℓ for some ℓ P Lmpgq. ✓

ðù direction: Assume some groupm candidate has feature x ě ℓ for some ℓ P Lmpgq. Then

she can move to some y such that fpyq “ 1 and cmpyq ´ cmpxq ď 1.
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If x ě ℓ for some ℓ P Lmpgq, then

d
ÿ

i“1
gixi ě

d
ÿ

i“1
giℓi,

where ℓ P Δ´1
m pyq for some y such that

ř

i“1 giyi “ g0 and fpyq “ 1. Since ℓ is defined as

argminxPℓmpyq

ř

i“1 gixi, then we have

d
ÿ

i“1
giℓi “

d
ÿ

i“1

`

giyi ´ max
ti

d
ÿ

i“1

giti
cm,i

˘

,

where ti ě 0 and
ř

i“1 ti “ 1 as shown before. Then substituting
řd

i“1 giyi “ g0, we have that

ÿ

i“1
giℓi `

gkm
cm,km

“ g0,

where km P argmaxi“rds

gi
ci . Since x ě ℓ, x can also manipulate to some ywith fpyq “ 1, bearing a

cost ď 1.

Proof of Proposition 4

If a learner publishes an undominated classifier f, then by Theorem 1, the hyperplane g : g⊺x “ g0

that supports this classifier can only commit inequality-reinforcing errors: only false positives on

group Amembers and only false negatives on group Bmembers.

As proved in Lemma 2, the setLmpgq determines the effective threshold on unmanipulated fea-

tures x for a candidate of groupm. We have already shown that for any two ℓ1, ℓ2 P Lmpgq,

ÿ

i“1
giℓ1,i “

ÿ

i“1
giℓ2,i “ g0 ´

gkm
ckm
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where km P argmaxi“rds

gi
cm,i

. For any ℓ P LBpgq, we have

d
ÿ

i“1
giℓi `

gkB
cB,kB

“ g0

Thus combining these results, those group B candidates with features x P r0, 1sd in the intersection

g⊺x ă g0 ´
gkB
cB,kB

č

w⊺
Bx ě τB

are classified as false negatives. For group A, we consider ℓ P LApgq:

d
ÿ

i“1
giℓi `

gkA
cA,kA

“ g0

and thus group A candidates with features x P r0, 1sd in the intersection

w⊺
Ax ă τA

č

g⊺x ě g0 ´
gkA
cA,kA

are classified as false positives. Thus the cost publishing g is

CFNPx„DB

“

x P
`

g⊺x ă g0 ´
gkB
ckB

č

w⊺
Bx ě τB

˘‰

` CFPPx„DA

“

x P
`

w⊺
Ax ă τA

č

g⊺x ě g0 ´
gkA
ckA

˘‰
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A.1.3 Proofs from Section 2.4

Reduction from the d-dimensional setting to the one-dimensional setting

We first show that under certain conditions of a learner’s equilibrium classifier strategy, a d-dimensional

subsidy analysis is equivalent to a one-dimensional subsidy analysis.

In general d-dimensions, those features y attainable from an unmanipulated feature x P r0, 1sd,

where fpxq “ 0, is given by

y ď x `

d
ÿ

i“1

ti
ci
ei where

d
ÿ

i“1
ti “ 1

where the right hand side gives the simplex Δpxq of potential manipulation. By Lemma 1, if a can-

didate moves from x to y ‰ x, then she selects t such that tj “ 0 for all j R K “ argmaxi“rds

gi
ci .

Staying within the simplex implies
řd

i“1 ti ď 1.

Increasing the candidate’s available cost to expend from 1 to n increases her range of motion such

that now she can move to any

y ď x `

d
ÿ

i“1

ti
ci
ei where

d
ÿ

i“1
ti “ n

She continues to manipulate in the spirit of Lemma 1—optimal moves entail choices of t such that

tj “ 0 for all j R K—however now, she is willing to manipulate if Di P rds such that

fpx `
n
ci
eiq “ 1

and thus chooses t such that
ř

i“1 ti ď n.

Since offering a subsidy does not change the form of the group B cost function, a candidate from

group Bwill pursue the same manipulation strategy given by the vector t under subsidy regimes as

long as the classifier’s decision boundaries stay the same. By definition, all such choices of y resulting
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from a manipulation via t have equivalent values g⊺y.

When costs are subsidized through a flat α or a proportional β subsidy, a candidate with feature x

can manipulate to any yα, yβ ě x that satisfies

yα P rx, x `

d
ÿ

i“1

ti
ci
eis where

d
ÿ

i“1
ti “ 1 ` α (A.8)

yβ P rx, x `

d
ÿ

i“1

ti
ci
eis where

d
ÿ

i“1
ti “

1
β

(A.9)

We can pursue a dimensionality reduction by mapping each feature x P r0, 1sd to g⊺x P R`.

Rather than considering an optimal manipulation in d-dimensions from x to y, we instead consider

the relationship between the cost of the manipulation and the change from g⊺x to g⊺y:

d
ÿ

i“1
cipyi ´ xiq ðñ

d
ÿ

i“1
gipyi ´ xiq

where gi gives the coefficients of the linear decision boundary that supports f, and x optimally ma-

nipulates to y. We want to show that such a relationship is linear.

Consider optimal manipulations: If a candidate chooses not to manipulate at all, she will incur a

cost of 0 and will also move from
řd

i“1 gipyi ´ xiq “ 0. Since optimal manipulations (under any

“budget” constraint) only are along kth components, a move from x to y always entails a total cost of

d
ÿ

iPK
cipyi ´ xiq

accompanied with
d
ÿ

iPK
gipyi ´ xiq “ g⊺py ´ xq
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Thus we can write her total cost c for a move from x to y as

ck
gk

pg⊺y ´ g⊺xq (A.10)

for any k P K. Recall that by Lemma 1, optimal non-stationary manipulations move from x to

y ą x such that
řd

i“1 giyi “ g0, so in these cases, we can also write the above as

ck
gk

pg0 ´ g⊺xq

Thus we can consider candidates’ unmanipulated d-dimensional features x as one-dimensional fea-

tures g⊺x and classifiers f based on d-dimensional hyperplanes g :
řd

i“1 gixi “ g0 as imposing

one-dimensional thresholds g0.

However a learner may also choose a different optimal subsidy strategy, thus publishing a clas-

sifier that now admits candidates differently. Formally, suppose a learner first publishes a classifier

f1 based on a decision boundary g1 :
řd

i“1 g1,ixi “ g1,0 to which a candidate’s optimal response

follows the form given in Lemma 1 with k1 P argmaxiPrds

g1,i
ci . If a learner then chooses to change

her strategy when implementing a subsidy, thus publishing a different classifier f2 based on decision

boundary g2 :
řd

i“1 g2,ixi “ g2,0, a candidate’s optimal manipulation strategy will continue

to adhere to Lemma 1, however, now, k2 P argmaxiPrds

g2,i
ci . Whereas the corresponding one-

dimensional cost function cpyq ´ cpxq for best-response manipulations when facing classifier f1

was given by
ck1
g1,k1

pg⊺1 py ´ xqq

Her corresponding cost function when facing classifier f2 is

ck2
g2,k2

pg⊺2py ´ xqq
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When these cost functions are the same, as when the coefficients g1,i “ g2,i for all i, the agent’s

strategies when facing f1 and f2 are identical when reduced to one-dimension. This case arises, for

example, when the learner continues to perfectly classify a single group in both the non-subsidy

regime and the subsidy regime. In these cases, we can transition to considering just one-dimensional

manipulations from g⊺y to g⊺x, where candidates bear linear costs of manipulation given in (A.10).

Proof of Proposition 5

Working from the subsidy and no-subsidy comparisons given in Proposition 2, we show that all

three parties would have preferred the outcomes of a non-manipulation world to those in both of

the manipulation cases.

To facilitate comparisons of welfare across classification regimes, we formalize group-wide utili-

ties in the following definition.

Definition 7 (Group welfare under a proportional subsidy). The average welfare of group B under

classifier fprop and a proportional subsidy with parameter β is given by

WBpfprop, βq “

ż

R1

Px„DBpxqdx `

ż

R2

`

1 ´ βpcBpypxqq ´ cBpxqq
˘

Px„DBpxqdx,

WApfprop, 1q “

ż

R1

Px„DApxqdx `

ż

R2

`

1 ´ pcApypxqq ´ cApxqq
˘

Px„DApxqdx,

where ypxq is the best response of a candidate with unmanipulated feature x, R1 sums over those can-

didates who are positively classified by fprop without expending any cost, and R2 sums over those can-

didates who are positively classified after manipulating their features. Since group Amembers do not

receive subsidy benefits, their welfare form is the same across no-subsidy and subsidy regimes.

We useWApfpropq to denoteWApfprop, 1q, the average welfare for group A under classifier fprop with
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no subsidy.

Definition 8 (Group welfare in a non-manipulation setting). The average welfare of group m under

classifier f0 in a non-manipulation setting is given by

Wmpf0q “

ż

R
Px„Dmpxqdx

where R sums over candidates who are positively classified by f0.

Proposition 10. There exist cost functions cA and cB satisfying the cost conditions, learner distribu-

tionsDA andDB, true classifiers with threshold τA and τB, population proportions pA and pB, and

learner penalty parameters CFN, CFP, and λ, such that

WApf˚propq ă WApf˚0 q, WBpf˚prop, β
˚q ă WBpf˚0 q,

WApf˚1 q ă WApf˚0 q, WBpf˚1 q ă WBpf˚0 q,

Cpf˚prop, β
˚q ą Cpf˚0 q, Cpf˚1 q ą Cpf˚0 q

where f0 is the equilibrium classifier in the non-manipulation regime, f˚1 is the equilibrium classifier

in the manipulation regime, and (f˚prop, β
˚) is the equilibrium classifier in the subsidy regime. The

average welfare of each group,Wmp¨q, as well as the learner, 1 ´ Cp¨q, is higher at the equilibrium of

the non-manipulation game compared with the equilibria of the Strategic Classification Game with

proportional subsidies and compared with the equilibrium of the Strategic Classification Game with no

subsidies.

Example 2. Now we consider a case in which candidates have linear cost functions cApxq “ 3x and

cBpxq “ 4x. To show that diminished welfare for both candidate groups can occur without requiring

distortions of probability distributions or cost functions, we consider a learner who seeks to avoid errors
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on group B in both the subsidy and the non-subsidy regimes by penalizing false negatives twice as much

as false positives, with CFN “ 2
3 , CFP “ 1

3 , and λ “ 3
4 . As in the previous example, we assume that

the underlying unmanipulated features for both groups are uniformly distributed with pA “ pB “ 1
2 ,

and that τA “ 0.4 and τB “ 0.3.

Now the equilibrium learner classifier without subsidies is based on threshold σ˚
1 “ σB “ 0.55,

which perfectly classifies all candidates from group B, while permitting false positives on candidates

from group A with features x P r0.217, 0.4q. Under a proportional subsidy intervention, the learner’s

equilibrium action is to choose threshold σ˚
prop “ σβB « 0.552 and β˚ “ 0.994, which again

perfectly classifies B candidates. Notice that now her optimal threshold commits fewer false positive

errors on group Amembers, while still committing false positives on those members with features

x P r0.219, 0.4q.

Here, even when the learner has a cost penalty that is explicitly concerned with mistakenly exclud-

ing group B candidates and then seeks to offer a subsidy benefit to further alleviate their costs, group B

members are still no better off. They receive the same classifications as before and it can be shown that

all candidates who manipulate must spend more to reach the higher threshold, even while accounting

for the subsidy benefit! Some group A candidates are also worse off since the threshold has increased,

and they receive no subsidy benefits. As before, only the learner gains from the intervention.

Example 3. This example is based on Example 2. Now we consider the case a learner seeks σ˚
1 P

rσB, σAs where σA “ 0.733 and σB “ 0.55. Suppose she seeks to equalize the number of false posi-

tives she commits on group A and the number of false negatives for group B and thus chooses σ˚
1 “ 0.64

such that

ℓApσ˚
1 q “ 0.31

ℓBpσ˚
1 q “ 0.39

Thus group B candidates with features x P r0.3, 0.39q are mistakenly excluded, and group A candi-
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dates with features x P r0.31, 0.4q are mistakenly admitted.

Upon implementing a subsidy and minimizing the same error penalty as in Example 1, the learner

selects an optimal proportional β subsidy such that

σ˚
prop “ σA “ 0.733; β “ 0.806

Under this regime, group B members are worse-off because many more candidates now receive false

negative classifications

x P r0.3, 0.423q

Others who do secure positive classifications must pay more to do so. Candidates in group A are now

perfectly classified, though this actually entails a welfare decline, since some candidates lose their false

positive benefits. The learner is also strictly better off with a total penalty decline

Cpσ˚
0 q “ 0.183 Ñ Cpσ˚

prop, β
˚q “ 0.128

Recall that the learner’s utility is given by 1 ´ Cp¨q. Thus we have that

WApσ˚
prop, β

˚q ă WApσ˚
1 q

WBpσ˚
prop, β

˚q ă WBpσ˚
1 q

Cpσ˚
1 q ą Cpσ˚

prop, β
˚q

Now consider a non-manipulation regime, in which the learner selects to equalize the number of false

negatives for group B and the number of false positives for group A, she now chooses a threshold on un-
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manipulated features

σ˚
0 “ 0.35

Some group A candidates lose false positive benefits in the manipulation regime, though on the whole,

the group fares better off because all those candidates with features

x P r0.39, 0.64q

need not expend any costs in order to receive a positive classification. Group B candidates are strictly

better off since they both receive fewer false negatives and need not pay to manipulate. The learner

is also better off here because she reduces her error down to Cpτ˚q “ 0.1. Thus comparing the non-

manipulation regime, the no-subsidy manipulation regime, and the subsidy regime, we have that util-

ity comparisons for all three parties is given by

WApσ˚
0 q ą WApσ˚

1 q ą WApσ˚
prop, β

˚q

WBpσ˚
0 q ą WBpσ˚

1 q ą WBpσ˚
prop, β

˚q

1 ´ Cpσ˚
0 q ą 1 ´ Cpσ˚

prop, β
˚q ą 1 ´ Cpσ˚

1 q

A.1.4 Flat Subsidies

Here we give analogous definitions and results for flat subsidies in which the learner absorbs up to a

flat α amount from each group B candidate’s costs and show that qualitatively similar results hold.

Definition 9 (Flat subsidy). Under a flat subsidy plan, the learner pays an α ą 0 benefit to all

members of group B. As such, a group B candidate who manipulates from an initial score x to a final

score y ě x bears a cost ofmaxt0, cBpyq ´ cBpxq ´ αu.
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A learner’s strategy now consists of both a choice of α and a choice of classifier f to issue. The

learner’s goal is to minimize her penalty

CFP
ÿ

mPtA,Bu

pmPx„Dmrhmpxq “ 0, fpyq “ 1s ` CFN
ÿ

mPtA,Bu

pmPx„Dmrhmpxq “ 1, fpyq “ 0s ` λcostpf, αq,

We can define

ℓαBpyq “ c´1
B

´

cBpyq ´ p1 ` αq

¯

.

Under the α subsidy, for an observed feature y, the group B candidate must have unmanipulated

feature x ě ℓαBpyq.

From these functions, we define σαB and σ
β
B such that ℓ

α
BpσαBq “ τB, and ℓ

β
BpσβBq “ τB. Under a flat

α subsidy, setting a threshold at σαB correctly classifies all group Bmembers; under a proportional β

subsidy, a threshold at σβB correctly classifies all group Bmembers.

From this, we define σαB such that ℓαBpσαBq “ τB. Under a flat α subsidy, setting a threshold at σαB

correctly classifies all group Bmembers.

In order to compute the cost of a subsidy plan, we must determine the number of group B can-

didates who will take advantage of a given subsidy benefit. Since manipulation brings no benefit in

itself, candidates will still only choose to manipulate and use the subsidy if it will lead to a positive

classification. For the flat α subsidy, costpf, αq is given by

ż σ

c´1
B pcBpσq´αq

rcBpσq ´ cBpxqsPDBpxqdx ` α
ż c´1

B pcBpσq´αq

ℓαBpσq

PDBpxqdx,

where σ is the threshold for classifier f. The first integral refers to the benefits paid out to candidates

with manipulation costs less than the α amount offered. The latter refers to the total sum of full α

payments offered to those with costs greater than α.

Definition 10 (Group welfare under a flat subsidy). The average welfare of group B under classifier f
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and a flat subsidy with parameter α is given by

WBpf, αq “

ż

R1

Px„DBpxqdx `

ż

R2

p1 ´ cBpypxq ´ cBpxqqqPx„DBpxqdx

where ypxq is the best response of a candidate with unmanipulated feature x, R1 sums over those candi-

dates who are positively classified without expending any cost, and R2 sums over those candidates who

are positively classified after manipulating their features. Note that under the flat subsidy, group B

costs have the formmaxt0, cBpyq ´ cBpxq ´ αu The formulation of average group A welfare is the same

in this setting and follows the same form given in Definition 5.

Theorem 7 (Subsidies can harm both groups). There exist cost functions cA and cB satisfying the

cost conditions, learner distributionsDA andDB, true classifiers with threshold τA and τB, population

proportions pA and pB, and learner penalty parameters CFN, CFP, and λ, such that

WApf˚propq ă WApf˚0 q, WBpf˚prop, α˚q ă WBpf˚0 q,

where f˚prop and α˚ are the learner’s equilibrium classifier and subsidy choice in the Strategic Classifica-

tion Game with flat subsidies and f˚0 is the learner’s equilibrium classifier in the Strategic Classifica-

tion Game with no subsidies.
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A.2 Appendix for Chapter 3

Proof of Proposition 1

Wewant to show that the firm-set reputation threshold Π̂t1
“ pH ´ Δt1 , where t1 is the time

since the last wage update, enforces a worker strategy of effort exertion akin to that of the one-shot

game, in which a worker exerts high effort if she can afford to do so and low effort otherwise. The

firm, by setting its reputation threshold « pH, is correctly restricting its membership to workers

who appear to be consistently exerting high effort. By the Law of Large Numbers, a worker’s recent

time t1 individual reputation Πt1
i Ñ pH almost surely as t1 Ñ 8 as long as she continuously exerts

high effort at each time step. Moreover, since the relationship between effort exertion andG or B

outcomes can considered Bernoulli trials with p “ pH, we use the law of the iterated logarithm

to bound individual good workers’ reputational deviations away from the theoretical mean pH as t

increases and have that for all t “ τ,

|Πτ ´ Π̂τ
| ď

b

τ´1p2 ˚ 0.25log logτq (A.11)

Rubinstein and Yaari81 have shown that, for a similar setup of imperfect observability and moral

hazard in repeated interactions between insurers and clients, the enforceability of the insurers’

strategies is dependent on the choice of the forgiveness buffer sequence. In our case, as long as

Δτ ą
a

τ´1p0.5log logτq and the sequence Δt1 Ñ 0 monotonically, the Rubinstein-Yaari result

carries over into employment relationships, and workers will always exert high effort when they can

afford to do so. Importantly, our scenario does differ from theirs in two ways: 1) Workers do not

stay in the labor market for an infinite number of rounds, 2) A firmmust pay the labor-market-wide

wage upon hiring a worker and cannot unilaterally deviate from the set price. Since workers exit the

market according to a Poisson parameter λ and the wage premium wt “ wpgt1q ą 0 is set to always
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provide a higher payoff for a worker than failing to be hired at all (due to the normalization with

respect to the unskilled job wage), the memoryless death process ensures that a worker iwith quali-

fications ρwill always find it within her interest to pursue the skilled job as long as it is individually

rational for her to do so, i.e. eρpθiq ď wtppH ´ pρq.

Proof of Theorem 3

The TLM hiring constraint effects two guarantees: 1) It retains the fundamental equality of

groups’ ability level distributions Fpθq within the labor market; 2) It results in statistical parity in the

proportion of workers offered skilled jobs in the TLM. Since the instantaneous time t contributions

to groups’ full population societal reputations πμ are equivalent to gμ up to the same constant factor

(ℓ proportion who enter the TLM), showing that the gμ values converge is sufficient to show that

group reputations πμ do as well.

Consider gt`1 “ ξpgtq as a self-mapping ξ : X Ñ Xwhere X is the unit interval r0, 1s. Groups

μ and ν have the same functional form of ξ differing only in a few particular parameters, which will

be addressed in the decomposition of ξ into two separate functions. Assuming the two groups begin

with unequal societal reputations, we suppose that (without loss of generality) πν ă πμ. We want to

show that regardless of initial values πν0 ă πμ0, hiring outcomes will converge to achieve equal group

outcomes system-wide under labor market dynamics with the TLM fairness constraint.

Due to effect 1) of the TLM hiring constraint and the fact that both groups experience the same

labor-market-wide wage wpgtq, the PLM ability thresholds pθQ and pθU are also equivalent across

groups. Thus the difference between the gμt and gνt arises due to the different corresponding pro-

portions of qualified workers γνt ă γμt at time t. As such, we construct the function φ as a mapping

of γt P r0, 1s to gt`1 P r0, 1s, such that gt`1 “ φpγtq. The function φ is generic across the two

groups, and group differences are entirely encoded in the distinct inputs γμt and γνt .

Let’s call gμt`1 “ φpγμt q and gνt`1 “ φpγνt q, where we treat γ
μ and γν as distinct points of the
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mapping φ. Then, we have

gμt`1 “pHr1 ´ Fp pθQqγμt ´ Fp pθUqp1 ´ γμt qs ` pQFp pθQqγμt (A.12)

` pUFp pθUqp1 ´ γμt q

The difference |gμt`1 ´ gνt`1| is thus equivalent to the following

|φpγμt q´φpγνt q| “ | ´ pHFp pθQqpγμt ´ γνt q ` pHFp pθUqpγμt ´ γνt q

` pQFp pθQqpγμt ´ γνt q ´ pUFp pθUqpγμt ´ γνt q|

“ pγμt ´ γνt q|pHrFp pθUq ´ Fp pθQqs ` pQFp pθQq ´ pUFp pθUq|

We rewrite the quantity inside the absolute value:

| Fp pθUqrpH ´ pUs
looooooomooooooon

Pp0,1q

` Fp pθQqrpQ ´ pHs
looooooomooooooon

Pp´1,0q

| “ |εt| ă 1

Together, |gμt`1 ´ gνt`1| “ |φpγμt q ´ φpγνt q| ď |εt|pγ
μ
t ´ γνt q, @γ

μ
t , γνt P r0, 1s, and with the bound on

ε, φ is a contraction mapping.

Since group reputation considers the proportion of allmembers in a group who are producing

good outcomes, statistical parity also has the upshot that a particular instantaneous time t group

reputation πμ exactly scales with gμ as each group is proportionally represented within the labor

market according to its population-wide demographic share, so we need only consider gμt values to

determine the feedback loop property of collective reputation πμt and group cost functions cμ and cν.

Thus, the mapping ψ : X Ñ X, which maps normalized gt`1 P X “ r0, 1s to γt`1 P X “ r0, 1s such

that γt`1 “ ψpgt`1q, is a weakly contracting map.

We can now rewrite the recursive system gt`1 “ ξpgtq as a composition: gt`1 “ ξpgtq “
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φpψpgtqq, where we have shown that φ is a contraction and ψ is a short map. Then their composi-

tion ξ, which represents the recursive self-map determining the evolution of group-wide employ-

ment outcomes, is also a contraction map.

Then by the Banach Fixed Point Theorem, there is a unique fixed-point g̃ “ ξpg̃q such that all

initial points gi P r0, 1s converge to g̃ via a sequence of applications of the recursive relation ξ as in

(A.12): For any two group reputations πμ and πν corresponding to initial points gμ0 and gν0, there

exists a T such that @t ą T, πμt “ πνt “ π̃ (similarly with gμ). At equilibrium, there is a unique wage

w̃ corresponding to g̃, and the system admits group fairness.

Proof of Theorem 4

To show that the contraction and convergence assured by statistical parity hiring is not guaran-

teed under group-blind hiring, note that when πB ă πW, necessarily 1 ´ FprθBq ă 1 ´ FpĂθWq, and

the composition of workers granted entry into the TLM does not satisfy statistical parity. We call

the proportion of workers in the TLM belonging to groups B andW, kB and 1 ´ kB respectively.

Similarly to the proof of Theorem 3, we decompose gμt into the feed-forward labor market flow ef-

fect and the feedback natural reputational effect. However, since γμ for the two groups are the same,

and Fprθμq values differ, we instead write labor market flow as a function of Fprθμq, call it φ*.

Then gWt`1 “ φpFp rθQqq and gBt`1 “ φpFprθBqq, and

|φpFpĂθQqq ´ φpFprθBqq| “ pFprθBq ´ Fp rθQqqγppH ´ pQq

Since γppH ´ pQq ă 1, φ thus also contracts in the feed-forward mechanism, however the func-

tion only captures the proportional gμt dynamics from the TLM into the PLM, which does not

scale with group reputation πμ since statistical parity is not guaranteed. Instead, under group-

*Note that in this proof, we also assume that rθB ă rθU, but the proof carries through in the exact same
manner when this is not true.
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blind hiring, group reputation, which captures the proportion of all workers in the group who

are producing good outcomes in the skilled labor, is a function of kB, or the bottleneck of group

proportionality created by the group-blind investment threshold. Thus the particular time t nor-

malized group societal reputation πBt 9
kBgBt
σB ă gBt and πWt 9

p1´kBqgWt
1´σB ą gWt , and as a result,

|πWt ´ πBt | ą |gWt`1 ´ gBt`1|. Since the mapping from gμt Ñ πμt is not a contraction, the reputation

feedback is not guaranteed to contract either. The systemmay thus reach an asymmetric equilib-

rium in which groups B andWmaintain distinct investment costs and equal group reputations are

never recovered.

We now show that this asymmetric outcome is Pareto-dominated by the hiring constraint-produced

symmetric steady-state when PLM firms’ demand for workers is not saturated and wprgtq “ w̄. For

the two groups, B andW, group-blind hiring imposes a single investment threshold η̃ such that

hired workers in both labor markets have the same probability of being qualified regardless of group

membership: γμ “ γν “ γ. Suppose group reputations are not equal as in the case of the group-

blind asymmetric equilibrium just proven, then group-blind hiring results in effective ability thresh-

olds that may be ranked with respect to the threshold θ̄ under statistical parity hiring. If πB ă πW,

then ĂθW ă θ̄ ă rθB. Note that throughout the chapter, it is assumed that not all workers in the

TLM are able to be hired in the PLM; therefore the ability threshold for exerting on-the-job effort

is greater than the ability threshold resulting from the investment threshold under statistical parity-

constrained hiring: pθQ ą θ̄.

When pθQ ă rθB, then TLM group-blind hiring leaves behind high ability workers in group Bwho

would have otherwise been hired in the PLM. In particular, all qualified workers in group Bwith

ability level θ P r pθQ, rθBq are only hired in the fairness constrained equilibrium; under group-blind

hiring, they are barred from entering the TLM. This result accords with the vicious circle of the

asymmetric equilibrium, since the reputation gap |πBt ´ πWt | and consequently, differences in group

investment costs are maintained.
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Further, since 1 ´ Fgppθρq ă 1 ´ Ffppθρq where Fg and Ff are the ability CDFs under the group-

blind and fair regime respectively, in a labor market that demands more workers yet cannot sustain

a higher wage (w̃ “ w)†, firms strictly prefer the steady-state equilibrium under the fairness con-

straint. This is because the effective higher ability threshold for group B under the group-blind

TLM strategy is inefficient, leaving behind an untapped resource of skilled and qualified individ-

uals in group Bwho would have otherwise been hired in the PLM. Even those workers in groupW

with ability level θ P rĂθW, pθQq who are only allowed to enter the TLM in the group-blind regime

do not fare better, since all such workers have ability level lower than the PLM reputation thresh-

old and are not hired at equilibrium anyway. Thus since some workers in group B are strictly better

off and workers in groupW no worse off, the asymmetric equilibria under group-blind hiring is

Pareto-dominated by the symmetric one of the fair case.

The proof of this result for the statistical discriminatory hiring regime follows similarly. If ξW ą

ξB, then PpQ|W, ηq ą PpQ|B, ηq, and the groups face different incentive compatibility constraints.

Self-confirming asymmetric equilibria also exist under this regime,22 and using the same argument

about lost efficiency due to inequitable ability thresholds in the TLM for group B, these equilibria

are also Pareto-dominated by hiring that abides by statistical parity.

†There are a variety of reasons why an association of firms that demand more workers would be unable or
unwilling to raise its wage higher w̃ “ w: A higher wage may encourage lower ability workers to apply and
exert effort, and in reality, probabilities of success pH may be variable according to ability; thus the firmmay
want to a priori exclude such workers. Wage caps may also result from firm-firm collusion on price.
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A.3 Appendix for Chapter 4

A.3.1 Dual derivations of the ε-fair SVM program

In this Appendix section, we walk through the preliminary setup of the ε-fair SVM program given

in Section 5.1 and present intermediate derivations omitted from the main text.

Recall that the fair empirical risk minimization program of central focus is

minimize
θθθ, b

1
2
∥θθθ∥2 ` C

n
ÿ

i“1
ξi

subject to yipθθθ⊺xi ` bq ´ 1 ` ξi ě 0, (ε-fair Soft-SVM)

ξi ě 0,

fθθθ,bpx, yq ď ε

The hyperplane parameters are θθθ P Rd and b P R. The non-negative ξi allow the margin constraints

to have some slack—this is why these variables are commonly called “slack variables.” In the Soft-

Margin (as opposed to the Hard-Margin) SVM, the margin is permitted to be less than 1. A slack

variable ξi ą 0 corresponds to a point xi having a functional margin of less than 1. There is a cost

associated with this margin violation, even though it need not correspond to a classification error.

C ą 0 is a hyperparameter tunable by the learner to optimize this trade-off between preferring a

larger margin and penalizing violations of the margin.

When we combine the general Soft-Margin SVMwith the covariance parity constraint in (4.4)
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proposed by Zafar et al.96, we have the program

minimize
θθθ, b

1
2
∥θθθ∥2 ` C

n
ÿ

i“1
ξi

subject to yipθθθ⊺xi ` bq ´ 1 ` ξ ě 0, (ε-fair-SVM1-P)

| 1
n

n
ÿ

i“1
pzi ´ z̄qpθθθ⊺xi ` bq| ď ε

where z̄ reflects the bias in the demographic makeup ofX : z̄ “ 1
n
řn

i“1 zi. The corresponding

Lagrangian is

LPpθθθ,b, ξξξ,λλλ,μμμ, γ1, γ2q

“
1
2
∥θθθ∥2 ` C

n
ÿ

i“1
ξi ´

n
ÿ

i“1
λi ´

n
ÿ

i“1
μipyipθθθ

⊺xi ` bq ´ 1 ` ξiq

´ γ1
`

ε ´
1
n

n
ÿ

i“1
pzi ´ z̄qpθθθ⊺xi ` bq

˘

(ε-fair-SVM1-L)

´ γ2
`

ε ´
1
n

n
ÿ

i“1
pz̄ ´ ziqpθθθ⊺xi ` bq

˘

where θθθ P Rd, b P R, ξξξ P Rn are Primal variables. The (non-negative) Lagrange multipliers

λλλ,μμμ P Rn correspond to the n non-negativity constraints ξi ě 0 and the margin-slack constraints

yipθθθ⊺xi ` bq ´ 1 ` ξi ě 0 respectively. The multiplier μi relays information about the functional

margin of its corresponding point xi. If the margin is greater than 1 in the Primal, i.e., there is slack

in the constraint), then by complementary slackness, μi “ 0. Otherwise, if the constraint holds with

equality, μi P p0,Cs. When the classifier commits an error on xi, yipθθθ⊺xi ` bq ă 1, and then by the

KKT conditions, μi “ C.

The multipliers γ1, γ2 P R correspond to the two linearized forms of the absolute value fairness

constraint. Notice that these two constraints cannot simultaneously hold with equality for ε ą 0.
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Thus, by complementary slackness again, we know that at least one of γ1, γ2 is zero, and the other is

strictly positive.

By the Karush-Kuhn-Tucker conditions, at the solution of the convex program, the gradients of

Lwith respect to θθθ, b, and ξi are zero:

BL
Bθθθ

:“ 0 ñ θθθ “

n
ÿ

i“1
μiyixi ´

γ
n

p

n
ÿ

i“1
pzi ´ z̄qxiq

BL
Bb

:“ 0 ñ

n
ÿ

i“1
μiyi “

γ
n

n
ÿ

i“1
pzi ´ z̄q “ 0

BL
Bξi

:“ 0 ñ λi ` μi “ C, i “ 1, . . . , n

Plugging in these optimality conditions, the dual Lagrangian is

LDpθθθ, ξξξ,λλλ,μμμ, γ1, γ2q “ ´
1
2
∥

n
ÿ

i“1
μiyixi ´

γ
n

n
ÿ

i“1
pzi ´ z̄qxi∥2 `

n
ÿ

i“1
μi ´ |γ|ε

where we have γ “ γ1 ´ γ2, since at most one side of the fairness constraint binds, thereby ensuring

that at least one of γ1 or γ2 is 0. The dual maximizes this objective subject to the constraints μi P

r0,Cs for all i and
ř

i“1 μiyi “ 0. Hence, we derive the full dual problem

maximize
μμμ, γ,V

´
1
2
∥

n
ÿ

i“1
μiyixi ´

γ
n

n
ÿ

i“1
pzi ´ z̄qxi∥2 `

n
ÿ

i“1
μi ´ Vε

subject to μi P r0,Cs, i “ 1, . . . , n, (ε-fair-SVM1-D)
n
ÿ

i“1
μiyi “ 0,

γ P r´V,Vs

where we have introduced the variableV to eliminate the absolute value function |γ| in the objec-

tive. Notice that when γ “ 0 and neither of the constraints bind, we recover the standard dual
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SVM program. Since we are concerned with fair learning that does in fact alter an optimal solution,

we consider cases in whichV is strictly positive. From this program, we introduce additional dual

variables β
´
and β

`
, corresponding to the γ P r´V,Vs constraint and derive the Lagrangian

Lpμμμ, γ,V, β
´
, β

`
q “ ´

1
2
∥

n
ÿ

i“1
μiyixi ´

γ
n

n
ÿ

i“1
pzi ´ z̄qxi∥2 `

n
ÿ

i“1
μi

´ Vε ` γpβ
´

´ β
`

q ` Vpβ
´

` β
`

q

Under KKT conditions, β
´

` β
`

“ ε and

γ˚ “
npnpβ

´
´ β

`
q `

řn
i“1 μiyixxi, uyq

∥u∥2
(A.13)

where u “
řn

i“1pzi ´ z̄qxi gives some group-sensitive geometric “average” of x P X . We can

subsequently rewrite (ε-fair-SVM1-D) as

maximize
μμμ,β´,β`

´
1
2
∥

n
ÿ

i“1
μiyipI ´ Puqxi∥2 `

n
ÿ

i“1
μi

`
2n

ř

i μiyixxi, uy ` n2pβ
´

´ β
`

q

2∥u∥2
pβ

´
´ β

`
q

subject to μi P r0,Cs, i “ 1, . . . , n,
n
ÿ

i“1
μiyi “ 0, (ε-fair SVM2-D)

β
´
, β

`
ě 0,

β
´

` β
`

“ ε

where I,Pu P Rdˆd. The former is the identity matrix, and the latter is the projection matrix

onto the vector u. As was also observed by Donini et al., the ε “ 0 version of (ε-fair SVM2-D)
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is equivalent to the standard formulation of the dual SVM program with KernelKpxi, xjq “

xpI ´ Puqxi, pI ´ Puqxjy.28

Since we are interested in the welfare impacts of fair learning when fairness constraints do have

an impact on optimal solutions, we will assume that the fairness constraint binds. For clarity of

exposition, we assume that the positive covariance constraint binds, and thus that β
´

“ 0 and

β
`

“ ε in (ε-fair SVM2-D). This is without loss of generalization—the same analyses apply when

the negative covariance constraint binds. The dual ε-fair SVM program becomes

minimizeμμμ
1
2
∥

n
ÿ

i“1
μiyipI ´ Puqxi∥2 ´

n
ÿ

i“1
μi `

nεp2
ř

i μiyixxi, uy ´ nεq
2∥u∥2

subject to μi P r0,Cs, i “ 1, . . . , n, (ε-fair SVM-D)
n
ÿ

i“1
μiyi “ 0

A.3.2 Algorithms

Finding the next breakpoint when |Mε| “ 0

When |Mε| “ 0, the standard procedure that finds the next breakpoint by computing sensi-

tivities to μi in the margin (i P Mε) by inverting the matrixK in (4.12) fails. Without rεi , we also

cannot compute changes to di for i not in the margin (i P tF , Euε) as defined in (4.18) to track

when points enter the margin. As a result, we need a special procedure to find the next breakpoint

when the margin becomes empty.

If the solution is to remain optimal, it must continue to abide by KKT conditions; in particular
řn

i“1 μiyi “ 0. Notice then that if the margin is empty, we have that
ř

iPE ε μiyi “ 0 “ C
ř

iPE ε yi,
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which means that there are equal numbers of `1 and ´1 vectors that are misclassified. Thus at the

next breakpoint, both `1 and ´1 vectors will enter the margin at the same time, offsetting each

other exactly to retain the optimality of the solution.

Tracking how vectors enter the margin at the solution ppεq requires tracking sign changes of BDε

Bμ :

n
ÿ

i“1
μiyipI ´ PuqxiyjpI ´ Puqxj `

nεyjxxj, uy

∥u∥2
` byj ´ 1

F ε

ż
E ε

0

We can perturb ε by Δε and narrow the range of eligible optimal b. Consider how the SVM bound-

ary splits the dataset. On the positive side of the boundary, we have

b ą yi
´

1 ´

n
ÿ

i“1
μiyipI ´ PuqxiyjpI ´ Puqxj ´

nεyjxxj, uy

∥u∥2
¯

for iwith yi “ `1 and yi P F ε, as well as yi “ ´1 and yi P E ε. Call this set of indicesR. On the

other hand,

b ă yi
´

1 ´

n
ÿ

i“1
μiyipI ´ PuqxiyjpI ´ Puqxj ´

nεyjxxj, uy

∥u∥2
¯

for iwith yi “ ´1 and yi P F ε, as well as yi “ `1 and yi P E ε. Call this set of indices L. Let

spεq “ 1 ´

n
ÿ

i“1
μiyipI ´ PuqxiyjpI ´ Puqxj ´

nεyjxxj, uy

∥u∥2

.Then we have the range

b P Bε “ rmax
iPR

yispεq,min
iPL

yispεqs (A.14)

Perturbations of Δε result in changes of

tpΔεq “ ´yi
nΔεxxj, uy

∥u∥2
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so we can write

BεpΔεq “ rmax
iPR

yispεq ´ tpΔεq,min
iPL

yispεq ´ tpΔεqs (A.15)

In increasing the magnitude of Δε, the interval BεpΔεq shrinks until it collapses onto a single value

of b. The Δε be the perturbation when

max
iPR

yispεq ´ tpΔεq “ min
iPL

yispεq ´ tpΔεq (A.16)

determines the next breakpoint. The indices

k “ argmax
iPR

yispεq ´ tpΔεq, ℓ “ argmin
iPL

yispεq ´ tpΔεq (A.17)

leave their respective sets and enter the margin. The partition is updated as:

Mε`Δε “ tk, ℓu (A.18)

tF , Euε`Δε “ tF , Euε ´ tk, ℓu (A.19)

A.3.3 Additional Figures

Figure 2 gives more information on the welfare impacts of ε-fair SVM-solutions on the Adult dataset.

Increasing ε from left to right loosens fairness constraint, and classification outcomes become “less

fair.” Paths level off at ε « 0.175 when constraint ceases to bind at the optimal solution. The

top panel shows that the learner objective value monotonically decreases as the fairness constraint

loosens. The bottom panel gives the group-specific welfare change at an ε-fair SVM solution given

as an absolute change in the number of positively labeled examples compared to the unconstrained

solution baseline.
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Figure A.1: Impact of fair SVM learning on learner objective value (top panel) and group welfare given as absolute wel‐
fare changes for female and male groups (bottom panel) on the Adult dataset.

A.3.4 Results on the Correspondence between LossMinimization and Social

WelfareMaximization

In the Planner’s Problem, a planner maximizes a social welfare functional (SWF) given as a weighted

sum of individual utilities,W “
řn

i“1 wiui. An individual i’s contribution to society’s total welfare

is a product of her utility ui and her social weight wi P r0, 1s normalized so that
řn

i wi “ 1. Utility

functions ui : X Ñ R` assign positive utilities to a set of attributes or goods xi. We suppose a

utility function is everywhere continuous and differentiable with respect to its inputs.

Since a planner who allocates a resource h impacts her recipients’ utilities, she solves hSWFpx;wwwq :“

argmaxhhh
řn

i“1 wiupxi, hiq under a budget constraint:
řn

i“1 hi ď B. Since we consider cases of social

planning in which a desirable good is being allocated, it is natural to suppose that u is strictly mono-

tone with respect to h. As is common in welfare economics, we take u to be concave in h, so that
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receiving the good exhibits diminishing marginal returns. Further, we require that the social welfare

functionalW be symmetric: Wphhh; x,wwwq “ Wpσphhhq; σpxq, σpwwwqq for all possible permutations of

σp¨q. This property implies that the utility functions in the Planner’s Problem are not individual-

ized. In the case of binary classification, the planner decides whether to allocate the discrete good to

individual i or not (hi P t0, 1u).

To highlight the correspondence between the machine learning and welfare economic approaches

to social allocation, we first show that we can understand loss minimizing solutions to also be wel-

fare maximizing ones, albeit under a particular instantiation of the social welfare function. Since so-

cial welfare is given as the weighted sum of individuals’ utilities, it is clear that manipulating weights

www significantly alters the planner’s solution. Thus just as we can compute optimal allocations under

a fixed set of welfare weights, we can also begin with an optimal allocation and find welfare weights

that would support them. In welfare economics, the form ofwww corresponds to societal preferences

about what constitutes a fair distribution. For example, the commonly-called “Rawlsian” social wel-

fare function named after political philosopher John Rawls, can be written asWRawls “ mini ui

where ui gives the utility of individual i. This function is equivalent to the general form
řn

i“1 wiui

where the individual iwith the lowest utility ui has welfare weight wi “ 1 and all individuals k ‰ i

have weight wk “ 0. On the other hand, the commonly-called “Benthamite” social welfare function

named after the founder of utilitarianism Jeremy Bentham, aggregates social welfare such that an

extra unit of utility contributes equally to the social welfare regardless of who receives it. Benthamite

weights are equal across all individuals: wi “ 1
n for all i P rns.

Thus associating an optimal (possibly fairness constrained) loss minimizing allocation with a

set of welfare weights that would make it socially optimal lends insight into how socially “fair” a

classification is from a welfare economic perspective. The following Proposition formally states this

correspondence between loss minimization and social welfare maximization.

Proposition 11. For any vector of classifications hMLpxiq that solves a loss minimization task, there

143



exists a set of welfare weights www with
řn

i“1 wi “ 1 such that the planner who maximizes social welfare

Wwith a budget B selects an optimal allocation hSWFpxiq “ hMLpxiq for all i P rns.

Proof. First, we know that sinceWpx,wwwq is a weighted sum of functions u, which are concave in h,

the planner can indeed find a social welfare maximizing allocation hhhSWF. Let hMLpxq be the empiri-

cal loss-minimizing classifier for txi, zi, yiuni“1. With these allocations given, we can invert the social

welfare maximization problem to find the weights thatwww support them.

For a given utility function u, we evaluate Bupx,hq

Bh

∣∣∣
txi,hMLpxiqu

“ mi @i P rns, which gives the

marginal gain in utility for individual i from having received an infinitesimal additional allocation of

h. Notice that at a welfare maximizing allocation hhh, we must have that

wi
Bupx, hq

Bh

∣∣∣
txi,hiu

“ wj
Bupx, hq

Bh

∣∣∣
txj,hju

for all i, j P rns (A.20)

When the allocation hMLpxq has been fixed, we must have that wimi “ wjmj “ k, where the

constant k is set by the planner’s budget B, for all i, j along with
řn

i“1 wi “ 1. Since u is strictly

monotone with respect to h,mi ą 0 for all i. We thus have a non-degenerate system of n equations

with n variables, and there exists a unique solution of welfare weightswww that support the allocation.

Note that in the case of binary classification hMLpxq P t´1,`1, u, so allocations are not awarded

at a fractional level. Thus rather than the partial Bupx,hq

Bh , the planner must consider the margin gain

of receiving a positive classification. Nevertheless, Proposition 1 still holds, and the proof carries

through with Δupx, hpxqq “ upx, 1q ´ upx, 0q in place of partial derivatives Bupx,hq

Bh .

The equations given in (A.20) set an optimality condition for the planner. Its structure, though

simple, reveals that welfare weights must be inversely proportional to an individuals’ marginal utility

gain from receiving an allocation. This result is formalized in the Proposition below.
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Proposition 12. For any set of optimal allocations hhh “

argmaxhhh
řn

i“1 w̄iupxi, hiq with strictly monotonic utility function u concave in h, the supporting

welfare weights have the form w̄i “ k
mi

where mi “
Bupxiq

Bh |txi,hiu and k ą 0 is a constant set by the

planner’s budget B “
řn

i“1 hi.

By associating a set of classification outcomes with a set of implied welfare weights, one can in-

quire about the social fairness of the allocation scheme by investigating the distribution of welfare

weights across individuals or across groups. While there may not be a single distribution of welfare

weights that can be said to be “most fair,” theoretical and empirical work in economics has been

conducted on the range of fair distributions of societal weights.37,82 This research has considered

weights as implied by current social policies,1,99,21 philosophical notions of justice,2,38 and individ-

uals’ preferences in surveys and experiments.1,65,82 They thus offer substantive notions of fairness

currently uncaptured by many current algorithmic fairness approaches.

AnAlgorithm that Records All Possible Labelings

In the previous section, we showed that for any vector of classifications, one can compute the

implied societal welfare weights of the generic SWF that would yield the same allocations in the

Planner’s Problem. In this section, we work in the converse direction: Beginning with a planner’s

social welfare maximization problem, does there exist a classifier hML P H that generates the same

classification as the planner’s optimal allocation such that for all i P rns, hMLpxiq “ hSWFpxiq?

We answer this question for the hypothesis class of linear decision boundary-based classifiers by

providing an algorithm that accomplishes a much more general task: Given a setX , containing n

d-dimensional nondegenerate data points x P Rd, our algorithm enumerates all linearly separable

labelings and can output a hyperplane parameterized by θθθ P Rd and b P R that achieves that set
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of labels. In order to build intuition for its construction, we first consider a hyperplane separation

technique that applies to a very specific case: a case in which a hyperplane separates sets A and B,

intersecting A at a single point and intersecting B at d ´ 1 points.

Lemma 4. Consider linearly separable sets A and B of points x P Rd. For any d ´ 1-dimensional

hyperplane hV with hV XA “ v and hV XB “ P where |P| “ d´ 1 that separates A and B into closed

halfspaces h̄`
V and h̄´

V , one can construct a d ´ 1-dimensional hyperplane h that separates A and B into

open halfspaces h` and h´.

Because its techniques are not of primary relevance for this Section, we defer the full proof of this

Lemma to the Appendix but provide a brief exposition. The construction on which the Lemma

relies is a “pivot-and-translate” maneuver. A hyperplane as described can separate points in open

halfspaces by first pivoting (infinitesimally) on a d ´ 2-dimensional facet P of a convex hull CpBq

away from v P CpAq and then translating (infinitesimally) back toward v and away from CpBq. We

show that all separable convex sets can be separated by such a hyperplane and procedure.

Note that since we seek enumerations of all labelings achievable by a linear separator on a given

dataset, we are not a priori given convex hulls to separate. That is, we want to know which points

can be made into distinct convex hulls and which cannot. Thus we take the preceding procedure

and invert it—the central idea is to begin with the separators and from there, search for all possible

convex hulls: Beginning with an arbitrary d ´ 1-dimensional hyperplane h defined by d data points,

we construct convex hulls out of the points in each halfspace created by h. Then we can use the

pivot-and-translate procedure to construct a separation of the two sets into two open halfspaces. We

must show that such a procedure is indeed exhaustive.

Theorem 8. Given a datasetX consisting of n nondegenerate points x P Rd, Algorithm 2 enumer-

ates all possible labelings achievable by a d ´ 1-dimensional hyperplane in Opnddq time and outputs

hyperplane parameters pθθθ, bq that achieve each one.
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ALGORITHM 2:Record all possible labelings on a datasetX by linear separators
Input: SetX of n data points x P Rd

Output: All possible partitions A, B attainable via linear separators; supporting
hyperplane h

for all V Ă X with |V| “ d do
Construct d ´ 1-dimensional hyperplane hV defined by v P V;
for each point v P V do

P “ Vzv;
h “ pivotphV,P, vq ; // hV pivots around the d ´ 2-dimensional plane
P away from v
h “ translateph, vq ; // h translates toward v
Record A “ tx|x P h`u,B “ tx|x P h´u, h;

end
end

Proof. We have already shown that the pivot-and-translate construction is sufficient to linearly sepa-

rate two sets A and B in the very specific case given in the preceding Lemma. But we must prove that

all linearly separable sets can be constructed via Algorithm 2. We prove it is exhaustive by contradic-

tion.

Suppose there exists a separation ofX that is not captured by Algorithm 2. Then there exists

disjoint sets A and B such that their convex hulls CpAq and CpBq do not intersect. By the hyperplane

separating theorem, there exists a d ´ 1-dimensional hyperplane hV1 that separates A and B, defined

by a setV1 of d vertices v, at least one of which is on the boundary of each convex hull. Without

loss of generality, we assume that for all x P A, x P h`
V1
and for all x P B, x P h´

V1
. Notice that

this hyperplane is indeed “checked” by the Algorithm, and this hyperplane hV1 correctly separates

x P X zV1 into the two sets A and B. Thus if the separation is not disclosed via the procedure, the

omission must occur due to the pivot-and-translate procedure’s being incomplete.

In Algorithm 2, the setV1 is partitioned so thatV1 “ vf,1 Y P1 where vf,1 is the “free vertex” and

P1 is the pivot set consisting of d´1 vertices. This partition occurs d times so that each vertex v P V1
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has its turn as the “free vertex.” Thus we can view the pivot-and-translate procedure as constituting

a second partition—a partition of the d vertices that define the initial separating hyperplane. By

contradiction, we claim that there exists a partitionD1,E1 Ă V1 such thatD1
š

E1 “ V1 where

D1 Ă A and E1 Ă B that is unaccounted for in the d pivot-and-translate operations applied to hV1 .

Thus |D1|, |E1| ě 2. We use a “gift-wrapping” argument, a technique common in algorithms that

construct convex hulls, to show that the partition A and B is indeed covered by Algorithm 2.

Select v P D1 to be the free vertex vf,1, and let the pivot set P1 “ V1zvf,1. We pivot around

P1 and away from vf,1 so that vf,1 P h`
V1
. Rotations in d-dimensions are precisely defined as being

around d´2-dimensional planes. Thus pivoting around the ridge P1 away from vf,1 is a well-defined

rotation inRd. Since hV1 is a supporting hyperplane to CpBq, E1 constitutes a |E1| ´ 1-dimensional

facet of CpBq. There exists a vertex vE P CpBq such that E1 Y vE gives a |E1|-dimensional facet of

CpBq. Let hV2 be defined by the setV2 “ P1 Y vE. hV2 continues to correctly separate all x P X zV2.

We once again partitionV2 into setsD2 and E2 whose members must be ultimately classified in

sets A and B respectively. Notice that |D2| “ |D1| ´ 1, since hV2 correctly classifies vf,1 as belonging

to set A. Thus with each iteration of the pivot procedure, the separating classifier unhinges from

a vertex in CpAq and “wraps” around CpBq just as in the gift wrapping algorithm to attach onto

another vertex in CpBq. At each step, the hyperplane defined by d vertices continues to support

and separate CpAq and CpBq. Thus process iterates until in the |D1| ´ 1-th round, the hyperplane

hV|D1|´1 has partitionD|D1|´1 and E|D1|´1 with |D|D1|´1| “ 1. Applying the full pivot-and-translate

procedure ensures the desired separation of sets A and B into open halfspaces.

Thus starting from a separable hyperplane defined by d vertices on the convex hulls CpAq and

CpBq, which must exist in virtue of the separability of sets A and B, we were able to use the pivot

procedure in order to “gift-wrap” around one convex hull until we arrived at a d-dimensional sep-

arating hyperplane with only one vertex vf P CpAq. This hyperplane is obviously checked by the

first for-loop of Algorithm 2. The subsequent for-loop that performs the second partition of the d
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vertices into the free vector vf and the pivot set P then directly applies and performs the pivot-and-

translate procedure given in Algorithm 2 to achieve the desired separation.

Degeneracies in the dataset can be handled by combining Algorithm 2 with standard solutions

to degeneracy problems in geometric algorithms, which perform slight perturbations to degenerate

data points to transform them into nondegenerate ones.31 In concert with these solutions, Algo-

rithm 2 automatically reveals which social welfare maximization solutions are attainable on a given

datasetX via hyperplane-based classification and the 0 ´ 1 accuracy loss each entails.

A.3.5 Proofs

Proof of Proposition 7

Proof. For all j P F ε, remaining inF ε`Δε after the perturbation requires that BD
Bμj

ą 0 after the per-

turbation. Let μεi be the optimal μi solution at ppεq. Then following (4.10), we rewrite the quantity

BD
Bμj

as

gj “ 1 ´

´

n
ÿ

i“1
μεiyipI ´ PuqxiyjpI ´ Puqxj `

nεyjxxj, uy

∥u∥2
` byj

¯

ă 0

If djΔε ą 0, then j P F ε`Δε. Otherwise, for djΔε ă 0, if Δε ă
gj
dj , then

BD
Bμε`Δε

j
ą 0, and j P F ε`Δε

after the perturbation. ✓

The same reasoning follows for j P E ε, except we have that gj ą 0. Thus if djΔε ă 0, then j P

E ε`Δε. Otherwise, for djΔε ą 0, if Δε ă
gj
dj , then

BD
Bμε`Δε

j
ą 0, and j P E ε`Δε after the perturbation.

✓

To ensure that margin vectors do not escape the margin, we can directly look to rj “
Bμj
Bε . Since

for all j P Mε, μεj P r0,Cs, then staying in the margin and setMε`Δε depends on the sign of rj and
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requires that

rj ă 0 ÝÑ
C ´ μεj

rj
ă Δε ă

´μεj
rj

(A.21)

rj ą 0 ÝÑ
´μεj
rj

ă Δε ă
C ´ μεj

rj
(A.22)

Thus taking the minimum of the positive quantities gives an upper bound, while taking the maxi-

mum of the negative quantities gives a lower bound on Δε perturbations, such that {F ,M, Euε “

tF ,M, Euε`Δε. Let

mj “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

$

’

’

&

’

’

%

gj
dj , j P F , dj ą 0

´8, j P F , dj ă 0

mint
C´μεj
rj ,

´μεj
rj u, j P M

$

’

’

&

’

’

%

´8, j P E , dj ą 0

gj
dj , j P E , dj ă 0

, Mj “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

$

’

’

&

’

’

%

8, j P F , dj ą 0

gj
dj , j P F , dj ă 0

mint
C´μεj
rj ,

´μεj
rj u, j P M

$

’

’

&

’

’

%

gj
dj , j P E , dj ą 0

8, j P E , dj ă 0

Thus all perturbations of εwithin the range

Δε P
`

max
j

mj,min
j

Mj
˘

satisfy the necessary conditions to ensure stable sets tF ,M, Eu. Stable classifications ŷi follow.

Proof of Corollary 3

Proof. For all Δε in the stable region given in (4.16),Wipεq “ Wipε ` Δεq where i gives group

membership z “ i. Thus the groups are welfare-wise indifferent between classifications at ε and Δε.

For all Δε ă 0, where the fairness constraint is tightened,ppεq ď ppε ` Δεq. Since the learner prefers
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lower loss, we have that ppεq ľ ppε ` Δεq. Comparing the triples at each ε value, we thus have

tppεq,W0pεq,W1pεqu ľ tppε ` Δεq,W0pε ` Δεq,W1pε ` Δεqu

as desired.

Proof of Proposition 9

Proof. Following much of the exposition in the main text, recall we have that the perturbation func-

tion in (4.21) is given as

ppεq ě sup
μμμ,γ

tLpμμμ˚, γ˚q ´ ε|γ˚|u

which gives a global lower bound. Thus when a perturbation Δε ă 0 causesLpμμμ˚, γ˚q ´ ε|γ˚| to

increase, then ppε ` Δεq is guaranteed to increase by at least Δε|γ˚|. Thus when |γ˚| " 0, ppε `

Δεq ´ ppεq " 0. The learner experience a significant increase in her optimal value ppεq (which she

wishes to minimize).

On the other hand, when Δε ą 0, thenLpμμμ˚, γ˚q ´ ε|γ˚| decreases. But the decrease gives only

the lower bound, and thus when |γ˚| is small, her optimal value ppεq decreases but it is guaranteed

not to decrease by much.

Proof of Proposition 8

Proof. Fix ε P p0, 1q and consider the stable region of Δε perturbations given by pbL, bUq. Suppose

bL “
gj
dj with j P E , then if yj “ ´1, ŷj “ `1. Thus at the breakpoint Δε “ bL, jmoves intoMε`bL

and ŷj “ `1 and uzjpε ` bLq ă uzjpεq where zj gives the group membership of xj. Since no other

points transition, uz̄pε ` bLq “ uz̄pεq for all z̄ ‰ zj. Since bL ă 0, the fairness constraint is tightened

and associated with a shadow price given by γ ą 0 such that ppε ` bLq ă ppεq. ✓
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Suppose bL “
C´μεj
rj and j P Mε with yj “ `1, then jmoves into j P E ε`bL such that ŷj “ ´1.

Thus uzjpε ` bLq ă uzjpεq and uz̄pε ` bLq “ uz̄pεq where zj is the group membership of xj and

z̄ ‰ zj, and ppε ` bLq ď ppεq. ✓

Suppose bU “
gj
dj ą 0 where j P E ε, yj “ `1, and ŷj “ ´1. At the breakpoint, jmoves

intoMε`bU such that yj “ ´1. Then uzjpε ` bUq ą uzjpεq where zj is the group membership

of xj. For z̄ ‰ zj, uz̄pε ` bUq “ uz̄pεq, and since bU ą 0, the fairness constraint is loosened and

ppε ` bUq ą ppεq.

Suppose bU “
C´μεj
rj ą 0 where j P Mε and yj “ ´1. At the breakpoint, jmoves into E ε`bU such

that ŷj “ `1. Then uzjpε ` bUq ą uzjpεq where zj gives the group membership of xj. For z̄ ‰ zj,

uz̄pε ` bUq “ uz̄pεq, and since bU ą 0, the fairness constraint is loosened and ppε ` bUq ě ppεq.

✓

Proof of Theorem 5

Proof. Theorem 5 follows from Lemma 3.2, Proposition 7, Corollary 3, and Proposition 8.

Proof of Lemma 4 fromAppendix Section 6.4

Proof. Let A and B be a pair of disjoint non-empty convex sets that partitionX Ă Rd: A
š

B “

X . Then by the hyperplane separation theorem, there exists a pair (θθθ, b) such that for all x P A,

θθθ⊺x ě b—call this closed halfspace h̄`—and for all x P B, θθθ⊺x ď b—call this closed halfspace h̄´.

One such hyperplane can be constructed to separate the convex hulls of A and B

CpAq “
␣

|A|
ÿ

i“1
αixi|xi P A, αi ě 0,

|A|
ÿ

i“1
αi “ 1

(

CpBq “
␣

|B|
ÿ

i“1
αixi|xi P B, αi ě 0,

|B|
ÿ

i“1
αi “ 1

(
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Let hV be the d ´ 1-dimensional hyperplane defined by the setVwith |V| “ d such thatV X

CpAq ‰ H andV X CpBq ‰ H. In order for the hyperplane to separate CpAq and CpBq, hV must

also support each hull—we know that such a hyperplane always exists. In order to separate CpAq

and CpBq so they are contained within open halfspaces h`
V and h´

V , we wiggle the hyperplane so that

it no longer passes through vertices v P V but still maintains convex hull separation. This “wiggle”

step is the final step of separating A and B.

SupposeV can be partitioned into a single vertex vA in CpAq and a set P “ tv|v P CpBqu with

|P| “ d ´ 1. The set P defines a ridge on CpBq, since it is a d ´ 2-dimensional facet of CpBq. Rota-

tions in d-dimensions are precisely defined as being around d´2-dimensional planes. Thus pivoting

hV around the ridge P away from vA is a well-defined rotation inRd. Selecting any infinitesimally

small rotation angle ρwill be enough to have CpAq P h`
V . After the pivot, we translate hV away

from the ridge P back toward vA. An infinitesimal translation is sufficient, since we simply wish to

dislodge hV from the ridge P, so that CpBq P h´
V .
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