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Dynamics and topology of absolute period foliations of strata of holomorphic 1-forms

Abstract

Let Sg be a closed oriented surface of genus g, and let ΩMg(κ) be a stratum of the moduli

space of holomorphic 1-forms of genus g. In this thesis, we study dynamical and topological

properties of the absolute period foliation of ΩMg(κ). We show that in most cases, the

absolute period foliation is ergodic on the area-1 locus, and we give an explicit full measure

set of dense leaves. These dynamical results are obtained as an application of a topological

result on the connectedness of the space of holomorphic 1-forms in ΩMg(κ) representing a

given cohomology class in H1(Sg;C). As another application, we give a new proof that in

most cases, the monodromy representation of π1(ΩMg(κ)) on absolute homology surjects

onto Sp(2g,Z).
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1. Introduction

Let Mg be the moduli space of closed Riemann surfaces of genus g ≥ 2. Let ΩMg → Mg

be the bundle of pairs (X,ω) with X ∈ Mg and ω a nonzero holomorphic 1-form on X.

In general, ω has 2g − 2 zeros counted with multiplicity. The space ΩMg is a union of

strata ΩMg(κ), indexed by partitions κ = {m1, . . . ,mn} of 2g − 2 =
∑

mj, and consisting

of holomorphic 1-forms with n distinct zeros of multiplicities m1, . . . ,mn. Also associated

to (X,ω) is its group of absolute periods, the subgroup of C obtained by integrating ω over

closed loops in X. These two invariants give rise to the absolute period foliation A(κ) of

ΩMg(κ). A leaf of A(κ) is navigated by varying a holomorphic 1-form in ΩMg(κ) without

changing its absolute periods or its number of zeros.

In this thesis, we study the dynamics of the absolute period foliation of ΩMg(κ). We are

interested in the distribution of leaves of A(κ) within ΩMg(κ). Our main dynamical results

will describe the measurable subsets of ΩMg(κ) that are unions of leaves of A(κ), and will

give a criterion for the closure of a leaf of A(κ) in ΩMg(κ) to be as big as possible. These

results will follow from a sufficient condition for two holomorphic 1-forms to lie on the same

leaf of A(κ). Our results suggest that a version of Ratner’s theorems for unipotent flows

may hold in this setting, and we raise some open questions along these lines.

Absolute periods. Let Sg be a closed oriented surface of genus g. The absolute periods of

a cohomology class φ ∈ H1(Sg;C) are defined by

Per(φ) = {φ(c) : c ∈ H1(Sg;Z)} ⊂ C.

When Per(φ) has rank 2g, the algebraic intersection form on H1(Sg;Z) induces a unimodu-

lar symplectic form on Per(φ). For (X,ω) ∈ ΩMg, the holomorphic 1-form ω determines a

cohomology class [ω] ∈ H1(X;C), and we define Per(ω) = Per([ω]). For κ = {m1, . . . ,mn}

a partition of 2g − 2, let |κ| = n. The foliation A(κ) is a holomorphic foliation of ΩMg(κ)
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whose leaves have complex dimension |κ| − 1. Two holomorphic 1-forms are on the same

leaf of A(κ) precisely when they are joined by a path (Xt, ωt) in ΩMg(κ) such that Per(ωt)

is constant.

Measurable dynamics. Let Ω1Mg(κ) be the area-1 locus in ΩMg(κ), that is, the subset

of holomorphic 1-forms (X,ω) with
∫
X
|ω|2 = 1. Our main result on measurable dynamics

is the following.

Theorem 1.1. The absolute period foliation of Ω1Mg(κ) is ergodic, provided |κ| > 1 and

ΩMg(κ) is connected.

Here, ergodicity means that any measurable union of leaves has either zero Lebesgue mea-

sure or full Lebesgue measure. Regarding the hypotheses, we remark that most strata are

connected. Specifically, by [KZ] a stratum ΩMg(κ) is connected if and only if there is mj ∈ κ

that is odd and not equal to g − 1, or g = 2. We exclude the case |κ| = 1, since in that

case leaves of A(κ) are points. Theorem 1.1 was previously known for the principal stratum

ΩMg(1, . . . , 1) [CDF, Theorem 1.5], [Ham, Theorem 1], [McM5, Proposition 2.6].

Topological dynamics. A free abelian group Λ ⊂ C of rank r is algebraically generic if it

has the following two properties.

(1) For any z1, z2 ∈ Λ, if Rz1 = Rz2 then Qz1 = Qz2.

(2) For any number field K ⊂ R, we have K · Λ ∼= Kr as a K-vector space.

A holomorphic 1-form (X,ω) ∈ ΩMg is algebraically generic if Per(ω) has rank 2g and

Per(ω) is algebraically generic. The set of algebraically generic holomorphic 1-forms in

Ω1Mg(κ) is a union of leaves of A(κ), and its complement is contained in a countable union

of suborbifolds of positive codimension. In particular, the complement has measure zero. We

emphasize that for a holomorphic 1-form, being algebraically generic is an explicit condition
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on its group of absolute periods. Our main result on topological dynamics shows that any

leaf of A(κ) in Ω1Mg(κ) is either dense in Ω1Mg(κ) or contained in an explicit countable

union of suborbifolds of positive codimension. In particular, this result provides an explicit

full measure set of dense leaves.

Theorem 1.2. Let (X,ω) ∈ Ω1Mg(κ) be algebraically generic. The leaf of A(κ) through

(X,ω) is dense in Ω1Mg(κ), provided |κ| > 1 and ΩMg(κ) is connected.

Examples of dense leaves were previously given in Ω1Mg(1, . . . , 1) [CDF, Theorem 1.5],

a certain connected component of Ω1Mg(g − 1, g − 1) [HW, Theorem 1], and Ω1M3(2, 1, 1)

[Ygo1, Theorem C].

Connectedness. Theorems 1.1 and 1.2 are in fact consequences of a closely related con-

nectedness result for spaces of holomorphic 1-forms with the same absolute periods.

Theorem 1.3. Let (X,ω), (Y, η) ∈ ΩMg(κ) be algebraically generic. If Per(ω) = Per(η) as

symplectic modules, then there is a path in ΩMg(κ) from (X,ω) to (Y, η) along which the

absolute periods are constant, provided |κ| > 1 and ΩMg(κ) is connected.

Theorems 1.1 and 1.2 can be deduced from Theorem 1.3 using a transfer principle from

[CDF], by applying Moore’s ergodicity theorem and Ratner’s orbit closure theorem to the

action of Sp(2g,Z) on Sp(2g,R)/ Sp(2g − 2,R). Theorem 1.3 was previously known for the

principal stratum [CDF, Theorem 1.2].

Connected components of strata. We are also able to establish Theorems 1.1, 1.2, and

1.3 for some connected components of disconnected strata.

Theorem 1.4. For g ≥ 4 even, Theorems 1.1, 1.2, and 1.3 hold for the nonhyperelliptic

connected component of ΩMg(g − 1, g − 1).
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However, Theorem 1.3 cannot be extended to any other connected components of strata.

By [KZ], the connected components of strata that are not addressed by Theorems 1.3 and 1.4

are the connected components of ΩMg(κ) when every mj ∈ κ is even, and the hyperelliptic

component of ΩMg(g − 1, g − 1) when g ≥ 4 is even.

Theorem 1.5. Let C be a connected component of a stratum ΩMg(κ) with every mj ∈ κ

even, or the hyperelliptic component of ΩMg(κ) with κ = {g−1, g−1} and g ≥ 4 even, and

fix an algebraically generic (X,ω) ∈ C. There exists (Y, η) ∈ C, such that Per(ω) = Per(η)

as symplectic modules, that is not in the leaf of A(κ) through (X,ω).

Here, the obstruction comes from the failure of the monodromy representation of the fun-

damental group of C on absolute homology π1(C) → Sp(2g,Z) to be surjective. In [Gut], the

image of this homomorphism is explicitly described for all connected components of strata.

In particular, when |κ| > 1, this homomorphism is surjective if and only if some mj ∈ κ is

odd and C is nonhyperelliptic, or g = 2. These are precisely the connected components of

strata to which Theorem 1.3 and Theorem 1.4 apply. As a complement, we will use Theorem

1.3 and Theorem 1.4 to give a new proof of the surjectivity of π1(C) → Sp(2g,Z) in these

cases.

Open questions. Theorem 1.2 gives hope for a complete classification of closures of leaves of

A(κ) in Ω1Mg(κ). Here, we raise some open questions that suggest a possible classification,

in the spirit of Ratner’s theorems for unipotent flows on homogeneous spaces [Rat].

For context, we recall that Ratner’s orbit closure theorem in homogeneous dynamics places

strong restrictions on the closures of orbits of 1-parameter unipotent subgroups. Briefly, if

Γ is a lattice in a connected Lie group G, and if U is a 1-parameter unipotent subgroup

of G, then the closures of orbits of U in G/Γ all come from intermediate closed subgroups

U ⊂ H ⊂ G. A striking version of Ratner’s orbit closure theorem was established in [EMM,

Theorem 2.1] and [Fil2, Theorem 1.1] for the action of GL+(2,R) on a stratum ΩMg(κ),
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where it was proven that GL+(2,R)-orbit closures are locally linear subvarieties of ΩMg(κ).

Surprisingly, by [CSW, Theorem 1.3], there does not seem to be a version of Ratner’s orbit

closure theorem where one replaces GL+(2,R) with its upper-triangular unipotent subgroup.

Our results suggest that closures of leaves of A(κ) enjoy rigidity properties similar to

GL+(2,R)-orbit closures. Let L be the leaf of A(κ) through (X,ω) ∈ Ω1Mg(κ), and let L

be its closure in Ω1Mg(κ).

Question 1.6. Is L always a properly immersed real-analytic suborbifold of Ω1Mg(κ)?

Question 1.7. If Per(ω) is dense in C and L �= L, is it the case that L = SL(2,R) · L?

Question 1.7 addresses the three known obstructions to the density of L in its connected

component in Ω1Mg(κ). First, Per(ω) might be contained in a proper closed subgroup of

C. Since Per(ω) contains a lattice in C, up to the action of GL+(2,R) the only possible

subgroups are R+ iZ and Z+ iZ. Second, L might lie in a proper closed SL(2,R)-invariant

subset of its connected component in Ω1Mg(κ). This occurs, for instance, in loci of double

covers of quadratic differentials when |κ| = 2. Third, L might be closed and consist of

branched covers of holomorphic 1-forms of lower genus. An answer to the following question

is likely needed for a complete classification of closures of leaves of A(κ).

Question 1.8. What are the closed SL(2,R)-invariant subsets of Ω1Mg(κ) that are satu-

rated for A(κ)?

Here, a subset of ΩMg(κ) is saturated for A(κ) if it is a union of leaves of A(κ). Even

in the stratum ΩM2(1, 1), Question 1.8 is surprisingly subtle. In [Cal] and [McM1], it was

discovered that loci of eigenforms for real multiplication provide examples of closed SL(2,R)-

invariant subsets of ΩM2(1, 1) that are saturated for A(1, 1), and in [McM3], it is shown

that these loci of eigenforms also arise as closures of leaves of A(1, 1).
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Methods. We outline the proof of Theorem 1.3 here. As mentioned previously, Theorems

1.1 and 1.2 can be deduced from Theorem 1.3. Our proof consists of two inductive arguments.

The first inductive argument addresses the case of strata of holomorphic 1-forms with

exactly 2 distinct zeros, and we induct on genus. The base case of genus 2 involves only the

stratum ΩM2(1, 1), for which Theorem 1.3 is already known [CDF]. For the inductive step,

we analyze the interaction of the absolute period foliation with connected sums with a torus.

Choose a flat torus T = (C/Λ, dz) and a closed geodesic α ⊂ T . Given a holomorphic 1-form

(X,ω) ∈ ΩMg(m1,m2), we can slit T along α, slit (X,ω) along a parallel segment of the

same length from a zero of order m1 to a point that is not a zero of ω, and reglue opposite

sides to obtain a new holomorphic 1-form (X ′, ω′) ∈ ΩMg+1(m1 + 2,m2). The connected

sum construction is well-defined provided (X,ω) does not have a saddle connection that is

parallel to α and whose length is less than or equal to that of α. Now let L be the leaf of

A(m1,m2) through (X,ω), and let L′ be the leaf of A(m1 + 2,m2) through (X ′, ω′). One of

our main observations is that if α is not parallel to an absolute period of (X,ω), then this

connected sum construction is defined on a path-connected subset of L whose complement

in L is a countable union of line segments. The rough idea of our inductive argument is

then to “forget” the torus T and deform the complementary holomorphic 1-form (X,ω)

along the leaf L while avoiding the line segments where the connected sum construction

is not defined. Making this precise requires studying the absolute period foliation of a

certain finite cover of ΩMg(m1,m2). Next, we study how a single holomorphic 1-form in

ΩMg+1(m1 + 2,m2) can be presented as a connected sum in multiple ways. Our argument

proceeds by taking two holomorphic 1-forms satisfying the hypotheses of Theorem 1.3 and

using multiple presentations as connected sums to deform them along their respective leaves

of A(m1 + 2,m2) until they “agree” on a torus as above. The inductive hypothesis then

allows us to conclude that they lie on the same leaf of A(m1 + 2,m2). In general, we show

that if Theorem 1.3 holds for a connected component C of ΩMg(m1,m2), and if C ′ is a
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connected component of ΩMg+1(m1 + 2,m2) that contains connected sums of holomorphic

1-forms in C with a torus as above, then Theorem 1.3 also holds for C ′.

Our second inductive argument is easier and addresses the general case, and we induct on

the number of zeros. The base case is the case of 2 zeros, discussed above. For the inductive

step, we use the surgery of splitting a zero. Given (X,ω) ∈ ΩMg(κ) with a zero Z of order

m ≥ 2, and 1 ≤ j < m, there is a local surgery which splits Z into a pair of zeros of orders

m− j and j, respectively. This surgery does not change the absolute periods of (X,ω). Let

κ′ = (κ \ {m})∪ {m− j, j}. We show that if Theorem 1.3 holds for a connected component

C of ΩMg(κ), and if C ′ is a connected component of ΩMg(κ
′) that contains holomorphic

1-forms arising from splitting a zero on a holomorphic 1-form in ΩMg(κ), then Theorem 1.3

also holds for C ′.

Every connected stratum ΩMg(κ) with |κ| > 1 can be accessed from ΩM2(1, 1) by itera-

tively forming a connected sum with a torus and then iteratively splitting a zero. For g ≥ 4

even, the nonhyperelliptic connected component of ΩMg(g − 1, g − 1) can also be accessed

in this way. The inductive steps in our method apply to all nonhyperelliptic connected com-

ponents of strata ΩMg(κ) with |κ| > 1. To establish Theorems 1.1 and 1.2 in these cases,

we would need one additional base case, namely, the stratum ΩM3(2, 2).

Notes and references. The particular case of the dynamics of the absolute period foliation

of ΩMg are studied in [CDF], [Ham], and [McM5]. For g = 2 and g = 3, the fact that any

principally polarized abelian variety of dimension g is the Jacobian of a stable curve is

exploited in [McM5] to prove ergodicity on Ω1Mg, and this idea is pushed further in [CDF]

to obtain a classification of leaf closures. The approach in [CDF] uses the classification in

[Kap] of cohomology classes in H1(Sg;C) that can be represented by a holomorphic 1-form,

along with an inductive argument involving isoperiodic degenerations to the boundary of

moduli space, in order to classify leaf closures and to prove ergodicity on Ω1Mg for all
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g ≥ 2. An independent and simpler proof of ergodicity on Ω1Mg for g ≥ 2 is given in [Ham],

also using induction and degenerations. All of these results apply to the principal stratum

ΩMg(1, . . . , 1) as well. We remark that the boundary of moduli space does not play a role

in our proofs, and so we obtain a new proof of ergodicity on Ω1Mg for g ≥ 3. The methods

in [CDF], [Ham], and [McM5] do not seem to be easily adaptable to non-principal strata,

due to our limited understanding of the Schottky locus and a lack of available base cases for

induction.

Much less is known about the dynamics of the absolute period foliation of non-principal

strata. In [HW], it is shown that the Arnoux-Yoccoz surfaces of genus g ≥ 3 give examples

of dense leaves in a fixed-area locus in a certain connected component of ΩMg(g− 1, g− 1).

Additional examples of dense leaves in Ω1M3(2, 1, 1) arising from Prym loci are given in

[Ygo1]. In [Win1], it is shown that there exist dense relative period geodesics in the area-1

locus of each connected component of every non-minimal stratum. In [McM3] and [Ygo2],

it is shown that leaves of the absolute period foliation of eigenform loci in ΩM2(1, 1), and

more generally of rank 1 affine invariant manifolds, are either closed or dense in the area-1

locus. Jon Chaika and Barak Weiss have informed us of work in progress in which they prove

that real Rel flows are ergodic on the area-1 locus of each connected component of a stratum

of holomorphic 1-forms with multiple zeros, conditional on a generalization of the results in

[EM].

The surgeries we consider are special cases of the surgery of bubbling a handle in [KZ]

and the figure-eight construction in [EMZ]. These surgeries play an important role in the

classification of connected components of strata in [KZ], and in the computation of Siegel-

Veech constants for strata in [EMZ]. Detailed studies of presentations of holomorphic 1-forms

in genus 2 as connected sums are carried out in [McM2] and [CM]. In [McM2], connected

sums are used to classify all SL(2,R)-orbit closures and invariant measures in Ω1M2(1, 1),
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and in [CM], connected sums are used to exhibit minimal non-uniquely ergodic straight-line

flows on every non-Veech surface in genus 2.

Our proof of Theorem 1.1 only relies on the genus 2 case in [McM5] as a base case, which

uses Moore’s ergodicity theorem [Zim], and on the ergodicity of the SL(2,R)-action on the

area-1 locus of connected components of strata [Mas], [Vee1], [Vee2]. Our proofs of Theorems

1.2 and 1.3 rely on the genus 2 case in [CDF] as a base case, and on the explicit full measure

sets of dense GL+(2,R)-orbits in strata given in [Wri], which in turn relies on the rigidity

results for GL+(2,R)-orbit closures in strata in [EMM]. By [Wri] and [Fil1], Theorems 1.2

and 1.3 still hold if one only considers totally real number fields of degree at most g in the

definition of “algebraically generic.”

The intrinsic geometry of leaves of the absolute period foliation of ΩMg and of strata are

studied in [BSW], [McM4], [McM5], and [MW]. Completeness results for the natural metric

on leaves are given in these papers. In [McM5], it is shown that the metric completion of

a typical leaf in ΩM2 is a Riemann surface biholomorphic to the upper half-plane. In con-

trast, examples of infinite-genus leaves in certain strata of holomorphic 1-forms with exactly

2 zeros are given in [Win3]. The geometry of leaves of A(1, 1) is studied in [EMS] in order to

count periodic billiard trajectories in a square with a barrier, and in [Dur] to make progress

toward classifying square-tiled surfaces in ΩM2(1, 1).

Outline. In Chapter 2, we provide background material on holomorphic 1-forms and de-

scribe the surgeries used in our proofs. In Chapter 3, we discuss the absolute period foliation

of a stratum of holomorphic 1-forms and establish the key connectivity lemma for our induc-

tive arguments. In Chapter 4, we study presentations of holomorphic 1-forms as connected

sums in multiple ways. In Chapter 5, we prove our main theorems. Most of the material in

this thesis is contained in [Win2].
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2. Splitting zeros and connected sums

This chapter is based on Section 2 of [Win2]. We recall relevant material on strata of

holomorphic 1-forms and the GL+(2,R)-action on strata. We then discuss the surgeries of

splitting zeros and forming a connected sum with a torus. For additional background mate-

rial, we refer to [FM] and [Zor].

2.1. Holomorphic 1-forms. We denote by (X,ω) a closed Riemann surface X of genus

g ≥ 2 equipped with a holomorphic 1-form ω. We always assume ω �= 0. The zero set Z(ω)

is finite and nonempty, and the orders of the zeros form a partition of 2g− 2. Integration of

ω on X \ Z(ω) gives an atlas of charts to the complex plane C, whose transition maps are

translations. Geometric structures on C that are invariant under translations can be pulled

back to X \ Z(ω) using this atlas. In particular, the Euclidean metric on C determines a

singular flat metric |ω| on X with a cone point with angle 2π(k + 1) at a zero of order k.

In our figures, we will present holomorphic 1-forms as finite disjoint unions of polygons

in C, possibly with slits, with pairs of edges identified by translations in C. In most cases,

the edge identifications will be implicit from the requirement that identified edges must be

parallel and of the same length.

A saddle connection on (X,ω) is an oriented geodesic segment γ with endpoints in Z(ω)

and otherwise disjoint from Z(ω). The holonomy of γ is the nonzero complex number
∫
γ
ω.

A closed geodesic in X \Z(ω) is contained in a maximal connected open subset of X \Z(ω)

foliated by parallel closed geodesics. Such an open subset C is called a cylinder. The

boundary of C consists of a finite union of parallel saddle connections. Each homotopy class

of paths in X with endpoints in Z(ω) has a unique geodesic representative of minimal length

in the metric |ω|, consisting of finitely many saddle connections such that each angle formed
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by two consecutive saddle connections is at least π. Let

Per(ω) =

{∫
c

ω : c ∈ H1(X;Z)

}
be the subgroup of C of absolute periods of ω. Let

Γ(ω) =

{∫
γ

ω : γ is a saddle connection

}
be the subset of C of holonomies of saddle connections. The subset Γ(ω) is discrete. In

particular, for any B > 0, there are only finitely many saddle connections on (X,ω) of

length at most B. Let C∗ = C \ {0}, and let

Δ(ω) = C∗ \ {tz : t ∈ [1,∞), z ∈ Γ(ω)} .

Note that since Γ(ω) is discrete, Δ(ω) is open.

2.2. Strata. Let Sg be a closed oriented surface of genus g ≥ 2. The Teichmüller space Tg of

marked Riemann surfaces f : Sg → X of genus g is a complex manifold of dimension 3g− 3.

The mapping class group Modg acts properly discontinuously on Tg by biholomorphisms.

The moduli space of Riemann surfaces of genus g is the complex orbifold Mg = Tg/Modg.

The action of Modg on Tg induces an action on the bundle ΩTg → Tg of nonzero holomor-

phic 1-forms on marked Riemann surfaces. The moduli space of holomorphic 1-forms of

genus g is the complex orbifold ΩMg = ΩTg/Modg. The space ΩTg decomposes into strata

ΩTg(κ) indexed by partitions κ = {m1, . . . ,mn} of 2g − 2. The stratum ΩTg(κ) consists of

holomorphic 1-forms on marked Riemann surfaces with exactly n distinct zeros of orders

m1, . . . ,mn. The action of Modg preserves each stratum, and the space ΩMg decomposes

into strata ΩMg(κ) = ΩTg(κ)/Modg which are complex suborbifolds of ΩMg.
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Fix (X0, ω0) ∈ ΩTg(κ). There is a neighborhood U ⊂ ΩTg(κ) of (X0, ω0), and a natu-

ral isomorphism H1(X,Z(ω);C) ∼= H1(X0, Z(ω0);C) for any (X,ω) ∈ U , provided by the

Gauss-Manin connection on the bundle of relative cohomology groups over ΩTg(κ). Period

coordinates on U are defined using these isomorphisms by

U → H1(X0, Z(ω0);C), (X,ω) �→ [ω],

and this map is a biholomorphism from an open subset of ΩTg(κ) to an open subset of a

complex vector space of dimension 2g + |κ| − 1. Given a choice of basis c1, . . . , c2g+|κ|−1 for

H1(X0, Z(ω0);Z), we get a map

U �→ C2g+|κ|−1, (X,ω) �→
(∫

c1

ω, . . . ,

∫
c2g+|κ|−1

ω

)
.

The components
∫
cj
ω are the period coordinates of (X,ω). Transition maps between period

coordinate charts are integral linear maps that preserve H1(X0, Z(ω0);Z). Period coordi-

nates give ΩMg(κ) the structure of an affine orbifold.

The area of (X,ω) is the area of X with respect to the metric |ω|, and is given by

Area(X,ω) =
i

2

∫
X

ω ∧ ω =

g∑
j=1

Im

(∫
aj

ω

∫
bj

ω

)

where {aj, bj}gj=1 is a symplectic basis for H1(X;Z). The area of (X,ω) is an invariant of

the absolute cohomology class [ω] ∈ H1(X;C). Let

Ω1Mg(κ) = {(X,ω) ∈ ΩMg(κ) : Area(X,ω) = 1}

be the area-1 locus in ΩMg(κ). The area-1 locus Ω1Mg(κ) is a real-analytic orbifold and

has a canonical Lebesgue measure class.
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Let GL+(2,R) be the group of linear automorphisms of R2 with positive determinant. Let

SL(2,R) be the subgroup of matrices with determinant 1. The standard R-linear action of

GL+(2,R) on C ∼= R2 induces an action on ΩMg by postcomposition with an atlas of charts

on X \ Z(ω) as above. The action of GL+(2,R) preserves each stratum ΩMg(κ), and the

action of SL(2,R) preserves Ω1Mg(κ). The action of SL(2,R) is ergodic on each connected

component of Ω1Mg(κ) with respect to the Lebesgue measure class [Mas], [Vee1], [Vee2],

meaning that any measurable SL(2,R)-invariant subset of Ω1Mg(κ) has either zero measure

or full measure.

Most strata in ΩMg are connected. However, in general, strata can have up to 3 connected

components, which are classified by hyperellipticity and the parity of a spin structure. We

recall their classification from [KZ].

Let κ = {m1, . . . ,mn} be a partition of 2g−2 with all mj even, and fix (X,ω) ∈ ΩMg(κ).

The index of a smooth oriented closed loop γ ⊂ X\Z(ω) is the degree of the associated Gauss

map γ → S1, that is, 1/2π times the total change in angle of a tangent vector travelling once

around γ. We denote the index of γ by ind(γ). Let {αj, βj}gj=1 be a collection of smooth

oriented closed loops in X \ Z(ω) representing a symplectic basis for H1(X;Z). The parity

of the spin structure φ(ω) is defined by

φ(ω) =

g∑
j=1

(ind(αj) + 1)(ind(βj) + 1) mod 2.

It is a fact that φ(ω) is independent of the choice of symplectic basis of H1(X;Z) and the

choice of representatives for the symplectic basis. Moreover, φ(ω) is an invariant of the

connected component of (X,ω) ∈ ΩMg(κ). A connected component C ⊂ ΩMg(κ) is even

or odd according to whether φ(ω) = 0 or φ(ω) = 1 for (X,ω) ∈ C.

If C ⊂ ΩMg(2g − 2) consists of holomorphic 1-forms on hyperelliptic curves, or if C ⊂

ΩMg(g−1, g−1) consists of holomorphic 1-forms on hyperelliptic curves whose hyperelliptic

13



involution exchanges the two zeros, then C is hyperelliptic. A connected component which is

not hyperelliptic is nonhyperelliptic.

Theorem 2.1. ([KZ], Theorems 1-2 and Corollary 5) For g ≥ 4, the connected components

of ΩMg(κ) are as follows.

(1) If κ = {2g − 2} or κ = {g − 1, g − 1}, then ΩMg(κ) has a unique hyperelliptic

connected component.

(2) If all mj ∈ κ are even, then ΩMg(κ) has exactly two nonhyperelliptic connected

components: one even connected component and one odd connected component.

(3) If some mj ∈ κ is odd, then ΩMg(κ) has a unique nonhyperelliptic connected com-

ponent.

For g ≤ 3, the stratum ΩMg(κ) is connected unless κ = {4} or κ = {2, 2}, in which case

ΩMg(κ) has exactly two connected components: one odd connected component, and one

hyperelliptic connected component which is also an even connected component.

Corollary 2.2. A stratum ΩMg(κ) is connected if and only if there is mj ∈ κ that is odd

and not equal to g − 1, or g = 2.

Let κ be a partition of 2g − 2, and choose m ∈ κ. It will be convenient for us to work

with a finite cover of a stratum

p : Ω̃Mg(κ;m) → ΩMg(κ) (1)

consisting of holomorphic 1-forms in ΩMg(κ) equipped with a distinguished rightward hor-

izontal direction θ at a zero Z of order m. We denote elements of Ω̃Mg(κ;m) by (X,ω, θ),

and we refer to θ as a prong. The degree of p is (m + 1)Nm, where Nm is the number of

times m appears in κ. An automorphism of (X,ω, θ) is required to fix the distinguished zero

Z and the prong θ, so (X,ω, θ) has no nontrivial automorphisms.
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A subset K ⊂ ΩMg(κ) is compact if and only if K is closed and there exists ε > 0 such

that every saddle connection on every holomorphic 1-form in K has length at least ε. The

analogous statement holds for Ω̃Mg(κ;m).

Let U ⊂ Ω̃Mg(κ;m) be a contractible open subset whose closure is compact. For each

homotopy class γ of paths on (X,ω, θ) ∈ U with endpoints in Z(ω), there is a well-defined

continuous length function

�γ : U → R>0

whose value at (Y, η, θ′) is the length of the geodesic representative of the corresponding

homotopy class of paths on (Y, η, θ′). Since there are only finitely many saddle connections

on (X,ω, θ) with length at most B, there are only finitely many homotopy classes γ such

that �γ(X,ω, θ) ≤ B.

Lemma 2.3. For any B > 0, there are only finitely many homotopy classes γ as above such

that infU �γ < B.

Proof. Suppose infU �γ < B. Since the closure of U is compact, there is 0 < ε < B such

that every saddle connection on every holomorphic 1-form in U has length at least ε. Fix

(X,ω, θ) ∈ U . There is a neighborhood V ⊂ U of (X,ω, θ) such that for all (Y, η, θ′) ∈ V ,

every saddle connection γ′ on (X,ω, θ) of length at most B persists as a saddle connection

on (Y, η, θ′) and satisfies |�γ′(X,ω, θ) − �γ′(Y, η, θ′)| < ε/2. On (X,ω, θ), the geodesic rep-

resentative of γ is a finite union of saddle connections γ1, . . . , γj whose lengths lie in the

interval [ε, B]. For each γk, and for any (Y, η, θ′) ∈ V , we have

sup
V

�γk ≤ �γk(Y, η, θ
′) + ε ≤ 2�γk(Y, η, θ

′).

Therefore, if infV �γ < B, then supV �γ < 2B. Since the closure of U is compact, there

is a finite covering U =
⋃N

k=1 Vk by open subsets as above. For each 1 ≤ k ≤ N , fix
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(Xk, ωk, θk) ∈ Vk. Since infVk
�γ < B for some 1 ≤ k ≤ N , we have �γ(Xk, ωk, θk) < 2B for

some 1 ≤ k ≤ N , and thus there are only finitely many possibilities for γ. �

Fix z ∈ C∗, let I = [0, z] = {tz : t ∈ [0, 1]}, and let ΩMg(κ; I) be the set of holomorphic

1-forms in ΩMg(κ) with a saddle connection whose holonomy is in I.

Lemma 2.4. The subset ΩMg(κ; I) ⊂ ΩMg(κ) is closed.

Proof. Fix (X,ω) ∈ ΩMg(κ) \ ΩMg(κ; I) and (X,ω, θ) ∈ p−1(X,ω) with p the stratum

cover in (1). By Lemma 2.3, there is a neighborhood U of (X,ω, θ) such that there are only

finitely many homotopy classes γ1, . . . , γj of paths on X with endpoints in Z(ω) satisfying

infU �γk ≤ |z|. For each γk, either �γk(X,ω, θ) > |z|, or the geodesic representative of γk on

(X,ω) contains a saddle connection δk with
∫
δk
ω /∈ Rz. Both of these properties of γk persist

on a neighborhood Uk ⊂ U of (X,ω, θ). Since p is open, p(
⋂j

k=1 Uk) is a neighborhood of

(X,ω) disjoint from ΩMg(κ; I). �

2.3. Domains of surgeries. Since the fundamental group of GL+(2,R) is isomorphic to Z,

there is a degree m+ 1 connected covering of topological groups

ζ : G̃L
+
(2,R) → GL+(2,R)

which is unique up to isomorphism. There is a unique continuous action of G̃L
+
(2,R) on

Ω̃Mg(κ;m) such that p is ζ-equivariant. There is also a degree m+ 1 connected covering of

topological groups

σ : C̃∗ → C∗

which is unique up to isomorphism. We have polar coordinates C̃∗ ∼= R>0×R/2π(m+1) and

C∗ ∼= R>0 × R/2π in which the identity elements correspond to (1, 0). In these coordinates,

σ is given by reduction mod 2π in the angular coordinate. There is a unique continuous
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action of G̃L
+
(2,R) on C̃∗ such that σ is ζ-equivariant. Let

S(ω) → Δ(ω)

be the degree m + 1 covering consisting of oriented geodesic segments γ starting at the

distinguished zero Z such that
∫
γ
ω ∈ Δ(ω). Let H = {z ∈ C : Im(z) > 0}, and let

T (ω) ⊂ S(ω)× C∗

be the subset of pairs (γ, w) such that w/
∫
γ
ω ∈ H. Let

S(κ;m) → Ω̃Mg(κ;m)

be the bundle of pairs ((X,ω, θ), γ), where (X,ω, θ) ∈ Ω̃Mg(κ;m) and γ ∈ S(ω), and let

T (κ;m) → Ω̃Mg(κ;m)

be the bundle of pairs ((X,ω, θ), (γ, w)), where (X,ω, θ) ∈ Ω̃Mg(κ;m) and (γ, w) ∈ T (ω).

The actions of G̃L
+
(2,R) on Ω̃Mg(κ;m) and C̃∗ induce actions on the bundles S(κ;m) and

T (κ;m).

For (X,ω, θ) ∈ Ω̃Mg(κ;m), we have a natural inclusion S(ω) ↪→ C̃∗ determined by re-

quiring that the image of γ ∈ S(ω) projects to
∫
γ
ω ∈ Δ(ω) and that the image of a segment

in the direction of the prong θ lies in R>0 × {0} in polar coordinates. Similarly, we have a

natural inclusion T (ω) ↪→ C̃∗ × C∗. We will implicitly regard elements of S(ω) and T (ω) as

elements of C̃∗ and C̃∗×C∗, respectively, using these inclusions. We then obtain G̃L
+
(2,R)-

equivariant inclusions

S(κ;m) ↪→ Ω̃Mg(κ;m)× C̃∗

and

T (κ;m) ↪→ Ω̃Mg(κ;m)× C̃∗ × C∗
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which respect the projections to Ω̃Mg(κ;m).

2.4. Splitting a zero. Suppose m ≥ 1, and fix 1 ≤ j ≤ m. Given ((X,ω, θ), γ) ∈ S(κ;m),

let I = [0, σ(γ)] be the oriented segment in C from 0 to σ(γ), and let

γ1, . . . , γj+1 : I → X

be the isometric embeddings that preserve the direction of I, such that γk(0) is the dis-

tinguished zero Z, and such that the counterclockwise angle around Z from γ to γk(I) is

2π(k − 1). Since
∫
γk(I)

ω ∈ Δ(ω), the segments γk(I) are disjoint from Z(ω) and from each

other except at their common starting point. Slit X along γ1(I) ∪ · · · ∪ γj+1(I) to obtain a

surface with boundary X0, and let γ+
k : I → X0 and γ−

k : I → X0 be the left and right edges

of the slit coming from γk, respectively. Glue γ+
k (z) to γ

−
k+1(z) for 1 ≤ k ≤ j, and glue γ+

j+1(z)

to γ−
1 (z). The complex structure and the holomorphic 1-form on the interior of X0 extend

over the slits to give a holomorphic 1-form (X ′, ω′). If j < m, then |Z(ω′)| = |Z(ω)|+1 and

the distinguished zero Z is split into two zeros joined by a single saddle connection γ′ such

that ∫
γ′
ω′ =

∫
γ

ω.

The order of ω′ at the starting point of γ′ is m− j, and the order of ω′ at the ending point

of γ′ is j. If j < m, let

κ′ = (κ \ {m}) ∪ {m− j, j},

and if j = m, let κ′ = κ. Then κ′ is the partition of 2g − 2 given by the orders of the zeros

of ω′. We regard (X ′, ω′) as an element of ΩMg(κ
′), and we say that (X ′, ω′) arises from

(X,ω) by splitting a zero. See Figure 1 for an example. The above surgery defines a zero

splitting map

Φ = Φ(κ;m, j) : S(κ;m) → ΩMg(κ
′)
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which is a ζ-equivariant local covering of orbifolds. The zero splitting map preserves the

area of the underlying holomorphic 1-form. Let

S1(κ;m) = {((X,ω, θ), γ) ∈ S(κ;m) : Area(X,ω) = 1}

be the area-1 locus in S(κ;m). We can restrict Φ to get a map

Φ1 = Φ1(κ;m, j) : S1(κ;m) → Ω1Mg(κ
′)

which we also refer to as a zero splitting map. We can restrict ζ to get a degree m + 1

connected covering of topological groups

S̃L(2,R) → SL(2,R).

The subset

S1(κ;m) ⊂ Ω̃1Mg(κ;m)× C̃∗

is an S̃L(2,R)-invariant open subset of full measure with respect to the Lebesgue measure

class on the product. The image of Φ1 is nonempty, open, and SL(2,R)-invariant. Since

SL(2,R) acts ergodically on each connected component of Ω1Mg(κ
′), the image of Φ1 is a

full measure subset of a union of connected components of Ω1Mg(κ
′).

2.5. Connected sums with a torus. Given ((X,ω, θ), (γ, w)) ∈ T (κ;m), let I = [0, σ(γ)]

be the oriented segment in C from 0 to σ(γ). The pair (γ, w) determines a flat torus

T = (C/(Zσ(γ) + Zw), dz).

Let γ1 : I → X be the isometric embedding that preserves the direction of I and satisfies

γ1(I) = γ. Let γ2 : I → T be the projection of I, which gives a closed geodesic in T . Slit X

along γ1(I) to obtain a surface with boundary X0, and let γ+
1 : I → X0 and γ−

1 : I → X0 be
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Figure 1. A holomorphic 1-form in ΩM2(1, 1) (right) that arises from a
holomorphic 1-form in ΩM2(2) (left) by splitting a zero. The two segments
being slit are shown in bold.

the left and right edges of the slit coming from γ1, respectively. Slit T along γ2(I) to obtain

a cylinder with boundary T0, and let γ+
2 : I → T0 and γ−

2 : I → T0 be the left and right

edges of the slit coming from γ2, respectively. Glue γ+
1 (z) to γ−

2 (z), and glue γ+
2 (z) to γ−

1 (z).

The result is a holomorphic 1-form (X ′, ω′) with a pair of homologous saddle connections γ±

forming a figure-eight on X ′ and arising from γ±
1 (I) ⊂ X0. The order of ω′ at the zero Z ′

arising from the distinguished zero Z is m+ 2. The counterclockwise angle around Z ′ from

the end of γ− to the end of γ+ is 2π. Let

κ′ = (κ \ {m}) ∪ {m+ 2}

be the partition of 2g given by the orders of the zeros of ω′. We regard (X ′, ω′) as an element

of ΩMg+1(κ
′), and we say that (X ′, ω′) arises from (X,ω) by a connected sum with a torus.

A pair of homologous saddle connections that presents (X ′, ω′) as a connected sum with a

torus is a splitting of (X ′, ω′). See Figure 2 for an example. The above surgery defines a

connected sum map

Ψ = Ψ(κ;m) : T (κ;m) → ΩMg+1(κ
′)
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which is a ζ-equivariant local covering of orbifolds. A connected sum of a holomorphic 1-form

of area 0 < a < 1 with a flat torus of area 1− a has area 1. Letting

T1(κ;m) =
{
((X,ω, θ), (γ, w)) ∈ T (κ;m) : Area(X,ω) = Im

(
σ(γ)w

)
= 1

}
× (0, 1),

we have an inclusion

T1(κ;m) ↪→ T (κ;m), ((X,ω, θ), (γ, w), a) �→ (a1/2(X,ω, θ), (1− a)1/2(γ, w)),

and we regard T1(κ;m) as the area-1 locus in T (κ;m). We then have a map

Ψ1 = Ψ1(κ;m) : T1(κ;m) → Ω1Mg+1(κ
′)

which we also refer to as a connected sum map. We have an identification

S̃L(2,R) ∼=
{
(γ, w) ∈ C̃∗ × C∗ : Im(σ(γ)w) = 1

}
given by sending M̃ ∈ S̃L(2,R) to the image of ((1, 0), (1, 0)) ∈ C̃∗×C∗ in polar coordinates

under the diagonal action of M̃ . The subset

T1(κ;m) ⊂ Ω̃1Mg(κ;m)× S̃L(2,R)× (0, 1)

is an S̃L(2,R)-invariant open subset of full measure with respect to the Lebesgue measure

class on the product. Here, S̃L(2,R) acts trivially on the third factor (0, 1). The image

of Ψ1 is nonempty, open, and SL(2,R)-invariant. Since SL(2,R) acts ergodically on each

connected component of Ω1Mg+1(κ
′), the image of Ψ1 is a full measure subset of a union of

connected components of Ω1Mg+1(κ
′).

For our inductive arguments, we will need to understand the relationship between the

connected components of (X ′, ω′) and (X,ω) in their respective strata, when (X ′, ω′) arises
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Figure 2. A holomorphic 1-form (X,ω) ∈ ΩM3(3, 1) arising from a holo-
morphic 1-form in ΩM2(1, 1) by a connected sum with a torus. The pair of
homologous saddle connections α± is a splitting of (X,ω).

from (X,ω) by splitting a zero or by a connected sum with a torus. We only address the

cases relevant to our proofs. We refer to [EMZ] and [KZ] for more general results.

Lemma 2.5. Let ΩMg(κ
′) be a connected stratum with |κ′| ≥ 3. There is a connected

stratum ΩMg(κ) with |κ| = |κ′| − 1 such that ΩMg(κ
′) contains holomorphic 1-forms that

arise from holomorphic 1-forms in ΩMg(κ) by splitting a zero.

Proof. Note that g ≥ 3 since |κ′| ≥ 3. By Corollary 2.2, there is m′ ∈ κ′ such that m′

is odd and not equal to g − 1. Choose m1,m2 ∈ κ′ \ {m′}, let m = m1 + m2, and let

κ = (κ′\{m1,m2})∪{m}. We have |κ| = |κ′|−1, and ΩMg(κ) is connected by Corollary 2.2

since m′ ∈ κ. By splitting a zero of order m into two zeros of orders m1 and m2, respectively,

we obtain holomorphic 1-forms in ΩMg(κ
′) that arise from holomorphic 1-forms in ΩMg(κ)

by splitting a zero. �
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Lemma 2.6. Let ΩMg+1(κ
′) be a stratum with g + 1 ≥ 3 such that |κ′| = 2 and the

elements of κ′ are odd. There is a connected stratum ΩMg(κ) with |κ| = 2 such that

the nonhyperelliptic connected component of ΩMg+1(κ
′) contains holomorphic 1-forms that

arise from holomorphic 1-forms in ΩMg(κ) by a connected sum with a torus.

Proof. If g + 1 ≥ 4, then there is m′ ∈ κ′ such that m′ ≥ 3 and such that the elements of

κ = (κ′ \ {m′}) ∪ {m′ − 2} are odd and distinct. If g + 1 = 3, then κ′ = {3, 1} and we let

m′ = 3. Let m = m′ − 2 ∈ κ. In either case, ΩMg(κ) is connected by Corollary 2.2, and

by applying the connected sum construction at a zero of order m, we obtain holomorphic

1-forms in ΩMg+1(κ
′) that arise from holomorphic 1-forms in ΩMg(κ) by a connected sum

with a torus.

Lastly, suppose (X,ω) is in the hyperelliptic connected component of ΩMg(g − 1, g −

1). Recall the hyperelliptic involution exchanges the zeros of ω. Moreover, since we can

increase the height of a cylinder on (X,ω) arbitrarily while remaining in the same stratum

component, the hyperelliptic involution preserves every cylinder on (X,ω) (Lemma 2.1 in

[Lin]). Therefore, (X,ω) does not have a cylinder bounded by a pair of saddle connections

that form a figure-eight at a zero of ω. In particular, (X,ω) does not arise from another

holomorphic 1-form by a connected sum with a torus. �
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3. The absolute period foliation and surgeries

This chapter is based on Section 3 in [Win2]. We review the absolute period foliation of

a stratum of holomorphic 1-forms. We then study the absolute period foliation of the finite

covers of strata from Chapter 2, and we study the interaction between the absolute period

foliation and the surgeries from Chapter 2. In the case of strata of holomorphic 1-forms with

exactly two zeros, we establish a key lemma about the connectedness of the intersection of a

leaf with the locus of holomorphic 1-forms with no saddle connections whose holonomy lies

in a given interval.

In the literature, the absolute period foliation is also referred to as the isoperiodic foliation,

the Rel foliation, and the kernel foliation. For related discussions and further background,

we refer to [BSW], [CDF], [McM4], [McM5], [Zor].

3.1. The period map. Let Sg be a closed oriented surface of genus g ≥ 2. For X ∈

Mg, a marking of H1(X;C) is a symplectic isomorphism m : H1(Sg;C) → H1(X;C) that

sends H1(Sg;Z) to H1(X;Z). Let Sg → Mg be the Torelli cover of moduli space, whose

points (X,m) are closed Riemann surfaces of genus g equipped with a marking of H1(X;C).

Let ΩSg → Sg be the associated bundle of nonzero holomorphic 1-forms. The space ΩSg

decomposes into strata ΩSg(κ) indexed by partitions κ = {m1, . . . ,mn} of 2g−2. The period

map

Perg : ΩSg → H1(Sg;C), (X,ω,m) �→ m−1([ω])

sends a holomorphic 1-form to the associated cohomology class on Sg. The period map is

a holomorphic submersion, and the connected components of nonempty fibers of Perg are

leaves of a holomorphic foliation of ΩSg. This foliation descends to a foliation A of ΩMg,

called the absolute period foliation of ΩMg. The restriction of Perg to a stratum ΩSg(κ) is

also a holomorphic submersion, and we similarly obtain a foliation A(κ) of ΩMg(κ), called
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the absolute period foliation of ΩMg(κ). Leaves of A(κ) are immersed complex suborbifolds

of dimension |κ| − 1.

3.2. Geometry of leaves. Let ΩMg(κ) be a stratum with |κ| > 1. Fix (X0, ω0) ∈ ΩMg(κ),

and let L be the leaf of A(κ) through (X0, ω0). Let v = (1, . . . , 1) ∈ C|κ|, let X = C|κ|/Cv,

and let G = C|κ|/Cv � Sym(|κ|), where the symmetric group Sym(|κ|) acts by permuting

components. Choose an open disk U ⊂ L containing (X0, ω0), a labelling Z1, . . . , Z|κ| of

Z(ω), a point x ∈ X0, and paths γj from x to Zj. The relative period map

ρ : U → X, (X,ω) �→
(∫

γ1

ω, . . . ,

∫
γ|κ|

ω

)
(2)

provides local coordinates on U and is independent of the choice of x. Different choices of

labellings and paths may permute the components of ρ and may translate the components

of ρ by absolute periods, which are constant on L. Thus, L has a (G,X)-structure, and in

particular a canonical locally Euclidean metric. In general, this metric is incomplete, since

the holonomy of a saddle connection with distinct endpoints may approach 0 along a path

in L of finite length. For all M ∈ GL+(2,R), the action of GL+(2,R) on ΩMg(κ) induces

a homeomorphism L → M · L to another leaf of A(κ), and this homeomorphism is affine in

the coordinates provided by relative period maps.

3.3. Lifting to finite covers. Choose m ∈ κ, and let p : Ω̃Mg(κ;m) → ΩMg(κ) be the

stratum cover in (1). The foliation A(κ) lifts to a foliation A(κ;m) of Ω̃Mg(κ;m) which

we call the absolute period foliation of Ω̃Mg(κ;m). The action of G̃L
+
(2,R) on Ω̃Mg(κ;m)

induces affine homeomorphisms between leaves of A(κ;m).
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Given � ∈ κ \ {m}, 1 ≤ j ≤ min{� + 1,m + 1}, κ1 = (a1, . . . , aj) an ordered partition of

m+1 with j parts, and κ2 = (b1, . . . , bj) an ordered partition of �+1 with j parts, we define

Ã(κ, κ1, κ2) ⊂ Ω̃Mg(κ;m)

to be the subset of (X,ω, θ) with a collection of j homologous saddle connections γ1, . . . , γj

from the distinguished zero Z to a different zero Z ′ of order �, cyclically ordered in counter-

clockwise order around their common starting point Z, and with the following properties.

(1) If γk has length ε > 0 for 1 ≤ k ≤ j, then every other saddle connection on (X,ω, θ)

has length at least 3ε.

(2) Let X1, . . . , Xj be the connected components of X \ (γ1 ∪ · · · ∪ γj), where Xk is

bounded by γk ∪ γk+1, indices taken moduli j. The cone angle around Z inside Xk is

2πak, and the cone angle around Z ′ inside Xk is 2πbk.

Since homologous saddle connections have the same holonomy, they have the same length.

We also define

A(κ, κ1, κ2) = p(Ã(κ, κ1, κ2)).

A collection of saddle connections as above persists on an open neighborhood, so Ã(κ, κ1, κ2)

and A(κ, κ1, κ2) are open subsets of Ω̃Mg(κ;m) and ΩMg(κ), respectively.

The question of which configurations of homologous saddle connections can occur on a

holomorphic 1-form in a given connected component of ΩMg(κ) was studied in detail in

[EMZ]. As a consequence of some special cases of their results, we have the following.

Lemma 3.1. Let ΩMg(κ) be a stratum with |κ| > 1, and fix m ∈ κ.

(1) For all � ∈ κ \ {m}, A(κ, (m + 1), (� + 1)) intersects each connected component of

ΩMg(κ).

(2) If some mj ∈ κ is odd, then for all � ∈ κ \ {m}, A(κ, (m, 1), (�, 1)) intersects each

nonhyperelliptic connected component of ΩMg(κ).
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Figure 3. A holomorphic 1-form in the intersection of A({3, 3}, (3, 1), (3, 1))
with the nonhyperelliptic connected component of ΩM4(3, 3).

(3) If allmj ∈ κ are even, then for all � ∈ κ\{m}, A(κ, (m−1, 1, 1), (�−1, 1, 1)) intersects

each nonhyperelliptic connected component of ΩMg(κ).

Proof. Each of statements (1), (2), and (3) in Lemma 3.1 follows from Lemmas 9.1, 10.2,

and 10.3 in [EMZ]. Statement (1) is part of the case of these lemmas where p = 1 in the

notation of [EMZ]. Statement (2) is part of the case where p = 2. Statement (3) is part of

the case where p = 3. �

See Figure 1 (right) for an illustration of Case 1, where the saddle connection arises from

the slits on the left. See Figure 3 for an illustration of Case 2.

The next lemma says that leaves of A(κ) typically lift to leaves of A(κ;m), as opposed to

a disjoint union of leaves.

Lemma 3.2. Let ΩMg(κ) be a stratum with |κ| > 1. Fix m ∈ κ, and let p : Ω̃Mg(κ;m) →

ΩMg(κ) be the stratum cover in (1). There is an open GL+(2,R)-invariant subset A ⊂

ΩMg(κ) that intersects each connected component of ΩMg(κ), such that if L is a leaf of

A(κ) that intersects A, then p−1(L) is a leaf of A(κ;m).
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Proof. Fix � ∈ κ \ {m}, 1 ≤ j ≤ min{� + 1,m + 1}, κ1 = (a1, . . . , aj) an ordered partition

of m + 1, and κ2 = (b1, . . . , bj) an ordered partition of � + 1. Suppose that A(κ, κ1, κ2) is

nonempty. Fix (X,ω) ∈ A(κ, κ1, κ2), fix (X,ω, θ) ∈ p−1(X,ω), and let γ1, . . . , γj be saddle

connections as in the definition of A(κ, κ1, κ2). Let L be the leaf of A(κ) through (X,ω),

and let L̃ be the leaf of A(κ;m) through (X,ω, θ).

By slitting X along γ1 ∪ · · · ∪ γj and gluing the left side of γk to the right side of γk+1,

indices taken modulo j, we obtain a finite collection of holomorphic 1-forms

(X1, ω1), . . . , (Xj, ωj).

Each (Xk, ωk) has an oriented geodesic segment δk from a point Zk to a point Z ′
k coming

from the slits. The order of ωk at Zk is ak−1, and the order of ωk at Z
′
k is bk−1. Each saddle

connection on (Xk, ωk) has length at least 3ε, except δk when ak, bk > 1. Let δk,1, . . . , δk,bk

be the oriented straight segments starting at Z ′
k such that∫

δk,r

ωk = −
∫
δk

ωk

cyclically ordered in counterclockwise order around Zk. We may assume that δk,1 is δk with

the opposite orientation. Slit Xk along δk,1 ∪ · · · ∪ δk,bk and glue the left side of δk,r to the

right side of δk,r+1, indices taken modulo bk, to obtain a holomorphic 1-form (X ′
k, ω

′
k). The

order of ω′
k at Zk is ak + bk − 2, and the order of ω′

k at Z ′
k is 0. Moreover, (X ′

k, ω
′
k) has no

saddle connections of length less than 2ε.

We can reverse the process above to recover (X,ω) from the (X ′
k, ω

′
k). More generally, for

each 1 ≤ k ≤ j, choose a collection of oriented segments δ′k,1, . . . , δ
′
k,bk

on X ′
k starting at Zk

such that ∫
δ′k,r

ω′
k =

∫
δk

ωk

and such that the counterclockwise angle around Zk from δ′k,1 to δ
′
k,r is 2π(r−1) for 1 ≤ r ≤ bk.

Slit X ′
k along δ′k,1 ∪ · · · ∪ δ′k,bk and glue the left side of δ′k,r to the right side of δ′k,r+1, indices
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taken modulo bk. The resulting holomorphic 1-form has a distinguished oriented geodesic

segment δk coming from δ′k,1 and δ′k,r. Next slit along the segments δk, 1 ≤ k ≤ j, and glue

the left side of δk to the right side of δk+1, indices taken modulo j, to obtain a holomorphic

1-form.

The oriented geodesic segments of length ε on (X ′
k, ω

′
k) starting at Zk are parametrized by

R/2π(ak + bk − 1). By rotating the chosen segment δ′k,1 counterclockwise in the construction

above, we obtain a family of holomorphic 1-forms sk(t) such that sk(0) = (Xk, ωk) and∫
δk

sk(t) = eit
∫
δk

sk(0).

Moreover, since sk(t) is obtained from sk(0) by only modifying a contractible neighborhood

of δk, the absolute periods do not change. Thus, by slitting sk(t) along δk for 1 ≤ k ≤ j and

gluing the left side of δk to the right side of δk+1 as above, we obtain a path

s : R → L̃

such that s(0) = (X,ω, θ) such that∫
γk

s(t) = eit
∫
γk

s(0)

for t ∈ R. Informally, s(t) is obtained from s(0) by rotating each saddle connection γk around

its starting point counterclockwise through an angle t.

Rotating these saddle connections counterclockwise through an angle 2π(ak + bk − 1) does

not change (Xk, ωk), that is, sk(t+ 2π(ak + bk − 1)) = sk(t). Therefore, letting

N(κ1, κ2) = lcm1≤k≤j(ak + bk − 1),

we have

p(s(t)) = p(s(t+ 2πN(κ1, κ2)))
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for all t ∈ R. Letting c(t) be the counterclockwise angle around Z from the prong on s(t) to

the saddle connection γ1 on s(t), we have

c(t) = c(0) + t

for all t ∈ R. For n ∈ Z, let θn be the prong on (X,ω, θ) such that the counterclockwise

angle from θ to θn is 2πn. Then we have

s(2πN(κ1, κ2)) = (X,ω, θ−N(κ1,κ2)) ∈ L̃.

The cone angle around Z is 2π(m+1), meaning (X,ω, θm+1) = (X,ω, θ). Since the action of

G̃L
+
(2,R) on Ω̃Mg(κ;m) respects leaves ofA(κ;m), and since p is ζ-equivariant, we similarly

have (X,ω, θ−N(κ1,κ2)) ∈ L̃ whenever L intersects GL+(2,R) · A(κ, κ1, κ2). Therefore,

(X,ω, θn gcd(m+1,N(κ1,κ2))) ∈ L̃

for all n ∈ Z whenever L intersects GL+(2,R) · A(κ, κ1, κ2).

Now let C be a connected component of ΩMg(κ). Since A(κ, κ1, κ2) ∩ C is open, it has

positive measure whenever it is nonempty. By Lemma 3.1, there is a nonempty subset of

the form A(κ, κ1, κ2) ∩ C. Let AC be the intersection of the finitely many nonempty subsets

of the form GL+(2,R) · (A(κ, κ1, κ2) ∩ C). By ergodicity of the GL+(2,R)-action on C, we

have that AC is nonempty. Moreover, AC is open and GL+(2,R)-invariant. We claim that

gcd ({m+ 1} ∪ {N(κ1, κ2) : AC ⊂ A(κ, κ1, κ2)}) = 1. (3)

We verify this claim in 3 cases.

Case 1: Suppose that � = m. By Lemma 3.1,

AC ⊂ A(κ, (m+ 1), (m+ 1)).
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Since N((m+ 1), (m+ 1)) = 2m+ 1, the gcd in (3) divides

gcd(m+ 1, 2m+ 1) = 1.

Additionally, in this case, by applying the zero splitting construction from Chapter 2 to

s(π(2m+ 1)) with j = m using the segments γ′
1, . . . , γ

′
m+1 starting at the distinguished zero

Z and satisfying
∫
γ′
k
ω = −

∫
γ1
ω, and then applying the zero splitting construction again

with j = m using the segments γ′′
1 , . . . , γ

′′
m+1 starting at Z ′ and satisfying

∫
γ′′
k
ω = −

∫
γ1
ω,

we obtain an element of p−1(X,ω) where the prong is at a different zero of order m.

Case 2: Some part of κ is odd. By Case 1, we may assume that C is nonhyperelliptic.

Note that κ contains at least two odd parts, so we may assume that � is odd. By Lemma

3.1,

AC ⊂ A(m, (m+ 1), (�+ 1)), AC ⊂ A(m, (m, 1), (�, 1)).

Since � is odd and

N((m+ 1), (�+ 1)) = m+ �+ 1, N((m, 1), (�, 1)) = m+ �− 1,

the gcd in (3) divides

gcd(m+ 1,m+ �+ 1,m+ �− 1) = gcd(m+ 1, �, 2) = 1.

Case 3: All parts of κ are even. By Case 1, we may assume that C is nonhyperelliptic. By

Lemma 3.1,

AC ⊂ A(m, (m+ 1), (�+ 1)), AC ⊂ A(m, (m− 1, 1, 1), (�− 1, 1, 1)).

Since m+ 1 is odd and

N((m− 1, 1, 1), (�− 1, 1, 1)) = m+ �− 3,
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the gcd in (3) divides

gcd(m+ 1,m+ �+ 1,m+ �− 3) = gcd(m+ 1, �, 4) = 1.

To conclude, let

A =
⋃
C
AC.

We have that A is open, GL+(2,R)-invariant, and intersects every connected component

of ΩMg(κ). By the claim and the surgery in Case 1, for any (X,ω) ∈ A and (X,ω, θ) ∈

p−1(X,ω), the leaf of A(κ;m) through (X,ω, θ) contains p−1(X,ω). �

When |κ| > 1, Lemma 3.2 implies that the preimage under p of a connected component

of ΩMg(κ) is a connected component of Ω̃Mg(κ;m). The same holds when |κ| = 1, since in

that case the orbit of (X,ω, θ) under the rotation subgroup of G̃L
+
(2,R) contains p−1(X,ω).

3.4. Splitting zeros along leaves. The foliation A(κ;m) lifts to a foliation FS of S1(κ;m).

The leaf of FS through ((X,ω, θ), γ) consists of the elements of S1(κ;m) that can be reached

from ((X,ω, θ), γ) by a path in S1(κ;m) along which the absolute periods are constant. The

segment γ may vary along the leaf.

Lemma 3.3. Let LS be the leaf of FS through ((X,ω, θ), γ). Then ((X ′, ω′, θ′), γ′) ∈ LS if

and only if (X ′, ω′, θ′) is in the leaf of A(κ;m) through (X,ω, θ) and γ′ ∈ S(ω′).

Proof. Let L̃ be the leaf of A(κ;m) through (X,ω, θ), and fix (X ′, ω′, θ′) ∈ L̃. Let s : [0, 1] →

L̃ be a path such that s(0) = (X,ω, θ) and s(1) = (X ′, ω′, θ′). Let (Xt, ωt, θt) = s(t). By

compactness, there is ε > 0 such that for all t ∈ [0, 1], every saddle connection on s(t)

has length at least ε. Since S(ω) is path-connected, there is a path s1 : [0, 1] → LS from

((X,ω, θ), γ) to ((X,ω, θ), γ1) such that γ1 has length less than ε. Using the natural inclusions

S(ωt) ↪→ C̃∗, we obtain a well-defined path s̃ : [0, 1] → LS given by s̃(t) = (s(t), γ1). Then
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since S(ω′) is path-connected, we have ((X ′, ω′, θ′), γ′) ∈ LS . The other containment is clear

by definition of FS . �

Fix 1 ≤ j < m, let κ′ = (κ \ {m}) ∪ {m− j, j}, and consider the associated zero splitting

map

Φ1 : S1(κ;m) → Ω1Mg(κ
′).

Splitting a zero is a local surgery which only modifies a holomorphic 1-form in a contractible

neighborhood of one of its zeros, so it does not change the absolute periods. Therefore, Φ1

sends leaves of FS into leaves of A(κ′). If E ⊂ Ω1Mg(κ
′) is saturated for A(κ′), then Φ−1

1 (E)

is saturated for FS .

3.5. Geodesics on leaves. Next, let ΩMg(κ) be a stratum with |κ| = 2. In this case,

a leaf L of A(κ) is a Riemann surface equipped with a canonical quadratic differential q.

To describe q, fix (X0, ω0) ∈ L, and let γ be a saddle connection on (X0, ω0) with distinct

endpoints. Let Z1 and Z2 be the starting point and ending point, respectively, of γ. The

map

(X,ω) �→
∫
γ

ω ∈ C

provides a local coordinate on L near (X0, ω0), and we have q = dr2. For any z ∈ C∗, there

is a locally defined geodesic with respect to |q| through (X0, ω0), given by

s : (−ε, ε) → L, s(t) = (Xt, ωt),

such that d
dt

∫
γ
ωt = z. The maximal domain of definition of s is not necessarily R. How-

ever, the only obstruction is the existence of a saddle connection on (X0, ω0) with distinct

endpoints and with holonomy in Rz.

33



Corollary 3.4. ([BSW], Corollary 6.2) The maximal domain of definition of s contains

t0 ∈ R if and only if (X0, ω0) does not have a saddle connection from Z2 to Z1 with holonomy

in {tt0z : t ∈ [0, 1]}.

A more general version of Corollary 3.4 is proven in [BSW], which applies to any stratum

ΩMg(κ) with |κ| > 1. Note that [BSW] work with strata with labelled singularities. See

also [McM4], [MW].

Lemma 3.5. Let ΩMg(κ) be a stratum with |κ| = 2. Fix (X,ω) ∈ ΩMg(κ), let L be

the leaf of A(κ) through (X,ω), and let q be the canonical quadratic differential on L. Fix

z ∈ C∗ such that

z /∈
⋃

z0∈Per(ω)
Rz0.

Let I = [0, z] = {tz : t ∈ [0, 1]}, and let

L(I) = {(Y, η) ∈ L : Γ(η) ∩ I �= ∅} .

The subspace L(I) ⊂ L is closed, and is a countable union of embedded isolated parallel line

segments with respect to q. Moreover, the complement L \ L(I) is path-connected.

Proof. Fix (X0, ω0) ∈ L(I), and let γ be a saddle connection on (X0, ω0) with holonomy in

I. Since (X0, ω0) ∈ L, we have Per(ω0) = Per(ω). Then since I ⊂ Rz and

Rz ∩

⎛⎝ ⋃
z0∈Per(ω0)

Rz0

⎞⎠ = {0},

the saddle connection γ must have distinct endpoints. Moreover, any other saddle connection

on (X0, ω0) with holonomy in R>0z must have the same starting point and ending point as

γ and must have the same holonomy as γ. Let γ1, . . . , γj be this finite collection of saddle

connections. By Corollary 3.4, there is a geodesic ray with respect to |q| through (X0, ω0),
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given by

s : R>0 → L, s(t) = (Xt, ωt),

such that for all t > 0 and k = 1, . . . , j, ∫
γk

ωt = tz.

In particular, s is injective and s−1(L(I)) = (0, 1]. The period coordinates of s(1) lie in

Q · Per(ω) + Qz, so there are only countably many possibilities for s(1). We have shown

that with respect to q, the subspace L(I) ⊂ L is a countable union of embedded parallel line

segments.

By Lemma 2.4, the subset ΩMg(κ; I) of holomorphic 1-forms in ΩMg(κ) such that Γ(ω)∩

I �= ∅ is closed. We have

L(I) = L ∩ ΩMg(κ; I)

so L(I) is closed in the subspace topology on L, and since L is immersed, L(I) is closed in

the intrinsic topology on L.

Fix 0 < ε < |z|, and let s : R>0 → L be a geodesic ray as above, so � = s((0, 1]) is a

maximal line segment in L(I). Let �ε = s([ε/|z|, 1]). Let γ be a homotopy class of paths on

s(1) with endpoints in the zero set. Parallel transport along �ε gives a homotopy class of

paths γ(t) on (Xt, ωt) = s(t) for all t ∈ [ε/|z|, 1]. By compactness and Lemma 2.3, there are

only finitely many homotopy classes γ′
1, . . . , γ

′
n on s(1) such that for some t ∈ [ε/|z|, 1], the

length of the geodesic representative on (Xt, ωt) is at most 2|z|. The Euclidean distance in

C from
∫
γ′
k(t)

ωt to Rz is constant along �ε, so there is δ > 0 such that for all t ∈ [ε/|z|, 1]

and k = 1, . . . , n, the distance from
∫
γ′
k(t)

ωt to Rz is at least δ. Along a path in L starting

at (Xt, ωt), the change in
∫
γ′
k(t)

ωt has absolute value at most the |q|-length of the path.

Therefore, letting dq : L× L → R≥0 be the distance on L induced by |q|, we have

dq(�ε, L \ �) > δ.
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We have shown that the maximal line segments in L(I) are isolated from each other.

Choose a path ϕ : [0, 1] → L such that ϕ(0) /∈ L(I) and ϕ(1) /∈ L(I). By applying a

homotopy rel endpoints to ϕ, we may assume that with respect to q, the path ϕ is piecewise-

linear with finitely many pieces, that the endpoints of each piece do not lie in L(I), and that

each piece is not parallel to the line segments in L(I). By compactness, there is 0 < ε < |z|

such that for all t ∈ [0, 1], each saddle connection on ϕ(t) has length at least ε. Since L(I) ⊂ L

is closed and the line segments in L(I) are isolated from each other, ϕ([0, 1])∩L(I) is compact

and discrete, and therefore finite. Let

0 < t1 < · · · < tn < 1

be the finite set of times such that ϕ(tj) ∈ L(I), let sj : R>0 → L be the geodesic ray as

above through ϕ(tj), let �j = sj((0, 1]), and let �j,ε = sj([ε/|z|, 1]). Fix ε′ > 0 such that for

1 ≤ j ≤ n,

dq(�j,ε, L \ �j) > ε′

and the embedding sj : [ε/|z|, 1] → L extends to an embedding of the (ε′/|z|)-neighborhood

of [ε/|z|, 1] in C with respect to the Euclidean metric, whose image is the ε′-neighborhood

of �j,ε in L with respect to |q|. Fix δ′ > 0 such that for 1 ≤ j ≤ n and t ∈ (tj − δ′, tj + δ′),

we have

dq(ϕ(t), �j) < ε′.

For each j, we can apply a homotopy rel endpoints to the restriction ϕ|[tj−δ′,tj+δ′] to arrange

that the image of ϕ |[tj−δ′,tj+δ′] is contained in the ε′-neighborhood of �j,ε and disjoint from

�j. This gives us a path [0, 1] → L \ L(I) with the same starting point ϕ(0) and the same

ending point ϕ(1), thus L \ L(I) is path-connected. �

3.6. Connected sums along leaves. Lemma 3.5 also holds with Ω̃Mg(κ;m) in place of

ΩMg(κ), and the proof is the same. The foliation A(κ;m) lifts to a foliation FT of T1(κ;m).
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The leaf of FT through ((X,ω, θ), (γ, w), a) consists of the elements of T1(κ;m) that can be

reached from ((X,ω, θ), (γ, w), a) by a path in T1(κ;m) along which the absolute periods and

((γ, w), a) are constant.

Corollary 3.6. Let ΩMg(κ) be a stratum with |κ| = 2. Fix m ∈ κ, let p : Ω̃Mg(κ;m) →

ΩMg(κ) be the associated stratum cover, and consider the full measure subset of T1(κ;m)

given by

Tconn(κ;m) =

⎧⎨⎩((X,ω, θ), (γ, w), a) ∈ T1(κ;m) :

∫
γ

ω /∈
⋃

z∈Per(ω)
Rz

⎫⎬⎭ .

For ((X,ω, θ), (γ, w), a) ∈ Tconn(κ;m), letting L̃ be the leaf of A(κ;m) through (X,ω, θ), LT

the leaf of FT through ((X,ω, θ), (γ, w), a), and I = [0,
∫
γ
ω], we have

LT = (L̃ \ L̃(I))× {(γ, w)} × {a}.

Let κ′ = (κ \ {m}) ∪ {m+ 2}, and consider the associated connected sum map

Ψ1 : T1(κ;m) → Ω1Mg+1(κ
′).

The connected sum map Ψ1 sends leaves of FT into leaves of A(κ′). If E ⊂ Ω1Mg+1(κ
′) is

saturated for A(κ′), then Ψ−1
1 (E) is saturated for FT . Moreover, if E is measurable, then up

to a set of measure zero, Ψ−1
1 (E) is saturated for the foliation of Ω̃Mg(κ;m)×S̃L(2,R)×(0, 1)

whose leaves have the form L̃× {(γ, w)} × {a} with L̃ a leaf of A(κ;m).

37



4. Pairs of splittings

This chapter is based on Section 4 in [Win2]. We give a criterion for presenting a holomor-

phic 1-form as a connected sum with a torus in multiple ways. Our constructions are similar

in spirit to the connected sum constructions for holomorphic 1-forms in ΩM2(2) studied in

[CM] and [McM2].

4.1. Splittings. Recall from Chapter 2 that a splitting of (X,ω) is a pair of homologous

saddle connections α± on (X,ω) that form a figure-eight at a zero Z of ω, such that

(1) the counterclockwise angle around Z from the end of α− to the end of α+ is 2π;

(2) one of the connected components of X \ (α+ ∪ α−) is a cylinder.

Slitting (X,ω) along α± and regluing the sides of the slits gives a holomorphic 1-form of

genus g − 1 and a flat torus. In this way, the pair α± gives a presentation of (X,ω) as a

connected sum with a torus.

We borrow some notation from [CM]. Given z, w ∈ C, the cross-product z × w is the

signed area of the parallelogram spanned by z and w, that is,

z × w = Im(zw).

Lemma 4.1. Suppose that α± is a splitting of (X,ω), and suppose that (X,ω) has an

embedded open parallelogram P bounded by α± and another pair of homologous saddle

connections γ±
0 . Let C be the cylinder given by one of the connected components of X \

(α+ ∪ α−), and choose a saddle connection β ⊂ C ∪ Z(ω). Let

z =

∫
α±

ω, w =

∫
β

ω, z′ =

∫
γ±
0

ω,

and suppose that

z × w > 0, z × z′ > 0, z′ × w > 0, (z + w)× (z′ + w) > 0. (4)
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Then P ∪C contains another splitting γ± of (X,ω) with the same starting point and ending

point as α±, and there is a saddle connection δ ⊂ C ′ ∪ Z(ω), where C ′ is the cylinder given

by one of the connected components of X \ (γ+ ∪ γ−), such that

[γ±] = −[γ±
0 ]− [β], [δ] = [α±] + [β]

in H1(X;Z).

Proof. For M ∈ GL+(2,R), the cross-products z×w ∈ R and Mz×Mw ∈ R have the same

sign. There is an affine homeomorphism (X,ω) → M(X,ω) that sends zeros to zeros, and

sends a saddle connection on (X,ω) with holonomy z0 to a saddle connection on M(X,ω)

with holonomy Mz0. A pair of homologous saddle connections is a splitting of (X,ω) if and

only if the corresponding pair on M(X,ω) is a splitting of M(X,ω). Thus, it is enough

to show that Lemma 4.1 holds for M(X,ω). Since z × w > 0, by applying an appropriate

element of GL+(2,R) to (X,ω), we may assume that

z = 1, w = i.

We regard C as a unit square with its vertical sides glued together to form β. The bottom

side of C is α−, and the top side of C is α+. The inequalities in (4) imply there is a straight

segment γ− ⊂ P ∪C from the top-left corner of P to the bottom-left corner of C that crosses

α+, and a straight segment γ+ ⊂ P ∪ C from the top-right corner of C to the bottom-right

corner of P that crosses α−. The segments γ± are a pair of homologous saddle connections

with the same starting point and ending point Z as α±, and γ± bound a cylinder C ′ ⊂ P ∪C.

Since the counterclockwise angle around Z from the end of α− to the end of α+ is 2π, the

counterclockwise angle around Z from the end of γ− to the end of γ+ is also 2π. Moreover,

the cylinder C ′ is one of the connected components of X \ (γ+ ∪ γ−). Thus, γ± is another

splitting of (X,ω). Let δ be the straight segment from the bottom-left corner of C to the

top-right corner of C. Then δ is a saddle connection contained in C ′ ∪ Z(ω). All of the
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Figure 4. A holomorphic 1-form in ΩM3(3, 1) with a splitting α± and a
second splitting γ± as in Lemma 4.1.

saddle connections α±, γ±
0 , γ

±, β, δ have the same starting and ending point, and therefore

represent elements of H1(X;Z). The relations [γ±] = −[γ±
0 ] − [β] and [δ] = [α±] + [β] are

clear. �

See Figure 4 for an illustration of Lemma 4.1.

4.2. Related splittings. Let

T(0,1) =
{
(z, w) ∈ C2 : 0 < z × w < 1

}
and let ∼ be an equivalence relation on T(0,1) that satisfies

(z, w) ∼ (z, nz + w) (5)
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for all (z, w) ∈ T(0,1) and n ∈ Z, and that satisfies

(z, w) ∼ (−z′ − w, z + w) (6)

for all (z, w) ∈ T(0,1) and z′ ∈ C such that

0 < z × z′ < 1− z × w, 0 < z′ × w < z × (z′ + w). (7)

A splitting α± of a holomorphic 1-form (X,ω) of area 1 determines an element of T(0,1) as

follows. Let C be the cylinder given by one of the connected components of X \ (α+ ∪ α−),

and let β ⊂ C ∪ Z(ω) be a saddle connection. Let z =
∫
α± ω and let w =

∫
β
ω. Reversing

the orientation of β if necessary, we may assume that z × w > 0. Then z × w is the area of

C with respect to |ω|, so z × w < 1 and we have (z, w) ∈ T(0,1). By changing the choice of

β, we can obtain (z, nz + w) ∈ T(0,1) for all n ∈ Z.

Lemma 4.1 provides a way of constructing holomorphic 1-forms with a pair of splittings

with associated pairs (z, w) ∈ T(0,1) and (−z′ − w, z + w) ∈ T(0,1), respectively, whenever

z, w, z′ satisfy (7).

Lemma 4.2. Let C be a nonhyperelliptic connected component of a stratum ΩMg(m1,m2)

with m1 ≥ 3 odd. Fix (z, w) ∈ T(0,1) and z′ ∈ C satisfying (7). There exists (X,ω) ∈ C1 with

a pair of splittings α± and γ± that all start and end at the same zero of order m1, and there

are saddle connections β ⊂ C ∪ Z(ω) and δ ⊂ C ′ ∪ Z(ω), where C and C ′ are the cylinders

given by a connected component of X \ (α+ ∪α−) and X \ (γ+ ∪ γ−), respectively, such that

z =

∫
α±

ω, w =

∫
β

ω, −z′ − z =

∫
γ±

ω, z + w =

∫
δ

ω.

Proof. Let T0 be the flat torus C/(Zz + Zw). Choose w′ ∈ C such that

0 < z × z′ < z′ × w′ < 1− z × w (8)
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and such that z /∈ Qz′ + Qw′. Let T1 be the flat torus C/(Zz′ + Zw′). Let T2 be a flat

torus with area less than 1 − z × w − z′ × w′. The segment [0, z] ⊂ C projects to a closed

geodesic α0 ⊂ T0, and projects to an embedded geodesic segment α ⊂ T1. The segments

[0, z′], [z, z + z′] ⊂ C project to a pair of closed geodesics γ±
0 ⊂ T1 passing through the

endpoints of α and otherwise disjoint from α. The inequalities in (8) imply that γ±
0 and the

two sides of α bound an embedded open parallelogram P ⊂ T1. For j = 1, 2, choose short

embedded segments sj ⊂ Tj with the same length and in the same direction, such that s1

starts at the starting point of α and is otherwise disjoint from P . Slit Tj along sj, and let

s+j and s−j be the left and right sides of the slit coming from sj, respectively. Glue s+1 to

s−2 , and glue s−1 to s+2 . The result is a holomorphic 1-form (X0, ω0) ∈ ΩM2(1, 1), given by a

connected sum of two flat tori along a pair of homologous saddle connections s±.

Let α1, . . . , α(m1−3)/2 be a collection of short embedded segments in T1, starting at the

starting point of α and otherwise disjoint from each other and from α ∪ s+ ∪ s− ∪ P . Let

α′
1, . . . , α

′
(m2−1)/2 be a collection of short embedded segments in T2, starting at the other zero

of ω0 and otherwise disjoint from each other and from s+ ∪ s−. Slit (X0, ω0) along α, slit T0

along α0, and glue opposite sides to get a holomorphic 1-form in ΩM3(3, 1) with a splitting

α± bounding a cylinder C. Then, iterate this procedure using the segments α1, . . . , α(m1−3)/2

and α′
1, . . . , α

′
(m2−1)/2 and using flat tori with appropriate areas to get a holomorphic 1-form

(X,ω) ∈ Ω1Mg(m1,m2). As in the proof of Lemma 2.6, (X,ω) cannot lie in a hyperelliptic

connected component, therefore (X,ω) ∈ C1.

On (X,ω), we have
∫
α± ω = z. Let β ⊂ C ∪ Z(ω) be a saddle connection such that∫

β
ω = w. The saddle connections α±, γ±

0 and the parallelogram P on (X,ω) satisfy the

hypotheses of Lemma 4.1. Letting γ± be a splitting of (X,ω) and C ′ ⊂ P ∪ C a cylinder

given by a connected component of X \ (γ+ ∪ γ−), and letting δ ⊂ C ′ ∪ Z(ω) be a saddle

connection as in Lemma 4.1, we are done. �

Lemma 4.3. For all (z, w) ∈ T(0,1) and (z′, w′) ∈ T(0,1), we have (z, w) ∼ (z′, w′).

42



Proof. Since T(0,1) is connected, it is enough to show that every equivalence class for∼ is open.

For (z, w), (z′, w′) ∈ T(0,1) andM ∈ GL+(2,R) with 0 < det(M) ≤ 1, we have (z, w) ∼ (z′, w′)

if and only if M(z, w) ∼ M(z′, w′). For any (z, w) ∈ T(0,1), either (z, w) = M(1/2, i/2) for

someM ∈ GL+(2,R) with 0 < det(M) ≤ 1, orM(z, w) = (1/2, i/2) for someM ∈ GL+(2,R)

with 0 < det(M) < 1. Thus, it is enough to show that the equivalence class of (1/2, i/2)

contains a neighborhood of (1/2, i/2).

By (7), for any (z0, w0) ∈ T(0,1) and z, z′ ∈ C, if

0 < z0 × z < 1− z0 × w0, 0 < z × w0 < z0 × (z + w0)

and

0 < (−z−w0)×z′ < 1−(−z−w0)×(z0+w0), 0 < z′×(z0+w0) < (−z−w0)×(z′+z0+w0),

then

(z0, w0) ∼ (−z′ − z0 − w0,−z + z0). (9)

Fix θ ∈ R/2π, let z = 1
2

(
1− ei(θ+π/2)

)
, and let z′ = −1

2

(
1 + i+ eiθ

)
. We have

0 <
1

2
× z < 1− 1

2
× i

2

if and only if θ ∈ (π/2, 3π/2), and

0 < z × i

2
<

1

2
×

(
z +

i

2

)
if and only if θ ∈ (3π/4, 7π/4) and θ �= 3π/2. Then by (6)-(7),(

1

2
,
i

2

)
∼

(
−z − i

2
,
1

2
+

i

2

)
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for all θ ∈ (3π/4, 3π/2). Next, we have

0 <

(
−z − i

2

)
× z′ < 1−

(
−z − i

2

)
×

(
1

2
+

i

2

)
if and only if θ ∈ (−π/6, 7π/6), and

0 < z′ ×
(
1

2
+

i

2

)
<

(
−z − i

2

)
×

(
z′ +

1

2
+

i

2

)
if and only if θ ∈ (π/4, 5π/4). Then by (6)-(7),(

−z − i

2
,
1

2
+

i

2

)
∼

(
1

2
eiθ,

i

2
eiθ

)
for all θ ∈ (π/4, 7π/6).

Thus, for all

θ ∈
(
3π

4
,
7π

6

)
,

we have (
1

2
,
i

2

)
∼

(
1

2
eiθ,

i

2
eiθ

)
.

Then since (7) is an open condition, the equivalence class of (1/2, i/2) contains a neigh-

borhood of (−1/2,−i/2). Since (z, w) ∼ (z′, w′) if and only if (−z,−w) ∼ (−z′,−w′), the

equivalence class of (−1/2,−i/2) contains a neighborhood of (1/2, i/2). We conclude that

the equivalence class of (1/2, i/2) contains a neighborhood of (1/2, i/2), as desired. �

Let ΩMg(κ) be a stratum. Fix m ∈ κ, let κ′ = (κ \ {m}) ∪ {m+ 2}, and let

Ψ1 : T1(κ;m) → Ω1Mg+1(κ
′)

be the associated connected sum map. Recall that

T1(κ;m) ⊂ Ω̃1Mg(κ;m)× S̃L(2,R)× (0, 1)
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is an open subset of full measure, and that the diagonal action of S̃L(2,R) on C̃∗ × C gives

an identification

S̃L(2,R) ∼=
{
(γ, w) ∈ C̃∗ × C : σ(γ)× w = 1

}
.

We have a map

S̃L(2,R)× (0, 1) → T(0,1)

which sends (M̃, a) to (1 − a)1/2(σ(γ), w), where (γ, w) ∈ C̃∗ × C corresponds to M̃ under

the identification above. By composing with the projection T1(κ;m) → S̃L(2,R)× (0, 1), we

obtain a map

σT : T1(κ;m) → T(0,1).

Given (X,ω) ∈ Ω1Mg+1(κ
′), an element of σT (Ψ

−1
1 (X,ω)) is a pair of complex numbers

recording the holonomy of the saddle connections in a splitting α±, and the holonomy of a

saddle connection crossing the cylinder given by a connected component of X \ (α+ ∪ α−).

Lemma 4.4. Let C be a nonhyperelliptic connected component of a stratum ΩMg(κ) with

κ = {m1,m2} and m1 odd, or let C = ΩMg(κ) with κ = {1, 1}. Fix m ∈ κ, let p :

Ω̃Mg(κ;m) → ΩMg(κ) be the stratum cover in (1), and let C̃ = p−1(C). Let

C1(κ;m) = T1(κ;m) ∩
(
C̃1 × S̃L(2,R)× (0, 1)

)
,

let κ′ = (κ \ {m}) ∪ {m+ 2}, and consider the restrictions

Ψ1 : C1(κ;m) → C ′
1, σT : C1(κ;m) → T(0,1),

where C ′
1 is a connected component of ΩMg+1(κ

′). If F ⊂ C1(κ;m) is a nonempty subset of

the form

F = Ψ−1
1 (F1) = σ−1

T (F2),

then F = C1(κ;m).
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Proof. Fix (X,ω) ∈ F1, and fix (z, w) ∈ σT (Ψ
−1
1 (X,ω)) ⊂ F2. By Lemma 4.2, for all z′ ∈ C

satisfying (7), there exists

(Y, η) ∈ Ψ1(σ
−1
T (z, w)) ⊂ F1

such that

(−z′ − w, z + w) ∈ σT (Ψ
−1
1 (Y, η)) ⊂ F2.

Also, as discussed above Lemma 4.2, we have (z, nz + w) ∈ σT (Ψ
−1
1 (X,ω)) for all n ∈ Z.

Then by definition of ∼, the equivalence class of (z, w) for ∼ is contained in F2. Then by

Lemma 4.3, F2 = T(0,1) and thus F = T1(κ;m). �

Remark 4.5. Lemma 4.4 is significantly simpler to prove when g + 1 ≥ 4. In this case, for

any (z, w) ∈ T(0,1) and (z′, w′) ∈ T(0,1) satisfying

z × w + z′ × w′ < 1,

there is (X,ω) ∈ Ω1Mg+1(κ
′) with a pair of splittings whose associated cylinders are disjoint,

realizing

(z, w) ∈ σT (Ψ
−1
1 (X,ω)), (z′, w′) ∈ σT (Ψ

−1
1 (X,ω)).

See Figure 5 for an example with κ′ = {5, 1}.
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Figure 5. A holomorphic 1-form in ΩM4(5, 1) with a pair of splittings α±

and γ±, whose associated cylinders are disjoint.

5. Connected spaces of isoperiodic forms

This chapter is based partly on Section 7 of [Win2]. In this chapter, we prove our results

on connected components of spaces of holomorphic 1-forms in a stratum representing a given

cohomology class. We then deduce our results on the ergodicity of the absolute period fo-

liation, dense leaves of the absolute period foliation, and the monodromy representation of

the fundamental group of a stratum component on absolute homology.

5.1. Cohomology classes represented by holomorphic 1-forms. Let Sg be a closed

oriented surface of genus g ≥ 2. Let

〈α, β〉 = i

2

∫
Sg

α ∧ β

be the intersection form on H1(Sg;C). A cohomology class φ ∈ H1(Sg;C) is positive if

〈φ, φ〉 > 0, elliptic of degree d > 0 if Per(φ) is a lattice in C and the associated homotopy

class of maps Sg → C/Per(φ) has degree d, and algebraically generic if Per(φ) has rank 2g

and Per(φ) is algebraically generic. The moduli space of holomorphic 1-forms representing
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φ is defined by

M(φ) =
{
(X,ω) ∈ ΩMg : [ω] = m(φ) for some marking m of H1(X;C)

}
and we define

M(φ;κ) = M(φ) ∩ ΩMg(κ).

By Haupt’s theorem [Hau], the space M(φ) is nonempty if and only if φ is positive and

φ is not elliptic of degree 1. Haupt’s theorem was rediscovered in [Kap] using tools from

homogeneous dynamics, and another proof is given in [CDF]. A generalization of Haupt’s

theorem to strata was proven in [BJJP], [Fil3].

5.2. Related periods. A polarized module is a free abelian group Λ ⊂ C of rank 2g equipped

with a unimodular symplectic form Λ× Λ → Z, (a, b) �→ a · b, such that

g∑
j=1

aj × bj > 0

where {aj, bj}gj=1 is a symplectic basis for Λ and × is the cross-product on C as in Chapter

4. If φ ∈ H1(Sg;C) is positive and Per(φ) has rank 2g, then Per(φ) is a polarized module

with the symplectic form inherited from the algebraic intersection form on H1(Sg;Z). Let

Λ(0,1) = {(a, b) ∈ Λ× Λ : a · b = 1, 0 < a× b < 1}

and let ∼Λ be an equivalence relation on Λ(0,1) that satisfies

(a, b) ∼Λ (a, na+ b) (10)

for all n ∈ Z, and

(a, b) ∼Λ (−c− b, a+ b) (11)
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for all c ∈ {a, b}⊥ such that

0 < a× c < 1− a× b, 0 < c× b < a× (b+ c). (12)

Lemma 5.1. Suppose g ≥ 3. Let Λ ⊂ C be a polarized module of rank 2g, such that for

any z1, z2 ∈ Λ, if Rz1 = Rz2 then Qz1 = Qz2. For all (a, b) ∈ Λ(0,1) and (c, d) ∈ Λ(0,1), we

have (a, b) ∼Λ (c, d).

Proof. Let V ⊂ Λ be a submodule of rank 2, and fix z ∈ Λ such that for all nonzero n ∈ Z,

nz /∈ V . Since V is a lattice in C and z /∈ ⋃
v∈V Rv, the submodule V + Zz is dense in C.

Therefore, every submodule of Λ of rank at least 3 is dense in C. For any a ∈ Λ and b0 ∈ Λ

such that a · b0 = 1,

{b ∈ Λ : a · b = 1} = b0 + a⊥

is a coset of a submodule of rank 2g − 1 ≥ 5, and is therefore dense in C. The submodule

{a, b0}⊥ has rank 2g − 2 ≥ 4, and is therefore dense in C. Then since

T(0,1) =
{
(z, w) ∈ C2 : 0 < z × w < 1

}
is an open subset of C2, we have that Λ(0,1) is dense in T(0,1). Since (5) applies to all elements

of T(0,1), and since (7) is an open condition, by Lemma 4.3 the equivalence classes for ∼Λ

are dense in T(0,1). Thus, it is enough to show that (a, b) ∼Λ (c, d) for all (a, b) ∈ Λ(0,1) and

(c, d) ∈ Λ(0,1) sufficiently close to (1/2, i/2).

Fix ε > 0 small, and fix (a, b) ∈ Λ(0,1) such that∣∣∣∣a− 1

2

∣∣∣∣ < ε,

∣∣∣∣b− i

2

∣∣∣∣ < ε.

The proof of Lemma 4.3 up through (9) gives us that

(a, b) ∼Λ (−a2 − a− b,−a1 + a)
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for all a1 ∈ {a, b}⊥ and a2 ∈ {−a1 − b, a+ b}⊥ such that

|a1 − (a+ b)| < 4ε, |a2 + b| < 4ε.

Since {b′ ∈ b⊥ : a · b′ = 1} is a coset of a submodule of rank 2g − 2 ≥ 4, there exists

b′ ∈ b⊥ such that

(a, b′) ∈ Λ(0,1),

∣∣∣∣b′ − i

2

∣∣∣∣ < ε.

Since the submodule {a, b, b′}⊥ has rank at least 2g − 3 ≥ 3, and since |b − b′| < 2ε, there

exists a1 ∈ {a, b, b′}⊥ such that

|a1 − (a+ b)| < 2ε, |a1 − (a+ b′)| < 2ε.

The relation

(−a1 − b) + (a+ b) = (−a1 − b′) + (a+ b′)

implies that the submodule

{−a1 − b, a+ b,−a1 − b′, a+ b′}⊥

has rank at least 2g − 3 ≥ 3. Since b′ − b ∈ {−a1 − b, a+ b}⊥, we have

(b′−b)∩{−a1−b, a+b,−a1−b′, a+b′}⊥ = {−a1−b, a+b}⊥∩
(
(b′ − b) + {−a1 − b′, a+ b′}⊥

)
.

Then there exists

a2 ∈ {−a1 − b, a+ b}⊥ ∩
(
(b′ − b) + {−a1 − b′, a+ b′}⊥

)
such that |a2 + b| < 2ε, and then

a′2 = a2 + b− b′ ∈ {−a1 − b′, a+ b′}⊥
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satisfies |a′2 + b| < 4ε. Thus,

(a, b) ∼Λ (−a2 − a− b,−a1 + a) = (−a′2 − a− b′,−a1 + a) ∼Λ (a, b′).

Now fix b′′ ∈ Λ such that (a, b′′) ∈ Λ(0,1) and |b′′ − i/2| < ε. The subset

{b′ ∈ {b, b′′}⊥ : a · b′ = 1}

is a coset of a submodule of rank 2g − 3 ≥ 3, so there exists b′ ∈ {b, b′′} such that

(a, b′) ∈ Λ(0,1),

∣∣∣∣b′ − i

2

∣∣∣∣ < ε.

By the previous paragraph,

(a, b) ∼Λ (a, b′) ∼Λ (a, b′′).

Next, since {a′ ∈ a⊥ : a′ · b = 1} is a coset of a submodule of rank 2g − 2 ≥ 4, there

exists a′ ∈ a⊥ such that

(a′, b) ∈ Λ(0,1),

∣∣∣∣a′ − 1

2

∣∣∣∣ < ε.

Since the submodule {a, a′, b}⊥ has rank at least 2g − 3 ≥ 3, and since

{a, b}⊥ ∩ ((a− a′) + {a′, b}⊥) = (a− a′) + {a, a′, b}⊥,

there exists

a1 ∈ {a, b}⊥ ∩ ((a− a′) + {a′, b}⊥)

such that |a1 − (a+ b)| < 2ε. Then

a′1 = a1 + a′ − a ∈ {a′, b}⊥

satisfies |a′1 − (a+ b)| < 4ε. The relation

(−a1 − b) + (a+ b) = −a1 + a = −a′1 + a′ = (−a′1 − b) + (a′ + b)
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implies the submodule

{−a1 − b, a+ b,−a′1 − b, a′ + b}⊥

has rank at least 2g − 3 ≥ 3, and we have

{−a1− b, a+ b}⊥∩ ((a′−a)+{−a′1− b, a′+ b}⊥) = (a′−a)+{−a1− b, a+ b,−a′1− b, a′+ b}⊥,

so there exists

a2 ∈ {−a1 − b, a+ b}⊥ ∩ ((a′ − a) + {−a′1 − b, a′ + b}⊥)

such that |a2 + b| < 2ε. Then

a′2 = a2 + a− a′ ∈ {−a′1 − b, a′ + b}⊥

satisfies |a′2 + b| < 4ε. Thus,

(a, b) ∼Λ (−a2 − a− b,−a1 + a) = (−a′2 − a′ − b,−a′1 + a′) ∼Λ (a′, b).

Now fix a′′ ∈ Λ such that (a′′, b) ∈ Λ(0,1) and |a′′ − 1/2| < ε. The subset

{a′ ∈ {a, a′′}⊥ : a′ · b = 1}

is a coset of a submodule of rank 2g − 3 ≥ 3, so there exists a′ ∈ {a, a′′} such that

(a′, b) ∈ Λ(0,1),

∣∣∣∣a′ − 1

2

∣∣∣∣ < ε.

By the previous paragraph,

(a, b) ∼Λ (a′, b) ∼Λ (a′′, b).
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To conclude, fix (c, d) ∈ Λ(0,1) such that |c − 1/2| < ε and |d − i/2| < ε. There exists

b′ ∈ Λ such that

a · b′ = c · b′ = 1,

∣∣∣∣b′ − i

2

∣∣∣∣ < ε,

and by the above,

(a, b) ∼Λ (a, b′) ∼Λ (c, b′) ∼Λ (c, d).

�

5.3. Ergodicity, density, and connectedness.

Lemma 5.2. Suppose (X ′, ω′) ∈ ΩMg+1(κ
′) arises from (X,ω) ∈ ΩMg(κ) by a connected

sum with a torus, and let γ be the associated segment in (X,ω). If (X ′, ω′) is algebraically

generic, then (X,ω) is algebraically generic and∫
γ

ω /∈
⋃

z∈Per(ω)
Rz.

Proof. We have an injection on homology

f : H1(X;C) ↪→ H1(X
′;C)

such that
∫
c
ω =

∫
f(c)

ω′. Since (X ′, ω′) is algebraically generic, the subgroup

Per(ω) =

{∫
c

ω : c ∈ f(H1(X;Z))

}
⊂ Per(ω′)

satisfies property (1), and satisfies property (2) with g in place of g + 1, so (X,ω) is alge-

braically generic. Let γ± be the given splitting of (X ′, ω′), and let c′ = [γ±] ∈ H1(X
′;Z).

Since c′ /∈ f(H1(X;Z)), and since (X ′, ω′) is algebraically generic, for all nonzero c ∈

H1(X;Z) we have
∫
c
ω /∈ R

∫
f(c′) ω

′. Therefore,
∫
γ
ω /∈ ⋃

z∈Per(ω) Rz. �
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Lemma 5.3. Let (X0, ω0) ∈ Ω1Mg(κ) be algebraically generic, and let L be the leaf of A(κ)

through (X0, ω0). For a dense subset of (X,ω) ∈ L, the SL(2,R)-orbit of (X,ω) is dense in

its connected component in Ω1Mg(κ).

Proof. Choose a basis {aj, bj}gj=1 for H1(X0;Z), and extend to a basis for H1(X0, Z(ω0);Z)

by adding relative cycles c1, . . . , cm−1 represented by paths γ1, . . . , γm−1 that all start at the

same zero of ω0. For any number field K ⊂ R, the absolute periods
∫
a1
ω0, . . . ,

∫
bg
ω0 are

linearly independent over K. The map

(X,ω) �→
(∫

c1

ω, . . . ,

∫
cm−1

ω

)
provides local coordinates on a neighborhood of (X0, ω0) in L, so there are nearby holo-

morphic 1-forms (X,ω) ∈ L such that for any number field K ⊂ R, the period coordi-

nates
∫
a1
ω, . . . ,

∫
bg
ω,

∫
c1
ω, . . . ,

∫
cm−1

ω of (X,ω) are linearly independent over K. Then by

Corollary 1.3 in [Wri], the SL(2,R)-orbit of (X,ω) is dense in its connected component in

Ω1Mg(κ). �

Theorem 5.4. Let ΩMg(κ) be a connected stratum with |κ| = 2. If φ ∈ H1(Sg;C) is

algebraically generic, then M(φ;κ) is connected.

Proof. We induct on genus. The base case of genus 2 is part of Theorem 2.3 in [CDF].

Fix g ≥ 2, and suppose the theorem is true in genera at most g. Let ΩMg+1(κ
′) be a

connected stratum with |κ′| = 2. By Lemma 2.6, there is a connected stratum ΩMg(κ) with

|κ| = 2 and a connected sum map

Ψ1 : T1(κ;m) → Ω1Mg+1(κ
′).

Recall that the image of Ψ1 is nonempty, open, and SL(2,R)-invariant, and therefore dense.
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We may assume that M(φ;κ′) is nonempty and that M(φ;κ′) ⊂ Ω1Mg+1(κ
′). Fix

(X1, ω1), (X2, ω2) ∈ M(φ;κ′). Since φ is algebraically generic, (X1, ω1) and (X2, ω2) are alge-

braically generic. By Lemma 5.3, by replacing (X1, ω1) and (X2, ω2) with nearby elements of

their respective connected components in M(φ;κ′), we may assume that the SL(2,R)-orbits

of (X1, ω1) and (X2, ω2) are dense in Ω1Mg+1(κ
′). Then we can write

(X1, ω1) = Ψ1((X
′
1, ω

′
1, θ1), (γ1, w1), a1), (X2, ω2) = Ψ1((X

′
2, ω

′
2, θ2), (γ2, w2), a2).

By Lemma 5.2, (X ′
1, ω

′
1) and (X ′

2, ω
′
2) are algebraically generic, so there are markings mj :

H1(Sg;C) → H1(X ′
j;C) and algebraically generic cohomology classes φj ∈ H1(Sg;C) such

that mj(φj) = [ω′
j]. Suppose

σT ((γ1, w1), a1) = σT ((γ2, w2), a2).

Then there is a symplectic automorphism of H1(Sg;C) that preserves H
1(Sg;Z) and sends

φ1 to φ2, so

M(φ1;κ) = M(φ2;κ).

By the inductive hypothesis, (X ′
1, ω

′
1) and (X ′

2, ω
′
2) lie on the same leaf of A(κ), and by

Lemma 5.3 and Lemma 3.2, (X ′
1, ω

′
1, θ1) and (X ′

2, ω
′
2, θ2) lie on the same leaf ofA(κ;m). Then

by Corollary 3.6, ((X ′
1, ω

′
1, θ1), (γ1, w1), a1) and ((X ′

2, ω
′
2, θ2), (γ2, w2), a2) lie on the same leaf

of FT . Since Ψ1 maps leaves of FT into leaves of A(κ′), we have that (X1, ω1) and (X2, ω2)

lie on the same leaf of A(κ′).

Since φ is algebraically generic, by the inductive hypothesis and Lemma 4.1, the connected

component of (X1, ω1) in M(φ;κ′) contains elements of Ψ(σ−1
T (z, w)) for any (z, w) ∈ Λ(0,1)

in the equivalence class of σT ((γ1, w1), a1) for ∼Λ. By Lemma 5.1, this equivalence class is all

of Λ(0,1), so (X1, ω1) and (X2, ω2) lie in the same connected component of M(φ;κ′). Thus,

M(φ;κ′) is connected. �
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Theorem 5.5. Let ΩMg(κ) be a connected stratum with |κ| > 1, and suppose that m ≥ 2

for some m ∈ κ. Fix 1 ≤ j < m, and let κ′ = (κ \ {m}) ∪ {m − j, j}. If φ ∈ H1(Sg;C) is

algebraically generic and M(φ;κ) is connected, then M(φ;κ′) is connected.

Proof. By Corollary 2.2, since ΩMg(κ) is connected, ΩMg(κ
′) is connected. We may assume

that M(φ;κ′) is nonempty. Fix (X1, ω1), (X2, ω2) ∈ M(φ;κ′). By Lemma 5.3, by replacing

(X1, ω1) and (X2, ω2) with nearby elements of their respective connected components in

M(φ;κ′), we may assume that the GL+(2,R)-orbits of (X1, ω1) and (X2, ω2) are dense in

ΩMg(κ
′). Since the image of the zero splitting map

Φ : S(κ;m) → ΩMg(κ
′)

is open and dense, and since splitting zeros does not change the absolute periods, we can

write

(X1, ω1) = Φ((X ′
1, ω

′
1, θ1), γ1), (X2, ω2) = Φ((X ′

2, ω
′
2, θ2), γ2)

with (X ′
1, ω

′
1), (X

′
2, ω

′
2) ∈ M(φ;κ). By assumption, M(φ;κ) is connected, so (X ′

1, ω
′
1) and

(X ′
2, ω

′
2) lie on the same leaf of A(κ). Then by Lemma 3.2, (X ′

1, ω
′
1, θ1) and (X ′

2, ω
′
2, θ2) lie

on the same leaf of A(κ;m), and by Lemma 3.3, ((X ′
1, ω

′
1, θ1), γ1) and ((X ′

2, ω
′
2, θ2), γ2) lie on

the same leaf of FS . Since Φ maps leaves of FS into leaves of A(κ′), we have that (X1, ω1)

and (X2, ω2) lie on the same leaf of A(κ′). Thus, M(φ;κ′) is connected. �

We now complete the proof of our main connectedness result.

Proof. (of Theorem 1.3) Induct on |κ|, using Theorem 5.4 for the base case |κ| = 2, and

using Lemma 2.5 and Theorem 5.5 for the inductive step. �

Similar inductive steps can be used to prove Theorem 1.4, by forming connected sums

with a torus using holomorphic 1-forms in ΩMg−1(g − 1, g − 3) for g even.
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Theorem 1.3 can be used to prove Theorems 1.1 and 1.2, using the transfer principle from

[CDF] and results from homogeneous dynamics, which we briefly explain. Let

〈α, β〉 = i

2

∫
Sg

α ∧ β

be the intersection form on H1(Sg;C). For φ ∈ H1(Sg;C), let V (φ) ⊂ H1(Sg;R) be the span

of Re(φ) and Im(φ). The symplectic automorphism group Sp(H1(Sg;R)) acts transitively

on the set of φ ∈ H1(Sg;C) such that 〈φ, φ〉 = 1 by acting on the real and imaginary parts

of φ simultaneously, and the stabilizer of φ is Sp(V (φ)⊥). Let

Π : ΩSg(κ) → ΩMg(κ)

be the Torelli cover of a stratum, whose points are holomorphic 1-forms (X,ω) ∈ ΩMg(κ)

equipped with a marking of H1(X;C), and consider the restriction of the period map

Perg : ΩSg(κ) → H1(Sg;C).

Since Perg is a holomorphic submersion on ΩSg(κ), the image of Perg is open. Moreover, the

image of Perg is invariant under the action of Sp(H1(Sg;Z)). The set

Gg =
{
φ ∈ H1(Sg;C) : 〈φ, φ〉 = 1 and φ is algebraically generic

}
is Sp(H1(Sg;Z))-invariant, and is contained in the image of Perg by Proposition 3.10 in

[CDF]. Since Sp(H1(Sg;R)) ∼= Sp(2g,R) and Sp(V (φ)⊥) ∼= Sp(2g − 2,R), we can identify

Gg with an Sp(2g;Z)-invariant full measure subset of Sp(2g,R)/ Sp(2g − 2,R). The set

G(κ) = {(X,ω) ∈ Ω1Mg(κ) : (X,ω) is algebraically generic}

is saturated for A(κ) and has full measure.
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Now suppose that |κ| > 1 and that ΩMg(κ) is connected. Theorem 1.3 implies that

Per−1
g (φ) is connected for φ ∈ Gg, and this provides a bijection A �→ Perg(Π

−1(A)) between

subsets of G(κ) that are saturated for A(κ) and subsets of Gg that are invariant under the

action of Sp(H1(Sg;Z)). Positive measure subsets correspond to positive measure subsets,

and dense subsets correspond to dense subsets. Theorem 1.1 then follows from Moore’s er-

godicity theorem [Zim], and Theorem 1.2 follows from Ratner’s orbit closure theorem [Rat],

applied to the action of Sp(2g,Z) on Sp(2g,R)/ Sp(2g − 2,R).

5.4. Monodromy. Let C be a connected component of a stratum ΩMg(κ) with |κ| > 1.

We will relate the image of the monodromy representation π1(C) → Sp(2g,Z) to the question

of whether holomorphic 1-forms in C with the same absolute periods lie on the same leaf of

A(κ).

To illustrate the idea, we first consider part of the case where κ = {g − 1, g − 1}. Choose

zj, wj ∈ C, j = 1, . . . , g, such that the subgroup Λ ⊂ C generated by z1, w1, . . . , zg, wg has

rank 2g and is algebraically generic, and such that

zj × wj > 0, j = 1, . . . , g, (13)

(z1 − w2)× w1 > 0, (z2 − w1)× w2 > 0. (14)

For instance, one may choose each zj close to 1 and each wj close to i. Consider the flat tori

Tj = (C/(Zzj +Zwj), dz), j = 1, . . . , g. Choose very short segments sj ∈ Tj that are parallel

and of the same length. Slit Tj along sj, and glue the left side of sj to the right side of sj+1,

indices taken modulo g. The result is a holomorphic 1-form (X,ω). Let C be the connected

component of (X,ω) in ΩMg(κ). If g = 2, then C = ΩM2(1, 1). If g ≥ 4 is even, then C is

the nonhyperelliptic component of ΩMg(g− 1, g− 1), and if g ≥ 3 is odd, then C is the odd

component of ΩMg(g − 1, g − 1). This construction provides a symplectic basis {aj, bj}gj=1
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for H1(X;Z) such that ∫
aj

ω = zj,

∫
bj

ω = wj, j = 1, . . . , g,

where aj, bj are represented by closed geodesics in Tj. Let (Y, η) ∈ C be another holomorphic

1-form arising from this construction, such that Per(ω) = Per(η) as symplectic modules. Let

{a′j, b′j}gj=1 be the associated symplectic basis of H1(Y ;Z), and write∫
a′j

η = z′j,

∫
b′j

η = w′
j, j = 1, . . . , g.

There is a path ρ : [0, 1] → C2g, ρ(t) = (z1(t), w1(t), . . . , zg(t), wg(t)), from (z1, w1, . . . , zg, wg)

to (z′1, w
′
1, . . . , z

′
g, w

′
g) such that ρ(t) satisfies (13) for all t. This path induces a path γ1 :

[0, 1] → C from (X,ω) to (Y, η), given by replacing Tj with (C/(Zzj(t) + Zwj(t)), dz) in the

construction above and keeping the slits very short. Parallel transport along γ1 sends aj

to a′j and bj to b′j. On the other hand, if Theorem 1.3 holds for C, then there is another

path γ2 : [0, 1] → C from (Y, η) to (X,ω) along which the absolute periods are constant.

Parallel transport along γ2 sends a
′
j to the homology class a′′j satisfying

∫
a′′j
ω = z′j and sends

b′j to the homology class b′′j satisfying
∫
b′′j
ω = w′

j. Concatenating γ1 and γ2 gives a loop

γ : [0, 1] → C based at (X,ω). Using the basis {aj, bj}gj=1 to identify Per(ω) ∼= Z2g, the

associated monodromy matrix A ∈ Sp(2g,Z) is determined by the requirement that∫
Aaj

ω = z′j,

∫
Abj

ω = w′
j, j = 1, . . . , g.

We recall a convenient generating set for Sp(2g,Z) from [FM, Section 6.1], using slightly

different terminology.

• Shear S: S(a1) = a1 + b1.

• Rotation R: R(a1) = b1, R(b1) = −a1.

• Factor mix M : M(a1) = a1 − b2, M(a2) = a2 − b1.
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• Factor swaps Wj, 1 ≤ j ≤ g − 1: Wj(aj) = aj+1, Wj(bj) = bj+1, Wj(aj+1) = aj,

Wj(bj+1) = bj.

In each case, each element of {aj, bj}gj=1 not mentioned is fixed by the above generator. By

shearing T1 in the construction above, we can realize the shear S in the image of π1(C) →

Sp(2g,Z). Using a suitable path in C2 from (z1, w1) to (w1,−z1), we can realize the rotation

R. (We have not used the assumption that Theorem 1.3 holds for C yet.) Since (14) holds,

using a suitable path in C4 from (z1, w1, z2, w2) to (z1 − w2, w1, z2 − w1, w2), and assuming

Theorem 1.3 holds for C, we can realize the factor mix M . Lastly, for 1 ≤ j ≤ g − 1, using

a suitable path in C4 from (zj, wj, zj+1, wj+1) to (zj+1, wj+1, zj, wj), and assuming Theorem

1.3 holds for C, we can realize the factor swap Wj. We conclude that if Theorem 1.3 holds

for C, then the monodromy representation π1(C) → Sp(2g,Z) is surjective.

Next, we indicate how to generalize this construction. By the classification of connected

components of ΩMg(κ) in Theorem 2.1, and Lemma 2.5 in this thesis, and Lemma 10.1

in [EMZ], it is enough to address the case of strata of holomorphic 1-forms with exactly

2 distinct zeros. Write κ = {m1,m2} with m1 ≥ m2. Since m1 + m2 = 2g − 2 is even,

m1 −m2 is even. By the previous paragraph, we may assume m1 > m2. As before, choose

z1, w1, . . . , zg, wg ∈ C generating a subgroup Λ ⊂ C of rank 2g such that Λ is algebraically

generic, and satisfying (13) and (14). Assume that each zj is very close to 1 and that each

wj is very close to i. Since Λ is algebraically generic, we can additionally assume that the

arguments of the complex numbers zj satisfy 0 < arg(z1) < · · · < arg(zg) < ε for some small

ε > 0. Let Tj = (C/(Zzj + Zwj), dz) for j = 1, . . . , g. Choose very short vertical segments

sj ∈ Tj, j = 1, . . . ,m2 + 1, that are parallel and of the same length. Slit Tj along sj, and

glue the left side of sj to the right side of sj+1, indices taken modulo m2 + 1, to obtain a

holomorphic 1-form (X0, ω0) ∈ ΩMm2+1(m2,m2). Let p ∈ Tm2+1 be the top endpoint of the

vertical slit coming from sm2+1. By our assumptions, there are embedded geodesic segments
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rm2+2, . . . , rg in Tm2+1 starting at p, disjoint except at p, and satisfying∫
rj

ω0 = zj, j = m2 + 2, . . . , g.

For j = m2 + 2, . . . , g, slit Tj along a closed geodesic αj satisfying
∫
αj
dz = zj, slit Tm2+1

along rj, and reglue opposite sides. The result is a holomorphic 1-form (X,ω) ∈ ΩMg(κ),

obtained from (X0, ω0) by iteratively applying the connected sum with a torus construction

from Chapter 2. Let C be the connected component of (X,ω) in ΩMg(κ). If m1,m2 are odd,

then by Corollary 2.2, C = ΩMg(κ), and if m1,m2 are even, then by Lemma 11 in [KZ],

C is the odd component of ΩMg(κ). Since the only slit on T1 comes from the very short

segment s1, we can realize the shear S and the rotation R in the image of π1(C) → Sp(2g,Z)

in the same way as before. If m2 ≥ 2, then the only slit on T2 comes from the very short

segment s2, and we can realize the factor mix M in the same way as before. If m2 = 1,

then we can realize M by first shrinking the length of the slits rm2+2, . . . , rg (keeping their

directions and their starting point p fixed), then deforming T1, T2 using a suitable path in

C4 from (z1, w1, z2, w2) to (z1 − w2, w1, z2 − w1, w2), then stretching the slits rm2+2, . . . , rg

to their original lengths, and then returning to (X,ω) along a path in a leaf of A(κ). The

factor swaps W1, . . . ,Wm2 can be realized in the same way as before. The factor swap Wm2+1

can be realized by shrinking the slits rm2+2, . . . , rg, deforming Tm2+1 using a very short path

in C2 from (zm2+1, wm2+1) to (zm2+2, wm2+2), rotating rm2+2 so that its new direction is

parallel to zm2+1, enlarging the slits and deforming Tm2+2 using a very short path in C2

from (zm2+1, wm2+2) to (zm2+1, wm2+1), and then returning to (X,ω) along a path in a leaf

of A(κ). For j = m2 + 2, . . . , g − 1, the factor swap Wj can be realized as follows. First,

shrink the slits rj, rj+1. Rotate the slits rj and rj+1 counterclockwise around p a small

amount so that the new direction of rj is the old direction of rj+1. By our discussion of the

domain of definition of the surgery of forming a connected sum with a torus in Chapter 2,

we can continue rotating the slit rj+1 counterclockwise around p until this slit is in between
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rj and rj−1, and so that the new direction of rj+1 is the old direction of rj. (Rotate wj+1

counterclockwise as well in the process.) Enlarge the slits rj and rj+1, and deform wj and

wj+1 slightly, so that the slit rj bounds the torus (C/(Zzj+1,Zwj+1), dz) and the slit rj+1

bounds the torus (C/(Zzj,Zwj), dz). Lastly, return to (X,ω) along a path in a leaf of A(κ).

Next, to produce holomorphic 1-forms in the hyperelliptic component of ΩMg(g − 1, g − 1)

for g ≥ 3, let z1, w1, . . . , zg, wg and T1, . . . , Tg be as before. Slit T1 and T3 along very short

horizontal segments s1, s3 of the same length and reglue opposite sides. Let s′3 be the segment

in T3 with the same endpoints as s3 such that
∫
s′3
dz is close to 1, and let s4 be a segment on

T4 that is parallel to s′3 and has the same length. Slit T3 and T4 along s′3 and s4, and reglue

opposite sides. Let s′4 be the short segment in T4 with the same endpoints as s4, and let s5

be a segment in T5 that is parallel to s′4 and has the same length. Slit T4 and T5 along s′4 and

s5, and reglue opposite sides. Continue this process through Tg−1 and Tg, and then continue

by gluing Tg and T2, to obtain a holomorphic 1-form (X,ω) in the hyperelliptic component of

ΩMg(g−1, g−1). The tori T1 and T2 each only have one very short slit, and the argument in

this case is exactly the same as in the previous paragraph. Lastly, to construct holomorphic

1-forms in the even component of ΩMg(κ) when m1 and m2 are even with g ≥ 4, start with

(X0, ω0) in the hyperelliptic component of ΩM3(2, 2) in the previous construction. Let Z1, Z2

be the zeros of ω0. There are embedded segments r4, . . . , rg in T3 such that r4, . . . , r2+m1/2

start at Z1, r3+m1/2, . . . , g start at Z2, and
∫
rj
ω0 = zj for j = 4, . . . , g, and the segments

r4, . . . , rg are disjoint except at their starting points. Slit T3 along the rj, and slit Tj along a

closed geodesic αj satisfying
∫
αj
dz = zj, and reglue opposite sides, to obtain a holomorphic

1-form (X,ω) in the even component of ΩMg(κ). The tori T1 and T2 each only have one

very short slit, and the argument in this case is the same as the case at the beginning of this

paragraph.

Thus, if Theorem 1.3 holds for C, then the homomorphism π1(C) → Sp(2g,Z) is surjective.

Since we have proven that Theorem 1.3 holds when |κ| > 1 and ΩMg(κ) is connected, and
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when g ≥ 4 is even and C is the nonhyperelliptic component of ΩMg(g−1, g−1), we recover

the result of [Gut] that π1(C) → Sp(2g,Z) is surjective in these cases. On the other hand, by

[Gut], in all other cases π1(C) → Sp(2g,Z) is not surjective, so there must be (Y, η) ∈ C with

Per(ω) = Per(η) as symplectic modules but not on the same leaf of A(κ). This establishes

Theorem 1.5.
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