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Abstract

Recent decades have witnessed a broadening application of the wisdom of crowds, ranging from

forecasting geopolitical events to estimating business variables to predicting the replicability of

social science studies. In these applications, information is elicited from a crowd of human

participants and then aggregated to generate final judgments or informed decisions. Two

central problems in this process are the information elicitation problem, i.e., how we can elicit

authentic and high-quality information from selfish information holders, and the information

aggregation problem, i.e., how we can aggregate the noisy or even biased information that we

collect into more accurate judgments or decisions.

The challenges in solving the above two problems vary with the concrete application

scenarios. At a high level, these scenarios can be divided into two categories, the with-

verification setting and the without-verification setting. In the with-verification setting, the

principal can access (historical) ground truth information to verify the information quality of

each participant and design elicitation and aggregation mechanisms accordingly. In contrast,

the principal cannot access such ground truth information in the without-verification setting.

In this thesis, I explore and make progress on information elicitation and aggregation problems

under several specific scenarios in both settings.

In the with-verification setting, I study the betting scenario and propose the randomized

wagering mechanisms for prediction elicitation. These mechanisms overcome an impossibility

result for deterministic mechanisms that four desirable properties cannot be satisfied simulta-

neously. In the without-verification setting, I study both the probabilistic prediction elicitation

and aggregation problems. I first extend the strictly proper scoring rules, the most prevalent

information elicitation solution in the with-verification setting, into the without-verification

setting and derive the surrogate scoring rules. These rules not only provide strong incen-

tives for participants to report true beliefs but also characterize their prediction accuracy. I
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further develop a forecast aggregation framework using the elicitation without-verification

schemes such as the surrogate scoring rules to improve the aggregation accuracy consistently.

This improvement is examined and verified on a diverse set of real-world human forecasting

datasets.

Human behavior, involving how people understand elicitation questions, generate beliefs,

and react to elicitation schemes, is overlooked in the literature on information elicitation and

aggregation. This thesis also explores human behavior and its influence within this domain. In

particular, I develop auction mechanisms to elicit truthful reporting of private signals when

human players have bounded rationality in interdependent valuation auctions. I also conduct

real-world elicitation and aggregation experiments that use laypeople to predict the replicability

of social science studies. Several interesting experimental findings of laypeople’s behaviors are

analyzed and discussed.
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Introduction

About a century ago, statistician Galton [Gal07] documented a very interesting phenomenon: in

a game of guessing the weight of a displayed ox, the mean guess of a crowd of 800 participants

matched exactly the 1197 pounds of the actual weight of the ox. This superior power of the

collective intelligence in making judgments is now referred to as the wisdom of crowds [Sur05].

Nowadays, with the development of Internet technology, we can access the opinions of a large

number of crowds much more easily. As a result, the wisdom of crowds has been applied to

a wide array of domains to predict variables of interest and assist decision-making, such as

forecasting geopolitical events [Tet+14; Fri+18], estimating business variables [CW86; LBD16],

and even predicting the replicability of social science studies [Alt+19; HSW19]. However, there

are two main challenges in successfully leveraging the wisdom of crowds, referred to as the

information elicitation problem and the information aggregation problem:

1. Information elicitation problem: How can we incentivize participants to provide authen-

tic and high-quality information?

2. Information aggregation problem: How can we aggregate the information provided by

participants to make better judgments/decisions?

To illustrate, a typical scenario of information elicitation and aggregation is where a princi-

pal has a random variable of interest, e.g., whether it will rain tomorrow or whether the S&P

500 index will go up next month. The principal has access to a pool of participants who may

hold relevant information about the variable of interest. In order to obtain this information, the

principal can invite participants to provide their opinions, such as a probabilistic prediction,

and in exchange, she offers the participants financial rewards as incentives. The informa-
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tion elicitation problem is to design such reward mechanisms. The main objective of these

mechanisms is to incentivize truthful reporting, i.e., each participant receives a strictly higher

expected reward when reporting their true belief than manipulating their report. The principal

then forms a synthetic final judgment about that random variable of interest based on the

solicited information and takes informed actions based on the final judgment, e.g., whether to

bring an umbrella or buy a stock. The information aggregation problem is to design algorithms

to generate this synthetic final judgment, with an objective of maximizing the quality/accuracy

of the judgment.

The broadening application of information elicitation and aggregation brings emerging

challenges in achieving the above two objectives of elicitation and aggregation, especially

with varied needs and constraints of different scenarios. Generally, these scenarios can be

categorized into two folds: the with-verification setting and the without-verification setting,

depending on whether the principal has access to certain ground truth information about the

random variable of interest. Together with the distinction between elicitation and aggregation,

we can partition the information elicitation and aggregation research into four sub-domains:

{Elicitation, Aggregation} x {With verification, Without verification}. Each domain differs in

concrete objectives, challenges, and constraints and requires different technologies to tackle

these problems. Orthogonal to these four sub-domains, human behavior is an overlooked

sub-domain in information elicitation and aggregation. It considers problems such as how

humans form their opinions, how they react to the elicitation methods, and how their behaviors

influence the elicitation and the aggregation process. These factors are critical to the success

of an information elicitation and aggregation system. In this thesis, I use a combination of

theoretical and empirical approaches to address specific problems with each of the above

sub-domains, except the domain of information aggregation with verification. I introduce the

problems and research status of each domain, followed by the contributions of this thesis in

the following.

Information elicitation with verification. Information elicitation with verification considers

the scenarios where the principal can reward participants after knowing the ground truth of
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the random variable of interest, such as in the geopolitical forecast tournaments. In this setting,

the truthfulness incentive can be achieved using the strictly proper scoring rules [Win69; Sav71;

JNW06; GR07b], a family of functions that take the reported information and the ground

truth as inputs, and output a score whose expectation is strictly maximized when the report

matches the true distribution of the random variable of interest. Meanwhile, In this setting,

the truthfulness incentive also aligns with the accuracy of the provided information. The

instances of strictly proper scoring rules, such as Brier score and log scoring rules, are also

widely adopted as accuracy metrics of forecasts.

Recent works in this sub-domain focus on achieving specific properties in addition to

truthfulness. For example, one potential issue of strictly proper scoring rules is that they require

the principal to pay for the information while the payment grows linearly with the number of

participants. Prediction markets [WZ04; Arr+08; CP10] and wagering mechanisms [Lam+08;

Lam+15; Che+14; FPW17] are proposed to mitigate the budget problem. In prediction markets,

participants trade securities to represent their probabilistic predictions about the random

variable of interest, and the total payment is bounded by the difference between the final

market price and the initial market price. Wagering mechanisms consider the betting markets,

where participants are willing to wager on their reported information, and the principal can

redistribute the wagers based on the ground truth to induce incentive instead of paying out

of her own money. Another growing challenge is that in some scenarios, the principal has to

take actions based on the information provided by the participants, and this action influences

the ground truth information the principal can observe. Such an interaction loop creates more

space for profitable manipulations of information reporting. Decision markets [OS10; Che+11]

are proposed to address this issue.

My contributions. In the information elicitation with verification setting, I focus on the

problem of designing wagering mechanisms. Wagering mechanisms consider betting scenarios

where the participants have an amount of money they are willing to lose, referred to as the

wager, to support their reported information and exchange the chance to win the wagers of other

participants. There are generally four desirable properties in wagering mechanisms: individual

rationality, which guarantees participants have a positive expected reward of participation from

3



their own perspective; truthfulness, which makes truthful reporting the most profitable strategy

for each participant; budget balance, which guarantees that the principal needs not to pay using

her own budget; and Pareto optimality, which means that the participants can make full use of

their wagers, i.e., there is a chance that they can lose all their wagers or win all wagers from

others. It has been shown that these four desirable properties cannot be satisfied simultaneously

for deterministic wagering mechanisms. To overcome this impossibility result, I introduce

randomness into wagering mechanisms and achieve these four properties simultaneously. The

resulting mechanisms can also deal with the case where only a noisy signal of the ground truth

is available and give the principal the control of the variance of participants’ rewards.

Information aggregation with verification. Information aggregation with verification consid-

ers the problem of generating accurate predictions about the target random variables when

the principal has access to some history prediction data of the same pool of participants and

the corresponding ground truth. Traditional aggregation methods rely on identifying the

correlation, noise, and bias in participants’ predictions [WC92; Gun92; Cla+16] or identifying

experts from the participants [CW86; Asp10; BC15] and use this information to aid aggregation.

With the rise of machine learning technologies nowadays, this aggregation problem can be

explored as a typical supervised learning problem with relatively limited training data. The

abundant and ever-growing literature in supervised learning can be leveraged to attack this

problem. This thesis will not cover this problem.

Information elicitation without verification. Information elicitation without verification

considers the elicitation scenarios where the ground truth information is not available to

the principal. In many scenarios, the ground truth is usually too expensive to obtain, e.g.,

whether a social science study can be replicated or not, or even impossible, e.g., do you like

the restaurant. Without the ground truth, the truthfulness property is much harder to achieve,

and there is no prevalent solution like the strictly proper scoring rules in the with-verification

setting. Peer prediction mechanisms have been proposed as a means to achieve truthfulness

property in this setting. Instead of using the ground truth to verify the quality of information,
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these mechanisms assume certain knowledge of the correlation pattern between different

participants’ information and use their reported information to verify with each other’s. This

approach induces collusion among participants, resulting in different truthfulness notions

based on the set of collusion strategies considered. Research in this area has been evolving

in three dimensions: the knowledge requirement, the truthfulness notion, and the elicited

information representation. As for the knowledge requirement, the pioneering work [MRZ05b]

requires knowing the exact joint distribution between peer participants’ observed signals, while

the following works circumvent this strong requirement by either learning the knowledge

from multiple homogeneous elicitation tasks [e.g. WP13; Shn+16; RFJ16; KS19; Kon20] or

additionally asking participants’ opinions about their peer participants’ opinion distribution

on the original elicitation task [e.g. Pre04a; WP12b; RF13b]. The truthfulness notions achieved

have also evolved from making truthful reporting one of the Bayesian Nash equilibrium

(BNE) of the reporting game [MRZ05b] to the BNE with the highest expected payment [e.g.

KLS16; DG13; Shn+16; RFJ16] to the dominant uniform strategies [KS19; Kon20; GF19b]. The

information representations elicited have also expanded from categorical signals to probabilistic

predictions [e.g. WP12b; RF13b; KS18] to continuous statistic estimations [Kon+20; SY20a].

My contributions. Compared to the existing peer prediction mechanisms, the strictly

proper scoring rules in the with-verification setting has the advantage of being able to measure

the accuracy of the provided probabilistic predictions. In this thesis, I explore the problem of

extending the strictly proper scoring rules into the without-verification setting. In particular, I

propose the surrogate scoring rules, which recover the scores of strictly proper scoring rules in

expectation when there are multiple homogeneous probabilistic forecasting tasks. Consequently,

my mechanisms achieve the strongest truthfulness notion in the without-verification setting– the

dominant uniform strategy truthfulness– to elicit probabilistic predictions. These mechanisms

also inherit the capability of reflecting the prediction accuracy of the strictly proper scoring

rules, which can be further used to aid forecast aggregation.

Information aggregation without verification. Information aggregation without verification

considers the aggregation scenarios where the principal has no historical forecasting data
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of the current participation population. The biggest challenge of information aggregation

without verification is that the principal has little knowledge about the underlying information

structure of the participants’ provided information, e.g., how noisy the information is, what

the bias looks like, and how the information sources of different participants overlap with each

other [Sat+21]. Consequently, the principal cannot effectively utilize every piece of information

they collect. This challenge also exists in the with-verification setting but is more salient in the

without-verification setting, as some structure information can be inferred from the historical

data. Research in this field has two main approaches. One is to identify systematic bias

and noise in human predictions or the aggregation functions [Arm01; JW08; MLS12]. For

example, a logit-mean aggregator has been proposed to extremize the mean prediction because

human predictions are usually too conservative [Bar+14; Sat+14a]. The other is to identify the

information structure by asking additional questions related to peer participants’ opinions [e.g.

Pre04b; PSM17; PS19] or inferring from participants’ predictions on multiple homogeneous

forecasting questions [e.g. LPI12; OVB14; LD14; MP17]. The first approach is robust as it uses

generic human prediction patterns, but the accuracy improvement is limited. The second

approach obtains high accuracy in specific settings but lacks robustness as it requires the data

to follow the probabilistic model used in the inference.

My contributions. In this sub-domain, I propose a new aggregation approach that uses peer

prediction mechanisms to robustly improve the aggregation accuracy compared to the existing

approaches. Inspired by the surrogate scoring rules, which theoretically reflect the participants’

prediction accuracy in the without-verification setting under certain assumptions, I identify the

empirical correlation between the rewards of several peer prediction mechanisms, including

the surrogate scoring rules, and the corresponding prediction accuracy of the participants. I

further use these peer prediction mechanisms’ rewards to select the underlying sophisticated

forecasters from the participant pool and then apply generic aggregators over these selected

forecasters. The new aggregation approach demonstrates consistent accuracy improvement

over existing aggregators on 14 real-world forecasting datasets I tested. The success of this

approach also sheds light on how we can utilize the multi-task information to aid aggregation.

The existing approach to multi-task aggregation focuses on establishing probabilistic models on
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the prediction data and directly inferring the ground truth. Such an approach lacks robustness

because the inferred outcome may be dramatically wrong if the data deviates from the assumed

probabilistic model. In contrast, my proposed approach uses multi-task information to select

the top forecasters. Even if the selection might be inaccurate, the following generic aggregation

layer will still offer acceptable performance.

Human behavior. Human behavior is an overlooked aspect of information elicitation and

aggregation. When deploying elicitation and aggregation algorithms, the information provided

by the participants is inevitably influenced by their behavioral patterns, e.g., whether they

can correctly understand the questions and how they will react to the incentive mechanism.

While most truthfulness designs in information elicitation implicitly assume that participants

are fully rational, emerging empirical evidence has shown that human participants’ behaviors

deviate from the fully rational model [MT00; Rab13; BDL19]. Even if truthful reporting strictly

dominates any other reporting strategy in the expected reward under a mechanism, human

participants may still play some other suboptimal strategies [HRS16; Ree18]. Gao et al. [Gao+14]

also found that some carefully incentivized peer prediction mechanisms even led to worse

participant performance in controlled experiments. There are also several other interesting

problems to investigate relevant to human behavior. For example, can we elicit rich information

other than the direct predictions from the participants to help aggregate, and how the rich

information interacts with the direct predictions? It is also a problem whether certain groups

of people can understand the elicitation materials and provide useful information for specific

applications. These behavior-related questions have not received broad attention yet.

My contributions. In this thesis, I conduct preliminary investigations of human behavior in

information elicitation and aggregation. First, I investigate human behavior and its influence

in a unique information elicitation scenario, the interdependent valuation auctions. In interde-

pendent value auctions, the value of the item is jointly determined by the private signals held

by each bidder. The principal needs to allocate the item to the bidders based on its valuation to

achieve certain objectives such as social welfare maximization or revenue maximization. It is

widely observed that instead of playing as fully rational agents, human bidders in interdepen-
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dent valuation auctions tend to underestimate the contingency between other bidders’ bids

and their private signals, biding sub-optimally and non-truthfully. To address this problem, I

propose special interdependent valuation auctions making truthful reporting an equilibrium

strategy for these bidders with the above behavioral bias. Furthermore, I show how much

social welfare and revenue we must sacrifice to maintain a good incentive for human bidders.

Second, I explore a specific information elicitation and aggregation application, predicting

the replicability of social science studies. Hoogeveen, Sarafoglou, and Wagenmakers [HSW19]

found that laypeople can provide above-chance prediction accuracy in this application with the

intervention of experts. However, expert intervention is the bottleneck to the scalability of the

system. I investigate whether we can achieve similar prediction performance with laypeople

without expert intervention but with rich information elicited. In particular, I run experiments

with laypeople recruited online and elicit their surprisingness, understandability, and direct

replication prediction about published social science studies. I obtain several interesting

findings in these experiments related to how laypeople’s provided rich information interact

with their direct predictions and the ground truth.

Organization. The rest of the thesis is organized as follows. Chapter 1 introduces the

randomized wagering mechanisms in the domain of information elicitation with verification.

Chapter 2 talks about the surrogate scoring rules in the domain of elicitation without verification.

Chapter 3 discusses the forecast aggregation methods using peer prediction in the aggregation

without verification setting. Chapter 4 proposes the interdependent value auctions customized

to human bidders with behavioral bias, while Chapter 5 reports the experimental findings

in predicting the replicability of social science studies with laypeople. Finally, I conclude my

works in Chapter 6.
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Chapter 1

Randomized Wagering Mechanisms

1.1 Introduction

Wagering mechanisms [Lam+08; Lam+15; Che+14; FPW17; FP18] are one-shot betting mech-

anisms that allow a principal to elicit participating agents’ beliefs about an event of interest

without paying out of pocket or incurring a risk. Compared with prediction-market type of

dynamic elicitation mechanisms, one-shot wagering is possibly preferred due to its simplicity.

It is particularly designed for agents with immutable beliefs who “agree to disagree” and who

do not update their beliefs. In a wagering mechanism, each agent submits a prediction for

the event and specifies a wager, which is the maximum amount of money that the agent is

willing to lose. Then after the event outcome is revealed, the total wagered money will be

redistributed among the participants. Researchers have developed wagering mechanisms with

various theoretical properties. In particular, Lambert et al. [Lam+08; Lam+15] proposed a class

of weighted score wagering mechanisms (WSWM) that satisfy a set of desirable properties,

including budget balance, individual rationality, incentive compatibility, sybilproofness, among

others.1 Chen et al. [Che+14] later proposed a no-arbitrage wagering mechanism (NAWM) that

removes opportunities for participating agents to risklessly profit.

However, in both WSWM and NAWM, it has been observed that a participant only loses

a very small fraction of his total wager even in the worst case. This seems to be undesirable

1Definitions of some properties can be found in Section 1.4.
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in practice as it is against the spirit of betting and a wager effectively loses its meaning as a

budget. Freeman, Pennock, and Wortman Vaughan [FPW17] first formalized this observation

by indicating that these mechanisms are not Pareto optimal, where Pareto optimality requires

that there is no profitable side bet among participants before the allocation of a wagering

mechanism is realized. They also proved an impossibility result: Pareto optimality cannot

be satisfied together with individual rationality, weak budget balance and weak incentive

compatibility. A double clinching auction (DCA) wagering mechanism [FPW17] was hence

proposed to improve Pareto efficiency. The parimutuel consensus mechanism (PCM) has been

shown to satisfy Pareto optimality [FP18], but violates incentive compatibility.

This chapter is another quest of wagering mechanisms with better theoretical properties.

We expand the design space of wagering mechanisms to allow randomization on agent payoffs

and ask whether we can achieve all aforementioned desirable properties, including Pareto

optimality. We give a positive answer to this question: Our randomized wagering mechanisms

are the first ones to achieve Pareto optimality along with other properties.

We first show that a simple randomized lottery-type implementation of existing wagering

mechanisms (Lottery Wagering Mechanisms (LWM)) satisfy all desirable properties. In LWM,

instead of receiving re-allocated money from a deterministic wagering mechanism, each agent

receives a number of lottery tickets proportional to his payoff in the deterministic wagering

mechanism. Then, the agent with the winning lottery wins the total wager (collected from all

participants).

We then design another family of randomized wagering mechanisms, the Surrogate Wager-

ing Mechanisms (SWM), by bringing insights from learning with noisy data [Nat+13; Sco15]

to wagering mechanism design. A SWM first generates a “surrogate outcome" for each agent

according to the true event outcome. An agent’s reported prediction is then evaluated using his

surrogate but biased outcome together with a bias removal procedure such that in expectation

the agent receives a score as if his prediction is evaluated against the true event outcome.

Despite being randomized, SWM preserve the incentive properties of a deterministic wagering

mechanism. We show that certain SWM satisfy all desirable properties of a wagering mecha-

nism. Notably, SWM are robust to situations where only a noisy copy of the event outcome is
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available - this property is due to the fact that we borrow the machinery from the literature of

learning with noisy data in designing SWM. We believe that this is another unique contribution

to the literature of wagering mechanisms.

1.2 Related works

The ability to elicit information, in particular predictions and forecasts about future events, is

crucial for many application settings and has been studied extensively in the literature. Proper

scoring rules [Bri50b; JNW06; MW76; Win69; GR07a] have been designed for this purpose,

where each agent is rewarded by how well their reported forecasts predicted the true realized

outcome (after the outcome is resolved). Later, the competitive scoring rules [KG04] and

the parimutuel Kelly probability scoring rules [Joh07] adapt proper scoring rules to group

competitive betting. Both mechanisms are budget balanced so that the principal doesn’t need to

pay any participant. These spur the further development of the previously discussed wagering

mechanisms and the examination of their theoretical properties [Lam+08; Lam+15; Che+14;

FPW17; FP18] .

Our method used in lottery wagering mechanisms to transfer an arbitrary deterministic

wagering mechanism into a randomized one, while maintaining the properties, is inspired

by the method proposed in Witkowski et al. [Wit+18]. They study the incentive compatible

forecasting competitions and propose to transfer the scores of multiple predictions under

the strictly proper scoring rules into the odds of winning to maintain the incentive property.

Lambert et al. [Lam+08] proposed a randomization method based on WSWM via randomly

selecting strictly proper scoring rules and proper scoring rules with extreme values to increase

the stake. However, this method does not generalize to other deterministic wagering mecha-

nisms. Cummings, Pennock, and Wortman Vaughan [CPW16] proposed to apply differential

privacy technology to randomize the payoff of wagering mechanisms in order to preserve the

privacy of each agent’s belief. However, their method does not maintain budget balance (in

ex-post).

The idea of using randomization in wagering mechanism design is not entirely new, but
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not thoroughly studied. Both Lambert et al. [Lam+08] and Cummings, Pennock, and Wortman

Vaughan [CPW16] proposed certain types of randomized wagering mechanisms, but neither

of the mechanisms satisfies Pareto optimality. The randomized wagering mechanisms first

appeared in Lambert et al. [Lam+08]. There, the randomization is restricted to randomly

selecting different scoring rules used in WSWM. It introduced this randomization in order

to alleviate the the problem that in WSWM, agents only lose a small fraction of their wagers

regardless of the event outcome. However, even with this randomization, an agent won’t lose

all his wager in the worst when the number of agents is finite. Cummings, Pennock, and

Wortman Vaughan [CPW16] applied differential privacy technology to randomize the payoff of

wagering mechanisms. Its goal is to preserve the privacy of agents’ beliefs.

Our specific ideas of adding randomness as in the lottery-like wagering mechanisms are

inspired by recent works on forecasting competition [Wit+18]. Our ideas of surrogate wagering

mechanisms are inspired by surrogate scoring rules [LC18], and the literature on learning with

noisy labels [Byl94; Nat+13; Sco15].

1.3 Preliminaries

In this section, we explain the scenario where a wagering mechanism applies and formally

introduce the deterministic wagering mechanisms. Consider a scenario where a principal is

interested in eliciting subjective beliefs from a set of agents N “ t1, 2, ..., Nu about a random

variable (event) X, which takes a value (outcome) in set X “ t0, 1, ..., M ´ 1u, M ě 2. The belief

of each agent i is private, denoted as a vector of occurrence probabilities of each outcome

pi “ ppj
iqjPX P ∆M´1. Following the previous work on wagering mechanism, we continue

to adopt an immutable belief model for agents. Unlike in a Bayesian model, agents with

immutable beliefs do not update their beliefs. The immutable belief model and the Bayesian

model are two extremes of agent modeling for information elicitation, with the reality lies in

between and arguably closer to the immutable belief side as people do “agree to disagree.”

Moreover, Lambert et al. [Lam+15] showed that while WSWM was designed for agents with

immutable beliefs, it continued to perform well for Bayesian agents who have some innate
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utility for trading.

The principal uses a wagering mechanism to elicit private beliefs of agents. In a wagering

mechanism, each agent reports a probability vector p̂i P ∆M´1, capturing his belief, and wagers

an amount of money wi P R`. Similar to Lambert et al. [Lam+08], we assume that wagers are

exogenously determined for each agent and are not a strategic consideration. We use p̂ and w to

denote the reports and the wagers of all agents respectively, and use p̂´i and w´i to denote the

reports and wagers of all agents other than agent i. In addition, we use WS to denote
ř

iPS wi for

any set of agents S Ď N . After an event outcome x P X is realized, the wagering mechanism

redistributes all the wagers collected from agents according to p̂, w, x. The net-payoff of agent i

is defined as the payoff or the money that agent i receives from the redistribution minus his

wager. A wagering mechanism defines a net-payoff function Πipp̂; w; xq for each agent i with

wager constraint Πipp̂; w; xq ě ´wi and constraint Πipp̂; w; xq “ 0 whenever wi “ 0. The two

constraints ensure that no agent can lose more than his wager and no agent with zero wager

can gain.

1.3.1 Strictly proper scoring rules and weighted score wagering mechanisms

Strictly proper scoring rules [GR07a] are scoring functions proposed and developed to truthfully

elicit beliefs from risk-neutral agents. They are building blocks of many incentive compatible

wagering mechanisms, such as WSWM and NAWM. A strictly proper scoring rule rewards a

prediction p̂i by a score sxpp̂iq, according to the realization x of the random variable X. The

scoring function sxp¨q is designed such that the expected payoff of truthful reporting is strictly

larger than that of any other report, i.e, EX„pi

“

sXppiq
‰

ą EX„pi

“

sXpp̂iq
‰

, @p̂i ‰ pi.

There is a rich family of strictly proper scoring functions, including Brier scores (for binary

outcome event, sxpp̂iq “ 1 ´ pp̂i ´ xq2, where p̂i is agent i’s report of PpX “ 1q), logarithmic

and spherical scoring functions. Strictly proper scoring rules are closed under positive affine

transformations.

WSWM [Lam+08] rewards an agent according to his wager and the accuracy of his predic-

tion relative to that of other agents’ predictions. The net-payoff of agent i in WSWM, is formally
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defined as

ΠWS
i pp̂; w; xq “

wiWN ztiu

WN

ˆ

sxpp̂iq ´
ÿ

jPN ztiu

wj

WN ztiu
sxpp̂jq

˙

, (1.1)

where sxp¨q is any strictly proper scoring rule bounded within r0, 1s. WSWM strictly encourages

truthful reporting of predictions, because the net-payoff of agent i is a strictly proper scoring

rule of his prediction. Meanwhile,
ř

iPN ΠWS
i is always zero by the form of the net-payoff

formula, no matter what sxp¨q is. This means that the budget balance property of Eqn. (1.1)

doesn’t depend on the scoring rules. Our proposed surrogate wagering mechanisms use the

same general form of the net-payoff function (but a different scoring rule) to guarantee the

ex-post budget balance.

1.4 Randomized wagering mechanisms

We introduce randomized wagering mechanisms as extensions of deterministic wagering

mechanisms. Similar to deterministic wagering mechanisms, the net-payoff of an agent in

randomized wagering mechanisms depends on all agents’ predictions p̂ and wagers w, as

well as the realized outcome x. But different from deterministic wagering mechanisms, the

net-payoffs are now random variables. For notational simplicity, we now use Πipp̂; w; xq to

represent the random variable of agent i’s net-payoff in a randomized wagering mechanism.

We use πipp̂; w; xq to represent the realization of Πipp̂; w; xq. We use Πi and πi as abbreviations

when p̂; w; x are clear in the context. We denote the maximum/minimum possible value of a

random variable X by X/X. We denote the joint distribution of Πipp̂; w; xq, i P N by Dpp̂; w; xq

and the marginal distribution of Πipp̂; w; xq by Dipp̂; w; xq.

Definition 1.1. Given a set N of agents, reports p̂ and wagers w of agents and the event outcome

x, a randomized wagering mechanism defines a joint distribution Dpp̂; w; xq, and pays agent i

by a net-payoff Πipp̂; w; xq, where Πipp̂; w; xq, i P N are jointly drawn from Dpp̂; w; xq. Moreover,

Πipp̂; w; xq ě ´wi and Πipp̂; w; xq “ 0 whenever wi “ 0.

A deterministic wagering mechanism is a special case of randomized wagering mechanisms

when Dipp̂; w; xq is a point distribution for all agent i P N .
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1.4.1 Desirable properties

In the literature, several desirable properties of wagering mechanisms have been proposed in

the deterministic context. Lambert et al. [Lam+08] introduced (a) individual rationality, (b)

incentive compatibility, (c) budget balance, (d) sybilproofness, (e) anonymity,and (f) neutrality.

Chen et al. [Che+14] introduced (g) no arbitrage. Freeman, Pennock, and Wortman Vaughan

[FPW17] introduced (h) Pareto optimality. We extend these properties to the randomized

context. These new properties reduce to the properties defined in the literature for the special

case of deterministic wagering mechanisms.

(a) Individual rationality requires that each agent has nothing to lose in expectation by

participating.

Definition 1.2. A randomized wagering mechanism is individually rational (IR) if @i, pi, w, and

p̂´i, there exists p̂i such that

EX„pi ,Πi„Dipp̂i ,p̂´i ;w;Xq

“

Πipp̂i, p̂´i; w; Xq
‰

ě 0.

(b) Incentive compatibility requires that an agent’s expected net-payoff is maximized when

he reports honestly, regardless of other agents’ reports and wagers.

Definition 1.3. A randomized wagering mechanism is weakly incentive compatible (WIC) if

@i, pi, p̂i ‰ pi, p̂´i, w :

EX„pi ,Πi„Dippi ,p̂´i ;w;Xq

“

Πippi, p̂´i; w; Xq
‰

ě EX„pi ,Πi„Dipp̂;w;Xq rΠipp̂; w; Xqs .

A randomized wagering mechanism is strictly incentive compatible (SIC) if the inequality is strict.

(c) Ex-post budget balance ensures that the principal does not need to subsidize the betting.

Definition 1.4. A randomized wagering mechanism is weakly ex-post budget-balanced (WEBB)

if @p̂, w, x :
ř

iPN πipp̂, w, xq ď 0 for any realization pπiqiPN drawn from the joint distribution

Dpp̂, w, xq. A randomized wagering mechanism is ex-post budget-balanced (EBB) if the equality

always holds.
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(d) Sybilproofness requires that no agent can increase its expected net-payoff by creating

fake identities and splitting his wager, regardless of other agents’ reports and wagers.

Definition 1.5. Suppose agent i, instead of participating under one account with reported prediction

p̂i and wager wi, participates under k ą 1 sybil accounts, with predictions and wagers tp̂il
, wil ul“1,...,k

such that p̂il
“ p̂i, wil ě 0, @l “ 1, . . . , k and

řk
l“1 wil “ wi. A randomized wagering mechanism is

sybilproof if @i, p̂, w,and x, and for all sybil reports p̂i1 , ..., p̂ik
and wagers wi1 , ..., wik , we have

EΠ„Dpp̂;w;xqrΠipp̂; w; xqs

ě EΠ1„Dpp̂1;w1;xq

“

k
ÿ

l“1

Πil pp̂1; w1; xq
‰

.

where p̂, w and Π are the reports, wagers and net-payoffs when agent i participates under one account

and p̂1, w1 and Π1 are the reports, wagers and net-payoffs when agent i participates using k sybils.

(e) Anonymity requires that agents’ identities do not affect their net-payoffs. Let σN be

a permutation of the set of agents N , and denote p̂σN
, wσN the reports and wagers of agents

after applying the permutation respectively. Denote DσN the joint distribution of net-payoffs of

agents in N after applying the permutation on agents.

Definition 1.6. A randomized wagering mechanism is anonymous if @σN , p̂, w, x : Dpp̂; w; xq “

DσN pp̂σN
; wσN ; xq

(f) Neutrality requires that the net-payoffs do not depend on the labeling of the event

outcomes. Let σM be a permutation of the set of outcomes M. Denote by p̂σM
i the reported

prediction of agent i after we relabel the outcomes according to permutation σM, and denote

by σMpxq the new label of an outcome x P M.

Definition 1.7. A randomized wagering mechanism is neutral if @σM, p̂, w, x :

Dpp̂; w; xq “ Dpp̂σM
1 , ..., p̂σM

N ; w; σMpxqq.

(g) No arbitrage requires that no agent can risklessly make a profit.

Definition 1.8. A randomized wagering mechanism has no arbitrage if @i, p̂, wpw ą 0q, Dx such that

Πipp̂, w, xq ă 0.
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Budget Incentive Pareto No
Mechanism Balance Compatibility Optimality Arbitrage

WSWM [Lam+08] Strictly Strictly False False
NAWM [Che+14] Weakly Strictly False True
DCA [FPW17] Strictly Weakly False True
PCM [FP18] Strictly False True True

Randomized WSWM [Lam+08] Strictly True False True
Private WSWM [CPW16] False True False True

LWS (ours) Strictly True True True
RP-SWME (ours) Strictly True True True

Table 1.1: A summary of properties of wagering mechanisms2

(h) Pareto optimality in economics refers to an efficient situation where no trade can

be made to improve an agent’s payoff without harming any other agent’s payoff. In an IR

wagering mechanism, agents with different beliefs can always form a profitable (in expectation)

wagering game if they all have a positive budget. Freeman, Pennock, and Wortman Vaughan

[FPW17] defined Pareto optimality of a wagering mechanism as a property that agents with

different beliefs will each lose all of his wager under at least one of the event outcomes. This

“worst-case" outcome might be different for different agents. Thus, before the event outcome

is realized, no agent can commit to secure part of his wager from the mechanism and no

additional profitable wagering game can be made. We define Pareto optimality for randomized

wagering mechanisms in a similar spirit: no agents with different beliefs can commit to secure

part of their wagers before the event outcome is realized.

Definition 1.9. A randomized wagering mechanism is Pareto optimal (PO) if @p̂, w, @i, j P N with

p̂i ‰ p̂j, Dl P ti, ju and x, such that Πlpp̂, w, xq “ ´wl .

Properties of existing wagering mechanisms We summarize the properties of existing

wagering mechanisms3 and ours in Table 1. No existing mechanism satisfies all properties

(a)-(h). Moreover, Freeman, Pennock, and Wortman Vaughan [FPW17] showed an impossibility

2All of the mechanisms in this table satisfy individual rationality, anonymity, neutrality and sybilproofness.

3WSWM, NAWM, DCA, PCM, randomized WSWM [Lam+08], private WSWM [CPW16]
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Mechanism 1 Lottery Wagering Mechanisms

1: Compute the payoff of each agent i under a DET: π1
i Ð wi ` Πipp̂; w; xq.

2: Each agent has winning probability
π1

j
ř

iPN π1
j
. Draw a lottery winner i˚ P N .

3: Winner i˚ is assigned a net-payoff
ř

iPN zti˚u wi and any agent j ‰ i˚ has a net-payoff ´wj.

result that for deterministic wagering mechanisms, it is impossible to achieve properties IR,

WIC, WEBB, and PO simultaneously. For existing randomized wagering mechanisms, the

randomized WSWM in Lambert et al. [Lam+08] only satisfies PO in the limit of large population

of participants, and the private WSWM [CPW16] does not satisfy WEBB and PO.

1.5 Lottery wagering mechanisms

In this section we introduce a family of randomized wagering mechanisms, the lottery wagering

mechanisms (LWM), which extends arbitrary deterministic wagering mechanisms into random-

ized wagering mechanisms. We will show that LWM easily preserve (the randomized version

of) the properties of the underlying deterministic wagering mechanisms, while achieving

Pareto optimality, overcoming the impossibility result.

In lottery wagering mechanisms, each agent receives a number of lottery tickets in pro-

portion to the payoff he gets under a deterministic wagering mechanism, and a winner is

drawn from all the lottery tickets to win the entire pool of wagers. The mechanisms are

designed in a way such that the expected payoff of each agent is equal to his payoff in the

underlying deterministic wagering mechanisms and each agent has a positive probability to

lose all his wager. Hence, no profitable side bet exists and the mechanisms are Pareto optimal.

We formally present the lottery wagering mechanism that extends an arbitrary deterministic

wagering mechanism DET in Mechanism 1. To distinguish the payoff from the net-payoff, we

denote the payoff of agent i by π1
i .

Lottery wagering mechanisms are powerful in obtaining desirable theoretical properties.

We show in Theorem 1.1 that the lottery wagering mechanism that extends WSWM, namely

Lottery Weighted Score wagering mechanism (LWS), satisfies all properties (a)-(h).

Theorem 1.1. LWS satisfies all properties (a) - (h).
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We notice that although LWS satisfies all desirable properties, it can be unsatisfying because

(1) agents have high variance in payoff and (2) except the winning agent, all other agents lose

money. To alleviate these issues, we can mix LWS with WSWM by assigning each of them a

probability to be executed. The resulting mechanism still satisfies all the properties (a)-(h). The

probabilistic mixture allows us to adjust the variance of the payoffs as well as agents’ winning

probabilities in the resulting mechanism.

1.6 Surrogate wagering mechanisms

In this section, we propose the surrogate wagering mechanisms (SWM). We first introduce the

generic SWM, then a variant of SWM that achieves the desirable theoretical properties and

at the same time have moderate variance in payoffs and higher winning probabilities for

accurate predictions. We then notice that randomization opens up the possibility of dealing

with situations where only noisy ground truth is available. We discuss how to extend our

results to this noisy setting.

1.6.1 Generic surrogate wagering mechanisms

A surrogate wagering mechanism consists of three main steps: (1) SWM generates a surrogate

event outcome for each agent based on the true event outcome and a randomization device;

(2) SWM evaluates each agent’s prediction according to the surrogate event outcome using a

designed scoring function such that the score is an unbiased estimate of the score derived by

applying a strictly proper scoring rule to the ground truth outcome; (3) SWM applies WSWM

to the scores based on the surrogate event outcome to determine the final net-payoff of each

agent. Next, we explain these three steps in details. For clarity and simplicity of exposition, we

consider only binary events, i.e., X “ t0, 1u, in this section. Extension to multi-outcome events

will be introduced later.

Step 1. Surrogate event outcomes A SWM generates a surrogate event outcome X̃i for each

agent i P N . Denote X̃ “ pX̃1, X̃2, ..., X̃Nq. X̃i’s are drawn independently conditional on X,

and are specified by SWM. The conditionally marginal distribution PpX̃i|Xq, i P N can be
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Mechanism 2 Surrogate Wagering Mechanisms

1: Collect the predictions p̂ and wagers w.
2: Select error rate ei

0, ei
1 P r0, 1s and ei

0 ` ei
1 ‰ 1, @i.

3: Generate surrogate outcome X̃i, @i such that PpX̃i “ 1|X “ 0q “ ei
0, PpX̃i “ 0|X “ 1q “ ei

1.
4: Score each agent i P N according to Eqn. (1.2).
5: Pay each agent i P N a net-payoff using Eqn. (1.3).

expressed by two parameters, the error rates of the surrogate outcome: ei
1 “ PpX̃i “ 0|X “ 1q

and ei
0 “ PpX̃i “ 1|X “ 0q. The conditionally marginal distribution PpX̃i|Xq can be any

distribution satisfying @i P N : ei
1 ` ei

0 ‰ 1.4 We use x̃ and x̃i to denote the realization of X̃ and

X̃i respectively.

Step 2. Computing unbiased scores Given a strictly proper scoring rule sxp¨q within [0,1],

SWM computes the score of agent i as φ ˝ sx̃i pp̂iq, where

φ ˝ sx̃i pp̂iq “
p1 ´ ei

1´x̃i
qsx̃i pp̂iq ´ ei

x̃i
s1´x̃i pp̂iq

1 ´ ei
0 ´ ei

1
. (1.2)

x̃i is the realized surrogate event outcome for agent i. Lemma 1.2 shows that φ is an unbiased operator

on the score sx̃i ppiq in the sense that EX̃i|x
rφ ˝ sX̃i

pp̂iqs “ sxpp̂iq.

Lemma 1.2 (Lemma 3.4 of Liu and Chen [LC18]). @x P t0, 1u, @p̂i, ei
0, ei

1 P r0, 1s and ei
0 ` ei

1 ‰ 1, we have

EX̃i|x
rφ ˝ sX̃i

pp̂iqs “ sxpp̂iq.

Lemma 1.2 implies that if sxpp̂iq is a strictly proper scoring rule, then φ ˝ sx̃i pp̂iq is also a strictly

proper scoring rule.

Step 3. Computing net-payoffs In the final step, SWM computes the net-payoff of agent i using

WSWM and the unbiased score of agent i, i.e., replacing score sxpp̂iq in Eqn. (1.1) by score φ ˝ sx̃i pp̂iq.

Formally, we have

ΠSWM
i pp̂, w, xq “

wiWN ztiu

WN

ˆ

φ ˝ sx̃i pp̂iq ´
ÿ

jPN ztiu

wj

WN ztiu
φ ˝ sx̃j pp̂jq

˙

, (1.3)

where x and x̃i, i P N are the event outcome and the surrogate event outcome for each agent i

respectively.

4When e0 ` e1 “ 1, X̃i turns out to be independent with X, and thus provides no information about X. We thus
exclude ei

1 ` ei
0 “ 1.
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We formally present SWM in Mechanism 2. According to Lemma 1.2 (applying to each score terms),

we have @i, x, p̂, w : EΠSWM
i „Dpp̂;w;xqrΠSWM

i pp̂; w; xqs “ ΠWS
i pp̂; w; xq. Because the deterministic WSWM

satisfies properties ((a)-(f)) [Lam+08], SWM also satisfies these properties. A realization of the score

φ ˝ sX̃i
ppiq can be larger than 1, implying that agent i can lose (or win) more than what he can lose (or

win) in the deterministic WSWM. However, we also notice that for some extreme values of error rates,

the constraint Πipp̂; w; xq ě ´wi can be violated5, i.e., an agent may lose more than their wager, which

makes SWM invalid. In the next section, we show that by selecting error rates in a subtle way, we can

obtain all the properties (a)-(h) without violating the wager constraint Πipp̂; w; xq ě ´wi.

1.6.2 SWM with error rate selection (SWME) and random partition SWME (RP-

SWME)

We notice that according to Lemma 1.2, no matter which error rates e0, e1 are chosen, the unbiasedness

property of SWM holds, i.e., EΠi„Dpp̂;w;xqrΠSWM
i pp̂; w; xqs “ ΠWSWM

i pp̂; w; xq. In other words, we can

choose the error rates in an arbitrary way (even depending on p̂, w) without changing the expected

net-payoff6 of each agent under any realized event outcome. This gives us the flexibility to tune the

maximum amount of money each agent can win or lose in the game, while preserving the properties

((a)-(f)) inherited from WSWM.

Given reports p̂ and wagers w but not the event outcome x, the error rate pair that guarantees no

wager violation under any outcome x P X and any realization of the randomness induced by SWM may

not be unique. We propose Algorithm 3 to select a pair of error rates e0, e1 after the reports and wagers

are collected such that at least one agent loses all his wager in the worst case w.r.t. the outcome and the

randomness of SWM. We name the mechanism as SWME when we use Algorithm 3 to select the error

rates for SWM.

Lemma 1.3. SWME has no wager violation and when there exists at least one report p̂i ‰ 0.5, at least one of the

agents loses all his wager in the worst case w.r.t. the event outcome and the randomness of SWME.

Proof. In this proof, we use Brier Score as the scoring rule used by the mechanism, i.e., sxpp̂iq “

1 ´ px ´ p̂iq
2, and p̂i is agent i’s report of PpX “ 1q. The proof can be extended to other strictly proper

scoring rule within [0, 1].

5For example, in a wagering game, two agents both wager 1 and report 1 and 0, respectively. Let sxpp̂iq “

1 ´ px ´ p̂iq
2, ei

j “ 0.4, i “ 1, 2, j “ 0, 1. In the worst case of agent 1, the surrogate outcomes are realized as
x̃1 “ 0, x̃2 “ 1. Then, π1 “ ´5 ă ´1.

6The expectation is taken over the randomness of the mechanism conditioned on the event outcome.
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Algorithm 3 Error Rate Selection Algorithm

1: Collect the predictions p̂ and wagers w.
2: @i: sw

i Ð minxPX sxpp̂iq, sb
i Ð maxxPX sxpp̂iq.

3: For each agent i P N , compute ri: ri Ð 1
2 `

p1´
wi

WN
qpsw

i ´sb
i q`

ř

jPN ztiu
wj

WN
psw

j ´sb
j q

2p2`sw
i `sb

i ´
ř

jPN
wj

wN
psw

j `sb
j qq

4: If minjPN trju “ 0.5, set ei
1 “ ei

0 “ 0, @i, else set ei
1 “ ei

0 “ minjPN trju, @i.

We first consider the corner case where all agents reports 0.5. It can be verified that in Algorithm 2,

miniPN ri “ 0.5, and the algorithm sets ei
0 “ ei

1 “ 0, @i and SWME is reduced to WSWM. Thus, no wager

violation happens.

Next, we consider the scenario that Di P N , p̂ ‰ 0.5. In this scenario, we first prove that, in Algorithm

2 @i, ri P p0, 0.5q.

We have @i, sw
i , sb

i P r0, 1s, sw
i ď sb

i (the equality only holds when p̂i “ 0.5), sw
i ` sb

i P r0.5, 1s. Let

A “ p1 ´
wi

WN
qsw

i ´
ÿ

jPN ztiu

wj

WN
sb

j

and

B “ p1 ´
wi

WN
qpsw

i ` sb
i q ´

ÿ

jPN ztiu

wj

WN
psw

j ` sb
j q.

We have ri “ 1
2 ` 2A´B

2p2`Bq
, A ą ´1, B P p´1, 1q and 2A ´ B “

ř

jPN ztiu
wj

WN
psw

j ´ sb
j q ` p1 ´

wi
WN

qpsw
i ´ sb

j q ą 0

(there exists at least one agent i P N that p̂i ‰ 0.5). Therefore, 2A´B
2`B P p´1, 0q. We have ri “ 1

2 ` 2A´B
2p2`Bq

P

p0, 0.5q.

Next, we prove that if let ri be a variable, and let ei
0 “ ei

1 “ ri, the worst cast net-payoff πw
i (w.r.t. the

event outcome and the randomness of the mechanism) of agent i is a decreasing function of ri.

In the worst case of agent i, φ ˝ sx̃i pp̂iq “
p1´riqsw

i ´risb
i

1´2ri
, φ ˝ sx̃j pp̂jq “

p1´riqsb
i ´risw

i
1´2ri

and πw
i “ wi

pA´Briq
1´2ri

.

We have Bπw
i

Bri
“ wi

2A´B
p1´2riq

2 ă 0. Therefore, πw
i is decreasing with ri.

Finally, it is easy to verify that when ri “ 1
2 ` 2A´B

2p2`Bq
, πw

i “ ´wi.

Therefore, when we set for each agent i P N , e0
i “ e1

i “ minjPN rj, no agent can lose more than his

wager and agent i˚ “ argminjPN rj loses all his wager in the worst case.

Note Lemma 1.3 does not imply PO for SWME - if there exist two agents who have different

predictions and have wager left even in their own worst cases, they can form a profitable bet against

each other. We propose a variant of SWME to fix this caveat as follows.

Random partition SWME (RP-SWME) Lemma 1.3 implies that when agents are partitioned

into groups of two, there will not exist side bets. Meanwhile, a smaller number of agents imposes
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Mechanism 4 Random Partition SWME (RP-SWME)

1: Partition agents into groups of two. If N is odd, leave one group with three agents.
2: Run SWME for each group.

less restrictions in selecting the error rates, and thus each agent’s wager can be fully leveraged in the

randomization step. We would like to note that this is a very unique property of SWME: as both shown

in Freeman, Pennock, and Wortman Vaughan [FPW17] and our experimental results, when the number

of agents is small, existing wagering mechanisms (including DCA) all have low risk, i.e., have only a

small portion of wager to lose in the worst case. This not only implies that SWME is particularly suitable

for small group wagering but also points out a way to further improve the risk property of SWME, i.e.

via randomly partitioning agents into smaller groups. We formally present the random partition SWME

in Mechanism 4. We show in next section that RP-SWME achieves all properties (a)-(h).

1.6.3 Properties of SWME and RP-SWME

Theorem 1.4. Both (SWME) and (RP-SWME) satisfy properties (a)-(g). (RP-SWME) satisfies (h).

Proof. We prove the properties one by one.

(a) Individual rationality and (b) (strictly) incentive compatibility: First consider SWME. For

an arbitrary profile of reports p̂ and wagers w, Algorithm 3 outputs a profile E of error rates of all

agents. Denote by φ̂i
E p¨q the corresponding surrogate function specified using the error rate profile E for

agent i. For each i and j P N :

EX„pi ,X̃j

“

φ̂
j
E ˝ sX̃j

pp̂jq
‰

“piEX̃j|X“1rφ̂
j
E ˝ sX̃j

pp̂jqs ` p1 ´ piqEX̃j|X“0rφ̂
j
E ˝ sX̃j

pp̂jqs

“pi ¨ sX“1pp̂jq ` p1 ´ piq ¨ sX“0pp̂jq “ EX„pi rsXpp̂jqs,

using Lemma 1.2. Then, using the linearity of expectation, we have (here X̃ encodes the randomness in

ΠSWME
i )

EX„pi ,X̃
“

ΠSWME
i pp̂, w, Xq

‰

“
wiWN ztiu

WN

ˆ

EX„pi ,X̃i
rφ̂i

E ˝ sX̃i
pp̂iqs ´

ÿ

jPN ztiu

wj

WN ztiu
EX„pi ,X̃j

rφ̂
j
E ˝ sX̃j

pp̂jqs

˙

“EX„pi

„wiWN ztiu

WN

ˆ

sXpp̂iq ´
ÿ

jPN ztiu

wj

WN ztiu
sXpp̂jq

˙ȷ

“EX„pi

“

ΠWS
i pp̂, w, Xq

‰

.

Note the above holds for any possible reports (@E ). Thus the incentive properties, i.e., individual
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rationality and strictly incentive compatibility of WSWM will preserve. The proof for RP-SWME is

similar, with the only difference in that each agent’s net-payoff is further averaged over the random

partitions (but IR and SIC under each possible partition).

(c) Ex-post budget balance: This can be shown via writing down the sum of net-payoffs defined in

Eqn. (1.3). Our note below Eqn. (1.1) also states that the budget balance property doesn’t depend on the

specific forms of the scoring functions therein. We formally present the deduction as follows:

ÿ

i

ΠSWME
i pp̂i, wi, ¨q “

ÿ

i

wiWN ztiu

WN

ˆ

φ ˝ sx̃i pp̂iq ´
ÿ

jPN ztiu

wj

WN ztiu
WN ¨ φ ˝ sx̃j pp̂jq

˙

“
ÿ

i

ˆwiWN ztiu

WN
φ ˝ sx̃i pp̂iq ´

ÿ

j‰i

wjWN ztju

WN
¨

wi
WN ztju

WN ¨ φ ˝ sx̃i pp̂iq

˙

“
ÿ

i

ˆwiWN ztiu

WN
φ ˝ sx̃i pp̂iq ´

wiWN ztiu

WN
φ ˝ sx̃i pp̂iq

˙

“0.

The above also shows that for each group from the random partition of (RP-SWME), ex-post budget

balance is satisfied. Thus, we also proved ex-post budget balance for (RP-SWME).

(d) Sybilproofness: In RP-SWME, any pair of agents with different beliefs have a positive probability

to be partitioned into a sub-group. Applying Lemma 1.3, at least one of them loses all his wager in the

worst case. Thus, by Definition 1.9, RP-SWME is PO.

Lemma 1.5. If a (randomized) wagering mechanism W is (weakly) budget-balanced, (weakly) incentive compatible,

Sybilproof, then the mechanism W˚ that first uniformly randomly pairs agents in groups of two and then runs

mechanism W for each group is still Sybilproof.

Proof. We prove the claim for the case that an agent is only allowed to create two identities. The claim

holds in general, as we can alway merge two identities into one without decreasing the payoff, following

the result of the case of two.

Fixing an arbitrary belief pi of agent i, we denote the EW
i pp̂, wq :“ EX„pi ,DW pp̂ ,w,XqrΠipp̂, w, X “

xqs, where DW p¨q is the distribution specified by mechanism W . Suppose an agent i divides its

wager wi into two wagers wi1, wi2, and reports two predictions p̂i1, p̂i2 correspondingly. We have
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@p̂i1, p̂i2, wi1, wi2, p̂´i, w´i, x,

EW˚
i pp̂i1, p̂i2, p̂´i, wi1, wi2, w´iq

“
ÿ

j‰i

1
N

EW
i pp̂i1, p̂j, wi1, wjq `

ÿ

j‰i

1
N

EW
i pp̂i2, p̂j, wi2, wjq `

1
N

´

EW
i1 pp̂i1, p̂i2, wi1, wi2q ` EW

i2 pp̂i1, p̂i2, wi1, wi2q

¯

ď
ÿ

j‰i

1
N

EW
i pp̂i1, p̂j, wi1, wjq `

ÿ

j‰i

1
N

EW
i pp̂i2, p̂j, wi2, wjq pW is (weakly) budget balanceq

ď
ÿ

j‰i

1
N

EW
i ppi, p̂j, wi1, wjq `

ÿ

j‰i

1
N

EW
i ppi, p̂j, wi2, wjq pW is (weakly) incentive compatibleq

ď
ÿ

j‰i

1
N

EW
i ppi, p̂j, wi, wjq pW is sybilproofq

ď
ÿ

j‰i

1
N ´ 1

EW
i ppi, p̂j, wi, wjq “ EW˚

i ppi, p̂´i, wi, w´iq

Therefore, W˚ is sybilproof.

(e) Anonymity: For SWME, this proof can follow from the fact that the randomness (error rate

selection) in SWME and tRP-SWME depends only on the reports and wagers of agents and do not

depend on the identities of agents and the fact that the expected net-payoffs of agents are the same with

those of WSWM (Corollary 1), which is anonymous [Lam+08]. RP-SWME only adds a random partition

of agents in SWME and the partition does not depend on the identities of agents. Thus, RP-SWME is

also anonymous.

(f) Neutrality: For SWME, this proof can follow from the fact that the randomness (error rate selection)

in SWME and tRP-SWME depends only on the reports and wagers of agents and do not depend on the

labeling of the outcomes and the fact that the expected net-payoffs of agents are the same with those of

WSWM (Corollary 1), which is neutral [Lam+08]. RP-SWME only adds a random partition of agents

in SWME and the partition does not depend on the labeling of the outcomes. Thus, RP-SWME is also

neutral.

(g) Non-arbitrage opportunity: Now we prove that SWME does not allow arbitrage opportunity.

The idea is simple and straight-forward: fix the set of prediction p´i and wagers w. First notice the

fact that under each possible realization x̃i, x̃´i can be any possible realizations. Since sX̃i“1ppiq and

sX̃i“0ppiq have opposite monotonicity, we know there does not exist an interval for risklessly predictions.

The above non-arbitrage opportunity is ex-post, but the arbitrage opportunity persists when agents

evaluate the conditional expectation of his score with respect to the random flipping step (which is the
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same as WSWM), which remains a concern when each agent participates in multiple event forecasts.

This concern will be resolved when we apply the idea of surrogate wagering to the non-arbitrage

wagering mechanism (NAWM). For details please refer to Section 1.7.1 .

For RP-SWME, it runs SWME on each pair of agents after the random partition. Therefore, agents

also have no arbitrage opportunity.

(h) Pareto optimality: In RP-SWME, any pair of agents with different beliefs have a positive

probability to be partitioned into a sub-group. Applying Lemma 1.3, at least one of them loses all his

wager in the worst case. Thus, by Definition 1.9, RP-SWME is PO.

1.6.4 Wager with noisy ground truth

The above method also points out a way to implement a wagering mechanism with a noisy ground

truth, as SWM is able to remove the noise in outcomes in expectation. The ability to wager with noisy

ground truth provides informative information to agents who participated in a wagering mechanism

immediately only when a noisy copy of outcome is available. We present the key idea below, while not

re-defining all properties w.r.t. X̂ instead of X - the changes are rather straight-forward.

Suppose we know a noisy estimate X̂ on X, and denote the error rate of X̂ as ê1, ê0 (which we

know, and agents trust us in knowing these two numbers), we will be able to reproduce our surrogate

wager mechanism by plugging X̂, ê1, ê0 into Eqn. (1.2), if we ignore the PO property for now. We

similarly will have the wager violation issue pointed out earlier - we however do not have the control of

the error rates directly. An easy fix is via the following affine transformation of the wagering scores:

suppose under the worst case, the random flipping will incur ´scale ¨ wi wager score (net-payoff) with

scale ą 1. We can then rescale every agent’s wager score by 1{scale. Note the above affine transformation

does not affect the incentive and other properties of the original surrogate wagering mechanism, as

E
“

φ ˝ ΠWS
i p¨qq

‰

“ 1
scale ¨ E

“

ΠWS
i p¨qq

‰

.7 To achieve PO, we can further random partition agents into groups

of two and flip on X̂ according to certain error rates êi
0, êi

1 for each agent i. Let X̃i be the flipped outcome.

7We didn’t apply the scaling in SWME when there exists other options, as the scaling will effectively decrease
the expected payment of each agent.
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We can establish the error rates of X̃i w.r.t. the ground truth X and êi
0, êi

1 by following equations:

PpX̃i “ 1|X “ 0q “
ÿ

xPt0,1u

PpX̃i “ 1, X̂ “ x|X “ 0q

“
ÿ

xPt0,1u

PpX̃i “ 1|X̂ “ x, X “ 0q ¨ PpX̂ “ x|X “ 0q

“ êi
0 ¨ p1 ´ ê0q ` p1 ´ êi

1q ¨ ê0,

and similarly PpX̃i “ 0|X “ 1q “ êi
1 ¨ p1 ´ ê1q ` p1 ´ êi

0q ¨ ê1. It’s easy to see that when ê1 ` ê0 ‰ 1, we can

tune the error rates of X̃ via tuning êi
1, êi

0. This step corresponds to the error selection step in SWME, i.e.,

Algorithm 3.

1.7 Extensions of SWM

We discuss a couple of useful extensions of SWM: i). one is instead of building on WSWM, we show the

idea of surrogate idea can also build upon another deterministic wagering mechanism NAWM. (ii). We

extend our results to a multi-outcome setting.

1.7.1 Surrogate NAWM

We note that the bias removal procedure adopted in SWM does not rely the specific underlying wagering

mechanism heavily. We demonstrate the idea with a non-arbitrage wagering mechanism (NAWM

[Che+14])8.

Notice that since ΠNA
i p¨q is not linear in the surrogate scores of each agent, the budget balance

argument is not as easy as in the WSWM case. Nonetheless we notice the following fact proved in Chen

et al. [Che+14]:

ΠNA
i pp̂i, p̂´i, w, X “ xq “ ΠWS

i pp̂i, p̂´i, w, X “ xq ´ ΠWS
i p ¯̂pi, p̂´i, w, X “ xq

where ¯̂pi denotes the average prediction from j ‰ i. Then we can safely apply the surrogate idea to the

first WSWM scoring term:

φ ˝ ΠNA
i pp̂i, p̂´i, w, X̃ “ x̃q “ φ ˝ ΠWS

i pp̂i, p̂´i, w, X̃ “ x̃q ´ ΠWS
i p ¯̂pi, p̂´i, w, X “ xq

8Though the randomization device already grants us the non-arbitrage property, we pick this mechanism for i.
its simplicity for presentation, as NAWM also extends from WSWM. ii. we will show in experiments later that we
empirically observe higher risk when applying this surrogate based randomized NAWM.
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This mechanism will enjoy the higher risk property introduced by surrogate wagering, as well as the

non-arbitrage (in conditional expectation) brought in by NAWM.

1.7.2 Multi-outcome events

For simplicity, our previous discussions focused largely on the binary outcome scenario. As promised,

we now show that our results extend to the non-binary events. Recall that there are M outcomes,

denoting as r0, 1, 2, ..., M ´ 1s. Denote the following confusion matrix

C “

»

—

—

—

—

—

—

—

–

c0,0 c0,1 . . . c0,M´1

c1,0 c1,1 . . . c1,M´1

. . . . . . . . . . . . . . . . .

cM´1,0 cM´1,1 . . . cM´1,M´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and each entries cj,k indicates the flipping probability for generating a surrogate outcome: cj,k “ PrrX̃i “

k|X “ js.

The core challenge of this extension is to find an unbiased operator φ. Writing out the conditions

for unbiasedness (s.t. EX̃i|x
rφ ˝ sX̃i“x̃i

pp̂qs “ sxpp̂q.), we need to solve the following set of functions to

obtain φp¨q (short-handing φ ˝ sxpp̂q as φxpp̂q):

s0pp̂q “ c0,0 ¨ φ0pp̂q ` c0,1 ¨ φ1pp̂q ` ¨ ¨ ¨ ` c0,M´1 ¨ φM´1pp̂q

s1pp̂q “ c1,0 ¨ φ0pp̂q ` c1,1 ¨ φ1pp̂q ` ¨ ¨ ¨ ` c1,M´1 ¨ φM´1pp̂q

....

sM´1pp̂q “ cM´1,0 ¨ φ0pp̂q ` cM´1,1 ¨ φ1pp̂q ` ¨ ¨ ¨ ` cM´1,M´1 ¨ φM´1pp̂q

Denote by spp̂q “ rs0pp̂q; s1pp̂q; ...; sM´1pp̂qs, and ’pp̂q “ rφ0pp̂q; φ1pp̂q; ...; φM´1pp̂qs. Then the above

equation becomes equivalent with the following system of equation: spp̂q “ C ¨ ’pp̂q. Choose a C with

full rank. For instance when M ą 2 we can set @j, cj,j “ 1
2 , cj,k “ 1

2pM´1q
, k ‰ j - not hard to verify that

such a C is indeed full rank. Then we are ready to solve for ’ppq as follows:

’pp̂q “ C´1 ¨ spp̂q. (1.4)

With defining above unbiased surrogate operator, all other discussions generalize fairly straight-

forwardly - such a φ will give us the same equation as established in the lemma below for the

non-binary event outcome setting:

Lemma 1.6. Define φp¨q as in Eqn. (1.4), and flip X̃i using C, x. Then EX̃i|x
rφ ˝ sX̃i“x̃i

pp̂qs “ sxpp̂q.
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We include a detailed example of φ for three-outcome events below.

Example of φ for three-outcome events

Example 1.1. An example with M “ 3. Suppose we flip the outcome using the uniform-error confusion matrix:

C “

»

—

—

—

–

0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5

fi

ffi

ffi

ffi

fl

ñ C´1 “

»

—

—

—

–

3 ´1 ´1

´1 3 ´1

´1 ´1 3

fi

ffi

ffi

ffi

fl

Therefore we obtain a closed-form of φ:

’0pp̂q “ 3s0pp̂q ´ s1pp̂q ´ s2pp̂q

’1pp̂q “ ´s0pp̂q ` 3s1pp̂q ´ s2pp̂q

’2pp̂q “ ´s0pp̂q ´ s1pp̂q ` 3s2pp̂q

1.8 Evaluation

In this section, we evaluate LWS and RP-SWME with extensive simulations. We first compare the

efficiency of LWS and RP-SWME with that of other existing deterministic (weakly) incentive compatible

mechanisms WSWM, NAWM and DCA. The results show that the two randomized wagering mechanisms

outperform the three deterministic wagering mechanism. Then, we compare the variance of payoff and

the probability of winning money within the two randomized wagering mechanisms. The results show

that RP-SWME is better than LWS in these two matrices.

1.8.1 Simulation Setup

We simulate both the binary events and the multi-outcome events. For binary events, we generated

six sets of agents’ predictions and wagers according to the combinations of three different prediction

models and two different wager models. With a little abuse of notation, we denote that an event happens

with probability q and that agent i believes that the event to predict will happen with probability pi and

will not happen with probability 1 ´ pi. We use three models to generate predictions pi, i P N :

1. Uniform model: For each event, pi is independently drawn from a uniform distribution over r0, 1s.

2. Logit-Normal model: This model assumes that pi, when being mapped to the real line by a logit

function as log
´

pi
1´pi

¯

, is independently drawn from a Normal distribution N plogp
q

1´q q1{α, σ2q,
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i.e., pi „ Logit-Normal
´

logp
q

1´q q1{α, σ2
¯

. q, α, σ2 are model parameters. This model is proposed

and used to estimate the happening probability of the event in Satopää et al. [Sat+14a], where

q is regarded as an estimator of the happening probability and α models the under-confident

effect on human forecasters. Based on a real prediction dataset over 1300 forecasters and 69

geopolitical events collected in Satopää et al. [Sat+14a], this model outperforms most existing

models to estimate the happening probability of events, which leads us to believe this model a

good alternate to generate prediction data. In our simulations, we adopted α “ 2, which best fits

the aforementioned real prediction dataset, σ2 “ 1, and q is drawn uniformly from r0, 1s for each

event.

3. Synthetic model: this synthetic model is introduced from a set of simulation studies in Ranjan

and Gneiting [RG10], Allard, Comunian, and Renard [ACR12], and Satopää et al. [Sat+14a]. The

model assumes that the happening probability of an event to be predicted by N is given by

q “ Φp
řN

i“1 uiq, where Φ is the cumulative distribution function of a standard normal distribution

and ui is independently drawn from N p0, 1q. Each agent knows the true probability generating

model and ui but not uj, @j ‰ i. Accordingly, each agent’s calibrated belief of the happening

probability of the event is given by pi “ Φp
ui?

2N´1
q.

We use two models to generate the wagers of agents:

1. Uniform model: All agents’ wagers are equal to 1.

2. Pareto model: This model assumes that the wager wi of agent i follows the Pareto distribution,

which is often adopted to model the distribution of wealth in a population. In the simulations of

Freeman, Pennock, and Wortman Vaughan [FPW17], the authors selected the shape parameter and

scale parameter of the Pareto distribution as 1.16 and 1 correspondingly, which is the distribution

depicted as “20% of the population has 80% of the wealth”. We adopted the same parameters for

comparison purpose.

For events with multiple outcomes, we simulated three sets of data with the number of possible

outcomes 3, 6, 9 correspondingly. In each set, we drew the predictions from uniform distribution over

the whole probability space and drew the wagers according to the Uniform model.

1.8.2 Comparison of efficiency of wagering mechanisms

We show that LWS and RP-SWME are more efficient than existing deterministic (weakly) incentive

compatible mechanisms WSWM, NAWM and DCA. We evaluate the efficiency by two metrics: Average
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(f) p „ Synthetic, w „ Pareto

Figure 1.1: Average individual risk of each of five wagering mechanisms as a function of N under different
prediction and wager models

individual risk and Average money exchange rate.

Individual risk is the percent of wager that an individual agent can lose in the worst case w.r.t. the

event outcome and the randomness of the mechanisms. The average individual risk is an indicator of

Pareto optimality, because the average individual risk equal to 1 (i.e., no one can commit to secure a

positive wager before the wagering game) is a sufficient condition of Pareto optimality. Money exchange

rate is the total amount of money exchanged in the game after the outcome of a wagering mechanism is

realized, divided by the total amount of wagers. Average money exchange rate measures the efficiency

of an average wagering game.

In our simulations, we vary the number of agents for 2 to 50 with a step of 2. For each number

of agents, we randomly generate 1000 events and the agents’ predictions and wagers for each of the

six combinations of prediction models and wager models, and take the average of individual risk

and money exchange rate over the 1000 events. When calculating the money exchange, we use the

expectation of the money exchange over all possible outcomes according to the happening probability

of each outcome. This happening probability is either specified in the model generating the predictions,

or otherwise, drawn from a uniform distribution over the corresponding probability space.

In the simulations, both RP-SWME and LWS achieve the highest average individual risk (approxi-

mately 1) under all conditions (# of outcomes, # of agents, prediction models, and wager models) we
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(c) Events with 9 outcomes

Figure 1.2: Average individual risk of each of four mechanisms under events with multiple outcomes

simulated (Figure 1.1, 1.2). In contrast, the best of the deterministic mechanisms DCA, only achieves

an approximate 1 average individual risk when the wagers of agents are uniform and the number of

participants is more than 30 (Figure 1.1a-1.1c). Its average individual risk drops to 0.6 when the wagers

of agents follows the Pareto distribution (Figure 1.1d-1.1f). This result shows that the two randomized

mechanisms effectively remove the opportunity for side bet and take use of all the wagers before the

outcome is realized.

LWS doubles the money exchange rate of the second best alternative, hitting a more than 80% money

exchange rate under all conditions we simulated (Figure 1.3, 1.4). On the other hand, RP-SWME also

defeats the other two incentive compatible deterministic wagering mechanisms in expected money

exchange under all conditions we simulated (Figure 1.3, 1.4). Meanwhile, it also outperforms DCA when

the number of agents is small (Figure 1.3).

In particular, when the prediction follows the synthetic model, where the predictions are much closer

to each other as the number of participants increases, the money exchange rate of the two incentive

compatible deterministic wagering mechanisms, WSWM and NAWM converge to zero. However, the

two randomized wagering mechanisms still keep a large money exchange rate (Figure 1.3c, 1.3f).

1.8.3 Comparison of randomness properties of RP-SWME and LWS

In this section, we compare the standard variance of payoffs and the probability of not losing money of

RP-SWME and LWS. We evaluated these two metrics w.r.t. to the prediction accuracy, which is measured

based on the distance of a prediction to the outcome, i.e., Accuracy “ 1 ´ |x ´ pi|
9.

In the evaluation, we run 10000 wagering instances under these two mechanisms and recorded the

9We use it as measurement of accuracy for two reasons: i. it is linear in prediction pi, ii. it has an inject to Brier
Score
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(f) p „ Synthetic, w „ Pareto

Figure 1.3: Average money exchange rate of each of five wagering mechanisms as a function of N under different
prediction and wager models

prediction accuracy of each agent in each instance and the corresponding net-payoff. Then, we group

these agents into 10 groups that correspond to 10 consecutive accuracy intervals. In each group, we

calculate the standard variance and the percent of agents winning money. For fair comparison, we

normalize the net-payoff of each agent by its own wager.

We simulate binary events. We generate two set of simulated data. In both sets, we varied the

number of agents from 2 to 50 with a set of 2, and under each number, we generated 10000 instances. In

each instance, the agents’ predictions are drawn from the Uniform model, while the wagers are drawn

from the Uniform model in one set and drawn from the Pareto model in the other set.

Our results show that under all conditions we simulate, RP-SWME has a much smaller variance

in agents’ net-payoff and the variance is steady across agents with different prediction accuracy. In

contrast, the LWS has a much larger variance in net-payoff, which increases with the prediction accuracy

(Figure 1.5). On the other hand, RP-SWME has a much larger probability of not losing money and

this probability increases with the prediction accuracy, while LWS has a much smaller such probability

(Figure 1.6). In brief, while both RP-SWME and LWS can effectively improve the efficiency of wagering,

RP-SWME provides much less uncertainty than LWS does and thus, may be regarded as a more attractive

alternative for deterministic wagering mechanisms.
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(b) Events with 6 outcomes
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(c) Events with 9 outcomes

Figure 1.4: Average money exchange rate of each of four mechanisms under events with multiple outcomes
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Figure 1.5: Std. variance of net-payoff as a function of
prediction accuracy: RP-SWME v.s. LWS
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Figure 1.6: Probability of winning money as a function
of prediction accuracy: RP-SWME v.s. LWS

1.9 Conclusion

We extend the design of wagering mechanism to its randomized space. We propose two of them:

Lottery Wagering Mechanisms (LWM) and Surrogate Wagering Mechanisms (SWM). We demonstrate

the power of randomness by theoretically proving that they both satisfy a set of desirable properties,

including Pareto efficiency which is missing in exiting wagering literature. We also carried out extensive

experiments to support our theoretical findings. SWM is also robust to noisy outcomes. In particular,

as shown by simulations, surrogate wagering mechanisms have reasonably small standard variance in

agents’ payoff and low probability for agents to lose all their wagers.
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Chapter 2

Surrogate Scoring Rules

2.1 Introduction

Accurate assessment of random variables of interest (e.g. how likely the S&P 500 index will go up

next week) plays a crucial role in a wide array of applications, including computational finance [DP97],

geopolitical forecasting [Tet+14; Fri+18], weather and climate forecasting [GR05], and the prediction of

the replicability of social science studies [Alt+19; HSW19]. Since such assessments are often elicited from

people, how to incentivize people to provide accurate assessments has been a topic of great scientific

interests.

For settings where the principal will have access to the ground truth (e.g. after a week, knowing

whether the S&P 500 index actually went up), strictly proper scoring rules (SPSR) [Bri50a; Win69; Sav71;

JNW06; GR07b] have been developed to elicit probabilistic assessments and evaluate them against the

ground truth. SPSR have two desirable properties. First, they incentivize truthful information reporting:

the SPSR score of an agent’s reported prediction is strictly maximized in the agent’s expectation if she

truthfully reveals her prediction. Second, the SPSR score of a prediction measures the quality of the

prediction in the sense that the closer the prediction is to the underlying, unknown true distribution of

the random event, the higher the expected score.

However, in many applications, the ground truth is not available in time or at all. For example,

geopolitical events usually take months to resolve [Tet+14], and whether a study will be successfully

replicated is not known if a replication test of it is not attempted. In this chapter, we extend the literature

of SPSR to the information elicitation without verification (IEWV) settings, where the principal has no

access to the ground truth and still wants to elicit private probabilistic beliefs. We ask the following
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research question:

Can we extend SPSR to scoring mechanisms that can achieve truthful elicitation of

probabilistic information and quantify the quality of the elicited information for IEWV?

Witkowski et al. [Wit+17] explored this question in a single-task setting (i.e., having a single random

variable of interest to predict). When an unbiased proxy to the true probability distribution of the

ground truth is available, they generalized SPSR to proper proxy scoring rules, which score a prediction

against the unbiased proxy while maintaining the two properties of SPSR. However, when the principal

only has access to agents’ reports, it remains an open problem how such an unbiased proxy can be

constructed without affecting the incentive properties.

In this chapter, we study the research question in a multi-task setting, where a principal wants

to predict multiple random variables that are similar a priori. We provide a positive answer to the

question. In our solution, the principal only needs to know the order of the prior probability of each

possible outcome (e.g., for binary random variables, the more likely outcome) and does not need to

have an unbiased proxy for each task. Specifically, we develop a family of scoring mechanisms that

utilize the similarity of tasks and the conditional independence of agents’ beliefs to construct a biased

proxy of the ground truth, and then, score a prediction against this proxy by removing the bias w.r.t.

the underlying SPSR that one wants to recover. Our proxy is explicitly constructed only from agents’

reported predictions. As a result, we achieve the dominant uniform strategy truthfulness [GF19b] in

eliciting probabilistic predictions, where truthful reporting is the strict best strategy when each agent

adopts the same strategy across all tasks. Furthermore, the scores of our mechanisms recover the scores

of SPSR in expectation. To the best of our knowledge, our work provides the first meta solution that

enables applications of any SPSR to the IEWV setting without relying on access to unbiased proxies of

the ground truth. We name our solution Surrogate Scoring Rules (SSR).

As a building block, we first introduce SSR for a stylized setting where the principal has access

to a noisy estimate of the ground truth, as well as the estimate’s error rates, to evaluate the elicited

information. We show that SSR preserve the same information quantification and truthful elicitation

properties just as SPSR, despite the lack of access to the ground truth. These surrogate scoring rules

are inspired by the use of surrogate loss functions in machine learning [AL88; Byl94; Sco+13; Nat+13;

Sco15]. They remove the bias from the noisy estimate of the ground truth such that in expectation a

report is as if evaluated against the ground truth.

Building on the above bias correction step, when the principal only has access to agents’ reports and

the order of the prior probabilities of each outcome, we develop the SSR mechanisms for the multi-task
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setting to achieve information quantification and the dominant uniform strategy truthfulness when the

principal has sufficiently many tasks and agents. Our mechanisms rely on an estimation procedure to

accurately estimate the average bias in the peer agents’ reports. With the estimation, a random peer

agent’s report can serve as a noisy estimate of the ground truth, and SSR can then be applied to achieve

the two desired properties. We evaluate the empirical performance of the SSR mechanisms using 14

real-world human forecast datasets. The results show that SSR effectively recover SPSR scores but using

only agents’ reports.

We summarize our contributions as follows:

• We extend SPSR to a family of scoring mechanisms, the SSR mechanisms, that operate in the

IEWV setting. The SSR mechanisms only require access to peer reports and the order of the prior

probabilities of the ground truth being each outcome, and they can truthfully elicit probabilistic

beliefs. An SSR mechanism can build upon any SPSR and quantifies in expectation the value of

the elicited information just as the corresponding SPSR does as if it had access to the ground truth.

Therefore, our work complements the proper scoring rule literature and expands the application

of SPSR in challenging elicitation settings where the ground truth is unavailable.

• For the IEWV setting, most existing mechanisms focus on incentivizing truthful reporting of

categorical signals via rewarding the correlation between two agents’ reports. Our SSR mecha-

nisms complement this literature from two perspectives. First, SSR mechanisms induce dominant

uniform strategy truthfulness in eliciting probabilistic predictions instead of categorical signals.

Second, instead of scoring a prediction by assessing the correlation between two agents’ reports,

SSR mechanisms score predictions according to their prediction accuracy against the unknown

ground truth. This property encourages agents to search for more accurate forecasts.

• We evaluate the empirical performance of SSR mechanisms on 14 real-world human prediction

datasets. The results show that SSR mechanisms can better reflect the true accuracy of agents in

terms of SPSR scores than other existing mechanisms designed for IEWV.

2.2 Related work

The most relevant literature to this work is on strictly proper scoring rules (SPSR) and peer prediction.

SPSR are designed to elicit subjective beliefs about random variables when the principal can evaluate

agents’ predictions after the random variables are realized. Brier [Bri50a] proposed the widely used

Brier score to quantify the quality of forecasts. Subsequent work studied other SPSR and developed
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several characterizations of SPSR [Win69; Sav71; JNW06; GR07b].

Peer prediction refers to a collection of mechanisms developed for incentivizing truthful reporting

in IEWV. Our SSR mechanisms are additions to this collection. The core idea of peer prediction is to

leverage peer reports as references to score an agent’s report. The pioneer work [MRZ05b] considered a

single-task elicitation setting where each agent observes a private signal associated with a single task

of interest, and a principal who knows the joint distribution of these signals wants to elicit the exact

realizations of the signals. It proposed the first mechanism where truthful reporting is a Bayesian Nash

Equilibrium (BNE). Following this work, Jurca and Faltings [JF07; JF09] proposed mechanisms where

truthful reporting is a BNE with a strictly higher payment than any other pure-strategy equilibrium.

Kong, Ligett, and Schoenebeck [KLS16] proposed a mechanism, in which truthful reporting is the

BNE with the highest payoff for agents among all equilibria on a binary-outcome task. Frongillo and

Witkowski [FW16] characterized all mechanisms that admit a truthful reporting equilibrium in this

setting. Another research thread for single-task elicitation asks agents to answer additional questions in

addition to providing their signal. The Bayesian Truth Serum [Pre04b] additionally asks the agents to

report their beliefs about other agents’ reports and then uses this additional information to score the

answer of each agent. The advantage of this approach is that the principal needs not to know the joint

distribution of agents’ signals and that the additional information can be used to identify the correct

answer to the question [PSM17]. However, this approach introduces extra work for the agents. For

interested readers, this line of research has been further developed by other studies [RF13a; WP12b;

Ril14; SY20b].

To relax the requirement on the principal’s knowledge of the signal distribution, many recent peer

prediction studies have focused on a multi-task setting, where there exists a set of i.i.d. tasks, allowing

the principal to leverage the statistical patterns in agents’ reports to incentivize truthful reporting. Our

work falls into this category. The multi-task setting was simultaneously developed by Dasgupta and

Ghosh [DG13] and Witkowski and Parkes [WP13]. The latter was the first to explicitly estimate relevant

aspects of agents’ belief models from agents’ reports (which this work also uses), while the former

achieves provably stronger equilibrium properties. In the mechanism of Dasgupta and Ghosh [DG13],

the truthful reporting equilibrium has the highest expected payoff for agents among all equilibria when

eliciting binary signals. Radanovic, Faltings, and Jurca [RFJ16] and Shnayder et al. [Shn+16] extended

the mechanism of Dasgupta and Ghosh [DG13] to elicit categorical signals while maintaining the same

incentive property. More recent studies have achieved the dominant uniform strategy truthfulness in

the multi-task setting. Parallel to our work, Kong and Schoenebeck [KS19] developed a framework to

design mechanisms to elicit general signals as long as certain notions of mutual information can be
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estimated from agents’ reports. Their mechanisms, which includes the mechanism of Shnayder et al.

[Shn+16] as a special case, are dominant uniform strategy truthful when there is an infinite number

of tasks. Kong [Kon20] further achieved this truthfulness property with a finite number of tasks for

eliciting categorical signals. Kong et al. [Kon+20] and Schoenebeck and Yu [SY20a] proposed dominant

uniform strategy truthful mechanisms to elicit continuous signals with normal distributions and with

general full-support marginal distributions, respectively. When there is a noisy estimate of the ground

truth with a known confusion matrix, Goel and Faltings [GF19b] proposed a mechanism that also

achieves the dominant uniform strategy truthfulness; the reward of an agent in the mechanism is an

affine transformation of the the agent’s correctness rate over all classes. In comparison, our dominant

uniform strategy truthfulness mechanisms focus on eliciting posterior beliefs of the ground truth and

the rewards in our mechanisms recover in expectation the accuracy of agents in terms of the SPSR.

Instead of assuming availability of an estimate of the confusion matrix, we construct an estimate from

the agents’ reports, assuming the principal knows the order of the prior probabilities of each possible

outcome of the ground truth.

There are a few studies also focusing on eliciting probabilistic predictions like this work. Among

these studies, Witkowski and Parkes [WP12a] and Radanovic and Faltings [RF14] consider single-

task elicitation and ask agents to report additional information as required by the Bayesian Truth

Serum [Pre04b]. The two mechanisms proposed make truthful reporting an ex-post equilibrium and

a BNE, respectively. Kong and Schoenebeck [KS18] provided a mechanism to elicit probabilistic

predictions for the multi-task setting. Although truthful reporting is an equilibrium strategy under

their mechanism, the mechanism is not dominant uniform strategy truthful. When the principal has

access to an unbiased proxy of the ground truth, the proxy scoring rules developed by Witkowski et al.

[Wit+17] can be used to elicit probabilistic predictions for the single-task setting as what SPSR offer

with access to the ground truth. In this case, proxy scoring rules score a prediction against the unbiased

proxy using a SPSR, and the expected score is equal to the expected score given by the SPSR using the

ground truth up to a positive affine transformation [FK19]. In comparison, our mechanisms also offer a

meta approach to recover the score for any SPSR. Our mechanisms do not require access to an unbiased

proxy but a set of i.i.d. tasks.

Finally, our work borrows ideas from the machine learning literature on learning with noisy data

[e.g. Nat+13; FV14; Sco15; RW15]. At a high level, our goal aligns with the goal in learning from noisy

labels – both aim to evaluate a prediction when the ground truth is missing, but instead a noisy signal

of the ground truth is available. Our work addresses the additional challenge that the error rate of the

noisy signal remains unknown a priori.
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2.3 Preliminaries

Before we introduce our model of information elicitation without verification, we first briefly introduce

strictly proper scoring rules (SPSR), which are designed for the well-studied information elicitation with

verification settings. We highlight two nice properties of SPSR: i. SPSR quantify the value of information

and ii. SPSR is incentive compatible for elicitation. Our goal is to develop scoring rules that match

these properties for the more challenging without verification settings. Our solutions build upon the

understanding of SPSR.

SPSR are designed for eliciting subjective distributions of random variables when the principal can

reward agents after the realization of the random variables. SPSR apply to eliciting predictions for any

random variables, but we introduce them for binary random variables in this section because most of

this chapter focuses on the binary case. Let Y P t0, 1u represent a binary event. An agent has a subjective

belief p P r0, 1s for the likelihood of Y “ 1. When the agent reports a probabilistic prediction q P r0, 1s of

Y being 1, the principal rewards the agent using a scoring function Spq, yq that depends on both the

agent’s report q and the realized outcome of Y. Strict properness of Sp¨, ¨q is defined as follows.

Definition 2.1. A function S : r0, 1s ˆ t0, 1u Ñ R that maps a reported belief q and the ground truth Y into

a score is a strictly proper scoring rule if it satisfies ErSpp, Yqs ą ErSpq, Yqs, for all p, q P r0, 1s and p ‰ q.

Both expectations are taken with respect to Y „ Bernoullippq.

There is a rich family of strictly proper scoring rules, including the Brier score (Spq, Yq “ 1 ´ pq ´ Yq2),

the log scoring rule (Spq, Yq “ logpqq if Y “ 1 and Spq, Yq “ logp1 ´ qq if Y “ 0) and the spherical scoring

rules [GR07b].

Incentive compatibility of SPSR The definition of SPSR immediately gives incentive compatibility.

If an agent’s belief is p, reporting p truthfully uniquely maximizes her expected score.

SPSR quantify the value of information Another nice property of SPSR is that they quantify the

value/accuracy of reported predictions. To give a rigorous argument, we use an indicator vector y of

length 2 to represent the realization of Y, with 1 at the Y-th position and 0 otherwise. That is, y “ p0, 1q

if Y “ 1 and y “ p1, 0q if Y “ 0. We use a probability vector q “ p1 ´ q, qq to represent probability q. By

the representation theorem [McC56; Sav71; GR07b], any strictly proper scoring rule can be characterized

using a corresponding strictly convex function G as follows: Spq, yq “ Gpyq ´ DGpy, qq, where DG is

the Bregman divergence function of G. Now consider the unknown true distribution of Y, denoted by
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p˚ “ p1 ´ p˚, p˚q. The expected score for an agent predicting q is

ErSpq, yqs “ ErGpyqs ´ ErDGpy, qqs,

where all three expectations are taken over Y „ Bernoullipp˚q. This means that the maximum score

an agent can receive in expectation is EY„Bernoullipp˚qrGpyqs, which happens when the agent’s report

q “ p˚. Moreover, a prediction q with a smaller divergence Ey„p˚ rDGpy, qqs receives a higher

score in expectation. Intuitively, EY„Bernoullipp˚qrDGpy, qqs characterizes how “far away" q is from

the true distribution of Y under divergence function DG. This implies that a strictly proper scoring

rule S qualifies the the accuracy of a prediction q based on the corresponding divergence function.

When S is taken as the Brier scoring rule, the corresponding Bregman divergence is the quadratic

function, and EY„Bernoullipp˚qrDGpy, qqs “ ||p˚ ´ q||2, implying that a prediction q closer to p˚ according

to ℓ2 norm receives a higher score in expectation. When S is taken as the log scoring rule, the

corresponding Bregman divergence is the KL-divergence, DKL, which is also called the relative entropy,

and EY„Bernoullipp˚qrDGpy, qqs “ DKLpp˚||qq ` Hpp˚q, where H is the entropy function. A prediction

with a smaller KL-divergence from p˚ receives a higher score in expectation. This property of SPSR

allows the principal to take an expert’s average score over a set of prediction tasks as a proxy of his

average accuracy and rank experts accordingly.

2.4 Model and mechanism design problem

We consider a multi-task setting for the information elicitation without verification (IEWV) problem

Under this setting, we aim to develop scoring mechanisms that are incentive compatible and are able to

quantify the value of elicited information, recovering the two desirable properties that SPSR achieve in

the presence of the ground truth. In this section, we formally introduce the information structure of our

setting and the exact mechanism design problem we consider.

2.4.1 Model of Information Structure

A principal has a set of tasks rms “ t0, ..., m ´ 1u. Each task asks for a prediction for an independent

random variable of interest, denoted by Yk, k P rms. For now, we assume that these random variables

to predict are binary variables, i.e., Yk P t0, 1u, @k P rms. We will generalize our results to (non-binary)

categorical random variables in Section 2.7. There is a set of informed agents rns “ t0, ..., n ´ 1u. Each

agent i P rns privately observes a random signal Oi,k generated by Yk for each task k P rms, and thus

holds a posterior belief about Yk, represented by Pi,k :“ PrrYk “ 1|Oi,ks. The posterior Pi,k is a random
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variable as the signal Oi,k is a random variable. Furthermore, we make following main assumptions on

the information structure among the signals and ground truth.

Assumption 2.1. Tasks are independent and similar a priori, that is, the joint distribution of pO1,k, ..., On,k, Ykq

is i.i.d. for all tasks k P rms.

This assumption is natural when the set of tasks are of similar nature, for example, tasks to predict

the replicability of multiple studies published in the same journal and the same year. In this example,

readers may a priori hold the same journal-wide belief about the features and the replicability of each

study. After reading the journal, each agent receives a private signal for each individual study, which

allows her to provide a more informed prediction for that study. This assumption is common for

multi-task IEWV.1

Based on Assumption 2.1, each Yk has the same prior, denoted by p :“ PrrYk “ 1s. Also, for a fixed

agent i, the distribution of signal Oi,k conditioned on Yk on each task k P rms is the same. We use D`
i

and D´
i to denote this conditional distribution for agent i for conditions Yk “ 1 and Yk “ 0, respectively.

We assume that D`
i ‰ D´

i , otherwise, observation Oi,k is independent and uninformative to Yk. Each

agent forms her posterior belief Pi,k using the prior p and the conditional distributions D`
i and D´

i . We

require no knowledge of D`
i and D´

i for the principal and the agents other than agent i. Furthermore,

we assume that agents’ signals are independent conditioned on the ground truth.

Assumption 2.2. For each task, agents’ signals are mutually independent conditioned on the ground truth, i.e.,

@k P rms, Pr
“

O1,k, ..., On,k|Yk
‰

“
ś

iPrns PrrOi,k|Yks.

This assumption excludes the scenarios where agents have some form of “side information” to

coordinate their reports. With “side information”, it is impossible to have any mechanism that can

truthfully elicit agents’ predictions without access to ground truth. This issue has been noted by Kong

and Schoenebeck [KS18] and Kong [Kon20] for tasks with ground truth and the same assumption has

been adopted. Finally, we make a technical assumption about the prior p and the principal’s knowledge.

Assumption 2.3. The prior p ‰ 0.5 and the principal knows whether p ą 0.5 or not.

We do not assume that the principal knows the exact prior p of tasks but assume that she knows

whether p ą 0.5 or p ă 0.5. This one binary-bit of information helps the principal distinguish between

1Kong and Schoenebeck [KS18] and Kong [Kon20] consider information elicitation for objective questions (i.e.,
questions where an objective ground truth exists). They make the same assumption as Assumption 2.1. Other
studies (e.g., [DG13; Shn+16; RFJ16; KS19; Kon20]) consider information elicitation for subjective questions (i.e.,
questions with no objective ground truth, e.g., how do you rate the movie?). These studies also assume that the
joint distributions of agents’ signals are the same across all tasks.
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the set of truthful predictions and the set of inverted predictions (i.e. everyone reporting 1 ´ pi,k instead

of pi,k), which otherwise is impossible to distinguish. In practice, this information is usually easy to

obtain. In the example of predicting the replicability of studies, this assumption only requires that the

principal knows whether the majority of the studies can be replicated or not. The assumption p ‰ 0.5 is

a technical condition we need in order to distinguish the truthful reporting scenario from the inverted

reporting scenario.

We also assume that the posterior Pi,k for any agent i on any task k is different under different

realizations of private signal Oi,k. This assumption is without loss of generality, because different

realizations of Oi,k which lead to the same posterior Pi,k for agent i on task k also lead to the same

posterior about any other agent’s signal Oj,k for agent i due to Assumption 2.2. Therefore, we can

merge multiple realizations of Oi,k that lead to the same posterior Pi,k into one realization without

influencing agent i’s belief about other agents’ signals and the ground truth. Consequently, it is without

loss of generality to assume that there exists a one-to-one correspondence between the realization

of an agent’s signal Oi,k and her posterior Pi,k. According to this one-to-one correspondence and

Assumptions 2.1 and 2.2, the following two conditions hold for Pi,k for i P rns, k P rms.

Proposition 2.1. Under Assumptions 2.1 and 2.2, the following two conditions hold for agents’ beliefs Pi,k, i P

rns, k P rms.

1. P1,k, ..., Pn,k and Yk are independent of their own counterparts across tasks k P rms but have the same joint

distribution, i.e., pP1,k, ..., Pn,k, Ykq are i.i.d. across tasks k P rms.

2. For each task k P rms, P1,k, ..., Pn,k are independent conditioned on Yk, i.e., PrrP1,k, ..., Pn,k|Yks “

ś

iPrns PrrPi,k|Yks, @k P rms.

The first condition in Proposition 2.1 implies that an agent has the same expertise level across

different tasks, as the joint distribution of her posterior belief and the ground truth is the same

across tasks. The second condition implies that given the ground truth, each agent’s probabilistic

prediction is independent. The two conditions in Proposition 2.1 in fact characterize a broader space of

information structure than the space captured by Assumptions 2.1 and 2.2. The former space includes

the information structure where each task has a different prior but the distribution of the posterior

beliefs of each agent are still the same across tasks. Our theoretical results hold for the model with this

more broader information structure space characterized by the two conditions in Proposition 2.1 and

with Assumption 2.3, where p refers to the mean prior over all tasks.
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2.4.2 Mechanism design problem

We consider the multi-task peer prediction mechanisms where the principal assigns each task k to

a subset rnks Ď rns of agents, collects a single probabilistic prediction qi,k P r0, 1s from each agent i

assigned with task k, and pays each agent based on all predictions collected from all agents. We use

rmis Ď m to denote the set of tasks assigned to agent i. We use qi,k “ H to denote that agent i has not

been assigned to task k. Such a multi-task peer prediction mechanism can be formally expressed as

a function R : tH Y r0, 1sunˆm Ñ Rn, which maps a prediction profile on all tasks and all agents to a

vector of total payments of all agents. We restrict our attention to anonymous mechanisms that give

each prediction from an agent an independent payment like SPSR. Thus, a mechanism that we consider

can be fully expressed by a score function R : tH Y r0, 1su ˆ tH Y r0, 1sun´1ˆm Ñ R, which maps a

single prediction qi,k of agent i on task k and a profile of predictions from all other agents into a single

reward score for that prediction, and agent i’s total reward is the sum of the scores she obtains across

the tasks she is assigned with.

Agents have no obligation to report their true beliefs. Instead, given a mechanism, an agent can

report strategically to maximize her expected payment. As there exists a one-to-one correspondence

between an agent’s signal and her posterior on a single task in our model, we can define an agent’s

reporting strategy on a single task without loss of generality as a function that maps her posterior to a

distribution where her reported prediction is drawn from.

Definition 2.2. Let ∆r0,1s be the space of all probability distributions over r0, 1s. The strategy of an agent i on

task k is a mapping σi : r0, 1s Ñ ∆r0,1s, which maps her posterior belief Pi,k into a distribution σipPi,kq over [0,1],

from which the agent draws the reported prediction Qi,k.

We use the upper case Qi,k to denote the reported prediction when we want to emphasize that the

reported prediction is a random variable determined by an agent’s posterior belief and her reporting

strategy jointly, otherwise, qi,k is used. We further assume that each agent adopts the same mixed

strategy across all asigned tasks.

Assumption 2.4. (Uniform Strategy) For any agent i P rns, she adopts the same strategy σip¨q over all assigned

tasks k P rmis.

This assumption is reasonable as we assume that tasks are a priori similar to each other. We use

σip¨q to denote the reporting strategy adopted by agent i on all tasks she answers and use σ´i to denote

the strategy profile used by all agents except agent i. Furthermore, we use ErRpqi,k; σ´iqs to denote the

expected score that agent i receives for reporting qi,k when other agents use strategy profile σ´i, where
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the expectation is taken over the randomness in ground truth, other agents’ signals and strategies and

in the mechanism itself. We use ErRpσi; σ´iqs to denote the expected reward of agent i when her report

is also a random variable generated by her belief Pi,k and reporting strategy σi.

In this chapter, our goal is to design a mechanism Rp¨q in the IEWV setting with similar properties

that SPSR have for the information elicitation with verification setting: quantification of the value of

information and incentive compatibility.

Quantifying value of information The score of each prediction should reflect the true accuracy of

the prediction, similar to what SPSR achieve. That is, for all i, k and qi,k and for any true distribution of

the ground truth Yk, ErRpqi,k; σ´iqs “ f
`

EYk rSpqi,k, Ykqs
˘

holds for a SPSR Sp¨q and a strictly increasing

function f , where the two expectations are taken over the true distributions of the random variables in

the two expressions at each side of the equality. This design goal pursues that the score that an agent

receives for a prediction in IEWV recovers what the agent would receive with a SPSR (with access to the

ground truth) in expectation.

Incentive Compatibility. A mechanism satisfies incentive compatibility to some extent if truthful

reporting is a strategy that maximizes an agent’s expected utility under certain conditions. We pursue

the dominant uniform strategy truthfulness [GF19b], where truthful reporting is a dominant strategy if

we restrict the strategy space with the uniform strategy assumption (Assumption 2.4).

Formally, in IEVW, a dominant uniform strategy truthful mechanism is a mechanism where truthful

reporting on each task maximizes an agent’s expected reward no matter what uniform strategies the

other agents play and strictly maximize the agent’s expected reward if other agents’ reports are also

informative.2 Let σ˚
i be the truthful reporting strategy for agent i, i.e., σ˚

i is the function that maps

a belief pi to a distribution where all probability mass is put on pi. Let Q̄´i,k :“ 1
n´1

ř

j‰i Qj,k be the

mean of all agents’ reported predictions on task k except agent i’s. Note that Q̄´i,k is a random variable,

because of the randomness in reporting strategy σj and the randomness in signal Oj,k for all j ‰ i. We

2In a standard dominant truthful mechanism, truthful reporting strictly maximizes the agent’s expected reward
no matter what strategies other agents play. In IEWV, however, if all peer agents report predictions independently
w.r.t. the ground truth on each task, then there will be no information available for the mechanism to incentivize
truthful reporting. Therefore, it is inevitable to allow a dominant truthful mechanism in IEWV to pay truthful
reporting strictly more only when the peer reports are informative about the ground truth. For example, in
studies [KS19; Kon20], the dominant uniform strategy truthful mechanism is defined to be a mechanism that pays
truthful reporting strictly more only when for each agent, there exists at least one peer agent reporting truthfully.
We will see later that in our definition, we do not require that there is at least one peer agent reporting truthfully.
We allow all peer agents to play non-truthfully, but require the mean of peer agents’ reports to be informative with
respective to the ground truth.
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say that Q̄´i,k is informative about the ground truth if ErQ̄´i,k|yk “ 1s ‰ ErQ̄´i,k|yk “ 0s. We formally

define the dominant uniform strategy truthful mechanisms as follows.

Definition 2.3. (Dominant uniform strategy truthfulness). A mechanism Rp¨q is dominant uniform strategy

truthful if @i P rns, @k P rmis, @tD`
j ,D´

j ujPrns and for any realization oi,k of signal Oi,k: ErRpσ˚
i ; σ´iq|Oi,k “

oi,ks ě ErRpσi; σ´iq|Oi,k “ oi,ks for any uniform strategy σi ‰ σ˚
i and any uniform strategy profile of other

agents σ´i, and the inequality holds strictly for any uniform strategy profile σ´i under which Q̄´i,k is informative

about Yk.

In Definition 2.3, we characterize the condition that peers’ reports are informative by that the

expectation of the mean of peers’ reports on a task differs when conditioned on different realizations of

the ground truth.

2.5 Elicitation with a noisy estimate of ground truth

Before we develop mechanisms with the two desirable properties we pursue, in this section we first

obtain these two properties under a very stylized setting: elicitation with a noisy estimate of ground truth.

In this stylized setting, we introduce surrogate scoring rules as an effective solution. These scoring rules

will be the building blocks of our mechanisms designed for the general setting.

This stylized setting has only one event Y and one agent i, who observes a signal Oi generated

from distribution DipYq and forms a posterior Pi “ PrrY “ 1|Ois. The principal in this setting has

access to a noisy estimate Z P t0, 1u of the ground truth Y, although she has no access to the exact

realization of Y. The noisy estimate Z is characterized by two error rates, e`
z and e´

z , defined as

e`
z :“ PrrZ “ 0|Y “ 1s, e´

z :“ PrrZ “ 1|Y “ 0s, which are the probabilities that Z mismatches Y under

the two realizations of Y. The principal knows the realization Z and the exact error rates e`
z , e´

z . The

principal cannot expect to do much if Z is independent of Y. Therefore, we assume that Z and Y are

stochastically relevant, an assumption commonly adopted on the relation between a signal and the

ground truth in the information elicitation literature [MRZ05b].

Definition 2.4. A random variable Z is stochastically relevant to a random variable Y if the distribution of Y

conditioned on Z differs for different realizations of Z.

The following lemma shows that the stochastic relevance condition directly translates to a constraint

on the error rates, that is, e`
z ` e´

z ‰ 1. This lemma can be proved immediately by writing out the

distribution of Y conditioned on Z in terms of the two error rates e`
z , e´

z and the prior of Z.

46



Lemma 2.2. The noisy estimate Z is stochastically relevant to the ground truth Y if and only if e`
z ` e´

z ‰ 1.

The goal of the principal in this setting is to design a scoring rule to elicit the posterior Pi truthfully

based on this noisy estimate Z and the error rates e`
z , e´

z . We define the design space of the scoring

rules with the noisy estimate as follows.

Definition 2.5. Given a noisy estimate Z of ground truth Y with error rates pe`
z , e´

z q P r0, 1s2, a scoring rule

against the noisy estimate of the ground truth is a function R : r0, 1s ˆ t0, 1u Ñ R that maps a prediction

qi P r0, 1s and a realized noisy estimate z P t0, 1u to a score. The function R can depend on the two error rates

pe`
z , e´

z q.

Adopting the terminology from the scoring rule literature, we refer to strict properness of a scoring

rule against a noisy estimate of ground truth as the property that the rule assigns a strictly better

expected score to a truthful prediction of the ground truth than to a non-truthful prediction.

Definition 2.6. A scoring rule Rpqi, Zq against a noisy estimate Z of ground truth is strictly proper for

eliciting an agent’s posterior belief generated by signal Oi if it holds for all realizations oi of Oi and the posterior

pi “ PrrY “ 1|Oi “ ois that

EZ|Oi“oi
rRppi, Zqs ą EZ|Oi“oi

rRpqi, Zqs, @qi P r0, 1spqi ‰ piq.

2.5.1 Surrogate scoring rules (SSR)

In this section, we present our solution, the surrogate scoring rules (SSR), for this stylized setting. SSR are

a family of scoring rules that evaluate a prediction against a noisy estimate of ground truth. For any

distribution of the ground truth and any stochastically relevant noisy estimate of the ground truth, the

expected score that SSR give to the prediction, with expectation taken over the randomness of the noisy

estimate, is equal to (up to a monotonic increasing transformation) the expected score that a SPSR gives

to the same prediction, with expectation taken over the randomness of the ground truth. We will see

that SSR are strictly proper under mild conditions.

Definition 2.7 (Surrogate Scoring Rules). R : r0, 1s ˆ t0, 1u Ñ R is a surrogate scoring rule if for some

strictly proper scoring rule S : r0, 1s ˆ t0, 1u Ñ R and a strictly increasing function f : R Ñ R, it holds that

@pi, qi, e`
z , e´

z P r0, 1s and e`
z ` e´

z ‰ 1, EZrRpqi, Zqs “ f pEYrSpqi, Yqsq, where Y is the ground truth drawn

from Bernoullippiq and Z is a noisy estimate of Y with error rates e`
z , e´

z .

Definition 2.7 defines the SSR Rp¨q as scoring rules that help us remove the bias in Z and return us

the same score given by a SPSR in expectation. The idea of SSR is borrowed from the machine learning
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literature on learning with noisy data [Byl94; Nat+13; Sco15; Men+15; RW15]. SSR can be viewed as

a particular class of the proxy scoring rules proposed by Witkowski et al. [Wit+17]. Witkowski et al.

[Wit+17] achieve properness of proxy scoring rules by plugging in an unbiased proxy of the ground

truth to a SPSR. With SSR, we directly work with biased proxy and design scoring functions to de-bias

the noise in the proxy. We have the following strict properness result for SSR straightforwardly:

Theorem 2.3. Given the prior p of the ground truth Y and a private signal Oi, SSR Rpqi, Zq against a noisy

estimate Z is strictly proper for eliciting the posterior Pi “ PrrY “ 1|Ois if Z and Oi are independent conditioned

on Y, and Z is stochastically relevant to Y.

We provide an implementation of SSR, which we call SSRα:

Rpqi, Z “ 1q “
p1 ´ e´

z q ¨ Spqi, 1q ´ e`
z ¨ Spqi, 0q

1 ´ e`
z ´ e´

z
, (2.1)

Rpqi, Z “ 0q “
p1 ´ e`

z q ¨ Spqi, 0q ´ e´
z ¨ Spqi, 1q

1 ´ e`
z ´ e´

z
, (2.2)

where S can be any strictly proper scoring rule. This SSR implementation is inspired by Natarajan et

al.[Nat+13]. As can been seen from Eqs. 2.1 and 2.2, the knowledge of the error rates e`
z , e´

z is crucial for

defining SSRα. Moreover, SSRα has the property that the expected score EZ|YrRpqi, Zqs conditioned on

the realization of the ground truth Y is exactly the same as the score Spqi, Yq given by the SPSR. More

formally, we have the following lemma.

Lemma 2.4 (Lemma 1, [Nat+13]). For SSRα, ground truth Y and noisy estimate Z, @qi, e`
z , e´

z P r0, 1s and

e`
z ` e´

z ‰ 1, @y P t0, 1u : EZ|Y“yrRpqi, Zqs “ Spqi, Y “ yq.

Proof. Lemma 1 in [Nat+13] proves the statement for e`
z ` e´

z ă 1. For completeness, we provide the

proof for e`
z ` e´

z ‰ 1 here. Let qi P r0, 1s be an arbitrary prediction. When y “ 1, we have

EZ|Y“1rRpqi, Zqs “ p1 ´ e`
z qRpqi, 1q ` e`

z Rpqi, 0q

“ p1 ´ e`
z q

p1 ´ e´
z qSpqi, 1q ´ e`

z Spqi, 0q

1 ´ e`
z ´ e´

z
` e`

z
p1 ´ e`

z qSpqi, 0q ´ e´
z Spqi, 1q

1 ´ e`
z ´ e´

z

“

`

p1 ´ e`
z qp1 ´ e´

z q ´ e`
z e´

z
˘

Spqi, 1q

1 ´ e`
z ´ e´

z

“ Spqi, 1q
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When y “ 0, we have

EZ|Y“0rRpqi, Zqs “ e´
z Rpqi, 1q ` p1 ´ e´

z qRpqi, 0q

“ e´
z

p1 ´ e´
z qSpqi, 1q ´ e`

z Spqi, 0q

1 ´ e`
z ´ e´

z
` p1 ´ e´

z q
p1 ´ e`

z qSpqi, 0q ´ e´
z Spqi, 1q

1 ´ e`
z ´ e´

z

“ Spqi, 0q

Intuitively, the linear transformation in SSRα ensures that, in expectation, the prediction qi is scored

as if it was scored against the ground truth Y under the underlying SPSR. We would like to note that

other surrogate loss functions designed for learning with noisy labels can also be leveraged to design

SSR. With the conditional unbiasedness property of SSRα, we can formally claim that SSRα is a surrogate

scoring rule, as stated in Theorem 2.5 below.

Theorem 2.5. SSRα is a surrogate scoring rule and @pi, qi, e`
z , e´

z P r0, 1spe`
z ` e´

z ‰ 1q, EZrRpqi, Zqs “

EYrSpqi, Yqs, where Y is the ground truth drawn from Bernoullippiq and Z is the noisy estimate of ground truth

Y with error rate e`
z , e´

z .

Proof. As shown by Lemma 2.4, for SSRα, we have @pi, qi, e`
z , e´

z (e`
z ` e´

z ‰ 1) and @y P t0, 1u,

EZ|Y“yrRpqi, zqs “ Spqi, Y “ yq, we have immediately

EZrRpqi, zqs “ EY

„

EZ|YrRpqi, Zqs

ȷ

“ EYrSpqi, Yqs.

With Theorem 2.5 we know that SSRα quantifies the quality of information of a prediction just as

the underlying strictly proper scoring rule S does. Furthermore, SSRα has the following variance:

Theorem 2.6. Let pz :“ PrrZ “ 1s. For a fixed prediction qi P r0, 1s, SSRα suffers the following variance:

EZ
“

Rpqi, Zq ´ EzrRpqi, Zqs
‰2

“
pz ¨ p1 ´ pzq

p1 ´ e`
z ´ e´

z q2
¨ pSpqi, 1q ´ Spqi, 0qq

2 . (2.3)
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Mechanism 5 SSR mechanisms (Sketch)

1: For each task k, we uniformly randomly pick at least 3 agents, assign task k to them and
collect their predictions.

2: For each agent i and each task k the agent answers, we construct a reference report Zi,k
using the agent’s peer agents’ reports, and estimate the error rates e`

zi,k
and e´

zi,k
for Zi,k.

3: Pay each agent i for her prediction qi,k on task k by SSR Rpqi,k, Zi,kq if e`
zi,k

` e`
zi,k

‰ 1, and
pay 0, otherwise.

Proof.

EZ
“

Rpqi, Zq ´ EZrRpqi, Zqs
‰2

“pz

ˆ

Rpqi, 1q ´
`

pzRpqi, 1q ` p1 ´ qzqRpqi, 0q
˘

˙2

` p1 ´ pzq

ˆ

Rpqi, 0q ´
`

pzRpqi, 1q ` p1 ´ qzqRpqi, 0q
˘

˙2

“pzp1 ´ pzq2`Rpqi, 1q ´ Rpqi, 0q
˘2

` p1 ´ pzqp2
z
`

Rpqi, 0q ´ Rpqi, 1q
˘2

“pzp1 ´ pzq
`

Rpqi, 0q ´ Rpqi, 1q
˘2

“
pzp1 ´ pzq

p1 ´ e`
z ´ e´

z q2

ˆ

p1 ´ e´
z qSpqi, 1q ´ e`

z Spqi, 0q ´
`

p1 ´ e`
z qSpqi, 0q ´ e´

z Spqi, 1q
˘

˙2

“
pzp1 ´ pzq

p1 ´ e`
z ´ e´

z q2

`

Spqi, 1q ´ Spqi, 0q
˘2

2.6 Elicitation without verification

The results in the previous section are built upon the fact that there exists a noisy estimate of ground

truth with known error rates. In this section, we apply the idea of SSR to the IEWV setting. A reasonable

way to do so is to use agents’ reports as the source of the noisy estimate. Although the principal does

not know the exact bias in agents’ reports, we find a way to construct such a noisy proxy of ground

truth and estimate its error rates. We refer to this noisy proxy as the reference report. Applying SSR with

this reference report, we can finally get a family of mechanisms which are dominant uniform strategy

truthful and which also quantify the value of information in agents’ reports as what SPSR do. Within

this family, we can choose different underlying SPSR for SSR to get different mechanisms. We call this

family of mechanisms SSR mechanisms. We present a sketch of our SSR mechanisms in Mechanism 5.

The challenge of designing such mechanisms is to construct the reference report Zi,k in Mechanism 5
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and successfully estimate its error rates e`
zi,k

, e´
zi,k

. In the following sections, we show how to construct

this reference report and estimate its error rates.

2.6.1 Reference report and its property

Recall that we use Qj,k to denote the reported prediction of agent j on task k, which is generated by

agent j’s posterior belief Pj,k and reporting strategy σj. Let Sj,k P t0, 1u be a binary signal independently

drawn from BernoullipQj,kq. We refer to Sj,k as the prediction signal of agent j on task k. We construct the

reference report Zi,k for agent i as follows: We uniformly randomly pick an agent j from agent i’s peer agent

set rnsztiu, collect agent j’s prediction Qj,k, and draw a prediction signal Sj,k „ BernoullipQj,kq. We use this Sj,k

as the reference report Zi,k for agent i on task k.

Conditioned on all peer agents’ reports Qj,k, j P rnsztiu, the distribution of Zi,k is Bernoulli
`

Q̄´i,k
˘

,

because we pick a prediction signal from all peer agents uniformly randomly. Recall that in our model,

Qi,k „ σipPi,kq, i P rns, k P rms. Due to Proposition 2.1 and Assumption 2.4, Q̄´i,k is i.i.d. across tasks

k P rms and is independent to agent i’s posterior Pi,k conditioned on the ground truth Yk for any task k.

Therefore, Zi,k, k P rms that we construct have the following two properties.

Lemma 2.7. @i P rns, k P rms, Zi,k is independent to agent i’s posterior Pi,k conditioned on Yk.

This property ensures that Zi,k can be used as the conditionally independent noisy estimate of the

ground truth in Theorem 2.3 and thus, SSR against Zi,k is strictly proper for eliciting the posterior belief

Pi,k.

Lemma 2.8. For any strategy profile agents play, the reference reports of a single agent i for any i P rns are

i.i.d. across tasks and have the same error rates w.r.t. their corresponding ground truth Yk, i.e., @σ1, ..., σn, @i P

rns, De`
i , e´

i P r0, 1s, @k P rms : PrrZi,k “ 0|Yk “ 1s “ e`
i , PrrZi,k “ 1|Yk “ 0s “ e´

i .

This lemma shows that the error rates of the reference reports of an agent i are the same across all

tasks. This property allows the estimation of the error rates using the multi-task prediction data. In the

following sections, we introduce the estimation of the error rates and complete our mechanisms. We

prove Lemma 2.7 and 2.8 below.

Proof. Proposition 2.1 and Assumption 2.4 directly imply that 1) for each task, Q1,k, ..., Qn,k are mutually

independent conditioned on the ground truth Yk, and 2) pQ1,k, ..., Qn,k, ykq are i.i.d across tasks k P rMs.

As Zi,k is independently drawn from BernoullipQ̄´i,kq, we immediately have that 1’) for each task k P rms,

Zi,k is independent to Oi,k and thus to Pi,k :“ PrrYk “ 1|Oi,ks, and 2’) pZi,k, Ykq have the same joint
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distribution for k P rms. As a result of 2’), Zi,k, k P rms have the same error rates w.r.t. the corresponding

Yk.

2.6.2 Asymptotic setting

To better deliver our idea for error rates estimation, we start with an asymptotic setting with infinite

amounts of tasks and agents, i.e., m, n Ñ 8. We will later provide a finite sample justification for our

mechanism. Based on Lemma 2.8, the reference reports of an agent on different tasks have the same

distribution and error rates. Therefore, we focus on estimating the error rates of the reference report of

agent i on a generic task k, while we use Z to denote this reference report, omitting the subscripts i and

k, and use e`
z , e´

z to denote its error rates.

Our estimation algorithm resembles the “method of moments.” We establish three equations on

the first- to the third-order statistics, of which the parameters can be expressed by the unknown error

rates e`
z , e´

z . We show that the three equations, with knowing the true parameters (which is true in the

asymptotic setting), together uniquely determine e`
z , e´

z . Thus, we can solve the three equations to obtain

e`
z , e´

z . In the next section, we argue that in the finite sample setting, with imperfect estimates of the

parameters of the three questions, the solution from these three perturbed equations still approximate

the true values of e`
z , e´

z with guaranteed accuracy.

To construct these three equations, we make the following preparation. Let sj,k be the realization

of the prediction signal Sj,k of agent j on task k, and let S´i :“ tsj,kuj‰i,kPrMs be the realization profile

of all prediction signals from all peer agents of agent i. On a generic task k, we draw three random

variables Z1, Z2, Z3. Z1 represents the realization of a prediction signal uniformly randomly drawn

from the set of all prediction signals tsj,kuj‰i on task k except agent i’s. Z2 represents the realization

of another uniformly randomly picked prediction signal from set tsj,kuj‰i but excluding Z1. Similarly,

Z3 represents the realization of another uniformly randomly picked prediction signal from set tsj,kuj‰i

but excluding Z1 and Z2. Because agents’ reports are conditionally independent, Z1, Z2, Z3 are also

independent conditioned on the ground truth. Moreover, Z1 and the reference report Z have the same

error rates, as they are generated by the same random process. With infinite number of agents, Z2

and Z3 also have the same error rates as Z. Furthermore, pZ1, Z2, Z3q is i.i.d. across different tasks,

according to Proposition 2.1 and Assumption 2.4. Therefore, with infinite number of tasks (and thus

infinite number of samples from the joint distribution Z1, Z2, Z3), we can know the exact distribution

parameters of any statistics about Z1, Z2 and Z3. We can then establish the following three equations.
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Algorithm 6 e`
z , e´

z solver

Input: α´i, β´i, γ´i,1pp ą 0.5q

Output: e`
z , e´

z
1: Compute the following quantities:

a :“
γ´i ´ α´iβ´i

β´i ´ pα´iq
2 , b :“

α´iγ´i ´ pβ´iq
2

β´i ´ pα´iq
2 .

2: Let

x :“
a ´

?
a2 ´ 4b
2

, x :“
a `

?
a2 ´ 4b
2

, p1 :“
α´i ´ x
x ´ x

3: If 1pp1 ą 0.5q “ 1pp ą 0.5q, then e`
z “ 1 ´ x, e´

z “ x, else e`
z “ 1 ´ x, e´

z “ x.

1. First-order equation: The first equation is based on the distribution of Z. Let α´i :“ PrrZ “ 1s.

α´i can be expressed as a function of e`
z , e´

z via spelling out the conditional expectation:

α´i “ p ¨ PrrZ “ 1|Y “ 1s ` p1 ´ pq ¨ PrrZ “ 1|Y “ 0s “ p ¨ p1 ´ e`
Z q ` p1 ´ pq ¨ e´

Z . (2.4)

2. Matching between two prediction signals: The second equation is based on a second-order

statistic called the matching probability. We consider the matching-on-1 probability of Z1, Z2, i.e., the

matching-on-1 probability of the prediction signals from two uniformly randomly picked peer agents of

agent i). Let β´i :“ PrrZ1 “ 1, Z2 “ 1s. It can be written as a function of e´
z , e`

z as follows:

β´i “ p ¨ Pr rZ1 “ 1, Z2 “ 1|Y “ 1s ` p1 ´ pq ¨ Pr rZ1 “ 1, Z2 “ 1|Y “ 0s

“ p ¨ Pr rZ1 “ 1|Y “ 1s ¨ Pr rZ2 “ 1|Y “ 1s ` p1 ´ pq ¨ Pr rZ1 “ 1|Y “ 0s Pr rZ2 “ 1|Y “ 0s

“ p ¨ p1 ´ e`
z q2 ` p1 ´ pq ¨ pe´

z q2. (2.5)

3. Matching among three prediction signals: The third equation is obtained by going one order

higher. We check the matching-on-1 probability over three prediction signals Z1, Z2, Z3 uniformly

randomly drawn from three different peer agents on the same task. Let γ´i :“ PrrZ1 “ Z2 “ Z3 “ 1s.

Similar to Eq. 2.5, we have:

γ´i “ p ¨ p1 ´ e`
z q3 ` p1 ´ pq ¨ pe´

z q3. (2.6)

Notice that all three parameters α´i, β´i, γ´i can be perfectly estimated using S´i with infinite

number of tasks and agents, yet without accessing any of the ground truth. With the knowledge of

these three parameters, we prove the following:
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Theorem 2.9. p, e´
z , e`

z are uniquely identified by Eqs. 2.4-2.6 under Assumption 2.3 (p ‰ 0.5 and the principal

knows whether p ą 0.5 or not). The solution is in the closed form shown in Algorithm 6.

Proof. Let x´ :“ e´
z , x` :“ 1 ´ e`

z . Recall the three equations we have

α´i “ p1 ´ pq ¨ x´ ` p ¨ x` (2.7)

β´i “ p1 ´ pq ¨ px´q2 ` p ¨ px`q2 (2.8)

γ´i “ p1 ´ pq ¨ px´q3 ` p ¨ px`q3 (2.9)

We can rewrite the three equations as:

α´i ´ x` “ p1 ´ pqpx´ ´ x`q (2.10)

β´i “ p1 ´ pqpx´ ´ x`qpx´ ` x`q ` px`q2 (2.11)

γ´i “ p1 ´ pqpx´ ´ x`q

´

px´q2 ` x´ ¨ x` ` px`q2
¯

` px`q3 (2.12)

Plugging Eq. 2.10 into Eqs. 2.11 and 2.12 and re-organizing the two equations, we have respectively:

β´i “ α´ipx´ ` x`q ´ x´ ¨ x` (2.13)

γ´i “ α´i

´

px´ ` x`q2 ´ x´ ¨ x`
¯

´ x´ ¨ x`px´ ` x`q (2.14)

Let

x´ ` x` “ a, x´ ¨ x` “ b,

then we have a “
b`β´i

α´i
from Eq 2.13. Note that a is well defined, as o.w. if α´i “ 0, we have to have

x´ “ x` “ 0 which leads to e´
z ` e`

z “ 1, a contradiction.

Substituting x´ ` x` and x´ ¨ x` with b`β´i
α´i

and b correspondingly in Eq. 2.14, we have

α´i ¨

ˆ

pb ` β´iq
2

pα´iq
2 ´ b

˙

´ b ¨
b ` β´i

α´i
“ γ´i (2.15)

ñ
pb ` β´iq

2

α´i
´ b ¨ α´i ´

b2

α´i
´

b ¨ β´i
α´i

“ γ´i (2.16)

ñ

ˆ

β´i
α´i

´ α´i

˙

b “ γ´i ´
pβ´iq

2

α´i
ñ b “

α´iγ´i ´ pβ´iq
2

β´i ´ pα´iq
2 (2.17)

Thus, a “
b`β´i

α´i
“

γ´i´α´i β´i
β´i´pα´iq

2 , b “
α´iγ´i´pβ´iq

2

β´i´pα´iq
2 . Then from x´ ` x` “ a, x´ ¨ x` “ b, we have

x` “
a ˘

?
a2 ´ 4b
2

, x´ “
a ¯

?
a2 ´ 4b
2

, p “
α´i ´ x´

x` ´ x´
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Thus, we have two pairs of solutions for the error rates and the prior:

e`
z,p1q

“ 1 ´
a `

?
a2 ´ 4b
2

, e´
z,p1q

“
a ´

?
a2 ´ 4b
2

, pp1q “
α´i ´ e´

z,p1q

1 ´ e`
z,p1q

´ e´
z,p1q

e´
z,p2q

“ 1 ´ e`
z,p1q

, e`
z,p2q

“ 1 ´ e´
z,p1q

, pp2q “ 1 ´ pp1q

As in these two solutions, the values for the prior is symmetric w.r.t. 0.5. Thus, by Assumption 2.3,

the principal can identify the unique correct solution from the two.

We can continue to establish higher-order equations. However, we show that they do not provide

additional information about the three unknown variables, p, e`
z , and e´

z .

Theorem 2.10. Any higher order (ě 4) matching equations can be expressed by the first- to the third-order

equations, Eqs. 2.4-2.6.

Proof. We follow the shorthand notations as in the proof of Theorem 2.9. The n-th equation is

PrrZ1 “ ... “ Zn “ 1s “ p1 ´ pqpx´qn ` ppx`qn.

For n ě 4, the right-hand of the equation can be expressed as

p1 ´ pqpx´qn ` ppx`qn “

´

p1 ´ pqpx´qn´1 ` ppx`qn´1
¯

px´ ` x`q

´ x´ ¨ x`
´

p1 ´ pqpx´qn´2 ` ppx`qn´2
¯

“ PrrZ1 “ ... “ Zn´1spx´ ` x`q

´ PrrZ1 “ ... “ Zn´2sx´ ¨ x`

As we know from the proof of Theorem 2.9, x´ ` x` and x´ ¨ x` are uniquely determined by the first

three equations, i.e., Eqs. 2.4-2.6 (no matter whether Assumption 2.3 is made or not). Therefore, by

induction starting from n “ 4, the n-th equation can be expressed by the first three equations.

Now we have completed our SSR mechanisms. The full version of the mechanisms is presented in

Mechanism 7. Intuitively speaking, Theorem 2.9 shows that without ground truth data, knowing how

frequently agents’ predictions reach consensus with each other will help us characterize the (average)

subjective biases in their reports. Furthermore, it implies that SSR mechanisms are asymptotically (in

m, n) preserving the information quantification property that strictly proper scoring rules have, i.e.,

EZrRpqi,k, Zqs “ EYrSpqi,k, Yqs, and that SSR mechanisms induce truthful reporting as the unique best
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Mechanism 7 SSR mechanisms
1: For each task k, uniformly randomly pick at least 3 agents, assign task k to them, collect

their reported predictions qi,k and generate the prediction signal Si,k for each prediction.
2: For each agent i and each task k the agent answers, uniformly randomly select one

prediction signal Sj,k from her peers’ prediction signals on the same task and let the
reference report Zi,k :“ Sj,k.

3: Establish Eqs. 2.4-2.6 and solve out the error rates e´
zi

, e`
zi

for Zi,k for any k using Algo-
rithm 2.3.

4: Pay each agent i’s prediction qi,k on each task k she answers by applying SSRα with qi,k and
the noisy estimate Zi,k with error rates e`

zi
, e´

zi
if e`

zi
` e`

zi
‰ 1, and pay 0, otherwise.

uniform strategy for an agent, when Z is informative (i.e., 1 ´ e`
z ´ e´

z ‰ 0), and as a best strategy

otherwise. Formally, we have the following theorem.

Theorem 2.11. Under Assumptions 2.1-2.4, SSR mechanisms are dominant uniform strategy truthful with

infinite number of tasks and agents. Furthermore, for any agent i and task k, if the average prediction of all other

agents are informative, i.e., e`
z ` e´

z ‰ 1 for the noisy estimate of the ground truth Zi,k constructed for agent i,

then the expected score of SSR mechanisms for agent i’s prediction on a task is equal to the expected score given by

the corresponding strictly proper scoring rule S: @qi,k P r0, 1s, EZi,k rRpqi,k, Zi,kqs “ EYk rSpqi,k, Ykqs.

Proof. Recall that in Assumption 2.4, we assume that each agent adopts the same reporting strategy

across tasks. As long as this assumption is satisfied, for an agent i, no matter what exact strategy the

other agents play, we can always correctly estimate the error rates e`
z and e´

z of the reference report

Z constructed for agent i, according to Theorem 2.9. Furthermore, by Lemma 2.7, Z is independent

to agent i’s belief conditioned on the ground truth. Therefore, according to Theorem 2.3, when

e`
z ` e´

z ‰ 1, i.e., the other agents’ average prediction is informative about the ground truth Y, SSR give

agent i’s prediction qi,k a reward unbiased to the expected reward given by the corresponding SPSR,

i.e., @qi,k, EZi,k rRpqi,k, Zi,kqs “ EYk rSpqi,k, Ykqs. Consequently, truthful reporting strictly maximizes the

expected reward of agent i. When e`
z ` e´

z “ 1, i.e., the other agents’ average prediction is uninformative

about Yk for task k, SSR mechanisms always reward agent i zero, where truthful reporting also maximizes

the expected reward of agent i. Thus, SSR mechanisms are dominant uniform strategy truthful.

Remark 2.1. Theorems 2.9 and 2.11 rely on Proposition 2.1 and Assumptions 2.3 and 2.4. Proposition 2.1

and Assumption 2.4 guarantee that there exists a similar information pattern across the predictions of different

tasks that we can learn to infer the ground truth. Therefore, they can be hardly relaxed in IEVW settings. For

Assumption 2.3, we’d like to argue that at least one bit of information is needed in order to distinguish the case

where agents are truthfully reporting from the case where agents are misreporting by reverting their observations.
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This is because for any distribution of the observed reports of agents resulted by a world with parameters pp, e`
z , e´

z q

and with agents reporting truthfully, there always exists the following counterfactual world achieving the same

distribution of the observed reports of agents: a world with parameters p1 ´ p, 1 ´ e´
z , 1 ´ e`

z q and with agents

misreporting predictions via relabelling 0 Ñ 1 and 1 Ñ 0. Thus, the mechanism designer cannot tell the two

worlds apart from only the observed reports. Some studies [KS19; Kon20] relax Assumption 2.3 by allowing the

truthful reporting strategy to weakly dominate this “relabeling equilibrium”.

We will show in the next section, SSR mechanisms are also dominant uniform strategy truthful with

finite number of tasks and agents under mild conditions. Several remarks follow. (1) We would like to

emphasize again that for an agent i, both Z and Rp¨q come from the prediction signals of her peer agents’

reports S´i: Z is directly picked from S´i; Rp¨q depends on the error rates e`
z and e´

z of Z, which are

also learnt from S´i. (2) When making reporting decisions under SSR mechanisms, agents can choose to

be oblivious of how much error presents in others’ reports, because truthful reporting is the dominant

strategy, i.e., no matter what uniform reporting strategy other agents play, truthful reporting always

maximizes the expected reward. This removes the practical concern of implementing truthful reporting

as a particular Nash Equilibrium when there exists a non-truthful reporting equilibrium. (3) Another

salient feature of SSR mechanisms is that they transfer the cognitive load of having prior knowledge

from the agent side to the mechanism designer side. Yet we do not assume the designer has exact

knowledge of the prior either (but the knowledge of whether the prior is greater than 0.5 or not); instead

we will leverage the power of estimation from reported data to achieve our goals.

2.6.3 Finite sample analysis

With finite m, n, we use the same procedure as shown in Algorithm 6 to estimate the error rates e`
z , e´

z

for each agent, except that we cannot have the exact value for α´i, β´i, γ´i but only with finite-sample

estimates for them. Specifically, for agent i, letting k1, k2, k3 (which could be different on different tasks)

be the three agents whose prediction signals are selected as Z1, Z2, Z3 on each task k P rMs,3 we estimate:

Ąα´i “

řm
k“1 1pSk1,k “ 1q

m
, Ąβ´i “

řm
k“1 1pSk1,k “ Sk2,k “ 1q

m
, Ąγ´i “

řm
k“1 1pSk1,k “ Sk2,k “ Sk3,k “ 1q

m
.

We then use these three values to replace α´i, β´i, γ´i, respectively, in Algorithm 6 to solve Eqs. 2.4-2.6.

We denote the resulted error rates as Ăe`
z and Ăe´

z , and the corresponding SSRα using these error rates as

rRp¨q.

3In practice, we only need to assign task k to these three randomly selected agents.
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There are two reasons that these finite-sample estimates Ăe`
z and Ăe´

z are not equal to the exact true

error rates e`
z and e´

z for Z. First, in constructing Eqs. 2.4-2.6, the error rates of two randomly picked

prediction signals Z2, Z3 will not have the exactly same error rates with Z, as these signals come from

a slightly different agent pool. Second, Ąα´i, Ąβ´i, Ąγ´i are not exactly equal to α´i, β´i, γ´i with finite

samples. However, we will show that the errors induced by these two factors in estimating the error

rates diminish with m and n. Consequently, the SSR computed using Ăe`
z , Ăe´

z also have a small and

diminishing error towards the SSR computed with the exact error rates e`
z , e´

z .

Lemma 2.12. Ăe`
z , Ăe´

z given by Algorithm 6 using Ąα´i, Ąβ´i, Ąγ´i satisfy that for an arbitrary δ P p0, 1q, with

probability at least 1 ´ δ, |
Ăe`
z ´ e`

z | ď ϵ, |
Ăe´
z ´ e´

z | ď ϵ for some ϵ “ O
` 1

n `

b

ln 1
δ

m
˘

, which can be made

arbitrarily small with increasing m and n.

Proof Sketch. We present the high-level idea of our proof here and defer the complete proof to the

appendix. We consider the two aforementioned errors separately. Both of them can be transformed to a

diminishing error attaching to the evaluation of α´i, β´i, and γ´i. This diminishing noise in α´i, β´i,

and γ´i can then be transformed into a diminishing error in the final solution of e`
z , e´

z .

Next, we show that the deviations of the rewards of SSR mechanisms due to the imperfect estimation

of the error rates in the finite sample case can also be bounded to be arbitrarily small. We first deal with

a special case: even if 1 ´ e`
z ´ e´

z is far from zero, the estimated 1 ´
Ăe`
z ´

Ăe´
z in the denominator of SSRα

can be arbitrary close to zero by coincidence. In this case, agents can have unbounded scores, which

may be far from the exact scores agents should obtain when the estimation is perfect. To address this

special case, the principal can select a threshold κ greater but close to zero, and pay agents zero when

|1 ´
Ăe`
z ´

Ăe´
z | ă κ instead of just when 1 ´

Ăe`
z ´

Ăe´
z “ 0. As a result, the final reward of each agent is

always bounded. Next, we introduce a lemma we will use in our proof.

Lemma 2.13. @l1, l2, t1, t2 P r´1, 1s, t1, t2 ‰ 0,
ˇ

ˇ

ˇ

l1
t1

´
l2
t2

ˇ

ˇ

ˇ
ď

|l1´l2|`|t1´t2|

|t1t2|

Proof.
ˇ

ˇ

ˇ

l1
t1

´
l2
t2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

l1t2´l2t1
t1t2

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

l1t2´l2t2`l2t2´l2t1
t1t2

ˇ

ˇ

ˇ
ď

|t2||l1´l2|`|l2||t2´t1|

|t1t2|
ď

|l1´l2|`|t1´t2|

|t1t2|

This lemma is an extension to Lemma 7 of [LL15], which considers the case where all variables are

non-negative. Now we present our main theorem about the diminishing error in estimating the SSR

scores.

Theorem 2.14. For a bounded SPSR Sp¨q with supremum max S, for an arbitrary δ P p0, 1q, and some

ϵ “ O
` 1

n `

b

ln 1
δ

m
˘

such that with probability at least 1 ´ δ, |
Ăe`
z ´ e`

z | ď ϵ, |
Ăe´
z ´ e´

z | ď ϵ, let m and n be
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sufficiently large such that ϵ ď |1 ´ e´
z ´ e`

z |{4, the SSR mechanism built upon Sp¨q satisfies, with probability at

least 1 ´ δ, that

|rRpqi,k, Zq ´ Rpqi,k, Zq| ď
12 max S

∆2 ¨ ϵ, @i P rns, k P rms, qi,k P r0, 1s, Z P t0, 1u,

where ∆ “ |1 ´ e´
z ´ e`

z |. Furthermore, taking over all the randomness in the score, we have

ˇ

ˇ

ˇ
ErrRpqi,k, Zqs ´ ErSpqi,k, Zqs

ˇ

ˇ

ˇ
“ O

˜

1
N

`

c

ln m
m

¸

, @i, k.

Proof. This proof is straight-forward following the error rate bounding result (Lemma 2.12). We use

sgnpZq, Z P t0, 1u as the superscript, where sgnp0q refers to super script “´” and sgnp1q refers to super

script “`”.

Consider an arbitrary agent i and a task k, we have

|rRpqi,k, Zq ´ Rpqi,k, Zq| “

ˇ

ˇ

ˇ

ˇ

¨

˝

1 ´
Č

esgnp1´Zq
z

1 ´
Ăe`
z ´

Ăe´
z

´
1 ´ esgnp1´Zq

z

1 ´ e`
z ´ e´

z

˛

‚Spqi,k, Zq

´

¨

˝

Č

esgnpZq
z

1 ´
Ăe`
z ´

Ăe´
z

´
esgnpZq

z

1 ´ e`
z ´ e´

z

˛

‚Spqi,k, 1 ´ Zq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

1 ´
Č

esgnp1´Zq
z

1 ´
Ăe`
z ´

Ăe´
z

´
1 ´ esgnp1´Zq

z

1 ´ e`
z ´ e´

z

ˇ

ˇ

ˇ

ˇ

max S

`

ˇ

ˇ

ˇ

ˇ

Č

esgnpZq
z

1 ´
Ăe`
z ´

Ăe´
z

´
esgnpZq

z

1 ´ e`
z ´ e´

z

ˇ

ˇ

ˇ

ˇ

max S

Since ϵ ď p1 ´ e´
z ´ e`

z q{4, we know that

|1 ´
Ăe`
z ´

Ăe´
z | ě |1 ´ e´

z ´ e`
z |{2

Thus, with probability at least 1 ´ δ,

ˇ

ˇ

ˇ

ˇ

1 ´
Č

esgnp1´Zq
z

1 ´
Ăe`
z ´

Ăe´
z

´
1 ´ esgnp1´Zq

z

1 ´ e`
z ´ e´

z

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Č

esgnp1´Zq
z ´ esgnp1´Zq

z

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

Ăe`
z `

Ăe´
z ´ e`

z ´ e´
z

ˇ

ˇ

ˇ

|p1 ´
Ăe`
z ´

Ăe´
z qp1 ´ e`

z ´ e´
z q|

ď
3ϵ

|p1 ´
Ăe`
z ´

Ăe´
z qp1 ´ e`

z ´ e´
z q|

ď
6ϵ

∆2

In above inequalities, the first “ď” follows Lemma 2.13, the second follows Lemma 2.12, and the third

follows |1 ´
Ăe`
z ´

Ăe´
z | ě |1 ´ e´

z ´ e`
z |{2. Similarly, we have

ˇ

ˇ

ˇ

ˇ

Č

esgnpZq
z

1 ´
Ăe`
z ´

Ăe´
z

´
esgnpZq

z

1 ´ e`
z ´ e´

z

ˇ

ˇ

ˇ

ˇ

“
6ϵ

∆2
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Plugging back, we have proved the claim that with probability at least 1 ´ δ,

|rRpqi,k, Zq ´ Rpqi,k, Zq| ď
12ϵ ¨ max S

∆2 , @qi,k P r0, 1s, Z P t0, 1u.

As ErSpqi,k, Zqs “ ErRpqi,k, Zqs, letting δ “ 1
m , we have the expected error

ˇ

ˇ

ˇ
ErrRpqi,k, Zqs ´ ErSpqi,k, Zqs

ˇ

ˇ

ˇ

bounded by O
ˆ

p1 ´ 1
m q

ˆ

1
n `

b

ln m
m

˙

` 1
m

˙

“ O
ˆ

1
m `

b

ln m
m

˙

.

Theorem 2.14 indicates that the errors of the expected scores given by SSR mechanisms w.r.t. the

expected score given by the underlying SPSR can be made arbitrary small with sufficiently large m

and n. As a result, for arbitrarily discretized report space of a prediction, SSR mechanisms are still

dominant uniform strategy truthful with finite but sufficiently large m and n. To see this, we can make

the error smaller than the minimum absolute difference of the SPSRs of any two allowed probability

reports. In such way, there will be no beneficial deviation for agents to report non-truthfully. This result

considers the reality that in real surveys, agents are often allowed to specify at most two decimal digits

for probabilistic predictions.

Corollary 2.15. For discretized report space of probabilistic predictions, SSR mechanisms which are built upon

bounded SPSR are dominant uniform strategy truthful for finite but sufficiently large m and n.

2.7 Generalizations to multi-outcome tasks

In this section, we discuss how to extend SSR and SSR mechanims to the multi-outcome multi-task

setting. A multi-outcome task asks agents to provide predictions about a multi-outcome random variable

Y, which takes value from a finite support set rcs “ t0, ..., c ´ 1u with c ą 2. A noisy estimate Z P rcs of

the ground truth Y is characterized by a confusing matrix:

Ez “

»

—

—

—

—

—

—

—

–

e0,0 e0,1 . . . e0,c´1

e1,0 e1,1 . . . e1,c´1

. . . . . . . . . . . . . . .

ec´1,0 ec´1,1 . . . ec´1,c´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where eu,v represents the flipping probability of Z w.r.t. Y, i.e., eu,v “ PrrZ “ v|Y “ us, @u, v P rcs.
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2.7.1 Generalization of SSR

The surrogate scoring rules for a task with c outcomes are defined as follows. Let ∆c´1 be the pc ´ 1q-

dimension probability simplex, i.e., ∆c´1 :“
␣

px0, ..., xc´1q|
řc´1

i“0 xi “ 1, x0, ..., xc´1 ě 0
(

.

Definition 2.8 (Surrogate Scoring Rules). R : ∆c´1 ˆ rcs Ñ R is a surrogate scoring rule for a c-outcome task

if for some strictly proper scoring rule S : ∆c´1 ˆ rcs Ñ R and a strictly increasing function f : R Ñ R, the

following equation holds:

@p, q P ∆c´1, @Ez P r0, 1scˆcpEz is invertibleq : EZrRpq, Zqs “ f pEYrSpq, Yqsq,

where the ground truth Y is drawn from Categoricalppq and Z is a noisy estimate of Y with confusing matrix Ez.

We have the following theorem immediately.

Theorem 2.16. Given the prior p of the ground truth Y and a private signal Oi, SSR Rpq, zq with a noisy

estimate Z of the ground truth is strictly proper for eliciting an agent’s posterior pi :“ PrrY|Ois if Z and Oi are

independent conditioned on Y and Ez is invertible.

Now we give an implementation of SSR, SSRα, for a c-outcome task. Let Spqiq be the vector of SPSR

scores for a prediction qi P ∆c´1 under each realization of Y, i.e., Spqiq :“ pSpqi, Y “ 0q, ..., Spqi, Y “

c ´ 1qq. Similarly, let Rpqiq :“ pRpqi, Z “ 0q, ..., Rpqi, Z “ c ´ 1qq. Our implementation SSRα goes as

follows:

Rpqiq :“ pEzq
´1Spqiq

Clearly, for SSRα we have Spqiq “ Ez ¨ Rpqiq, which gives

@v P rcs, Spqi, Y “ vq “

c´1
ÿ

k“0

ev,kRpqi, Z “ kq “ EZ|Y“vrRpqi, Zqs.

Lemma 2.17. For SSRα: @v P rcs, EZ|Y“vrRppi, Zqs “ Sppi, Y “ vq

The following theorem follows immediately.

Theorem 2.18. SSRα is a surrogate scoring rule for a multi-outcome task, and for any distribution p P ∆c´1 of

the ground truth Y and for any invertible confusing matrix Ez of a noisy estimate Z of the ground truth, we have

@q P ∆c´1, EZrRpq, Zqs “ EYrSpq, Yqs.

We include a detailed example of SSRα for a three-outcome task below.
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Example 2.1. Let c “ 3 and let the confusing matrix of a noisy signal Z being

Ez “

»

—

—

—

–

0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5

fi

ffi

ffi

ffi

fl

ñ pEzq
´1

“

»

—

—

—

–

3 ´1 ´1

´1 3 ´1

´1 ´1 3

fi

ffi

ffi

ffi

fl

We obtain a closed-form of SSRα:

Rpq, Z “ 0q :“ 3Spq, 0q ´ Spq, 1q ´ Spq, 2q

Rpq, Z “ 1q :“ ´Spq, 0q ` 3Spq, 1q ´ Spq, 2q

Rpq, Z “ 2q :“ ´Spq, 0q ´ Spq, 1q ` 3Spq, 2q

2.7.2 Generalization of SSR mechanisms

SSR mechanisms can also be extended to multi-outcome tasks and maintain the two properties we

pursue: the dominant uniform strategy truthfulness and qualifying the value of information as what

SPSR do.

We consider the same setting of information structures under Assumptions 2.1-2.3, except that Yk, k P

rms in these assumptions are c-outcome categorical random variables, agents’ beliefs are categorical

distributions, and that in Assumption 3, the prior probabilities of Yk being each outcome are different

and the principal knows the order of these prior probabilities. As we have shown that SSR can be

extended to multi-outcome events, to construct the corresponding SSR mechanism, we just need to

construct the corresponding noisy estimate Z of the ground truth and estimate the confusion matrix Ez

for multi-outcome tasks.

The noisy estimate Z for an agent i on task k can be constructed similarly as the counterpart in the

binary case, i.e., we uniformly randomly pick an agent j ‰ i and draw Z „ Categoricalpqj,kq, where qj,k

is the reported distribution of Yk from agent j. Then, the confusion matrix can also be estimated using

the method of moments. However, as there are c2 ´ 1 unknown parameters in the confusion matrix Ez

and the prior p of Yk, we have to establish c2 ´ 1 equations. These equations could be solved numerically.

These c2 ´ 1 equations will have c! real-value symmetric solutions, each corresponds to a permutation

of the labeling of the c outcomes. To identify the unique solution that yields the true confusion matrix

and the prior of Y, i.e., to identify the correct labeling of the outcomes, the principal has to know the

order of the prior probabilities of Yk being each outcome, as what we assume in Assumption 2.3 for

multi-outcome tasks. Thus, with the multi-task variant of Assumptions 2.1-2.3, we can still construct a

noisy estimate Z of the ground truth, estimate its confusion matrix, and apply SSR to obtain unbiased

62



estimates of agents’ scores given by the underlying SPSR.

Despite the positive result in theory, there are some caveats of applying SSR mechanisms to multi-

outcome tasks. First, Assumption 2.1 essentially assume that the confusion matrix of an agent is

homogeneous across different tasks. However, as there is no clear correspondence between the labels of

the outcomes of different tasks, the confusion matrix of the noisy estimate Z for an agent is less likely to

be homogeneous across different tasks. Therefore, the real data can deviate far from Assumption 2.1.

Second, as there are more parameters in the confusion matrix to estimate in the multi-task case than in

the binary case, we need a much larger number of agents and tasks and denser predictions to maintain

decent estimation accuracy. Third, to apply a SSR mechanism to multi-outcome tasks, these tasks have

to have the same number of outcomes. However, in most crowd forecasting projects, the number of

multi-outcome tasks with the same number of outcomes is much smaller than the number of binary

questions and may not be sufficient to make accurate estimation of the confusion matrix. These caveats

leave a massive space for future research.

2.8 Empirical studies

Using 14 real-world human forecasting datasets, we empirically examine the performance of SSR

mechanisms in revealing agents’ prediction accuracy in terms of SPSR. We focus on three aspects: the

unbiasedness of SSR, the correlation of SSR scores to SPSR scores, and the accuracy of SSR in selecting

true top forecasters in terms of SPSR. We also compare the performance of SSR mechanisms to several

existing peer prediction mechanisms. The overall results show that our SSR mechanisms have an

advantage in recovering SPSR.

2.8.1 Setting

Datasets

We conduct our experiments on 14 datasets from three human forecasting and crowdsourcing projects:

the Good judgment Project (GJP), the Hybrid Forecasting Competition (HFC), and the human judgment

datasets collected by MIT. These three projects differ in participant population, forecasting topics, and

elicitation methods, offering a rich environment for empirical evaluation.

GJP datasets [Ata+16] The GJP data consists of four datasets for geopolitical forecasting questions.

The four datasets, denoted by G1„G4, were collected from 2011 to 2014, respectively. They contain
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Items G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

# of questions (original) 94 111 122 94 44 86 203 50 50 50 80 80 90 90
# of agents (orginal) 1972 1238 1565 7019 79 317 222 51 32 33 39 25 20 20

After applying the filter

# of questions 94 111 122 94 44 86 203 50 50 50 80 80 90 90
# of agents 1409 948 1033 3086 79 316 222 51 32 33 39 25 20 20

Avg. # of answers per question 851 533 369 1301 71 295 220 51 32 33 39 18 20 20
Avg. # of answers per agent 57 62 44 40 39 80 201 50 50 50 80 60 90 90

Majority vote correct ratio (%) 0.90 0.92 0.95 0.96 0.93 0.93 0.86 0.58 0.76 0.74 0.61 0.68 0.62 0.72

Table 2.1: Statistics about binary-outcome datasets from GJP, HFC and MIT datasets

different sets of forecasting questions and forecasters.

HFC datasets [IAR19] We use the forecast data of team participants in the Hybrid Forecasting

Competition. The data consists of three datasets, denoted by H1„H3, referring to the forecasting data

collected in the preseason competition, the first competition, and the second competition, respectively.

The the preseason competition lasted half a year, and the two formal competitions lasted around one

year. The three datasets have different forecasting questions and partially overlapped participating

teams.

MIT datasets [PSM17] The MIT data consists of seven datasets, denoted by M1a, M1b, M1c, M2, M3,

M4a, M4b, respectively. Each dataset uses one of four sets of questions and has a different participant

pool. The questions range from guessing the capital of each state and predicting the price interval of

artworks to some trivia questions. The forecasters were students in class and colleagues in labs. In

datasets M1a, M1b, M4a, M4b, forecasters report only binary votes on forecasting questions. In datasets

M1c, M2, M3, forecasters give probabilistic predictions.

Both GJP and HFC projects allow participants to make daily forecasts. For testing peer prediction

mechanisms in our setting, we only need to use a single prediction for each participant on a forecasting

question. In our experiments, we use the final prediction of each participant made on each question

and ignore the other predictions in these two projects. Also, we focus on the forecasting questions

which have binary outcomes in these datasets. To have a relatively stable estimation over the accuracy

of agents, we filter out participants who made predictions on less than 15 questions. The basic statistics

of these datasets are presented in Table 2.1.
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SPSR

We consider three SPSR, the Brier score, the log scoring rule, and the rank-sum scoring rule, because

of their usage in practice and connections to machine learning concepts. The first two are the most

widely adopted scoring rules. They are equivalent to two main loss functions, the squared error and the

cross-entropy loss, respectively, used in the machine learning community. The rank-sum scoring rule

can be written as an affine transformation of the area under the receiver operating characteristic curve

(AUC-ROC),4 which is also a widely adopted accuracy metric in the machine learning community.

In our experiments, we adopt the conventional formula of the Brier score used in the GJP and HFC

projects. The Brier score ranges from 0 to 2, with a smaller score corresponds to higher accuracy. This is

different from using SPSR as a payment method, where the higher the better. We can transfer between

these two usages by applying a negative scalar. We orient the log scoring rule and the rank-sum score

rule in the same direction as the Brier score, with a minimum (best) score of 0. The exact formula for

each scoring rule is as follows: Recall that qi,k and Yk are agent i’s prediction and the ground truth for

task k, respectively, and rmis is the set of tasks answered by agent i.

• Brier score: SBrierpqi,k, Ykq “ 2pqi,k ´ Ykq2. We use the mean Brier score, 1
mi

¨
ř

kPrmis
SBrierpqi,k, Ykq,

to represent an agent’s overall accuracy under the Brier score over the set of tasks she answered.

• Log scoring rule: Slogpqi,k, Ykq “ Yk logpqi,kq ` p1 ´ Ykq logp1 ´ qi,kq. We use the mean log score,

1
mi

ř

kPrmis
Slogpqi,k, Ykq, to represent an agent’s overall accuracy under the long scoring rule over

the tasks she answered. As the log scoring rule is unbounded when the forecast predicts the

opposite of the ground truth, we change all forecasts of 1 to 0.99 and forecasts of 0 to 0.01 to

ensure that the score is always a real number.

• Rank-sum scoring rule is a multi-task scoring rule. For a single task k, it assigns a score

Srankpqi,k, ykq “ ´yk ¨ ψ
´

qi,k|tqi,k1 uk1Prmis

¯

,

where ψ
´

qi,k|tqi,k1 uk1Prmis

¯

:“
ř

k1Prmis
1pqi,k1 ă qi,kq ´

ř

k1Prmis
1pqi,k1 ą qi,kq is the rank of predic-

tion qi,k among all predictions from agent i. Then, agent i’s rank-sum score Srank
i is defined as:

4The affine transformation coefficients are determined by the numbers of the tasks with ground truth 1 and
with ground truth 0. (according to Eqs. 12 and 13, [Par+16]). Thus, when evaluating agents’ prediction accuracy on
the same set of answered questions, the rank-sum scoring rule is equal to the AUC-ROC for each agent up to the
same affine transformation determined by the ground truth of the questions. However, the AUC-ROC itself is not
an SPSR, as when considering the incentive, the affine transformation coefficients may differ in different agents’
beliefs.
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Srank
i “

ř

kPrmis
Srankpqi,k, Ykq.5 The range of the score increases with the number of answered

tasks quadratically, thus we use the normalized score 1 ` 4
m2

i
Srank

i with range [0, 2].

Treatments

Though existing peer prediction methods are not designed for recovery of SPSR, we add comparisons to

them for completeness of our study.6 In particular, we would like to understand whether in practice

SSR mechanisms have the advantage of revealing the true scores given by SPSR while not accessing

ground truth information.

In our experiments, we consider four popular existing peer prediction methods, serving as compar-

isons to SSR: proxy scoring rules (PSR) with extremized mean [Wit+17], peer truth serum (PTS) [RFJ16],

correlated agreement (CA) [Shn+16], determinant mutual information (DMI) [Kon20].

PSR is to directly apply the SPSR w.r.t. an unbiased proxy of the ground truth. When the principal

knows no unbiased proxy, Witkowski et al. [Wit+17] recommend using the extremized mean of the

reported predictions to serve as the proxy. In our experiments, we adopt the same formula for the

extremized mean as in their experiments [Wit+17], i.e., q̄2
k

q̄2
k`p1´q̄kq2 , where q̄k is the average reported

prediction on task k. Using different SPSR as the underlying scoring rule, we can get different PSR and

SSR.

PTS, CA, and DMI do not depend on SPSR and are designed to elicit categorical labels instead of

probabilistic predictions. So we make the following adaption for them to take probabilistic predictions

as inputs. Our adaption is based on the fact that in essence, these mechanisms all appreciate the

joint distribution of agents’ reported labels to compute the scores: For a task k, an agent who reports

probability Pi,k believes that the true label of the task has probability Pi,k to be 1. Therefore, on this

task, the joint probability of agent i’s believed true label and agent j’s believed true label both being

1 is Pi,kPj,k, assuming their believed true labels are independent conditioned on their predictions. By

this way, we can compute the joint distribution of the believed true labels of two peer agents on each

task and their joint distribution over the whole dataset is the mean of their joint distributions on each

task. Using this joint distribution over the whole dataset, we can compute the scores for PTS, CA, and

DMI directly. This adaption method for PTS, CA, and DMI turns out to give better correlations between

5The AUC-ROC of agent i is 1
2

ˆ

1 ´ 1
m`

i pmi´m`
i q

Srank
i

˙

, where mi` :“
ř

k1Prmis
1pYk1 “ 1q (given by Eqs. 12 and

13, [Par+16]).

6We do not intend to claim our mechanism is better in any sense, as it would be an unfair comparison since
the goals were different in each design of these mechanisms. For example, the mechanisms [Shn+16; Kon20] can
characterize determinant mutual information between an agent’s reports and the underlying ground truth.
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the scores of these three mechanisms and the true SPSR scores than the alternative adaption method of

using the mostly likely categorical labels indicated by the probabilistic predictions as inputs for these

mechanisms (see how the correlations shown in Figs. A.1 and A.2 in the appendix (most likely labels as

inputs) compare to the correlations shown in Figs. 2.2 and 2.3.).

2.8.2 Main results

Unbiasedness of SSR Our theorem shows that under certain assumptions, the reward of an SSR

mechanism is unbiased to the reward of the SPSR that the SSR mechanism is built upon. However, it is

unclear to what extent this unbiasedness holds in real datasets where these assumptions are unlikely to

hold strictly. Therefore, we empirically examine the concrete relationship between SSR scores and the

corresponding SPSR scores.

Fig. 2.1 plots the score pairs received by forecasters in each of the 14 datasets. Each score pair

represents the SPSR score and the SSR score that an individual forecaster receives in a single dataset.

As can be seen, under each of the three SPSR we test, the SSR scores demonstrate a salient linear

relationship to the true SPSR scores. We further draw a linear regression curve between the SSR scores

and the true scores for each of the three SPSR of interest (the blue curves in Fig. 2.1). To draw this linear

regression curve, we first cluster the score pairs into different groups based on the value of the SPSR

scores and compute the center point (the mean score pair) for each group, represented by the orange

triangles in Fig. 2.1. Then, we regress on these center points.7 The three regression curves demonstrate

a slope of 0.74, 0.73, and 0.84, respectively, all with an intercept near 0. This result indicates that though

the SSR scores are not exactly unbiased in real data, they still follow an affine transformation of the true

SPSR scores with decent approximate unbiasedness.

We also notice that under all three SPSR, the SSR scores tend to underestimate the true scores by

around 20%. As the SSR scores follow an affine transformation of the SPSR scores empirically, this

underestimation can possibly be mitigated by applying a constant scaling factor (e.g., 1.25 as suggested

by our regression) without influencing the incentive properties of the SSR mechanisms.

7The reason for clustering score pairs before regression is that the SPSR scores of forecasters are not distributed
evenly within the range of the SPSR score, with most forecasters’ SPSR scores falling in the low range of the SPSR
score. Consequently, drawing the regression curve directly on all score pairs will mainly reflect the regression
pattern in the low range of the SPSR score instead of the whole range. In fact, for each of the three SPSR tested, the
corresponding SSR mechanism obtains a regression slope closer to 1 at the low range of the SPSR score.
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(a) Brier (y “ 0.744 ¨ x ` 0.014) (b) Log (y “ 0.733 ¨ x ´ 0.041) (c) Rank-sum (y “ 0.839 ¨ x ´ 0.041)

Figure 2.1: Regression of individuals’ true accuracy and SSR score over 14 datasets under three different SPSR.

(a) Brier score (b) Log scoring rule (c) Rank-sum scoring rule

Figure 2.2: The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)
between individuals’ peer prediction scores and different SPSR.

Correlation with SPSR We compare the correlations between agents’ SPSR scores and the scores

given by the five peer prediction mechanisms we test. We first measure the correlations on each dataset

independently using Pearson’s correlation coefficient (corr) and then classify them into different levels

based on the value of the coefficient. Finally, we count the number of datasets at different correlation

levels for each peer prediction mechanism and present the results in Fig. 2.2. As can be seen, all five

peer prediction mechanisms achieve a strong correlation (corr>0.5) to the SPSR on half of the 14 datasets,

while the SSR mechanisms demonstrate an even stronger correlation pattern. In particular, the SSR

mechanisms achieve a very strong correlation (corr>0.8) on 9 out of the 14 datasets under all three

SPSR, and achieve correlations in more datasets than other mechanisms for each of the following levels:

corr>0.9, corr>0.8, and corr>0.5. The advantage of SSR in the correlation to the SPSR is most salient

under the Brier score and is more salient when compared to the PTS, CA, DMI mechanisms than

compared to the PSR mechanisms. We observe similar results using Spearman’s rank correlation test

(Fig. 2.3), which implies that SSR mechanisms also rank the agents similarly to SPSR.

The performance of SSR mechanisms in reflecting the true SPSR scores depends on the accuracy

of estimating the error rates of the constructed noisy estimate of ground truth in SSR mechanisms.

This estimation accuracy depends on the number of prediction samples that SSR mechanisms have
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(a) Brier score (b) Log scoring rule (c) Rank sum scoring rule

Figure 2.3: The number of datasets in each level of correlation (measured by Spearman’s correlation coefficient)
between individuals’ peer prediction scores and different SPSR.

(a) Brier score (b) Log scoring rule (c) Rank-sum scoring rule

Figure 2.4: The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)
between individuals’ peer prediction scores and different SPSR on sampled datasets (the correlation is averaged
over 100 runs of random sampling).

access to. In our previous experiments, each task receives a considerable number of predictions (no

less than 20 on average), which may give an edge to the SSR mechanisms. However, a principal with a

limited budget can often collect only a small number of predictions for each task. Therefore, we are

also interested in comparing the performance of SSR mechanisms to other peer prediction mechanisms

when each task receives only a limited number of predictions. To simulate this scenario, for each

original dataset, we sample a subset of users to create a new dataset such that each new dataset has an

average of 4„5 predictions per task with a minimum of 3 predictions, which is the minimum number

of predictions per task required by our SSR mechanisms.8 Fig. 2.4 shows the correlation results of

each peer prediction mechanism based on the average Pearson’s correlation coefficient over 100 runs of

random sampling. As can be seen, overall, the correlations between each peer prediction mechanism and

the three SPSR in these sampled datasets decrease when compared to the corresponding correlations

in the original datasets. SSR mechanisms still maintain a strong correlation (corr>0.5) over half of

8To ensure a minimum of 3 predictions per task, we removed a small number of tasks that receive less than 3
predictions by this sampling method. Over the 100 runs of random sampling, around 20 tasks are removed on
average from each GJP dataset, and no more than 2 tasks are removed from each of the other datasets in each run.
This sampling operation keeps a decent number of predictions for each agent, which allows a stable computation
for the scores of SSR, PTS, CA, and DMI mechanisms.
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the 14 datasets, while the other mechanisms do not. However, the performance difference of SSR

and other mechanisms shrinks. The PSR mechanisms outperform SSR mechanisms at two correlation

levels, corr>0.8 and corr>0.9, under the Brier score and the log scoring rule. In fact, the single-task

PSR mechanisms demonstrate smaller correlation decreases, indicating that they are more robust to the

number of predictions than the other four multi-task mechanisms.

Expert identification SPSR are sometimes used to identify top forecasters to assign prizes, e.g.,

in projects GJP and HFC. Moreover, accurate identification of true top forecasters without access to

the ground truth can help improve the aggregation accuracy, when a principal wants to aggregate

forecasters’ predictions in to a final prediction for each task [WLC19]. Therefore, we examine to what

extent different peer prediction scores can identify top-performing experts in terms of the true SPSR,

without access to the ground truth. We first rank the forecasters according to one of the three SPSR (when

the rank-sum scoring rule is chosen, we use the AUC-ROC instead to evaluate agents’ true accuracy,

because as an accuracy metric instead of an incentive device, AUC-ROC is much more popular than the

rank-sum scoring rule). We focus on two metrics about expert identification: (i) the percentage of top

t% forecasters identified by the SPSR in the top t% forecasters selected by a peer prediction method,

and (ii) the percentage of below-average forecasters (the bottom 50% forecasters) under the SPSR in the

top t% forecasters selected by a peer prediction method. The results are shown in Figs. 2.5 and 2.6. We

find that for both the Brier score and the log score, there are more true top t% forecasters in the top t%

forecasters selected by SSR than in the top t% forecasters selected by other peer prediction mechanisms,

when t% ranges from 5% to 50%. Meanwhile, there are less true below-average forecasters in the top

t% forecasters under SSR and PSR mechanisms than under the other peer prediction mechanisms. For

AUC-ROC, while the SSR mechanism maintains a relatively smaller number of true below-average

forecasters in its top 10% to 15% forecasters, all five peer prediction mechanisms perform similarly,

which echos the correlation results under the rank-sum scoring rule, where the five peer prediction

mechanisms all achieve strong correlation in most of the datasets (Fig. 2.2c).

2.9 Discussion

In this chapter, we propose the SSR mechanisms such that truthful reporting one’s posterior belief is a

dominant strategy in the multi-task IEWV setting, when each agent uses a consistent reporting strategy

across all tasks. Moreover, the reward of a prediction given by an SSR mechanism quantifies the value

of information in expectation as if the prediction is assessed by the corresponding SPSR with access
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(a) Brier score (b) Log scoring rule (c) AUC-ROC

Figure 2.5: The portion of top t% forecasters w.r.t. 3 different metrics (mean squared loss, cross-entropy loss,
AUC-ROC loss) in the top t% forecasters selected by different methods (averaged over 14 datasets).

(a) Brier score (b) Log scoring rule (c) AUC-ROC

Figure 2.6: The portion of bottom 50% forecasters w.r.t. 3 different metrics (mean squared loss, cross-entropy loss,
AUC-ROC loss) in the top t% users selected by different methods (averaged over 14 datasets).

to the ground truth. Because of these two properties, our mechanisms are particularly suitable for

information elicitation scenarios where using SPSR to reward agents are favored but the ground truth is

not available in time, such as forecasting long-term geopolitical events and predicting the replicability

of social science studies.

There are also some limitations of applying our models and mechanisms. First, our Assumption 2.2

requires agents’ signals on a task to be independent conditioned on the ground truth Y. This implies

that our SSR mechanisms only apply to scenarios where there exists such an objective ground truth or

where there is no objective ground truth but the agents’ signals are correlated only through a single

latent variable. An example of the latter is asking an agent how likely an essay is well-written or not.

Although whether an essay is well-written or not may not have an objective answer, as long as the agents’

signals are independent conditioned on a latent variable that captures the real quality of the essay, our

mechanisms should incentivize truthful reporting as a dominant strategy when all agents adopt uniform

strategies across tasks. In comparison, most existing multi-task peer prediction mechanisms [e.g. RFJ16;
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Shn+16; Kon20] that elicit categorical signals do not require agents’ signals to be correlated only through

a latent variable. Instead, they allow a broader correlation pattern (e.g., self-predicting [RFJ16]) or

arbitrary correlations as long as signals are not completely independent [e.g. Shn+16; Kon20].

Second, to estimate the error rates of the noisy estimate of the ground truth, our mechanisms require

at least three reports for each task. In contrast, several multi-task mechanisms [e.g. DG13; RFJ16; Shn+16;

Kon20] only need one peer agent to achieve their incentive properties. Moreover, the variance of the

rewards of SSR mechanisms depends on the number of tasks and reports that the mechanisms have

access to. A relatively large number of tasks and reports is needed to obtain a low-variance reward for

each agent. As can be seen from our empirical study, although SSR mechanisms still maintain better

correlations to the true SPSR scores than the other mechanisms when there are only a few reports

per task, SSR mechanisms have a more salient correlation decrease when compared to the case where

each task receives a sufficient number of answers. SSR mechanisms are more sensitive to the size of

the dataset. However, our analysis suggests that as long as agents adopt uniform strategies across

tasks, it is possible to learn the statistical patterns of agents’ reports without influencing the incentive.

Therefore, a future direction to mitigate SSR mechanisms’ sensitivity to the amount of data is to develop

or adopt more sophisticated estimation algorithms that require fewer tasks and reports to achieve stable

performance.
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Chapter 3

Forecast Aggregation via Peer Prediction

3.1 Introduction

Forecasting is one of the main areas where collective intelligence is frequently garnered. In crowd

forecasting, a pool of human participants are invited to make forecasts on a set of prediction ques-

tions of interest and the solicited forecasts are then aggregated to obtain final predictions. Crowd

forecasting has been widely applied in solving challenging forecasting tasks such as forecasting geopo-

litical events [Ata+16], predicting the replicability of social science studies [Liu+20], diagnosing skin

lesions [PSM17] and labeling training sets for machine classifiers [LPI12].

Aiming to more effectively leverage collective intelligence in forecasting, we focus on improving

multi-task forecast aggregation in this chapter. We consider a minimal-information setting where

each participant offers a single prediction to each forecasting question of a subset of total forecasting

questions, and no other information such as participants’ historical performance is available. By

exploring only hidden information in participants’ predictions over multiple questions, we develop a

family of aggregation methods that robustly improves the accuracy of the final predictions across a

variety of datasets.

The minimal-information setting requires the least effort to collect information and put almost

no constraints on crowdsourcing workflow. Our methods can be used during the cold-start stage

of long-term forecasting [Ata+16], where no event has been resolved yet to evaluate participants’

performance. They can also serve as elegant benchmarks for developing more complex aggregators

when additional information is available.

Our approach is to leverage peer forecasts to generate a proxy evaluation of each forecaster’s
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performance that potentially positively correlates with her true performance. We call such proxy

evaluations peer assessment scores (PAS). We then develop PAS-aided aggregators that build upon

simple aggregators, such as mean. Our PAS-aided aggregators set larger weights in the simple

aggregators on predictions from forecasters who obtain higher PAS.

The question then boils down to how to generate credible PAS evaluations. We are blessed by

recent advances in the peer prediction literature. Peer prediction mechanisms are a family of reward

mechanisms designed to use only peer reports on forecasting questions to motivate crowd forecasters

to provide truthful or high-quality forecasts in the absence of the ground truth [MRZ05a]. While they

are primarily developed for the purpose of forecast elicitation, Liu, Wang, and Chen [LWC20] and

Kong [Kon20] revealed theoretically that the rewards given by their mechanisms correlate positively

with the prediction accuracy (defined using the ground truth) under certain conditions. Liu, Wang,

and Chen [LWC20] also showed empirical evidence of this correlation for several other peer prediction

mechanisms.These mechanisms are potentially tools to use to construct the PAS-aided aggregators.

In this chapter, we explore the use of five recently proposed peer prediction mechanisms [RFJ16;

Shn+16; Wit+17; LWC20; Kon20] as PAS. After showing their theoretical properties in recovering

the forecasters’ true performance, we thoroughly examine the empirical performance of PAS-aided

aggregators built upon them. We employ 14 real-world human forecast datasets and two widely-adopted

accuracy metrics, the Brier score and the log score. We compare the performance of these PAS-aided

aggregators with four representative existing aggregators that neither require knowing the ground

truth of resolved historical forecasting questions: the mean aggregator [JW08; MLS12], the logit-mean

aggregator, which is based on the idea of extremization of predictions [ACR12; Sat+14a; Bar+14], a

statistical-inference-based aggregator [LPI12], and the minimal pivoting aggregator, which is based on

“surprising popularity.” [PSM17; PS19]

Our results reveal: 1) Though each of the above four existing aggregators has strong performance

on specific datasets, none of them has consistent, robust performance across all datasets. 2) In contrast,

our PAS-aided aggregators demonstrate a significant and consistent improvement in the aggregation

accuracy compared to the four existing aggregators. 3) These PAS-aided aggregators adopt a very

intuitive (explainable) and straightforward (generically applicable) strategy to incorporate PAS: select top

forecasters according to their PAS and apply the mean or the logit-mean aggregator to the predictions

of these selected forecasters. 4) Moreover, this improvement is observed when any one of the five

peer prediction mechanisms is used as PAS, and there is no statistically significant difference found

in the improvements when different PAS are used. 5) The above results demonstrate the possibility of

discovering a smaller but smarter crowd in real-time forecast aggregation without accessing any ground
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truth outcomes.

We want to emphasize that aggregation without access to historical ground truth information is an

incredibly challenging problem. One cannot expect that there is a universal aggregator that has the best

performance on all datasets. There isn’t. Instead, we hope to devise aggregators that perform well and

robustly on different datasets. The significance of our work is three-fold. First, it provides a framework

to select forecasts to achieve more robust and accurate aggregation.Second, our method can be used

as a booster to aggregators in almost all multi-task forecast aggregation scenarios since it has minimal

information requirements. Third, our work reveals a new and meaningful application of peer prediction

methods - as scoring mechanisms to identify top experts and to improve forecast aggregation.

3.2 Related Work

Our work considers the multi-task forecast aggregation setting, where there is a set of (independent)

judgement questions to forecast and each participant forecasts on multiple questions. A large part of

the forecast aggregation literature considers the single-task setting, where all participants predict about

a simple forecasting question. The methods and aggregators designed for the single-task setting are

also often used in the multi-task forecast setting directly. Single-task aggregators include the mean,

median, their trimmed variants [Gal07; Cle89; JW08; MLS12], the aggregators that extremize the mean

predictions [RG10; Bar+14; ACR12; Sat+14a], and the “surprising-popularity”-based aggregators [PSM17;

PS19; PS20], which use the additionally collected participants’ estimates about the other participants’

forecasts to help aggregation. The aggregators proposed in our work also use single-task aggregators

as building blocks. When there are multiple forecasting questions, the aggregation problem can also

be viewed as learning a universal pattern between forecasters’ predictions and the latent ground truth

across forecasting questions. Therefore, statistical inference methods [LPI12; OVB14; LD14; MP17] are

also customized and developed to aggregate forecasts in the multi-task setting. Our work includes both

single-task aggregators and statistical-inference-based aggregators as benchmarks. We introduce more

details about different aggregators in the benchmark selection part in Section 3.6.1.

Our proposed aggregators use the heterogeneity of participants’ expertise to improve aggregation

accuracy. There is a large literature, including [CW86; GMS14; Asp10; BC15; Sat+14b], which explores

this idea but in the case where forecasters’ historical performance is available, or where the forecasting

is conducted in a dynamic manner where forecasting questions are resolved sequentially, and the

resolution can be used to aggregate unresolved questions. In contrast, we consider the scenario where

no ground truth information is available, i.e., aggregated predictions are requested before any forecasting
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question is resolved. Wang et al. [Wan+11] consider the same scenario. However, they assume that there

exists a known logical dependence between the outcomes of different forecasting questions.

Our idea of peer assessment scores, which aims to measure a forecaster’s prediction accuracy in the

absence of ground truth information, is derived from multi-task peer prediction mechanisms [Pre04a;

MRZ05a; WP12b; RFJ16; KLS16; Aga+17; Wit+17; GF19a; LWC20], a family of mechanisms used to

determine forecasters’ rewards on multiple forecasting questions before any question resolves. For

binary-vote judgement questions, Kurvers et al. [Kur+19] proposed a measure of similarity of forecasters’

votes, which is also empirically correlated with forecasters’ true accuracy. In this work, we investigate

the use of five representative peer prediction methods to generate PAS.

3.3 Setting

We consider the scenario with a set N of agents recruited to make forecasts on a set M of events

(forecasting questions).

Events. We consider binary events (sometimes called tasks).1 Each event i is represented by a random

variable Yi P t0, 1u, denoting the event outcome (ground truth). We assume that Yi is drawn from a

Bernoulli distribution Bernpqiq with an unknown qi P r0, 1s. To illustrate, consider an event i as “Will

Democrats win the 2024’s election?” The outcome is either “Yes” (Yi “ 1) or “No” (Yi “ 0), and qi “ 0.5

means that the outcome is random (at the time of forecasting) and the Democrats has 50% chance to

win.

Agents. Each agent ( indexed by j) forecasts on a subset of events Mj Ď M. Mj could either be

assigned by the principal or be constructed by agent j herself. We use Ni Ď N to denote the subset of

agents who forecast on event i. We use pi,j P r0, 1s Y tHu to denote the probabilistic prediction made by

agent j on event i for Yi “ 1, with pi,j “ H denoting agent j provides no forecast on event i. Meanwhile,

we let pi “ ppi,jqjPNi and P “ tpi,juiPM,jPN .

The forecast aggregation problem. The forecast aggregation problem is to design an aggregation

function F : pr0, 1s Y tHuq
|M|ˆ|N |

Ñ r0, 1s|M|, which maps the prediction profile P of all agents on all

events to an aggregated prediction profile tq̂iuiPM, where q̂i P r0, 1s is the aggregated prediction for

event i. The design goal is to make the aggregated predictions as accurate as possible. The accuracy

1Our methods and results can be extended to multi-outcome events in two ways. Please refer to Section 3.6.4.

76



of predictions is evaluated against the corresponding ground truth of the forecasted events, which are

expected to be revealed some time after the aggregation.

Our aggregators will use two popular existing single-task aggregators as building blocks: the mean

(Mean) and the logit-mean (Logit) [Sat+14a]. Mean has empirically proved robustness [JW08], while Logit

extremizes the predictions of Mean and demonstrates significantly higher accuracy on some human

forecast datasets [Sat+14a]. We introduce the weighted versions of the two aggregators that we will use

as follows. For a single event i with a prediction profile pi and a weight vector pwjqjPNi , we have

• FMean
i ppiq “

ř

jPNi
wj pi,j,

• FLogit
i ppiq “ sigmoid

´

α
|Ni|

ř

jPNi
wjlogitppijq

¯

and α “ 2 [Sat+14a].

The Logit aggregator first maps probabilistic predictions into the log-odds space using the logit function,

the inverse function of the sigmoid function. It then takes the weighted average and applies a scaling

factor to further extremize the prediction. Finally, it maps the prediction back into a probability using

the sigmoid function. Empirically, Satopää et al. [Sat+14a] recommended a scaling factor of 2.

Prediction accuracy metrics The accuracy of forecasts is typically evaluated using the strictly proper

scoring rules (SPSR) [GR07a]. Two widely-adopted rules are the Brier score and the log score. We use

them to evaluate our aggregators’ performance in our experiments. For a prediction q̂i and ground

truth Yi on an event i, we evaluate the two scores as follows:

• Brier score2: SBrierpq̂i, Yiq “ 2pq̂i ´ Yiq
2.

• Log score: Slogpq̂i, Yiq “ ´Yi logpq̂iq ´ p1 ´ Yiq logp1 ´ q̂iq.

With above formulas, a lower scores refer to a higher accuracy. The Brier score ranges from 0 to 2. The

log score ranges from 0.1 to 4.61.3 An uninformative prediction of 0.5 receives a Brier score of 0.5 and a

log score of 0.69 regardless of the event outcome.

3.4 Aggregation Using PAS

We now formalize the notion of peer assessment scores (PAS), and introduce our aggregation framework

that uses PAS. We defer the introduction of concrete instantiations of PAS that lead to good aggregation

performance into the next section. We list the abbreviations that we frequently use hereafter in Table 3.1.

2We adopt the same formula for the Brier score as in the Good Judgment Project [e.g., Ata+16]

3The log score is unbounded when the prediction is 0 or 1. We thus map predictions of 1 (0) to 0.99 (0.01).
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Abbr. Full name Abbr. Full name

DMI Determinant mutual information mechanism SPSR Strictly proper scoring rules
CA Correlated agreement mechanism PAS Peer assessment sores
PTS Peer truth serum mechanism BS Brier score
SSR Surrogate scoring rule mechanism VI Variational inference aggregator
PSR Proxy scoring rule mechanism MP Minimal pivoting aggregator

Table 3.1: The main abbreviations and the corresponding full names used in this chapter

In short, and in different to the true accuracy that is evaluated against the ground truth, PAS assess

a prediction against the other agents’ predictions. Thus, unlike the true accuracy, PAS can be computed

for all crowdsourcing forecasting scenarios, with no additional information (e.g., the ground truth)

required. Formally, a peer assessment score on an event set M and an agent set N is a scoring function

R : pr0, 1s Y tHuq
|M|ˆ|N |

Ñ r0, 1s|N | that maps the prediction profile P of all agents on all events into a

score sj for each agent j P N . The score sj should reflect the average prediction accuracy of agent j.

Bearing this notion of PAS in mind, we introduce our aggregation framework. The intuition of our

framework is straightforward: In aggregation, if we rely more on predictions from agents with higher

accuracy indicated by PAS, we shall hopefully derive more accurate aggregated predictions. In general,

we can incorporate PAS into an aggregation process via three steps:

1. Compute a PAS score sj for each agent j P N .

2. Choose a weight scheme that weight agents’ predictions based on the scores sj, j P N .

3. Choose a base aggregator and apply the weight scheme to generate final predictions.

Each step features multiple design choices, which will influence the aggregation accuracy and can be

customized case by case. In Step 1, there are multiple alternatives to compute PAS. Ideally, the computed

PAS should reflect the true accuracy of agents. In Step 2, the weight scheme can be, for example, either

ranking the agents by PAS and selecting a subset of top agents to aggregate (ranking & selection), or

applying a softmax function to PAS to obtain weights.In Step 3, we can apply different base aggregators

that can incorporate the weight scheme, such as weighted Mean or Logit.

We call the aggregators following the above framework the PAS-aided aggregators. We present the

detailed PAS-aided aggregators that we will test in this chapter in Algorithm 8. In Step 1, we use five

different peer prediction mechanisms (DMI, CA, PTS, SSR, and PSR) to compute PAS, which will be

introduced in the next section. In Step 2, we choose the ranking & selection scheme rather than the

softmax weight, as the former can be applied to any base aggregator and its hyper-parameter, the

percent of top agents selected, has an straightforward physical interpretation. In our experiments, these
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Algorithm 8 PAS-aided aggregators

1: Compute PAS (using one of DMI, CA, PTS, SSR, PSR) based on all predictions.
2: Rank agents according to PAS.
3: For each event i, select the predictions from top maxp10% ¨ |N |, 10q agents who predict on

that event, and run Mean or Logit aggregator on these predictions.

two weight schemes show similar performance with best-tuned hyper-parameters. In Step 3, we use

Mean and Logit as the base aggregator.

3.5 Peer Prediction Methods for PAS

Peer prediction mechanisms are a family of emerging reward mechanisms designed to incentivize

crowd workers to truthfully report their private signals (e.g., probabilistic predictions or votes on the

outcome) in the absence of ground truth information. These mechanisms can be expressed by a function

R : pr0, 1s Y Hq
|MˆN |

Ñ r0, 1s|N | that maps forecasters’ prediction profile P to a reward Rj for each

forecaster j. The function Rp¨q is carefully designed so that an agent’s expected reward according to

her belief about others’ reports (formed by her private signal) will be maximized when she reports

truthfully.

While most peer prediction scores do not necessarily reflect prediction accuracy, we selectively

review five peer prediction mechanisms in this section and provide theoretical support for using them as

PAS — scores of these five mechanisms each correlate with accuracy of agents according to some metric.

The core intuition of these peer prediction mechanisms to achieve truthful elicitation is to quantify and

reward the correlations among participants’ predictions that are associated with the ground truth of the

forecasting questions, instead of rewarding the simple similarity between participants’ predictions. As a

result, forecasters with predictions containing more information about the ground truth tend to receive

a better score in expectation. This property makes them ideal candidates to serve as PAS.

Two assumptions are often required for these mechanisms to work:

A1. Events are independent and a priori similar, i.e., the joint distribution of agents’ private signals

and the ground truth is the same across events.

A2. For each event, agents’ private signals are independent conditioned on the ground truth.

These two assumptions resemble the requirements for using statistical inference methods to infer the

ground truth: there exists a consistent pattern between the ground truth and agents’ predictions across

tasks. The difference is that these two conditions do not restrict the pattern to follow some generative

models specified by the inference methods. In the following paragraphs, we first introduce these five
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peer prediction mechanisms and then show why their rewards may correlate with agents’ true prediction

accuracy. We divide the five mechanisms into two categories.

3.5.1 Mechanisms recovering the strictly proper scoring rules (SPSR)

When SPSR are reoriented such that a higher score corresponds to higher accuracy, they can serve reward

schemes to incentivize truthful reporting [GR07a]. But they require the ground truth information

to compute. Surrogate scoring rules (SSR) [LWC20] and proxy scoring rules (PSR) [Wit+17] are two

peer prediction mechanisms that try to recover the SPSR from participants’ reports, thus providing

two methods to estimate the prediction accuracy of agents in the minimal information setting. Both

mechanisms estimate a proxy of ground truth from participants’ forecasts and assess their forecasts

against this proxy. To introduce SSR and PSR, we use Sp¨q to denote an arbitrary SPSR.

Surrogate scoring rules (SSR) For a prediction pi,j from agent j, SSR randomly draws a binary signal

Z from other agents’ forecasts on the same task as the proxy to evaluate pi,j, with Z „ Bern
ˆ

ř

kPNiztju pi,k

|Ni|´1

˙

.

The bias of Z to ground truth Yi can be represented by two error rates e0 “ PpZ “ 1|Yi “ 0q and

e1 “ PpZ “ 0|Yi “ 1q. Assumptions A1 and A2 guarantee that the error rates of Z for agent j are

the same across different tasks. Based on this property, Liu, Wang, and Chen [LWC20] provided an

algorithm to accurately estimate e0 and e1 using participants’ forecasts on multiple events. SSR then

assess a prediction pi,j using a de-bias formula for Sp¨q to get an unbiased estimate for Sp¨q with Z. For

prediction pi,j, we have

RSSR
i,j ppi,j, Zq “

p1 ´ e1´ZqSppi,j, zq ´ eZSppi,j, 1 ´ Zq

p1 ´ e0 ´ e1q
.

Consequently, EZ|Yi

”

RSSR
i,j ppi,j, Zq

ı

“ Sppi,j, Yiq.

Proxy scoring rules (PSR) In constrast to SSR, PSR directly apply SPSR Sp¨q to an agent’s forecast

against a proxy Ŷi of the ground truth to obtain the reward score, i.e., RPSR
i,j ppi,j, Ŷiq “ Sppi,j, Ŷiq.

Witkowski et al. [Wit+17] showed that as long as the proxy Ŷi is unbiased to the ground truth, the

proxy scoring rule gives an positive affine transformation of Sp¨q, maintaining the incentive property. In

practice, Witkowski et al. [Wit+17] recommended using an extremized mean prediction as the proxy

when there is no explicit unbiased proxy of ground truth available.
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3.5.2 Mechanisms rewarding the correlation

Determinant mutual information mechanism (DMI) [Kon20], correlated agreement (CA) [Shn+16],

and peer truth serum (PTS) [RFJ16] are three mechanisms that reward agents by examining their

forecasts’ correlation to their peers’. Their core idea is to reward by a correlation metric that measures

the agreement degree between agents’ forecasts that are introduced through the ground truth, while

excludes the agreement degree introduced by pure chance. In this way, an agent who independently

manipulates her reports regardless the ground truth can only decrease her agreement with other agents.

The computation of the expected reward under these three mechanisms for an agent j relies on the

joint voting distribution between agent j and an uniformly randomly selected peer agent k. Given a

prediction pi,j, agent j’s vote on event i can be viewed as drawn from Bernppi,jq. Thus, the joint voting

probability of agent j voting u and agent k voting v for any u, v P t0, 1u can be computed empirically as

d̂j,k
u,v “

1
|Mj,k|

ÿ

iPMj,k

pu
i,jp1 ´ pi,jq

1´u pv
i,kp1 ´ pi,kq1´v,

where Mj,k is the subset of forecasting questions answered by both agents. We use D̂j,k “

´

d̂j,k
u,v

¯

u,vPt0,1u

to denote the entire joint voting distribution of agent j and k. In the following paragraphs, we review

how these three mechanisms reward agent j given the peer agent k.

Determinant mutual information mechanism (DMI) DMI measures the correlation using the

determinant mutual information [Kon20]. Let M1
j,k,M2

j,k be two disjoint subsets of Mj,k, and let D̂1, D̂2

be the joint voting distribution computed on these two subsets separately. DMI rewards agent j by an

unbiased estimate to the squared determinant mutual information between agents j and k:

RDMI
j “ η detpD1q ¨ detpD2q, (3.1)

where η is a normalization coefficient.

Correlated agreement (CA) CA rewards an agent j by

RCA
j “

ÿ

uPt0,1u

ÿ

vPt0,1u

|d̂j,k
u,v ´ d̂j

u ¨ d̂k
v|, (3.2)

where d̂j
u “

ř

vPt0,1u d̂j,k
u,v is the marginal distribution of agent j reporting u estimated from the data. RCA

j

rewards the correlation by measuring the gap between the overall matching probability (represented by

d̂j,k
u,v) and the matching probability caused by pure chance (represented by d̂j

u ¨ d̂k
v).
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Peer Truth Serum (PTS) PTS rewards agent j by the matching probability of her votes to the peer

agent k’s votes. PTS mitigates the effect of a match caused by pure chance via rewriting the matching

probability under different vote realizations. Let p̄´j,u be the average marginal probability of voting u of

all agents except j. PTS rewards agent j by

RPTS
j “ d̂j,k

0,0{p̄´j,0 ` d̂j,k
1,1{p̄´j,1. (3.3)

3.5.3 Peer prediction rewards and accuracy of agents

In this section, we formally show that the five peer prediction mechanisms reflect forecasters’ true

accuracy. First, SSR and PSR reflect the underlying accuracy of predictions due to the unbiasedness of

their rewards w.r.t. the (affine transformation of) SPSR that they are built upon. As a direct corollary of

their unbiasedness, we have the following.

Proposition 3.1. 1. Under Assumptions A1 and A2, SSR ranks the agents in the order of their mean SPSR

that SSR is built upon asymptotically (|M|, |N | Ñ 8).

2. When there is an unbiased estimate of the ground truth and all agents are scored with the same unbiased

estimate, PSR ranks the agents in the order of their mean SPSR that PSR is built upon asymptotically

(|M| Ñ 8).

Second, the mechanisms, DMI, CA, PTS, reflect the accuracy of each agent because they essentially

try to capture the informativeness of agents forecasts, i.e., the correlation between the agents’ forecasts

that is established through the ground truth instead of the pure chance. More specifically, we have the

following proposition.

Proposition 3.2. Under Assumptions A1 and A2, and assuming agents report truthfully, the expected rewards

of DMI, CA, PTS reflect a certain accuracy measure of agents. In particularly,

1. DMI ranks the agents in the order of their reports’ squared determinant mutual information [Kon20] w.r.t.

the ground truth asymptotically (|M|, |N | Ñ 8).

2. CA ranks the agents in the order of their reports’ determinant mutual information w.r.t. the ground truth

asymptotically (|M|, |N | Ñ 8).

3. PTS ranks the agents in the inverse order of their signals’ expected weighted 0-1 loss w.r.t. the ground

truth outcome asymptotically (|M|, |N | Ñ 8), when the binary answer drawn from the mean prediction

of all agents has a true positive rate and a true negative rate both above 0.5.
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Items G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

# of questions 94 111 122 94 72 80 86 50 50 50 80 80 90 90
# of agents 1409 948 1033 3086 484 551 87 51 32 33 39 25 20 20

Avg. # of ans. per ques. 851 534 369 1301 188 252 33 51 32 33 39 18 20 20
Avg. # of ans. per agent 56.74 62.46 43.55 39.63 28.03 36.5 32.8 49.88 49.96 50 79.97 60 90 89.5
Maj. vote correct ratio 0.90 0.92 0.95 0.96 0.88 0.86 0.92 0.58 0.76 0.74 0.61 0.68 0.62 0.72

Table 3.2: Statistics about the binary event datasets from GJP, HFC and MIT datasets

Item 1 in Proposition 3.2 follows straightforwardly from Theorem 6.4 in [Kon20]. We present the

proofs for the items 2 and 3 in Appendix B.4. We note that mutual information does not directly imply

accuracy in the binary case. For example, a random variable Y1
i “ 1 ´ Yi contains all information w.r.t.

the ground truth Yi. But Y1
i is clearly not an accurate prediction of ground truth Yi. However, when

agents’ forecasts pi,j are positively correlated to the ground truth Yi, i.e., agents’ predictions are better

than random guess, then the mutual information does rank forecasts in the correct order, i.e., ranking

the perfect prediction (pi,j “ Yi) the highest and ranking random ones the lowest.

3.6 Empirical Studies

Our theoretical results suggest that the five peer prediction methods can effectively identify participants

who predict more accurately than others under certain assumptions. In practice, however, it is often

challenging or impossible to know to what extent these assumptions hold. Therefore, we conduct

extensive experiments to study the performance of our PAS-aided aggregators. We use a diverse set

of 14 real-world human forecast datasets and adopt two widely used accuracy metrics, the Brier score

and the log score. We first introduce our experimental setup, then examine the effectiveness of PAS in

selecting top performing forecasters, and finally present a comprehensive evaluation of our aggregators’

performance. We first focus on binary events and then discussion our results on multi-outcome events

in Section 3.6.4.

3.6.1 Experiment setup

Datasets

Our 14 test datasets consist of 4 datasets from the Good Judgement Projects (GJP) collected from 2011 to

2014 [GJP16], 3 datasets from the Hybrid Forecasting Competition (HFC) of varied populations [IAR19],

and 7 MIT datasets [PSM17]. These datasets vary in several dimensions, including dataset size, sparsity,

topics, collecting environment, and participants’ performance. Together they offer a rich environment
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Items G1 G2 G3 G4 H1 H2 H3

# of questions 8 24 42 43 81 80 86
# of agents 1409 948 1033 3086 484 551 87

Avg. # of ans. per question 945.25 566.25 341.8 1104.58 136.30 202.99 26.03
Avg. # of ans. per agent 5.37 14.34 13.9 15.39 22.81 30.20 29.32
Maj. vote correct ratio 0.88 0.96 0.90 0.88 0.57 0.61 0.68

Table 3.3: Statistics about the multiple-outcome event datasets from GJP and HFC datasets

for evaluating the performance of aggregators.

The GJP and the HFC collected predictions about real-world issues involving geopolitics and

economics via year-long online forecast contests. In these contests, forecasting questions were opened,

closed, and resolved dynamically, and forecasters’ accuracy can be evaluated using previously resolved

questions and used to aggregate predictions of remaining open questions. In contrast, the MIT datasets

are static prediction datasets, where participants predict on a set of questions all at once. The topics

include the capital of states, the price interval of arts, and the diagnosis of skin lesions. The MIT

datasets also contain additionally solicited predictions that participants made about other participants’

predictions. This information enables one to apply the surprising-popularity-based aggregators.

We focuse on the minimal-information aggregation setting. Therefore, we ignore the temporal

information in the GJP and HFC datasets and only use each individual’s final forecast on each forecasting

question.4 We also ignore the additional information solicited in MIT datasets when applying our

aggregators, but use it for a surprising-popularity-based benchmark aggregator. We filter out participants

with less than 15 predictions and questions with less than 10 answers from these datasets. This operation

only removed a few forecasting questions in the HFC datasets with no sufficient predictions to make

meaningful aggregation. We summarize the main statistics about the binary events of the 14 datasets

after filtering in Table 3.2 and the multi-outcome events in Table 3.3. More details about datasets can be

found in Appendix B.3.

Benchmark aggregators

In addition to the two base aggregators, Mean and Logit, which are widely-used in the minimal-

information aggregation setting [Sat+14a; JW08], we also use two other types of aggregators as our

benchmarks, the inference-based methods and the surprising-popularity-based methods.

• Inference-based methods contain a wide range of minimal-information multi-task aggregators. These

methods establish parameterized models to characterize the latent features of forecasters such as

4We obtain similar qualitative results when the first forecasts or the average forecasts are used.
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their biases towards the ground truth probability and the variances in their beliefs. Then, they

infer these parameters as well as the ground truth using the forecasts across all events. In this

type of aggregators, we use the variational inference for crowdsourcing (VI) method as a benchmark.

It is a go-to approach to aggregate predictions in the machine learning community. We use the

estimate ground truth probabilities given by VI as its predictions. Details of VI are included

in Appendix B.5. Other sophisticated methods in this category include the cultural consensus

model [OVB14], the cognitive hierarchy model [LD14], and the multi-task statistical surprising

popularity method [MP17]5. We will also compare to the performance these aggregators reported

by McCoy and Prelec [MP17] on the MIT datasets.

• Surprising-popularity-based methods are not minimal-information aggregators, but they represent a

new trend of forecast aggregation [PSM17; PS19]. They require forecasters to additionally predict

other forecasters’ predictions about the events of interest. Using this additional information,

these methods can identify commonly shared information in participants’ forecasts and avoid

counting them multiple times in the aggregation. The typical aggregator in this category refers to

the surprisingly-popular algorithm [PSM17]. We use a more recent variant, called the minimal

pivot (MP) method, as our benchmark. It has a better performance in generating probabilistic

predictions. It has a simple form: the aggregated prediction equals two times the mean of the

participants’ forecasts minus the mean of the participants’ predictions about other participants’

average prediction.

Median is another popular aggregator in the minimal information setting. In our test, its performance

is always between the performance of Mean and Logit. Thus, we omit our results about median.

Implementation of PAS-aided aggregators

In our experiments, we evaluate 10 PAS-aided aggregators. Each PAS-aided aggregator uses one of the

five peer prediction mechanisms (DMI, CA, PTS, SSR, PSR) to compute PAS and then incorporate the

PAS into one of the two base aggregators (the Mean and Logit) using the rank&selection scheme. These

PAS-aided aggregators have a single hyper-parameter—the number of top participants selected for each

forecasting question. We set it to be the larger one of 10 and 10% percent of the total number of users.

This hyper-parameter is shared among all PAS-aided aggregators on all datasets. Meanwhile, for SSR

and PSR aggregators, we set the SPSR they are built upon as the metric SPSR. We use the output of the

5This aggregator combines both inference and surprising-popularity.
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Figure 3.1: The averages of the true
mean Brier score of top forecasters
selected by the five PAS and by the
true Brier score.

Figure 3.2: The portions of over-
lapped agents, who are simultane-
ously selected by all of the five PAS
and the true score.

Figure 3.3: The Brier score of the
five mean-based PAS-aided aggrega-
tors with a varying number of se-
lected top agents on dataset G2.

VI aggregator as the proxy used in PSR.6 All these aggregators are described in Algorithm 8.

3.6.2 Smaller but smarter crowd

Before we dive into the comprehensive comparison between our PAS-aided aggregators and benchmarks,

we first examine the effectiveness of PAS in identifying top forecasters and the influence of the number

of top forecasters selected to the aggregation.

Fig. 3.1 shows the average prediction accuracy of the top forecasters selected by the five PAS (DMI,

CA, PTS, SSR, PSR) over the 14 datasets. For all five PAS, the average of the true mean Brier scores

of the selected top forecasters steadily increases (from around 0.3 to around 0.45) when we gradually

enlarge the selection range from top 5% to all forecasters. This result indicates that all five PAS scores

effectively rank the forecasters in the order of their true performance. We also notice that at each level

of top forecasters selected, the mean accuracy of top forecasters selected by different PAS is very similar.

We further examine the overlap of these top forecasters. The result (Fig. 3.2) suggests that the sets of top

forecasters selected by different PAS scores have considerable overlap, and among these overlapped

forecasters, the portion of the actual top forecasters is also remarkable. For example, as shown in Fig. 3.2,

around 50% of forecasters are common among the top 30% forecasters under different PAS scores, and

in these common forecasters, 60% forecasters are the actual top 30% forecasters (because at the level of

top 30%, 30% forecasters are shared by all 5 PAS together with the true Brier score). This result further

confirms that the five PAS can identify true top performers and that they have similar abilities in doing

so.

Next, we examine how the number of top forecasters selected by PAS influences the aggregation

accuracy. Overall, we observe that the accuracy of the PAS-aided aggregators peaks at a certain top

6We also tested using proxies (e.g, the mean of agents’ predictions and the extremized mean [Wit+17]) in PSR,
while using VI as the proxy gives us the best result.
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percent (usually at top 5% to top 20%) and outperforms the accuracy of the base aggregator that

they are built upon. We illustrate this observation with dataset G2 in Fig. 3.3, which also shows the

accuracy of a Brier-score-(BS)-aided aggregator. The performance of this BS-aided aggregator shows

the “in hindsight" performance we could achieve if the peer assessment is as accurate as if we knew the

ground truth. In this particular dataset, the PAS-aided aggregators perfectly recover this “in hindsight"

performance of the BS-aided aggregator (Fig. 3.3).

Overall, these results confirm prior findings which show that there often exists a smaller but smarter

crowd whose mean prediction outperforms that of the entire crowd (e.g. “superforecasters" [Mel+15]

and [GMS14]). Our contribution is to demonstrate that we can identify this set of smarter forecasters

using only their prediction information.

3.6.3 Forecast aggregation performance on binary events

In this section, we present our main experimental results—the aggregation performance of our 10

PAS-aided aggregators against the benchmark aggregators on binary events of the 14 datasets. Our

extensive evaluation highlights the following findings:

1. The performance of the four benchmark aggregators varies significantly across datasets, confirm-

ing the difficulty of forecast aggregation in the minimal-information setting.

2. The PAS-aided aggregators not only have higher overall accuracy than the benchmarks but also

perform more stably and robustly across datasets.

3. While the performance of the 10 PAS-aided aggregators is not statistically different, the Mean-

based PAS-aided aggregators tend to have higher accuracy and lower variance than the Logit-based

PAS-aided aggregators.

Our main results are shown in Table 3.4 and Table 3.5. Table 3.4 shows the accuracy of the 10

PAS-aided aggregators and the benchmark aggregators on each dataset under the Brier score. As can be

seen, 9 out of 10 PAS-aided aggregators outperform the best of the benchmarks on at least 5 datasets,

and the remaining one outperforms the best benchmark on 4 datasets. Furthermore, each of the 5

PAS-aided Mean aggregators outperforms the second-best benchmark on at least 12 out of 14 datasets.

Moreover, no PAS-aided aggregator underperforms the worst benchmark on any dataset, with only one

exception of the PSR-aided Logit aggregator on dataset M1a. This is a significant improvement as we

can see that though these benchmark aggregators are carefully designed for aggregating forecasts in the

minimal information setting, none of them has stable performance across datasets.
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Base aggr. PAS G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

Mean

DMI .125 .068 .071 .066 .219 .196 .110 .326 .126 .114 .434 .429 .535 .282
CA .127 .069 .073 .071 .200 .195 .126 .340 .126 .114 .454 .443 .536 .282
PTS .122 .069 .070 .066 .188 .192 .116 .359 .125 .114 .474 .443 .536 .282
SSR .137 .079 .072 .063 .164 .188 .122 .359 .116 .114 .474 .436 .522 .303
PSR .133 .065 .070 .059 .175 .187 .116 .459 .108 .107 .472 .451 .536 .278

Logit

DMI .113 .053 .072 .037 .199 .194 .115 .517 .056 .058 .425 .545 .702 .325
CA .109 .053 .066 .036 .162 .191 .119 .547 .056 .058 .482 .569 .686 .325
PTS .109 .053 .071 .036 .172 .191 .120 .587 .066 .058 .508 .569 .686 .325
SSR .106 .053 .072 .039 .132 .187 .118 .587 .046 .058 .518 .556 .701 .422
PSR .106 .054 .071 .039 .182 .195 .117 .715 .037 .028 .535 .579 .686 .376

Mean (benchmark) .206 .174 .114 .151 .212 .184 .143 .452 .347 .347 .480 .441 .473 .333
Logit (benchmark) .116 .080 .066 .065 .136 .174 .122 .681 .433 .357 .500 .562 .663 .485
VI (benchmark) .213 .072 .082 .085 .306 .325 .163 .595 .037 .000 .841 .610 .733 .345
MP (benchmark) N/A N/A N/A N/A N/A N/A N/A .425 .251 .232 .479 .471 .609 .491

Table 3.4: The mean Brier scores (range [0, 2], the lower the better) of different aggregators on binary events
of 14 datasets. The best mean Brier score among benchmarks on each dataset is marked by bold font. The mean
Brier scores of 10 PAS-aided aggregators that outperform the best of benchmarks on each dataset are highlighted in
green; those outperforming the second best of benchmarks are highlighted in yellow; the worst mean Brier scores
over all aggregators on each dataset are highlighted in red.

Table 3.5 provides the number of datasets on which one aggregator statistically outperforms the

other for each pair of PAS-aided aggregators and benchmarks. Each of the 10 PAS-aided aggregators,

especially the Mean-based PAS-aided aggregators, statistically outperforms each benchmark on at least 4

more datasets than it underperforms, with a maximum of 9 more datasets. Similar results are observed

under the log scoring rule (Table B.4, Appendix B.2 and Table 3.5). Next, we give a more detailed review

of the experimental results.

Performance of the benchmarks. The Logit aggregator performs better than the other benchmarks

on the GJP and HFC datasets, but performs worse on the MIT datasets, while the Mean aggregator

performs in the other directions. This is likely because that the questions in MIT datasets are more

challenging than those in the GJP and HFC datasets (e.g., see the correctness ratio of majority vote

shown in Table 2.1), and the Logit aggregator, which extremizes the mean prediciton, further worsens

the situation. VI predicts almost flawlessly on datasets M1b, M1c, but is outperformed by uninformative

guess (predicting 0.5) on M2, M3, and M4a. This is likely because the accuracy of VI heavily depends

on the extent to which the data follows the assumed generative model that VI uses to infer the ground

truth. MP has a relatively stable performance on the MIT datasets, but on some of these datasets, it is

outperformed by VI and Mean.

PAS-aided aggregators vs. Mean and Logit. As can be seen in Table 3.5, the PAS-aided aggregators

outperform the Mean and the Logit aggregators with statistical significance on most datasets. Dataset H2
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Brier Score Log Score
Base aggr. PAS Mean Logit VI MP Mean Logit VI MP

Mean

DMI 10, 1 7, 1 5, 2 5, 0 10, 1 7, 2 8, 2 6, 0
CA 8, 1 6, 1 5, 2 4, 0 8, 1 6, 2 8, 2 5, 0
PTS 9, 1 6, 1 5, 2 4, 0 9, 1 6, 2 9, 2 5, 0
SSR 8, 1 6, 0 6, 2 5, 0 8, 1 6, 3 7, 2 4, 0
PSR 8, 1 6, 1 5, 2 3, 0 8, 1 6, 2 9, 2 4, 0

Logit

DMI 6, 2 6, 1 2, 0 3, 1 6, 2 4, 1 6, 0 3, 1
CA 6, 2 4, 0 3, 0 3, 1 7, 3 5, 0 5, 0 3, 2
PTS 6, 2 4, 0 3, 0 3, 2 6, 3 3, 0 5, 0 3, 2
SSR 7, 2 4, 0 3, 0 2, 2 7, 4 2, 0 5, 1 2, 3
PSR 6, 3 4, 1 4, 0 3, 2 6, 4 4, 1 5, 1 3, 3

Table 3.5: The two-sided paired t-test for the mean Brier scores and the mean log scores of each pair of a PAS-aided
aggregator and a benchmark on binary events of 14 datasets. The first integer in each cell represents the number of
datasets where the PAS-aided aggregator achieves significantly smaller mean score (with p-valueă0.05), while the
second integer in each cell indicates the number of datasets where the benchmark achieves significantly smaller
mean score. The cells where the # of outperforms exceeds the # of underperforms by at least 4 are highlighted in
green.

is the only exception where Mean and Logit are not outperformed by any PAS-aided aggregator under

the Brier score. However, a closer look shows that the accuracy difference of these two aggregators

in H2 is minimal (within 0.02). This advantage of the PAS-aided aggregators over the Mean and the

Logit aggregators is because of the use of cross-task information when computing the PAS, i.e., the top

forecasters are truly identified by these PAS using agents’ forecasts on multiple tasks. These empirical

results suggest that one can safely replace the Mean and Logit with the PAS-aided aggregators and

expect an accuracy improvement in most cases (if a sufficient number7 of predictions are collected from

each forecaster to compute the PAS).

PAS-aided aggregators vs. VI and other inference-based methods We notice that although VI

ranks the worst in many datasets, the number of datasets on which VI statistically underperforms

each PAS-aided aggregator is smaller than those numbers of the other benchmarks (Table 3.5). This

is because VI tends to output extreme predictions (close to 0 or 1) and thus receives extreme accuracy

scores (e.g., close to 0 or 2 under the Brier score), requiring more events to draw statistically significant

conclusions. Also, as we have mentioned, the performance of VI varies significantly across different

datasets (Table 3.4). If one is uncertain about whether the data follows the generative model assumed

by VI, the PAS-aided aggregators (especially the SSR-/PSR-aided aggregators) are better choices. They

7We will discuss this number in the next section.
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(a) Brier score (b) Log scoring rule

Figure 3.4: The mean and the standard deviation of the aggregation accuracy of the 10 PAS-aided aggregators
(DMI/CA/PTS/SSR/PSR-aided ˆ Mean/Logit-based aggregators) and the benchmarks over 14 datasets.

perform much closer to VI than the other benchmark aggregators on datasets where VI makes almost

perfect predictions (datasets M1b, M1c), and perform more stably on datasets where VI makes extremely

wrong predictions (datasets M2, M3, M4a).

McCoy and Prelec [MP17] reported the mean Brier score (with range [0,1]) of three other inference-

based aggregators (the cultural consensus model, the cognitive hierarchy model and the multi-task

statistical surprising popularity method) on MIT datasets (Table B.3, Appendix B.2). Based on their

reports, only the multi-task statistical surprising popularity method outperforms our PAS-aided aggre-

gators on one more datasets than what VI does. However, this method requires forecasters to provide

additional predictions beyond the predictions of the events of interest just as other surprising-popularity-

based aggregators.

PAS-aided aggregators vs. MP MP generally performs better than other benchmarks on the 7 MIT

datasets, as it uses the additionally solicited information available these datasets. However, Table 3.5

still shows a salient advantage of PAS-aided Mean aggregators over MP. This result implies that when

forecasters make predictions on multiple events, the cross-task information leveraged by the PAS scores

may be more powerful in facilitating aggregation than the additionally solicited information used in MP.

Finally, we find no significant difference in the performance of PAS-aided aggregators that use

different PAS. In particular, under the Brier score, no PAS-aided aggregator statistically outperforms

another on more than three datasets if the same base aggregator is used. This is likely because different

PAS have similar abilities in identifying the top forecasters as we have shown in Fig. 3.2.
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Average performance across datasets

We present the mean and the standard deviation of the accuracy of our 10 PAS-aided aggregators and

benchmarks over the 14 datasets in Fig. 3.4 (Concrete data can be found in Table B.2, Appendix B.2).

As can be seen, all PAS-aided aggregators have better mean accuracy under the Brier score than all

benchmarks. In particular, the five Mean-based PAS-aided aggregators outperform all benchmarks with

statistical significance (pă0.05) under both the Brier score and the log scoring rule.8 Moreover, the five

Mean-based aggregators also show much smaller variances than the Logit and VI aggregators under both

accuracy metrics, suggesting that the Mean-based PAS-aided aggregators are more stable than these two

benchmarks. Within PAS-aided aggregators, the Mean-based ones appear to be more accurate and stable

than the Logit-based ones, while the differences are not statistically significant. We conjecture that as

the PAS already select out the forecasters with more accurate predictions, the extremization provided

by the Logit base aggregator no longer benefits for any accuracy improvement, but only increases the

aggregation variance.

These findings suggest that one can expect better accuracy and smaller performance variance

when using PAS-aided aggregators instead of the benchmark aggregators. Moreover, the Mean-based

PAS-aided aggregators, especially the Mean-based DMI-aided aggregator, are likely to produce the best

aggregation outcomes. We also evaluated PAS-aided aggregators on smaller datasets that were sampled

from the 14 original datasets. These datasets have 20 events and 30 or 50 participants. We observe

similar improvements of the PAS-aided aggregators over the benchmarks. This result suggests that

the PAS-aided aggregators may also mitigate the cold-start problem in long-term forecast aggregation

settings, where only a small set of forecasts is available with no ground truth yet revealed. We present

the details of this experiment in Appendix B.1.

3.6.4 Forecast aggregation performance on multi-outcome events

Our 10 PAS-aided aggregators can be extended to aggregate forecasts on multi-outcome events, because

the 5 PAS scores and the two base aggregators can be extended to multi-outcome events [Sat+14a; RFJ16;

Shn+16; Wit+17; LWC20; Kon20]. However, the performance of these multi-outcome-event extensions

may not be as good as their binary counterparts for two reasons. First, in the multi-outcome event

settings, there are more latent variables to be estimated in the PAS scores, while the number of the

samples (the multi-outcome events to forecast and the predictions collected) are usually smaller than

8The only exceptions are the PSR-aided aggregator under the Brier score, and the SSR-/PSR-aided aggregators
under the log score when compared to the MP aggregator, as the MP aggregator only applies to 7 MIT datasets.
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Brier Score Log Score
Base aggr. PAS G2 G3 G4 H1 H2 H3 G2 G3 G4 H1 H2 H3

Mean

DMI .099 .136 .115 .522 .527 .402 .219 .287 .264 .975 .986 .779
CA .103 .165 .123 .516 .526 .400 .229 .343 .283 .956 .985 .770
PTS .099 .139 .114 .509 .528 .403 .218 .291 .260 .947 .988 .771
SSR .136 .145 .109 .516 .524 .419 .320 .296 .254 .956 .966 .785
PSR .097 .126 .101 .521 .530 .406 .208 .255 .227 .969 .980 .763

Logit

DMI .067 .131 .067 .488 .506 .442 .129 .233 .138 .909 .960 .878
CA .069 .136 .067 .484 .509 .439 .131 .249 .141 .887 .967 .866
PTS .065 .129 .065 .478 .512 .444 .127 .233 .135 .879 .974 .879
SSR .083 .127 .067 .493 .507 .461 .188 .225 .149 .894 .939 .898
PSR .069 .125 .061 .496 .518 .448 .129 .220 .130 .913 .962 .865

Mean (benchmark) .243 .232 .239 .534 .526 .445 .509 .484 .490 .992 .981 .839
Logit (benchmark) .147 .149 .161 .500 .505 .462 .298 .295 .309 .921 .947 .893
VI (benchmark) .083 .190 .186 .864 .780 .633 .202 .448 .438 1.996 1.803 1.417

Table 3.6: The mean Brier score and the mean log score of different aggregators on multi-outcome events of 6
datasets. The best mean score among benchmarks on each dataset is marked by bold font. The mean scores of 10
PAS-aided aggregators that outperform the best of benchmarks on each dataset are highlighted in green; those
outperforming the second best of benchmarks are highlighted in yellow; the worst mean scores over all aggregators
on each dataset are highlighted in red.

those of binary events (Table 2.1 vs. Table 3.3). Second, the assumptions under which the PAS scores

theoretically reflect the true accuracy of forecasters are more difficult to meet for multi-outcome events.

Therefore, if we use these extended methods directly, the estimates of forecasters’ performance may be

noisy, leading to more noisy aggregated predictions.

A more practical alternative is to apply the PAS of forecasters estimated on binary events into the

aggregation of multi-outcome events. In the GJP and HFC projects, agents face both binary events and

multi-outcome events. Therefore, we can apply this approach on both GJP and HFC datasets. We present

the statistics of multi-outcome forecasting questions in the GJP and HFC datasets in Table 3.3 and

present the aggregation results and comparisons in Table 3.6 and 3.7. The results show a consistent and

significant advantage of using the PAS-aided aggregators. The success in this approach also suggest that

agents have consistent relative accuracy in making predictions on both binary events and multi-outcome

events. In particular, on no dataset a benchmark outperforms a PAS-aided aggregation with statistical

significance (the only exception is Logit v.s. CA-aided Mean on dataset H2).

3.7 Discussion and Future Directions

This chapter demonstrates that the PAS-aided aggregators generally have higher aggregation accuracy

across datasets than the four benchmark aggregators. Among the benchmarks, the Mean, Logit, and
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Brier Score Log Score
Base aggr. PAS Mean Logit VI Mean Logit VI

Mean

DMI 5, 0 1, 0 3, 0 3, 0 1, 0 3, 0
CA 5, 0 1, 0 3, 0 4, 0 1, 1 3, 0
PTS 5, 0 1, 0 3, 0 4, 0 1, 0 3, 0
SSR 4, 0 2, 0 3, 0 5, 0 1, 0 3, 0
PSR 5, 0 3, 0 3, 0 4, 0 3, 0 3, 0

Logit

DMI 4, 0 1, 0 3, 0 4, 0 2, 0 3, 0
CA 4, 0 1, 0 3, 0 4, 0 3, 0 3, 0
PTS 4, 0 2, 0 3, 0 4, 0 3, 0 3, 0
SSR 3, 0 1, 0 3, 0 4, 0 3, 0 3, 0
PSR 3, 0 1, 0 3, 0 4, 0 3, 0 3, 0

Table 3.7: The two-sided paired t-test for mean Brier score and mean log score of each pair of a PAS-aided
aggregator and a benchmark on multi-outcome events of 6 datasets. The first integer in each cell represents
the number of datasets where the PAS-aided aggregator achieves the significantly smaller mean score (with
p-valueă0.05), while the second integer in each cell indicates the number of datasets where the benchmark achieves
the significantly smaller mean score.

MP aggregators are single-task aggregators that generate the final prediction of an event using only

the forecasts on that event. However, they were the top-performing aggregators in several real-world,

multi-task forecasting competitions such as in the Good Judgement project [JW08; Sat+14a]. The VI

aggregator is a multi-task statistical-inference-based aggregator, which uses an inference method to

infer the ground truth probability based on cross-task information. Our PAS-aided aggregators can also

be viewed as a multi-task statistical-inference-based aggregator. The peer prediction methods used in

the PAS-aided aggregators are inference-like methods that estimate forecasters’ underlying expertise

using all forecasts collected.

Using cross-task information in aggregation gives the PAS-aided aggregators advantages over the

single-task benchmark aggregator. We can see that on datasets M1b and M1c, the three single-task

benchmarks perform moderately well (with a mean Brier score around 0.3), while the other benchmark

aggregator using cross-task information, the VI aggregator, has almost perfect predictions (with a

mean Brier score close to 0). Our PAS-aided aggregators has similarly great performance on these two

datasets as the VI aggregator. On the other hand, the PAS-aided aggregators appear to have more robust

performance than the statistical-inference-based VI aggregator. For example, on datasets M2, M3, and

M4a, where VI has much worse performance than random guesses, the PAS-aided aggregators still have

moderate performance. Intuitively, statistical inference methods are sensitive to underlying properties

of the data, i.e., the extent to which the assumed probabilistic model reflects the true pattern of the

data. Unlike typical statistical-inference-based aggregators, the PAS-aided aggregators do not directly

infer the outcomes of the forecasting questions. Instead, they infer forecasters’ expertise from cross-task
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predictions and then use the expertise information to adjust the base aggregator. This operation likely

makes the PAS-aided aggregators more robust to the variation of the data.

Although the PAS-aided aggregators demonstrated significant accuracy improvement on datasets

where individuals’ overall performance is either good or poor and the number of forecasts collected per

question is either high or low (GJP datasets and MIT datasets), we find their accuracy improvement is

minimal on the HFC datasets, where the number of forecasts each forecaster made (ă 40) is relatively

small. This observation is consistent with the theoretical requirements for PAS scores to accurately

estimate forecasters’ true performance: Each forecaster has consistent accuracy across events, and

each forecaster has made a sufficient number of predictions. Therefore, if an insufficient number of

predictions has been made by each forecaster, the PAS scores may not reflect forecasters’ factual accuracy

well.

In addition, the five PAS scores that we tested in theory all rely on the assumption that the

predictions of different forecasters are independent conditioned on the underlying event outcome to

reflect the forecasters’ true accuracy. Although the PAS-aided aggregators perform well on our 14

datasets, where the assumption is likely not hold strictly, one should still be careful about using the

PAS-aided aggregators in scenarios where this assumption is saliently violated, for example, when

forecasters are encouraged to discuss with each other before making predictions and when forecasters

are machine predictors trained using similar data and methods.

In this chapter, we take the first step to understand the possibility of using peer prediction methods

to robustly improve the collective intelligence in prediction tasks. Our approach has the advantage

of only requiring a minimal amount of information to be collected and placing almost no restriction

on crowsourcing workflow. Thus, our methods have the potential of becoming a component of

more interactive human-machine forecasting systems, where other techniques of boosting collective

intelligence, such as teaming [CFM19], workflow design [LMW12], promoting interactions [BBA15] and

AI algorithms [WLB15], are also present. From another perspective, the human-machine computation

systems are now also developed for many complex tasks, such as image segmentation [Son+18] and

article editing [ZVK17]. An important problem is that how we boost collective intelligence for solving

these complex tasks. Our approach provides a way to potentially reduce this problem to how we can

devise effective correlation metrics to capture the information quality of these responses. All above are

interesting future research directions.
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Chapter 4

Cursed yet Satisfied Agents

4.1 Introduction

“You win, you lose money, and you curse.”
— Kagel and Levin

Consider the following hypothetical game—Alice and Bob each have a wallet, with an amount of money

that is known to them, but not to the other player. They each know that the money in the other wallet

is distributed uniformly in the range between $0 and $100, independently of the amount of money in

their own wallet. The auctioneer confiscates the two wallets, and runs a second price auction on the two

wallets (the highest bidder wins the two wallets, and pays the bid of the other bidder). Say Alice has

$30 in her wallet, how should she bid? A naïve strategy Alice could take is to calculate the expected

amount of money in Bob’s wallet, $50, and add it to her amount, resulting in a bid of $80. However,

such a bidding strategy ignores the fact that if Bob invokes the same strategy, then conditioned on Alice

winning the two wallets, Alice has more money in her wallet than Bob, implying that Bob’s amount is

distributed uniformly between $0 and $30. Thus, if both agents invoke the naïve strategy, Alice’s utility

conditioned on winning is the expected sum in the two wallets, $30 ` $15 “ $45 minus Bob’s expected

bid conditioned on him losing $15 ` $50 “ $65, implying a negative expected utility of ´$20.

Of course, a rational agent should not incur a negative utility when playing a game. Klemperer

[Kle98] introduced the game presented above, and named it “the wallet game". This is an interdependent

value setting (IDV) [MW82], where each agent has private information, termed signal (i.e., the amount of

money in their own wallet), and a public valuation function that takes into account different bidders’

private information (in this case, the sum of signals). Klemperer [Kle98] analyzed the symmetric
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equilibrium of rational agents in the wallet game (and introduced several asymmetric equilibria).

However, in practice, the observed behavior of agents in the wallet game much resembles the naïve

strategy rather than an equilibrium that rational agents end up with [AK97]. This phenomenon was first

observed by Capen, Clapp, Campbell, et al. [CCC+71], three petroleum engineers who observed that oil

companies experienced unexpectedly low rates of returns in oil-lease auctions since these companies

“ignored the informational consequences of winning”.

This behavioral bias, where the winner fails to account for the implications of outbidding other

agents is commonly referred to as the winner’s curse, and was consistently observed across many scenarios

such as selling mineral rights [CCC+71; LD+83], book publication rights [Des+82], baseball’s free agency

market [CD80; BC96], and many others (for more information about empirical evidence for the winner’s

curse, see Chapter 1 in [KL09]). As standard game theory cannot account for the observed behavior,

Eyster and Rabin [ER05] introduced a behavioral model that formalizes this discrepancy. They termed

this model as “cursed equilibrium".

In their model, agents correctly predict other agents’ strategies, but fail to estimate that other agents’

actions are correlated with their actual signals (or information), similar to the naïve strategy presented

above. The extent of this degree of misestimation of the correlation of actions and signals is captured

by a parameter χ, where the perceived utility of agents is χ times the expected utility of the agents if

the actions and signals of other agents are uncorrelated plus p1 ´ χq times the actual, correct expected

utility, correlating the signals with the actions (see Section 4.3.1 for a formal definition). Having a

single parameter to explain the behavioral model of the agents proved to be a very tractable modeling,

as this parameter can be easily fitted using real world data to estimate χ, and better predict players

behaviors [ER05].

Existing literature of interdependent values either

(i) analyzes fully rational players’ behavior as they ‘shade’ their bid to account for the potential

over-estimation of the value [Kle98; MW82; Wil69; Pri20];

(ii) studies biased agents’ behavior when deploying known mechanisms, where the equilibrium often

times implies a negative utility for the bidders (and higher revenue for the seller) [ER05; KL86;

AK97; HS94]; or

(iii) exploits the biased behavior of the agents to achieve higher revenue [BBM20].

Our work builds upon the Eyster and Rabin [ER05] “cursed equilibrium" model and views cases where

agents experience actual negative utility as undesirable; thus, tries to avoid such scenarios.
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One might wonder why a seller might care about a cost incurred by the buyer due to their own bias,

especially when the outcome might increase the seller’s revenue. However, we note that this can be

highly undesirable due to various reasons:

• In many real-life scenarios, such as leasing spectrum bands, violating ex-post IR can be detrimental

to society at large. Perhaps a mobile company overbids on spectrum, winds up bankrupt, and

then the public cannot enjoy any cellular service associated with that spectrum lease [Zhe01].

• Companies experiencing revenue loss might feel reluctant to join future auctions [HP88]. This

may have the adverse affect of reducing the long-term revenue of the seller, and the long-term

social welfare in the market.

In this chapter, we design mechanisms that are incentive compatible (IC) for cursed agents—agents

maximize their biased utility by reporting their true private information, thus generate a predictable

behavior. In order to avoid the winner’s curse, the mechanisms we introduce are ex-post individually

rational, meaning an agent will never pay more than their true value. We study the quintessential

objectives of revenue and welfare maximization in auction settings with interdependent values.

Our results. We focus on deterministic and anonymous mechanisms, as they are optimal for interde-

pendent values of fully rational agents [Aus99; MS92; RT16]. We extend the cursed-equilibrium model of

Eyster and Rabin [ER05] to support a strong truthfulness notion of Cursed Ex-Post Incentive-Compatible

(C-EPIC), the equivalent of ex-post IC in the case of fully rational agents, which is the strongest incentive

notion possible for this setting1 (see Section 4.3.1). For interdependent values, a deterministic C-EPIC

mechanism corresponds to a threshold allocation rule, which takes as input other bidders’ reports, and

returns the minimum bid from which an agent starts winning.

After establishing the incentive notion we are studying in this chapter, we turn to take a closer look

at the implications of ensuring the mechanisms satisfy ex-post individual rationality (Section 4.5). Our

solution concept gives rise to an analogue of the payment identity of EPIC mechanisms (Proposition 4.4).

As opposed to the fully rational setting, we might need to set the constant term in the payment identity

(pip0, s´iq in Equation (4.6)) to be smaller than zero, as the mechanism might make positive transfers

to compensate for the over-estimation of values due to the winner’s curse. For a fixed deterministic

mechanism, we show how to optimally set this compensation term in a way that maximizes the

revenue for the allocation rule, while keeping EPIR. This has the following implication—fixing the

1The ex-post IC notion is stronger than Bayesian IC and weaker than Dominant strategy IC. In interdependent
settings it is impossible to design dominant strategy IC mechanisms while obtaining good performance guarantees.
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allocation rule, and letting χ grow decreases the revenue. An interesting conclusion is the following (see

Propositions 4.13 and 4.14):

Proposition (Revenue and welfare monotonicity). As the cursedness-parameter χ increases: (i) the

revenue of the revenue-optimal EPIC-IR and EPIR mechanism decreases. (ii) the welfare of the welfare-

optimal EPIC-IR, EPIR and ex-post budget-balanced mechanism decreases.

This is in stark contrast to the case where the mechanism does not require EPIR, where cursed-agents

are shown to generate more revenue in second price auctions, since the mechanisms take advantage of

the possibility of agents paying more than their value [ER05].

Building upon our understanding of combining individual-rationality constraints with incentive-

compatibility for agents who suffer from the winner’s curse, we turn to revenue maximization (see

Section 4.6). We show that designing a revenue optimal C-EPIC-IR and EPIR deterministic mechanism

decomposes into a separate problem for each agent i and other agents’ signals s´i. That is, the

mechanism designer’s task reduces to find an optimal threshold for winning the auction for agent i for

every set of signals s´i other agents might declare. We show how to optimally set such a threshold,

resulting in a revenue-optimal mechanism (see Theorem 4.16).

Theorem (Revenue optimal mechanism). The revenue-optimal mechanism is a threshold mechanism,

and the threshold rule is given via Theorem 4.16.

We discuss interesting similarities and differences of the optimal threshold rule from the case where

the agents are fully rational, and the case where the seller does not require the mechanism to keep EPIR

constraints at the end of Section 4.6.

Social welfare maximization is a more nuanced task, as just aiming for C-EPIC-IR and EPIR might

result in the auctioneer needing to pay all the agents (even the losers). In fact, we show a scenario that

the welfare-optimal C-EPIC-IR and EPIR mechanism incurs a huge revenue loss of Ωpn log nq, where

the expected optimal welfare is Opnq. This holds even for a very simple setting where i’s valuation

is vipsq “ si ` 1
2
ř

j‰i sj and signals are sampled independently from the Ur0, 1s distribution (see

Proposition 4.17). Therefore, when maximizing welfare, we add a requirement of ex-post budget-balance

(EPBB); that is, the seller never has negative revenue.

A trivial way to ensure EPBB is to set the threshold rule such that it never sells whenever selling

implies the seller will need to make positive transfers. We present a masking operation that does exactly

this. Given a threshold rule, the masking of the threshold rule allocates in the maximal subset of cases

where the original threshold rule made an allocation and the allocating induces no positive transfer from
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the seller. One might wonder whether one can design a mechanism that is EPBB, while still selling

at scenarios that require the mechanism to make positive transfers to some bidders, increasing the

expected welfare of the mechanism. We answer this question in the negative (see Theorem 4.22).

Theorem (EPBB ” no positive transfers). Under natural conditions, a mechanism is EPBB if and only

if the mechanism never makes positive transfers.

This characterization drives the following implication (Proposition 4.23).

Proposition (Welfare optimal mechanism). Under natural conditions, the welfare-optimal EPBB

mechanism is a result of masking the welfare-optimal allocation.

Applying the above proposition to the wallet game example in the introduction implies that in that

example, the seller should allocate the item only when the loser has at least $50 in their wallet, since

this is the case where the winner does not overestimate the amount of money in the two wallets.

We notice that for some valuation functions, as the maximum of agents’ signals, this implies an

EPBB mechanism can never sell the item, resulting in zero welfare. On the positive side, we introduce a

new family of valuations, Concave-Sum valuations, which generalizes well studied classes of valuations

such as weighted-sum valuations2 (e.g., the wallet game) and ℓp-norms of signals for a finite p. We

show that for this class of valuations, the optimal EPBB mechanism approximates the optimal welfare

(Theorem 4.25).

Theorem (Welfare approximation). For concave-sum valuations, the welfare-optimal EPBB mechanism

gets at least half of the fully efficient allocation as the number of agents grows large.

4.2 Related work

Our work investigates the problem of auction design for the agents who suffer from the winner’s curse.

As a behavioral anomaly [Tha92], the winner’s curse has been documented and analyzed by a large

literature via both field studies and lab experiments. Field evidence of the presence of the winner’s curse

has been discovered in auction practices across a wide array of industries, which range from the book

industry [MM87] and the market of baseball players [CD80] to the offshore oil-drilling leases [CCC+71;

HP88; HPB87; Por95]. Also, a large amount of lab experimental results [BS83; KL86; AK97; CL09;

2Weighted-sum valuations take the form vipsq “ si ` β
ř

j‰i sj for β P p0, 1s. Note that the valuations in the
wallet game example are a special case of weighted-sum valuations.
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ILN10; BDL19] show that the winner’s curse occurs under various conditions, which differ in multiple

dimensions, such as auction format (e.g., first-price, second-price, Dutch auction and English auction),

number of participants, valuation functions and signal structures. Kagel and Levin [KL02] provided

a comprehensive review for such experimental studies. Furthermore, most of these studies, such as

observational ones [HP88; HPB87] and lab experimental ones [BS83; KL86; AK97; CL09], demonstrate

that the bidders who suffered from the winner’s curse not only experienced a reduce in the profit than

anticipated, but could also be worse off upon winning, i.e., receive a negative net profit.

As discussed in the introduction, we adopt the cursed equilibrium model introduced by Eyster

and Rabin [ER05] to model the bidding behaviors of agents who suffer the winner’s curse. This model

suggests that agents fail to fully appreciate the contingency between other bidders’ bids and the auction

item’s value. This cause is supported by several experimental findings [BS83; KL86; AK97; CL09], and

this model has been applied, generalized or analogized to different applications, including analyzing

market equilibrium [ERV19; EW11], designing financial assets [KK15; EP17], unifying theoretical

behavioral models [Mie09].

In addition, there is a large literature, including [Wil69; MW82; Kle98; BK02; RT16], studying the

interdependent valuation auction, the type of auctions we consider in this chapter. Different from our

work which designs mechanism for agents who suffer the winner’s curse, these papers consider the

mechanism design for fully rational agents who play (Bayesian) Nash equilibrium strategies. Milgrom

and Weber [MW82] introduced the interdependent value model and analyzed the revenue of different

auction formats when agents have correlated but private value over the item. Their results imply that

fully rational agents who implicitly try to avoid the winner’s curse bid more conservatively when

there is less information (as in a second price auction) revealed in the auction than more information

revealed (as in English auction). Bulow and Klemperer [BK02] and Klemperer [Kle98] showed the

anomalies in certain interdependent valuation auctions that the item price may increase in supply and

decrease in the number of bidders and that the item price is sensitive to even a small asymmetry of

bidders. They interpreted the anomalies in terms of fully rational bidders taking the winner’s curse

into consideration. Roughgarden and Talgam-Cohen [RT16] developed tools to build ex-post incentive

compatible mechanisms for general interdependent valuation auctions with fully rational agents. We

use their tools to build our mechanisms.

In contrast to these works, Bergemann, Brooks, and Morris [BBM20] studied the auction design

problem for agents suffering the winner’s curse. Their work is the most similar to ours, but with several

differences. The major difference is that they aim to achieve interim incentive guarantees, while we

aim to achieve stronger ex-post incentive guarantees. As a result of sacrificing the ex-post incentive
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guarantees, their allocation rule needs not to be monotone, i.e., they can allocate the item to an agent

with a lower signal, incurring the winner’s blessing instead of the winner’s curse. In contrast, when

imposing ex-post incentive guarantees, we show that the allocation rule must be monotone. They also

consider a common value auction, specifically, only a single function which is the maximum of signals;

Therefore, their non-monotone allocation rule will not decrease revenue and social welfare. However,

this is not true in the more general valuation settings that we consider. Moreover, they consider agents

who are fully cursed, while we consider agents who can be partially cursed. Finally, we study a much

more general setting capturing a general family of valuation functions, while they consider a single

valuation function.

The design of mechanisms when considering agents who act according to a behavioral bias, and not

their objective utility, have recently gained traction. Recent examples of this line of research are finding

a market equilibrium for agents who suffer from the endowment effect [EFF20; BDO18] and designing

revenue-maximizing auctions for agents who are uncertainty-averse [Cha+18; LMP19], among others.

Finally, approximately optimal mechanisms in the interdependent values model recently gained

attention. Works in this domain include simple and approximately optimal revenue maximizing

auctions [RT16; Li17b; CFK14] and assumption-minimal welfare maximizing auctions [Ede+18; Ede+19;

Ede+21; AT21; EGZ22; Gka+21]

4.3 Model

We consider interdependent valuation (IDV) settings commonly studied for rational agents. We consider

a seller that sells a single indivisible item to a set of n agents with interdependent valuations. Each agent

i has a signal si as private information. The agents’ signals are drawn from a joint distribution F with

density f over the support Sn
i , where Si “ r0, s̄is. We use s to denote the agents’ signal profile s1, ..., sn

and use s´i to denote the signal profile of all agents except agent i. We impose the standard assumptions

that f is continuous and nowhere zero on the signal space. Each agent i also has a publicly-known

valuation function vi : r0, s̄is
n ÞÑ R, which represents the value received by agent i upon winning the

auction as a function of all bidders’ signals. We adopt the following standard assumptions in the

valuation function vip¨q:

– Non-negative and normalized, i.e., @s, vipsq ě 0 and vip0q “ 0.

– Continuously differentiable.

– Monotone-non-decreasing in all signals and monotone-increasing in agent i’s signal si.
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We consider the following properties, introduced in the seminal paper of Milgrom and Weber

[MW82]:

– (Signal symmetry) S1 “ ... “ Sn “ S, where S “ r0, s̄s for some s̄, and f psq “ f ptq for any signal

profile s and its arbitrary permutation t.

– (Valuation symmetry) For any i, j, vipsi, s´iq “ vjptj, t´jq as long as si “ tj and t´j is a permutation

of s´i.

– (Signal affiliation) For any pair of signal profiles s and s1, it always holds that f ps _ s1q f ps ^ s1q ě

f psq f ps1q, where ps _ s1q is the component-wise maximum, and ps ^ s1q is the component-wise

minimum.3

These conditions are standard, and were considered by many papers in the literature, including [ER05;

RT16]. For welfare maximization, we focus on a special form of affiliation, and consider a case where all

signals are sampled i.i.d.

By the revelation principle, we consider without loss of generality direct mechanisms, in which

agents directly report their private signals s and then the auctioneer determines the auction outcome

according to a pre-announced mechanism M “ tpxi, piquiPrns. Here, xi : r0, s̄is
n ÞÑ r0, 1s is the allocation

rule, specifying agent i’s winning probability, and pi : r0, s̄is
n ÞÑ R is the payment rule, specifying agent

i’s payment.

We study deterministic and anonymous mechanism, as these are optimal for rational agents in IDV

settings [RT16; Aus99; MS92]. This allows an easy comparison to existing results in the literature.

A mechanism is deterministic if xipsq P t0, 1u for any i and s. A mechanism is anonymous if for any s

and any permutation t of s, xipsq “ xjptq, pipsq “ pjptq whenever si “ tj.

We make two technical assumptions about allocation rule xi for simplicity of exposition: First, we

do not allocate the item to an agent who reports a zero signal.

Assumption 4.1. xip0, s´iq “ 0 for every i and s´i.

Second, we do not allocate when there is a tie in the highest reported signals.

Assumption 4.2. xipsq “ 0 for every i whenever | arg maxitsiu| ą 1.

Since f is continuous, the events in both assumptions have zero probability measure, and therefore,

can be ignored without affecting the expected social welfare or revenue of the mechanism. Moreover,

3Affiliation is a common form of positive correlation, which generalizes the common case of independent
distributions.
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these assumptions are without loss for the mechanisms we consider as implied by Lemma 4.8 in

Section 4.4.2.

We use b “ pb1, ..., bnq to denote the reported signal profile (bid profile) of agents. Agents have

quasilinear utilities—the utility of each agent i given private signal profile s and bid profile b under

mechanism M is

uipb, sq “ xipbqvipsq ´ pipbq.

4.3.1 The Winner’s Curse—A Behavioral Model

We adopt the widely studied behavioral model, namely the cursed equilibrium model, introduced by Eyster

and Rabin [ER05] to explain the occurrence of the winner’s curse. In this model, agents fail to incorporate

the contingency between the other bidders’ actions and their signals, which determine the value of the

auctioned item, but succeed in reasoning other parts of the game. To illustrate, let σ denote a bidding

strategy profile of agents and fσ denote the probability density of bids and signals under strategy profile

σ, e.g., fσpb´i|s´iq represents the probability density of other bidders bidding b´i when having signals

s´i. Given the strategy profile σ, a fully rational agent with signal si estimates the probability density of

other agents receiving s´i and bidding b´i as

fσpb´i, s´i|siq “ f ps´i|siq fσpb´i|s´iq.

Consequently, suppose the other agents follow strategy σ´i, such an agent estimates their own expected

utility when having signal si and bidding bi as follows:

EUipbi, si; σ´iq “

ż

s´iPSn´1

ż

b´iPSn´1
f ps´i|siq ¨ fσpb´i|s´iq

`

xipbqvipsq ´ pipbq
˘

db´ids´i

In contrast, an agent who fully neglects the contingency between other agents’ actions and signals

estimates, as the naïve agent in the wallet game example, the counterpart probability density as if s´i

and b´i are independent conditioned on their own signal si:

f̃σpb´i, s´i|siq “ f ps´i|siq fσpb´i|siq,

where fσpb´i|siq “
ş

s´i
f ps´i|siq fσpb´i|s´iqds´i.4 Eyster and Rabin [ER05] further introduce a cursed-

ness parameter χ to model the case where an agent partially neglects this contingency such that they

4Eyster and Rabin [ER05] suggested that the agents succeed in reasoning or perceiving all other parts of the
game, except the contingency between other agents’ signals and actions. Therefore, agents get the correct fσpb´i|siq,
a key assumption made in Eyster and Rabin’s behavioral model.
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consider the counterpart probability density as

f χ
σ pb´i, s´i|siq “ p1 ´ χq fσpb´i, s´i|siq ` χ f̃σpb´i, s´i|siq.

An agent with χ “ 0 is a fully rational agent, and as we will see later, an agent with χ ą 0 is possible

to experience the winner’s curse. We refer to such an agent with χ ą 0 as a cursed agent for short, and

to an agent with χ “ 1 as a fully cursed agent. By analogy with a fully rational agent estimating their

expected utility, an agent with parameter χ (falsely) estimates their expected utility given σ´i as:

EUχ
i pbi, si; σ´iq “

ż

s´iPSn´1

ż

b´iPSn´1
fσ

χ
pb´i, s´i|siq

`

xipbqvipsq ´ pipbq
˘

db´ids´i (4.1)

To explain and predict the winner’s curse phenomenon, Eyster and Rabin [ER05] suggested that

agents generally play the equilibrium strategy with respect to this misperceived utility EUχ
i pbi, si; σq

for some parameter χ ą 0, instead of EUipbi, si; σq. They referred to this equilibrium as the χ-cursed

equilibrium. Formally, a strategy profile σ forms a χ´cursed equilibrium if it holds that for every agent i,

σpbi|siq ą 0 ðñ bi P arg max EUχ
i pbi, si; σq.

In the above definition, χ “ 0 gives the definition of the classic Bayes-Nash equilibrium (BNE). The Naïve

strategy of the aforementioned wallet game is an example of a cursed equilibrium of fully cursed agents

(χ “ 1). We refer the reader to Appendix C.1 for an illustrative example of how a χ-cursed equilibrium

leads to a winner’s curse in the wallet game.

Next, we illustrate how χ-cursed equilibrium relates to the winner’s curse in general. Note that

Eq. (4.1) can be rewritten5 as follows:

EUχ
i pbi, si; σ´iq “

ż

s´iPSn´1

ż

b´iPSn´1
f ps´i|siq ¨ fσpb´i|s´iq

`

xipbqvχ
i psq ´ pipbq

˘

db´ids´i, (4.2)

where

vχ
i psq :“ p1 ´ χqvipsq ` χEs̃´i rvips̃´i, siqs. (4.3)

This rewriting shows that the utility EUχpbi, si; σ´iq optimized by an agent with valuation function vi in

the χ-cursed equilibrium is the same as the expected utility optimized by a fully rational agent with

valuation function vχ
i in a BNE. Thus, we have the following proposition from [ER05].

Proposition 4.1 ([ER05]). In the IDV setting, the χ-cursed equilibrium strategy profile of agents with valuation

function vi is the same to the BNE strategy profile of agents with a modified valuation function vχ
i .

5This rewriting result is given by Eyster and Rabin [ER05]. We present a derivation in the Appendix for
completeness.
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We name the expression vχ
i as the cursed valuation function of vi. It reflects the hypothetical value of

the item to the cursed agent. It contains two part—the p1 ´ χqvipsq part reflects the part of the item’s

value which the agent perceives through successful contingent thinking and the χEs̃´i rvips̃´i, siqs part

reflects the part of the item’s value which the agent perceives when they fully ignore the contingency

between other bidders’ signals and bids. Therefore, a winner i faces the winner’s curse whenever

Es̃´i rvips̃´i, siqs ą vipsq; i.e., bidder i might get an item of which the value is less than i anticipated.

Moreover, i might suffer a negative utility when the payment, which can be as high as Es̃´i rvips̃´i, siqs

for a fully cursed agent, turns out larger than vipsq. We refer to the conceptual utilities built upon the

cursed valuation functions vχ
i as cursed utilities.

Eyster and Rabin [ER05] showed with empirical wallet game data that χ has a 95% confidence

interval of [0.59, 0.67] with 0.63 the optimal fit. Any χ ą 0 predicts agents’ bids better than the BNE

strategy.

We make the following key assumption:

Assumption 4.3 (Seller knows χ). We assume the seller knows the value of χ, that is, the seller knows the

extent of which the agents exhibit the cursedness bias.

The above assumption can be justified by the following: (i) empirical studies discussed above,

showing one can accurately estimate the value of χ; (ii) moreover, the seller can observe the practical

behavior of the agents, and their profit, in order to adjust the value of χ, and update the devised auction,

if the estimated value of χ seems to be inaccurate. If the assumption does not hold, it is still worthy

studying the problem under this assumption for following reasons. First, we show that misestimating

the value of χ by ϵ still leads to an approximate C-EPIC-IR mechanism (Proposition 4.3), and thus using

χ with a small estimation error still preserves some degree of incentive compatibility. Second, devising

mechanisms when assuming knowing the value of χ leads to many interesting theoretical findings,

which have implications on designing mechanisms for agents who suffer from winner’s curse. An

example of one such implication is that there exists a tension between ensuring that the agents would

not experience negative profit due to their inability to reason about their utility and the revenue of the

mechanism. In order words, to ensure non-negative utility for agents who may suffer from the winner’s

curse, the mechanism has to sacrifice some portion of the revenue.

4.3.2 Incentive Properties for Cursed Agents and Other Desirable Properties

Bearing above behavioral implications of agents with parameter χ in mind, a natural generalization of

the interim IC concept from fully rational agents to agents with parameter χ is the following.
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Definition 4.1. A mechanism M “ tpxi, piquiPrns is interim incentive compatible for agents with parameter χ, if

for all i, bi, si, and for the truth-telling strategy σ˚, it holds that

EUχpsi, si; σ˚
´iq ě EUχpbi, si; σ˚

´iq.

In other words, a mechanism is interim incentive compatible for agents with parameter χ if truthful-

reporting is a χ-cursed equilibrium. For fully rational agents (χ=0), the above definition coincides with

the standard interim IC definition [RT16], where truthful-reporting forms a BNE (that is, a 0-cursed

equilibrium).

We further extend this idea to obtain a stronger IC notion. We consider a cursed agent’s expected

utility when having signal si, while the bid profile is b “ pbi, b´iq. A fully rational agent will correctly

estimate the degree to which other agents’ signals s´i are contingent on their bids b´i, setting this

probability as fσps´i|b´i, siq, while a fully cursed agent will think the true type is independent of agents’

bids, estimating this probability as f ps´i|siq. Therefore, an agent with parameter χ will assess their

expected utility given their signal si, bid bi and others bidding b´i given strategy σ´i as:

EUχ
i pb, si; σ´iq “

ż

s´iPSn´1
pp1 ´ χq fσps´i|b´i, siquipb, sq ` χ f ps´i|siquipb, sqq ds´i.

Note that we have the following relationship between EUχ
i pb, si; σ´iq and EUχ

i pbi, si; σ´iq:6

EUχ
i pbi, si; σ´iq “

ż

b´iPSn´1
fσpb´i|siqEUχ

i pb, si; σ´iqdb´i. (4.4)

Therefore, we can naturally define the ex-post incentive properties for agents with parameter χ as

follows.

Definition 4.2 (Cursed ex-post incentive compatibility and individually rationality (C-EPIC-IR)). Given a

cursedness parameter χ, a mechanism is cursed ex-post incentive compatible (C-EPIC) if for every i, si and s´i,

and truthfully-reporting strategy σ˚,

EUχ
i pb “ s, si; σ˚

´iq ě EUχ
i ppb´i “ s´i, biq, si; σ˚

´iq, @bi.

A mechanism is cursed ex-post individually rational (C-EPIR) if for every i, s,

EUχ
i pb “ s, siq ě 0.

A mechanism that is both C-EPIC and C-EPIR is denoted by C-EPIC-IR.

6We present the derivation of Equation (4.4) in Appendix C.2.6.
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Obviously, C-EPIC implies the interim IC for agents with parameter χ.

Lemma 4.2 introduces an equivalent definition of C-EPIC-IR, which simplifies the analysis of whether

a mechanism satisfies C-EPIC-IR or not.

Lemma 4.2. A mechanism is C-EPIC if and only if for every i, si and s´i,

xipsqvχ
i psq ´ pipsq ě xipbi, s´iqvχ

i psq ´ pipbi, s´iq @bi.

A mechanism is C-EPIR if and only if for every i, s.

xipsqvχ
i psq ´ pipsq ě 0.

Proof. To see this lemma holds, we only need to plug the following expression of the expected utility of

bidders into Definition 4.2: @s, bi

EUχ
i ppb´i “ s´i, biq, si; σ˚

´iq

“

ż

s̃´iPSn´1

ˆ

p1 ´ χq fσps̃´i|s´i, siquippbi, s´iq, psi, s̃iqq

` χ f ps̃´i|siquippbi, s´iq, psi, s̃´iqq

˙

ds̃´i

“ p1 ´ χquippbi, s´iq, sq

` χ

ż

s̃´i

f ps̃´i|siq
`

vips̃´i, siqxipbi, s´iq ´ pipbi, s´iq
˘

ds̃´i

“ xipbi, s´iq

˜

p1 ´ χqvipsq ` χ

ż

s̃´i

f ps̃´i|siqvipsi, s̃´iqds̃´i

¸

´ pipbi, s´iq

“ xipbi, s´iq
´

p1 ´ χqvipsq ` χEs̃´i„F|si
rvips̃´i, siqs

¯

´ pipbi, s´iq

“ xipbi, s´iqvχ
i psq ´ pipbi, s´iq,

(4.5)

where vχ
i psq in the last equation is the cursed valuation function of the item, as defined in Eq (4.3).

Setting χ “ 0 in the definition of C-EPIC gives us the definition of ex-post IC (EPIC), where bidders

truthfully reporting their signals forms an ex-post Nash equilibrium w.r.t. their true ex-post utilities.

It is the strongest incentive guarantee one can hope for in the IDV setting. Similarly, C-EPIC is also

the strongest incentive notion we can hope for with cursed agents in the IDV setting. Furthermore,

Proposition 4.3 shows that C-EPIC is robust to small estimation errors of the χ parameter.

Proposition 4.3. Let mechanism M be C-EPIC under cursedness parameter χ, and let agent i’s be a χi-cursed

agent, where χi “ χ ` ϵi. The truthful-reporting strategy σ˚ forms an approximate ex-post Nash equilibrium for
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agent i with parameter χi in the sense that

EUχi
i pb “ s, si; σ˚

´iq ě EUχi
i ppb´i “ s´i, biq, si; σ˚

´iq ´ ϵi ¨ vips̄, ..., s̄q @i, s, bi.

Ex-post IR (EPIR) Setting χ “ 0 in the definition of C-EPIR gives us the standard definition of EPIR,

which ensures that no bidder will get a true negative ex-post utility at the truthful-reporting equilibrium.

A mechanism that is C-EPIC-IR has the outcome that every agent bidding their true signal is a cursed

equilibrium (or an ex-post equilibrium in terms of their cursed utilities) with each agent obtaining a

non-negative utility based on their cursed valuation functions. However, although the agents think their

utility will be non-negative for any possible realization of signals s according to their belief, they might

end up paying more than their value for the item leading to a negative utility, because their belief is

inaccurate. Therefore, in addition to requiring C-EPIC-IR, we further consider designing mechanisms

that are EPIR. Such mechanisms guarantee the agent will not experience actual negative utility upon

receiving an item, therefore, such an agent would not regret participating in the auction in hindsight.

Ex-post budget balance (EPBB) In order to achieve the EPIR property, the mechanism might need

to make positive transfers since the agents over-estimate their value for the item sold. In order to ensure

the seller does not end up with negative revenue, we may also want to require that the mechanisms will

satisfy the ex-post budget balance constraint.

Definition 4.3 (Ex-post budget-balance). A mechanism M “ px, pq is ex-post budget-balanced (EPBB) if for

every signal profile s,
ř

i pipsq ě 0.

A more relaxed requirement is Ex-ante budget-balance, where the mechanism does not lose money

in expectation.

When devising a mechanism that satisfies C-EPIC-IR, there is a natural tension between EPIR and

budget-balance. The socially optimal mechanism might have negative revenue when satisfying EPIR

(see Section 4.7.1)). Moreover, while typical mechanisms usually have more revenue with cursed agents

(without imposing EPIR) [ER05], when requiring the mechanism to satisfy EPIR, the revenue only

decreases (see Proposition 4.13).
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4.4 Preliminaries

4.4.1 C-EPIC-IR Mechanisms and Virtual Valuations

Roughgarden and Talgam-Cohen [RT16] extend Myerson’s Lemma and payment identity for the IDV

model. Whenever vχ
i is monotone, a simple adaptation of their results characterizes the space of

C-EPIC-IR mechanisms. The proof is omitted, as it is identical to the one in [RT16] for the case of

non-cursed agents.

Proposition 4.4. A mechanism M “ px, pq is C-EPIC-IR if and only if for every i, s´i, the allocation rule xi is

monotone non-decreasing in the signal si, and the following payment identity and payment inequality hold:

pipsq “ xipsqvχ
i psq ´

ż vχ
i psq

vχ
i p0,s´iq

xippvχ
i q´1pt|s´iq, s´iqdt ´ pxip0, s´iqvχ

i p0, s´iq ´ pip0, s´iqq (4.6)

pip0, s´iq ď xip0, s´iqvχ
i p0, s´iq (4.7)

We show that indeed vχ
i is monotone in our setting (affiliated signals and monotone vi). We defer

the proof to Appendix C.2.

Lemma 4.5. The cursed valuation for agent i, vχ
i psq, is monotone-non-decreasing in all agents’ signals and

monotone-increasing in si.

In the setting where valuations are not cursed, setting pip0, s´iq “ 0 maximizes the seller’s revenue,

and makes sure that the seller never has to pay the buyers participating in the auction, therefore ensures

that the mechanism is budget-balanced. However, for cursed agents, even though vχ
i psq ě pipsq, it might

as well be the case that vipsq ă pipsq, resulting in negative utility, and breaching the EPIR property.

Therefore, fixing a mechanism, one might want to set pip0, s´iq to be strictly smaller than zero for some

values of s´i, which means the mechanism might pay agents for participating. Thus, in designing a

mechanism to guarantee EPIR, one must take care in order not to violate budget balance.

Roughgarden and Talgam-Cohen [RT16] extend the definition of a virtual valuation to interdepen-

dent values setting. Given s´i, they define a function

φipsi|s´iq “ vipsq ´ vi
1psi, s´iq

1 ´ Fpsi | s´iq

f psi | s´iq
,

and show that similarly to the private value setting, revenue maximization reduces to virtual welfare

maximization. The definition of virtual valuations and formulating revenue maximization as virtual

welfare maximization naturally to the case of cursed bidders.
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Definition 4.4 (Cursed virtual value). The cursed virtual valuation of agent i conditioned on s´i is defined as

φ
χ
i psi | s´iq “ vχ

i psq ´ vχ
i

1
psi, s´iq

1 ´ Fpsi | s´iq

f psi | s´iq
.

The next proposition follows the exact same derivation as the one in [RT16; Mye81] for non-cursed

agents.

Proposition 4.6 (Follows from [RT16; Mye81]). For every interdependent values setting, the expected revenue

of a C-EPIC-IR mechanism equals its expected conditional cursed virtual surplus, up to an additive factor:

Es

«

ÿ

i

pipsq

ff

“ Es

«

ÿ

i

xipsqφχpsi|s´iq

ff

´
ÿ

i

Es´i rxip0, s´iqvχ
i p0, s´iq ´ pip0, s´iqs

4.4.2 Deterministic C-EPIC-IR Mechanisms

In this chapter we focus on deterministic mechanisms, as deterministic mechanisms are optimal for our

setting whenever bidders are not cursed [RT16]. The following is a direct corollary of the monotonicity

of C-EPIC-IR mechanisms.

Corollary 4.7. Any deterministic C-EPIC-IR mechanism is a threshold mechanism. i.e., for every i, there exists a

function tip¨q such that xipsi, s´iq “

$

’

&

’

%

1 si ą tips´iq

0 si ď tips´iq

.

We refer to tips´iq as the critical bid for agent i. Note that when tips´iq “ s̄, we never allocate to

agent i. The following lemma restricts the set of allocation rules we inspect.

Lemma 4.8. For every deterministic, anonymous C-EPIC mechanism and for every s, if the items is allocated, it

is allocated to a bidder in argmaxitsiu.

Proof. Assume the item is given to an agent j such that there exists i for which si is strictly bigger than sj.

By anonymity, there exists some i P argmaxℓtsℓu such that if we switch i and j’s signal, i wins the item.

Since j wins at s, j also wins at s1 “ ps1
j “ si, s1

´j “ s´jq by monotonicity of C-EPIC mechanisms. Since i

wins at s˚ “ ps˚
i “ sj, s˚

j “ si, s´ijq, by monotonicity, i also wins at s˚ “ ps˚
i “ si, s˚

j “ si, s´ijq “ s1, a

contradiction.

The above lemma implies that when dealing with such mechanisms, assuming Assumptions 4.1

and 4.2 are without loss. By the above lemma, a zero signal cannot win unless it is not the signal,

therefore Assumption 4.1 follows from Assumption 4.2. For assumption 4.2, one can take any mechanism

that violates this assumption, and set xipsq “ 0 for every s where the highest bid is not unique. By
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the above lemma, such mechanism remains monotone non-decreasing in a bidder’s own bid, therefore

C-EPIC. By continuity of the signal distribution, the resulting mechanism has the same expected revenue

and social welfare as the original one.

4.5 Implications of Ex-post IR

In this section we discuss implications of imposing EPIR on the mechanism. We first show that in order

to achieve our incentive properties, it suffices to design an ex-post IR mechanism, and cursed ex-post IR

will follow.

Lemma 4.9. For every interdependent value setting, C-EPIC and EPIR implies C-EPIR.

Proof. For a mechanism to be EPIR, we need that the actual value an agent gets from an allocation is

higher then the price they pay. That is, xipsqvipsq ě pipsq for every s. Using equation (4.6) for C-EPIC

mechanisms, and rearranging, we get that for every i and every s

pip0, s´iq ď xipsq
`

vipsq ´ vχ
i psq

˘

`

ż vχ
i psq

vχ
i p0,s´iq

xippvχ
i q´1pt|s´iq, s´iqdt ` xip0, s´iqvχ

i p0, s´iq. (4.8)

Specifically, fixing s´i and setting si “ 0, we get

pip0, s´iq ď xip0, s´iq
`

vip0, s´iq ´ vχ
i p0, s´iq

˘

`

ż vχ
i p0,s´iq

vχ
i p0,s´iq

xippvχ
i q´1pt|s´iq, s´iqdt ` xip0, s´iqvχ

i p0, s´iq

“ xip0, s´iqvχ
i p0, s´iq,

where the inequality used Assumption 4.1, that agents aren’t allocated at their lowest signal (xip0, s´iq “

0). This coincides with Equation (4.7), implying C-EPIR.

According to Corollary 4.7, every deterministic allocation rule is equivalent to a set of threshold

functions ttip¨qui. As noted before, the only freedom one have in setting payments of C-EPIC mechanisms

is by setting the term pip0, s´iq. We show that when maximizing revenue subject to C-EPIC and EPIR

constraints, there is a single optimal way to set pip0, s´iq.

Lemma 4.10. Fixing threshold functions ttip¨qui of a deterministic anonymous mechanism, the revenue optimal

C-EPIC-IR and EPIR mechanism sets

pip0, s´iq “

$

’

&

’

%

min
␣

0, viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq

(

if tips´iq ă s̄,

0 otherwise.

(and therefore, the payment is uniquely defined using Equation (4.6).)
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Proof. Since xip0, s´iq “ 0 by Assumption 4.1, we have to have pip0, s´iq ď 0, otherwise an agent

pays without getting allocated, which leads to negative utility. Consider s´i such that tips´iq ă s̄. By

Equation (4.8) for EPIR (which also implies C-EPIR), we get that in order to maximize revenue, one

should set

pip0, s´iq “ min

#

0, min
si

#

xipsq
`

vipsq ´ vχ
i psq

˘

`

ż vχ
i psq

vχ
i p0,s´iq

xippvχ
i q´1pt|s´iq, s´iqdt

++

“ min

#

0, min
siątips´iq

#

vipsq ´ vχ
i psq `

ż vχ
i psq

vχ
i ptips´iq,s´iq

1dt

++

“ min

#

0, min
siątips´iq

␣

vipsq ´ vχ
i psq ` pvχ

i psq ´ vχ
i ptips´iq, s´iqq

(

+

“ min

#

0, min
siątips´iq

␣

vipsq ´ vχ
i ptips´iq, s´iq

(

+

“ min
␣

0, viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq

(

where the second equality follows from the fact that xipsq “ 1 only if si ą tips´iq.

For tips´iq “ s̄, agent i will never get the item and therefore, will not incur the winner’s curse.

Hence, we can set pip0, s´iq “ 0.

We get that when agents experience the winner’s curse at the “critical value” (meaning their real

value is smaller than their perceived value), they pay their real value at the critical bid, while if they do

not experience the winner’s curse, they pay their cursed value. We get the following corollary.

Corollary 4.11. Fixing an anonymous, deterministic, C-EPIC-IR, EPIR mechanism with threshold function tp¨q,

the revenue optimal way to set pip0, s´iq gives the following payment function:

pipsq “

$

’

’

’

’

’

&

’

’

’

’

’

%

pip0, s´iq si ď tips´iq

viptips´iq, s´iq si ą tips´iq and viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ď 0

vχ
i ptips´iq, s´iq si ą tips´iq and viptips´iq, s´iq ´ vχ

i ptips´iq, s´iq ą 0

.

Proof. If si ď tips´iq, then i does not get the item, and by Equation (4.6), pipsq “ pip0, s´iq. If si ě tips´iq,

then i gets the item, and according to Equation (4.6) and Lemma 4.10,

pipsq “ vχ
i ptips´iq, s´iq ` pip0, s´iq

“ vχ
i ptips´iq, s´iq ` mint0, viptips´iq, s´iq ´ vχ

i ptips´iq, s´iqu.

Therefore, if viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ď 0, pipsq “ vχ

i ptips´iq, s´iq ` 0 “ vχ
i ptips´iq, s´iq, and if

viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ě 0, then pipsq “ vχ

i ptips´iq ` viptips´iq ´ vχ
i ptips´iq “ viptips´iq.
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An interesting implication of this corollary is that as opposed to the case where we do not require

EPIR, the welfare and revenue in the case of non-cursed agents (i.e., χ “ 0) is at least that of the case

where agents are cursed (χ ą 0). We show this more generally by showing that the welfare and revenue

are monotonically non-increasing in χ. In order to show this, we first show that for a fixed mechanism,

EPIR implies that the revenue decreases as χ increases.

Lemma 4.12. Fix a threshold rule t. Then for every s, every i, and every 0 ď χ ď χ1 ď 1, pχ
i ps, tq ě pχ1

i ps, tq,

where pχ
i ps, tq is the optimal payment an agent i with cursedness parameter χ has with signals s.

Proof. We prove by the three cases of Corollary 4.11.

Case 1: si ď tps´iq. Then, pχ
i ps, tq “ mint0, viptps´iq, s´iq ´ vχ

i ptps´iq, s´iqu, and pχ1

i ps, tq “

mint0, viptps´iq, s´iq ´ vχ1

i ptps´iq, s´iqu. Notice that if pχ
i ps, tq ă 0, then

viptps´iq, s´iq ă vχ
i ptps´iq, s´iq

“ p1 ´ χqviptps´iq, s´iq ` χEt´i„F|tps´iq
rviptps´iq, t´iqs

ðñ viptps´iq, s´iq ă Et´i„F|tps´iq
rviptps´iq, t´iqs

ðñ vχ
i ptps´iq, s´iq “ p1 ´ χqviptps´iq, s´iq ` χEt´i„F|tps´iq

rviptps´iq, t´iqs

ď p1 ´ χ1qviptps´iq, s´iq ` χ1Et´i„F|tps´iq
rviptps´iq, t´iqs

“ vχ1

i ptps´iq, s´iq

ðñ pχ
i ps, tq “ viptps´iq, s´iq ´ vχ

i ptps´iq, s´iq

ě viptps´iq, s´iq ´ vχ1

i ptps´iq, s´iq

“ pχ1

i ps, tq, (4.9)

which means that either pχ
i ps, tq “ pχ1

i ps, tq “ 0, or pχ
i ps, tq ě pχ1

i ps, tq.

Case 2: si ą tips´iq and viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ď 0. In this case, according to Corollary 4.11,

we have pχ
i ps, tq “ viptps´iq, s´iq. According to Equation (4.9), viptips´iq, s´iq ´ vχ

i ptips´iq, s´iq ď 0 im-

plies viptips´iq, s´iq ´ vχ1

i ptips´iq, s´iq ď viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ď 0, and therefore, pχ1

i ps, tq “

viptps´iq, s´iq as well.

Case 3: si ą tips´iq and viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ě 0. According to Equation (4.9), we also

have viptips´iq, s´iq ´ vχ1

i ptips´iq, s´iq ě 0, which implies that pχ
i ps, tq “ vχ

i ptips´iq, s´iq and pχ1

i ps, tq “

vχ1

i ptips´iq, s´iq. Since by Equation (4.9), viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ě 0 implies vχ

i ptips´iq, s´iq ą

vχ1

i ptips´iq, s´iq, the lemma follows.

We get the following.
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Proposition 4.13 (Revenue monotonicity). For any 0 ď χ ď χ1 ď 1 the revenue optimal anonymous

deterministic C-EPIC-IR EPIR mechanism for χ-cursed agents has revenue at least as high as the revenue optimal

anonymous deterministic C-EPIC-IR EPIR mechanism for χ1-cursed agents.

Proof. Let tχ1
be the threshold rule of the revenue optimal deterministic C-EPIC-IR EPIR mechanism for

χ-cursed agents, and let REVχptq be the optimal revenue of χ-cursed agents with threshold rule t. Then

REVχptχ1

q “

ż

s
f psq

ÿ

i

pχ
i ps, tχ1

qds ě

ż

s
f psq

ÿ

i

pχ1

i ps, tχ1

q “ REVχ1

ptχ1

q,

where the inequality follows Lemma 4.12. Therefore, for the optimal deterministic mechanism for agents

with cursedness parameter χ, the revenue can only be larger.

Proposition 4.14 (Welfare monotonicity). For any 0 ď χ ď χ1 ď 1, (a) the welfare optimal deterministic

C-EPIC-IR EPIR mechanism for χ-cursed agents that satisfies ex-post (ex-ante) budget-balance has welfare at least

as high as the welfare optimal deterministic C-EPIC-IR EPIR mechanism for χ1-cursed agents that satisfies ex-post

(ex-ante) budget-balance.

Proof. We show that every threshold rule that is ex-post (ex-ante) budget-balanced for χ1-cursed agents

is also ex-post (ex-ante) budget-balanced for χ-cursed agents. Since the space of mechanisms is larger for

χ-cursed agents, the proposition follows. Fix a threshold rule t and signal profile s. By Lemma 4.12, we

have that
ř

i pχ
i ps, tq ě

ř

i pχ1

i ps, tq and
ş

s f psq
ř

i pχ
i ps, tqds ě

ş

s f psq
ř

i pχ1

i ps, tq. Therefore, if
ř

i pχ1

i ps, tq

or
ş

s f psq
ř

i pχ1

i ps, tq are non-negative, so are
ř

i pχ
i ps, tq or

ş

s f psq
ř

i pχ
i ps, tq.

4.6 Revenue Maximization

In this section, we devise a mechanism that maximizes revenue among all deterministic, anonymous,

C-EPIC-IR and EPIR mechanisms. According to Lemma 4.8, we only consider rules for which tips´iq ě

maxj‰i sj. We will use s˚
´i “ maxj‰i sj to denote the second highest signal. We notice that every such

mechanism is feasible by definition.

Observation 4.15. Every deterministic mechanism such that xipsq “ 1 implies that si ą s˚
´i is feasible, meaning

that for every s,
ř

i xipsq ď 1.

Proof. This is simply because there cannot be two bidders with a signal strictly larger than all other

signals.

Therefore, when designing a revenue optimal deterministic anonymous mechanism, one needs to

only care about a threshold rule tp¨q satisfying tps´iq ą s˚
´i (the same for all bidders due to anonymity),
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and not worry about feasibility or how to set pips´iq, as those are set according to Lemma 4.10. We now

show how to devise the optimal anonymous deterministic mechanism.

Theorem 4.16. Let

ript, s´iq “

$

’

&

’

%

mintvχ
i pt, s´iq, vipt, s´iqu ´ vχ

i pt, s´iqFpt|s´iq t P rs˚
´i, s̄q

0 t “ s̄
(4.10)

The optimal deterministic anonymous mechanism sets a threshold

tps´iq P arg max
tPrs˚

´i ,s̄s
ript, s´iq.

Proof. Using Assumption 4.1 to simplify the expression in Proposition 4.6, our objective is to maximize

the following expected revenue.

Es

«

ÿ

i

xipsqφ
χ
i psi|s´iq

ff

`
ÿ

i

Es´i rpip0, s´iqs.

Since we are interested in anonymous mechanisms, this is equivalent to maximizing

Es
“

xipsqφ
χ
i psi|s´iq

‰

` Es´i rpip0, s´iqs

for a given agent i.

Applying Lemma 4.10, we first consider the case tips´iq ă s̄ and aim to find a threshold function

tp¨q such that the following is maximized, and then consider the case that tips´iq “ s̄.

ż

s
f psqxipsqφ

χ
i psi|s´iqds `

ż

s´i

f ps´iq min
␣

0, viptps´iq, s´iq ´ vχ
i ptps´iq, s´iq

(

ds´i

“

ż

s´i

f ps´iq

˜

ż 1

tps´iq
f psi|s´iqφ

χ
i psi|s´iqdsi ` min

␣

0, viptps´iq, s´iq ´ vχ
i ptps´iq, s´iq

(

¸

ds´i. (4.11)

We use the following expansion.

ż s̄

tps´iq
f psi|s´iqφ

χ
i psi|s´iqdsi “

ż s̄

tps´iq
f psi|s´iq

ˆ

vχ
i psq ´ vχ

i
1
psq

1 ´ Fpsi|s´iq

f psi|s´iq

˙

dsi

“

ż s̄

tps´iq
f psi|s´iqvχ

i psq ` Fpsi|s´iqvχ
i

1
psqdsi ´

ż s̄

tps´iq
vχ

i
1
psqdsi

“ pFpsi|s´iq ´ 1q vχ
i psq

ˇ

ˇ

ˇ

s̄

tps´iq

“ pFps̄|s´iq ´ 1q vχ
i ps̄, s´iq ´ pFptps´iq|s´iq ´ 1q vχ

i ptps´iq, s´iq

“ p1 ´ Fptps´iq|s´iqqvχ
i ptps´iq, s´iq, (4.12)

where the third equality uses integration by parts, and the last inequality is due to Fps̄|s´iq “ 1. Plugging
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Equation (4.12) into Equation (4.11), we get:

ż

s´i

f ps´iq
`

p1 ´ Fptps´iq|s´iqqvχ
i ptps´iq, s´iq ` min

␣

0, viptps´iq, s´iq ´ vχ
i ptps´iq, s´iq

(˘

ds´i (4.13)

Notice that for each s´i, the choice of threshold tps´iq is independent of a different s1
´i’s threshold

(we are guaranteed to be feasible by Observation 4.15). Let t “ tps´iq. We wish to choose t ě s˚
´i that

maximizes:

p1 ´ Fpt|s´iqqvχ
i pt, s´iq ` min

␣

0, vipt, s´iq ´ vχ
i pt, s´iq

(

For t such that vipt, s´iq ě vχ
i pt, s´iq, we get

p1 ´ Fpt|s´iqqvχ
i pt, s´iq ` vipt, s´iq ´ vχ

i pt, s´iq “ vipt, s´iq ´ vχ
i pt, s´iqFpt|s´iq,

while for t satisfying vipt, s´iq ă vχ
i pt, s´iq, we have

p1 ´ Fpt|s´iqqvχ
i pt, s´iq ` 0 “ vχ

i pt, s´iq ´ vχ
i pt, s´iqFpt|s´iq.

Hence, for every s´i, we should choose a t ą s˚
´i that maximizes

mintvχ
i pt, s´iq, vipt, s´iqu ´ vχ

i pt, s´iqFpt|s´iq. (4.14)

Second, we consider the case tips´iq “ s̄. In this case, we never allocate to agent i whichever si is

and pipsq “ pip0, s´iq “ 0, leading to zero expected revenue. Therefore, Theorem 4.16 gives the optimal

threshold.

Note that in the case we only require C-EPIC-IR without EPIR, we can set pip0, s´iq “ 0, and the

optimal mechanism chooses a t ą s˚
´i that maximizes

vχ
i pt, s´iq ´ vχ

i pt, s´iqFpt|s´iq,

which coincides with the mechanism in [RT16] for cursed valuation, while the optimal EPIC-IR mecha-

nism in [RT16] for non-cursed valuations will choose t ą s˚
´i that maximizes

vipt, s´iq ´ vipt, s´iqFpt|s´iq,

which coincides with our mechanism when χ “ 0.

116



4.7 Welfare Maximization

We consider the objective of maximizing welfare in an EPIR and EPBB way. Unless stated otherwise, we

assume that the bidders’ signals are sampled i.i.d. In Section 4.7.1 we demonstrate the tension that arises

between devising a truthful mechanism for cursed agents, and the requirement that the agents would

not experience a negative utility. We show a simple example where in the fully efficient mechanism,

the mechanism pays the agents much more than it earns. In Section 4.7.2 we present an operation that

takes any deterministic mechanism, and makes it an EPBB mechanism by not allocating in scenarios

where the mechanisms would be required to make positive transfers. In Section 4.7.3 we show that

under natural assumptions on the valuation functions, every EPBB mechanism does not make positive

transfers. This implies that the masking operation on the socially optimal mechanism yields a welfare

optimal EPBB mechanism (see Proposition 4.23). We then present two interesting scenarios: (i) when

agents’ valuation is the max function, any EPBB mechanism obtains zero welfare, and (Section 4.7.4) (ii)

a family of valuations including weighted-sum valuations and ℓp-norm of signals, where as the number

of agents grows large, the expected EPBB welfare approaches 1{2 of the expected optimal allocation

(Section 4.7.4). Missing proofs can be found in the Appendix C.2.

4.7.1 Welfare Optimal Mechanism is not Budget Balanced

Consider n bidders with valuations7 vipsq “ si ` 1
2
ř

j‰i sj and signals drawn independently from Ur0, 1s.

Suppose that χ “ 1, that is, the agents are fully cursed. The welfare optimal C-EPIC-IR mechanism gives

the item to the agent with the highest value/signal, and charges payments according to Equations (4.6)

and (4.8). We show that such mechanism must incur a negative revenue of order Θpn
?

nq. We note that

the mechanism does not even satisfy the less restrictive requirement of ex-ante budget-balance.

Proposition 4.17. There exists a setting where the welfare optimal mechanism has an expected revenue loss of

Θpn
?

nq.

Proof. For a signal profile s, assuming that 1 is the highest, agent 1 pays vχ
1 ps˚

´1, s´1q, and the seller

pays each bidder i ´pip0, s´iq subject to the EPIR constraints. To minimize their payment, Lemma 4.10

implies that the seller sets pip0, s´iq “ min
␣

0, viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq

(

. While since the signals

7Note these are weighted-sum valuations with β “ 1{2.
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are bounded by 1, it is clear that the expected payment of the highest bidder is Opnq. We will show that

Es

”

ÿ

i

´pip0, s´iq
ı

“ Es

”

ÿ

i

´pip0, s´iq
ı

“ Es

”

ÿ

i

max
␣

0, vχ
i ptips´iq, s´iq ´ viptips´iq, s´iq

(

ı

“ Ωpn
?

nq.

Notice that for a signal profile s and a bidder i with χ “ 1,

v1
i ptips´iq, s´iq ´ viptips´iq, s´iq “ s˚

´i ` Es̃

»

–

1
2

ÿ

j‰i

s̃j

fi

fl´

¨

˝s˚
´i `

1
2

ÿ

j‰i

sj

˛

‚“
n ´ 1

4
´

1
2

ÿ

j‰i

sj.

We get

Es

”

ÿ

i

´pip0, s´iq
ı

“
ÿ

i

Es

”

max

$

&

%

0,
n ´ 1

4
´

1
2

ÿ

j‰i

sj

,

.

-

ı

“
ÿ

i

1
2

Es

”

max

$

&

%

0,
n ´ 1

2
´
ÿ

j‰i

sj

,

.

-

ı

«
ÿ

i

1
2

Ex„Np n´1
2 ,pn´1q{12

”

max
"

0,
n ´ 1

2
´ x

*

ı

“
ÿ

i

1
2

Ex„Np0,pn´1q{12q

”

max t0, xu

ı

“
ÿ

i

1
2

Ex„Np0,pn´1q{12q

”

x | x ě 0
ı

Pr
x

rx ě 0s

“
n
4

c

pn ´ 1q

24π
“ Θpn

?
nq.

Here, the approximation follows the central limit theorem, the third equality follows by symmetry

of the normal distribution, and the fourth equality follows by taking the expected value of a half-normal

distribution.

Since the seller collects Opnq from the buyers, but pays them Θpn
?

nq, the proof follows.

4.7.2 Masked Mechanisms

We define an operation that takes a deterministic mechanism, and imposes no positive transfers

(pip0, s´iq “ 0), therefore, the masking operation outputs a mechanism that is trivially EPBB.

Definition 4.5. Given a deterministic mechanism with threshold function tips´iq for all i, s´i, let NCps´iq “

tt|t ě s˚
i , and vipt, s´iq ě Es̃´i|si“strvipt, s̃´iqsu. A masking of the mechanism is a threshold mechanism with a
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new threshold function

t1
ips´iq “

$

’

&

’

%

inftt|t ě tips´iq, t P NCps´iqu if tt|t ě tips´iq, t P NCps´iqu ‰ H

1 otherwise
.

The following lemma shows that indeed masking a mechanism results in a mechanism that is EPBB.

We note that this implication does not assume that the signals are independent (as opposed to the rest

of this section).

Lemma 4.18. For any deterministic mechanism that can be implemented in a C-EPIC-IR, EPIR, its masking can

be implemented in a C-EPIC-IR, EPIR, and EPBB.

Proof. The masking of a deterministic mechanism is still a threshold mechanism, therefore, it is can be

implemented in a C-EPIC-IR and EPIR given payments that satisfy Equations (4.7) and (4.8). To show

that the mechanism can be implemented in an EPBB manner, we show that for every i, s´i and χ,

viptips´iq, s´iq ě Es̃´i„F|tips´iq
rviptips´iq, s̃´iqs (4.15)

implies min
␣

0, viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq

(

“ 0; Therefore, according to Lemma 4.10, we can set

pip0, s´iq “ 0.

We have that

vχ
i ptips´iq, s´iq “ p1 ´ χqviptips´iq, s´iq ` χEs̃´i„F|tips´iq

rviptips´iq, s̃´iqs

ď viptips´iq, s´iq,

where the equality follows Equation (4.3), and the first inequality follows from the condition in

Equation (4.15). The lemma follows.

4.7.3 Ex-post Budget-Balance Implies No Positive Transfers

In the following we show that under natural conditions, every mechanism that is deterministic, anony-

mous, C-EPIC-IR EPIR and ex-post budget-balance has no positive transfers. This will imply that the

optimal deterministic, anonymous, C-EPIC-IR EPIR and ex-post budget-balance mechanism is a masking

of the generalized Vickrey auction [MS92; Aus99].We then show that for the max function, every masked

mechanism that allocates the item with zero probability must have positive transfers, implying that

such a mechanism will never sell in order to impose ex-post budget-balance. This gives an unbounded

gap between the optimal welfare for non-cursed agents and for cursed agents. Finally, we show some
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interesting families of valuations, where one can provably show that the masking of the generalized

Vickrey auction approximate the optimal mechanism for non-cursed agents.

We first introduce lemmas that will be useful in proving the main result of this section.

Lemma 4.19. For every anonymous, deterministic, C-EPIC-IR EPIR, and EPBB mechanism, for every i and s´i,

pip0, s´iq ă 0 implies tips´iq “ s˚
´i.

Proof. We prove by contradiction. Suppose there exists some s´i such that pip0, s´iq ă 0 but tips´iq ą s˚
´i.

Then, for si “ 1
2 ps˚

´i ` tips´iqq, we have that for the signal profile s there are no winners — i has the

highest signal, but it is still lower than i’s threshold, and by Lemma 4.8, only the highest signal can win.

Therefore, we have that pjpsq “ pjp0, s´jq for every bidder j, and
ř

j pjpsq “
ř

j pjp0, s´jq ď pip0, s´iq ă 0,

which violates the ex-post budget-balance property.

Lemma 4.20. For every anonymous, deterministic, C-EPIC-IR EPIR, and EPBB mechanism, if there exist i and

s´i such that pip0, s´iq ă 0, then there’s a unique bidder j with maximum signal in s´i, and for every si P r0, sjq,

we have tjps´ij, siq ă sj.

Proof. We prove by contradiction. Suppose there are two bidders with the same highest signal in s´i.

For signal profile s1 “ p0, s´iq, according to Assumption 4.2, no one will be allocated with item and

pkps1q “ pkp0, s1
´kq ď 0 for k. As pip0, s1

´iq “ pip0, s´iq ă 0, therefore,
ř

k pkps1q ă 0, violating EPBB.

Thus, there is a unique bidder j with the highest signal in s´i.

Fix si ă sj, and suppose tjps´ij, siq ě sj, then j cannot win the auction since j’s signal is no larger than

the threshold j faces. By Lemma 4.8, no other agents can win the item, as their signals are not the highest

one. Therefore, we have pj1psq “ pj1p0, s´j1 q for all j1, and
ř

j1 pj1 psq “
ř

j1 pj1 p0, s´j1 q ď pip0, s´iq ă 0,

violating the ex-post budget-balance property.

We now prove the main result of this section, that under a natural conditions, then every EPBB

mechanism that satisfies our desired incentive properties makes no positive transfers. The condition

fits the basic intuition that as the actual signals of all other bidders but some bidder i get smaller, i’s

cursedness increases (as typically, i will overestimate others’ signal according to original distribution of

signals).

Definition 4.6 (Cursedness-monotonicity condition). A valuation function satisfies the cursedness-monotonicity

condition if for every i, s´i for which there exists si ą maxj‰itsju such that vipsq ´ vχ
i psq ă 0, then for any
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s1
´i ĺ s´i

8and any s1
i P pmaxj‰its1

ju, s̄q 9, we also have vips1q ´ vχ
i ps1q ă 0.

Proposition 4.21 below shows that cursedness-monotonicity condition holds for many widely

studied valuation functions such as weighted sum valuations [RT16; Ede+19; Ede+21; Mye81] and max

of signals [BBM20; BK02].

Proposition 4.21. The following valuation functions satisfy the cursedness-monotonicity condition:

1. vipsq “ si ` β
ř

j‰i sj. (Weighted-sum valuations.)

2. vipsq “ maxitsiu. (Maximum of signals.)

Theorem 4.22. For every anonymous, deterministic, C-EPIC-IR, EPIR mechanisms, if the valuation function

vi satisfies cursedness-monotonicity, then a mechanism is ex-post-budget balanced if and only if for every i, s´i,

pip0, s´iq “ 0.

Proof. As the “if” direction is immediate, we focus on proving the “only if” direction. Assume that

we use the optimal way to set pip0, s´iq as described in Lemma 4.10. This is without loss since if the

mechanism is not budget-balanced using optimal setting of pip0, s´iq, it is not budget-balance for every

setting of pip0, s´iq.

We prove by contradiction. Suppose that there exists s´i such that pip0, s´iq ă 0, therefore, by

Lemma 4.10, viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ă 0. Let z be the smallest non-zero signal in the set of all

signals but si. If there is no such signal, we have pip0q ă 0, and by anonymity, the revenue of the all

zero signal profile is
ř

j pjp0q “ npip0q ă 0.

Assume, z is not the only non-zero signal in s´i. By Lemma 4.20, let j be the agent with the

highest signal in s´i and for any si ă s˚
´i, we have tjps´jq ă sj ď s̄. Thus, we have for any si ă s˚

´i,

pjp0, s´jq “ mint0, vjptjps´jq, s´jq ´ vχ
j ptjps´jq, s´jqqu ă 0, where the inequality is due to the cursedness-

monotonicity condition, since s´j ĺ s´i and viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ă 0, as stated above.

Therefore, we can set si “ 0, and have pjp0, 0, s´ijq ă 0. By anonymity, we also have pip0, 0, s´ijq ă 0.

We continue the process iteratively until we reach the signal profile s´i “ p0, . . . , 0, zq, we have

pip0, s´iq ă 0. Moreover, by Lemma 4.20, tip0´iq ă z. Continuing with the process for another step, we

also get that pip0q ă 0, which implies tip0´iq “ 0 by Lemma 4.19.

Now consider the final signal profile we get, s “ ps1 “ z, 0, . . . , 0q, where agent 1 denotes the agent

with the smallest non-zero signal z in the original signal profile. By the above argument, agent 1 wins

8For two vectors s, t, s ĺ t if s is coordinate-wise smaller than or equal to t when we sort the entries in
decreasing order.

9Recall the support of each signal si is denoted as r0, s̄s.
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the auction (as tip0´iqq “ 0). Moreover, by Corollary 4.11, p1psq “ v1ptip0´iq, 0´iq “ v1p0q “ 0, while for

all other agents pipsq “ pip0, s´iq ă 0, therefore,
ř

i pipsq ă 0, contradicting ex-post budget-balance.

Next, we apply the above characterization to determine the welfare-optimal EPBB mechanism. Then,

we show that for some valuation function (e.g., the max function), the welfare-optimal EPBB mechanism

attains zero welfare; while for some other valuation functions, including the weighted sum valuations,

the welfare-optimal mechanisms are simple and can approximate the full efficiency attained by an EPBB

mechanism for fully rational agents (i.e., χ “ 0).

4.7.4 Optimal Mechanism

As standard in the interdependent literature, when devising the welfare-optimal mechanism, we assume

that the valuations satisfy the single-crossing condition, presented here in the context of symmetric

valuation functions.

Definition 4.7 (Single-Crossing for symmetric valuation functions). Symmetric valuation functions tviuiPrns

satisfy the single crossing condition if for any signal profile s and agents i, j, si ě sj if and only if vipsq ě vjpsq.

Theorem 4.22 implies that for valuations that satisfy the single-crossing condition, the following

masked version of the generalized Vickrey auction (GVA) for cursed valuations is the welfare optimal

mechanism that satisfies EPBB. GVA assigns the item to the bidder with the highest valuation given all

reported signals, and charges the winner the valuation of the item at the minimum winning signal for

the winner fixing others’ reported signals. With the symmetry settings and single-crossing condition,

GVA allocates to the bidder with the highest signal. The masking of GVA is defined as follows.

Definition 4.8 (Masked Generalized Vickrey Auction (M-GVA)). The masked generalized Vickrey auction

considers the threshold rule t1ps´iq which is the result of taking the the threshold rule tps´iq “ maxj‰i sj, and

masking it to ensure no positive transfers (Definition 4.5). The payments are set using the payment identity

(Equation (4.6)), where pip0, s´iq is set according to Lemma 4.10.

Proposition 4.23. M-GVA is the welfare-optimal mechanism among deterministic, anonymous, C-EPIC-IR, EPIR

and EPBB mechanisms, for continuous valuation functions vi that satisfies cursedness-monotonicity.

Proof. By Theorem 4.22, we have the socially optimal mechanism must be a masked mechanism. Also,

notice that the allocation rule of a GVA mechanism can be written as a threshold allocation rule, with

threshold function tGVA
i ps´iq “ s˚

i . Therefore, we only need to prove that the threshold allocation rule

tMi p¨q masking over tGVA
i p¨q maximizes the social welfare over all valid threshold allocation rules tip¨q. To
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see this, if we lower the threshold tips´iq from tMi ps´iq, then we either violate the feasible constraint

that tips´iq ě s˚
´i or violate no positive transfer, i.e., pip0, s´iq “ viptips´iq, s´iq ´ vχ

i ptips´iq, s´iq ă 0.

If we increase the threshold tips´iq from tMi ps´iq, then the social welfare is decreased as EsrSWpsqs “

ř

i Es´i rEsi|s´i
rSWpsqss “

ř

i Es´i r
şs̄

tips´iq
vipt, s´iq f pt|s´iqdts.

max Function Has Zero Welfare

For the max function, Theorem 4.22 implies that EPBB mechanisms allocate the item with zero probabil-

ity, because as long as the winner’s signal is not s̄, the winner is cursed, i.e., vipsq ă vχ
i psq for winner i

and si ă s̄.

Corollary 4.24. Consider vipsq “ maxitsiu with signals drawn i.i.d. from Ur0, 1s and χ-cursed agents for

χ ą 0. Then any deterministic, anonymous, C-EPIC-IR, EPIR and EPBB mechanism allocates with 0 probability

(and thus has 0 revenue and welfare).

Approximate Efficiency

In contrast to the max function, many other valuation functions achieve good efficiency guarantees. To

demonstrate this, we define a family of valuations functions including well studied functions such as

weighted-sums valuations [RT16; Kle98; Wil69; Mye81; Ede+19; Ede+21], and ℓp norms for a finite p, for

which the M-GVA mechanism approximates the fully efficient mechanism.

Definition 4.9 (Concave-Sum valuations). Concave-Sum valuations are valuations that can be expressed in the

form of vipsq “ lpgpsiq `
ř

j‰i hpsjqq, where g, h, l are strictly increasing and bounded functions on the support

of si, and l is concave.

Theorem 4.25. For agents with Concave-Sum valuations, if the valuation function vi satisfies the single-crossing

condition, the M-GVA mechanism has welfare that approaches 1
2 of the optimal social welfare as the number of

agents grows large.

Proof. Let hi “ hpsiq for any i P rns, and h “ ph1, ..., hnq. Let h̄ “

ř

i hi
n and h̄´i “

ř

j‰i hj
n´1 . Let λ “ Esi rhis,

and let b be the supremum of hp¨q on the support of si. Note that as si, i P rns are i.i.d., hi, i P rns are also

i.i.d. Let i˚ denote the bidder with highest signals among all agents with tie breaking arbitrarily. Note

that because of the single-crossing condition, vi˚psq is also no less than any other value vjpsq for j ‰ i˚.

Consider the signal profile s such that h̄ ě λ ` b
n . We know that

EsrSWM-GVApsqs ě E

„

SWM-GVApsq|h̄ ě λ `
b
n

ȷ

¨ Pr
„

h̄ ě λ `
b
n

ȷ

.
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So to prove our theorem, we only need to prove that

lim
nÑ`8

Pr
„

h̄ ě λ `
b
n

ȷ

“
1
2

and E

„

SWM-GVApsq|h̄ ě λ `
b
n

ȷ

ě E
”

SWOPTpsq

ı

.

First, we prove that limnÑ`8 Pr
”

h̄ ě λ ` b
n

ı

“ 1
2 . To see this, as hi, i P rns are i.i.d., by the central

limit theorem, we have when n Ñ `8,
?

nph̄ ´ λq Ñ N p0, σ2q for some fixed σ. Thus, we have

limnÑ`8 Prrh̄ ě λ ` b
n s “ limnÑ`8 1 ´ Φp b

σ
?

n q “ 1
2 , where Φp¨q is the CDF of the standard normal

distribution.

Second, we prove that E
”

SWM-GVApsq|h̄ ě λ ` b
n

ı

ě E
”

SWOPTpsq

ı

. We also divide the proof into

two parts. In the first part, we show that E
”

SWM-GVApsq|h̄ ě λ ` b
n

ı

“ E
”

vi˚ psq|h̄ ě λ ` b
n

ı

: note that

for any s such that h̄ ě λ ` b
n , we have @i P rns, h̄´i ě λ (because @i, hi ď b), and thus, we have that

@i P N,

viptM-GVA
i ps´iq, s´iq “ l

¨

˝gptM-GVA
i ps´iqq `

ÿ

j‰i

hj

˛

‚

ě l
´

gptM-GVA
i ps´iqq ` pn ´ 1qλ

¯

“ l

¨

˝Es̃´i

»

–gptM-GVA
i ps´iqq `

ÿ

j‰i

hps̃jq

fi

fl

˛

‚

ě Es̃´i

»

–l

¨

˝gptM-GVA
i ps´iqq `

ÿ

j‰i

hps̃jq

˛

‚

fi

fl

“ Es̃´i rviptM-GVA
i ps´iq, s̃´iqs.

The last inequality is due to the concavity of l and the Jensen’s inequality. Then, according to the

definition of M-GVA mechanism, we have that that if s satisfies h̄ ě λ ` b
n , the M-GVA will allocate

the item to agent i˚ and produce social welfare vi˚psq. Thus, we have E
”

SWM-GVApsq|h̄ ě λ ` b
n

ı

“

E
”

vi˚psq|h̄ ě λ ` b
n

ı

.

In the second part, we prove that E
”

vi˚psq|h̄ ě λ ` b
n

ı

ě E
”

SWOPTpsq

ı

. This proof relies on

Lemma 4.26 below, whose proof is given in Appendix C.2.

Lemma 4.26. If z is a vector of (possibly correlated) random variables, each with the same support ra, bs, and

qpzq is a non-decreasing function in zi for any i given any z´i, then for any i, and a constant d,

Ez

”

qpzq|
ÿ

zj ě d
ı

ě Ez´i

»

–Ezi|z´i
rqpzqs|

ÿ

j‰i

zj ě d ´ b

fi

fl .

Let ṽiphq “ lpgph´1phiqq `
ř

j‰i hjq. Let hpiq be the order statistics of h in the order that hp1q ě ... ě

hpnq. Let hpiq` “ phpiq, ..., hpnqq. Let ξpiqphpiq`q “ Ehp1q,...,pi´1q|h
piq`

rlp1qpgph´1phiq `
ř

j‰i hjqqs. As hi, i P rns
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are i.i.d., we have for any i P rn ´ 1s and for any j ą i,

Fphpiq|hpi`1q, ..., hpj´1q, h1
pjq, hpj`1q, ..., hpnqq

weakly FOSD10 Fphpjq|hpj`1q`q if h1
pjq ą hpjq. As ṽiphq is non-decreasing with hi for any i given any h´piq,

by mathematical induction and the first of stochastic dominance, we get that for any i P rns, ξpiqphpiq`q

is non-decreasing in hpjq for any j ě i given any h´pjq. Therefore, we have

Es

„

vi˚ psq|h̄ ě λ `
b
n

ȷ

“ Eh

»

–ṽp1qphq
ˇ

ˇ

ÿ

j

hpjq ě nλ ` b

fi

fl

ě Eh
p2q`

»

–ξp2q`php2q`q
ˇ

ˇ

n
ÿ

j“2

hpjq ě nλ

fi

fl

ě . . .

ě Eh
pnq`

”

ξpnq` phpnq`q
ˇ

ˇhpnq ě nλ ´ pn ´ 1qb
ı

ě Eh
pnq`

”

ξpnq` phpnq`q

ı

“ Ehrṽp1qphqs “ Esrvi˚psqs “ EsrSWOPTpsqs.

The inequalities are because of the monotone-increasing property of ξpiqp¨q and Lemma 4.26. Combining

the two parts, we finally have E
”

SWM-GVApsq|h̄ ě λ ` b
n

ı

ě E
”

SWOPTpsq

ı

, which concludes our entire

proof.

4.8 Conclusion and Future Directions

In this work, we studied the design of mechanisms for agents who suffer from overestimating their

value, where the seller tries to avoid agents from suffering from the winner’s curse. We designed

mechanisms that are deterministic and anonymous, while maximizing the revenue and the welfare of

the seller without allowing buyers to have a negative utility. For welfare maximization, we added a

requirement that the seller would never have a negative revenue ex-post. While we devised optimal

mechanisms for these settings, there are many dimensions to the problem, where relaxing any one of

these dimensions might lead to a new and interesting design problem. For instance, one can ask the

question of what happens if we allow for randomized mechanisms? Mechanisms that can discriminate

against bidders? Mechanisms that satisfy the budget-balance constraint only ex-ante? Relaxing each of

10Random variable A weakly FOSD random variable B if for any outcome x, PrrA ě xs ě PrrB ě xs. If A weakly
FOSD B, then we have for any non-decreasing function qp¨q, EArqpAqs ě EBrqpBqs.
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these dimensions, or a combination, will lead to a new and intricate design problem.

Another interesting question one may ask is how much revenue or welfare exactly do we lose by the

fact the agents are biased? Can we relate this loss to the cursedness parameter χ? How much do we

lose by being ‘nice’ and helping the buyers not lose money, although they are not playing rationally?

We hope our work opens the way for other studies answering these, and other interesting and

related questions.
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Chapter 5

Can Laypeople Predict the Replicability

of Social Science Studies without Expert

Intervention: an Exploratory Study

5.1 Introduction

The replicability of scientific studies has played a critical role in the development of science [FW21;

Sch16]. Scientific results that fail to replicate will misguide the research advancement, and impair

the credibility of the research community. Concerns of the replicability of social science studies

have been raised long ago [Ioa05; ID13; MTL14], followed by several large-scale replication projects

conducted to systematically examine the replicability of published studies across various fields of social

science. Four notable such projects conducted in the recent decade are the Reproducibility Project:

Psychology (RPP) [Col15]; the Social Science Replication Project (SSRP) [Cam+18]; the Many Labs 2

Project (ML2) [Kle+18]; and the Experimental Economics Replication Project (EERP) [Cam+16]. They

found a low replication rate ranging from 36% (RPP) to 62% (SSRP), which further heated the debate of

the replication crisis in social science [Bak16; CM16; Fan18].

Besides these replication projects, efforts have also been made to develop scientific methods to

forecast the replication probability of social science studies, aiming to provide a fast and more economical

alternative to indicate the reliability of studies. Accompanying with the four replication projects, four

forecasting projects were conducted to explore the potential of using the collective intelligence of the
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research community to predict the replication probabilities of social science studies [Dre+15; Cam+18;

For+19; Cam+16]. In these forecasting projects, hundreds of experts were recruited from relevant

research communities to predict the success probabilities of these replication experiments via either

surveys or prediction markets. All these projects achieved above-chance prediction accuracy, ranging

from 58% to 86%, with an average of 66% for surveys and 73% for prediction markets [Gor+21], showing

the effectiveness of this approach. Inspired by the success of this crowd forecasting approach, the

Defense Advanced Research Projects Agency (DARPA)’s program “Systematizing Confidence in Open

Research and Evidence (SCORE)” further used this approach to generate confidence scores for thousands

of social science studies and investigate the replicability differences across fields [Gor+20].

However, expert resources are usually scarce and expensive. The development of online crowd-

sourcing markets like the Amazon Mechanical Turk platform has enabled us to access laypeople’s

intelligence much more flexibly, inexpressively, and scalable than accessing expert resources. Using

laypeople to make collective forecasts has been proven to be surprisingly accurate in various applications,

such as predicting the outcomes of geopolitics, economics, or sports events [Mel+14; GMS14]. This

phenomenon is referred to as the wisdom of crowds, which has been extensively researched [PSM17], with

the earliest research dating back to a hundred years ago [Gal07]. Recently, Hoogeveen et al. [HSW20]

have conducted the pioneering work of using laypeople’s wisdom to predict the replicability of social

science studies. They presented the participants with the materials of 27 selected studies from SSRP and

ML2 and asked them to provide a replication prediction for each study. They achieved an accuracy of

59% when presenting the participants with a short description of the study and 67% when additionally

presenting with the Bayes factor and its verbal interpretation of the study. However, they still required

experts to compose these short descriptions that are comprehensible to laypeople, which may be a

potential bottleneck to the scalability of their approach.

In this work, we explored the potential of using laypeople to make predictions about the replicability

of social science studies without expert intervention. We investigated to what extent we could elicit

useful information when we presented laypeople with raw materials truncated from the published

papers of the studies. In particular, we had three objectives: i) evaluating laypeople’s engagement in

such technical tasks, ii) knowing their perceptions about social science studies from the perspectives

of the surprisingness of the findings and the accessibility of the raw materials, and iii) predicting the

replicability of social science studies using the solicited information. In the following, we provide a

methods section introducing details about our experiment design and data collection process. This is

followed by a results section describing our findings and related statistical analysis and a discussion

section discussing our results in light of Hoogeveen et al.’s results.
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5.2 Methods

5.2.1 Materials

We selected 89 studies out of the 97 published studies investigated in RPP. These 89 studies have both a

known replication outcome and an abstract section. We released the surveys about these studies using

Human Intelligence Task (HIT) on the Amazon Mechanical Turk (Mturk) platform. Each HIT contained

two surveys about two studies uniformly randomly selected from the 89 studies and an additional exit

survey about participant’s demographic information and user experience.

Presentation of studies and survey questions

In each survey, the reading material and the survey questions were presented using two web pages to

reduce participants’ cognitive burden. The participants could proceed to the second page only after

completing the questions on the first page. The first page presented the title and the abstract of the

study and contained four selection and rating questions. Each numerical rating was associated with a

brief description of this rating. The four questions are listed below.

• (Q1) Please select a single sentence in the abstract that best describes the main findings/claims of

the paper.

• (Q2) In the abstract, how many phrases or terms are NOT familiar to you? Rate between 1 to 4.1

• (Q3) How much do you understand the main findings/claims of the study after reading the

abstract? Rate between 1 to 4.2

• (Q4) Do you find the main findings/claims surprising? Rate between 1 to 4.3

Participants were also asked to enumerate some unfamiliar terms and phrases and to describe the main

findings in their own language in text boxes.

The second page presented the section of one of the experiments in the study.4 Our goal was to

11=“0”; 2=“1 or 2”; 3=“3 or 4”; 4=“5 or more”.

21=“It is very clear to me what the study has found”; 2=“I have some general ideas about what the study has
found but still find some places unclear”; 3=“I am not so sure about what the study has found, but I can make a
rough guess”; 4=“I have no idea what the study attempts to achieve”.

31=“Completely unsurprising”; 2=“Somewhat unsurprising”;3="Somewhat surprising"; 4=“Completely surpris-
ing”

4RPP ran replication experiments on the last experiment of each study. Therefore, we aimed to present the
section of the last experiment of each study. However, in some studies, the methods of the last experiment referred
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provide the participants with a taste of how the experiment was designed and conducted to support

the study’s findings. We excluded the results subsection from the presented material for two reasons.

First, we wanted to keep a reasonable length of the reading material for laypeople. Second, the result

subsection usually contains many statistical terminologies, which are not accessible to laypeople. The

reading material was followed by five selection and rating questions listed below.

• (Q5) Please select a single sentence that best describes what the experiment/study does. Such a

sentence usually appears in a paragraph (if exists) before the "Method" section. If you think that

there is no such a sentence, please check the box below.

• (Q6) Please select three sentences that best describe the most important steps of the experi-

ment/study.

• (Q7) How many participants were recruited in the experimental study?

• (Q8) If the same type of experiments are re-performed, what probability do you assign that the

findings presented in the abstract will be observed? Make your best prediction from 0% (not

likely at all) to 100% (with certainty the same finding).

• (Q9) How do you feel that the findings/claims of the paper may hold in other scenarios besides

the scenario tested in the above experiment? Rate between 1 to 3.5

The materials of the studies were presented in the same format as they were presented in the web

version (Html full-text version) on sagepub.com and ebscohost.com. In sentence selection questions, the

participant could directly click to select the sentence in the given reading material. Brief instructions

and examples were given to help participants understand what type of sentences were good selections

for each question.

Design of survey questions

The survey questions Q1 to Q9 were designed to explore three dimensions of information we wanted

to collect from participants: participants’ engagement in our HITs, participants’ perception about the

studies, and participants’ predictions about the studies’ replicability.

to those of previous experiments. In these cases, we presented the participants with the section of the experiment
referred to.

51=“The claims/findings will likely NOT hold in other scenarios”; 2=“The claims/findings may partially hold
in some similar scenarios”; 3=“The claims/findings will hold to be true in many other similar scenarios”.
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Participants’ engagement: To laypeople, reading social science studies and answering related

questions might be a tedious and non-trivial task. Therefore, we designed the sentence selection

questions Q1, Q5, Q6, and the factual question Q7 to help us evaluate participants’ engagement in our

HITs. We compared the responses from different participants in the sentence selections, Q1, Q5, and Q6,

to evaluate whether participants provided random answers. Q7 asked about the number of participants

in the given study. We compared the responses to the correct answer to evaluate whether participants

answered this question authentically. Moreover, Q2 and Q3 are both related to the accessibility of the

study, and Q8 and Q9 are related to the replicability of the study. Intuitively, if participants completed

the surveys in good faith, the answers to each pair of questions should demonstrate positive correlations

to some extent.

Participants’ perceptions about the studies: We designed Q2, Q3, and Q4 to evaluate participants’

perceptions of the studies from the perspectives of accessibility and surprisingness. We wanted to

investigate how these perceptions correlate with participants’ replication predictions. Q2 and Q3

both aimed to evaluate the accessibility of the studies to laypeople. While Q2 asked participants to

report the number of unfamiliar terms and phrases in the abstract, Q3 asked participants to rate their

understanding of the abstract directly. Q4 asked participants to rate the surprisingness of the main

claims/findings presented in the abstracts of the studies.

Participants’ replication predictions about the studies: Q8 and Q9 were designed to elicit

participants’ predictions about the replicability of the studies. While Q8 asked concretely about a

replication probability, Q9 asked about the generalizability of the main claims/findings.

5.2.2 Procedure and incentive

We conducted the surveys using HITs on the Amazon Mturk platform. Mturk workers could see a

preview page of our experiments and then determine whether to take the HITs. The preview page

presented the motivations and the purpose of our experiments. It stated that the HIT was about reading

social science papers and answering related questions about the accessibility, the plausibility, and the

replicability about the studies. The preview page also stated that the estimated completion time of the

HIT was 30 minutes, with a fixed $6 compensation upon completion. After the workers accepted the

HITs, we showed an instruction page describing that the HIT consisted of reading materials about two

published social science studies and answering about ten questions. Meanwhile, in this page, we also

stated that “Your good-faith effort to understand the paper materials and answer the questions is crucial
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to our experiment and to the development of modern social sciences. We appreciate your contributions!”

Participants could move forward only if they checked the box “I will put forward my good-faith effort

in completing the task.” The next page showed the consent of participation. After that, participants

were presented with two surveys about two different studies uniformly randomly selected from the 89

RPP studies, followed by an exit survey that ended the whole HIT.

Participants could quit the HITs at any time during their participation, but if they did not complete

the entire HITs, they would not receive the fixed $6 payment. If a participant completed a HIT within

10 minutes, they would be blocked from taking more HITs during the next 12 hours. They would be

shown a clear message that they were blocked for 12 hours, but the reason was not given to them.

5.2.3 Participants

Participants were recruited from the Amazon Mturk platform. Each participant could take at most 3

HITs per day and 20 HITs in total. Each completed HIT was paid with a fixed $6 upon completion.

405 Mturk workers completed at least one entire HIT. The median HITs completed by participants

is 2 (M=5.50, SD=6.56). According to the exit survey, among the 405 participants, 1.48% had a Ph.D.

or equivalent degree, 10.62% had a master’s degree or were pursuing a Ph.D. degree, 45.19% had a

Bachelor’s degree, and 42.72% were undergraduate students or below. Only 3.21% indicated that they

had previously heard about RPP or similar replication projects.

5.3 Results

We received 2229 complete HITs, corresponding to 4458 complete survey responses for individual

papers. Each of the 89 papers received either 50 or 51 responses with a mean of 50.09. The median time

spent on a single HIT was 29 minutes (M=35, SD=19). The median of the HIT experience ratings, which

ranges from 1 (poor) to 5 (excellent), is 4 (M=3.84, SD=0.92).

5.3.1 Participants’ Engagement

We analyzed the responses from the questions related to participants’ engagement and observed that the

the participants i) correctly answered the factual question Q7, ii) formed consensuses on the sentence

selections, and iii) demonstrated anticipated correlation in correlated questions.

In the factual question Q7, 4089 (91.72%) out of 4458 responses correctly answered the number of

participants in the given study. The majority was correct on 87 out of 89 studies. These results suggested
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that the participants answered this factual question authentically, and laypeople can identify the number

of participants given the corresponding experiment materials truncated from the social science papers.

In the sentence selection questions Q1, Q5, and Q6, we observed a salient concentration in the

selection, differing from the pattern generated by random selection. Here we presented our detailed

analysis of Q1 and Q5. Q1 asked participants to select the main claim sentence in the abstract section,

while Q5 asked participants to select a single sentence in the method section that best summarizes the

experiment method. In Q1, the average votes received by the top 5 most frequently selected sentences

over 89 studies were 26.2 (SD=6.4), 14.6 (SD=5.46), 5.2 (SD=2.48), 2.6 (SD=1.62) 1.2 (SD=0.98) respectively.

In comparison, if participants uniformly randomly selected a sentence in the abstract, the average votes

of the top 5 most frequently selected answers would be 7.26 (SD=1.29), 7.23 (SD=1.27), 7.10 (SD=1.24),

7.04 (SD=1.23), 6.96 (SD=1.2), significantly differing from the pattern we observed. In Q5, 28.24% of

the responses indicated that there was no single sentence summarizing the experiment method. These

responses were associated with specific studies. On average, each study received 14.15 (SD=14.42) such

responses, while the median was only 5. The top 25% (22) studies received 62.75% of these responses.

Meanwhile, for the responses that selected a single sentence, the top 5 most frequently selected sentences

in each study received an average of 23 (SD=10.14), 7.6 (SD=4.22), 2.8 (SD=0.98), 2.2 (SD=0.98), and 1.4

(SD=0.6) votes, respectively. In comparison, the most frequently selected sentence would receive only

1.43 (SD=0.51) votes if participants uniformly randomly selected a sentence in Q5.

We further investigated the locations of these selected sentences to examine whether participants

tended to select the first or the last sentence regardless of the context. We found that both questions

had a considerable number of responses selecting a sentence in the middle, and the distributions of the

locations of the selected sentence in the two questions differ significantly. In particular, in Q1, 12.1% of

the responses selected the first sentence, 50.98% selected a sentence in the middle, and 36.95% selected

the last sentence. In Q5, 45.14% of the responses selected the first sentence, 49.98% selected a sentence

in the middle, and only 4.88% selected the last sentence. These results suggested that participants did

not select the sentence purely based on the sentence location regardless of the context.

We also observed a moderate negative correlation in Spearman’s correlation test (ρ “ ´0.50,

p ă 0.0001) between participants’ ratings of the number of unfamiliar terms and phrases in the abstract

(Q2) and their ratings of the accessibility of the abstract (Q3). This result followed the intuition that the

more unfamiliar terms and phrases in the material, the harder it was to understand the material. We

also observed a strong positive correlation in Spearman’s correlation test (ρ “ 0.68, p ă 0.0001) between

participants’ ratings of the generalizability of the results of the given study (Q9) and their replication

predictions (Q8). These results suggested that the participants’ responses were self-contained.
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Overall, these results suggested that the participants in our experiments completed the surveys with

effort and good faith. They also suggested that laypeople can read published social science papers,

understand the materials to some extent, and answer related questions authentically.

5.3.2 Participants’ perceptions about studies

We focused on the perceptions of the accessibility (Q3) and the surprisingness (Q4) of the studies. For

the accessibility, most responses indicated that they either clearly understood or had a general idea

about the main claims/findings in the abstract. In particular, 26.02% of the responses had a rating of 4

in Q3, referring to that the participant thought that they clearly understood the main claims. 40.51%

had a rating of 3, indicating that the participant had a general idea about the main claims. 23.62% gave

a rating of 2, meaning that the participant could make a rough guess, and the rest, 9.85%, gave a rating

of 1, indicating that the participant had no idea about the main claims/findings. Each study’s mean

accessibility rating was concentrated around 3 (M=2.83, SD=0.54, Median=2.72).

For the surprisingness, most responses found the main claims/findings unsurprising. In particular,

23.53% gave a rating 1 of completely unsurprising, 43.16% gave a rating 2 of somewhat unsurprising,

27.16% gave a rating 3 of somewhat surprising, and the rest, 6.15%, gave a rating 4 of completely

surprising. Each study’s mean rating of surprisingness was concentrated around rating 2 (M=2.16,

SD=0.30, Median=2.18). There existed a weak negative correlation between participants’ surprisingness

and accessibility ratings in Spearman’s correlation test (ρ “ ´0.22, p ă 0.0001).

5.3.3 Forecasting replicability

Participants’ prediction accuracy

Among the 89 RPP studies, 36 studies replicated successfully, resulting in a replication rate of 40.45%. We

used the participants’ mean replication prediction from Q8 as the final prediction of the replicability of

each study. We observed a salient overestimation of the replication probability in laypeople’s predictions.

The median of these 89 final predictions was 0.69 with a minimum of 0.58, greater than 0.5 (M=0.69,

SD=0.05, Max=0.81). If we threshold final predictions at 0.5, all these final predictions forecasted that

the corresponding study could replicate successfully, resulting in an accuracy score of 40.45%, lower

than random guesses. At the response level, only 595 out of 4458 (13%) responses gave a replication

probability lower than 0.5 with a median of 0.71 (M=0.69, SD=0.19, Min=0.00, Max=1.00).6 These results

6We provided participants a sliding bar ranging from 0 to 100 (%) with step size 1 (%) to indicate their prediction.
The sliding button was initialized at the center position 50. Participants were allowed to submit their answers only
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Accessibility 1 2 3 4
# responses 439 1053 1806 1160

Mean replication prediction 0.61 (0.21) 0.65 (0.19) 0.70 (0.17) 0.74 (0.17)
Actual replication rate 0.52 (0.50) 0.44 (0.50) 0.41 (0.49) 0.32 (0.47)

Spearman’s ρ 0.02 (p=0.61) -0.04 (p=0.24) -0.03 (p=0.25) -0.02 (p=0.43)

Table 5.1: Statistics of the responses with different accessibility ratings. Spearman’s rank correlation coefficient ρ
is calculated between participants’ replication predictions and actual replication outcomes.

suggested that laypeople tend to believe that a published social science study can replicate successfully.

The overestimation of social science studies’ replicability has also been found in other studies with

participants recruited from either the research community [Gor+20; Gor+21] or the laypeople [HSW20].

To remove the effect of overestimation on the accuracy, we investigated the discriminatory power of the

participants’ mean predictions and conducted a rank correlation test. However, Spearman’s correlation

test showed no significant rank correlation (ρ “ ´0.18, p “ 0.0764) between the mean predictions and

the replication outcomes. This result suggested that laypeople’s replication predictions collected in our

experiments contained very limited signals about whether a social study can replicate or not.

We further investigated whether the participants’ predictions and their prediction accuracy were

influenced by the accessibility of the studies. Table 5.1 shows the statistics of the responses with

different accessibility ratings. We observed that the mean replication prediction increased with the

accessibility rating. In fact, there existed a weak positive Spearman’s rank correlation between the

reported accessibility and the replication prediction at the response level (ρ “ 0.22, p ă 0.0001) and a

moderate positive correlation between them at the study level (ρ “ 0.51, p ă 0.0001). In contrast, the

actual replication rate decreased with the reported accessibility. There existed a very weak negative

rank correlation between the reported accessibility rating and the actual replication outcome at the

response level (ρ “ ´0.11, p ă 0.0001), and no significant correlation at the study level (ρ “ ´0.18,

p “ 0.08). Meanwhile, at each of the four accessibility levels, there was no discriminatory power

found between the participants’ replication predictions and the actual replication outcomes, as the

Spearman’s rank correlation coefficients were all close to zero with a p-value greater than 0.10 (last row,

Table 5.1). These results suggested that the participants tended to give a higher replication prediction to

the more accessible studies. However, the reported accessibility of the studies had poor discriminatory

power (a weak negative correlation) in predicting the replication outcome. This might explain why the

participants’ replication predictions also had poor predictive power.

if a movement of the sliding button was detected. 2.4% responses predicted exactly 50 (%).
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We also observed similar but smaller correlation between the participants’ self-rated surprisingness

and the replication prediction performance. The participants’ self-rated surprisingness had a very weak

negative Spearman’s rank correlation to their replication predictions at the response level (ρ “ ´0.15,

p ă 0.0001), and a weak negative rank correlation at the study level (ρ “ ´0.32, p “ 0.002). This

suggested that the participants tended to give a lower replication prediction when they found the main

claims/findings in the abstract surprising to them. In contrast, the self-rated surprisingness had a

very weak positive rank correlation to the actual replication outcome at the response level (ρ “ 0.07,

p ă 0.0001) and no significant correlation at the study level (ρ “ ´0.19, p “ 0.08).

5.3.4 Forecasting using machine learning

Machine learning is a technique to learn a pattern from historical data to make predictions on new

coming data. Machine learning has been applied to predict the replicability of social science studies

in various settings [Alt+19; YYU20; Sal+18]. We investigated whether we can use machine learning to

improve the prediction accuracy of people’s predictions. We used the responses collected on the 89 RPP

studies as our dataset to evaluate the machine learning approach. We divided these 89 studies into a

training set and a validation set using the cross-validation method. This setup simulated the situation

where we have access to participants’ historical prediction data to help us make final predictions.

As we only have a limited 89 samples, we use only three features to predict the replicability of each

study: the mean replication prediction, the mean accessibility, and the mean surprisingness received

by each study. We use the classic logistic regression as the classifier to avoid over-fitting the data. To

investigate the predictive power of each feature, we also evaluated the performance of using every

single feature to make forecasts. We focused on two accuracy metrics, the accuracy score and the

AUC-ROC [DG06]. The latter is a common accuracy metric used in the machine learning community to

evaluate the discriminatory power of predictions. We ran 2000 times 5-fold cross-validation on the 89

studies and collected 10000 accuracy scores and AUC-ROC on both the training and validation sets.

Table 5.2 shows the mean accuracy and the mean AUC-ROC and their confidence intervals on both

the training set and the validation set, when the mean replication prediction (Q8), the mean accessibility

(Q3), and the mean surprisingness (Q4) and all of them were used as learning features, respectively.

All four sets of features showed similar prediction performance in the accuracy score and AUC-ROC.

We observed an improvement in the accuracy score (around 0.60) compared to the participants’ raw

predictions (0.41). This result demonstrated the potential of using machine learning to correct the bias

in laypeople’s replication prediction data via learning from historical data. However, this improvement
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Features
Training Validation

Accuracy AUC-ROC Accuracy AUC-ROC
Replication prediction (Q8) 0.62 [0.59, 0.65] 0.61 [0.59, 0.66] 0.61 [0.5, 0.72] 0.60 [0.43, 0.69]

Accessibility (Q3) 0.60 [0.58, 0.62] 0.61 [0.59, 0.63] 0.60 [0.53, 0.72] 0.61 [0.53, 0.71]
Surprisingness (Q4) 0.62 [0.59, 0.65] 0.61 [0.58, 0.66] 0.62 [0.44, 0.72] 0.60 [0.40, 0.75]

All (Q3, Q4, Q8) 0.64 [0.61, 0.66] 0.65 [0.64, 0.68] 0.63 [0.50, 0.72] 0.60 [0.44, 0.73]

Table 5.2: Mean accuracy scores and AUC-ROCs on the training set and validation set when the mean replication
prediction (Q8), mean accessibility (Q3) and mean surprisingness (Q4) and all of them are used as features
respectively. Brackets show the 95% confidence intervals of the corresponding values.

was limited, as there was no significant difference in the accuracy score from always predicting that the

study could not replicate (which obtained an accuracy score of 0.59 on the 89 RPP studies). Meanwhile,

these machine learning predictions achieved an AUC-ROC around 0.6., better than random guesses

(AUC-ROC=0.5). This improvement was significant (p ă 0.0001) when the classifier used the mean

accessibility rating as the only feature to predict the replicability. We also observed no improvement in

using all features together to predict the replicability compared to using a single feature. This might be

because these three features turned out to be correlated with each other, and each feature had limited

discriminatory power.

5.4 Discussion

In this work, we explored whether laypeople can predict the replicability of social science studies

without expert intervention. We carefully designed surveys and collected responses via releasing HITs

on the Amazon Mturk platform. Our experiments revealed several interesting findings.

First, Amazon Mturk workers engaged in our very technical HITs, which involved reading raw

material truncated from published social science papers and answering related questions. They devoted

considerable time and effort to the HITs and provided reasonable and self-contained answers. This

showed the potential of using Amazon Mturk workers to extract information from social science papers

that might be difficult to extract via a pure machine approach.

Second, we found that these social science studies in the RPP projects were accessible to laypeople to

some extent, as most responses indicated that they either had a general idea about or clearly understood

the main findings of the studies. Participants also formed consensuses about the main sentences that

summarized the abstract and the experimental method and that described the main experimental steps.

Third, we found that laypeople’s replication predictions or perceptions about the studies in our
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experiments had limited predictive power in predicting actual replication outcomes. Without expert

intervention, laypeople demonstrated a prediction accuracy (40%) lower than chance in our experiments.

In contrast, both the researcher forecasters and laypeople with expert intervention achieved above-

chance prediction accuracy in similar survey-based experiments. Dreber et al. [Dre+15] reported a

prediction accuracy of 58% achieved by researcher forecasters on the same RPP paper set. Hoogeveen et

al. [HSW20] reported prediction accuracy of 59% and 67% achieved by laypeople with varied conditions

on 27 selected social science papers when experts interpreted the main findings of the studies into more

accessible languages.

Although we and Hoogeveen et al. [HSW20] both focused on the prediction performance of

laypeople, our experiments had four main differences from theirs, which may explain the prediction

performance drop we found.

• Expert intervention. For each study, Hoogeveen et al. presented participants with a short

description of the research question, the operationalization, and the key finding of the given study

and then asked participants about the replication probability. These materials were composed

and rephrased by experts to be comprehensible to laypeople. Thus, the participants might be

more clear about the main findings of the studies. In fact, 72% of participants indicated that

they understood the descriptions of all the 27 studies used in Hoogeveen et al.’s experiments. In

contrast, to reduce expert participation, for each study, we presented participants with the raw

abstract and one experiment section directly truncated from the published paper of the study.

This increased the cognitive burden of laypeople and raised the difficulty of understanding the

studies’ main findings. In our experiments, only 26% of the responses indicated that they clearly

understood the given abstract, and 41% indicated that they had a general idea. This accessibility

issue might further introduce vagueness in making their predictions about the replicability of the

studies.

• Study set. Hoogeveen et al. selected 27 studies from SSRP and ML2 replication projects. These

two projects had a higher replication rate overall, 62% for SSRP and 50% for ML2, and the selected

studies had a replication rate of 52%. In contrast, we selected 89 studies from RPP due to its larger

sample size (97 studies in RPP vs. 21 for SSRP and 24 for ML2). However, the studies in RPP had

a much lower replication rate, 37.5% overall and 40% for our 89 studies. This low replication rate

creates a disadvantage, as people (both researcher forecasters and laypeople) tend to overestimate

the replication rate. Moreover, the replicability of studies in RPP was more difficult to predict

than SSRP and ML2. To see this point, the prediction accuracy score of researcher forecasters via

138



surveys was 0.58 on RPP [Dre+15], compared to 0.86 on SSRP [Cam+18] and 0.67 on ML2 [For+19].

These features of RPP may partially explain why laypeople’s replication predictions had a salient

overestimation and limited predictive power in our experiments.

• Participant population. In Hoogeveen et al.’s experiments, most participants (54%) were first-year

students at the University of Amsterdam, 32% were Amazon Mturk workers, and the rest were

recruited via social media. In contrast, all of our participants were Amazon Mturk workers. We

conjectured that a student admitted by the psychology major of the world’s renowned universities

might have better skills in reading psychology papers and conducting related reasoning than an

average Amazon Mturk worker. This advantage might contribute to more informative replication

predictions in Hoogeveen et al.’s experiments.

• Presentation of material. Instead of presenting an interpreted description of the studies in

Hoogeveen et al.’s experiments, we presented the participants with the raw material truncated

from the published papers, which might create an impression to laypeople that these studies

were designed and conducted thoughtfully and with rigorous examinations, potentially driving

laypeople to make a higher replication prediction. This might also contribute to the salient

overestimation of the replication probability.

Given our results, we still think that there is a potential to rely on laypeople to make predictions

about the replicability of social science studies, because we did find that the laypeople were willing

to devote time and effort to complete our tasks. They did show an understanding of the materials

to some extent and provided self-contained answers with good faith. However, some adjustments to

the information elicitation procedure might be necessary to increase the chance of success and will be

exciting for future research. For example, we can provide participants with more refined material such

as the main claim sentences and the main result sentences to reduce participants’ cognitive burden

and mitigate the vagueness in identifying the main findings. Moreover, some probabilistic training

and replication judgment training may be required to help participants carry out necessary reasoning

and reduce the overestimate bias. Furthermore, iterative and cooperative elicitation processes can be

explored besides using one-shot surveys. For example, we can ask laypeople to articulate the main

claims into more comprehensible languages iteratively and then make predictions.
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Chapter 6

Conclusion

In this thesis, I have investigated four sub-domains of information elicitation and aggregation: informa-

tion elicitation with verification, information elicitation without verification, information aggregation

without verification, and the human behavior aspect. It is clear that these four sub-domains have varied

challenges and require significantly different techniques and methodologies to address these challenges.

I summarize the main results of this thesis as follows.

In Chapter 1, I studied the wagering mechanism design in the information elicitation with verifi-

cation setting. Wagering mechanisms have four desirable properties, individual rationality, incentive

compatibility (truthfulness), budget balance, and Pareto optimality. However, it has been shown that

these four properties cannot be achieved simultaneously with deterministic mechanisms. To address

this obstacle, I extended the mechanism design space into randomized mechanisms and proposed two

families of randomized wagering mechanisms that obtain these four properties simultaneously.

In Chapter 2, I investigated probabilistic prediction elicitation problem in the without-verification

setting. I considered the scenarios where the principal aims to elicit a set of homogeneous predic-

tion questions. I devised a data-driven approach to recover the strictly proper scoring rules in the

without-verification setting, borrowing the techniques from learning with noisy labels. The resulting

surrogate scoring rules inherit the capability to reflect participants’ prediction accuracy from the strictly

proper scoring rules while achieving the strongest truthfulness notion, the dominant uniform strategy

truthfulness.

In Chapter 3, I studied the information aggregation without verification problem. It has been shown

that identifying expert forecasters using historical data in the with-verification setting and aggregating

accordingly can consistently improve the aggregation accuracy. I extended this approach into the
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without-verification setting. The obstacle is that without verification, it seems impossible to identify

the prediction accuracy of participants. However, I identified an empirical correlation between the

rewards of several peer prediction mechanisms and the prediction accuracy of participants. With the

help of the rewards, I can still select the potential expert forecasters from the participation population.

I further demonstrated on 14 real-world forecasting datasets that we could consistently improve the

aggregation accuracy over existing aggregation methods by aggregating over these selected forecasters

using peer prediction mechanisms. This result provides a new effective approach to do aggregation

without verification.

Chapters 4 and 5 consider the human behavior aspect of information elicitation and aggregation.

In Chapter 4, I investigated the interdependent valuation auction design with human bidders who

demonstrate the winner’s curse behavioral bias. Such a bias not only leads to non-truthful report from

the bidders but also leads to a negative utility of the winner, harming the long-term revenue and social

welfare of the auction. I provided a complete characterization of all ex-post incentive compatible and

individual rational mechanisms for cursed bidders, which also guarantee a non-negative utility for the

winner. I further presented the optimal revenue and social welfare mechanisms within this space. The

result shows that in order to adapt to the behavioral bias of agents to achieve truthful reporting, the

auctioneer has to sacrifice the revenue and social welfare. In Chapter 5, I conducted a human-subject

elicitation and aggregation experiment of using laypeople to predict the replicability of social science

studies. This experiment aims to investigate whether we can elicit useful information via rich elicitation,

eliciting information in addition to a direct prediction, to improve aggregation performance. The results

showed that the direct replication predictions of laypeople correlate with the understandability of the

study materials of laypeople but do not correlate with the actual replication outcomes.

The broadening application of the wisdom of crowds keeps raising new challenges for information

elicitation and aggregation. I hope the results of this thesis could shed some light on following future

directions in this extensive area.

Application-oriented design. Most of the existing works in information elicitation have focused

on achieving truthfulness in various settings. However, to design a practical elicitation mechanism,

it is crucial to consider other desirable properties beyond truthfulness. These properties are usually

application-specific. For example, in the betting/wagering scenarios, the Pareto optimality might be a

more important property than the truthfulness in practice, as the most widely used wagering mechanism

is the pari-mutuel wagering mechanism, a mechanism achieving the Pareto optimality but sacrificing the

strict truthfulness [FP18]. In short-term elicitation scenarios such as the tasks using Amazon Mturkers

as participants, the simplicity of the elicitation scheme might also be a very important property, because
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in these tasks, the participants usually only spend no more than an hour to complete the tasks and

are not likely to spend time to understand and reason about a complex elicitation scheme. In our

experiments of using laypeople to predict the replicability of social science studies, we provided a simple

fixed payment scheme with intrinsic incentive and successfully obtained authentic and self-contained

responses from the participants. Other properties to pursue beyond the truthfulness include the richness

of the elicited information form, the capability to characterize the information quality (like in the strictly

proper scoring rules and the surrogate scoring rules), and the budget efficiency.

On the other hand, the truthfulness property could be relaxed to some extent in practice. As

demonstrated in our experiments in Chapter 5, although our elicitation mechanism is not strictly

truthful (fixed payment), we still found the participants were engaging in our tasks, providing authentic

and self-contained responses. Recent behavioral studies also showed that people have a truthful-telling

preference, i.e., people tend to lie only if the utility of lying significantly outweighs the utility of

truthful reporting [ANR19; EG12; FF13]. This behavioral evidence suggests that we might relax the

strict truthfulness property to approximate truthfulness without harming the elicitation performance

in practice too much. The relaxation of the truthfulness property and the pursuit of other application-

specific properties have not been extensively explored in the literature, leaving ample space for future

research.

Data-driven design. In the era of machine learning, algorithms that dig out useful information

from noisy data are emerging. There is a growing literature on applying these data-driven algorithms

to design economic mechanisms [Fen21]. The multi-task information elicitation and aggregation is an

ideal scenario to apply this data-driven approach. Both the surrogate scoring rules and the forecast

aggregation via peer prediction framework in this thesis are examples of using the data-driven approach

to solve elicitation and aggregation obstacles in the without-verification setting. The information

collected from multiple tasks provides the principal leverages to infer the ground truth and design

mechanisms and algorithms accordingly. In information elicitation, the data-driven approach usually

provides approximate truthfulness, just as in the surrogate scoring rules, as inference errors are inevitable

and hardly align with incentive properties. However, as discussed in the previous paragraph, achieving

strict truthfulness may not be very important. It will be fascinating to see what benefits we can obtain

using a data-driven approach and how we shall trade-off between the benefits of learning from data

and the rigorousness of the truthfulness property in real practices.

Behavior-robust design. Human behavior is a super important but overlooked domain in informa-

tion elicitation and aggregation. The challenge of investigating human behavior stems from the fact that

humans’ behavior varies with individual subjects and with subtle changes in the environment. In this
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thesis, I took both theoretical and empirical approaches to study human behavior. In the theoretical

approach, I designed a truthful mechanism based on an existing theoretical model of the bounded

rationality of humans. Such a method can reveal insights into the what-if questions, e.g., what the per-

formance of the mechanisms is if the participants follow certain behavioral models. This method helps

us understand the boundary of what can or cannot be achieved by designing mechanisms. However, it

is still far from designing a practical mechanism adapted to human behavior because no model can

perfectly predict human behaviors, which vary from individual to individual and case to case. It is

important to consider that in designing practical mechanisms, we have to face mixed groups of crowds,

each having its own behavioral patterns. Therefore, a systematic way of evaluating the robustness of

elicitation and aggregation mechanisms and developing behavior-robust mechanisms is urgently needed.

Using elicitation mechanisms as an example, there exist several promising directions to approach the

robustness. One direction is to design mechanisms such that truthful reporting is always the optimal

strategy under different behavior models. An example is the obviously strategy-proof mechanisms

proposed by [Li17a]. Such mechanisms have been explored in the other economic settings, such as

auctions and matching games, but not in the forecast elicitation problems. Another direction is to

acknowledge a parametric behavior model (like in our auction mechanism design in Chapter 4) and

conduct analysis and design considering some reasonable worst-case distribution of the parameters.

Third, we can focus on simple mechanisms like the fixed payment mechanism. These mechanisms

usually have less strategic space and are more robust to the difference between different behavioral

patterns. They are also more friendly for conducting experiments to understand humans’ behavioral

reactions to them and make corresponding adjustments.
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Appendix A

Appendix to Chapter 2

A.1 Missing Figures

(a) Brier score (b) Log scoring rule (c) Rank-sum scoring rule

Figure A.1: The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)
between individuals’ peer prediction scores and different SPSR when each probabilistic prediction is mapped to the
most likely binary vote with uniform random tie breaking.

(a) Brier score (b) Log scoring rule (c) Rank sum scoring rule

Figure A.2: The number of datasets in each level of correlation (measured by Spearman’s correlation coefficient)
between individuals’ peer prediction scores and different SPSR when each probabilistic prediction is mapped to the
most likely binary vote with uniform random tie breaking.
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A.2 Missing Proofs

A.2.1 Proof of Lemma 2.2

Proof. Suppose z and y are not stochastically relevant, we have

Prry “ 0|z “ 0s “ Prry “ 0|z “ 1s, (A.1)

Prry “ 1|z “ 0s “ Prry “ 1|z “ 1s. (A.2)

From Eqn. (A.1) we know that

Prry “ 0, z “ 1s

Prrz “ 1s
“

Prry “ 0, z “ 0s

Prrz “ 0s
ô

Prry “ 0se´
z

Prrz “ 1s
“

Prry “ 0sp1 ´ e´
z q

Prrz “ 0s
,

When Prry “ 0s ‰ 0, we have Prrz“1s

Prrz“0s
“

e´
z

1´e´
z

. Similarly from Eqn. (A.2), we have Prrz“1s

Prrz“0s
“

1´e`
z

e`
z

., when

Prry “ 1s ‰ 0. Therefore we, obtained
e´

z

1 ´ e´
z

“
1 ´ e`

z

e`
z

,

from which we have e´
z ` e`

z “ 1. Contradiction. The other direction follows similarly.

A.2.2 Proof of Lemma 2.12

Proof. We consider the estimation of the error rates e`
z , e´

z of an agent i, and we consider a generic task

as tasks are a priori similar. Thus, in the proof, we drop the subscript k, which indexes the tasks. There

are two layers of estimation error is solving the system of equations Eqn. (2.4, 2.5, 2.6):

• 1. Estimation error due to heterogeneous agents: the higher order equations doesn’t capture the

true matching probability with heterogeneous agents. As we draw Z2 and Z3 in a task without

replacement, with finite number of agents, Z2 and Z3 are dependent with Z1, and the error rates

of Z2 and Z3 are not exactly the same to the error rates of Z1 (z).

• 2. Estimation errors due to finite estimation samples: The last sources of errors come from the

estimation errors of Ąβ´i, Ąγ´i and Ąα´i.

Next we bound the two errors separately.

1. Estimation error due to heterogeneous agents: The challenge lies in the fact that the higher order

equations doesn’t capture the true matching probability with heterogeneous agents.

We first consider Eqn. (2.5). (2.5) is not precise– randomly picking a prediction signal from all agents

without replacement leads to a different error rates. This will complicate the solution for the system of

equations. We show that our estimation, though being ignoring the above bias, will not affect our results
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by too much: Let k1 be the agent whose prediction signal is picked to be Z1. Conditioned on agent k1

being picked and on reports q1, ..., qN , we have PrrZ1 “ Z2 “ 1|q1, ..., qN , k1s “ qk1 ¨

ˆ
ř

j‰i,k1
qj

N´2

˙

. Recall

that qk1 is a random variable because of the private signal ck1 received by agent k1 and the randomness

in σk1 , and that e`
z “ Eq1,...,qN |y“1rq̄´is. We have that

PrrZ1 “ Z2 “ 1|y “ 1s “ Ek1rEq1,...,qN |y“1rPrrZ1 “ Z2 “ 1|k1, q1, ..., qNsss

“ Ek1

«

Eq1,...,qN |y“1

«

qk1 ¨

˜

ř

j‰i,k1
qj

N ´ 2

¸ffff

“ Ek1

«

Eq1,...,qN |y“1rqk1s ¨ Eq1,...,qN |y“1

«

ř

j‰i,k1
qj

N ´ 2

ffff

“ Ek1

„

Eq1,...,qN |y“1rqk1s ¨ Eq1,...,qN |y“1

„

pN ´ 1qq̄´i
N ´ 2

´
qk1

N ´ 2

ȷȷ

“ Ek1

„

Eq1,...,qN |y“1rqk1s ¨

ˆ

N ´ 1
N ´ 2

e`
z ´

1
N ´ 2

Eq1,...,qN |y“1rqk1s

˙ȷ

“
N ´ 1
N ´ 2

e`
z Ek1

”

Eq1,...,qN |y“1rqk1s

ı

´
1

N ´ 2
Ek1

”

E2
q1,...,qN |y“1rqk1s

ı

“
N ´ 1
N ´ 2

pe`
z q2 ´

1
N ´ 2

ω,

where ω :“ Ek1

”

E2
q1,...,qN |y“1rqk1s

ı

.

Note both e`
z and ω are no more than 1. Then ,

ˇ

ˇ

ˇ

ˇ

N ´ 1
N ´ 2

pe`
z q2 ´

1
N ´ 2

ω ´ pe`
z q2

ˇ

ˇ

ˇ

ˇ

ď
pe`

z q2

N ´ 2
`

1
N ´ 2

ω ď
2

N ´ 2

This adds 2
N´2 error bias in the step where we replace Prrz1 “ z2 “ 1|y “ 1s with pe`

z q2 in the deduction

of Eqn. (2.5). And, it finally adds 2
N´2 error bias in estimating β´i (through both pe´

z q2 and p1 ´ e`
z q2) in

Eqn. (2.5).

Similarly for the matching among three agents (Eqn. (2.6)) we have

ˇ

ˇ

ˇ
PrrZ1 “ Z2 “ Z3 “ 1|y “ 1s ´ pe`

z q3
ˇ

ˇ

ˇ
ď

3
N ´ 3

.

And this adds 3
N´3 error bias in estimating γ´i.

2. Estimation errors due to finite estimation samples: The last sources of errors come from the

estimation errors of Ąβ´i, Ąγ´i and Ąα´i. Direct application of the Chernoff bound gives us the following

lemma:

Lemma A.1. When there are M samples for estimating Ąβ´i, Ąγ´i and Ąα´i respectively (total budgeting 3M), we
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have with probability at least 1 ´ δ taht

|Ąβ´i ´ β´i| ď

d

ln 6
δ

2M
, |Ąγ´i ´ γ´i| ď

d

ln 6
δ

2M
, |Ąα´i ´ α´i| ď

d

ln 6
δ

2M
.

The error analysis in 1 and 2 jointly imply that with probability at least 1 ´ δ

|Ąβ´i ´ β´i| ď

d

ln 6
δ

2M
`

2
N ´ 2

, |Ąγ´i ´ γ´i| ď

d

ln 6
δ

2M
`

3
N ´ 3

, |Ąα´i ´ α´i| ď

d

ln 6
δ

2M
.

Now we are ready to prove Lemma 2.12. First of all, from Algorithm 6, we can easily derive that

|
Ăe´
z ´ e´

z | ď
|ã ´ a|

2
`

|
a

ã2 ´ 4b̃ ´
?

a2 ´ 4b|

2
(A.3)

|
Ăe`
z ´ e`

z | ď
|ã ´ a|

2
`

|
a

ã2 ´ 4b̃ ´
?

a2 ´ 4b|

2
(A.4)

For the latter term in Eqn. (A.3) and ( A.4), we have

|
a

ã2 ´ 4b̃ ´
?

a2 ´ 4b|

2
“

|p
a

ã2 ´ 4b̃ ´
?

a2 ´ 4bq ¨ p
a

ã2 ´ 4b̃ `
?

a2 ´ 4bq|

2p
a

ã2 ´ 4b̃ `
?

a2 ´ 4bq

ď
|ã2 ´ a2|

2
?

a2 ´ 4b
`

4|b̃ ´ b|

2
?

a2 ´ 4b

ď
|ã ´ a|2

2
?

a2 ´ 4b
`

a ¨ |ã ´ a|
?

a2 ´ 4b
`

2|b̃ ´ b|
?

a2 ´ 4b

The first inequality is due to that we drop the positive 2
a

ã2 ´ 4b̃ in the denominator. For the second

inequality, note that a is non-negative as essentially, a “ 1 ´ e`
z ` e´

z shown in proof for Theorem 2.9.

To summarize, we have

|
Ăe´
z ´ e´

z | ď

ˆ

1
2

`
a

?
a2 ´ 4b

˙

|ã ´ a| `
2|b̃ ´ b|

?
a2 ´ 4b

`
1

2
?

a2 ´ 4b
|ã ´ a|2 (A.5)

|
Ăe`
z ´ e`

z | ď

ˆ

1
2

`
a

?
a2 ´ 4b

˙

|ã ´ a| `
2|b̃ ´ b|

?
a2 ´ 4b

`
1

2
?

a2 ´ 4b
|ã ´ a|2 (A.6)

The key tasks here reduce to bounding |ã ´ a| and |b̃ ´ b|. Recall

a :“
γ´i ´ α´iβ´i
β´i ´ pα´iq

2

b :“
α´iγ´i ´ pβ´iq

2

β´i ´ pα´iq
2
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We know the following facts

|pĄβ´i ´ pĄα´iq
2q ´ pβ´i ´ pα´iq

2q| ď|pĄα´iq
2 ´ pα´iq

2| ` |Ąβ´i ´ β´i|

ď2|Ąα´i ´ α´i| ` |Ąβ´i ´ β´i| ď 3

d

ln 6
δ

2M
`

2
N ´ 2

,

|pĄγ´i ´ Ąβ´iĄα´iq ´ pγ´i ´ β´iα´iq| ď|Ąγ´i ´ γ´i| ` |Ąβ´iĄα´i ´ β´iα´i|

ď|Ąγ´i ´ γ´i| ` |Ąβ´i ´ β´i| ` |Ąα´i ´ α´i|

ď3

d

ln 6
δ

2M
`

2
N ´ 2

`
3

N ´ 3
,

|pĄα´iĄγ´i ´ pĄβ´iq
2q ´ pα´iγ´i ´ pβ´iq

2q| ď|Ąα´i ´ α´i| ` |Ąγ´i ´ γ´i| ` 2|Ąβ´i ´ β´i|

ď4

d

ln 6
δ

2M
`

2
N ´ 2

`
3

N ´ 3
,

Next, denoting η “ pp1 ´ pqp1 ´ e`
z ´ e´

z q2 (which also means ∆ “ pp1 ´ pqpx´ ´ x`q2 ), we have

β´i ´ pα´iq
2 “p1 ´ pq ¨ px´q2 ` p ¨ px`q2 ´ pp1 ´ pq ¨ x´ ` p ¨ x`q2

“p1 ´ pq ¨ p ¨ px´ ´ x`q2

“η

Let N be sufficiently large such that

3

d

ln 6
δ

2M
`

2
N ´ 2

ă η (A.7)

then

Ąβ´i ´ pĄα´iq
2 ě

pp1 ´ pq

2
¨

η

2

Therefore,

|ã ´ a| “

ˇ

ˇ

ˇ

ˇ

ˇ

Ąγ´i ´ Ąα´i
Ąβ´i

Ąβ´i ´ pĄα´i
2
q

´
γ´i ´ α´iβ´i
β´i ´ pα´iq

2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
|pĄβ´i ´ pĄα´iq

2q ´ pβ´i ´ pα´iq
2q| ` |pĄγ´i ´ Ąβ´iĄα´iq ´ pγ´i ´ β´iα´iq|

|Ąβ´i ´ pĄα´iq
2| ¨ |β´i ´ pα´iq

2|

ď
2
η2

¨

˝6

d

ln 6
δ

2M
`

4
N ´ 2

`
3

N ´ 3

˛

‚

Note that the first inequality uses Lemma 2.13.
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Similarly for b, we have

|b̃ ´ b| ď
2
η2

¨

˝7

d

ln 6
δ

2M
`

4
N ´ 2

`
3

N ´ 3

˛

‚

Together, we proved that when M and N are sufficiently large such that Eqn. (A.7) holds, i.e.,

3
b

ln 6
δ

2M ` 2
N´2 ă

η
2 , we have

|
Ăe´
z ´ e´

z | ď O

¨

˝

d

ln 1
δ

M
`

1
N

˛

‚

|
Ăe`
z ´ e`

z | ď O

¨

˝

d

ln 1
δ

M
`

1
N

˛

‚
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Appendix B

Appendix to Chapter 3

B.1 Forecast aggregation performance on small datasets

This section examines the performance of our PAS-aided aggregators and benchmark aggregators over

smaller datasets. Specifically, for each of the 14 original datasets, we uniformly randomly sample without

replacement 20 binary events and 30 or 50 participants to generate a smaller dataset. We keep the

original participant set for those MIT datasets with less than 30 or 50 participants (Table 2.1). Meanwhile,

we still maintain that each event receives at least 10 responses and that each participant forecasts on at

least 15 events. The HFC datasets are too sparse to generate such small datasets with this forecast density

requirement. Therefore, we remove them from the examination. For each of the remaining 11 datasets,

we run random sampling 30 times and report the average aggregation performance over these 30 runs

under the Brier score in Table B.1a (50 participants sampled for each run) and Table B.1b (30 participants

sampled for each run). Both tables demonstrate a consistent improvement of using the Mean-based

PAS-aided aggregators, with better relative performance (compared to the benchmarks) achieved on the

datasets with 50 participants sampled. This result indicates that our PAS-aided aggregators can also

be applied to relatively small prediction datasets (e.g., the forecasts collected at the cold-start stage of

long-term forecast competitions, where no ground truth information has yet been resolved) and improve

the aggregation performance.
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Base aggr. Score G1 G2 G3 G4 M1a M1b M1c M2 M3 M4a M4b

Mean

DMI .124 .070 .087 .047 .389 .175 .143 .496 .407 .468 .273
CA .115 .066 .076 .040 .371 .161 .134 .490 .406 .500 .269
PTS .117 .066 .076 .041 .423 .177 .135 .496 .407 .500 .269
SSR .121 .073 .076 .050 .492 .200 .134 .483 .406 .505 .277
PSR .120 .070 .076 .051 .524 .183 .170 .498 .413 .504 .283

Logit

DMI .115 .067 .093 .032 .540 .172 .091 .563 .507 .607 .348
CA .112 .060 .087 .027 .524 .156 .091 .557 .508 .662 .330
PTS .112 .060 .087 .029 .597 .190 .085 .566 .506 .668 .339
SSR .106 .064 .088 .043 .660 .232 .073 .545 .505 .674 .368
PSR .113 .067 .085 .049 .691 .199 .132 .588 .515 .652 .359

Mean (benchmark) .193 .166 .106 .135 .453 .347 .345 .480 .399 .436 .310
Logit (benchmark) .115 .084 .076 .055 .683 .438 .340 .497 .497 .599 .458
VI (benchmark) .213 .110 .093 .070 .673 .265 .308 .862 .577 .721 .353
SP (benchmark) N/A N/A N/A N/A .507 .190 .310 .890 .487 .637 .543

(a) 20 binary events and 50 participants sampled for each run

Base aggr. Score G1 G2 G3 G4 M1a M1b M1c M2 M3 M4a M4b

Mean

DMI .166 .096 .090 .080 .442 .160 .160 .473 .390 .512 .313
CA .154 .083 .059 .061 .440 .153 .151 .479 .386 .534 .296
PTS .154 .085 .061 .062 .465 .155 .154 .472 .388 .547 .299
SSR .156 .085 .061 .064 .480 .150 .152 .481 .393 .542 .321
PSR .158 .082 .062 .064 .528 .170 .179 .482 .397 .540 .332

Logit

DMI .158 .080 .077 .054 .611 .153 .133 .515 .500 .692 .397
CA .149 .068 .062 .048 .640 .140 .112 .539 .494 .713 .363
PTS .148 .069 .063 .046 .652 .151 .120 .519 .496 .712 .380
SSR .141 .069 .066 .049 .697 .136 .093 .527 .500 .696 .416
PSR .152 .072 .069 .057 .720 .176 .160 .551 .507 .704 .412

Mean (benchmark) .208 .161 .091 .135 .473 .327 .358 .475 .387 .475 .354
Logit (benchmark) .134 .084 .054 .058 .720 .381 .380 .491 .493 .665 .512
VI (benchmark) .239 .113 .080 .077 .724 .224 .274 .869 .550 .773 .411
SP (benchmark) nan nan nan nan .573 .230 .313 .903 .440 .687 .647

(b) 20 binary events and 30 participants sampled for each run

Table B.1: The mean Brier scores (range [0, 2], the lower the better) of different aggregators on randomly sampled
sub-datasets of 4 GJP datasets and 7 MIT datasets. The best mean Brier score among benchmarks on each dataset
is marked by bold font. The mean Brier scores of 10 PAS-aided aggregators that outperform the best of benchmarks
on each dataset are highlighted in green; those outperforming the second best of benchmarks are highlighted in
yellow; the worst mean Brier scores over all aggregators on each dataset are highlighted in red.
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B.2 Missing tables

Mean-based Logit-based Benchmarks
DMI CA PTS SSR PSR DMI CA PTS SSR PSR Mean Logit VI MP1

Mean (Brier) .221 .226 .226 .225 .230 .244 .247 .254 .257 .266 .290 .317 .315 .423
Std. (Brier) .150 .153 .158 .155 .168 .212 .221 .225 .233 .249 .130 .224 .267 .125

Mean (Log) .354 .369 .364 .388 .373 .441 .470 .484 .521 .513 .453 .578 .701 .728
Std. (Log) .214 .213 .222 .231 .234 .409 .444 .452 .508 .508 .154 .446 .573 .297

Table B.2: The mean and the standard deviation of the mean Brier scores and the mean log scores of the 10
PAS-aided aggregators and the benchmarks over 14 datasets. The bold font means that the data is significantly
better than the counterparts of all benchmarks with p-valueă0.05.

Aggregators M1a M1b M1c M2 M3 M4a M4b

Cultural consensus model [OAB15] 0.55 0.02 0.00 0.76 0.56 0.64 0.31
Cognitive hierarchy model [LD14] - - 0.32 0.48 0.46 - -

Statistical surprising popularity method [MP17] 0.24 0.06 0.02 0.60 0.51 0.65 0.35

Table B.3: The mean Brier scores of three statistical-inference-based aggregators on MIT datasets reported
by McCoy and Prelec [MP17]. The Brier score has been re-scaled to the range [0,2] to align with ours. The bold
font marks the five cases where theirs outperform the worst of our five mean-based PAS aggregators.

1As MP only applies to 7 MIT datasets, the data of MP in this table should not be compared directly to that of
the others.
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Base aggr. PAS G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

Mean

DMI .236 .141 .143 .148 .370 .324 .187 .377 .242 .230 .625 .643 .880 .414
CA .241 .146 .156 .162 .351 .323 .235 .477 .238 .230 .642 .640 .880 .450
PTS .231 .142 .141 .147 .326 .317 .194 .499 .236 .230 .666 .640 .880 .450
SSR .246 .188 .148 .143 .314 .309 .212 .632 .226 .291 .669 .643 .911 .502
PSR .261 .134 .139 .126 .314 .310 .198 .642 .221 .236 .678 .644 .880 .441

Logit

DMI .176 .115 .137 .084 .344 .327 .260 .583 .125 .094 .643 1.097 1.495 .691
CA .168 .114 .128 .073 .244 .330 .271 1.040 .100 .094 .734 1.093 1.495 .689
PTS .167 .114 .135 .082 .280 .329 .280 1.132 .111 .094 .776 1.093 1.495 .689
SSR .155 .110 .135 .093 .209 .318 .282 1.542 .086 .138 .746 1.125 1.431 .920
PSR .164 .115 .136 .091 .272 .334 .267 1.517 .075 .054 .805 1.097 1.495 .766

Mean (benchmark) .365 .323 .242 .296 .373 .313 .268 .633 .520 .521 .672 .634 .686 .497
Logit (benchmark) .185 .138 .131 .119 .205 .267 .257 1.338 .782 .524 .718 1.047 1.380 1.003
VI (benchmark) .548 .176 .198 .206 .712 .699 .384 1.356 .073 .010 1.859 1.385 1.464 .741
MP (benchmark) N/A N/A N/A N/A N/A N/A N/A .597 .384 .373 .671 .804 1.226 1.042

Table B.4: The mean log scores (the lower the better) of different aggregators on binary events of 14 datasets. The
best mean score among benchmarks on each dataset is marked by bold font. The mean scores of 10 PAS-aided
aggregators that outperform the best of benchmarks on each dataset are highlighted in green; those outperforming
the second best of benchmarks are highlighted in yellow; the worst mean scores over all aggregators on each
dataset are highlighted in red.
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B.3 More details about the datasets

GJP datasets. GJP datasets [Ung+12; Ata+16; GJP16] contain four datasets about forecasts on geopo-

litical questions collected from 2011 to 2014. The dataset of each year differs in both the forecasting

questions and the participant pools, and is denoted by G1 to G4 in our paper correspondingly. When

collecting the forecasts, the participants were given different treatments: some were given probabilistic

training, some were teamed up and allowed to discuss with each other before giving their own predic-

tions, and some made predictions solely. Participants who demonstrated consistently high prediction

accuracy across different forecasting questions in previous years were identified as “superforecasters”

and were teamed up to participate in the forecast tournament in the following year [Mel+15]. The

participants’ prediction accuracy has also been shown to be influenced by different treatments [Ata+16].

HFC datasets. HFC datasets [IAR19] contain three datasets collected in 2018 with forecasting ques-

tions ranging from geopolitics to economics and environments. We use H1 to denote the dataset collected

by the Hughes Research Laboratories (HRL), with participants recruited from Amazon Mechanical Turk

(AMT) as H1. We use H2 to denote the dataset collected by IRAPA, with participants recruited from

Amazon Mechanical Turk (AMT). Moreover, we use H3 to denote the dataset collected by IRAPA, with

participants recruited via invitation and recommendation.

MIT datasets. MIT datasets contain seven datasets (denoted as M1a, M1b, M1c, M2, M3, M4a,

M4b [PSM17]) collected for seven forecast behavior studies and for testing forecast aggregation methods.

The forecasting questions range from the capital of states to the price interval of some artworks and

some trivial knowledge. In the datasets, participants were asked to give binary (yes-or-no) answers

to the forecasting questions instead of probabilistic predictions. Datasets M1c, M2, M3 also contain

the confidence for the binary answers, which we directly interpret into probabilistic predictions of the

favored binary answers when we aggregate the predictions. Moreover, all of the seven datasets contain

participants’ answers to an additional question for each forecasting question. This additional question

asks the participants to estimate the percentage of other forecasters who choose the same binary answer

as theirs. This information will be used by one of the benchmark aggregators we test. In particular,

these seven datasets were collected to develop and evaluate information elicitation and aggregation

methods on questions where the majority is likely to be wrong [PSM17]. Therefore, these datasets have

a relatively low participants’ performance.
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B.4 Missing Proofs

B.4.1 Proof of Theorem 3.2

Proof. The result about DMI is implied by Theorem 6.4 in [Kon20]. The result about CA can be proved in

a similar way by observing that CA is asymptotically equivalent to determinant mutual information for

binary events. For completeness, we present the proof for CA. We also present the proof for PTS below.

For CA: First, we introduce the determinant mutual information [Kon20]. Consider two discrete

random variable X and W with the same support V . Let dpX, Wq “ pdu,vqu,vPV be the joint distribution of

X and W, where du,v “ PrpX “ u and W “ vq. Let dpX|Wq “ pdu,vqu,vPV be the conditional probability

matrix, where du,v “ PrpX “ u|W “ vq.

Definition B.1. The determinant mutual information of two binary random variables X and W is | detpdpX, Wqq|.

We denote the determinant mutual information of X, W as DMpX, Wq “ | detpdpX, Wqq|. We will

involve the use of its two properties introduced below.

Proposition B.1. Let X, X1, W be three discrete random variables with the same support, and X1 is less informative

than X w.r.t. W, i.e., X1 is independent of W conditioning X.

• (Information monotonicity) DMpX1, Wq ď DMpX, Wq. The inequality is strict when | detpdpX, Wqq| ‰ 0

and dpX1|Xq is not a permutation matrix.

• (Relatively invariance) DMpX1, Wq “ DMpX, Wq| detpdpX1|Xqq|.

The information monotonicity is the key property for being a mutual information.

Now, by Assumption A1 and the truthfulness assumption, we can consider the reported signal

of agent j on a generic task as a binary random variable pj (pj P t0, 1u). We denote the ground truth

of the generic task as y and denote the joint distribution of agent j’s reports and the ground truth as

Dj,˚ “ pdj,˚
u,vqu,vPt0,1u, where dj,˚

u,v “ Prppj “ u and y “ vq. Similarly, let Dj,k be the joint distribution of

agent j’s and agent k’s reports. The empirical joint distribution D̂j,k is an unbiased and asymptotically

consistent estimator of the true joint distribution Dj,k. So asymptotically (|M| Ñ 8), we have D̂j,k “ Dj,k.2

Recall that CA compute the reward of agent j given a reference peer k as:

RCA
j “ ∆ ¨ Sgnp∆q,

2For simplicity of exposition, we abuse the use of ““” here.
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where ∆ “ pδu,vqu,vPt0,1u, and δu,v “ d̂j,k
u,v ´ d̂j

u ¨ d̂k
v. By trivial math, we have δ0,0 “ δ1,1 “ ´δ0,1 “ ´δ1,0

and RDMI
j “ 2|δ0,0|. Further, asymptotically (|M| Ñ 8), |δ0,0| “ dj,k

0,0 ´ dj
0 ¨ dk

0 “ | detpDj,kq| “ DMppj, pkq.

Thus, we get that asymptotically (|M| Ñ 8), RDMI
j “ DMppj, pkq .

Now, for another agent j1 ‰ j, when k is also selected as her reference peer, we have asymptotically

(|M| Ñ 8),

RDMI
j ´ RDMI

j1 “DMppj, pkq ´ DMpp1
j, pkq

“|DMppk|yq|pDMppj, yq ´ DMpp1
j, yqq (B.1)

9DMppj, yq ´ DMpp1
j, yq

This equation holds due to the relatively invariance of the determinant mutual information and the

Assumption A2. This equation holds for any reference agent k ‰ j, j1. Thus, when agent j has a higher

mutual information w.r.t. ground truth, she gets a higher reward than agent j’ for any reference peer

k ‰ j, j1.

Asymptotically (|N | Ñ 8), with sufficient number of agents, the probability that agent j1 (j) are

selected as agent j’s (j1’s) reference peer can be neglected. Therefore, the expected reward, with

expectation taken over the reference peer selection, of CA rank the agents in the order of the determinant

mutual information of agents’ reports w.r.t. ground truth.

For PTS: By the counterpart argument in the proof for CA, under Assumption A1, we can treat

the report pj as a random variable for a generic task with ground truth variable denoted as y. Let

d̄u,v “
ř

jPM dj,˚
u,v{|M| representing the joint distribution of a uniformly randomly picked report on a task

w.r.t. the ground truth. Let d̄u “ d̄u,0 ` ¯du,1, u P t0, 1u be the marginal probability that an average agent

reporting pj “ 1. Further, let qv be the marginal distribution of y “ v. We have qv “ dj,˚
0,v ` dj,˚

1,v, @v P t0, 1u

. Let ErRPTS
j s be the expected reward of agent j under PTS.
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ErRPTS
j s “

1
|N | ´ 1

ÿ

k‰j

dj,k
0,0

p̄´j,0
`

dj,k
1,1

p̄´j,1
p|M| Ñ 8q

“
1

|N | ´ 1

ÿ

k‰j

q0dj,˚
0,0dk,˚

0,0 ` q1dj,˚
0,1dk,˚

0,1

p̄´j,0
`

q0dj,˚
1,0dk,˚

1,0 ` q1dj,˚
1,1dk,˚

1,1

p̄´j,1
pAssumption A2q

“
q0dj,˚

0,0d̄0,0 ` q1dj,˚
0,1d̄0,1

d̄0
`

q0dj,˚
1,0d̄1,0 ` q1dj,˚

1,1d̄1,1

d̄1
p|N | Ñ 8q

“
q0dj,˚

0,0d̄0,0 ` q1pq1 ´ dj,˚
1,1qd̄0,1

d̄0
`

q0pq0 ´ dj,˚
0,0qd̄1,0 ` q1dj,˚

1,1d̄1,1

d̄1

“q0

ˆ

d̄0,0

d̄0
´

d̄1,0

d̄1

˙

dj,˚
0,0 ` q0

ˆ

d̄1,1

d̄1
´

d̄1,0

d̄0

˙

dj,˚
1,1 ` constant,

where constant “ pq1q2 d̄0,1
d̄0

` pq0q2 d̄1,0
d̄1

. As with sufficient number of agents, q0, q1 and d̄u,v, d̄u, pu, v P

t0, 1uq are all constant to each agent, therefore, for each agent j P N , ErRPTS
j s is the same weighted

function of the matching probability dj,˚
0,0 and dj,˚

1,1 of the agent. Note that d̄0,0
d̄0

and d̄1,1
d̄1

are the precision of

the mean prediction of agents for y “ 0 and y “ 1. If d̄0,0
d̄0

ą 0.5 and d̄1,1
d̄1

ą 0.5, we have d̄0,0
d̄0

´
d̄0,1
d̄1

ą 0.5

and d̄1,1
d̄1

´
d̄1,0
d̄0

ą 0.5, then ErRPTS
j s is a negative function of a an expected weighted 0-1 loss of agent j.

(Note that an expected weighted 0-1 loss of agent j is expressed by αdj,˚
0,1 ` βdj,˚

1,0pα, β ą 0q.)

B.5 Variational inference for crowdsourcing

Variational inference for crowdsourcing (VI), proposed in [LPI12], is a computationally efficient inference

method that builds a statistical model on agents’ predictions over multiple questions to infer the ground

truths of these questions. To make our paper self-contained, we present a sketch of VI, which mainly

follows Section 3.2 of [LPI12].

VI consider the following statistical settings (assumptions): Agents provide binary predictions, i.e.,

pij P t0, 1u and have heterogeneous prediction abilities. Each agent j’s prediction ability is characterized

by a parameter cj, which is the correct probability of its predictions, i.e., cj “ Pppij “ yiq, @i P Mj.

Moreover, cj, @j are i.i.d. drawn from some beta distribution Betapα, βq with an expectation no less than

0.5, i.e., Ecj„Betapα,βq ě 0.5, @j.

The goal of VI is to compute the marginal distribution of yi under the above statistical assumptions.

The marginal distribution is then used as the aggregated prediction q̂i for event i. Let δij “ 1tpij “ yiu.

The joint posterior distribution of the agents’ abilities c :“ pc1, ..., c|N |q and the ground truth outcomes
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y :“ py1, ..., y|M|q conditioned on the predictions and hyper-parameter α, β is

Ppc, y|tpijuij, α, βuq9
ź

jPN

¨

˝Ppcj|α, βq
ź

iPMj

c
δij
j p1 ´ cjq

p1´δijq

˛

‚. (B.2)

Therefore, the marginal distribution of yi is Ppyi|tpijuij, α, βq “
ř

yi“0,1,iPMztiu
ş

c Ppc, y|tpijuij, α, βuqdc.

Ppyi|tpijuij, α, βq is computationally hard due to the summation of all yi, i P M and the integration

of cj, j P N . To solve this obstacle, VI adopts the mean field method. It approximates Ppc, y|tpijuij, α, βuq

with a fully factorized distribution dpc, yq “
ś

iPM µipyiq
ś

jPN νjpcjq for some probability distribution

function µi, i P M and νj, j P N , and determines the best dpc, yq by minimizing the the KL divergence:

KLrdpc, yq|Ppc, y|tpijuij, α, βuqs “ ´Epc,yq„dpc,yqrlogpPpc, y|tpijuij, α, βuqqs ´
ÿ

iPM
Hpµiq ´

ÿ

jPN
Hpνjq (B.3)

Hp¨q is the entropy function. Noting the prior distribution of qj, j P N is a Beta distribution, we could

derive the following mean field update using the block coordinate descent method:

Updating µi :µipyiq9
ź

jPNi

a
δij
j b

1´δij
j , (B.4)

Updating νj :νipcjq9Betap
ÿ

iPMj

µippijq ` α,
ÿ

iPMj

µip1 ´ pijq ` βq, (B.5)

where aj “ exppEcj„νj rln cjsq and bj “ exppEcj„νj rlnp1 ´ cjqsq. Let c̄j “ Ecj„νj rcjs. Applying the first

order approximation lnp1 ` xq « x with x “
cj´c̄j

c̄j
on aj and bj, we can get aj « c̄j and bj « 1 ´ c̄j and an

approximate mean field update,

Updating µi :µipyiq9
ź

jPNi

c̄
δij
j p1 ´ c̄jq

1´δij , (B.6)

Updating νj :c̄j “

ř

iPMj
µippijq ` α

|Mj| ` α ` β
. (B.7)

In our experiments, we used the two-coin model extension of VI [LPI12], where the prediction

ability of an agent j is characterized by two parameters cj,0 and cj,1 with cj,0 :“ Pppij “ 0|yi “ 0q and

cj,1 :“ Pppij “ 1|yi “ 1q. Consequently, the approximate mean field update is

Updating µi :µipyiq9
ź

jPNi

c̄
δij
j,yi

p1 ´ c̄j,yi q
1´δij , yi P t0, 1u, (B.8)

Updating νj :c̄j,k “

ř

iPMj
µipkq ` α

ř

iPMj
1tpij “ ku ` α ` β

, k P t0, 1u. (B.9)

[PSM17] has tested the performance of the culture consensus model (CCM) [OVB14] and the cognitive
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hierarchy model (CHM) [LD14] on MIT datasets, while CCM has a slightly better performance. VI

has the similar performance on MIT datasets compared to CCM. Therefore, we choose to test VI as a

representative for multi-task aggregators.
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Appendix C

Appendix to Chapter 4

C.1 Cursed Equilibrium in the Wallet-Game

In this section, we demonstrate how the winner’s curse naturally arises form considering the cursed-

equilibrium model.

Recall the wallet game example and suppose that Alice and Bob have χ “ 1. Then in the χ-cursed

equilibrium, Alice bids as if Alice is a fully rational agent who values the item by EsBob„Ur0,100srsAlice `

sBob|sAlice “ $30s “ $80. Thus, under the second price auction, Alice bids $80 and experiences the

winner’s curse upon winning. Avery and Kagel [AK97] conducted a lab experiment about this wallet

game with each agent’s wallet money drawn from Ur1, 4s. The best linear regressor of agents’ strategy

shows that agents bid by 2.64 ` 1.13si, close to the expected valuation Es´i„Ur1,4srsi ` s´is “ 2.5 ` si,

instead of the BNE strategy 2si, indicating the agents have a χ ą 0. Eyster and Rabin [ER05] further

showed that any χ ą 0 fits data better than the fully rational case (χ “ 0) and with a 95% confidence

interval of r0.59, 0.67s.

C.2 Missing proofs

C.2.1 Proof of Proposition 4.3

Proof. As the mechanism is C-EPIC under parameter χ, we have

xipsqvipsq ´ pipsq ě xipbi, s´iqvipsq ´ pipbi, s´iq @i, s, bi,
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Therefore, we have @i, s, bi :

EUχi
i pb “ s, si; σ˚

´iq “ xipsqvχ1

i psq ´ pipsq

“ xipsqpp1 ´ χ ´ ϵqvipsq ´ pχ ` ϵqEs̃´i|si
rvipsi, s̃´iqsq ´ pipsq

“ xipsqvχ
i psq ´ pipsq ` ϵ ¨ xipsq

´

Es̃´i|si
rvipsi, s̃´iqs ´ vipsq

¯

ě xipbi, s´iqvχ
i psq ´ pipbi, s´iq ` ϵ ¨ xipsq

´

Es̃´i|si
rvipsi, s̃´iqs ´ vipsq

¯

“ xipbi, s´iqvχ1

i psq ´ pipbi, s´iq

`ϵ ¨ xipsq

´

Es̃´i|si
rvipsi, s̃´iqs ´ vipsq

¯

´ ϵ ¨ xipbi, s´iq
´

Es̃´i|si
rvipsi, s̃´iqs ´ vipsq

¯

“ xipbi, s´iqvχ1

i psq ´ pipbi, s´iq ` ϵ
`

xipsq ´ xipbi, s´iq
˘

´

Es̃´i|si
rvipsi, s̃´iqs ´ vipsq

¯

ě xipbi, s´iqvχ1

i psq ´ pipbi, s´iq ´ ϵ ¨ vips̄, ..., s̄q

“ EUχi
i ppb´i “ s´i, biq, si; σ˚

´iq ´ ϵi ¨ vips̄, ..., s̄q

C.2.2 Proof of Lemma 4.5

Proof. We only need to prove that for agent i, Es´i|si
rvipsqs is non-decreasing in si. We first prove

that for any function gpnqpsq non-decreasing in each signal, and for affiliated signals s “ ps1, ..., snq,

gpn´1qps´jq “ Esj|s´j
rgpnqpsqs is also non-decreasing in signal si for all i ‰ j. This is because signal

affiliation of s implies that for any pair of i and j, fixing s´ij, si and sj are also affiliated, which further

implies that sj|si “ x weakly first-order stochastic dominates (FOSD) sj|si “ y for any x ą y. As a result

of the FOSD and the non-decreasing property of gpnqpsq, we have

gpn´1qpsi “ x, s´ijq “ Esj|s´ij ,si“x

”

gpnqpsj, s´ij, si “ xq

ı

ě Esj|s´ij ,si“x

”

gpnqpsj, s´ij, si “ yq

ı

ě Esj|s´ij ,si“y

”

gpnqpsj, s´ij, si “ yq

ı

“ gpn´1qpsi “ y, s´ijq

Therefore, gpn´1qps´jq is non decreasing in si for any i ‰ j. By induction starting with gpnqpsq “ vipsq,

we can get gp1qpsiq “ Es´i|si
rvipsqs is non-decreasing in si.
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C.2.3 Proof of Proposition 4.21

Proof. We first prove that vipsq “ si ` β
ř

j‰i sj satisfies the cursedness-monotonicity condition. We have

vipsq ´ vχ
i psq “ χ

´

vipsq ´ Es̃´i|si
rvχ

i psi, s̃´iqs

¯

“ χ

¨

˝

ÿ

j‰i

sj ´ Es̃´i|si

»

–

ÿ

j‰i

s̃j

fi

fl

˛

‚

“ χ

¨

˝

ÿ

j‰i

sj ´ Es̃´i

»

–

ÿ

j‰i

s̃j

fi

fl

˛

‚

The last equation is due to signals are assumed to be independent in this section. Therefore, if for some

s, vipsq ă vχ
i psq, then we have

ř

j‰i sj ă Es̃´i|si

”

ř

j‰i s̃j

ı

and thus for any s1
´i ĺ si,

ř

j‰i s1
j ď

ř

j‰i sj ă

Es̃´i|si

”

ř

j‰i s̃j

ı

, implying for any s1
i, vips1q ´ vχ

i ps1q ă 0, which completes the proof. Also, note that

if the signals are not independent but positively affiliated in the sense that @s1
i ą si, Es̃´i|s1

i
r
ř

j‰i s̃js ě

Es̃´i|si
r
ř

j‰i s̃js, the cursedness monotinicity still holds.

Second, we prove that vipsq “ maxstsiu satisfies the cursedness-monotonicity condition. This is

simply because that @s´i and si P pmaxj‰itsju, s̄q, vipsq ´ vχ
i psq ă 0. To see this, we have vipsq “ si ă

Es̃´i|si
rmaxtsi, maxj‰its̃juus “ Es̃´i|si

rvipsi, s̃´iqs, implying vipsq ´ vχ
i psq ă 0.

C.2.4 Proof of Corollary 4.24

Proof. Because vipsq “ maxitsiu, we have @s´i and si P pmaxj‰itsju, s̄q, vipsq ´ vχ
i psq ă 0. To see this, we

have vipsq “ si ă Es̃´i|si
rmaxtsi, maxj‰its̃juus “ Es̃´i|si

rvipsi, s̃´iqs, implying vipsq ´ vχ
i psq ă 0. Therefore,

for any threshold function tip¨q, which satisfies tips´iq ě maxj‰itsju, @s´i according to Lemma 4.8, we

have viptips´iq, s´iq ´ vχ
i ptips´iq, s´iq ď 0, where the equality holds only if tips´iq “ s̄. Therefore, for any

s´i, if tips´iq ă s̄, then we have pip0, s´iq “ mint0, viptips´iq, s´iq ´ vχ
i ptips´iq, s´iqu ă 0. Since the max

function satisfies the cursedness-monotonicity, Theorem 4.22 implies such tip¨q cannot be supported by

any deterministic, anonymous, C-EPIC-IR, and EPBB mechanism. Consequently, the only deterministic,

anonymous, C-EPIC-IR, and EPBB mechanism is to either allocate to a bidder with si “ s̄ or never

allocate, leading to zero allocation probability and thus zero social welfare and revenue.
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C.2.5 Proof of Lemma 4.26

Proof.

Ez

”

qpzq|
ÿ

zj ě d
ı

“ Ez´i

»

–Ezi|z´i

»

–qpzq|zi ě d ´
ÿ

j‰i

zj

fi

fl

ˇ

ˇ

ÿ

j‰i

zj ě d ´ b

fi

fl

ě Ez´i

»

–Ezi|s´i
rqpzqs |

ÿ

j‰i

zj ě d ´ b

fi

fl

The equality is because when the supremum of the support of any zi is b, then
ř

zj ě d if and only if
ř

j‰i zj ě d ´ b and zi ě c ´
ř

j‰i zj. The inequality is because vpzq is non-decreasing in zi given any

z´i.

C.2.6 Derivation of Equation 4.4

ż

b´i

fσpb´i|siqEUχ
i pb, si; σ´iqdb´i

“

ż

b´i

ż

s´i

fσpb´i|siq

ˆ

p1 ´ χq fσps´i|b´i, siquipb, sq ` χ f ps´i|siquipb, sq

˙

ds´idb´i

“

ż

b´i

ż

s´i

ˆ

p1 ´ χq fσps´i, b´i|siquipb, sq ` χ f̃ pb´i, s´i|siquipb, sq

˙

ds´idb´i

“

ż

b´i

ż

s´i

f χ
σ pb´i, s´i|siquipb, sqds´idb´i “ EUχ

i pbi, si; σ´iq
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