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Fine-mapping complex traits in large-scale biobanks across
diverse populations

Abstract

Identifying causal variants for complex traits is a major goal of human genetics research. Despite

the great success of genome-wide association studies (GWAS) in locus discovery, individual causal

variants in associated loci remain largely unresolved, limiting the biological inference possible from

follow-up experimentation. In this dissertation, I present our fine-mapping analyses of complex

traits in large-scale biobanks across diverse populations to create an atlas of causal variants.

We first fine-mapped complex traits using 361,194 European individuals from UK Biobank

(UKBB) and gene expression using 49 tissues from GTEx (Chapter 1). We then extended our

fine-mapping of complex traits to multiple populations, using 178,726 Japanese individuals from

BioBank Japan and 271,341 Finnish individuals from FinnGen (Chapter 2). In total, we identified

4,518 variant-trait pairs with high posterior probability (> 0.9) of causality across the three popu-

lations. Aggregating data across populations enabled replication of 285 high-confidence variant-

trait pairs as well as identification of 1,492 unique fine-mapped coding variants and 176 genes in

which multiple independent coding variants influence the same trait. These results demonstrate

that fine-mapping in diverse populations enables novel insights into the biology of complex traits by

pinpointing high-confidence causal variants for further characterization.

Next, we investigated fine-mapping accuracy in GWAS meta-analysis (Chapter 3). We demon-

strated that meta-analysis fine-mapping is substantially miscalibrated in simulations and proposed

a novel quality-control method, SLALOM, that identifies suspicious loci for meta-analysis fine-

mapping. Having validated SLALOM performance in simulations, we found widespread suspicious
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patterns in existing GWAS significant loci that call into question fine-mapping accuracy. We thus

urge extreme caution when interpreting fine-mapping results from meta-analysis.

Finally, we introduce a new polygenic risk score (PRS) method, PolyPred, that improves cross-

population polygenic prediction by combining a new fine-mapping-based predictor and a published

BOLT-LMM predictor (Chapter 4). Leveraging estimated causal effects from fine-mapping enabled

higher PRS transferability in non-European populations, achieving up to +32% improvement in

prediction accuracy vs. BOLT-LMM using UKBB Africans.

Altogether, this work demonstrates key advances in fine-mapping complex traits across diverse

populations and provides insights into further variant characterization as well as improved poly-

genic prediction based on fine-mapping.
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Overview

A primary goal of human genetics is to determine the genetic causes of rare and common diseases.

Identifying genetic causal variants provides the key mechanistic insights into disease biology, facili-

tates the diagnosis of individual patients, and may lead to the development of new therapeutic treat-

ments. While many human diseases are heritable 1, each disease has a different degree of heritability

(phenotypic variance that is due to genotypic variance in a population) and causal genetic archi-

tecture (from monogenic to polygenic, as explained by the number of causal loci) 1–3. Rare severe

diseases are in particular caused by a single or few causal loci with large effects 4, allowing the success-

ful identification of risk loci via linkage mapping in a small number of families (e.g., Huntington’s

disease and the CAG repeats in HTT 5; cystic fibrosis and ΔF508 in CFTR6). On the other hand,

common complex diseases (e.g., type 2 diabetes 7,8, rheumatoid arthritis 9,10, and schizophrenia 11)

are often caused by numerous variants spread across the genome, each of which has a small (but

nonzero) effect on a phenotype (i.e., polygenicity) 3. The polygenicity of common complex diseases

make it particularly challenging to identify causal loci via linkage mapping, requiring a large-scale

genetic association study to identify associated loci and a follow-up fine-mapping analysis to deter-

mine individual causal variants 12–14. In this dissertation, I present the work to fine-map complex

traits in large-scale biobanks across diverse populations.

Genome-wide association study (GWAS)

Genome-wide association studies (GWAS) aim to identify associations between genetypes and phe-

notypes of interest using a large number of individuals 15. GWAS typically test hundreds of thou-

sands of genetic variants (e.g., single nucleotide variants, insertion/deletion, copy number variants,

etc.) to find those statistically associated with a phenotype. Since each causal variant only has a small

effect, GWAS requires thousands of samples to achieve a statistical significance after multiple testing
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correction (typically P < 5.0 × 10−8) 16,17, and thus early GWAS had limited power to detect asso-

ciated loci. However, as genomic profiling technologies have progressed (e.g., genotyping microarray

and next-generation sequencing), GWAS have successfully identified thousands of loci associated

with complex traits—according to the GWAS Catalog 18, more than 372,000 locus-trait associations

have been reported to date, including many well-established risk loci, such as FTO for obesity 19

and TCF7L2 for type 2 diabetes 20, as well as risk loci for emerging infectious diseases, such as the

3p21.31 locus for COVID-19 severity 21.

By design, GWAS highly rely on linkage disequilibrium (LD, the correlation among genetic vari-

ants) 22 to identify an associated locus that contains causal variant(s) tagged by genotyped variants.

While LD made early GWAS possible by allowing a study to use only “marker” variants, it also in-

evitably prevent us to pinpoint individual causal variants from the correlated variants. Even today,

when dense genotype imputation and whole genome sequencing allow direct genotyping of the

majority of causal variants, high LD among the associated variants limits the identification of causal

variants and the subsequent biological inference possible from follow-up experimentation.

Statistical fine-mapping

To disentangle LD from the correlated GWAS associations, a follow-up statistical analysis, known as

statistical fine-mapping, is employed to prioritize individual causal variants 13. While multiple meth-

ods have been proposed (e.g., approximate Bayes factor [ABF] 23,24, CAVIAR 25, PAINTOR 26,27,

FINEMAP 28,29, and SuSiE 30), the current state-of-the-art are primarily Bayesian methods that es-

sentially compare the evidence of association vs. prior expectations and provide posterior inclusion

probability (PIP) for each variant as well as a set of variants that accounts for a certain probability of

causality (typically 95% credible set). As individual methods differ by models (e.g., single vs. multi-

ple causal variants; prior effect size distribution) and algorithms (e.g., exhaustive vs. shotgun stochas-
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tic search), their fine-mapping calibration, recall, and computational efficiency vary substantially.

Recent development of scalable fine-mapping methods (FINEMAP 28,29 and SuSiE 30) finally en-

ables biobank-scale fine-mapping of hundreds of phenotypes with high confidence, which provides

a foundation of this dissertation.

Polygenic risk score (PRS)

It is worth noting that fine-mapping has direct relevance to polygenic risk scores (PRS). PRS is a

genetic predictor that estimates individual’s risk for complex diseases and traits 31–33. As its name

suggests, PRS typically combines hundreds to thousands of (small) genetic effects to derive a single

predictor, which is often trained on large-scale European GWAS. Similar to PRS weights produced

by existing PRS methods (e.g., LD pruning + P-value thresholding [P+T] 34, LDpred 35, SBayesR 36,

and PRS-CS 37), fine-mapping results provide posterior (causal) effect sizes that can be used as PRS

weights and may improve prediction accuracy.

Despite the limited predictive power in early studies 34, PRS of a certain diseases (e.g., breast can-

cer 38, prostate cancer 39, type 1 diabetes 40) already demonstrated higher prediction accuracy than

the current clinical risk factors in Europeans. However, many studies 41–60 (including our work 47

that I contributed during my PhD) have shown that PRS trained on European GWAS has limited

accuracy in non-European populations (i.e., low transferability). This loss of accuracy is driven by

many factors (e.g., differences in LD 46–49, allele frequencies 47,48,61, causal effect sizes 46–48,62–65, and

heritabilities 47,48,66)—however, it is partially addressable by using the fine-mapping posterior effect

sizes which have already disentangled LD differences. This motivated us to the development of a

new fine-mapping based PRS predictor in this dissertation.
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This dissertation consists of four chapters. In Chapter 1, I describe our fine-mapping analysis of

complex traits using 361,194 Europeans from UK Biobank (UKBB) and gene expression using

49 tissues from GTEx 67. By systematically evaluating fine-mapping methods in simulations, we

propose the best practice of fine-mapping complex traits and gene expression (e.g., quality-control,

the use of [covariate-adjusted] in-sample LD, and the choice of fine-mapping methods), and apply

it to UKBB and GTEx. We then conduct a series of analyses to nominate disease relevance and/or

molecular mechanisms underlying fine-mapped variants using a phenome-wide association study in

GWAS Catalog, cis-eQTL colocalization, and both experimental and machine learning predictions

of accessible chromatin and transcription factor occupancy.

In Chapter 2, I then describe our extended analysis of complex traits fine-mapping in multi-

ple populations 68, using additional 178,726 Japanese individuals from BioBank Japan (BBJ) and

271,341 Finnish individuals from FinnGen. Taken together, we identify thousands of variant-

trait pairs with high posterior probability (> 0.9) of causality across the three populations, which

allows us, for the first time, the comparison and replication of fine-mapping results across three

large-scale independent cohorts. We then characterize multiple contributors to both successful

and failed replication of fine-mapped variants across biobanks. Focusing on coding variants, we

further demonstrate identification of tens of putative causal coding variants with extreme allele

frequency enrichment (> 10-fold) in the Japanese and Finnish populations. Aggregating both com-

mon and population-enriched coding variants across populations enables us to identify hundreds

of genes with an allelic series, which demonstrates the significant value of diverse populations in

fine-mapping studies.

In Chapter 3, I describe our analyses of fine-mapping accuracy in GWAS meta-analysis 69. Un-

like GWAS in biobanks, GWAS meta-analysis consists of cohorts that are heterogeneous in many

5



ways (e.g., ancestry, sample size, phenotyping, genotyping, or imputation) and it is unclear how

these characteristics affect fine-mapping calibration and recall. Using systematic simulations, we first

demonstrate that meta-analysis fine-mapping is substantially miscalibrated when different geno-

typing arrays and imputaion panels are included. We then propose a novel quality-control method,

SLALOM, that identifies suspicious loci for meta-analysis fine-mapping. We validate SLALOM

performance in simulations, and show widespread suspicious patterns in the GWAS Catalog as well

as the GBMI summary statistics that call into question fine-mapping accuracy.

In Chapter 4, I describe a new polygenic risk score (PRS) method, PolyPred, that improves cross-

population polygenic prediction based on fine-mapping results in the European population 70.

PolyPred leverages estimated posterior (causal) effect sizes from fine-mapping in addition to a pub-

lished polygenic predictor (e.g., BOLT-LMM, SBayesR, and PRS-CS), which addresses low cross-

population transferability of PRS due to different LD structure. When large-scale training samples

are available in non-European populations, we introduces a method PolyPred+ which further com-

bines a published polygenic predictor from the non-European training data. We apply PolyPred

and PolyPred+ to complex traits from UKBB, BBJ, and Uganda-APCDR cohorts and demonstrate

significant improvement in prediction accuracy.

In summary, the work presented in this dissertation demonstrates key advances in fine-mapping

complex traits across diverse populations. The insights, resources, and methods generated here facil-

itate future application and interpretation of biobank-scale fine-mapping, and provide a guide for

further functional characterization efforts as well as improved polygenic prediction.
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Abstract

Genome-wide association studies have successfully identified thousands of genomic loci associated

with human traits and diseases 18,71, but the delineation of causal variants and their mechanisms has

lagged sorely behind 72. To advance our understanding of these loci, we systematically evaluated and

applied genetic fine-mapping algorithms 25,28–30,73–75 to 96 complex traits from the UK Biobank 76,

narrowing in on 2,519 likely causal variants (posterior inclusion probability > 0.9). Likely causal

variants were 2.4-fold more likely to alter protein-coding DNA or lie within regulatory genomic re-

gions and often affected multiple traits. Colocalization 77–79 with an improved atlas of fine-mapped

eQTLs refined our understanding of the genomic mechanisms of complex trait variants but pro-

vided modest identification of causal genes. Combining bulk and single cell maps 80–86 of accessi-

ble chromatin and active histone modifications across diverse cell types and states, we determined

that 47% of likely causal non-coding variants lie in biochemically supported cis regulatory elements

(CREs), many of which have trait-relevant tissue-specific regulatory capabilities 87. Integrating pre-

dictive models 88,89 with comprehensive maps of transcription factor (TF) occupancy 84,90,91 and

chromatin accessibility, we nominate molecular mechanisms for 61% of colocalized CRE single nu-

cleotide variants with a background rate of 11%. Of note, only 14% of colocalized CRE variants

disrupt the canonical motif of an occupying TF. In total, we provide a modern annotated atlas of

putative causal regulatory variants underlying complex human traits and use this to nominate likely

causal variants underlying complex diseases 92.

8



1.1 Introduction

Hundreds of thousands of genetic loci associated with complex human traits and diseases have

been identified at a rapid pace since the first genome-wide association studies (GWAS) in the early

2000s 18,71,93. Moving from associated locus to biological understanding has advanced far more in-

crementally: the full path from causal variant to physiological function has been resolved for a tiny

fraction of significant loci 12,72, the majority of which contain protein-coding variants.

Filling in these causal pathways requires overcoming a number of challenges 72. First, associated

variants in a locus are often inherited together, making it difficult to identify the causal variant(s)

due to correlation known as linkage disequilibrium (LD) 94. Second, most associated LD blocks do

not contain a variant that would alter protein structure or function; instead, approximately 80% of

variants 95,96 appear to act in non-genic regions, likely to regulate gene expression and function 97,98.

Although much progress has been made in understanding this functional architecture across the

genome 80,85,95,99,100, a lack of unambiguous functional consequences for non-coding variants often

precludes confidently identifying the molecular mechanisms and cellular contexts by which individ-

ual variants act.

An increasingly common first step when probing variant-to-function pathways is to quantita-

tively disentangle the effects of LD and association strength at a locus using genetic fine-mapping 13,73,74,87.

Bayesian fine-mapping methods 25,28–30,73–75 estimate the probability that a variant is causal for a

trait (Fig. 1.1a), typically referred to as a posterior inclusion probability (PIP), and finds the smallest

set of variants in LD that contains the causal variant with 95% probability, known as the 95% cred-

ible set (CS). Similarly, colocalization methods estimate the joint probability that a variant is causal

for a trait and a molecular quantitative trait loci (QTL). With current sample sizes, these methods

typically do not fully resolve loci but often narrow down to a handful of genetic variants which can

then be combined systematically with genomic annotations or used in functional characterization
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studies to discover the regulatory mechanisms, genes, and cell types underlying individual trait asso-

ciations 87,101.

In this work, we apply state-of-the-art fine-mapping methods, optimized in large-scale simu-

lations, to 96 complex traits and diseases in the UK Biobank (UKB) 76. Across traits, we observe

widespread pleiotropy 102 and show how fine-mapping quantitative traits can inform putative causal

variant identification in complex diseases. In order to increase our confidence in specific non-coding

causal variants, we perform colocalization 77–79 for gene expression changes across 49 tissues from

the Genotype-Tissue Expression (GTEx) project 103, carefully considering the effects of population

stratification 104–106 and priors 77,78. While we observe increased confidence in colocalized variants,

we determine that the complex regulatory capabilities of genetic variants in part confounds the use

of colocalization as a gene prioritization tool. Finally, we annotate non-coding fine-mapped and

colocalized variants for molecular function using canonical motifs 88, (allele-specific) transcription

factor (TF) occupancy 84,90, (allele-specific) DNase footprinting 91, and neural network predictions

of TF and chromatin changes 89. In total, our study provides a contemporary annotated atlas 99,102

of the genomic functions of likely causal complex trait and disease variants.

1.2 Results

1.2.1 Identification of thousands of likely causal variants for complex hu-

man traits and diseases

We selected 96 well-powered complex traits and diseases across 10 phenotypic domains 102 from the

UK Biobank 76 (UKB) for inclusion in our GWAS and fine-mapping study (Fig. 1.1b,c, Supple-

mentary Fig. A.2,A.3, Supplementary Tables A.1–A.3). We performed association studies for

well-imputed (INFO 107 > 0.8) common and low frequency variants (MAF > 0.001; MAF > 10−6

for coding variants) in up to 361,194 unrelated individuals in the previously-defined “white British”
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cohort using generalized linear mixed models 108,109. In total, we identified 11,745 genome-wide

significant loci ranging from 3 to 22 Mb in which to perform fine-mapping.

To evaluate different method and parameter choices for fine-mapping, we simulated 50 re-

alistic biobank-scale traits, drawing true genotypes from the observed genotype probability dis-

tribution of the “white British” subset of the UKB dataset (n = 361,194) and using causal vari-

ant density 110, minor allele frequency (MAF)-dependent causal effect sizes 111, and total SNP-

heritability 112 consistent with the architecture of a typical complex trait (see 1.4 Methods). Our

simulations support the use of in-sample imputed dosage genotypes for both association and LD

rather than hard-called genotypes or reference panel LD 87,113, generally less restrictive MAF and

imputation quality thresholds to capture more causal variants, relatively large 1–3 Mb windows to

better model LD between causal and tag variants, and methods that jointly model multiple causal

variants (MCVs) like FINEMAP and SuSiE rather than conditional 114 7 or single causal variant 24

methods (Supplementary Fig. A.1). Our simulations also enabled us to explore a few additional

scenarios in detail, including the calibration of fine-mapping for poorly imputed causal variants, the

particular importance of in-sample LD for rare variants, and the basis for improved power in MCV

fine-mapping (Supplementary Fig. A.1).

We performed fine-mapping using this optimized approach, identifying 3,785 variant-trait pairs

(2,519 unique variants) with a posterior inclusion probability (PIP) > 0.90 and 25,174 independent

95% CS-trait pairs (min r2 > 0.25 in CS, SuSiE only; 15,103 merged CSs [MCSs]; see 1.4 Methods)

with a median size of 12 variants (Fig. 1.1d,e, Supplementary Table A.4). Consistent with our

simulations, FINEMAP and SuSiE PIPs of real complex traits were very well correlated (Fig. 1.1f)

but restricting to likely causal variants identified by both improves confidence in their identifica-

tion (Supplementary Fig. A.3). These results provide improvements over previous large-scale fine-

mapping studies 102,115 and a comprehensive baseline for future comparisons.

Our fine-mapped variants showed large and significant enrichments in several functional cat-
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egories, with 63% of likely causal variants (PIP > 0.9) annotated as coding (LoF, missense, or syn-

onymous), 3’ or 5’ UTR, or regulatory (promoter or cis-regulatory element [CRE]; Fig. 1.1g). The

non-genic set of variants (i.e., not included in any of the above categories) is enriched for variants

that are evolutionarily conserved 95,116 (Supplementary Fig. A.3), suggesting that many of these

variants may act through regulatory elements in other cell-types or states, or through regulatory

mechanisms not captured by these annotations. Because our fine-mapping pipeline is agnostic to

functional annotations, these functional enrichments serve as orthogonal validation of our results.

Approaches that estimate the contribution of variants in functional genomic categories have shown

that certain categories are enriched for SNP heritability (h2
g ) 95,97. Across a set of 40 independent

traits and 39 genomic annotations (see 1.4 Methods), we observed that genome-wide polygenic

enrichments are generally concordant with fine-mapped variant enrichments (Supplementary

Fig. A.3, Supplementary Table A.5).

Finally, we explore several notable observations from fine-mapping. First, we find a small number

of variants with PIP > 0.5 that do not meet genome-wide significance thresholds; functional ge-

nomic enrichment suggests that a subset of these variants are truly causal (Supplementary Fig. A.3,

Supplementary Table A.6). Second, we find examples where the posterior variant effect sizes are

in the opposite direction than expected based upon marginal effect sizes; these variants likely rep-

resent a mix of real LD masked effects as well as limitations of current fine-mapping approaches

(Supplementary Fig. A.3, Supplementary Table A.7). Third, consistent with the simulation re-

sults showing the importance of jointly modeling multiple causal variants, we observed that 49%

of regions contained multiple CSs and 12% of all CSs physically overlapped with another CS for

the same trait (Fig. 1.1h). Moreover, we found non-trivial (r2 > 0.1) LD between 5% of CSs for

the same trait (see 1.4 Methods) and predict that jointly modeling multiple causal variants when

fine-mapping will become even more necessary for pinpointing likely causal variants as sample size

increases (Supplementary Fig. A.3).
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1.2.2 Extensive pleiotropy across complex traits and diseases

We hypothesized that our large-scale fine-mapping study would allow for better identification of the

shared causal variant effects 102,117,118 across complex human traits. To this end, we identified 6,394

unique variants that were fine-mapped (PIP > 0.1) for at least two traits, comprising 5,039 unique

MCSs (Supplementary Table A.8). These pleiotropic variants were most commonly observed

within a single phenotypic domain, but 1,323 had effects across more than 3 domains (Fig. 1.2a).

We estimated genetic correlation (rg) 119,120, a measure of the genome-wide sharing of polygenic ef-

fects, for all trait pairs in our study. With these estimates, we found that 45% of pleiotropic variants

and 55% of pleiotropic MCSs were observed across predominately independent traits (all pairwise

|rg| < 0.2), highlighting the widespread re-use of small-effect common variants across the pheno-

typic landscape 12.

To gain insight into the mechanisms of pleiotropic variants, we next investigated the thirty-

four fine-mapped variants that demonstrated extensive pleiotropy across over 10 phenotypic do-

mains (Fig. 1.2c). These include well-described missense variants in the gene encoding for GCKR,

which regulates glucose metabolism in hepatocytes 121; SH2B3, which regulates cytokine signal-

ing broadly 122; APOE, which transports cholesterol in the liver and brain 123; and ADH1B, which

metabolizes alcohol and other substrates 124. Other extremely pleiotropic variants appeared to

act via gene regulation, such as rs998584, which is associated with multiple skeletal traits such as

body fat percentage, in addition to lipid and blood cell traits. Consistent with these associations,

rs998584 lies downstream of VEGFA, which encodes for the primary regulator of angiogenesis 125,

in a regulatory element that is predominately accessible in blood and connective tissue cell-types

(Supplementary Fig. A.4). Another example is rs76895963, which is a likely causal variant for 18

traits across 6 domains (PIP > 0.9 for all). This variant lies within a regulatory element in the first in-

tron of CCND2, a key regulator of the cell cycle 126, which is partially accessible across a broad range
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of tissues during development (Supplementary Fig. A.4).

Although pairs of traits with higher genome-wide polygenic correlation tended to have a higher

proportion of pleiotropic variants with shared effect directions (Fig. 1.2b), we observed 44 variants

where the variant effect directions disagreed with the expected direction based upon rg for genet-

ically similar (|rg| > 0.5) traits (Supplementary Table A.9). For example, we found unexpected

effect direction disagreement at rs1047891 (a missense variant in CPS1) for serum creatinine-based

and cystatin C-based eGFR 127, rs76895963 (see above) for T2D and BW 128, and rs2740488 (an in-

tronic variant to ABCA1) for HDLC and TG 129,130. Together, these results suggest that functional

variants are typically repurposed to have similar effects in related traits but can on occasion have

opposite effects in highly correlated traits.

Finally, we investigated whether the widespread pleiotropy that we observed could allow us

to make inferences about causal variants in diseases not well represented in the UKB, a relatively

healthy cohort, since fine-mapping is particularly difficult in well-powered meta-analytic studies. To

these ends, we conducted a phenome-wide association study (PheWAS) of all fine-mapped (PIP >

0.1) variants within our UK Biobank study (see 1.4 Methods) across 1,183 unique traits from 3,079

previous studies (collected by OpenTargets 92, see 1.4 Methods).

For 169 distinct diseases and disease-relevant traits, we identified at least one genome-wide sig-

nificant hit (lead and tagging variants with r2 > 0.7, P < 5.0 × 10−8) that was also fine-mapped

in our UKB analysis (Supplementary Table A.10). Specifically, this approach allowed us to iden-

tify fine-mapped variants for 220 independent loci for coronary artery disease, 190 independent

loci for autoimmune disorders such as Crohn’s diseases and Psoriasis, and 135 independent loci for

Schizophrenia, in addition to many other complex diseases (Fig. 1.2e). For example, we fine-map

rs2076295, a regulatory variant of DSP in lung epithelial cells 131, for FEV1/FVC ratio and find

that this reaches genome-wide significance for COPD. We also fine-map several variants, including

rs71368508, for eosinophil count that are genome-wide significant for Eczema 132. We conclude
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that combining systematic fine-mapping with large meta-analytic efforts compellingly nominates

potential causal variants underlying complex diseases.

1.2.3 Colocalization of complex trait variants and expression-associated

loci

To gain insight into the molecular effects and gene targets of fine-mapped complex trait variants,

we integrated our fine-mapping results with expression quantitative trait loci (eQTLs) using colo-

calization 79 analysis. Rather than simply overlapping these associations, colocalization models the

effects of LD and provides estimates of the joint probability that a variant or set of variants causally

influences both a complex and molecular trait 115. Based upon recent simulations 78,133, we rea-

soned that our improved multiple causal variant (MCV) complex trait fine-mapping, coupled with

MCV eQTL fine-mapping, would improve colocalization 78, which is most commonly performed

assuming at most one causal variant 79 or with incompatible reference LD 115. Although MCV

fine-mapping is available for gene-tissue pairs across 49 tissues in GTEx v8 103 using other meth-

ods 25,134,135, they showed extensive disagreement 103. Thus, we reasoned that applying FINEMAP

and SuSiE, which we validated in complex trait simulations, may better resolve expression trait vari-

ants in GTEx v8.

To account for potential confounding due to uncorrected population stratification 105 in fine-

mapping this ancestrally heterogeneous cohort 103, we used covariate-adjusted (cov-adj) LD, analo-

gous to an approach we developed for heritability estimation in heterogeneous cohorts 136. We show

that using cov-adj LD is theoretically justified 104,136 (see 1.4 Methods), that it leads to the iden-

tification of variants with greater functional enrichments 103,137 in the very heterogeneous GTEx

cohort (Fig. 1.3c, Supplementary Fig. A.5), and that it has little impact in the much more ho-

mogeneous “white British” subset of the UKB (Supplementary Fig. A.5). Thus, we suggest that

future fine-mapping studies of heterogeneous cohorts use cov-adj genotypes or cov-adj LD.
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Having validated our use of cov-adj LD, we applied SuSiE and FINEMAP and discovered 303,906

95% CSs for 25,005 unique protein coding genes and lncRNAs with a median 95% CS size of 8 (in-

terquartile range: 2–22). Nearly a quarter (21%) of 95% SuSiE CSs contained a fine-mapped (PIP >

0.9) variant, resulting in 19,410 distinct, putative causal variants underlying differential gene expres-

sion (Fig. 1.3b, Supplementary Table A.11). Up to one-third (34% for Tibial Nerve) of tissue-gene

pairs harbored more than one 95% CS. When compared to other methods 24,25,135, MCV methods

that control for covariates properly 28,30,134 identify more fine-mapped variants, and these variants

are almost always better enriched for relevant genomic annotations (Supplementary Fig. A.5) 138.

Having successfully performed and validated our MCV fine-mapping in both UKBB and GTEx

v8, we turned to colocalization. We performed colocalization using both a conservative, non-informative

eCAVIAR prior 77, assuming that there is no excess overlap between causal variants for complex and

molecular traits, and a more powerful, non-independence prior that we estimated for each trait-

tissue pair using fastENLOC 78. We observe that fastENLOC often finds that the most relevant

tissues are amongst the most enriched for each trait (Supplementary Fig. A.6, Supplementary Ta-

ble A.12). Overall, accounting for non-independence leads to a 3.2-fold increase in colocalized trait-

gene pairs at the 95% CS level, accounting for MCVs in complex traits leads to a 1.6-fold increase,

and accounting for MCVs in eQTL leads to a 1.1-fold increase (Fig. 1.3e). In summary, we observe

that allowing for MCVs and non-independence for both molecular and complex trait fine-mapping

together identifies the largest number of colocalized trait-gene pairs (Fig. 1.3e).

Next, we performed functional enrichment analyses on likely causal complex trait variants, likely

causal eQTLs, and high confidence colocalized variants (variants with a colocalized posterior proba-

bility [CLPP] > 0.9 of being causal for both a complex and molecular trait; see 1.4 Methods). Previ-

ous studies have highlighted key differences between the genomic localization of complex trait and

eQTL variants 99; consistent with this previous work, we find that fine-mapped eQTLs are more

enriched in 5’ and 3’ UTRs, promoters, and synonymous variants, while fine-mapped complex
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trait variants are more enriched for LoF, missense, and CRE variants (Fig. 1.3f, Supplementary

Fig. A.6, Supplementary Table A.13). We also find that high confidence colocalized variants are

more likely to fall within a functional genomic annotation than likely causal complex trait or eQTL

variants alone (79% vs. 63% and 42% for colocalization vs. UKBB and GTEx, respectively), includ-

ing being more enriched for LoF, missense, 5’ and 3’ UTRs, and distal CREs, (Supplementary

Fig. A.6). This suggests that the set of colocalized variants is of particularly high confidence, and

we turn our focus to characterizing these high confidence variants and assessing their use for gene

prioritization.

First, we investigate several factors affecting the accuracy of colocalization for causal gene priori-

tization. We observe that genetic regulation of expression in cis is often complex: 19% (181 / 914) of

precisely colocalized (CLPP > 0.9) variant-trait pairs and 31% (2118 / 6792) of colocalized (CLPP

> 0.1 for at least one variant) 95% CSs nominate two or more distinct gene products (Fig. 1.3g,

Supplementary Fig. A.6, Supplementary Table A.14,A.15). When a variant colocalizes across

multiple tissues, we find that 6% of the time (14 / 218) the marginal direction of effect is inconsis-

tent for at least one tissue. As an example of complex genetic regulation, we find that rs12740374

colocalizes with SORT1, PSRC1, and CELSR2 for multiple lipid traits (all CLPP > 0.9), although

only SORT1 has been shown experimentally to modulate cholesterol levels 139. In contrast, we ob-

serve that the hepatic control region variant 140, rs35136575, colocalizes (all CLPP > 0.9) with 3 cis

apoliproteins for LDL-C and ApoB levels: APOE, APOC1, and APOC2. In this case, it is unclear

whether one or more genes lie on the causal pathway, although evidence is emerging of loci where

regulation of multiple genes in cis is important 141. In another example, we find that the variant

rs8012, fine-mapped for mean corpuscular volume, lies in the 3’ UTR of GCDH on the forward

strand but also in the last intron of SYCE2 on the reverse strand, colocalizing with changes in the ex-

pression of both. The exact mechanism by which this variant affects mRNA expression here is un-

clear: it could be direct transcriptional regulation or it could affect how RNA polymerase processes
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these overlapping transcripts. Finally, we observe multiple missense mutations that colocalize with

other genes. Of particular note, we find that rs760077, a missense variant in MTX1 fine-mapped

for RBC indices, Urea, and eGFR levels, colocalizes with nearby gene THBS3. This variant may

regulate THBS3 transcription directly, as it also lies in accessible chromatin, or indirectly, through a

more complex mechanism.

To quantify the extent to which colocalization could be used for causal gene prioritization, we re-

stricted our analyses to non-coding 95% eQTL CSs in the physical neighborhood (< 500 kb) of vali-

dation genes with fine-mapped (PIP > 0.50) coding variants and asked what proportion of our colo-

calizations identified the validation gene (precision) and for how many distinct complex trait signals

did colocalization identify the validation gene (recall) 142. Across methods, we found that precision

was moderate (range: 0.37–0.59) while recall was relatively poor (range: 0.04–0.10). Allowing for

MCVs improved both, and while the fastENLOC prior improved recall with a loss in precision, we

were able to achieve similar improvements in recall with smaller losses in precision simply by using

a more lenient threshold on the eCAVIAR results. This likely reflects the identification of multiple

genes in validation loci (Fig. 1.3h, Supplementary Fig. A.6, Supplementary Table A.16). Variants

of F statistics allow researchers to quantify precision/recall tradeoff and optimise decision-making;

for example, when precision is 3-fold more valued than recall, such as for scalable GWAS experimen-

tal follow-up, our analyses suggest that using CLPP > 0.01 with an eCAVIAR prior or CLPP > 0.1

with a fastENLOC prior are preferred (F0.33 = 0.34 and 0.32, respectively). Taken together, our

results suggest that current colocalization methods can nominate genes with moderate confidence at

a small fraction of loci. We anticipate that increased power due to better priors, larger sample sizes,

and new tissues and cell types will increase the number of colocalizations detected, increasing both

the number of disease-relevant genes identified and the number of non-disease-relevant genes identi-

fied.
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1.2.4 Cell types and proximal mechanisms of fine-mapped regulatory variants

Complex trait heritability is enriched in accessible chromatin (AC) 95,97, so we annotated the pos-

sible regulatory regions of our fine-mapped variants with maps of AC in an extensive set of tissues

and cell types. To do this, we combined and re-QC’d bulk and single cell AC maps, including four

datasets covering a broad diversity of tissues 80,84–86, in addition to fine-scale investigations of AC

during blood cell production 81, immune system activation 83, and in the adult human brain 82 (see

1.4 Methods, Supplementary Fig. A.7). We further restricted each dataset to elements that are

likely cis-regulatory enhancer elements (CREs) by requiring H3K27ac in at least one of 327 distinct

cell types 84,85 We observed enrichments across these datasets ranging from 2.2-4.2 fold, although no

single dataset annotated more than 34% of non-coding variants (Fig. 1.4a). Combined, we are able

to annotate 47% of likely causal (PIP > 0.9) variants and 68% of high confidence colocalized (CLPP

> 0.9) variants. Importantly, these annotations still miss a large fraction of non-coding variants,

possibly due to missing important tissue-specific CREs, alternate regulatory mechanisms, or model

misspecification when fine-mapping.

To inform functional follow-up experiments on non-coding variants, we explored whether our

fine-mapped variants were more likely to lie in trait-relevant cell type-specific accessible chromatin

regions 99,143 using our previously developed method g-chromVAR 87. Across all accessible chro-

matin atlases, we identified 2,557 trait-cell type enrichments that survived atlas-specific Bonferroni

correction (Supplementary Table A.17). We recapitulated many previously reported trait-tissue

enrichments 143 such as lymphocyte subset counts and myeloid subset indices (e.g., RBC and platelet

counts) in white blood cell types and myeloid cell types 87 (Fig. 1.4b), respectively, musculoskele-

tal traits (e.g., eBMD) in bone and muscle tissues, cholesterol (e.g., LDL-C) in liver cell types, lung

function (e.g., FEV1/FVC ratio) in lung tissues, glucose metabolism phenotypes (e.g., T2D) in kid-

ney and islet 144 tissues, atrial fibrillation in cardiomyocytes 145, BMI in several brain regions 146, and
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Alzheimer’s in myeloid cells 147. Our fine-mapping was also able to distinguish between testosterone

levels in XX individuals, which were enriched in adrenal tissues 148, from testosterone levels in XY

individuals, which were most highly enriched in renal tissues, in addition to identifying several novel

trait-tissue enrichments, such as cholelethiasis (gallstones), in the pancreas, which further informs

the shared genetic etiology of gallstones and acute pancreatitis 149. In total, we identified 485 likely

causal variants lying in an enriched trait-cell type accessible chromatin region (Supplementary Ta-

ble A.18). Functional dissection of the variants in our annotated atlas is likely a high yield step into

understanding gene regulatory mechanisms underlying complex traits.

Finally, we investigated the proximal mechanisms by which single nucleotide fine-mapped reg-

ulatory variants act. We first investigated whether likely causal complex trait variants (PIP > 0.9)

or high confidence colocalized (CLPP > 0.9) variants within CREs were more likely to disrupt

one of 426 TF binding motifs 88, observing a small enrichment (1.3-fold) with a very high back-

ground (Fig. 1.4c). When we restricted to 37 motifs that were enriched across combined traits

(Supplementary Table A.19), we observed substantially reduced background and better enrich-

ment (2.1-fold), noting that this estimate suffers from “double-dipping”. As an unbiased approach,

we increased the confidence that our fine-mapped variants truly disrupt TF binding or activity

by additionally requiring that the TF itself occupies the CRE in at least one of 768 measured cell

types 84. This further increased our enrichment (2.7-fold), while retaining 14% of all non-coding

fine-mapped (PIP > 0.9) variants (Fig. 1.4c); restricting again to enriched motifs increases enrich-

ment (5.9-fold), but annotates only 6% of fine-mapped variants. We observe generally similar results

using TF footprints 91 inferred from accessible chromatin but observe even stronger enrichments

for variants that exhibit allele-specific binding or allele-specific chromatin accessibility (3.4- and

4.5-fold, respectively).

To identify regulatory variants with effects both in 99 and outside 150 of canonical motifs, we

turn to a recent deep learning approach, Enformer, that can predict the effects of variants on both

23



TF occupancy and AC levels 89. We determine a threshold for total TF occupancy disruption (see

1.4 Methods) such that exactly 90% of low PIP variants fall below this, observing that 43-57% of

high PIP or CLPP variants exceed it (4.5- to 6.0-fold enrichment). Importantly, even after exclud-

ing variants that disrupt canonical motifs, fall into TF footprints, or exhibit allele specific activity,

we still observe a 2.5- to 3.0-fold enrichment in TF occupancy score (Supplementary Fig. A.7).

Collectively, these data provide evidence that common trait-associated regulatory variants can act

by disrupting known TF binding motifs but also by tuning their occupancy outside of standard

position weight matrices (Supplementary Table A.20).

Altogether, we are able to nominate a proximal mechanism for 49% and 61% of single nucleotide

CRE fine-mapped variants and colocalized variants (Supplementary Table A.21), respectively,

when combining 3 or more methods (vs. 11% for CRE variants with PIP < 0.01). As validation,

our approach identifies that the likely molecular mechanism of rs2814778’s association with blood

cell traits at the well-known Duffy locus is disrupting the canonical motif of bound GATA1/2 151,

rs11257655’s association with diabetes-related biomarkers at the CDC123/CAMK1D locus is by

disrupting the canonical motif of bound FOXA1/2 152, and rs1414660’s association with bone

mineral density at the GREM2 locus is by disrupting the canonical motif of bound CEBPB 153.

Our approach also highlights a number of novel mechanisms, including the disruption of CTCF

and RAD21 occupancy by the colocalized hepatic control region variant rs35136575 and the dis-

ruption of an androgen receptor TF complex by the (XX) testosterone-level fine-mapped variant

rs590097 at the BCL2L11 locus (Fig. 1.4d,e). At the IRF8 locus, SuSiE and FINEMAP identify 5

independent signals with PIP > 0.9 for monocyte count. All 5 of these variants are within CREs,

and 3 of these variants have 3 or more lines of evidence for their molecular function. We suggest that

rs11640143 alters SP1 / PAX5 binding, rs56177354 affects STAT5A/B binding, and rs11642657

acts through a complex mechanism to impact activity of the EZH2 / REST complex.
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Figure 1.4 (following page): Comprehensive annotation of fine‐mapped non‐coding variants. a. Proportion and enrich‐
ment (PIP > 0.9 vs. < 0.1) of fine‐mapped variants across 7 different accessible chromatin datasets and a combination of
all 7. CREs are defined as the intersection of accessible chromatin with H3K27ac from any cell‐type. Error bars repre‐
sent 95% CIs. b. Cell‐type specific enrichment of fine‐mapped variants in accessible chromatin for the atlas from Meule‐
man et al. 80 using g‐chromVAR. Only cell‐types and traits with at least one enrichment (Bonferroni‐adjusted P‐value <
0.05) are shown. Bodily systems are colored the same as in Fig. 1.4a. c. Proportion of CRE variants with one or more
annotated molecular mechanisms. Molecular mechanisms include motif breaking (motif), motif breaking and occupied
by the corresponding TF (ChIP + motif), residing within an accessible chromatin footprint (AC footprint), exhibiting allele
specific TF binding (TF ASB), allele specific accessible chromatin (AC ASB), or TF occupancy or accessible chromatin
predicted changes from deep neural network models (Enformer). When multiple methods are used, motif breaking only
variants are not considered nor are enriched mechanism categories. d,e. Example fine‐mapped variants with accessible
chromatin, TF occupancy, and motif alteration, and other functional information tracks. Control accessible chromatin
tracks were obtained from liver tissue 86 but not annotated as hepatocytes. CCCTC‐binding factor (CTCF) occupancy
is shown for the hepatoblastoma cell line, HepG2 and androgen receptor (AR) occupancy is shown for the prostate cell
line, LHSR. The alternative allele is shown above the reference allele. The empirical density for the absolute predicted
change in accessible chromatin from the Enformer model across all PIP < 0.01 CRE SNVs is shown in e.
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Figure 1.4: (continued)
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1.3 Discussion

To identify likely causal variants underlying complex human traits and diseases, we evaluated and

applied state-of-the-art multiple-causal-variant statistical fine-mapping to 96 phenotypes in the

UKBB, identifying 3,785 variant-trait pairs with PIP > 0.9. We observe that variants are often fine-

mapped for multiple traits and show how this widespread pleiotropy can be leveraged to pinpoint

causal variants in complex disease where fine-mapping is complicated by fundamental complexi-

ties present in large meta-analyses. At the genomic level, these variants are enriched in the exons of

protein coding genes, which we explore in our companion manuscript; their untranslated mRNA

regions, whose functional consequences we have experimentally probed in other work 154, and in

trait-relevant tissue accessible chromatin, which we annotate and investigate the potential mecha-

nisms of here. In total, our study provides both a set of recommendations for fine-mapping large

genetic studies as well as a deeply annotated resource of likely causal protein coding and regulatory

variants.

We then systematically evaluated methods for colocalization analysis, which estimate the con-

vergence of causal complex and molecular trait variants to nominate causal genes. Notably, our

state-of-the-art approach, which allows for multiple causal variants for both types of trait, properly

accounts for population stratification, and uses powerful empirical priors, identified the correct

gene only 50% of the time for at most 10% of loci, adding further evidence to the limitations of

colocalization 78,155,156. We show that this is due in part to our ever-improving ability to identify

likely causal variants underlying changes in expression of multiple genes, confounding downstream

gene prioritization. On the other hand, we found that colocalized variants present a more high-

confidence and interpretable set than fine-mapped complex trait variants alone and may provide a

more fruitful foothold for variant to function studies.

Finally, we improved our ability to annotate regulatory variants with extensive maps of chro-
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matin state 80–85 but found that only 50% of fine-mapped variants were within a CRE, defined by

accessible chromatin and H3K27ac. Within CREs, we integrated predictive models of variant func-

tion 88,89 with large-scale maps of TF occupancy 84,90,91 to propose molecular mechanisms for 49%

and 61% of likely causal complex trait CRE variants and colocalized CRE variants, respectively,

with a background rate of 11%. Notably, the majority of variants did not disrupt known binding

motifs for occupied TFs. Although these analyses allowed us to identify many likely mechanisms

of complex trait regulatory variants, it is clear that improved measurement and prediction of gene

regulatory alteration across additional cell types, states, and factors is needed to further elucidate the

underlying actions of complex trait variants.

Our work is subject to several limitations. First, while our approach performs well in simulations

which we endeavored to make as representative of real complex trait GWAS as possible, additional

complexities likely remain unaccounted, leading to model misspecification. Second, our colocal-

ization analysis is conducted on a limited set of tissues and cell types; for many loci in many traits,

these data omit the relevant tissue or cell type at the locus. Finally, we have focused on the well-

studied “white British” subset of the UK Biobank, whose ancestral lack of heterogeneity makes it

well-suited for application of currently-available fine-mapping approaches. Our companion paper 68

extends this study to include FinnGen and Biobank Japan, although more representative studies of

the global majority are desperately needed. Overall, our annotated atlas of likely causal variants un-

derlying complex human traits, diseases, and gene expression provides insights into the molecular

mechanisms of regulatory variants and is a contemporary resource for studies of variant to function.
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1.4 Methods

1.4.1 Cohorts

UK Biobank (UKBB)

The UK Biobank (UKBB) 76 is a prospective population-based cohort in the United Kingdom that

recruited approximately 500,000 individuals aged between 40–69 years old from 2006 to 2010. In

this study, we analyzed 366,194 unrelated “white British” individuals that were previously defined

in the Neale Lab GWAS (https://github.com/Nealelab/UK_Biobank_GWAS). Briefly, this cohort

includes individuals of British ancestry, based on the PCA-based sample selection criteria (https:

//github.com/Nealelab/UK_Biobank_GWAS/blob/master/ukb31063_eur_selection.R), and is

further filtered to those who self-reported as “white British”, “Irish”, or “white”.

The genotypes were obtained using either i) the Applied Biosystems UK BiLEVE Axiom Ar-

ray or ii) UKB Axiom Array, and were further imputed using IMPUTE4 with a combination of

reference panels: i) the Haplotype Reference Consortium and ii) UK10K and the 1000 Genomes

Phase 3. We applied variant-level quality-control (QC) criteria as previously defined in the Neale

Lab GWAS (https://github.com/Nealelab/UK_Biobank_GWAS), which retained 13,791,467 vari-

ants with INFO > 0.8, MAF > 0.001, and Hardy-Weinberg equilibrium P value > 1.0 × 10−10, with

exception for the VEP-annotated coding variants where we allowed MAF > 1.0 × 10−6. All the

variants were processed on the human genome assembly GRCh37.

We defined phenotypes using various data types available in UKBB, including biomarkers, body

measures, and disease case-control status mapped on phecodes 157 (https://phewascatalog.org/

phecodes). We summarized detailed phenotype definitions in Supplementary Table A.1. The UK

Biobank analysis was conducted via application number 31063.
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Genotype Tissue Expression Project (GTEx) v8

The Genotype Tissue Expression Project (GTEx) v8 is a cohort of 838 individuals on whom geno-

type and gene expression have been measured. In this study, we obtained genotypes for 838 individ-

uals (dbGAP accession ID: phs000424.v8) who had been included in the v8 release for cis-eQTLs

across 49 tissues. Of note, genotypes from the GTEx v8 project were obtained using whole genome

sequencing and gene expression profiles were obtained using RNA-seq on post-mortem samples.

Additional details on individuals, tissue samples, and sequencing have been previously described 103.

As input to fine-mapping, we obtained cis-eQTL summary statistics from the GTEx portal

(https://gtexportal.org/). We also obtained the covariate matrix containing sex, whether PCR

was used to amplify DNA to create libraries, sequencing platform (HiSeq 2000 or HiSeq X), the

first five genotype PCs, and up to 60 Probabilistic Estimation of Expression Residuals (PEER) fac-

tors 158. After fine-mapping, all variants were lifted over from GRCh38 to hg19; variants with no

allele matching the reference sequence were excluded.

1.4.2 Genome-wide association

We conducted GWAS using a generalized linear mixed model as implemented in SAIGE 108 (for

binary traits) or BOLT-LMM 109,159 (for quantitative traits). We used age, sex, age2, age× sex, age2×

sex, and top 20 principal components as covariates, while excluding sex-adjusting covariates from

sex-specific or stratified traits (i.e., age at menarche/menopause, breast cancer, testosterone levels).

For mosaic loss of chromosome Y, we used summary statistics publicly available from UKBB 160.

1.4.3 LD score regression

We used LD score regression to estimate common and low-frequency variant heritability, genetic

correlation, and confounding in UKBB complex traits 95,119. Following Gazal et al.161, we com-
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puted LD scores from 3,567 unrelated individuals in the UK10K cohort 162 for all variants down to

MAF of 0.05 across the baselineLD v2.2 annotations. For binary traits, liability threshold heritabil-

ity was calculated from observed heritability as previously described 163 using in sample prevalence

estimates. The attenuation ratio, defined as (LDSC intercept − 1) / (mean χ2 − 1), and the LD

score intercept were used to assess residual confounding in traits, similar to Loh et al.109. for differ-

ent traits colored by phenotypic domain. Of note, we found that height had the largest LD score

intercept, but a low attenuation ratio, suggesting that much of the presumed residual confounding

is driven through polygenicity. On the other hand, educational attainment (college Y/N) had both

high LD score intercepts and attenuation ratio, suggesting that the phenotype as defined suffers

from serious residual confounding. Other potentially problematic traits include deep vein throm-

bosis (DVT) and total bilirubin levels. We encourage caution when interpreting results about these

phenotypes.

To define a set of genetically independent traits, we investigated all groups of traits such that

all pairwise traits have low genetic correlation (|rg| < 0.2). To find the largest group of such traits,

we found the largest independent vertex set 164 induced by the binary (0 if |rg| < 0.2, 1 otherwise)

adjacency matrix. Since there was no largest unique set, we chose the set that maximized the median

number of 95% CSs across the set of independent traits. Meta-analysis across independent traits was

performed using the rmeta package with random effects.

1.4.4 Fine-mapping simulations

To benchmark fine-mapping performance, we simulated a biobank-scale GWAS and performed

fine-mapping under various QC and fine-mapping parameters. First, we randomly draw “true”

genotypes for chromosome 1 based on the genotype probabilities (GP) in the imputed bgen pro-

vided by UKBB. To do this efficiently, probabilistic “true” genotypes (pGTs) for a given variant i

were computed via pGTi = ceiling(ui − GP(Xi = 0)) + ceiling(ui − GP(Xi = 0)− GP(Xi = 1))
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where GP(Xi = k) [k = 0, 1, 2] represents the GP for having k copies of alternative alleles and

ui ∼ Unif(0, 1) represents a uniform random variable.

We then simulated 50 true phenotypes that resemble the observed complex trait genetic ar-

chitecture, including causal variant density, MAF-dependent causal effect sizes, and total SNP-

heritability. Based on the previous literature, we set parameters as the followings: 1) 50% of 1 Mb

loci have 1.5 causal variants on average 110; 2) per-allele causal effect sizes have variance propor-

tional to [2p(1 − p)]α where p represents MAF and α is set to be −0.38 (ref. 111); and 3) total SNP-

heritability h2
g for chromosome 1 equals to 0.025 (ref. 112). The true causal effect size βj for a ran-

domly drawn true causal variant j was drawn from βj ∼ N(0, σ2
g · [2p(1 − p)]α) where σ2

g was

determined by σ2
g = h2

g/
∑

j[2p(1 − p)](1+α). The true phenotype y was computed via y = Xβ + ε

where X is the above true genotype (pGT) matrix and εi ∼ N(0, 1 − σ2
g) i.i.d. We note that, to

prevent inflation in true causal effect sizes due to extremely rare variants, we used a lower-bounded

MAF p′ instead of p where p′ = max(p, 0.001) when simulating effect sizes.

We ran 50 simulated GWAS via a standard linear regression in Hail v0.2 using the above true

phenotypes. For genotypes, we used 1) the above true genotypes, 2) the imputed dosage, and 3)

hard-called genotypes based on the imputed dosage with a hard-call threshold set to be 0.1. Before

fine-mapping, we applied sumstats QC with various thresholds: 1) Hardy-Weinberg equilibrium P

value > 1.0 × 10−10; 2) MAF > 1.0 × 10−5, 1.0 × 10−4, 0.001, 0.01, and 0.05; 3) INFO > 0.2, 0.4,

0.6, 0.8, 0.9, and 0.99. We computed LD matrices using 1) full-sample dosage LD (n = 366,194); 2)

down-sampled dosage LD (n = 10,000 and 100,000); and 3) external reference LD using the 1000

Genomes Phase 3 Europeans (n = 503). We defined fine-mapping regions based on four different

window sizes (100 kb, 1 Mb, 3 Mb, and 5 Mb) around each lead variant. We used four different fine-

mapping methods (FINEMAP 28, SuSiE 138, ABF 24, and COJO-ABF 7) and one ensemble method

(“Average”) which takes an average of PIP from FINEMAP and SuSiE while excluding variants with

a substantial PIP difference (> 5%) between the methods.
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To assess the performance of fine-mapping we used two metrics: calibration, the difference be-

tween the observed and expected proportion of causal variants in a range of PIP values, and recall,

which we quantified as the number of true causal variants detected in the top ranked variants by

PIP.

1.4.5 Complex trait statistical fine-mapping

We performed statistical fine-mapping using FINEMAP 28,29 and SuSiE 30 with GWAS summary

statistics from SAIGE/BOLT-LMM and in-sample dosage LD computed by LDstore 2 (ref. 113).

Fine-mapping regions were defined by adding a 1.5 Mb window upstream/downstream of each lead

variant and were merged if they overlapped. We excluded the major histocompatibility complex

(MHC) region (chr 6: 25–36 Mb) from analysis due to extensive LD structure in the region. We

allowed up to 10 causal variants per region. Using the default uniform prior probability of causality,

we estimated posterior inclusion probabilities (PIP) of each variant and derived up to 10 indepen-

dent 95% credible sets (CS).

In most analyses, we combined fine-mapping results from FINEMAP and SuSiE by taking the

average of PIP for each variant across methods and excluding variants with a substantial PIP differ-

ence (> 5%). This improved fine-mapping accuracy, since we observed lower functional enrichment

for the variants with inconsistent PIPs across the methods (Supplementary Fig. A.3). On rare oc-

casions when the fine-mapping method(s) failed (e.g., due to conversion failure or available memory

restrictions), we used successful results from either of the methods or excluded the regions from

analysis if both methods failed.

We also applied ABF and COJO+ABF to simulations and for other comparative analyses as pre-

viously described 7,24.
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1.4.6 Credible set merging

We defined independent merged CSs across traits by merging SuSiE 95% CS from each trait using

hierarchical clustering with the weighted Jaccard similarity index. Briefly, we computed the PIP-

weighted Jaccard similarity index between all the pairs of CS across the studied traits. For a pair of

CS, the similarity index is defined as
∑

i min(xi, yi)/
∑

i max(xi, yi) where xi and yi are PIP val-

ues (or zero if missing) in each CS for the same variant i. We then used 1 − the similarity index as a

distance to conduct hierarchical clustering of the CS using the complete linkage method. We cut a

dendrogram tree at a height of 0.9 so that any CSs with PIP-weighted Jaccard similarity above 0.1

are merged into a single CS.

1.4.7 Fine-mapped variant enrichment

To compute the enrichment of fine-mapped variants, we compared the proportion of variants with

PIP > 0.9 to the proportion of variants with PIP < 0.01. Confidence intervals estimated from the

Fisher exact test. For estimates of proportions, confidence intervals were estimated using Wilson’s

method. To compute the enrichment of fine-mapped variants in accessible chromatin regions across

different cell-types, we used g-chromVAR. Briefly, g-chromVAR creates a test statistic (PIP-weighted

chromatin accessibility fragments) for each trait cell-type combination, computes the deviation of

each test statistic from expected across all input cell-types, and then creates a null distribution for

these deviations across a set of 50 background sets of regions (peaks) matched on GC content and

fragment count. Z-scores and P-values from a 1-sample test for each trait cell-type combination are

derived from comparing the observed deviation to this empirical null distribution. Only traits with

a total probability sum of > 5 in accessible chromatin peaks are included in the analysis. For each

accessible chromatin dataset, a Bonferroni correction (0.05 / # of traits / # of cell-types) is used.
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1.4.8 PheWAS

To explore trait associations that are not covered in our study, we used the fine-mapped variants

with PIP > 0.1 from our study to conduct a PheWAS in the Open Targets Genetics 165 (version

20.02.01). The Open Targets Genetics provides a collection of disease-associated loci (the V2D re-

source), compiling associations from the GWAS Catalog 18, the Neale Lab UK Biobank summary

statistics (http://www.nealelab.is/uk-biobank/), and the SAIGE UK Biobank summary statis-

tics 108. To avoid potential double counting, we excluded associations from the UKBB summary

statistics (the studies with ID starting either from “NEALE2” or “SAIGE”). All the traits were

mapped to the Experimental Factor Ontology (EFO) 166 terms, resulting in a collection of 1,183

unique traits from 3,079 previous studies. We defined disease traits based on the EFO hierarchy by

taking all the terms that belong to the term “disease” (EFO_0000408). We took all the lead variants

and tagging variants (r2 > 0.7) as defined by the Open Targets Genetics to see whether they overlap

with our fine-mapped variants with PIP > 0.1.

1.4.9 eQTL statistical fine-mapping

We performed fine-mapping of eQTLs in GTEx v8 similar to how we performed fine-mapping

in complex traits from the UKBB with several key differences. First, regions were defined as genes

with at least one genome-wide significant (P < 5.0 × 10−8) cis-eQTL. Second, in-sample LD

was computed using BlockMatrices in Hail 0.2 (ref. 167). Third, covariates were projected out of the

genotypes prior to LD calculation. Fourth, we focus primarily on results from SuSiE rather than an

average of FINEMAP and SuSiE.

Fine-mapping methods are typically derived assuming the following normalized, simple linear

relationship between causal genotypes and a phenotype: Y | X, β, σ2
res ∼ N(Xβ, σ2

res). However,

in GWAS, we usually use a linear model that includes covariates: Y = Xβ + Cα + ε. This controls
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for the effects of covariates C on Y in our summary statistics (β̂, se[β̂]), which are often used as input

to fine-mapping. Applying the Frisch-Waugh-Lovell theorem 104,136, we show that current fine-

mapping approaches can be straightforwardly used with covariate-adjusted summary statistics when

covariate-adjusted LD is also used, analogous to previous work considering covariate-adjusted LD

for heritability estimation 136.

Specifically, we define the orthogonal projection matrix as P⊥ = I − C(CTC)−1CT. We can then

project covariates out of both sides of the linear regression model accordingly:

P⊥Y = P⊥Xβ+ P⊥Cα + P⊥ε (1.1)

Since C is invariant under its own projection matrix, P⊥C = 0. Defining Y⊥ = P⊥Y, X⊥ =

P⊥X, and ε⊥ = P⊥ε, we can rewrite the above equation as:

Y = X⊥β+ ε⊥ (1.2)

Assuming large sample size GWAS (≫ dim[C]), ε ≈ ε⊥ and the summary statistics obtained

from regressing Y on X, including C as covariates will be approximately equal to those obtained

from regressing Y⊥ on X⊥. Thus, we have re-written the linear regression model with covariates

as a transformed model without covariates. We can then apply standard fine-mapping methods to

summary statistics derived from univariate regression with covariates when we additionally project

the covariates out of the genotypes. In practice, this means that the covariate adjusted LD matrix is

R⊥ = XT
⊥X⊥.

We finally note that R ≈ R⊥ in the case of “white British” UK Biobank individuals and this

adjustment is not necessary in practice. In the more heterogeneous GTEx v8 cohort, genotype PCs

are associated with many genotypes and thus covariate-adjusted and unadjusted LD are substantially

different. In this case, R⊥ is no longer on the same scale as R (e.g., values are no longer Pearson cor-
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relations and diagonals may be < 1). This can introduce complexities to interpretation of prior and

posterior effect sizes.

1.4.10 Colocalization

Colocalization models the effects of LD and provides estimates of the joint probability that a variant

or set of variants causally influences both a complex and molecular trait 115. Letting γGWAS = 1 be

the event that a specific variant is causal for a complex trait and γeQTL = 1 the event that the variant

is causal for a complex trait. The joint probability can then be written as:

P(γGWAS = 1, γeQTL = 1) = P(γGWAS = 1 | γeQTL = 1)P(γeQTL = 1) (1.3)

In its simplest form, assuming an independent prior on the causal effects of complex traits and

molecular traits (known as the eCAVIAR prior), colocalization reduces to a multiplication of the

fine-mapped posteriors of traits:

P(γGWAS = 1, γeQTL = 1) = P(γGWAS = 1)P(γeQTL = 1) (1.4)

Alternatively, we can estimate a more informative prior using fastENLOC 78. Specifically, fas-

tENLOC fits a logistic regression model to the complex trait PIPs to estimate the enrichment

of eQTL PIPs: logit
[
P(γGWAS = 1 | γeQTL)

]
= β0 + β1γeQTL. In practice, we don’t know

P(γGWAS = 1 | γeQTL), so fastENLOC (1) fits the logistic model to γGWAS from our study assuming

an eCAVIAR prior, (2) approximately fine-maps with the current iteration fastENLOC prior, (3)

iterates until convergence of colocalization values. Other details, such as the fine-mapping approxi-

mation, calculation of the fastENLOC prior, use of multiple imputation, and prior on enrichment

effect size (β1 ∼ N[0, 1]) are described in the fastENLOC study 78.

Since the fastENLOC method gains an improvement in speed by only using variants in complex
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trait 95% CSs as input, we restricted our analyses to SuSiE 95% CSs and ABF 95% CSs for complex

traits and similarly for molecular traits. To compare our results to released fine-mapping data, we

downloaded CAVIAR, CaVEMaN, and dap-g results from the GTEx portal (https://gtexportal.

org/home/datasets). We restricted our comparisons to gene-tissue pairs that had fine-mapping

results for all methods.

We also evaluated the usefulness of colocalization methods for gene prioritization. Instead of us-

ing curated gold standard gene sets which can be biased towards more well-studied and more easily

identifiable genes and even include genes prioritized based upon the non-coding GWAS loci them-

selves, we used the validation set of likely causal genes for each trait we previously developed 142.

First, we identified fine-mapped (PIP > 0.5) protein-coding variants for 589 genes. Leveraging our

intuition that multiple signals in a region likely act through the same gene(s), we identified 1,348

non-coding CSs within 500kb of a validation gene for the same trait. We then evaluated how often

each colocalization method correctly identified the validation gene at a pre-specified colocalization

threshold. When colocalization identified multiple genes in a region, we took the gene with the

highest colocalization value. The precision, defined as the number of 95% CSs that colocalized with

a gene in the validation set divided by the total number of colocalized gene-CS pairs, and recall, de-

fined as the number of colocalized gene-CS pairs that were also in the validation set divided by the

total number of gene-CS pairs in the validation set, of each method for each threshold was then

computed. Finally, we calculated the weighted harmonic mean of precision and recall, typically re-

ferred to as the Fx value, for each evaluation as Fx = (1 + x)2 (precision)(recall)
x2(precision)+recall . We chose x = 0.33 to

formalize our preference for higher (3-fold) precision than recall when comparing methods.

1.4.11 Genomic annotations

Genic annotations (LoF, missense, synonymous, 5’ UTR, and 3’ UTR) were obtained using the

Ensembl Variant Effect Predictor (VEP) 168 v85. When a variant had multiple annotations, the most
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severe consequence on the canonical transcript (GENCODE v19) was used. Further, LoF variants

were refined by LOFTEE, which included only high confidence stop gained, splice acceptor, splice

donor, and frameshift variants. Promoter annotations were obtained from the S-LDSC baseline

model. Cis-regulatory element (CRE) annotations are defined as the intersection of accessible chor-

matin with H3K27ac (across any cell-type, see details below). Finally, non-genic variants are defined

as variants not in any of the above annotations.

To define CREs, we retrieved and performed additional quality control on the following accessi-

ble chromatin and histone modification atlases:

• ROADMAP Epigenomics 85 — DNase I hypersensitivity for 39 broad cell-types and H3K27ac

for 98 broad cell-types

• Meuleman et al.80 — DNase I hypersensitivity for 438 broad cell-types

• Domcke et al.86 — single cell ATAC-seq for ~720,000 cells representing 54 broad cell-types

• Corces et al.81 — ATAC-seq for 18 cell-types in the hematopoietic lineage

• Corces et al.82 — single cell ATAC-seq of ~70,000 cells representing 24 distinct brain cell-

types

• Calderon et al.83 — ATAC-seq for 25 immune cell subsets

• ChiP-Atlas 84 — DNase I hypersensitivity for 284 broad cell-types and and H3K27ac for 720

broad cell-types

We performed multiple additional QC steps to harmonize the accessible chromatin data. First,

we lifted over all peak calls in GRCh38 to hg19, keeping only 1-to-1 matches, and normalized peak

sizes to 300 bps. With the exception of the ChIP-Atlas dataset, all data were available in the matrix

format of peak x cell-types with a count or normalized count value. To remove low quality peaks
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from each dataset, we required that each peak was within the top 100,000 for at least one anno-

tated cell-type in the dataset, first whitening low count values (0, 1, or 2). With the exception of the

Corces et al. brain dataset, we found limited enrichment for fine-mapped variants in the removed

peaks (Supplementary Fig. A.7), so we proceeded with the QC’d data for all except the Corces et

al. brain dataset for which we kept all provided peaks. For ChIP-Atlas, we took a stringent MACS2

− log10(q-value) score > 500 given the lack of a count matrix.

1.4.12 Regulatory variant functional analysis

To determine if fine-mapped variants disrupted canonical TF binding PWMs, we identified variants

effects on 426 PWMs from HOCOMOCOv11 88 with motifbreakR 169 using the information con-

tent (“ic”) method, a p-value threshold of 0.0001 to identify PWM matches at either allele, and a

difference of > 0.4 for the scaled motif matrix between alleles. To increase our confidence in motif

disruption calls, we also investigated disrupted motifs where the predicted binding site was occu-

pied by the TF. We downloaded uniformly reprocessed ChIP-seq peaks for 1,009 TFs across 768

cell-types from ChIP-Atlas 84. An overlap was called when a TF had an occupancy across its exact

corresponding motif or a similar motif (Pearson’s r > 0.7 for similarity of the PWM). Additionally,

we investigated if fine-mapped variants have evidence of allele specific TF occupancy. Using the

ADASTRA database covering 1,025 human TFs and 566 cell types, we consider a variant as hav-

ing allele specific TF occupancy if the FDR adjusted P-value is < 0.05 for an increased read count

compared to expected read count for either allele.

We also investigated whether fine-mapped variants fell within accessible chromatin footprints.

We downloaded consensus footprints from 243 cell-types 91, lifted coordinates over from GRCh38

to hg19, keeping only 1-to-1 matches, and overlapped these regions with fine-mapped variants. Sim-

ilarly, we investigated allele-specific changes in accessible chromatin 91, keeping only variants with a

detectable imbalance at a false positive rate < 0.05.
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To investigate the effects of TF binding outside of canonical PWMs, we lifted over all variants

in our analysis (PIP > 0.001) to GRCh38 and scored them using Enformer 89, a state-of-the-art

convolutional neural net that employs transformer layers to predict TF occupancy and accessible

chromatin levels. After lifting back to hg19, we filtered to 1,447 tissue-TF pairs and 320 accessible

chromatin datasets. We then combined the scores into a simple single metric by first standardizing

(z-scoring) each dataset prediction and then taking the sum of squares (SS) of predictions for each

variant. To “call” a disruption of TF occupancy or accessible chromatin, we identified the 90th or

95th percentile of the Enformer SSs in the control set of variants (PIP < 0.01 and in a CRE) and

called a “disruption” as any value above this threshold.

Enrichment analyses across all traits and TFs may result in deflated estimates. Ideally, cell-type

relevant TFs would be identified and investigated. In lieu of this difficult task, we perform an en-

richment of each TF (comparing PIP > 0.9 to PIP < 0.01 variants for multiple data types) and take

all TFs with a marginal p-value < 0.05 for the Fisher’s exact test. This method suffers from “double-

dipping” into the data, but can be compared to previous enriched motif estimates 99 and represents

a possible upper bound on fine-mapped variant enrichment for each data type. Finally, we investi-

gated whether combining multiple methods would improve our ability to annotate CRE variants.

When combining, we excluded the motif disruption only method and all enrichment-based meth-

ods.

1.5 Data availability

Fine-mapping results produced by this study will be publicly available at https://www.finucanelab.

org/data, the ENCODE data portal (https://www.encodeproject.org/), and the GWAS catalog

(https://www.ebi.ac.uk/gwas/home). Individual-level data for UKBB participants is accessible

on request through the UK Biobank Access Management System (https://www.ukbiobank.ac.
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uk/). The UKBB analysis in this study was conducted via application number 31063. GTEx v8

summary statistics are available at the GTEx Portal (https://gtexportal.org/home/datasets).

GTEx individual-level data is accessible on request through the dbGAP application (accession code:

phs000424.v8.p2; https://gtexportal.org/home/protectedDataAccess).

1.6 Code availability

The fine-mapping pipeline is available at https://github.com/mkanai/finemapping-pipeline.

Scripts to perform most analyses and generate main data figures will be provided at https://github.

com/julirsch/annotatedatlas.
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Insights from complex trait fine-mapping
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Abstract

Despite the great success of genome-wide association studies (GWAS) in identifying genetic loci sig-

nificantly associated with diseases, the vast majority of causal variants underlying disease-associated

loci have not been identified 12–14. To create an atlas of causal variants, we performed and inte-

grated fine-mapping across 148 complex traits in three large-scale biobanks (BioBank Japan 170,171,

FinnGen 172, and UK Biobank 67,76; total n = 811,261), resulting in 4,518 variant-trait pairs with

high posterior probability (> 0.9) of causality. Of these, we found 285 high-confidence variant-

trait pairs replicated across multiple populations, and we characterized multiple contributors to the

surprising lack of overlap among fine-mapping results from different biobanks. By studying the bot-

tlenecked Finnish and Japanese populations, we identified 21 and 26 putative causal coding variants

with extreme allele frequency enrichment (> 10-fold) in these two populations, respectively. Aggre-

gating data across populations enabled identification of 1,492 unique fine-mapped coding variants

and 176 genes in which multiple independent coding variants influence the same trait (i.e., with an

allelic series of coding variants). Our results demonstrate that fine-mapping in diverse populations

enables novel insights into the biology of complex traits by pinpointing high-confidence causal vari-

ants for further characterization.

2.1 Introduction

Identifying causal variants for complex traits is a major goal of human genetics research, but most

genome-wide association studies (GWAS) do not pinpoint specific variants, limiting the biolog-

ical inference possible from follow-up experimentation 12–14. Identifying causal variants from

GWAS associations (i.e., fine-mapping) is challenging due to extensive linkage disequilibrium (LD)
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among associated variants, effect sizes that are often small, and the presence of multiple indepen-

dent causal variants at a locus. Fine-mapping methods assign to each variant a posterior probability

of being a causal variant (posterior inclusion probability, PIP) 23,25,26,28–30,134,173, and recently-

developed methods for fine-mapping use scalable, sophisticated algorithms 28–30 that allow for

multiple causal variants in a locus and can be applied to the very large data sets necessary to over-

come the challenges listed above. Previous studies, performed almost exclusively in cohorts of Eu-

ropean ancestry 7,73,87,99,118,174 or meta-analyses of majority European ancestry 52,63,175–180, have

used fine-mapping methods to identify putative causal variants, enabling novel biological insights

into diseases such as inflammatory bowel disease 73 and type 2 diabetes 7 and traits such as blood cell

counts 87 and kidney function 180.

The recent development of large-scale biobanks worldwide 63,76,170,172 provides an exciting op-

portunity for well-powered fine-mapping of multiple phenotypes in diverse populations of both

European and non-European ancestries. Unlike results from most meta-analyses, biobanks allow

access to individual-level genotypes at large scale, enabling more accurate fine-mapping results 87,118,

and often include hundreds of complex diseases and quantitative traits. For example, BioBank Japan

(BBJ) 170,171, the largest non-European biobank, has recruited 200,000 individuals with >200 phe-

notypes, which is sufficient to achieve powerful fine-mapping in a cohort of East Asian ancestry.

Within Europe, there is also substantial genetic diversity 181; for example, FinnGen 172, a biobank in

Finland, currently combines genotype data with electronic health records for 270,000 individuals

in a population that has undergone strong population bottleneck followed by subsequent isolation

and rapid expansion, making it genetically distinct from mainland Europe 182. Moreover, because

both Japan and Finland have recently undergone population bottlenecks, these populations harbor

deleterious alleles with high frequency that are rare or absent in other populations 183–185.

Here, for the first time, we compare and combine fine-mapping results across large-scale biobanks

in three distinct populations. To this end, we apply state-of-the-art multiple-causal-variant fine-
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mapping methods at scale in BBJ 170,171 and FinnGen 172, and we analyze these results in conjunc-

tion with results from our parallel effort performing fine-mapping in UK Biobank (UKBB) 67,76.

Our multiple-biobank fine-mapping enables us to identify high-confidence putative causal vari-

ants that replicate in multiple populations, to compare fine-mapping results across biobanks, and to

identify population-specific putative causal variants and the genes these variants converge on.

2.2 Results

2.2.1 Expanded atlas of putative causal variants across three populations

In a companion paper 67, we describe our fine-mapping in UKBB 76 (n = 361,194; 119 traits); here,

to create an atlas of causal variants of complex traits, we extended our analysis to additionally in-

clude 148 complex diseases and traits available in BBJ 170,171 (n = 178,726; 79 traits) and FinnGen 172

(n = 271,341; 67 traits from release 6) (Fig. 2.1a; Supplementary Tables B.1,B.2). These traits

were manually curated in each biobank to cover a wide spectrum of human phenotypes ranging

from common complex diseases to biomarkers. Of these, 26 traits (e.g., height and type 2 diabetes)

are available in all the three cohorts, 65 traits (e.g., lab tests and biomarkers) are available in any

two of the three, and the rest are specific to a single cohort (Fig. 2.1b). We performed GWAS in

BBJ and FinnGen using a generalized linear mixed model as implemented in SAIGE 108 or BOLT-

LMM 109,159 (2.4 Methods). We identified 2,611 and 1,698 genome-wide significant locus-trait

pairs (P < 5.0 × 10−8; 3 Mb regions excluding the major histocompatibility complex [MHC];

2.4 Methods) in BBJ and FinnGen, respectively. We then conducted multiple-causal-variant fine-

mapping using FINEMAP 28,29 and SuSiE 30 (2.4 Methods).

In total, our expanded atlas included 476, 342, and 3,847 fine-mapped variant-trait pairs (pos-

terior inclusion probability [PIP] > 0.9), and 3,558, 2,348, and 27,276 95% credible set (CS)-trait

pairs (median CS size = 11, 9, and 12) in BBJ, FinnGen, and UKBB, respectively (Fig. 2.1c–e).
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These consisted of 4,518 unique variant-trait pairs (PIP > 0.9 in any population) and 31,598 unique

95% CS-trait pairs (median CS size = 12; independent SuSiE CS merged across populations; 2.4 Meth-

ods) in aggregate, of which 23,563 CS-trait pairs (75%) contained at least one variant with PIP > 0.1

(Supplementary Tables B.3,B.4). Notably, our expanded atlas included 66 unique variant-trait

pairs (PIP > 0.9 in any population) and 601 CS-trait pairs on the understudied X chromosome.

The three biobanks displayed similar and strong enrichment of high-PIP (> 0.9) variants in seven

main distinct functional categories (defined as non-overlapping regions; 2.4 Methods): predicted

loss-of-function (pLoF), missense, synonymous, 5’/3’ UTR, promoter, and cis-regulatory element

(CRE) regions (DNase I hypersensitive sites [DHS] and H3K27ac 186; Supplementary Fig. B.1a–

h; Supplementary Table B.5). In addition, our combined results recapitulated the functional en-

richments of 35 additional annotations as previously reported 95,161,187,188, including conserved

regions in mammals 116,189 and ancient putative promoter/enhancer 190; these enrichments remained

significant even when analysis is restricted to the “non-genic” variants that do not belong to any

of the seven main functional categories listed above (Supplementary Fig. B.1i; Supplementary

Table B.6).

We additionally performed eQTL colocalization in BBJ and FinnGen, using fine-mapped cis-

eQTLs from GTEx 67,103 v8 and eQTL catalog 191 release 4, identifying 719 variant-trait-gene

triples; in our companion paper 67, we identified 4,420 triples in UKBB. We aggregated these results

into a combined 4,957 unique variant-trait-gene triples in which the variant was fine-mapped for

both the trait and expression of the gene (colocalized posterior probability [CLPP] = PIPGWAS ×

PIPcis-eQTL > 0.1), spanning 117 traits and 3,937 genes (Fig. 2.1f; Supplementary Table B.7).

We defined the rate of colocalization as the proportion of variants with PIP > 0.1 in each biobank

that showed at least one cis-eQTL colocalization (CLPP > 0.1 across any trait, gene, or tissue) in

our study; this rate was 5.3%, 5.6%, and 7.3% for BBJ, FinnGen, and UKBB, respectively. We in-

vestigated the MAF distribution of colocalized variants in each biobank and observed that 85%,
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74%, and 89% of colocalized variants showed MAF > 5% in BBJ, FinnGen, and UKBB, respectively

(Fig. 2.1g). This is in contrast to the coding variants with PIP > 0.1, of which 56%, 42%, and 55%

had MAF > 5% in BBJ, FinnGen, and UKBB, respectively (Fig. 2.1h).

2.2.2 High-PIP variants are largely non-overlapping across populations

We set out to investigate what proportion of variants with PIP > 0.9 in one population are associ-

ated or fine-mapped in other populations. Fine-mapping methods employ a model in which there

are a small number of causal variants driving the association signal at the locus, all of which are mea-

sured without error, and there are no uncorrected confounding or non-linear effects. When the

model is perfectly specified and inference is perfectly accurate, we would expect, for example, 90%

of variants with PIP = 0.9 to be truly causal; however, this will not always be the case. We systemat-

ically classified variants based on several hierarchical criteria (Fig. 2.2a; 2.4 Methods). First, what

proportion of high-PIP (PIP > 0.9) variants in one population (the “discovery population”) reach

genome-wide significance (PGWAS < 5.0 × 10−8) in either of the other two (“secondary”) popu-

lations, permitting a well-powered comparison of fine-mapping results at the same locus. Second,

of these variants where association is strongly replicated, what proportion have replicated fine-

mapping, defined by the same variant having PIP > 0.1 in the secondary population (that is, the

variant is also fine-mapped in the second population, though at a lower threshold of confidence).

For this analysis, we utilized only the 26 traits analyzed in all three cohorts.

Out of 646 unique variant-trait pairs with PIP > 0.9 in at least one of the three populations, we

found that 45% (291 / 646) achieved genome-wide significance (PGWAS < 5.0 × 10−8) in at least

one of the other two populations (Fig. 2.2b). Of these, we found that 55% (160 / 291) had replicat-

ing fine-mapping (PIP > 0.1) in at least one of the other two populations, while the other 45% (131

/ 291) did not (PIP ≤ 0.1). We took the proportion of fine-mapping replication (= # replication / [#

replication + # non-replication] among the variants reaching PGWAS < 5.0 × 10−8) and defined it
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Figure 2.1: Expanded atlas of putative causal variants across three populations. a. Overview of the studied cohorts and
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distribution of coding variants (the best PIP > 0.1) in each biobank. Labels represent proportions of variants with MAF >
5% and ≤ 5% in each biobank.
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as the cross-biobank fine-mapping replication rate. This proportion was relatively consistent across

all the pairs of populations, ranging from 38% to 57% (Fig. 2.2b). The cross-biobank fine-mapping

replication rate was relatively insensitive to the specific threshold, increasing only slightly when con-

sidering a fine-mapping result to be replicated if it had PIP > 0.05 or was in a 95% credible set, as

opposed to PIP > 0.1 (Supplementary Fig. B.2a,b). While mean PIP in a secondary population

was positively correlated with PIP in the discovery population, the underlying distribution of PIP

in the secondary populations were bimodal, particularly for variants with PIP > 0.9 in the discovery

population (Supplementary Fig. B.2c–e).

To further interpret these observations, we simulated GWAS and fine-mapping in a secondary

population as if fine-mapped variants in a discovery population were all and only true causal vari-

ants with the same causal effect sizes (estimated posterior effect sizes in a discovery population;

2.4 Methods). In our simulations, we observed a substantially higher cross-biobank replication

rate compared to real data (Supplementary Fig. B.2f,g; 2.4 Methods). The observed inconsistency

of cross-biobank fine-mapping replication rates in real data and simulations could be explained by

lack of calibration in real data fine-mapping, overestimated causal effect sizes in a discovery popu-

lation (i.e., winner’s curse 192) used in simulations, and/or another complex discrepancy not well-

simulated. In examining specific examples in real data, we found that lack of replication was some-

times due to differences in LD structure and effect sizes across populations that lower power in

the secondary population, or likely non-causal variants that nonetheless achieve high PIP in the

discovery population, as expected given the PIP threshold of 0.9. We illustrated a few examples in

Supplementary Fig. B.3.

Of the remaining 55% (355 / 646) of variant-trait pairs that did not reach genome-wide signif-

icance (PGWAS < 5.0 × 10−8) in either of the secondary populations, 42% (150 / 355) had an

association that replicated at the more permissive threshold of PGWAS < 0.01 (Fig. 2.2c), suggesting

the association is present but at a level insufficient to perform fine-mapping reliably. An additional
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14% (51 / 352) had high power to detect association (power > 0.9 for achieving PGWAS < 0.01;

Methods) in at least one of the secondary populations, assuming the same causal effect size from the

discovery population and a standard linear regression, but were not associated at PGWAS < 0.01

in either population. These variants may include causal variants with heterogeneous effect sizes

across populations (likely due to differences in phenotyping and ascertainment) or false positive

variants that nonetheless achieved high PIP in the discovery population (which is not unexpected

given the number of traits studied and the PIP threshold of 0.9). A few causal variants would also

be expected not to reach this threshold due only to random sampling, even with equal effect sizes

and estimated power of 0.9. We note that three variant-trait pairs had replicated fine-mapping (PIP

> 0.1) but not genome-wide significance in either of the secondary populations (Note that these

are in genome-wide significant loci). Lastly, 42% (151 / 355) had low power or were missing from

the GWAS summary statistics due mostly to differences in allele frequencies across populations

(Fig. 2.2c; B.1 Supplementary Note). This proportion was different for different pairs of popula-

tions, ranging from 19% (UKBB and FinnGen) to 62% (BBJ and UKBB). Importantly, our results

indicate that these missing causal variants are undiscoverable through standard GWAS fine-mapping

in other populations, re-emphasizing the desperate need for data generation in diverse populations.

We further confirmed strong functional enrichment of our fine-mapped variants with replication

compared to those non-replicated (Supplementary Fig. B.2h). Therefore, for the remainder of

this manuscript, we mainly focus on several subsets of PIP > 0.9 variants with highest confidence:

fine-mapped variants replicated in multiple populations, coding variants with PIP > 0.9, and genes

supported by multiple fine-mapped variants.
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Figure 2.2: Overview of replication status for high‐PIP fine‐mapped variants across populations. a. Schematic flowchart
of our classification criteria. Starting from the high‐PIP (> 0.9) variant‐trait pairs in a discovery population, we catego‐
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Breakdowns for the non genome‐wide significant variant‐trait pairs (PGWAS ≥ 5.0 × 10−8) in a secondary population.
Note that there were three variant‐trait pairs in total that had replicated fine‐mapping (PIP > 0.1) but not genome‐wide
significance in either of the secondary populations (dark blue).
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2.2.3 Common putative causal variants implicate shared biological mech-

anisms across populations

Restricting to 91 traits available in two or more populations, we identified 285 high-confidence

variant-trait pairs (204 unique variants including 56 variants that are only polymorphic in Euro-

peans) that achieve replicated fine-mapping across multiple populations analyzed (PIP > 0.9 in at

least one population and PIP > 0.1 in at least one of the others; Supplementary Tables B.8,B.9).

We observed 100% directional consistency for posterior effect sizes between populations (P for sign

test = 2.7 × 10−107). These replicated fine-mapped variants represent a set of common putative

causal variants (Supplementary Fig. B.4a,b) with the highest confidence in our dataset, providing

excellent candidates for functional characterization and therapeutic targets.

We observed a significant enrichment of coding variants in high-confidence variant-trait pairs:

of the 285 high-confidence variant-trait pairs, 94 pairs (60 unique variants) are coding variants

(Supplementary Table B.8), whereas 4 pairs would be expected by chance (Fisher’s exact test

P < 0.05). These variants include well-known pLoF and missense variants such as rs429358 (APOE

ε4-tagging missense variant) for Alzheimer’s disease 193; rs2066847 (NOD2: p.Leu980ProfsTer2)

for Crohn’s disease 194,195; rs855791 (TMPRSS6: p.Val736Ala) for blood hemoglobin levels and

erythrocyte volume 196; rs2642438 (MARC1: p.Ala165Thr) for alkaline phosphatase 197,198; and

rs4149056 (SLCO1B1: p.Val174Ala) for total bilirubin 199. Notably, we found that rs9379084

(RREB1: p.Asp1171Asn) showed PIP > 0.9 for height in every population; this variant was pre-

viously implicated for type 2 diabetes 7 but not for height. We also found that a common synony-

mous variant rs55714927 on ASGR1 (canonical transcript ENST00000269299.3) was fine-mapped

for alkaline phosphatase in both BBJ and UKBB (PIP = 1.0 for both; Supplementary Fig. B.5a).

The same variant was significantly associated with other traits in our dataset, such as albumin,

cholesterol levels, and sex hormone binding globulin (Supplementary Fig. B.5b). ASGR1 was
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previously reported for having a rare non-coding 12-base-pair deletion within intron 4 (del12; c.284-

36_283+33delCTGGGGCTGGGG, NM_001671.4; MAF = 0.41% in 398,000 Icelanders), which

was associated with a reduced risk of coronary artery disease (CAD), lowering LDL cholesterol, and

increasing alkaline phosphatase and vitamin B12 levels 200. However, the reported del12-tagging

variant rs186021206 is independent from the synonymous variant rs55714927 (r2 = 0.001 in Eu-

ropeans) and is monomorphic in East Asians, implying that the del12 variant does not contribute to

the identified rs55714927 association here. Instead, we observed rs55714927 has a significant splic-

ing QTL effect in GTEx liver 103 (P = 2.4 × 10−46) for the same isoform as del12 (Supplementary

Fig. B.5c,d).

We also characterized 191 non-coding variant-trait pairs (144 unique variants) with replicated

fine-mapping as described above (Supplementary Table B.9). These variants are primarily located

within CRE (48%) followed by promoter (16%) and 3’ UTR (8%) regions, and are enriched for pre-

dicted cis-regulatory expression modifier score 138, suggesting that most of these variants act through

transcriptional or by post-transcriptional regulation (Supplementary Fig. B.4b–d). In total, we

identified 48 out of 144 putative causal non-coding variants that co-localized with cis-eQTL associa-

tions (CLPP > 0.1 in at least one tissue; Supplementary Table B.9), including well-known variants,

e.g., rs2070895 (intronic variant of LIPC) for HDL cholesterol; and rs78378222 (3’ UTR variant

of TP53) for skin cancer; as well as under-characterized variants, e.g., rs1497406 (intergenic variant,

22 kb upstream of EPHA2) for γ-glutamyl transferase; and rs34778241 (intronic variant of EIF4E3)

for loss of Y chromosome (Supplementary Fig. B.6). Notably, we identified a well-known intronic

variant rs9349379 in PHACTR1 that was fine-mapped for CAD in every population (Fig. 2.1b;

PIP = 1.0; MAF = 0.35, 0.45, and 0.41 for BBJ, FinnGen, and UKBB, respectively). This intronic

variant also co-localized with a fine-mapped cis-eQTL association of PHACTR1 in GTEx tibial

artery 103 (CLPP = 1.0), consistent with previous work 201. We note that it was previously demon-

strated that rs9349379 also regulates expression of EDN1 (located 600 kb upstream of PHACTR1)
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in CRISPR-edited endothelial cells 202–204.

The 144 putative causal non-coding variants also included seven intergenic variants located in

gene deserts; i.e., that are more than 250 kb away from the closest gene 205 (Supplementary Ta-

ble B.10). For example, rs77541621 and rs183373024 (349 kb and 322 kb upstream of POU5F1B,

respectively) were fine-mapped for prostate cancer (PIP = 1.0 in FinnGen and UKBB), and are lo-

cated within the 8q24 locus, a well-known gene desert associated with many complex diseases 206,207

(Supplementary Fig. B.7a). These variants are one of the 12 independent variants for prostate

cancer that were previously identified at the 8q24 locus, but the exact functional mechanism of

each variant is still under active investigation 208. Other examples include rs1434282 (284 kb down-

stream of PTPRC) for mean corpuscular volume, rs116376456 (269 kb downstream of IRS1) for

height, and rs35009121 (1.2 Mb downstream of GATA3) for serum calcium levels (Supplementary

Fig. B.7b–d). Although these loci are also known as gene deserts, none of the fine-mapped variants

are well-characterized in the current literature, nor do they overlap with enhancer-gene mappings

predicted by the activity-by-contact (ABC) model 209.

We also found nine examples where a variant was fine-mapped in every population even though

it was not significantly associated in every population. Five of these were significant at a more per-

missive threshold of P < 1.0 × 10−5, but in other cases the marginal effect sizes were substan-

tially lower, due to LD with another causal variant(s). For example, rs244711 (4.7 kb upstream of

FGFR4) is consistently fine-mapped for height but not significantly associated in BBJ (marginal

β = 9.0 × 10−3; P = 4.1 × 10−4; Supplementary Fig. B.8a–d). We found that rs244711 is par-

tially correlated with a nearby fine-mapped missense variant rs1966265 (FGFR4: p.Val10Ile) in every

population (r2 = 0.14, 0.08, and 0.13 in BBJ, FinnGen, and UKBB, respectively) but the correlation

is only negative in BBJ (r = −0.37). The causal effect of rs244711 is thus partially cancelled out

by the tagged effect of rs1966265 in BBJ, where the correlation between the two variants is negative,

but not in UKBB and FinnGen, where the correlation is positive, leading to a non-significant asso-
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ciation in BBJ but significant associations in UKBB and FinnGen. Another example is rs1801706

(3’ UTR variant of CETP), which is consistently fine-mapped for HDL cholesterol but not sig-

nificantly associated in BBJ (marginal β = 6.0 × 10−3; P = 0.43; Supplementary Fig. B.8e–

h). This is owing to partial correlation with Japanese-enriched splice donor and missense variants

rs5742907 (c.1321+1G>A) and rs2303790 (p.Asp459Gly). These two variants showed large effect

sizes (marginal β = 0.76 and 0.39; P = 4.9 × 10−122 and 5.5 × 10−206; respectively) and are neg-

atively correlated with rs1801706 in BBJ (r = −0.03 and −0.06, respectively; this corresponds to

−16.6 and −56.3 decrease in marginal χ2 statistics of rs1801706 by partial tagging). These examples

illustrate that, when a region contains multiple independent associations, differences in LD between

two sites can create differences in the marginal effect size and observed association in univariate anal-

yses between populations.

2.2.4 Identification of population-enriched putative causal variants

Given that a substantial number of the variants with high PIP (> 0.9) in one population are rare/absent

(and therefore undiscoverable) in the other populations (Fig. 2.2c), we investigated allele frequency

(AF)-enriched variants from the two bottlenecked populations included in our study, Finland 210,211

and Japan 212,213. To quantify AF enrichment (AFE) in the Finnish and Japanese populations, we

used the gnomAD 214 v2 and the GEM-J WGS 215 to compute a ratio of AF in Japanese vs. non-

Japanese-Korean East Asians (NJKEA) for BBJ and in Finnish vs. non-Finnish-Swedish-Estonian

Europeans (NFSEE) for FinnGen (2.4 Methods).

Past studies have noted that variants stochastically boosted through a bottleneck are enriched

for functional categories 183–185,216–218. Consistent with these previous studies, we found that

there were significantly more variants with AFE > 10 than with AFE < 1/10 in both FinnGen and

BBJ, and that variants with AFE > 10 were enriched for coding variants (2.2- and 4.8-fold enrich-

ment over variants with AFE ≤ 10; 2.4 Methods). Of 140,416 and 91,564 coding variants tested
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in FinnGen and BBJ GWAS, 29,656 (21%) and 14,802 (16%) showed AFE > 10 in the Finnish

or Japanese population, respectively (Fig. 2.3a,b). Furthermore, high-PIP (> 0.9) coding variants

were significantly more likely to have high AFE than low-PIP (≤ 0.01) coding variants (Fig. 2.3c,d;

Fisher’s exact test P < 0.05; 2.4 Methods); and showed substantially younger estimated allele age

based on GEVA 219 (Fig. 2.3e,f). These observations are consistent with recent bottleneck events

and negative selection on the putative causal variants studied here, because deleterious variants

boosted in frequency through these bottlenecks have had insufficient time to be brought back down

in frequency by selection 220,221.

Notably, we identified seven pLoF variants and 40 missense high-PIP (> 0.9) variants with ex-

treme AF enrichment (> 10-fold) in BBJ or FinnGen (Table 2.1). These variants are more likely to

be deleterious and impactful given their extreme enrichment. Indeed, the list includes several known

pathogenic variants or genes in related autosomal recessive disorders. For example, rs75326924,

a Japanese-enriched missense variant (p.Pro90Ser) on CD36 is a known pathogenic variant for

platelet glycoprotein IV (CD36) deficiency (PIP = 1.0 for platelet count; MAF = 0.047 in GEM-J

WGS), contributing to high prevalence of CD36 deficiency in Japanese (2–3%) 222; and rs386833873,

a Finnish-enriched frameshift variant (p.Leu41AspfsTer50) on NPHS1 is a well-known causal vari-

ant for the congenital nephrotic syndrome of the Finnish type (PIP = 1.0 for nephrotic syndrome;

MAF = 0.011 in gnomAD Finnish) 223. Interestingly, we found two novel population-enriched

deleterious variants on PLOD2, fine-mapped for height: i) a Japanese-enriched missense variant

rs148051196 (p.Gln553Arg; PIP = 1.0; MAF = 7.3 × 10−3 in GEM-J WGS) and ii) a Finnish-

specific stop-gained variant rs201501322 (p.Ser166Ter; PIP = 0.58; MAF = 1.9 × 10−3 in gno-

mAD FIN). PLOD2 is a known recessive gene for Bruck syndrome 2 (osteogenesis imperfecta with

congenital joint contractures; OMIM: 609220) 224. We identified additional population-enriched

variants for height in 27 genes, including known recessive genes such as ADAMTS17 (causal gene

for Weill-Marchesani syndrome 4; OMIM: 613195) and IHH (brachydactyly type A1; OMIM:
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112500). Furthermore, we identified fine-mapped variants on genes that were not previously im-

plicated, such as rs199935580 (THBS3: p.Arg520Trp; MAF = 1.0 × 10−3 in gnomAD FIN)

fine-mapped for carpal tunnel syndrome (PIP = 1.0); rs191692991 (LUM: p.Arg310Cys; MAF

= 5.5× 10−3 in gnomAD FIN) fine-mapped for fibroblastic disorders (PIP = 1.0); and rs200939713

(POF1B: p.Arg339Trp; MAF = 1.7 × 10−3 in gnomAD FIN) fine-mapped for varicose veins (PIP

= 0.99). Detailed biological annotations of each gene are summarized in the B.1 Supplementary

Note.

On the other hand, the high-PIP non-coding variants were not significantly more likely to have

high AFE than low-PIP non-coding variants (Supplementary Fig. B.9; Fisher’s exact test P >

0.05), partly because non-coding variants tend to be less deleterious and thus less likely to undergo

strong negative selection. However, we identified 23 population-enriched (> 10-fold) high-PIP (>

0.9) non-coding variants that are independent of population-enriched coding variants (r2 < 0.1) in

each population (Supplementary Table B.11). While we are not able to replicate these population-

enriched variants in other populations due to low AF, we identified several variants that might have

biological significance. For example, a Finnish-enriched rs748670681 in an intron of TNRC18

(MAF = 0.042 in gnomAD FIN) is fine-mapped for inflammatory bowel disease (IBD) and psoriasis

(PIP = 1.0). Despite very significant association in FinnGen (P = 6.2 × 10−69 for IBD), this locus

was not previously reported, and its biological function is not well-characterized.

2.2.5 Allelic series of putative causal variants across populations

Given that many fine-mapped variants are population-specific, we aggregated results across pop-

ulations to identify genes harboring fine-mapped coding variants for one or more traits. Overall,

we identified 1,492 unique putative causal pLoF/missense variants (best PIP > 0.1) that mapped

onto 1,113 genes (Supplementary Table B.12). Of these genes, 240 have two or more putative

causal pLoF/missense variants located on the same gene, and 113 have variants identified from mul-
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Figure 2.3: Population‐enriched putative causal coding variants. a–d. Histograms showing a distribution of allele fre‐
quency (AF) enrichment metric in (a) Finnish (n = 10,824) and (b) Japanese (n = 7,609) populations. A ratio of AF was
computed against NFSEE (n = 43,697) and NJKEA (n = 7,212) for coding variants analyzed in BBJ or FinnGen GWAS
that exist in gnomADWES or GEM‐J WGS. For a subset of variants that are fine‐mapped in our analysis (see 2.4 Meth‐
ods), we show AF enrichment distribution across maximum PIP bins computed in (c) FinnGen or (d) BBJ. e–f. Cumulative
distribution of estimated allele age for coding variants, stratified by AF enrichment in (e) Finnish or (f) Japanese. FIN:
Finnish, JPN: Japanese, NFSEE: Non‐Finnish‐Swedish‐Estonian European, NJKEA: Non‐Japanese‐Korean East Asian.
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Table 2.1: Population‐enriched putative causal coding variants. Nonsynonymous coding variants (PIP > 0.9) with AFE >
10 in the Japanese or Finnish populations are shown.

Variant rsid Gene Consequence AF (pop) AF (ref) AF enrichment Best PIP Fine-mapped traits (PIP >0.9)
BBJ
1:21890590:G:A rs199669988 ALPL Missense 0.015 0.00035 43.1 1 ALP
1:55505604:G:A rs564427867 PCSK9 Missense 0.012 NA Inf 1 LDLC, TC
2:21242731:G:A rs13306206 APOB Missense 0.039 0.00049 79.5 1 LDLC, MI, TC
2:44051573:T:TA rs142037828 ABCG5 Splice region 0.051 0.00042 123.2 1 Cholelithiasis
2:120231070:C:G rs3731600 SCTR Missense 0.048 0.00069 69.2 0.99 T2D
2:219919943:C:T rs200216644 IHH Missense 0.0036 0.00027 13.4 0.99 Height
3:145794588:T:C rs148051196 PLOD2 Missense 0.0073 0.00014 52.4 1 Height
4:6303731:G:A rs147834269 WFS1 Missense 0.053 0.0012 43.7 1 T2D
6:158484904:G:C rs141160611 SYNJ2 Missense 0.032 0.0025 12.9 0.96 GGT
7:45954540:C:T rs17847676 IGFBP3 Missense 0.0061 6.90E-05 88.5 1 Height
7:80286003:C:T rs75326924 CD36 Missense 0.047 0.00083 56.9 1 Plt
8:118184855:A:T rs770224130 SLC30A8 Missense 0.0062 0.00014 44.7 0.97 T2D
9:107593923:C:G rs754040394 ABCA1 Missense 0.0019 NA Inf 1 HDLC, TC
11:64361219:G:A rs121907892 SLC22A12 Stop gained 0.021 0.00042 51.6 1 UA
11:116661394:G:C rs201229911 APOA5 Missense 0.01 NA Inf 1 HDLC, TG
12:16510581:GAA:G rs779999476 MGST1 Frameshift 0.015 NA Inf 1 HDLC
12:109690842:C:T rs17848833 ACACB Missense 0.0032 NA Inf 1 HDLC, TG
16:57016150:G:A rs5742907 CETP Splice donor 0.0037 NA Inf 1 HDLC, TC
16:84872195:G:C rs965984074 CRISPLD2 Missense 0.00086 NA Inf 0.99 Height
17:7462468:G:T rs201860460 TNFSF13 Missense 0.0022 7.00E-05 31.1 1 AG, NAP
17:48545926:C:A rs201158957 CHAD Missense 0.0081 6.90E-05 116.1 1 Height
17:78358945:G:A rs112735431 RNF213 Missense 0.01 0.00049 21.2 1 CAD, MAP, PP, SBP
19:11241988:C:T rs13306505 LDLR Missense 0.0085 0.00021 41.1 1 LDLC, TC
19:42855705:G:A rs200485103 MEGF8 Missense 0.0039 NA Inf 0.95 Glucose
19:46178043:G:T rs13306398 GIPR Missense 0.02 6.90E-05 286.9 1 BMI, BW
20:44507112:G:A rs139396693 ZSWIM3 Missense 0.015 0.00014 106.6 1 MCV
FG
1:21890632:G:A rs121918007 ALPL Missense 0.017 0.0011 15.7 0.94 Urolithiasis
1:155170392:G:A rs199935580 THBS3 Missense 0.001 1.10E-05 88.9 1 Carpal_Tunnel_Syndrome
1:192779303:G:T rs201233692 RGS2 Missense 0.0088 1.10E-05 761.5 0.96 Statin
4:120528397:C:T rs202226125 PDE5A Missense 0.007 1.20E-05 612 1 Height
5:1272362:G:A rs770066110 TERT Stop gained 0.00052 NA Inf 1 IPF
5:1279485:T:C rs776981958 TERT Missense 0.0016 NA Inf 0.96 IPF
6:155450779:A:G rs148543891 TIAM2 Missense 0.031 6.90E-05 455.3 1 Height
9:35609378:C:T rs777777413 TESK1 Missense 0.0025 2.40E-05 101.4 1 Height
9:136501728:C:T rs77273740 DBH Missense 0.051 0.0023 21.7 1 Hypertension
10:13040400:A:G rs199848893 CCDC3 Missense 0.0021 NA Inf 1 Height
11:36248678:T:TG rs767680853 LDLRAD3 Frameshift 0.0019 2.30E-05 82.3 1 Height
12:6882498:C:A rs149722682 LAG3 Missense 0.00061 NA Inf 1 AID, Hypothyroidism
12:91498031:G:A rs191692991 LUM Missense 0.0053 1.20E-05 450.7 1 Fibroblastic_Disorders, Height
14:100134609:G:A rs201483470 HHIPL1 Missense 0.0093 0.00013 74.2 0.97 Height
15:28228553:C:T rs74653330 OCA2 Missense 0.048 0.0014 33.4 1 Malignant_Neoplasms, SkC
15:101569374:C:T rs41531245 LRRK1 Missense 0.0076 0.00073 10.4 1 Fibroblastic_Disorders, Inguinal_Hernia
17:56436130:C:T rs199598395 RNF43 Missense 0.012 5.00E-05 239.7 1 Iron_Deficiency_Anaemia
17:60493445:C:T rs552441218 EFCAB3 Stop gained 0.001 6.90E-05 14.7 0.98 Depression_medications
19:36342510:CAG:C rs386833873 NPHS1 Frameshift 0.011 2.40E-05 473.3 1 Nephrotic_Syndrome
19:58421417:ACT:A rs774674736 ZNF417 Frameshift 0.0018 4.60E-05 39.8 0.93 Chronic_Tonsillitis
X:84563165:G:A rs200939713 POF1B Missense 0.0016 NA Inf 0.99 Varicose_Veins
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tiple populations (Fig. 2.4a). The genes with the most putative causal pLoF/missense variants in-

clude APOB (13 missense variants; the loss-of-function observed/expected upper bound fraction

[LOEUF] 214 = 0.46), TFR2 (1 pLoF and 6 missense variants; LOEUF = 0.77), and PIEZO1 (7 mis-

sense variants; LOEUF = 0.58); despite containing many variants that impact human phenotypes,

these genes are modestly constrained (Fig. 2.4b, Supplementary Fig. B.10a,b).

Out of 1,113 genes with at least one fine-mapped pLoF/missense variant (PIP > 0.1), 176 genes

had multiple independent pLoF/missense variants with associations to the same trait(s), forming

an allelic series (Fig. 2.4c, Supplementary Table B.13). We found that 69 of these genes contained

variants fine-mapped in multiple populations, of which 34 genes had at most one variant per pop-

ulation, and so were only conclusively implicated when multiple populations were analyzed. The

cross-population allelic series include e.g., ABCG2, a known pathogenic gene for gout, where we

identified two pLoF/missense variants (p.Gln126Ter and p.Phe489Leu) in BBJ, two missense vari-

ants (p.Asp620Asn and p.Ala528Thr) in UKBB, and one missense variant (p.Gln141Lys) in BBJ,

FinnGen, and UKBB (Supplementary Fig. B.10c).

We further investigated allelic series including both coding and non-coding variants with associ-

ations to the same trait(s), assuming that non-coding causal variants proximal to deleterious coding

variants (< 100 kb) might act through regulation of the same gene 142. This facilitates understand-

ing of unknown non-coding functions and enables us to identify allelic series for an additional 195

genes through coding/non-coding allelic series, of which 87 genes contained variants fine-mapped

across multiple populations (Supplementary Table B.14). For example, we identified coding/non-

coding allelic series around EPX (eosinophil peroxidase) for eosinophil count (Supplementary

Fig. B.10d), where we found European-specific missense variant rs149610649 (EPX : p.Phe308Leu;

MAF = 0.083 in gnomAD NFE) and Japanese-specific intergenic variant rs536070968 (MAF =

0.011 in GEM-J WGS). The intergenic variant rs536070968 is located 33 kb downstream of EPX

and 11 kb upstream of LPO (lactoperoxidase), an ortholog of EPX, illustrating the value of allelic
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genes that have four or more fine‐mapped pLoF/missense variants (best PIP > 0.1). c. Number of genes with fine‐
mapped pLoF/missense variants (PIP > 0.1), stratified by a discovery cohort. For genes with at least one fine‐mapped
pLoF/missense variant, we counted how many of them contained additional independent 95% CS with pLoF/missense
and non‐coding variants (PIP > 0.1) for the same gene and trait in each cohort.

series across multiple populations to assign a potential causal gene from nearby genes.

2.3 Discussion

In this study, we performed statistical fine-mapping in BBJ and FinnGen, and aggregated these re-

sults with our parallel fine-mapping of UKBB 67, providing an extensive list of candidate causal

variants for 148 complex diseases and traits across diverse populations. By integrating fine-mapped

62



variants from deeply-phenotyped biobanks and eQTL studies, we expanded both the depth and

breadth of the resource to explore biological mechanisms of complex traits at single-variant resolu-

tion, with replication across multiple populations and colocalization with different tissues. We make

these resources publicly available for the community to further accelerate variant prioritization and

characterization.

Examination of fine-mapping from three biobanks enabled the identification of 285 high-confidence

variant-trait pairs that are replicated across multiple populations. However, the majority of high-PIP

(> 0.9) variants are non-overlapping across populations. Many of the variants with high PIP in one

population but not in the other two populations were trivially explained by the fact they are rare

or monomorphic in the other two populations. However, our simulations suggest that more fine-

mapping results would have been replicated if all high-PIP variants had been truly causal; we see fur-

ther exploration of this phenomenon as an important direction for future work. The abundance

of population-enriched variants exemplifies the significant value of diverse populations in fine-

mapping studies, contributing to identification of population-specific discoveries and deeper allelic

series of multiple variants at the same locus across populations. Our comparison of fine-mapping

results across biobanks guides interpretation of these results.

Our study has several limitations that suggest directions for future work. First, the current fine-

mapping methods rely on modeling assumptions that are not all met in real-world fine-mapping

(e.g., no genotyping or imputation errors). While we have focused here on a high confidence subset

of results—high-PIP variants that replicate across biobanks, and fine-mapped coding variants—we

see further exploration of potential misspecification of fine-mapping models as an important area

for future work. Second, our sample sizes are still limited, especially for non-European populations,

emphasizing the desperate need for more diversity in human genetics. Here, we were powered to

fine-map variants with large or moderate effect sizes; more samples will be required to fine-map

causal variants with small effect sizes. Moreover, molecular data from non-European samples are
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vastly limited, which fundamentally inhibits variant interpretation of population-enriched variants.

Third, systematic differences in study design, genotyping and imputation across cohorts limited our

ability to integrate data from the three biobanks. We see method development for cross-population

fine-mapping that takes into account this heterogeneity as an important direction for future work.

To our knowledge, this study provides the largest and the most comprehensive comparison of

fine-mapping results from multiple large-scale biobanks of diverse ancestries. Although these data

still remain limited to identify common but small-effect causal variants shared across populations,

we have demonstrated that the use of diverse populations facilitates the identification of high-

confidence causal variants shared across populations, population-enriched fine-mapped variants,

and allelic series of high-impact variants across populations. With fast-evolving biobanks and high-

throughput assays under development, our atlas of candidate causal variants provides a valuable

resource for future functional characterization efforts.

2.4 Methods

2.4.1 Study cohorts

BioBank Japan (BBJ)

The BioBank Japan (BBJ) is a hospital-based cohort that collected DNA, serum, and clinical infor-

mation of approximately 200,000 individuals from 66 hospitals in Japan between 2003 and 2007.

All the study participants had been diagnosed with one or more of 47 target diseases by physicians

at the cooperating hospitals. Written informed consent was obtained from all the participants, as

approved by the ethics committees of the RIKEN Center for Integrative Medical Sciences, and the

Institute of Medical Sciences, the University of Tokyo. Details of study design, sample collection,

and baseline clinical information were described elsewhere 170,225.

We genotyped samples using i) the Illumina HumanOmniExpressExome BeadChip or ii) a com-
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bination of the Illumina HumanOmniExpress and the HumanExome BeadChip. We applied stan-

dard quality-control criteria for samples and variants as described elsewhere 226 (summarized in

Supplementary Table B.1). We analyzed 178,726 individuals of Japanese ancestry, chosen based

on sample selection criteria using principal component analysis (PCA) 171. The genotypes were

prephased using Eagle 227 and imputed using Minimac3 228 with a reference panel that consists of

the 1000 Genomes Project Phase 3 (version 5) samples (n = 2,504) 229 and whole-genome sequenc-

ing (WGS) data of Japanese individuals (n = 1,037) 230. We excluded variants with low imputation

quality (Rsq ≤ 0.7) and used 13,531,752 variants in this study. All the variants were processed on

the human genome assembly GRCh37.

We defined phenotypes based on clinical information retrieved from medical records and inter-

views using a standardized questionnaire. Detailed phenotype definitions are described elsewhere 171

and summarized in Supplementary Table B.2.

FinnGen

FinnGen is a public-private partnership project combining genotype data from Finnish biobanks

and digital health records from Finnish health registries 172. This study used the Data Freeze 6 which

contains 271,341 individuals of Finnish ancestry. Patients and control subjects in FinnGen provided

informed consent as described in B.1 Supplementary Note). Detailed characteristics of the cohort

are described in our companion paper 172.

Samples were primarily genotyped using the FinnGen ThermoFisher Axiom custom array. The

samples from legacy cohorts have previously been genotyped using various generations of Illumina

GWAS arrays. The genotypes were prephased using Eagle 2.3.5 and imputed using Beagle 4.1 with

a reference panel of Finnish WGS data, the SISu v3 reference panel (n = 3,775). We applied post-

imputation quality control as described in our companion paper 172, excluding variants with INFO

< 0.6 and MAF < 0.001, and used 16,311,902 variants in our study. All the variants were originally
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processed on the human genome assembly GRCh38, and lifted over to GRCh37 for comparison

with other cohorts used in this study.

Clinical endpoints were defined based on medical records from multiple national health reg-

istries. Detailed phenotype definitions are described in our companion paper 172 and summarized in

Supplementary Table B.2.

UK Biobank (UKBB)

The UK Biobank (UKBB) is a population-based cohort that recruited approximately 500,000 in-

dividuals in the United Kingdom between 2006 and 2010. This study analyzed a set of 366,194

unrelated “white British” individuals defined previously in the Neale Lab GWAS (https://github.

com/Nealelab/UK_Biobank_GWAS). The individuals of British ancestry were determined by the PCA-

based sample selection criteria (https://github.com/Nealelab/UK_Biobank_GWAS/blob/master/

ukb31063_eur_selection.R), and were further filtered to self-reported “white British”, “Irish”,

or “white”. The UK Biobank analysis was conducted via application number 31063. The cohort

characteristics were extensively described elsewhere 76.

Genotyping was performed using either i) the Applied Biosystems UK BiLEVE Axiom Array

or ii) UKB Axiom Array. The genotypes were imputed using IMPUTE4 with a combination of

reference panels: i) the Haplotype Reference Consortium and ii) UK10K and the 1000 Genomes

Phase 3. We retained 13,791,467 variants with INFO > 0.8, MAF > 0.001, and Hardy-Weinberg

equilibrium P value > 1.0 × 10−10, with exception for the VEP-annotated coding variants where we

allowed MAF > 1.0 × 10−6. The detailed quality-control criteria were described in the Neale Lab

GWAS (https://github.com/Nealelab/UK_Biobank_GWAS). All the variants were processed on the

human genome assembly GRCh37.

We derived phenotypes based on multiple data sources available in UKBB, e.g., biomarkers, body

measures, and disease case-control status mapped on phecodes 157 (https://phewascatalog.org/
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phecodes). Detailed phenotype definitions are described in our companion paper 67 and summa-

rized in Supplementary Table B.2.

2.4.2 Genome-wide association analysis

We performed GWAS using a generalized linear mixed model as implemented in SAIGE 108 (for

binary traits; v.0.37 or later) or BOLT-LMM 109,159 (for quantitative traits; v.2.3.4) with age, sex,

top principal components, and other study-specific covariates as detailed in Supplementary Ta-

ble B.1. We excluded sex-adjusting covariates from sex-specific or stratified traits (i.e., age at menar-

che/menopause, breast cancer, testosterone levels, and uterine fibroid; Supplementary Table B.2).

For mosaic loss of chromosome Y, we used summary statistics publicly available from BBJ 231 and

UKBB 160.

2.4.3 Statistical fine-mapping

We conducted statistical fine-mapping using FINEMAP 28,29 v.1.3.1 and SuSiE 30 v.0.9.1 with

GWAS summary statistics and in-sample dosage LD. We defined fine-mapping regions based on a

3 Mb window around each lead variant and merged regions if they overlapped. We excluded the

major histocompatibility complex (MHC) region (chr 6: 25–36 Mb) from analysis due to extensive

LD structure in the region. Allowing up to 10 causal variants per region, we derived up to 10 inde-

pendent 95% credible sets (CS) and posterior inclusion probabilities (PIP) of each variant using the

default uniform prior probability of causality. The 95% CS reported by FINEMAP and SuSiE each

have 95% posterior probability of containing a causal variant; in a locus with multiple causal variants

identified, there will be multiple CS. This definition of CS differs from the definition given in Hor-

mozdiari et al.77, in which each CS has 95% posterior probability of containing all causal variants in

a locus. We computed in-sample dosage LD using LDstore v.2.0 (ref. 113).
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We combined fine-mapping results from the two methods by taking an average of PIP, exclud-

ing variants with a substantial PIP difference (> 5%) to further improve fine-mapping accuracy. We

justify our approach based on functional enrichment analysis that demonstrates that the variants

with inconsistent PIP across the methods show little functional enrichment (as described in our

companion paper 67). If either fine-mapping method failed (e.g., due to conversion failure or avail-

able memory restrictions), we used successful results from the other method. If both of the methods

failed, we excluded these regions from analysis.

To define independent CS merged across populations, we merged SuSiE 95% CS from each pop-

ulation using hierarchical clustering based on the weighted Jaccard similarity index. Briefly, we com-

puted the PIP-weighted Jaccard similarity index between all the pairs of CS for the same trait identi-

fied from each cohort. For a pair of CS, we computed the similarity index as
∑

i min(xi, yi)/
∑

i max(xi, yi)

where xi and yi are PIP values (or zero if missing) in each CS for the same variant i. We then used

1 − the similarity index as a distance to conduct hierarchical clustering of the CS using the complete

linkage method. We cut a dendrogram tree at a height of 0.9 so that any two CS with PIP-weighted

Jaccard similarity above 0.1 are merged into a single CS.

2.4.4 Colocalization

We conducted colocalization of fine-mapped variants from complex trait and cis-eQTL associa-

tions. Based on fine-mapping results from complex trait and cis-eQTL, we computed a posterior

inclusion probability of colocalization for a variant as a product of PIP for GWAS and for cis-eQTL

(CLPP = PIPGWAS × PIPcis-eQTL) 77. We assembled fine-mapping results of cis-eQTL associ-

ations from GTEx 103 v8 (detailed in our companion paper 67) and eQTL catalogue 191 release 4,

both of which used the same or the functionally-equivalent fine-mapping pipelines to our GWAS

fine-mapping (see 2.6 Code availability). All the variants were originally processed on the human

genome assembly GRCh38 and lifted over to GRCh37 to colocalize with GWAS results in this
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study.

2.4.5 Functional enrichment

We performed functional enrichment analysis for fine-mapped variants from each population. We

first defined seven main distinct functional categories: pLoF (predicted loss-of-function), mis-

sense, synonymous, 5’ UTR, 3’ UTR, promoter, cis-regulatory element (CRE), and non-genic.

We assign fine-mapped variants to these categories in the sequential order so that each category

is non-overlapping from each other. Variant-based categories (pLoF, missense, synonymous, and

5’/3’ UTR variants) are defined based on the most severe consequence for a variant on a canonical

transcript, predicted by the Ensembl Variant Effect Predictor (VEP) 168 v85 (using GRCh37 and

GENCODE v19). The pLoF category represents stop-gained, splice site disrupting, and frameshift

variants predicted as high-confidence by LOFTEE 214. The missense category includes missense-like

variants such as low-confidence LoF. Region-based categories (promoter and CRE) are defined us-

ing region-based annotations. The promoter annotation is retrieved from the baseline annotations

in Finucane & Bulik-Sullivan et al.95, originally from the UCSC Genome Browser 232 and post-

processed by Gusev et al 97. The CRE annotation is defined as intersection of DNase I hypersensi-

tive sites (DHS) and H3K27ac regions from the Roadmap Epigenomics Project 85, ChIP-Atlas 84,

Meuleman et al.80, Domcke, et al.86, Corces et al.81, Buenrostro, et al.233, and Calderon, et al.83,

reprocessed in our companion paper 67. Lastly, the non-genic category represents any variants that

do not belong to the other six categories. In addition, we annotated each variant using 35 binary

annotations from the baselineLD v2.2 model 188.

For each variant, we computed the maximum PIP across traits in BBJ, FinnGen, UKBB, and all

cohorts combined. We estimated functional enrichment for each category as a relative risk (i.e., a

ratio of proportion of variants) between being in an annotation and fine-mapped (PIP ≤ 0.01 or PIP

> 0.9). That is, a relative risk = (proportion of variants with PIP > 0.9 that are in the annotation) /
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(proportion of variants with PIP ≤ 0.01 that are in the annotation). The 95% confidence intervals

are calculated using bootstrapping with 5,000 replicates.

2.4.6 Fine-mapping replication analysis

To investigate fine-mapping replication, we systematically evaluated the consistency of fine-mapping

results across populations for the 26 traits analyzed in all three populations (Supplementary Ta-

ble B.2), using all six pairs of discovery population and distinct secondary population. Starting

from high-PIP (> 0.9) variant-trait pairs in the discovery population, we first split them by whether

the association is genome-wide significant (P < 5.0 × 10−8) in the secondary population, and

then categorized each pair into the following categories, based on criteria evaluated in the secondary

population:

For genome-wide significant (P < 5.0 × 10−8) variant-trait pairs,

1. Pairs for which the fine-mapping result is replicated (PIP > 0.1).

2. Pairs for which the fine-mapping is not replicated (PIP ≤ 0.1)

For non-genome-wide significant (P ≥ 5.0 × 10−8) variant-trait pairs,

3. Pairs for which the association is replicated (P < 0.01).

4. Pairs for which the association is not replicated (P ≥ 0.01) but the variant is included in

the study and has decent statistical power (estimated power > 0.9 for achieving P = 0.01).

We estimated statistical power via the non-centrality parameter (NCP) of the chi-square

distribution 234. We defined NCP = 2f(1 − f)nβ2 where f is MAF, n is the effective sample

size, and β is a posterior effect size estimated by SuSiE in the discovery population. Here, we

assumed the variant has the same causal effect size in a second population. For quantitative

traits, effective sample size equals the number of samples. For binary traits, effective sample
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size is calculated via nφ(1 − φ) where φ is the number of cases divided by the number of

total samples. We note that this power estimation does not account for linear mixed models

adopted by BOLT-LMM or SAIGE.

5. Whether the variant is analyzed in the study (i.e., exists in summary statistics). The missing-

ness is mainly due to low frequency or monomorphism (non-existence) in the secondary

population, which is described in the Supplementary Note.

The schematic flowchart of this process is illustrated in Fig. 2.2a. We note that there could be a case

where non-genome-wide significant variant-trait pairs (P ≥ 5.0 × 10−8) in a secondary population

still had fine-mapping replication (PIP > 0.1) due to LD with another causal variant(s).

Simulation

To further investigate cross-biobank fine-mapping replication rates, we simulated GWAS and fine-

mapping based on our fine-mapping results for the 26 traits analyzed in all three populations. Here,

we assumed our fine-mapped variants in a discovery population were all and only true causal vari-

ants with the same allelic-scale causal effect sizes in a secondary population. For each pair of discov-

ery and secondary populations, we obtained all the non-zero posterior mean effect size estimates b

from SuSiE in a discovery population and computed true simulated phenotypes y in a secondary

population via y = Xb + ε where X is a dosage genotype matrix and ε is a random noise variable

which follows N(0, 1 − var(Xb)). We performed GWAS using BOLT-LMM 109,159 v.2.3.4 with the

same covariates used in the real data analysis. Note that we used BOLT-LMM even when the origi-

nal phenotypes are binary because our true simulated phenotypes are always continuous as defined

above.

We then conducted statistical fine-mapping using the exact same pipeline used in the real data

analysis and investigated whether high-PIP (> 0.9) variant-trait pairs in a discovery population
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showed simulated PIP > 0.1 in a secondary population. We note that we obtained simulation repli-

cation status for each variant-trait-discovery cohort trio, instead of each variant-trait pair, because

the true causal effect sizes that we simulated are dependent on the discovery cohorts. To make an

apple-to-apple comparison of the cross-biobank fine-mapping replication rates between real data

and simulations, we made a slight modification to how we count the number of fine-mapping repli-

cations. Here, only for this analysis, we instead counted the numbers of variant-trait-discovery co-

hort trios for fine-mapping replication and non-replication. This modification slightly increased the

cross-biobank replication rate in real data from 55% to 60% (Supplementary Fig. B.2g) but did not

affect our conclusion.

2.4.7 High-confidence and low-confidence fine-mapping results

We annotated high-confidence and low-confidence high-PIP (> 0.9) variant-trait pairs for the 91

traits analyzed in two or more populations (Supplementary Table B.3). High-confidence pairs are

defined as having PIP > 0.9 in at least one population and PIP > 0.1 in all the other populations an-

alyzed in this study. Low confidence pairs are defined as having PIP > 0.9 in one population and

P < 5.0 × 10−8 but PIP ≤ 0.1 and not in 95% CS in one of the other populations. Those catego-

rized otherwise (e.g., population-specific variants) were not assigned either annotation.

2.4.8 Allele frequency enrichment

To identify population-enriched variants, we defined allele frequency (AF) enrichment metrics as

a ratio of pseudo AF between ancestral and founder populations. To do this, we retrieved allele

counts from gnomAD 214 v2 and GEM-J WGS 215. To account for finite sample sizes, we computed

pseudo AF by constantly adding one to allele count (AC), i.e., pseudo AF = (AC + 1) / allele num-

ber. Due to the disparity in available sample sizes between gnomAD v2 exomes and genomes, we

72



computed enrichment metrics separately for coding and non-coding variants using exomes and

genomes, respectively. Coding and non-coding variants are defined as having VEP-predicted coding

consequences or not (see the previous section).

For coding variants, we used gnomAD v2 exomes for the Finnish (n = 10,824), non-Finnish-

Swedish-Estonian Europeans (NFSEE; n = 43,697), and non-Japanese-Korean East Asians (NJKEA;

n = 7,212). For non-coding variants, we used gnomAD v2 genomes for the Finnish (n = 1,738), NF-

SEE (n = 5,421), and NJKEA (n = 780). We used the GEM-J WGS for both coding and non-coding

variants, which contains WGS data from the Japanese population (n = 7,609). To account for cover-

age differences across data sources, we excluded regions from GEM-J WGS with a median coverage

< 10 in gnomAD exomes or genomes. To eliminate non-coding enrichment due to tagging coding

variants, we excluded non-coding variants in LD (r2 > 0.1) with coding variants using gnomAD v2

LD matrices for the Finnish and East Asian populations. We restricted our analysis to 140,416 and

91,564 coding variants and 11,732,074 and 9,539,454 non-coding variants tested in FinnGen and

BBJ GWAS, respectively. To annotate estimated allele age, we retrieved point estimates of allele age

(mode of the composite posterior distribution) from the Genealogical Estimation of Variant Age

(GEVA) 219.

2.4.9 Allelic series analysis

We investigated an allelic series of fine-mapped variants within and across populations. We first took

nonsynonymous coding variants (pLoF and missense predicted by VEP as described in the previous

section) that had PIP > 0.1 for at least one of the studied traits. We then counted the number of

these variants falling in each gene, identified allelic series of two or more such variants in a single

gene for the same trait, and categorized allelic series according to whether they were discoverable in a

single population or only by combining data across populations. Furthermore, we investigated non-

coding variants that are proximal to these fine-mapped nonsynonymous coding variants (< 100 kb),
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assuming they might act through the same gene.

2.5 Data availability

The fine-mapping results produced by this study will be publicly available at https://www.finucanelab.

org/data. The BBJ summary statistics are available at the National Bioscience Database Center

(NBDC) Human Database (accession code: hum0197) and at the GWAS catalog 18 (https://

www.ebi.ac.uk/gwas/home). They are also browsable at our PheWeb 235 website (https://pheweb.

jp/). The BBJ genotype data is accessible on request at the Japanese Genotype-phenotype Archive

(http://trace.ddbj.nig.ac.jp/jga/index_e.html) with accession code JGAD00000000123

and JGAS00000000114. The UKBB summary statistics will be available at the ENCODE data

portal (https://www.encodeproject.org/) and at the GWAS catalog 18 (https://www.ebi.ac.

uk/gwas/home). The UKBB individual-level data is accessible on request through the UK Biobank

Access Management System (https://www.ukbiobank.ac.uk/). The UKBB analysis in this study

was conducted via application number 31063. The FinnGen release 6 was used in this study and

is still subject to embargo according to the FinnGen consortium agreement; thus the FinnGen

summary statistics are available on request (https://www.finngen.fi/en/access_results) and

are being prepared for public release by Q4 2021. The GTEx v8 summary statistics is available at

the GTEx Portal (https://gtexportal.org/home/datasets). The GTEx individual-level data is

accessible on request through the dbGAP application (accession code: phs000424.v8.p2; https:

//gtexportal.org/home/protectedDataAccess). The eQTL catalogue results are available at

https://www.ebi.ac.uk/eqtl/Data_access/.
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2.6 Code availability

Our fine-mapping pipeline is available at https://github.com/mkanai/finemapping-pipeline,

and the code to perform all analyses and generate the figures is provided at https://github.com/

mkanai/finemapping-insights. Custom fine-mapping pipelines for FinnGen is available at https:

//github.com/FINNGEN/finemapping-pipeline and for eQTL catalogue is available at https:

//github.com/eQTL-Catalogue/susie-workflow; both of which has implemented functionally-

equivalent pipelines with a dataset-specific custom code.
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3
Meta-analysis fine-mapping is often

miscalibrated at single-variant resolution
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Abstract

Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWAS)

into a more powerful whole. To resolve causal variants, meta-analysis studies typically apply sum-

mary statistics-based fine-mapping methods as they are applied to single-cohort studies. However,

it is unclear whether heterogeneous characteristics of each cohort (e.g., ancestry, sample size, pheno-

typing, genotyping, or imputation) affect fine-mapping calibration and recall. Here, we first demon-

strate that meta-analysis fine-mapping is substantially miscalibrated in simulations when different

genotyping arrays or imputation panels are included. To mitigate these issues, we propose a sum-

mary statistics-based QC method, SLALOM, that identifies suspicious loci for meta-analysis fine-

mapping by detecting outliers in association statistics based on ancestry-matched local LD structure.

Having validated SLALOM performance in simulations and the GWAS Catalog, we applied it to

14 disease endpoints from the Global Biobank Meta-analysis Initiative and found that 68% of loci

showed suspicious patterns that call into question fine-mapping accuracy. These predicted sus-

picious loci were significantly depleted for having likely causal variants, such as nonsynonymous

variants, as a lead variant (2.8x; Fisher’s exact P = 6.2 × 10−4). Compared to fine-mapping re-

sults in individual biobanks, we found limited evidence of fine-mapping improvement in the GBMI

meta-analyses. Although a full solution requires complete synchronization across cohorts, our ap-

proach identifies likely spurious results in meta-analysis fine-mapping. We urge extreme caution

when interpreting fine-mapping results from meta-analysis.
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3.1 Introduction

Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWAS)

from different cohorts 236. Previous GWAS meta-analyses have identified thousands of loci associ-

ated with complex diseases and traits, such as type 2 diabetes 7,8, schizophrenia 11,237, rheumatoid

arthritis 9,10, body mass index 146, and lipid levels 238. These meta-analyses are typically conducted in

large-scale consortia (e.g., the Psychiatric Genomics Consortium [PGC], the Global Lipids Genetics

Consortium [GLGC], and the Genetic Investigation of Anthropometric Traits [GIANT] consor-

tium) to increase sample size while harmonizing analysis plans across participating cohorts in every

possible aspect (e.g., phenotype definition, quality-control [QC] criteria, statistical model, and ana-

lytical software) by sharing summary statistics as opposed to individual-level data, thereby avoiding

data protection issues and variable legal frameworks governing individual genome and medical data

around the world. The Global Biobank Meta-analysis Initiative (GBMI) 239 is one such large-scale,

international effort, which aims to establish a collaborative network spanning 19 biobanks from

four continents (total n = 2.1 million) for coordinated GWAS meta-analyses, while addressing the

many benefits and challenges in meta-analysis and subsequent downstream analyses.

One such challenging downstream analysis is statistical fine-mapping 12–14. Despite the great

success of past GWAS meta-analyses in locus discovery, individual causal variants in associated loci

are largely unresolved. Identifying causal variants from GWAS associations (i.e., fine-mapping) is

challenging due to extensive linkage disequilibrium (LD, the correlation among genetic variants),

the presence of multiple causal variants, and limited sample sizes, but is rapidly becoming achievable

with high confidence in individual cohorts 67,68,87,118 owing to the recent development of large-scale

biobanks 76,170,172 and scalable fine-mapping methods 28–30 that enable well-powered, accurate fine-

mapping using in-sample LD from large-scale individual-level data.

After conducting GWAS meta-analysis, previous studies 7,10,52,176–178,238,240–242 have applied ex-
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isting summary statistics-based fine-mapping methods (e.g., approximate Bayes factor [ABF] 23,24,

CAVIAR 25, PAINTOR 26,27, FINEMAP 28,29, and SuSiE 30) just as they are applied to single-cohort

studies, without considering or accounting for the unavoidable heterogeneity among cohorts (e.g.

differences in sample size, phenotyping, genotyping, or imputation). Such heterogeneity could lead

to false positives and miscalibration in meta-analysis fine-mapping (Fig. 3.1). For example, case-

control studies enriched with more severe cases or ascertained with different phenotyping criteria

may disproportionately contribute to genetic discovery, even when true causal effects for genetic

liability are exactly the same between these studies and less severe or unascertained ones. Quantita-

tive traits like biomarkers could have phenotypic heterogeneity arising from different measurement

protocols and errors across studies. There might be genuine biological mechanisms too, such as

gene–gene (GxG) and gene–environment (GxE) interactions and (population-specific) dominance

variation (e.g., rs671 and alcohol dependence 243), that introduce additional heterogeneity across

studies 64,244. In addition to phenotyping, differences in genotyping and imputation could dramat-

ically undermine fine-mapping calibration and recall at single-variant resolution, because differen-

tial patterns of missingness and imputation quality across constituent cohorts of different sample

sizes can disproportionately diminish association statistics of potentially causal variants. Finally, al-

though more easily harmonized than phenotyping and genotyping data, subtle differences in QC

criteria and analytical software may further exacerbate the effect of heterogeneity on fine-mapping.

An illustrative example of such issues can be observed in the TYK2 locus (19p13.2) in the recent

meta-analysis from the COVID-19 Host Genetics Initiative (COVID-19 HGI; Supplementary

Fig. C.1) 21. This locus is known for protective associations against autoimmune diseases 9,240, while

a complete TYK2 loss of function results in a primary immunodeficiency 245. Despite strong LD

(r2 = 0.82) with a lead variant in a locus (rs74956615; P = 9.7 × 10−12), a known functional

missense variant rs34536443 (p.Pro1104Ala) that reduces TYK2 function 246,247 did not achieve

genome-wide significance (P = 7.5 × 10−7), primarily due to its missingness in two more cohorts
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than rs74956615. This serves as just one example of the major difficulties with meta-analysis fine-

mapping at single-variant resolution. Indeed, the COVID-19 HGI cautiously avoided an in-silico

fine-mapping in the flagship to prevent spurious results 21.

Only a few studies have carefully addressed these concerns in their downstream analyses. The

Schizophrenia Working Group of PGC, for example, recently updated their largest meta-analysis of

schizophrenia 11 (69,369 cases and 236,642 controls), followed by a downstream fine-mapping anal-

ysis using FINEMAP 28. Unlike many other GWAS consortia, since PGC has access to individual-

level genotypes for a majority of samples, they were able to apply standardized sample and variant

QC criteria and impute variants using the same reference panel, all uniformly processed using the

RICOPILI pipeline 248. This harmonized procedure was crucial for properly controlling inter-

cohort heterogeneity and thus allowing more robust meta-analysis fine-mapping at single-variant

resolution. Furthermore, PGC’s direct access to individual-level data enabled them to compute

in-sample LD matrices for multiple causal variant fine-mapping, which prevents the significant mis-

calibration that results from using an external LD reference 67,87,118. A 2017 fine-mapping study of

inflammatory bowel disease also benefited from access to individual-level genotypes and careful pre-

and post-fine-mapping QC 73. For a typical meta-analysis consortium, however, many of these steps

are infeasible as full genotype data from all cohorts is not available. For such studies, a new approach

to meta-analysis fine-mapping in the presence of the many types of heterogeneity is needed. Until

such a method is developed, QC of meta-analysis fine-mapping results deserves increased attention.

While existing variant-level QC procedures are effective for limiting spurious associations in

GWAS (C.1 Supplementary Note) 249, they do not suffice for ensuring high-quality fine-mapping

results. In some cases, they even hurt fine-mapping quality, because they can i) cause or exacerbate

differential patterns of missing variants across cohorts, and ii) remove true causal variants as well

as suspicious variants. Thus, additional QC procedures that retain consistent variants across co-

horts for consideration but limit poor-quality fine-mapping results are needed. A recently proposed
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method called DENTIST 250, for example, performs summary statistics QC to improve GWAS

downstream analyses, such as conditional and joint analysis (GCTA-COJO 114), by removing vari-

ants based on estimated heterogeneity between summary statistics and reference LD. Although

DENTIST was also applied prior to fine-mapping (FINEMAP 28), simulations only demonstrated

that it could improve power for detecting the correct number of causal variants in a locus, not true

causal variants. This motivated us to develop a new fine-mapping QC method for better calibra-

tion and recall at single-variant resolution and to demonstrate its performance in large-scale meta-

analysis.

Here, we first demonstrate the effect of inter-cohort heterogeneity in meta-analysis fine-mapping

via realistic simulations with multiple heterogeneous cohorts, each with different combinations of

genotyping platforms, imputation reference panels, and genetic ancestries. We propose a summary

statistics-based QC method, SLALOM (suspicious loci analysis of meta-analysis summary statis-

tics), that identifies suspicious loci for meta-analysis fine-mapping by detecting association statistics

outliers based on local LD structure, building on the DENTIST method. Applying SLALOM

to 14 disease endpoints from the Global Biobank Meta-analysis Initiative 239 as well as 467 meta-

analysis summary statistics from the GWAS Catalog 18, we demonstrate that suspicious loci for fine-

mapping are widespread in meta-analysis and urge extreme caution when interpreting fine-mapping

results from meta-analysis.

3.2 Results

3.2.1 Large-scale simulations demonstrate miscalibration in meta-analysis

fine-mapping

Existing fine-mapping methods 23,28,30 assume that all association statistics are derived from a single-

cohort study, and thus do not model the per-variant heterogeneity in effect sizes and sample sizes

82



GWAS cohorts Fine-mappingMeta-analysis
Cohort 1

Cohort 2

Cohort N

...

For each locus

Across constituent cohorts, inter-cohort 
heterogeneity could arise from:

• Genuine biological mechanisms
• Population-specific variants
• GxG and GxE interactions

• Phenotyping
• Different diagnosis criteria
• Different proportion of subtypes
• Different measurement protocols

• Genotyping and imputation
• Different genotyping array
• Different imputation reference panel
• Different imputation quality

• Quality control (QC)
• Different thresholds for MAF,
 imputation quality, etc.

• GWAS
• Different statistical model and
 software

Effect models:
• Fixed-effect
• Random-effect

Ancestries:
• Single-ancestry
• Multi-ancestry

Summary statistics-
based methods include:

• ABF
• CAVIAR
• PAINTOR
• FINEMAP
• SuSiE

Typically, both pre- and 
post-meta-analysis QC 
are applied to summary 
statistics
(Supplementary Box).

Standard outputs:
• Posterior inclusion
 probability (PIP)
• 95% credible sets

Additional post-fine-map-
ping QC is sometimes 
adopted.

Figure 3.1: Schematic overview of meta‐analysis fine‐mapping.

that arise when meta-analyzing multiple cohorts (Fig. 3.1a). To evaluate how different character-

istics of constituent cohorts in a meta-analysis affect fine-mapping calibration and recall, we con-

ducted a series of large-scale GWAS meta-analysis and fine-mapping simulations (Supplementary

Tables C.1–C.4; 3.4 Methods). Briefly, we simulated multiple GWAS cohorts of different ances-

tries (10 European ancestry, one African ancestry and one East Asian ancestry cohorts; n = 10,000

each) that were genotyped and imputed using different genotyping arrays (Illumina Omni2.5,

Multi-Ethnic Global Array [MEGA], and Global Screening Array [GSA]) and imputation reference

panels (the 1000 Genomes Project Phase 3 [1000GP3] 229, the Haplotype Reference Consortium

[HRC] 251, and the TOPMed 252). For each combination of cohort, genotyping array, and impu-

tation panel, we conducted 300 GWAS with randomly simulated causal variants that resemble the

genetic architecture of a typical complex trait, including minor allele frequency (MAF) dependent

causal effect sizes 111, total SNP heritability 112, functional consequences of causal variants 68, and

levels of genetic correlation across cohorts (i.e., true effect size heterogeneity; rg = 1, 0.9, and 0.5;

see 3.4 Methods). We then meta-analyzed the single-cohort GWAS results across 10 independent
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cohorts based on multiple configurations (different combinations of genotyping arrays and impu-

tation panels for each cohort) to resemble realistic meta-analysis of multiple heterogeneous cohorts

(Supplementary Table C.4). We applied ABF fine-mapping to compute a posterior inclusion prob-

ability (PIP) for each variant and to derive 95% and 99% credible sets (CS) that contain the smallest

set of variants covering 95% and 99% of probability of causality. We evaluated the false discovery

rate (FDR, defined as the proportion of variants with PIP > 0.9 that are non-causal) and compared

against the expected proportion of non-causal variants if the meta-analysis fine-mapping method

were calibrated, based on PIP. More details of our simulation pipeline are described in 3.4 Methods

and visually summarized in Supplementary Fig. C.2.

We found that FDR varied widely over the different configurations, reaching as high as 37% for

the most heterogeneous configurations (Fig. 3.2). We characterized the contributing factors to

the miscalibration. We first found that lower true effect size correlation rg (i.e., larger phenotypic

heterogeneity) always caused higher miscalibration and lower recall. Second, when using the same

imputation panel (1000GP3), use of less dense arrays (MEGA or GSA) led to moderately inflated

FDR (up to FDR = 11% vs. expected 1%), while use of multiple genotyping array did not cause

further FDR inflation (Fig. 3.2a). Third, when using the same genotyping array (Omni2.5), use

of imputation panels (HRC or TOPMed) that does not match our simulation reference signifi-

cantly affects miscalibration (up to FDR = 17% vs. expected 1%), and using multiple imputation

panels further increased miscalibration (up to FDR = 35% vs. expected 2%, Fig. 3.2c); this setup

is as bad as the most heterogeneous configuration using multiple genotyping arrays and imputa-

tion panels (FDR = 37%). When TOPMed-imputed variants were lifted over from GRCh38 to

GRCh37, we observed FDR increases of up to 10%, likely due to genomic build conversion failures

(C.1 Supplementary Note) 253. Fourth, recall was not significantly affected by heterogeneous geno-

typing arrays or imputation panels (Fig. 3.2b,d). Fifth, including multiple genetic ancestries did

not affect calibration when using the same genotyping array and imputation panel (Omni 2.5 and
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1000GP3; Fig. 3.2e) but significantly improved recall if African ancestry was included (Fig. 3.2f).

This is expected, given the shorter LD length in the African population compared to other popu-

lations, which improves fine-mapping resolution 254. Finally, in the most heterogeneous configu-

rations where multiple genotyping arrays and imputation panels existed, we observed a FDR of up

to 37% and 28% for European and multi-ancestry meta-analyses, respectively (vs. expected 2% for

both), demonstrating that inter-cohort heterogeneity can substantially undermine meta-analysis

fine-mapping (Fig. 3.2g,h).

To further characterize observed miscalibration in meta-analysis fine-mapping, we investigated

the availability of GWAS variants in each combination of ancestry, genotyping array, and impu-

tation panel. Out of 3,285,617 variants on chromosome 3 that passed variant QC in at least one

combination (per-combination MAF > 0.001 and Rsq > 0.6; 3.4 Methods), 574,261 variants (17%)

showed population-level gnomAD MAF > 0.001 in every ancestry that we simulated (African, East

Asian, and European). Because we used a variety of imputation panels, we retrieved population-

level MAF from gnomAD. Of these 574,261 variants, 389,219 variants (68%) were available in every

combination (Supplementary Fig. C.3a). This fraction increased from 68% to 73%, 74%, and 76%

as we increased gnomAD MAF thresholds to > 0.005, 0.01, and 0.05, respectively, but never reached

100% (Supplementary Fig. C.4). Notably, we observed a substantial number of variants that are

unique to a certain genotyping array and an imputation panel, even when we restricted to 344,497

common variants (gnomAD MAF > 0.05) in every ancestry (Supplementary Fig. C.3b). For exam-

ple, there are 34,317 variants (10%) that were imputed in the 1000GP3 and TOPMed reference but

not in the HRC. Likewise, we observed 33,106 variants (10%) that were specific to the 1000GP3 ref-

erence and even 3,066 variants (1%) that were imputed in every combination except for East Asian

ancestry with the GSA array and the TOPMed reference. When using different combinations of

gnomAD MAF thresholds (> 0.001, 0.005, 0.01, or 0.05 in every ancestry) and Rsq thresholds (>

0.2, 0.4, 0.6, or 0.8), we observed the largest fraction of shared variants (78%) was achieved with gno-
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mAD MAF > 0.01 and Rsq > 0.2 while the largest number of the shared variants (427,494 variants)

was achieved with gnomAD MAF > 0.001 and Rsq > 0.2, leaving it unclear which thresholds would

be preferable in the context of fine-mapping (Supplementary Fig. C.4).

The remaining 2,711,356 QC-passing variants in our simulations (gnomAD MAF ≤ 0.001 in

at least one ancestry) further exacerbate variable coverage of the available variants (Supplementary

Fig. C.3c). Of these, the largest proportion of variants (39%) were only available in African ances-

try, followed by African and European (but not in East Asian) available variants (7%), European-

specific variants (6%), and East Asian-specific variants (5%). Furthermore, similar to the aforemen-

tioned common variants, we found a substantial number of variants that are unique to a certain

combination. Altogether, we observed that only 393,471 variants (12%) out of all the QC-passing

3,285,617 variants were available in every combination (Supplementary Fig. C.3d). These obser-

vations recapitulate that different combinations of genetic ancestry, genotyping array, imputation

panels, and QC thresholds substantially affect the availability of common, well-imputed variants for

association testing 255.

Thus, the different combinations of genotyping and imputation cause each cohort in a meta-

analysis to have a different set of variants, and consequently variants can have very different overall

sample sizes. In our simulations with the most heterogeneous configurations, we found that 66% of

the false positive loci (where a non-causal [false positive] variant was assigned PIP > 0.9) had differ-

ent sample sizes for true causal and false positive variants (median maximum/minimum sample size

ratio = 1.4; Supplementary Fig. C.5). Analytically, we found that at common meta-analysis sample

sizes and genome-wide significant effect size regimes, when two variants have similar marginal ef-

fects, the one with the larger sample size will usually achieve a higher ABF PIP (C.1 Supplementary

Note). This elucidates the mechanism by which sample size imbalance can lead to miscalibration.
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87



3.2.2 Overview of the SLALOM method

To address the challenges in meta-analysis fine-mapping discussed above, we developed SLALOM

(suspicious loci analysis of meta-analysis summary statistics), a method that flags suspicious loci for

meta-analysis fine-mapping by detecting outliers in association statistics based on deviations from

expectation, estimated with local LD structure (3.4 Methods). SLALOM consists of three steps,

1) defining loci and lead variants based on a 1 Mb window, 2) detecting outlier variants in each lo-

cus using meta-analysis summary statistics and an external LD reference panel, and 3) identifying

suspicious loci for meta-analysis fine-mapping (Fig. 3.3a,b).

To detect outlier variants, we first assume a single causal variant per associated locus. Then the

marginal z-score zi for a variant i should be approximately equal to ri,c · zc where zc is the z-score

of the causal variant c, and ri,c is a correlation between variants i and c. For each variant in meta-

analysis summary statistics, we first test this relationship using a simplified version of the DENTIST

statistics 250, DENTIST-S, based on the assumption of a single causal variant. The DENTIST-S

statistics for a given variant i is written as

Ti =
(zi − ri,c · zc)2

1 − r2
i,c

(3.1)

which approximately follows a χ2 distribution with 1 degree of freedom 250. Since the true causal

variant and LD structure are unknown in real data, we approximate the causal variant as the lead

PIP variant in the locus (the variant with the highest PIP) and use a large-scale external LD reference

from gnomAD 214, either an ancestry-matched LD for a single-ancestry meta-analysis or a sample-

size-weighted LD by ancestries for a multi-ancestry meta-analysis (3.4 Methods).

SLALOM then evaluates whether each locus is “suspicious”—that is, has a pattern of meta-

analysis statistics and LD that appear inconsistent and therefore call into question the fine-mapping

accuracy. By training on loci with maximum PIP > 0.9 in the simulations, we determined that the
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best-performing criterion for classifying loci as true or false positives is whether a locus has a variant

with r2 > 0.6 to the lead and DENTIST-S P-value < 1.0 × 10−4 (3.4 Methods). Using this crite-

rion we achieved an area under the receiver operating characteristic curve (AUROC) of 0.74, 0.76,

and 0.80 for identifying whether a true causal variant is a lead PIP variant, in 95% credible set (CS),

and in 99% CS, respectively (Fig. 3.3c). We further validated the performance of SLALOM using all

the loci in the simulations and observed significantly higher miscalibration in predicted suspicious

loci than in non-suspicious loci (up to 16% difference in FDR at PIP > 0.9; Fig. 3.3d). Given the

relatively lower miscalibration and specificity at low PIP thresholds (Fig. 3.3d,e), in subsequent real

data analysis we restricted the application of SLALOM to loci with maximum PIP > 0.1 (3.4 Meth-

ods).

3.2.3 Widespread suspicious loci for fine-mapping in existing meta-analysis

summary statistics

Having assessed the performance of SLALOM in simulations, we applied SLALOM to 467 meta-

analysis summary statistics in the GWAS Catalog 18 that are publicly available with a sufficient dis-

covery sample size (N > 10,000; Supplementary Table C.5; 3.4 Methods) to quantify the preva-

lence of suspicious loci in existing studies. These summary statistics were mostly European ancestry-

only meta-analysis (63%), followed by multi-ancestry (31%), East Asian ancestry-only (3%), and

African ancestry-only (2%) meta-analyses. Across 467 summary statistics from 96 publications, we

identified 28,925 loci with maximum PIP > 0.1 (out of 35,864 genome-wide significant loci defined

based on 1 Mb window around lead variants; 3.4 Methods) for SLALOM analysis, of which 8,137

loci (28%) were predicted suspicious (Supplementary Table C.6).

To validate SLALOM performance in real data, we restricted our analysis to 6,065 loci that have

maximum PIP > 0.1 and that contain nonsynonymous coding variants (predicted loss-of-function

[pLoF] and missense) in LD with the lead variant (r2 > 0.6). Given prior evidence 67,68,73 that such
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allele flipping. Points represent the variants depicted in the example locus (a), where the lead variant (purple diamond)
and the outlier variant (white diamond) were highlighted. Diagonal line represents an expected marginal association.
Horizontal dotted lines represent the genome‐wide significance threshold (P < 5.0 × 10−8). c. The ROC curve of
SLALOM prediction for identifying suspicious loci in the simulations. Positive conditions were defined as whether a
true causal variant in a locus is 1) a lead PIP variant, 2) in 95% CS, and 3) in 99% CS. AUROC values were shown in the
labels. Black points represent the performance of our adopted metric, i.e., whether a locus contains at least one outlier
variant (PDENTIST‐S < 1.0 × 10−4 and r2 > 0.6). d. Calibration plot in the simulations under different PIP thresh‐
olds. Calibration was measured as the mean PIP− fraction of true causal variants among variants above the threshold.
Shadows around the lines represent 95% confidence intervals. e. The fraction of variants in predicted suspicious and
non‐suspicious loci under different PIP thresholds. Gray shadows in the panels d,e represent a PIP ≤ 0.1 region as we
excluded loci with maximum PIP ≤ 0.1 in the actual SLALOM analysis based on these panels.
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nonsynonymous variants are highly enriched for being causal, we tested the validity of our method

by whether they achieve the highest PIP in the locus (i.e., successful fine-mapping) in suspicious vs.

non-suspicious loci (3.4 Methods). While 40% (1,557 / 3,860) of non-suspicious loci successfully

fine-mapped nonsynonymous variants, only 17% (384 / 2,205) of suspicious loci did, demonstrating

a significant depletion (2.3x) of successfully fine-mapped nonsynonymous variants in suspicious

loci (Fisher’s exact P = 3.6 × 10−79; Fig. 3.4a). We also tested whether nonsynonymous variants

belonged to 95% and 99% CS and again observed significant depletion (1.4x and 1.3x, respectively;

Fisher’s exact P < 4.6 × 10−100). In addition, when we used a more stringent r2 threshold (> 0.8)

for selecting loci that contain nonsynonymous variants, we also confirmed significant enrichment

(Fisher’s exact P < 6.1 × 10−65; Supplementary Fig. C.6). To quantify potential fine-mapping

miscalibration in the GWAS Catalog, we investigated the difference between mean PIP for lead vari-

ants and fraction of lead variants that are nonsynonymous; assuming that nonsynonymous variants

in these loci are truly causal, this difference equals the difference between the true and reported frac-

tion of lead PIP variants that are causal. We observed differences between 26–51% and 10–18% un-

der different PIP thresholds in suspicious and non-suspicious loci, respectively (Fig. 3.4b), marking

45% and 15% for high-PIP (> 0.9) variants.

We further assessed SLALOM performance in the GWAS Catalog meta-analyses by leveraging

high-PIP (> 0.9) complex trait and cis-eQTL variants that were rigorously fine-mapped 67,68 in large-

scale biobanks (Biobank Japan [BBJ] 171, FinnGen 172, and UK Biobank [UKBB] 76) and eQTL

resources (GTEx 103 v8 and eQTL Catalogue 191). Among the 27,713 loci analyzed by SLALOM

(maximum PIP > 0.1) that contain a lead variant that was included in biobank fine-mapping, 17%

(3,266 / 19,692) of the non-suspicious loci successfully fine-mapped one of the high-PIP GWAS

variants in biobank fine-mapping, whereas 7% (589 / 8,021) of suspicious loci did, showing a sig-

nificant depletion (2.3x) of the high-PIP complex trait variants in suspicious loci (Fisher’s exact

P = 4.6 × 10−100; Fig. 3.4c). Similarly, among 26,901 loci analyzed by SLALOM that contain
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a lead variant that was included in cis-eQTL fine-mapping, we found a significant depletion (1.9x)

of the high-PIP cis-eQTL variants in suspicious loci, where 7% (1,247 / 18,976) of non-suspicious

loci vs. 4% (281 / 7,925) of suspicious loci successfully fine-mapped one of the high-PIP cis-eQTL

variants (Fisher’s exact P = 2.6 × 10−24; Fig. 3.4d). We observed the same significant depletions of

the high-PIP complex trait and cis-eQTL variants in suspicious loci that belonged to 95% and 99%

CS set (Fig. 3.4c,d).

3.2.4 Suspicious loci for fine-mapping in the GBMI summary statistics

Next, we applied SLALOM to meta-analysis summary statistics of 14 disease endpoints from the

GBMI 239. These summary statistics were generated from a meta-analysis of 2.1 million individu-

als in total across 19 biobanks, representing six different genetic ancestry groups of approximately

33,000 African, 18,000 Admixed American, 31,000 Central and South Asian, 341,000 East Asian,

1.8 million European, and 1,600 Middle Eastern individuals (Supplementary Table C.7). Among

509 genome-wide significant loci across the 14 traits, we found that 87 loci (17%) showed maximum

PIP < 0.1, thus not being further considered by SLALOM. Of the remaining 422 loci with max-

imum PIP > 0.1, SLALOM identified that 285 loci (68%) were suspicious loci for fine-mapping

(Fig. 3.5a; Supplementary Table C.8). The fraction of suspicious loci and their maximum PIP var-

ied by trait, reflecting different levels of statistical power (e.g., sample sizes, heritability, and local LD

structure) as well as inter-cohort heterogeneity (Fig. 3.4b–o).

While the fraction of suspicious loci (68%) in the GBMI meta-analyses is higher than in the

GWAS Catalog (28%), there might be multiple reasons for this discrepancy, including association

significance, sample size, ancestral diversity, and study-specific QC criteria. For example, the GBMI

summary statistics were generated from multi-ancestry, large-scale meta-analyses of median sample

size of 1.4 million individuals across six ancestries, while 63% of the 467 summary statistics from the

GWAS Catalog were only in European-ancestry studies and 83% had less than 0.5 million discovery
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Figure 3.4: Evaluation of SLALOM performance in the GWAS Catalog summary statistics. a,c,d. Depletion of likely
causal variants in predicted suspicious loci. We evaluated whether (a) nonsynonymous coding variants (pLoF and mis‐
sense), (c) high‐PIP (> 0.9) complex trait variants in biobank fine‐mapping, and (d) high‐PIP (> 0.9) cis‐eQTL variants in
GTEx v8 and eQTL Catalogue were lead PIP variants, in 95% CS, or in 99% CS in suspicious vs. non‐suspicious loci.
Depletion was calculated by relative risk (i.e. a ratio of proportions; 3.4 Methods). Error bars correspond to 95% confi‐
dence intervals using bootstrapping. Significance represents a Fisher’s exact test P‐value (*, P < 0.05; **,< 0.01; ***,
< 0.001; ***,< 10−4). b. Plot of the estimated difference between true and reported proportion of causal variants
in the loci tagging nonsynonymous variants (r2 > 0.6 with the lead variants) in the GWAS Catalog under different PIP
thresholds. Analogous to Fig. 3.3b, assuming nonsynonymous variants in these loci are truly causal, the mean PIP for
lead variants minus the fraction of lead variants that are nonsynonymous above the threshold is equal to the difference
between true and reported proportion of causal variants.
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Figure 3.5: SLALOM prediction results in the GBMI summary statistics. For (a) all 14 traits and (b–o) individual traits, a
number of predicted suspicious (SL), non‐suspicious (NSL), and non‐applicable (NA; maximum PIP < 0.1) loci were sum‐
marized. Individual traits are ordered by the total number of loci. Color represents the maximum PIP in a locus. Label
represents the fraction of loci in each prediction category. AAA, abdominal aortic aneurysm. AcApp, acute appendicitis.
COPD, chronic obstructive pulmonary disease. HCM, hypertrophic cardiomyopathy. HF, heart failure. IPF, idiopathic
pulmonary fibrosis. POAG, primary open angle glaucoma. ThC, thyroid cancer. UtC, uterine cancer. VTE, venous throm‐
boembolism.

samples. Nonetheless, predicted suspicious loci for fine-mapping were prevalent in both the GWAS

Catalog and the GBMI.

Using nonsynonymous (pLoF and missense) and high-PIP (> 0.9) complex trait and cis-eQTL

variants, we recapitulated a significant depletion of these likely causal variants in predicted suspi-

cious loci (2.8x, 5.4x, and 5.2x for nonsynonymous, high-PIP complex trait, and high-PIP cis-eQTL

variants being a lead PIP variant, respectively; Fisher’s exact P < 6.2 × 10−4), confirming our

observation in the GWAS Catalog analysis (Fig. 3.6a–c).

In 15/23 non-suspicious loci harboring a nonsynonymous variant, the nonsynonymous variant

had the highest PIP. These included known missense variants such as rs116483731 (p.Arg20Gln)
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in SPDL1 for idiopathic pulmonary fibrosis (IPF) 256,257 and rs28929474 (p.Glu366Lys) in SER-

PINA1 for chronic obstructive pulmonary disease (COPD) 258,259. In addition, we observed suc-

cessful fine-mapping in 2 novel loci for asthma, i) rs41286560 (p.Pro558Thr) in RTL1, a mis-

sense variant known for decreasing height 260,261 and ii) rs34187696 (p.Gly337Val) in ZSCAN5A,

a known missense variant for increasing monocyte count 52.

To characterize fine-mapping failures in suspicious loci, we examined suspicious loci in which

a nonsynonymous variant did not achieve the highest PIP. For example, the FCGR2A/FCGR3A

(1q23.3) locus for COPD contained a genome-wide significant lead intergenic variant rs2099684

(P = 1.7 × 10−11) which is in LD (r2 = 0.92) with a missense variant rs396991 (p.Phe176Val) of

FCGR3A (Fig. 3.6d). This locus was not previously reported for COPD, but is known for associ-

ations with autoimmune diseases (e.g., inflammatory bowel disease 73, rheumatoid arthritis 10, and

systemic lupus erythematosus 262) and encodes the low-affinity human FC-gamma receptors that

bind to the Fc region of IgG and activate immune responses 263. Notably, this locus contains copy

number variations that contribute to the disease associations in addition to single-nucleotide vari-

ants, which makes genotyping challenging 263,264. Despite strong LD with the lead variant, rs396991

did not achieve genome-wide significance (P = 9.1 × 10−3), showing a significant deviation from

the expected association (PDENTIST-S = 5.3 × 10−41; Fig. 3.6e). This is primarily due to missing-

ness of rs396991 in 8 biobanks out of 17 (Neff = 76,790 and 36,781 for rs2099684 and rs396991,

respectively; Fig. 3.6f), which is caused by its absence from major imputation reference panels (e.g.,

1000GP 229, HRC 251, and UK10K 162) despite having a high MAF in every population (MAF =

0.24–0.34 in African, admixed American, East Asian, European, and South Asian populations of

gnomAD 214).

Sample size imbalance across variants was pervasive in the GBMI meta-analyses 265, and was es-

pecially enriched in predicted suspicious loci—84% of suspicious loci vs. 24% of non-suspicious

loci showed a maximum/minimum effective sample size ratio > 2 among variants in LD (r2 > 0.6)
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with lead variants (a median ratio = 4.2 and 1.2 in suspicious and non-suspicious loci, respectively;

Supplementary Fig. C.7). These observations are consistent with our simulations, recapitulating

that sample size imbalance results in miscalibration for meta-analysis fine-mapping. Notably, we

observed a similar issue in other GBMI downstream analyses (e.g., polygenic risk score [PRS] 265 and

drug discovery 266), where predictive performance improved significantly after filtering out variants

with maximum Neff < 50%. Although fine-mapping methods cannot simply take this approach

because it inevitably reduces calibration and recall by removing true causal variants, other meta-

analysis downstream analyses that primarily rely on polygenic signals rather than individual variants

should consider this filtering as an extra QC step.
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3.2.5 Comparison of fine-mapping results between the GBMI meta-analyses

and individual biobanks

Motivated by successful validation of SLALOM performance, we investigated whether fine-mapping

confidence and resolution were improved in the GBMI meta-analyses over individual biobanks. To

this end, we used our fine-mapping results 67,68 of nine disease endpoints (asthma 259, COPD 259,

gout, heart failure 267, IPF 257, primary open angle glaucoma 268, thyroid cancer, stroke 269, and ve-

nous thromboembolism 270) in BBJ 171, FinnGen 172, and UKBB 76 Europeans that also contributed

to the GBMI meta-analyses for the same traits.

To perform an unbiased comparison of PIP between the GBMI meta-analysis and individual

biobanks, we investigated functional enrichment of fine-mapped variants based on top PIP rank-

ings in the GBMI and individual biobanks (top 0.5%, 0.1%, and 0.05% PIP variants in the GBMI vs.

maximum PIP across BBJ, FinnGen, and UKBB; 3.4 Methods). Previous studies have shown that

high-PIP (> 0.9) complex trait variants are significantly enriched for well-known functional cate-

gories, such as coding (pLoF, missense, and synonymou), 5’/3’ UTR, promoter, and cis-regulatory

element (CRE) regions (DNase I hypersensitive sites [DHS] and H3K27ac) 67,68. Using these func-

tional categories, we found no significant enrichment of variants in the top PIP rankings in the

GBMI over individual biobanks (Fisher’s exact P > 0.05; Fig. 3.7a) except for variants in the pro-

moter region (1.8x; Fisher’s exact P = 3.1 × 10−4 for the top 0.1% PIP variants). We observed

similar trends regardless of whether variants were in suspicious or non-suspicious loci (Fig. 3.7b,c).

To examine patterns of increased and decreased PIP for individual variants, we also calculated PIP

difference between the GBMI and individual biobanks, defined as ΔPIP = PIP (GBMI) – maximum

PIP across BBJ, FinnGen, and UKBB (Supplementary Fig. C.8,C.9). We investigated functional

enrichment based on ΔPIP bins and observed inconsistent enrichment results using different ΔPIP

thresholds (Supplementary Fig. C.10). Finally, to test whether fine-mapping resolution was im-
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proved in the GBMI over individual biobanks, we compared the size of 95% CS after restricting

them to cases where a GBMI CS overlapped with an individual biobank CS from BBJ, FinnGen, or

UKBB (3.4 Methods). We observed the median 95% CS size of 2.5 and 2.5 in non-suspicious loci

for the GBMI and individual biobanks, respectively, and 5 and 15 in suspicious loci, respectively

(Supplementary Fig. C.11). The smaller credible set size in suspicious loci in GBMI could be due

to improved resolution or to increased miscalibration. These results provide limited evidence of

overall fine-mapping improvement in the GBMI meta-analyses over what is achievable by taking the

best result from individual biobanks.

Individual examples, however, provide insights into the types of fine-mapping differences that

can occur. To characterize the observed differences in fine-mapping confidence and resolution, we

further examined non-suspicious loci with ΔPIP > 0.5 in asthma. In some cases, the increased power

and/or ancestral diversity of GBMI led to improved fine-mapping: for example, an intergenic variant

rs1888909 (~18 kb upstream of IL33) showed ΔPIP = 0.99 (PIP = 1.0 and 0.008 in GBMI and

FinnGen, respectively; Fig. 3.7d), which was primarily owing to increased association significance in

a meta-analysis (P = 3.0×10−86, 7.4×10−2, 3.6×10−16, and 1.9×10−53 in GBMI, BBJ, FinnGen,

and UKBB Europeans, respectively) as well as a shorter LD length in the African population than in

the European population (LD length = 4 kb vs. 41 kb for variants with r2 > 0.6 with rs1888909 in

the African and European populations, respectively; Neff = 4,270 for Africans in the GBMI asthma

meta-analysis; Supplementary Fig. C.12). This variant was also fine-mapped for eosinophil count

in UKBB Europeans (PIP = 1.0; P = 1.3 × 10−314) 67 and was previously reported to regulate

IL33 gene expression in human airway epithelial cells via allele-specific transcription factor binding

of OCT-1 (POU2F1) 271. Likewise, we observed a missense variant rs16903574 (p.Phe319Leu) in

OTULINL showed ΔPIP = 0.79 (PIP = 1.0 and 0.21 in GBMI and UKBB Europeans, respectively;

Fig. 3.7e) owing to improved association significance (P = 7.7 × 10−15 and 4.7 × 10−12 in GBMI

and UKBB Europeans, respectively).
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However, we also observed very high ΔPIP for variants that are not likely causal. For example, we

observed that an intronic variant rs1295686 in IL13 showed ΔPIP = 0.56 (PIP = 0.56 and 0.0002

in GBMI and UKBB Europeans, respectively; Fig. 3.7f), despite having strong LD with a nearby

missense variant rs20541 (p.Gln144Arg; r2 = 0.96 with rs1295686) which only showed ΔPIP

= 0.13 (PIP = 0.13 and 0.0001 in GBMI and UKBB Europeans, respectively). The missense vari-

ant rs20541 showed PIP = 0.23 and 0.15 for a related allergic disease, atopic dermatitis, in BBJ and

FinnGen, respectively 68, and was previously shown to induce STAT6 phosphorylation and up-

regulate CD23 expression in monocytes, promoting IgE synthesis 272. Although the GBMI meta-

analysis contributed to prioritizing these two variants (sum of PIP = 0.69 vs. 0.0003 in GBMI and

UKBB Europeans, respectively), the observed ΔPIP was higher for rs1295686 than for rs20541.

While increasing sample size in meta-analysis improves association significance, we also found

negative ΔPIP due to losing the ability to model multiple causal variants. A stop-gained variant

rs61816761 (p.Arg501Ter) in FLG showed ΔPIP = –1.0 (PIP = 6.4 × 10−5 and 1.0 in GBMI

and UKBB Europeans, respectively; Fig. 3.7g), which was primarily owing to a nearby lead vari-

ant rs12123821 (~17 kb downstream of HRNR; r2 = 0.0 with rs61816761). This lead variant

rs12123821 showed greater significance than rs61816761 in GBMI (P = 9.3 × 10−16 and 2.0 ×

10−11 for rs12123821 and rs61816761, respectively) as well as in UKBB Europeans (P = 7.1×10−26

and 1.5 × 10−18). While our biobank fine-mapping 67,68 assigned PIP = 1.0 for both variants based

on multiple causal variant fine-mapping (i.e., FINEMAP 28 and SuSiE 30), our ABF fine-mapping

in the GBMI meta-analysis was only able to assign PIP = 0.74 for the lead variant rs12123821 due

to a single causal variant assumption. This recapitulates the importance of multiple causal variant

fine-mapping in complex trait fine-mapping 67,68—however, we note that multiple causal variant

fine-mapping with an external LD reference is extremely error-prone as previously reported 67,87,118.
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Figure 3.6 (following page): Evaluation of SLALOM performance in the GBMI summary statistics. a–c. Similar to Fig. 3.4,
we evaluated whether (a) nonsynonymous coding variants (pLoF and missense), (b) high‐PIP (> 0.9) complex trait vari‐
ants in biobank fine‐mapping, and (c) high‐PIP (> 0.9) cis‐eQTL variants in GTEx v8 and eQTL Catalogue were lead PIP
variants, in 95% CS, or in 99% CS in suspicious vs. non‐suspicious loci. Depletion was calculated by relative risk (i.e.
a ratio of proportions; 3.4 Methods). Error bars correspond to 95% confidence intervals using bootstrapping. Signifi‐
cance represents a Fisher’s exact test P‐value (*, P < 0.05; **,< 0.01; ***,< 0.001; ***,< 10−4). d. Locuszoom
plot of the 1q23.3 locus for COPD. The top panel shows a Manhattan plot, where the lead variant rs2099684 (purple
diamond) and a missense variant rs396991 (orange diamond) are highlighted. Color represents r2 values to the lead
variant. Horizontal line represents a genome‐wide significance threshold (P = 5.0 × 10−8). The middle panel shows
PIP from ABF fine‐mapping. Color represents whether variants belong to a 95% CS. The bottom panel shows r2 val‐
ues with the lead variant in gnomAD populations. e. A diagnosis plot showing r2 values to the lead variant vs. marginal
χ2. Color represents− log10 PDENTIST‐S values. Outlier variants with PDENTIST‐S < 10−4 are depicted in red with a
diamond shape. Diagonal line represents an expected marginal association. Horizontal line represents a genome‐wide
significance threshold. f. Z‐scores of the lead variant (rs2099684) vs. the missense variant (rs396991) in the constituent
cohorts of the meta‐analysis. Open and closed circles represent whether both variants exist in a cohort or rs396991 is
missing. Circle size corresponds to an effective sample size. Color represents genetic ancestry.

100



Figure 3.6: (continued)
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Figure 3.7 (following page): Fine‐mapping improvement and retrogression in the GBMI meta‐analyses over individual
biobanks. a–c. Functional enrichment of variants in each functional category based on top PIP rankings in the GBMI and
individual biobanks (maximum PIP of BBJ, FinnGen, and UKBB). Shape corresponds to top PIP ranking (top 0.5%, 0.1%,
and 0.05%). Enrichment was calculated by a relative risk (i.e. a ratio of proportions; 3.4 Methods). Error bars correspond
to 95% confidence intervals using bootstrapping. d–g. Locuszoom plots for the same non‐suspicious locus of asthma
in the GBMI meta‐analysis and an individual biobank (BBJ, FinnGen, or UKBB Europeans) that showed the highest PIP
in our biobank fine‐mapping. Colors in the Manhattan panels represent r2 values to the lead variant. In the PIP panels,
only fine‐mapped variants in the 95% CS are colored, where the same colors are applied between the GBMI meta‐
analysis and an individual biobank based on merged CS as previously described. Horizontal line represents a genome‐
wide significance threshold (P = 5.0 × 10−8). d. rs1888909 for asthma in the GBMI and FinnGen. e. rs16903574
for asthma in the GBMI and UKBB Europeans. Nearby rs528167451 was also highlighted, which was in strong LD (r2

= 0.86) and in the same 95% CS in UKBB Europeans, but not in the GBMI (r2 = 0.67). f. rs1295686 for asthma in the
GBMI and UKBB Europeans. A nearby missense, rs20541, showed lower PIP than rs1295686 despite having strong
LD (r2 = 0.96). g. rs12123821 for asthma in the GBMI and UKBB Europeans. Nearby stop‐gained rs61816761 was
independent of rs12123821 (r2 = 0.0) and not fine‐mapped in the GBMI due to a single causal variant assumption in the
ABF fine‐mapping.
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Figure 3.7: (continued)
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3.3 Discussion

In this study, we first demonstrated in simulations that meta-analysis fine-mapping is substantially

miscalibrated when constituent cohorts are heterogeneous in phenotyping and imputation. To mit-

igate this issue, we developed SLALOM, a summary statistics-based QC method for identifying

suspicious loci in meta-analysis fine-mapping. Applying SLALOM to 14 disease endpoints from

the GBMI meta-analyses 239 as well as 467 summary statistics from the GWAS Catalog 18, we ob-

served widespread suspicious loci in meta-analysis summary statistics, suggesting that meta-analysis

fine-mapping is often miscalibrated in real data too. Indeed, we demonstrated that the predicted

suspicious loci were significantly depleted for having likely causal variants as a lead PIP variant, such

as nonsynonymous variants, high-PIP (> 0.9) GWAS and cis-eQTL fine-mapped variants from our

previous fine-mapping studies 67,68. Our method provides better calibration in non-suspicious loci

for meta-analysis fine-mapping, generating a more reliable set of variants for further functional char-

acterization.

We have found limited evidence of improved fine-mapping in the GBMI meta-analyses over indi-

vidual biobanks. A few empirical examples in this study as well as other previous studies 10,52,176,178,238

suggested that multi-ancestry, large-scale meta-analysis could have potential to improve fine-mapping

confidence and resolution owing to increased statistical power in associations and differential LD

pattern across ancestries. However, we have highlighted that the observed improvement in PIP

could be due to sample size imbalance in a locus, miscalibration, and technical confoundings too,

which further emphasizes the importance of careful investigation of fine-mapped variants identified

through meta-analysis fine-mapping.

As high-confidence fine-mapping results in large-scale biobanks and molecular QTLs continue

to become available 67,68,191, we propose alternative approaches for prioritizing candidate causal

variants in a meta-analysis. First, these high-confidence fine-mapped variants have been a valuable
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resource to conduct a “PheWAS” 67 to match with associated variants in a meta-analysis, which pro-

vides a narrower list of candidate variants assuming they would equally be functional and causal in

related complex traits or tissues/cell-types. Second, a traditional approach based on tagging variants

(e.g., r2 > 0.6 with lead variants, or PICS 99 fine-mapping approach that only relies on a lead variant

and LD) can be still highly effective, especially for known functional variants such as nonsynony-

mous coding variants. As we highlighted in this and previous 21 studies, potentially causal variants

in strong LD with lead variants might not achieve genome-wide significance because of missingness

and heterogeneity.

While using an external LD reference for fine-mapping has been shown to be extremely error-

prone 67,87,118, we find here that it can be useful for flagging suspicious loci, even when it does not

perfectly represent the in-sample LD structure of the meta-analyzed individuals. However, our use

of external LD reference comes with several limitations. For example, due to the finite sample size of

external LD reference, rare or low-frequency variants have larger uncertainties around r2 than com-

mon variants. Moreover, our r2 values in a multi-ancestry meta-analysis are currently approximated

based on a sample-size-weighted average of r2 across ancestries as previously suggested 63, but this

can be different from actual r2. These uncertainties around r2 affect SLALOM prediction perfor-

mance and should be modeled appropriately for further method development. On the other hand,

we find it challenging to use a LD reference when true causal variants are located within a complex

region (e.g., major histocompatibility complex [MHC]), or are entirely missing from standard LD

or imputation reference panels, especially for structural variants. These limitations are not specific

to meta-analysis fine-mapping, and separate fine-mapping methods based on bespoke imputation

references have been developed (e.g., HLA 273, KIR 274, and variable numbers of tandem repeats

[VNTR] 275).

In addition, there are several methodological limitations of SLALOM. First, our simulations only

include one causal variant per locus. Although additional independent causal variants would not
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affect SLALOM precision (but decrease recall), multiple correlated causal variants in a locus would

violate SLALOM assumptions and could lead to some DENTIST-S outliers that are not due to

heterogeneity or missingness but rather simply a product of tagging multiple causal variants in LD.

In fact, our previous studies have illustrated infrequent but non-zero presence of such correlated

causal variants in complex traits 67,68. Second, SLALOM prediction is not perfect. Although fine-

mapping calibration is certainly better in non-suspicious vs. suspicious loci, SLALOM has low

precision, and we still observe some miscalibration in non-suspicious loci. Finally, SLALOM is a

per-locus QC method and does not calibrate per-variant PIPs. Further methodological development

that properly models heterogeneity, missingness, multiple causal variants, and LD uncertainty across

multiple cohorts and ancestries is needed to refine per-variant calibration and recall in meta-analysis

fine-mapping.

We have found evidence in our simulations and real data of severe miscalibration of fine-mapping

results from GWAS meta-analysis; for example, we estimate that the difference between true and re-

ported proportion of causal variants is 20% and 45% for high-PIP (> 0.9) variants in suspicious loci

from the simulations and the GWAS Catalog, respectively. Our SLALOM method helps to exclude

spurious results from meta-analysis fine-mapping; however, even fine-mapping results in SLALOM-

predicted “non-suspicious” loci remain somewhat miscalibrated, showing estimated differences

between true and reported proportion of causal variants of 4% and 15% for high-PIP variants in the

simulations and the GWAS Catalog, respectively. We thus urge extreme caution when interpret-

ing PIPs computed from meta-analyses until improved methods are available. We recommend that

researchers looking to identify likely causal variants employ complete synchronization of study de-

sign, case/control ascertainment, genomic profiling, and analytical pipeline, or rely more heavily on

functional annotations, biobank fine-mapping, or molecular QTLs.
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3.4 Methods

3.4.1 Meta-analysis fine-mapping simulation

To benchmark fine-mapping performance in meta-analysis, we simulated a large-scale, realistic

GWAS meta-analysis and performed fine-mapping under different scenarios. An overview of our

simulation pipeline is summarized in Supplementary Fig. C.2.

Simulated true genotype

Using HAPGEN2 276 with the 1000 Genomes Project Phase 3 reference 229, we simulated “true”

genotypes of chromosome 3 for multiple independent cohorts from African, East Asian, and Eu-

ropean ancestries. For each independent cohort from a given ancestry, we simulated 10,000 indi-

viduals each using the default parameters, with an ancestry-specific effective population size set

to 17,469, 14,269, and 11,418 for Africans, East Asians, and Europeans, respectively, as recom-

mended 276. To mimic sample size imbalance of different ancestries in the current meta-analyses, we

simulated 10 independent European cohorts, 1 African cohort, and 1 East Asian cohort.

To restrict our analysis to unrelated samples, we computed sample relatedness based on KING

kinship coefficients 277 using PLINK 2.0 (ref. 278) and removed monozygotic twins, duplicated indi-

viduals, or first-degree relatives with the coefficient threshold of 0.177. The detailed sample sizes of

unrelated individuals for each cohort is summarized in Supplementary Table C.1.

Genotyping and imputation

To simulate realistic genotyping and imputation procedures, we first virtually genotyped each

cohort by restricting variants to those that are available on different genotyping arrays. We se-

lected three major genotyping arrays from Illumina, Inc. (Omni2.5, Multi-Ethnic Global Array
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[MEGA], and Global Screening Array [GSA]) that have different densities of genotyping probes

(Supplementary Table C.2). For each cohort, we created three virtually genotyped datasets by re-

taining variants that are genotyped on each array. For the sake of simplicity, we assumed no geno-

typing errors occurred between true genotypes and virtually genotyped data—however, in practice,

genotyping error is one of the major sources of unexpected confounding (e.g., see recent discussions

here 279,280) and should be treated carefully.

For each pair of cohort and genotyping array, we then imputed missing variants using different

imputation reference panels. We used the Michigan Imputation Server (https://imputationserver.

sph.umich.edu/) 228 and the TOPMed Imputation Server (https://imputation.biodatacatalyst.

nhlbi.nih.gov/) 252 with the default parameters, using three publicly available reference panels:

the 1000 Genomes Project Phase 3 (version 5; n = 2,504; 1000GP3) 229, the Haplotype Reference

Consortium (version r1.1; n = 32,470; HRC) 251, and the TOPMed (version R2; n = 97,256) 252.

Briefly, for each input, the imputation server created chunks of 20 Mb, applied the standard QC,

pre-phased each chunk with Eagle2 (ref. 281), and imputed non-genotyped variants using a specified

reference panel with Minimac4 (https://genome.sph.umich.edu/wiki/Minimac4). The detailed

documentation of the imputation pipeline is available on the Michigan and TOPMed websites and

has been described elsewhere 228.

We applied post-imputation QC by only keeping variants with MAF > 0.001 and imputation

Rsq > 0.6. Because the TOPMed panel is based on GRCh38 while the 1000GP3 and the HRC pan-

els are on GRCh37, we lifted over TOPMed variants from GRCh38 to GRCh37 to meta-analyze

with other cohorts. We excluded any variants which were lifted over to different chromosomes or

for which the conversion failed. The number of virtually genotyped and imputed variants for each

combination of cohort, genotyping array, and imputation panel is summarized in Supplementary

Table C.3.
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True phenotype

We simulated 300 true phenotypes that resemble observed complex trait genetic architecture and

phenotypic heterogeneity across cohorts. Based on previous literature, we set parameters as follows:

1) 50% of 1 Mb loci contain a true causal variant 110; 2) probability of being causal is proportional

to functional enrichments of variant consequences (pLoF, missense, synonymous, 5’/3’ UTR, pro-

moter, cis-regulatory region, and non-genic) for fine-mapped variants as estimated in a previous

complex trait fine-mapping study 68; 3) per-allele causal effect sizes have a variance proportional

to [2p(1 − p)]α where p represents a maximum MAF across the three ancestries (AFR, EAS, and

EUR) and α is set to be −0.38 (ref. 111); and 4) total SNP-heritability h2
g for chromosome 3 equals

0.03 (ref. 112). For the sake of simplicity, we randomly draw a single true causal variant per locus

because ABF assumes a single causal variant 23,24. We draw true causal variants from 1,150,893 non-

ambiguous single-nucleotide variants in 1000GP3 that showed MAF > 0.01 in at least one of the

three ancestries (AFR, EAS, or EUR) and were not located within conversion-unstable positions

(CUP) 253 between the human genome builds GRCh37 and GRCh38. To mimic phenotypic het-

erogeneity across cohorts in real-world meta-analysis (due to e.g., different ascertainment, measure-

ment error, or true effect size heterogeneity), we introduced cross-cohort genetic correlation of true

effect sizes rg which is set to be one of 1, 0.9, or 0.5. For a true causal variant j, true causal effect sizes

βj across cohorts were randomly drawn from βj ∼ MVN(0,Σ) where diagonal elements of Σ were

set to be σ2
g · [2p(1 − p)]α. and off-diagonal elements of were set to be rg · σ2

g · [2p(1 − p)]α. σ2
g was

determined by σ2
g = h2

g/
∑

j[2p(1 − p)](1+α). For each cohort, true phenotype y was computed via

y = Xβ+ ε where X is the above true genotype matrix from HAPGEN2 and εi ∼ N(0, 1 − σ2
g) i.i.d.

We simulated 100 true phenotypes for each of rg = 1, 0.9, and 0.5, respectively.
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GWAS

For each combination of phenotype, cohort, genotyping chip, and imputation panel, we conducted

GWAS via a standard linear regression as implemented in PLINK 2.0 using imputed dosages. For

covariates, we included top 10 principal components that were calculated based on true genotypes

after restricting to unrelated samples. We only used LD-pruned variants with MAF > 0.01 for PCA.

Meta-analysis

To simulate meta-analyses that resemble real-world settings, we generated multiple configurations

of the above GWAS results to meta-analyze across 10 independent cohorts. Briefly, we chose config-

urations based on the following settings: 1) 10 EUR cohorts are genotyped and imputed using the

same genotyping array (one of GSA, MEGA, or Omni2.5) and the same imputation panel (one of

1000GP3, HRC, TOPMed, or TOPMed-liftover); 2) 10 cohorts consisting of multiple ancestries

(9 EUR + 1 AFR/EAS cohorts or 8 EUR + 1 AFR + 1 EAS cohorts), with all cohorts genotyped

and imputed using the same array (Omni2.5) and the same panel (1000GP3); 3) 10 EUR or multi-

ancestry cohorts are genotyped using the same array (Omni2.5) but imputed using different panels

across cohorts; 4) 10 EUR or multi-ancestry cohorts are imputed using the same panel (1000GP3)

but genotyped using different arrays across cohorts; 5) 10 EUR or multi-ancestry cohorts are geno-

typed and imputed using different arrays and panels across cohorts. For settings 3–5, we randomly

draw a combination of a genotyping array and an imputation panel for each cohort five times each

for 10 EUR and multi-ancestry cohorts. In total, we generated 45 configurations as summarized in

Supplementary Table C.4.

For each configuration, we conducted a fixed-effect meta-analysis based on inverse-variance

weighted betas and standard errors using a modified version of PLINK 1.9 (https://github.com/

mkanai/plink-ng/tree/add_se_meta).
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Fine-mapping

For each meta-analysis, we defined fine-mapping regions based on a 1 Mb window around each

genome-wide significant lead variant and applied ABF 23,24 using prior effect size variance of σ2
0 =

0.04. We set a prior variance of effect size to be 0.04 which was taken from Wakefield et al.23 and is

commonly used in meta-analysis fine-mapping studies 7,10. We computed posterior inclusion proba-

bility (PIP) and 95% credible set (CS) for each locus and evaluated whether true causal variants were

correctly fine-mapped.

3.4.2 The SLALOM method

SLALOM takes GWAS summary statistics and external LD reference as input and predicts whether

a locus is suspicious for fine-mapping. SLALOM consists of the following three steps:

Locus definition

Consistent with common fine-mapping region definition, we defined loci based on a 1 Mb window

around each genome-wide significant lead variant and merged them if they overlapped. We excluded

the major histocompatibility complex (MHC) region (chr 6: 25-36 Mb) from analysis due to exten-

sive LD structure in the region.

DENTIST-S outlier detection

For each variant in a locus, we computed DENTIST-S statistics using equation (1) based on the as-

sumption of a single causal variant. DENTIST-S P-values (PDENTIST-S) were computed using the

χ2 distribution with 1 degree of freedom. We applied ABF 23,24 using prior effect size variance of

σ2
0 = 0.04 and used the lead PIP variant (the variant with the highest PIP) as an approximation of
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the causal variant in the locus. To retrieve correlation r among the variants, we used publicly avail-

able LD matrices from gnomAD 214 v2 as external LD reference for African, Admixed American,

East Asian, Finnish, and non-Finnish European populations. When multiple populations exist, we

computed a sample-size-weighted average of r2 using per-variant sample sizes for each population

as previously suggested 63. We excluded variants without r2 available in gnomAD from the analysis.

Since gnomAD v2 LD matrices are based on the human genome assembly GRCh37, variants were

lifted over to GRCh38 if the input summary statistics were based on GRCh38.

We determined DENTIST-S outlier variants using two thresholds: 1) r2 > ρ to the lead and 2)

PDENTIST-S < τ. The thresholds ρ and τ were set to ρ = 0.6 and τ = 1.0 × 10−4 based on the

training in simulations as described below.

Suspicious loci prediction

We predicted whether a locus is suspicious or non-suspicious for fine-mapping based on the num-

ber of DENTIST-S outlier variants in the locus > κ. To determine the best-performing thresholds

(ρ, τ, and κ), we used loci with maximum PIP > 0.9 in the simulations for training. Positive con-

ditions were defined as whether a true causal variant in a locus is 1) a lead PIP variant, 2) in 95%

CS, and 3) in 99% CS. We computed AUROC across different thresholds (ρ = 0, 0.1, 0.2, , 0.9;

−log10τ = 0, 0.5, 1, , 10; and κ = 0, 1, 2, ) and chose ρ = 0.6, τ = 1.0 × 10−4, and κ = 0 that

showed the highest AUROC for all the aforementioned positive conditions. Using all the loci in

the simulations, we then evaluated fine-mapping miscalibration (defined as mean PIP − fraction of

true causal variants) at different PIP thresholds in suspicious and non-suspicious loci and decided to

only apply SLALOM to loci with maximum PIP > 0.1 owing to relatively lower miscalibration and

specificity of SLALOM at lower PIP thresholds.

112



3.4.3 GWAS Catalog analysis

We retrieved full GWAS summary statistics publicly available on the GWAS Catalog 18. Out of

33,052 studies from 5,553 publications registered at the GWAS Catalog (as of January 12, 2022),

we selected 467 studies from 96 publications that have 1) full harmonized summary statistics pre-

processed by the GWAS Catalog with non-missing variant ID, marginal beta, and standard error

columns, 2) a discovery sample size of more than 10,000 individuals, 3) African (including African

American, Afro-Caribbean, and Sub-Saharan African), admixed American (Hispanic and Latin

American), East Asian, or European samples based on their broad ancestral category metadata, 4) at

least one genome-wide significant association (P < 5.0 × 10−8), and 5) our manual annotation as a

meta-analysis rather than a single-cohort study (Supplementary Table C.5). We applied SLALOM

to the 467 summary statistics and identified 35,864 genome-wide significant loci (based on 1 Mb

window around lead variants), of which 28,925 loci with maximum PIP > 0.1 were further classi-

fied into suspicious and non-suspicious loci. Since per-variant sample sizes were not available, we

used overall sample sizes of each ancestry (African, Admixed American, East Asian, and European)

to calculate the weighted-average of r2. All the variants were harmonized into the human genome

assembly GRCh38 by the GWAS Catalog.

3.4.4 GBMI analysis

We used meta-analysis summary statistics of 14 disease endpoints from the GBMI (Supplementary

Table C.7). These meta-analyses were conducted using up to 1.8 million individuals across 19

biobanks, representing six different genetic ancestry groups (approximately 33,000 African, 18,000

Admixed American, 31,000 Central and South Asian, 341,000 East Asian, 1.8 million European,

and 1,600 Middle Eastern individuals). Detailed procedures of the GBMI meta-analyses were de-

scribed in the GBMI flagship manuscript 239.
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Across the 14 summary statistics, we defined 503 genome-wide significant loci (P < 5.0 × 10−8)

based on a 1 Mb window around each lead variant and merged them if they overlapped. We applied

SLALOM to 422 loci with maximum PIP > 0.1 based on the ABF fine-mapping and predicted

whether they were suspicious or non-suspicious for fine-mapping. We used per-variant sample sizes

of each ancestry (African, Admixed American, East Asian, Finnish, and non-Finnish European)

to calculate the weighted-average of r2. Since gnomAD LD matrices were not available for Central

and South Asian and Middle Eastern, we did not use their sample sizes for the calculation. All the

variants were processed on the human genome assembly GRCh38.

3.4.5 Fine-mapping results of complex traits and cis-eQTL

We retrieved our previous fine-mapping results for 1) complex traits in large-scale biobanks (BBJ 171,

FinnGen 172, and UKBB 76 Europeans) 67,68 and 2) cis-eQTLs in GTEx 103 v8 and eQTL Cata-

logue 191. Briefly, we conducted multiple-causal-variant fine-mapping (FINEMAP 28,29 and SuSiE 30)

of complex trait GWAS (# unique traits = 148) and cis-eQTL gene expression (# unique tissues/cell-

types = 69) using summary statistics and in-sample LD. Detailed fine-mapping methods are de-

scribed elsewhere 67,68.

In this study, we collected 1) high-PIP GWAS variants that achieved PIP > 0.9 for any traits in

any biobank and 2) high-PIP cis-eQTL variants that acheived PIP > 0.9 for any gene expression in

any tissues/cell-types. All the variants were originally processed on the human genome assembly

GRCh37 and lifted over to the GRCh38 for comparison.

Additional fine-mapping results

To compare with the GBMI meta-analyses, we additionally conducted multi-causal-variant fine-

mapping of four additional endpoints (gout, heart failure, thyroid cancer, and venous throm-
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boembolism) that were not fine-mapped in our previous study 67,68. We used exactly the same

fine-mapping pipeline (FINEMAP 28,29 and SuSiE 30) as described previously 67,68. For UKBB

Europeans, to use the exact same samples that contributed to the GBMI, we used individuals of

European ancestry (n = 420, 531) as defined in the Pan-UKBB project (https://pan.ukbb.

broadinstitute.org), instead of those of “white British ancestry” (n = 361, 194) used in our

previous study 67,68.

3.4.6 Enrichment analysis of likely causal variants

To validate SLALOM performance, we asked whether suspicious and non-suspicious loci were

enriched for having likely causal variants as a lead PIP variant, and for containing them in the 95%

and 99% CS. We defined likely causal variants using 1) nonsynonymous coding variants, i.e., pLoF

and missense variants annotated 168 by the Ensembl Variant Effect Predictor (VEP) v101 (using

GRCh38 and GENCODE v35), 2) the high-PIP (> 0.9) complex trait fine-mapped variants, and 3)

the high-PIP (> 0.9) cis-eQTL fine-mapped variants from our previous studies as described above.

We estimated enrichment for suspicious and non-suspicious loci as a relative risk (i.e., a ratio of

proportion of variants) between being in suspicious/non-suspicious loci and having the annotated

likely causal variants as a lead PIP variant (or containing them in the 95% or 99% CS). That is, a

relative risk = (proportion of non-suspicious loci having the annotated variants as a lead PIP variant)

/ (proportion of suspicious loci having the annotated variants as a lead PIP variant). We computed

95% confidence intervals using bootstrapping.
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3.4.7 Comparison of fine-mapping results between the GBMI and individual

biobanks

To directly compare with fine-mapping results from the GBMI meta-analyses, we used our fine-

mapping results of nine disease endpoints (asthma 259, COPD 259, gout, heart failure 267, IPF 257,

primary open angle glaucoma 268, thyroid cancer, stroke 269, and venous thromboembolism 270) in

BBJ 171, FinnGen 172, and UKBB 76 Europeans that were also part of the GBMI meta-analyses for

the same traits. For comparison, we computed the maximum PIP for each variant and the minimum

size of 95% CS across BBJ, FinnGen, and UKBB. We restricted the 95% CS in biobanks to those that

contain the lead variants from the GBMI. We defined the PIP difference between the GBMI and

individual biobanks as ΔPIP = PIP (GBMI) the maximum PIP across the biobanks.

We conducted functional enrichment analysis to compare between the GBMI meta-analysis and

individual biobanks because unbiased comparison of PIP requires conditioning on likely causal

variants independent of the fine-mapping results, and functional annotations have been shown to

be enriched for causal variants. Using functional categories (coding [pLoF, missense, and synony-

mous], 5’/3’ UTR, promoter, and CRE) from our previous study 67,68, we estimated functional

enrichments of variants in each functional category based on 1) top PIP rankings and 2) ΔPIP bins.

Since fine-mapping PIP in the GBMI meta-analysis can be miscalibrated, we performed a compar-

ison based on top PIP rankings to assess whether the ordering given by GBMI PIPs is more infor-

mative than the ordering given by the biobanks. For the top PIP rankings, we took the top 0.5%,

0.1%, and 0.05% variants based on the PIP rankings in the GBMI and individual biobanks. We com-

puted enrichment as a relative risk = (proportion of top X% PIP variants in the GBMI that are in

the annotation) / (proportion of top X% PIP variants in the individual biobanks that are in the an-

notation). For ΔPIP bins, we defined three bins using different thresholds (θ = 0.01, 0.05, and 0.1):

1) decreased PIP bin, ΔPIP < −θ, 2) null bin, θ ≤ ΔPIP ≤ θ, and 3) increased PIP bin, θ < ΔPIP.
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We computed enrichment as a relative risk = (proportion of variants in the decreased/increased PIP

bin that are in the annotation) / (proportion of variants in the null PIP bin). We combined coding,

UTR, and promoter categories for this analysis due to the limited number of variants for each bin.

3.5 Data availability

The GBMI summary statistics for the 14 endpoints are available at https://www.globalbiobankmeta.

org/resources and are browserble at the GBMI PheWeb 235 website (http://results.globalbiobankmeta.

org/).

3.6 Code availability

The SLALOM software is available at https://github.com/mkanai/slalom. Custom scripts to

perform all the analyses and generate all the figures are available at https://github.com/mkanai/

slalom-paper.
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4
Leveraging fine-mapping and

multi-population training data to improve

cross-population polygenic risk scores
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Abstract

Polygenic risk scores (PRS) suffer reduced accuracy in non-European populations, exacerbating

health disparities. We propose PolyPred, a method that improves cross-population PRS by combin-

ing two predictors: a new predictor that leverages functionally informed fine-mapping to estimate

causal effects (instead of tagging effects), addressing LD differences; and BOLT-LMM, a published

predictor. When a large training sample is available in the non-European target population, we pro-

pose PolyPred+, which further incorporates the non-European training data. We applied PolyPred

to 49 diseases/traits in 4 UK Biobank populations using UK Biobank British training data, and

observed relative improvements vs. BOLT-LMM ranging from +7% in South Asians to +32% in

Africans, consistent with simulations. We applied PolyPred+ to 23 diseases/traits in UK Biobank

East Asians using both UK Biobank British and Biobank Japan training data, and observed improve-

ments of +24% vs. BOLT-LMM and +12% vs. PolyPred. Summary statistic-based analogues of

PolyPred and PolyPred+ attained similar improvements.

4.1 Introduction

Polygenic risk scores (PRS) can identify individuals at elevated risk of complex diseases, provid-

ing opportunities for preventative action 31,32,282–285. However, many studies have shown that

PRS based on European training data attain lower accuracy when applied to populations of non-

European ancestry 41–60. This loss of accuracy is primarily driven by LD differences 46–49, allele

frequency differences (including population-specific SNPs) 47,48,61, and causal effect size differ-

ences 46–48,62–65, though differences in heritability also play a minor role 47,48,66. PRS based on non-

European training data do not suffer from these limitations, but are currently limited by much
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smaller training sample sizes 31,35,46–49,55 (however, lower non-European target sample sizes do

not impact prediction accuracy). The development of new methods to reduce this gap in cross-

population PRS accuracy has the potential to ameliorate health disparities 47.

Here, we propose PolyPred, which linearly combines two complementary predictors derived

from European training data: (1) PolyFun-pred, a new predictor that circumvents LD differences by

applying genome-wide functionally informed fine-mapping 13,118 to precisely estimate causal effects

(instead of tagging effects); and (2) BOLT-LMM 109,159, a published predictors that analyzes all loci

jointly and can capture all signals in extremely polygenic loci. BOLT-LMM requires individual-level

training data. If individual-level training data is not available, we propose two analogous methods:

(i) PolyPred-S, which linearly combines PolyFun-pred with SBayesR 36, and (ii) PolyPred-P, which

linearly combines PolyFun-pred with PRS-CS 37. Recommendations for when to use PolyPred,

PolyPred-S, or PolyPred-P are provided below.

In the special case where there exists a large (e.g., N ≥ 50K) non-European training sample from

the target population (or a closely related population), we propose PolyPred+, a polygenic predic-

tion method that leverages both European and non-European training data. PolyPred+ linearly

combines (1) PolyFun-pred; (2) BOLT-LMM; and (3) BOLT-LMM-pop, which is obtained by ap-

plying BOLT-LMM to the non-European training data, addressing MAF differences and causal

effect size differences. If individual-level training data is not available, we propose the alternative

methods PolyPred-S+ and PolyPred-P+, which replace BOLT-LMM with either SBayesR or PRS-

CS, respectively. Recommendations for when to use PolyPred+, PolyPred-S+, or PolyPred-P+ are

provided below.

We compared PolyPred and PolyPred+ (and their summary statistic-based analogues) to state-

of-the-art polygenic prediction methods via simulations and analyses of 49 diseases and complex

traits in 4 populations from the UK Biobank 76, additionally incorporating Biobank Japan 170 and

Uganda-APCDR 286,287 to increase non-European training sample size and avoid cohort effects.
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We conclude that PolyPred and its summary statistic-based analogues substantially increase cross-

population polygenic prediction accuracy, and that PolyPred+ and its summary statistic-based

analogues further increases cross-population prediction accuracy in the special case where non-

European training data is available in large sample size.

4.2 Results

4.2.1 Overview of Methods

PolyPred combines two complementary predictors: PolyFun-pred and BOLT-LMM (Table 4.1

and Fig. 4.1a). PolyFun-pred is a new predictor that leverages genome-wide functionally informed

fine-mapping 13,118 to estimate posterior mean causal effects (instead of tagging effects; see D.1 Sup-

plementary Note) for all SNPs with European MAF ≥ 0.1% (18 million SNPs in this study) by

applying PolyFun + SuSiE 118 to European training data across 2,763 overlapping 3Mb loci. Lever-

aging fine-mapped posterior mean causal effects for cross-population polygenic prediction aims to

address LD differences between populations. BOLT-LMM 109,159 is a published predictor that es-

timates posterior mean tagging effects of common SNPs (1.2 million HapMap 3 SNPs 288 in this

study) using European individual-level training data. Combining PolyFun-pred with BOLT-LMM

is advantageous because they have complementary advantages: PolyFun-pred estimates causal effects

rather than tagging effects. BOLT-LMM estimates tagging effects, but it analyzes all loci jointly and

it can potentially capture all signals in extremely polygenic loci (4.4 Methods).

In the special case where a large training sample is available in the target population (or a closely

related population), we propose PolyPred+, which combines three complementary predictors:

PolyFun-pred, BOLT-LMM, and BOLT-LMM-pop (Table 4.1 and Fig. 4.1b); BOLT-LMM-pop

refers to application of BOLT-LMM to common SNPs (1.2 million HapMap 3 SNPs in this study)

using training data from the non-European target population, addressing MAF differences and
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Figure 4.1: Overview of PolyPred and PolyPred+. a, Overview of PolyPred. PolyPred linearly combines the effect sizes
of BOLT‐LMM (βBOLT‐LMM) and PolyFun‐pred (βPolyFun‐pred) (trained using European training data). It uses a small training
sample from the target population to estimate mixing weights (ω1, ω2) for the constituent methods. b, Overview of
PolyPred+. PolyPred+ linearly combines the effect sizes of BOLT‐LMM (βBOLT‐LMM), PolyFun‐pred (βPolyFun‐pred) (trained
using European training data) and BOLT‐LMM‐pop (βBOLT‐LMM‐pop) (trained using non‐European training data from the
target population). It uses a small training sample from the target population to estimate mixing weights (ω1, ω2, ω3) for
the constituent methods. PolyPred‐S and PolyPred‐P (respectively, PolyPred‐S+ and PolyPred‐P+) replace all instances
of BOLT‐LMM with SBayesR or PRS‐CS, respectively.
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Table 4.1: Summary of main methods evaluated.

Method Constituent methods SNP set Training data Fine-mapped
effect sizes

Summary
statistics

Ref.

P+T - All (18 million) Eur No Yes 289,290

BOLT-LMM - HapMap 3 (1.2 million) Eur No No 109,159

SBayesR - HapMap 3 (1.2 million) Eur No Yes 36

PRS-CS - HapMap 3 (1.2 million) Eur No Yes 37

PolyPred PolyFun-pred, BOLT-LMM All (18 million) Eur Yes No This work
PolyPred-S PolyFun-pred, SBayesR All (18 million) Eur Yes Yes This work
PolyPred-P PolyFun-pred, PRS-CS All (18 million) Eur Yes Yes This work
PolyPred+ PolyFun-pred, BOLT-LMM, BOLT-LMM-pop All (18 million) Eur + target pop Yes No This work
PolyPred-S+ PolyFun-pred, SBayesR, SBayesR-pop All (18 million) Eur + target pop Yes Yes This work
PolyPred-P+ PolyFun-pred, PRS-CS, PRS-CS-pop All (18 million) Eur + target pop Yes Yes This work

For each method we report its constituent methods (or “‐” for individual methods), the set of SNPs analyzed in model

training using UK Biobank training data (and its size when restricted to imputed UK Biobank SNPs with European MAF

≥ 0.1% and INFO score ≥ 0.6), the training data analyzed, whether it incorporates fine‐mapped effect sizes (as opposed

to tagging effect sizes), whether it can work with summary statistics, and the corresponding reference. Eur: European;

target pop: non‐European target population; Method‐pop: Method applied to training data from non‐European target

population.

causal effect size differences.

PolyPred computes linear combinations of the estimated effect sizes of their constituent predic-

tors:

β̂i
PolyPred(+)

=
∑
j
wj ˆβji, (4.1)

where i indexes SNPs, j indexes the constituent predictors (PolyFun-pred and BOLT-LMM for

PolyPred;PolyFun-pred, BOLT-LMM and BOLT-LMM-pop for PolyPred+), β̂i
PolyPred(+)

is the

PolyPred (+) per-allele effect size of SNP i, wj are method-specific weights, and ˆβji is the per-allele

effect size of SNP i for method j (or 0 if SNP i was not considered by method j). Predicted pheno-

types are computed by applying effect sizes to target genotypes:

ŷ =
∑
i
xiβ̂i

PolyPred(+)
(4.2)

where ŷ is the predicted phenotype of an individual from the target population and xi is the number

of minor alleles of SNP i carried by the individual. The mixing weights wj in Equation 4.1 are esti-

mated via non-negative least squares regression using a small number of training individuals from
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the target population (500 in this study), regressing true phenotypes on a linear combination of the

constituent predictors (which are computed as in Equation 4.2).

PolyPred requires individual-level training data for its BOLT-LMM component. If only sum-

mary statistics (and summary LD information) are available, we propose two analogous meth-

ods (Table 4.1): (i) PolyPred-S, which linearly combines PolyFun-pred and SBayesR 36; and (ii)

PolyPred-P, which linearly combines PolyFun-pred and PRS-CS 37. We also propose the analogous

methods PolyPred-P+ and PolyPred-S+ (Table 4.1). Further details of PolyPred and PolyPred+

(and their summary statistic-based analogues) are provided in 4.4 Methods; we have publicly re-

leased open-source software implementing these methods (see 4.6 Code availability).

We evaluate prediction accuracy for each method and target population using relative-R2, de-

fined as the R2 obtained in the target non-European population (after correcting for covariates

and potential confounders; see 4.4 Methods) divided by the R2 obtained by BOLT-LMM in UK

Biobank non-British Europeans (employing the same correction), using the same training data for

the numerator and the denominator. This quotient transforms the prediction accuracies from an

absolute scale to a scale of relative improvement (vs. the BOLT-LMM predictor in the UK Biobank

non-British European target population), which is invariant to factors such as training sample size

and trait heritability. For disease traits, we additionally evaluated the area under the receiving oper-

ating characteristic. We provide further details in the 4.4 Methods section. We compare PolyPred

and PolyPred+ (and their summary statistic-based analogues) to 4 published methods: LD-pruning

+ P-value thresholding (P+T) 289,290, BOLT-LMM 109,159, SBayesR 36, and PRS-CS 37 (Table 4.1).

Our recommendation for which version of PolyPred to use (Table 4.1) depends on three factors:

(i) whether individual-level training data is available; (ii) the size and consistency of matched an-

cestry of the LD reference panel (if individual-level training data is not available); and (iii) whether

non-European training data is available. Our results for the underlying constituent methods are

summarized in Table 4.2 (detailed below), and our recommendations are summarized in Fig. 4.2.
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Table 4.2: Summary of the relative performance of constituent PRS methods.

LD BOLT-LMM SBayesR PRS-CS Figure(s)/Table(s)
Individual-level data (UKB, N=337K) ✓✓ ✓ ✓ Fig. 4.3,4.4,4.4
In-sample LD (UKB, N=337K) — ✓✓ ✓ Fig. 4.3,4.4,4.4
Very large unmatched LD (UKB, N=337K) — ✓ ✓✓ Fig. 4.5
Small unmatched LD (1000G, N=489) — 7 ✓✓* Supplementary Tables D.4–D.6

For each of three constituent PRS methods (BOLT‐LMM, SBayesR, PRS‐CS) we report its relative performance in prediction in UK Biobank non‐British
Europeans under various settings; we also provide links to the corresponding Figure(s)/Table(s). ✓✓: the method is significantly more accurate
than the second best method in the same row, and combining this method with PolyFun‐pred increases prediction accuracy;✓✓*: the method is
significantly more accurate than the second best method in the same row, and combining this method with PolyFun‐pred does not increase pre‐
diction accuracy;✓: the method is significantly less accurate than the best method in the same row, but is significantly more accurate than P+T;
7: the method is not significantly more accurate than P+T; —: the method is not applicable, because it requires individual‐level data. For very large
unmatched LD (a likely scenario when analyzing summary statistics from a meta‐analysis of many cohorts), we performed real trait analyses only, as
simulations would have required another very large individual‐level data set in addition to UK Biobank (see D.1 Supplementary Note). For individual‐
level data, the difference between BOLT‐LMM and the second‐best method was significant in simulations but non‐significant in real trait analyses.
For In‐sample LD, the difference between SBayesR and PRS‐CS was significant in simulations but non‐significant in real traits analyses. For very large
unmatched LD (a likely scenario when analyzing summary statistics from a meta‐analysis of many cohorts), we performed real trait analyses only (see
explanation in D.1 Supplementary Note). For small unmatched LD, we performed both simulations and real trait analyses but report results of real trait
analyses, which we believe to be most reflective of real‐life settings (in simulations, SBayesR was significantly more accurate than PRS‐CS). Results
for non‐European target populations from UK Biobank were similar, though some of the differences were not statistically significant due to smaller
prediction accuracies and sample sizes. We have facilitated the use of very large LD reference panels for European training data by publicly releasing
summary LD information forN = 337K British‐ancestry UK Biobank samples across 18 million SNPs (see 4.5 Data availability).

European training dataa European training data + non-European training datab

Is individual-level training data available?

Is a very large LD reference panel 
(N > 50,000) available?

PRS-CS PolyPred-P PolyPred-S PolyPred

Does the LD reference panel population 
closely match the GWAS population?

Yes

No

No

Yes

No Yes

Is individual-level training data available?

Is a very large LD reference panel 
(N > 50,000) available?

PRS-CS PolyPred-P+ PolyPred-S+ PolyPred+

Does the LD reference panel population 
closely match the GWAS population?

Yes

No

No

Yes

No Yes

Figure 4.2: Recommendations for the application of PolyPred, PolyPred+ and related methods. a, Flowchart of recom‐
mendations when only European training data are available. b, Flowchart of recommendations when both European and
non‐European training data are available. We note that, when working with summary statistics from a meta‐analysis of
many cohorts, there is typically no LD reference panel that closely matches the GWAS population. Also, it is possible
that the answers to the flowchart questions are different for European versus non‐European training data, in which
case the recommendation would be to use a hybrid method based on the answers to each flowchart in turn (for ex‐
ample, PolyFun‐pred + BOLT‐LMM + PRS‐CS‐pop; not listed in Table 4.1). For both a and b, we recommend training
PolyFun‐pred using a very large LD reference panel (for example, n = 337,000 UK Biobank British) with a dense SNP set
(for example, 8 million SNPs). We have facilitated this by publicly releasing summary LD information for n = 337,000
British‐ancestry UK Biobank samples across 18 million SNPs (4.5 Data availability).
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4.2.2 Simulations with in-sample LD

We compared PolyPred, PolyPred-S and PolyPred-P to P+T, BOLT-LMM, SBayesR, and PRS-CS

via simulations, using real genotypes or in-sample LD from the UK Biobank 76. We trained each

method using 337,491 unrelated British-ancestry individuals 76, and computed predictions in four

target populations: non-British Europeans, South Asians, East Asians, and Africans. We estimated

mixing weights for PolyPred, PolyPred-S and PolyPred-P using 500 individuals from the target pop-

ulation. We evaluated prediction accuracy using held-out individuals from each target population

that were not included in the training sets: 42K non-British Europeans, 7.7K South Asians, 0.9K

East Asians, and 6.2K Africans. We computed PRS using 250,963 MAF ≥ 0.1 % SNPs with INFO

score ≥ 0.6 on chromosome 22.

Generative trait architectures were specified as follows. We simulated traits with polygenicity

(genome-wide proportion of causal SNPs) equal to either 0.1% (less polygenic) or 0.3% (more poly-

genic) and heritability equal to 5%. We specified prior causal probabilities for each SNP in propor-

tion to per-SNP heritabilities, which we generated for each SNP based on its British LD, MAF, and

functional annotations, using the baseline-LF model 161. For each causal SNP, we sampled ancestry-

specific causal effect sizes from a multivariate normal distribution assuming cross-population ge-

netic correlations of 0.8 (ref. 47,64). Other parameter settings were explored in secondary analyses

(see below).

We computed relative-R2 for each method, target population, and trait architecture, averaged

across 100 simulations. In addition to the simulations with in-sample LD described below, we also

performed simulations with reference panel LD (D.1 Supplementary Note; also see Table 4.2).

Further details of the simulation framework are provided in 4.4 Methods.

The simulation results are reported in Fig. 4.3 and Supplementary Tables D.1 (also see Ta-

ble 4.2). PolyPred was the most accurate method in each target population, with relative improve-

127



ments vs. BOLT-LMM (resp. P-values for improvement) ranging from +13% in non-British Eu-

ropeans (P < 10−16) to +65% in Africans (P < 10−16) for the less polygenic architecture, and

from +2% in non-British Europeans (P = 0.0001) to +17% in Africans (P = 10−8) for the

more polygenic architecture. PolyPred-S and PolyPred-P performed slightly worse than PolyPred,

but were substantially and significantly more accurate than their corresponding constituent meth-

ods. Among the remaining methods, BOLT-LMM was consistently the most accurate and P+T

was consistently the least accurate method, far underperforming the other methods (despite its

widespread recent use 45,47–52,57,65,175,291–294). We note that the higher accuracy of BOLT-LMM

vs. SBayesR and PRS-CS does not imply that BOLT-LMM is a superior method, as BOLT-LMM

analyzes individual-level training data whereas SBayesR and PRS-CS analyze summary statistics.

We additionally performed many secondary analyses to investigate the sensitivity of the results

to the simulation parameters, the SNP set and the functional annotations, and to evaluate the com-

putational cost and memory cost of each method (D.1 Supplementary Note, Supplementary

Tables D.1,D.2).

We conclude that PolyPred and its summary statistic- based analogues are more accurate than

BOLT-LMM, SBayesR, PRS-CS, and P+T, with small but significant improvements vs. BOLT-

LMM in Europeans and substantial improvements in Africans.

4.2.3 PRS in 4 UK Biobank populations using British training data

We applied PolyPred and its summary statistic-based analogues to 49 diseases and complex traits

from the UK Biobank, analyzing 4 target populations (4.4 Methods, Supplementary Table D.3).

As in our simulations, we used UK Biobank British training data (average N = 325K) to estimate

SNP effect sizes; used 500 additional individuals from the target population to estimate mixing

weights; evaluated prediction accuracy using individuals from each of the 4 target populations that

were not included in the training data: 42K non-British Europeans, 7.7K South Asians, 0.9K East
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Figure 4.3: Cross‐population PRS results for simulated UK Biobank traits using in‐sample LD.We report average predic‐
tion accuracy (relativeR2; see text) for PRSs trained in UK Biobank British samples (n = 337,000) and applied to four
UK Biobank target populations across 100 simulated traits with less polygenic (0.1% of SNPs causal; left panel) or more
polygenic (0.3% of SNPs causal; right panel) architectures. Target population sample sizes are indicated in parentheses;
PolyPred and its summary statistics‐based analogs used 500 additional training samples from each target population to
estimate mixing weights. Asterisks above each bar denote statistical significance of the difference versus BOLT‐LMM,
with black asterisks denoting an advantage and red asterisks a disadvantage (*P < 0.05; **P < 0.001). P values were
computed using a two‐sided Wald’s test and were not adjusted for multiple comparisons. Error bars denote s.e. Numeri‐
cal results, absolute prediction accuracies (R2) and P values of relative improvements versus BOLT‐LMM are reported in
Supplementary Table D.1.

Asians, and 6.2K Africans; and compared PolyPred and its summary statistic-based analogues to

P+T, BOLT-LMM, SBayesR, and PRS-CS. We meta-analyzed relative-R2 across traits by restricting

to 7 well-powered, independent complex traits from the UK Biobank 76 (|rg| < 0.3; see 4.4 Methods

and Supplementary Table D.3) that were also available in Biobank Japan and in Uganda-APCDR

(see below). We have publicly released SNP effect sizes used for prediction for each of the 4 methods

(see 4.5 Data availability).

We computed relative-R2 for each method and target population. The results are summarized

in Fig. 4.4 and provided in Supplementary Tables D.4–D.6 (also see Table 4.2). Among the pub-

lished methods, BOLT-LMM attained the highest prediction accuracy in all target populations (dif-

ferences between BOLT-LMM and SBayesR were small and not statistically significant). P+T was

much less accurate than the other methods (despite its widespread recent use1 45,47–52,57,65,175,291–294),

suffering relative losses of 37-50% vs. BOLT-LMM. We thus used BOLT-LMM as a benchmark.

129



Among all 7 methods, PolyPred attained the highest prediction accuracy in each target popu-

lation. Improvements in average relative-R2 of PolyPred vs. BOLT-LMM were equal to +7.5% in

non-British Europeans (P = 0.05), +6.8% in South Asians (P = 0.02), +11% in East Asians

(P = 0.12) and +32% in Africans (P = 0.02). The larger improvement in Africans reflects the

larger LD differences vs. British training data, due to earlier divergence times 47,48,295. The lack of

statistical significance in East Asians reflects the low power to detect significant differences in very

small target samples. PolyPred-S and PolyPred-P were consistently the second and third most accu-

rate methods, respectively, with statistically significant improvements vs. their constituent methods.

We additionally verified that PolyPred was well-calibrated (i.e., regressing the true phenotype on the

predicted phenotype yields a slope of 1) in all target populations, whereas the alternative methods

were not always well-calibrated (Supplementary Tables D.4–D.6, D.1 Supplementary Note).

Despite the improvements attained by PolyPred, the reductions in prediction accuracy in non-

European populations remained significant (P < 0.002), with meta-analyzed absolute R2 equal

to 0.17 in non-British Europeans, 0.11 in South Asians, 0.093 in East Asians, and 0.053 in Africans

(4.4 Methods, Supplementary Tables D.4,D.5).

As a secondary analysis, we meta-analyzed the results of each method across three independent

diseases: type 2 diabetes, asthma, and all autoimmune disease (4.4 Methods); these diseases were

not included in our primary meta-analyses due to low heritabilities. PolyPred attained the highest

prediction accuracy for each target population and each disease, except for East Asians (where stan-

dard errors were large due to the small sample size) and for type 2 diabetes in non-British Europeans

(where BOLT-LMM performed slightly but non-significantly better) (Supplementary Table D.4).

We performed additional secondary analyses to evaluate the impact of the LD reference panel and

the SNP set on prediction accuracy, to evaluate additional methods, and to evaluate the results

when modifying the parameters of PolyPred and the other evaluated methods (D.1 Supplemen-

tary Note, Supplementary Tables D.4–D.7).
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Figure 4.4: Cross‐population PRS results for real UK Biobank traits. We report average prediction accuracy (relative
R2; see text), meta‐analyzed across seven well‐powered, independent traits, for PRSs trained in UK Biobank British
samples (average n = 325,000) and applied to four UK Biobank target populations. Target population sample sizes
are indicated in parentheses; PolyPred and its summary statistics‐based analogs used 500 additional training samples
from each target population to estimate mixing weights. Asterisks above each bar denote statistical significance of the
difference versus BOLT‐LMM, with black asterisks denoting an advantage and red asterisk a disadvantage (*P < 0.05;
**P < 0.001). P values were computed using a two‐sided Wald’s test and were not adjusted for multiple comparisons.
Error bars denote s.e. Numerical results, results for all 49 traits analyzed, absolute prediction accuracies (R2) and P
values of relative improvements versus BOLT‐LMM are reported in Supplementary Tables D.4–D.6.

We conclude that PolyPred and its summary statistic-based analogues substantially increase

cross-population polygenic prediction accuracy vs. published methods (with a particularly large

improvement in Africans), consistent with simulations. However, there remains a large gap in cross-

population polygenic prediction accuracy as compared to Europeans.

4.2.4 PRS using ENGAGE meta-analysis training data

We sought to analyze training data consisting of summary statistics for real traits from a meta-

analysis of many European cohorts, for which in-sample LD is generally not available. We analyzed

8.1 million meta-analyzed summary statistics from the European Network for Genetic and Ge-

nomic Epidemiology (ENGAGE) consortium 296–298 for four traits (BMI, waist-hip-ratio (adjusted

for BMI), total cholesterol, and triglycerides; average N = 61,365), and evaluated the prediction ac-

curacy using the same four UK Biobank populations analyzed previously. For each method, we used

an LD reference panel based on UK Biobank British individuals; we emphasize that unlike the other
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primary analyses, the LD reference panel was misspecified, because it was not based on in-sample

LD. We excluded methods that require individual-level training data (BOLT-LMM and PolyPred)

from this analysis.

The results are summarized in Supplementary Fig. D.1 and reported in Supplementary Ta-

bles D.5,D.8 (also see Table 4.2). Briefly, PolyPred-P was generally the most accurate method, and

PRS-CS outperformed SBayesR (with a significant improvement for non-British Europeans and

Africans), consistent with a previous study 299 (unlike our analysis of UK Biobank training data,

where SBayesR outperformed PRS-CS; Fig. 4.4). However, differences between similarly perform-

ing methods were generally not statistically significant (due to moderately large standard errors),

and thus caution should be exercised in their interpretation; for this reason, we did not perform

secondary analyses to further assess differences between methods.

We conclude that PolyPred-P can increase cross-population polygenic prediction accuracy vs.

published methods when analyzing summary statistics from a meta-analysis of many cohorts.

4.2.5 PRS in Biobank Japan and Uganda-APCDR cohorts

We applied PolyPred and its summary statistic-based analogues to predict 23 diseases and com-

plex traits in Biobank Japan 170 and 7 complex traits in Uganda-APCDR, an African-ancestry co-

hort 286,287 (4.4 Methods, Supplementary Table D.3). We performed these experiments to avoid

training effect sizes and testing predictions in the same cohort, which may produce inflated predic-

tion accuracies 35,300–302. We again used UK Biobank British training data (average N =325K) to

estimate SNP effect sizes, and used 500 individuals from the target population to estimate mixing

weights. We evaluated prediction accuracy using individuals from each of the 2 target cohorts that

were not included in the training data: 5K Biobank Japan individuals and 1.3K Uganda-APCDR

individuals. We again compared PolyPred and its summary statistic-based analogues to P+T, BOLT-

LMM, SBayesR, and PRS-CS. We meta-analyzed relative-R2 across the same 7 well-powered, inde-

132



pendent complex traits used in the UK Biobank analyses (Supplementary Table D.3).

The results are summarized in Fig. 4.5 and reported in Supplementary Tables D.5,D.9. Among

the published methods, we again observed that BOLT-LMM attained the highest prediction accu-

racy in each target population, and that P+T was substantially less accurate than the other methods.

Among all 7 methods, PolyPred attained the highest prediction accuracy in Biobank Japan, and

PolyPred-P attained the highest prediction accuracy in Uganda-APCDR (although the difference

between PolyPred and PolyPred-P in Uganda-APCDR was not statistically significant). Improve-

ments of PolyPred vs. BOLT-LMM in average relative-R2 were equal to +13% in Biobank Japan

(P = 2 × 10−6) and +22% in Uganda-APCDR (P = 0.26), similar to our UK Biobank results

above. We observed similar improvements for PolyPred-S vs. SBayesR and PolyPred-P vs. PRS-

CS (both of which were statistically significant in Biobank Japan). Prediction accuracy for each

method was much smaller in Biobank Japan and Uganda-APCDR (e.g. 0.32 and 0.11 for PolyPred;

Fig. 4.5) than in UK Biobank East Asians and UK Biobank Africans (0.62 and 0.34; Fig. 4.4), likely

due to higher SNP-heritabilities in the UK Biobank (see below). We also applied PolyPred+ and its

summary statistic-based analogues to Biobank Japan, incorporating additional Biobank Japan train-

ing data (average N = 124K), with the caveat that this analysis involved training and testing in the

same cohort (4.4 Methods). PolyPred+ attained increased prediction accuracy, with a further +23%

improvement vs. PolyPred (P = 0.0004), with similar results for PolyPred-S+ and PolyPred-P+

(Supplementary Tables D.5,D.9).

We performed additional experiments to investigate the above result of decreased prediction

accuracy in Biobank Japan vs. UK Biobank East Asians. We matched the BOLT-LMM British

training sample size to the Biobank Japan training sample size, and obtained a relative-R2 in UK

Biobank non-British Europeans (using UK Biobank British training samples) +108% larger than in

Biobank Japan (using Biobank Japan training samples), consistent with the +104% increase expected

from theory61,62 based on the +67% higher SNP-heritabilities in UK Biobank (Supplementary
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Figure 4.5: Cross‐population PRS results for Biobank Japan and Uganda‐APCDR traits. We report average prediction
accuracy (relativeR2; see text), meta‐analyzed across seven well‐powered, independent traits, for PRSs trained in UK
Biobank British samples (average n = 325,000) and applied to Biobank Japan and Uganda‐APCDR target populations.
Target population sample sizes are indicated in parentheses; PolyPred and its summary statistics‐based analogs used
500 additional training samples from each target population to estimate mixing weights. Asterisks above each bar
denote statistical significance of the difference versus BOLT‐LMM, with black asterisks denoting an advantage and
red asterisks a disadvantage (*P < 0.05; **P < 0.001). P values were computed using a two‐sided Wald’s test
and were not adjusted for multiple comparisons. Error bars denote the s.e. Numerical results, results for all 23 traits
analyzed, absolute prediction accuracies (R2) and P values of relative improvements versus BOLT‐LMM are reported in
Supplementary Table D.9.

Table D.10, D.1 Supplementary Note). This suggests that differences in SNP-heritability due

to ancestry or cohort differences may explain most of the differences in prediction accuracies ob-

served between the UK Biobank and Biobank Japan. Further experiments and interpretation are

provided in the D.1 Supplementary Note. We performed 6 additional secondary analyses to eval-

uate the sensitivity of the results to various factors (D.1 Supplementary Note, Supplementary

Tables D.5,D.9).

We conclude that PolyPred and its summary statistic-based analogues substantially increase cross-

population polygenic prediction accuracy vs. published methods when applied to target cohorts

different from the training cohort.

4.2.6 PRS in East Asians using British and Japanese training data

We applied PolyPred+ and its summary statistic-based analogues to predict 23 diseases and com-

plex traits in UK Biobank East Asians using UK Biobank British and Biobank Japan training data
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(Supplementary Table D.3). We performed this experiment to explore the special case where

non-European training data is available in large sample size from a population that is genetically

similar to the target population, in a cohort that is distinct from the target cohort (previous stud-

ies considered only European training data or analyzed non-European training data from the tar-

get cohort 45,47–51). We note that this experiment is still imperfect in that the European training

data and non-European target data are from the same cohort (UK Biobank); however, we believe

that cohort effects would deflate rather than inflate the relative improvement of PolyPred+ vs.

other methods, since they would confer an advantage to the European training data but not the

non-European training data. We used UK Biobank British training data (average N = 325K) and

Biobank Japan training data (average N = 124K) to estimate SNP effect sizes. We again used 500

individuals from the target population to estimate mixing weights, and evaluated prediction accu-

racy using 900 UK Biobank East Asians that were not included in the training data. We compared

PolyPred, PolyPred+, and their summary statistic-based analogues to P+T, BOLT-LMM, SBayesR,

and PRS-CS (4.4 Methods). We meta-analyzed relative-R2 across the same 7 well-powered, inde-

pendent complex traits used in the previous analyses (Supplementary Table D.3).

The results are summarized in Fig. 4.6 and reported in Supplementary Tables D.4–D.6. PolyPred+

attained the highest prediction accuracy, with a +24% improvement vs. BOLT-LMM (P = 0.0009)

and a +12% improvement vs. PolyPred (P = 0.0014). This implies that incorporating non-

European training data can provide a substantial advantage, if it is available in large sample size.

Results for PolyPred-S+ (vs. SBayesR and PolyPred-S) and PolyPred-P+ (vs. PRS-CS and PolyPred-

P) were similar. We emphasize that the +12% improvement for PolyPred+ vs. PolyPred should be

viewed as a lower bound on the improvement that would be obtained in settings without cohort

effects that may confer an advantage to the European training data. We performed additional sec-

ondary analyses to evaluate the sensitivity of the results to various factors (D.1 Supplementary

Note, Supplementary Tables D.4–D.6).
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Figure 4.6: Cross‐population PRS results for UK Biobank east Asians when incorporating both European and non‐
European training data. We report average prediction accuracy (relativeR2; see text), meta‐analyzed across seven
well‐powered, independent traits, for PRSs trained in UK Biobank British (average n = 325,000) and Biobank Japan sam‐
ples (average n = 124,000; used by PolyPred+ and its summary statistics‐based analogs only) and applied to UK Biobank
east Asians. The target population sample size is indicated in parentheses; PolyPred, PolyPred+ and their summary
statistics‐based analogs used 500 additional training samples from the target population to estimate mixing weights. As‐
terisks above each bar denote statistical significance of the difference versus BOLT‐LMM, with black asterisks denoting
an advantage and red asterisks a disadvantage (*P < 0.05; **P < 0.001). P values were computed using a two‐sided
Wald’s test and were not adjusted for multiple comparisons. Error bars denote the s.e. Numerical results, results for all
23 traits analyzed, absolute prediction accuracies (R2) and P values of relative improvements versus BOLT‐LMM are
reported in Supplementary Tables D.4–D.6.

We conclude that PolyPred+ and its summary statistic-based analogues further increase cross-

population prediction accuracy in the special case where non-European training data from the

target population (or a closely related population) is available in large sample size. We emphasize

that efforts to assess the benefit of incorporating non-European training data should analyze non-

European training data from a cohort that is distinct from the target cohort, otherwise results may

be inflated due to cohort effects.

4.3 Discussion

We have introduced PolyPred, which improves cross-population polygenic risk prediction by incor-

porating causal effects in addition to tagging effects, addressing cross-population LD differences.

Across seven well-powered independent traits, PolyPred significantly increased prediction accuracy

over BOLT-LMM by 32% in UK Biobank Africans and by 13% in Biobank Japan (with similar re-
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sults vs. SBayesR and PRS-CS). In the special case where a large training sample is available in the

non-European target population (or a closely related population), we have introduced PolyPred+,

which further incorporates the non-European training data, addressing MAF differences and causal

effect size differences. PolyPred+ significantly increased prediction accuracy in UK Biobank East

Asians over BOLT-LMM by 24% (and over PolyPred by 12%). PolyPred and PolyPred+ require

individual-level training data (for their BOLT-LMM component), but we have also introduced sum-

mary statistic-based analogues of PolyPred and PolyPred+ in cases where individual-level training

data is not available; specific recommendations are provided in Fig. 4.2 (also see Table 4.2). In con-

clusion, PolyPred and its summary statistic-based analogues substantially improve cross-population

polygenic prediction accuracy, ameliorating health disparities 47. We have publicly released the PRS

coefficients for all SNPs and traits analyzed under all evaluated methods (see 4.5 Data availability).

Although we substantially improved cross-population PRS accuracy over the state of the art, pre-

diction accuracy in non-Europeans is still substantially lower compared to Europeans, even within

the UK Biobank. There are two reasons for the remaining accuracy gap. First, European sample

sizes are still limited, which limits the ability of PolyFun-pred to estimate causal rather than tagging

effects. Second, non-European sample sizes are limited, which limits the ability of BOLT-LMM ap-

plied to non-European samples to estimate tagging effects. Even with an infinite European training

sample, which allows estimating causal effects perfectly (thus addressing LD differences), prediction

accuracy could still be higher for Europeans vs. non-Europeans due to cross-population genetic cor-

relations less than 1 47,64,244,303 and different allele frequencies (including population-specific SNPs)

(D.1 Supplementary Note). Hence our theory and results confirm that larger non-European

GWAS are the best way to further improve PRS accuracy in non- European populations 43,44,46,47,55.

Our work has several limitations, providing opportunities for future work. First, we did not eval-

uate a setting where the British training data, the non-British training data, and the target popula-

tion are sampled from three different cohorts. Second, PolyPred requires a large number of imputed
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SNPs (e.g. 8.1 million SNPs in the ENGAGE analysis) to perform fine-mapping, motivating the

need for large cross-population imputation panels. Third, it may be possible to improve PRS accu-

racy for admixed individuals by using European effect sizes for European alleles and non-European

effect sizes for non-European alleles 50,51. Fourth, PolyPred and its summary statistic-based ana-

logues are slower than alternative PRS methods (D.1 Supplementary Note). Fifth, PolyPred can-

not use data from a fixed-effects meta-analysis of GWAS data of different populations (D.1 Supple-

mentary Note). Sixth, PolyPred requires a small training sample from the target cohort to maintain

calibrated predictions (D.1 Supplementary Note). Seventh, PolyPred prediction accuracy could

in principle be improved if it were possible to decompose its constituent predictors into shared

and non-shared components (D.1 Supplementary Note). Despite all these limitations, PolyPred

and PolyPred+ and their summary statistic-based analogues provide a clear improvement for cross-

population polygenic risk prediction.

4.4 Methods

4.4.1 PolyPred and its summary statistic-based analogues

All methods in this paper use a linear PRS, i.e., ŷ =
∑

i xiβ̂i, where ŷ is the PRS of an individual, xi

is the number of minor alleles of SNP i carried by that individual, and β̂i is the estimated per-allele

causal effect size of SNP i. The methods differ in the way they estimate β̂i.

PolyPred and PolyPred+ both combine the methods PolyFun-pred and BOLT-LMM; PolyPred-

S and PolyPred-S+ both combine the methods PolyFun-pred and SBayesR; and PolyPred-P and

PolyPred-P+ both combine the methods PolyFun-pred and PRS-CS. PolyFun-pred estimates β̂i as

the (approximate) data, using 187 functional annotations to specify prior causal probabilities (see

below). BOLT-LMM (resp. SBayesR and PRS-CS) estimates tagging effects (D.1 Supplementary

Note) of HapMap 3 SNPs by applying BOLT-LMM 109,159 (resp. SBayesR 36 and PRS-CS 37) to
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European training data. BOLT-LMM (resp. SBayesR) treats the effect of each SNP i as a random

effect sampled from a mixture of two (resp. four) zero-mean normal distributions, whose variances

and mixture weights are determined in a data-driven manner. PRS-CS treats the effect of each SNP i

as a random effect sampled from a continuous shrinkage prior distribution.

PolyPred and its summary statistic-based analogues compute the effect size of each SNP i that

is either in HapMap 3 or has a European MAF ≥ 0.1% and INFO score ≥ 0.6 as a weighted combi-

nation of (1) its PolyFun-pred effect size based on European training data; and (2) its BOLT-LMM

(resp. SBayesR and PRS-CS) effect size based on European training data:

β̂i
PolyPred(-S)

= wPolyFun-pred · β̂i
PolyFun-pred

+ wBOLT-LMM/SBayesR/PRS-CS · β̂i
BOLT-LMM/SBayesR/PRS-CS

where β̂i
PolyFun-pred

is the PolyFun-pred approximate posterior mean causal effect size of SNP i based

on European training data, β̂i
BOLT-LMM/SBayesR/PRS-CS

is the approximate posterior mean tagging

effect size of SNP i based on European training data using the indicated method (setting the ef-

fects of SNPs not in HapMap 3 to zero), and wPolyFun-pred, wBOLT-LMM/SBayesR/PRS-CS are mixing

weights. PolyPred estimates the mixing weights via non-negative least squares estimation (i.e., least

squares estimation constrained to produce to non-negative estimates) based on training individu-

als from the target cohort. Specifically, PolyPred (resp. PolyPred-S and PolyPred-P) estimates the

mixing weights by computing the PRS corresponding to the PolyFun-pred effect sizes (given by

ŷPolyFun-pred =
∑

i xiβ̂i
PolyFun-pred

) and the PRS corresponding to the BOLT-LMM (resp. SBayesR

and PRS-CS) effect sizes (given by ŷBOLT-LMM =
∑

i xiβ̂i
BOLT-LMM

), and then fitting the mixing

weights by regressing the true phenotypes yi of of the training individuals in the target cohort on the

PolyFun-pred and the BOLT-LMM (resp. SBayesR and PRS-CS) PRSs. The use of non-negative

least squares estimation guarantees that the correlation of the predicted phenotype with the true

phenotype is at least as large as the smallest of the correlations between each constituent predicted
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phenotype and the true phenotype.

PolyPred+ and its summary statistic-based analogues compute the effect size of each SNP i that is

either in HapMap 3 or has a European MAF ≥ 0.1% and INFO score ≥ 0.6 as a weighted combina-

tion of (1) its PolyFun-pred effect size based on European training data; (2) its BOLT-LMM (resp.

SBayesR and PRS-CS) effect size based on European training data; and (3) its effect size as estimated

by applying BOLT-LMM (resp. SBayesR and PRS-CS) to training data from the target population

(or a closely related population):

β̂i
PolyPred+

= wPolyFun-pred · β̂i
PolyFun-pred

+ wBOLT-LMM/SBayesR/PRS-CS · β̂i
BOLT-LMM/SBayesR/PRS-CS

+ wBOLT-LMM/SBayesR/PRS-CS-nonEur · β̂i
BOLT-LMM/SBayesR/PRS-CS-nonEur

where β̂i
BOLT-LMM/SBayesR/PRS-CS-nonEur

is the BOLT-LMM (resp. SBayesR or PRS-CS) approximate

posterior mean tagging effect of SNP i based on training data from the non-European population

(and set to zero for SNPs that are not in HapMap 3), and wBOLT-LMM/SBayesR/PRS-CS-nonEur is the

mixing weight of β̂i
BOLT-LMM/SBayesR/PRS-CS-nonEur

. The mixing weights are estimated as in PolyPred.

In practice, we apply PolyPred and its summary statistic-based analogues by linearly combining

the PolyFun-pred PRS and the BOLT-LMM (or SBayesR or PRS-CS) PRS (rather than linearly

combining the SNP effect sizes). The two procedures are almost mathematically identical, with the

only difference being that a linear combination of PRSs can also accommodate an intercept, which

explicitly bias-corrects the PRS to the target population.

We applied PolyFun-pred in the same way that we applied PolyFun + SuSiE in our previous

work 118. Briefly, we applied PolyFun-pred across 2,763 overlapping 3Mb loci (equally spaced start-

ing at chromosome 1, position 0) spanning 18,212,157 European MAF > 0.1% imputed SNPs

with INFO score > 0.6 (excluding the HLA and two other long-range LD regions) 118, assuming
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10 causal SNPs per locus. We used summary statistics computed by BOLT-LMM, based on up to N

= 337,491 unrelated British-ancestry UK Biobank individuals, and using summary LD information

estimated directly from the target samples. Full details are provided in ref. 118. We note that the use

of BOLT-LMM summary statistics is mathematically equivalent to regressing the target phenotypes

on BOLT-LMM off-chromosome PRS prior to applying PolyFun + SuSiE 109. We also note that

the use of 3Mb loci guarantees that for each SNP, the estimation of its causal effect size takes into

account virtually all relevant SNPs that may be in LD with that SNP (because LD in European pop-

ulations rarely ranges beyond 1Mb 229), allowing to disentangle its causal effect size from its tagging

effect size.

PRS methods that include non-common SNPs (MAF < 5%) may be sensitive to MAF-dependent

and LD-dependent architectures 111,161,304. Previous PRS methods have largely alleviated this

concern by discarding non-common SNPs instead of explicitly modeling their lower per-SNP

heritability 35–37,300,301,305–310. In contrast, PolyFun-pred accounts for MAF-dependent and LD-

dependent architectures by specifying SNP-specific prior causal probabilities based on the baseline-

LF model 161 (Supplementary Table D.11). In detail, PolyFun-pred uses 187 overlapping func-

tional annotations from the baseline-LF model (previously described in ref. 118), including 10 com-

mon MAF bins (MAF ≥ 0.05); 10 low-frequency MAF bins (0.05 > MAF ≥ 0.001); 6 LD-related

annotations for common SNPs; 5 LD-related annotations for low-frequency SNPs; 40 binary func-

tional annotations for common SNPs; 7 continuous functional annotations for common SNPs;

40 binary functional annotations for low-frequency SNPs; 3 continuous functional annotations

for low-frequency SNPs; and 66 annotations constructed via windows around other annotations 95

(Supplementary Table D.11).
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4.4.2 Estimating relative-R2 and its standard error

We measured prediction accuracy for each trait via a measure that we call relative-R2, defined via the

following computations:

1. Compute R2-PRS: the R2 obtained via a linear predictor that includes PRS, age, sex, age*sex

(if the correlation with age was < 0.95), UK Biobank assessment center (defined via dummy

binary variables), genotyping array, 10 principal components (computed separately for each

ancestry; see below), and dilution factor (for biochemical traits only).

2. Compute R2-noPRS, defined like R2-PRS but omitting the PRS

3. Compute R2-PRS-BOLT-EUR, computed by applying BOLT-LMM to UK Biobank non-

British Europeans as in step 1

4. Compute R2-noPRS-BOLT-EUR, computed by applying BOLT-LMM but omitting the

PRS to non-British Europeans.

5. Compute relative-R2 as (R2-PRS −R2-noPRS) / (R2-PRS-BOLT-EUR −R2-noPRS-

BOLT-EUR).

We note that fold improvement in relative-R2 is the same as fold improvement in absolute

difference in R2, (i.e., in R2-PRS −R2-noPRS), because the denominator (R2-PRS-BOLT-

EUR −R2-noPRS-BOLT-EUR) is a trait-specific scaling factor.

We computed standard errors of relative-R2, of differences in relative-R2 (e.g., vs. BOLT-LMM),

of ancestry-specific regression slopes, and of the area under the receiver operating curve (for disease

traits) via genomic block-jackknife, partitioning the genome into 200 equally-sized consecutive loci

and omitting each one in turn. In secondary analyses, we computed standard errors by applying

jackknife over individuals from the target population. These analyses yielded much smaller standard
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errors in the UK Biobank, suggesting that genomic block-jackknife standard errors may be conser-

vative, whereas individual-based jackknife estimates maty be anti-conservative. We emphasize that

individual-based jackknife explicitly assumes a fixed training set.

We estimated statistics (e.g., relative-R2) for meta-analyzed traits via an inverse-variance weighted

average, using weights inversely proportional to the standard error of the R2 of BOLT-LMM in the

target population (as estimated via genomic block-jackknife). We estimated the standard error of

the meta-analyzed statistics as the square root of the weighted average of the trait-specific sampling

variances (obtained via genomic block-jackknife), divided by the square root of the number of traits.

We computed p-values of differences in relative-R2 vs. BOLT-LMM via a Wald test.

We computed the statistical significance of the decrease in R2 in non-European vs. European tar-

get samples via a Wald test for the difference in R2, conservatively estimating the sampling variance

of this difference as the sum of the sampling variances of the European R2 and the non-European

R2 (this is a conservative estimate as long as the R2 estimates in Europeans and non-Europeans are

not negatively correlated, which is extremely unlikely).

4.4.3 Cohorts Analyzed

UK Biobank

The UK Biobank is a UK-based population cohort 76. We used version 3 of the imputed genotypes,

as described in our previous work 118. We computed ancestry-specific PCs for UK Biobank Africans,

UK Biobank East Asians, and UK Biobank South Asians via plink 1.9 311, restricting to SNPs that

have ancestry-specific MAF > 5%, missingness < 10%, HWE p-value > 10−10, and that were LD-

pruned using the command --indep-pairwise 1000 50 0.05, and restricted to unrelated individ-

uals (kinship coefficient <0.05) from the target ancestry with missingness < 10%. We used the UK

Biobank provided PCs for UK Biobank Europeans.
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We defined the ‘autoimmune disease’ trait in the UK Biobank as a union of the following UK

Biobank codes: 1154 (irritable bowel syndrome); 1222 (type 1 diabetes); 1224 (thyroid problem);

1225 (hyperthyroidism/thyrotoxicosis); 1226 (hypothyroidism/myxoedema); 1256 (acute infective

polyneuritis/guillain-barre syndrome); 1260 (myasthenia gravis); 1261 (multiple sclerosis); 1313

(ankylosing spondylitis); 1372 (vasculitis); 1377 (polymyalgia); 1378 (wegners granulmatosis);

1381 (systemic lupus erythematosis/sle); 1382 (sjogren’s syndrome/sicca syndrome); 1384 (scle-

roderma/systemic sclerosis); 1437 (myasthenia gravis); 1453 (psoriasis); 1456 (malabsorption/coeliac

disease); 1461 (inflammatory bowel disease); 1462 (Crohns disease); 1463 (ulcerative colitis); 1464

(rheumatoid arthritis); 1477 (psoriatic arthropathy); 1522 (grave’s disease); 1661 (vitiligo); 1667

(alopecia / hair loss).

European Network for Genetic and Genomic Epidemiology

European Network for Genetic and Genomic Epidemiology (ENGAGE) is a consortium comprised

of 24 cohorts to study the impact of genetic variations on medical phenotypes through GWAS 296.

The consortium has performed over 80,000 GWASs using genetic and phenotype samples from over

600,000 individuals, and made the GWAS summary statistics publicly available 296.

We obtained ENGAGE GWAS summary statistics, representing fixed-effect meta-analyses from

22 studies of European ancestry, for 2 lipid phenotypes 297 (triglyceride [N = 56,267] and total

cholesterol [N = 58,327]), and 2 obesity-related phenotypes 298 (BMI [N = 80,938] and BMI-

adjusted waist hip ratio [N = 49,877]). In each ENGAGE study, up to 37.4 million autosomal vari-

ants were imputed using the 1000 Genomes Project (we used 8.1 million variants which were also

imputed in the UK Biobank); phenotypes were adjusted for age, age squared, genotype principal

components, and other study-/trait-specific covariates, and were inverse rank normalized; GWASs

were performed for each sex separately and combined using fixed-effect meta-analysis; a single ge-

nomic control correction was performed for each study prior to a cross-study meta-analysis 297,298.
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Biobank Japan

Biobank Japan (BBJ) is a multi-institutional hospital-based biobank with DNA and serum samples

from approximately 200,000 participants from 12 medical institutions in Japan 170. The participants

are mainly of Japanese ancestry and had been diagnosed with at least one of 47 diseases by physi-

cians at the cooperating hospitals. Written informed consent was obtained from all the participants,

as approved by the ethics committees of RIKEN Center for Integrative Medical Sciences and the

Institute of Medical Sciences at the University of Tokyo.

We genotyped samples with either (i) the Illumina HumanOmniExpressExome BeadChip or (ii)

a combination of the Illumina HumanOmniExpress and HumanExome BeadChips. We applied

standard quality control criteria for both samples and variants as detailed elsewhere 230. We then

pre-phased genotypes with Eagle2 281 and imputed dosages with Minimac3 228 using 1000 Genomes

project phase 3 (version 5) data (N = 2,504) and Japanese whole-genome sequencing (WGS) data (N

= 1,037) as a reference 230. We computed PCs using EIGENSOFT’s smartpca 105.

For phenotypes, we retrieved clinical medical records from the participating hospitals through

interviews and a standardized questionnaire. We used 23 diseases and complex traits in Biobank

Japan which are also analyzed in UK Biobank (Supplementary Table D.3). We normalized quanti-

tative phenotypes via inverse-rank normal transformation as described elsewhere 171. We defined the

‘autoimmune disease’ trait in Biobank Japan as a union of Graves’ disease and rheumatoid arthritis.

Uganda-APCDR

Uganda-APCDR is a population-based cohort from the General Population Cohort (GPC), Uganda.

We retrieved genotype and phenotype data through the African Partnership for Chronic Disease

Research (APCDR) initiative via the European Genome-Phenome Archive (EGA), using EGAD00010000965

to access genotype data. Phenotype data were accessed via sftp from EGA (reference: DD_PK_050716
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gwas_phenotypes_28Oct14.txt). The participants are from nine ethno-linguistic groups in sub-

Saharan Africa and had been recruited from the study area located in southwestern Uganda in

Kyamulibwa subcounty of Kalungu district, approximately 120 km from Entebbe town. These

ethno-linguistic groups have diverse population structure with varying degrees of admixture be-

tween Eurasian and East African Nilo-Saharan ancestries, which has been extensively characterized

elsewhere 312. The detailed cohort demographics, sample collection, and processing were described

previously 286,287.

Briefly, the samples were genotyped using the Illumina HumanOmni 2.5M BeadChip at the

Wellcome Trust Sanger Institute. We used the Ricopili pipeline to conduct pre-imputation QC and

perform phasing and imputation 248. Briefly, we phased the data using Eagle 2.3.5 281 and imputed

variants using minimac3 228 in chunks ≥3Mb. The 1000 Genomes project phase 3 haplotypes 229

were used as the reference panel for phasing and imputation. As described previously, phenotypes

were collected using a standard individual questionnaire, blood samples (laboratory tests), and bio-

physical measurements (height, weight, waist and hip circumferences and blood pressure) 286. We

normalized quantitative phenotypes via inverse-rank normal transformation.

4.4.4 UK Biobank Simulations

We simulated data based on real genotypes of UK Biobank individuals, using 250,963 MAF ≥ 0.1%

SNPs with INFO score ≥ 0.6 on chromosome 22 (including short indels) (D.1 Supplementary

Note). We trained all methods using 337,491 unrelated British-ancestry individuals 76, and we esti-

mated the mixing weights of PolyPred and its summary statistic-based analogues using up to 1000

additional individuals from each of the four non-British ancestries. We computed summary statis-

tics by applying linear regression via Plink 2.0. We did not evaluate PolyPred+ in the simulations

because of the relatively small sample sizes of the UK Biobank non-European populations. We eval-

uated prediction accuracy via R2, using held-out individuals that were not included in the training
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sets and were unrelated to the training set individuals and to each other, using 42K non-British Eu-

ropeans, 7.7K South Asians, 0.9K East Asians, and 6.2K Africans. We computed PRSs by applying

plink 2.0 with the --score command, using imputed dosage data (rather than hard-called SNP val-

ues). We computed standard errors via a jackknife over simulations.

We trained BOLT-LMM by applying BOLT-LMM v2.3.4 to plink files of HapMap 3 SNPs

(hard-coded from imputed dosages), using the same covariates specified in the “Estimating relative-

R2 and its standard error” Methods subsection, and specifying the flag --predBetasFile to report

PRS coefficients.

We trained SBayesR using summary statistics from the infinitesimal version of BOLT-LMM

(BOLT-LMM-inf 159), which yielded far superior accuracy vs. using summary statistics from the

non-infinitesimal version of BOLT-LMM. We ran SBayesR using 10,000 iterations, 4,000 burn-in

iterations, using values from 10% of the iterations to compute posterior means, using the HapMap

3 LD files published the SBayesR authors. We attempted to run SBayesR using a mixture of four

distributions (using π = [0.95, 0.02, 0.02, 0.01] and γ = [0, 0.01, 0.1, 1]). In case SBayesR failed

with these parameters, we iteratively shrank the last entry in the vector γ by 50% until it was smaller

than 106, at which point we removed the last mixture component and redefined π such that the first

entry was equal to 0.95 and all other entries had the same value such that all values sum to 1.0.

We trained PRS-CS using summary statistics from BOLT-LMM-inf (as in SBayesR) with the

parameters a = 1, b = 0.5, thin = 5, n_iter = 10, 000, n_burnin = 500, and without specifying

the value of phi (corresponding to PRS-CS-auto). We used the UK Biobank LD reference panels

made publicly available by the authors of PRS-CS (see 4.5 Data availability).

We trained P+T by applying plink with the command --clump-r2 0.5 --clump-kb 250 with

various values of --clump-p1 (following ref. 47), and using 10,000 randomly selected unrelated UK

Biobank British individuals to compute LD. We estimated LD using 10,000 individuals to balance

between runtime and accuracy (noting that P+T is relatively insensitive to the LD reference panel
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size compared to the other methods evaluated in this manuscript). We used summary statistics based

on BOLT-LMM, using marginal effect sizes derived from reported χ2 values (i.e., the square root

of χ2 divided by the square root of the BOLT LMM effective sample size 118, and multiplied by the

sign of the effect size estimated by the infinitesimal version of BOLT-LMM). We used the best value

of --clump-p1 (out of the evaluated values 10−2, 10−3, 10−4, 10−6, 5 × 10−8) based on the target

sample phenotypes, which leads to anti-conservative prediction accuracy estimates for P+T.

We used slightly different LD reference panels for PolyFun-pred, SBayesR, and PRS-CS, because

(i) they use different algorithms to impose sparsity on LD matrices, and different file formats to store

them; and (ii) we assume that naively running SBayesR or PRS-CS using summary LD from the

18 million SNPs used by PolyFun-pred would be computationally infeasible, based on information

provided in the manuscripts describing these methods 36,37. When modifying the training sample

size, we kept the LD reference panel sample size fixed to alleviate computational costs.

4.4.5 Analysis of real data

We performed four sets of analyses: (i) Analysis of 4 UK Biobank populations using UK Biobank

British training data; (ii) Analysis of 4 UK Biobank populations using ENGAGE meta-analysis

training data; (iii) Analysis of Biobank Japan and Uganda-APCDR cohorts; and (iv) Analysis of UK

Biobank East Asians using UK Biobank British and Biobank Japan training data. In analysis sets

(i), (iii) and (iv), we evaluated PRSs generated by training all methods using unrelated UK Biobank

British-ancestry individuals. In analysis set (ii), we evaluated PRSs generated by training all methods

using summary statistics from 8.1 million meta-analyzed summary statistics from the ENGAGE

consortium54–56. In a subset of analysis set (iii) and in analysis set (iv) we additionally evaluated

PRSs generated by training BOLT-LMM-BBJ (BOLT-LMM trained on Biobank Japan individuals).

In all analysis sets, the individuals in the target populations were unrelated to each other and to the

individuals in the training set (when available).
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In analysis sets (i), (iii) and (iv), we selected the 7 traits to meta-analyze by first restricting the set

of 49 traits analyzed in ref. 118 to traits that are available in Biobank Japan and Uganda-APCDR

and are well-powered across multiple ancestries, having h2 > 0.05 in UK Biobank non-British Euro-

peans, in UK Biobank South Asians, and in UK Biobank Africans (see below for details on ancestry-

specific heritability estimation). We then iteratively greedily selected ranked traits according to their

heritability in UK Biobank non-British Europeans (estimated as in ref. 118), such that no selected

trait had |rg| < 0.3 with a previously selected trait.

We computed ancestry-specific SNP heritabilities in each UK Biobank ancestry by applying

GCTA84 to unrelated sets of individuals using hard-called HapMap 3 SNPs (using a random set of

10,000 individuals for non-British Europeans to facilitate the computations). We did not use more

advanced methods85 because of the relatively small sample sizes. We meta-analyzed ancestry-specific

SNP heritabilities by averaging the estimated heritabilities, and we estimated the meta-analyzed stan-

dard error via the square root of the average sampling variance, divided by the square root of the

number of traits.

In analysis sets (i), (iii) and (iv), We trained all PRS methods on UK Biobank unrelated British-

ancestry individuals (average N = 325) as described in the Methods subsection “UK Biobank sim-

ulations”, but using summary statistics generated by BOLT-LMM when applied to UK Biobank

British-ancestry individuals, as described in our previous work 118. We trained P+T separately for

each non-UK Biobank cohort by restricting the set of SNPs considered to the set of SNPs available

in both the UK Biobank and in the target cohort. We computed the contribution of PolyFun-pred

(resp. BOLT-LMM) towards PolyPred via the ratio of the mixing weight of PolyFun-pred (resp.

BOLT-LMM) to the sum of the mixing weights of PolyPred and of BOLT-LMM.

In analysis sets (i), (ii) and (iv), we computed a PRS for each UK Biobank individual using im-

puted dosage data as described in the “UK Biobank Simulations”.

In analysis set (iii), we computed a PRS for each individual in Biobank Japan and in Uganda-

149



APCDR using imputed dosage data using Plink 2.0 (ref. 278). In secondary analyses of analysis set

(i) we also evaluated LDpred33. We trained LDpred using HapMap 3 SNPs and using two different

LD reference panels: 1000 Genomes project 229 and UK10K 162. We used summary statistics from

the infinitesimal version of BOLT-LMM (as in SBayesR) and with default parameters, using the

parameter --ldr 400. We used the value of “--F” (corresponding to the assumed proportion of

causal SNPs, using all the default evaluated values) that yielded the best prediction accuracy in the

target sample, yielding anti-conservative accuracy estimates as in P+T.

In analysis sets (iii) and (iv), we trained BOLT-LMM-BBJ, SBayesR-BBJ, and PRS-CS-BBJ

(BOLT-LMM, SBayesR, and PRS-CS, respectively, trained using Biobank Japan training data) (av-

erage N = 124K). We selected individuals for training these methods as described in our previous

work 47, but excluding a random subset of 5,000 individuals that were used for evaluating prediction

accuracy. For SBayesR-BBJ, we used a subset of individuals (N = 50K) from Biobank Japan to com-

pute in-sample LD, following the recommendations of the authors of SBayesR 36. For PRS-CS-BBJ,

we used the East Asian LD reference panels made publicly available by the authors of PRS-CS (see

4.5 Data availability).

4.5 Data availability

Access to the UK Biobank resource is available via application (http://www.ukbiobank.ac.uk).

PRS coefficients generated in this study are available for public download at http://data.broadinstitute.

org/alkesgroup/polypred_results. Summary LD information of N = 337K British-ancestry UK

Biobank individuals for 2,763 overlapping 3Mb loci is available at: https://data.broadinstitute.

org/alkesgroup/UKBB_LD. Summary LD information of N = 50K UK Biobank individuals for

SBayesR is available at: https://zenodo.org/record/3350914. Summary LD information used

by PRS-CS is available at: https://github.com/getian107/PRScs. Baseline-LF v2.2.UKB annota-
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tions and LD-scores for UK Biobank SNPs are available at: https://data.broadinstitute.org/

alkesgroup/LDSCORE/baselineLF_v2.2.UKB.tar.gz

4.6 Code availability

PolyPred and PolyPred+ are provided as part of the open-source software package PolyFun, which

is freely available at https://doi.org/10.5281/zenodo.613967989 and https://github.com/

omerwe/polyfun. BOLT-LMM is available at https://data.broadinstitute.org/alkesgroup/

BOLT-LMM. SBayesR is available at https://cnsgenomics.com/software/gctb. PRS-CS is available

at https://github.com/getian107/PRScs.
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In this dissertation, I described a series of fine-mapping analyses in large-scale biobanks across

diverse populations. The work presented here provides insights into candidate causal variants of

human complex traits, along with potential applications for further functional characterization

and polygenic prediction. While Chapters 1–4 represent key advances in fine-mapping complex

traits across diverse populations, I foresee several remaining challenges and opportunities for future

studies.

First, the current fine-mapping methods have many limitations. Model misspecification and

data heterogeneity are major (but commonly overlooked) sources of miscalibration, including mis-

matched LD, misspecified number of causal variants and effect size distribution, missing causal

variants (e.g., structural variants), uncontrolled confounding factors (e.g., population stratification),

and heterogeneity in phenotyping and genotyping (especially for meta-analysis, Chapter 3). Fur-

ther methodical development that properly models these factors is required in addition to improved

study design at the outset that is tailored to post-GWAS variant prioritization.

Second, the vast majority of candidate causal variants in our study (Chapters 1,2) remains unan-

notated for biological mechanisms and functional consequences, even when they have been defini-

tively resolved and replicated across multiple independent cohorts. Future systematic variant-to-

function (V2F) efforts will require the development of high-throughput assays as well as recruit-

ment of samples from diverse cell types, conditions, and genetic backgrounds. Besides V2F, locus-

to-gene (L2G) mapping remains particularly challenging for non-coding loci. As the recent studies

have demonstrated emerging convergence between rare and common variant associations 11,313,314,

I envision that more biobank-scale resource generation in the future would help us learn L2G prin-

ciples by leveraging rare and common fine-mapped coding variants to link genes with regulatory

variants.

Third, the utility and portability of PRS remain largely limited, especially for non-European

populations. Despite the continuous method development in the field (including our PolyPred
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method, Chapter 4), the most fundamental solution for equitable polygenic prediction is only

made possible by recruiting more diverse samples from different backgrounds, including genetic

ancestry, geographic location, time points, and other environmental factors.

Finally, increasing the diversity of study participants is also crucial for further variant discovery

and replication. As demonstrated in our allelic series examples (Chapter 2) and many other studies,

aggregating data across multiple populations enables identification of population-enriched variants

and their convergence on the same gene. While this dissertation describes an incredible opportunity

of identifying Finnish- and Japanese-enriched putative causal variants using FinnGen and BioBank

Japan, I envision that fast-evolving biobanks worldwide will flourish in the next decade and provide

novel insights into the biology of human complex diseases.
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A.1 Supplementary Tables

The following Supplementary Tables will be made available in the online version of the manuscript.

Table A.1: Overview of traits included in study

Table A.2: LD score regression estimates

Table A.3: Genetic correlation between traits

Table A.4: Merged SuSiE 95% credible sets

Table A.5: Baseline model annotation enrichments

Table A.6: Fine‐mapped variants with weak p‐values
Table A.7: Fine‐mapped variants with marginal and posterior effect sign disagreements

Table A.8: Fine‐mapped pleiotropic variants across 3 or more domains

Table A.9: Fine‐mapped pleiotropic variants where effect directions disagree with polygenic expectation

Table A.10: Phenome‐wide association study of fine‐mapped UKBB variants

Table A.11: Likely causal variants affecting gene expression

Table A.12: Fine‐mapped eQTL variant enrichments for fine‐mapped complex traits

Table A.13: Disjoint genomic annotation enrichments

Table A.14: Single variant colocalization results

Table A.15: Credible set colocalization results

Table A.16: Colocalization for gene prioritization results

Table A.17: Functional enrichment of fine‐mapping variants in accessible chromatin across datasets

Table A.18: Fine‐mapped variants in accessible chromatin for trait‐specific enriched cell‐types

Table A.19: Transcription factor features selected for inclusion

Table A.20: Enrichment of molecular mechanisms for CRE single nucleotide variants

Table A.21: Putative mechanistic annotations of fine‐mapped complex trait variants

A.2 Supplementary Figures
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Figure A.1: Evaluation of fine‐mapping approaches in realistic biobank simulations. Main results of fine‐mapping simula‐
tions are shown in panels a–f. In the top panel, calibration, the difference between the observed and expected propor‐
tion of causal variants in a range of PIP values is shown. In the bottom panel, recall, the number of true causal variants
detected in the top ranked variants by PIP is shown. We evaluate the performance of fine‐mapping using true, hard‐
called, or dosage genotypes (a), using different LD reference panels (b), varying QC thresholds for variant inclusion in
fine‐mapping based upon allele frequency and imputation quality (c,d), varying window size around sentinel variants (e),
and across different fine‐mapped methods (f). Error bars represent 95% CIs. In g,h, calibration is shown for causal vari‐
ants with varying imputation confidence (g) and with varying MAF (h) using an LD reference panel of 10,000 randomly
sampled individuals from the UK Biobank. Error bars represent 95% CIs. i,j. Comparison between single causal variant
(ABF) and multiple causal variant (SuSiE) fine‐mapping PIPs. When there is one simulated causal variant, the methods
agree (d), but when there are two causal variants, ABF underperforms (j). k Similar to (f) bottom panel, except with a fo‐
cus on the differences in recall, the number of true causal variants detected in the top ranked variants by PIP, between
approximate conditional analysis followed by ABF fine‐mapping (COJO+ABF) when using the (typically unobserved)
true genotype matrix or the (observed) imputation genotype matrix (which GCTA can currently only hard call rather than
using the dosage values). Methods had similar precision in the simulation framework.
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Figure A.2 (following page): Narrow‐sense heritability and genetic correlations of UK Biobank traits. a. S‐LDSC esti‐
mated narrow‐sense common (h2

c ; MAF > 0.05) and low‐frequency (h2
lf; 0.05 > MAF > 0.005) heritability. Traits are

grouped by phenotypic domain and arranged by decreasing total heritability (h2
c + h2

lf). b. Genetic correlation estimated
using S‐LDSC for traits in a. Square size is proportional to the Bonferroni adjusted P‐value. LD scores were derived from
the UK 10K cohort.
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Figure A.2: (continued)
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Figure A.3 (following page): Additional characterization of genetic fine‐mapping of complex traits in UK Biobank. a.
Comparison of the LD score regression intercept and the attenuation ratio [(LDSC intercept – 1) / (mean χ2 – 1)] for
different traits colored by phenotypic domain. Similar to Loh et al. 109, we highlight a subset of traits with extreme val‐
ues in either, or particularly both, dimensions. A dashed line is drawn at an LDSC intercept of 1.05. Traits are colored
by phenotypic domain. Error bars represent 95% CIs. b. Comparison of common variant (MAF > 0.05) enrichment and
low‐frequency (0.05 > MAF > 0.005) variant enrichment. Enrichment is defined as the proportion of (common or low
frequency) heritability divided by the proportion of (common or low frequency) variants in that genomic annotation. Re‐
sults are consistent with those reported in Gazal et al. 161. Genomic annotations obtained from the LDSC baseline v2.2
are colored by broad category. c. Common and low frequency variant enrichment from b. compared to fine‐mapped
variant enrichment (defined as proportion of variants in annotation with PIP > 0.9 vs. proportion of those with PIP <
0.01). A solid line represents y = x. Dotted lines represent linear regression fits to the model y = xB where y is the
S‐LDSC enrichment point estimates and x is the fine‐mapping enrichment point estimates. Pearson correlations are also
estimated and provided. Error bars and grey ribbons represent 95% CIs. d. Enrichment of non‐genic (excluding variants
in CREs, defined as in Fig. 1.1g) variants in each indicated PIP bin (vs. similar variants with PIP < 0.01) and proportion
of those variants that are evolutionarily conserved across mammals. e. Comparison of 8 distinct genomic enrichments
depending upon agreement of FINEMAP and SuSiE, similar to Fig. 1.1g. Error bars represent 95% CIs. f. Comparison of
8 distinct genomic enrichments across selected PIP‐bins and marginal p‐value thresholds, similar to Fig. 1.1g. Error bars
represent 95% CIs. g. Comparison of marginal and SuSiE posterior effect sizes for variants with PIP > 0.5. Variants are
colored according to whether the effect direction agrees between marginal and posterior estimates. Error bars represent
95% CIs. h. Using the best fine‐mapped variant in each 95% CS for height, we calculate the LD (r2) between all 95% CS
pairs and report the nearest 95% CS (highest LD) for each unique 95% CS. An axis break between 200 and 750 on the
y‐axis is indicated.
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Figure A.3: (continued)
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Figure A.4: Examples of fine‐mapped pleiotropic variants. a. Locus‐zoom plots for WHR adjusted for BMI, triglyceride
levels, and HbA1c around VEGFA. Fine‐mapping pinpoints the pleiotropic variant rs998584 as the likely causal variant
in the region. Overlap with chromatin occupancy for a subset of investigated cell types suggests putative cell‐types
of action. b. Locus‐zoom plots for height, T2D, and pulse pressure levels around CCND2. Fine‐mapping pinpoints the
pleiotropic variant rs76895963 as the likely causal variant in the region. Overlap with chromatin occupancy for a subset
of investigated cell types suggests a broad range of action across cell‐types for this variant. For both loci, there are
additional 95% CSs that vary between traits.
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Figure A.5: Additional comparison of GTEx fine‐mapping approaches. a. Comparison of PIPs from SuSiE fine‐mapping
using unadjusted in‐sample LD or covariate‐adjusted in‐sample LD for 5 traits in UK Biobank. Red indicates higher
density of variants, and blue indicates lower. b. Comparison of PIPs from FINEMAP fine‐mapping using unadjusted in‐
sample LD or covariate‐adjusted in‐sample LD for Muscle tissue in GTEx v8. Red indicates higher density of variants,
and blue indicates lower. c. Upset plot showing overlap of fine‐mapped variants (max PIP > 0.5) across all methods.
d. Proportion of fine‐mapped variants overlapping one of 7 distinct genic or regulatory genomic annotations from
Fig. 1.1g. In the left panel, blue points represent SuSiE PIP > 0.5 and a corresponding method with PIP < 0.1. Orange
points represent SuSiE PIP < 0.1 and a corresponding method with PIP > 0.5. The right panel is the same with FINEMAP
instead of SuSiE. SuSiE‐specific variants outperform 3/3 uniform prior methods and FINEMAP outperforms 2/3 uniform
prior methods. dap‐g shows the highest enrichment but this is likely due to its functional prior. Variant PIPs are taken
as max across all genes and tissues. Point sizes are proportional to the number of variants in the analysis. Error bars
represent 95% CIs.
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Figure A.6 (following page): Additional characterization of colocalization of complex and molecular traits. a. Comparison
of informative fastENLOC priors (coefficient estimates from the regularized logistic model) between neutrophil count
and gamma‐glutamyl transferase (GGT) levels. Trait‐specific outliers are labeled. Colors indicate the specific physiolog‐
ical system of the tissue as shown in Fig. 1.4a. Error bars represent 95% CIs. b. Number of variant sets with regional
colocalization probability (RCP) > 0.1 for each colocalization method. Fine‐mapping using a single causal variant (ABF)
and allowing for multiple causal variants (SuSiE) for both complex traits and eQTLs is varied as well as priors assuming
independence between complex and molecular traits (eCAVIAR) or informative empirical priors (fastENLOC). Similar
to Fig. 1.4e. c. Using a validation set of fine‐mapped coding variants with PIP > 0.5, precision and recall estimated for
non‐coding 95% CSs within 500 kb across different colocalization methods varying single or multiple causal variant as‐
sumptions, independent or informative priors, and estimand (RCP vs. CLPP), similar to Fig. 1.4h. Estimates are shown
for posterior probability values equal to 0.9, 0.5, 0.25, 0.1, and 0.01. Weighting our preference for precision to recall
at a ratio of 3:1, we highlight the best approaches based upon top F0.33 values. d. Overlap of fine‐mapped variants in
each CLPP bin and 8 disjoint genomic annotations. The max CLPP for each variant across traits is used. Error bars rep‐
resent 95% CIs. Similar to Fig. 1.1g. e. Comparison of the proportion of colocalized (CLPP > 0.9) variants when using an
eCAVIAR or fastENLOC prior. The size of points corresponds to the increase in number of variants detected for each
genomic annotation when switching from an eCAVIAR to fastENLOC prior. Colors indicate genomic annotation from
Fig. 1.1g and from d. Error bars represent 95% CIs.
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Figure A.6: (continued)

a

0

2

4

6

neutrophil count fastENLOC coefficient
0 2 4 6

G
G

T 
fa

st
EN

LO
C

 c
oe

ffi
ci

en
t

whole 
blood

liver

b

0

300

600

900

1200

UKBB
GTEx

ABF
ABF

ABF
SuSiE

SuSiE
ABF

SuSiE
SuSiE

fastENLOC
eCAVIAR

# 
of

 v
ar

ia
nt

s 
(C

LP
P 

> 
0.

9)
c

0.0

0.2

0.4

0.6

pre
cis

ion

SuSiE+ABF+eCAVIAR

SuSiE+ABF+fastENLOC

SuSiE+SuSiE+eCAVIAR

SuSiE+SuSiE+fastENLOC
CLPP

RCP

0.00 0.03 0.06 0.09 0.12
recall

CLPP > 0.01
Best F0.33

CLPP > 0.1
2nd best F0.33

0.0

0.1

0.2

0.3

Proportion of CLPP > 0.9 variants (eCAVIAR prior)

pr
ec

is
io

n

0.0 0.1 0.2 0.3

Pr
op

or
tio

n 
of

 C
LP

P 
> 

0.
9 

va
ria

nt
s 

(fa
st

EN
LO

C
 p

rio
r)

d

e

0.00

0.25

0.50

0.75

1.00

pr
op

or
tio

n 
of

 v
ar

ia
nt

s

non-genic
CRE
promoter
UTR3
UTR5
synonymous
missense
LoF

Disjoint
genomic
annotations

(0.01,0.1]

(0.001,0.01]
(0.5,0.9]

(0.1,0.5]
(0.9,1]

CLPP bin

146 vs. 53 variants

166



a

0

1

2

3

4

proportion nc PIP > 0.9 variants

en
ric

hm
en

t

processed
raw
removed

0.0 0.50.1 0.2 0.3 0.4

DHS (hematopoiesis)
DHS (immune)
DHS (adult brain)
DHS (fetal atlas)
DHS (human atlas)

b

0.0

0.2

0.4

0.6

0.8

pr
op

or
tin

 o
f C

R
E 

SN
Vs

CLPP > 0.9
PIP > 0.9
PIP < 0.01

ChIP score AC score

Enformer

ChIP score AC score
Enformer after

removal of ChIP+motif,
footprints, ASB

Figure A.7: Characterization and examples of accessible chromatin datasets and fine‐mapped regulatory variants. a.
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ASB), or exhibiting allele specific accessible chromatin (AC ASB), similar to Fig. 1.4c.
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B.1 Supplementary Note

B.1.1 Novel genes implicated by population-enriched variants

Fine-mapping of complex traits in FinnGen led to the identification of Finnish-enriched missense

variants in genes novel for several traits. Many of these genes possess compelling biological rationales

linking them to these traits.

THBS3

On chromosome 1, rs199935580 corresponds to an Arginine to Tryptophan substitution (p.Arg520Trp)

in the gene THBS3. This rare missense variant (MAF = 1.0 × 10−3 in gnomAD Finnish; 1.2 × 10−5

in gnomAD Non-Finnish-Swedish-Estonian Europeans [NFSEE]) is fine-mapped for increased risk

of carpal tunnel syndrome (P = 7.4 × 10−10; β = 1.44; PIP = 1.0). In carpal tunnel syndrome

(CTS), the median nerve is pinched as it traverses through the wrist. A previous GWAS on CTS

revealed an important role for the extracellular matrix in its etiology 315. THBS3 encodes a member

of the thrombospondin family, a group of proteins known for binding to various extracellular ma-

trix proteins 316. No specific role for THBS3 in CTS has been noted previously. However, its closest

homolog, COMP, is causal for familial carpal tunnel syndrome 2 (ref. 317).

LUM

On chromosome 12, the rare variant rs191692991 corresponds to an Arginine to Cysteine substi-

tution (p.Arg310Cys) in the gene LUM. This missense variant (MAF = 5.3 × 10−3 in gnomAD

Finnish; 1.2 × 10−5 in gnomAD NFSEE) is strongly associated with “fibroblast disorders” such as

Dupuytren’s contracture, a condition in which the skin under the palm of the hand becomes thick

and fibrous (P = 6.9 × 10−9; β = 1.02; PIP = 1.0). LUM encodes lumican, a leucine-rich repeat
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glycoprotein important for regulation of collagen fibril formation 318. One hypothesis is that this

mutation reduces stability or activity of lumican, leading to misregulation of collagen and accumu-

lation of fibrils in the hand and elsewhere.

POF1B

On the X chromosome, the rare variant rs200939713 corresponds to an Arginine to Tryptophan

substitution (p.Arg339Trp) in POF1B (MAF = 1.6 × 10−3 in gnomAD Finnish; monomor-

phic in gnomAD NFSEE). This missense variant is associated with risk of varicose veins (P =

3.4 × 10−11; β = 0.84; PIP = 0.99), a condition in which veins just below the skin become enlarged

and prominent. POF1B encodes a protein important for epithelial structural integrity through

desmosomes 319. It’s possible this mutation reduces POF1B stability, reducing epidermal integrity

increasing occurrence or appearance of varicose veins.

B.1.2 “Missing” variants from summary statistics in other populations

After restricting to the 26 traits available in every population (BBJ, FinnGen, and UKBB), we found

301 high-PIP variants (PIP > 0.9) fine-mapped in a discovery population that are missing from sum-

mary statistics in other populations (Fig. 2.2a–c). We characterized reasons for the missingness

using the following criteria:

1. Variants do not exist in imputation reference panels used in each cohort, i.e., BBJ 230: the

1000 Genomes Phase 3 (n = 2,504) + Japanese WGS (n = 1,037); FinnGen: Finnish WGS

(n = 3,775); and UKBB 76: the Haplotype Reference Consortium (n = 64,976) + the 1000

Genomes Phase 3 + UK10K (n = 3,781).

2. Low MAF (MAF < 0.005) in a population based on the GEM-J WGS 215 for BBJ and the

gnomAD 214 v2 for FinnGen and UKBB.
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3. Low imputation INFO score (INFO < 0.7 for BBJ and INFO < 0.8 for FinnGen/UKBB)

4. Hardy-Weinberg equilibrium (HWE) outlier (HWE test P-value < 1 × 10−10) only in UKBB.

We confirmed that the missingness are primarily due to low frequency in other populations

(Supplementary Fig. B.11). Note that since BBJ and UKBB included the 1000 Genomes Project

in their reference panels, there are variants that exist in the reference but showed very low MAF in

the Japanese or White British populations; This is in contrast to the FinnGen which only used a

Finnish-specific reference panel.

Low INFO variants

We found six high-PIP variant-trait pairs are missing from summary statistics in other populations

due to low INFO score despite having a high MAF in a population:

• rs138381300 (frameshift, FLG:p.Ser761CysfsTer36) fine-mapped for atopic dermatitis (PIP

= 1.0) in FinnGen, but missing from UKBB (INFO = 0.60 in UKBB; MAF = 0.02 in non-

Finnish Europeans). This variant is monomorphic in Japanese.

• rs6874142 (intron variant of STC2) fine-mapped for height (PIP = 1.0) in UKBB, but miss-

ing from BBJ (INFO = 0.64 in BBJ; MAF = 0.03 in Japanese). This variant is significantly

associated in FinnGen (P = 1.6 × 10−10) but not fine-mapped (PIP = 0.008).

• rs117137535 (intron variant of ARRDC1) fine-mapped for atopic dermatitis (PIP = 1.0)

in FinnGen, but missing from BBJ (INFO = 0.55 in BBJ; MAF = 0.10 in Japanese). This

variant is not associated in UKBB (P = 0.75).

• rs9893867 (intron variant of SLC43A2) fine-mapped for type 2 diabetes (PIP = 0.97) in

FinnGen, but missing from BBJ (INFO = 0.62 in BBJ; MAF = 0.08 in Japanese). This vari-

ant is not associated in UKBB (P = 0.15).
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• rs11653578 (intron variant of ANKFN1) fine-mapped for type 2 diabetes (PIP = 0.98) in

UKBB, but missing from BBJ (INFO = 0.61 in BBJ; MAF = 0.23 in Japanese). This variant

is not associated in FinnGen (P = 0.20).

• rs3810291 (3’ UTR variant of ZC3H4) fine-mapped for body mass index (PIP = 0.96) in

UKBB, but missing from BBJ (INFO = 0.61 in BBJ; MAF = 0.23 in Japanese). This variant

is significantly associated in FinnGen (P = 1.4 × 10−10) but not fine-mapped (PIP = 0.009).

There are a few potential reasons for relatively low INFO scores of these variants. First, rs138381300

is a frameshift variant of FLG which is known to have a highly repetitive coding sequence. This

makes short-read next-generation sequencing (NGS) extremely challenging; and indeed, the region

is registered as NCBI GeT-RM NGS Dead Zone 320. Second, we found three variants are located

near the telomere regions (rs6874142: 5q35.1, rs117137535: 9q34.3, and rs9893867: 17p13.3)

which are difficult to impute. Lastly, although we did not find any simple reason for rs11653578

and rs3810291, we speculate that the low INFO scores of these variants are due to a combination of

several factors including reference panel and genotyping array quality, given that their INFO scores

are just borderline below the threshold (INFO = 0.61 < 0.7).

Of the six pairs, we are confident that rs138381300 is a putative causal variant for atopic dermati-

tis (PIP = 1.0 in FinnGen) since it is a frameshift variant for the known pathogenic gene FLG. The

rest of the variant-trait pairs show varying evidence of association, emphasizing the critical needs for

replication in fine-mapping studies.

HWE outlier variants in UKBB

In addition, we observed that five high-PIP variant-trait pairs (three unique variants) are missing

from UKBB summary statistics due to HWE outlier, namely:
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• rs2237897 (intron variant of KCNQ1) fine-mapped for body mass index, body weight, and

type 2 diabetes (PIP =1.0) in BBJ (MAF = 0.04, HWE P-value = 6.3 × 10−134 in UKBB).

• rs4765138 (intergenic variant) fine-mapped for height (PIP = 0.99) in FinnGen (MAF =

0.31, HWE P-value = 5.7 × 10−32 in UKBB).

• rs117952254 (intergenic variant) fine-mapped for myocardial infarction (PIP = 0.98) in

FinnGen (MAF = 0.027, HWE P-value = 2.9 × 10−44 in UKBB).

We previously reported that UKBB imputed data contain genotyped SNPs failing the HWE test

(http://www.nealelab.is/blog/2019/9/17/genotyped-snps-in-uk-biobank-failing-hardy-

weinberg-equilibrium-test). Briefly, we observed 15,069 genotyped variants that are retained in

the imputed bgen files with INFO = 1 and HWE P-value < 1 × 10−12, due to UKBB’s QC criteria

relying on a per-batch HWE test 76 (Supplementary Fig. B.12). This observation was particularly

concerning given that we found that 3,987 of these variants have no homozygous alternative geno-

types despite having a MAF > 1%. To mitigate this issue, we applied an additional post-hoc filtering

that excludes any imputed variants with HWE test P-value < 1 × 10−10; however, this might exclude

a potential causal variant too.

Having said that, we are confident rs2237897 is a putative causal variant (PIP = 1.0 and 0.31

in BBJ and FinnGen, respectively) that confers a risk for type 2 diabetes as previously reported 8.

However, rs4765138 and rs117952254 are not well-characterized in the current literature, with lack

of fine-mapping replication in BBJ (rs4765138: P = 4.1 × 10−19 and PIP = 1.1 × 10−5 for height;

rs117952254: missing in BBJ), suggesting that further replication effort should be warranted.

B.2 Supplementary Tables

The following Supplementary Tables are available in the online version of the manuscript.
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Table B.1: Overview of the studied cohorts

Table B.2: Overview of the studied traits
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Table B.12: Nonsynonymous (pLoF/missense) coding variants with the best PIP > 0.1

Table B.13: Allelic series of nonsynonymous coding variants (PIP > 0.1)

Table B.14: Allelic series of nonsynonymous coding variants and proximal non‐coding variants (< 100 kb)
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Figure B.1 (following page): Functional enrichments of fine‐mapped variants. a–d. Proportion of variants for the seven
main functional categories (Methods), stratified by the best PIP bin for a variant in BBJ, FinnGen, UKBB, and all co‐
horts combined. Labels above each bar represent the number of variants in each bin. e–h. Enrichments of fine‐mapped
variants (PIP > 0.9) in each functional category compared to non‐fine‐mapped variants (PIP ≥ 0.01). i. Enrichments in
35 binary annotations from the baselineLD v2.2 model 188. Enrichment was calculated as a relative risk (i.e., a ratio of
proportion of variants) between being in an annotation and fine‐mapped (PIP ≥ 0.01 or PIP > 0.9; 2.4 Methods. Error
bars correspond to 95% confidence intervals using bootstrapping. Numerical results are available in Supplementary
Tables B.5,B.6.
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Figure B.1: (continued)
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Figure B.2 (following page): Additional details of fine‐mapping replication status across populations. a,b. Breakdowns
for the genome‐wide significant variant‐trait pairs (PGWAS < 5.0 × 10−8) in a secondary population, using distinct
fine‐mapping replication criteria (a. PIP > 0.05 and b. in 95% CS) different from Fig. 2.2 (PIP > 0.1). c–e. PIP distribu‐
tions of the genome‐wide significant variant‐trait pairs in a secondary population, stratified by PIP bins in a discovery
population. Half‐sided violin plots represent PIP distributions for each secondary population. Points represent mean PIP
in the secondary population for each PIP bin in a discovery population. f. Comparison of PIP distributions in a secondary
population for real data and simulations, stratified by discovery cohorts which true causal variants (PIP > 0.9) were taken
from for simulations (2.4 Methods). Left‐sided plots represent PIP distributions from real data. Right‐sided plots rep‐
resent PIP distributions from simulations. g. Barplots showing a fraction of the high‐PIP (> 0.9) variant‐trait pairs in
real data and simulations. The top bar represents the result from the real data which is slightly different from Fig. 2.2
to make an apple‐to‐apple comparison with simulations (2.4 Methods). The remaining bars represent the results from
simulations. We categorized the genome‐wide significant variant‐trait pairs (PGWAS < 5.0 × 10−8 in a simulation)
into whether they showed simulated PIP > 0.1 in a secondary population or not, which is stratified by discovery cohorts
which true causal variants (PIP > 0.9) were taken from for simulations (2.4 Methods). h. Proportion of variants for the
seven main functional categories, stratified by the replication status shown in Fig. 2.2 (2.4 Methods). Labels above each
bar represent the number of variants in each status.
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Figure B.2: (continued)
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Figure B.3 (following page): Illustrative examples of fine‐mapping non‐replication across populations. Locuszoom plots
for the same locus across populations. Colors in the locuszoom panels represent r2 values to the lead variant. In the PIP
panels, only fine‐mapped variants in SuSiE 95% CS are colored, where the same colors are applied across populations
based on the merged CS (2.4 Methods). a. rs35506085 for height that was fine‐mapped in FinnGen and UKBB (PIP
= 1.0), but not in BBJ (PIP ~ 0) likely due to extensive LD. b. rs17140875 for height that was fine‐mapped in BBJ (PIP
= 1.0) but not in FinnGen or UKBB (PIP ~ 0). The variant is more common in BBJ (MAF = 0.08) than in FinnGen or
UKBB (MAF = 0.04 and 0.05, respectively) and has more LD neighbors in Europeans. c. rs1996023 for BMI that was
fine‐mapped in BBJ (PIP = 0.99), but not in FinnGen or UKBB (PIP ~ 0). Instead, we found other CS in FinnGen and
UKBB that showed modest LD with rs1996023 in Europeans (r2 ~ 0.5) but high LD in BBJ (r2 ~ 0.8). d. rs495855 for
height that was fine‐mapped only in UKBB (PIP = 1.0). This seems very likely a false positive given extensive LD in every
population.
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Figure B.3: (continued)
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Figure B.4: Overview of high‐confidence fine‐mapped variants. a. Distribution of minor allele frequencies (MAF) in each
cohort. Violin plots represent the distribution. Each point represents a high‐confidence fine‐mapped variant and each
line connects the same variant across cohorts. b. Consequences annotated by VEP (see 2.4 Methods). c. Histogram
of distance to the closest gene for high‐confidence fine‐mapped non‐coding variants. Color represents non‐coding
consequences same as b. d. Distribution of predicted expression modifier score (EMS)138 for fine‐mapped non‐coding
variants, stratified by the best PIP bins. The highest bin (0.9 < PIP ≤ 1) was further stratified into the high‐confidence
variants or not based on replication across populations (see 2.4 Methods). Maximum normalized EMS score over genes
was calculated for each fine‐mapped variant using the whole blood tissue. Details of the high‐confidence fine‐mapped
variants are summarized in Supplementary Tables B.8,B.9.
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Figure B.5: Synonymous variant rs55714927 shows splicing effect in ASGR1. a. Locuszoom plots for alkaline phos‐
phatase (ALP) in BBJ and UKBB. b. Phenome‐wide association study (PheWAS) of rs55714927 across all the traits
analyzed in this study. Only phenotypes that showed P < 5.0 × 10−8 in any cohort are displayed. Each point repre‐
sents a marginal beta for a given trait in a cohort, with an error bar representing the standard error. Shape of each point
represents whether each variant showed PIP > 0.1. c. sQTL effect of rs55714927 in GTEx liver. d. Sashimi plot showing
splicing effects of rs55714927 in three homozygous reference allele carriers vs. three homozygous alternative allele
carriers that were randomly chosen.
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Figure B.6 (following page): Colocalization between high‐confidence fine‐mapped non‐coding variants for complex
traits and cis‐eQTL associations in trait‐relevant tissues. Locuszoom plots for the same locus of complex traits across
populations and of cis‐eQTL associations in trait‐relevant tissues. Colors in the locuszoom panels represent r2 values to
the lead variant. In the PIP panels, only fine‐mapped variants in SuSiE 95% CS are colored, where the same colors are
applied across populations based on the merged CS (2.4 Methods). a. rs2070895 for HDL cholesterol in BBJ and UKBB
and for LIPC expression in GTEx liver. b. rs78378222 for skin cancer in FinnGen and UKBB and for TP53 expression in
GTEx skin. c. rs1497406 for γ‐glutamyl transferase (GGT) in BBJ and UKBB and for EPHA2 expression in GTEx liver. d.
rs34778241 for loss of chromosome Y (LOY) in BBJ and UKBB and for EIF4E3 expression in GTEx whole blood.
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Figure B.6: (continued)
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Figure B.7: High‐confidence fine‐mapped intergeneric variants in a gene desert. Locuszoom plots for the same lo‐
cus across populations. Colors in the locuszoom panels represent r2 values to the lead variant. In the PIP panels, only
fine‐mapped variants in SuSiE 95% CS are colored, where the same colors are applied across populations based on the
merged CS (2.4 Methods). a. rs77541621 in the 8q24 locus for prostate cancer in UKBB and FinnGen. b. rs1434282 in
the 1q32 locus for mean corpuscular volume (MCV) in BBJ and UKBB. c. rs116376456 in the 2q36 locus for height in
UKBB and FinnGen. d. rs35009121 in the 10p14 locus for calcium levels in BBJ and UKBB.
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Figure B.8: Putative causal variants are negatively correlated in a locus. a–d. rs244711 and rs1966265 for height in
BBJ, FinnGen, and UKBB. e–h. rs1801706, rs5742907 and rs2303790 for HDL cholesterol in BBJ and UKBB. a, e.
Locuszoom plots for the same locus across populations. Colors in the manhattan panels represent r2 values to the lead
variant. In the PIP panels, only fine‐mapped variants in SuSiE 95% CS are colored, where the same colors are applied
across populations based on the merged CS (2.4 Methods). b, f. Heatmaps showing r values between the highlighted
variants and the other variants in 95% CS in each population. In a CS panel, variants are colored by the same colors in
the locuszoom plots (a, e). c, d, g, h. Forest plots showing marginal and posterior betas of fine‐mapped variants. Point
color represents each cohort and shape represents whether the variant showed PIP > 0.1 in each cohort.
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Figure B.9: Population‐enriched non‐coding variants. a–d. Histograms showing a distribution of allele frequency (AF)
enrichment metric in (a) Finnish (n = 1,738) and (b) Japanese (n = 7,609) populations. A ratio of AF was computed
against NFSEE (n = 5,421) and NJKEA (n = 780) for non‐coding variants analyzed in FinnGen or BBJ GWAS that ex‐
ist in gnomADWGS or GEM‐J WGS, respectively. For a subset of variants that are fine‐mapped in our analysis (see
2.4 Methods), we show AF enrichment distribution across maximum PIP bins computed in (c) FinnGen or (d) BBJ. e,f.
Cumulative distribution of estimated allele age for non‐coding variants, stratified by AF enrichment in (e) Finnish or (f)
Japanese. FIN: Finnish, JPN: Japanese, NFSEE: Non‐Finnish‐Swedish‐Estonian European, NJKEA: Non‐Japanese‐Korean
East Asian.
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Figure B.10 (following page): Allelic series of putative causal variants across populations. a. Number of genes with fine‐
mapped nonsynonymous variants (pLoF and missense) with best PIP > 0.1 for each LOEUF decile214. Genes without
fine‐mapped nonsynonymous variants are not plotted. Colors represent the consequence of each variant. When multi‐
ple nonsynonymous variants are found, the most deleterious consequence is colored. b–d. Lollipop plots of allelic series
for (b) APOB, (c) ABCG2, and (d) EPX. Each point represents a fine‐mapped variant from a single trait and cohort. Point
color represents discovery cohort and number label represents a fine‐mapped trait. Points above the gene body corre‐
spond to those with positive effect sizes, whereas points below the gene body correspond to those with negative effect
sizes. Coding variants are labeled with the HGVS protein nomenclature and non‐coding variants (in d) are labeled with
rsids. Protein domains are annotated based on the Pfam database.
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Figure B.10: (continued)

2

6

7

2 7

11

21

23 16

14
243

271

433

337 336
362

318

226 222

130

0

100

200

300

400

0% 20% 40% 60% 80% 100%

LOEUF decile

#
 g

e
n

e
s
 w

ith
 f

in
e

-m
a

p
p

e
d

n
o

n
s
y
n

o
n

y
m

o
u

s
 v

a
ri

a
n

ts
 (

P
IP

 >
 0

.1
) pLoF

Missense

a

2 7 10 2 7 10

1

6

5
12

6

3

7
8

10

9

2 7 10

p
.A

rg
3

5
5

8
C

y
s

p
.A

rg
3

5
2

7
G

ln

p
.P

ro
2

7
3

9
L

e
u

p
.H

is
1

9
2

3
A

rg

p
.P

ro
9

5
5

S
e

r

p
.T

h
r9

8
Ile

p
.L

e
u

1
2

_
L

e
u

1
4

d
e

l

0.0

0.2

0.4

0.6

0.8

1.0

P
IP

b

APOB

1

5
12

10

11 1

2

2 7 10

11

1 2

6 4 7

8

10

p
.S

e
r4

3
3

8
A

s
n

p
.A

rg
4

2
7

0
T

h
r

p
.A

rg
3

6
3

8
G

ln

p
.A

rg
3

5
2

7
G

ln

p
.P

ro
2

7
3

9
L

e
u

p
.H

is
1

9
2

3
A

rg

p
.A

s
n

1
9

1
4

S
e

r

p
.A

s
p

1
1

1
3

H
is

p
.P

ro
9

5
5

S
e

r

p
.A

rg
5

3
2

T
rp

0.0

0.2

0.4

0.6

0.8

1.0P
IP

Trait 1 2 3 4 5 6 7 8 9 10 11 12ApoA ApoB CAD Hb HbA1c HDLC LDLC MI Statin TC TG VitD

Cohort UKBB BBJ FG

Domain Apolipoprotein B100 C terminal Lipoprotein amino terminal region

2 2
2

1

2

2

2

p
.A

s
p

6
2

0
A

s
n

p
.A

la
5

2
8

T
h

r

p
.P

h
e

4
8

9
L

e
u

p
.G

ln
1

4
1

L
y
s

p
.G

ln
1

2
6

T
e

r

0.0

0.2

0.4

0.6

0.8

1.0

P
IP

c

ABCG2

Trait 1 2Gout UA

Cohort UKBB BBJ FG

Domain ABC transporter ABC-2 type transporter

1

p
.P

h
e

3
0

8
L

e
u

0.0
0.2
0.4
0.6
0.8
1.0

P
IP

d

EPX LPO

MKS1

1

rs
5

3
6

0
7

0
9

6
8

0.0
0.2
0.4
0.6
0.8
1.0P

IP

Trait 1 Eosino

Cohort UKBB BBJ

Domain Animal haem peroxidase

189



8 (15%) 42 (79%) 3 (6%)

44 (100%)

UKBB

FG

B
B

J

Missing reason Missing from reference Low MAF Low INFO HWE outlier (UKBB)

8 (26%) 20 (65%) 1 2 (6%)

29 (29%) 69 (69%) 2

UKBB

BBJ

F
G

36 (100%)

32 (20%) 122 (78%) 3

FG

BBJ

0% 25% 50% 75% 100%

% variant

U
K

B
B

Figure B.11: Overview of “missing” variants from summary statistics. We characterized the reasons that high‐PIP vari‐
ants (PIP > 0.9) in a single population are missing from summary statistics in other populations. The following criteria
represent imputation and quality control procedures adopted in each cohort (2.4 Methods). Missing from reference:
Variants do not exist in imputation reference panels used in each cohort, i.e., BBJ: the 1000 Genomes Phase 3 (n =
2,504) + Japanese WGS (n = 1,037); FinnGen: Finnish WGS (n = 3,775); and UKBB: the Haplotype Reference Consor‐
tium (n = 64,976) + the 1000 Genomes Phase 3 + UK10K (n = 3,781). Low MAF: MAF < 0.005 in a population based on
the GEM‐J WGS for BBJ and the gnomAD v2 for FinnGen and UKBB. Low INFO: INFO < 0.7 for BBJ and INFO < 0.8 in
FinnGen/UKBB. HWE outlier (UKBB): HWE P‐value < 1.0 × 10−10 (only in UKBB).
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a

c

b

Figure B.12: Genotype cluster plots in UKBB “white British” individuals. Cluster plots of genotyped SNP intensity are
shown for three SNPs: a. rs2237897, b. rs4765138 and c. rs117952254. Colors correspond to called genotypes. All
the variants passed a per‐batch QC but showed HWE test P‐value < 1 × 10−10 in aggregate. The cluster plots were
generated by ScatterShot (http://mccarthy.well.ox.ac.uk/static/software/scattershot/).
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C.1 Supplementary Note

C.1.1 Standard variant-level QC procedures for meta-analysis summary statis-

tics

Various QC practices on GWAS summary statistics have been adopted for meta-analysis, which were

extensively described elsewhere 249. Here, we summarize pre- and post-meta-analysis QC procedures

that primarily act on individual variants, and thus affect calibration and recall for meta-analysis

fine-mapping at single-variant resolution. Study-level QC should be conducted separately, such as

integrity check of submitted files (e.g., nonsense/missing values), population stratification (e.g., LD

score regression intercept 321), and ancestry composition (e.g., PCA projection to the unified refer-

ence 239).

Pre-meta-analysis QC (per-cohort):

• Minor allele frequency or count filtering (e.g., MAF > 0.1% or MAC > 20)

• Imputation quality score filtering (e.g., INFO > 0.3)

• Variant normalization

– Variants should have the same ID nomenclature (e.g., chromosome:position:ref:alt)

that represents a unique genomic position and alleles on the forward strand (i.e., rsid is

not recommended)

– Indels should be normalized (left-aligned and trimmed to be parsimonious) 322

• Allele frequency consistency with external public reference (e.g., gnomAD)

– Extra care should be taken for palindromic single-nucleotide variants (with A/T or

G/C alleles) and indels.
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– Please refer to the GBMI flagship paper 239 for our filtering criteria based on the Maha-

lanobis distance.

• If multiple genome builds exist, lifting over variants to the major genome build

– Variants that are located within conversion-unstable positions (CUP) 253 between

genome builds should be removed, including those that fail at conversion, map to

different chromosomes, and do not map back to the original position when lifting

back to the original genome build.

– Effect alleles should be consistent between genome builds because reference and alter-

native alleles could be flipped during liftover.

Post-meta-analysis QC:

• Effect size heterogeneity test (e.g., Cochran’s Q-test)

• Rffective sample size filtering (e.g., maximum Neff > 50

C.1.2 Approximate Bayes factors as a function of sample size

We assume a model

y = xβ+ e

e ∼ Nn(0, σ2In)

β = bγ

where

b ∼ N1(0, σ2
0)
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and γ is a unit basis vector chosen uniformly at random. Assuming a single causal variant, the poste-

rior inclusion probability (PIP) for variant i is the posterior probability that variant i is causal, and

can be calculated as

PIP(i) =
P(y | x, σ2, σ2

0, γ = ei)∑
j P(y | x, σ2, σ2

0, βj ̸= 0)

=
BF(i)∑
j BF(j)

where

BF(i) =
P(y | x, σ2, σ2

0, γ = ei)
P(y | x, σ2, β = 0)

.

Let xi denote the genotype at the i-th SNP. When no genotypes are missing, we have

P(y | x, σ2, σ2
0, γ = ei) = P(y | xi, σ2, σ2

0, γ = ei)

and

P(y | x, σ2, σ2
0, γ = 0) = P(y | xi, σ2, σ2

0, γ = 0).

Thus, BF(i) can be computed by considering only variant i. However, when there are missing geno-

types, these equalities no longer hold. Meta-analysis fine-mapping typically proceeds by ignoring

this fact and continuing to use the standard approximation to BF(i) introduced by Wakefield6

To concretize the lack of accuracy of ABF-based PIPs in the presence of missing data, we show how

sample size differences between variants in a locus affect their respective ABF PIPs. Specifically, we

show that for every marginal effect size β̂ and prior effect size variance σ2
0, there exists a sample size

n above which the approximate Bayes Factor for a variant, and thus the PIP, increases monotoni-

cally with increasing sample size (and below which, the PIP decreases monotonically with increasing

sample size). For a variant i, we have the following linear regression model, where y and xi are vec-
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tors of length n representing the standardized phenotype and standardized genotype at one locus,

respectively:

y = xiβi + e

e ∼ Nn(0, σ2In)

βi ∼ N1(0, σ2
0)

with n, σ2
0 > 0. Approximate Bayes factors are computed as follows:

BF(i) =
P(y | xi, σ2, σ2

0, βi ̸= 0)
P(y | xi, σ2, σ2

0, βi = 0)
=

√
s2

σ2
0 + s2

exp
z2

2
× σ2

0
σ2

0 + s2

where z = β̂i/s, β̂i = (xi
Txi)

−1xi
Ty is the least squares estimate of β, and its variance s2 =

σ2/(xi
Txi). Since xi and y are mean-centered and scaled to unit variance s ≈

√
1/n and thus

z2 ≈ nβ̂i
2

.

To see how changes in n for fixed β̂i, σ
2
0, and σ2 impact the value of the Bayes factor, we take it’s

derivative with respect to n and set it equal to zero. After some algebra, we get:

σ2
0n2 + (2 − σ2

0

β̂i
2 )n−

1

β̂i
2 = 0

which is a parabola with one positive root at n = −1
σ2

0
+ 1

2β̂i
2 +

√
1
σ4

0
+ 1

4β̂i
4 . Above this value

of n, the Bayes factor increases monotonically with increasing sample size. For example, when the

estimated effect β̂i = 0.01 and the prior effect size variance σ2
0 = 0.04, the Bayes factor will increase

monotonically when the sample size n > 9,976. Thus, a causal variant that is not imputed in some

studies and thus has a lower sample size than nearby variants will typically have a relatively lower

Bayes Factor.
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C.1.3 Global Biobank Meta-analysis Initiative
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Jibril B Hirbo10,11, Ying Wang1,2,3, Arjun Bhattacharya12, Huiling Zhao13, Shinichi Namba5, Ida

Surakka14, Brooke N Wolford6, Valeria Lo Faro15,16,17, Esteban A Lopera-Maya18, Kristi Läll19,
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The following Supplementary Tables are available in the online version of the manuscript.
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Table C.6: SLALOM prediction for the GWAS Catalog loci
Table C.7: Overview of the GBMI meta‐analyses
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Figure C.1: Locuszoom plot of the TYK2 locus (19p13.2) for COVID‐19 hospitalization in the COVID‐19 Host Genetics
Initiative meta‐analysis (release 5)21. The top panel shows a Manhattan plot, where the lead variant rs74956615 (purple
diamond) and a missense variant rs34536443 (gold diamond) are highlighted. Color represents r2 values to the lead
variant. Horizontal line represents a genome‐wide significance threshold (P = 5.0 × 10−8). The middle panel shows
PIP from ABF fine‐mapping. Color represents whether variants belong to a 95% CS. The bottom panel shows r2 values
to the lead variant in gnomAD populations.
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Figure C.2: Overview of our simulation pipeline. The flow of major simulation steps are summarized in the order of 1)
simulating true genotypes, 2) genotyping, 3) imputation, 4) GWAS, 5) meta‐analysis, and 6) fine‐mapping (3.4 Methods).
Arrows represent how each single simulated cohort (AFR, EAS, or EUR) is differentiated based on genotyping arrays and
imputation panels and then combined for meta‐analysis and fine‐mapping.
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Figure C.3 (following page): UpSet plots of QC‐passing GWAS variants across simulated GWAS cohorts under different
MAF thresholds. Each simulated cohort has a different combination of ancestry, genotyping array, and imputation panel.
For each MAF threshold, the top panel shows a number of QC‐passing GWAS variants (Rsq > 0.6 and gnomAD or per‐
combination MAF) across different intersections of the simulated cohorts. Color represents the number of different
imputation panels included in the intersection. Shape represents the number of genotyping arrays included in the inter‐
action. The bottom panel shows a combination of the simulated cohorts for each intersection. Point color represents
an imputation panel, while background color represents ancestry. Point shape represents a genotyping array. Dotted
vertical lines split intersections by the number of ancestries. Horizontal lines split the simulated cohorts by a combina‐
tion of ancestry and an imputation panel. Only the top 30 intersections for each MAF threshold are shown, ordered by
the number of ancestries, and then the number of QC‐passing variants for each intersection. For European simulated
cohorts, we only used one cohort out of the 10 cohorts that we simulated.
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Figure C.3: (continued)
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Figure C.3: (continued)
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Figure C.4: QC‐passing shared variants across simulated GWAS cohorts. Heatmaps under different combinations of
gnomAD MAF and Rsq thresholds are shown for (a) the fraction of shared variants in every combination of ancestry,
genotyping array, and imputation panel, and (b) the number of shared variants in every combination.
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Figure C.5: Sample size ratio between true causal and false positive variants in simulations. Sample size ratio is defined
as a ratio of maximum and minimum sample sizes for a true causal variant and a false positive variant (non‐causal variant
with PIP > 0.9) in the same locus. Dotted vertical line represents the median of 1.4. We used the simulation results for
the most heterogeneous configurations (3.4 Methods).
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Figure C.6: Evaluation of SLALOM performance in the GWAS Catalog summary statistics using a more stringent r2

threshold (> 0.8) for loci tagging nonsynonymous variants. Similar to Fig. 3.4a, we evaluated whether nonsynonymous
coding variants (pLoF and missense) were lead PIP variants, in 95% CS, or in 99% CS in suspicious vs. non‐suspicious
loci. Depletion was calculated by relative risk (i.e. a ratio of proportions; Methods). Error bars correspond to 95% confi‐
dence intervals using bootstrapping. Significance represents a Fisher’s exact test P‐value (*, P < 0.05; **,< 0.01; ***,
< 0.001; ***,< 10−4).
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Figure C.7: Effective sample size ratio in the GBMI meta‐analyses. Effective sample size ratio is defined as a ratio of
maximum and minimum effective sample sizes among variants in LD (r2 > 0.6) with a lead variant in a locus. Each panel
represents (a) suspicious and (b) non‐suspicious loc in the GBMI meta‐analyses predicted by SLALOM. Dotted vertical
lines represent the median values for each panel.
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Figure C.8: Scatter plot of PIP in the GBMI and individual biobanks. For each variant, PIP in the GBMI vs. maximum
PIP across BBJ, FinnGen, and UKBB are plotted, stratified by traits and suspiciou/non‐suspiciou loci. Colored points
represent variants in either suspicious or non‐suspicious loci, while gray points represent variants in the other loci.
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represent those |ΔPIP| ≤ 0.5 in a similar fashion to a rug plot. Variants with |ΔPIP| > 0.5 in non‐suspicious loci are labeled
with rsids. White diamonds represent median values of ΔPIP. Dotted vertical line represents ΔPIP = 0.
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Figure C.10: Functional enrichment of variants with PIP difference using a different threshold. We computed functional
enrichment of variants with PIP difference (ΔPIP > θ or< θ) in each functional category compared to variants with no
substantial PIP difference (θ ≤ ΔPIP ≤ θ) using thresholds of θ = 0.01, 0.05, and 0.1. A regular triangle represents ΔPIP >
0.01 while an upside‐down triangle represents ΔPIP < –0.01. Enrichment was calculated by a relative risk (i.e, a ratio of
proportions; 3.4 Methods). Error bars correspond to 95% confidence intervals using bootstrapping.
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Figure C.11: Distribution of the 95% CS size in the GBMI and individual biobanks. Violin plots represent the distribu‐
tion in (a) suspicious loci and (b) non‐suspicious loci. Each point represents each 95% CS in the GBMI and individual
biobanks. Each line connects the overlapping CS that contains the same lead variants from the GBMI.
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Figure C.12: LD structure around rs1888909 in the African and European populations. r2 values with rs1888909 in
the gnomAD African (AFR) and non‐Finnish European (NFE) populations are plotted. Black diamond corresponds to
rs1888909. Purple and light blue areas represent LD regions that showed r2 > 0.6 with rs1888909 in AFR and NFE,
respectively. Dotted horizontal corresponds to r2 = 0.6.
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D.1 Supplementary Note

D.1.1 Secondary analyses for simulations with in-sample LD

We performed 5 secondary analyses to investigate the sensitivity of the results to the simulation

parameters. First, we performed simulations for much less polygenic (0.05%) and much more poly-

genic (0.5%) architectures. PolyPred remained the most accurate method, attaining the largest rel-

ative improvements vs. BOLT-LMM for the much less polygenic architecture, with slightly worse

results for PolyPred-S and PolyPred-P (Supplementary Table D.1); we conservatively restricted the

remaining secondary analyses to the more polygenic (0.3%) architecture (for which PolyPred attains

smaller relative improvements among the two main architectures simulated) and omitted PolyPred-S

and PolyPred-P (due to their close similarity to PolyPred), unless otherwise indicated. Second, we

performed simulations with lower (3%) or higher (7%) chromosome 22 heritability. PolyPred re-

mained the most accurate method, with relative improvements vs. BOLT-LMM increasing with

heritability (Supplementary Table D.1). Third, we performed simulations with cross-population

genetic correlations increased from 0.8 to 1.0. PolyPred remained the most accurate method, with

relative improvements vs. BOLT-LMM remaining broadly similar (Supplementary Table D.1).

Fourth, we modified the number of training samples from the target population used to estimate

mixing weights (Nmix) from 500 to various values from 100–1,000. PolyPred remained the most

accurate method in all these experiments, with relative improvements vs. BOLT-LMM increasing

with Nmix but limited improvement above Nmix = 500 (Supplementary Table D.1). Fifth, wede-

creased the number of British-ancestry training samples (N) from N = 337K to N = 100K or N

= 10K. Prediction accuracies decreased with decreasing training sample size for all methods, and

the relative improvements of PolyPred vs. BOLT-LMM (and other methods) were substantially

decreased for N = 10K, though they remained statistically significant in Africans under 0.1% poly-

genicity (Supplementary Table D.1).
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We performed two secondary analyses to investigate the sensitivity of the results to the SNP set

and functional annotations. First, we evaluated a modified version of PolyPred that uses only 1.2

million HapMap 3 SNPs (matching the SNP sets of BOLT-LMM, SBayesR, and PRS-CS) instead

of 18 million SNPs. PolyPred suffered a substantial loss of accuracy in this setting, demonstrating

the importance of using a dense SNP set for fine-mapping based PRS (Supplementary Table D.1).

Second, we evaluated a non- functionally informed method (PolyPred-NoFun) that linearly com-

bines PolyNoFun-pred (a modification of PolyFun-pred that is not functionally-informed; see

Methods) and BOLT-LMM, precluding the need for functional annotations. PolyPred-NoFun

was slightly less accurate than PolyPred, but still more accurate than BOLT-LMM (Supplementary

Table D.1).

We performed two secondary analyses to evaluate the computational cost and memory cost of

each method. First, we evaluated the computational cost of each method (for PolyPred, PolyPred-

S, and PolyPred-P, we included the time cost of each constituent method); we focused on the time

cost to compute SNP effect sizes used for prediction, as the time cost to compute predictions in

target samples using these SNP effect sizes is approximately the same for each method. SBayesR

was the fastest method (2.8 minutes), P+T was the second fastest method (7.4 minutes), PRS-CS

was the third fastest method (113 minutes), BOLT-LMM was the fourth fastest method (224 min-

utes), PolyPred-S was the fifth fastest method (447 minutes), PolyPred-P was sixth fastest method

(557 minutes), and PolyPred was the slowest method (668 minutes) (Supplementary Table D.2).

Second, we evaluated the memory cost of each method (for PolyPred, we computed the maximum

memory cost of each constituent method). We performed this analysis using chromosome 1 instead

of chromosome 22 because memory cost can increase with the number of SNPs in the analysis (but

the memory cost of PolyFun-pred is fixed because it analyzes each 3Mb-locus separately). P+T used

the least memory (1.5GB), PRS-CS used the second smallest amount of memory (1.8GB), SBayesR

used the third smallest amount of memory (2.6GB), BOLT-LMM used the fourth smallest amount
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of memory (11GB), and PolyPred, PolyPred-S, and PolyPred-P all used the most memory (57GB)

(Supplementary Table D.2). The larger computational cost of PolyPred and its summary statistic-

based analogues is dominated by the PolyFun-pred component, which is computationally intensive

because (i) it performs fine-mapping and (ii) it analyses a large number of SNPs (see the D.1 Supple-

mentary Note subsection Limitations of PolyPred and PolyPred+).

D.1.2 Simulations with reference LD

The simulations described in the main text use in-sample LD (i.e., LD summary data based on the

UK Biobank GWAS sample). However, researchers often do not have access to in-sample LD, ne-

cessitating external LD reference panels. We thus evaluated modified versions of PolyFun-pred,

SBayesR and PRS-CS that use summary LD estimated from 1000 Genomes project Europeans4

(N = 489). We note that this LD reference panel is both smaller than the UK Biobank British LD

reference panel (N = 337K) and less well-matched to the GWAS sample, because it consists of pan-

European ancestries rather than only British-ancestry individuals. We excluded BOLT-LMM from

these analyses because it requires individual-level data.

The results of simulations with reference LD are reported in Supplementary Table D.1. All

methods became less accurate when using 1000 Genomes project Europeans LD summary data.

The loss of accuracy was modest for SBayesR (–5% R2 for non-British Europeans vs. using in-

sample LD) but severe for PRS-CS (–42% R2 for non-British Europeans vs. using in-sample LD)

and PolyFun-pred (-90% for non-British Europeans vs. using in-sample LD). We caution that the

differences observed in real trait analysis for SBayesR and PRS-CS were substantially different from

those observed in our simulations (large loss of accuracy for SBayesR, no significant loss of accuracy

for PRS-CS), suggesting that the effect of LD mismatch on PRS accuracy may be sensitive to the

underlying genetic architecture.

We performed 3 secondary analyses. First, we evaluated a modified version of PolyFun-pred that
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uses summary LD from UK10K5 (N = 3,567). We observed only a moderate loss of accuracy in

PolyFun-pred vs. using in-sample LD (–8% R2 in non-British Europeans) (Supplementary Ta-

ble D.1). However, we caution that using UK10K led to substantial and statistically significant loss

of accuracy in real trait analysis, suggesting that the results may be sensitive to the underlying genetic

architecture. Second, we evaluated modified versions of PolyFun-pred using subsets of UK10K as

an LD reference panel, ranging from N = 3,000 to N = 489 (matching the 1000 Genomes project

Europeans reference LD sample size). The accuracy of PolyFun-pred decreased with the LD refer-

ence panel sample size, with the loss in accuracy vs. using in-sample LD (for non-British Europeans)

ranging from –8% for N = 3,000, to –90% for N = 489 (Supplementary Table D.1). Finally, we

evaluated a modified version of PolyFun-pred (PolyFun-pred1) that assumes a single causal variant

per locus, precluding the need for a reference LD panel (because fine-mapping under a single ca-

sual variant assumption does not require any LD information1). PolyFun-pred1 was substantially

less accurate than all other methods (including P+T) and is thus not recommended for polygenic

prediction (Supplementary Table D.1).

We conclude that the accuracy of all methods increases with the size of the LD reference panel

and its concordance with the GWAS sample population, but that the relationship may depend on

the underlying genetic architecture. Hence, it may be best to assess the accuracy obtained under var-

ious LD reference panels using real trait analysis rather than simulations. Specifically, the simulation

results do not support the use of PolyPred-S or PolyPred-P in the specific scenarios considered in

these simulations. However, real data results with very large LD reference panels do support the use

of PolyPred-S or PolyPred-P (Supplementary Fig. D.1). We did not perform simulations with very

large unmatched LD (analogous to Supplementary Fig. D.1), as this would have required another

very large individual-level data set in addition to UK Biobank.
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D.1.3 Evaluating method calibration for PRS in 4 UK Biobank populations

using British training data

We assessed the calibration of each prediction method. A predictor is correctly calibrated if a regres-

sion of the true phenotype vs. the predictor yields a slope of 1, and is miscalibrated otherwise 35.

Regression slopes are reported in Supplementary Table D.4. In non-British Europeans, PolyPred

was well-calibrated (regression slope = 1.01), BOLT-LMM and SBayesR were approximately well-

calibrated (0.96–1.08), PRS-CS was slightly miscalibrated (1.26), and P+T was poorly calibrated

(0.08). In non-European populations, PRS-CS was approximately well-calibrated (0.85–1.11), but

BOLT-LMM and SBayesR suffered reduced regression slopes (0.57–0.90), consistent with reduced

prediction accuracy. In contrast, PolyPred and its summary statistic-based analogues remained well-

calibrated (0.95–1.17), as expected due to their extra training step to estimate mixing weights in the

target population.

D.1.4 Secondary analyses for PRS in 4 UK Biobank populations using British

training data

We performed 5 secondary analyses to evaluate the impact of the LD reference panel and the SNP

set on prediction accuracy (we note that analyses of summary statistics from a meta-analysis of many

cohorts generally require using an LD reference panel instead of in-sample LD). First, we evaluated

a modified version of PolyFun-pred using a reference panel based on UK10K (N = 3,567) and ob-

served a substantial and statistically significant reduction in accuracy, to a far greater degree that

observed in simulations (Supplementary Table D.4–D.6). Second, we evaluated a modified ver-

sion of PRS-CS that uses an LD reference panel from 1000 Genomes project Europeans (N = 489)

and observed statistically indistinguishable results from those obtained using in-sample LD (un-

like in simulations, where we observed significantly reduced accuracy when using an LD reference
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panel from 1000 Genomes project Europeans) (Supplementary Table D.4–D.6). Third, we evalu-

ated modified versions of SBayesR that use (i) an LD reference panel using UK10K (N = 3,567); (ii)

an LD reference panel using 1000 Genomes project Europeans (N = 489); or (iii) an LD reference

panel using a subset of UK10K (N = 489). We observed (i) very similar and statistically indistin-

guishable accuracy when using UK10K, (ii) severely reduced accuracy (P < 4 × 10−6) when using

1000 Genomes project Europeans, and (iii) moderately reduced accuracy (P = 0.07 in East-Asians,

P < 7 × 10−6 in other target populations) when using a subset of UK10K, suggesting that the loss

of accuracy primarily stems from LD mismatch rather than reduced sample size (Supplementary

Table D.4–D.6). Fourth, we evaluated a modified version of SBayesR (SBayesR-2.8M) that uses

2.8M common SNPs specified by the authors of SBayesR 36 instead of 1.2 million HapMap 3 SNPs.

SBayesR-2.8M was less accurate than SBayesR (significantly so for Africans) (Supplementary Ta-

ble D.4–D.6). Thus, our use of SBayesR (using 1.2 million HapMap 3 SNPs) instead of SBayesR-

2.8M in all primary comparisons is a conservative choice, since SBayesR outperforms SBayesR-

2.8M (we note that naively scaling SBayesR and PRS-CS to use 18 million SNPs as in PolyFun-pred

would be computationally infeasible 36,37). Fifth, we evaluated a modified version of BOLT-LMM

(BOLT-LMM-727K) that estimates effect sizes using only 727K genotyped SNPs (instead of 1.2

million imputed HapMap 3 SNPs). BOLT-LMM-727K was substantially and significantly less ac-

curate than BOLT-LMM (Supplementary Table D.4).

We performed 9 additional secondary analyses. First, we evaluated LDpred6 using 1000 Genomes

project Europeans4 or UK10K5 as the LD reference panel (4.4 Methods). Both versions of LDpred

were consistently less accurate than BOLT-LMM (Supplementary Table D.4). Second, we evalu-

ated modified versions of PolyPred that specify fixed mixing weights instead of estimating mixing

weights in the target populations. We considered mixing weights for PolyFun-pred/BOLT-LMM

equal to 0%/100%, 25%/75%, 50%/50%, 75%/25%, and 100%/0%. The 25%/75% and 50%/50%

methods performed very similarly to PolyPred, with no statistically significant differences (Supplementary
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Table D.6). Third, we restricted the PolyFun-pred component of PolyPred to only include SNPs

with posterior causal probability greater than a fixed threshold (0.05, 0.50 or 0.95). This restric-

tion decreased prediction accuracy (Supplementary Tables D.4,D.6), implying that estimating

causal effect sizes is beneficial for prediction even at loci that cannot be confidently fine-mapped.

Fourth, we evaluated a non-functionally informed method (PolyPred-NoFun) that linearly com-

bines PolyNoFun-pred (a modification of PolyFun-pred that is not functionally-informed; see

Methods) and BOLT-LMM. PolyPred-NoFun was slightly less accurate than PolyPred, but still

more accurate than BOLT-LMM (Supplementary Tables D.4,D.6). The difference between

PolyPred-NoFun vs. PolyPred was not statistically significant, in contrast to previous studies report-

ing a large and statistically significant increase in prediction accuracy from incorporating functional

annotations 305–307. Fifth, we reduced the number of training samples from the target population

used to estimate mixing weights (Nmix) from 500 to 100. PolyPred suffered slightly reduced accu-

racy but remained the most accurate method, although relative improvements vs. BOLT-LMM

were no longer statistically significant due to larger standard errors (Supplementary Table D.4).

Sixth, we computed standard errors of relative-R2 using a jackknife over individuals 305 (instead of a

genomic block-jackknife over SNPs; see Methods). Standard errors computed using a jackknife over

individuals were generally smaller, increasing the statistical significance of relative improvements of

PolyPred vs. BOLT-LMM (Supplementary Table D.4). Seventh, we observed very similar results

when down-sampling the non-British European target sample size to match the African target sam-

ple size, demonstrating that the reduced accuracy in Africans vs. Europeans is not due to the lower

target sample size (Supplementary Table D.4). Eighth, we evaluated two versions of PRS-CS that

use pre-specified values of its global shrinkage parameter (0.01 and 0.001, following the recommen-

dations of the authors of PRS-CS 37). Both versions were less accurate than the default version of

PRS-CS (which automatically adjusts the value of this parameter), justifying the use of the default

version of PRS-CS in this work (Supplementary Tables D.4,D.5). Finally, we assessed the potential
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contribution of ancestry-specific heritability to reductions in cross-population prediction accu-

racy 48, by applying GCTA 323 to estimate the SNP-heritability explained by HapMap 3 SNPs 324,325

in each target population. SNP-heritabilities were largest in non-British Europeans and smallest

in Africans (Supplementary Table D.7) (these differences could be due to SNP ascertainment 326,

sample ascertainment, and/or ancestry-specific architectures), likely contributing to reductions in

cross-population prediction accuracy.

D.1.5 Secondary analyses for PRS in Biobank Japan and Uganda-APCDR co-

horts

We performed 6 secondary analyses. First, we assessed the calibration of each method by comput-

ing regression slopes, which are reported in Supplementary Table D.9. Similar to our analyses of

non-European UK Biobank target populations, PolyPred and its summary statistic-based analogues

were the only approximately well-calibrated methods, as expected due to their extra training step to

estimate mixing weights in the target population. We restricted the remaining secondary analyses

to PolyPred (as PolyPred-S and PolyPred-P are analogous to PolyPred with respect to these analy-

ses). Second, we evaluated a modification of PolyPred that estimates mixing weights using 500 UK

Biobank individuals from the genetically closest target population (UK Biobank East Asians for

Biobank Japan, UK Biobank Africans for Uganda-APCDR) instead of 500 individuals from the tar-

get cohort. The differences between the original and modified versions of PolyPred were small and

not statistically significant (Supplementary Table D.9 indicating that PolyPred mixing weights can

be estimated using 500 individuals from any cohort with the same continental ancestry as the target

population. Third, we evaluated modified versions of PolyPred that specify fixed mixing weights

instead of estimating mixing weights in the target populations. We considered mixing weights for

PolyFun-pred/BOLT-LMM equal to 0%/100%, 25%/75%, 50%/50%, 75%/25%, and 100%/0%. The

25%/75% and 50%/50% methods performed very similarly to PolyPred, with no statistically signif-
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icant differences (Supplementary Table D.9). Fourth, we reduced the number of training samples

from the target population used to estimate mixing weights (Nmix) from 500 to 100. PolyPred suf-

fered slightly reduced accuracy but remained the most accurate method, with the improvement

vs. BOLT-LMM in Biobank Japan remaining statistically significant (Supplementary Table D.9).

Fifth, we computed standard errors of relative-R2 using a jackknife over individuals9 jackknife over

SNPs). We obtained standard errors that were almost identical to those obtained using a (instead

of a genomic block-genomic block-jackknife (unlike the above results for UK Biobank), suggesting

that Biobank Japan may be more heterogeneous across samples, possibly due to its hospital-based re-

cruitment (Supplementary Table D.9). Finally, we meta-analyzed the results of each method across

three independent diseases in Biobank Japan: type 2 diabetes, asthma, and all autoimmune disease.

Similar to our UK Biobank analyses above, PolyPred attained the highest prediction accuracy in

each disease, though relative improvements were not statistically significant due to lower power

(Supplementary Table D.9).

D.1.6 Secondary analyses for PRS in East Asians using British and Japanese

training data

We performed 6 secondary analyses. We restricted these secondary analyses to PolyPred+ (as PolyPred-

S+ and PolyPred-P+ are analogous to PolyPred+ with respect to these analyses). First, we verified

that PolyPred+ using European and East Asian training data does not outperform PolyPred in

UK Biobank populations other than East Asians; differences between PolyPred+ and PolyPred

were very small and not statistically significant (Supplementary Table D.6). Second, we verified

that PolyPred+ was well-calibrated (Supplementary Table D.4; results for other methods are de-

scribed above), as expected due to its extra training step to estimate mixing weights in the target

population. Third, we evaluated a modified version of PolyPred+ that estimates mixing weights

using 500 Biobank Japan individuals instead of 500 UK Biobank East Asians. The modified ver-
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sion of PolyPred+ was far less accurate than the original version (52% lower relative-R2; Supple-

mentary Table D.6). The mixing weights estimated in Biobank Japan assign much higher weight

to the Biobank Japan training data (Supplementary Table D.6), perhaps due to cohort effects;

thus, it may be important to estimate PolyPred+ mixing weights using the target cohort (as op-

posed to the training cohort) if cohort effects are present. Fourth, we reduced the number of train-

ing samples from the target population used to estimate mixing weights (Nmix) from 500 to 100.

PolyPred+ suffered slightly reduced accuracy, though the difference was not statistically significant

(Supplementary Table D.6). Fifth, we evaluated a prediction method using only the N = 124K

Biobank Japan individuals to train effect sizes (BOLT-LMM-BBJ). BOLT-LMM-BBJ substantially

underperformed methods that use UK Biobank British training data (–27% vs. BOLT-LMM, –34%

vs. PolyPred, –41% vs. PolyPred+; Supplementary Table D.4). Finally, we computed standard er-

rors of relative-R2 using a jackknife over individuals 305 (instead of a genomic block-jackknife over

SNPs). Standard errors computed using a jackknife over individuals were smaller, increasing the

statistical significance of relative improvements of PolyPred+ vs. other methods (Supplementary

Table D.6).

D.1.7 Loss of PRS accuracy under an infinite European training sample

Under an infinite European training sample, the ratio between R2
EUR and R2

non-EUR, which denote

R2 in a European sample and in a non-European sample, respectively, is approximately given by:

ρ2
g ×

h2
non-EUR
h2

EUR
×

(∑
k

√
pk,non-EUR(1−pk,non-EUR)

pk,non-EUR(1−pk,non-EUR)

)2

× var(PGSEUR)

var(PGSnon-EUR)

Here, ρg is the cross-population genetic correlation, h2
non-EUR, h2

EUR are the heritabilities in the

non-European and the European populations, respectively, k iterates over causal SNPs, pk,non-EUR,

pk,EUR are minor allele frequencies in the non-European and the European population, respec-
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tively, and var(PGSEUR), var(PGSnon-EUR) are the variances of the polygenic risk scores in the non-

European and the European populations, respectively. This equation is directly derived from Equa-

tion 1 in ref. 12, after assuming that causal SNPs are approximately not in LD with each other, and

that the predictor SNPs are the causal SNPs under an infinite sample size.

D.1.8 Limitations of PolyPred and PolyPred+

Polypred training time is slower than alternative PRS methods

PolyPred and its summary statistic-based analogues are slower than alternative PRS methods, re-

quiring over 1,000 hours of computation time for training, vs. less than 100 hours for BOLT-LMM

(D.1 Supplementary Note). This is dominated by the PolyFun-pred component, which is compu-

tationally intensive because (i) PolyFun-pred performs fine-mapping, which is a more computation-

ally intensive task than other approaches to computing PRS coefficients (e.g. computing posterior

mean tagging effect sizes, as in SBayesR); and (ii) PolyFun-pred analyzes a large number of SNPs,

e.g. 18 million SNPs in UK Biobank training data and 8.1 million SNPs in ENGAGE training data

(vs. 1.2 million SNPs for SBayesR). We do not foresee the larger computation time for training as

a major limitation in real-world settings, because training only needs to be performed once, can be

parallelized, and provides genome-wide fine-mapping results of direct interest1.

PolyPred cannot use data from a fixed-effects meta-analysis of GWAS data

from different ancestry groups

One of the main conclusions of our work is that leveraging training data from different ancestry

groups (e.g. different continental ancestries) improves PRS in diverse populations. However, we rec-

ommend against using training data consisting of a traditional fixed-effect meta-analysis of GWAS

data from different ancestry groups, for two reasons: (i) fixed-effect meta-analysis implies that Eu-
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ropean training samples and training samples from the non-European target population would

receive equal weight, whereas our work shows that the latter should receive higher weight in order

to maximize PRS accuracy; and (ii) it may be challenging to construct an LD reference panel whose

ancestry matches the ancestry of the meta-analysis of different ancestry groups. When possible, it

would be preferable to separately incorporate European training data and training data from the

non-European target population, with appropriate LD reference panels. Although there is no single

optimal way to choose a training cohort, training sample size should be a primary consideration, as

it is a critical factor impacting PRS accuracy.

PolyPred requires a small training sample from the target cohort to main-

tain calibrated predictions

PolyPred ideally requires a small training sample from the target cohort to estimate mixing weights.

Our results suggest that it is possible to improve cross-population PRS accuracy even without such

a training sample, by linearly combining PolyFun-pred and BOLT using mixing weights of either

25%/75% or 50%/50%, respectively. However, we caution that PRS linearly combined using fixed

mixing weights may not always be well-calibrated.

D.1.9 Causal vs. tagging effects

We consider a linear model y =
∑

i xiβi + ε where y is a trait, xi is the number of minor alleles

at SNP i, βi is the (true) causal effect sizes of SNP i, and ε is a residual term sampled from a nor-

mal distribution. We consider a method (such as PolyFun-pred) that estimates βi. If the generative

model holds and all SNPs i are considered in the estimation procedure, then any consistent estima-

tor β̂i of βi represents a causal effect. In contrast, if only a subset of the SNPs, such as HapMap3

SNPs, are considered in the estimation procedure (i.e. if we incorrectly assume the generative model
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y =
∑

i∈S xiβi + ε, where S is a subset of SNPs) then the estimated value β̂i, represents a linear

combination of βi and of the effect sizes of other SNPs.

The exact value estimated by β̂i depends on the estimation procedure. For example, assuming an

ordinary least squares estimator for simplicity, the vector β̂S of estimated coefficients is a consistent

estimator of [Im−kR−1
SS RSS̄]β, where m is the total number of SNPs, k is the number of SNPs in the

set S, RSS is the LD matrix of the SNPs in the set S, RSS̄ is a matrix wherein each entry i,j is the cor-

relation between SNP i in the set S and SNP j in the set of SNPs that are not in S, and β is the vector

of true effect sizes, assuming without loss of generality that the set S includes the first k SNPs (out

on m SNPs considered). It is easy to derive this quantity by writing down the conditional expecta-

tion of β̂S under an ordinary least squares estimator, given by E[β̂S | β] = E[(XXXT
SXXXS)

−1XXXT
S yyy | β],

where yyy = XXXβ+ ε is a vector of observed phenotypes and XXX is the corresponding matrix of SNPs, XXXS

is the submatrix of XXX consisting of columns of SNPs in the set S, and we assume that ε is indepen-

dent of XXX.

D.1.10 Investigating if off-cohort loss of accuracy is driven by SNP heritabil-

ity differences

We investigated if lower prediction accuracies in Biobank Japan vs. the UK Biobank can be largely

explained by SNP heritability differences. We began by comparing trait heritabilities across the UK

Biobank and Biobank Japan, using BOLT-REML16 applied to UK Biobank British-ancestry in-

dividuals (average N = 325K) and to Biobank Japan (average N = 124K), restricting to HapMap 3

SNPs. The average heritability in the UK Biobank was 67% larger (Supplementary Table D.10),

indicating differences in either trait measurement, cohort ascertainment, the ability of HapMap 3

SNPs to tag East Asian causal SNPs 64, or in the true underlying heritabilities (we could not per-

form a similar analysis with UK Biobank East Asian individuals due to small sample sizes leading to

large standard errors). We next asked if the observed differences in PRS accuracy between Biobank
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Japan and the UK Biobank can be explained by the 67% increased average SNP heritability in the

UK Biobank. To this end, we computed the expected R2 within each cohort as function of SNP

heritability, sample size, and the effective number of independent SNPs 327,328:

E[R2] = h2 h2

h2 + m
n

Here, h2 is SNP heritability, n is sample size, and m is the effective number of independent SNPs

(which we specified as 55,000, determined by dividing the number of HapMap 3 SNPs by their av-

erage within-HapMap 3 LD-score). We used the smaller Biobank Japan sample size in both cohorts

to eliminate differences due to sample size differences (by choosing a random subset of UK Biobank

British individuals as a training set). The average expected R2 in the UK Biobank was 104% larger

than in Biobank Japan (Supplementary Table D.10). We then trained BOLT-LMM using subsets

of the UK Biobank British sample (matching the Biobank Japan sample size for each trait) and ap-

plied the predictions to UK Biobank non-British Europeans. The average R2 in UK Biobank non-

British Europeans (when training BOLT-LMM using the reduced British training sample) was 108%

larger than the average R2 in Biobank Japan (when training BOLT-LMM using the Biobank Japan

training sample) (Supplementary Table D.10), strongly consistent with the 104% increase expected

from theory. Finally, we determined that when training BOLT-LMM using the full UK Biobank

British training set (average N = 325K), the average R2 in UK Biobank East Asians across the 7 in-

dependent traits is 93% larger than in Biobank Japan (Supplementary Tables D.4,D.9), broadly

consistent with the previous results. Assuming that the main factor differentiating the UK Biobank

East Asian sample from the Biobank Japan sample is SNP heritability differences (rather than differ-

ences in MAF, LD, or causal effect sizes), these findings suggest that the main factor leading to lower

prediction accuracies in Biobank Japan vs. the UK Biobank is SNP heritability differences.

To further investigate if off-cohort loss of accuracy is driven by SNP heritability differences, we
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compared prediction accuracies in UK Biobank East Asians and in Biobank Japan, when training

BOLT-LMM using the Biobank Japan training sample. The average relative-R2 in UK Biobank East

Asians across the 7 independent traits was 9.0% larger (Supplementary Tables D.4,D.10), though

the difference was not statistically significant (P =0.18), possibly owing to the small UK Biobank

East Asian sample size.

Although these results are not conclusive, they suggest that heritability differences drive most

of the differences in prediction accuracies observed between the UK Biobank and Biobank Japan.

Surprisingly, these results are consistent with a model in which HapMap 3 SNPs in Biobank Japan

tag approximately 50% of the causal SNPs that they tag in the UK Biobank, rather than a model

in which SNP heritabilities in Biobank Japan are smaller due to smaller causal effect sizes. This is

because under the second model, we would expect to see large increase in prediction accuracy in UK

Biobank East Asians vs. Biobank Japan when training BOLT-LMM using Biobank Japan (compared

with only a 9.0% increase observed in practice). A partial explanation is that the HapMap 3 SNP set

consists of a combination of two genotyping chips, one of which is explicitly designed to optimize

tagging in Europeans 288.

Overall, these results suggest that differences in SNP-heritability due to ancestry differences (e.g.

SNP ascertainment 326, sample ascertainment, and/or ancestry-specific architectures 64) or due to

cohort differences (e.g. differences in phenotype definitions 47, different recruiting strategies 47, or

assay artifacts) may explain most of the differences in prediction accuracies observed between the

UK Biobank and Biobank Japan. Our results are consistent with recent results showing almost no

loss of accuracy when applying PRS based on UK Biobank training data to other European-ancestry

cohorts 36. Importantly, our results suggest that factors that inflate within-cohort PRS accuracy 329

(such as cohort-specific GxE, cohort-specific indirect effects 330, cohort-specific population struc-

ture, or cohort-specific assortative mating) are unlikely explanations for the observed accuracy differ-

ences between the UK Biobank and Biobank Japan.
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D.1.11 Decomposing the PolyFun-pred and BOLT-LMM predictors into shared

and non-shared components

A linear combination of PRS predictors is not necessarily suboptimal, even if the methods are cor-

related. (As an extreme example, a linear combination of two perfectly correlated predictors is opti-

mal.) However, a linear combination could be suboptimal if the correlation between the (effect sizes

underlying the) two predictors varies across the genome. As an extreme example, consider a scenario

where one predictor is perfectly accurate across the first half of a chromosome but uninformative

across the second half, whereas the second predictor is uninformative across the first half but per-

fectly accurate across the second half. Clearly, the optimal combination would use only the (effect

sizes of the) first predictor for the first half of the chromosome, and only the (effect sizes of the) sec-

ond predictor for the second half of the chromosome. However, a simple linear combination assigns

only a single mixing weight to each predictor, and will thus assign equal weights to both predictors,

resulting in a suboptimal predictor.

We performed several attempts to improve upon a simple linear combination of PRS predictors

by partitioning the genome into segments and estimating different linear mixing weights in differ-

ent segments. However, this more complex approach did not outperform the simple approach of

assigning a simple mixing weight to each predictor (results not shown), and we thus did not pursue

it further.

D.1.12 Generating data for UK Biobank simulations

To simulate data, we first computed the variance of per-standardized-genotype effect ηi, for every

SNP i with annotations aaai using the baseline-LF (version 2.2.UKB) model, var[ηi | aaai] =
∑

c τcaci,

where c are annotations and τc estimates are taken from a fixed-effects meta-analysis of 16 well-

powered genetically uncorrelated (|rg| < 0.2) UK Biobank traits (age of menarche, BMI, balding,
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bone mineral density, eosinophil count, FEV1/FVC ratio, forced vital capacity, hair color, height,

platelet count, red blood cell distribution width, red blood cell count, systolic blood pressure, tan-

ning, waist-hip ratio adjusted for BMI, white blood count), scaled such that
∑

i var[ηi | aaai] is the

same across all traits (as detailed in ref. 118). Each SNP was specified to be causal with probability

proportional to var[ηi | aaai], such that the average causal probability was equal to the desired propor-

tion of causal SNPs (0.1% or 0.3% in most simulations).

We generated ancestry-specific effect sizes as follows. First, we generated a British per-allele causal

effect size for each SNP i via βBritish
i = γi/

√
2fi(1 − fi), where γi ∼ N(0, h2/m), m is the

number of causal SNPs, and fi is the maximal MAF of SNP i among British, non-British Euro-

pean, South Asian, East Asian, or African UK Biobank individuals. Afterwards, for each of the

main UK Biobank non-European ancestries (South Asian, East Asian, and African) a we gener-

ated an ancestry-specific per-allele effect size βai via βai = rg · βBritish
i +

√
1 − r2

gzai , where rg is the

cross-population genetic correlation (set to 0.8 by default, following previous works 64,244,303), and

zai ∼ N(0, 1). The use of fi bounds the per-allele causal effect sizes by the MAF of the ancestry

in which the SNP is most common, which guarantees that SNPs that are infrequent in Europeans

but are common in other ancestries do not explain a very large proportion of heritability. After

generating ancestry-specific per-allele causal effect sizes, we generated a phenotype y for every UK

Biobank individual in each ancestry a via y =
∑

i xiβ
a
i + ε, where xi is the number of minor alleles

of SNP i carried by that individuals, βai is the ancestry-specific per-allele causal effect size of SNP i,

and ε ∼ N(0, 1 − h2) is the environmental variance of the generated trait. We generated phenotypes

based on dosage data from imputed genotypes, using Plink 2.0 (ref. 278. We used self-reported ances-

try based on UK Biobank data field 21000 (Ethnic background). We considered Irish-ancestry as a

non-British European ancestry.
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D.2 Supplementary Tables

The following Supplementary Tables are available in the online version of the manuscript.

Table D.1: Detailed simulation results

Table D.2: Detailed simulation runtime analysis

Table D.3: List of 49 diseases and complex traits

Table D.4: Detailed results of analyses using UKB British training individuals applied to other UKB populations, com‐
pared vs. BOLT‐LMM

Table D.5: Comparisons between pairs of methods in analyses of real UK Biobank and Biobank Japan traits

Table D.6: Detailed results of analyses using UKB British training individuals applied to other UKB populations, com‐
pared vs. PolyPred

Table D.7: Ancestry‐specific SNP heritability estimates in the UK Biobank, across 7 independent complex traits

Table D.8: Prediction accuracy using summary statistics from the from the European Network for Genetic and Genomic
Epidemiology

Table D.9: Detailed results of analyses applied to Biobank Japan and to Uganda‐APCDR

Table D.10: Comparing prediction accuracy in UK Biobank Non‐British Europeans and in Biobank Japan when using
equal training set sample sizes

Table D.11: Description of 187 baseline‐LF model annotations used by PolyFun‐pred

D.3 Supplementary Figures
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Figure D.1: Cross‐population PRS results for real UK Biobank traits, using summary statistics from a meta‐analysis of
many cohorts. We report average prediction accuracy (relative‐R2, but computed with respect to PRS‐CS instead of
BOLT‐LMM; see main text), meta‐analyzed across 4 well‐powered, approximately independent traits, for PRS trained
in European Network for Genetic and Genomic Epidemiology (ENGAGE) samples (averageN = 61,365) and applied
to four UK Biobank populations. Target population sample sizes are indicated in parentheses; PolyPred and its sum‐
mary statistic‐based analogues used 500 additional training samples from each target population to estimate mixing
weights. Asterisks above each bar denote statistical significance of the difference vs. PRS‐CS, with red asterisks denot‐
ing a disadvantage (*P < 0.05; **P < 0.001). P‐values were computed using a two‐sided Wald test and were not
adjusted for multiple comparisons. Errors bars denote standard errors. Numerical results, results for all 4 traits analyzed,
absolute prediction accuracies (R2), and P‐values of relative improvements vs. PRS‐CS are reported in Supplementary
Tables D.5,D.8.
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