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Abstract

Background: Computational genomics of Alzheimer disease (AD), the most common form of senile dementia, is a
nascent field in AD research. The field includes AD gene clustering by computing gene order which generates
higher quality gene clustering patterns than most other clustering methods. However, there are few available gene
order computing methods such as Genetic Algorithm (GA) and Ant Colony Optimization (ACO). Further, their
performance in gene order computation using AD microarray data is not known. We thus set forth to evaluate the
performances of current gene order computing methods with different distance formulas, and to identify
additional features associated with gene order computation.

Methods: Using different distance formulas- Pearson distance and Euclidean distance, the squared Euclidean
distance, and other conditions, gene orders were calculated by ACO and GA (including standard GA and improved
GA) methods, respectively. The qualities of the gene orders were compared, and new features from the calculated
gene orders were identified.

Results: Compared to the GA methods tested in this study, ACO fits the AD microarray data the best when
calculating gene order. In addition, the following features were revealed: different distance formulas generated a
different quality of gene order, and the commonly used Pearson distance was not the best distance formula when
used with both GA and ACO methods for AD microarray data.

Conclusion: Compared with Pearson distance and Euclidean distance, the squared Euclidean distance generated
the best quality gene order computed by GA and ACO methods.

Background
A brief introduction of Alzheimer’s disease
Being the most common form of age-related dementia,
Alzheimer’s disease (AD) affects 5.4 million Americans,
and at least $183 billion will be spent in 2011 on care of
AD and other dementia patients. The problem is worsen-
ing as life expectancy continues to increase. By 2050, the
projected number of AD patients could range from 11 to
16 million people in the United States alone if no cure or
preventive measure for AD is found. Hence, AD has

quickly become a pandemic and exacted a huge socioeco-
nomic toll [1].
AD is named after Dr Alois Alzheimer, who has first

investigated the disease [2]. Later on, the autopsies of
brain examinations of most cases of senility under light
microscope were discovered to be extracellular deposits of
b-amyloid and intracellular deposits of neurofibrillary tan-
gles (NFTs). Abundant amounts of these lesions in the
brain were necessary for a confirmed diagnosis of AD [3].
In 1984, an possible AD-related gene on chromosome 21
was implied when Glenner and Wong reported on the
amino acid sequence of the main component of b-amy-
loid-, an approximate 4.3 kD peptide that they coined as
“amyloid-b protein"(Ab) based on their analysis of cere-
brovascular amyloid derived from patients with Down’s
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syndrome [4]. This study has laid the foundation for AD’s
“amyloid hypothesis” which claims that the accumulation
of Ab, as determined by its generation versus clearance in
the brain, is the primary driver of AD-related pathogen-
esis, including neuronal cell death.
Frangione et al reported on the sequencing of the exons

16 and 17 of amyloid precursor protein (APP) to reveal
the first pathogenic mutation in APP [5]. Finally the subse-
quent sequencing of these same two APP exons (encoding
the Ab portion of the molecule) that were truly linked to
chromosome 21 led to the discovery of the first AD-
related mutation [6]. Following this finding, Pericak-Vance
and colleagues reported a significant genetic linkage of the
more common late-onset of AD (> 65 years) to chromo-
some 19 [7]. Then in 1993, they found a common poly-
morphism in the gene encoding Apolipoprotein E
(APOE)- APOE allele 4, is associated with increased risk
for AD [8]. In 1993, the first study aimed at investigating
the Presenilins as putative AD genes offered evidence for a
significant association between a single-nucleotide poly-
morphism (SNP) in intron 8 of the Presenilin 1 (PSEN1)
gene and AD. Estimates were that the common variants in
PSEN1 could account for nearly half of the population-
attributable risk for AD than was found for the APOE4
allele [9]. Then in 2001, a report investigating a consecu-
tive series of referral-based AD cases found coding
sequence mutations in 11% of the samples, suggesting that
PSEN1 mutations may indeed be more frequent in the
general population than had been previously assumed
[10,11]. Furthermore, reports indicated that changes in the
promoter region could lead to an altered expression pat-
tern of the protein in neurons [12].
Currently, the mainly proposed therapeutic intervention

for AD is anti-amyloid approach, which ranges from inter-
dicting amyloidogenic processing of the b-amyloid precur-
sor protein (APP) to removing amyloid plaques in the
brain [13]. In addition to therapies based on curbing the
production of Ab or enhancing its clearance, another ther-
apeutic strategy would be aimed at attenuating Ab toxicity
and neuroinflammation in the AD brain. Perhaps, the
most effective way to approach the blocking of Ab toxicity
would be to prevent the formation of neurotoxic Ab oligo-
mers [3,14]. As APP, the Presenilins, and APOE represent
the only firmly established AD genes to date for AD, they
represent the most effective means of curbing the produc-
tion of Ab or accelerating the clearance and degradation
of this peptide in the brain [3]. The identification of the
remaining genes involved in AD will enable investigators
and clinicians to further delineate the path of biological
events that lead to AD-related neurodegeneration [3].

Introduction of gene clustering and gene order
Having been applied to many biological domains, such
as drug discovery, molecular diagnosis, and toxicological

research, DNA microarray technology is used most
importantly to generate gene data, which holds a lot of
biological information. One common data structure of a
microarray data set is the presentation of a matrix. In
matrix X, element Xij represents the expression level of
the i-th gene in the j-th experiment. Then the i-th line
vector of matrix X represents a group of expression
levels of the i-th gene. The i-th line vector contains the
biological information of the i-th gene, and it is often
used as an atom object of data to be processed.
One important aspect of biology is to make similar genes

cluster together. Since line vectors of a matrix contain the
information of genes, clustering similar vectors together is
equivalent to cluster similar genes together. A number of
algorithms were proposed to cluster gene expression pro-
files. Eisen et al. [15] applied hierarchical clustering [16], a
widely used tool [17-20], to solve the problem. It also has
some variants [21,22]. Self-organizing maps (SOMs)
[23,24] and k-means clustering [25] were also used for the
same purpose. Ben-Dor et al. [26] developed an algorithm-
cluster affinity search technique (CAST), that has a good
theoretical basis. Merz and Zell [27] proposed a memetic
algorithm for the problem, formulated as finding the mini-
mum sum-of-squares clustering [28,29].
To achieve a much better quality of clustering, the com-

puting concept of gene order has been proposed. Gene
order is the permutation of all line vectors in such a way
that all the line vectors are ordered one by one in a
sequence, and that similar vectors are ordered together. A
gene is associated with a line vector of a matrix. The opti-
mal gene order refers to the permutation that results in a
sequence that all the vectors line up via the minimal dis-
tance. Alternatively, computing optimal gene order is
equivalent to identifying a route of the traveling salesman
problem (TSP) in which every vector associates with a
gene that has been abstracted as a virtual city [30-35].
Since TSP is an NP-hard problem, the computation of

the optimal gene order is NP-hard and only the approxi-
mation of the optimal gene order can be calculated. To
obtain the approximation of the optimal gene order,
Tsai et al. applied a family competition genetic algo-
rithm (FCGA) [33-36] and Seung-Kyu et al. applied a
hybrid genetic algorithm (NNGA) [37].

Introduction of ant colony optimization (ACO)
First introduced in 1992, ant colony optimization (ACO) is
a novel nature-inspired method based on the foraging
behavior of real ants to solve TSP. (Dorigo, 1992; Dorigo
et al., 1996, 1999; Dorigo and Stützle, 2004) [38]. When
searching for food, ants initially explore the area surround-
ing their nest in a random manner. As soon as an ant finds
a food source, it evaluates it and carries some food back
to the nest. During the return trip, the ant deposits a pher-
omone trail on the ground. The pheromone deposited, the
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amount of which may depend on the quantity and quality
of the food, guides other ants to the food source. As it has
been shown (Goss et al., 1989), indirect communication
among ants via pheromone trails enables them to find the
shortest paths between their nests and food sources. ACO
generates the TSP route of the highest quality in general
compared with other methods. However, it is a challenge
to apply ACO to calculating gene order; its running time
has been too long even for input data that has less than
1000 elements when a common personal computer is
used. To make ACO better suited for the computation of
gene order, we have improved its running speed by factors
of at least 200 [39,40].

Introduction of genetic algorithm
Genetic algorithm (GA) can be understood as an intelli-
gent probabilistic search algorithm that works on Darwin’s
principle of natural selection and that can be applied to a
variety of combinatorial optimization problems [41]. More
to the point, GAs are based on the evolutionary process of
biological organisms in nature about which theoretical
foundations were originally developed by Holland [32].
During the course of evolution, natural populations evolve
according to the principle of natural selection and “survi-
val of the fittest”. Individuals who are more successful in
adapting to their environments will have a better chance
of surviving and reproducing, whilst individuals who are
less fit will be eliminated.
To understand the outline of GA as in [42], the follow-

ing original statement is given:
A GA simulates these processes by taking an initial

population of individuals and applying a genetic algorithm
to their reproduction. In optimization terms, each indivi-
dual in the population is encoded into a string or chromo-
some that represents a possible solution to a given
problem. The fitness of an individual is evaluated with
respect to a given objective function. Highly fit individuals
or solutions have opportunities to reproduce by exchan-
ging pieces of their genetic information, in a crossover
procedure, with other highly fit individuals. This produces
new “offspring” solutions (i.e., children), who share some
characteristics taken from both parents [43].
To date, there are few types of tools to calculate gene

order. In our knowledge, GA [35] and ACO [39] are
mostly used methods. Our study intends to address this
question- which method is a better for AD gene order
computation using AD microarray data under different
conditions. Herein, we reported that ACO fits the AD
microarray data the best when calculating gene order in
comparison to the GA methods tested in this study.

Methods
This study intends to answer the question of which
algorithm, between ACO and GA, generates the optimal

AD gene order. The distance formula, which measures
the similarity degree of two genes, is the key parameter
that affects the quality of gene order. With different dis-
tance formulas (see the following Formulae 1-3), the
gene orders will be calculated using the tools of ACO
and GA in this section. Then, the quality of gene order
will be measured both by the fitness function and by a
heat map.

Traveling salesman problem (TSP)
TSP is introduced below:
Assume that there are n cities and a distance matrix D =

[dij], where dij is the distance between city i and city j, and
TSP is the problem of finding a permutation π of all the

cities such that minimizes
∑n−1

i=1
dπ(i),π(i+1) + dπ(n),π(1).

Measurement of gene similarity
As aforementioned, a gene associates with a vector and
the similarity of two genes can be estimated by the dis-
tance between the two vectors.
For two genes, different metric measurements will

measure out different degrees of possible similarity.
That is, the estimation of gene similarity is sensitive to
the distance formula.
Many distance formulas of vectors to measure the

similarity of genes are presented, such as Pearson corre-
lation, absolute correlation, Spearman rank correlation
[44], Kendall rank correlation [45], and Euclidean dis-
tance. In this paper, three popular distance formulas are
introduced below.
The first distance measure is the Pearson correlation:
Let k-dimensional vector X = (x1, x2, ..., xk) and Y =

(y1, y2, ..., yk) be the expression levels of two genes X
and Y, which are observed over a series of k conditions.
The Pearson correlation of two genes X and Y is

sX,Y =
1
k

∑k

i=1
(
xi − X

σX
)(
yi − Y

σY
)

where X and sX is the mean and the standard devia-
tion of the expression levels, respectively. The value of
sX is

σX =

√
1
k

∑k

i=1
(xi − X)

2

Pearson distance is defined as

DP(X,Y) = 1 − sX,Y (1)

The second distance is the Euclidean distance:

DE(X,Y) =

√∑k

i=1
(xi − yi)

2 (2)
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The third distance measure is the squared Euclidean
distance:

DSE(X,Y) =
∑k

i=1
(xi − yi)

2 (3)

Gene order
As it is introduced before, a gene is associated with a vec-
tor that is derived from microarray data. In this way, a
gene can be regarded as a virtual city whereby each coor-
dinate is a vector. Two associated genes are more similar
as the distance shortens between two virtual cities. As it is
introduced at Section 1, an optimal (shortest) TSP route
for a given set of virtual cities is the optimal gene order
that is a permutation of all genes. In an optimal TSP
route, closed cities are ordered together and the length of
the route is that which is the shortest. In an optimal gene
order, similar genes cluster together, and the quality of
clustering is optimal globally. This is in contrast to many
clustering methods that are only optimal locally.
Currently optimal gene order cannot be calculated

perfectly because it is an NP-hard problem; only an
approximation can be achieved. Therefore, we need a
function to measure the quality of the approximation.
The following function Q(π) is called a fitness function:

Q(π) =
∑n

i=1
D(gπi , gπi+1 ) (4)

where gi denotes a vector associated with a gene, π
denotes a gene order, n is the number of genes, D(gi, gi+1)
is the distance between gene gi and gene gi+1, and
gπn+1 = gπ1 . The distance formula D(gi, gi+1) can be chosen
from Pearson distance, Euclidean distance, squared Eucli-
dean distance, Spearman distance, and other
measurements.
Function Q(π) is a measurement of the quality of the

gene order. The smaller the function value Q(π) is, the
better the quality of the gene order π is.
However, the measurement of function Q(π) is not

consistent with the fact of biology, and a true review of
the quality of gene order depends on the review of a
biologist. A biologist often reviews the quality of gene
clustering by visually observing its heat map, and he or
she often gets heuristic information from that heat map.

Apply ACO to calculate optimal gene order
To generate the optimal gene order, ACO is applied as
it is below:
Step 1: Use the distance formula to compute the dis-

tance between genes.
Step 2: Initialize the pheromone trails for all edges

between genes (or virtual cities) and put m ants at differ-
ent genes to travel. Pre-assign an iteration number tmax

and let t = 0, where t denotes the t - th iteration
computation.
Step 3: while(t <tmax)
{

Step 3.1: Each ant selects its next city according to
the transition probability pkij(t) .

The transition probability of the k - th ant from the i -
th gene to j - th gene is defined as

pkij(t) =

⎧⎪⎪⎨
⎪⎪⎩

τα
ij (t)η

β

ij (t)∑
s∈allowedk

τα
is (t)η

β

is(t)
, j ∈ allowedk

0 otherwise

where allowedk denotes the set of genes that can be
accessed by the k - th ant; τij(t) is the pheromone value
of the edge (i, j); hij(t) is the local heuristic function and
hij(t) = 1/dij, and where dij are the distance between the
i - th gene and j - th gene; the parameters a and b
determine the relative influence of the trail strength and
the heuristic information, respectively.

Step 3.2: After all ants finish their travels, all phero-
mone values τij(t) are updated according to the fol-
lowing formula.

τij(t + 1) = (1 − ρ) · τij(t) + 	τij(t)

	τij(t) =
∑m

k=1
	τ k

ij (t)

	τ k
ij(t) =

⎧⎨
⎩

Q
Lk

, e(i, j) ∈ Lk

0, else

where Lk is the length of the route passed by the k -
th ant; r is the persistence of the trail; Q denotes con-
stant quantity of pheromone; and e(i, j) represents the
edge between gene i and gene j.

Step 3.3: t = t + 1

}
Step 4: End procedure and select the TSP route that

has the minimum length as the output.

Apply GAs to calculate optimal gene order
As mentioned before, the calculation of gene order can be
converted to TSP. To make GA fit to process TSP and
gene order, the commonly used GA is modified a little.
The modifications are listed below:
First, the roulette rule [46] is used to design selection

probability.
Second, the crossover probability is set to be 1.0 in

this paper. That is, the crossover will occur definitely.
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Third, the mutation is designed to occur. Between the
parent and mutated offspring, the one which has the
better fitness value is selected as the genuine offspring,
and the others are discarded.
The modified GA is described below:
Step 1: Initialization: Set the maximum iteration num-

ber to tmax. The t-th iteration step is denoted by t. In
this paper, the length of the chromosome is set to be
the number of AD genes, which is denoted by L. The
initial population is denoted by Pold, and its size is set to
be N.
Step 2: The next generation is denoted by Pnew, and it is

initialized to be an empty set. In addition, a counter is
used, which is denoted by c, and it is initialized to be 1.
Step 3: Selection

1. Calculate each chromosome’s fitness value accord-
ing to formula (4).
2. Calculate the proportion (ratio) of the fitness
value of each chromosome.
3. A ratio is chosen by the roulette rule, and its asso-
ciated chromosome is chosen too. According to this
method, two chromosomes are chosen, which are
denoted by C1 and C2.

Step 4: Crossover

1. Generate two random integer numbers between 1
and L, which are denoted by Cpoint1 and Cpoint2

(Cpoint1 <Cpoint2), and where Cpoint1 and Cpoint2 are
used to indicate the positions of two crossovers on
chromosomes C1 and C2.
2. Denote the part of C2 from Cpoint1 to Cpoint2 as
Ct2, and copy it to the head of C1. The increased
chromosome C1 is denoted by C′

1 .
Denote the part of C1 from Cpoint1 to Cpoint2 as Ct1,
and copy it to the head of C2. The increased chro-
mosome C2 is denoted by C′

2 .
3. Find every gene that lies in chromosome Ct2 and C1,
which is denoted by x (i.e., x ∊ Ct2 ∩ C1). Delete every
x from C1, and add Ct2 to the head of updated C1 (i.e.,
C′
1 ← Ct2 ∪ (C1 − {x})). The updated C′

1 is regarded
as temporary offspring of C1 and denoted as Toffspring1.
Using the same method, the temporary offspring of C2

is generated, which is denoted as Toffspring2.

Step 5: Mutation

Select a point on Toffspring1 randomly as a mutation
point, which is denoted by Mpoint1. Suppose the value
of mutation point Mpoint1 is Vold. Generate a random
integer between 1 and L , which is denoted by Vnew.
Set Vnew as the updated value of point Mpoint1.

Find the point at which value is equal to Vnew except
point Mpoint1, and update its value as Vold.
The chromosome Toffspring1 is updated, and it is a
true offspring.
Using the above method, chromosome Toffspring2 can
also be updated, and it is a true offspring.

Step 6: Add the two true offspring into the set Pnew,
which represents the new population. Update the counter:
c = c + 2, if c <N, go to Step 3, or else go to Step 7.
Step 7: Joint population Pold and Pnew (i.e., P = Pold ∪

Pnew). Select N chromosomes from set P to cover the
old population Pold for which the fitness values are
smaller than the other chromosomes.
Step 8: Increase the iteration step: t = t + 1. If t <tmax,

and go to step 2, or else go to Step 9.
Step 9: End the algorithm and choose the chromo-

some that has the smallest fitness value from the last
population Pold as the output.
Kirk presented an improved GA (IGA) program [47],

and it consists of three parts: mutation, group, and
iteration.
Part I (operation of mutation)
Suppose there is a chromosome{a1, a2, a3, a4, a5, a6},
and it is a permutation of genes a1, a2, a3, a4, a5 and a6.
Firstly, cut a sub-sequence from the chromosome ran-
domly, and suppose it is {a2, a3, a4, a5}. Three types of
mutations are listed below:
Flip operation Mf:

Flip the gene positions of the sub-sequence. For

example, {a2, a3, a4, a5}
Mf→{a5, a4, a3, a2} .

Swap operation Ms:

Swap the positions of the two terminal genes-

{a2, a3, a4, a5} Ms→{a5, a3, a4, a2} .

Slide operation Ml:

Shift the gene to the next position by a rotation-

{a2, a3, a4, a5} Ml→{a3, a4, a5, a2} .
Part II (group)
Suppose N chromosomes, denoted by s1, s2, s3, ..., and
sN, are generated randomly where N is divisible by 4.
And all chromosomes are saved in a table T sequen-
tially. In table T, every 4 chromosomes is grouped as a
team sequentially. For every team, perform the following
operations:
Firstly, select the chromosome with the minimal fit-

ness value as seed, and discard the other three
chromosomes.
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Secondly, let the mutation operation Mf, Ms and Ml

act on the seed, respectively, and generate three mutated
chromosomes.
Thirdly, all chromosomes in this team are updated as

the seed and the three mutated chromosomes, which
updates table T.
Part III (iteration computation)
An operation of a group is called an iteration computa-
tion. Within every iteration, an optimal chromosome
will be generated for which the fitness value is minimal
compared to the other N - 1 chromosomes. Suppose Rt

is the optimal chromosome of the t-th iteration. After
all, iterations are performed on the set {R1,R2, ...,Rtmax }
for a given number of iteration tmax. The solution is
selected from {R1,R2, ...,Rtmax } , which has a minimal fit-
ness value.

Source data
In this paper, the AD microarray data was downloaded
from GEO Datasets, NCBI [48], which includes 22283
genes. Four cases of control, incipient, moderate, and
severe data are provided in the original data. Nine sam-
ples of control are organized to form a matrix with a
size of 22283 lines by 9 columns. The format of this
matrix is shown in Table 1. In this matrix, each line
vector is a 9-dimensional vector that represents microar-
ray data of a gene collected from nine different condi-
tions. All line vectors form a data set.
Seven samples of incipient for each gene are selected to

form a 7-dimensional vector, and the resulting 22283
vectors are used to form a data set; eight samples of mod-
erate for each gene are selected to form an 8-dimensional
vector and to form a data set; and seven samples of
severe for each gene are selected to form a data set.
In addition, according to the usual practice, all data of

the AD gene is log-transformed for smoothing.

Computing parameters and environment
All data tested by GAs and ACO run on a personal com-
puter, CPU (2): 2.99 GHZ, 3.0 GHZ; Memory: 1.0 GB.
The parameters of ACO are set below:

a = 1, b = 2, r = 0.7, Q = 100, τij(0) = 1, m = 50,
tmax = 100.

The parameters of GA are set below:

tmax = 500, M = 400,

where tmax and M represents the maximal number of
iterations and the size of populations, respectively.
The parameters for the improved genetic algorithm

are set as below:

tmax = 2000, M = 900.

In addition, in GA, parameter values of tmax and M
are smaller than parameters in IGA, respectively. The
reason that the parameter value is different is that GA is
much slower than IGA, and a high value of parameter
will require excessive GA program running time.

Results and discussion
The results are showed in Figure 1 to Figure 3, and
Table 2 to Table 3. From these figures and tables, we
discovered that:
(1) ACO was better suited than GA to calculate the

gene order of the AD genes tested in this paper.
(2) Both for ACO and GAs, the use of different dis-

tance formulas generated a different quality of gene
order. The squared Euclidean distance generated the
best quality overall compared with the Pearson distance
and Euclidean distance.
Pearson distance is a popular distance formula that is

commonly used to calculate gene order. However, we
found that Pearson distance is not the optimal distance
formula for the calculation of gene order associated with
AD genes. In this paper, the original data is not normal-
ized, the reason for which is explained below:
Suppose two genes and their associated vectors are X =

(x1, x2, ..., xk) and Y = (y1, y2, ..., yk). If all components of
the vector are normalized, they become small real value

that is less than 1.0. Value S =
∑k

i=1
(xi − yi)

2 is small,

and it is close to zero if the two genes are very similar.
Then the value of the square-root

√
S has a big error

because it must be expressed as base operations (+, -, ×,
and ÷) to approximate. That is why Pearson distance,
Euclidean distance and other distance formulas generate

Table 1 The illustration of organization of AD microarray data

AFFX -NAME GSM
21215

GSM
2127

GSM
2128

GSM
21219

GSM
21220

GSM
21221

GSM
21226

GSM
21231

GSM
21232

BioB-5_at 8.937 9.941 8.986 9.305 9.366 8.781 9.236 9.35 9.386

BioB-M_at 9.278 10.56 9.55 10.08 10.23 9.355 9.915 10.27 10.37

BioB-3_at 7.92 9.033 8.71 8.993 9.353 8.381 8.716 9.481 9.299

BioC-5_at 10.18 11.46 10.49 10.76 10.88 10.25 10.52 10.87 10.91

*Each column of the data represents the result of one microarray test. Each line of the data represents the expression levels of the same gene under different
conditions. All data was log-transformed.
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lower qualities of gene order calculation compared with
squared Euclidean distance.

Conclusion
With AD being the most common form of senile demen-
tia, the study of AD-associated genes is an imperative
research subject. One important branch of an AD gene

study is to cluster AD genes with the highest quality;
gene order generates a better quality of clustering than
other methods in general. In addition, our results of the
experiment support the following conclusion: ACO is
better than GA in AD gene order computation. Further,
the following computational features were revealed in
our study: For both ACO and GA, different distance

Algorithm Control 
Subject Incipient AD Moderate AD Severe AD

ACO Best Heat Map

Fitness Value 500.5515 432.6889 444.1120 496.1552

GA Best Heat Map

Fitness Value 1707.9151 1491.9149 1597.3739 1524.3699

IGA Best Heat Map

Fitness Value 558.3508 496.8884 507.0965 570.1226
Figure 1 The comparison of the quality of gene order generated by ACO and GA using Euclidean distance. *Ancillary information for
figures:1. All microarray data are downloaded from [48], and the data from the 1st line to 300th line are used to do experiment and for other
figures and tables. 2. Every heat map is the optimal gene order, which has the smallest value of fitness function and was selected from tests
performed over 40 times. In addition, the distance formula used in the fitness function (see formula 4) is the Euclidean Distance. 3. All of the
figures listed in this paper are generated by TreeView, which was developed by Dr Eison, and is downloaded from the website: http://rana.lbl.
gov/downloads/TreeView/TreeView_vers_1_60.exe. 4. Because most of the expression levels of the AD gene data are larger than zero, the
average value of every column is subtracted when the heat map is shown. Otherwise, all heat maps are red, and the display is incorrect.
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Algorithm Control 
Subject

Incipient 
AD Moderate AD Severe AD

ACO

Best Heat Map

Fitness Value by 
PD 213.4220 194.7196 214.5222 166.0038

Fitness Value by 
ED 
(ED: Euclidean 
Distance)

2707.7304 2252.3145 2556.6678 2263.6520

GA

Best Heat Map

Fitness Value by 
PD 248.4717 224.0873 237.5535 208.2173

Fitness Value by 
ED 2821.9721 2507.9927 2847.0108 2540.6250

IGA

Best Heat Map

Fitness Value by 
PD 202.0956 161.2186 190.1251 124.6654

Fitness Value by 
ED 2671.4611 2260.439

8 2591.0396 2194.245
5

Figure 3 The comparison of the quality of gene order generated by ACO and GA using Pearson distance formula.

Table 2 The statistical comparison of the quality of gene order

Algorithm Distance Control man Incipient patient Moderate patient Severe patient

ACO ED 507.9163 442.7255 459.7381 504.0716

GA ED 1800.9287 1582.5394 1689.2580 1604.3304

IGA ED 566.0912 508.6311 516.0917 579.3226

ACO SED 484.8221 419.8804 437.9346 479.5701

GA SED 1916.9891 1679.9281 1789.6030 1682.0008

IGA SED 576.9810 521.2992 529.8852 593.4252

ACO PD 2737.5938 2233.1848 2518.7568 2167.4011

GA PD 2882.9409 2532.2205 2708.5082 2515.8520

IGA PD 2712.5501 2319.1112 2513.9173 2218.1910

Notation: ED: Euclidean Distance; PD: Pearson Distance; SED: Squared Euclidean Distance

Ancillary information: all data in this table is the value of the fitness function, and it is the average of 40 times of tests. In addition, the distance formula used to
calculate fitness value is ED. Every data in Table 5 corresponds to an average runtime.
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Table 3 The statistical comparison of the runtime of ACO, GA and IGA

Algorithm Distance Control man Incipient patient Moderate patient Severe patient

ACO ED 122.0545 121.8582 121.8611 121.8653

GA ED 580.8345 586.7355 588.9012 586.7427

IGA ED 133.0079 131.2152 140.4218 139.1710

ACO SED 109.8382 110.0110 109.7321 110.2532

GA SED 186.4143 184.5551 185.1629 185.7899

IGA SED 126.8957 126.9276 126.9757 127.0232

ACO PD 123.0438 122.8454 122.6719 122.6450

GA PD 186.9550 187.5644 187.0732 188.4089

IGA PD 129.8745 127.7448 127.0051 126.4476

Notation: ED: Euclidean Distance; PD: Pearson Distance; SED: Squared Euclidean Distance

Ancillary Information: Every runtime in this table is the average of 40 times of tests. In addition, every runtime corresponds to a fitness value i listed at Figure 3.

Algorithm Control 
Subject Incipient AD Moderate AD Severe AD

ACO

Best Heat Map

Fitness Value 
Measured by SED 1127.5184 845.3903 1025.2689 1114.3908

Fitness Value 
Measured by 

Euclidean Distance
475.1785 413.9568 431.3742 472.1167

GA

Best Heat Map

Fitness Value by SED 16246.1698 11892.5418 13840.2219 11774.1203
Fitness Value by 

Euclidean Distance 1901.7168 1582.7204 1726.9854 1616.5237

IGA

Best Heat Map

Fitness Value by SED 1345.8920 1082.9607 1169.8280 1391.1490
Fitness Value by 

Euclidean Distance 574.2302 515.2758 518.0561 580.8858

Figure 2 The comparison of the quality of gene order generated by ACO and GA using squared Euclidean distance formula.
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formulas generated a different quality of gene order.
Compared to Pearson distance and Euclidean distance,
the squared Euclidean distance generated the best quality
of AD gene order. Although Pearson distance commonly
used tool, it is less optimal in AD gene order computa-
tion when employed in both ACO and GA methods.
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