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Abstract
A global probabilistic fiber tracking approach based on the voting process provided by the Hough
transform is introduced in this work. The proposed framework tests candidate 3D curves in the
volume, assigning to each one a score computed from the diffusion images, and then selects the
curves with the highest scores as the potential anatomical connections. The algorithm avoids local
minima by performing an exhaustive search at the desired resolution. The technique is easily
extended to multiple subjects, considering a single representative volume where the registered
high-angular resolution diffusion images (HARDI) from all the subjects are non-linearly
combined, thereby obtaining population-representative tracts. The tractography algorithm is run
only once for the multiple subjects, and no tract alignment is necessary. We present experimental
results on HARDI volumes, ranging from simulated and 1.5T physical phantoms to 7T and 4T
human brain and 7T monkey brain datasets.

Keywords
Tractography; diffusion-weighted magnetic resonance imaging (DWI); Hough transform;
orientation distribution function (ODF); population studies

1. Introduction
Understanding the connectivity between different areas of the brain is essential in studying
brain function and development. Diffusion-weighted magnetic resonance imaging (DWI)
provides, through tractography, a unique in-vivo quantitative measurement of the brain's
anatomical connectivity. In addition to its benefits in neurosurgical planning, DWI
tractography has considerable clinical importance by noninvasively quantifying changes in
the white matter connectivity at different stages of diseases or development. Moreover, it
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can be used to segment fiber bundles of the central nervous system, or in tract-based
statistical analysis of scalars such as the fractional anisotropy (FA). Performing tractography
in multiple subjects is invaluable for population studies and creating fiber bundle atlases.

DWI provides local information about the fiber orientation by measuring the diffusion of the
tissue water, in vivo, assuming a high correlation between the fiber and diffusion
orientations. However, there is no unique solution as to how to integrate these voxel-scale
local orientations to infer global connectivity. Early fiber tractography algorithms, known as
streamline methods, are based on following the principal diffusion orientation (Basser et al.,
2000; Conturo et al., 1999; Jones et al., 1999; Lazar et al., 2003; Mori et al., 1999). Despite
their simplicity, these methods are prone to cumulative errors caused by noise, partial
volume effects, and discrete integration, and have difficulty in distinguishing fiber crossing
and kissing mostly due to the fact that the entire diffusion information is not globally used
and integrated. This led to the development of other successful approaches, including
probabilistic techniques (Behrens et al., 2007; Björnemo et al., 2002; Descoteaux et al.,
2009; Friman et al., 2006; Jones, 2008; Lazar & Alexander, 2005; Parker et al., 2003),
global techniques based on front propagation (Campbell et al., 2005; Jackowski et al., 2005;
Parker et al., 2002; Pichon et al., 2005; Prados et al., 2006; Tournier et al., 2003), simulation
of the diffusion process or fluid flow (Batchelor et al., 2001; Hageman et al., 2009;
Hagmann et al., 2003; Kang et al., 2005; O'Donnell et al., 2002; Yörük et al., 2005), DWI
geodesic computations (Jbabdi et al., 2008; Lenglet et al., 2009a; Melonakos et al., 2007;
Pechaud et al., 2009), graph theoretical techniques (Iturria-Medina et al., 2007; Sotiropoulos
et al., 2010; Zalesky, 2008), spin glass models (Fillard et al., 2009; Mangin et al., 2002), and
Gibbs tracking (Kreher et al., 2008). Generally speaking, for virtually every tractography
method, a particular putative subset of all possible curves is implicitly considered from
which the resulting tracts are chosen according to some criteria, which are different
depending on the particular selection strategy. The closer the subset is to the universal set of
curves, the more accurate we expect the results to be. For a recent thorough discussion on
different tractography techniques, see (Behrens & Jbabdi, 2009).

Prior approaches for multi-subject tractography are typically based on the post processing of
tractography results from individual subjects (El Kouby et al., 2005; Jbabdi et al., 2009;
Leemans et al., 2006; Maddah et al., 2006; O'Donnell & Westin, 2007; Voineskos et al.,
2009; Wakana et al., 2004). These methods generally require aligning the tracts and
mapping them into a common fiber coordinate system, which is challenging due to the large
number of high-dimensional fiber trajectories per subject and the lack of clearly defined
criteria for aligning curves and particularly tracts.

In this work, we present a global probabilistic approach inspired by the voting procedure
provided by the popular Hough transform (Duda & Hart, 1972; Gonzalez & Woods, 2008).
Our proposed tractography algorithm essentially tests candidate 3D curves in the volume,
assigning a score to each of them, and then returning the curves with the highest scores as
the potential anatomical connections. The score is accordingly derived from the DWI data.
Being an exhaustive search, this proposed algorithm avoids entrapment in local minima
within the discretization resolution of the parameter space.1 Furthermore, the specific
definition of the candidate tract score has the desired effect of attenuating the noise through
the integration of the real-valued local votes derived from the diffusion data. We also
introduce a simultaneous multi-subject tractography technique which takes as input a single
representative volume – where the HARDI data from all the (registered) subjects are non-
linearly integrated – and generates population-representative tracts. The multi-subject
tractography algorithm is run only once, and no tract alignment is necessary. We present

1Please note that many prior approaches may as well be modified to perform efficient exhaustive searches.
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experimental results on HARDI volumes such as a simulated phantom, a biological phantom
dataset acquired at 1.5T, a monkey brain dataset acquired at 7T, and a number of human
brain datasets acquired at 4T and 7T.2

In Sec. 2 we present the proposed algorithm in detail. Experimental results are presented in
Sec. 3, and Sec. 4 concludes with a review of the contributions. Additional implementation
details are provided in the Appendix.

2. Methods
We first randomly generate a sufficiently high number of initial seed points inside a brain
mask or a region of interest. From each initial point, we consider as many passing curves as
desired, based on the expected resolution and available computational resources (Fig. 1,
left). A score is computed for each curve, and the one(s) with the maximum score is (are)
then chosen as the best curve(s) representing the fiber bundle passing through that seed point
(Fig. 1, middle & right).3 This process is detailed in the following subsections.

2.1. Curve parameterization
We parameterize the 3D curves by the arc length s, with s = 0 corresponding to the seed
point (Fig. 2). The unit tangent vector of the curve is identified at each point by standard
polar coordinates and θ(s) and ϕ(s):

(1)

In our proposed model, we consider simple polynomial approximations of these two angles
with respect to the arc length:

(2)

(3)

where N is the polynomial order (different orders for θ and ϕ can be considered if desired).
In addition, two extra parameters L− and L+ determine the partial (Euclidean) lengths of the
curve on each side of the seed point (Fig. 2), with 0 ≤ L−,+ ≤ Lmax where the constant Lmax
is chosen as the maximum expected curve (fiber) length, essentially about the largest
dimension of the volume. The Hough-inspired process will be used to select the best
possible coefficients ak, bk, L−, and L+, based on the available diffusion data. Each curve
initiated from the seed point x⃗ is then represented using d = 2N + 4 unique parameters, {a0,
…, aN, b0, …, bN, L−, L+}, and explicitly computed by integrating the tangent vector:

2This paper extends our previous conference versions for single and multiple subjects (Aganj et al., 2009a,b). In particular, we provide
more implementation details and additional validation and comparisons.
3As customary in probabilistic techniques, several candidate curves may as well be selected per seed point, each carrying a score.
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(4)

2.2. Fiber score computation
A score, intended to estimate the log-probability of the existence of a fiber, is assigned to
each possible 3D curve passing through a seed point x⃗. In this work, the score is defined as

(5)

The expression P(x⃗, t̂)dΩ represents the probability for the point x⃗ to be located inside a
fiber bundle passing in the direction t̂ through the infinitesimal solid angle dΩ.4 The
constant λ, which is used to compensate for the absence of log dΩ in the integral, can also be
interpreted as a prior on the length of the fiber bundles, as choosing a larger λ favors the
score of longer curves.5 By enforcing the curves to remain in the brain mask, and choosing a
value of λ which is large enough, the curves which are oriented towards the cortex are
expected to actually reach the gray matter region (e.g., see Fig. 8).

P(x⃗, t̂) can be computed using the conditional probability formula as,

(6)

The prior probability of the existence of a fiber at the point x⃗, P(x⃗), is considered to be equal
to either the fractional anisotropy (FA) or generalized fractional anisotropy (GFA) inside the
brain tissue, and zero outside the brain mask and inside the cerebrospinal fluid. This comes
from the assumption that the more anisotropic a region is, the more likely a fiber bundle may
be passing through that region. In addition, as long as no further constraints or selections are
provided by the user, the initial seed points are chosen randomly with a spatial probability
distribution proportional to P(x⃗).6 Other choices for P(x⃗), such as the white matter
complexity introduced in (Haro et al., 2008), are also possible.

Next, assuming that a fiber is actually passing through the point x⃗, the probability for it to be
in the direction t̂, i.e. P(t̂|x⃗), is derived from the orientation distribution function (ODF) at
each voxel in the volume. Computed from various DWI modalities, the diffusion ODF is
defined as,

(7)

4The curve score is defined by assuming that adjacent voxels are independent, making it only an approximation of the true fiber log-
probability. The incorporation of spatial coherence and continuity is the subject of future research.
5Not including λ may cause the zero-length curve (L− = L+ = 0) to gain the maximum score, due to the potentially negative values of
the logarithm.
6A uniform distribution for the seed points would in fact force the algorithm to pick as many curves in the lesser anisotropic regions
of the brain as in the highly anisotropic fiber bundles, sometimes producing unrealistic results.
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which is the integration of the PDF(r ⃗) (the spatial probability density function of the
diffusion of water after a certain amount of time), in a cone of constant solid angle (CSA) in
the direction of the unit vector û. In Diffusion Spectrum Imaging (DSI) (Wedeen et al.,
2005), PDF(r ⃗) is available on a discrete Cartesian grid, and therefore the ODF is directly
computed from the above formula. In the case of the Diffusion Tensor Imaging (DTI)
(Basser et al., 1994), the ODF is computed by integrating the 3D normal distribution,

(8)

where D is proportional to the estimated diffusion tensor.

In this work, however, we use Q-ball Imaging (QBI) (Tuch, 2004), which is a popular
HARDI reconstruction method proven successful in resolving multiple intravoxel fiber
orientations. The original ODF expression in QBI does not include the Jacobian factor r2,
creating the need for post-processing such as artificial sharpening. Here we use the
normalized and dimensionless ODF estimator in QBI, derived in (Aganj et al., 2010), which
by considering the factor r2 computes the CSA-ODF,

(9)

with S(û) and S0 the diffusion signal and the baseline image respectively, and FRT and 
the Funk-Radon transform (Funk, 1916) and the Laplace-Beltrami operator respectively.
This ODF reconstruction scheme has been shown to outperform the original QBI by
improving the resolution of multiple fiber orientations (Aganj et al., 2010), and producing
more stable and consistent GFA (Fritzsche et al., 2010). To allow sampling in any desired
direction t̂, the ODFs were approximated in the real and symmetric modified spherical
harmonic basis, following the method proposed by Descoteaux et al. (2007) for the original
QBI, and subsequently adapted in (Aganj et al., 2010) for the CSA-QBI.

Putting all this together, and using for instance the FA as P(x⃗), the score in Eq. (5) thus
becomes,

(10)

where ODFx⃗(s) (t̂(s)) stands for the ODF at the 3D position x⃗(s) evaluated in the direction t̂
(s), with x⃗(s) and t̂(s) represented via the polynomials as specified in equations (1-4). The
score integral in equations (5) and (10) has the additional nice effect of attenuating the
additive and independent noise in the data through summation.

2.3. Hough transform
As discussed in Sec. 2.1, every curve starting from a particular seed point is presented as a
point in a d-dimensional space, with d = 2N + 4 being the number of necessary parameters.
In theory, we would like to find all possible curves which pass through the seed point while
computing their scores, to eventually choose the one(s) with the highest score(s) as the
potential fiber tract(s) passing through the seed point.7 However, we can only perform such
an exhaustive search within a finite resolution, by discretizing ℝd and assigning discrete
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values to the curve parameters within some predefined limits.8 The resulting d-dimensional
array of curve scores is often called the Hough transform (Duda & Hart, 1972;Gonzalez &
Woods, 2008) of the data with respect to the curves passing through the chosen seed point.
This can be seen as a voting process where the voxels cast real-valued votes for the curves.
The overall vote is the integrand of the score integral (Eq. (5) or (10)) if a curve passes
through a voxel, and zero otherwise.

The proposed method avoids entrapment in local minima by performing an exhaustive
search in the (discretized) high-dimensional space of the curves. Nevertheless, the
discretization resolution of the parameter space causes the algorithm to obtain an
approximation of the true global optimum (which is improved by increasing the resolution
as desired). To alleviate this issue, we choose the best curve in a multi-resolution approach:
once the point (in the parameter space ℝd) corresponding to the curve with the highest score
is found in one resolution level, the neighborhood (in the parameter space) of that point is
discretized again with a higher resolution and the search is continued at the next level.9 We
have performed our experiments using three levels of resolution.

This concludes the description of the proposed technique for a single dataset. We now show
how this can be efficiently extended to multiple datasets or subjects.

2.4. Extension to multiple subjects
Here we extend our Hough transform-based global approach to obtain average
representative tracts from multiple subjects or datasets. We perform this by first registering
the HARDI volumes, using either linear transformation or more sophisticated algorithms
such as (Chiang et al., 2008), and then running the algorithm described above on a single
equivalent volume composed of the voxel-wise mean ODF and mean FA across all the
subjects.10 We may use either the arithmetic or the geometric mean, however, the linearity
of the curve score (Eq. (10)) with respect to the logarithms of the ODF and FA makes the
use of the geometric mean more appealing (since the arithmetic mean of the logarithms of
the ODF and FA values equals the logarithm of their geometric mean). Hence, we
reconstruct the effective ODF and FA for each voxel by computing the geometric mean of
their values across the subjects,

(11)

(12)

where the superscripts i and eq indicate respectively the ith subject (out of a total of M) and
the equivalent subject. We eventually use the equivalent ODF and FA volumes in the single-

7As customary in probabilistic techniques, several candidate curves may be selected per seed point, each carrying a score. In our
experiments, however, we used a winner-take-all approach and select/visualize only the maximum-score curve.
8This is the standard procedure in the Hough transform, where the accumulator is discretized.
9Note that this multi-scale approach is performed to discretize the Hough transform (the parameter space), and not the spatial domain
itself.
10This could be interpreted as multiple votes per voxel, cast by each corresponding voxel in each volume.
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subject tractography algorithm, thereby running it only once for all the subjects and avoiding
complications due to curve (tracts) registration.

3. Experimental results and discussion
3.1. Results for single subjects

We tested our method on various HARDI datasets, also using each of them to explain a
different aspect of the proposed algorithm. The FA and the CSA-ODFs of each dataset were
computed as explained in Sec. 2.2. The initial seed points were chosen randomly with a
spatial probability distribution proportional to the FA, except for the simulated and the
monkey brain datasets where the distribution was uniform.

To validate our approach, we first show results on artificial data and compare our approach
to one deterministic and another probabilistic streamline method, both implemented in the
Camino Diffusion MRI toolkit (Cook et al., 2006) and exploiting q-ball ODFs.11 Using
simulated diffusion data, we created a phantom containing two crossing fiber bundles. As
Fig. 3 demonstrates, this phantom has various challenging fiber configurations, including
fanning, crossing, and merging.12 The phantom was made as a 50 × 50 × 1 slice; however,
to simulate the partial volume effects, we initially created it ten times larger, then
downsampled it after applying a low-pass filter. Figure 4 shows tractography results using
the proposed algorithm (with uniform P(x)) (left), the deterministic streamline method
(middle), and the Probabilistic Index of Connectivity (PICo) technique (Seunarine et al.,
2007) (right). We performed tractography from randomly generated seed points with
uniform spatial distribution, once for 500 points in the phantom mask (λ = 0.7; Fig. 4, two
top rows), and a second time for 80 points in a smaller region identified in Fig. 3 (bottom,
right) as red (λ = 1.8; Fig. 4, two bottom rows). We tested both the noise-free case (rows 1 &
3), and with the signal-to-noise ratio of 0 dB (rows 2 & 4). The streamline methods follow
the principal diffusion direction (PDD), which may be misleading in the crossing regions, as
the two directions might be mingled in the ODFs (or tensors), resulting in a false PDD
different from the original ones. The global nature of our algorithm, however, alleviates this
problem. For instance, as can be observed in the two top rows of Fig. 4, our method clearly
reveals the crossing in the intersection region, resulting in curves going in the directions of
the two perpendicular bundles, as opposed to the streamline methods, where curves seem to
be going in an “average” direction not corresponding to any of the two bundles. In the case
of the smaller seed-point region (two bottom rows), this results in the complete miss of one
of the branches by the two streamline methods, in addition to more susceptibility to noise.
Our algorithm identifies that branch, although giving only an approximated shape of it. This
could still be the result of the altered PDD, in addition to the limitations of the third order
polynomials.

Next, we used the biological phantom in (Campbell et al., 2005), constructed from excised
rat spinal cords and designed to have crossing tracts (90 diffusion images at b = 1300 s/
mm2, 1.5T).13 We computed the tracts from 200 seed points, using three different bias
values of λ = 2.0, 2.5, and 3.0 (see Sec. 2.2), and polynomials of order N = 3, resulting in a
total number of d = 10 parameters to represent the candidate 3D curves initiated from each

11We chose to compare with Camino (and not e.g. FSL) to have a fair comparison between ODF-based methods.
12Matlab codes to regenerate the phantom can be found at: netfiles.umn.edu/users/iman/www/Synth.zip
13Scanning parameters, quoting from (Campbell et al., 2005): The cords were scanned 1 h after the surgeries with a Siemens 1.5T
Sonata MR scanner (Siemens Medical Systems, Erlangen, Germany) using a knee coil. A single-shot spin-echo echo planar sequence
with twice-refocused balanced gradients, designed for minimization of eddy current artifacts, was used. For diffusion tensor
reconstruction, four coregistered datasets were acquired, consisting of 90 diffusion weighted images with isotropically spaced
diffusion weighting directions (b = 1300 s/mm2, TR = 8s, TE = 110 ms, 2.5 mm isotropic voxels, 40 slices), as well as 10 images with
b = 0 s/mm2 and otherwise identical imaging parameters.
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seed point. Figure 5 (top, left) shows the ODFs superimposed on the FA map, and the rest of
the subfigures show the tractography results using different values for λ. Increasing λ results
in longer curves being selected. The color and the opacity of each tract (in all the figures)
increase with the score, from transparent blue to opaque red. Given the simple structure of
this phantom dataset, experiments on more complex real datasets were required to test our
algorithm; these are described next.

We performed additional experiments on a human brain HARDI dataset acquired at 7T. A
single refocused 2D single shot spin echo EPI sequence was used. Image parameters were:
FOV: 192×192 mm2 (matrix: 196×96) to yield a spatial resolution of 2×2×2 mm3, TR/TE
4800/57 msec., acceleration factor (GRAPPA) of 2 and 6/8 partial Fourier were used along
the phase encode direction. Diffusion-weighted images were acquired at b = 3000 s/mm2

with 256 directions, along with 31 baseline images. EPI echo spacing was 0.57 msec. with a
bandwidth of 2895 Hz/Pixel. Tracts were computed from 1500 seed points in two
experiments, using polynomials of orders N = 2 and N = 3 (Fig. 6). High scoring curves are
concentrated in major fiber bundles such as corona radiata, corpus callosum, cingulum,
superior longitudinal fasciculus, and arcuate fasciculus. Higher polynomial order brings
more flexibility to the curves, resulting in them being spread out more continuously in the
white matter regions (e.g. in corona radiata). A 3D stereoscopic rendering of the results is
shown in Fig. 7. Figure 8 shows a sagittal slice of the baseline image among the computed
tracts. A significant portion of the curves can be seen to reach the gray matter, even though
the FA (used as the prior) is lower around this region.

Next, we used the monkey brain HARDI dataset introduced in (Lenglet et al., 2009b) to test
the performance of our method on specific fiber bundles. An anesthetized Macaca mulatta
monkey was scanned using a 7T MR scanner (Siemens) equipped with a head gradient coil
(80mT/m G-maximum, 200mT/m/ms) with a diffusion weighted spin-echo EPI sequence.
Diffusion images were acquired at b = 3000 s/mm2 (twice during the same session, and then
averaged) over 100 directions uniformly distributed on the sphere. We used TR/TE of
4600/65 ms, and a voxel size of 1×1×1 mm3. We computed the tracts from 1350 seed points
uniformly distributed in a mask containing the intersection of the forceps minor and the
inferior longitudinal fasciculus, using the polynomials of order N = 3. Results are depicted in
Fig. 9. A fiber density map was created by counting, at each voxel, the number of
intersecting curves while taking into account their respective score. A three-dimensional
isosurface was then generated by thresholding this map to keep the most relevant
connections. It is as well presented in Fig. 9, overlaid on a structural MRI. Major tracts
including the splenium fibers, posterior corona radiata, tapetum, as well as the inferior
fronto-occipital and longitudinal fasciculi – including the optic radiations – are clearly
identified. Moreover, fibers of the optic tract are recovered until they reach the optic chiasm.

3.2. Results for multiple subjects
We used our multi-subject tractography algorithm to compute mean tracts from five HARDI
datasets, introduced in (de Zubicaray et al., 2008), each acquired from a different healthy
young adult. Images were acquired using a 4T Bruker Medspec MRI scanner. Diffusion-
weighted images were acquired using single-shot echo planar imaging with a twice-
refocused spin echo sequence to reduce eddy-current induced distortions. Imaging
parameters were: 23 cm FOV, TR/TE 6090/91.7 ms, with a 128×100 acquisition matrix.
Each 3D volume consisted of 55 2-mm thick axial slices with a 1.8×1.8 mm2 in-plane
resolution. 105 images were acquired: 11 with no diffusion sensitization (i.e., T2-weighted
b0 images) and 94 diffusion-weighted images (b = 1159 s/mm2) with gradient directions
evenly distributed on the sphere. Scan time was approximately 14 minutes. Images were
corrected for motion and eddy current distortions. Each subject's average b0 image was
aligned to a group-specific minimal deformation template (MDT) using a nine-parameter

Aganj et al. Page 8

Med Image Anal. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



affine transformation. This transformation was then applied to each individual DWI and
gradient directions were corrected accordingly for ODF calculations.

We combined the individual datasets into two equivalent volumes, using the geometric and
the arithmetic means (see Sec. 2.4). We tested the tractography algorithm on both equivalent
volumes, and also for comparison, on two of the five individual datasets. In each
experiment, polynomials of order N = 3 were used to represent 3D tracts initiated from 1500
seed points. Figure 10 (two top rows) show the mean tracts from the five subjects using
respectively the geometric and arithmetic means. The two bottom subfigures show tracts
from individual subjects. As Fig. 10 demonstrates, combining the volumes improves the
results by producing fibers that are less scattered and better concentrated in major fiber
bundles. Note particularly how corticospinal tracts are enhanced.

3.3. Discussion
Although every possible curve can be represented with an infinite polynomial using the
Taylor expansion, keeping only N coefficients gives us an approximated curve which, as N
grows, converges to the true curve. Through our experiments, we observed that at least a
polynomial order of N = 2 is necessary to correctly extract the fiber bundles from the data,
since (basically resulting in straight lines) and N = 1 turn out to be models which are too
simple. Since we did not observe noticeable improvement in our human brain tractography
results by increasing N from 2 to 3 (see, e.g., Fig. 6) and beyond that, we deduced that the
second or third order polynomials are most likely sufficient for this type of data.14

Depending on the available resources, the slight improvements by increasing the polynomial
order from N = 2 to N = 3 may or may not be worth the two added dimensions in the search
space (see the Appendix for more details about the complexity of the algorithm). The
proposed framework is not limited to these low orders, and increasing the order will only
result in additional computational cost.

Throughout our experiments, we determined the best values of λ (see Sec. 2.2) assessing the
results obtained using different values for it. As seen in Fig. 5, a value of λ which is too
large or too small might result in false positives and false negatives, respectively. We
observed that the manually-determined optimal λ remains consistent for different datasets
with the same acquisition parameters. This means that the method can be easily used in
population studies, without the need to tune λ separately for each subject.

4. Conclusions
We have introduced a global approach for single- and multi-subject probabilistic
tractography, based on the voting process provided by the Hough transform. We presented
experimental results on a physical phantom and brain HARDI datasets, and showed that
using this approach, data from multiple subjects can be non-linearly combined and exploited
to obtain population statistics and more accurate tractography results. The incorporation of
spatial coherence and continuity in curve score computation, and a systematic approach to
optimization of the parameter λ are the subject of future research.
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Appendix
In this appendix, we provide additional details on the implementation of the proposed
tractography technique.

The Hough transform is often used in global optimization problems to avoid local optimum
solutions. This approach is however characterized by its high computational complexity,
given that in a straightforward implementation, all possible solutions must be tested in order
to reconstruct the table of scores. This issue could yet be alleviated by parallelizing the
exhaustive searches at the seed points, as they can be computed independently of one
another. Note that out of the d = 2N + 4 parameters (10 for a polynomial of order N = 3),
two are the partial curve lengths (L+ and L−), for different values of which the score is
computed on the fly while the integral of Eq. (10) is taken. This integral is in fact computed
progressively by discretizing the 3D curve and summing the integrand while advancing on
the curve. At each step, the value of the accumulator represents the score for a fixed set of
polynomial coefficient values, with a new value for the length parameter. This reduces the
space where the score-integral is computed to d′ = 2N + 2 dimensions (8 for N =3). For N =
2, the algorithm (implemented in C) took about one and a half minutes to compute the
maximum-score curve among over four billion curves for each seed point. This was
increased to one to two hours per seed point in the case of N = 3 to test over three hundred
billion curves. We ran about 50 to 100 parallel jobs to be able to finish the entire
tractography (using about 1500 seed points) in less than a day. Also note that the
(potentially) high-dimensional table of scores need not be stored in computer memory, since
the maximum score can be computed on the fly, thus circumventing any memory
exhaustion.

A question which may arise while implementing the proposed algorithm, is whether all the
polynomial coefficients should have the same discretization resolution, and if not, how to
determine it. From Eq. (2) it can be seen that the small change Δak in the kth coefficient (due
to its discretization resolution) results in the following change in at the arc length :

(A.1)

Ideally, we would like a uniform resolution for θ, which would mean that Δθ(s) needs to be
independent of s and k. Although this dependency cannot be eliminated, it can be minimized
by choosing a specific value for Δak. Assuming the desired constant value δ for Δθ(s), we
minimize the following squared error integral to obtain the optimum value :

(A.2)

By choosing such resolutions for the polynomial coefficients ak, and similarly for bk, the
curve space is discretized more uniformly, hence increasing the accuracy of the search for
the high scoring curves.

Aganj et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
Aganj, I.; Lenglet, C.; Keriven, R.; Sapiro, G.; Harel, N.; Thompson, PM. A Hough transform global

approach to diffusion MRI tractography; Proc. of 17th Annual Meeting of ISMRM; Honolulu.
2009a.

Aganj, I.; Lenglet, C.; Sapiro, G.; Chiang, MC.; Thompson, PM. Multi-subject diffusion MRI
tractography via a Hough transform global approach; Proc. of 15th Annual Meeting of OHBM; San
Francisco. 2009b.

Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N. Reconstruction of the orientation
distribution function in single and multiple shell q-ball imaging within constant solid angle.
Magnetic Resonance in Medicine. 2010; 64(2):554–566. [PubMed: 20535807]

Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin
echo. J Magn Reson B. 1994; 103(3):247–254. [PubMed: 8019776]

Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data.
Magnetic Resonance in Medicine. 2000; 44(4):625–632. [PubMed: 11025519]

Batchelor, PG.; Hill, DLG.; Atkinson, D.; Calamante, F. Study of connectivity in the brain using the
full diffusion tensor from MRI; Proc. of 17th IPMI; Davis. 2001.

Behrens, TEJ.; Jbabdi, S. Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy.
1st ed.. Academic Press; 2009. MR diffusion tractography.

Behrens TEJ, Johansen Berg H, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion
tractography with multiple fibre orientations: What can we gain? NeuroImage. 2007; 34(1):144–
155. [PubMed: 17070705]

Björnemo, M.; Brun, A.; Kikinis, R.; Westin, CF. Regularized stochastic white matter tractography
using diffusion tensor MRI; Proc. of 5th MICCAI; Tokyo. 2002.

Campbell JSW, Siddiqi K, Rymar VV, Sadikot AF, Pike GB. Flow-based fiber tracking with diffusion
tensor and q-ball data: Validation and comparison to principal diffusion direction techniques.
NeuroImage. 2005; 27(4):725–736. [PubMed: 16111897]

Chiang, MC., et al. Brain fiber architecture, genetics, and intelligence: A high angular resolution
diffusion imaging (HARDI) study; Proc. of 11th MICCAI; New York. 2008.

Conturo TE, et al. Tracking neuronal fiber pathways in the living human brain. Proc. of National
Academy of Sciences. 1999; 96(18):10422–10427.

Cook, PA., et al. Camino: Open-source diffusion-MRI reconstruction and processing; 14th Scientific
Meeting of the International Society for Magnetic Resonance in Medicine; Seattle, WA. 2006.

de Zubicaray GI, et al. Meeting the Challenges of Neuroimaging Genetics. Brain Imaging and
Behavior. 2008; 2(4):258–263. [PubMed: 20016769]

Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. Regularized, fast, and robust analytical q-ball
imaging. Magnetic Resonance in Medicine. 2007; 58(2):497–510. [PubMed: 17763358]

Descoteaux M, Deriche R, Knösche TR, Anwander A. Deterministic and probabilistic tractography
based on complex fibre orientation distributions. IEEE Transactions on Medical Imaging. 2009;
28(2):269–286. [PubMed: 19188114]

Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Commun.
ACM. 1972; 15(1)

El Kouby, V., et al. MR diffusion-based inference of a fiber bundle model from a population of
subjects; Proc. of 8th MICCAI; Palm Springs. 2005.

Fillard, P.; Poupon, C.; Mangin, JF. A novel global tractography algorithm based on an adaptive spin
glass model; Proc. of 12th MICCAI; London. 2009.

Friman O, Farnebäck G, Westin CF. A Bayesian approach for stochastic white matter tractography.
IEEE Transactions on Medical Imaging. 2006; 25(8):965–978. [PubMed: 16894991]

Fritzsche KH, Laun FB, Meinzer HP, Stieltjes B. Opportunities and pitfalls in the quantification of
fiber integrity: What can we gain from Q-ball imaging? NeuroImage. 2010; 51(1):242–251.
[PubMed: 20149879]

Funk P. Über eine geometrische Anwendung der Abelschen Integralgleichung. Mathematische
Annalen. 1916; 77:129–135.

Aganj et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gonzalez, RC.; Woods, RE. Digital Image Processing. 3rd ed.. Prentice Hall; 2008.
Hageman NS, Toga AW, Narr KL, Shattuck DW. A diffusion tensor imaging tractography algorithm

based on Navier-Stokes fluid mechanics. IEEE Transactions on Medical Imaging. 2009; 28(3):
348–60. [PubMed: 19244007]

Hagmann P, et al. DTI mapping of human brain connectivity: statistical fibre tracking and virtual
dissection. NeuroImage. 2003; 19(3):545–554. [PubMed: 12880786]

Haro, G.; Lenglet, C.; Sapiro, G.; Thompson, PM. On the Non-Uniform Complexity of Brain
Connectivity; Proc. 5th IEEE ISBI; Paris. 2008.

Iturria-Medina Y, et al. Characterizing brain anatomical connections using diffusion weighted MRI
and graph theory. NeuroImage. 2007; 36(3):645–660. [PubMed: 17466539]

Jackowski M, Kao C, Qiu M, Constable R, Staib L. White matter tractography by anisotropic
wavefront evolution and diffusion tensor imaging. Medical Image Analysis. 2005; 9(5):427–440.
[PubMed: 16040268]

Jbabdi S, Bellec P, Toro R, Daunizeau J, Pelegrini-Issac M, Benali H. Accurate anisotropic fast
marching for diffusion-based geodesic tractography. International Journal of Biomedical Imaging.
2008 2008.

Jbabdi S, Woolrich MW, Behrens TEJ. Multiple-subjects connectivity-based parcellation using
hierarchical Dirichlet process mixture models. NeuroImage. 2009; 44(2):373–384. [PubMed:
18845262]

Jones DK. Tractography gone wild: Probabilistic fibre tracking using the wild bootstrap with diffusion
tensor MRI. IEEE Transactions on Medical Imaging. 2008; 27(9):1268–1274. [PubMed:
18779066]

Jones DK, Simmons A, Williams SCR, Horsfield MA. Non-invasive assessment of axonal fiber
connectivity in the human brain via diffusion tensor MRI. Magnetic Resonance in Medicine. 1999;
42(1):37–41. [PubMed: 10398948]

Kang N, Zhang J, Carlson ES, Gembris D. White matter fiber tractography via anisotropic diffusion
simulation in the human brain. IEEE Transactions on Medical Imaging. 2005; 24(9):1127–1137.
[PubMed: 16156351]

Kreher BW, Mader I, Kiselev VG. Gibbs tracking: A novel approach for the reconstruction of neuronal
pathways. Magnetic Resonance in Medicine. 2008; 60(4):953–963. [PubMed: 18816816]

Lazar M, Alexander AL. Bootstrap white matter tractography (BOOT-TRAC). NeuroImage. 2005;
24(2):524–532. [PubMed: 15627594]

Lazar M, et al. White matter tractography using diffusion tensor deflection. Human Brain Mapping.
2003; 18(4):306–321. [PubMed: 12632468]

Leemans A, Sijbers J, De Backer S, Vandervliet E, Parizel P. Multiscale white matter fiber tract
coregistration: a new feature-based approach to align diffusion tensor data. Magnetic Resonance in
Medicine. 2006; 55(6):1414–1423. [PubMed: 16685732]

Lenglet C, Prados E, Pons JP, Deriche R, Faugeras O. Brain connectivity mapping using riemannian
geometry, control theory, and PDEs. SIAM Journal on Imaging Sciences. 2009a; 2(2):285–322.

Lenglet, C., et al. High resolution diffusion MRI on in-vivo monkey brains at 7T; Proc. 14th Annual
Meeting of OHBM; San Francisco. 2009b.

Maddah M, Grimson WEL, Warfield SK. Statistical modeling and EM clustering of white matter fiber
tracts. Proc. of 3rd IEEE ISBI. 2006

Mangin JF, et al. A framework based on spin glass models for the inference of anatomical connectivity
from diffusion-weighted MR data - a technical review. NMR in Biomedicine. 2002; 15(7–8):481–
492. [PubMed: 12489097]

Melonakos, J.; Mohan, V.; Niethammer, M.; Smith, K.; Kubicki, M.; Tannenbaum, A. Finsler
tractography for white matter connectivity analysis of the cingulum bundle; Proc. of 10th

MICCAI; Brisbane. 2007.
Mori S, Crain BJ, Chacko VP, Van Zijl PCM. Three dimensional tracking of axonal projections in the

brain by magnetic resonance imaging. Annals of Neurology. 1999; 45(2):265–269. [PubMed:
9989633]

Aganj et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



O'Donnell, L.; Haker, S.; Westin, CF. New approaches to estimation of white matter connectivity in
diffusion tensor MRI: Elliptic PDEs and geodesics in a tensor-warped space; Proc. of 5th

MICCAI; Tokyo. 2002.
O'Donnell LJ, Westin CF. Automatic tractography segmentation using a high-dimensional white

matter atlas. IEEE Transactions on Medical Imaging. 2007; 26(11):1562–1575. [PubMed:
18041271]

Parker GJM, Haroon HA, Wheeler-Kingshott CAM. A framework for a streamline-based probabilistic
index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements.
Journal of Magnetic Resonance Imaging. 2003; 18(2):242–254. [PubMed: 12884338]

Parker GJM, Wheeler-Kingshott CAM, Barker GJ. Estimating distributed anatomical connectivity
using fast marching methods and diffusion tensor imaging. IEEE Transactions on Medical
Imaging. 2002; 21(5):505–512. [PubMed: 12071621]

Pechaud, M.; Descoteaux, M.; Keriven, R. Brain connectivity using geodesics in HARDI; Proc. of 12th

MICCAI; London. 2009.
Pichon, E.; Westin, CF.; Tannenbaum, AR. A Hamilton-Jacobi-Bellman approach to high angular

resolution diffusion tractography; Proc. of 8th MICCAI; Palm Springs. 2005.
Prados, E., et al. Control theory and fast marching methods for brain connectivity mapping; Proc.

IEEE Conf. CVPR; New York. 2006.
Seunarine, KK.; Cook, PA.; Hall, MG.; Embleton, KV.; Parker, GJM.; Alexander, DC. Exploiting

peak anisotropy for tracking through complex structures; IEEE 11th International Conference on
Computer Vision, Workshop on MMBIA; London. 2007.

Sotiropoulos SN, Bai L, Morgan PS, Constantinescu CS, Tench CR. Brain tractography using q-ball
imaging and graph theory: Improved connectivities through fibre crossings via a model-based
approach. NeuroImage. 2010; 49(3)

Tournier JD, Calamante F, Gadian DG, Connelly A. Diffusion-weighted magnetic resonance imaging
fibre tracking using a front evolution algorithm. NeuroImage. 2003; 20(1):276–288. [PubMed:
14527588]

Tuch DS. Q-ball imaging. Magnetic Resonance in Medicine. 2004; 52(6):1358–1372. [PubMed:
15562495]

Voineskos AN, et al. Quantitative examination of a novel clustering method using magnetic resonance
diffusion tensor tractography. NeuroImage. 2009; 45(2):370–376. [PubMed: 19159690]

Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PCM, Mori S. Fiber tract-based atlas of human
white matter anatomy. Radiology. 2004; 230:77–87. [PubMed: 14645885]

Wedeen VJ, Hagmann P, Tseng WI, Reese TG, Weisskoff RM. Mapping complex tissue architecture
with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine. 2005;
54(6):1377–1386. [PubMed: 16247738]

Yörük, E.; Acar, B.; Bammer, R. A physical model for DT-MRI based connectivity map computation;
Proc. of 8th MICCAI; Palm Springs. 2005.

Zalesky A. DT-MRI fiber tracking: a shortest paths approach. IEEE Transactions on Medical Imaging.
2008; 27(10):1458–1471. [PubMed: 18815098]

Aganj et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 1.
(Left) Different possible curves passing through a seed point are tested and their scores are
computed. (Middle) The curve with the highest score is selected. (Right) The process is
repeated for all the remaining seed points.
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Fig 2.
Curves starting from the seed point x⃗0 are parameterized by the arc length, s ∈ [−L−,L+].
The unit tangent vector, t̂(s), is approximated with polynomials.
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Fig 3.
Ground truth (left) and the ODFs overlaid on the GFA map (right) of the simulated
phantom. The local region for the seed points and the phantom mask are indicated in
respectively red and white (bottom, right).
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Fig 4.
Comparison of the proposed method (left) with streamline deterministic (middle) and
probabilistic (right) techniques from 500 seed points chosen in the phantom mask (two top
rows) and 80 in the region identified in Fig. 3 (bottom, right) as red (two bottom rows), in
noiseless (rows 1 & 3) and noisy (rows 2 & 4) cases.
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Fig 5.
Reconstructed ODFs (top, left) and the tractography results (rest of the subfigures) on the
excised rat spinal cords, using various values for the bias parameter λ.
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Fig 6.
Tractography results on a human brain HARDI dataset from 1500 seed points using
polynomial orders of (left) N = 3 and (right) N = 2, shown in (top) sagittal, (middle) coronal,
and (bottom) axial views. The arrows indicate areas where the computed curves are more
uniformly spread out when using the higher polynomial order.
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Fig 7.
Stereoscopic rendering of Fig. 6 (bottom, left). To see this image in 3D, please cross your
eyes and move the image closer or further away from you until you see what appears to be a
third, 3D image in the middle. This figure would be a bonus for those who can perceive 3D
with standard eye-crossing techniques.
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Fig 8.
A sagittal slice of the human brain baseline image in the middle of the computed tracts.
Cerebrospinal fluid is identified as white regions.
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Fig 9.
Tractography results on a monkey brain HARDI dataset shown in axial (top) and tilted
(bottom) views. 1350 seed points were randomly generated inside the transparent blue
regions (top, left). Isosurface of the fiber density map is shown in orange overlaid on T1
image (top right & bottom).
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Fig 10.
Tractography results from five human brain HARDI datasets combined using geometric (top
row) and arithmetic (row two) means, and from individual subjects (two bottom rows),
shown in coronal (left) and sagittal (right) views.
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