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Abstract

There are three main intonation systems musicians use––just, equal temperament, and

Pythagorean. The use of any one of these particular intonation systems depends on a

number of factors, most importantly musical and harmonic context. While work has been

done in analyzing intonation tendencies in vocal and instrumental performance as well as

temperament estimation of fixed-pitch instruments such as the harpsichord, no work has

been done in detecting instances of intonation systems in audio from a signal processing

perspective. For my thesis, I propose several algorithms and signal processing techniques to

detect and identify intonation systems in recordings of the Third Bach Cello Suite Prelude,

which I chose for its musical and harmonic complexity. I first obtained timestamps and

fundamental frequency estimates utilizing CREPE, a pretrained deep convolutional neural

network used for monophonic frequency estimation. Then, I implemented an algorithm that

obtains an estimated classification for each note by calculating an associated probability for

each tuning system and applying a centered moving average. Finally, a set of sequences of

intonation systems were identified by splitting the intonation system-labeled time series at

instances where consecutive labels differ and merging any consecutive equivalently-labeled

sequences within a presupplied time threshold of each other. Clear overall trends in the

use of just and Pythagorean intonation emerged from running the model on twelve different

recordings of the Prelude. This research offers musicians a tool for understanding and as-

sessing their intonation by providing an objective measure of intonation. It also provides a

way to gain insight into the history of intonation in performance.

A link to the Github repo can be found at https://github.com/ecobb/thesis

x
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Acknowledgements

This thesis would not have been possible without the support of several people. First and

foremost, I would like to thank my thesis advisors, Professor Michael Brenner and Professor

Flavio Calmon. Professor Brenner generously offered to advise me on this idea that I had

been wondering about for years, and I am grateful for his unconditional support and for

serving as my concentration advisor during my time at Harvard. He was always willing

to meet over zoom at ungodly hours and I will never forget discussing with him advanced

technical concepts as he tended to his baby. Taking ES-156 with Professor Calmon was one

of the greatest course experiences I’ve had at Harvard - I knew that if I were to write a

thesis, I would want it to be with him. His humility and kindness as a person in addition

to his technical knowledge is unparalleled.

This thesis especially would not have been achievable without the help of Jeff Li, Google

software engineer and previous student of my cello teacher, Richard Aaron. Jeff’s technical

advising and vast knowledge of intonation systems were critical in combining my mathemat-

ical and musical ideas into a coherent problem formulation which granted me the results I

hope to achieve. I would like to thank Hsiang Hsu as well for meeting with me several times

throughout the semester offering fantastic guidance not only concerning the technical details

of the algorithms but about the research process in general. I am grateful to Jimmy Qin for

helping me solidify my technical approach by steering me in the direction of a probabilistic

approach and to Nathan Le for our numerous discussions about this fascinating subject.

Finally, I would like to thank my friends and family for their support during this journey.

I am forever grateful to my parents for encouraging me and providing the means to pursue a

liberal arts education, let alone at such an amazing institution that is Harvard. I would like

to particularly thank Willie Swett for unintentionally motivating me to continue working

diligently during our spring break HRO residency in Cremona. I am especially grateful

to my lifelong friend and mentor Sue Poliacik for taking me under her wing when I first

explored this idea as part of my senior project at Riverdale Country School. When I left

Riverdale, I knew I wanted to circle back to this topic someday when I had acquired greater

mathematical and computational knowledge. I am proud to say that I have finally done so.

xi



Chapter 1

Introduction

1.1 Background

The subject of intonation and tuning systems in classical music is of central importance. It

is most often discussed from a qualitative perspective, lending itself to individual subjective

impressions of how “in tune” or “out of tune” a note, series of notes, or musical passage

sounds. As such, the placement of notes on a frequency level (beyond many musical context-

related cues) is largely dependent on individual pitch preferences. There is a general lack

of understanding or even awareness about the mathematical and physical foundations of

intonation and tuning in classical music. Whether musicians consciously decide or not, they

typically use a combination of three main tuning systems: just intonation, Pythagorean

intonation, and equal temperament [1].

1.1.1 History of Tuning Systems and Harmony

Theories of temperament and intonation have roots in Ancient Greece. The Pythagorean

tradition contributed greatly to notions of musical intervals and consonance and noted that

when two strings (or other “sounding bodies”) were played simultaneously and their lengths

were in proportion to one another, they would produce harmonious tones that would cor-
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respond to particular musical intervals and sound pleasing to the ear [2]. Equivalently,

the musical intervals we would deem consonant or pleasing would be those intervals that

correspond to small integer ratios of the form n+1
n

with n ∈ Z:

Musical Interval Ratio

Unison 1:1

Octave 2:1

Fifth 3:2

Fourth 4:3

Table 1.1: Pythagorean Ratios

Thus for Pythagoreans, musical harmony and mathematics were two sides of the same

coin and musical harmony was a demonstration of simple mathematics. Correspondingly,

the mathematical laws of the universe manifest in the palpable phenomenon that is musical

harmony. This correspondence between the metaphysical and the palpable is the basis of

the Pythagorean notion of the “harmony of the spheres” [2].

Another contributor to the Greek tradition that greatly impacted notions of harmony and

music theory was Aristoxenus, a student of Pythagoras.1 Aristoxenus did not dispute the

logic of Pythagoras’ mathematical formulae or metaphysical notions but asserted that music

could not be reduced to a rational mathematical framework or a manifestation of the cosmic

harmony. To do so would contradict music’s true role as an inherently human phenomenon.

Numerical relationships may exist among musical tones but it is the human experience of

listening and perception that gives meaning to music. According to Aristoxenus, “The mere

sense-discrimination of magnitudes is no part of the general comprehension of music...Mere

knowledge of magnitudes does not enlighten one as to the functions of the tetrachords, or

of the notes, or of the differences of the genera, or, briefly, the differences of simple and

1Aristoxenus is one of the first music theorists from whom we actually have writings. We have little
evidence that many of the mathematical and musical contributions attributed to Pythagoras were indeed
his.
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compound intervals, or the distinction between modulating and non-modulating scales, or

the modes of melodic construction,or indeed anything else of the kind” [3].

While largely not concerned with notions of tuning, Aristoxenus did contest Pythagorean

ratios and the concept of the division of the octave. He claimed that six tones divided the

octave; this construction did not agree with Pythagorean ratios (
(
9
8

)6 ̸= 2) [4]. Pythagoreans

and Aristoxenians also disagreed about whether a whole tone could be divided into two equal

semitones. Pythagoreans said it could not since
√

9
8
is irrational while Aristoxenes believed

that it could be divided into various fractional divisions, which was a kind of foreshadowing

of equal temperament [4].

A natural flaw in the Pythagorean system results from the fact that if one were to ascend

12 perfect fifths from a starting note, one should end up at the same note compared to if

one were to ascend by seven octaves. This is of course mathematically impossible:

(
3

2

)12

̸= 27

The difference between these two theoretical values is called the Pythagorean comma. As

I will explain in greater mathematical detail in section 1.2.2, when the Pythagorean system is

used to construct a 12-tone scale, it inevitably creates an extremely harsh sounding interval

between the second step of the scale and the sixth note of the scale, called a “wolf” interval.

For instance, in the key of D, this interval would correspond to the diminished sixth interval

between Eb and G#, almost a quarter of a semitone flatter than the just intonation 3
2
ratio.

While it has always posed an audible dissonance, the issue was mostly ignored for many

centuries since it did not affect musical practice significantly; musical harmony in western

music was not introduced until the middle of the medieval era in the 12th century. Perfect

intervals such as octaves, fourths, and fifths were the primary intervals used for their inherent

purity and the Pythagorean system posed no conflict.2

2Other musical cultures followed different trajectories in their notions of harmony, consonance, and
dissonance; the Pythagorean comma was widely known, for instance in Chinese music theory.
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Debates surrounding the quality of major thirds began during the Renaissance period

[5]. The Pythagorean major third with a ratio of 81
64

is higher than its just equivalent of 5
4

(to be discussed in section 1.2.1) and this difference is called the “syntonic comma.” This

gave rise to different meantone temperament systems where the “comma” difference was

split up between intervals in various ways. It was not until the 19th century when upright

pianos became mass-produced and were tuned by professional tuners that 12-tone equal

temperament (12-TET) was widely adopted.

1.2 Mathematical Definitions of Tuning Systems

1.2.1 Just Intonation

Just or harmonic intonation is the system of tuning based on the physical phenomenon

known as the harmonic series, a sequence of notes generated from a fundamental frequency

in which the frequency ratios are all whole integer ratios. This is shown by the figure below:

Figure 1.1: Example of harmonic series created from starting note C2

Just intonation in string playing is often used in the tuning of chords and double stops

(two notes played at the same time). The perfect intervals such as the fourth and fifth that

result from the 4/3 and 3/2 ratios, in relation to the fundamental frequency, contain a pure,

resonant sound that makes these intervals satisfying to the ear. Due to the fact that 12

perfect fifths does not equal 7 octaves, just intonation does not allow for easy movement
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between keys and thus was abandoned in favor of more versatile tuning systems.

1.2.2 Pythagorean Intonation

In Pythagorean intonation, all of the frequency ratios are derived from multiples of the

perfect fifth. For instance, starting from the note D and either ascending or descending by

a perfect fifth, we can obtain the Pythagorean scale. When we ascend, we generate the

sharped notes and when we descend, we generate flats:

Pythagorean intonation is associated with certain musical performance practices. It is

sometimes ascribed to the phenomenon of raising sharped notes and lowering flat notes as

well as raising leading tones when they precede tonics. Pythagorean intonation is especially

associated with Pablo Casals who dubbed this phenomenon “expressive intonation” - the

idea that one must alter the tuning of notes especially in relation to the musical and harmonic

context.

1.2.3 Equal Temperament

The final major tuning system used regularly in string playing is equal temperament which

is the predominant standard in the tuning of pianos today. Equal temperament provides a

solution to the issue that exists with just intonation: instead of constructing whole integer

ratios based on the harmonic series, it generates a 12-tone scale by solving the following

equation:

r12
?
= 2

The solution to this equation, r = 12
√
2, ensures each semitone contains the same logarithmic

frequency ratio. As such, only the interval of the octave is preserved compared to the
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harmonic series; every other interval is slightly more or less (tempered) compared to its just

counterpart. The system is the most flexible as it allows for seamless playing in all keys; a

piece in G major in just intonation would sound quite harsh and unpleasant in any other

key while equal temperament would preserve the overall perception of pitch relationships.3

1.2.4 Comparison of Tuning Systems

A comparison of the frequency ratios of all three tuning systems is shown below. The octave

is the only interval that is preserved among the three:

Figure 1.2: A comparison of the three intonation systems. The octave is the only musical
interval preserved among the three.

1.3 Problem Formulation

Musicians, whether consciously or not, use a combination of tuning systems during per-

formance. The placement of notes depends largely on a musician’s individual preference

for intonation. Because of tempo considerations and cognitive overload, in performance,

312-TET was calculated by Simon Stevin around 1600, but was actually widely rejected by musicians
because it mistuned (almost) all the intervals, except for the unison and octave. It was first calculated in
China, by Zhu Zaiyu in 1584.
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musicians are unable to place every single note according to a predetermined intonation

system. Musicians are not always aware of what intonation decisions they make. Under-

standing what intonation decisions musicians make would provide insight into whether there

are fundamental mathematical and musical principles that guide these decisions. A clearer

understanding of this could improve musical instruction and performance. Exploring this

topic would start with a method to determine what intonation systems are used in musical

performances. My thesis asks the following: given a raw audio recording of a movement

from a Bach Cello Suite, how can we detect and identify different tuning systems? Particu-

larly, how can we find instances of just, Pythagorean, and equal temperament from a signal

processing and mathematical perspective?

1.3.1 Data

The Bach Cello Suites are considered to be the pinnacle of the cello repertoire. They are

musical and harmonic masterpieces and thus give rise to many interesting questions concern-

ing what particular music theoretical or harmonic features may be relevant in determining

the usage of a particular intonation system. For instance, does the presence of a particular

kind of musical structure such as a scale or arpeggio lend itself more often to Pythagorean

intonation and does more vertical type music involving a reoccurring pedal tone to just?

Additionally, debates surrounding intonation are arguably most potent in the Bach Cello

Suites. In addition to how historically ’accurate’ or stylistic they should be played, cellists

frequently argue as to how the intonation should sound. For the purposes of the thesis,

the audio data was limited to various recordings of the Third Cello Suite Prelude. Twelve

cellists’ recordings of the Prelude were used, including Anner Bylsma, Colin Carr, Pablo

Casals, Ethan Cobb4, Ralph Kirshbaum, Yo Yo Ma, Mischa Maisky, Jean-Guihen Queyras,

Mstislav Rostropovich, Heinrich Schiff, Jan Vogler, Pieter Wispelwey.

For the purposes of fundamental frequency detection, which is the foundation of intona-

4The inclusion of myself in this list of legendary cellists is for my own sake and in no way a claim of
equivalence.
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tion analysis, the data was all converted to mono, 44.1 kHz sampled audio and edited to

exclude instances of chords. It goes without saying that these twelve cellists do not represent

the entirety of cello playing. They do however exhibit a fascinating set of results as we will

see.

1.4 Overview of Pipeline

To begin to answer the question of how to identify a certain intonation system, it is evident

that we must be able to extract accurate fundamental frequency information and times-

tamps of individual notes. This is the purpose of the note detection component of the data

processing pipeline. Once we have this foundation, we can then run a probabilistic intona-

tion detection algorithm to determine the final output of the pipeline: a set of timestamps

and their associated intonation system labels for a particular raw audio recording. This is

the intonation analysis component of the pipeline. A schematic of the pipeline is provided

below and each step will be discussed in further detail in later chapters:

Figure 1.3: An overview of the overall data processing pipeline.
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1.5 Summary of Contributions

I have developed the following:

• Amethod to extract individual notes and their associated timestamps and fundamental

frequencies with high accuracy.

• An algorithm and associated heuristics to calculate the probability of a group of notes

falling under a certain intonation system.

• An algorithm that accepts time series data including fundamental frequency informa-

tion and identifies intonation systems over time.

Musicians, including myself, frequently argue about countless issues of intonation–whether

or not someone is out of tune, whether a certain note should be raised or lowered according

to the harmonic context, etc., and there is a dearth of computational and numerically-based

software that can begin to shed light on some of these questions. Intonation occupies a

majority of individual practice time and musicians often wonder whether or not they are

playing “in tune.” I hope to emphasize that there is no right answer to this question; you

can only ask whether one is playing in tune in relation to a certain intonation system. I

believe that my system will be a useful source of objective analysis for musicians to use and

guide their playing.
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Chapter 2

Literature Review

2.1 Temperament Estimation

The most relevant kind of research in relation to my project has been in the subject of

temperament estimation in audio recordings. Simon Dixon, Matthias Mauch, and Dan

Tidhar tried to address the problem of how to estimate the inharmonicity and temperament

of a harpsichord given only an audio recording [6] . These quantities can be captured

pretty easily looking only at individual notes but to do this with just an audio recording is

nontrivial.

They produce an initial transcription to generate a list of note candidates and then

employ high-precision frequency estimation techniques and statistics to estimate the inhar-

monicity and fundamental frequency f0 of each note. They then match these estimates

to a set of known keyboard temperaments and allow for variation in the reference tuning

frequency to obtain the temperament.

The authors capture many of the challenges that remain the same for cello recordings.

The classification of temperament requires a very high frequency resolution as the differences

between different note frequency estimates among different temperaments can be on the

order of a few cents or hundredths of a semitone. To capture this kind of frequency resolution,
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one needs a large FFT (Fast Fourier Transform) window length which of course diminishes

the time resolution to the order of a few seconds. This is problematic because notes aren’t

stationary and don’t usually last this long and because low order harmonics require even

smaller frequency resolution to distinguish. Notes also rarely occur in isolation; there might

be bias in frequency estimates - most favored intervals in western music are those in which

many partials coincide - this is the basis of just intonation for instance. It’s difficult to tell

whether a peak in the Fourier Transform is a fundamental frequency or a partial of another

note but this is obviously critical for the task of the authors.

To achieve frequency resolution on the order of cents, they use the FFT with quadratic

interpolation and correction of the bias due to the window function. They also produce their

own test dataset with both real and synthesized harpsichord music where the synthesized

music has precise temperament but slightly different timboral/recording conditions.

2.1.1 Inharmonicity

The study of inharmonicity refers to investigation of the physical and acoustical properties

of vibrating strings and the analysis of the perceptibility of inharmonicity from an psychoa-

coustic point of view. An example of inharmonicity is that vibrating strings have partials at

frequencies slightly greater than integer multiples of the fundamental frequency; this phe-

nomenon can be attributed to both the stiffness of the string and the amplitude of vibration

[7].

The frequency of the kth partial is given by the following equation, where B is a inhar-

monicity constant:

fk = kf0
√
1 +Bk2
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2.1.2 Fundamental Frequency Estimation

There are notable limitations with existing fundamental frequency estimation methods.

There are a number of often-made assumptions about the signal that do not always hold for

musical signals. Among them are: monophonicity - the input signal at any point in time

consists of a single pitched tone (although for my problem, this is the case); stationarity -

that the signal’s properties are stable over time; and that the properties of the input signal

are known or match a small set of instruments. The authors also note that methods often

ignore the effects of inharmonicity and human perception on the pitch estimation and that

papers rarely deal with frequency resolution on the order of a few cents and the limitations

that come with that (which is necessary for temperament and inharmonicity).

They show that the FFT with quadratic interpolation and correction of the bias due to

the window function outperforms instantaneous frequency estimation using phase informa-

tion and is suitable for estimating temperament and inharmonicity. As I also have thought

of, they note that the ideal solution for f0 estimation would involve identifying the existence

and timing of each note in a recording but that no known transcription algorithm accom-

plishes this. I have achieved a version of this task. They employ a 2-stage approach to

estimate f0 and inharmonicity of unknown notes in the presence of multiple simultaneous

tones. They first do a conservative transcription with high precision (keeping a high frac-

tion of correctly-transcribed notes) at the cost of low recall (they might miss some notes) to

identify notes, and then do the frequency estimation [8].

The conservative transcription consists of: frame-wise amplitude spectra with a STFT;

sinusoid detection through peak-picking which yields initial frequency estimates; and delet-

ing sinusoids with low confidence either because they’re below an amplitude or duration

threshold, or if they’re overtones of a different sinusoid. For the partial detection, they

identify peaks in the amplitude spectrum |X(n, i)|. They calculate the moving weighted

mean µ(n, i) and moving weighted standard deviation σ(n, i). A locally salient bin is iden-

tified when a spectral bin exceeds the moving weighted average plus half a moving standard
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deviation:

|X(n, i)| > µ(n, i) + .5 · σ(n, i)

Globally salient peaks correspond to bins that have an amplitude greater than 25dB less

than the global maximum bin amplitude:

|X(n, i)| > 10−2.5max
u,v
{|X(u, v)|}

They consider peaks that fulfill both of these inequalities and then estimate the frequency

with quadratic interpolation of log magnitude of the peak bin and its two surrounding bins.

They they go through all sorts of further deleting and refining of the potential fundamental

frequencies. Frequency estimates are sorted into semitone bins from MIDI note 36 to 80.

After this conservative transcription, they then employ partial frequency estimation us-

ing the first equation with a frequency-dependent B (B is initially a constant). With two

partial frequencies fj, fk, B can be estimated by the following equation, provided there is

no interference between partials from other notes:

Bj,k =
j2f 2

k − k2f 2
j

k4f 2
j − j4f 2

k

Dixon, Mauch, and Tidhar are quite successful in this regard however their task has

crucial structural differences compared to my task. Most notably, the harpsichord is a fixed-

pitch instrument while the cello is a continuous-pitch instrument. Because of this, there is

one right answer to the question of what kind of temperament system is used in a harpsichord

recording and there is a limit to the range of possible frequencies for each note. On the cello,

the frequency of a note depends on one’s finger placement on a fret-less fingerboard - an

infinite number of possibilities. Moreover, in the case of a cello recording, there cannot be

one classification of a certain temperament; these systems change over time depending on

musical and harmonic context.
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2.2 Intonation Studies

There is also a variety of literature concerned with identifying intonation tendencies and

pitch-drift in various kinds of music and audio recordings. Johanna Devaney and Dan

Ellis studied intonation tendencies in polyphonic vocal tracks, that is tracks with multiple

voices [9]. Their central assertion was that the overall tuning of a vocal ensemble cannot

be determined by a singular reference point; rather, horizontal and vertical factors inform

the intonation. This is also the case for string players in general. To begin their analysis,

they consider various music theoretical notions concerning consonance and voice leading.

Particularly, they consider Ernst Terhardt’s theory of consonance which places a lot of

weight in the fundamental or lower overtones of a note. He describes consonance as when

the real bass note and virtual fundamental note align, an idea which can be applied to the

idea of tuning preferences in vertical sonorities.

In addressing vertical aspects of voice leading, Lerdahl’s tonal pitch space theory deals

with the tendency of a dissonant pitch to resolve to a consonant neighbor and follows a rule

analogous to the inverse square law in Newtonian gravitation. In this model, the attraction

of one pitch to another is the anchoring strength of the goal pitch s2 divided by the anchoring

strength of the source pitch s1 times the inverse of the square of the number of semitones

between the two pitches n:

s2
s1
· 1
n2

Larson also deals with melodic attraction in his work on melodic forces, correlating

gravity, magnetism, and inertia in a single equation [10]. The total force acting on a note

in a given context or pattern is calculated by summing the results of individual calculations

for each force:

F = wGG+ wMM + wII
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Gravity, G, is the tendency of a musical line to go down and is a binary variable - it’s

either a 1 if a pattern descends towards a more stable pitch, and 0 otherwise. Magnetism,

M , is the tendency of unstable notes to move to stable ones. The formula for magnetism is

as follows:

M =
1

d2to
− 1

d2from

dfrom is the distance in semitones from the initial note to the closest stable pitch while

dto is the distance in semitones from the initial note to the goal note in the current musical

context. Inertia, I, refers to the tendency of a musical line to continue rather than vary.

Inertia is 1 when the musical pattern has inertial potential and fulfills it, 0 if it has no

inertial potential, and -1 if it stays on the same pitch and has an I value of 0. wG, wM ,

and wI represent the weightings on each of these variables and are found using multiple

regression.

Lerdahl’s model is useful because it is internally consistent and generates a full comple-

ment of attractional relations within a musical system; Larson’s model requires some mod-

ification because it cannot accomodate a change in the governing tonic part-way through

a musical sequence, calculate attractions from a stable pitch, or generate negative values

which makes comparisons difficult.

The trained models will suggest horizontal intonation tendencies. The reconciliation

of the vertical and horizontal depends on a number of factors, including the duration and

metrical position of a given vertical sonority, its function within the musical context, and

significance of the the horizontal lines moving through a vertical sonority (relation of pitch

material to current harmonic context).

For their computational analysis, 12-tone equal temperament is used as a reference be-

cause it is invariant under changes to tuning references. Data collection is a 2-step process

- temporally aligning a MIDI score of the work to the audio recording and developing a

method to accurately extract pitch data from polyphonic vocal recordings. The MIDI ver-
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sion guides the pitch estimation but the alignment is tricky since note onsets can often be

difficult to determine, and that the timbre of all the vocal parts are very similar and also

the amount of reverb. They use a dynamic programming approach which relies on accuracy

in pitch but is less sensitive to exact onset times.

The aligned score now contains the approximate time and frequency of each performed

note, where the frequency is determined by an instantaneous-frequency spectral analysis

which calculates a phase derivative within each time-frequency cell of a STFT. The accuracy

of the estimate is limited by the amount of energy from noise, harmonics, etc that may be

present in the bin. The IF spectrogram recovers the estimated energy and frequency of

sinusoids at every time-frequency cell and single pitch values are estimated using an energy-

weighted average of the instantaneous frequencies aligned to each note. As is the case for

the cello, vibrato makes this task more difficult.

Mauch and Dixon have also explored intonation and intonation drift in vocal singing

and proposed a model of reference pitch memory where the reference pitch is treated as a

changing latent variable [11].

They treat intonation as the signed pitch difference (measured in semitones on an equal-

tempered scale) relative to the reference pitch. They also use equal temperament as their

reference tuning system but claim that this doesn’t substantially affect their results. They

convert frequencies to MIDI pitches by the usual conversion, with A440 as the reference

pitch:

p = 69 + 12 log2
f0
440

Then, for a particular frequency estimation, the difference in that estimated MIDI pitch’s

value to the closest integer pitch is the deviation in cents from that particular pitch. They

use the term nominal to refer to intervals or pitches with respect to ET. A perfect fifth

corresponds to 7 equal semitones for instance, while in general a nominal interval can differ

from an observed interval.
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They underwent a semiautomatic pitch-tracking process - they annotated the note onsets

and offsets by using Sonic Visualizer and identifying the stable part of the estimated pitch

track. The annotations were fed into pitch tracking software based on YIN and the note

tracks were analyzed with R. They took median pitch estimates to approximate the pitch

value of each note.

They measure the interval of the ith note as the signed difference in semitones:

∆pi = pi − pi−1

The interval error then of the observed interval is

einti = ∆pi −∆p0i

where ∆p0i is the nominal interval in semitones in ET.

In trying to define pitch error, the authors claim that since the tuning changes over the

course of the song with singers, there is no reference pitch to base intonation off of. Thus,

to obtain a reference, they use a linear fit to a local tonic estimate. For the measured pitch

of the ith note, pi, they find the estimate:

ti = pi − si

where si is the nominal pitch relative to the estimated tonic.

2.3 Music Information Retrieval

Within the larger area of music information retrieval, there has been work in a number of

different areas in data-driven pitch and music theory-related tasks [12]. Pitch histograms

have been used extensively in music information retrieval studies. Some work has also been

done in non-western music, particularly Turkish music [13]. A makam in Turkish music
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is a modal entity; every musical piece is identified and recognized by a particular type

of makam. Many of the problems inherent in trying to estimate the makam of a given

piece are similar to the issues inherent in the task of identifying intonation systems in cello

recordings–pitch-class histogram-based methods often have a number of assumptions used

to reduce the dimension of the pitch histogram space which don’t always apply and much

of MIR relies on western tonality and equal-tempered tuning (A4=440 Hz). Because many

of these concepts do not follow in Turkish music, the analysis has to be done with little

assumptions - particularly, they don’t take any specific tuning system for granted. This is

exactly analogous to identifying intonation systems in cello recordings. They also extract

frequency data from monophonic audio recordings to construct pitch histograms.

Machine learning approaches have also been explored in music information retrieval.

Harasim et al. attempted to infer the number and characteristics of modes in different

historical periods dating from the Renaissance to the 19th century [14]. They used an

unsupervised learning approach to determine the number of nodes with a geometric model,

capturing modes as clusters of musical pieces in a non-Euclidean space, then using a Bayesian

model to characterize the modes.
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Chapter 3

Note Detection

At the foundation of any analysis of intonation or temperament is an accurate calculation

of fundamental frequency on a note-by-note basis. The subject of fundamental frequency

analysis has been thoroughly studied but while many existing pieces of software (Melodyne,

Logicpro, etc., ) are able to extract individual notes with a high degree of accuracy, there

are no existing modules within Python or other languages that perform the complete task

of extracting fundamental frequency estimates and timestamps of every note in an audio

recording. This task was thus one of the first steps needed in the overall pipeline.

Extremely high frequency resolution is needed for the task of estimating intonation sys-

tems as frequency estimates may differ on the order of a few cents and further work in this

area is noted in section 6[8]. As a first approximation, and for its ease of use and high

accuracy compared to other state-of-the-art monophonic fundamental frequency estimators,

CREPE was used.

3.1 CREPE

CREPE is currently the highest-performing fundamental frequency estimator outperforming

other leading programs like pYIN and SWIPE. CREPE is a pretrained deep convolutional

neural network which operates on the time-domain waveform [15]. By default, CREPE

19



operates every 10 milliseconds and outputs three readings at each time-step: the time (in

seconds), the frequency estimate (in Hz), and a confidence estimate (confidence in the pres-

ence of a pitch). A sample output for an equal tempered C4 is shown below:

time frequency confidence

0.00 263.82 0.68

0.01 263.00 0.84

0.02 262.29 0.92

0.03 261.91 0.94

0.04 261.52 0.94

0.05 261.82 0.94

0.06 261.67 0.94

0.07 261.79 0.94

0.08 261.63 0.94

0.09 261.73 0.94

0.10 261.79 0.94

0.11 261.72 0.94

0.12 261.66 0.94

0.13 261.73 0.94

0.14 261.71 0.94

0.15 261.81 0.94

0.16 261.75 0.94

0.17 261.53 0.94

0.18 261.79 0.94

0.19 261.66 0.94

0.20 261.76 0.94

Table 3.1: Sample CREPE output
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3.2 Note Detection Algorithm

The goal of the note detection algorithm is two-fold:

1. Calculate timestamps for each note in the audio

2. Calculate a fundamental frequency estimate for each note in the audio

We wish to retain temporal information for each note so to be able to ultimately perform

analysis concerning the usages of intonation systems over time. This information may even-

tually combined with musical contextual information such as harmonic and melodic content

to provide more insight as to how intonation is dependent on these features. High resolution

frequency estimates are obviously essential for the task of assessing intonation. Each of these

requirements may be solved individually with different kinds of approaches but the goal of

the algorithm is to be able to capture both of these pieces of essential information in one

pass.

The algorithm takes advantage of CREPE’s high accuracy when it comes to time-domain

frequency detection. Extensive data analysis showed that CREPE’s confidence values tended

to be quite high when the frequency estimate was within the ballpark of the actual note

frequency estimate. It was possible to ascertain this correlation by testing with synthesized

audio or an excerpt of the Prelude, for which we know the notes played and thus the

theoretical frequency estimates. The algorithm leverages this correlation by assigning a

confidence threshold to the frequency array to weed out noisy estimates. The remaining

estimates then are segmented according to where consecutive frequency estimates exceed a

presupplied frequency ratio threshold. For the purposes of the thesis, this threshold was set

to 2
1
26 , a bit less than the equal tempered semitone ratio value of 2

1
12 .

The algorithm can be described as follows, letting:

• h denote the step size in seconds.

• ϵ denote a small deviation value in seconds, (on the order of 10−5)
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Algorithm 1 Note Detection Algorithm

N ← length(F )
Fcurrent ← F [0]
for i← 1 to N do

if t[i]− t[i− 1] > 4 · (.001h) + ϵ then

fr ← max(F [i],F [i−1])
min(F [i],F [i−1])

if fr < ft then
continue

end if
tf ← t[i− 1] + .001 ∗ h− ϵ

dict[(ti, tf )]←
∑

Fcurrent

length(Fcurrent)

ti ← t[i]
Fcurrent ← [f [i]]

else
Fcurrent.append(f [i])

end if
end for

• F denote the frequency array containing the valid frequency estimates (after confidence-

thresholding the CREPE output)

• Fcurrent denote the current array of frequency estimates for the current pitch under

consideration.

• fr denote the frequency ratio calculated between consecutive frequency estimates.

• ti denote the initial time in seconds of the current pitch under consideration.

• tf denote the final time in seconds of the current pitch under consideration.

3.3 Algorithm Performance

To test the accuracy of the note detection algorithm, we test it on a mix of synthesized and

normal audio. For simplicity, we tested the algorithm on a synthesized equal-tempered scale
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and calculated the cent difference for each detected note:

Note C4 D4 E4 F4 G4 A4 B4 C5
Freq. Pred. 261.737 294.057 329.661 348.925 392.293 440.348 494.153 524.522
ET Value 261.63 293.67 329.633 349.234 392.002 440.007 493.892 523.26
Cent Dev. 0.709 2.28 0.147 -1.532 1.286 1.339 0.917 4.171

Table 3.2: Results of freq prediction on c major equal temperament scale

Note: C4 D4 E4 F4 G4 A4 B4 C5
Time Prediction: 0.02 .515 1.015 1.515 2.025 2.52 3.015 3.51

Time: 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time Difference: 0.02 0.015 0.015 0.015 0.025 0.02 0.015 0.01 ]

Table 3.3: Results of time predictions on c major equal temperament scale

As we can observe, the algorithm performs quite well- the frequency deviation stays

under 5 cents, the JND or “just-noticeable difference.” Between equal-tempered B4 and C5,

the just noticeable difference would correspond to:

JND (B4, C5) =
f∆
20

=
523.26− 493.892

20
= 1.4684 Hz

The time prediction also performs quite well; the deviation never exceeds .025 seconds

or 25 milliseconds.
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Chapter 4

Probabilistic Intonation Detection

Now that we have a system that can parse through an audio file and obtain accurate time

and frequency estimates of each note, we are able to ask the original question of the thesis:

how can we detect intonation systems over time?

There are many possible approaches to answering this question. I begin by describing just

a few of these possible approaches. Naturally, the process of detecting intonation systems

depends entirely on frequency relationships; musical intervals and their corresponding ratios

in just, equal-temperament, and Pythagorean intonation are only defined with two notes.

As such, one could possibly only compute frequency information for every note in an audio

file and group this information into pitch class data. Each pitch class would have a value

equal to the mean fundamental frequency of that pitch class normalized to some octave.

With this data, it would be possible to compute average musical interval information and

classify the entire audio file as the intonation system for which the musical interval ratios

are closest. This approach has potential for interesting data analysis but lacks temporal

information and thus fails to completely answer the question of the thesis. It also represents

a one-answer simplification to the question of what intonation system is a given player

using which in reality is not the case. Performers change their intonation on a variety

of musical features and musical contextual information [1]. Among these, the particular
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musical intervals between notes are highly influential in the choice of intonation system. For

instance, it is rare and virtually unacceptable to play a perfect interval according to just

intonation. This is of course due to the fact that the beating between two of these frequencies

is extremely audible and quite harsh-sounding. It must be acknowledged, however, that this

kind of musical interval preference is indeed subjective.

To obtain temporal intonation information, we first estimate the probability of a note

falling under a certain intonation system. We approximate a given note to be normally

distributed with mean described by the reference frequency under a certain intonation system

and standard deviation approximated to be a fixed constant value. The reference frequency

corresponds to the closest possible frequency in a certain intonation system stencil as judged

by the minimum absolute value of the difference between a given frequency. We describe

the process for calculating the stencils and corresponding intonation system probabilities for

each of the three intonation systems:

4.1 Tuning System Stencil Creation

4.1.1 Equal Temperament

Equal temperament is the simplest of the three systems to approximate. The stencil is

generated by a certain reference frequency as judged by the frequency value for A4. This

frequency can be approximated for each of the cellists with exploratory data analysis using

the note detection algorithm. Once a reference frequency is given, every note in the stencil

is calculated by multiplying (or dividing) by 2
1
12 and scaling by a power of 2 to stretch the

range of four octaves on the cello corresponding to the approximate frequency range 65 Hz

- 500 Hz.
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4.1.2 Pythagorean

To generate the Pythagorean stencil, we again use a frequency approximation for A4 and a

particular key-invariant definition derived from the just perfect fifth frequency ratio. Based

on this reference frequency, we traverse by perfect fifths up and down and scale by the

necessary powers of two to end up in the same cello frequency range.

4.1.3 Just

The just stencil is the most complex of the three intonation systems given its key dependence.

The process for generating a just stencil in a particular key again starts with a frequency

approximation for A4. To calculate the just stencil in C major for instance, we calculate the

equivalent frequency for open C on the cello (C2) by descending three perfect fifths from

the frequency approximation for A4 and scaling by an octave:

Cf = 441×
(
2

3

)3

× 1

2

Each note of the stencil is generated by multiplying by the necessary just intonation

interval ratio and scaling. For instance, the note E is calculated by multiplying the just

intonation major third ratio (5
4
) by the fundamental frequency of C. Once we’ve calculated

E, we can calculate its sharp and flat equivalents by multiplying and dividing by the just

minor second ratio (25
24

respectively). The other keys are derived in exactly the same fashion;

they only differ by the base reference frequency for which all of the other notes in the scale

are derived.

26



C 65.33

C# C ·25
24

*

Db D ·24
25

*

D C ·9
8
*

D# D ·25
24

*

Eb E ·24
25

or C ·6
5
*

E C ·5
4

E# E ·25
24

*

Fb F ·24
25

F C ·4
3

F# F ·25
24

*

Gb G ·24
25

*

G C ·3
2

G# G ·25
24

*

Ab A ·24
25

or C ·8
5
*

A C ·5
3
*

A# A ·25
24

Bb B ·24
25

*

B C ·15
8
*

B# B ·25
24

*

Table 4.1: C major just intonation stencil. The starred notes are shown just for completeness
but do not appear in the C major scale from a music theoretical standpoint.
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4.2 Calculating Tuning System Probability

Each note has an associated probability vector

p⃗(f) = [pj(f), pe(f), pp(f)] (4.1)

where pj(t) is the probability of a justly-tuned pitch, pe(t) is the probability of an equal-

tempered pitch and pp(t) is the probability of a Pythagorean-tuned pitch. pi(t) ∼ N (fr, σ
2)

where fr is the reference frequency in that particular intonation system and σ2 is a fixed

constant value. The probability of a note falling under a certain intonation system is given

by:

pi(f) =
1√
2πσ

exp−(f − fr)
2

2σ2
(4.2)

4.3 Tuning System Change Detection Algorithm

The algorithm takes as input the time-frequency data generated by the previous step in

the pipeline. Using these fundamental frequency estimates, p⃗(t) is calculated for each note.

Using a certain window size of notes, an individual tuning system label is generated for

each note by the tuning system that maximizes the average probability over the window

size, effectively applying a moving average filter. Equal temperament and Pythagorean only

have one possible reference frequency for each frequency under consideration, but just has

5 possible keys (C, G, D, F, A). Because of this, a certain frequency may have the same

probability estimate for several just intonation stencils. For this reason, a certain kind of

classification criterion needs to be employed for just intonation - either all the stencils are

grouped under the larger “just” umbrella, or each key is handled separately. We explore

both implementations in chapter 5.

Each side of the frequency array is padded accordingly so to end up with the same
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number of labels as notes. We describe the classification algorithm below:

Let fi be the fundamental frequency of the ith note, W the window size (# of notes).

The tuning system label corresponds to the system with the highest probability as calculated

by equation 4.2.

pi = max[pj(fi), pe(fi)), pp(fi)]

= max

[
1

W
p⃗(fi−W/2) + . . .+ p⃗(fi) + p⃗(fi+1) + . . .+ p⃗(fi+W/2)

] (4.3)

If the answer to equation 4.3 is pj, then the label is just, and so on. pe(f) and pp(f)

are straightforward to calculate because we merely consult the lookup table for each of

their stencils and find the answer that corresponds to the minimum absolute value with the

frequency in question. pp(f) is more complex and corresponds to the maximum probability

among the six possible key estimates:

pp(f) = max[pC(f), pG(f), pD(f), pA(f), pE(f), pF (f)]

For each frequency and its associated neighbors moving window, many just stencils may

be possible and many of them may overlap as well. For this reason, the associated key label

is calculated by the mode of the total number of keys represented (which still may not be

unique, but is fine for the purposes of obtaining a just classification).

Once this has been applied to the entire data, we end up with an associated tuning system

label for each fundamental frequency fi for i = 1, . . . , N where N is the total number of

detected notes. Once we have this per-note data, we need to extrapolate information about

more global intonation patterns rather than this localized information. There are many

possible approaches to this task - one could simply count the total number of instances of

each label to achieve some sort of average global estimate of the usage of each intonation

system but this would importantly once again sacrifice temporal information, which we need

for analysis. Instead we apply the following algorithm to identify sequences of intonation
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systems in the tuning label time series:

We iterate through the array of tuning system predictions yi until we find a pair of

consecutive unequal labels. This defines the index location of a split. We store the time

information of the last note in the current intonation system sequence as well as the total

number of notes in the sequence. In the case that all labels are the same, the final output

will be the entire sequence. Once we’ve gone through the entire array, we do one final

sweep to to remove any sequences with a number of notes smaller than a given threshold

(for the results in the following chapter, the minimum length of a sequence was set to two,

meaning any sequences of one note were removed from the final output). We also check

any instances of adjacent sequences in which the tuning system labels are the same and if

tstart,i− tfinal,i−1 < tthresh, then the sequences are grouped together into one sequence. In the

end, we end up with a set of sequences with four components:

• Start (s) - the starting time of the sequence, as defined by tinitial of the first note

• End (s) - the ending time of the sequence, as defined by tfinal of the last note in the

sequence

• Tuning System - the estimated tuning system of the sequence

• Total (# of notes) - the total number of notes in the sequence, including any labels

that may have been “sandwiched” into the sequence
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Chapter 5

Empirical Results

The purpose of this chapter is to showcase several sets of results for different kinds of audio

that illustrate both the frequency detection capabilities of CREPE and the effectiveness of

the tuning system detection algorithms but more importantly, what both of these compo-

nents are not able to capture and why. We start with analyzing the algorithm’s results on

synthesized scales of the three intonation systems and then in more detail at the results for

just the opening phrase of the Third Suite Prelude for each of the twelve cellists. Finally,

we analyze the full results of the entire Third Suite Prelude for all cellists and examine one

particular output in detail to shed light on what sorts of interpretive and musical factors

may influence the results of the model.

A figure of the output is shown for each example case corresponding to the tuning system

classification versus time. Two associated tables are also shown - one details which tuning

system(s) were estimated, the total number of notes detected, and the fraction of the total

number of notes represented by each tuning system in the audio, and the other outputs

the total percent of just intonation and the most likely intonation system of the audio in

question as judged by the system which corresponds to the largest percentage.
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5.1 Scale Recognition

To begin testing the results of the algorithm, we start with synthesized diatonic A major

scales consisting of eight notes total of the three different systems. We use a reference A4

frequency of 440.0 Hz and start on the note A3 = 220.0 Hz. Each note of the scale is

determined by the particular frequency ratio specific to that system relevant to the tonic.

5.1.1 Equal Temperament

As we can see, the algorithm correctly classifies the scale and even detects and correctly

labels all eight notes.

Figure 5.1: Output of equal tempered scale.

Table 5.1: Equal Temperament Scale

Tuning System Total Percentage

edo 8 100.0

Percent Just: 0.0
Most Probable Intonation System: edo
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5.1.2 Just

Similarly, the algorithm correctly classified the scale as the correct just intonation stencil

and nearly detected every note with an accuracy of 7
8
= 87.5%.

Figure 5.2: Output of just scale.

Table 5.2: Just Scale

Tuning System Total Percentage

a just 7 100.0

Percent Just: 100.0
Most Probable Intonation System: a just

5.1.3 Pythagorean

The Pythagorean stencil is more tricky to capture in a scale because naturally the frequency

differences between equal temperament except for two intervals - the major third and major

seventh differ on the order of a few cents. This is with high probability beyond the frequency

detection capabilities of CREPE. CREPE classifies the major second, major third, and
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perfect fourth as equal temperament but classifies the perfect fifth, major sixth, and major

seventh correctly as Pythagorean.

Figure 5.3: Output of Pythagorean scale

Table 5.3: Pythagorean Scale

Tuning System Total Percentage

edo 3 42.86

pythag 4 57.14

Percent Just: 0.0
Most Probable Intonation System: pythag

5.2 Cello Suite No. 3 Prelude Opening Phrase

Now we begin our exploration of the main part of the project: the Bach Cello Suites. We

start with just the opening phrase of the Third Suite Prelude, which starts on the note

C4, follows a downward scale to an octave below on the note C3 and then descends by an

arpeggio to the open C string on the cello (C2). This opening phrase contains only twelve

notes within the C major scale and two kinds of musical structures - a scale and arpeggio.
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As such, we would most likely expect cellists to use a combination of just intonation and

Pythagorean intonation because of the combination of harmonic and melodic material. The

sheet music to the opening phrase is shown below in figure 5.4.

Figure 5.4: Opening Phrase of Suite 3 Prelude

The model has a small number of hyperparameters: a frequency estimate for A4 (to cali-

brate the intonation system stencils accordingly), a confidence threshold (for note detection,

see chapter 3), a time threshold (to determine when adjacent equivalently-labeled sequences

can be merged, see chapter 4), a window length (# of notes for use in the individual note-

by-note label process, see section 4.3), and a step size (in milliseconds, for note detection,

the default value for CREPE is 10 milliseconds). For all cellists, the time threshold, window

length, and step size were set to .55, 3, and 5 respectively. The other parameters were

estimated by a small grid search on a clip of audio.

cellist A4 freq confidence retention
bylsma 407.15 0.8 54.06
carr 441.99 0.85 55.04
casals 432.67 0.88 52.84

kirshbaum 447.31 0.88 41.77
ma 439.96 0.85 47.39

maisky 440.13 0.9 47.93
queyras 444.38 0.8 32.71

rostropovich 440.54 0.7 67.31
schiff 443.42 0.8 34.06
vogler 442.22 0.8 56.70

wispelwey 394.54 0.8 54.39
cobb 441.47 0.8 49.72

Table 5.4: Hyperparameters used for each cellist
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The overall output statistics of the opening phrase using both only the C Just stencil

and all possible stencils are shown below. We will delve more into each individual cellist

in the following subsections. By looking at a smaller example of the piece, we can gain

insight into the behavior of the algorithm. As is certainly also the case and even more

pronounced in the following section and appendix, much of the variation in the the overall

most probable tuning system is replaced in favor of just when all stencils are used. When

examining only the C stencil data, the algorithm confirms our expectation of Pythagorean

intonation for Casals but interestingly classifies many examples of equal temperament that

we wouldn’t necessarily expect. We’d expect Bylsma, being a baroque cellist, to exhibit

more bias towards just intonation but this isn’t the case. Queyras is even entirely classified

as equal temperament, which either could be due to numerical error or a suggestion that his

frequent playing with equal-tempered piano as part of his solo and chamber music career

has steered his intonation in the equal-tempered direction.

Using C Just Stencil
Percent Just Most Probable Intonation System

Bylsma 37.4 edo
Carr 42.86 just
Casals 33.33 pythag
Cobb 40.0 edo/just

Kirshbaum 0.0 pythag
Ma 22.22 pythag

Maisky 22.22 edo
Queyras 0.0 edo

Rostropovich 25.0 edo
Schiff 25.0 edo/pythag
Vogler 66.67 just

Wispelwey 37.5 pythag/just

Table 5.5: Fraction of notes played with just intonation and overall most probable intonation
system for all 12 cellists only using the C just stencil for opening phrase

With all stencils, detection is naturally pushed in favor of just intonation. The only

impressive exception is Kirshbaum, which may support that his choice of Pythagorean in-

tonation is indeed intentional.
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Using All Stencils

Percent Just Most Probable Intonation System

Bylsma 57.14 just

Carr 66.67 just

Casals 71.43 just

Cobb 60.0 just

Kirshbaum 28.57 pythag

Ma 100.0 just

Maisky 37.5 edo

Queyras 50.0 just

Rostropovich 100.0 just

Schiff 66.67 just

Vogler 100.0 just

Wispelwey 42.86 just

Table 5.6: Fraction of notes played with just intonation and overall most probable intonation
system for all 12 cellists using all just stencils on opening phrase

5.2.1 Anner Bylsma

Forcing the c major stencil, Bylsma indeed uses c major just intonation but the algorithm

detects an equal tempered majority. With the fraction of notes remaining that were missed

by CREPE (most likely due to noise in the data and corresponding low confidence) it

is possible that a few more detected notes could have tilted Bylsma in the c major just

intonation direction.

37



Figure 5.5: Output of Bylsma opening phrase with only c major stencil..

Table 5.7: Bylsma Opening Phrase with only c major stencil..

Tuning System Total Percentage

edo 5 62.5

c just 3 37.5

When we allow all just intonation stencils to be classified, we interestingly find that both

the C and E stencils are detected. This makes sense as there is much overlap between the

two stencils.

Figure 5.6: Output of Bylsma opening phrase with all just stencils..
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Table 5.8: Bylsma Opening Phrase with all just stencils..

Tuning System Total Percentage

e just 2 28.57

edo 3 42.86

c just 2 28.57

5.2.2 Colin Carr

Carr plays the majority of notes with c major just intonation. He uses all three systems.

Figure 5.7: Output of Carr opening phrase with only c major stencil..

Table 5.9: Carr Opening Phrase with only c major stencil..

Tuning System Total Percentage

pythag 2 28.57

c just 3 42.86

edo 2 28.57
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With all stencils, Carr still plays a majority just intonation. The D just intonation stencil

is detected most likely again because of the significant overlap between the C and D stencils.

Figure 5.8: Output of Carr opening phrase with all just stencils..

Table 5.10: Carr Opening Phrase with all just stencils..

Tuning System Total Percentage

d just 2 33.33

c just 2 33.33

edo 2 33.33

5.2.3 Pablo Casals

The algorithm’s detection of Pythagorean intonation for Casals is fitting - Casals is known for

his use of ’expressive intonation.’ The beginning may be classified as Pythagorean because

of the small minor second interval between the first note and second note, which has a

tendency to be squeezed. The c just detection in the middle of the audio is interestingly

centered around the entirely melodic downward scale. The last Pythagorean detection may

be exaggerated because the Casals hits the C string quite loudly which can raise the pitch

of the open string by a small, albeit significant amount.
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Figure 5.9: Output of Casals opening phrase with only c major stencil..

Table 5.11: Casals Opening Phrase with only c major stencil..

Tuning System Total Percentage

pythag 6 66.67

c just 3 33.33

With all stencils, the first Pythagorean detection gets replaced in favor of the E just

stencil. This does not make much intuitive sense other than to ascribe the switch due to

small frequency differences and the sensitivity of the detection algorithm once again.

Figure 5.10: Output of Casals opening phrase with all just stencils..
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Table 5.12: Casals Opening Phrase with all just stencils..

Tuning System Total Percentage

e just 3 42.86

d just 2 28.57

pythag 2 28.57

5.2.4 Ethan Cobb

The relatively equal division between equal temperament and just intonation may confirm

the author’s frequent practice with an equal tempered tuner as well as justly tuned double

stops. Or, the algorithm may suggest that the author’s playing is somewhat inconsistent.

The first equal temperament detection is between the first and second notes, a departure

from Casals as we saw before.

Figure 5.11: Output of Cobb opening phrase with only c major stencil..
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Table 5.13: Cobb Opening Phrase with only c major stencil..

Tuning System Total Percentage

edo 4 40.0

pythag 2 20.0

c just 4 40.0

With all stencils, Pythagorean is replaced with the G just stencil. The final G just

classification would be equivalent to a C just classification since the algorithm is looking at

the last two notes of the phrase - G2 followed by C2, a perfect fifth. This interval would be

equivalent in both stencils.

Figure 5.12: Output of Cobb opening phrase with all just stencils..

Table 5.14: Cobb Opening Phrase with all just stencils..

Tuning System Total Percentage

edo 4 40.0

c just 4 40.0

Continued on next page
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Table 5.14 – continued from previous page

Tuning System Total Percentage

g just 2 20.0

5.2.5 Ralph Kirshbaum

Kirshbaum is the first instance of an entire classification of one system - in this case

Pythagorean. Matching to the audio output, the only notes detected are part of the

downward scale suggesting that scalewise motion like this may lend itself more often to

Pythagorean intonation.

Figure 5.13: Output of Kirshbaum opening phrase with only c major stencil.

Table 5.15: Kirshbaum Opening Phrase with only c major stencil.

Tuning System Total Percentage

pythag 7 100.0

Allowing all stencils does not change the output dramatically; Kirshbaum still uses

Pythagorean the majority of the opening phrase.
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Figure 5.14: Output of Kirshbaum opening phrase with all just stencils.

Table 5.16: Kirshbaum Opening Phrase with all just stencils.

Tuning System Total Percentage

a just 2 28.57

pythag 5 71.43

5.2.6 Yo Yo Ma

Ma plays with Pythagorean intonation the majority of the opening phrase and also uses C

just. This is entirely what we would predict.

Figure 5.15: Output of Ma opening phrase with only c major stencil.

45



Table 5.17: Ma Opening Phrase with only c major stencil.

Tuning System Total Percentage

pythag 7 77.78

c just 2 22.22

Interestingly, when all stencils are allowed, practically all of the Pythagorean classifica-

tion is abandoned in favor of the E and D just stencils.

Figure 5.16: Output of Ma opening phrase with all just stencils.

Table 5.18: Ma Opening Phrase with all just stencils.

Tuning System Total Percentage

e just 5 71.43

d just 2 28.57

5.2.7 Misha Maisky

Maisky by a majority plays with mostly equal temperament but still uses the other two

systems. Like the author, the first two notes are played with equal temperament. The
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Pythagorean classification is likely not entirely correct because Maisky happens to place

the G in beat two of the first measure quite high. This is most definitely because his finger

happened to land there on that day the audio was recorded. With a high degree of certainty,

if Maisky were asked to prepare and play only that same note without context, it would

be tuned with his open G string to accord with G major just intonation. This points to

an important caveat to the entire set of results - there is a degree of uncertainty in all of

the output because cellists cannot perfectly perform a piece multiple times hitting the same

frequency for every note every time; it is physically impossible.1

Figure 5.17: Output of Maisky opening phrase with only c major stencil.

Table 5.19: Maisky Opening Phrase with only c major stencil.

Tuning System Total Percentage

edo 5 55.56

pythag 2 22.22

c just 2 22.22

1Perhaps with only a small number of notes - two notes, for instance, would this be possible. But even
still it would be impossible to confirm with 100% confidence because it goes without saying that no quantity
can be measured with infinite precision
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With all stencils, Maisky still is classified as equal temperament, forming a stronger case

for the labeling.

Figure 5.18: Output of Maisky opening phrase with all just stencils.

Table 5.20: Maisky Opening Phrase with all just stencils.

Tuning System Total Percentage

edo 5 62.5

e just 3 37.5

5.2.8 Jean-Guihen Queyras

Queyras uses equal temperament a majority of the time in addition to Pythagorean. This

is somewhat of a surprise since Queyras is known for his somewhat baroque interpretations

of the cello suites in addition to other repertoire. The recording of his used for these results

importantly was not one in which his strings were tuned down as is usually the case when

cellists attempt to play Bach in a more “historically-informed” manner.
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Figure 5.19: Output of Queyras opening phrase with only c major stencil.

Table 5.21: Queyras Opening Phrase with only c major stencil.

Tuning System Total Percentage

edo 6 75.0

pythag 2 25.0

With all stencils, equal temperament is abandoned in favor of just intonation. The two

notes detected as Pythagorean correspond to the notes F and E in between beats two and

3. For this reason, it could be that Queyras is intentionally making this interval smaller so

to accord to a Pythagorean semitone ratio. This is also reminiscent of the music theoretical

concept that the third degree of the scale (’submediant’) has a tendency to resolve to the

fourth degree of the scale (or ’subdominant’).
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Figure 5.20: Output of Queyras opening phrase with all just stencils.

Table 5.22: Queyras Opening Phrase with all just stencils.

Tuning System Total Percentage

edo 2 25.0

pythag 2 25.0

e just 4 50.0

5.2.9 Mstislav Rostropovich

With only the C just stencil, somewhat surprisingly, Rostropovich mostly uses equal tem-

perament.
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Figure 5.21: Output of Rostropovich opening phrase with only c major stencil.

Table 5.23: Rostropovich Opening Phrase with only c major stencil.

Tuning System Total Percentage

c just 2 25.0

edo 6 75.0

With all stencils, the previous classification is replaced with an overwhelming just clas-

sification, particularly the A just stencil. Rather than for a music theoretical reason, this

switch is more likely because the frequencies happened to fall closer on average to the six

stencils than the equal tempered values.
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Figure 5.22: Output of Rostropovich opening phrase with all just stencils.

Table 5.24: Rostropovich Opening Phrase with all just stencils.

Tuning System Total Percentage

a just 5 100.0

5.2.10 Heinrich Schiff

With only the C just stencil, Schiff is equally divided between equal temperament and

Pythagorean intonation. The Pythagorean classification is for the last five notes of the first

measure. This could be due to the minor third interval between E2 and G2. Thirds in

general are where Pythagorean has the most uniqueness compared to the other intonation

systems.
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Figure 5.23: Output of Schiff opening phrase with only c major stencil.

Table 5.25: Schiff Opening Phrase with only c major stencil.

Tuning System Total Percentage

edo 3 37.5

c just 2 25.0

pythag 3 37.5

With all just stencils, Schiff appears to play a majority with just intonation, particularly

the E stencil which we have seen multiple times already.

Figure 5.24: Output of Schiff opening phrase with all just stencils.

53



Table 5.26: Schiff Opening Phrase with all just stencils.

Tuning System Total Percentage

edo 2 33.33

e just 4 66.67

5.2.11 Jan Vogler

Vogler uses just intonation for the majority of the phrase although due to the noise and

reverberation in the audio, the algorithm is only able to detect six total notes. This gives

less certainty to the classification.

Figure 5.25: Output of Vogler opening phrase with only c major stencil.

Table 5.27: Vogler Opening Phrase with only c major stencil.

Tuning System Total Percentage

edo 2 33.33

c just 4 66.67
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With all stencils, Vogler is classified entirely as C just, what we would predict.

Figure 5.26: Output of Vogler opening phrase with all just stencils.

Table 5.28: Vogler Opening Phrase with all just stencils.

Tuning System Total Percentage

c just 4 100.0

5.2.12 Pieter Wispelwey

Wispelwey uses all three systems but interestingly uses Pythagorean in the start of the

opening phrase. This may reflect the first note-second note succession (C4 - B3) which is an

instance of tonic followed by leading tone, albeit downward descending. Even though the

direction is flipped compared to normal instances of raised leading tones followed by tonics,

this could be Wispelwey’s intention. Wispelwey though uses the most extreme version of

baroque tuning of any of the cellists analyzed with an A4 estimate of 394 Hz! One may argue

it is no longer meaningful to think in terms of the original key of the phrase (C major) for the

classification; naturally, there is a lot more variation in terms of the cent difference between

notes in the phrase for the various intonation systems and is thus difficult to compare with the
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other cellists who especially don’t attempt to tune down (Carr, Casals, Cobb, Kirshbaum,

Ma, Maisky, Queyras, Rostropovich, Schiff, Vogler).

Figure 5.27: Output of Wispelwey opening phrase with only c major stencil.

Table 5.29: Wispelwey Opening Phrase with only c major stencil.

Tuning System Total Percentage

pythag 3 37.5

edo 2 25.0

c just 3 37.5

While the distribution of systems is still fairly equal, the algorithm outputs just as the

most probable system, again what we would expect from a historically-informed cellist.
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Figure 5.28: Output of Wispelwey opening phrase with all just stencils.

Table 5.30: Wispelwey Opening Phrase with all just stencils.

Tuning System Total Percentage

pythag 2 28.57

edo 2 28.57

c just 3 42.86

5.3 Full Cello Suite No. 3 Prelude

We begin our discussion of the results on the complete prelude with some remarks on overall

trends in the analysis. While communicating results about the overall most likely intonation

system for a given piece is not as meaningful as a more local time-based analysis (which we

will do after in section 5.3.2), it presents clear trends obeyed by the data that are worth

exploring.
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5.3.1 Overall Statistics

When forcing the algorithm to only use the C just stencil, i.e., to do a three-class classification

task, we get an extremely interesting result: the overwhelming majority of cellists play with

Pythagorean intonation. Most would perhaps expect the algorithm to answer just intonation

(which is indeed the case when we allow for all possible just stencils to be used) but this

could suggest that the number of modulations within the Third Suite Prelude provide enough

variation so to prevent the algorithm from getting ’stuck’ on the C just stencil. Since the

frequency differences in each of the three stencils are more distinct when dealing with only

a three-class classification problem, this may support the notion that Pythagorean is indeed

the most probable intonation system used among the twelve cellists. Casals also has the

third largest share of Pythagorean intonation (which may in fact be an underestimate due

to the quality of the recording) which we also hoped to be reflected in the output.

When all stencils are pooled together into one just estimate, as we would expect, the

majority of cellists play with just intonation. Rostropovich leads the crowd with an over-

whelming 90.24% share of notes falling under a just classification. Even more impressive is

that he is still classified as just when only using the c major stencil. He may very well be

aligning much of his intonation according to C major just intonation. Casals’s bias towards

Pythagorean is confirmed again on the entire prelude albeit not the strongest share which

is somewhat surprising. Carr appears to lead the Pythagorean crowd in this regard. The

overall just intonation majority makes sense for two large reasons:

1. For baroque music, we would expect an overwhelming amount of just intonation as

this was mostly the tradition during this era and has been taught as a “best tuning

practice” for the Bach Cello Suites [16].

2. When pooling all six key stencils into one just stencil, the probability of a just classi-

fication is naturally higher. In fact, on average, we’d expect about 6
8
= .75 percent of

the piece to be classified as just intonation in this definition and indeed the numbers
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are close to this amount. The average just share among the majority just cellists is

actually 68.19 %.

Using C Just Stencil
Percent Just Most Probable Intonation System

Bylsma 29.2 pythag
Carr 39.07 pythag
Casals 28.9 pythag
Cobb 19.46 pythag

Kirshbaum 15.1 pythag
Ma 29.17 pythag

Maisky 24.12 pythag
Queyras 16.35 pythag

Rostropovich 48.41 just
Schiff 21.21 pythag
Vogler 28.7 pythag

Wispelwey 29.5 pythag

Table 5.31: Fraction of notes played with just intonation and overall most probable intona-
tion system for all 12 cellists only using the C just stencil

Using All Stencils
Percent Just Most Probable Intonation System

Bylsma 63.28 just
Carr 81.7 just
Casals 83.19 just
Cobb 67.25 just

Kirshbaum 57.14 just
Ma 75.82 just

Maisky 76.21 just
Queyras 62.33 just

Rostropovich 90.24 just
Schiff 69.68 just
Vogler 74.93 just

Wispelwey 80.4 just

Table 5.32: Fraction of notes played with just intonation and overall most probable intona-
tion system for all 12 cellists using all just stencils
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5.3.2 Analysis of Yo Yo Ma Suite 3 Prelude

Perhaps the most famous of all cellists considered is Yo Yo Ma who is especially known

for his brilliant performances of the Cello Suites. We present a more localized analysis of

the results of the algorithm and speculate on the choices of intonation system. Plots of the

complete output using both only the C just stencil and all key stencils are shown below as

well as tables detailing the results of the tuning system detection. The rest of the data for

the other 11 cellists is included in the appendix A.

Figure 5.29: Output of Ma Full Suite 3 Prelude with only c major stencil.

Table 5.33: Ma Full Suite 3 Prelude with only c major stencil.

Tuning System Total Percentage

pythag 183 42.36

c just 126 29.17

edo 123 28.47
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Figure 5.30: Output of Ma Full Suite 3 Prelude with all just stencils.

Table 5.34: Ma Full Suite 3 Prelude with all just stencils.

Tuning System Total Percentage

e just 48 14.33

d just 56 16.72

f just 29 8.66

g just 20 5.97

edo 73 21.79

c just 91 27.16

pythag 8 2.39

a just 10 2.99

As we saw in figure 5.18, Ma seems to express a tendency towards just intonation espe-

cially when involving melodic lines in the key of C major. This is indeed captured in the

data for much of the beginning of the Prelude which contains exactly this.

The algorithm also detects just intonation, albeit in the D just stencil for the following

passage. The determination of D as the stencil is once again likely equivalent with a number

of other stencils for the given passage, such as A. In each measure, a note is repeated in
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Figure 5.31: Instance of just intonation

the same rhythmic form - in measure 21, it is the note A; in measure 22, C, and in 23, D

before descending to the next phrase. This repeated structure may warrant the use of just

intonation in relation to the repeated notes as it may be argued that these notes serve as a

kind of pedal point musical structure. If this is the case, Ma has the option of tuning the

notes decorating the repeated note (for instance D# and B in mm 21) according to just

interval ratios. The last three notes of the phrase get classified as Pythagorean - this could

be intentional on Ma’s part to serve as some sort of leading quality to the next phrase or

simply due to numerical error. The intervals correspond to two major seconds which have

the same interval ratio in both just and Pythagorean intonation.

Figure 5.32: Instance of just intonation

The algorithm detects the following passage as just for roughly the first measure and then

equal temperament for the second. While the passage corresponds to transition material in

the latter half of the prelude, the Pythagorean detection may be due to the repeated C# note

in the first measure, which has a leading tone quality in relation to the D minor resolution

in the following measure. Ma may be intentionally raising this note to increase the sense of

resolution when the leading tone is finally resolved.
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Figure 5.33: Instance of equal temperament and Pythagorean intonation

While there is some variation of the detection within this next passage (Pythagorean,

equal temperament), the algorithm predicts a just intonation majority, which is what we

would hope for and expect. Cellists often practice this especially difficult passage by playing

the notes as double stops tuning to the cello g string. This is in effect tuning according to

just intonation. The passage is a clear instance of pedal point which is usually a sign that

just intonation will be involved.

Figure 5.34: Instance of just intonation

The final descending scale and arpeggio in the penultimate measure of the Prelude is

classified as Pythagorean according to the algorithm. This passage is an exact repeat of the

opening measure of the Prelude which we observed before. When only the C just stencil was

used, the algorithm predicted Pythagorean but otherwise predicted just when all stencils
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were used. To this end, either Ma intentionally is using Pythagorean to create a greater

sense of fulfillment especially with a high Pythagorean major third corresponding to the low

E2 or, his fingers did not land exactly how he intended, or the frequency differences between

systems were simply not significant enough to produce a reliable classification.

Figure 5.35: Instance of Pythagorean intonation

5.4 Discussion

As was previously shown, large overall classifications of intonation system depend largely on

whether or not all just intonation key stencils are used as this naturally tends to skew the

classifications in the just direction. The choice of using only one particular key stencil or all

should indeed depend on the kind of piece one wants to analyze. If the piece is atonal and

doesn’t lend itself to a classical harmonic analysis, then applying a just intonation stencil

perhaps is not as meaningful. This is why the Third Suite Prelude was chosen in particular

- there are not too many frequent key modulations in the piece so we would hope to observe

some kind of consistency in the classifications.

In the other direction, one may argue that just intonation does not always follow the

kind of key-following template as we’ve described; many cellists tune notes according to the

cello open strings or notes that directly precede or follow a given note with double stops.

They are not always necessarily tuning justly by following the key-centric approach as the
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algorithm is employing. To this end, it may be more fitting to test for just intonation

solely by examining adjacent frequency ratios and their closeness to just intervals. This

however is an extremely local approach and may fail to provide larger intonation trends.

In performance, cellists also may be informed by pitch memory meaning that for any given

note, intonation may be determined by the intervals created by several notes played before;

it quickly becomes extremely computationally costly [17].

In general there may exist bias towards just intonation because it naturally brings with

it many physical phenomena humans find pleasing. Aligning two frequencies such that

their partials align produces resonance, harmony, and purity, all physically realized by the

response of the instrument. One need not know the mathematics of Pythagoras to be able

to feel when the instrument rings when an octave is played perfectly in tune, to see when the

A string sympathetically vibrates when a D tuned perfectly with the D string is played, or

hear a higher partial when the same note is played. To many in the baroque era and earlier,

this resonance and purity created by just intonation affirmed it to be the “God-Given” basis

of music [18]. Thus as baroque cellists, Wispelwey and Bylsma would hope to play in just

intonation the majority of the time. It should also be noted that Pythagorean is indeed a

strict subset of just intonation; every interval is derived from the just intonation ratio of

the perfect fifth and the major second, perfect fourth, and perfect fifth are exactly the same

in both systems (see section 1.2.2. Thus even if a cellist is classified as Pythagorean for a

section of the audio, the distinction is not entirely black and white.
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Chapter 6

Final Remarks

6.1 Conclusion

In performance, musicians use a combination of tuning systems that depend on a number

of factors including musical and harmonic context. While work has been done in estimating

the temperament of a fixed-pitch instrument such as the harpsichord, no work has been done

in detecting instances of tuning systems in audio recordings, especially cello recordings of

the Bach Cello Suites where intonation is critical.

I proposed several algorithms and signal to detect and classify three possible intonation

systems - just, equal-tempered, and Pythagorean - in recordings of the Third Bach Cello

Suite Prelude, which I chose for its musical and harmonic complexity. First, timestamps

and fundamental frequency estimates were obtained for every note based on a note detection

algorithm which utilizes confidence estimates outputted by CREPE. Then, each note was

assigned an estimated tuning system label by calculating a unique probability for each

tuning system combined with a centered moving average process. Finally, sequences of

intonation systems were identified by splitting the intonation system-labeled time series

at instances where consecutive labels differ. One final sweep of the output was taken to

remove any sequences with a number of notes less than a given threshold and combine
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any consecutive equivalently-labeled sequences that are within a given time threshold. The

results of the algorithm illustrate that cellists most often use either Pythagorean or just

intonation depending on whether only the C just stencil is used or not in the algorithms.

Physical and musical theoretical reasons may explain the tendency towards these particular

systems.

6.2 Future Directions

There are many aspects of the pipeline that can be improved or substituted with more

sophisticated methods. Fundamental frequency estimation is the foundation of intonation

analysis and while CREPE is very promising and simple to use, a less automated approach

involving techniques such as Dixon, Mauch, and Tidhar’s frequency detection algorithm may

prove to be more successful; any increase in frequency resolution can only serve to improve

the accuracy and reliability of the final output [6]. Further, the analysis of polyphonic audio

data including chords and double stops is an obvious point of further research as these kinds

of musical instances almost always are instances of just intonation. If equipped to handle

polyphonic intonation system detection, the model would have tremendous applications in

smaller musical group settings such as chamber music where conflicts over intonation occur

quite frequently. Having an objective, numerical model of intonation would ease some of the

hearing conflicts that stem from the subjectiveness of intonation.

This thesis has effectively created an algorithmic and mathematically-based way of gen-

erating a training set of intonation system labels from raw audio data. Fascinating insight

may be gained if a machine learning model is fed this resulting data and asked what sorts

of music theoretical or physical features of the audio are most influential in determining the

choice of intonation system in a piece of music? The range of data can be expanded to

include more cellists, the rest of the Bach Cello Suites, and much of the other solo repertoire

so to provide enough training data for machine learning.
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In addition to providing insight into how musicians use intonation, this research offers

musicians a tool for understanding and assessing their intonation by providing an objective

measure of intonation. It also offers a way to gain insight into the history of intonation and

how, depending on the era of musical composition and other factors, intonation patterns

change. When applied to the history of recorded music, it provides a new tool for analyzing

the work of master performers and great performances. This research thus has the potential

to inspire computationally-driven intonation analysis research within musicology and music

history.
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Appendix A

Full Results

We now provide complete data for all twelve cellists of the Third Suite Prelude. As a

reminder, chordal content was trimmed from the audio so to allow for monophonic funda-

mental frequency detection. Below are two tables with the overall percentage of notes played

with just intonation and the overall most probable intonation system for each cellist:

A.1 Anner Bylsma

Figure A.1: Output of Byslma Full Suite 3 Prelude with only c major stencil
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Table A.1: Byslma Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

edo 164 31.3

c just 153 29.2

pythag 207 39.5

Figure A.2: Output of Bylsma Full Suite 3 Prelude with all just stencils

Table A.2: Bylsma Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

a just 24 7.16

g just 51 15.22

pythag 35 10.45

edo 88 26.27

e just 76 22.69

c just 41 12.24

d just 15 4.48

Continued on next page
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Table A.2 – continued from previous page

Tuning System Total Percentage

f just 5 1.49

A.2 Colin Carr

Figure A.3: Output of Carr Full Suite 3 Prelude with only c major stencil

Table A.3: Carr Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

pythag 177 45.5

edo 60 15.42

c just 152 39.07
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Figure A.4: Output of Carr Full Suite 3 Prelude with all just stencils

Table A.4: Carr Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

d just 34 11.11

edo 31 10.13

f just 19 6.21

g just 33 10.78

e just 68 22.22

c just 90 29.41

pythag 25 8.17

a just 6 1.96
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A.3 Pablo Casals

Figure A.5: Output of Casals Full Suite 3 Prelude with only c major stencil

Table A.5: Casals Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

pythag 155 51.5

c just 87 28.9

edo 59 19.6

Figure A.6: Output of Casals Full Suite 3 Prelude with all just stencils
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Table A.6: Casals Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

e just 102 42.86

g just 22 9.24

f just 10 4.2

c just 42 17.65

edo 27 11.34

a just 12 5.04

d just 10 4.2

pythag 13 5.46

A.4 Ethan Cobb

Figure A.7: Output of Cobb Full Suite 3 Prelude with only c major stencil
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Table A.7: Cobb Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

pythag 240 46.69

c just 100 19.46

edo 174 33.85

Figure A.8: Output of Cobb Full Suite 3 Prelude with all just stencils

Table A.8: Cobb Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

e just 51 14.78

c just 60 17.39

edo 78 22.61

pythag 35 10.14

d just 63 18.26

a just 27 7.83

g just 20 5.8

Continued on next page
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Table A.8 – continued from previous page

Tuning System Total Percentage

f just 11 3.19

A.5 Ralph Kirshbaum

Figure A.9: Output of Kirshbaum Full Suite 3 Prelude with only c major stencil

Table A.9: Kirshbaum Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

pythag 212 46.39

edo 176 38.51

c just 69 15.1
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Figure A.10: Output of Kirshbaum Full Suite 3 Prelude with all just stencils

Table A.10: Kirshbaum Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

a just 35 10.42

pythag 30 8.93

c just 25 7.44

e just 46 13.69

d just 44 13.1

edo 128 38.1

g just 11 3.27

f just 17 5.06
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A.6 Misha Maisky

Figure A.11: Output of Maisky Full Suite 3 Prelude with only c major stencil

Table A.11: Maisky Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

edo 83 24.41

pythag 175 51.47

c just 82 24.12

Figure A.12: Output of Maisky Full Suite 3 Prelude with all just stencils
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Table A.12: Maisky Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

edo 42 20.39

e just 100 48.54

g just 14 6.8

c just 7 3.4

f just 9 4.37

a just 5 2.43

d just 22 10.68

pythag 7 3.4

A.7 Jean-Guihen Queyras

Figure A.13: Output of Queyras Full Suite 3 Prelude with only c major stencil
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Table A.13: Queyras Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

edo 93 25.34

pythag 214 58.31

c just 60 16.35

Figure A.14: Output of Queyras Full Suite 3 Prelude with all just stencils

Table A.14: Queyras Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

edo 51 17.47

pythag 59 20.21

e just 45 15.41

d just 17 5.82

a just 34 11.64

c just 44 15.07

g just 18 6.16

Continued on next page
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Table A.14 – continued from previous page

Tuning System Total Percentage

f just 24 8.22

A.8 Mstislav Rostropovich

Figure A.15: Output of Rostropovich Full Suite 3 Prelude with only c major stencil

Table A.15: Rostropovich Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

c just 319 48.41

edo 113 17.15

pythag 227 34.45
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Figure A.16: Output of Rostropovich Full Suite 3 Prelude with all just stencils

Table A.16: Rostropovich Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

a just 29 6.9

c just 50 11.9

f just 58 13.81

e just 194 46.19

d just 24 5.71

edo 17 4.05

g just 24 5.71

pythag 24 5.71
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A.9 Heinrich Schiff

Figure A.17: Output of Schiff Full Suite 3 Prelude with only c major stencil

Table A.17: Schiff Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

pythag 203 47.32

c just 91 21.21

edo 135 31.47

Figure A.18: Output of Schiff Full Suite 3 Prelude with all just stencils
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Table A.18: Schiff Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

f just 24 8.66

e just 57 20.58

edo 68 24.55

c just 34 12.27

d just 18 6.5

pythag 16 5.78

g just 21 7.58

a just 39 14.08

A.10 Jan Vogler

Figure A.19: Output of Vogler Full Suite 3 Prelude with only c major stencil
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Table A.19: Vogler Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

edo 104 24.07

c just 124 28.7

pythag 204 47.22

Figure A.20: Output of Vogler Full Suite 3 Prelude with all just stencils

Table A.20: Vogler Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

c just 79 23.58

d just 51 15.22

g just 19 5.67

e just 71 21.19

edo 55 16.42

pythag 29 8.66

a just 19 5.67

Continued on next page
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Table A.20 – continued from previous page

Tuning System Total Percentage

f just 12 3.58

A.11 Pieter Wispelwey

Figure A.21: Output of Wispelwey Full Suite 3 Prelude with only c major stencil

Table A.21: Wispelwey Full Suite 3 Prelude with only c major stencil

Tuning System Total Percentage

pythag 243 54.73

c just 131 29.5

edo 70 15.77
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Figure A.22: Output of Wispelwey Full Suite 3 Prelude with all just stencils

Table A.22: Wispelwey Full Suite 3 Prelude with all just stencils

Tuning System Total Percentage

pythag 23 9.2

c just 32 12.8

e just 80 32.0

d just 44 17.6

a just 22 8.8

edo 26 10.4

f just 9 3.6

g just 14 5.6
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