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Abstract

In this article, we study surface knots, and propose some possible generalizations of the

crossing changes in classical knot theory to the surface knot theory. In addition, we study

the projections of surface knots into R3 and discuss the double point sets in detail, along

with the various moves.
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Introduction

The classical knot theory originated from real-world observations and studies the

mathematical object of embedded circles in the three-dimensional Euclidean spaces. Artin

initiated the study of embedded surfaces (surface knots) in four-dimensional spaces by

proposing the construction of spinning a classical knot in R3 into a surface in R4 [Art25].

There are many aspects where surface knots appear as the one-dimensional higher

generalization of the classical knots with parallel properties. For example, the knot group

is an important algebraic structure in both classical and surface knot theory, which is

defined as the fundamental group (π1) of the complement of a knot (or surface knot) in the

ambient space R3 (or R4). In both cases, it can be computed schematically via the Wirtinger

presentation. Conceptually, this technique views the knotted object by projecting it to the

one-dimensional lower version of the ambient space, assigns a group generator to each

connected, embedded subset of the projected object, and assigns group relations according

to the double point sets. It has long been known that in classical knot theory, an infinite

cyclic knot group is the sufficient and necessary condition for a knot to be trivial. See for

example [BZH13, proposition 3.10] and [Kaw12, corollary 6.1.5] for proofs. However, the

parallel conjecture for surface knots (namely the Unknotting Conjecture) was not proved

until recently [Kaw20].

Surface knot theory served as a tool for studying classical knot theory in the particular

fields of slice knots and knot cobordism, since both consider surfaces with knot bound-

aries [FM66]. This originated the description of surface knots using movies [Fox62], i.e.,

by slicing R4 into R3 × R where the last R is viewed as "time". The surface knot is then
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describing as a "movie" of multiple knots (as opposed to a surface) in R3 where singularities

only occur at particular times. Kawauchi further studied this description and proposed the

normal form which every surface in R4 can be made into by isotopy [KS82].

A classical effort in knot theory was to tabulate all possible knots within a certain number

of crossings in their knot diagrams (i.e., a diagram of the knot projected on a plane with

transverse crossings over and under itself). Conway invented an efficient notation and led

to one of the major advances in such efforts [Con70]. Parallel progresses exist in surface

knot theory. Yoshikawa invented the marked vertex diagrams, a notation for surface knots

based on the foundation of the movies description, that fostered an efficient tabulation of

surface knots [Yos94]. Using these diagrams, recent progress has also been made for surface

links [Kim20].

On the other hand, broken surface diagrams, a direct generalization of knot diagrams,

is another method of representing surface knots. This method projects surface knots to R3

as immersions (possibly except for at finitely many points), and additionally records the

over and under crossings on each connected component of the double point set. One of

the merits of this description is that it allows the generalization of the Reidemeister moves

in classical knot theory to the Roseman moves of surface knots [Ros98], which describes

a collection of moves in the classical or surface knot diagram such that any two diagrams

representing an equivalent knot (or surface knot) are related by a collection of these moves.

Roseman also generalized these moves to higher dimensions [Ros04].

One of the areas where classical and surface knot theories exhibit opposite properties is

in the lifting problems. There are two different lifting problems. In classical knot theory, any

immersed closed curve (immersed S1) in R2 can be lifted to represent a knot (embedded S1)

in R3. This is false for immersed Sn’s in Rn+1 for all n ≥ 2. Ogasa provided the negative

proof for n > 2 [Oga01]. Proofs for n = 2 and some discussions of the conditions when this

is allowed are made in [Gil82], [CS98] and [Sat00].

Another lifting problem asks whether a knot diagram can be changed into the trivial

knot by a collection of flips of its crossings. This is also true in the classical knot theory.
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Since not every immersed Sn ⊂ Rn+1 can be lifted to Rn+2, the analogous problem in higher

dimensions becomes whether the projection of any knotted Sn ⊂ Rn+2 down to Rn+1 can be

lifted back to an unknotted n-sphere in Rn+2. This is also proved to be false for n > 2 by

Ogasa [Oga01]. In dimension n = 2, the problem is still open [KY15]. There are positive

results in some special cases, for example in [Tan04].

This article mainly adopts the broken surface description of surface knots and studies

the structures of the double point sets in various examples, and under various moves. In

addition, some generalizations to the crossing changes are discussed which are moves

and surgeries that changes a surface knot to a related one by using one particular pair

of crossings of the knot diagram while preserving the rest of the surface. The article is

arranged as follows.

Chapter 1 introduces the basic definitions in classical and surface knot theory. The

two sections in this chapter are arranged in a parallel order to emphasize the underlying

similarities and differences of the two subjects. The "motion picture" refers to the "movies"

in the above introduction and the "intersection picture" refers to the double point set

structure obtained from the broken surface description. Chapter 2 explains some important

examples of surface knots and studies their double point sets. Chapter 3 discusses Roseman

moves for surface knots and their effects on the double point sets. A relation between

the Roseman moves and the Reidemeister moves is observed. Chapter 4 studies crossing

changes. In particular, the obstructions to an arbitrary crossing change is being discussed

and generalizations of crossing changes are proposed. Their effects on the double point sets

are also discussed.
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Chapter 1

Basic Concepts and Visualizations

In this chapter, the definitions of knots and surface knots are introduced and tools of

describing these objects are discussed.

1.1 Classical knot theory

1.1.1 Definition and equivalence

Definition 1.1 (Knot). A knot is the image of a smooth embedding of S1 in R3. A link with n

components is a set of n mutually disjoint knots.

Figure 1.1: The trefoil knot

Figure 1.1 is an example of a knot named the trefoil knot. In this section, all the

discussions for knots apply equally for links, unless otherwise noted.

Definition 1.2 (Equivalence of knots). Two knots k and k′ are equivalent if and only if they are

4



ambient-isotopic in R3. An ambient isotopy between k and k′ is a continuous map F : R3 × [0, 1] 7→

R3 such that F(·, 0) = idR3 , F(·, s) is a homeomorphism of R3 to itself for all s ∈ [0, 1], and

F(k, 1) = k′. It is clear that ambient isotopy is an equivalence relation. When two knots are

equivalent, they are referred to as the same knot.

Conceptually, a knot is considered the same under free deformations of the strand in R3

without breaking it.

Two links are equivalent only if they have the same number of components.

1.1.2 Knot diagrams

Knots are often represented by knot diagrams.

Definition 1.3 (Knot diagram). A knot diagram is the image of a knot under the natural projection

(x, y, z) 7→ (x, y) from R3 to R2 in general position, together with information on the double points.

It is the image of an immersed closed curve in R2 with finitely many self-intersections at the double

points that are all transverse and no multiple points of higher multiplicity. At each double point, the

crossing information is being indicated.

Figure 1.1 is an example of representing a knot by a knot diagram. A knot diagram

uniquely represents a knot, but each knot is represented by different knot diagrams. The

following theorem describes the situation where two knot diagrams represent the same

knot.

Theorem 1.1 (Reidemeister moves). Two knot diagrams represent the same knot if and only if they

are related by a finite sequence of local Reidemeister moves and their inverses, along with isotopies in

R2. The Reidemeister moves are defined in figure 1.2.
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(a) type I and inverse

(b) type II and inverse

(c) type III

Figure 1.2: The Reidemeister moves type I, II, and III

The Reidemeister type III move is its own inverse since they only differ by a rotation of

the point of view, which is an isotopy in R2.

Discovery of the Reidemeister moves dates back to 1927 [Rei27]. Kawauchi [Kaw12,

Appendix A] and Burde and Zieschang [BZH13, Proposition 1.11, Section 1B] presented

rigorous proofs of theorem 1.1 respectively.

1.1.3 Braids and knots

Braids are objects closely related to knots and links.
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Definition 1.4 (Braid). A braid of n strands is the image of n mutually disjoint smooth embeddings

fi of I = [0, 1] in R2 × [0, 1] such that for all 1≤ i≤n,

• fi(0) ∈ {(x, 0, 0) | x∈Z, 1≤ x≤n}, fi(1) ∈ {(x, 0, 1) | x∈Z, 1≤ x≤n}; and

• fi is strictly increasing in the z-coordinate.

(a) (b)

Figure 1.3: Example of a braid and its closed braid representing the trefoil knot

Figure 1.3(a) is an example of a braid. Same as knots, equivalence of braids are defined

based on ambient isotopy, with additional requirements.

Definition 1.5 (Equivalence of braids). Two braids are equivalent if and only if they are ambient-

isotopic in R2 × [0, 1] fixing R2 × {0, 1} pointwisely throughout the ambient isotopy.

Analogous to knots, a braid is considered equivalent under free deformations in R3 with-

out breaking the strands, with the additional requirements of not moving their endpoints or

wrapping any strand over an endpoint. Otherwise, all braids would become trivial.

A theorem by Alexander shows that braids and knots are closely related [Ale23].

Theorem 1.2 (Knots and closed braids). Every knot is represented by a closed braid [Ale23]. A

closed braid is a braid with the top and bottom endpoints being connected in pairs in order, far away

from (and thus unknotted with) the original braid and in a mutually unknotted way. Specifically, a

braid in definition 1.4 is closed up by adding the union of the line segments Aiai, aibi and biBi for all

1≤ i≤n, where Ai = {i, 0, 0}, ai = {i, M, 0}, bi = {i, M, 1} and Bi = {i, 0, 1} and M is chosen

larger than the maximum y-coordinate of the original braid, up to smoothing the corners.
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Figure 1.3(b) is the closed braid of figure 1.3(a). It represents the trefoil knot shown in

figure 1.1.

Similar to knot diagrams, a closed braid uniquely represents a knot, but each knot is

represented by different closed braids, even with different numbers of strands.

Although braids in figure 1.3 are represented in a similar way as knot diagrams, braids

are also completely algebraically defined by all the crossing information between the

strands. Therefore, closed braids serve as a representation of knots independently from

knot diagrams.

Adams [Ada94, Section 5.4] provides a comprehensive analysis of braids and a proof of

theorem 1.2.

1.2 Surface knots

Surface knots are knotted objects in R4. We restrict to the oriented case. In this section,

subjects are arranged in parallel with section 1.1 for comparison.

1.2.1 Definition and equivalence

Definition 1.6 (Surface knot). A surface knot is the image of a smooth embedding of an oriented

connected closed surface in R4.

Definition 1.7 (Equivalence of surface knots). Two surface knots K and K′ are equivalent and

referred to as the same if and only if they are ambient-isotopic in R4.

When two surface knots are equivalent, their underlying types of surfaces are the same.

1.2.2 The intersection picture

In the intersection picture, a surface knot is projected from R4 to R3 by τ(x1, x2, x3, x4) =

(x1, x2, x3). Giller proved that the projection is always an immersion, possibly after ambient

isotopy of the original surface knot [Gil82]. In contrary to the case of knot diagrams, this is

a less obvious result.
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Theorem 1.3 (Intersection picture). Any oriented surface knot can be ambient-isotoped such that

its projection under τ is the image of an immersion in R3 [Gil82]. The multiple point set consists of

finitely many pairs of closed curves. There are two types of points on these curves.

• The intersections among these curves (including self-intersections) are all transverse and are

exactly the triple points of the immersion.

• The other points on the curves are exactly the double points of the immersion.

Without allowing ambient isotopy, the projection of any surface knot in general position

to R3 is the image of an immersion except possibly at finitely many points, named the

branch points [Whi44]. It is often useful to discuss branch points even though they are not

essential (i.e., they can be removed according to theorem 1.3).

Definition 1.8 (Whitney umbrella). A Whitney umbrella is the neighborhood of a pinch point

singularity of a smooth surface in R3. Specifically, the surface can be put into the parametric form

(u, v) 7→ (u, v2, uv) in this neighborhood.

(a) (b)

Figure 1.4: Two equivalent drawings of a Whitney umbrella

Figure 1.4 (a) and (b) are both Whitney umbrellas, equivalent up to smoothing the corner

in (b).

A similar description follows for the intersection picture (comparing with theorem 1.3).

Theorem 1.4 (Intersection picture with branch points). Any surface knot in general position

projects under τ to the image of an immersion in R3 except possibly at finitely many points. The

multiple point set consists of finitely many pairs of curves. Each pair of the curves are either both
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closed or share both endpoints, named the branch points. There are three types of points on these

curves.

• The branch points are exactly where the mapping fails to be an immersion.

• The intersections among these curves (including self-intersections) other than the branch points

are all transverse and are exactly the triple points of the immersion.

• The rest of points on the curves are exactly the double points of the immersion.

These curves are named the intersection curves since they describe the multiple point

set of the immersion. They are the main object of this article.

Parallel to the Reidemeister moves, there is a collection of moves, the Roseman moves [Ros98],

that completely describes the equivalence between surface knots in the intersection picture.

They are discussed in Chapter 3.

1.2.3 The motion picture

Motion picture describes a surface knot K by slicing R4 = R3 × R and presenting the

intersections K ∩ (R3 × {x4}) at all x4-levels. Based on Morse theory, for a surface knot in

general position, the topology of such intersections (regarded as images of embeddings in

R3) changes finitely many times while x4 screens through R. This compares with the closed

braid representation of knots. Starting from the bottom, the strands intertwine finitely many

times as the z-coordinate increases monotonically.

Definition 1.9 (Band sum). Let l be an oriented link in R3. Let B be an oriented D2 embedded in

R3 with two connected, disjoint arcs α and β on ∂B such that B ∩ l = ∂B ∩ l = α ∪ β and that the

orientations of α and β inherited from B match the orientation of l. Then B is called a band on the

link l. The new oriented link l′ = (l ∪ ∂B)− (α ∪ β), with the natural orientation matching that of

l and ∂B, is called the link obtained from l by the band sum along B. It is denoted as l′ = s(l; B).

(See figure 1.5.)
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Figure 1.5: Example of a band sum

Theorem 1.5 (Motion picture). For any surface knot K in R4, there exists:

• Two collections, D and D′, of respectively n and n′ mutually disjoint D2 embedded in R3; and

• A collection B={B1,· · ·, Bm} of mutually disjoint bands on the trivial link l0 = ∂D such that

for all 1≤ i≤m, li = s(li−1; Bi) and lm = ∂D′,

such that K is ambient-isotopic, up to smoothing the corners, to the union of:

(
D× {0}

)
∪

m⋃
i=1

(
Bi × {

i
m + 1

}
)
∪

m⋃
i=0

(
li ×

[
i

m + 1
,

i + 1
m + 1

])
∪
(

D′ × {1}
)
.

Conceptually, a surface knot is represented by a finite collection of band sums occurring

at different x4-levels, closed up with top and bottom caps. The collection of D, D′ and

B uniquely represents a surface knot, but each surface knot has different motion picture

representations.

Both the closed braid representation of knots and the motion picture representation of sur-

face knots have a close relation with Morse theory [Mil16]. Furthermore, Kawauchi [KS82]

proved a normal from of the motion picture description of surface knots.
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Chapter 2

Examples of surface knots and their

intersection picture

In this chapter, several examples of surface knots are constructed and the structure of

their intersection curves are described.

2.1 Notation

Let I = [0, 1] and R3
+ = {(x, y, z) ∈ R3 | z ≥ 0}.

In this chapter, coordinates in R3 and R4 are denoted by (x, y, z) and (x1, x2, x3, x4)

respectively. Each coordinate is also used notationally as a function from the space to R.

Definition 2.1. Let X and Y be two manifolds with boundary. An embedding of (X, ∂X) in (Y, ∂Y)

is an embedding of X in Y mapping ∂X to ∂Y and int(X) to int(Y).

Lemma 2.1. Parametrize S1 by [0, 2π]/{0, 2π} in the natural way. Any smooth embedding k of S1

in R3 is ambient-isotopic to the following form, up to smoothing the corners:

• k|[0,1] is a smooth embedding of (I, ∂I) in (R3
+, ∂R3

+); and

• k|[1,2π] is a linear function from [1, 2π] to the z = 0 plane.

12



Figure 2.1: Example of a knot

In this chapter, a knot k is regarded as a smooth embedding (as opposed to its image) of

(I, ∂I) (as opposed to S1) in (R3
+, ∂R3

+). See figure 2.1. Equivalently, z(k(0)) = z(k(1)) = 0

and z(k(t)) > 0 for all t ∈ (0, 1). By lemma 2.1, this embedding does not lose any

information about the original knot.

2.2 Spun knot

Construction of the spun knots was introduced by Artin [Art25].

2.2.1 Definition

Definition 2.2. The spinning function Spin : R3× [−π, π] 7→ R4 maps (x, y, z; θ) to (x, y, z cos θ, z sin θ).

Definition 2.3 (Spun knot). Given a knot k : (I, ∂I) 7→ (R3
+, ∂R3

+), the spun knot K of k is an

embedding of S2 in R4:

K(t, θ) = Spin
(
k(t); θ

)
,

where S2 is parametrized by the map (t, θ) 7→ (s cos θ, s sin θ, t) from I × [−π, π] to S2 ⊂ R3

where s = 1
2

√
4t(1− t). (See figure 2.2.)

• This map is injective because k is injective and z(k(t)) > 0 for t ∈ (0, 1).

13



• This is consistent with the S2 parametrization because z(k(0)) = z(k(1)) = 0.

(a) (b)

Figure 2.2: Parametrization of S2 by the (t, θ) coordinates. The parameter space rolls up vertically and the
top and bottom edges (shown in red) map to a meridian. The left and right edges (shown in blue) shrink to the
south and north poles respectively.

From the symmetry of the definition formula of the spun knot, there are two non-

equivalent ways of projecting the spun knot K ⊂ R4 to R3: along x1 or x2, and along x3 or

x4.

2.2.2 Intersection picture (I)

In this subsection let τ(x1, x2, x3, x4) = (x1, x3, x4).

Two points A = K(tA, θA) and B = K(tB, θB) have the same image under τ if and only if


x(k(tA)) = x(k(tB))

z(k(tA)) = z(k(tB))

θA = θB

.

Without loss of generality, let the projection (x, y, z) 7→ (x, z) generate a knot diagram

of k. See figure 2.3. Two points (tA, θA) and (tB, θB) in S2 are double points of K under τ

if and only if θA = θB and that A = k(tA) and B = k(tB) are a pair of double points in the

aforementioned knot diagram of k.

14



Figure 2.3: Example of the intersection curves of a spun knot

The intersection curves are pairs of parallel circles in S2 of constant t-values. Figure 2.4

shows the intersection curves of the spun knot K of the knot k in figure 2.3. In this notation,

each h curve lies exactly above (in terms of the x2-coordinate) the l curve with the same

number, therefore projecting to the same image in R3 under τ. The subscripts 1 through 3 in

figure 2.4 match the numbers of the double points in figure 2.3. For example, as t increases

from 0, the first double point in figure 2.3 is the higher (in terms of the y-coordinate) point

numbered 1. Therefore, the first curve in figure 2.4 is h1, starting from the left of the (t, θ)

space.

(a) (b)

Figure 2.4: Example of the intersection curves of a spun knot

2.2.3 Intersection picture (II)

In this subsection let τ(x1, x2, x3, x4) = (x1, x2, x4).
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Without loss of generality, let the projection (x, y, z) 7→ (x, y) generate a knot diagram of

k.

The two points A = K(tA, θA) and B = K(tB, θB) having the same image under τ requires


x(k(tA)) = x(k(tB))

y(k(tA)) = y(k(tB))
.

Equivalently, a necessary condition is that A = k(tA) and B = k(tB) are a pair of double

points in the aforementioned knot diagram of k.

Let zA = z(A)> zB = z(B) without loss of generality. They create the trajectory in x3 and

x4 coordinates as shown in figure 2.5.

Figure 2.5: The spinning trajectories of the x3 and x4 coordinates of a pair of double points in the knot
diagram of k

This shows that under the projection τ, curves of quadruple points (shown in red in

figure 2.5) exist as well as double points (shown in blue in figure 2.5). By theorem 1.4, K is

not in general position. The quadruple points are unstable singularities and are removable

by an arbitrarily small perturbation of K.

Let an embedding k′ of (I, ∂I) in (R3
+, ∂R3

+) be slightly pushed off from k. Specifically,

• k′|∂I = k|∂I ;

• z ◦ k′ = z ◦ k; and
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• k′ and k are close enough such that the linear isotopy F(·, s) = (1− s)k + sk′ is injective

in int(I)× [0, 1].

Figure 2.6: An example of perturbing k in the spun knot

See figure 2.6. The definition of the spun knot K is perturbed accordingly, up to

smoothing the corners (θ ∈ [−π, π]):

K(t, θ) = Spin
(

F(t, |θ/π|); θ
)
.

Conceptually, the knot deviates in R3 from k to k′ and back, as it goes through a full

cycle of spinning into R4.

Each quadruple of the multiple points in the unperturbed K become four pairs of double

points in the perturbed K. Each double point of the original knot diagram of k generates

two pairs of intersection curves of K. Consider the spun images of each pair of points in

figure 2.7 marked by α, β, γ and δ respectively.
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Figure 2.7: Four pairs of points associated with one double point in the original knot diagram of k. The z-axis
points outward of the page, different from figure 2.6. The arrows represent the direction in the knot k in which
t increases.

For each pair of points α through δ, let the upper point (in terms of the z-coordinate) be A

and the lower point be B. Let A=F(tA, |θA/π|), B=F(tB, |θB/π|) and zA = z(A)> zB = z(B).

Specifically, θA = 0 or π if A lies on the knot k or k′ respectively. Same for B. Their spun

images in K are A = K(tA, θA) and B = K(tB, θB) .

Figure 2.8 illustrates the structures in detail. In the discussions below, let the z-axis in

figure 2.7 point outward of the page.

(a) α

Figure 2.8 (Continued on next page): Illustration of the generation of the four pairs of intersection curves
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(b) β

(c) γ

(d) δ

Figure 2.8 (Continued)

• α contains the pair of points A= k(tA)=F(tA, 0) and B= k(tB)=F(tB, 0). They have

the spun images A = K(tA, 0) and B = K(tB, 0). x3(A) > x3(B) > 0. They generate a

pair of intersection curves as θB travels through [−π
2 , π

2 ] and θA dependently through
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[− arcsin( zB
zA
), arcsin( zB

zA
)]. Notice when θB becomes non-zero, both positively and nega-

tively, B deviates from k to k′. In figure 2.7, this corresponds to the horizontal movement

of the lower black curve at α towards the lower red curve. The upper point A needs

to follow this movement by deviating slightly in the direction along the arrow of the

upper black curve. Equivalently, tA deviates slightly in the increasing direction when

θB (and therefore θA) is non-zero. This is shown in figure 2.8(a). Rigorously, tB should

also deviate slightly, in the decreasing direction of tB according to figure 2.7, when θA is

non-zero. However, such movements are ignored in figure 2.8 since they do not affect the

essential properties of the curves.

• β contains the pair of points A= k(tA)=F(tA, 0) and B= k′(tB)=F(tB, 1). They have

the spun images A = K(tA, 0) and B = K(tB, π). x3(A) > 0 > x3(B). They generate a

pair of intersection curves as θB travels through [−π,−π
2 ] ∪ [π

2 , π] and θA dependently

through [− arcsin( zB
zA
), arcsin( zB

zA
)]. When θB is not equal to ±π on both sides, B deviates

from k′ to k. In figure 2.7, this corresponds to the horizontal movement of the lower

red curve at β towards the lower black curve. The upper point A needs to follow this

movement by deviating slightly in the direction against the arrow of the upper black

curve. Equivalently, tA deviates slightly in the decreasing direction when θB is not equal

to ±π (and therefore θA is non-zero). This is shown in figure 2.8(b). They connect with

the curves generated by α and form a pair of closed curves. Notice that the deviations

of tA are brought by the perturbation and are essential in the connection of the curves

generated by α and β. Without the perturbation, the h curves in figure 2.8 (a) and (b)

would coincide, indicating quadruple points.

• γ contains the pair of points A = k′(tA) = F(tA, 1) and B = k′(tB) = F(tB, 1). They

have the spun images A=K(tA, π) and B=K(tB, π). 0 > x3(B) > x3(A). They generate

a pair of intersection curves as θB travels through [−π,−π
2 ] ∪ [π

2 , π] and θA dependently

through [−π,−π + arcsin( zB
zA
)] ∪ [π − arcsin( zB

zA
), π].

• δ contains the pair of points A = k′(tA) = F(tA, 1) and B = k(tB) = F(tB, 0). They

have the spun images A=K(tA, π) and B=K(tB, 0). x3(B) > 0 > x3(A). They generate
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a pair of intersection curves as θB travels through [−π
2 , π

2 ] and θA dependently through

[−π,−π + arcsin( zB
zA
)] ∪ [π − arcsin( zB

zA
), π]. They connect with the curves generated by

γ and form another pair of closed curves.

In conclusion, each double point of the original knot diagram of k generates two pairs of

intersection curves of the perturbed K under τ.

Figure 2.9 provides a complete example using the trefoil knot.

(a) A knot with perturbation assigned

(b) The intersection curves of the spun knot

Figure 2.9: The intersection curves of the spun trefoil knot
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2.3 Twist-spun knot

The construction of the twist-spun knots was introduced by Zeeman [Zee65] in topologi-

cal language. The definition presented below uses parametrization and rotations in R3 and

is equivalent to the original.

2.3.1 Definition

Let N (S) be the north (south) pole of the unit ball D3 ⊂ R3 centered at the origin. For a

knot k : (I, ∂I) 7→ (R3
+, ∂R3

+), define an embedding p : D3 7→ R3
+ such that

• p(N) = k(0), p(S) = k(1); and

• k(int(I)) ⊂ p(D3 − {N, S}) ⊂ int(R3
+).

Let Rθ(x, y, z) = (x cos θ + y sin θ, y cos θ− x sin θ, z) be the rotation operator on D3 along

the z-axis.

p pushes forward Rθ to a self-homeomorphism R̃θ = pRθ p−1 of p(D3) fixing p(N) and

p(S). See figure 2.10.

(a) (b)

Figure 2.10: An example of k, p, Rθ and R̃θ

Definition 2.4 (Twist-spun knot). Given a knot k : (I, ∂I) 7→ (R3
+, ∂R3

+), the m-twist-spun knot
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K of k is an embedding of S2 in R4:

K(t, θ) = Spin
(

R̃mθ(k(t)); θ
)
.

• This map is an injection because z(R̃mθ(k(t))) > 0 for t ∈ (0, 1) and R̃mθ ◦ k is always an

injection.

• This is consistent with the S2 parametrization because p(N) = k(0) and p(S) = k(1) are fixed

under R̃mθ and that their z-coordinates are zero.

• The spun knot K is independent from the choice of p up to ambient isotopy.

Conceptually, the knot k is spun to the x4-coordinate and rotated in R3 simultaneously.

A further theorem by Zeeman shows that the ±1-twist-spun knots of any knot k is a trivial

surface knot that bounds a 3-ball in R4 [Zee65].

2.3.2 Intersection picture

The intersection picture of twist-spun knots was also studied by Satoh [Sat02]. Here an

independent point of view is presented.

For simplicity, let τ(x1, x2, x3, x4) = (x1, x3, x4). Let the knot diagram of k be obtained by

the projection (x, y, z) 7→ (x, z).

Since rotations in R3 preserve the knot, the aforementioned knot diagram undergoes a

finite sequence of Reidemeister moves (theorem 1.1). Therefore, the intersection curves of

K under τ are the same as the spun knot case in subsection 2.2.2 except at finitely many

locations, corresponding to the Reidemeister moves. They start as disjoint straight lines

corresponding to the double points of the knot diagram.

Theorem 2.2 (Intersection curves of twist-spun knots (local)). The intersection curves of the

twist-spun knot K under τ are disjoint straight lines expect at finitely many points when the knot

diagram of k undergoes Reidemeister moves. Each move corresponds to a local structure in figure 2.11.
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(a) Reidemeister move I

(b) Reidemeister move II

(c) Reidemeister move III

Figure 2.11: Local intersection curve structures of the twist-spun knot K corresponding to Reidemeister moves
of the knot k. The y-axis points outward of the page.

The proof is straightforward since the intersection curves track the double points of the

knot diagram at all times and through the Reidemeister moves as well.

Globally, a knot has a closed braid configuration (theorem 1.2). Slightly shift the

closing strands in theorem 1.2 in the x-direction before projecting the closed braid by

(x, y, z) 7→ (x, z). Without loss of generality, consider a knot k in figure 2.12.
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Figure 2.12: A knot diagram as a closed braid

Figure 2.13 illustrates the stages k goes through to perform a rotation in R3 and the

structures of the intersection curves of K generated.

(a)

(b) (c)

(d) (e)

Figure 2.13 (Continued on next page): Illustration of the stages of one full twist of k and the intersection
curves of K. The y-axis points outward of the page, same as figure 2.11 but different from figure 2.12.

25



(f) (g)

Figure 2.13 (Continued)

Figure 2.14 shows the intersection curves generated by the stages in figure 2.13.

• Originally, the intersection curves are disjoint straight curves corresponding to the

crossings in the braid, arranged in the order of their t-values. The t-values t1 through

t2n+1 lie in between.

• Stage (a) is a collection of Reidemeister II moves. They happen at the odd numbered

t-values (moving under) as well as t-values larger than t2n+1 (moving over). According to

theorem 2.2, they generate pairs of intersection curves in cup shapes.

• Stage (b) is a sequence of Reidemeister III moves. According to theorem 2.2, the

newly generated intersection curves at odd numbered t-values crosses through all the

straight lines towards the even numbered t-values. The newly generated intersection

curves at t-values larger than t2n+1 crosses through each other and copying exactly the

crossing patterns of the braid in the upside-down position.

• Stage (c) is a collection of the inverse Reidemeister II moves, as well as an inverse

Reidemeister I move. The intersection curves at even numbered t-values close up with

each other. The intersection curves in the upside-down braid close up with each other.

There is a branch point, corresponding to the inverse Reidemeister I move, produced at t
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value larger than t2n+1.

• Stage (d) is an isotopy in R2 with no Reidemeister moves.

• Stages (e) is a collection of Reidemeister II moves at the odd numbered t-values

(moving over) as well as t-values smaller than t1 (moving under). The pattern of the

intersection curves is similar to stage (a).

• Stages (f) is a sequence of Reidemeister III moves. The braid is upright at t-values

smaller than t1. The pattern of the intersection curves is similar to stage (b).

• Stage (g) is a collection of the inverse Reidemeister II moves. The intersection curves

at even numbered t-values close up with each other. The intersection curves in the upright

braid close up with each other.

• Finally, there is an inverse Reidemeister II move and an inverse Reidemeister I move.

The remaining intersection curves close up accordingly, together with generating another

branch point.
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Chapter 3

The Roseman moves and

Reidemeister moves

The Roseman moves [Ros98] of surface knots are parallel to the Reidemeister moves

in knot theory. In this chapter, their effects on the intersection curves and their relations

to Reidemeister moves are discussed. Let τ(x1, x2, x3, x4) = (x1, x2, x3). In this chapter,

regard a surface knot K as an embedding as opposed to its image. Denote the surface being

embedded as S, such as S2.

3.1 Intersection curves (h-l curves)

The intersection curves have been studied extensively in Chapter 2 in various examples.

Here a formal definition is provided in general situations and additional structures are

discussed.

Definition 3.1 (Intersection curves; h-l curves). The multiple point set of τ ◦K : S 7→ R3 consists

exactly of the images of n pairs of closed curves li, hi : S1 ∼= I/∂I 7→ S for 1≤ i≤n; and N−n pairs

of open curves li, hi : I 7→ S for n+1≤ i≤N.
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For all i, and all s ∈ int(I),
(τ ◦ K)(li(s)) = (τ ◦ K)(hi(s))

(x4 ◦ K)(li(s)) < (x4 ◦ K)(hi(s))
.

That is, the images of an h curve in S are mapped to be higher in x4-coordinate in R4 by K than

its partner l curve.

For n+1≤ i≤N, li|∂I = hi|∂I in S. Namely, each pair of the open h and l curves share endpoints.

They are exactly the branch points in definition 1.4.

To avoid confusion, they are collectively named the h-l curves from now on (as opposed

to the intersection curves in Chapter 2). In each pair, they are referred to as the partner

curves of each other.

τ ◦ K has finitely many triple points, exactly corresponding to the intersections among

the h-l curves.

Theorem 3.1 (Triple point). For each triple point of τ ◦ K, there exist 1 ≤ a, b, c ≤ N and

α, β, γ ∈ int(I) such that there are three transverse intersections of the h-l curves:
P1 = la(α) = lb(β)

P2 = lc(γ) = ha(α)

P3 = hc(γ) = hb(β)

.

• P1, P2 and P3 map to the same image by τ ◦ K; and

• (x4 ◦ K)(P1) < (x4 ◦ K)(P2) < (x4 ◦ K)(P3).

Furthermore, all the intersections among the h-l curves are transverse and uniquely grouped into

these triples in one-to one correspondence to the triple points of τ ◦ K.

a, b and c are not required to be distinct in a triple, therefore allowing self intersections.

However, they must be actual intersections. Namely, if a = b, then α 6= β, and similarly for

b, c and c, a.

As illustrated in figure 3.1(a), from the point of view of each sheet, an h-l curve is

the shadow of another sheet passing perpendicularly. An intersection point between two
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h-l curves is the shadow of the intersection line between the two perpendicular sheets.

A convenient notation is therefore assigned to each intersection point, to indicate the x4-

relations of the two perpendicular, intersecting sheets whom it shadows (This is not related

to the relative x4-position of the sheet itself containing the intersection point in question).

(a)

(b)

Figure 3.1: Illustration of a triple point as a triplet of intersections among the h-l curves

For example, in the point of view of sheet 1 (containing P1), la is the shadow of sheet
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2 (containing P2) and lb is the shadow of sheet 3 (containing P3). Since sheet 3 has higher

x4-values than sheet 2 along the line they intersect, lb is denoted as over la at P1. This is, of

course, notational only. By definition, the h-l curves are curves lying on the surface S and

are actually intersecting (as opposed to crossing over and under) each other.

Corollary 3.2. At each intersection between an h and an l curve, the l curve always lies over the h

curve.

Proof. By theorem 3.1, in every triple, the intersection P2 between an h and an l curve always

lies in the middle sheet among the three. In this sheet, the l curve shadows the higher sheet

containing P3 and the h curve shadows the lower sheet containing P1. By notation, l crosses

over h.

3.2 The Roseman moves

Roseman introduced seven independent moves that cover all the equivalent cases be-

tween any surface knots [Ros98].

Theorem 3.3. Two surface knots are equivalent if and only if they are related by a finite sequence

of local Roseman moves and their inverses, along with isotopy of their projections in R3. Fig-

ure 3.2 [Ros98, Figure 1] defines the Roseman moves and figure 3.3 [Ros98, Figure 2] shows the

corresponding moves in the h-l curves.

In figure 3.3, the Roseman moves are visualized by their projections in R3 and it is

assumed that the x4-levels of the sheets in action (though not shown in the pictures) are not

obstructions. This is in parallel with the description of the Reidemeister moves in figure 1.2

in Chapter 1.
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Figure 3.2: Roseman moves projected in R3 [Ros98, Figure 1]
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Figure 3.3: Moves of the h-l curves due to Roseman moves [Ros98, Figure 2]
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In the sense of the over and under crossings between the h-l curves (according to the

notation in section 3.1), the Roseman moves cannot create or break "knottings". Specifically,

• On the right side of figure 3.3 (e) and (f), in each sheet, the two crossings shadow

the intersections between the same two other sheets in question, and therefore one curve

must be over the other at both crossings. Namely, the two curves on each sheet must be

notationally separable by a Reidemeister type II move.

• In move (g), any three of the four sheets have a common intersection in R3. Any sub-

set cannot have a cyclic relation in their x4-values where each pair intersects. Equivalently,

in each sheet, the move must be notationally allowable as a Reidemeister type III move.

Here is a converse statement that further observes the relationship between the Reide-

meister moves on the h-l curves and the Roseman moves of the surface knot.

Theorem 3.4 (Reidemeister moves and Roseman moves). Any local Reidemeister move and its

inverse on the h-l curves is realizable by a sequence of Roseman moves of the surface knot, at the cost

of performing simultaneous Reidemeister moves on the h-l curves elsewhere.

Proof. Figure 3.4 illustrates the procedures. Curves labelled with letters other than h’s and

l’s are of arbitrary type, and the procedure works in all choices. A tilde over the same letter

indicates a partner curve. Crossings without the over and under notations indicate that they

depend on the curves whose types are arbitrary. The symbol ∼= indicates an isotopy in R3

with no Roseman moves being performed.
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(a) Reidemeister type I move

(b) Reidemeister type I inverse move

(c) Reidemeister type II move

Figure 3.4 (Continued on next page): Realizations of Reidemeister moves by Roseman moves
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(d) Reidemeister type II inverse move

(e) Reidemeister type III move

Figure 3.4 (Continued)

• A Reidemeister I move is realizable by a Roseman (c) move followed by an (f) move.

• An inverse Reidemeister I move is realizable by an inverse Roseman (d) move

followed by an inverse (f) move.

• A Reidemeister II move is realizable by a Roseman (e) move followed by two (b)

moves. During the procedure, let the type of curve c be the same as curve b.

• An inverse Reidemeister II move is realizable by two Roseman (b) moves, followed

by another (b) move only doable after the former two, and then an inverse (e) move.
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Notice that the first two (b) moves are allowed only if the same types of curves are joined

in sheets B and C, or equivalently, that the two crossings between a and b in sheet A are

of the same type. This is equivalent to the condition that the Reidemeister II move is

allowed (?).

• A Reidemeister III move is covered by a Roseman (g) move if and only if all the

four sheets in question and the six pairs of h-l curves perform a Reidemeister III move

simultaneously. A Reidemeister II move followed by two Roseman (b) moves prepare the

curves in the three other sheets. Notice the condition that the Reidemeister III move is

allowed guarantees that one and only one of the two possibilities of the Reidemeister II

move allows the Roseman (b) moves (??).

(?) Figure 3.5(a) shows a case where the Reidemeister II inverse move is not allowed.

Consequently the Roseman (b) moves are not allowed.

(??) Figure 3.5(b) shows a case where the Reidemeister III move is not allowed. By

corollary 3.2, there is only one possibility for the Reidemeister II move and it prohibits the

Roseman (b) moves to follow.

(a) (b)

Figure 3.5: Situations where Reidemeister moves are not allowed
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Chapter 4

Crossing changes and generalizations

In this chapter, attempts of generalizing the crossing changes in knot theory onto surface

knots are discussed. Let τ(x1, x2, x3, x4) = (x1, x2, x3). Let the surface knot be a 2-sphere:

S = S2.

4.1 A direct approach

4.1.1 Preliminaries

Definition 4.1. In knot theory, a crossing change is to change the over and under relation at a

particular double point in a knot diagram, thus possibly changing the knot diagram to represent a

different knot than the original.

Figure 4.1: A crossing change on a knot diagram of the trefoil knot (figure 1.1) at the double point marked by
red, resulting in a knot diagram that represents the trivial knot

Figure 4.1 is an example of a crossing change. A natural generalization of the crossing
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change onto a surface knot is to switch the roles of a particular pair of the h-l curves

(denoted h0 and l0 from now on) by lifting the x4-value in a regular neighborhood of the

l0 curve such that it becomes pointwisely higher than the original h0 curve. (Equivalently,

this can also be achieved by lowering the x4-value in a regular neighborhood of the original

h0 curve.) The procedure should be performed only in the x4-dimension and keep the

projection τ ◦ K fixed, same as in the knot diagram situation.

Since the procedure does not change the projection τ ◦ K, the h-l curves are unchanged

in S.

The aforementioned crossing change has no obstructions except possibly at the intersec-

tions of h0 or l0 with any h-l curves (including self-intersections). According to theorem 3.1,

all the intersections between h-l curves are grouped into triples such that, in each triple,

there is exactly one intersection between two h curves, two l curves, and one h and one l

curve, respectively. Conceptually, this is because the three sheets at a triple point have a

consistent ordering of x4-values along their mutual intersections, as shown in figure 3.1.

Theorem 4.1. The following statements are equivalent:

1. The aforementioned crossing change can be performed on the pair of curves h0 and l0.

2. At all triple points of τ ◦ K that are associated with h0 and l0, the crossing change results in a

consistent reordering of x4 of the three sheets.

3. After switching the names of h0 and l0, there does not exist a triple of intersections among the

h-l curves where all the three intersections are between an h and an l curve.

The proof is straightforward. By the third statement, the question whether a crossing

change is permitted has a combinatorial nature.

Here are two examples. In figure 4.2, the crossing change is not allowed since it results

in three intersections between h curves and l curves afterwards. Conceptually, this is

attempting to change the x4-ordering between the highest sheet (sheet 1) and the lowest

sheet (sheet 3) at a triple point. Therefore the middle sheet becomes an obstruction.
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(a) Before crossing change between h0 and l0

(b) After attempted crossing change, resulting in a unrealistic situation

Figure 4.2: An examples of triple points allowing or obstructing a crossing change between h0 and l0

In figure 4.3, the crossing change is allowed. This is an example with a self-intersection

of h0. Conceptually, at the triple point the highest sheet (sheet 1) becomes the lowest after

the change and the middle and lowest sheets (sheets 2 and 3, respectively) becomes the

highest and middle sheets. The ordering is consistent and there is no obstruction.
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(a) Before crossing change between h0 and l0

(b) After the crossing change

Figure 4.3: Another example of triple points allowing or obstructing a crossing change between h0 and l0

To fully generalize the crossing change, one possible way is to do a crossing change

on any obstructing curves simultaneously. In figure 4.2 above the crossing change is not

allowed. If a crossing change is simultaneously performed on h1 and l1, however, then it

becomes allowed. See figure 4.4.
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(a) The prohibited configuration (figure 4.2(b)) after the proposed crossing change

(b) After performing a crossing change between h1 and l1 simultaneously

Figure 4.4: A chain reaction of crossing changes

It can be shown that this eventually leads to doing crossing changes on a subset of all

the h-l pairs. In the later sections, other methods of generalizing the crossing changes are

explored.

4.1.2 An example of the chain reaction of crossing changes

In this subsection, the 2-twist spun trefoil knot is presented as an example of the chain

reaction of crossing changes.

In subsection 2.3.2, the general structure of the h-l curves of any twist spun knot is

constructed, based on a standard procedure of twisting a knot in R3 in braid configuration.

A different sequence of Reidemeister moves may also twist the knot, and produce the

equivalent twist spun knot with a different (non-standard but possibly simpler) set of h-l

43



curves. Figure 4.5 shows a sequence of Reidemeister moves that turns the trefoil knot

halfway through a full twist.

(a) Type I at 4

(b) Type III at 1,2,4 (c) Type III at 1,3,4

(d) Type I inverse at 1

Figure 4.5: A sequence of Reidemeister moves that turns the trefoil knot over

By theorem 2.2, the h-l curves are constructed in figure 4.6. The later half of the twist is

a copy of the former half, starting with the new set of curves (numbered 2,3,4) after the first

half.

In figure 4.6, the h-l curves are numbered consistently with the double points in the knot

diagram in figure 4.5. As h-l curves, however, the three pairs of curves numbered 1,3,5 are

the same pair, connected through the top and bottom of the parametrization space, despite

their different numbers. In this subsection, denote such equivalence of numbers by 1=3=5.
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Figure 4.6: The h-l curves of the 1-twist spun trefoil knot
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Similarly, 2=4.

The points marked with A through E in figure 4.6 are obstruction points to crossing

changes.

• The A points obstruct the crossing change between h1 and l1. In order to do this

crossing change, the pair of curves 3 or 4 must change simultaneously. According to

figure 4.4, releasing the obstruction at either one of a pair of obstruction points suffices

to allow the crossing change.

• The B points obstruct the crossing change between h2 and l2. The pair of curves 4 or 5

must change simultaneously.

• The D points obstruct the crossing change between h4 and l4. The pair of curves 1 or 2

must change simultaneously.

• The E points obstruct the crossing change between h5 and l5. The pair of curves 2 or 3

must change simultaneously.

Combining with the fact that there are only two different pairs of curves, 1=3=5 and 2=4,

there is no obstruction to performing a crossing change on either pair alone.

For the 2-twist spun trefoil knot, the h-l curves picture is two copies of figure 4.6 stacked

on top of each other. The second copy starts with the set of curves numbered 3, 4, 5 and

ends with 5, 6, 7, in parallel to the first copy.

The new equivalences between the numbers of the curves are 1=5, 2=6 and 3=7, connected

from the top (of the second copy) to the bottom (of the fist copy) of the parametrization

space. There are four pairs of curves.

In addition to the above four obstruction rules, there are four more. Table 4.1 summarizes

the obstructions to the crossing changes between each pair of curves. The second row is a

summary of the discussions above, and the third row reasonably resembles the second row

by replacing 1 through 5 by 3 through 7. In each element, the two numbers indicate that

performing a crossing change on either number suffices to allow the crossing change in the

first row.
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Table 4.1: Crossing change obstruction information for 2-twist spun trefoil knot

Crossing change 1 2 3 4 5 6 7

Obstruction (1st twist) 3, 4 4, 5 1, 2 2, 3

Obstruction (2nd twist) 5, 6 6, 7 3, 4 4, 5

Combining with the equivalences of the numbers of the curves, the conclusion is that

a crossing change is not possible between any pair of h-l curves alone. In this example,

at least two or more pairs must be changed. For example, simultaneous crossing changes

between the two pairs 1=5 and 3=7 is allowed. So are the simultaneous changes between

2=6 and 4.

4.2 The disjoint simple-closed case

In this section, let h0 and l0 be disjoint simple closed curves. Though this is a special

case, it is very common in various examples, as shown in Chapter 2.

4.2.1 Arguments in R4

Assume for now that h0 and l0 bound disjoint discs Dh, Dl
∼= D2 in S. This is au-

tomatically true if S = S2. Assume further that the τ ◦ K|int(Dh∪Dl) is an embedding in

R3.

Define the subset S0 = K(Dh) ∪ K(Dl) ∪ C0 ⊂ R4 where C0 is the "vertical" cylinder

(i.e., parallel to the x4-axis) between the boundaries of K(Dh) and K(Dl): C0 =
⊔

t∈S1

{
τ ◦

K(l0(t))
}
×
[
x4 ◦ K(l0(t)), x4 ◦ K(h0(t))

]
. S0 ∼= S2. τ(S0)=τ ◦ K(Dh ∪ Dl) is by assumption

an embedded S2 in R3. Therefore, S0 is a trivially embedded S2 in R4. Let it bound a 3-ball

B0 in R4.

In general position in the 4-dimensional space R4, the 3-dimensional B0 intersects the

2-dimensional K(S− (Dh ∪ Dl)) in a subset L0 which is the union of 1-dimensional disjoint
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simple curves. L0 = B0 ∩ K(S− (Dh ∪ Dl)). Since K is injective, L0 intersects S0=∂B0 in C0.

There exists a larger 3-ball B̃0⊃B0 in R4 and an isotopy F : B̃0 × [0, 1] 7→ B̃0 such that

• F is compactly supported in B̃0, i.e., F(·, s)|∂B̃0
= id∂B̃0

for all s;

• F(·, s)|K(Dh∪Dl) = idK(Dh∪Dl) for all s; and

• F(L0, 1) ⊂ B̃0 − B0.

(a) Before the isotopy (b) After the isotopy

Figure 4.7: An illustration of the ambient isotopy in the 3-ball B̃0

Conceptually, this is an ambient isotopy that pulls the union L0 of the disjoint simple

curves out from B0 via C0, without intersecting K(Dh ∪ Dl) along the process. In figure 4.7,

L0 schematically represents a collection of disjoint simple curves, whose internal structure

is not shown.

This ambient isotopy can be extended to an isotopy of the embedding K of S in R4.

Since L0 ⊂ K(S − (Dh ∪ Dl)), consider a regular neighborhood N0 ⊂ S of its preimage

K−1(L0) such that N0 ∩ (Dh ∪ Dl) = ∅. Let N0 be parametrized by the homeomorphism

N0 ∼= L0 × [−1, 1]. Define the new embedding K̃.

K̃(x) =


K(x) for x ∈ S− N0

F(p, 1− |s|) for x = {p, s} ∈ L0 × [−1, 1] ∼= N0

.

48



After smoothing the corners, the new embedding K̃ is ambient isotopic in R4 (i.e.,

equivalent) to the original surface knot K and is identical to K in Dh ∪ Dl . B0 ∩ K̃(S− (Dh ∪

Dl)) = ∅. This suggests that at all the triple points of τ ◦ K̃ on τ ◦ K̃(h0) = τ ◦ K̃(l0), the

third sheet lies, in the x4-level, either above or below both τ ◦ K̃(Dh) and τ ◦ K̃(Dl), but can

never be in the middle. The crossing change can then be performed without obstructions.

In fact, the requirement of the existence of the 3-ball B0 is stronger than necessary. For

the construction of the ambient isotopy F, it is sufficient to require the existence of a solid

cylinder whose side is a subset of C0.

4.2.2 The h-l curves

In this subsection, a detailed survey of L0 is presented by switching the viewpoint to the

image of τ ◦ K in R3. Furthermore, examples are constructed to discuss the effects on the

h-l curves caused by the modification of the surface knot from K to K̃.

The obstructions to the crossing change between h0 and l0 are the triple points of τ ◦ K

on τ ◦ K(h0) = τ ◦ K(l0) where the third sheet lies in the middle, in x4-levels, between the

two sheets τ ◦ K(Dh) and τ ◦ K(Dl).

For 1≤ i≤n, let ti ∈ S1 be all the positions on h0 such that an h-l curve ai intersects h0

at h0(ti). According to theorem 3.1, there is an h-l curve bi intersecting l0 at l0(ti). Further

more, ãi and b̃i intersect at xi ∈ S− (Dh ∪ Dl), where a tilde indicates a partner curve. See

figure 4.8.

Figure 4.8: The intersections of h0 and l0 with other h-l curves
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Since Dh is a disc in S, the collection of points {h(ti)} are pairwisely connected by the

collection of curves {ai} inside Dh. Namely, for each p, there exists a unique q 6= p such that

ap and aq are the same curve connecting h(tp) and h(tq) inside Dh. Same for l0 and the bi’s.

The obstructions to the crossing change are exactly the ti’s where ai is an h curve and bi

is an l curve (theorem 4.1).

Theorem 4.2. The obstruction points on h0 and l0 can be grouped into pairs such that there exist

mutually disjoint curves in int(τ(B0)) ∩ τ ◦ K(S− (Dh ∪ Dl)) connecting each pair.

Proof. Pick an arbitrary obstruction point ti0 . Namely, ai0 is an h curve and bi0 is an l curve.

Enter the following algorithm with the current index p = 0 and an ordered list with current

value I = {i0}.

1. There exists a unique ip+1 such that h(tip) is connected with h(tip+1) in Dh, by the curve

aip which is the same curve as aip+1 . aip+1 is therefore an h curve. Add ip+1 to the list I.

2. If bip+1 is an l curve, exit the algorithm.

Otherwise, bip+1 is an h curve. There exists a unique ip+2 such that l(tip+1) is connected

with l(tip+2) in Dl , by the curve bip+1 which is the same curve as bip+2 . bip+2 is therefore

an h curve. Add ip+2 to the list I.

3. Since bip+2 is an h curve which intersects l0, aip+2 cannot be an l curve which intersects

h0 (theorem 3.1). aip+2 is therefore an h curve. Update p to be p + 2 and go back to

Step 1.

Several properties follow from the construction.

• Since the total number of intersection points is finite, the algorithm ends after finitely

many steps. Furthermore, at each time back at Step 1, p is an even number. Therefore,

the last element in I has an odd subscript (call it im) and I contains an even number of

elements (including i0). For any given i0, I is uniquely generated.

• I contains distinct elements, and especially, im 6= i0. Aside from i0 and im, I contains a

sequence of subscripts of non-obstruction points. By construction, for all ip ∈ I − {i0, im},

both aip and bip are h curves and tip is not an obstruction point. If the algorithm starts
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from im, then I is generated exactly reversely. Any two lists generated by the algorithm

are either the same (or the reverse of each other) or completely disjoint.

• There exists a piecewise curve c(i0, im) in S− (Dh ∪ Dl) passing through the collection

of points {xip} for all ip ∈ I in order, by following ãip from xip to xip+1 for even p, and

b̃ip for odd p, alternately. τ ◦ K(c(i0, im)) ⊂ τ(S0), with segments lying in τ ◦ K(Dh) and

τ ◦ K(Dl) alternately.

Therefore, all the obstruction points are grouped uniquely into pairs. Slightly perturb

all the curves in S− (Dh ∪ Dl) ensures that their images lie in int(B0) and are mutually

disjoint.

Figure 4.9 illustrates the process using an example with only one pair of obstruction

points. The rightmost points on h0 and l0 are their respective intersections with h3 and l6,

and the leftmost points on h0 and l0 are the intersections with h1 and l4. The algorithm

goes through Step 1 twice and exits at the second time in Step 2. The sequence I contains 4

points (an even number) and the curve c(i0, im) contains 3 segments.

(a) An example with a single pair of obstruction points

Figure 4.9 (Continued on next page): An example of the algorithm in theorem 4.2 and the curve generated
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(b) Step 1

(c) Step 2 (not exiting)

(d) Step 1, second time

Figure 4.9 (Continued)
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(e) The final sequence I and curve c(i0, im)

Figure 4.9 (Continued)

τ(S0) bounds a unique 3-ball in R3, equal to τ(B0). B0 is any of its lift in R4 and is not

unique. Depending on the choice of B0, the collection of curves τ ◦ K({c(i0, im)}) can be the

projection τ(L0) in R3.

Each non-obstruction point that the sequence I contains (i.e., each element in I aside from

the first and the last) causes a twist in the band. Figure 4.10 illustrates the correspondence

of a twist and a passing element in I using an unrealistic model of an I containing 3

elements (an odd number). In figure 4.10(a), τ ◦ K(c(i0, im)) passes near one point on

τ ◦K(h0) = τ ◦K(l0) along its way, and contains two segments near τ ◦K(Dh) and τ ◦K(Dl)

respectively. It is isotopic to the band with one twist in figure 4.10(b). Therefore, theorem 4.2

shows that a regular neighborhood of each curve τ ◦ K(c(i0, im)) in τ ◦ K(S) is a band

passing through τ(B0) with an even number of twists.
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(a) τ ◦ K(c(i0, im)) with one passing point (b) An isotopic band

Figure 4.10: Illustration of the correspondence between the number of elements in I and the number of twists
in a band neighborhood of τ ◦ K(c(i0, im)).

Finally, two examples are presented to illustrate the effects on the h-l curves after the

modification of the surface knot K to K̃ in R4. The examples are done with only one band

in each picture (the red band) to be pulled out by isotopy. Figure 4.11 shows the basic

(zero-twist) case.

(a) Parts of τ ◦ K(S) in R3 (b) Parts of τ ◦ K̃(S) in R3

Figure 4.11 (Continued on next page): An example of the zero-twist band
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(c) The relevant h-l curves of K

(d) The relevant h-l curves of K̃

Figure 4.11 (Continued)

Figure 4.12 shows an example of a single two-twist band case (the same example studied

in figure 4.9). The trace of each twist is a Whitney umbrella in R3. Therefore, there are two

pairs of branch points generated in the h-l curves of K̃.
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(a) Parts of τ ◦ K(S) in R3

(b) The relevant h-l curves of K

(c) The relevant h-l curves of K̃

Figure 4.12: An example of a two-twist band as in figure 4.9
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4.3 The simple closed case

As a corollary of corollary 3.2 and theorem 3.4, there is the following claim:

Corollary 4.3. Simple closed h0 and l0 are essentially disjoint after a sequence of Roseman moves.

Proof. The proof is straightforward, noticing the following facts.

• By corollary 3.2, when h0 intersects l0, l0 is always over h0 by the convention in

section 3.1. Moreover, since h0 and l0 do not have self-intersections, l0 passes through

Dh in parallel, disjoint segments. Therefore, l0 and h0 are "separable" by inverse

Reidemeister type II moves alone.

• According to theorem 3.4 and figure 3.4(d), an inverse Reidemeister type II move of

the h-l curves is realizable by Roseman moves at the cost of changing the h-l curves

at other locations. In figure 3.4(d) corresponding to this situation, a = l0 and b = h0.

Since h0 and l0 has no self intersections, h1 and h2 (and l1 and l2) cannot be the same

curve as h0 (and l0). Therefore, such changes do not affect h0 and l0 at other locations.

h0 and l0 are completely separable.

4.4 The self-intersecting case

In this section, another special case is discussed where h0 has self-intersections and does

not intersect with any other h-l curves and l0 is a simple closed curve disjoint from h0. The

attempt, however, is more radical than a crossing change. It performs a surgery to the

surface knot at the pair of "crossings" h0 and l0, removes a part of the surface and forms a

new surface knot by gluing together the rest. Figure 4.13 shows an analogous surgery in

knot theory.
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Figure 4.13: A surgery in knot theory that removes part of the knot (the red part) and glues the rest together
at a crossing

For every pair of pi, qi ∈ S1 such that h0(pi) = h0(qi), there exists a pair of h-l curves ai

and ãi such that l0 intersects ai at l0(pi) and ãi at l0(qi). Figures 4.14 through 4.16 shows the

surgery in steps.

Step 1

Let Dl ⊂ S be the disc such that ∂Dl = l0 and h0 ⊂ S − Dl . Let D̃l be a larger disc

containing Dl and disjoint from h0, such that τ ◦ K(∂D̃l) is a self-intersecting, parallel copy

of τ ◦ K(h0) in R3. Let l1 = ∂D̃l and parametrize l1 by S1 such that l1 intersects the other h-l

curves at the same positions as l0 in the parametrization. (To avoid confusion, note that l1 is

not the name of an l curve.) Remove D̃l from S and K(S). Denote S1 = S− D̃l . ∂S1 = l1.

See figure 4.14.

(a) The h0 and l0 curves, and other notations

Figure 4.14 (Continued on next page): Illustration of Step 1, in the surgery to a self-intersecting h0
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(b) The resulting image of τ ◦ K in R3 after Step 1. Notice that τ ◦ K(l1), the boundary of τ ◦ K(S1), is a parallel copy of
τ ◦ K(h0). There is no real intersection along τ ◦ K(h0) anymore after the removal of τ ◦ K(D̃l)

Figure 4.14 (Continued)

Step 2

For each pi, qi ∈ S1 and the pair of h-l curves ai and ãi such that l1 intersects ai at l1(pi)

and ãi at l1(qi), attach a band Bi
∼= D2 to S1 along two arcs αi, βi ⊂ l1 such that l1(pi) ∈ αi

and l1(qi) ∈ βi respectively, and αi, βi contains no other l(pj)’s or l(qj)’s. The orientation of

Bi must match that of l1. Denote S2 = S1 ∪i Bi. See figure 4.15.

Define τ ◦ K(Bi) as a Whitney umbrella bounded by τ ◦ K(αi ∪ βi), following the orienta-

tions of αi and βi, and disjoint from τ ◦ K(S1). This defines τ ◦ K(S2).

(a) S2 (b) Part of τ ◦ K(S2) in R3

Figure 4.15: Illustration of Step 2, in the surgery to a self-intersecting h0
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Step 3

S2 is homeomorphic to a 2-sphere with punctures. ∂S2 is a collection of disjoint simple

closed curves. τ ◦ K(∂S2) is a collection of disjoint simple closed curves in R3 that are

parallel to τ ◦ K(h0), aside from the self-intersections of the latter. Make parallel copies of

the disjoint discs in τ ◦ K(S) bounded by the self-intersecting curve τ ◦ K(h0) and glue them

to τ ◦ K(∂S2). This completes the definition of the new surface knot in terms of its projection

in R3.

(a) Step 3

Figure 4.16: Illustration of Step 3, in the surgery to a self-intersecting h0

The h-l curves of the new surface knot no longer contains the pair h0 and l0. Each pair

of curves ai and ãi are connected in the new S by a branch point.
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