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Abstract

Out of 7,151 living languages, 665 languages (9.299%) are spoken by nearly

2 billion people across Southern Asia. Of these, 37.74% (251 languages) are endan-

gered, while the vast majority remain underrepresented in language systems. This

thesis presents a new NLP toolkit called IndoLib designed to support natural lan-

guage processing (NLP) research in South Asian languages, consisting of the Indo-

Aryan, Dravidian, and Sino-Tibetan language families, in this case. IndoLib includes

four primary components: (i) monolingual and multilingual datasets to expand lan-

guage modeling and language detection for thirty-one Indic languages, (ii) fine-tuned

multilingual models for named entity recognition (NER) and summarization, (iii) a

bilingual dataset with Sanskrit-English and English-Sanskrit parallel sentences, and

(iv) a fine-tuned machine translation model for two-way translations between San-

skrit and English. The fine-tuned multilingual NER and bilingual translation models

outperform current benchmark models upon evaluation. This thesis is intended to aid

researchers interested in applying transfer learning to develop or optimize transformer-

based models for South Asian languages.



Dedication

After a lifelong search for a cohesive cultural identity, I found myself referred

to by similar inquirers as a “third culture kid,” or TCK. TCK is a bittersweet term

referring to individuals raised in a culture and environment different from their par-

ents’ native origins. Exposed to a wide variety of cultural experiences, TCKs often

struggle to balance the development of unique cultural identities with maintaining

the values and traditions of their home cultures (Pollock et al., 2010).

When my family moved to the U.S. in 2002, I quickly adapted to the cultures

and customs of the St. Louis suburbs where we found ourselves. My summer breaks

were often full of comparative linguistic exercises and memorizing complex Sanskrit

grammar, but my life was predominantly ruled by English. I retained my enthusiasm

for Nepali cuisine, but my command and pronunciation of the Nepali language began

to suffer, dismaying my parents, who taught languages like Nepali and Hindi at the

high school and college levels and often cited intricate Indian philosophies that would

perplex Descartes. They claimed that my Rs no longer rolled off of my tongue, not

to mention my newfound inability to distinctly pronounce variations of the letter S.

Addressing these issues meant regaining control of my by-then-Americanized tongue;

not a simple task for a 12-year-old. It took several months of daily practice until I

could clearly pronounce all 47 Devanagari characters of the Nepali language.

This experience of regaining prior knowledge taught me the importance of

retaining important information through attention and well-placed intention. Nearly
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two decades later, it inspired me to devote my Master’s thesis to enhancing the

inclusion of languages like Nepali in natural language processing systems. This thesis

is a culmination of the seed that my parents once planted, produced with the motive

of maximizing the inclusion and global awareness of my mother tongue, Nepali, as

well as several other South Asian languages that may not yet have a spokesperson

advocating for them. I am tremendously grateful for the continuous support of my

family throughout this process, including Sanskrit grammar coaching sessions by my

father. This process has reminded me of the best parts of being a TCK: using one’s

educational privilege and multicultural experiences to leave a positive mark on the

world. As I progress in my research endeavors, I will continue to strive toward that

objective.

v



Acknowledgements

I want to thank my research advisor, Professor Hongming Wang, for her in-

valuable guidance, support, and reassurance throughout this project. Her feedback

was instrumental at various stages of the thesis development process, from narrowing

my initial focus areas to optimizing an experimentation process to elicit the most

meaningful results possible. I am also grateful to Professor Eric Gieseke for being a

reliable sounding board and source of encouragement. Finally, I would like to express

my sincere gratitude to my friends and family who supported me throughout my

time at Harvard. Steve Merrick, in particular, helped me overcome several periods of

uncertainty, starting with the initial conversion of a seemingly endless list of research

ideas into a cohesive topic with personal significance. I would not have been able to

complete this thesis without all of these incredible people on my side.

This work was also supported by Google’s TPU Research Cloud (TRC), which

generously provided TPUs for language model development and optimization.

vi



Contents

Table of Contents vii

List of Figures x

List of Tables xi

List of Code xii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Resource Disparities in NLP . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 State of NLP for South Asian Languages . . . . . . . . . . . . . . . . 5

1.4 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Experiment and Computation Setup 9

2.1 Technical Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Version Control and Code Availability . . . . . . . . . . . . . . . . . 11

3 Dataset Development and Optimization 13

3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Data Normalization and Cleaning . . . . . . . . . . . . . . . . . . . . 14

vii



3.3 Downsampling and Upweighting . . . . . . . . . . . . . . . . . . . . . 15

3.4 Direct Utilization of Existing Datasets . . . . . . . . . . . . . . . . . 16

3.4.1 XLSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Naamapadam . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Development of Novel Datasets . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Monolingual Dataset Development . . . . . . . . . . . . . . . 17

3.5.2 Multilingual Dataset Development . . . . . . . . . . . . . . . 19

3.5.3 Bilingual Dataset Development . . . . . . . . . . . . . . . . . 20

4 Model Training Pipeline and Evaluation Methods 21

4.1 Training Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Data Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Training Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . 24

4.3.2 Data Collation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.3 Data loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.4 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.5 Training Functions . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.6 Performance Tracking . . . . . . . . . . . . . . . . . . . . . . 27

4.3.7 Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.8 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Task-Specific Evaluation Strategies . . . . . . . . . . . . . . . . . . . 30

5 Model Architecture, Selection, and Development 32

5.1 Transfer Learning With Transformer-Based Models . . . . . . . . . . 32

5.2 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Multilingual BERT . . . . . . . . . . . . . . . . . . . . . . . . 34

viii



5.2.2 ELECTRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.3 XLM-RoBERTa . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.4 mT5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.5 mBART-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . 41

5.4.2 Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Model Performance Monitoring . . . . . . . . . . . . . . . . . . . . . 43

6 Model Performance 48

6.1 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . 48

6.1.2 Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Model Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . 50

6.2.1 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . 50

6.2.2 Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusion 56

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Ethical and Environmental Considerations . . . . . . . . . . . . . . . 57

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References 59

ix



List of Figures

1.1 Resource Distribution by Language Type (Joshi et al., 2020) . . . . . . . 5

5.1 Optuna Optimization History . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Optuna Parallel Coordinate Plot . . . . . . . . . . . . . . . . . . . . 39

5.3 Optuna Contour Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Optuna Slice Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Optuna Hyperparameter Importances . . . . . . . . . . . . . . . . . . 40

5.6 Weights & Biases Train Loop Monitoring . . . . . . . . . . . . . . . . . 44

5.7 Weights & Biases Evaluation Loop Monitoring . . . . . . . . . . . . . . 45

5.8 Weights & Biases Evaluation Performance Monitoring . . . . . . . . . . 46

5.9 Weights & Biases Compute Usage Monitoring . . . . . . . . . . . . . . 47

x



List of Tables

1.1 NLP Tasks and Areas of Exploration . . . . . . . . . . . . . . . . . . 7

3.1 Summarization Models Based on XLSum Dataset . . . . . . . . . . . 16

3.2 Named Entity Recognition Models Based on Naamapadam Dataset . 16

3.3 Data Sources for Monolingual Datasets . . . . . . . . . . . . . . . . . 19

3.4 Novel Datasets for South Asian Language Research . . . . . . . . . . 20

4.1 Tokenizer Type by Model . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Evaluation Metrics for NLP Tasks . . . . . . . . . . . . . . . . . . . . 31

5.1 Advantages and Disadvantages of Transfer Learning . . . . . . . . . . 33

5.2 Models Evaluated by NLP Task . . . . . . . . . . . . . . . . . . . . . 34

5.3 Performance Comparison of Monolingual NER Models . . . . . . . . 41

5.4 Performance Comparison of Monolingual Summarization Models . . . 42

5.5 Performance Comparison of Baseline Translation Models . . . . . . . 42

6.1 Language-Specific Performance of Fine-Tuned Multilingual IndoLib-

NER Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Language-Specific Performance of Benchmark IndicNER Model . . . 52

6.3 Performance of Fine-Tuned Multilingual Summarization Models . . . 53

6.4 FLoRes Dataset Performance of Fine-Tuned Translation Model Versus

Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xi



List of Code

5.1 Optuna Hyperparameter Training Objective Specification . . . . . . . 36

6.1 Evaluation of NER Models . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Load FloRes Benchmark Dataset for Two Translation Directions . . . 54

6.3 Compute BLEU Metric for Translation Model . . . . . . . . . . . . . 54

xii



Chapter 1: Introduction

In recent years, there has been growing interest in developing technology for

understanding and producing human language. As computing power increases, so

too do the number of applications that rely on computers to perform linguistic analy-

ses. This trend is especially apparent in Natural Language Processing (NLP), which

leverages computational methods to analyze and extract relevant information from

written or spoken language. NLP involves an interaction of linguistics, computer

science, and artificial intelligence that has become increasingly popular due to its ap-

plicability across areas like search engine optimization, question-answering systems,

speech recognition, and handwriting recognition.

However, despite the increasing popularity of NLP, most existing NLP systems

have been designed and tested in “high-resource” languages like English. A significant

portion of current research supports English-centric datasets and models even though

most of the world’s population speaks languages other than English. Consequently,

very few of these languages are adequately supported by NLP systems. Although

some progress has been made toward developing NLP tools for non-English languages,

these efforts have predominantly focused on specific domains like machine translation

or specialized tasks such as financial transaction processing.

This thesis focuses on developing novel datasets and fine-tuned models to

enhance the performance of low-resource South Asian languages for several NLP

tasks, including language modeling, language identification, named entity recognition,
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summarization, and translation. This chapter defines “low-resource” languages within

the context of these objectives and contextualizes the implications for South Asian

language families.

1.1. Background

The Sapir-Whorf Hypothesis suggests that a language’s structure affects its

speakers’ cognition. Spoken language, as a result, influences how people interact with

the world, and individuals’ perceptions are relative to their spoken language (Kihlstrom

& Park, 2016). At a fundamental level, language is intricately connected with human

identity, perception, interaction, and development. This connection highlights the

importance of expanding linguistic support and services to individuals beyond those

who understand high-resource languages. Researching under-resourced languages has

numerous societal, linguistic, technological, cultural, normative, and cognitive impli-

cations that may affect millions, if not billions, of people worldwide (Ruder, 2020).

The broad aim of NLP is to enable computers to comprehend human language.

Human language understanding, however, is not a simple task, as genuine comprehen-

sion of linguistics requires a robust understanding of complex grammatical structures

coupled with the nuances of syntax, semantics, pragmatics, phonology, and morphol-

ogy. These characteristics are difficult to synthesize into machine-understandable

representations, and matters are further complicated by the derivation of datasets

from various inputs, ranging from raw text to images and speech. This contributes to

an inherent inequality for languages without extensive corpora, written or otherwise.

Furthermore, the sheer diversity of languages spoken or written by humans expands

the challenges associated with developing inclusive NLP systems (Joshi et al., 2020).

Due to the increasing availability of computing resources, an improved under-

standing of algorithms, continuous advancements in machine learning techniques, and
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the broader availability of annotated data and pre-trained models, the field of NLP

has progressed immensely over the last several decades. The global NLP community’s

growing acknowledgment of resource distribution gaps has also elicited significant ef-

forts to accommodate under-resourced languages. Although resource disparities and

opportunities for improvement remain for the vast majority of languages, consider-

able progress has been achieved in establishing the tools, benchmark models, and

datasets necessary to develop and optimize NLP systems for low-resource and zero-

resource languages. For instance, Masakhane, a grassroots organization led by NLP

researchers, has published journal articles on developing novel datasets, models, and

machine translation methods for various low-resource African languages (Orife et al.,

2020). Based on the linguistic diversity represented by South Asian languages and

the number of resources recently released, similar opportunities to contribute to the

progression of NLP research in other low-resource languages can be anticipated.

As a prominent NLP researcher and the author of numerous academic papers

on state-of-the-art multilingual and cross-lingual benchmarks, Sebastian Ruder urges

young researchers to delve into this research area. “Given the availability of data

and models in different languages,” Ruder states, the “stage is set” for “meaningful

progress on languages beyond English” (Ruder, 2021). Researchers across academia

and industry have expressed increasing interest in NLP systems that accommodate

multilingual communication and cross-cultural understanding. The “stage” is indeed

“set” to address existing disparities to build more inclusive, globally expansive digital

language ecosystems.

1.2. Resource Disparities in NLP

There are 7,151 active languages distributed across 142 different language fam-

ilies around the world (Rowe & Levine, 2018). However, only around 100 languages
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have moderate to high levels of natural language processing (NLP) resources avail-

able, and only 20 languages are considered high-resource (Maxwell & Hughes, 2006).

The vast majority of the world’s languages lack the resources required to train usable

NLP systems, thereby widening the vast technological divide affecting most of the

world’s citizens (Maryatt, 2018). Furthermore, most under-resourced languages have

historically lacked large labeled corpora needed to develop functional NLP systems,

despite a growing global interest in expanding linguistic inclusion (Le & Besacier,

2009). The problem is exacerbated by difficulties in collecting necessary datasets and

engaging researchers in developing NLP models for low-resource, zero-resource, and

unseen languages (Baumann & Pierrehumbert, 2014).

As a result, the majority of progress made in NLP has been devoted to high-

resource languages such as English, thereby widening the “digital language divide”

between dominant languages (primarily Western) and others (Ruder, 2020). Despite

the number of people who rely on them, relatively minimal research efforts have

been undertaken for low-resource and zero-resource NLP development. Only a few

hundred languages are even represented on the Internet, and the speakers of under-

resourced and underrepresented languages have limited digital access to information

and services in their native languages (Pimienta et al., 2009).
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Figure 1.1: Resource Distribution by Language Type (Joshi et al., 2020)

In Figure 1.1 above, the size and color of each circle represent the “number of

languages” and “speakers” by category. Colors represent the total speaker population

size, ranging from low (i.e., violet) to high (i.e., red), using the VIBGYOR (Violet-

Indigo-Blue-Green-Yellow-Orange-Red) spectrum. The availability of labeled data is

disproportionate to the number of speakers, such that a minority of languages receive

the vast majority of resources available (Joshi et al., 2020).

1.3. State of NLP for South Asian Languages

Of 7,151 living languages, 665 (9.299%) are spoken by 1,913,790,000 billion

people across Southern Asia. While 68 of these languages are considered institutional,

170 are labeled as “developing,” 176 are “vigorous,” 210 are “in trouble,” and 41 are
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“dying” (Eberhard et al., 2022).

Many of these languages share similar historical roots, cultural underpinnings,

and structural relationships, and a minimum of 20 actively spoken South Asian lan-

guages share a significant portion of their vocabulary with their primary root lan-

guage, Sanskrit. Additional similarities include but are not limited to their syntactical

structure, morphology, and phonology (Sengupta & Saha, 2015).

Considering the diversity and widespread usage of South Asian languages,

there is a pressing need to develop NLP applications and resources to overcome

low-resource barriers. Novel opportunities to expand machine translation to under-

resourced communities exist, and numerous corporations, governmental agencies, and

research organizations have made significant efforts to release datasets and state-of-

the-art compatible resources to further South Asian language research. This includes

the development of IndicNLPSuite, as well as a variety of cutting-edge resources.

Furthermore, there has been renewed interest in exploring inherent linguistic

relationships among South Asian languages, including links to root languages like

Sanskrit, thereby paving the way toward multilingual, cross-lingual, and ultimately

language-agnostic NLP systems (Salian, 2019). There are unprecedented opportuni-

ties to contribute to developing NLP models and resources for under-resourced South

Asian languages, making this a promising area of research.
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1.4. Research Problem

In an effort to enhance the representation of South Asian languages, this thesis

incorporates several NLP tasks: language modeling, language identification, named

entity recognition (NER), summarization, and machine translation. Chapter 2 in-

cludes a complete description of these tasks, and Table 1.1 below lists specific research

questions associated with each task:

Natural Language
Processing Task

Areas of Exploration

Language Modeling 1. Do existing datasets used to train benchmark models
like Multilingual BERT accurately represent a diverse set
of South Asian languages?

2. Are specific languages overrepresented or
underrepresented compared to others?

Language Identification 3. Do language models correctly identify and differentiate
between different South Asian languages?

4. Is a specific model architecture better suited for named
entity recognition tasks for South Asian languages?

Named Entity
Recognition (NER)

5. How does a monolingual model trained on the full
dataset compare to the multilingual model trained on
evenly distributed and shuffled splits of various South
Asian languages?

6. Does fine-tuning a pre-trained model on monolingual
corpora enhance summarization quality?

Summarization 7. Is a specific model architecture better suited for
summarization tasks for South Asian languages?

8. Is a specific model architecture better suited for
translating a South Asian language to English?

Translation 9. How does a bilingual model trained on custom corpora
compare to benchmark translation models?

Table 1.1: NLP Tasks and Areas of Exploration
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These tasks are addressed across seven chapters in this thesis:

(i) Introduction gives an overview of the problem of resource scarcity in NLP and

describes the importance of addressing NLP for low-resource languages spoken

in South Asia.

(ii) Experiment and Computation Setup delves into the technical requirements of

developing datasets and training fine-tuned models for several NLP tasks.

(iii) Dataset Development and Optimization outlines the process of creating datasets

for language modeling and language identification tasks.

(iv) Model Training Pipeline and Evaluation Methods discusses how to train models

for named entity recognition, summarization, and machine translation. It also

presents evaluation metrics that can be used to evaluate model performance and

compare fine-tuned models to existing benchmarks.

(v) Model Architecture, Selection, and Development explores the problem of choos-

ing a suitable architecture and developing hyperparameter-tuned models for

named entity recognition, summarization, and translation models.

(vi) Model Performance compares the performance of the models developed in the

thesis with state-of-the-art benchmarks.

(vii) Conclusion summarizes the results from all experiments conducted throughout

the thesis and describes avenues for future work.

(viii) References includes all sources utilized in the thesis.
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Chapter 2: Experiment and Computation Setup

The following sections describe the technical and data-specific requirements

for developing the datasets covered in Chapter 3 and building the models described

in Chapter 5.

2.1. Technical Toolkit

Building a functional, reproducible, and expandable NLP system requires uti-

lizing a robust set of software tools and maximizing the simplicity of the training and

evaluation pipelines. Models and datasets should be easy to use, quick to deploy and

test, and have minimal dependencies. Furthermore, training methods and pipelines

should be replicable, with clear hardware and software requirements.

In this thesis project, two machine learning frameworks were utilized for train-

ing and experimentation: PyTorch and JAX. PyTorch was leveraged for CPU-based

dataset development and GPU-based training of customized training pipelines (Imambi

et al., 2021). JAX, on the other hand, was specifically utilized for TPU-based lan-

guage modeling use-cases (Bradbury et al., 2018). These frameworks were selected

based on user familiarity, ease of use, and hardware-specific performance. In addition,

the Python language was selected due to the overwhelming number of Python-based

frameworks, libraries, and methods available for NLP.

Along with these frameworks, various libraries and tools were also utilized:
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(1) Hugging Face provides easily integrable datasets, pre-trained models, and APIs

for various NLP use cases (Yue, 2022). It offers simple access to several libraries,

including:

(a) Transformers, which provides APIs to download and train pre-trained models

seamlessly (Wolf et al., 2020).

(b) Datasets, which allows users to build and manipulate custom datasets (Lhoest

et al., 2021).

(c) Accelerate, which simplifies the process of running models on single and dis-

tributed hardware configurations, including multiple GPUs or TPUs, without

requiring significant code modification (Gugger et al., 2022).

(2) NLTK offers utilities for tasks like text processing, tokenization, tagging, and

parsing (Bird, 2006). Similarly, iNLTK provides NLTK functionalities specifically

customized for various South Asian languages (Arora, 2020).

(3) Pandas, Numpy, Matplotlib, Seaborn, and Scikit-learn are standard Python li-

braries utilized for computation, data manipulation, visualization, and analy-

sis (McKinney et al., 2011; Harris et al., 2020; Bisong, 2019; Pedregosa et al.,

2011).

(4) Weights & Biases is a platform that logs, monitors, and compares experiment

model performance (Morris, 2022).

(5) Beautiful Soup parses HTML/XML documents into usable objects, such as lists,

dictionaries, and strings (Patel, 2020).

(6) Indic NLP Library provides various tools developed explicitly for South Asian

languages (Kunchukuttan, 2020).
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(7) Flax is a neural network library designed to optimize JAX models with CPU and

GPU acceleration support (Heek et al., 2020).

(8) Optuna is an open-source framework that enables researchers to find optimal

hyperparameter settings for their machine learning models (Akiba et al., 2019).

(9) Jupyter Notebook is a web application used to create and share interactive note-

books in Python (Kluyver et al., 2016).

2.2. Computation

NLP research is generally computation-intensive, often involving millions to

billions of data points. The problem domain is frequently so large that it requires

specialized hardware or software for efficient processing. Even when fine-tuning pre-

trained models, computation costs and time requirements can be substantial.

Experimentation was primarily conducted on cloud-based Jupyter Notebook

instances. Google’s TPU Research Cloud (TRC) program generously provided TPU

credits to minimize the overhead costs of model training and optimization. To op-

timize resource utilization, code runs were also tested on various CPU, GPU, and

TPU instances, with a focus on minimizing overall training time, costs, and memory

allocation.

2.3. Version Control and Code Availability

Version control is an essential aspect of software trackability and transparent

code management. This is especially important in low-resource NLP, which hinges

on collaboration among researchers and developers. To that end, all datasets and

finalized models developed in this thesis work are available on Hugging Face (upon
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request). In addition, Python scripts and Jupyter Notebooks for each covered task

and dataset are available in a GitHub repository .

The repository also contains all code used to develop, fine-tune, train, and

evaluate the model variants described in this thesis. The Hugging Face and GitHub

repositories will be updated with subsequent versions as they are released.

12

https://github.com/nityatimalsina/south-asian-nlp/


Chapter 3: Dataset Development and Optimization

A corpus is a collection of texts annotated with metadata or other information

such as part-of-speech tags, named entities, and lemmas. Corpora can be divided into

two broad categories: labeled and unlabeled. Unlabeled corpora contain only text

without any annotation. On the other hand, labeled corpora have some additional

information associated with each sentence. While part-of-speech tagging is the most

commonly-used annotation technique, annotation schemes may also involve objectives

like word sense disambiguation, morphosyntactic analysis, and semantic role labeling.

The creation of corpora is a time-consuming process involving significant hu-

man effort. There has been extensive research on developing high-quality labeled

corpora. However, creating new corpora is still labor-intensive and requires sub-

stantial manual intervention. This thesis aims to simplify the development of novel

datasets for various South Asian languages through a customized data normalization

and cleaning pipeline.

3.1. Data Collection

The Hugging Face Datasets library was instrumental in downloading, process-

ing, and uploading datasets through the Hugging Face Hub. A list of all datasets

used in this thesis can be found in Chapter 2.

The first step in data collection is downloading the dataset. The Hugging Face

13



Datasets Library allows users to download datasets through a simple ‘load dataset’

function. First, a user specifies the location of the dataset, specific splits (typically

train, test, and validation), and an authentication token if needed. Then, the down-

loaded dataset can be assigned to a variable, downloaded to a local disk, and so

on.

In the case of low-resource languages with sparse data and the unavailability of

monolingual datasets, multilingual datasets were downloaded for the specific language

(or language pair) and filtered to extract monolingual data. For instance, the XLSum

corpus includes article-summary pairs for 45 languages. The Marathi subset of the

XLSum dataset was downloaded to extract the Marathi content. Then, articles and

summaries for Marathi were individually extracted and combined with other corpora

obtained from sources like BLOOM, OSCAR, and Wikipedia.

3.2. Data Normalization and Cleaning

Data pre-processing is an essential step in any NLP task, involving steps like

cleaning raw text, filtering out noise, normalizing values, and converting strings to

numbers. This section describes how each of the datasets described in Chapter 2 was

processed.

After collecting the dataset, the first step is to clean it up. In many cases, there

may be some issues with the quality or format of the collected data. For example,

if the dataset consists of multiple files, it may contain different formats. If the file is

corrupted, the entire dataset must be re-downloaded. Similarly, if the data does not

match the expected structure, e.g., if it contains URLs instead of plain text, it should

be cleaned before proceeding further.

Datasets like XL-Sum and Bloom are pre-processed but may require language-

specific division and sentence splitting. Datasets like OSCAR and CC-100 have un-
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dergone some preprocessing but require additional steps to remove unnecessary punc-

tuation marks, special characters, URLs, HTML characters, and empty lines. Finally,

the text is combined and divided into (roughly) even sentences to be processed.

This thesis used Beautiful Soup, Python ReGex, NLTK, iNLTK, JSON, and

Pandas to complete various data-preprocessing tasks. The entire data pre-processing

pipeline is available on GitHub, and the processed datasets are available on Hugging

Face.

3.3. Downsampling and Upweighting

Downsampling refers to reducing a training set’s size by removing samples.

Downsampling can help prevent overfitting by limiting the number of parameters

in the model. However, downsampled data will not always generalize well across

domains because it lacks diversity.

Upweighting refers to increasing the importance of specific samples during

training. For example, upweighting may increase the weight given to rarer examples

that occur less often in the training set. As a result, the model learns to pay more

attention to these examples and becomes better able to predict them.

This thesis incorporates downsampling and upweighting techniques to cre-

ate diverse datasets with higher coverage of vocabulary and syntactic structures.

Downsampling techniques utilized include random sampling, sampling weighted by

frequency, and sampling weighted by length. Upweighting techniques included are

uniform sampling and sample selection.

In effect, the vocabulary size of the datasets is reduced, and sentences are

randomly shuffled to minimize bias or overfitting, particularly for languages with noisy

or minuscule datasets. These methods facilitate the development of more balanced

datasets that provide competitive results on the trained models.
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3.4. Direct Utilization of Existing Datasets

Existing datasets have been used extensively throughout this thesis. The fol-

lowing table provides a brief overview of each dataset, including its origin, size, char-

acteristics, and how they were utilized.

3.4.1 XLSum

XL-Sum is a dataset created for text summarization by the BUET CSE NLP

Group. It was utilized in this thesis to create the following monolingual and multilin-

gual summarization models, following extraction of South Asian language components

from the full XL-Sum dataset (Hasan et al., 2021).

Model Type Languages Covered

Monolingual Summarization Sinhala

Multilingual Summarization Bengali, Gujarati, Hindi, Marathi, Nepali,
Punjabi, Sinhala, Tamil, Telugu, Urdu

Table 3.1: Summarization Models Based on XLSum Dataset

3.4.2 Naamapadam

Naamapadam is a dataset developed by AI4Bharat for named entity recogni-

tion (NER) tasks. It was utilized in this thesis to create the following monolingual

and multilingual NER models (Mhaske et al., 2022).

Model Type Languages Covered

Monolingual NER Oriya

Multilingual NER Assamese, Bengali, Gujarati, Kannada,
Hindi, Malayalam, Marathi, Oriya,
Punjabi, Tamil, Telugu

Table 3.2: Named Entity Recognition Models Based on Naamapadam Dataset

16



3.5. Development of Novel Datasets

Labeled corpora is an essential aspect of training and evaluating language

models. This thesis work incorporated existent corpora for named-entity recognition

(Naamapadam) and summarization (XLSum) and developed novel corpora for trans-

lation (Sanskrit to English). In addition, three types of novel datasets were created

for future language modeling and language identification objectives: monolingual,

multilingual, and bilingual. This section outlines the datasets developed, along with

their respective sources and pre-processing methods.

3.5.1 Monolingual Dataset Development

Monolingual datasets represent a single language and consist of unlabeled text

samples. Although monolingual datasets do not require labels, they provide a foun-

dation for building multilingual datasets. In this thesis, monolingual datasets were

established for 31 languages through a combination of data sources:

(1) Wikipedia, which offers corpora based on Wikipedia pages in 329 languages (Tun-

stall et al., 2022).

(2) Oscar Corpus, which includes filtered data for 166 languages from the Common

Crawl corpus (Suárez et al., 2020).

(3) CC-100, which includes monolingual data for 100+ languages (Conneau et al.,

2019).

(4) Itihasa, which includes 93,000 Sanskrit verses with corresponding English trans-

lations (Aralikatte et al., 2021).

(5) Large-Scale Nepali Corpus, which includes over 6.5 million sentences (Lamsal,

2020).
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(6) The Bloom Library Dataset, which includes stories from 364 languages across 31

language families (Whitenack, 2022).

(7) XL-Sum, which includes 1.35 million article-summary pairs across 45 languages (Hasan

et al., 2021).

Data collected from these sources were divided by language, filtered, cleaned,

and normalized using a customized pipeline. A thorough data-processing pipeline

resulted in monolingual datasets across 31 South Asian languages, including several

previously unrepresented languages listed in the table below.

Language Language Family Dataset Sources

Sanskrit Indo-Aryan Oscar, Wikipedia, CC-100, Itihasa, Bloom

Nepali Indo-Aryan Oscar, Wikipedia, CC-100, Large Scale
Nepali Corpus, Bloom, XLSum

Newari Sino-Tibetan Oscar, Wikipedia, Bloom

Marathi Indo-Aryan Oscar, Wikipedia, Bloom, XLSum

Western Punjabi Indo-Aryan Oscar, Wikipedia

Punjabi Indo-Aryan Oscar, Wikipedia, XLSum

Gujarati Indo-Aryan Oscar, Wikipedia, XLSum

Bishnupriya
Manipuri

Indo-Aryan Oscar, Wikipedia

Sinhala Indo-Aryan Oscar, Wikipedia, XLSum

Oriya Indo-Aryan Oscar, Wikipedia

Sindhi Indo-Aryan Oscar, Wikipedia

Maithili Indo-Aryan Oscar, Wikipedia

Assamese Indo-Aryan Oscar, Wikipedia

Fiji Hindi Indo-Aryan Wikipedia

Bhojpuri Indo-Aryan Oscar, Wikipedia, Bloom

Goan Konkani Indo-Aryan Oscar, Wikipedia

Doteli Indo-Aryan Wikipedia, Bloom

Pali Indo-Aryan Wikipedia
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Awadhi Indo-Aryan Wikipedia, Bloom

Tharu (Chitwania
and Dangaura
variants)

Indo-Aryan Bloom

Kashmiri Indo-Aryan Wikipedia

Romani Indo-Aryan Wikipedia

Hindi Indo-Aryan Oscar, Bloom, XLSum

Kannada Dravidian Oscar, Bloom

Tamil Dravidian Oscar, Bloom

Western Tamang Sino-Tibetan Oscar, Bloom

Malayalam Dravidian Oscar, Bloom

Bengali Indo-Aryan XLSum, Bloom

Athpariya Sino-Tibetan Bloom

Lohorung Sino-Tibetan Bloom

Telugu Sino-Tibetan Oscar, XLSum

Table 3.3: Data Sources for Monolingual Datasets

3.5.2 Multilingual Dataset Development

Multilingual datasets contain labeled texts from different languages. They can

be either parallel or non-parallel. Parallel datasets contain equivalent translations of

the same sentences in two or more languages, whereas non-parallel datasets contain

texts from different languages without translation.

This thesis utilizes existing multilingual datasets for named-entity recognition

(Naamapadam) and summarization (XL-Sum), as described in Section 3.4 above. In

an effort to maximize the inclusion of low-resource South Asian languages, two novel

multilingual datasets were created:
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Dataset Type Relevant NLP Tasks Number of
Languages

Multilingual Unlabeled Language Modeling, Refinement for
downstream tasks

31

Multilingual Labeled Language Identification, Domain
adaptation

31

Table 3.4: Novel Datasets for South Asian Language Research

3.5.3 Bilingual Dataset Development

Bilingual datasets combine two languages that share some common vocabulary.

The use of bilingual datasets has become increasingly popular due to their ability to

improve the quality of machine learning models. However, parallel corpora are limited

in number, especially for low-resource languages, and available datasets have not yet

been extensively tested. This thesis involved creating a bilingual dataset for Sanskrit

to English translations, derived from:

(1) Itihasa, which contains Sanskrit-English parallel translation pairs (Aralikatte

et al., 2021).

(2) The English-Sanskrit and Sanskrit-English subsets of the No Language Left Be-

hind (NLLB-200) dataset includes 148 English-centric and 1465 non-English-

centric language pairs (Heffernan et al., 2022; Costa-jussà et al., 2022).

All novel datasets developed in this thesis are intended to be used by other

researchers seeking to expand NLP systems for various South Asian languages.

Following the development of novel datasets and customization of pre-existing

datasets for the languages covered in this thesis project, a customized training pipeline

was developed for three NLP tasks: named entity recognition (NER), summarization,

and translation. The following chapter covers the development of a training pipeline,

along with appropriate evaluation metrics for each task.
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Chapter 4: Model Training Pipeline and Evaluation

Methods

Each NLP task requires specific training, evaluation, and testing pipelines.

In this thesis, three different pipelines are developed for named entity recognition,

summarization, and translation. Each pipeline consists of four primary components:

preprocessing, feature extraction, model training, and post-processing. These com-

ponents and additional steps are described in this chapter.

4.1. Training Steps

Preprocessing is the first step in any machine learning project and involves

converting raw textual data into a format suitable for use within the neural net-

work architecture. Preprocessing may involve adding necessary labels, filtering irrel-

evant information and extraneous characters, tokenizing text into individual words,

removing stop words, converting all characters to lowercase, or standardizing the

dataset format. For example, in the case of language identification, a preprocessing

step might involve removing HTML characters from all text samples and attaching

language-specific labels to a multilingual dataset.

Feature extraction may also be utilized to transform raw textual data into a

form that can be fed directly into the neural network. Some features can be extracted

using simple statistical calculations, while others may require more complex trans-
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formations. Commonly used statistical features include n-grams, unigrams, bigrams,

and trigrams. More advanced features often combine multiple statistics from different

parts of the document. For example, one common technique for extracting named

entities involves counting the number of times each word appears in the context of

other words, followed by calculating the ratio between these counts and the total

number of instances where the word appeared.

Training natural language models involves creating an algorithm capable of

learning patterns in the data and synthesizing them to perform the desired task. A

summarization model, for instance, accepts a document or set of documents as input

and outputs a summary. Models may be trained using supervised or unsupervised

methods. Supervised training pairs known examples of correct output (e.g., sum-

maries) with their corresponding inputs (e.g., documents). Unsupervised training is

used when no such pairs exist. Semi-supervised training is a hybrid approach where

some labeled data is available but not enough to train a complete model.

Post-processing is the final stage of the pipeline and consists of methods for

improving the quality of the output produced by the model. For example, in named

entity recognition, post-processing might involve re-ranking the results according to

confidence scores or removing any false positives. Post-processing also includes steps

like ranking predictions, generating reports, and visualizing results.

4.2. Data Tokenization

Tokenization involves breaking down the text into smaller units called tokens,

which typically consist of words, phrases, or text chunks representing meaningful

concepts. Tokens are typically identified by whitespace boundaries, such as spaces,

tabs, line breaks, and newlines. Tokenization is performed to convert raw text data

into a format that enables training machine learning algorithms on large amounts
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of unstructured text. Among many types of tokenizers, three options are primarily

used: Byte-Pair Encoding (BPE), WordPiece, and SentencePiece.

Byte-Pair Encoding (BPE) is a method that breaks the input text into sub-

strings based on byte sequences. Each substring represents one word or character

in the original sentence. The number of unique words/characters can be reduced by

merging similar sub-sequences (Sennrich et al., 2015).

WordPiece is an alternative tokenizer that uses a vocabulary of subword units

instead of single characters. It first splits the input text into subwords using a prede-

fined dictionary. Then it replaces each subword with its most frequent unit from the

dictionary. Finally, it merges all these pieces back into the original string. This ap-

proach has demonstrated improved performance for some NLP tasks, such as named

entity recognition (Wu et al., 2016).

SentencePiece is another type of tokenizer that applies a hierarchical segmenta-

tion algorithm to break the input text into sentences. It then segments each sentence

into tokens using a predefined dictionary of subwords. Finally, it merges all these

pieces back into a single string (Kudo & Richardson, 2018).

The Transformer models covered in this thesis utilize two types of tokenization:

WordPiece and SentencePiece. Table 4.1 below lists the models used in this thesis

and their corresponding tokenization types.

Pre-Trained Model Tokenizer Type

Multilingual BERT (mBERT) WordPiece

ELECTRA WordPiece

XLM-RoBERTa SentencePiece

mBART-50 SentencePiece

Table 4.1: Tokenizer Type by Model
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4.3. Training Optimization

The effective training of a model requires optimization of hyperparameters and

data processing methods. Furthermore, tracking variations of all models, datasets,

and code helps maximize reproducibility and rapid prototyping. In addition to the

NLP pipeline listed above, several minor steps are involved in building a complete

NLP application, including: (i) hyperparameter tuning, (ii) data collation, (iii) data

loading, (iv) optimization, (v) training function, and (vi) performance tracking.

4.3.1 Hyperparameter Tuning

The first step in building a successful NLP application is selecting the right

set of parameters. Hyperparameters control various aspects of the model, including

the size and type of hidden layers, the amount of dropout applied to each layer,

the number of epochs to train over, and many others. Optuna is a hyperparameter

optimization framework that vastly simplifies the process of hyperparameter tuning.

It allows users to easily create models, evaluate them against a validation dataset,

and tune their hyperparameters based on an objective function that evaluates the

model’s performance across various combinations of hyperparameters.

Specific parameters tuned in this thesis include learning rate, weight decay,

and epoch:

(a) Learning rates determine how quickly or slowly the weights of neural networks

change during training. A high learning rate enables a network to learn quickly,

while a lower learning rate extends convergence time. Higher learning rates gen-

erally allow for faster convergence but can lead to unstable behavior. Conversely,

lower learning rates require more iterations to converge but may be less prone to

oscillation.
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(b) Weight decay is a regularization technique that prevents the weights from growing

too large and inhibiting the network from becoming overly sensitive to small

changes in input data. Weight decay works by penalizing large values of the

weights with a penalty term. This means that the larger the weight value, the

greater the penalty.

(c) Epochs refer to the number of times through the entire dataset that the algorithm

should run. A typical approach would be to start with a low number of epochs

(e.g., 10) and increase it until the model achieves its best accuracy.

Before training each model, Optuna was used to build, train, and evaluate

deep learning models using gradient-based optimizers. It provides a simple interface

for creating models, evaluating them against a validation dataset, and tuning hyper-

parameters based on an objective function that evaluates model performance across

different combinations of hyperparameters (i.e., the hyperparameter search space).

4.3.2 Data Collation

Data collators are objects that form batches of dataset elements and apply

pre-processing steps like padding where necessary. Model-specific data collators are

available through the Hugging Face Transformers library. For instance, DataColla-

torForSeq2Seq dynamically pads inputs and labels as required by an encoder-decoder

model like mT5, which requires shifting labels to the right by one during decoding.

This is required to limit the decoder to seeing past ground truth labels rather than

current or future labels that it could memorize. Using the correct data collator suited

for a given model and task is critical for effective training.
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4.3.3 Data loading

Training pipelines often require access to large amounts of raw text data. In

order to make efficient use of memory, it is essential to load only the portions of the

dataset that are needed at any given time. DataLoader classes provide a convenient

way to do so. They enable the specification of the portion of a dataset that should be

loaded into memory, along with other information like the total number of samples

in the dataset, the batch size, and the maximum sample length.

4.3.4 Optimizer

An optimizer class is responsible for adjusting the weights and biases of a neu-

ral network model. Common optimizers used in deep learning include gradient de-

scent, Adam, RMSProp, Adadelta, and RMSprop. Optimizers are typically supplied

as part of a larger optimization package but can also be independently implemented.

In this thesis project, the AdamW optimizer is utilized, as it implements the Adam

algorithm with weight decay. An optimizer makes two primary contributions to over-

all model performance: reducing the variance of gradients and making sure the loss

decreases monotonically. By default, the optimizer will automatically choose the best

learning rate for each parameter group. However, for more fine-grained control over

learning rates, the learning rate can be manually configured using the learning rate

argument.

4.3.5 Training Functions

Once all necessary components have been assembled, we must write a training

function to iterate over the entire dataset and update the model’s parameters accord-

ingly. Training functions are written in Python using Keras, Tensorflow, PyTorch, or
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another appropriate language. They take care of all the boilerplate work that would

otherwise slow down development.

There are two main types of training functions: evaluation functions and pre-

diction functions. Evaluation functions are used to measure the performance of a

model during training. The most commonly used evaluation metric is accuracy, which

measures the percentage of correctly classified instances. Prediction functions, on the

other hand, use a trained model to predict outcomes for previously unseen examples.

These predictions can be binary (true/false) or categorical (one of several possible

values).

4.3.6 Performance Tracking

Tracking is a powerful tool for debugging neural networks because it provides

clear visualizations of the contribution of each component to the overall loss value.

Tracking also makes it easy to compare different versions of the same network. With

automatic checkpointing and performance logging, Weights & Biases makes it easy

to track model training sessions and GPU utilization.

4.3.7 Fine-Tuning

After training a model, there may still be room for further improvement. Fine-

tuning is a technique that trains a new model using a pre-trained model as a starting

point. It can improve the performance of the original model by learning from the

data it has already seen and making better use of its existing knowledge.

In this thesis, pre-trained models are loaded from the Hugging Face Hub, fine-

tuned on custom data and optimized hyperparameters, and evaluated. Additional

fine-tuning techniques may further improve the performance of these models.
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4.3.8 Evaluation Metrics

A wide variety of metrics are available for evaluating NLP models. This thesis

incorporates the loss, accuracy, precision, recall, F1, BLEU, and ROUGE metrics:

A. Loss: The loss metric measures the difference between the predicted and

actual outputs. This thesis uses cross entropy as the loss function for all models

trained. In binary classification, binary cross-entropy is calculated as:

−(y log(p) + (1− y) log(1− p))

In multi-class classification (i.e. M > 2), a separate loss is calculated for each

class label per observation and the result is summed (Zhang & Sabuncu, 2018). The

formula for calculating loss is:

−
M∑
c=1

yo,c log(po,c)

B. Accuracy: The accuracy metric measures the percentage of correctly

classified examples in the test set, using erue positives (TP), true negatives (TN),

false positives (FP), and false negatives (FN). The higher the score, the better the

model is at classifying data (Pedregosa et al., 2011). The formula for calculating

accuracy is:

TP + TN

TP + TN + FP + FN

C. Precision: The precision metric measures the proportion of correct pre-

dictions among all predictions made by the model. Precision is calculated by dividing

the number of correct predictions by the total number of predictions made by the

model on the test set (Powers, 2020). The formula for calculating precision is:
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TP

TP + FP

D. Recall: The recall metric measures the proportion of positive examples

that are correctly identified. Recall is calculated by dividing the true positives by

the total number of positive examples in the test set (true positives plus false nega-

tives) (Davis & Goadrich, 2006). The formula for calculating recall is:

TP

TP + FN

E. F1 Score: The F1 score is a metric used to evaluate the performance

of machine learning models on text classification tasks. It combines Precision and

Recall metrics into one single number that takes values between 0 and 1. A value of

0 indicates no predictive power, while a value of 1 means perfect prediction (Goutte

& Gaussier, 2005). The formula for calculating the F1 score is:

2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

F. BLEU: The BLEU (BiLingual Evaluation Understudy) metric calculates

the similarity between two sequences based on their word overlap and penalizes short

machine translations using the brevity penalty (BP). The higher the score, the more

similar the sentences are (Papineni et al., 2002). The formula for calculating BLEU

is:

BP · exp
( N∑

n=1

wn log pn

)
G. ROUGE: The ROUGE (Recall-Oriented Understudy for Gisting Eval-

uation) metric evaluates sentence summarization systems. It computes the overlap
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between the summary and the original text. The higher the score, the better the sum-

mary (Lin, 2004). Several variations of ROUGE are used in this work: ROUGE-1,

ROUGE-2, ROUGE-L, and ROUGE-LSum. ROUGE-1 evaluates the overlap of uni-

grams (individual words) between the generated and reference summaries, ROUGE-2

considers bigrams (two consecutive words), and ROUGE-L considers the longest com-

mon sequences of words. ROUGE-LSum is similar to ROUGE-L but splits the text

based on “η” characters instead of spaces. The formula for calculating ROUGE-N,

which evaluates the overlap of n-grams, is:

∑
r

∑
s match(grams,c)∑

r

∑
s count(grams)

These metrics are used to evaluate model performance in generating summaries

based on text input. Task-specific evaluation strategies are described in Section 4.5

below.

4.4. Task-Specific Evaluation Strategies

There is a limited number of benchmark evaluation datasets available for low-

resource languages. Therefore, specific strategies are followed for each NLP task to

ensure a fair comparison with existing benchmarks and compare performance between

novel, fine-tuned models and state-of-the-art models. Table 4.2 below lists evaluation

metrics and evaluation strategies for each scenario:
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Task Evaluation
Metric

Evaluation Strategy

Summarization Loss
Rouge1
Rouge2
RougeL
RougeLSum

1. Test each language’s performance on an unseen
“test” set, following the example of the current
benchmark models.

2. Compare the performance of the fine-tuned model
to those of existing benchmark models on the test
dataset.

Named Entity
Recognition

Loss
Accuracy
Precision
Recall
F1 Score

3. Test each language’s performance on an unseen
“test” set, following the example of current benchmark
models.

4. Compare the performance of the fine-tuned model
to those of existing benchmark models on the test
dataset.

Translation BLEU 5. Test translation performance for
Sanskrit-to-English and English-to-Sanskrit on a
previously unseen test dataset.

6. Evaluate the performance of the fine-tuned model
on the Facebook Low Resource (FLoRes) machine
translation benchmark evaluation dataset, which
contains professionally refined translations across a
wide variety of low-resource languages, including
Sanskrit.

7. Compare the performance of the fine-tuned model
to those of existing benchmark models on the test
dataset and the FLoRes evaluation benchmark
dataset.

Table 4.2: Evaluation Metrics for NLP Tasks

After establishing datasets and evaluation metrics for each NLP task addressed

in the thesis, a model selection and training pipeline was developed. This process is

described in detail in Chapter 5.
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Chapter 5: Model Architecture, Selection, and

Development

Training language models from scratch can be resource-intensive, costly, and

impractical from a temporal efficiency standpoint. When developing a language model

for a specific language or objective, a choice must be made between pre-training the

model from scratch and fine-tuning a pre-trained model.

Due to the resource-intensiveness of training a model from scratch, fine-tuning

a pre-trained model is a suitable option for a majority of research use-cases. With

the development and release of groundbreaking transformer-based models like BERT

and its derivatives, such as ALBERT and RoBERTa, there is a wealth of options to

select from. The next section delves into the specific advantages and capabilities of

transformer-based models and describes the models explored in this thesis at length.

5.1. Transfer Learning With Transformer-Based Models

The process of fine-tuning a pre-trained language model involves a technique

referred to as ”transfer learning.” Transfer learning essentially involves ”dropping” the

head of a pre-trained model while training its body, thereby facilitating the ”transfer”

of the model’s knowledge. The fine-tuning process can be customized for a specific

task, such as masked language modeling or named entity recognition, based on the

research objective.
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Transfer learning vastly accelerates training time by ”transferring” the knowl-

edge acquired by the pre-trained model. It is important, however, to ensure that the

pre-trained model is as similar to the new task it is fine-tuned on as possible.

The benefits and drawbacks of fine-tuning a pre-trained model (i.e. trans-

fer learning) rather then pre-training a model from scratch are summarized in the

following table:

Advantages of
Transfer Learning

Disadvantages of Transfer Learning

Efficiency due to
faster processing
speed

Transfer of any bias existing in the original model

Lower environmental
impact and
computing costs

Skewing of results and/or performance if pre-trained model
doesn’t accurately match the downstream task

Table 5.1: Advantages and Disadvantages of Transfer Learning

This thesis focuses on transfer learning using various transformer-based mod-

els, described in Section 5.2. Transformers are based on an ”attention” mechanism

and consist of an encoder, decoder, or both. An encoder serves to convert input

text into numerical representations (i.e. features or embeddings), while a decoder

”decodes” representations from the encoder and outputs probabilities. Specifically,

encoders are bi-directional and rely on a ”self-attention” mechanism, while decoders

are uni-directional, auto-regressive, and utilize masked attention and cross-attention.

A model may be based on an encoder, decoder, or both in the case of encoder-decoder,

or sequence-to-sequence, models (Vaswani et al., 2017).

In order to determine the model architecture best suited for each NLP task,

various types of models are evaluated and compared. The following sections describe

the model types and model selection process for named entity recognition, summariza-

tion, and translation. Section 5.2 includes a description of the model types utilized,
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Section 5.3 details the model selection process for each type of task, and Section 5.4

covers the hyperparameter-optimized training process for the selected model.

5.2. Model Architectures

The following pre-trained models are loaded as baselines, fine-tuned, and com-

pared for various natural language processing scenarios:

Task Models Evaluated

Named entity
recognition

Multilingual BERT (mBERT) ELECTRA XLM-RoBERTa

Summarization mT5 mT5-XLSum IndicBART IndicBART-XLSum

Translation mT5 mBART-50

Table 5.2: Models Evaluated by NLP Task

The individual models are briefly described below.

5.2.1 Multilingual BERT

Multilingual BERT (mBERT) is the multilingual variation of BERT that was

simultaneously trained on 104 languages. This model has been shown to achieve

state-of-the-art results across many NLP tasks (Devlin et al., 2018).

5.2.2 ELECTRA

ELECTRA is a simple but effective neural network architecture explicitly

designed for sequence classification problems. Its main characteristics include self-

attention and position embeddings (Clark et al., 2020). In terms of multilingual

performance, it outperforms previous approaches such as RoBERTa and XLNet ().
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5.2.3 XLM-RoBERTa

XLM-RoBERTa combines the multilingual pre-training method from XLM

with the RoBERTa model. As a result, it achieves better performance than multilin-

gual BERT (mBERT) on various cross-lingual benchmarks (Conneau et al., 2019).

5.2.4 mT5

Multilingual T5 (mT5) is a multilingual variation of T5 that was trained on

101 languages. It outperforms other multilingual variants such as XLM and XLM-

RoBERTa (Xue et al., 2020).

5.2.5 mBART-50

Multi-Task Bidirectional Attention Flow Transformer (mBART-50) is a multi-

task variant of BART that was trained on 104 different languages. It is a bidirectional

transformer whose input consists of WordPiece representations (Tang et al., 2020).

The models described above were chosen because of their superior performance

on various NLP tasks, as referenced by numerous benchmark papers. However, each

model has advantages and disadvantages compared to others, particularly on specific

NLP tasks. Therefore, several model candidates are trained on a subset or sample

of the dataset for each NLP task covered, in order to optimize the hyperparameters

before further training.

5.3. Hyperparameter Optimization

Before the full-scale model training process is implemented, hyperparameters

are tuned for each model candidate, resulting in the optimal learning rate, weight

decay, and epoch parameters. Training arguments incorporate these hyperparameters,
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and the performance of all model candidates is compared following training. Finally,

the best-performing model is selected for further training on the larger-scale dataset.

First, the datasets to utilize for optimization must be specified. In this case,

a shuffled subset of the full dataset is used for faster computation:

1 tuning_subset_train = tokenized_datasets[’train’].shuffle(seed=73).select(range

(10000))

2 tuning_subset_validation = tokenized_datasets[’test’].shuffle(seed=73).select(

range(1000))

3

4 # Project constants

5 LR_MIN = 1.9e-5

6 LR_CEIL = 3.9e-5

7 WD_MIN = 0.008

8 WD_CEIL = 0.015

9 MIN_EPOCHS = 3

10 MAX_EPOCHS = 7

11 PER_DEVICE_EVAL_BATCH = 4

12 PER_DEVICE_TRAIN_BATCH = 4

13 NUM_TRIALS = 3

14 SAVE_DIR = f"optuna-test-translation"

15 NAME_OF_MODEL = f"sa-en-translation"

16 MAX_LENGTH = 512

17 study_name = "hp-search-multilingual-xlm-roberta"

18

19 def objective(trial: optuna.Trial):

20 training_args = TrainingArguments(

21 output_dir=SAVE_DIR,

22 learning_rate=trial.suggest_loguniform(’learning_rate’, low=LR_MIN, high=

LR_CEIL),

23 weight_decay=trial.suggest_loguniform(’weight_decay’, WD_MIN, WD_CEIL),
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24 num_train_epochs=trial.suggest_int(’num_train_epochs’, low = MIN_EPOCHS,

high = MAX_EPOCHS),

25 per_device_train_batch_size=PER_DEVICE_TRAIN_BATCH,

26 per_device_eval_batch_size=PER_DEVICE_EVAL_BATCH,

27 gradient_accumulation_steps = 2,

28 save_steps=100000,

29 fp16=True,

30 disable_tqdm=False,)

31

32 trainer = Trainer(

33 model=model,

34 args=training_args,

35 train_dataset=tuning_subset_train,

36 eval_dataset=tuning_subset_validation,

37 data_collator=data_collator,

38 tokenizer=tokenizer,

39 compute_metrics=compute_metrics,)

40

41 result = trainer.train()

42 return result.training_loss

Listing 5.1: Optuna Hyperparameter Training Objective Specification

In this case, a translation model is tuned using a specified hyperparameter

search space. The Optuna objective specifies the search to evaluate learning rates

between 1.9e-5 and 3.9e-5, weight decay between 0.008 and 0.015, and epochs between

3 to 7. A total of three trials are conducted, with Trial 2 resulting in the best study

parameters.

Trial 2 suggests using a learning rate of 3.053506639389683e-05 and a weight

decay of 0.011824988783648205 over 4 epochs. These parameters can now be used for

full training.
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Optuna also offers insights regarding optimization history for the best values,

as well as the importance of each hyperparameter in terms of the objective value.

The following figures represent this information visually:

Figure 5.1: Optuna Optimization History
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Figure 5.2: Optuna Parallel Coordinate Plot

Figure 5.3: Optuna Contour Plot
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Figure 5.4: Optuna Slice Plot

Figure 5.5: Optuna Hyperparameter Importances
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5.4. Model Selection

The hyperparameter-based model selection process was implemented through

the evaluation of several sets of models per task. Specifics and results are included

in the following sections.

5.4.1 Named Entity Recognition

Specifically, the named entity recognition (NER) task involved training mBERT,

ELECTRA, and XLM-RoBERTa models on the Oriya language subset of the Naama-

padam dataset:

Model Loss Accuracy Precision Recall F1

mBERT 0.5971 0.8820 0.5433 0.5397 0.6378

ELECTRA 0.5886 0.8835 0.5480 0.5377 0.6754

XLM-RoBERTa 0.2299 0.928 0.8191 0.8286 0.8239

Table 5.3: Performance Comparison of Monolingual NER Models

XLM-RoBERTa outperformed mBERT and ELECTRA and was thus selected

for the training of the multilingual NER model.

5.4.2 Summarization

The summarization task involved training mT5, mT5-XLSum, IndicBART,

and IndicBART-XLSum on the Sinhala language subset of the XLSum dataset. This

facilitated comparisons between i. the mT5 and mBART models for NER and ii.

models pre-trained on the XLSum dataset versus models without prior exposure to

XLSum for Summarization.

The mT5-XLSum model outperformed other model variations and was thus

selected for the training of the multilingual summarization model:
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Model Loss Rouge1 Rouge2 RougeL RougeLSum

mT5 1.905 9.987 2.304 8.907 8.756

mT5-XLSum 1.607 13.7865 5.0629 11.3648 11.3862

IndicBART 2.405 4.056 1.305 3.402 3.477

IndicBART-XLSum 3.489 5.839 2.487 3.897 3.897

Table 5.4: Performance Comparison of Monolingual Summarization Models

5.4.3 Translation

Finally, the translation task involved evaluating 15 pre-trained models on the

full FLoRes (dev+devtest) dataset to compare translation performance on a previ-

ously unseen language pair. Both Sanskrit-to -English and English-to-Sanskrit trans-

lations are evaluated:

Model BLEU (Sanskrit
to English)

BLEU (English to
Sanskrit)

Average BLEU
Score

XLM-ProphetNet 0.011879377928836 0.005861833242 0.008870605585496

t5 Large 0.000000000624575 0.133689755 0.066844877793178

mT5 (base) 0.022259849073041 0.01555443717 0.018907143119520

m2m-100 0.074590953161494 0.472830417 0.273710685083422

NLLB-200
(Distilled-600M)

0.398453950111655 0.4310856611 0.414769805622258

mBART-50 0.649924249166765 0.6633522396 0.656638244372801

IndicBART 0.178649619263800 0.1375794077 0.158114513457517

Helsinki NLP - Opus
EN-MUL

0.110251327811496 0.4235989039 0.266925115879636

Helsinki NLP -
OPUS EN-HI

0.092890830261022 0.3812469298 0.237068880009920

banglat5nmtenbn 0.046909449315937 0.07511954087 0.061014495094270

banglat5nmtbnen 0.616880848055648 0.6145097945 0.615695321286366

Table 5.5: Performance Comparison of Baseline Translation Models

Among all the models compared, mBART-50 emerged as the best-performing
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option and was selected for the training of the full-scale translation model. The

decision to use the Facebook Low Resource (FLoRes) benchmark dataset for evalua-

tion was based on the fact that it contains high-quality translations and is a widely

accepted standard for evaluating machine translation systems. It also provides a

uniform evaluation metric to utilize across various models.

5.5. Model Performance Monitoring

Model performance, training and evaluation time, and computation intensity

are monitored through Weights & Biases. Model variations that required signifi-

cantly longer to train while producing results that are equivalent, or even marginally

better, than more efficient models were discarded. Thorough examination of these

results aided the determination of ideal computation and hyperparameter variations,

thereby expediting training and evaluation times as well as facilitating the develop-

ment of more robust models.

Following are examples of outputs from training a multilingual named entity

recognition model, with performance recorded across different runs.

For instance, various metrics are measured through the train loop, indicating

which model variations are likely to achieve higher metrics. Named entity recogni-

tion, in particular, lends itself well to monitoring several tokens like person, place,

organization, and others. Using Weights & Biases, it is possible to understand these

metrics more closely in order to make a more informed model selection decision:
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Figure 5.6: Weights & Biases Train Loop Monitoring

The evaluation process is also monitored, indicating changes in metrics like

loss and overall accuracy as the trained model is evaluated at each epoch or specified

step:
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Figure 5.7: Weights & Biases Evaluation Loop Monitoring

Finally, the computation overhead, including the GPU, CPU, and disk utiliza-

tion, is also monitored:

The models trained using the process described in Chapter 5 deliver strong

performance on the test datasets compared to baseline models. Furthermore, a com-

parison with current benchmark models demonstrates that these fine-tuned models

significantly improve over previous state-of-the-art methods.
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Figure 5.8: Weights & Biases Evaluation Performance Monitoring
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Figure 5.9: Weights & Biases Compute Usage Monitoring
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Chapter 6: Model Performance

6.1. Model Training

Once an optimal model architecture has been selected for an NLP task, it is

trained on a large shuffled and downsampled dataset. The validation split of the

dataset is utilized for evaluation metrics as a part of the training loop, and the test

split is used for predictions and further testing.

6.1.1 Named Entity Recognition

For the named entity recognition task, an XLM-RoBERTa model is trained on

the full Naamapadam dataset, which includes 11 South Asian languages: Assamese,

Bengali, Gujarati, Kannada, Hindi, Malayalam, Marathi, Oriya, Punjabi, Tamil, and

Telugu.

Each language’s train and validation splits are concatenated to form compre-

hensive train and validation sets. Optuna is utilized for hyperparameter tuning, and

the optimal hyperparameters obtained are used to train the full-scale XLM-RoBERTa

model.

Finally, the test splits within the Naamapadam dataset dictionary are used to

evaluate the model’s performance on NER for each language. The results are available

in Chapter 6, along with performance comparisons on benchmark models.
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6.1.2 Summarization

For the summarization task, an mT5 model previously trained on the full XL-

Sum dataset is fine-tuned on the South Asian language splits of the XLSum dataset,

including Bengali, Gujarati, Hindi, Marathi, Nepali, Punjabi, Sinhala, Tamil, Telugu,

and Urdu.

Once again, each language’s train and validation splits are concatenated to

form comprehensive train and validation sets.

Optuna is utilized for hyperparameter tuning, and the optimal hyperparame-

ters obtained are used to train the full-scale mT5 model.

Finally, the test splits for each South Asian language within the XLSum

dataset dictionary are used to individually evaluate the model’s performance on sum-

marization for each language. The results are available in Chapter 6, along with

performance comparisons on benchmark models.

6.1.3 Translation

An mBART-50 model is trained on the full dataset containing Sanskrit-English

and English-Sanskrit translation pairs for the translation task. Train and validation

splits are used during the training and evaluation process.

Optuna is utilized for hyperparameter tuning, and the optimal hyperparame-

ters obtained are used to train the full-scale mBART-50 model.

Finally, the test split of the dataset is used to assess the model’s performance

on unseen data. The resulting model is also evaluated on the FLoRes dataset and

compared to benchmark models. All metrics and comparisons are available in Chapter

6.

This section covered the selection, optimization, and subsequent training of
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NLP models for named entity recognition, summarization, and translation. The

following section includes the evaluation results for each of these models, as well as

corresponding comparisons with current benchmark models.

6.2. Model Evaluation and Results

6.2.1 Named Entity Recognition

For named entity recognition (NER), loss, accuracy, precision, recall, and F1

metrics are evaluated.

Following the evaluation process of IndicNER, the test dataset is tokenized

and evaluated by language:

1 tokenized_test_set = {}

2

3 for lang in raw_datasets:

4 tokenized_test_set[lang] = raw_datasets[lang][’test’].map(

5 tokenize_and_align_labels,

6 batched=True,

7 num_proc=32,

8 load_from_cache_file=True,

9 desc="Running tokenizer on test dataset of language {0}".format(lang),

10 )

11

12 final_metrics = {}

13

14 for lang in tokenized_test_set:

15 predictions, labels, metrics = trainer.predict(tokenized_test_set[lang],

metric_key_prefix=lang)

16

17 lang_specific_results = {}
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18 for key in metrics:

19 if ’overall_precision’ in key:

20 lang_specific_results[’Precision’] = metrics[key]

21 elif ’overall_recall’ in key:

22 lang_specific_results[’Recall’] = metrics[key]

23 elif ’overall_f1’ in key:

24 lang_specific_results[’F1’] = metrics[key]

25 elif ’overall_accuracy’ in key:

26 lang_specific_results[’Accuracy’] = metrics[key]

27 elif ’loss’ in key:

28 lang_specific_results[’Loss’] = metrics[key]

29 final_metrics[lang] = lang_specific_results

Listing 6.1: Evaluation of NER Models

Performance on the test dataset for each language trained is listed in the table

below:
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Language Loss Precision Recall F1 Accuracy

Assamese 0.169148 0.363636 0.500000 0.421053 0.940299

Bengali 0.165400 0.755203 0.764293 0.759721 0.950631

Gujarati 0.135021 0.746835 0.819444 0.781457 0.957278

Hindi 0.129340 0.810011 0.864078 0.836171 0.960976

Kannada 0.172282 0.789668 0.819296 0.804209 0.943417

Malayalam 0.197746 0.833001 0.831894 0.832447 0.934380

Marathi 0.163358 0.809976 0.813842 0.811905 0.948280

Oriya 0.523524 0.233766 0.155508 0.186770 0.853328

Punjabi 0.263783 0.646846 0.684638 0.665205 0.921533

Tamil 0.203594 0.760870 0.853659 0.804598 0.929577

Telugu 0.115842 0.859155 0.859155 0.859155 0.961616

Table 6.1: Language-Specific Performance of Fine-Tuned Multilingual IndoLibNER
Model

The fine-tuned IndoLibNER model outperforms the benchmark IndicNER

model on all of the listed languages, as shown above. Evaluation results using the

IndicNER model are included in the table below.

Language Loss Precision Recall F1 Accuracy

Assamese 8.418570 0.000000 0.000000 0.000000 0.018657

Bengali 8.115846 0.032444 0.045135 0.037752 0.024571

Gujarati 6.699370 0.000000 0.000000 0.000000 0.025316

Hindi 7.283190 0.023979 0.032767 0.027692 0.029268

Kannada 6.025383 0.019126 0.021440 0.020217 0.029988

Malayalam 6.131558 0.027012 0.032558 0.029527 0.036208

Marathi 6.739916 0.035337 0.045943 0.039948 0.031099

Oriya 5.844997 0.023114 0.036717 0.028369 0.026776

Punjabi 6.984297 0.030512 0.034965 0.032587 0.035594

Tamil 5.823369 0.028846 0.036585 0.032258 0.070423

Telugu 5.715331 0.033333 0.028169 0.030534 0.028283

Table 6.2: Language-Specific Performance of Benchmark IndicNER Model
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6.2.2 Summarization

ROUGE scores (Rouge1, Rouge2, RougeL, and RougeLSum) are reported for

summarization models. Because the fine-tuned IndoLibSUM did not outperform the

benchmark csebuetnlp/mT5 multilingual XLSum model at the multilingual scale, it

was not further evaluated on individual languages. The evaluation metrics are listed

in the table below.

Loss Rouge1 Rouge2 Rougel Rougelsum

1.607 13.7865 5.0629 11.3648 11.3862

1.6063 13.7156 5.0303 11.2804 11.3094

1.6507 13.6056 5.0362 11.1609 11.1783

1.6503 13.5593 4.9916 11.1269 11.1483

1.6531 13.5221 4.9599 11.0911 11.1095

Table 6.3: Performance of Fine-Tuned Multilingual Summarization Models

These metrics suggest that fine-tuning the benchmark on the same dataset

(XL-Sum) does not elicit superior performance. Performance improvements could

potentially be achieved by fine-tuning the csebuetnlp/mT5 multilingual XLSum on

new datasets or additional languages.

It is also possible to conclude from the initial model selection process that the

mT5 model architecture lends itself best to the task of summarizing text in South

Asian languages. Further evaluation and comparison of IndicBART-based models

on additional languages may be necessary to definitively conclude the superiority, or

otherwise, of mT5-based models.

6.2.3 Translation

Finally, for translation, BLEU scores are reported for both English-Sanskrit

and Sanskrit-English translation predictions. The FLoRes-200 benchmark evaluation
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dataset is utilized for these comparisons (Costa-jussà et al., 2022; Goyal et al., 2021;

Guzmán et al., 2019).

1 # Load datasets for Sa-En and En-Sa translation

2 from datasets import load_dataset

3

4 san_to_eng_test = load_dataset("facebook/flores", "san_Deva-eng_Latn",split="dev+

devtest")

5 eng_to_san_test = load_dataset("facebook/flores", "eng_Latn-san_Deva",split="dev+

devtest")

Listing 6.2: Load FloRes Benchmark Dataset for Two Translation Directions

Both splits of the evaluation dataset are used in order to maximize the accuracy

of the comparison.

For instance, the fine-tuned model developed in this thesis is evaluated in the

Sanskrit-to-English translation direction as follows:

1 # Evaluate generated predictions against reference predictions in FloRes dataset

2 from datasets import load_metric

3 metric = load_metric(’sacrebleu’)

4

5 for r in results:

6 prediction = r[’prediction’]

7 reference = [r[’reference’]]

8 metric.add(prediction=prediction, reference=reference)

9 metric.compute()

Listing 6.3: Compute BLEU Metric for Translation Model

Performance on the FLoRes evaluation dataset in comparison to all candidate

models is included in the table below. Both translation directions, along with the

average BLEU score for each model, are also included:
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Model BLEU (Sanskrit
to English)

BLEU (English to
Sanskrit)

Average BLEU

t5 Large 0.0000000006 0.1336897550 0.0668448778

mT5 (base) 0.0222598491 0.0155544372 0.0189071431

m2m-100 0.0745909532 0.4728304170 0.2737106851

NLLB-200
(Distilled-600M)

0.3984539501 0.4310856611 0.4147698056

mBART-50 0.6499242492 0.6633522396 0.6566382444

IndicBART 0.1786496193 0.1375794077 0.1581145135

IndoLIB-SaEn
(fine-tuned model)

3.7573104547 0.5356411511 2.1464758029

Table 6.4: FLoRes Dataset Performance of Fine-Tuned Translation Model Versus
Benchmarks

In summation, when tested on their respective test sets and compared to

several standard benchmarks, the models developed in this thesis are competitive

with, if not superior to, current benchmark models for the languages covered. The

summarization model does not outperform the benchmark model, but nevertheless

demonstrates strong performance over baseline BART-based models. The NER and

translation models demonstrate significant performance improvements over baseline

and benchmark models.
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Chapter 7: Conclusion

This thesis focuses on the development of novel datasets and fine-tuned models

to address a variety of NLP tasks to improve the inclusion of South Asian languages

in NLP systems. In particular, it investigates how hyperparameter optimization and

model selection can be leveraged to improve the performance of existing models when

applied to a target language or multiple languages. It further evaluates the effec-

tiveness of various techniques for building NLP models by comparing them against

state-of-the-art models. Finally, it introduces new datasets for use in language mod-

eling and language detection for 31 South Asian languages across three language

families: Indo-Aryan, Sino-Tibetan, and Dravidian.

7.1. Summary

The outcome of this thesis is IndoLib, a set of tools designed to enhance the

inclusion of South Asian languages in NLP systems. IndoLib includes the development

of datasets as well as monolingual and multilingual models to address several tasks:

language modeling, language identification, named entity recognition, summarization,

and machine translation. Specific contributions of this work include:

(i) Datasets for language modeling and language identification, encompassing 31

languages spoken in South Asia, including languages previously unrepresented

or underrepresented in NLP datasets and models.
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(ii) Monolingual models for Sinhala summarization and Oriya named entity recog-

nition.

(iii) Multilingual models for named entity recognition and summarization.

(iv) A bidirectional machine translation model to translate Sanskrit to English and

vice versa.

7.2. Ethical and Environmental Considerations

NLP research has various environmental and ethical implications, including

but not limited to: substantial energy consumption to train massive language mod-

els; biased models and datasets; and underrepresentation or misrepresentation of

certain groups or cultures. To minimize these issues, NLP researchers must optimize

transparency regarding datasets used, processing steps, model training pipelines, and

known biases.

Fine-tuning pre-trained models significantly optimizes the environmental foot-

print of training language models. The fine-tuning process involves running a small

number (e.g., 100) of epochs on the original dataset while modifying only a few pa-

rameters (e.g., weights). For example, one can use the pre-trained model as a feature

extractor by removing all layers except the last layer before passing the data through a

dense network that predicts sentiment polarity. This approach reduces the computa-

tion required to classify text and improves performance because the final classification

layer is trained from scratch rather than using the pre-trained weights.

Biases in language models can be challenging to address, especially as size-

able pre-trained language models function as “black boxes” that are challenging to

decipher or accurately predict, particularly when exposed to new scenarios. Ensuring

proper representation of diverse populations within the datasets used to fine-tune
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models is a sensible starting point in understanding and addressing potential biases.

7.3. Future Work

This thesis covers developing fine-tuned models for named entity recognition,

summarization, and translation of various South Asian languages. It also included

the development of labeled and unlabeled datasets for 31 languages, including sev-

eral languages that are either underrepresented or entirely unrepresented by current

language models. Future work may expand upon this thesis by:

(i) Developing language models based on the unlabeled multilingual dataset to

include additional South Asian languages in future BERT-like models.

(ii) Optimizing language identification systems using the labeled multilingual dataset

to better differentiate between different South Asian languages, particularly lan-

guages with similar writing systems and phonologies.

Opportunities to contribute to the inclusion of South Asian languages in NLP

are abundant. The results of this thesis work could facilitate further research and

provide a baseline for further analyses, optimizations, and comparisons.
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