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Nonlinear buckling interaction for spherical shells subject to pressure and probing forces 

John W. Hutchinson1 and J. Michael T. Thompson2 

1School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138 
2Dept. of Applied Maths and Theoretical Physics, University of Cambridge, CB3 0WA, UK 

Abstract   Elastic spherical shells loaded under uniform pressure are subject to equal and opposite 

compressive probing forces at their poles to trigger and explore buckling.  When the shells support 

external pressure, buckling is usually axisymmetric; the maximum probing force and the energy 

barrier the probe must overcome are determined.  Applications of the probing forces under two 

different loading conditions, constant pressure or constant volume, are qualitatively different from 

one another and fully characterized.  The effects of probe forces on both perfect shells and shells 

with axisymmetric dimple imperfections are studied.  When the shells are subject to internal 

pressure, buckling occurs as a non-axisymmetric bifurcation from the axisymmetric state in the 

shape of a mode with multiple circumferential waves concentrated in the vicinity of the probe.  

Exciting new experiments by others are briefly described. 

Keywords: spherical shells, buckling, non-axisymmetric buckling, probing forces, energy barriers 

1  Introduction 

This paper explores the buckling of complete spherical shells under combined pressure loading of 

magnitude p  and equal and opposite compressive point forces P .  The point loads might be extra 

loads that the shell is designed to carry, or they might represent unexpected perturbations from an 

operational environment. Alternatively, they might be regarded as experimental probes designed to 

test the stability of the uniformly compressed sphere as suggested by Thompson and Sieber [1,2].  

The possibilities are fairly rich, given that the pressure may be internal or external, and either the 

pressure itself may be prescribed or it may depend on the shell deformation if instead the volume 

within the shell is prescribed.  In this paper we are drawing a strong and structured distinction for 

the uniform distributed load between a dead controlled pressure and a rigid controlled volume. 

When discussing stability, we shall, however, often want to make a similar distinction for the 

probing force. We discuss this quite fully in Section 6, but to facilitate short comments throughout 

the paper we outline the concepts briefly here. We shall want to consider the case of a dead probe 

when its force is controlled, and a rigid probe when its displacement is controlled. Finally, for the 

rigid case, we need to discriminate between the following: firstly a probe that is ‘glued’ to the shell, 
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so that it can, if required, provide a negative value of the probing force, P ; secondly a probe that is 

just pushing against the shell, and can only supply a positive value of P .  

 The fundamental problem is axisymmetric about the axis of the two diametrically opposing 

forces, but non-axisymmetric bifurcations are also located in the advanced post-bifurcation regime.  

When the probe forces P  are applied as dead loads with pressure or internal volume prescribed, 

buckling occurs either as a limit point (maximum) of P  or at one of the bifurcations, whichever is 

encountered first.  Both possibilities will be fully analyzed.  It will be seen that axisymmetric limit 

point instabilities are most likely when the shell is subject to external pressure, while internal 

pressure tends to stabilize the shell against these limit points giving rise to non-axisymmetric 

buckling.  As an interesting digression, we use this problem to investigate the question of at what 

internal pressure does the shell behave essentially like a balloon, making contact with a recent study 

by Taffetani and Vella [3].  Another issue investigated within the framework of the present study is 

the interaction between an axisymmetric dimple imperfection at each pole and probe forces for 

shells under external pressure.  Specifically, we ask whether imperfections result in qualitative 

changes in the destabilizing role of the point forces. 

This paper makes use of results in two earlier papers on spherical shell buckling by the 

present authors.  The shell equations and details of the numerical methods were given by 

Hutchinson [4].  The reader of the present paper will be referred to that paper for all but a few 

aspects of the analysis: issues unique to the present combined loading problem are given here in the 

Appendix.  The advanced post-buckling behavior of perfect spherical shells subject to external 

pressure without pole forces was presented by Hutchinson and Thompson [5], including the 

treatment of prescribed pressure and prescribed volume change.  The present paper will also draw 

on details from this second paper. 

2  Formulation and Preliminaries    

For the most part the notation follows that in [5].  The perfect spherical shell has radius R  

and thickness t .  The shell material is assumed to be linear elastic and isotropic with Young’s 

modulus E  and Poisson’s ratio  .  The stretching and bending stiffness of the shell are given by 

2/ (1 )S Et    and 3 2/ 12(1 )D Et   , respectively.  The resultant membrane stresses, N , and 

bending moments, M , are given in terms of the middle surface stretching strains, E , and 

bending strains, K , by 

 (1 )N S E E            and  (1 )M D K K            (1) 
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Attention is restricted to thin shells with / 1R t  such that the strains are small.   Shells made 

from polymeric or elastomeric materials might be as thick as / 25R t   and still undergo linear 

elastic strains in the present applications, but values of /R t  larger than 100 would be required for 

most metal shells if they are to remain elastic.  Attention is focused on shells undergoing 

deformations that are symmetric about the equator.  The shell equations employed in the present 

study, known as small strain-moderate rotation theory [6-8], are accurate as long as the ratio of the 

pole deflection, polew , to R  is less than about 0.1, as will be discussed later.  When the deformation 

is shallow such that it is confined to regions near the poles, these equations are accurately 

represented by shallow shell theory.  An important consequence of shallow deformations, which 

will be exploited in the present paper, is that the dependence of the solutions on /R t  and   can be 

absorbed into the variable normalizations.   

Denote the inward radial displacement by ( )w   where the meridian angle   is taken to be 

zero at the equator and / 2  at the upper pole, and write the pole deflection as ( / 2)polew w  .  

Following the convention in the two earlier papers, take p  to be the net external pressure acting on 

the shell so that when a net internal pressure is applied p  is negative.   Consistent with this sign 

convention, the change in volume, V , is taken to be positive when volume inside the middle 

surface of the shell decreases.   At the onset of buckling, the pressure of the perfect shell ( 0p  , 

0P  ), the associated inward radial displacement,  and the volume change are given by the 

classical results 
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In the uniform, linear pre-buckling state with 0P  , one has / / /pole C C Cw w p p V V    .  For 

this particular elastic system the equilibrium solutions are independent of the loading history.  But 

for convenience of presentation and understanding it is useful to prescribe a specific loading 

sequence.  In this paper, we take the uniform pressure to be applied first followed by application of 

the opposing pole forces P , regarding the pole forces as probes which trigger or explore the 

buckling behavior.  Let polew  be the additional inward pole deflection due to application of P .  

Whether pressure or volume is controlled, define 

 

  0 0
( ) /pole pole pole pole C Cw w w w w p p           (3) 
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where 0( )polew  and 0( / )Cp p  denote values at the onset of the application of P .  Finally, following 

[5], define a dimensionless measure of the additional pole deflection by 

 21 polew

t
 


           (4) 

2.1 Functional form of the solution as dependent on p  and   

For thin shells, the dimple produced by application of force P  at each pole is almost 

entirely localized at the pole.  As will be illustrated by the following example, outside the localized 

dimple the stresses and strains due to P  are sufficiently small compare to those in the dimple and 

those due to pressure p  such that the shallow nature of the solution renders the predictions of 

moderate rotation theory indistinguishable from shallow shell theory.  The following non-

dimensional form of the axisymmetric solution is based on the shallow shell theory limit of small 

strain-moderate rotation theory.  It captures to a high accuracy the entire dependence on /R t  and 

 .  The form is similar to that used in the earlier paper [5] on buckling due to p  alone.  

The solution for the shell subject simultaneously to p  and P  can be written as 

 ,
2 C

PR p
F

D p



 

  
 

         (5) 

The associated volume change of the shell can be written as  

 ,
C C C

V p t p
C H

V p R p

 

     
  with  

2

3

(1 ) 1
C

 


 
    (6) 

All the computations reported in this paper are carried out using moderate rotation theory for the 

full sphere subject to symmetry about the equator.  Based on comparison with highly accurate 

numerical axisymmetric solutions to the moderate rotation theory equations, we have established 

that the dimensionless forms (5) and (6) are accurate to within a fraction of one percent over the 

entire range of interest explored in this paper for all / 50R t   and 0 1 / 2  .   

2.2 Boundary conditions at the poles 

Plots of the dimensionless functions  F  and H  for / 0Cp p   are presented in Fig. 1.  This 

figure also illustrates the influence of the boundary condition at the pole.  The system of nonlinear 

ODEs governing the axisymmetric solution has a singular point at the pole.  To circumvent having 

to deal with unbounded values of the third derivative of the deflection at the pole, the force is 
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applied to a small, rigid circular disc embedded in the shell at the pole.  This disc remains 

axisymmetric throughout, even in the investigation of bifurcation into non-axisymmetric modes 

considered later.  The boundary conditions for the shell with the disc are given in the Appendix.  

The angle subtended by the disc from the pole to its edge, 0 , is specified by 

 
 

0
0 1/421

c t

R






         (7) 

For fixed 0c , the scaling in (7) preserves the independence of predictions to variations in /R t  and 

 .  With one exception noted later, all the calculations in this paper have been carried out using 

0 0.0482c   such that, for example, 0 0.2o   for / 200R t   and 0.3  . 

The possibility of non-axisymmetric bifurcation from the axisymmetric state in Fig. 1 will 

be considered in Section 5.  That analysis will reveal that over the range of pole deflections   

plotted in Fig. 1, no non-axisymmetric bifurcation occurs.  The effect of the size of the rigid disc on 

the relation of P  to   is largest in the vicinity of 1   where the shell undergoes a significant 

transition from linear to nonlinear behavior.  The choice 0 0.0482c   for the disc half-angle gives 

predictions very near those for the limit with no circular disc by Fitch [9], as will be noted in 

Section 5. 

 

Fig. 1 a) Geometry and loads. The influence with 0p   of the width of the rigid disc insert at each 

pole to which P  is applied. The half-pole angle of the disc is 0 .  b) Normalized pole force versus 

normalized pole displacement.  Volume change contribution in c) versus normalized pole 
displacement.  The curves have been computed assuming axisymmetric deformations with  

/ 200R t   and 0.3  .    
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2.3  Condition for validity of moderate rotation theory and shallow dimples at the poles 

In Fig. 2, the dimensionless inward radial deflection ( ) /w R  and the rotation ( )   of the 

shell middle surface are plotted for the example in Fig. 1 at three levels of pole deflection.  The 

localized nature of the deflection is evident, including the fact that the deflection and rotation 

outside the dimpled region become almost (but not strictly) zero.  Secondly, based on the study 

conducted in [4] for the case in which only external pressure is applied to the shell, moderate 

rotation theory begins to become inaccurate for spherical shell problems when the rotation exceeds 

about 30o .  Thus, Fig. 2b suggests that moderate rotation theory should be reasonably accurate in 

the range / 0.1polew R   or, equivalently,  

 0.1 /R t            (8) 

This range is more restrictive than the range for the case with buckling subject to pressure alone      

( i.e., 0.2 /R t  ), but nevertheless covers the cases of interest in this paper.   Condition (8) 

ensures both accuracy of moderate rotation theory and shallow deflections localized at the pole, 

which together ensure the validity of the dimensionless formulas (5) and (6).  Thus, when it is 

asserted that results for F  and H  are independent of /R t  and  , it is assumed that (8) holds. 

 

 

Fig. 2  Variation of the inward radial deflection of the shell, /w R , in (a) and the rotation of the 
shell middle surface,  , in (b)  for the shell in Fig. 1 with no pressure loading ( 0p  ) and with 

/ 200R t   and 0.3   ( 0 0.2o  ). 

 

2.4  Prescribed pressure or prescribed volume change 
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Specific examples will be used to illustrate the two limiting loading cases of ‘dead’ and 

‘rigid’ loading respectively:  (i) P  is increased subject to fixed net external pressure applied to the 

shell and (ii) P  is increased subject to fixed internal volume in the shell.  In the two examples in 

Fig. 3, each of these two cases has the same net external pressure, / 0.3Cp p  , at the onset when 

P  is applied.  The initial responses of the shell are almost the same for the two loading cases but 

they begin to diverge when 2  .  When the volume change is constrained to be zero, the net 

external pressure acting on the shell decreases as the pole deflection increases, as in Fig. 3c and the 

shell becomes considerably stiffer.  An equivalent way to think of this loading is that the net 

internal pressure increases if the volume constraint is enforced by, for example, an incompressible 

fluid inside the shell.  The difference in the two cases is significant leading to qualitatively different 

behavior.  For the loading with constant external pressure, there is only one equilibrium point, A, in 

Fig. 3a for a non-uniform state with 0   at which 0P  .  The relation, / ( )Cp p f   for 0P  , 

which has been fully characterized in [5], shows that f  is a monotonically decreasing function of 

 .   For a rigid probe that is unattached to the shell (just pushing, not glued), point A , is a state of 

unstable equilibrium.  At A , under constant / 0.3Cp p  , the shell could snap dynamically to a 

collapsed state in which the opposite poles of the shell come into contact.   

 

 

Fig. 3  a) Illustration of the difference between the responses of the complete spherical shell subject 
to concentrated forces P  at the poles for one case in which the net external pressure p  is held 

constant and the other case where the volume in the shell is constrained to be constant.  Both cases 

have / / 0.3C Cp p V V     at the onset of the application of P .  b) applies to constant p  with 

H  specifying the volume change as defined in the text.  c) applies to constant V showing the 
variation of the net external pressure acting on the shell.  These results have been computed with 

/ 200R t   and 0.3   but they are essentially independent of /R t  and   as discussed in the text. 
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By contrast, the increase in net internal pressure in the case of the shell subject to no change 

in volume during the application of P  has two equilibrium points with 0   and 0P  , A  and B  

in Fig. 3a.  For a rigid unattached probe, A  is again unstable while B  is stable.  State B  is the 

stable dimple buckle.  The solutions produced here with 0P   coincide with the dimpled buckling 

states for the perfect shell subject only to external pressure [2,5].  Further details of the two loading 

cases will be discussed in the following sections, including energy barriers to buckling associated 

with application of the probing forces.   

3  Shells under prescribed pressure and pole forces  

3.1   Forces applied subject to prescribed external pressure  

In this section more extensive results are presented for the case in which pressure p  is 

prescribed and held fixed while P  is applied, first for net external pressure ( 0p  ) and then in  

Section 3.3 for net internal pressure ( 0p  ).  In Fig. 4 computed curves are presented for P versus 

its corresponding pole deflection as measured by  .  The associated volume change characterized 

by H  in (6) is also plotted.  Over the range of / Cp p  and   presented in Fig. 4b, 20.17H   

provides a reasonable approximation.  Over the range of   plotted, non-axisymmetric bifurcation 

from these axisymmetric states does not occur, as will be discussed more fully in Section 5.  Earlier 

work on the axisymmetric problem has been reviewed by Evkin et al [10]. These authors carried out 

an analysis of the combined external pressure and point force problem deriving formulas that 

provide the relations between the probe force and deflection that are similar to the curves in Fig. 4a.  

 

Fig. 4  Dimensionless plots for F in a) and H  in b) for spherical shells subject to prescribed 
external pressure.  These results have been computed with / 200R t   and 0.3   but are 
essentially independent of /R t  and  . 
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  As described in Section 2.4, for each pressure loading there is at most only one equilibrium 

state with 0   and 0P   (c.f., point A  in Fig. 3).  Moreover, this equilibrium state is the dimple 

buckling mode of the shell subject to pressure alone, and it is unstable assuming the pole deflection 

is unconstrained.  If one regards the force P  as a probe used to explore the post-buckling response 

of the uniformly pressurized shell, then the energy expended at each pole to induce buckling is the 

work done by P  to reach state A : 

 

 
0

A

poleW Pd w   or  
2

0

1
( , / )

2

A

C

RW
F p p d

Dt

  



      (9) 

 

This energy barrier of the pressurized shell does not include the work done by the pressure through 

the change in volume during application of P  because that work is a component of the free energy 

of the system being probed.  The maximum probe force (the maximum P  in Fig. 4a) and the 

dimensionless energy barrier to bucking are plotted in Fig. 5 as a function of / Cp p .  These results 

are independent of /R t  and   assuming condition (8) is met.  Evkin et al [10] give numerical 

values for the maximum probe force for the values of / Cp p  in Fig. 5a represented by the solid 

dots.  The plot in Fig. 5b agrees with the results obtained in [5] for the energy barrier computed 

using the solution for the shell subject only to external pressure.  Since the system is elastic and the 

loadings are conservative, this agreement must hold if the equilibrium state determined for 0P   in 

the present combined loading problem is identical to the buckled state for the problem with only 

external pressure considered.  

Thinking of the point load as an imperfection, the plot of max ( / )CP p p  can be viewed as an 

imperfection-sensitivity diagram, and it is interesting to note that the effect of maxP  it is not 

particularly severe with a finite, non-zero, slope at / 1Cp p  .  Meanwhile the graph of ( / )CW p p , 

with a similar overall form, does imply a severe shock-sensitivity [2], with zero slope, at / 1Cp p  .  

Although predicted here from a point load ‘probe’, this energy barrier holds for any form of static 

or dynamic shock. 

 



 

10 
 

 

Fig. 5  For prescribed external pressure p : a) Maximum probe force. The solid dots are from Table 

1, formula (31), in [10];  b) Energy barrier per pole to buckling by the probe force. These results 
have been computed with / 200R t   and 0.3   but are essentially independent of /R t  and  . 

 

3.2  The role of imperfections:  Forces applied to shells with dimple imperfections 

 The spherical shells considered thus far and in the sections to follow are perfect.  It is well 

known that spherical shells buckling under external pressure are extremely sensitive to initial 

geometric imperfections.  A natural question to ask is whether imperfections change the qualitative 

character of the trends revealed above and later for the perfect shells.  This sub-section addresses 

this issue by introducing an axisymmetric dimple imperfection at each pole and then repeating the 

analysis for the combined prescribed external pressure and pole probing forces.  The probe force 

acts at the center of the dimple imperfection, not at a random location on the shell, and thus it is 

assumed that the imperfection location has been identified prior to applying the probe.  To our 

knowledge, studies of probing at random locations on an imperfect spherical shell have not been 

carried out.  Given the localized nature of the deformation associated with a dimple imperfection 

and with the probing force, one can anticipate little interaction between them if their respective 

domains of influence do not overlap.  In other words, if the probe is applied in an imperfection-free 

region of the shell, one might anticipate the response to be similar to that for a perfect shell, but this 

is only a conjecture. 

A dimple imperfection at the upper pole with an initial inward radial deflection from the 

perfect spherical shape is assumed [4,11]: 

 
2( / )( ) I

Iw e      with  2/ 1 /I B R t        (10) 
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Here, / 2     is the angle measured from the pole.  An identical dimple is assumed at the 

lower pole to preserve symmetry about the equator.  For specified B , the scaling of the dimple 

width as measured by I  in (10) yields imperfection-sensitivity predictions that are independent of 

/R t  and  .  The modifications needed to incorporate the imperfection into the shell equations and 

the numerical analysis are given in [4,11]. 

 

 

Fig. 6  Imperfection-sensitivity of spherical shells with dimple imperfections subject to external 
pressure alone.  a) Pressure versus pole deflection for shells with / 200R t  , 0.3   and 1.5B  .  
b) Maximum pressure versus imperfection amplitude for three values of /R t . 

 

 Curves of external pressure (with 0P  ) versus pole deflection are plotted in Fig. 6a for the 

perfect shell and for several imperfection amplitudes, / t , for shells with / 200R t  , 0.3   and 

1.5B  .  The maximum, or buckling, pressure, maxp , is plotted as a function of the imperfection 

amplitude in Fig. 6b for three values of /R t .  The exceptionally strong imperfection-sensitivity 

associated with the spherical shell subject to external pressure is evident, as is the fact that these 

results are essentially independent of /R t .  Further discussion of the imperfection-sensitivity is 

given by [4,11,12].  The objective here is to apply probe forces P  to the imperfect shell loaded to a 

prescribed external pressure below maxp  to see if the trends of maxP  and the energy barrier W  with 

respect to max/p p  are similar to those for the perfect shell. 

 The response of an imperfect shell to the probe force is shown in Fig. 7 for prescribed 

pressures at and just below maxp .  When the pressure is maxp , the probe immediately triggers 

buckling with P  immediately becoming negative.  Only if the probe were glued to the shell so as to 
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resist the inward pole motion might the shell be stabilized.  If the probe were unattached to the 

shell, dynamic snap buckling to a collapsed state would occur immediately.  For pressures 

somewhat below maxp there is a regime in which the displacement-controlled probe is stable prior to 

becoming unstable when 0P  . 

 

 

Fig. 7  Application of probe force P  at fixed external pressure for a shell with imperfection 
amplitude / 0.25t   and 1.5B  .  a)  Four pressures identified by dots at which probe force is 
applied.  b)  Relation of P  to additional pole deflection for each of the four pressures.   

 

 The maximum probe force and the energy barrier defined in (9) are plotted in Fig. 8 as a 

function of prescribed pressure ratio, max/p p , for three levels of imperfection.  The curves for the 

smallest imperfection amplitude, / 0.01t  , are very close to those plotted in Fig. 5 for the perfect 

shell.  The more imperfect the shell, the larger is the maximum probe force and energy barrier for a 

given ratio max/p p , albeit maxp  is less for the more imperfect shells.  The more important 

conclusion to be drawn from the results in Fig. 8 is that the qualitative trends of the maximum 

probe force and the energy barrier as they depend on max/p p are similar for imperfect and perfect 

shells.  In other words, the main results of this paper, which are for perfect shells, capture the 

essential aspects of the nonlinear buckling interaction between the pressure and probe force. 
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Fig. 8  Maximum probe force in a) and energy barrier to buckling in b) for imperfect spherical 

shells at prescribed external pressures below maxp .   Here, maxp is the buckling pressure for a given 

imperfection amplitude   (with 1.5B  ) plotted in Fig. 6b. 

 

3.3  Forces applied subject to prescribed internal pressure 

Net internal pressure ( 0p  ) acting on the shell has a stabilizing effect, stiffening the shell 

against the probing force P .  There is an extensive literature on this case for axisymmetric 

behavior, both linear and nonlinear, as well as regarding non-axisymmetric bucking.  The paper [3] 

serves as a useful access to this literature.  The short sub-section on this case is included to provide 

a complete picture of the role of pressure on stiffening the shell and as necessary background for 

the bifurcation analysis in Section 5.   Over the range of pole deflection plotted in Fig. 9, ( 10  ), 

the pole deflection increases monotonically with increasing P  and there are no solutions with 

0P   other than that associated with 0  .  Within the range plotted, non-axisymmetric 

bifurcations do not occur.  Fig. 9b reveals that for sufficiently large internal pressure, the pole 

deflection scales approximately in proportion to /P p  suggesting that the stiffness of the shell is 

dominantly determined by the internal pressure.  We will digress in the next sub-section to address 

the question of when the spherical shell effectively becomes a pressurized balloon.  Later, in 

Section 5, it will be seen that non-axisymmetric bifurcation does occur at larger pole deflections 

than those in Fig. 9. 
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Fig. 9  Response of the spherical shell under prescribed internal pressure ( 0)p   subject to pole 

force P .  These results have been computed with / 200R t   and 0.3   but are essentially 
independent of /R t  and  . 

 

3.4  When does a pressurized spherical shell become a balloon? 

The fact that internal pressure stiffens the shell and at sufficiently large pressure appears to 

dominate the stiffness, as seen in Fig. 9b, suggests that the shell has effectively become a balloon or 

membrane. This issue can be investigated by examining the role of the bending stiffness on the 

shell’s response to the pole forces.  The axisymmetric equations governing the combined loading 

problem are readily modified to accommodate the following change.  In (1), the shell stretching 

stiffness, S , is unchanged while the bending stiffness is replaced by 3 2/ 12(1 )MD D Et     .  

The choice 1   coincides with the formulation considered until now, but as   is reduced the 

shell becomes more and more like a membrane.  The numerical analysis of the governing ODEs is 

easily modified, and the results presented in this sub-section have been computed in the same 

manner as those already reported. 

Results for three levels of internal pressure in Fig.10 reveal that, when the pressure is as low 

as / 0.5Cp p   , reducing the bending modulus by a factor of 10 significantly reduces the initial 

stiffness of the shell.  Moreover, this reduction lowers the load level over the entire range of 

deflections.  An additional reduction by a factor of 10 to / 100MD D  has little further effect.  

When the internal pressure is / 1Cp p   , the same effects are evident but noticeably smaller.  

However, for / 10Cp p   , reducing the bending modulus has almost no effect on either the initial 

stiffness or on the load level at larger pole deflections.  The shell is now effectively a membrane.   

For the spherical geometry and loading combination considered, the transition from shell to 

membrane is not sharp but a useful estimate of the internal pressure marking the transition is 

Cp p  .  This transition estimate is in agreement with an estimate 4   obtained from Fig. 3a in 
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Teffetani and Vella [3], where 2
internal / 4 / Cp R EtD p p     is the dimensionless pressure in that 

paper.  These authors have introduced a dimensionless form of the shallow shell equations that 

incorporates the combined dependence on /R t  and internalp , thereby reducing the parametric 

dependency in the regime of high pressure ( 1  ) when the shell is effectively a membrane.  

 

 

 

Fig. 10  The effect of reducing the bending stiffness of the shell to MD  on the relation of P  to pole 

deflection while keeping the stretching stiffness unchanged.  The three levels of internal pressure 

are:    a) / 0.5Cp p   ,  b)  / 1Cp p   , and  c)  / 10Cp p   .  These results have been computed 

with / 200R t  , 0.3   and 0 1o  .  The bending stiffness in the ordinate is the full bending 

stiffness, 3 2/ [12(1 )]D Et   . 

 

4  Shells under prescribed change in volume and pole forces  

Formally, the case with no change in volume during the application of P  can be constructed 

using the general solution given by (5) and (6) for the case of prescribed pressure.  If / CV V   is 

prescribed, then   and / Cp p  are related by (6).  The dimensionless pole force is still given by (5).  

Thus, these two equations simultaneously generate relations between / 2PR D  and   as well as 

between / Cp p  and  .  We have not attempted to generate a complete functional description of 

( , / )CF p p  and ( , / )CH p p  which would be required to implement this construction.  Instead, in 

solving the governing ODEs numerically, we have directly imposed the constant volume constraint, 

as discussed in the Appendix. 

When the volume change of the shell is constrained to be zero during the application of P  

the behavior is quite different from that for constant p  as noted in the discussion of Fig. 3. Volume 

constraint in Fig. 3 would be applicable, for example, if the shell contained an incompressible fluid 

and if, prior to application of P , fluid was withdrawn until (for example) the net external pressure 
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/ 0.3Cp p   is reached.  Then, during the application of P , the volume constraint would apply if 

the shell were sealed with no further exchange of fluid.  This is a common way of applying pressure 

in laboratory tests.  Water can be regarded as effectively incompressible for most laboratory scale 

spherical shells whether metallic or polymeric.  During the application of P  the pressure inside the 

shell increases as   increases, i.e., the net external pressure decreases as plotted in Fig. 3c.  The 

response of the shell to the pole forces is therefore stiffer than in the case of prescribed pressure 

and, as seen in the example in Fig. 3a, P  attains a minimum and then begins to increase again as   

increases.  For this case there are two non-zero values of   with 0P  , denoted by A  and B .   

4.1  Forces applied subject to prescribed volume change generating initial external pressure 

In this subsection consideration is limited to imposed volume changes generating a net 

external pressure prior to application of the polar probe forces, i.e., 0( / ) / 0C Cp p V V      .  

Probe force-deflection behavior for various values of prescribed / CV V   are shown in Fig. 11a 

together with the associated drop in net external pressure in Fig.11b.  With / 0.25CV V   , the 

load-deflection curve displays a local maximum and minimum but no states with 0P   except in 

the uniform state ( 0  ).  By contrast, for / /C L CV V V V      there are two states with 0P   

and 0  .  For shells subject to prescribed change of volume, the lower limit, /L CV V  , for 

which states with 0P   ( 0)   exist depends on /R t  and  .  This minimum has been determined 

in [5].  For the present example, with / 200R t   and 0.3  , / 0.285L CV V   .  

 

Fig.11  Probe force versus pole displacement in a) and associated net external pressure in b) for 

spherical shells subject to fixed change in internal volume, / CV V  .  The net external pressure 

prior to application of P  is 0( / ) /C Cp p V V     .  These results have been computed with 

/ 200R t   and 0.3  . 
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Think back to the free, un-probed shell, with the notation introduced in Fig. 3a for solutions 

having two equilibrium states with 0P  . Then from any perturbed state between the origin and A  

the shell would snap back to the origin, while for any perturbed state between A  and B , the shell 

would snap towards the buckled state B .  As previously noted, we have verified that the states A  

and B  are identical to the dimpled buckling states for a shell subject to prescribed change of 

volume alone.  The force P  acts as a probe to trigger the buckle.   The energy barrier between the 

uniform state and stable buckled state B  is the work done by P  through the pole deflection from 

the uniform state to state A , where snapping to B  can occur: 

 
0

A

poleW Pd w           (11) 

The maximum probe force and energy barrier per pole are presented in Fig. 12.  The maximum 

probe force in Fig. 12a is nearly identical to that for the case of prescribed external pressure in Fig. 

5a if one makes the identification / /C CV V p p   .  This is because the difference between the 

two loading conditions only becomes appreciable beyond the local maximum, c.f., Fig. 3a.  There is 

somewhat more difference between the energy barrier for the two cases, although even here the 

difference is not large and becomes less so as / CV V   approaches 1.  The loading case with 

prescribed volume change has a limit below which buckled states do not exist, as already noted,   

and those limits, which depend on /R t  and  , are evident in Fig. 12b.  The effect of attaching the 

probe to the shell on stability is discussed in Section 6. 

 

Fig. 12  For prescribed change in volume with / 0CV V   : a) Maximum probe force;  b) Energy 

barrier per pole to buckling. The lower limit /L CV V   for which a buckled state exists with 0P   

depends on /R t  and  .  The normalized maximum probe force maxP  is nearly independent of /R t  

and   except for the lower limit /L CV V  .  There is a slight dependence on /R t  and   for the 

normalized energy barrier in b) where the lower limit is evident. 
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4.2  Forces applied subject to prescribed volume change generating internal pressure 

Force-deflection curves and associated changes in net pressure are presented in Fig. 13 for 

prescribed volume changes that give rise to a net internal pressure in the shell ( / 0CV V    and 

/ 0Cp p  ).  The trends are qualitatively similar to those for the prescribed internal pressure case in 

Fig. 9.  The largest differences between the two cases occur for the smaller internal pressures.  At 

larger internal pressures, for example with / 2CV V    , the change in internal pressure during 

application of P  in Fig. 13b relative to the initial internal pressure becomes small.  Consequently, 

for / 2CV V    , the increase in internal pressure during application of P  can effectively be 

neglected.  The close agreement for the two cases at higher initial internal pressures is evident in 

comparing Fig. 9a with Fig. 13a. 

 

 

Fig. 13  Force versus pole displacement in a) and associated net external pressure in b) for spherical 

shells subject to fixed internal volume, / CV V  , during application of P  generating a net internal 

pressure.  These results have been computed with / 200R t   and 0.3  . 
 

 

5  Non-axisymmetric bifurcation from the axisymmetric state 

Non-axisymmetric bifurcation from the axisymmetric state has been determined for the 

combination of prescribed pressure and applied pole forces.  This is an eigenvalue problem where 

the radial displacement component of the bifurcation mode has the form  ( )cosw f m   with   

as the meridional angle,   as the circumferential angle, and m  as the integer number of 

circumferential waves.  The computational method is presented in [4] with a few additional details 

specific to the pole force problem given in the present Appendix.  Fig. 14a shows the axisymmetric 
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pole force/deflection behaviour for various values of / Cp p  fixed during application of the pole 

force.  The solid dot on each curve marks the first point of bifurcation.  The lowest eigenvalue, as 

measured by the additional pole deflection   at bifurcation, is plotted in Fig. 14b.  The value of m  

associated with the critical mode is also indicated.  It follows from Fig. 14, as has already been 

asserted, that non-axisymmetric bifurcation from the axisymmetric solutions does not occur over 

the range of pole deflections plotted in any of the previous figures.  

Fitch [9] appears to be the first to have obtained accurate results for non-axisymmetric 

bucking from the axisymmetric state for indentation by a pole force.   Fitch’s results were 

computed with 0p   for clamped spherical caps, but his bifurcation results for the least shallow 

caps agree closely with the results obtained here for / 0Cp p  , i.e.,  / (2 ) 11.2PR D  , 14.5  ,  

and 3m  .  Fitch also carried out an initial post-bifurcation calculation and established that the 

non-axisymmetric buckling behaviour is stable under prescribed P .  More recently there have been 

a number of experimental and numerical studies of spherical shell buckling due to point forces 

where the shell is either unpressurized or subject to internal pressure [3,13-17].  These studies 

confirm the stable, relatively benign nature of non-axisymmetric buckling behaviour and in some 

cases explore behaviour by probing far beyond the onset of bifurcation. 

 

 

Fig. 14  Non-axisymmetric buckling from the axisymmetric state due to application of pole forces 
for the case of prescribed pressure.  a)  Curve of pole force versus pole deflection for axisymmetric 
deformation with solid dots indicating the first non-axisymmetric bifurcation.  b)  The value of 

normalized pole deflection   associated with the first bifurcation is plotted as a function of / Cp p  

along with the number of circumferential waves m  associated with the critical mode.  Note that the 
scale of the horizontal axis changes by a factor of 100 at 0p  .   These results have been computed 

with / 500R t  , 0.3v   and 0 0.0482c  , but to a good approximation they are independent of 

/R t  and  . 
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A small amount of external pressure significantly increases the pole deflection   at which 

non-axisymmetric bifurcation occurs.  The plot in Fig. 14b has been terminated at / 0.1Cp p   

because at this value of / Cp p , and at larger values, P  becomes negative prior to attaining the 

critical value of   for non-axisymmetric bifurcation.  If the probe applying the pole force were not 

attached to the shell, the shell would snap dynamically to a collapsed buckled state when P  

becomes zero prior to non-axisymmetric bifurcation.  Thus, the axisymmetric solutions plotted in 

Fig. 4 for / 0.1Cp p   do not experience non-axisymmetric bifurcation in the range of positive 

probe force P .  However, in the range 0 / 0.1Cp p   plotted in Fig. 14b, P  is positive when 

non-axisymmetric bifurcation occurs but with pole deflections never less than about 14  . 

When the shell is subject to internal pressure ( / 0Cp p   in Fig. 14), P  is always positive 

when the pole deflection is positive, and the critical pole deflection at non-axisymmetric bifurcation 

as measured by   increases almost linearly with increasing internal pressure.  Moreover, the 

number of circumferential waves m  in the bifurcation mode also increases with increasing internal 

pressure.   

 

 

Fig. 15  An illustration of the non-axisymmetric bifurcation mode and the associated axisymmetric 

state for a spherical shell with internal pressure / 3Cp p    and subject to pole forces.  

Distributions associated with the axisymmetric state in a) and b) at bifurcation, and the meridional 
variation of the critical bifurcation mode in c) having 5m  .  The meridional distance from the is 

pole measured by 21 /s s Rt  .  These distributions have been computed with / 500R t  , 

0.3   and 0 0.0482c  , but they are essentially independent of /R t . 

 

Fig. 15 illustrates some of the important features of the bifurcation mode and the critical 

axisymmetric state for a typical case with / 3Cp p    at the critical pole deflection 23.5  .  As 
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both the axisymmetric solution and the mode are localized at the pole, the dimensionless meridional 

distance from the pole, 2(1 ) /s s Rt  , is used in place of   because this scaling generates 

results that are independent of /R t .  For the case shown in Fig. 15, the normal displacement of the 

bifurcation mode has the form ( )cosbifw f s m .  The meridional dependence, ( )f s , normalized 

to have a maximum of unity, is plotted in Fig. 15c for the mode associated with the lowest 

eigenvalue which has 5m  .  The distribution of the axisymmetric state of 0w w w    (with 0w  

as the uniform deflection associated with p ) and the resultant membrane stresses, N  and N , 

are presented in Figs. 15 a,b.  The circumferential compression associated with negative N  in the 

range given approximately by 1 4s   drives non-axisymmetric buckling, and the mode decays to 

zero outside this range. 

The correspondence between the bifurcation mode in Fig. 15 and the buckling mode 

observed on an indented rubber beach ball by Vella, et al [18] in Fig. 16 is evident.  The buckles are 

confined to an annulus centered on the probe at the top of the shell in which N  is compressive.  

The ball has been indented beyond the onset of non-axisymmetric bifurcation deep into the post-

buckled regime.  As noted earlier, when the internal pressure is sufficiently large such that the 

shell’s bending stiffness is of secondary importance, the alternative dimensionless form of the shell 

equations given in [3] provides a more efficient description of the behavior which analytically 

captures the influence of the pressure. 

 

 

Fig. 16  Buckling of an inflated rubber ball subject to a cylindrical indenter (with permission from 

Vella et al [18]) 
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6  Implications for experimental probing of shock sensitivity 

 The study in this paper has emphasized the interaction of polar probing forces on spherical 

shells subject to both internal and external pressure.  For loading combinations involving external 

pressure, the probing force can trigger dynamic snap buckling.  For external pressure loadings, the 

distinction between probing under prescribed, or dead, pressure and prescribed, or rigid, volume 

control is dramatic.  Assuming the probe is unattached to the shell, the former loading results in 

catastrophic collapse of the shell while the latter results in a dynamic jump to a stable buckled state. 

The maximum probe force and the associated energy barrier to buckling have been determined as a 

function of the external pressure for both dead pressure and rigid volume control.  In addition, it has 

been shown that the qualitative trends of these dependencies for imperfect spherical shells are 

similar to those for the perfect shell when the probe is applied to the center of the imperfection.  

The present study has also shown that for the perfect spherical shell and the shells with 

axisymmetric imperfections, non-axisymmetric bifurcation from the axisymmetric state does not 

occur over the range relevant to these results.  For a shell subject to internal pressure, the distinction 

between dead pressure and rigid volume control is less important, particularly in the range of larger 

internal pressures.  For internal pressure, buckling due to the probe force occurs as a non-

axisymmetric bifurcation localized in an annular region surrounding the probe at relatively large 

pole deflections (no less than about 14 times the shell thickness) and is considerably more benign 

than in the case of external pressure. 

  Having obtained and examined the comprehensive interaction curves involving point and 

external pressure loading summarized in Figs. 4a and 11a, we are now in a position to examine the 

implications for the experimental probing technique proposed by Thompson and Sieber [1,2].  In 

this examination it will be important to consider more fully the manner in which the probe force is 

applied and whether the probe is attached or unattached to the shell.  To assist in this examination, 

the results of these two figures are reproduced in simplified form in Fig. 17.  We shall also draw on 

the significant result of Section 5, which affirms that in the deflection regimes under consideration 

there are no bifurcations to non-axisymmetric states. 
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Fig. 17  The results of Figs 4a and 11a reproduced in simplified form to aid the present discussion.  

 

The technique proposed in [1,2] is based on the idea of probing a test specimen of a shell 

(spherical or cylindrical, say) which is already compressed to, or close to, its working load.  A 

consequential question is whether it is possible to probe the shell in such a way as to non-

destructively measure its buckling load or at least to make some assessment of its stability.  In 

attempting to answer this question it will be necessary to characterize in more detail the manner in 

which the probe force is applied.  In the simplest case, a rigid probing displacement is imposed on 

the shell while the passive resisting force is continuously monitored. In this way one of the curves 

of Figs. 17a or 17b can be followed from the unloaded state at the origin, with the graph being 

displayed in real time as the test proceeds. The use of a rigidly controlled probing displacement 

(rather than force) means that the graph can be followed safely over a maximum of P .  The aim is 

to head towards, and locate at least approximately, the free buckled state of the compressed shell, 

denoted by A .  The area under the force-displacement curve from the origin to A  then supplies the 

energy barrier, as illustrated in grey for the lower curves in Figs. 17a and 17b.  This barrier gives a 

quantitative measure of the shock-sensitivity of the compressed shell against random static or 

dynamic disturbances.  The test must be performed with great care by an operative well versed in 

stability theory.  If the experimental probe is capable of supplying a negative value of the force (by 

virtue of being attached or ‘glued’ to the shell rather than just pushing against it) the test can be 

continued past state A .  Danger of a dynamic jump resulting in damage to the shell can arise from 

an unexpected bifurcation or the sudden occurrence of a vertical tangency in the force-displacement 

curve, as discussed thoroughly in [2].  We have established that neither of these occurs in the 

spherical shell scenario discussed in this paper whether for the perfect shell or for the shell with the 

probe located at the center of the dimple imperfection.  Even if one of these extraneous events does 
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occur with, for example, compressed cylindrical shells, techniques of control using a secondary 

probe tuned to provide zero force are examined in the afore-mention paper. 

We end this paper by taking a systematic look at the variety of rigid/dead scenarios 

presented in Fig. 17. 

7.1 Dead pressure with dead probing forces 

Focus first on Fig. 17a for dead pressure loads.  Here under applied dead probing forces, P, 

the shells starting at the origin will experience dynamic jumps from the limit point of maximum P, 

which will never restabilize until the poles self-contact as described earlier.  All the post-buckling 

equilibrium paths beyond the P maximum will be unstable as indicated. Notice, as is well 

understood, that any experimental probing would not be able to reach the desired intersections A  

with the horizontal axis.  

7.2 Dead pressure with rigid probe forces 

The post-buckling curves for fixed / Cp p  ratios in Fig. 17a would however be stabilized if 

the point loading were to be rigid (with the probe glued to the shell), with controlled pole 

deflections. We can be sure of this because when loading an initially stable elastic, conservative, 

system (here the shell plus its pressure loading system), the stability can only be lost at either a 

bifurcation point (not present here) or at a limit point (fold) where the controlled parameter (here 

the displacement) reaches a local maximum. These paths could thus be traced experimentally to 

points A  on the horizontal axis, and the energy barriers evaluated as the areas under the curves 

from the origin to A .  The area is shown in grey for the lowest curve.  

7.3 Rigid volume control with dead probe forces 

Turn next to Fig. 17b for the results under rigid volume control. The big difference here is 

that after a maximum of P , all the curves reach a minimum of P , and then increase until they 

leave the domain of the graph. With two simple folds like this, it is guaranteed that each path loses 

its stability at the maximum of P , where the shell jumps to a buckled state, restabilizing at the 

same P  (almost certainly, but not guaranteed) on the stable rising regime of the same path.  Then, 

if  P  is reduced, the shell remains in a buckled condition until the minimum is reached where it 

jumps back to an unbuckled state [19].  Accordingly, under such a cyclic history of prescribed P  

there would exist a hysteresis cycle, with the dynamic jumps at the maximum and minimum values 

of P .   Once again, as expected, an experimental probing under controlled dead P  will not be 

successful in locating A .  
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7.4 Rigid volume control with rigid probing forces 

Finally, consider Fig. 17b under conditions in which the probing forces, P , are provided by 

a rigid device such as a screw jack with the probe attached to the shell in such a way that it can 

apply negative as well as positive P , thereby prescribing the pole displacements.  All paths are 

now everywhere stable.  The curves can be followed all the way across the drawn graphs, picking 

up point A  if the axis is crossed. But if, alternatively, the probe is just pushing against the shell so 

that negative P  cannot be supplied, the system will jump from A , and perhaps come to rest at B . 

Luckily, if P  and its displacement are being monitored in real time, the fact that P  is heading 

towards negative values will be observed by the operator, and the test terminated (just) before this 

jump.  So, for those curves that cross the horizontal axis, the first crossing point A  can again be 

located and the energy barrier evaluated by experimental probing. 

This just leaves the cases in Fig. 17b, typified by the single drawn graph at volume ratio 

0.25, where the equilibrium path does not cross the horizontal axis. This curve could be followed 

experimentally, and would effectively tell the operator that with just pressure loading ( 0P  ) there 

are no post-buckling equilibrium states, and consequently no shock-sensitivity. 

We have made a comprehensive investigation of the interactive nonlinear responses of a 

complete spherical shell subjected simultaneously to uniform external (or internal) pressure and a 

pair of diametrically opposed point forces. It has been shown that the shell deformations are 

predominantly axisymmetric, but bifurcations into non-axisymmetric modes have been sought and 

identified. The point forces could be extra loads that the shell is designed to carry or noisy 

perturbations from an operational environment.  However, special attention has been directed 

towards their use as experimental probes designed to test the stability and shock-sensitivity of the 

uniformly compressed sphere [1, 2].  

 For this latter case, we have been lucky to find and allowed to describe very recent as-yet 

unpublished work by researchers at EPFL Lausanne (Tobias M. Schneider and Tobias Kreilos of 

the Laboratory for Emergent Complexity in Physical Systems) and Harvard (Emmanuel Virot and 

Shmuel M. Rubinstein). Their theoretical and experimental results are not written up yet, but the 

following comments on their elegant and innovative experiments are based on the website of the 

SMRLab at Harvard (http://projects.iq.harvard.edu/smrlab/turbulence-and-buckling-coke-cans) 

[20].  The experimental set-up is shown and briefly described in Fig. 18 along with a set of 

measured curves of probe force versus probe displacement at various levels of axial compression 

for one of the cylindrical shells.  The probe (or poker, as the authors call it) was not ‘glued’ to the 

shell so that the shell buckled and jumped away from the probe once A was reached. This served to 
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confirm that the shell had in fact reached the relevant saddle point of the energy barrier. As far as 

we are aware, this is the first successful application of the proposed probing technique. 

 
 
 
Figure 18  Experiments by Virot, Rubinstein, Kreilos and Schneider on an axially compressed 
cylindrical shell (the ubiquitous Coke can) where both the end load and probe are under rigid 
displacement-control. The probe’s load-deflection characteristics are shown on the graph for 
different values of the axial load, and succeed in locating the ‘free’ equilibrium states of the shell, 
A, where the probing force has dropped to zero.  
 

  The use of such probes to test, non-destructively, large and expensive prototype structures 

is still a long way off, and many problems still need to be explored and overcome. A major 

problem, beyond those examined in this paper, is that spherical and cylindrical shells are extremely 

sensitive to small imperfections that may be located almost anywhere on the shell. This makes the 

siting of the probe very important, but seemingly rather arbitrary unless geometrical irregularities of 

the shell surface have been carefully mapped as is being done by NASA in their latest large-scale 

experimental studies.  
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Appendix:  Boundary conditions at the pole   

 The only significant differences between the numerical method used to generate the results 

presented in this paper and that detailed in [4,11] for the problem with pressure alone is inclusion of 

a rigid disc on which the probe force acts and the enforcement of the volume change constraint for 

probe loading a constant volume.  The shell equations for small strain-moderate rotation theory are 

listed in the aforementioned references.  For both the axisymmetric solution and the non-

axisymmetric bifurcation eigenvalue problem, a rigid circular disc is embedded at the pole and the 

probe force is applied to the disc. The edge of the disc in the undeformed state is specified by the 

polar angle 0  defined in (7).  The disc mimics the fact that a probe would have small but finite 

radius, and it eliminates the singularity at the pole if the force is applied at a point.  For the case of 

axisymmetric deformations, and for bifurcations of interest here with wavenumbers 2m  , the 

inward disc displacement, polew , is strictly normal to the radial line through the pole.   The 

boundary conditions at the edge of the disc are obtained from the principle of virtual work.  With 

( , , )ri i i 

  
 as unit vectors defining the coordinate directions for the middle surface of the 

undeformed shell, the displacement vector of a point on the middle surface is ( )r ri u i u i u    
  

.  

 For the axisymmetric problem ( 0u  ) the pole deflection is regarded as the prescribed 

variable both prior to and during the application of the probe force.  The boundary conditions at the 

edge of the disc, 0 0/ 2    , are 

 
00 0 0cos , sin , ( ) ( ) / 0pole r pole ru w u w u u R       

          

where   is the rotation and ( ) ( ) /d d  .  Prior to application of the probe force, p  is treated as 

an unknown, as discussed in [4,11], with the additional condition 

 2 2 (0)p R RN    

During application of P , with p  fixed, the force can be evaluated using 

 2 2 (0)P p R RN     
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For the case in which P  is applied with the volume of the shell fixed, the most straightforward way 

to enforce the volume constraint at each new value of polew  is to use Newton’s method to adjust p  

to achieve the specified V .  This is an efficient procedure because the increments of polew  are 

small and, accordingly, only one Newton iteration is usually required to accurately evaluate p . 

 The bifurcation mode is a perturbation from the axisymmetric solution in the form 

 ( )cos , ( )sin , ( )cosru m u m u m       .  The bifurcation problem is solved using cubic splines 

to represent the  -dependence of the non-axisymmetric mode in the variational principle for the 

eigenvalue problem [4].  For 2m  , geometric admissibility conditions enforced at the disc edge, 

0  , are 0r ru u u u 
    . 

    




