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Abstract

In many areas of biomedical research, exponential advances in technology and facilitation of

systematic data-sharing increased access to multiple studies. This dissertation proposes and

compares methods to address three challenges in multi-study learning. First, personalized

cancer risk assessment is key to early prevention, but studies typically report aggregated

risk information. We address this challenge by proposing a method that integrates and

deconvolves aggregated risk, allowing for heterogeneity in study populations, design, and

risk measures, to provide personalized risk estimates that comprehensively reflect the best

available data. Second, prediction models are widely used to evaluate disease risk and

inform decisions about treatment, but models trained on a single study generally perform

worse on out-of-study samples. To address this challenge, we compare two strategies for

training prediction models on multiple studies to improve generalizability: merging and

ensembling; in practice, our theory can help guide decisions on choosing the ideal strategy.

Third, heterogeneous treatment effect estimation is central to personalizing treatment and

improving clinical practice, but existing approaches on synthesizing evidence across multiple

studies do not account for between-study heterogeneity. We address this challenge by

proposing a flexible method that estimates heterogeneous treatment effects from multiple

studies, including evidence from randomized controlled trials and real world data, while

appropriately accounting for between-study differences in the propensity score and outcome

models.

In Chapter 1, we propose a meta-analytic approach for deconvolving aggregated risks to
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provide age-, gene-, and sex-specific cancer risk. Carriers of pathogenic variants in mismatch

repair (MMR) genes benefit from reliable information about their cancer risk to better inform

targeted surveillance strategies for colorectal cancer (CRC), but published estimates vary.

Variation in published estimates could arise from differences in study designs, selection

criteria for molecular testing, and statistical adjustments for ascertainment. Previous meta-

analyses of CRC risk are based on studies that report gene- and sex-specific risk. This may

exclude studies that provide aggregated cancer risk across sex and genes and lead to bias. To

address this challenge, our meta-analytic approach has the ability to deconvolve aggregated

risks, allowing us to use all of the information available in the literature and provide more

comprehensive penetrance estimates. This method can be applied in the future to other

gene/cancer combinations without restriction on the mutation.

In Chapter 2, we compare methods for training gradient boosting models on multiple

studies. When training and test studies come from different distributions, prediction models

trained on a single study generally perform worse on out-of-study samples due to heterogene-

ity in study design, data collection methods, and sample characteristics. Training prediction

models on multiple studies can address this challenge and improve cross-study replicability

of predictions. We focus on two strategies for training cross-study replicable models: 1)

merging all studies and training a single model, and 2) multi-study ensembling, which

involves training a separate model on each study and combining the resulting predictions.

We study boosting algorithms in a regression setting and compare cross-study replicability

of merging vs. multi-study ensembling both empirically and theoretically. In particular, we

characterize an analytical transition point beyond which ensembling exhibits lower predic-

tion error than merging for boosting with linear learners. We verify the theoretical transition

point empirically and illustrate how it may guide practitioners’ choice regarding merging vs.

ensembling in a breast cancer application.

In Chapter 3, we propose an approach for estimating heterogeneous treatment effects

in multiple studies. Heterogeneous treatment effect estimation is central to many modern

statistical applications, such as precision medicine. Despite increased access to multiple
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studies, existing methods on heterogeneous treatment effect estimation are largely rooted

in theory based on a single study. These methods generally rely on the assumption that the

heterogeneous treatment effect is the same across studies. However, this assumption may

be untenable under potential heterogeneity in study design, data collection methods, and

sample characteristics across multiple studies. To address this challenge, we propose the

multi-study R-learner for estimating heterogeneous treatment effects under the presence of

between-study heterogeneity. This method allows information to be borrowed across multiple

studies and flexible modeling of the nuisance components with machine learning methods.

We show analytically that optimizing the multi-study R-loss is equivalent to optimizing the

oracle loss up to an error that diminishes at a relatively fast rate with the sample size. Under

the series estimation framework, we derive a pointwise normality result for the multi-study

R-learner estimator. Empirically, we show that as between-study heterogeneity increases, the

multi-study R-learner results in lower estimation error than the R-learner via simulations

and a breast cancer application.
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Abstract

Background: Lynch syndrome, the most common colorectal cancer (CRC) syndrome, is

caused by germline mutations in mismatch repair (MMR) genes. Precise estimates of age-

specific risks are crucial for sound counseling of individuals managing a genetic predisposi-

tion to cancer, but published risk estimates vary. The objective of this work is to provide gene-,

sex-, and age-specific risk estimates of CRC for MMR mutation carriers that comprehensively

reflect the best available data.

Methods: We conducted a meta-analysis to combine risk information from multiple studies

on Lynch-syndrome-associated CRC. We used a likelihood-based approach to integrate

reported measures of CRC risk and deconvolved aggregated information to estimate gene-

and sex-specific risk.

Results: Our comprehensive search identified 10 studies (8 on MLH1, 9 on MSH2, and 3 on

MSH6). We estimated the cumulative risk of CRC by age and sex in heterozygous mutation

carriers. At age 70, for males and females respectively, risks for MLH1 are 43.9% (95% CI:

39.6, 46.6) and 37.3% (95% CI: 32.2, 40.2); for MSH2 54% (95% CI: 49, 56.3) and 38.6% (95%

CI: 34.1, 42); and for MSH6 12% (95% CI: 2.4, 24.6) and 12.3% (95% CI: 3.5, 23.2).

Conclusion: Our results provide up-to-date and comprehensive age-specific CRC risk es-

timates for counseling and risk prediction tools. These will have a direct clinical impact

by improving prevention and management strategies for both individuals who are MMR

mutation carriers and those considering testing.
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1.1 Background

Lynch syndrome, also known as hereditary nonpolyposis colorectal cancer syndrome (HN-

PCC), accounts for approximately 3-5% of all colorectal cancers (CRC) and is an autosomal

dominant condition caused by germline pathogenic variants in mismatch repair (MMR)

genes (Rustgi (2007); Jass (2006)). Carriers of pathogenic variants in any of the MMR genes;

MLH1, MSH2, MSH6, PMS2, or EPCAM have an increased risk of developing several types

of cancers, including colorectal, endometrial, stomach, small bowel, and biliary tract cancers

(Umar et al. (2004)). Lynch syndrome is generally identified following investigation of famil-

ial aggregation of multiple and/or early-onset cancers based on the Amsterdam II criteria,

NCCN guidelines, Bethesda guidelines (Umar et al. (2004); Provenzale et al. (2016); Vasen

et al. (1999)) or more quantitative risk assessment (Kastrinos et al. (2018)). More recently, it

is also being found incidentally through panel genetic testing and by MSI or IHC testing of

all colorectal cancers. In addition, Hampel et al. have recently called for sequencing of all

colorectal cancers (Hampel et al. (2018)).

Carriers of pathogenic variants in MMR genes can benefit from reliable information about

their cancer risk to better inform effective management and targeted surveillance strategies.

Published estimates of penetrance (age-specific risk of cancer for carriers) vary. Studies

typically provide different measures of CRC risk, including cumulative penetrance, relative

risks (RR), or standardized incidence ratios (SIR) from family-based studies, and odds ratios

(OR) from case-control studies.

The objective of this work is to combine results from published studies to provide

more accurate age- and sex-specific penetrance estimates of MLH1, MSH2, and MSH6

on CRC for individuals with Lynch syndrome. Cumulative lifetime penetrance estimates

of CRC range from 30% to 74% for MLH1 and MSH2 gene mutation carriers, and from

10% to 22% for MSH6 mutation carriers (Giardiello et al. (2014)). Variation in published

estimates could arise from differences in study designs, selection criteria for molecular

testing, and statistical adjustments for ascertainment (Kraft and Thomas (2000)). Without

adjustment, estimated lifetime risk in studies of high-risk families can be higher than that
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estimated from population-based studies. In sensitivity analyses, studies have shown that

different ascertainment schemes can lead to inconsistent risk estimates (Stoffel et al. (2009);

Mukherjee et al. (2011)). To address these concerns, we explicitly consider properly adjusting

for ascertainment as an inclusion criterion for our meta-analysis. Previous meta-analyses

of CRC risk in individuals with Lynch syndrome are based on studies that report gene-

and sex-specific cumulative penetrance estimates (Chen et al. (2006); Jenkins et al. (2014)).

This excludes additional published risk measures from studies that provide aggregated

information across sex and genes. In our analysis, we do not make these exclusions, as they

may miss important information and may lead to bias.

1.2 Methods

1.2.1 Literature Search

We performed three separate PubMed searches for MLH1, MSH2, and MSH6, with the fol-

lowing queries: MLH1/Colorectal: ("MutL Protein Homolog 1"[Mesh] OR "MLH1"[TIAB] OR

"Lynch syndrome"[TIAB]) AND ("Risk"[Mesh] OR "Risk"[TI] OR "Penetrance"[TIAB] OR "Haz-

ard ratio"[TIAB]) AND ("Colorectal Neoplasms"[Mesh] OR "Colorectal Neoplasms, Hered-

itary Nonpolyposis"[Mesh] OR "colorectal cancer"[TIAB]), MSH2/Colorectal: ("MutS Ho-

molog 2 Protein"[Mesh] OR "MSH2"[TIAB] OR "Lynch syndrome"[TIAB]) AND ("Risk"[Mesh]

OR "Risk"[TI] OR "Penetrance"[TIAB] OR "Hazard ratio"[TIAB]) AND ("Colorectal Neo-

plasms"[Mesh] OR "Colorectal Neoplasms, Hereditary Nonpolyposis"[Mesh] OR "colorec-

tal cancer"[TIAB]), MSH6/Colorectal: ("G-T mismatch-binding protein"[Supplementary

Concept] OR "MSH6"[TIAB]) AND ("Risk"[Mesh] OR "Risk"[TI] OR "Penetrance"[TIAB]

OR "Hazard ratio"[TIAB]) AND ("Colorectal Neoplasms"[Mesh] OR "Colorectal Neoplasms,

Hereditary Nonpolyposis"[Mesh] OR "colorectal cancer"[TIAB]). We performed a similar

search in EMBASE with the following query: (’MutL protein homolog 1’/exp OR ’DNA

mismatch repair protein MSH2’/exp OR ’protein MutS’/exp OR MLH1:ab,ti OR MSH2:ab,ti

OR MSH6:ab,ti OR Lynch:ab,ti)AND(’rectum tumor’/exp OR ’colon tumor’/exp OR ((colon
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OR rectal OR rectum OR colorectal) NEAR/3 (cancer* OR neoplasm* OR carcinoma* OR

tumor* OR tumour*)):ab,ti)AND(’risk’/exp OR risk*:ab,ti OR penetrance:ab,ti OR ’hazard

ratio’:ab,ti).

References from relevant articles and previous meta-analyses were reviewed to identify

additional studies that were not captured by the PubMed or EMBASE searches. In selecting

articles from those found by the query, we required the following inclusion criteria: studies

must (1) report risk (and corresponding 95% confidence interval) of CRC for carriers of

germline mutations in MLH1, MSH2, or MSH6, (2) adjust for ascertainment if cohort is not

population based or design is not case-control, and (3) include non-overlapping participants

with other studies (Fig. 1.1). We excluded studies that focus on patients with polymorphisms

and/or CRC as a secondary cancer. We chose not to include the PMS2 gene, though it

is also involved in mismatch repair and associated with Lynch syndrome. In a PubMed

literature search similar to that performed for our main analysis (for MLH1, MSH2, and

MSH6), three studies report the risk of CRC for PMS2 mutation carriers (Win et al. (2012);

Sanne et al. (2014); Guindalini et al. (2015)) and only one of these provides disaggregated data

for PMS2 (Sanne et al. (2014)). PMS2 carriers generally have a later age of onset than their

MLH1/MSH2 counterparts, resulting in lower numbers of events for comparable observation

years. Moreover, the low sensitivity of clinical criteria and less widespread diagnostic testing

for identifying PMS2 carriers (Sjursen et al. (2010); Møller et al. (2017)) make it challenging

to extend our meta-analysis to PMS2 at the present time.

Studies were first assessed based on title and abstract using a natural language processing

(NLP) algorithm (Bao et al. (2019)). This algorithm uses a support vector machine (SVM),

which learns a linear decision rule based on the bag-of-ngrams representation of each title

and abstract. At least two reviewers independently examined the study abstracts, and those

deemed relevant underwent full-text review. For studies that remained relevant after full-text

review, we extracted the following information: first author’s last name, year of publication,

study population, ascertainment method, number of events, number of carriers, gene type,

and relevant risk estimates with corresponding confidence intervals.
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1.2.2 Statistical analysis

Common approaches for combining evidence across multiple studies include fixed effects

models, which assume an underlying true effect size for all included studies, and random

effects models, which allow for the true effect size to vary from study to study. Typically,

these approaches cannot be used directly to combine heterogeneous measures of CRC risk

that result from different study designs. Marabelli et al. Marabelli et al. (2016) developed

a likelihood-based method allowing meta-analytic integration of different types of cancer

risk estimates (e.g. penetrance, RR, SIR, and OR). This method, however, does not address

the challenge of combining studies that report gene-aggregated (a combination of two or

more MMR genes) or sex-aggregated cancer risks, which are common in the Lynch syndrome

literature. The deconvolution of aggregated risk information is crucial for personalized

prevention, as male and/or MLH1/MSH2 mutation carriers typically have higher risks of

CRC than their female and/or MSH6 counterparts (Stoffel et al. (2009); Jenkins et al. (2006);

Barrow et al. (2009); Choi et al. (2009); Bonadona et al. (2011); Vasen et al. (2001)). In this

work, we utilize a more general likelihood-based approach that allows the integration of

aggregated cancer risks to provide accurate age-, gene-, and sex-specific penetrance of CRC

for MMR mutations carriers.

As a preliminary step, we used the Q2 and I2 values to explore between-study hetero-

geneity. A p-value of less than .05 was considered representative of statistically significant

heterogeneity. All tests were two-sided and performed using the meta (Schwarzer (2007))

package in R (version 3.3) (R Core Team (2017)). To investigate potential publication bias,

we created funnel plots and used a two-sided Egger’s (Egger et al. (1997)) test to assess

asymmetry. We then conducted our meta-analyses based on two complementary approaches.

In approach (1) we used the DerSimonian and Laird random effects model (DerSimonian

and Laird (1986)) (see details in appendix A) to perform separate meta-analyses of cumula-

tive risk by decade of age. We assume the underlying penetrances are heterogeneous, with

between-study variance captured by the ∆2 parameter in DerSimonian and Laird (1986). The

DerSimonian and Laird random effects model does not provide a way to handle aggregated
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estimates and does not lend itself to extrapolation of estimates to older ages, as required in

genetic counseling and decision support tools.

To address these issues, in approach (2) we used a likelihood-based approach to obtain

penetrance estimates by yearly age. This approach extends the method Marabelli et al. (2016),

which allows the meta-analytic integration of different risk measures into age-specific pene-

trance curves, and is described in detail in appendix A. Briefly, we modeled the penetrance in

mutation carriers as a probability distribution function characterized by two parameters. We

specified the likelihood terms based on the study design and the risk estimates reported, and

estimated the parameters by maximizing the likelihood. Penetrance was assumed to follow a

log-logistic distribution. The log-logistic distribution was chosen because, among the com-

monly used parametric distributions, it was the most similar to penetrance curves reported

in the literature (Jenkins et al. (2006); Kopciuk et al. (2009)) and to the trend indicated by the

meta-analytic results of the DerSimonian and Laird random effects model in approach (1).

Parameter estimates based on the log-logistic distribution are provided in appendix A. In

addition, we conducted leave-one-study-out sensitivity analyses to better understand the

sources of heterogeneity. We used the meta (Schwarzer (2007)) and the stats4 (R Core Team

(2017)) packages in R to perform the DerSimonian and Laird random effects model analysis

and the maximum likelihood estimation for the likelihood-based approach, respectively.

We extended the Marabelli et al. method to incorporate studies that provide aggregated

risk information. For studies that report sex-aggregated risk, we modeled the penetrance

function as a weighted average of the male- and female-specific penetrance functions, which

can be estimated separately as long as we have at least some studies that provide sex-specific

risk. Weights correspond to the proportion of male or female carriers in the study. Similarly,

for studies that report gene-aggregated risk, we modeled the penetrance as a weighted average

based on the proportion of different carriers in the study. By allowing studies that report

aggregated risk estimates to borrow information from those that report gene- or sex-specific

risk estimates, this likelihood-based method combines both direct (gene/sex-specific) and

indirect (aggregated) evidence from the literature to provide comprehensive risk estimates
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of CRC.

Studies typically report risk estimates for carriers who are less than 80 years old. Pene-

trance estimates from ages 81 to 110 were obtained by multiplying the risk of non-carriers at

each age by the risk ratio comparing the risk of carriers to that of non-carriers at age 80 (RR),

i.e. RR = Carrier penetrance estimate at age 80 from likelihood approach
Non-carrier penetrance estimate at age 80 from SEER . We obtained the risk of CRC

for non-carriers from the Surveillance, Epidemiology, and End Results Program database

(SEER) (SEE), which provides the combined risk of CRC for carriers and non-carriers. As

mutations are sufficiently rare, we assume that the general population risk provided by SEER

approximates the CRC risk for non-carriers (de la Chapelle (2005)).

1.3 Results

Overall, our searches resulted in 4759 abstracts as of March 8, 2019. Among the 4759 ab-

stracts, 586 were deemed relevant by the natural language processing (NLP) algorithm. After

human review, 576 were excluded due to the following criteria: unclear/inappropriate ascer-

tainment adjustment (23), not relevant for MMR or CRC (129), overlap with included studies

(16), reports penetrance modified by other risk factors (10), second cancer (50), missing

full-text (7), non-pathogenicity (2), polymorphisms (74), not relevant for penetrance (265).

For our final meta-analysis, we included 10 studies (Fig. 1.1). Table 1.1 shows a synopsis of

the included studies, along with a description of the study design, ascertainment mechanism,

and risk estimation methods. Studies vary in terms of population, ascertainment, and design.

Among the studies, one reported aggregated risk for sex, three reported aggregated risk for

the MMR genes, and one reported both sex- and gene-aggregated risk. Eight studies reported

risk for MLH1 carriers, nine reported risk for MSH2 carriers, and three reported risk for

MSH6 carriers.

To quantify the between-study variation, we performed tests of heterogeneity and calcu-

lated the corresponding I2 values. With three genes, six age intervals (ages 30, 40, ..., 80),

and two sexes, a total of 36 tests were performed. For MLH1, the p-values were <0.001 at

ages 40-70 for both sexes. The corresponding I2 values ranged from 83.3% (68.5, 91.1) to
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Figure (1.1) PRISMA flow diagram of the literature review for our meta-analysis
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Study Population Ascertainment Estimation No. of Events No. of Carriers Gene(s) Condition for
unbiasedness

Aaltonen Regional hospitals, FD relatives of CRC Kaplan-Meier analysis 91 242 MLH1, MSH2 No additional familial
et al. Finland cases where relatives were aggregation other than

censored at ascertainment, MLH1/MSH2
emigration, or last contact
with the proband

Bonadona ERISCAM study Relatives of CRC Genotype restricted likelihood 768 1633 MLH1, MSH2, MSH6 No additional familial
et al. France cases identified from conditioning on the phenotypes aggregation other than

cancer genetics clinics of all relatives and genotype MLH1/MSH2/MSH6
and mutated for of the proband
MMR genes

Borras Genetic counseling clinic Relatives of CRC Modified segregation analysis 28 180 MLH1 No additional familial
et al. Spain cases with MMR conditioning on the genotype aggregation other than

mutation and phenotype of the proband MLH1
and phenotype of all relatives

Dowty CCFR FD and SD, or all Modified segregation analysis 1112 2253 MLH1, MSH2 No additional familial
et al. relatives of cases with conditioning on the genotype aggregation other than

MMR mutation, for and phenotype of the MLH1/MSH2
population- and proband, or on the
clinic-based families, genotype of the proband
respectively and phenotypes of all

relatives, for population-
and clinic-based families,
respectively

Dunlop SNCR, Scotland Relatives of early- Kaplan-Meier analysis 25 67 MLH1, MSH2 No effect from size-based
et al. onset CRC cases excluding probands sampling; or, risks to

identified from patient carrier cases and
population-based relatives are no higher
registries and than carrier non-patient cases
mutated for MMR
genes

Kopciuk Medical Genetics Clinic Multiple-case families Modified segregation analysis 101 145 MSH2 No additional familial
et al. Canada with MMR mutation conditioning on the phenotypes aggregation other than

of all FDR MSH2

Moller Prospective multi center Mutation carriers with Cumulative incidence rate 711 1942 MLH1, MSH2, MSH6 None
et al. database by Europe increased risk of CRC excluding individuals with

"Majorica group" identified by each center prior cancer

Mukherjee MECC, CHS All participants, or Modified segregation analysis 74 88 MSH2 No additional familial
et al. carrier families with conditioning on the genotype aggregation other than

history of LS, identified and phenotype of the MSH2
from population study proband, or on the genotype
and cancer clinics, and phenotype of the proband
respectively and the phenotype of affected

FD relatives

Quehenberger Dutch HNPCC family Multiple-case families Modified segregation analysis 104 397 MLH1, MSH2 No additional familial
et al. registry with MMR mutation conditioning on observed aggregation other than

phenotypes and on the MLH1/MSH2
event that at least one
case in the family
was a carrier

Stoffel DFCI, UMichigan Multiple-case families Modified segregation analysis 99 307 MLH1, MSH2, MSH6 No additional familial
et al. with MMR mutation conditioning on the genotype aggregation other than

and phenotype of the proband MLH1/MSH2/MSH6
and phenotype of all relatives

Table (1.1) Summary of studies included in our meta-analysis
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90.3% (83.2%, 94.4%) for males and from 78.4% (57.5%, 89%) to 86.6% (75.7%, 92.6%) for

females. The p-values at age 80 for males and females, respectively, were 0.005 (I2 : 83.0%

(56.5, 93.3)) and 0.002 (I2 : 84.8% (62.0, 93.9)). For MSH2 male carriers, the p-values were

<0.0001 at all age intervals with corresponding I2 values ranging from 89.2% (81.7, 93.6)

to 94.1% (89.8, 96.6). For MSH2 female carriers, the p-value was 0.0415 (I2: 50.2% (0.0,

76.7)) at age 50 and <0.0001 at ages 60 (I2: 76.0% (54.0, 87.5)) and 70 (I2: 77.4% (57.1,

88.1)). For MSH6, the only significant p-value at the 0.05 level was that of female mutation

carriers at age 70 (p-value = 0.0423, I2: 68.4% (0.0, 90.8)). Overall, there is evidence for

heterogeneity in the risk estimates across the decades for MLH1 and MSH2 mutation carriers

but less so for MSH6. Results from tests of asymmetry in the funnel plots suggest that there

is little evidence of publication bias. Details on publication bias assessment can be found in

appendix A.

Next, we examined sources of heterogeneity from various aspects of study characteristics.

This between-study heterogeneity could arise due to differences in study design, mutation

type, study population, and estimation strategy. Among the 10 included studies, Moller et al.

(Møller et al. (2017)) was the only study that conducted a prospective cohort analysis, whereas

the rest focused on retrospective cohorts. Regarding mutation type, Borras et al. (Borràs et al.

(2010)), Kopciuk et al. (Kopciuk et al. (2009)), and Mukherjee et al. (Mukherjee et al. (2011))

are studies that exclusively focused on founder mutations. All other studies included carriers

of mixed mutation types, so it was not feasible to separate the effects of mutations from these

studies at the present time. As a result, the findings from our meta-analysis represent the

average risk among a group of carriers with a representative mix of mutations. Regarding

study populations, it is likely that different populations may segregate different mutations.

Though there are studies containing more than one subpopulation (Møller et al. (2017);

Baglietto et al. (2010); Dowty et al. (2013)), they provide limited evidence of population-

specific variation in penetrance. As shown in Table 1, each study used an analysis method

that addressed ascertainment mechanism in its design. Studies that were not population-

based (Stoffel et al. (2009); Mukherjee et al. (2011); Bonadona et al. (2011); Kopciuk et al.
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(2009); Borràs et al. (2010); Dowty et al. (2013); Aaltonen et al. (2007); Quehenberger et al.

(2005)) typically used estimation strategies that condition on information of the phenotype

or genotype of included individuals to adjust for ascertainment.

Fig. 1.2 shows the following: (1) the means and 95% CI of the meta-analytic penetrances

at each 10-year age interval that were estimated using the DerSimonian and Laird method;

(2) the smoothed curves obtained from the likelihood-based approach that represent our final

estimates by yearly age. Estimated cumulative penetrance by age 70 from both approaches are

displayed in Table 1.2 by sex and gene. Using the likelihood based approach, the penetrances

by age 70 were estimated, for males and females respectively, to be 43.9% (95% CI: 39.6,

46.6) and 37.3% (95% CI: 32.2, 40.2) for MLH1 carriers 54% (95% CI: 49, 56.3) and 38.6%

(95% CI: 34.1, 42) for MSH2 carriers, and 12% (95% CI: 2.44, 24.6) and 12.3% (95% CI: 3.5,

23.2) for MSH6 carriers. In general, male carriers of MLH1 and MSH2 have higher risk of

developing colorectal cancer compared to their female counterparts. Estimates of MSH6

penetrance on CRC show increased variability (wider CIs) due to smaller sample sizes. Visual

comparison of the CIs within each 10-year age interval indicates overlap across studies for

all three genes. Because all studies reported cumulative penetrance, we were able to include

the same studies (8 on MLH1, 9 on MSH2, and 3 on MSH6) for both the DerSimonian and

Laird and the likelihood-based approaches. In addition to Fig. 1.2, Fig. A.1 in appendix A

shows the study-specific estimates and 95% CI by decade of age.

Among the ten studies, four focused on individuals who have not been screened or

have not had prior surgery by censoring participants at the age of colonoscopy screening

or prophylactic surgery (Bonadona et al. (2011); Kopciuk et al. (2009); Dowty et al. (2013);

Quehenberger et al. (2005)). For the remainder of the studies, it was unclear whether screened

individuals were included. While screening and surgery were not part of the recruitment

criteria, it is reasonable to assume that a number of participants from these six studies (Stoffel

et al. (2009); Mukherjee et al. (2011); Møller et al. (2017); Borràs et al. (2010); Aaltonen et al.

(2007); Dunlop et al. (1997)) may have undergone screening/surgery according to current

screening recommendations (Vasen et al. (2007)). We divided the studies into two groups:

12



(a) MLH1

(b) MSH2
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(Continued)

(c) MSH6

Figure (1.2) Age-specific colorectal cancer risk for mismatch repair gene mutation carriers

Panels (a), (b), and (c) correspond to MLH1, MSH2, and MSH6 mutation carriers, respectively. DerSimo-
nian and Laird random effects model results: The age range is divided into 10-year intervals. Within
each we show the meta-analytic estimate from the DerSimonian and Laird random effects model (thick
vertical black bars). The height of vertical bars represents 95% CIs. Likelihood-based approach results:
Smooth blue and orange lines represent penetrance estimated from the likelihood-based approach by yearly
age. Blue corresponds to male carriers, and orange corresponds to female carriers.
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Sex Gene Method Study Population Cum. Penetrance (%) with 95% CI
Males MLH1 DerSimonian and Laird All 35.1 (28.5, 42.4)

Unscreened 36 (26.6, 46.7)
Unspecified 34.5 (22.6, 48.7)

Likelihood-based All 43.9 (39.6, 46.6)
Unscreened 35.3 (29.4, 40)
Unspecified 50 (43.3, 54.2)

MSH2 DerSimonian and Laird All 49.6 (40, 59)
Unscreened 51.8 (36.4, 66.9)
Unspecified 47.3 (35.7, 59.1)

Likelihood-based All 54 (49, 56.3)
Unscreened 53.2 (47.1, 57.4)
Unspecified 57 (49.2, 62.3)

MSH6 DerSimonian and Laird All 13.8 (9.7, 19.3)
Unscreened 14 (7.18, 25.6)
Unspecified 13.7 (9.01, 20.3)

Likelihood-based All 12 (2.4, 24.6)
Unscreened 19.2 (5.06, 32.8)
Unspecified 13.2 (0.6, 76.2)

Females MLH1 DerSimonian and Laird All 29.7 (23.2, 37.1)
Unscreened 31.8 (24.4, 40.2)
Unspecified 27.4 (15.2, 44.2)

Likelihood-based All 37.3 (32.2, 40.2)
Unscreened 34 (27.1, 39.4)
Unspecified 36.7 (29.6, 42.4)

MSH2 DerSimonian and Laird All 36 (30.6, 41.8)
Unscreened 34.6 (26.9, 43.2)
Unspecified 37.5 (28.8, 47.2)

Likelihood-based All 38.6 (34.1, 42)
Unscreened 37.3 (33, 40.6)
Unspecified 41 (34.4, 46.3)

MSH6 DerSimonian and Laird All 16.6 (7.4, 32.9)
Unscreened 10.7 (4.89, 21.9)
Unspecified 22.3 (10.5, 41.2)

Likelihood-based All 12.3 (3.5, 23.2)
Unscreened 5.3 (0.002, 16.5)
Unspecified 29.6 (2.5, 79.5)

Table (1.2) Estimated cumulative penetrance (%) by age 70 of colorectal cancer
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(1) studies that focus on unscreened populations (Bonadona et al. (2011); Kopciuk et al.

(2009); Dowty et al. (2013); Quehenberger et al. (2005)) and (2) studies that do not provide

details on screening and therefore are assumed to be a mix of screened and unscreened

populations (Stoffel et al. (2009); Mukherjee et al. (2011); Møller et al. (2017); Borràs et al.

(2010); Aaltonen et al. (2007); Dunlop et al. (1997)). Fig. 1.3 shows the cumulative penetrance

of CRC for MLH1, MSH2, and MSH6 mutation carriers, after stratifying studies by screening

status. Estimated cumulative penetrance by age 70 from both the DerSimonian and Laird

and likelihood-based approach are displayed in Table 1.2 by sex, gene, and screening status.

For the four studies that included unscreened participants, the penetrance by age 70 was

estimated, for males and females respectively, to be 35.3% (95% CI: 29.4, 40) and 34%

(95% CI: 27.1, 39.4) for MLH1 carriers, 53.2% (95% CI: 47.1, 57.4) and 37.3% (95% CI: 33,

40.6) for MSH2 carriers, and 19.2% (95% CI: 5.06, 32.8) and 5.3% (95% CI: 0.002, 16.5) for

MSH6 carriers. For the six studies that potentially included both screened and unscreened

participants (unspecified), the penetrance by age 70 was estimated, for males and females

respectively, to be 50% (95% CI: 43.3, 54.2) and 36.7% (95% CI: 30, 42.4) for MLH1 carriers,

57% (95% CI: 49.2, 62.3) and 41% (95% CI: 34.4, 46.3) for MSH2 carriers, and 13.2% (95% CI:

0.6, 76.2) and 29.6% (95% CI: 2.5, 79.5) for MSH6 carriers (Fig. 1.3). Studies on unscreened

populations report lower cumulative risk for MLH1 and female MSH6 mutation carriers

compared to studies on both screened and unscreened populations. However, the converse is

true for male MSH6 mutation carriers. Among the MSH6 studies that report CRC risk in both

screened and unscreened populations, Stoffel et al. (Stoffel et al. (2009)) made conservative

ascertainment adjustments, which could lead to lower risk estimates. While differences in

CRC risk between the cohorts appear to be more pronounced for MSH6 mutation carriers,

this could be attributed to the lack of studies in the unscreened group at age 80. Overall,

there is considerable overlap in the 95% CIs across all three genes and both sexes, indicating

insufficient evidence to substantiate differences in CRC risk between unspecified (likely

a mix of screened and unscreened) and unscreened populations. In addition to Fig. 1.3,

Fig. A.2 in appendix A shows the study-specific estimates and 95% CI by decade of age.
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(a) MLH1
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(Continued)

(b) MSH2
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(Continued)

(c) MSH6

Figure (1.3) Colorectal cancer risk stratified by screening status

Colorectal cancer risk stratified by studies on unscreened/no prior surgery population (top panel) or unspeci-
ficed (i.e. likely a mix of screened and unscreened populations) (bottom panel) for (a) MLH1 carriers, (b)
MSH2 carriers, and (c) MSH6 carriers. DerSimonian and Laird random effects model results: The age
range is divided into 10-year intervals. Within each we show the meta-analytic estimate from the DerSimo-
nian and Laird random effects model (thick vertical black bars). The height of vertical bars represents 95%
CIs. Likelihood-based approach results: Smooth blue and orange lines represent penetrance estimated
from the likelihood-based approach by yearly age. Blue corresponds to male carriers, and orange corresponds
to female carriers.
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Next, we conducted sensitivity analysis by design/analysis strategy, study population,

and mutation type. Mukherjee et al. (Mukherjee et al. (2011)) focused on founder mutations

in MSH2 for individuals of Ashkenazi Jewish descent. Because previous evidence shows

that there is an increased risk of CRC in Ashkenazi Jews (Locker and Lynch (2004)), we

conducted our meta-analysis with and without this study. Removal of Mukherjee et al. had

little effect on the combined penetrance estimates for MSH2 mutation carriers. Similarly, we

conducted a systematic leave-one-study-out sensitivity analysis and concluded that the meta-

analytic results of MLH1 and MSH2 mutation carriers are quite robust to leave-one-study-out

sensitivity analysis (Fig. 1.4). Estimated penetrance for female MSH6 mutation carriers is

sensitive to the removal of studies by Bonadona et al. (Bonadona et al. (2011)) and Moller

et al. (Møller et al. (2017)). Penetrance for male MSH6 mutation carriers is sensitive to the

removal of Moller et al (Møller et al. (2017)). Because these two studies were weighted more

heavily in the analysis due to their sample sizes, it is not surprising that removing one would

affect the risk estimates. This variation in penetrance estimates for MSH6 carriers can be

attributed to the smaller sample size (both in number of included studies and in number of

mutation carriers) compared to their MLH1/MSH2 counterparts. Moreover, because MSH6

mutation carriers tend to have a later age of onset, the risk information reported by studies is

limited to ages 50 and above. Among the three studies that report sex-specific risk for MSH6

mutation carriers, two indicate that female risks are associated with more variability than

male risks (Stoffel et al. (2009); Møller et al. (2017)), resulting in more variable maximum

likelihood estimates for the female carriers. Overall, the meta-analytic risk estimates for

MLH1/MSH2 carriers are robust to the removal of studies, whereas the estimates for MSH6

are more easily affected due to the smaller number of available studies.

1.4 Discussion

We performed a systematic review of the risk of CRC in mutation carriers of MLH1, MSH2,

and MSH6, and combined evidence from 10 studies to provide age-, gene-, and sex-specific

risk estimates. These comprehensively reflect the best available data. We conclude that the
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(a) MLH1

(b) MSH2
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(Continued)

(c) MSH6

Figure (1.4) Leave-one-study-out sensitivity analysis

Panels (a), (b), and (c) correspond to MLH1, MSH2, and MSH6 mutation carriers, respectively. Bolded
solid lines: Cumulative penetrance estimates of CRC based on our likelihood-based approach. Dashed lines:
Cumulative penetrance estimates by yearly age of CRC from leave-one-study-out tests of sensitivity. Blue
corresponds to male carriers, and orange corresponds to female carriers. Visually, small deviation of a dashed
line from the solid line suggests our meta-analysis is robust to the removal of that study.

22



lifetime cumulative penetrance to age 70 of CRC for males and female carriers, respectively,

are 43.9% (95% CI: 39.6, 46.6) and 37.3% (95% CI: 32.2, 40.2) for MLH1 carriers, 54% (95%

CI: 49, 56.3) and 38.6% (95% CI: 34.1, 42) for MSH2 carriers, and 12% (95% CI: 2.4, 24.6)

and 12.3% (95% CI: 3.5, 23.2) for MSH6 carriers. The smaller number of MSH6 mutation

carriers in our analysis led to less certain estimates for that gene, especially at younger

ages. Interestingly, more recent studies tend to have narrower CIs, suggesting increased

precision in their penetrance estimates. While more conservative ascertainment adjustment

mechanisms in recent studies are at play, it is difficult to establish whether those may impact

the study estimates or the CIs. The narrower CIs may be attributed to carrier sample size,

as recent studies including Bonadona et al. (Bonadona et al. (2011)), Dowty et al. (Dowty

et al. (2013)) and Moller et al. (Møller et al. (2017)) have the three largest carrier sample sizes

among the included studies.

The differences in the penetrance estimates between the DerSimonian and Laird random

effects model and our likelihood-based approach could be attributed to the parametric

assumption of the likelihood-based approach. Overall, because the majority of the likelihood-

based estimates fall within the meta-analytic 95% CI of the random effects model, we

conclude that our findings are likely to be robust to the choice of statistical approach.

To the best of our knowledge, this meta-analysis is the first to provide age-, gene-, and

sex-specific penetrance estimates of MLH1, MSH2, and MSH6 mutations for CRC. A previous

meta-analysis by Jenkins et al. (Jenkins et al. (2014)) focused on combining evidence from

four papers that report gene- and sex-specific penetrance for MLH1 and MSH2 mutation

carriers to provide short-term (5 years) CRC risk. While there is some overlap in included

studies, the risk estimates provided by our meta-analysis are age-specific, are based on

several more studies, and include MSH6 mutation carriers.

A strength of the likelihood-based approach used here lies in its ability to deconvolve

aggregated risks, allowing us to use all of the information available in the literature and

provide more comprehensive penetrance estimates. Of note, our meta-analysis included only

studies that made adjustments for ascertainment if the participants were recruited through
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high-risk families, so reported risk estimates were less likely to be biased upward. At the

same time, many studies were excluded as a result. Our method can be applied in the future

to address other Lynch syndrome genes/cancers, such as PMS2, EPCAM, endometrial cancer,

and more generally to other gene/cancer combinations with no restriction on the mutation

type as long as there are enough studies. A potential limitation of this approach is the use of

a parametric distribution to model the penetrance; this assumption, while difficult to check,

can be relaxed with richer data. For example, a leave-one-study-out sensitivity analysis can

be used to assess the parametric modeling choice. Currently, our meta-analysis includes only

papers that report cumulative penetrance. Extensions of our devonvolution method could

potentially be designed to include studies that report other risk measures (e.g odds ratio,

hazard ratio, etc.). Regarding systematic sources of study heterogeneity, our meta-analysis

includes studies of mixed mutation types and populations. While ideally one would desire

to assess mutation- or population-specific variation in penetrance, present information is

insufficient, and it is not feasible to separate the these effects. Overall, the meta-analytic

results for MLH1 and MSH2 mutation carriers are robust according to the sensitivity analysis

and show little evidence of publication bias. On the other hand, the same can not be said for

MSH6 mutation carriers due to the small number of studies.

It is well known that colonoscopic surveillance serves as an effective prevention strategy

for individuals managing their CRC risk (Järvinen et al. (1995)). Our results show that

cancer penetrance estimated from populations that are a mix of unscreened and screened

individuals is similar to that estimated from unscreened populations for MSH2 mutation

carriers. However, the former is higher for MLH1 and female MSH6 mutation carriers. This

may be due to the fact that individuals with a family history of CRC are more likely to

undergo screening. Thus, the remaining individuals who are unscreened in these studies may

have a lower risk of cancer. Moreover, mutation carriers from clinics or population-based

registries were referred for enhanced surveillance with colonoscopy, so cancers detected

by colonoscopies may increase the cumulative lifetime risk in populations that are a mix

of unscreened and screened individuals. While results indicate otherwise for male MSH6
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carriers, there is substantial overlap in CIs across all ages, suggesting a lack of evidence to

support differences in penetrance between the two groups. It is challenging to compare study

results stratified by screening, as the majority of the studies did not fully clarify whether

surveillance was part of the patient selection criteria. More refined data would be needed to

extend our analysis to incorporate colonoscopic surveillance as a modifier of CRC risk, along

with other environmental factors previously shown to affect cancer risk, such as aspirin use

(Burn et al. (2011)), smoking (Watson et al. (2004); Pande et al. (2010)), and body mass index

(Win et al. (2011)).

MMRpro is a genetic counseling and Clinical Decision Support (CDS) tool that estimates

the probability of carrying MMR mutations and of developing CRC for mutation carriers.

It relies on meta-analytic penetrance estimates (Chen et al. (2006)). Chen et al. assume the

penetrance for MLH1 and MSH2 carriers are the same and that of MSH6 male and female

carriers are the same, whereas our meta-analysis contains more studies to substantiate the

estimation of gene- and sex-specific risk (Fig. 1.5). In comparison, our results show higher

lifetime penetrance estimates for MSH2 and female MLH1 carriers, lower estimates for

female MSH6 carriers, and similar estimates for male MLH1 and MSH6 carriers, compared

to Chen et al. (Fig. 1.5). Of the five studies included in the meta-analysis by Chen et al., we

included two in our current analysis (Quehenberger et al. (2005); Dunlop et al. (1997)). We

excluded one due to overlap in study participants (Jenkins et al. (2006)), one due to lack of

ascertainment adjustment (Hampel et al. (2005)) and another because it does not provide

colorectal-specific risks (Buttin et al. (2004)).

In conclusion, our analysis provides a principled empirical assessment of the risk of Lynch-

syndrome-associated CRC by combining evidence from relevant studies. For individuals

with Lynch syndrome, the risk of cancer is dependent on sex and type of MMR mutation,

with male MLH1 or MSH2 mutation carrier risk at age 70 approximately 4 times higher

than that of his female MSH6 counterpart. Risk estimates from our meta-analysis will be

incorporated in the 2019 version of the risk prediction tool MMRpro (Chen et al. (2006)),

and the clinical decision support tool, ASK2ME (All Syndrome Known to Man Evaluator)
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(a) MLH1

(b) MSH2
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(Continued)

(c) MSH6

Figure (1.5) Cumulative penetrance estimates of colorectal cancer from current meta-analysis and MMR-
pro

Panels (a), (b), and (c) correspond to MLH1, MSH2, and MSH6 mutation carriers, respectively. Estimates
from current meta-analysis and MMRpro are denoted by solid and dotted lines, respectively. Blue corresponds
to male carriers, and orange corresponds to female carriers.
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(Braun et al. (2018)) to improve risk prediction and management strategies for individuals

who have mutations in MLH1, MSH2, and MSH6. Our results can support the development

of effective prevention strategies and personalized counseling.
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Abstract

Cross-study replicability is a powerful model evaluation criterion that emphasizes gen-

eralizability of predictions. When training cross-study replicable prediction models, it is

critical to decide between merging and treating the studies separately. We study boosting

algorithms in the presence of potential heterogeneity in predictor-outcome relationships

across studies and compare two multi-study learning strategies: 1) merging all the stud-

ies and training a single model, and 2) multi-study ensembling, which involves training a

separate model on each study and ensembling the resulting predictions. In the regression

setting, we provide theoretical guidelines based on an analytical transition point to determine

whether it is more beneficial to merge or to ensemble for boosting with linear learners. In

addition, we characterize a bias-variance decomposition of estimation error for boosting

with component-wise linear learners. We verify the theoretical transition point result in

simulation and illustrate how it can guide the decision on merging vs. ensembling in an

application to breast cancer data.
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2.1 Background

In settings where comparable studies are available, it is critical to simultaneously consider

and systematically integrate information across multiple studies when training prediction

models. Multi-study prediction is motivated by applications in biomedical research, where

exponential advances in technology and facilitation of systematic data-sharing increased

access to multiple studies (Kannan et al. (2016); Manzoni et al. (2018)). When training and

test studies come from different distributions, prediction models trained on a single study

generally perform worse on out-of-study samples due to heterogeneity in study design, data

collection methods, and sample characteristics. (Castaldi et al. (2011); Bernau et al. (2014);

Trippa et al. (2015)). Training prediction models on multiple studies can address these

challenges and improve the cross-study replicability of predictions.

Recent work in multi-study prediction investigated two approaches for training cross-

study replicable models: 1) merging all studies and training a single model, and 2) multi-

study ensembling, which involves training a separate model on each study and combining

the resulting predictions. When studies are relatively homogeneous, Patil and Parmigiani

(2018) showed that merging can lead to improved replicability over ensembling due to the

increase in sample size; as between-study heterogeneity increases, multi-study ensembling

demonstrated preferable performance. While the trade-off between these approaches has

been explored in detail for random forest (Ramchandran et al. (2020)) and linear regression

(Guan et al. (2019)), none have examined this for boosting, one of the most successful and

popular supervised learning algorithms.

Boosting combines a powerful machine learning approach with classical statistical mod-

eling. Its flexible choice of base learners and loss functions makes it highly customizable

to many data-driven tasks including binary classification (Freund and Schapire (1997)),

regression (Friedman (2001)) and survival analysis (Wang and Wang (2010)). To the best of

our knowledge, this work is the first to study boosting algorithms in a setting with multiple

and potentially heterogeneous training and test studies. Existing findings on boosting are

largely rooted in theories based on a single training study, and extensions of the algorithm to
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a multi-study setting often assume a subset of the training study shares the same distribution

as the test study. Bühlmann (2006) and Tutz and Binder (2007) studied boosting with linear

base learners and characterized an exponential bias-variance trade-off under the assump-

tion that the training and test studies have the same predictor distribution. Habrard et al.

(2013) proposed a boosting algorithm for domain adaptation with a single training study.

Dai Wenyuan et al. (2007) proposed a transfer learning framework for boosting that uses a

small amount of labeled data from the test study in addition to the training data to make

classifications on the test study. This approach was extended to handle data from multiple

training studies (Yao and Doretto (2010); Bellot and van der Schaar (2019)) and modified

for regression (Pardoe and Stone (2010)) and survival analysis (Bellot and van der Schaar

(2019)).

In this paper, we study boosting algorithms in a regression setting and compare cross-

study replicability of merging versus multi-study ensembling. We assume a flexible mixed

effects model with potential heterogeneity in predictor-outcome relationships across studies

and provide theoretical guidelines to determine whether merging is more beneficial than

ensembling. In particular, we characterize an analytical transition point beyond which en-

sembling exhibits lower mean squared prediction error than merging for boosting with linear

learners. Conditional on the selection path, we characterize a bias-variance decomposition

for the estimation error of boosting with component-wise linear learners. We verify the theo-

retical transition point results via simulations, and illustrate how it may guide practitioners’

choice regarding merging vs. ensembling in a breast cancer application.

2.2 Methods

2.2.1 Multi-study Setup

We consider K training studies and V test studies that measure the same outcome and the

same p predictors. Each study has size nk with a combined size of N =
∑K

k=1nk for the

training studies and NTest =
∑K+V

k=K+1nk for the test studies. Let Yk ∈ Rnk and Xk ∈ Rnk×p
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denote the outcome vector and predictor matrix for study k, respectively. The linear mixed

effects model is of the form

Yk = Xkβ+Zkγk + ϵk , k = 1, . . . ,K +V (2.1)

where β ∈ Rp are the fixed effects and γk ∈ Rq the random effects with E [γk ] = 0 and

Cov(γk) = diag(σ2
1 , . . . ,σ2

q )C G. If σ2
j > 0, then the effect of the jth predictor varies across

studies; if σ2
j = 0, then the predictor has the same effect in each study. The matrix Zk ∈Rnk×q

is a subset of Xk that corresponds to the random effects, and ϵk are the residual errors where

E[ϵk ] = 0,Cov(ϵk) = σ2
ϵ I , and Cov(γk ,ϵk) = 0. We consider an extension of (2.1) and assume

the study data are generated under the mixed effects model of the form

Yk = f (Xk) +Zkγk + ϵk , k = 1, . . . ,K +V (2.2)

where f (·) is a real-valued function. Compared to (2.1), the model in (2.2) provides more

flexibility in fitting the mean function E(Yk).

For any study k, we assume Yk is centered to have zero mean and Xk standardized to

have zero mean and unit ℓ2 norm, i.e., ∥Xjk∥2 = 1 for j = 1, . . . ,p, where Xjk ∈ RN denotes

the jth predictor in study k. Unless otherwise stated, we use i ∈ {1, . . . ,N } to index the

observations, j ∈ {1, . . . ,p} the predictors, and k ∈ {1, . . . ,K + V } the studies. For example,

Xijk ∈R is the value of the jth predictor for observation i in study k. We formally introduce

boosting on the merged study (Y ,X) in the next section, but the formulation is the same

for the kth study if one were to replace (Y ,X) with (Yk,Xk). In particular, we focus on

boosting with linear learners due to its analytical tractability. We denote a linear learner as

an operator H : RN →RN that maps the responses Y to fitted values Ŷ . Examples of linear

learners include ridge regression and more general projectors to a class of basis functions

such as regression or smoothing splines. We denote the basis-expanded predictor matrix

by X̃ ∈RN×P and the subset of predictors with random effects by Z̃ ∈RN×Q. We define the

basis-expanded predictor matrix as

X̃ = [h(Xi) · · · h(XN )]
T ∈RN×P ,
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where

h(Xi) =
(
h11(Xi1), . . . ,hU11(Xi1), . . . ,h1p(Xip), . . . ,hUP p(Xip)

)
∈RP , i = 1, . . . ,N

is the vector of P =
∑

pUp one-dimensional basis functions evaluated at the predictors

Xi ∈Rp. As an example, suppose we have p = 2 covariates, Xi1,Xi2, and we want to model

Xi1 linearly and Xi2 with a cubic spline at knots ξ1 = 0 and ξ2 = 1.5. The basis-expanded

predictor matrix X̃ contains the following vector of P = 6 basis functions:

h(Xi) = (h11(Xi1),h12(Xi2),h22(Xi2),h32(Xi2),h42(Xi2),h51(Xi2)) , i = 1, . . . ,N

where

h11(Xi1) = Xi1

h12(Xi2) = Xi2

h22(Xi2) = X2
i2

h32(Xi2) = X3
i2

h42(Xi2) = (Xi2 − 0)3
+

h52(Xi2) = (Xi2 − 1.5)3
+

and (Xi2 − ξ)3
+ =max

{
(Xi2 − ξ)3,0

}
. For λ ≥ 0, our goal is to minimize the objective

||Y − X̃β||22 +λβT β

with respect to parameters β ∈RP . We denote the vector of coefficient estimates and fitted

values by β̂ B BY and Ŷ BHY , respectively, where

BB (X̃T X̃ +λI)−1X̃T ∈RP×N

and

H B X̃(X̃T X̃ +λI)−1X̃T = X̃B ∈RN×N .

2.2.2 Boosting with linear learners

Given the basis-expanded predictor matrix X̃ ∈ RN×P , the goal of boosting is to obtain an

estimate F̂(X̃) of the function F(X̃) that minimizes expected loss E
[
ℓ(Y ,F(X̃))

]
for a given

loss function ℓ(·, ·) : RN ×RN →RN
+ , where outcome Y ∈RN can be continuous (regression

problem) or discrete (classification problem). Examples of ℓ(Y ,F) include exponential loss
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exp(YF) for AdaBoost (Freund (1995)) and ℓ2 (squared error) loss (Y −F)2/2 for ℓ2 boosting

(Bühlmann and Yu (2003)). In finite samples, estimation of F(·) is done by minimizing the

empirical risk via functional gradient descent where the base learner g(X̃; θ̂) is repeatedly fit

to the negative gradient vector

r =
−∂ℓ(Y ,F)

∂F

∣∣∣∣∣
F=F̂(m)(X̃)

evaluated at F̂(m)(X̃) = F̂(m−1)(X̃) + ηg(X̃; θ̂m) across m = 1, . . . ,M iterations. Here, η ∈

(0,1] denotes the learning rate, and θ̂m denotes the estimated finite or infinite-dimensional

parameter that characterizes g (i.e., if g is a regression tree, then θ denotes the tree depth,

minimum number of observations in a leaf, etc.). Under ℓ2 loss, the negative gradient at

iteration m is equivalent to the residuals Y − F̂m(X̃). Therefore, ℓ2 boosting produces a

stage-wise approach that iteratively fits to the current residuals (Bühlmann and Yu (2003);

Friedman (2001)).

Let β̂(m) ∈RP and Ŷ(m) ∈RN denote the coefficient estimates and fitted values at the mth

boosting iteration, respectively. We describe ℓ2 boosting with linear learners in Algorithm 1.

Algorithm 1 ℓ2 boosting with linear learners.

1: Initialization:
β̂(0) = 0, Ŷ(0) = 0

2: Iteration: For m = 1,2, . . . ,M, fit a linear learner to the residuals r(m) = Y − Ŷ(m−1) and
obtain the estimated coefficients

β̂current
(m) = Br(m)

and fitted values
Ŷ current
(m) = Hr(m).

The new coefficient estimates are given by:

β̂(m) = β̂(m−1) + ηβ̂current
(m)

The new fitted values are given by:

Ŷ(m) = Ŷ(m−1) + ηŶ current
(m)

where η ∈ (0,1] is the learning rate.
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By Proposition 1 in Bühlmann and Yu (2003), the ℓ2 boosting coefficient estimates at

iteration M can be written as:

β̂
Merge
(M)

=
M∑

m=1

ηB(I − ηH)m−1Y . (2.3)

Equation (2.3) represents β̂Merge
(M)

as the sum across coefficient estimates obtained from repeat-

edly fitting a linear learner H to residuals r(m) = (I − ηH)m−1Y at iteration m= 1, . . . ,M. The

ensemble estimator, based on pre-specified weights wk such that
∑K

k=1wk = 1, is

β̂Ens(M) =
K∑

k=1

wkβ̂k(M) =
K∑

k=1

wk

 M∑
m=1

ηBk(I − ηHk)
m−1Yk

 (2.4)

where Bk and Hk (k = 1, . . . ,K) are study-specific analogs of B and H , respectively.

2.2.3 Boosting with component-wise linear learners

Boosting with component-wise linear learners (Bühlmann et al. (2007); Bühlmann and Yu

(2003)), also known as LS-Boost (Friedman (2001)) or least squares boosting (Freund et al.

(2017)), determines the predictor X̃ĵ(m)
∈ RN that results in the maximal decrease in the

univariate least squares fit to the current residuals r(m). The algorithm then updates the

ĵ(m)th coefficient and leaves the rest unchanged. Let β̂(m)j ∈ R denote the jth coefficient

estimate at the mth iteration and β̂ĵ(m)
∈R the estimated coefficient of the selected covariate

in iteration m Algorithm 2 describes boosting with component-wise linear learners.

Proposition 1. Let eĵ(m)
∈RP denote a unit vector with a 1 in the ĵ(m)-th position,

B(m) = eĵ(m)

(
X̃T
ĵ(m)

X̃ĵ(m)

)−1
X̃T
ĵ(m)

,

and

H(m) = X̃ĵ(m)

(
X̃T
ĵ(m)

X̃ĵ(m)

)−1
X̃T
ĵ(m)

.

The coefficient estimates for ℓ2 boosting with component-wise linear learners at iteration M can be

written as:

β̂
Merge, CW
(M)

=
M∑

m=1

ηB(m)

m−1∏
ℓ=0

(
I − ηH(m−ℓ−1)

)Y . (2.5)
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Algorithm 2 ℓ2 boosting with component-wise linear learners.

1: Initialization:
β̂(0) = 0, Ŷ(0) = 0

2: Iteration: For m= 1,2, . . . ,M, compute the residuals

r(m) = Y − Ŷ(m−1).

Determine the covariate X̃ĵ(m)
that results in the best univariate least squares fit to r(m) :

ĵ(m) = argmin
1≤j≤P

N∑
i=1

(
r(m)i − X̃ij β̂(m)j

)2
.

Calculate the corresponding coefficient estimate:

β̂ĵ(m)
=

(
X̃T
ĵ(m)

X̃ĵ(m)

)−1
X̃T
ĵ(m)

r(m).

Update the fitted values and the coefficient estimate for the ĵ(m)th covariate

Ŷ(m) = Ŷ(m−1) + ηX̃ĵ(m)
β̂ĵ(m)

β̂(m)ĵ(m)
= β̂(m−1)ĵ(m)

+ ηβ̂ĵ(m)

where η ∈ (0,1] is a learning rate.
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A proof is provided in the appendix. Proposition 1 represents β̂Merge,CW
(M)

as the sum across

coefficient estimates obtained from repeatedly fitting a univariate linear learner H(m) to

the current residuals r(m) = (
∏m−1

ℓ=0 (I − ηH(m−ℓ−1)))Y at iteration m. As M →∞, β̂Merge,CW
(M)

converges to a least squares solution which is unique if the predictor matrix has full rank

(Bühlmann et al. (2007)). The ensemble estimator, based on pre-specified weights wk , is

β̂Ens, CW
(M)

=
K∑

k=1

wkβ̂
CW
(M)k =

K∑
k=1

wk

 M∑
m=1

ηB(m)k

m−1∏
ℓ=0

(
I − ηH(m−ℓ−1)k

)Yk
 (2.6)

where B(m)k and H(m)k are study-specific analogs of B(m) and H(m), respectively.

2.2.4 Performance comparison

We compare merging and ensembling based on mean squared prediction error (MSPE) of V

unseen test studies X̃0 ∈RNTest×P with unknown outcome vector Y0 ∈RNTest
,

E[||Y0 − X̃0β̂(M)||22]

where ∥·∥2 denotes the ℓ2 norm. To properly characterize the performance of boosting with

component-wise linear learners (Algorithm 2), we account for the algorithm’s adaptive

nature by conditioning on its selection path. To make progress analytically, we assume Y is

normally distributed with mean µB f (X̃) and covariance ΣB blkdiag({ZkGZT
k + σ2

ϵ I}Kk=1).

At iteration m, selecting the covariate X̃ĵ(m)
that results in the best univariate least squares fit

to r(m) can be expressed as

∥(I −H(ĵ(m))
)r(m)∥22 ≤ ∥(I −H(j))r(m)∥22,

which is equivalent to

(sgn(m)X̃
T
j(m)/∥X̃ĵ(m)

∥2 ± X̃T
j /∥X̃j∥2)r(m) ≥ 0 (2.7)

∀j , ĵ(m), sgn(m) = sign(X̃T
ĵ(m)

r(m)), where

r(m) =
m−1∏
ℓ=0

(I − ηH(m−ℓ−1))Y := Υ(m)Y .
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With fixed X̃, the inequalities in (2.7) can be compactly represented as the polyhedral

representation ΓY ≥ 0 for a particular matrix Γ ∈R2M(P−1)×N , where the (m̃+2(j−ω(j))−1)th

and (m̃+ 2(j −ω(j)))th rows are given by

(sgn(m)X̃
T
ĵ(m)

/∥X̃ĵ(m)
∥2 ± X̃T

j /∥X̃j∥2)Υ (m)

∀j , ĵ(m) with m̃= 2(P − 1)(m− 1) and ω(j) = 1{j > ĵ(m)} (Rügamer and Greven (2020)). The

jth regression coefficient in Algorithm 2 can be written as

β̂
Merge, CW
(M)j = vTj Y ,

where vj = (
∑M

m=1ηB(m)(
∏m−1

ℓ=0 (I − ηH(m−ℓ−1)))
T ej and ej ∈RP is a unit vector. The distribu-

tion of β̂Merge, CW
(M)j conditional on the selection path is given by the polyhedral lemma in Lee

et al. (2016).

Lemma 1 (Polyhedral lemma from Lee et al. (2016)). Given the selection path

P B {Y : ΓY ≥ 0,zj = z},

where zj B (I − cjvTj )Y and cj B Σvj(v
T
j Σvj)

−1,

β̂
Merge, CW
(M)j |P ∼ TruncatedNormal

(
vTj µ,vjΣv

T
j ,aj ,bj

)
,

where

aj = max
ℓ:(Γ cj )ℓ>0

0− (Γ zj)ℓ
(Γ cj)ℓ

bj = min
ℓ:(Γ cj )ℓ<0

0− (Γ zj)ℓ
(Γ cj)ℓ

.

A proof is provided in the appendix. The conditioning is important because it properly

accounts for the adaptive nature of Algorithm 2. Conceptually, it measures the magnitude

of β̂Merge, CW
(M)j among random vectors Y that would result in the selection path ΓY ≥ 0 for

a fixed value of zj . When Σ = σ2I , zj = (I − vj(vTj vj)
−1vTj )Y is the projection onto the

orthocomplement of vj . Accordingly, the polyhedron ΓY ≥ 0 holds if and only if vTj Y does not

deviate too far from zj , hence trapping it between bounds aj and bj (Tibshirani et al. (2016)).
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Moreover, because aj and bj are functions of zj alone, they are independent of vT Y under

normality. The result in Lemma 1 allows us to analytically characterize the mean squared

error of the estimators β̂Merge, CW
(M)j and β̂Ens, CW

(M)j conditional on their respective selection paths.

2.2.5 Implicit regularization and early stopping

In Algorithm 1 and Algorithm 2, the learning rate η and stopping iteration M together

control the amount of shrinkage and training error. A smaller learning rate η leads to slower

overfitting but requires a larger M to reduce the training error to zero. With a small η,

it is possible to explore a larger class of models, which often leads to models with better

predictive performance (Friedman (2001)). While boosting algorithms are known to exhibit

slow overfitting behavior with small values of η, it is necessary to implement early stopping

strategies to avoid overfitting (Schapire et al. (1998)). The boosting fit for Algorithm 1 in

iteration m (assuming η = 1) is

B(m)Y B (I − (I −H)m+1)Y ,

where B(m) : RN →RN is the boosting operator. For a base learner that satisfies ∥I −H∥ ≤ 1

for a suitable norm, we have B(m)Y → Y as m→∞. That is, if left to run forever, the boosting

algorithm converges to the fully saturated model Y (Bühlmann et al. (2007)). A similar

argument can be made for Algorithm 2 where

BCW
(m) = I − (I −H(ĵm)

)(I −H(ĵm−1)
) · · · (I −H(ĵ1)

)

is the component-wise boosting operator. We define the degrees of freedom at iteration

m as tr(B(m)) and use the corrected AIC criterion (AICc) (Bühlmann (2006)) to choose the

stopping iteration M. Compared to cross-validation (CV), AICc-tuning is computationally

efficient as it does not require running the boosting algorithm multiple times. For Algorithm

1, the AICc at iteration m is given by

AICc(m) = log(σ̂2) +
1+ tr(B(m))/N

1− (tr(B(m)) + 2)/N
, (2.8)
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where σ̂2 = 1
N

∑N
i=1(Yi − (B(m)Y )i)

2. The stopping iteration is

M = argmin
1≤m≤mupp

AICc(m),

where mupp is a large upper bound for the candidate number of boosting iterations (Bühlmann

(2006)). For Algorithm 2, the AICc is computed by replacing B(m) with BCW
(m)

. We allow the

stopping iterations to differ between the merged and ensemble learners. In our results, we

denote them by M and MEns = {Mk}Kk=1, respectively.

2.3 Results

We summarize the degree of heterogeneity in predictor-outcome relationships across studies

by the sum of the variances of the random effects divided by the number of fixed effects: σ2 B

tr(G)/P , where G ∈RQ×Q. For boosting with linear learners, let R̃=
∑M

m=1ηB(I−ηH)m−1 and

R̃k =
∑K

k=1wk [
∑Mk

m=1ηBk(I − ηHk)
m−1]. Let bMerge = Bias(β̂

Merge
(M)

) = R̃f (X̃) − f (X̃0) denote

the bias of the boosting coefficients for the merged estimator and bEns = Bias(β̂Ens
(MEns)

) =∑K
k=1wkR̃kf (X̃k)− f (X̃0) the bias for the ensemble estimator. Let Z ′ = blkdiag({Zk}Kk=1) and

G′ = blkdiag({Gk}Kk=1) where Gk = G for k = 1, . . . ,K .

2.3.1 Boosting with linear learners

Theorem 1. Suppose

tr(Z ′T R̃T X̃T
0 X̃0R̃Z

′)−
K∑

k=1

w2
k tr(ZT

k R̃
T
k X̃

T
0 X̃0R̃kZk) > 0 (2.9)

Define

τ =
Q
P
×
σ2
ϵ (

∑K
k=1w

2
k tr(R̃T

k X̃
T
0 X̃0R̃k)− tr(R̃T X̃T

0 X̃0R̃)) + (bEns)T bEns − (bMerge)T bMerge

tr(Z′T R̃T X̃T
0 X̃0R̃Z′)−

∑K
k=1w

2
k tr(ZT

k R̃T
k X̃

T
0 X̃0R̃kZk)

(2.10)

Then E[∥Y0 − X̃0β̂
Ens
(MEns)

∥22] ≤ [∥Y0 − X̃0β̂
Merge
(M)

∥22] if and only if σ2 ≥ τ .

A proof is provided in the appendix. Under the equal variances assumption, Theorem

1 characterizes a transition point τ beyond which ensembling outperforms merging for
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Algorithm 1. τ is characterized by differences in the predictive performance of merging vs.

ensembling driven by within-study variability and bias in the numerator and between-study

variability in the denominator. The condition in (2.9), which ensures τ is well defined, holds

when the between-study variability of β̂Merge
(M)

is greater than that of β̂Ens
(MEns)

. This is generally

true because merging does not account for between-study heterogeneity. τ depends on the

population mean function f through the bias term. Therefore, an estimate of f is required to

estimate the transition point unless the bias is equal to zero. One example of an unbiased

estimator is ordinary least squares, which can be obtained by setting H = X̃(X̃T X̃)X̃T and

M = η = 1. In general, for any linear learner H : RN → RN , the transition point in Guan

et al. (2019) (cf., Theorem 1) is a special case of (2.10) when M = η = 1.

Corollary 1. Suppose tr(Z ′T R̃T X̃T
0 X̃0R̃Z

′) , 0. As σ2→∞,

E[∥Y0 − X̃β̂Ens
(MEns)

∥22]

E[∥Y0 − X̃0β̂
Merge
(M)

∥22]
−→

∑K
k=1w

2
k tr(ZT

k R̃
T
k X̃

T
0 X̃0R̃kZk)

tr(Z ′T R̃T X̃T
0 X̃0R̃Z ′)

.

This result follows immediately from Theorem 1. According to Corollary 1, the asymptote

of the MSPE ratio comparing ensembling to merging equals the ratio of between-study

variability. Because the merged estimator does not account for between-study variability, the

asymptote is less than one.

Let σ2
(1), . . . ,σ

2
(D)

denote the distinct values of variances of the random effects, and let Jd

denote the number of random effects with variance σ2
(d).

Theorem 2. Suppose

max
d

∑
i:σ2

i =σ2
(d)

 K∑
k=1

(
Z ′T R̃T X̃T

0 X̃0R̃Z
′
)
i+Q×(k−1),i+Q×(k−1)

−w2
k

(
ZT
k R̃

T
k X̃

T
0 X̃0R̃kZk

)
i,i

 > 0

and define

τ1 =
σ2
ϵ (

∑K
k=1w

2
k tr(R̃T

k X̃
T
0 X̃0R̃k)− tr(R̃T X̃T

0 X̃0R̃)) + (bEns)T bEns − (bMerge)T bMerge

P maxd
1
Jd

∑
i:σ2

i =σ2
(d)

[
∑K

k=1(Z
′T R̃T X̃T

0 X̃0R̃Z′)i+Q×(k−1),i+Q×(k−1) −w2
k (Z

T
k R̃T

k X̃
T
0 X̃0R̃kZk)i,i ]

. (2.11)

Then E[||Y0 − X̃0β̂
Ens
(MEns)

||22] ≥ E[||Y0 − X̃0β̂
Merge
(M)

||22] when σ2 ≤ τ1.
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Suppose

min
d

∑
i:σ2

i =σ2
(d)

 K∑
k=1

(
Z ′T R̃T X̃T

0 X̃0R̃Z
′
)
i+Q×(k−1),i+Q×(k−1)

−w2
k

(
ZT
k R̃

T
k X̃

T
0 X̃0R̃kZk

)
i,i

 > 0

and define

τ2 =
σ2
ϵ (

∑K
k=1w

2
k tr(R̃T

k X̃
T
0 X̃0R̃k)− tr(R̃T X̃T

0 X̃0R̃)) + (bEns)T bEns − (bMerge)T bMerge

P mind
1
Jd

∑
i:σ2

i =σ2
(d)

[
∑K

k=1(Z
′T R̃T X̃T

0 X̃0R̃Z′)i+Q×(k−1),i+Q×(k−1) −w2
k (Z

T
k R̃T

k X̃
T
0 X̃0R̃kZk)i,i ]

. (2.12)

Then E[||Y0 − X̃0β̂
Ens
(MEns)

||22] ≤ E[||Y0 − X̃0β̂
Merge
(M)

||22] when σ2 ≥ τ2.

A proof is provided in the appendix. Theorem 2 generalizes Theorem 1 to account for

unequal variances along the diagonal of G. It characterizes a transition interval [τ1,τ2] where

merging outperforms ensembling when σ2 ≤ τ1 and vice versa when σ2 ≥ τ2. The transition

interval provided by Guan et al. (2019) (cf. Theorem 2) is a special case of (2.11, 2.12) when

M = η = 1.

2.3.2 Boosting with component-wise linear learners

To properly characterize the performance of the boosting estimator in Algorithm 2, we

condition on its selection path. To this end, we provide the conditional MSE of the merged

and ensemble estimators in Proposition 2. Assuming Y ∼MVN (µ,Σ), it follows that Yk is

normal with mean µk B f (X̃k) and covariance Σk B ZkGZT
k + σ2

ϵ I for k = 1, . . . ,K . Let

P = {Y : ΓY ≥ 0,zj = z}

and

PEns = {P1, . . . ,PK }

denote the conditioning events for the merged and ensemble estimators, respectively, where

Pk B {Yk : ΓkYk ≥ 0,zjk = zk}

summarizes the boosting path from fitting Algorithm 2 to the data in study k. Let µ̄j = vTj µ

and ϑ2
j = vjΣv

T
j denote the mean and variance of β̂CW, Merge

(M)j = vTj Y , respectively. And let
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αj =
aj−µ̄j

ϑj
and ξj =

bj−µ̄j

ϑj
denote the standardized lower and upper truncation limits. We

denote the study-specific versions of µ̄j ,θj ,αj and ξj by µ̄jk ,θjk ,αjk , and ξjk , respectively.

Proposition 2. Let φ(·) and Φ(·) denote the probability density and cumulative distribution
functions of a standard normal variable, respectively. The conditional mean squared error (MSE)
of the merged estimator is

E

[ (
β̂

Merge, CW
(M)j

− βj
)2

∣∣∣∣∣∣P
]
=

(
µ̄j −ϑj

(
φ(ξj )−φ(αj )
Φ(ξj )−Φ(αj )

)
− βj

)2

+ ϑ2
j

1−
ξjφ(ξj )−αjφ(αj )
Φ(ξj )−Φ(αj )

−
(
φ(ξj )−φ(αj )
Φ(ξj )−Φ(αj )

)2 .

The conditional MSE of the ensemble estimator is

E

[ (
β̂Ens, CW
(MEns)j

− βj
)2

∣∣∣∣∣∣PEns
]
=

 K∑
k=1

wk

(
µ̄jk −ϑjk

(
φ(ξjk)−φ(αjk)
Φ(ξjk)−Φ(αjk)

))
− βj


2

+
K∑

k=1

w2
kϑ

2
jk

1−
ξjkφ(ξjk)−αjkφ(αjk)

Φ(ξjk)−Φ(αjk)
−
(
φ(ξjk)−φ(αjk)
Φ(ξjk)−Φ(αjk)

)2 .

A proof is provided in the appendix. Proposition 2 characterizes the conditional MSE of

boosting estimators via the bias-variance decomposition. By the polyhedral lemma (Lee et al.

(2016)), the selection path ΓY ≥ 0 is equivalent to truncating β̂
Merge, CW
(M)j = vTj Y to an interval

[aj ,bj ] around zj . When there is no between-study heterogeneity, zj = (I − vj(vTj vj)
−1vT )Y is

the residual from projecting Y onto vj . Loosely speaking, the selection path is equivalent to

vTj Y not deviating too far from zj . As shown in Section 2.2.4, we can rewrite the selection

path as a system of 2M(P − 1) inequalities with the variable vTj Y :

{ΓY ≥ 0}= {Γ cj(vTj Y ) ≤ −Γ zj}. (2.13)

For fixed P , as the number of boosting iterations M increases, the number of linear inequal-

ities (or constraints) in (2.13) also increases; as a result, the size of the polyhedron ΓY ≥ 0

decreases. A smaller polyhedron generally leads to a narrower truncation interval [aj ,bj ]

around vTj Y . Intuitively, a tighter truncation interval leads to reduced variance. When

between-study heterogeneity is low, at a fixed learning rate η, the merged model generally

requires a later stopping iteration than the study-specific model due to the increase in sample
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size. Therefore, β̂Merge, CW
(M)j tends to have a tighter truncation region, and as a result, smaller

variance than β̂Ens, CW
(MEns)j

. As between-study heterogeneity increases, the merged model often

has an earlier stopping iteration to avoid overfitting, so V ar(β̂
Merge, CW
(M)j ) > V ar(β̂Ens, CW

(MEns)j
). In

practice, the variance component in Proposition 2 can be computed given estimates of σ2

and f .

2.4 Simulations

We conducted simulations to evaluate the performance of boosting with four base learners:

ridge, component-wise least squares (CW-LS), component-wise cubic smoothing splines

(CW-CS) and regression trees. We sampled predictors from the curatedOvarianData R

package (Ganzfried et al. (2013)) to reflect realistic and potentially heterogeneous predictor

distributions. The true data-generating model contains p = 10 predictors of which 5 have

random effects. The outcome for individual i in study k is

Yik = f (Xik) +Zikγk + ϵik , (2.14)

where γk ∼ MVN (0,G) with G = diag(σ2
1 , . . . ,σ2

5 ), Zik = (X3ik,X4ik,X5ik,X6ik,X7ik), and

ϵik ∼N (0,σ2
ϵ ) with σ2

ϵ = 1 for i = 1, . . . ,nk ,k = 1, . . . ,K . The mean function f has the form

f (Xik) = −0.28h11(X1ik)− 0.12h21(X1ik)− 0.78h31(X1ik) + 0.035h41(X1ik)− 0.23X2ik

+ 1.56X3ik − 0.0056X4ik + 0.13X5ik + 0.0013X6ik − 0.00071X7ik − 0.0023X8ik

− 0.69X9ik + 0.016X10ik (2.15)

where h11, . . . ,h41 are cubic basis splines with a knot at 0, and the coefficients were generated

from N (0,0.5). The coefficients for X2ik ,X3ik ,X5ij and X9ik were generated from N (0,1), and

those for X4ik ,X6ik ,X7ik ,X8ik , and X10ik were generated from N (0,0.01).

We generated K = 4 training and V = 4 test studies of size 100. For each simulation

replicate s = 1, . . . ,500, we generated outcomes for varying levels of σ2, trained merged

and multi-study ensemble boosting models and evaluated them on the test studies.The

outcome was centered to have zero mean and predictors standardized to have zero mean
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and unit ℓ2 norm. The regularization parameter λ for ridge boosting and stopping iteration

M for tree boosting were chosen using 3-fold cross validation. The stopping iteration for

linear base learners (ridge, CW-LS, and CW-CS) were chosen based on the AICc-tuning

procedure described in Section 2.2.5. All hyperparameters were tuned on a held-out data set

of size 400 with σ2 set to zero. For tree boosting, we set the maximum tree-depth to two. A

learning rate of η = 0.5 was used for all boosting models. For the ensemble estimator, equal

weight was assigned to each study. We considered two cases for the structure of G : 1) equal

variance and 2) unequal variance. In the first case, Figure 3.1 shows the relative predictive

performance comparing multi-study ensembling to merging for varying levels of σ2. When

σ2 was small, the merged learner outperformed the ensemble learner. As σ2 increased, there

exists a transition point beyond which ensembling outperformed merging. The empirical

transition point based on simulation results confirmed the theoretical transition point (2.10)

for boosting with linear learners. As σ2 tended to infinity, the log relative performance ratio

tended to −0.81 by Corollary 1. Figure 3.2 shows the relative predictive performance under

the unequal variance case. For boosting with linear learners, there exists a transition interval

[τ1,τ2] where merging outperformed ensembling when σ2 ≤ τ1 and vice versa when σ2 ≥ τ2.

Compared to boosting with linear or tree learners, boosting with component-wise learners

had an earlier transition point.

For boosting with component-wise linear learners, we compared the performance of

merging and multi-study ensembling based on results in Proposition 2. In each simulation

replicate, we generated outcomes based on (2.15) and estimated β
CW, Merge
(M)

and βCW, Ens
(M)

with

M set to 30. We assumed equal variance along the diagonal of G. At each boosting iteration

m= 1, ...,M, we evaluated the MSE for both estimators with respect to β6 = 1.72 conditional

on the boosting path up to iteration m. We chose to evaluate the coefficient associated with

X6 because the true data-generating coefficient β6 had the largest magnitude, and as a result,

the component-wise boosting algorithm was more likely to select X6. Figure 3.3 shows the

MSE associated with the merged and ensemble estimators at σ2 = 0.01 and 0.05. We chose

these values because the empirical transition point for boosting with component-wise linear
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Figure (2.1) Prediction performance of multi-study ensembling vs. merging for boosting under the equal
variance assumption

Log relative mean squared prediction error (MSPE) of multi-study ensembling vs. merging for boosting
with different base learners under the equal variance assumption. The red vertical dashed line indicates
the transition point τ . The solid circles represent the average performance ratios comparing multi-study
ensembling to merging, and vertical bars the 95% bootstrapped intervals.

47



Figure (2.2) Prediction performance of multi-study ensembling vs. merging for boosting under the
unequal variance assumption.

Log relative mean squared prediction error (MSPE) of multi-study ensembling vs. merging for boosting with
different base learners under the unequal variance assumption. The red vertical dashed lines indicates the
transition interval [τ1,τ2]. The solid circles represent the average performance ratios comparing multi-study
ensembling to merging, and vertical bars the 95% bootstrapped intervals.
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Figure (2.3) Mean squared error of ensembing and merging estimators across different levels of σ2

Blue and red lines correspond to the merged and ensemble estimators at σ2 = 0.01, respectively. Purple and
green lines correspond to the merged and ensemble estimators at σ2 = 0.05, respectively.

learners in Figure 3.1 lay between 0.01 and 0.05. When σ2 = 0.01, merging outperformed

ensembling. As the number of boosting iterations increased, both performed similarly. At

σ2 = 0.05, merging outperformed ensembling up until M = 20, beyond which ensembling

began to show preferable performance.

2.5 Breast Cancer Application

Using data from the curatedBreastData R package (Planey (2020)), we illustrated how the

transition point theory could guide decisions on merging vs. ensembling. This R package

contains 34 high-quality gene expression microarray studies from over 16 clinical trials on

individuals with breast cancer. The studies were normalized and post-processed using the

processExpressionSetList() function. In practice, a key determinant of breast cancer

prognosis and staging is tumor size (Fleming (1997)). Clinicians use the TNM (tumor, node,
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metastasis) system to describe how extensive the breast cancer is. Under this system, "T" plus

a letter or number (0 to 4) is used to describe the size (in centimeters (cm)) and location of the

tumor. While the best way to measure the tumor is after it’s been removed from the breast,

information on tumor size can help clinicians develop effective treatment strategies. Common

treatment options for breast cancer include surgery (e.g., mastectomy or lumpectomy), drug

therapy (e.g., chemotherapy or immunotherapy) or a combination of both (Gradishar et al.

(2021)).

In our data illustration, the goal was to predict tumor size (cm) before treatment and

surgery. We trained boosting models on K = 5 training studies with a combined size of

N = 643: ID 1379 (n = 60), ID 2034 (n = 281), ID 9893 (n = 155), ID 19615 (n = 115)

and ID 21974 (n = 32) and evaluated them on V = 4 test studies with a combined size of

NTest = 366: ID 21997 (n = 94), ID 22226 (n = 144), ID 22358 (n = 122), and ID 33658

(n = 10). We selected the top p = 40 gene markers that were most highly correlated with

tumor size in the training studies as predictors and randomly selected q = 8 to have random

effects with unequal variance. To calculate the transition interval from Theorem 2, we trained

boosting models with ridge learners using two strategies: merging and ensembling. We also

estimated the variances of the random effects (σ2
1 , . . . ,σ2

8 ) and residual error (σ2
ϵ ) by fitting a

linear mixed effects model using restricted maximum likelihood. The estimate of σ2 and σ2
ϵ

were 4.32× 10−2 and 1.053, respectively, and the transition interval was [0.020,0.026]. Aside

from ridge, we trained boosting models with three other base learners: CW-LS, CW-CS and

regression trees. Results comparing the predictive performance of ensembling vs. merging

are shown in Figure 3.4. By Theorem 2, merging would be preferred over ensembling for

boosting with ridge learners because the estimate of σ2 was smaller than the lower bound of

the transition interval. This result was corroborated by the boxplot of performance ratios in

Figure 3.4.

Among the boosting algorithms that perform variable selection, ensembling outperformed

merging when boosting with regression trees, and both performed similarly when boosting

with component-wise learners. Table 2.1 summarizes the top three genes selected by each
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Figure (2.4) Prediction performance of multi-study ensembling vs. merging for breast cancer application

Log relative mean squared prediction error (MSPE) of multi-study ensembling vs. merging for boosting
with different base learners under the equal variance assumption. Ridge = ridge regression; CW-LS =
component-wise least squares; CW-CS = component-wise cubic smoothing splines; tree = regression tree.

algorithm. Genes were ordered by decreasing variable importance, which was defined as

the reduction in training error attributable to selecting a particular gene. In the merged

study, both boosting with CW-CS and trees selected the same three genes: S100P, MMP11,

and E2F8, whereas boosting with CW-LS selected S100P, ASPN, and STY1. This may be

attributed to the fact that, compared to CW-LS, CW-CS and trees are more flexible and can

capture non-linear trends in the data. Overall, there was some overlap in the genes that were

selected by the three base learners across studies. In study ID 1379, all three base learners

selected S100P, and all but the tree learner selected AEBP1. In studies ID 9893, 19615 and

21974, all three learners selected PPP1R3C, CD9, and CD69, respectively. Tree boosting

selected a single gene in studies ID 1379, 9893, and 21974 because the optimal number of

boosting iterations determined by 3-fold CV was one. In general, CV-tuning leads to earlier

stopping iterations than AICc-tuning as CV approximates the test error on a smaller sample.
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Learner ID 1379 ID 2034 ID 9893 ID 19615 ID 21974 Merged
CW-LS S100P (0.135) MMP11 (0.0455) PPP1R3C (0.0421) CENPN (0.111) CD69 (0.193) S100P (0.0215)

AEBP1 (0.129) CENPA (0.0241) IGF1 (0.0208) CD9 (0.0767) MMP11 (0.108) ASPN (0.0184)
CENPA (0.0652) CAMP (0.0204) SYT1 (0.0183) ASPN (0.0733) ESR1 (0.0358) SYT1 (0.0133)

CW-CS AEBP1 (0.133) TNFSF4 (0.0477) PPP1R3C (0.0463) CENPN (0.103) MMP11 (0.183) S100P (0.021)
C10orf116 (0.115) S100A9 (0.0405) GRP (0.0342) CD9 (0.0865) CD69 (0.182) MMP11 (0.0195)
S100P (0.100) CLU (0.0321) POSTN (0.0256) COL1A1 (0.0848) S100P(0.0889) E2F8 (0.0185)

Tree S100P (0.111) S100A9 (0.0699) PPP1R3C (0.0438) COL1A1 (0.131) CD69 (0.147) MMP11 (0.0286)
N/A MMP11 (0.0588) N/A CD9 (0.108) N/A S100P (0.0266)
N/A N/A N/A ADRA2A (0.0732) N/A E2F8 (0.0249)

Table (2.1) Selected genes ordered by decreasing variable importance across different training studies

Each entry in the table consists of the gene name followed by the amount of reduction in training error that
is attributed to selecting the gene in parentheses. An entry is N/A if there were fewer than three selected
genes. CW-LS = component-wise least squares and CW-CS = component-wise cubic smoothing splines.

2.6 Discussion

In this paper, we studied boosting algorithms in a regression setting and compared merging

and multi-study ensembling for improving cross-study replicability of predictions. We

assumed a flexible mixed effects model with potential heterogeneity in predictor-outcome

relationships across studies and provided theoretical guidelines for determining whether it

was more beneficial to merge or to ensemble. In particular, we extended the transition point

theory from Guan et al. (2019) to boosting with linear learners. For boosting with component-

wise linear learners, we characterized a bias-variance decomposition of estimation error

conditional on the selection path.

Boosting under ℓ2 loss is computationally simple and analytically attractive. In general,

performance of the algorithm is inextricably linked with the choice of learning rate η and

stopping iteration M. Common tuning procedures include AICc tuning, cross-validation,

and restricting the total step size (Zhang and Yu (2005)). When both η and M are set to one,

the transition point results on boosting coincide with those on ordinary least squares and

ridge regression from Guan et al. (2019). A smaller η corresponds to increased shrinkage of

the effect estimates and decreased complexity of the boosting fit. For fixed M, decreasing

η results in a smaller transition point τ , suggesting that multi-study ensembling would

be preferred over merging at a lower threshold of heterogeneity. This can be attributed to

the fact that for a fixed M, merging would require a larger η due to the increase in sample
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size. Because of the interplay between η and M, for a fixed η, decreasing M also leads to a

smaller τ . Bühlmann (2006) noted that a smaller η resulted in a weaker learner with reduced

variance, and this was empirically shown to be more successful than a strong learner.

We focused on ℓ2 boosting with linear learners for the opportunity to pursue closed

form solutions. With an appropriate choice of basis function, these learners can in theory

approximate any sufficiently smooth function to any level of precision (Stone (1948)). In

our simulations, the empirical transition points of boosting with ridge learners and boosting

with regression trees were similar, suggesting that in certain scenarios it may be reasonable

to consider the transition point theory in Theorems 1 and 2 as a proxy when comparing

merging and ensembling for boosted trees. It is important to note, however, that such

an approximation may not be warranted in settings where the choice of hyperparameters

differ from that of our simulations. Although this paper focuses on boosting algorithms, we

acknowledge important connections with other machine learning methods. A close relative of

boosting with component-wise linear learners is the incremental forward stagewise algorithm

(FS), which selects the covariate most correlated (in absolute value) with the residuals r(m)

(Efron et al. (2004)). Because the covariates are standardized, both algorithms lead to the

same variable selection for a given r(m).

A potential limitation of Theorems 1 and 2 is that the tuning parameters (e.g., η and M)

are treated as fixed. These quantities are typically chosen by tuning procedures that introduce

additional variability. Although we assumed the same η for merging and ensembling in

simulations, the transition point τ can be estimated with different values of η, which may be

more realistic in practice. For the ensembling approach, we assigned equal weight to each

study, which is equivalent to averaging the predictions. The equal-weighting strategy is a

special case of stacking (Breiman (1996); Ren et al. (2020)) and is preferred in settings where

studies have similar sample sizes.

Many areas of biomedical research face a replication crisis in which scientific studies

are difficult or impossible to replicate (Ioannidis (2005); National Academies of Sciences

et al. (2019)). An equally important but less commonly examined issue is the replicability of
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prediction models. To improve cross-study replicability of predictions, our work provides a

theoretical rationale for choosing multi-study ensembling over merging when between-study

heterogeneity exceeds a well-defined threshold. As many areas of science are becoming

data-rich, it is critical to simultaneously consider and systematically integrate multiple

studies to improve cross-study replicability of predictions.
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Chapter 3

Multi-Study R-Learner for

Heterogeneous Treatment Effect

Estimation

Joint work with Dr. Boyu Ren, Dr. Prasad Patil, and Dr. Giovanni Parmigiani
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Abstract

Flexible estimation of heterogeneous treatment effects is central to precision medicine.

While efforts in systematic data sharing and data curation initiatives have increased access to

multiple datasets, existing methods for estimating heterogeneous treatment effects are largely

rooted in theory based on a single study. We propose a general class of two-step algorithms

for treatment effect estimation in multiple studies. The approach is easy to use and allows

flexible modeling of the nuisance functions with machine learning techniques. Under the

series estimation framework, we show that the resulting estimator is asymptotically normal.

We illustrate via simulations and a breast cancer data application that the multi-study

R-learner can result in lower estimation error than the R-learner under the presence of

between-study heterogeneity.

56



3.1 Background

Heterogeneous treatment effect estimation is central to many modern statistical applications

ranging from precision medicine (Collins and Varmus (2015)) to optimal policy-making

(Hitsch and Misra (2018)). In settings where comparable studies are available, it is critical to

simultaneously consider and systematically integrate information across multiple studies

when estimating treatment effects. Multi-study heterogeneous treatment effect estimation is

motivated by applications in biomedical research, where exponential advances in technology

and facilitation of systematic data sharing have increased access to multiple studies (Kannan

et al. (2016); Manzoni et al. (2018)). In this work, we introduce a general approach for

estimating heterogeneous treatment effects by leveraging information from multiple studies.

Despite increased access to multiple datasets, existing methods on heterogeneous treat-

ment effect estimation are largely rooted in theory based on a single study. These approaches

range from inverse probability weighting estimators (Abrevaya et al. (2015)) to flexible meth-

ods based on random forest (Wager and Athey (2018)), boosting (Powers et al. (2018)), and

combinations of generic machine learning techniques (Künzel et al. (2019)). Recently, Nie

and Wager (2021) proposed the R-learner, a general class of two-step algorithms that allows

flexible modeling of nuisance functions using machine learning models. The R-learner was

motivated by Robinson’s transformation, which was originally used to estimate parametric

components in partially linear models (Robinson (1988)). Chernozhukov et al. (2018) studied

these models and proposed an approach that leverages machine learning and sample splitting

for estimating treatment effects. Wu and Yang (2021) proposed the integrative R-learner

that leverages data from two studies: 1) a randomized clinical trial for identification and

2) an observational study for boosting efficiency when estimating heterogeneous treatment

effects. To incorporate information from both sources, the integrative R-learner relies on

the assumption that the heterogeneous treatment effect is the same in both studies. This as-

sumption is common in the data integration literature to allow transporting causal inference

across studies (Buchanan et al. (2018); Dahabreh and Hernán (2019); Dahabreh et al. (2019)).

When multiple comparable studies are available, heterogeneous treatment effects may differ
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across studies due to heterogeneity in study design, data collection methods, and sample

characteristics. While this issue challenges existing approaches for heterogeneous treatment

effect estimation, it also creates opportunities for more general paradigms to account for

between-study heterogeneity. In this work, we propose the multi-study R-learner for estimat-

ing heterogeneous treatment effects under the presence of between-study heterogeneity. Nie

and Wager (2021)’s R-learner is a special case of our approach when there is no between-study

heterogeneity. Similar to the R-learner, the multi-study version uses a two-step algorithm

that allows flexible modeling of the nuisance components with machine learning methods.

In addition to these nuisance components, the multi-study R-learner incorporates the prob-

ability of study ascertainment given baseline covariates, allowing strength to be borrowed

across studies. We show analytically that optimizing the multi-study R-loss is equivalent

to optimizing the oracle loss up to an error that diminishes at a relatively fast rate with

the sample size. Under the series estimation framework, we derive a pointwise normality

result for the multi-study R-learner estimator. Empirically, we show via simulations and a

breast cancer data application that as between-study heterogeneity increases, the multi-study

R-learner results in lower estimation error than the R-learner.

3.2 Methods

Suppose we have data from a collection of studies S indexed by k = 1, . . . ,K . Study k consists

of nk independent and identically distributed samples (Yi ,Xi ,Ai ,Si = k) (i = 1, . . . ,nk), where

Yi ∈ R denotes the observed outcome, Xi ∈ X ⊂ Rp the baseline covariates, and Ai ∈ {0,1}

the treatment assignment. The total number of observations from K studies is n=
∑K

k=1nk .

We adopt the potential outcomes framework (Rubin (1974)) and let {Yi(1),Yi(0)} denote the

counterfactual outcomes that would have been observed given the treatment assignments

Ai = 1 and Ai = 0, respectively. The heterogeneous treatment effect in study k is charac-

terized by τk(x) = E[Yi(1)−Yi(0)|Xi = x,Si = k]. To estimate τk(x), we make the following

assumptions:
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Assumption 1. Yi = Yi(1)Ai + Yi(0)(1−Ai) for i = 1, . . . ,n.

Assumption 2. E[Yi(a)|Ai = a,Xi = x,Si = k] = E[Yi(a)|Xi = x,Si = k] for all k = 1, . . . ,K

and treatment a ∈ {0,1}.

Assumption 1, commonly referred to as the consistency assumption, states that the ob-

served outcome is equal to the potential outcome under the treatment actually received.

Assumption 2 posits no unmeasured confounding in the mean response function conditional

on the baseline covariates in study k = 1, . . . ,K . We rewrite the conditional mean response

m(x) := E[Yi |Xi = x] as a weighted average,

m(x) =
K∑

k=1

mk(x)p(k|x),

where mk(x) = E[Yi |Xi = x,Si = k] denotes the conditional mean response in study k, and

p(k|x) = P (Si = k|Xi = x) the ascertainment probability for study k given baseline covariates

x. For study k, we denote the treatment propensity by ek(x) = P (Ai = 1|Xi = x,Si = k) and

the counterfactual mean response function by µk(a)(x) = E[Yi(a)|Xi = x,Si = k] for treatment

a ∈ {0,1}. Under Assumptions 1 and 2, we re-express the conditional mean response in study

k as mk(x) = µk(0)(x) + ek(x)τk(x) and write

Yi −m(Xi) =
K∑

k=1

{Ai − ek(Xi)}τk(Xi)p(k|Xi) + ϵi , (3.1)

where ϵi := Yi(Ai)−
∑K

k=1

{
µk(0)(Xi) +Aiτk(Xi)

}
p(k|Xi).

Claim 1. Under Assumption 2, E[ϵi |Ai ,Xi ] = 0.

A proof is provided in the appendix. When there is no between-study heterogeneity, i.e.,

m(·) =mk(·), e(·) = ek(·) and τ(·) = τk(·) ∀k, (3.1) is equal to

Yi −m(Xi) = {Ai − e(Xi)}τ(Xi) + ϵi , (3.2)

where ϵi := Yi(Ai) − {µ(0)(Xi) + Aiτ(Xi)} and E[ϵi |Ai ,Xi ] = 0. The decomposition in (3.1)
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extends (3.2) to a multi-study setting (K > 1) where mk(·), ek(·), µk(0)(·), and τk(·) poten-

tially differ across studies k = 1, . . . ,K . It motivates the mean squared error loss function

minimization problem for estimating {τ1(·), . . . ,τK (·)}

{τ1(·), . . . ,τK (·)}= argmin
τ̃1,...,τ̃K

E

{Yi −m(Xi)} −

K∑
k=1

{Ai − ek(Xi)}p(k|Xi)τ̃k(Xi)


2

 , (3.3)

which leads to the empirical minimization,

{τ̂1(·), . . . , τ̂K (·)}= argmin
τ̃1,...,τ̃K

{
Ln({τk(·)}Kk=1) +Λτ

}
, (3.4)

where

Ln
(
{τk(·)}Kk=1

)
=

1
n

n∑
i=1

{Yi −m(Xi)} −
K∑

k=1

{Ai − ek(Xi)}p(k|Xi)τk(Xi)


2

, (3.5)

is the oracle multi-study R-loss and Λτ is a regularizer on the complexity of the τ1(·), . . . ,τK (·)

functions to avoid overfitting. In practice, the optimization in (3.4) may be infeasible because

the nuisance functions m(·),ek(·), and p(k|·) are generally unknown. An exception is that

the propensity score function ek(·) is known in randomized clinical trials (RCTs). Outside

of this setting, we estimate the nuisance functions from data and perform the following

optimization

{τ̂1(·), . . . , τ̂K (·)}= argmin
τ̃1,...,τ̃K

1
n

n∑
i=1

{Yi − m̂(Xi)} −
K∑

k=1

{Ai − êk(Xi)}p̂(k|Xi)τ̃k(Xi)


2

+Λτ

 . (3.6)

Equation (3.6) is an approximation for optimizing the oracle loss function in (3.5). We

use cross-fitting to estimate the nuisance functions and propose a general class of two-step

algorithms for treatment effect estimation in multiple studies.

1. We randomly divide the data into Q evenly-sized folds, where Q is typically set to 5

or 10. Let q(i) denote the index set of the fold where the subject i belongs. We use

the samples that do not belong to q(i) to fit êk (k = 1, . . . ,K), m̂, and p̂. We denote

the predictions made without using the data fold that the ith subject belongs to as

ê
−q(i)
k (Xi), m̂−q(i)(Xi) and p̂−q(i)(k|Xi).
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2. Estimate treatment effects by minimizing L̂n({τk(·)}Kk=1) +Λτ , where

L̂n
(
{τk(·)}Kk=1

)
=

1
n

n∑
i=1

{Yi − m̂−q(i)(Xi)} −
K∑

k=1

{Ai − ê
−q(i)
k (Xi)}p̂−q(i)(k|Xi)τ̃k(Xi)


2

(3.7)

is the multi-study R-loss.

3.2.1 Theoretical analysis

The goal of our theoretical analysis is two-fold: first, we show that the difference between the

oracle multi-study R-loss Ln
(
{τk(·)}Kk=1

)
and the plug-in version L̂n

(
{τk(·)}Kk=1

)
diminishes

with a relatively fast rate with n; second, we show the multi-study R-learner is asymptotically

normal and unbiased. To achieve this goal, we approximate τk(·) (k = 1, . . . ,K) based on

dk-basis functions, where dk is allowed to grow with the sample size nk to balance the trade-

off between bias and variance. This is a nonparametric regression method known as series

estimation (Wasserman (2006); Belloni et al. (2015)). While we rely on series estimation for

the opportunity to derive theoretical results, we emphasize that the multi-study R-learner is

a general estimation framework for heterogeneous treatment effects. From equation (3.1), we

approximate the function

x 7→ g(x) :=
K∑

k=1

(Ai − ek(x))τk(x)p(k|x)

by linear forms x 7→ u(x)⊺β, i.e.,

g(x) = u(x)⊺β+ r(x), (3.8)

where β = (β
⊺
1 , . . . ,β⊺K )

⊺ is a d−dimensional vector of regression coefficients and βk ∈Rdk is

the vector of regression coefficients for study k. We let r(x) := rg(x) := g(x)−u(x)⊺β denote

the approximation error. We assume g ∈ G where G is some class of functions. We let

u(x) :=W (x)Z(x)v(x),
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where

W (x) := blkdiag({Wk(x)}Kk=1) ∈Rd×d , Wk(x) := diag((Ai − ek(x))1dk ) ∈Rdk×dk ,

Z(x) := blkdiag({Zk(x)}Kk=1) ∈Rd×d , Zk(x) := diag(p(k|x)1dk ) ∈Rdk×dk ,

and

v(x) := (v1(x)
⊺, . . . ,vK (x)

⊺)⊺,

where vk(x) := (vk,1(x), . . . ,vk,dk (x))
⊺ is a vector of approximation functions that can change

with nk . That is, dk can increase with nk . We denote the regressors as

ui := u(Xi) =WiZivi

where

Wi :=W (Xi)

Zi := Z(Xi)

vi := (v1(Xi)
⊺, . . . ,vK (Xi)

⊺)⊺.

We denote the plug-in multi-study R-loss by

L̂n(β) =
1
n

n∑
i=1

[
{Yi − m̂−q(i)(Xi)} − û

⊺
i β

]2
(3.9)

where

ûi := ŴiZiv(Xi),

Ŵi := blkdiag({Ŵk,i}Kk=1), Ŵk,i := diag((Ai − ê
−q(i)
k (Xi))1dk ).

If we know the nuisance functions a priori, the oracle multi-study R-loss is

Ln(β) =
1
n

n∑
i=1

[
{Yi −m(Xi)} −u

⊺
i β

]2
. (3.10)

To make progress analytically, we assume the following:

Assumption 3. ∥τk(x)∥∞ and E
[
(Yi −m(Xi))

2|Xi = x
]
, and E

[
(Ai − ek(Xi))

2|Xi = x
]

are
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bounded for any x ∈ X and k = 1, . . . ,K .

Assumption 4. E
[
(m(Xi)− m̂(Xi))

2
]
=O(a2

n), E
[
(ek(Xi)− êk(Xi))

2
]
=O(a2

n) (k = 1, . . . ,K),

and E [(ek(Xi)− êk(Xi))(ek′ (Xi)− êk′ (Xi))] = O(a2
n) where k , k′, an is some sequence such

that an =O(n−r) with r > 1/4.

Assumption 5. Uniformly over all n, eigenvalues of Q := E[uiu
⊺
i ] are bounded above and

away from zero.

Assumption 6. (a) For each n and d, there are finite constants cd and ld such that for each

f ∈ F , ∥∥∥rf ∥∥∥F,2
:=

√∫
x∈X

r2
f (x)dF(x) ≤ cd

and ∥∥∥rf ∥∥∥F,∞ := sup
x∈X

∣∣∣rf (x)∣∣∣ ≤ ldcd .

(b) Uniformly over n,

sup
x∈X

E[ϵ2
2I{|ϵi | >M}|Xi = x]→ 0

as M→∞

(c)

σ2 ≳ 1 where σ2 = inf
x∈X

E[ϵ2
i |Xi = x].

(d) Let ξD = supx∥u(x)∥,

ξ2
d log(d)/n

(
1+
√
dldcd

)
→ 0

and

ldcd → 0.

(e) √
n/d · ldcd → 0
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Assumption 3 and Assumption 4 ensure the difference between (3.9) and (3.10) diminishes

with a relatively fast rate with n. In particular, Assumption 4 requires the convergence rate

of estimators for the nuisance functions to be faster than n−1/4. This is plausible because

the Neyman orthogonality of the loss function renders the impact of the estimated nuisance

functions negligible (Chernozhukov et al. (2018)). Assumption 5-6 are required for the

pointwise normality result for the multi-study R-learner estimator (c.f. Theorem 4.2 in

Belloni et al. (2015)). Assumption 5 is a regularity condition that ensures the regressors ui are

not too co-linear. In Assumption 6a, F is some class of functions and rf is rg with g replaced

by f . The finite constants cd and ld together characterize the approximation properties of

the underlying class of functions. Assumption 6b is a mild uniform integrability condition,

and it holds if for some m > 2,supx∈X E[|ϵi |m|Xi = x] ≲ 1. Assumption 6c is used to properly

normalize the estimator. Assumption 6d ensures that the impact of unknown design and

approximation error on the sampling error of the estimator is negligible, and Assumption 6e

ensures the approximation error is negligible relative to the estimation error.

3.3 Results

Lemma 1. Under Assumptions 3-4, L̂n(β) = Ln(β) +Op(a
2
n).

Theorem 1. Under Assumptions 1-7, for any x ∈ X ⊆Rp,

√
n
τ̂(x)− τ(x)
∥s(x)∥

d→N (0,1) + oP (1)

where s(x) =Ω1/2Z(x)v(x) and Ω=Q−1E[ϵ2
i uiu

⊺
i ]Q

−1.

Proofs of the above results are provided in the appendix. Lemma 1 states that the

difference between the oracle and plug-in loss functions diminishes with rate a2
n, where

an =O(n−r) and r > 1/4. This implies that β̂ = argminb
1
n

∑n
i=1{Yi −m(Xi)−u

⊺
i b}

2 +Op(a
2
n).

Using this result, Theorem 1 provides the pointwise convergence in distribution result for

the multi-study R-learner estimator τ̂(x) at any x ∈ X .
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3.3.1 Simulations

We perform simulations to evaluate the performance of the multi-study R-learner. We

simulate K = 4 studies of sample size n = 400 and sample p = 40 covariate from the

curatedOvarianData R package (Ganzfried et al. (2013)) to reflect realistic and potentially

heterogeneous covariate distributions. We generate

Ai |Xi ,Si = k ∼ Ber(ek(Xi)), ϵi |Xi ∼N (0,1),

Yi =
K∑

k=1

[µk(0)(Xi) +Aiτk(Xi)]p(k|Xi) + ϵi .

We allow the ascertainment probability to depend on x:

p(k|Xi) ∼Multinom

n= 400,K = 4,pk =
exp(Xiβk)

1+
∑K−1

k=1 exp(Xiβk)
for k = 2,3,4


where

∑K
k=1pk = 1 and βk ∼MVN(0, I). For k = 1, . . . ,K , we generate

µk(0)(Xi) = Xiβ
µ(0)
k , τk(Xi) = Xiβ

τ
k +Ziγ

τ
k ,

where β
µ(0)
k ∼MVN(0, I) and βτk ∼MVN(2, I). Zi ∈Rq is a subset of Xi that corresponds to the

random effects γτ
k ∈Rq. The random effects have E[γτ

k ] = 0 and Cov(γτ
k ) = diag(σ2

1 , . . . ,σ2
q ).

If σ2
j > 0, then the effect of the jth covariate varies across studies; if σ2

j = 0, then the

covariate has the same effect in each study. We assume equal variance, that is, σ2
j = σ2

τ for

j = 1, . . . ,q. Each study has eight confounders, and each confounder has a random effect; the

regression coefficients for the other 32 covariates are set to 0. We simulate between-study

heterogeneity two ways: 1) heterogeneity in the magnitude of the confounder coefficients

by varying σ2
τ , and 2) heterogeneity in the degree of overlap in the confounders’ support

by varying the proportion of overlap po. If po = 1, then all studies share the same eight

confounders; if po = 0.5, then all studies have four common confounders, and each study has

four study-specific ones; if po = 0, then the studies do not share any confounders. In Scenario

I, the studies are randomized trials, so ek(x) = 0.5 for all x. In Scenario II, the studies are

observational, and we generate ek(Xi) = expit(Xiβ
e
k), where βek ∼MVN (1, I). The values of
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βk,β
µ(0)
k ,βek, and βτk used in the simulations are provided in the appendix. We estimate the

nuisance functions m(·),ek(·), and p(k|x) with elastic net (and logistic/multinomial elastic

net).

Figure 3.1 shows the log2 mean squared error (MSE) ratio comparing multi-study R-

learner to the R-learner. The top panels correspond to Scenario I and the bottom Scenario

II. Under the oracle setting, we optimize the loss function in (3.9) with the true nuisance

functions (left panel); in practice, the oracle nuisance functions are typically unknown

(especially m(·)), so we estimate them with elastic net and optimize the loss function in

(3.6) (right panel). Overall, as po decreases, the multi-study R-learner outperforms the

R-learner. Under Scenario II’s oracle setting, the multi-study R-learner has lower MSE across

all levels of po, with improvements of at least 84% when there is complete overlap in the

confounders. Within each level of po, the multi-study R-learner shows favorable performance

as στ increases, suggesting that the multi-study R-learner is preferred when between-study

heterogeneity is high.

3.4 Data Application to Breast Cancer

We illustrate the multi-study R-learner by applying it to breast cancer data from the cu-

ratedBreastData R package (Planey et al. (2015)). Female breast cancer is a molecularly

heterogeneous disease consisting of four main subtypes: 1) HR+/HER2-, 2) HR-/HER2-, 3)

HR+/HER2+, and 4) HR-/HER2+ (Hwang et al. (2019)). HR+ means that tumor cells have

hormone receptors (HR) for estrogen or progesterone, which promote the growth of HR+

turmors; on the other hand, HR- means that tumor cells do not have those receptors. HER2+

means that tumor cells produce high levels of the protein HER2 (human epidermal growth

factor receptor 2), which has been shown to be associated with aggressive tumor behavior

(Slamon et al. (1987)); likewise, HER2- means that tumor cells do not produce high levels of

HER2. On a molecular level, different breast cancers behave and proliferate in various ways.

Therefore, it is important to characterize and understand treatment effect heterogeneity for

patients with different breast cancer subtypes.
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Figure (3.1) Performance of multi-study R-learner vs. R-learner

log2 mean squared error ratio comparing multi-study R-learner (MS-R-Learner) to R-learner. Scenario I
focuses on randomized trials, and Scenario II focuses on observational studies. The solid circles represent the
average performance ratios, and vertical bars the 95% bootstrapped intervals. The differently colored lines
correspond to varying proportion of overlap in confounders: po = 0 (red), po = 0.5 (purple), and po = 1
(blue).
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Chemotherapy is a common treatment option for breast cancer. Generally, practitioners

may recommend chemotherapy in two situations: before or after surgery. First, neoadjuvant

chemotherapy can be used to reduce the size or extent of breast cancer before surgery. Its

purpose is to downstage the extent of disease in the breast and/or regional lymph nodes

and provide information regarding treatment response to direct adjuvant therapies (Sikov

et al. (2020)). Second, adjuvant chemotherapy can be used to try to kill any cancer cells

that might have been left behind or have spread but can’t be seen on imaging tests. While

both chemotherapies carry the same risks and side effects, patients who don’t respond to

neoadjuvant chemotherapy run the additional risk of having delayed their main treatment.

Therefore, the purpose of our data application is to characterize the treatment effect hetero-

geneity of anthracyline/taxane (A/T ), a neoadjuvant chemotherapy regimen for early breast

cancer.

The outcome of interest is pathological complete response (pCR), which is defined as

disappearance of all invasive cancer in the breast after completion of neoadjuvant chemother-

apy (1 = responded, 0 = otherwise). We identified K = 2 studies where patients were

administered A/T neoadjuvant chemotherapy (1 = A, 0 = T ). The first study (GSE21997)

is a randomized trial of n1 = 94 women aged between 18 and 79 with stage II-III breast

cancer (Martin et al. (2011)). Patients were assigned to receive four cycles of either A or T

before surgery. The second study (GSE25065) is an observational study of n2 = 168 women

who were HER2- with stage I-III breast cancer (Hatzis et al. (2011)). We focus on p = 4

covariates: age, histology grade (1-3), HR+ (1 = yes, 0 = 0), HER2+ (1 = yes, 0 = no). Table 3.1

summarizes the treatment and covariate information. We fit a logistic regression model to

the data and use the estimated probabilities as the ascertainment probability. In particular,

P (Si = 2|agei ,HR+i ,HER2+i) = expit(2.308−0.0309agei+0.223(HR+i)−3.456(HER2+i)).

A challenge with illustrating heterogeneous treatment effect estimators on real data is that we

do not have access to both counterfactuals. Therefore, we generate study-specific treatment

effects to make the task of estimating heterogeneous treatment effects non-trivial. We gener-
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ate τ1(Xi) = 1− agei/100−0.5(HR+)−0.5(HER2+) and τ2(Xi) = 1− agei/100−0.5(HR+)

for studies 1 and 2, respectively. If τ(Xi) > 0, then we set {Yi(1),Yi(0)} to (0, 1); otherwise,

we set it to (1,0). Finally, we set Yi = Yi(Ai). Figure 3.2 summarizes the heterogeneous treat-

ment effect generating mechanism. Women who are HR-/HER2- have triple-negative breast

cancer (TNBC), which is an aggressive subtype of breast cancer that tends to have a worse

prognosis. While T is often used to treat TNBC, patients usually develop resistance to it

(Gómez-Miragaya et al. (2017); Maloney et al. (2020)). Therefore, we generated the outcomes

so that women with TBNC would not respond to T . In a similar vein, anthracycline-induced

cardiotoxicity may interfere with treatment response (Cardinale et al. (2020)), so women who

were either HR+/HER2- or HR-/HER2+ would not respond to A if they were over the age of

50 (Figure 3.2).

Table (3.1) Descriptive statistics of breast cancer data

n S = 1 S = 2

N = 94 N = 168

Histologic Grade 262

1 3% ( 3) 5% ( 9)

2 55% ( 52) 34% ( 57)

3 41% ( 39) 61% (102)

HER2+ 262

0 72% ( 68) 99% (166)

1 28% ( 26) 1% ( 2)

Treatment 262

T 43% (40) 50% (84)

A 57% (54) 50% (84)

HR+ 262

0 35% ( 33) 31% ( 52)

1 65% ( 61) 69% (116)

Age 262

≤ 50 Years 50% (47) 56% (94)

> 50 Years 50% (47) 44% (74)

We randomly divide the data into a training (ntrain = 162) and a test set (ntest = 100).

To implement the R-learner and multi-study R-learner, we estimate m̂(·) and ê(·) from the
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Figure (3.2) Outcome-generating mechanism for the breast cancer data illustration.

training data using lasso with tuning parameters selected by cross-validation. Because study

1 was a randomized trial, we use 0.5 for its propensity score, and we estimate ê2 using

training data from study 2. Next, we optimized the R-loss and multi-study R-loss functions

to estimate the treatment effect and calculated the log mean square error on the test set.

Figure 3.3 compares the true treatment effects τ(Xi) with estimated treatment effects τ̂(Xi)

for the R-learner and multi-study R-learner. Both approaches perform well overall but tend

to underestimate τ(Xi) in the [−1,−0.5] range. This can be attributed to the small sample size

(n= 7) of women who are HR+/HER+. To simulate between-study heterogeneity, we add

normally-distributed random effects with mean 0 and covariance στI to the coefficients for

HR+ and HER2+. Figure 3.4 shows the log2 mean squared error ratio comparing lasso-based

multi-study R-learner to R-learner on the test set. When between-study heterogeneity (στ)

increases, the multi-study R-learner demonstrates preferable performance.
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Figure (3.3) Heterogeneous treatment effect estimates τ̂(Xi) on the test set

The treatment effect estimates are obtained from lasso-based R-learner (red boxplots) and multi-study
R-learner (green boxplots) compared to the true τ(Xi).
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Figure (3.4) Performance of multi-study R-learner vs. R-learner on breast cancer data

log2 mean squared error ratio comparing lasso-based multi-study R-learner (MS-R-Learner) to R-learner in
the breast cancer data application. The solid circles represent the average performance ratios, and vertical
bars the 95% bootstrapped intervals.
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3.5 Discussion

We propose the multi-study R-learner for estimating heterogeneous treatment effects un-

der the presence of between-study heterogeneity. It is a general approach that is easy to

implement in practice and allows flexible modeling of the nuisance functions using machine

learning techniques. From the perspective of multi-study learning, our approach can be

seen as a unifying framework for estimating heterogeneous treatment effects that admits

two special cases. First, when there is no between-study heterogeneity, the multi-study

R-learner is equivalent to the R-learner. Second, if the study designs are so different such

that p(k|·) = 1 for all individuals in study k ∀k, then optimizing the multi-study R-loss is

equivalent to optimizing the R-loss on each study separately. An example of this is when a

study’s exclusion criteria matches the inclusion criteria of another study completely (e.g.,

one study recruits participants of ages ≤ 18, whereas another recruits those > 18).

It would be interesting to extend the current framework to accommodate multi-valued

treatments. In this case, the multi-study R-learner estimator for t > 2 treatment levels can be

constructed based on the multivariate version of Robin’s transformation as suggested by Nie

and Wager (2021). Moreover, it would be interesting to extend the multi-study R-learner to

handle other types of outcomes, e.g. binary, multinomial, and survival.

In many areas of biomedical research, exponential advances in technology and facilitation

of systematic data-sharing have led to increased access to multiple studies. To account

for potential between-study heterogeneity in personalized treatment effects, our approach

extends the R-learner to a multi-study setting and allows flexible modeling of the nuisance

components. As many areas of science are becoming data-rich, it is critical to simultane-

ously consider and systematically integrate multiple studies when estimating heterogeneous

treatment effects.
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Appendix A

Appendix to Chapter 1

A.1 DerSimonian and Laird’s Random Effects Model

Motivated by the heterogeneity in study population, design, and ascertainment mechanism,

we combined decade-specific risk estimates from the published studies using the DerSi-

monian and Laird random-effects model, which considers both within- and between-study

variation DerSimonian and Laird (1986). We weighted the study-specific risk estimates by

the inverse of their variance to calculate a summary estimate and its 95% confidence interval.

For studies that reported sex- or gene-aggregated penetrance estimates without specifying

the number of sex- or gene-specific carriers, we weighted these estimates by the ratio of

male:female penetrance in the general population (based on the SEER registry) or the ratio

of MLH1:MSH2:MSH6 penetrance estimates from Bonadona et al. Bonadona et al. (2011),

respectively. We chose Bonadona et al. because among the studies that reported penetrance

estimates for all 3 MMR genes of interest, its estimates were derived from the largest carrier

sample spanning over 7 decades.

A.2 Meta-Analytic Approach

The general model allowing the meta-analytic integration of different types of cancer risk

estimates has been described previously Marabelli et al. (2016). Let C denote mutation carrier
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status where C = 1 represents carriers and C = 0 non-carriers. Suppose there are k = 1, . . . ,K

studies included in the meta-analysis.

A.2.1 Studies Reporting Penetrance

In our meta-analysis, all 10 papers reported penetrance. For studies k = 1, . . . ,10, we

assume the time to cancer Tk follows a probability distribution function F, characterized

by n unknown parameters of interest (where n is determined based on the distributional

assumptions for F), θc = (θc1, ...,θcn), such that;

P (cancer by age a|c) = P (Tk ≤ a|c) = Fc(a|θc1, . . . ,θcn) (A.1)

In study k, we let

µkc(a) ≡ Fc(a|θc1, . . . ,θcn)

denote the probability of cancer by age a given carrier status and

µkc(a) ≡ Fc(a|θc1, ...,θcn)

denote the probability of cancer for a vector of ages a= (a1, ...,am). For study-reported cumu-

lative penetrance values XPen
kc (a) = (XPen

kc (a1),X
Pen
kc (a2), ...,X

Pen
kc (am)), we assume XPen

kc (a)

follows a multivariate normal (MVN) distribution centered at µkc with corresponding co-

variance matrix Σ̂
Pen
k , i.e. XPen

kc (a) ∼MVN(µkc, Σ̂
Pen
k ). In practice, studies generally do not

report the covariance matrix Σ̂k (k = 1, . . . ,K). To estimate Σ̂k , we simulate penetrance values

from a normal distribution with means and standard deviations provided by the original

paper. These values are simulated under the constraint that the penetrance values were

non-decreasing as age increases. The covariance matrix is estimated between the penetrance

values for each pair of ages.

Assuming that the studies are independent, the overall likelihood can be written as the

product of the study-specific contributions:
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LOverall(θc) =
10∏
k=1

Lk(θc|XPen
kc ) (A.2)

where the study-specific likelihood Lk(θc|XPen
kc ) can be written in terms of the sampling

distribution of XPen
kc . The parameter estimates θ̂c are obtained by maximizing the overall

likelihood.

This likelihood is then extended to include gene- and/or sex- aggregated risk information.

We assume that the cancer penetrance follows a distribution function Fcgs, where g ∈ {1,2,3}

denotes the three Lynch syndrome genes (MLH1, MSH2, and MSH6, respectively), and

s ∈ {1,2} denotes male and female, respectively. Depending on the study, µkc can be written

as one of the following:

• Study k reports gene- and sex- specific penetrance estimates

µkc(a) = Fcgs(a|θcgs1, . . . ,θcgsn)

• Study k reports gene-specific but sex-aggregated penetrance estimates

µkc(a) = Fcg(a|θcg1, . . . ,θcgn)

where Fcg = pg1Fcg1 + (1− pg1)Fcg2 and pg1 is the proportion of male carriers.

• Study k reports sex-specific but gene-aggregated penetrance estimates

µkc(a) = Fcs(a|θcs1, . . . ,θcsn)

where Fcs = p1sFc1s + p2sFc2s + p3sFc3s and p1s,p2s,p3s are the proportions of MLH1,

MSH2, and MSH6 mutation carriers, respectively.

• Study k reports both gene- and sex-aggregated penetrance estimates

µkc(a) = Fc(a|θc1, . . . ,θcn)

where Fc = p11Fc11 + p12Fc12 + p21Fc21 + p22Fc22 + p31Fc31 + p32Fc32 and p11 is the

proportion of male MLH1 mutation carriers, p12 is the proportion of female MLH1
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mutation carriers, and so forth.

We assume that the cancer penetrance can be modeled as a log-logistic distribution function,

i.e., µkc(a) = Fcgs(a;λgs,κgs) =
1

1+ a
λgs

(−κgs) . The unknown vector of parameters, θc = {λgs,κgs}

has a total of 2 (shape and scale parameters) for each of the 3 (genes) × 2 (sexes), resulting

in 12 parameters. For study k, the study-specific likelihood is

Lc(λgs,κgs|XPen
kc ) =

1

(2π)
m
2 det(Σ̂

Pen
kc )

1
2

exp
(
−1

2
(xPen

kc −µkc
)T Σ̂

Pen
kc
−1(xPen

kc −µkc)
)

.

Maximum likelihood estimates of the parameters of the log-logistic distribution func-

tion (λgs,κgs) were estimated to be: λ̂11 = 3.98, κ̂11 = 0.61, λ̂12 = 4.09, κ̂12 = 0.50, λ̂21 =

3.74, κ̂21 = 0.56, λ̂22 = 4.10, κ̂22 = 0.58, λ̂31 = 4.44, κ̂31 = 0.31, λ̂32 = 4.81, and κ̂32 = 0.28.

To obtain measures of uncertainty, we calculated 95% credible intervals based on posterior

probability distributions.

Fig. S1 shows the following: (1) the means and 95% CI of the meta-analytic penetrances

at each 10-year age interval that were estimated using the DerSimonian and Laird method;

(2) the smoothed curves obtained from the likelihood-based approach that represent our

final estimates by age. Fig. S2 shows the cumulative penetrance of CRC for MLH1, MSH2,

and MSH6 mutation carriers after stratifying studies by screening status.

A.2.2 Studies Reporting Relative Risk

The relative risk (RR) XRR
k is assumed to be normally distributed with mean µRR

k and variance

σ̂RR2

k . The variance is provided by the study. We re-express the mean as a function of the

penetrance Marabelli et al. (2016):

µRR
k ≡

P (cancer|C = 1)
P (cancer|C = 0)

≈

∫
P (cancer by age a|C = 1)g1(a)da∫
P (cancer by age a|C = 0)g0(a)da

=

∫
µk1(a)gk1(a)da∫
µk0(a)gk0(a)da

, (A.3)

where gkc(a) denotes the density of age a given carrier status c in study k. In practice, when

gc is not available, we can use the density of age of onset qkc instead:

P (cancer|c) ≈
∫

P (cancer at age a|c)qc(a)da=
∫

fkc(a|θc)qkc(a)da.

86



A.2.3 Studies Reporting Odds Ratio

The relative risk (OR) XOR
k is assumed to be normally distributed with mean µOR

k and variance

σOR2

k . The variance is provided by the study. We re-express the mean as a function of the

penetrance Marabelli et al. (2016):

µOR
k ≡

P (C = 1|cancer)
1−P (C = 1|cancer)

P (C = 1|no cancer)
1−P (C = 1|no cancer)

=

P (C = 1)P (cancer|C = 1)
P (C = 0)P (cancer|C = 0)

P (C = 1)P (no cancer|C = 1)
P (C = 0)P (no cancer|C = 0)

≈

∫
fk1(a)rk1(a)da∫
fk0(a)rk0(a)da∫

(1−µk1(a))sk1(a)da∫
(1−µk0(a))sk0(a)da

, (A.4)

where given carrier status c, rkc and skc denote the density of age of onset among cases and

the density of age of inclusion among controls, respectively.

A.2.4 Studies Reporting Standardized Incidence Ratio

The standardized incidence ratio (SIR) XSIR
k is assumed to be normally distributed with mean

µSIR
k and variance σSIR2

k . The variance is provided by the study. We re-express the mean as a

function of the penetrance Marabelli et al. (2016):

µSIR
k ≈

∫
fk1(a)qk1(a)da

P (C = 1)
∫
fk1(a)qk1(a)da+ P (C = 0)

∫
fk0(a)qk0(a)da

. (A.5)

A.3 Publication bias

We created funnel plots to assess the potential issue of publication bias in our meta-analysis.

Fig. A.3 shows the corresponding funnel plots for studies on MLH1, MSH2, and MSH6

mutation carriers by 10-year age intervals from age 30 to 80. For female MLH1 mutation

carriers, there is some evidence of asymmetry in the funnel plots at ages 60 (p-value = 0.021)

and 70 (p-value = 0.043) (Fig. a bottom row). For female MSH2 mutation carriers, there is

marginal evidence of asymmetry at age 40 (p-value = 0.041) (Fig.b bottom row). The number

of studies is too small to test for evidence of asymmetry for MSH6 mutation carriers. All

p-values associated with male mutation carriers for MLH1 and MSH2 were not significant at

the 0.05 level. Due to the small number of studies across all three genes (8 on MLH1, 9 on
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MSH2, 3 on MSH6), the Egger test may be underpowered to distinguish chance from real

asymmetry.
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(a) MLH1

(b) MSH2
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(Continued)

(c) MSH6

Figure (A.1) Age-specific colorectal cancer risk for mismatch repair gene mutation carriers by study

Panels (a), (b), and (c) correspond to MLH1, MSH2, and MSH6 mutation carriers, respectively. DerSimo-
nian and Laird random effects model results: The age range is divided into 10-year intervals. Within
each we show cumulative risk estimates from individual studies (thin vertical blue/orange bars) and the
meta-analytic estimate from the DL random effects model (thick vertical black bars). The height of vertical
bars represents 95% CIs. Within each 10-year age interval, the published studies are arranged by publication
year (left to right): Dunlop et al. Dunlop et al. (1997), Quehenberger et al. Quehenberger et al. (2005),
Aaltonen et al. Aaltonen et al. (2007), Kopciuk et al. Kopciuk et al. (2009), Stoffel et al. Stoffel et al. (2009),
Borras et al. Borràs et al. (2010), Bonadona et al. Bonadona et al. (2011), Mukherjee et al. Mukherjee et al.
(2011), Dowty et al. Dowty et al. (2013), and Moller et al. Møller et al. (2017). An “x” indicates that
the age interval was not available. Likelihood-based approach results: Smooth blue and orange lines
represent penetrance estimated from the likelihood-based approach by yearly age. Blue corresponds to male
carriers, and orange corresponds to female carriers.
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(a) MLH1
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(Continued)

(b) MSH2
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(Continued)

(c) MSH6

Figure (A.2) Colorectal cancer risk stratified by screening status and study

Colorectal cancer risk stratified by studies on unscreened/no prior surgery population (top panel) or unspecificed (i.e. likely a mix of
screened and unscreened populations) (bottom panel) for (a) MLH1 carriers, (b) MSH2 carriers, and (c) MSH6 carriers. DerSimonian
and Laird random effects model results: The age range is divided into 10-year intervals. Within each we show cumulative risk
estimates from individual studies (thin vertical blue/orange bars) and the meta-analytic estimate from the DerSimonian and Laird
random effects model (thick vertical black bars). The height of vertical bars represents 95% CIs. Within each 10-year age interval,
the published studies are arranged by publication year: Quehenberger et al.Quehenberger et al. (2005), Kopciuk et al., Kopciuk et al.
(2009), Bonadona et al. Bonadona et al. (2011), and Dowty et al. Dowty et al. (2013) are arranged from left to right in the top panels.
Dunlop et al. Dunlop et al. (1997), Aaltonen et al. Aaltonen et al. (2007), Stoffel et al. Stoffel et al. (2009), Borras et al. Borràs et al.
(2010), Mukherjeeet al. Mukherjee et al. (2011), and Molleret al. Møller et al. (2017) are arranged from left to right in the bottom
panels. An “x” represents not available. Likelihood-based approach results: Smooth blue and orange lines represent penetrance
estimated from the likelihood-based approach by yearly age. Blue corresponds to male carriers, and orange corresponds to female
carriers.
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(a) MLH1

(b) MSH2
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(Continued)

(c) MSH6

Figure (A.3) Funnel plots by study

Panels (a), (b), and (c) correspond to MLH1, MSH2, and MSH6 mutation carriers, respectively. From left to
right, the plots correspond to ages 30, 40, . . ., 80. Within each panel, the top row corresponds to male, and
bottom female.
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Appendix B

Appendix to Chapter 2

B.1 Proof of Proposition 1

Proof of Proposition 1. We show r(m) =
∏m−1

ℓ=0

(
I − ηH(m−ℓ−1)

)
Y by induction. Without loss of

generality, we assume η = 1. At iteration 1, the residual vector is

r(1) = Y − Ŷ(0)

=
(
I −H(0)

)
Y

At iteration m− 1, we assume the induction hypothesis:

r(m−1) =
m−2∏
ℓ=0

(
I −H(m−ℓ−1)

)
Y (B.1)
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At iteration m, the residual vector is

r(m) = Y − Ŷ(m−1)

= Y −
(
Ŷ(m−2) +H(m−1)r(m−1)

)
= r(m−1) −H(m−1)r(m−1)

=
(
I −H(m−1)

)
r(m−1)

(B.1)
=

(
I −H(m−1)

)(
I −H(m−2)

)
· · ·

(
I −H(1)

)(
I −H(0)

)
Y

=
m−1∏
ℓ=0

(
I −H(m−ℓ−1)

)
Y .

It follows that
(
X̃T
ĵ(m)

X̃jm

)−1
X̃T
ĵ(m)

r(m) ∈R is the coefficient estimate of X̃ĵ(m)
. Multiplying the

coefficient estimate by eĵ(m)
∈RP results in an U -dimensional vector with

(
X̃T
ĵ(m)

X̃jm

)−1
X̃T
ĵ(m)

r(m)

in the ĵ(m)-th position and 0 everywhere else. The final coefficient estimates are given by the

sum across iteration-specific vectors eĵ(m)

(
X̃T
ĵ(m)

X̃jm

)−1
X̃T
ĵ(m)

r(m) for m= 1, . . . ,M. □

B.2 Proof of Lemma 1

Proof of Lemma 1. We decompose Y into

Y = cj(v
T
j Y ) + zj

and rewrite the polyhdron as
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{ΓY ≥ 0}=
{
Γ
(
cjv

T
j Y + zj

)
≥ 0

}
=

{
Γ cj(v

T
j y) ≥ 0− Γ zj

}
=

{(
Γ cj

)
ℓ

(
vTj Y

)
≥ 0− (Γ zj)ℓ for all ℓ = 1, . . . ,2M(P − 1)

}

=


vTj Y ≥

0−(Γ zj )ℓ
(Γ cj )ℓ

, for ℓ : (Γ cj)ℓ > 0

vTj Y ≤
0−(Γ zj )ℓ
(Γ c)i

, for ℓ : (Γ cj)ℓ < 0

0 ≥ 0− (Γ zj)ℓ for ℓ : (Γ cj)i = 0



=



vTj Y ≥ max
ℓ:(Γ c)ℓ>0

0−(Γ zj )ℓ
(Γ c)i

vTj Y ≤ min
ℓ:(Γ cj )ℓ<0

0−(Γ zj )ℓ
(Γ cj )ℓ

0 ≥ max
ℓ:(Γ c)ℓ=0

0− (Γ zj)ℓ


where in the last step, we have divided the components into three categories depending on

whether (Γ cj)ℓ ⋚ 0, since this affects the direction of the inequality (or whether we can divide

at all). Since vTj Y is the same quantity for all ℓ, it must be at least the maximum of the lower

bounds, which is aj , and no more than the minimum of the upper bounds, which is bj . Since

aj ,bj , and cj are independent of vTj Y , then vTj Y is conditionally a normal random variable,

truncated to be between aj and bj . By conditioning on the value of zj ,

vTj Y |{ΓY ≥ 0,zj = z}

is a truncated normal.

□
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B.3 Proof of Theorems 1 and 2

Proof of Theorems 1 and 2.

Bias
(
X̃0β̂

Merge
(M)

)
= E

X̃0

M∑
m=1

ηB (I − ηH)m−1Y

− f (X̃0)

= X̃0R̃f (X̃)− f (X̃0)

Bias
(
X̃0β̂

Ens
(M)

)
= E

X̃0

K∑
k=1

wk

 M∑
m=1

ηBk (I − ηHk)
m−1Yk


− f (X̃0)

=
K∑

k=1

wkX̃0R̃kf (Xk)− f (X̃0)

Cov
(
X̃0β̂

Merge
(M)

)
= Cov

X̃0

M∑
m=1

ηB (I − ηH)m−1Y


= X̃0R̃Cov(Y )R̃

T X̃T
0

= X̃0R̃blkdiag
(
{Cov (Yk)}

K
k=1

)
R̃T X̃T

0

= X̃0R̃blkdiag
({
ZkGZT

k + σ2
ϵ I

}K
k=1

)
R̃T X̃T

0

Cov
(
X̃0β̂

Ens
(M)

)
= Cov

X̃0

K∑
k=1

wk

 M∑
m=1

ηBk (I − ηHk)
m−1Yk




= Cov

X̃0

K∑
k=1

wkR̃kYk


=

K∑
k=1

w2
k X̃0R̃k

(
ZkGZT

k + σ2
ϵ I

)
R̃T
k X̃

T
0

=
K∑

k=1

w2
k X̃0R̃kZkGZT

k R̃
T
k X̃

T
0 + σ2

ϵ

K∑
k=1

w2
k X̃0R̃kR̃

T
k X̃

T
0
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Let bMerge = Bias
(
X̃0β̂

Merge
(M)

)
. The MSPE of β̂Merge

(M)
is

E
[
∥Y0 − X̃0β̂

Merge
(M)

∥22
]
= tr

(
Cov

(
X̃0β̂

Merge
(M)

))
+

(
bMerge

)T
bMerge +E

[
∥Y0 − f (X̃0)∥22

]
= tr

(
X̃0R̃blkdiag

({
Cov(Yk)

}K
k=1

)
R̃T X̃T

0

)
+

(
bMerge

)T
bMerge +E

[
∥Y0 − f (X̃0)∥22

]
= tr

(
blkdiag

({
ZkGZT

k + σ2
ϵ I

}K
k=1

)
R̃T X̃T

0 X̃0R̃
)
+

(
bMerge

)T
bMerge +E

[
∥Y0 − f (X̃0)∥22

]
= tr

(
blkdiag

(
{ZkGZT

k }
K
k=1

)
R̃T X̃T

0 X̃0R̃
)
+ σ2

ϵ tr
(
R̃T X̃T

0 X̃0R̃
)
+

(
bMerge

)T
bMerge +E

[
∥Y0 − f (X̃0)∥22

]
= tr

(
Z′G′Z′T R̃T X̃T

0 X̃0R̃
)
+ σ2

ϵ tr
(
R̃T X̃T

0 X̃0R̃
)
+

(
bMerge

)T
bMerge +E

[
∥Y0 − f (X̃0)∥22

]
= tr

(
G′Z′T R̃T X̃T

0 X̃0R̃Z
′)+ σ2

ϵ tr
(
R̃T X̃T

0 X̃0R̃
)
+

(
bMerge

)T
bMerge +E

[
∥Y0 − f (X̃0)∥22

]
=

D∑
d=1

σ2
(d)


∑

i:σ2
i =σ2

(d)

 K∑
k=1

(
Z′T R̃T X̃T

0 X̃0RZ
′)
i+Q×(k−1),i+Q×(k−1)


+ σ2

ϵ tr
(
R̃T X̃T

0 X̃0R̃
)

+
(
bMerge

)T
bMerge +E

[
∥Y0 − f (X̃0)∥22

]
Let bEns = Bias

(
X̃0β̂

Ens
(MEns)

)
. The MSPE of β̂Ens

(MEns)
is

E
[
∥Y0 − X̃0β̂

Ens
(MEns)

∥22
]
= tr

(
Cov

(
X̃0β̂

Ens
(MEns)

))
+

(
bEns

)T
bEns +E

[
∥Y0 − f (X̃0)∥22

]
= tr

X̃0Cov

 K∑
k=1

wkR̃kYk

 X̃T
0

+ (
bEns

)T
bEns +E

[
∥Y0 − f (X̃0)∥22

]
=

K∑
k=1

w2
k tr

(
ZkGZT

k R̃T
k X̃

T
0 X̃0R̃k

)
+ σ2

ϵ

K∑
k=1

w2
k tr

(
R̃T
k X̃

T
0 X̃0R̃k

)
+

(
bEns

)T
bEns +E

[
∥Y0 − f (X̃0)∥22

]
=

K∑
k=1

w2
k tr

(
GZT

k R̃T
k X̃

T
0 X̃0R̃kZk

)
+ σ2

ϵ

K∑
k=1

w2
k tr

(
R̃T
k X̃

T
0 X̃0R̃k

)
+

(
bEns

)T
bEns +E

[
∥Y0 − f (X̃0)∥22

]

=
D∑

d=1

σ2
(d)


∑

i:σ2
i =σ2

(d)

 K∑
k=1

w2
k

(
ZT
k R̃T

k X̃
T
0 X̃0R̃kZk

)
i,i




+ σ2
ϵ

K∑
k=1

w2
k tr

(
R̃T
k X̃

T
0 X̃0R̃k

)
+

(
bEns

)T
bEns +E

[
∥Y0 − f (X̃0)∥22

]

If σ2
1 = σ2

2 = . . .= σ2
J (Theorem 1), then

σ2 ≥ Q
P
×
σ2
ϵ

(∑K
k=1w

2
k tr

(
R̃T
k X̃

T
0 X̃0R̃k

)
− tr

(
R̃T X̃T

0 X̃0R̃
))
+

(
bEns

)T
bEns −

(
bMerge

)T
bMerge

tr
(
Z′T R̃T X̃T

0 X̃0R̃Z′
)
−
∑K

k=1w
2
k tr

(
ZT
k R̃T

k X̃
T
0 X̃0R̃kZk

)
⇒ σ2

tr
(
Z′T R̃T X̃T

0 X̃0R̃Z
′)− K∑

k=1

w2
k tr

(
ZkR̃

T
k X̃

T
0 X̃0R̃kZk

)
≥ σ2

ϵ

 K∑
k=1

w2
k tr

(
R̃T
k X̃

T
0 X̃0R̃k

)
− tr

(
R̃T X̃T

0 X̃0R̃
)+ (

bEns
)T

bEns −
(
bMerge

)T
bMerge

⇔ E
[
∥Y0 − X̃0β̂

Merge
(M)

∥22
]
≥ E

[
∥Y0 − X̃0β̂

Ens
(MEns)

∥22
]
.
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If σ2
j , σ

2
j ′ for at least one j , j ′ (Theorem 2), then let

ad =
∑

i:σ2
i =σ2

(d)

 K∑
k=1

(
Z ′T R̃T X̃T

0 X̃0R̃Z
′
)
i+Q×(k−1),i+Q×(k−1)

−w2
k

(
ZT
k R̃

T
k X̃

T
0 X̃0R̃kZk

)
i,i


and

c = σ2
ϵ

 K∑
k=1

w2
k tr

(
R̃T
k X̃

T
0 X̃0R̃k

)
− tr

(
R̃T X̃T

0 X̃0R̃
)+ (

bEns
)T

bEns −
(
bMerge

)T
bMerge.

Since

E
[
∥Y0 − X̃0β̂

Merge
(M)

∥22
]
≥ E

[
∥Y0 − X̃0β̂

Ens
(MEns)

∥22
]
⇐⇒

D∑
d=1

σ2
(d)ad ≥ c

and (
min
d

ad
Jd

) D∑
d=1

σ2
(d)Jd ≤

D∑
d=1

σ2
(d) ≤

(
max
d

ad
Jd

) D∑
d=1

σ2
(d)Jd ,

assuming ad > 0 for all d, then

σ2 =

∑D
d=1σ

2
(d)Jd

P
≤ c

P maxd
ad
Jd

= τ1

⇒
D∑

d=1

σ2
(d)ad ≤max

d

ad
Jd

D∑
d=1

σ2
(d)Jd ≤ c

⇐⇒ E
[
∥Y0 − X̃0β̂

Merge
(M)

∥22
]
≤ E

[
∥Y0 − X̃0β̂

Ens
(MEns)

∥22
]
.

and

σ2 =

∑D
d=1σ

2
(d)Jd

P
≥ c

P maxd
ad
Jd

= τ2

⇒
D∑

d=1

σ2
(d)ad ≥min

d

ad
Jd

D∑
d=1

σ2
(d)Jd ≥ c

⇐⇒ E
[
∥Y0 − X̃0β̂

Merge
(M)

∥22
]
≥ E

[
∥Y0 − X̃0β̂

Ens
(MEns)

∥22
]
.

□
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B.4 Proof of Proposition 2

Proof of Proposition 2.

V ar
(
β̂

Merge, CW
(M)j

∣∣∣∣P )= ϑ2
j

1−
ξjφ(ξj)−αjφ(αj)

Φ(ξj)−Φ(αj)
−
(
φ(ξj)−φ(αj)

Φ(ξj)−Φ(αj)

)2
Bias2

(
β̂

Merge, CW
(M)j

∣∣∣∣P )= (
µ̄j −ϑj

(
φ(ξj)−φ(αj)

Φ(ξj)−Φ(αj)

)
− βj

)2

V ar
(
β̂Ens, CW
(M)j

∣∣∣∣PEns
)
= V ar

 K∑
k=1

wkβ̂
CW
(Mk)jk

∣∣∣∣∣∣∣P Ens


=

K∑
k=1

w2
kV ar

(
β̂CW
(Mk)jk

∣∣∣∣Pk) (because Yk’s are independent)

=
K∑

k=1

w2
kϑ

2
jk

1−
ξjkφ(ξjk)−αjkφ(αjk)

Φ(ξjk)−Φ(αjk)
−
(
φ(ξjk)−φ(αjk)

Φ(ξjk)−Φ(αjk)

)2
Bias2

(
β̂Ens, CW
(M)j

∣∣∣∣PEns
)
=

 K∑
k=1

wkE
(
β̂CW
(Mk)jk

∣∣∣∣P Ens
)
− βj


2

=

 K∑
k=1

wkE
(
β̂CW
(Mk)jk

∣∣∣∣Pk)− βj


2

(because Yk’s are independent)

=

 K∑
k=1

wk

(
µ̄jk −ϑjk

(
φ(ξjk)−φ(αjk)

Φ(ξjk)−Φ(αjk)

))
− βj


2

□

B.5 Truncation region for component-wise boosting coefficients

Claim 2 (Truncation region for component-wise boosting coefficients). Let Y ∈RN denote the

outcome vector where Y ∼N (µ,Σ). The boosting coefficients can be written as

β̂
CW, Merge
(M)

= V T Y

B
M∑

m=1

ηB(m)

m−1∏
ℓ=0

(I − ηH(m−ℓ−1))

Y ,
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where V ∈RN×P depends on Y through variable selection. We decompose Y into

Y = C(V T Y ) +Z∗,

where

C = ΣV
(
V TΣV

)−1
,

is a N−dimensional vector and

Z∗ =
(
I −ΣV

(
V TΣV

)−1
V T

)
Y

is a ℓP B 2M(P −1) dimensional vector. We claim the polyhedral set {ΓY ≥ 0} can be re-written as

a truncation region where the coefficients β̂CW, Merge
(M)

have non-rectangular truncation limits.

Proof. We define the projection Πk(S) of a set S ⊂Rn by letting

Πk(S) =
{
(x1, . . . ,xk)|∃xk+1, . . . ,xn s.t. (x1, . . . ,xn) ∈ S

}
.

Given a polyhedron P in terms of linear inequality constraints of the form

Ax ≥ b,

we state the Fourier Motzkin elimination algorithm from Bertsimas and Tsitsiklis (1997).

We note the following:

1. The projection Πk(P ) can be generated by repeated application of the elimination

algorithm (Theorem 2.10 in Bertsimas and Tsitsiklis (1997))

2. The elimination approach always produces a polyhedron (definition of the elimination

algorithm in Bertsimas and Tsitsiklis (1997)).

Therefore, it follows that a projection Πk(P ) of a polyhedron is also a polyhedron.

The polyhedral set P B {Y : ΓY ≥ 0} is a system of ℓP B 2M(P − 1) linear inequalities,

with P variables V T Y1, . . . ,V T YP . Let (A)ij denote the i, j-th entry in matrix A. We let

IP = {1,2, . . . ,ℓP } denote the row index set for the system of inequalities with P variables and

partition it into subsets I+P , I−P , and I0
P , where I+P = {i : (ΓC)ip > 0}, I−P = {i : (ΓC)ip < 0}, and
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Algorithm 3 Elimination algorithm for a system of linear inequalities

1: Rewrite each constraint
∑N

j=1 aijxj ≥ bi in the form

aiNxN ≥ −
N−1∑
j=1

aijxj + bi , i = 1, . . . ,m

if aiN , 0, divide both sides by aiN . By letting x̄ = (x1, . . . ,xn−1), we obtain an equivalent
representation of P involving the following constraints

xN ≥ di + f ′i x̄, if aiN > 0

dj + f ′j x̄ ≥ xN , if ajN < 0

0 ≥ dk + f ′k x̄, if akN = 0

Each di ,dj ,dk is a scalar, and each fi ,fj ,fk is a vector in RN−1.
2: Let Q be the polyhedron in RN−1 defined by the constraints

dj + f ′j x̄ ≥ di + f ′i x̄ if aiN > 0 and ajN < 0

0 ≥ dk + f ′k x̄, if akN = 0

I0
P = {i : (ΓC)ip = 0}. Then we have

{ΓY ≥ 0}=
{
Γ
(
CV T Y +Z∗

)
≥ 0

}
=

 ΓC︸︷︷︸
ℓP ×P

V T Y︸︷︷︸
P×1

≥ 0− ΓZ∗︸  ︷︷  ︸
ℓP ×1


=


P∑

j=1

(ΓC)ij(V
T Y )j ≥ 0− (ΓZ∗)i i = 1, . . . ,ℓP


=

(ΓC)ip(V T Y )p ≥ −
P−1∑
j=1

(ΓC)ij(V
T Y )j − (ΓZ∗)i i = 1, . . . ,ℓP


=


(V T Y )P ≥

−
∑P−1

j=1(ΓC)qj (V
T Y )j−(ΓZ∗)q

(ΓC)qp
, for q ∈ I+P

(V T Y )P ≤
−
∑P−1

j=1(ΓC)rj (V
T Y )j−(ΓZ∗)r

(ΓC)rp
, for r ∈ I−P

0 ≥ −
∑P−1

j=1(ΓC)sj(V
T Y )j − (ΓZ∗)s for s ∈ I0

P


=


maxq∈I+

−
∑P−1

j=1(ΓC)qj (V
T Y )j−(ΓZ∗)q

(ΓC)qp
≤ (V T Y )p ≤minr∈I−

−
∑P−1

j=1(ΓC)rj (V
T Y )j−(ΓZ∗)r

(ΓC)rp

0 ≥ −
∑P−1

j=1(ΓC)sj(V
T Y )j − (ΓZ∗)s for s ∈ I0

P


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We reduce this to a system of inequalities with P − 1 variables after eliminating (V T Y )P :
−
∑P−1

j=1(ΓC)qj (V
T Y )j−(ΓZ∗)q

(ΓC)qp
≤ −

∑P−1
j=1(ΓC)rj (V

T Y )j−(ΓZ∗)r
(ΓC)rp

for q ∈ I+P ,r ∈ I−P

0 ≥ −
∑P−1

j=1(ΓC)sj(V
T Y )j − (ΓZ∗)s for s ∈ I0

P

 (B.2)

The set in (B.2) is a system of ℓP−1 B |I+P | × |I
−
P |+ |I

0
P | inequalities. It is a polyhedral set in

RP−1, which can be seen by rewriting (B.2) as follows:
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
−
∑P−1
j=1(ΓC)qj (V

T Y )j−(ΓZ∗)q
(ΓC)qp

≤
−
∑P−1
j=1(ΓC)rj (V

T Y )j−(ΓZ∗)r
(ΓC)rp

for q ∈ I+,r ∈ I−

0 ≥ −
∑P−1

j=1(ΓC)sj (V
T Y )j − (ΓZ∗)s for s ∈ I0


=

−
∑P−1

j=1(ΓC)rp(ΓC)qj (V
T Y )j − (ΓC)rp(ΓZ∗)q ≥ −

∑P−1
j=1(ΓC)qp(ΓC)rj (V

T Y )j − (ΓC)qp(ΓZ∗)r for q ∈ I+,r ∈ I−∑P−1
j=1(ΓC)sj (V

T Y )j ≥ −(ΓZ∗)s for s ∈ I0


=


∑P−1

j=1

(
(ΓC)qp(ΓC)rj − (ΓC)rp(ΓC)qj

)
(V T Y )j ≥ (ΓC)rp(ΓZ

∗)q − (ΓC)qp(ΓZ∗)r for q ∈ I+,r ∈ I−∑P−1
j=1(ΓC)sj (V

T Y )j ≥ −(ΓZ∗)s for s ∈ I0

 .

Let Ap−k denote a ℓp−k × (p − k) matrix, (V T Y )1:p−k a vector that contains the first p − k

coordinates of (V T Y ), and bp−k(Z
∗) a ℓp−k-dimensional vector, where k ∈ {0, . . . ,P − 1}, and

ℓp−k is the number of linear constraints in Πp−k(P ), which is the projection of P . Note that

AP = ΓC and bP (Z
∗) = 0− ΓZ∗.

We repeat the elimination process P − 1 times to obtain Π1(P ) :

{ΓY ≥ 0}= {Ap(V
T Y ) ≥ bp(Z

∗)}

ΠP−1(P ) = {AP−1(V
T Y )1:P−1 ≥ bP−1(Z

∗)}
...

Π1(P ) = {A1(V
T Y )1 ≥ b1(Z

∗)}.

Induction base case for Π2(P ): Without loss of generality, we assume the variable in Π1(P )

is (V T Y )1. We can obtain its lower and upper truncation limits, V lo
1 (Z∗) and Vup

1 (Z∗), and

V0
1 (Z

∗) using the same argument as the one in Lee et al. (2016), where

V lo
1 (Z∗) = max

i:(A1)i>0

(b1(Z
∗))i

(A1)i

Vup
1 (Z∗) = min

i:(A1)i<0

(b1(Z
∗))i

(A1)i

V0
1 (Z

∗) = max
i:(A1)i=0

(b1(Z
∗))i .

We conclude that Π1(P ) = {(V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗),V0

1 (Z
∗) ≤ 0}.
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By the definition of Π2(P ), we have

Π2(P ) =
{
A2(V

T Y )1:2 ≥ b2(Z
∗)
}

=


A2(V

T Y )1:2 ≥ b2(Z
∗)

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0


because reducing the system from Π2(P ) to Π1(P ) does not change the range of (V T Y )1

that satisfy the linear constraints in Π2(P ).
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We can obtain the lower and upper truncation limits for (V T Y )2 as a function of (V T Y )1.

Π2(P ) =
{
A2(V

T Y )1:2 ≥ b2(Z
∗)

}

=


A2(V

T Y )1:2 ≥ b2(Z
∗)

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0


=


∑2

j=1(A2)ij(V
T Y )j ≥ (b2(Z

∗))i for i = 1, . . . ,ℓ2

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0


=


(A2)i2(V

T Y )2 ≥ −(A2)i1(V
T Y )1 + (b2(Z

∗))i for i = 1, . . . ,ℓ2

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0



=



(V T Y )2 ≥
−(A2)i1(V

T Y )1+(b2(Z
∗))i

(A2)i2
for i : (A2)i2 > 0

(V T Y )2 ≤
−(A2)i1(V

T Y )1+(b2(Z
∗))i

(A2)i2
for i : (A2)i2 < 0

0 ≥ −(A2)i1(V
T Y )1 + (b2(Z

∗))i for i : (A2)i2 = 0

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0



=



max
i:(A2)i2>0

−(A2)i1(V
T Y )1+(b2(Z

∗))i
(A2)i2

≤ (V T Y )2 ≤ min
i:(A1)i2<0

−(A2)i1(V
T Y )1+(b2(Z

∗))i
(A2)i2

0 ≥ max
i:(A2)i2=0

−(A2)i1(V
T Y )1 + (b2(Z

∗))i

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0



=



V lo
2 (Z∗, (V T Y )1) ≤ (V T Y )2 ≤ V

up
2 (Z∗, (V T Y )1)

V0
2 (Z

∗, (V T Y )1) ≤ 0

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0


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where

V lo
2 (Z∗, (V T Y )1) = max

i:(A2)i2>0

−(A2)i1(V
T Y )1(Z

∗)1 + (b2(Z
∗))i

(A2)i2

Vup
2 (Z∗, (V T Y )1) = min

i:(A2)i2<0

−(A2)i1(V
T Y )1(Z

∗)1 + (b2(Z
∗))i

(A2)i2

V0
2 (Z

∗, (V T Y )1) = max
i:(A2)i2=0

−(A2)i1(V
T Y )1 + (b2(Z

∗))i .

Inductive step for ΠP−1(P ): Under the induction hypothesis, we assume

ΠP−2(P ) =



V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0

V lo
2 ((V T Y )1,Z∗) ≤ (V T Y )2 ≤ V

up
2 ((V T Y )1,Z∗)

V0
2 ((V

T Y )1,Z∗) ≤ 0
...

V lo
P−2((V

T Y )1:P−3,Z∗) ≤ (V T Y )P−2 ≤ V
up
P−2((V

T Y )1:P−3,Z∗)

V0
P−2((V

T Y )1:P−3,Z∗) ≤ 0


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Then we have

ΠP−1(P ) =
{
AP−1(V

T Y )1:P−1 ≥ bP−1(Z
∗)
}

=



AP−1(V
T Y )1:P−1 ≥ bP−1(Z

∗)

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0

V lo
2 (Z∗, (V T Y )1) ≤ (V T Y )2 ≤ V

up
2 (Z∗, (V T Y )1)

V0
2 (Z

∗, (V T Y )1) ≤ 0
...

V lo
P−2((V

T Y )1:P−3,Z∗) ≤ (V T Y )P−2 ≤ V
up
P−2((V

T Y )1:P−3,Z∗)

V0
P−2((V

T Y )1:P−3,Z∗) ≤ 0



=



(AP−1)i(P−1)(V
T Y )P−1 ≥ −

∑P−2
j=1(AP−1)ij (V

T Y )j + (bP−1(Z
∗))i for i = 1, . . . ,ℓP−1

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0

V lo
2 (Z∗, (V T Y )1) ≤ (V T Y )2 ≤ V

up
2 (Z∗, (V T Y )1)

V0
2 (Z

∗, (V T Y )1) ≤ 0
...

V lo
P−2((V

T Y )1:P−3,Z∗) ≤ (V T Y )P−2 ≤ V
up
P−2((V

T Y )1:P−3,Z∗)

V0
P−2((V

T Y )1:P−3,Z∗) ≤ 0



=



(V T Y )P−1 ≥
−
∑P−2
j=1(AP−1)ij (V

T Y )j+(bP−1(Z
∗))i

(AP−1)i(P−1)
for i : (AP−1)i(P−1) > 0

(V T Y )P−1 ≤
−
∑P−2
j=1(AP−1)ij (V

T Y )j+(bP−1(Z
∗))i

(AP−1)i(P−1)
for i : (AP−1)i(P−1) < 0

0 ≥ −
∑P−2

j=1(AP−1)ij (V
T Y )j + (bP−1(Z

∗))i for i : (AP−1)i(P−1) = 0

V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0

V lo
2 (Z∗, (V T Y )1) ≤ (V T Y )2 ≤ V

up
2 (Z∗, (V T Y )1)

V0
2 (Z

∗, (V T Y )1) ≤ 0
...

V lo
P−2((V

T Y )1:P−3,Z∗) ≤ (V T Y )P−2 ≤ V
up
P−2((V

T Y )1:P−3,Z∗)

V0
P−2((V

T Y )1:P−3,Z∗) ≤ 0



.

=



V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0

V lo
2 ((V T Y )1,Z∗) ≤ (V T Y )2 ≤ V

up
2 ((V T Y )1,Z∗)

V0
2 ((V

T Y )1,Z∗) ≤ 0
...

V lo
P−1((V

T Y )1:P−2,Z∗) ≤ (V T Y )P−1 ≤ V
up
P−1((V

T Y )1:P−2,Z∗)

V0
P−1((V

T Y )1:P−2,Z∗) ≤ 0


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where

V lo
P−1

(
(V T Y )1:P−2,Z∗

)
= max

i:(AP−1)i(P−1)>0

−
∑P−2

j−1 (AP−1)ij(V
T Y )j + (bP−1(Z

∗))i

(AP−1)i(P−1)

Vup
P−1

(
(V T Y )1:P−2,Z∗

)
= min

i:(AP−1)i(P−1)<0

−
∑P−2

j−1 (AP−1)ij(V
T Y )j + (bP−1(Z

∗))i

(AP−1)i(P−1)

V0
P−1

(
(V T Y )1:P−2,Z∗

)
= max

i:(AP−1)i(P−1)=0
−
P−2∑
j=1

(AP−1)ij(V
T Y )j + (bP−1(Z

∗))i .

Therefore, we conclude that

ΠP (P ) = {ΓY ≥ 0}

=



V lo
1 (Z∗) ≤ (V T Y )1 ≤ V

up
1 (Z∗)

V0
1 (Z

∗) ≤ 0

V lo
2 ((V T Y )1,Z∗) ≤ (V T Y )2 ≤ V

up
2 ((V T Y )1,Z∗)

V0
2 ((V

T Y )1,Z∗) ≤ 0
...

V lo
P−1((V

T Y )1:P−2,Z∗) ≤ (V T Y )P−1 ≤ V
up
P−1((V

T Y )1:P−2,Z∗)

V0
P−1((V

T Y )1:P−2,Z∗) ≤ 0

V lo
p ((V T Y )1:P−1,Z∗) ≤ (V T Y )p ≤ V

up
p ((V T Y )1:P−1,Z∗)

V0
p ((V

T Y )1:P−1,Z∗) ≤ 0


where

V lo
P

(
(V T Y )1:P−1,Z∗

)
= max

i:(AP )ip>0

−
∑P−1

j−1 (AP )ij(V
T Y )j + (bP (Z

∗))i

(AP )ip

Vup
P

(
(V T Y )1:P−1,Z∗

)
= min

i:(AP )ip<0

−
∑P−1

j−1 (AP )ij(V
T Y )j + (bP (Z

∗))i

(AP )ip

V0
P

(
(V T Y )1:P−1,Z∗

)
= max

i:(AP )ip=0
−
P−1∑
j=1

(AP )ij(V
T Y )j + (bP (Z

∗))i .

□
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Appendix C

Appendix to Chapter 3

C.1 Simulation Parameters

Ascertainment probabilitiy

Xiβ2 = −0.841+ 1.384Xi1 − 0.158Xi13 − 1.072Xi14 + 1.499Xi27

− 1.010Xi36 − 2Xi37 − 0.143Xi39 + 1.55Xi40

Xiβ3 = −0.113+ 0.233Xi2 − 1.272Xi11 − 0.205Xi13 + 0.347Xi15

+ 0.0323Xi16 + 0.121Xi20 + 0.926Xi33 − 1.062Xi34

Xiβ4 = −1.351− 0.202Xi5 + 1.059Xi10 + 1.243Xi13 + 0.732Xi20

+ 0.456Xi21 + 0.648Xi24 − 0.392Xi35 + 0.752Xi37.
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C.2 Proof of Claim 1

Proof of Claim 1.

E[ϵi |Xi ,Ai ] =E[Yi(Ai)|Ai ,Xi ]−E

 K∑
k=1

{
µk(0)(Xi) +Aiτk(Xi)

}
p(k|Xi)

∣∣∣∣∣∣∣Ai ,Xi


=E[Yi(Ai)|Ai ,Xi ]−

K∑
k=1

p(k|Xi)E[E[Yi(0)|Xi ,Si = k]︸                 ︷︷                 ︸
µk(0)(Xi)

|Ai ,Xi ]

−Ai

K∑
k=1

p(k|Xi)E[E[Yi(1)−Yi(0)|Xi ,Si = k]︸                            ︷︷                            ︸
τk(Xi)

|Ai ,Xi ]

=E[Yi(Ai)|Ai ,Xi ]− (1−Ai)
K∑

k=1

p(k|Xi)E[E[Yi(0)|Xi ,Si = k]|Ai ,Xi ]

−Ai

K∑
k=1

p(k|Xi)E[E[Yi(1)|Xi ,Si = k]|Ai ,Xi ]

=E[Yi(Ai)|Ai ,Xi ]− (1−Ai)
K∑

k=1

p(k|Xi)E[E[Yi(0)|Ai = 0,Xi ,Si = k]|Ai ,Xi ]

−Ai

K∑
k=1

p(k|Xi)E[E[Yi(1)|Ai = 1,Xi ,Si = k]|Ai ,Xi ]

=0

The second to last equality holds by Assumption 2. The last equality holds because for

Ai = a ∈ {0,1}, we have

E[Yi(a)|Ai = a,Xi ]−
K∑

k=1

p(k|Xi)E[E[Yi(a)|Ai = a,Xi ,Si = k]|Ai = a,Xi ]

=E[Yi(a)|Ai = a,Xi ]−
K∑

k=1

p(k|Xi)E[Yi(a)|Ai = a,Xi ]

=E[Yi(a)|Ai = a,Xi ]−E[Yi(a)|Ai = a,Xi ]

=0.

□
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C.3 Proof of Lemma 1

Proof of Lemma 1. Recall that

L̂n(β) =
1
n

n∑
i=1

[
{Yi − m̂−q(i)(Xi)} − û

⊺
i β

]2
and

Ln(β) =
1
n

n∑
i=1

[
{Yi −m(Xi)} −u

⊺
i β

]2
.

We can re-write L̂n(β) as

L̂n(β) =
1
n

n∑
i=1

{Yi − m̂−q(i)(Xi)} −
K∑

k=1

{Ai − ê
−q(i)
k (Xi)}p(k|Xi)vk(Xi)

⊺βk


2

,

where βk ∈Rdk is the vector of coefficients for study k. Similarly, we can re-write Ln(β) as

Ln(β) =
1
n

n∑
i=1

{Yi −m(Xi)} −
K∑

k=1

{Ai − ek(Xi)}p(k|Xi)vk(Xi)
⊺βk


2

.

We define the following notation:

Am,i =m(Xi)− m̂−q(i)(Xi)

Aek ,i = ek(Xi)− ê
−q(i)
k (Xi) k = 1, . . . ,K

Bm,i = Yi −m(Xi)

Bek ,i = Ai − ek(Xi) k = 1, . . . ,K

gk(Xi ,βk) = p(k|Xi)vk(Xi)
⊺βk

Ae,i =
K∑

k=1

Aek ,igk(Xi ;βk)

Be,i =
K∑

k=1

Bek ,igk(Xi ;βk),
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By algebra, we have

L̂n(β) =
1
n

n∑
i=1

Bm,i +Am,i −
K∑

k=1

(Bek ,i +Aek ,i)gk(Xi ;βk)


2

=
1
n

n∑
i=1

[Bm,i +Am,i −Be,i −Ae,i ]
2

=Ln(β) +
1
n

n∑
i=1

[Am,i −Ae,i ]
2 +

2
n

n∑
i=1

(Bm,i −Be,i)(Am,i −Ae,i)

=Ln(β) +
1
n

n∑
i=1

A2
m,i +

1
n

n∑
i=1

A2
e,i −

2
n

n∑
i=1

Am,iAe,i

+
2
n

n∑
i=1

Bm,iAm,i −
2
n

n∑
i=1

Bm,iAe,i −
2
n

n∑
i=1

Be,iAm,i +
2
n

n∑
i=1

Be,iAe,i

First term: 1
n

∑n
i=1A

2
m,i =

1
n

∑n
i=1(m(Xi)− m̂−q(i)(Xi))

2

By Markov’s inequality and Assumption 4, 1
n

∑n
i=1A

2
m,i is Op(a

2
n).

Second term: 1
n

∑n
i=1A

2
e,i =

1
n

∑n
i=1

[∑K
k=1Aek ,igk(Xi ;βk)

]2
We have

1
n

n∑
i=1

A2
e,i =

K∑
k=1

1
n

n∑
i=1

(ek(Xi)− ê
−q(i)
k (Xi))

2gk(Xi ;βk)
2


+

∑
k,k′

2
n

n∑
i=1

(ek(Xi)− ê
−q(i)
k (Xi))gk(Xi ;βk)(ek′ (Xi)− ê

−q(i)
k′ (Xi))gk′ (Xi ;βk′ )


By Markov’s inequality, Assumption 3, and Assumption 4, the first sum is Op(a

2
n). More-

over, the cross term 2
n

∑n
i=1(ek(Xi) − ê

−q(i)
k (Xi))gk(Xi ;βk)(ek′ (Xi) − ê

−q(i)
k′ (Xi))gk′ (Xi ;βk′ ) for

k = 1, . . . ,K is also Op(a
2
n). Therefore, we can conclude that 1

n

∑n
i=1A

2
e,i is Op(a

2
n).

Third term: 1
n

∑n
i=1Am,iAe,i
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We have

1
n

n∑
i=1

Am,iAe,i =
1
n

n∑
i=1

(m(Xi )− m̂−q(i)(Xi ))

 K∑
k=1

(ek(Xi )− ê
−q(i)
k (Xi ))gk(Xi ;βk)




≤ C1
n

n∑
i=1

(m(Xi )− m̂−q(i)(Xi ))

 K∑
k=1

(ek(Xi )− ê
−q(i)
k (Xi ))




≤ C1

√√√√√1
n

n∑
i=1

{
m(Xi )− m̂−q(i)(Xi )

}2
1
n

n∑
i=1

 K∑
k=1

(ek(Xi )− ê
−q(i)
k (Xi ))


2

=Op(a
2
n)

for some positive constant C1. The second line holds by Assumption 3, and the third line

holds by Cauchy-Schwarz inequality. The last line holds by Markov’s inequality, Assumption

3, and Assumption 4.

Fourth term: 1
n

∑n
i=1Bm,iAm,i =

1
n

∑n
i=1(Yi −m(Xi))(m(Xi)− m̂−q(i)(Xi))

We define

B
q
mm =

1
|{i : q(i) = q}|

∑
i:q(i)=q

Bm,iAm,i

to be the sample average of Bm,iAm,i in the qth cross-fitting fold. By the triangle inequality,∣∣∣∣∣∣∣1n
n∑

i=1

(Yi −m(Xi))(m(Xi)− m̂−q(i)(Xi))

∣∣∣∣∣∣∣ ≤
Q∑

q=1

|Bq
mm|.

Therefore, it suffices to show that Bq
mm = Op(a

2
n). Let I−q = {Xi ,Ai ,Yi ,Si : q(i) , q} denote

the set of observations that do not belong to the same data fold as observation i. Bq
mm’s

expectation is

E
(
B
q
mm

)
= E(Bm,iAm,i)

= E (E [Bm,iAm,i |I−q,Xi ])

= E(Am,iE [Bm,i |I−q,Xi ])

= 0,

where the last line follows by the definition of Bm,i .
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Next, its variance is

V ar
(
B
q
mm

)
= E

{(
B
q
mm

)2
}

=
E
{∑

i:q(i)=qB
2
m,iA

2
m,i +

∑
i,j :q(i)=q,q(j)=qBm,iBm,jAm,iAm,j

}
|{i : q(i) = q}|2

=
E
(
B2
m,iA

2
m,i

)
|{i : q(i) = q}|

+

∑
i,j :q(i)=q,q(j)=qE

(
Bm,iBm,jAm,iAm,j

)
|{i : q(i) = q}|2

For the first term, we have

E
(
B2
m,iA

2
m,i

)
= E

(
E
[
B2
m,iA

2
m,i |I

−q,Xi

])
= E

(
A2
m,iE

[
B2
m,i |I

−q,Xi

])
≤ C2E(A

2
m,i)

=Op(a
2
n)

for some positive constant C2. The second to last line holds from Assumption 3. And the last

line holds from Assumption 4.

For the second term, we have

E
(
Bm,iBm,jAm,iAm,j

)
= E

[
E
(
Bm,iBm,jAm,iAm,j |I−q,Xi

)]
= E

[
Am,iAm,jE

(
Bm,iBm,j |I−q,Xi

)]
= E

[
Am,iAm,jE

(
Bm,j

)
E (Bm,i |I−q,Xi)

]
= 0

The second to last line follows because Bm,i is independent of Bm,j for i , j. The last line
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follows by the definition of Bm,i . Therefore, we have that

V ar(B
q
mm) =

Q
n
O(a2

n) =O(a2
n/n),

where the first equality holds if the Q folds have equal number of observations (i.e., n/Q for

each fold). Then by Chebychev’s inequality, 1
n

∑n
i=1Bm,iAm,i =Op(a

2
n/n).

Fifth term: 1
n

∑n
i=1Bm,iAe,i =

1
n

∑n
i=1

[
(Yi −m(Xi))

{∑K
k=1(ek(Xi)− ê

−q(i)
k (Xi))gk(Xi ;βk)

}]

We define

B
q
me =

1
|{i : q(i) = q}|

∑
i:q(i)=q

Bm,iAe,i

to be the sample average of Bm,iAe,i in the qth cross-fitting fold. By the triangle inequality,∣∣∣∣∣∣∣1n
n∑

i=1

(Yi −m(Xi))

 K∑
k=1

(ek(Xi)− ê
−q(i)
k (Xi))gk(Xi ;βk)



∣∣∣∣∣∣∣ ≤

Q∑
q=1

|Bq
me|.

Therefore, it suffices to show that Bq
me =Op(a

2
n). Its expectation is

E
(
B
q
me

)
= E(Bm,iAe,i)

= E (E [Bm,iAe,i |I−q,Xi ])

= E(Ae,iE [Bm,i |I−q,Xi ])

= 0,

where the last line follows by the definition of Bm,i .
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Next, its variance is

V ar
(
B
q
me

)
= E

{(
B
q
me

)2
}

=
E
{∑

i:q(i)=qB
2
m,iA

2
e,i +

∑
i,j :q(i)=q,q(j)=qBm,iBm,jAe,iAe,j

}
|{i : q(i) = q}|2

=
E
(
B2
m,iA

2
e,i

)
|{i : q(i) = q}|

+

∑
i,j :q(i)=q,q(j)=qE

(
Bm,iBm,jAe,iAe,j

)
|{i : q(i) = q}|2

For the first term, we have

E
(
B2
m,iA

2
e,i

)
= E

(
E
[
B2
m,iA

2
e,i |I

−q,Xi

])
= E

(
A2
e,iE

[
B2
m,i |I

−q,Xi

])
≤ C2E(A

2
e,i)

=Op(a
2
n)

for some positive constant C2. The second to last line holds from Assumption 3. And the last

line holds from Assumption 4 and Markov’s inequality.

For the second term, we have

E
(
Bm,iBm,jAe,iAe,j

)
= E

[
E
(
Bm,iBm,jAe,iAe,j |I−q,Xi

)]
= E

[
Ae,iAe,jE

(
Bm,iBm,j |I−q,Xi

)]
= E

[
Ae,iAe,jE

(
Bm,j

)
E (Bm,i |I−q,Xi)

]
= 0

The second to last line follows because Bm,i is independent of Bm,j for i , j. The last line

follows by the definition of Bm,i . Therefore, we have that

V ar(B
q
me) =

Q
n
O(a2

n) =O(a2
n/n),
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where the first equality holds if the Q folds have equal number of observations (i.e., n/Q for

each fold). Then by Chebychev’s inequality, 1
n

∑n
i=1Bm,iAe,i =Op(a

2
n/n).

Sixth term: 1
n

∑n
i=1Be,iAm,i =

1
n

∑n
i=1

[{∑K
k=1(Ai − ek(Xi))gk(Xi ;βk)

}
(m(Xi)− m̂−q(i)(Xi))

]

We define

B
q
em =

1
|{i : q(i) = q}|

∑
i:q(i)=q

Be,iAm,i

to be the sample average of Be,iAm,i in the qth cross-fitting fold. By the triangle inequality,

∣∣∣∣∣∣∣1n
n∑

i=1


 K∑
k=1

(Ai − ek(Xi))gk(Xi ;βk)

 (m(Xi)− m̂−q(i)(Xi))


∣∣∣∣∣∣∣ ≤

Q∑
q=1

|Bq
em|.

Therefore, it suffices to show that Bq
em =Op(a

2
n). Its expectation is

E(B
q
em) = E(Be,iAm,i)

= E(E [Be,iAm,i |I−q,Xi ,Si = k])

= E(Am,iE [Be,i |I−q,Xi ,Si = k])

= 0

where the last line follows because

E[Be,i |I−q,Xi ,Si = k] =
K∑

k=1

gk(Xi ;βk)E [Ai − ek(Xi)|Xi ,Si = k]

=
K∑

k=1

gk(Xi ;βk)
{
E [Ai |Xi ,Si = k]− ek(Xi)

}
=

K∑
k=1

gk(Xi ;βk)
{
ek(Xi)− ek(Xi)

}
= 0

Next, its variance is
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V ar
(
B
q
em

)
= E

{(
B
q
em

)2
}

=
E
{∑

i:q(i)=qB
2
e,iA

2
m,i +

∑
i,j :q(i)=q,q(j)=qBe,iBe,jAm,iAm,j

}
|{i : q(i) = q}|2

=
E
(
B2
e,iA

2
m,i

)
|{i : q(i) = q}|

+

∑
i,j :q(i)=q,q(j)=qE

(
Be,iBe,jAm,iAm,j

)
|{i : q(i) = q}|2

For the first term, we have

E
(
B2
e,iA

2
m,i

)
= E

(
E
[
B2
e,iA

2
m,i |I

−q,Xi

])
= E

(
A2
m,iE

[
B2
e,i |I

−q,Xi

])
≤ C3E(A

2
m,i)

=Op(a
2
n)

for some positive constant C3. The second to last line holds from Assumption 3, and the last

line holds from Assumption 4.

For the second term, we have

E(Be,iBe,jAm,iAm,j) = E[E(Be,iBe,jAm,iAm,j |I−q,Xi ,Si = k)]

= E[Am,iAm,jE(Be,iBe,j |I−q,Xi ,Si = k)]

= E[Am,iAm,jE(Be,i)E(Be,j |I−q,Xi ,Si = k)]

= 0

The second to last line follows because Be,i is independent of Be,j for i , j. The last line

follows by the definition of Be,i . Therefore, we have that

V ar(B
q
em) =

Q
n
O(a2

n) =O(a2
n/n)
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where the first inequality holds if the Q folds have equal number of observations (i.e, n/Q

for each fold). Then by Chebychev’s inequality, 1
n

∑n
i=1Be,iAm,i =Op(a

2
n/n).

Seventh term:

1
n

n∑
i=1

Be,iAe,i =
1
n

n∑
i=1


 K∑
k=1

(Ai − ek(Xi))gk(Xi ;βk)


 K∑
k=1

(ek(Xi)− ê
−q(i)
k (Xi))gk(Xi ;βk)




We define

B
q
ee =

1
|{i : q(i) = q}|

∑
i:q(i)=q

Be,iAe,i

to be the sample average of Be,iAe,i in the qth cross-fitting fold. By the triangle inequality,

∣∣∣∣∣∣∣1n
n∑

i=1


 K∑
k=1

(Ai − ek(Xi))gk(Xi ;βk)


 K∑
k=1

(ek(Xi)− ê
−q(i)
k (Xi))gk(Xi ;βk)



∣∣∣∣∣∣∣ ≤

Q∑
q=1

|Bq
ee|.

Therefore, it suffices to to show that Bq
ee =Op(a

2
n). Its expectation is

E(B
q
ee) = E(Be,iAe,i)

= E(E[Be,iAe,i |I−q,Xi ,Si = k])

= E(Ae,iE[Be,i |I−q,Xi ,Si = k])

= 0

Next, its variance is

V ar(B
q
ee) = E

{
(B

q
ee)

2
}

=
E
{∑

i:q(i)=qB
2
e,iA

2
e,i +

∑
i,j :q(i)=q,q(j)=qE(Be,iBe,jAe,iAe,j)

}
|{i : q(i) = q}|2

=
E
(
B2
e,iA

2
e,i

)
|{i : q(i) = q}|

+

∑
i,j :q(i)=q,q(j)=qE(Be,iBe,jAe,iAe,j)

|{i : q(i) = q}|2
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For the first term, we have

E(B2
e,iA

2
e,i) = E(E[B2

e,iA
2
e,i |I

−q,Xi ])

= E(A2
e,iE[B

2
e,i |I

−q,Xi ])

≤ C3E(A
2
e,i)

=Op(a
2
n)

The second to last line holds from Assumption 3, and the last line holds from Assumption 3

and Assumption 4.

For the second term, we have

E(Be,iBe,jAe,iAe,j) = E[E(Be,iBe,jAe,iAe,j |I−q,Xi ,Si = k)]

= E[Ae,iAe,jE(Be,iBe,j |I−q,Xi ,Si = k)]

= E[Ae,iAe,jE(Be,i)E(Be,j |I−q,Xi ,Si = k)]

= 0

The second to last line follows because Be,i is independent of Be,j for i , j. The last line

follows by the definition of Be,i . Therefore, we have that

V ar(B
q
ee) =

Q
n
O(a2

n) =O(a2
n/n)

where the first inequality holds if the Q folds have equal number of observations (i.e, n/Q

for each fold). Then by Chebychev’s inequality, 1
n

∑n
i=1Be,iAe,i =Op(a

2
n/n).

Altogether, L̂n(β) − Ln(β) is dominated by the Op(a
2
n) term 1

n

∑n
i=1A

2
m,i +

1
n

∑n
i=1A

2
e,i −

2
n

∑n
i=1Am,iAe,i , so L̂n(β)−Ln(β) =Op(a

2
n) □
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C.4 Proof of Theorem 1

Proof of Theorem 1. By Lemma 1, we have

β̂ = argmin
b

1
n

n∑
i=1

{Yi −m(Xi)−u
⊺
i b}

2 +Op(a
2
n).

Under Assumptions 5-6, Lemma 4.1 (Pointwise Linearization) in Belloni et al. (2015)

states that for any α ∈ V d−1 where V d−1 is the space of vectors α such that ∥α∥= 1,

√
nα⊺(β̂ − β) = αT Gn[uiϵi ] + oP (1) +Op(

√
na2

n),

where Gn[f (wi)] =
1√
n

∑n
i=1(f (wi)−E[f (wi)]). Under Assumption 4, Op(

√
na2

n) is negligible

compared to op(1). Therefore, we have

√
nα⊺(β̂ − β) = αT Gn[uiϵi ] + oP (1).

Recall Q = E(uiu
⊺
i ). By Theorem 4.2 (Pointwise Normality) in Belloni et al. (2015), we have

that for any α ∈ V d−1,

√
n
α⊺(β̂ − β)∥∥∥α⊺Ω1/2

∥∥∥ d→N (0,1) + oP (1),

where Ω := Q−1E[ϵ2
i uiu

⊺
i ]Q

−1. Moreover, for any x ∈ X , if we take α = Z(x)v(x) and

s(x) =Ω1/2Z(x)v(x), then

√
n
(Z(x)v(x))⊺(β̂ − β)

∥s(x)∥
d→N (0,1) + oP (1).

Under Assumption 6(e), we have

√
n
τ̂(x)− τ(x)
∥s(x)∥

d→N (0,1) + oP (1).

□
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