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An Improved Measurement of the Electron Magnetic Moment

Abstract
A single isolated electron in a Penning trap yields a new measurement of the electron

magnetic moment g/2 = 1.001 159 652 180 59 (13). Combined with the Standard Model

calculation, this yields an independent determination of the fine structure constant α−1 =

137.035 999 166 (16). Comparison of the measured g-factor and the predicted g-factor using

an independent measurement of the fine structure constant yields the most stringent test of

the Standard Model.

A new dilution refrigerator–superconducting solenoid system with significantly improved

stability has been constructed. The new system has a more robust mechanical joint, which

improves the long-term stability of the magnetic field. A Helium-3-based cryogenic NMR

probe has been invented and used to optimize the homogeneity and the drift rate of the

cryogenic bore magnet. The achieved low drift rate and robustness enables measurement of

the g-factor at many widely different fields for the first time.

The statistical uncertainty has been improved by a factor of 4 because of the newly

developed system. The large systematic shift—microwave cavity correction—is studied in

an eight times wider parameter range. A new correction model and characterization methods

have been proposed. The g-factor is measured at 11 fields to confirm the new systematic

correction method.

Three developments to improve the systematic error and precision for future measure-

ments have been proposed and demonstrated. A new trap with an order of magnitude better

anharmonicity is proposed and designed. The new trap is smaller than the current trap to

suppress the microwave cavity correction. A new scheme to measure g-factor with direct

measurement of the spin frequency is proposed and demonstrated. A superconducting quan-
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tum limited detector has been also developed to achieve 20 times narrower linewidth. All

developments promise an improved measurement of the electron’s g-factor.

The constructed system has been also used to search dark photon dark matter. The

single trapped electron is used as a background-free detector at 0.6 meV. A new limit on

dark photon is set with a week of data. The search demonstrates the sensitivity of the single

electron and guarantees a future search in the 0.1–1 meV range.

The newly constructed system and a better understanding of the systematic error allow

tests of the Standard Model and theories beyond it in many aspects. The same technique

can be applied for the positron’s g-factor measurement, which will be the most precise test

of CPT in the lepton sector.
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Chapter 1

The Electron Magnetic Moment

The electron magnetic moment µs is measured in the unit of Bohr magneton µB as

µs = −g
2

(
e~
2m

)
= −g

2
µB, (1.1)

where e is the elementary charge, ~ is the reduced Plank constant, m is the mass of an

electron, and g is the g-factor. The prediction of g-factor and its measurement are deeply

related to the history of the Standard Model (SM) of particle physics. For a classical

non-relativistic rotating charge, the g-factor is exactly equal to 1. In 1928, the theory of

relativistic quantum mechanics, Dirac’s theory [1], predicts g = 2. The actual g-factor was

found to be about 0.1% larger than 2 in 1947 by the measurement of Kusch and Foley [2].

This discrepancy was called the “anomaly”, and at the end of the same year, Schwinger

first succeeded in calculating this discrepancy through quantum-electrodynamics (QED)

[3]. In the same year, Feynman, Tomonaga, and Schwinger established the renormalization

method to calculate higher order corrections of QED [4–6]. Both higher order calculation

and experimental precision have evolved up to 10−13 or better precision. Together, this

allows for the most precise test of the SM [7,8]. The most precise determination is reported

in this thesis as

g

2
= 1.001 159 652 180 59 (13). (1.2)

1



The g-factor of the electron is the most precisely measured quantity of any elementary

particle. Comparison with the theoretical prediction gives the most stringent test of the

SM’s calculation.

In this chapter, the physics of the electron’s g-factor and its implication is summarized.

The SM calculation is summarized in Sec. 1.1, the role of the fine structure constant α—an

important input parameter in the g-factor calculation—is discussed in Sec. 1.2, the impact

on the physics beyond the SM is summarized in Sec. 1.3, and Sec. 1.4 briefly outlines the

new measurement of the g-factor.

1.1 The Standard Model Calculation

The Standard Model predicts the g-factor by a series expansion in the fine structure

constant α. The calculation requires not only higher order correction from QED but also

contributions from virtual hadron creations and weak interaction.

g

2
= 1+C2

(α
π

)
+C4

(α
π

)2

+C6

(α
π

)3

+C8

(α
π

)4

+C10

(α
π

)5

+...+aµ,τ+ahadron+aweak. (1.3)

Here, the coefficients Ci’s are the contribution from virtual electron loops and are predicted

by perturbation calculations from QED theory, aµ,τ represents the contribution from virtual

muon and tauon creation, ahadron represents hadronic interaction, and aweak represents weak

interaction. Some examples of Feynman diagrams for the Ci terms are shown in Fig. 1.1.

The numbers in the brackets show how many diagrams exist in each order [8].

The coefficients C2, C4, C6, C8, and C10 have been calculated or evaluated with intensive
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C2 C4 C6 C8 C10
(12,672)(891)(72)(7)(1)

Figure 1.1: Examples of Feynman diagrams to calculate g-factor. The numbers in the
bracket show the number of Feynman diagrams in each order.

effort using higher order QED theory,

C2 =
1

2
= 0.5 [3] (1.4)

C4 =
197

144
+
π2

12
+

3

4
ζ(3)− 1

2
π2 ln 2

= −0.328 478 965 579 193... [9, 10] (1.5)

C6 =
83

72
π2ζ(3)− 215

24
ζ(5)

+
100

3

[(
∞∑
n=1

1

2nn4
+

1

24
ln4 2

)
− 1

24
π2 ln2 2

]
− 239

2160
π4 +

139

18
ζ(3)

− 298

9
π2 ln 2 +

17101

810
π2 +

28259

5184
= 1.181 241 456 587... [11] (1.6)

C8 = −1.912 245 764 926... (evaluated up to 1100 digits) [12,13] (1.7)

C10 = 6.737 (159) [8, 14], (1.8)

where ζ(s) is the Riemann zeta function. The contribution from the muon and tauon loop
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is evaluated as

aµ,τ = 2.747 572(1)× 10−12 [8, 13, 15–21]. (1.9)

using experimentally measured muon mass [22] and tauon mass [23]. The hadronic and weak

contributions are respectively given by

ahadron = 1.693 (12)× 10−12 [24] (1.10a)

aweak = 0.030 53 (23)× 10−12 [24] (1.10b)

In Eq. 1.3, α is the fine structure constant. The value of α, determined independently

from the electron’s g-factor, is

α−1 =

(
1

4πε0

e2

~c

)−1

= 137.035 999 206 (11), (1.11)

where ε0 is the vacuum permittivity, and c is the speed of light. The value of α is experimen-

tally determined independently from measurement of the Rydberg constant [25–27], mass

ratio of electron and 87Rb or 133Cs [28, 29] and absolute mass of 87Rb [30] and 133Cs [31]

correspondingly. The value above is using the result from 87Rb, and the value using 133Cs

is shown in the following section. The determination of α will be reviewed in detail in the

next section. Table 1.1 summarizes the contribution of each terms above to the prediction

of g/2.

1.2 The Fine Structure Constant α

Among the parameters above, the fine structure constant α has the largest uncertainty.

The fine structure constant is determined from several measured quantities. With an atom
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term contribution
tree level 1.000 000 000 000 000
C2

(
α
π

)
0.001 161 409 731 851 (000)(093)

C4

(
α
π

)2 −0.000 001 772 305 060 (000)(000)

C6

(
α
π

)3
0.000 000 014 804 204 (000)(000)

C8

(
α
π

)4 −0.000 000 000 055 668 (000)(000)

C10

(
α
π

)5
0.000 000 000 000 456 (011)(000)

aµ,τ 0.000 000 000 002 748 (000)
ahadron 0.000 000 000 001 693 (012)
aweak 0.000 000 000 000 031 (000)

total SM prediction 1.001 159 652 180 252 (011)(012)(093)

measured g/2 (2022) 1.001 159 652 180 593 (134)

Table 1.1: Contribution to the g/2 calculation and uncertainties, compared with experimen-
tally measured g/2 using α(87Rb) [8, 30]. In Ci’s, the first bracket represents calculation
error, and the second bracket represents error from α. In the total SM prediction, the un-
certainties are the uncertainty of C10, the hadronic term’s uncertainty, and the uncertainty
of the fine structure constant α, respectively.

X, either cesium (133Cs) or rubidium (87Rb), α is determined by

α(X) =

[
2R∞
c

A(X)

A(e)

h

m(X)

]1/2

, (1.12)

where R∞ = me4/(8ε20h
3c) is the Rydberg constant, A(X) is the atomic mass of X, A(e) is

the atomic mass of an electron, and m(X) is the absolute mass of the atom X. The Rydberg

constant is determined by the Hydrogen spectroscopy. We use the CODATA 2018 value,

which reflects all hydrogen spectroscopies [32–34] and the determination using a muonic-

hydrogen [35].

R∞(CODATA 2018) = 10 973 731.568 160 (21) m−1 1.9 ppt [36]. (1.13)

5



The atomic masses are measured using trapped ions in a Penning trap [36,37],

A(e) = 0.000 548 579 909 065 (16) 29 ppt [29,38] (1.14a)

A(87Rb) = 86.909 180 531 (6) 69 ppt [36,37,39,40] (1.14b)

A(133Cs) = 132.905 451 961 (8) 60 ppt [36,37,39–41]. (1.14c)

The largest uncertainty comes from the determination of the absolute mass m(X). The

absolute mass is determined by measuring the recoil momentum of an atom when absorbing

a photon using atom interferometer experiments. The results are

h

m(87Rb)
= 4.591 359 258 90 (65)× 10−9 m2/s 140 ppt [30] (1.15a)

h

m(133Cs)
= 3.002 369 472 1 (12) × 10−9 m2/s 400 ppt [31] (1.15b)

From the values above, the inverse of fine structure constant α−1 is determined using Eq. 1.12

α−1(87Rb) = 137.035 999 206 (11) (81 ppt) (1.16a)

α−1(133Cs) = 137.035 999 046 (27) (200 ppt). (1.16b)

The fine structure constant can also be determined inversely from the measured g-factor

and the Standard Model calculations (Sec. 1.1). In calculating the g-factor, the uncertainties

of Ci’s, hadronic term, and weak interaction term are relatively small. Therefore, by taking

the inverse of Eq. 1.3, the fine structure constant determined using the measurement of
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0.2− 0.15− 0.1− 0.05− 0 0.05 0.1
610× - 137. 035 999 166)-1α(

g/2 2008

Cs

Rb

g/2 2022

Figure 1.2: Comparison of the inverse of the fine structure constant α−1.

g-factor in 2008 and this thesis are [7]

α−1(g/2, 2008) = 137.035 999 149 8 (13) (14) (330), (1.17a)

α−1(g/2, 2022) = 137.035 999 165 9 (13) (14) (161), (1.17b)

(1.17c)

where uncertainties are uncertainty of C10, hadronic term’s uncertainty, and the uncertainty

of g/2 measurement. Figure 1.2 shows the comparison of α−1 among various recent experi-

ments by this method.

Instead, we can also convert measured α’s to the prediction on g/2 and compare them,

g

2
(133Cs) = 1.001 159 652 181 606 (12) (11) (229) (1.18a)

g

2
(87Rb) = 1.001 159 652 180 252 (12) (11) (93) (1.18b)

g

2
(2008) = 1.001 159 652 180 730 (280) (1.18c)

g

2
(2022) = 1.001 159 652 180 593 (134), (1.18d)

where the uncertainties are the hadronic term’s uncertainty, the uncertainty of C10, and the

uncertainty of the fine structure constant α, respectively. Figure 1.3 shows the comparison

of g/2 among recent experiments and the SM predictions. It is important to notice that
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1− 0.5− 0 0.5 1 1.5
1210×(g/2 - 1.001 159 652 180 59)

SM(Cs)

SM(Rb)

g/2 2008

g/2 2022

Figure 1.3: Comparison of measured g-factors with prediction.

the measured g-factor is discrepant with the calculated g-factor using the fine structure

constant using 87Rb or 133Cs atom by 2.1 σ or 3.8 σ, respectively. This could trigger many

new theoretical proposals beyond the SM.

1.3 Physics Beyond the Standard Model

The comparison of the measured electron’s magnetic moment and the theory provides

a precise test of the Standard Model of physics and search for the beyond standard model

physics (Eq. 1.18). The relative uncertainty (with the α measured using 87Rb)

g

2
(measured)− g

2
(theory) = (3.41± 1.64)× 10−13 (1.19)

is the most stringent test of the Standard Model. It also shows a discrepancy with 2.1

standard deviation.

1.3.1 Dark Photon

Dark photon is a proposed vector Boson that carries an additional U(1) charge—analog

to the ordinary electromagnetic photon. It can interact with ordinary photons via kinetic

mixing. The dark photon can turn into an ordinary photon and can couple to an electron.

8



γ
γ’

Figure 1.4: Contribution of the dark photon to the electron magnetic moment.

It adds a new term to the Standard Model’s Lagrangian (in natural units)

LDP = −1

4
F ′µνF

′µν − χ

2
FµνF

′µν +
m2
A′

2
A′µA

′µ, (1.20)

where A′µ and F ′µν are the vector field and the tensor field of the dark photon, respectively,

F µν is the tensor field of the ordinary photon, and χ represents the mixing coefficient between

the dark photon and ordinary photon.

The dark photon can contribute to the magnitude of the electron magnetic moment, as

shown in Fig. 1.4. The contribution is similar to the first order loop correction from the

ordinary photon, but with coupling coefficient χ and finite mass mB.

δ
(ge

2

)
dark photon

= χ2 α

2π
F

(
mA′

me

)
, (1.21)

where

F (x) =

∫ 1

0

2z(1− z)2/
[
(1− z)2 + x2z

]
dz. (1.22)

Another type of dark photon search in the same mass range is the invisible decay method.

In this method, the additional assumption that the dark photon will mainly decay to another

dark sector’s particle is required. NA64 [42], NA62 [43], Babar [44], E787 and E949 [45]

set limits by this method. One advantage of using the magnetic moment to search for the
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Figure 1.5: Limit on dark photon coupling coefficient χ and mass mA′ .

dark photon is that it does not require the assumption of the invisible decay method, and

thus can set limits to different models. The limit on the dark photon can be obtained from

our result (Eq. 1.2) using Bayesian’s statistics [46]. For the theory that predicts positive

correction δ(ge/2) > 0, our result gives δ(ge/2) < 7.2 × 10−13 with 99 % confidence level.

Figure 1.5 shows the limit on dark photon with 99 % confidence level from the measured

g/2. The favored result from the muon’s anomalous magnetic moment is also shown.

We have also developed a new method to search for the dark photon (Chap. 6). We use

the cyclotron motion of the single electron as a probe of dark matter dark photon. The

cyclotron motion is at meV energy scale and is very different from the traditional search

here. The newly developed method probes meV mass dark photon at χ ≈ 10−10 level.
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1.3.2 Relation to Muon g/2

It has been known that the same anomalous magnetic moment of another lepton—

muon—also shows a discrepancy between the SM calculation and measured value [47–49]

δ
(gµ

2

)
=
gµ
2

(Measured)− gµ
2

(Theory) = (25.1± 5.9)× 10−10. (1.23)

Although the absolute uncertainty is about three orders of magnitude larger than the un-

certainty of the electron’s uncertainty (Eq. 1.19), the muon is more sensitive to high energy

new physics because its mass is about (mµ/me) ≈ 200 times higher. This long-standing

discrepancy has triggered several hypotheses of new physics.

The muon’s result can be scaled to the electron’s magnetic moment. If some new physics

shifts the muon’s magnetic moment and it is flavor blind, it also shifts the electron’s magnetic

moment by (me/mµ)2 = 2.3× 10−5 smaller amount. Based on this estimation, if one scales

the discrepancy of the muon’s anomalous moment to the electron’s magnetic moment, it

corresponds to

δ
(ge

2

)
scaled from muon

= δ
(gµ

2

)(me

mµ

)2

= 5.9× 10−14 (1.24)

Although the precision in this thesis is not sufficient to test this discrepancy, another factor

of 3 improved measurement of the electron’s magnetic moment, combined with a factor of 2

improved determination of the fine structure constant, will test whether the observed muon’s

discrepancy is real or not.

1.4 New Measurement of the Electron g-Factor

The most recently established methods to measure the g-factor use a single electron in

a Penning trap [7, 50, 51]. The electron is cooled to its quantum cyclotron ground state by

a dilution refrigerator, and its cyclotron frequency and anomaly frequency—the difference

between spin frequency and cyclotron frequency—is measured. A cylindrical Penning trap

11



is used to control microwave cavity correction [52,53].

Two systematic effects were known in the previous measurement [7]. First, the observed

linewidths of the cyclotron and anomaly transition were broader than the theoretical line

shape. Displacement of the refrigerator and the magnet of the apparatus caused by vibration

was suspected to be the cause. Despite huge efforts to improve its mechanical stability, the

ideal line shape was never achieved. The second is the correction of g-factor from Penning

trap’s microwave cavity effect. The effect was studied by measuring the electron’s g-factor

at four fields between 5.27 T and 5.40 T. The measured g-factors were consistent among

them.

In this thesis, we constructed a new refrigerator-magnet system that achieves better

mechanical stability (Chap. 2). A newly dedicated cryogenic helium-3 NMR probe has been

invented to optimize the homogeneity and stability of the magnet (Chap. 3). The statistical

sensitivity has been improved by a factor of 4. The systematic error has been studied by

measuring at 11 different fields, from 3.10 T to 5.38 T. A new systematic correction method

has been developed and applied. A factor of two improved determination of g-factor, together

with the details of the methods and analysis, is reported (Chap. 4).

12



Chapter 2

The Penning Trap

The magnetic moment of an electron is measured using an electron in a magnetic field.

From Eq. 1.1, in a magnetic field B, the energy of a spin flip for a spin 1/2 particle is

~ωs = |2µsB| =
g

2

~eB
m

. (2.1)

The last term on the right hand is equal to the energy of electron cyclotron motion in the

same field,

~ωc =
~eB
m

. (2.2)

Ideally, the g-factor can be measured using an electron in a magnetic field by measuring the

relation

g

2
=
ωs
ωc

=
νs
νc
. (2.3)

of its spin frequency νs = ωs/(2π) and cyclotron frequency νc = ωc/(2π).

Experimentally, a Penning trap is used to keep the electron in a small region of a ho-

mogeneous magnetic field. The Penning trap is a static trap for charged particles [54] using

an electric field and a magnetic field (Fig. 2.1). An electron in a Penning trap has three

orthogonal motional modes, a cyclotron motion in the Penning trap ν ′c slightly modified

by the electrostatic trap potential, axial motion νz, and magnetron motion νm. Here, the
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zelectric field

+

magnetic field

e-

Figure 2.1: Schematic picture of trapping an electron with a Penning trap. The electric field
confines the electron along the z direction, and the magnet field confines it in the transverse
direction.

quantities with prime represent frequencies in a Penning trap.

From the Brown-Gabrielse invariance theorem [55], the free space cyclotron frequency

can be extracted from the square sum of the three frequencies,

νc =
√
ν ′2c + ν2

z + ν2
m. (2.4)

The spin frequency in the Penning trap is unchanged from its free space value

ν ′s = νs =
g

2
νc, (2.5)

therefore the g-factor can be measured by measuring these frequencies in a Penning trap.

Instead of measuring the spin frequency, we measure the anomaly frequency—the differ-

ence between the spin frequency and the cyclotron frequency—to determine the g-factor

νa ≡ νs − νc. (2.6)

The equation for the g-factor is now

g

2
=
νs
νc

= 1 +
νa
νc
. (2.7)
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All quantities, νc, νs, and νa can be measured at about the 10−10 level. By measuring the

difference between the two large quantities, νs and νc, the uncertainty of g-factor can be

reduced by about g/2− 1 ≈ 0.00115. This follows from simple error propagation formula.

∆ (g/2)

g/2
=

1

g/2

√(
∆νa
νc

)2

+

(
νa∆νc
ν2
c

)2

=
1

g/2

νa
νc

√(
∆νa
νa

)2

+

(
∆νc
νc

)2

. (2.8)

The ratio 1
g/2

νa
νc

is about 0.00115..., so the relative uncertainty for g/2 is about 1000 times

better than the fractional uncertainty of determination of νc and νa.

In this chapter, we introduce the Penning trap and discuss the motion of an electron in

the trap in Sec. 2.1. The details of the apparatus are described in Sec. 2.2. The methods

to detect the electron’s motion are described in Sec. 2.3. In this and the following chapters,

we use the familiar relation between frequency and angular frequency ω = 2πν.

2.1 Motion of an Electron in a Penning Trap

In an ideal Penning trap, a uniform magnetic field

B(ρ, z) = Bẑ (2.9)

and a quadratic electric potential

φ(ρ, z) = −φ0

(
z2 − ρ2/2

2

)
(2.10)

is applied. The electric field from Eq. 2.10 is explicitly given as

E(ρ, z) = −∇φ(ρ, z) = φ0

(
−xx̂+ yŷ

2
+ zẑ

)
. (2.11)
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cyclotron motion

axial motion

magnetron motion

Figure 2.2: Classical picture of an electron’s motion in a Penning trap.

The explicit equation of motion of an electron with charge −e includes the force the electric

field and the Lorentz force

m
d2

dt2


x

y

z

 =
eφ0

2


x

y

−2z

+ eB


−dy

dt

dx
dt

0

 , (2.12)

The applied magnetic field and quadruple electric field generate the three orthogonal mo-

tional modes, as illustrated in Fig. 2.2.

Along the z axis, the electron oscillates in the electric potential with the axial frequency

ωz =

√
eφ0

m
. (2.13)

This motion is the result of the electric trapping potential, and its motion is described by a

simple harmonic oscillation along the ẑ direction [54].

The transverse motion is a superposition of two circular motions [54]—modified cyclotron

motion and magnetron motion. To see this, Eq. 2.12 is transformed using u ≡ x+ iy as

d2u

dt2
− iωc

du

dt
− ω2

z

2
u = 0, (2.14)
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where ωc = eB/m is the free space cyclotron frequency. Two solutions for Eq. 2.14 are given

in the form u± = ρ±e
iω±t, with the eigenfrequencies given by

ω± =
1

2

(
ωc ±

√
ω2
c − 2ω2

z

)
(2.15)

The motion with faster frequency (ω+) is called the modified cyclotron motion, and that

with slower frequency (ω−) is called the magnetron motion. The modified cyclotron motion

is analogous to that in the free space, with small corrections from the electric field φ(ρ, z).

The magnetron motion is a result of ~E × ~B drift, which arises from the magnetic field and

the off-center electric field [54].

For typical experimental parameters, because the free space cyclotron frequency is about

three orders of magnitude larger than the axial frequency, ωz/ωc ≈ 10−3, we can approximate

the magnetron frequency and the modified cyclotron frequency as

ω− =
1

2

(
ωc −

√
ω2
c − 2ω2

z

)
≈ ω2

z

2ωc
≡ ωm, (2.16)

ω+ =
1

2

(
ωc +

√
ω2
c − 2ω2

z

)
≈ ωc −

ω2
z

2ωc
= ωc − ωm ≡ ω′c. (2.17)

The approximation holds to better than (ωz/ωc)
4 ≈ 10−12 for all experimental parameters

in this thesis. There is thus a hierarchy among the three frequencies

ω′c � ωz � ωm. (2.18)

The intervals are typically ω′c/ωz = O(103) and ωz/ωm = O(103) respectively.

The energies associated with the three motional modes can be easily derived. The most

simple expression is the axial motion. For an axial motion with amplitude zA, the associated

energy is simply the energy of simple harmonic motion,

Ez =
1

2
mω2

zz
2
A. (2.19)
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The energies for the modified cyclotron motion with radius ρc and the magnetron motion

ρm is given by the sum of the kinetic energy 1
2
m
(
dρ
dt

)2
and the electrostatic potential energy

in the radial direction −1
4
ω2
zρ

2,

Ec =
1

2
m

(
ω′2c −

1

2
ω2
z

)
ρ2
c ≈

1

2
mω′2c ρ

2
c (2.20)

and

Em =
1

2
m

(
ω2
m −

1

2
ω2
z

)
ρ2
m ≈ −

1

4
mω2

zρ
2
m. (2.21)

We used the hierarchy (Eq. 2.18) in the approximations. Notice that the energy for the

magnetron motion is negative. If the particle is left in the trap for a very long time, the

magnetron radius will grow until the particle collides with the wall and is lost from the trap.

However, we will see in the next section that the spontaneous growth rate of magnetron

radius is much slower than the experimental time scale, and we can reduce the magnetron

radius by applying a radio frequency (RF) cooling drive. Therefore, the radius of the mag-

netron orbit can be kept small and stable.

The three motions thermalize to the equilibrium temperature with very different time

scales. The cyclotron motion radiates its energy by the synchrotron radiation with a time

constant

τc =
1

γc
= 4πε0

3mc3

4e2ω2
c

. (2.22)

The time constant is about τc = 0.09 s in free space at 5.3 Tesla. The radiation is suppressed

by trapping the electron in a high quality factor cylindrical Penning trap [56]. We use this

inhibition of spontaneous emission to achieve a longer cyclotron lifetime τc of about 5–10 s,

which produces long enough averaging time to detect one-quantum cyclotron transitions.

The axial motion is strongly damped by a detection resonator. Its equilibrium temper-

ature is determined by resonator’s temperature and the following amplifier. The typical

time constant for damping is about τz = γ−1
z = 0.03 s. The detection and damping of axial

motion are described in Sec. 2.3.
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The time constant for the spontaneous increase of the magnetron radius [54]

τm =
1

γm
= 4πε0

3mc3

4e2ω2
m

ω′c − ωm
ωm

≈ 4πε0
3mc3ω′c
4e2ω3

m

(2.23)

is typically at the order of 1010 years and is much longer than any experimental time scale.

This ensures that in the time scale of experiment, the particle will not be lost from the trap

if the magnetron radius is properly “cooled” to a small radius (Sec. 2.3).

In addition to the three kinetic motions, the spin motion has two quantum states, up and

down (denoted as ms = +1/2 and ms = −1/2). The spin precession frequency ωs = 2πνs is

given by

ωs =
g

2

eB

m
=
g

2
ωc. (2.24)

The spin frequency is determined by the magnetic field and is not modified by the electric

field potential. Among the two spin states, the spin-up state (ms = +1/2) has higher

energy and is effectively meta-stable. The radiative decay rate from spin up to spin down

state (ms = +1/2→ ms = −1/2), given by

τs =
1

γs
= 4πε0

6m2c5

g2~e2ω3
s

(2.25)

is about 5 years at 5.3 T. Therefore, the spin transition rate is also negligibly small compared

to the experimental timescale.

An accurate description of the motion requires quantum mechanics (Fig. 2.3). Spin

motion can take one of two states, up or down. Cyclotron, axial, and magnetron motions

are described by quantum harmonic oscillators that are orthogonal to each other. The

Hamiltonian is explicitly given as

H = ~ω′c
(
â†câc +

1

2

)
+ ~ωz

(
â†zâz +

1

2

)
− ~ωm

(
â†mâm +

1

2

)
+ ~ωs

1

2
σ̂z, (2.26)

where âi and â†i (i = c, z,m) are the annihilation and creation operator respectively, and σ̂z
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Figure 2.3: Quantum levels of a trapped electron. Each spin has cyclotron, axial, and
magnetron sub levels. The energy intervals among the levels are not to the scale.

is the z component operator of the Pauli’s matrix. The quantum numbers are conventionally

denoted as ni (i = c, z,m) for the three kinetic motions respectively and ms = ±1/2 for spin

up and down state.

In thermal equilibrium, the electron’s population density is distributed over the quantum

states with a Boltzmann distribution. The average quantum number is given by

n̄i =

[
exp

(
~ωi
kBT

)
− 1

]−1

. (2.27)

The Penning trap and its surrounding system are mounted onto a dilution refrigera-

tor (Sec. 2.2). The temperature of the Penning trap is cooled below 100 mK. The tem-

perature of cyclotron motion is equal to the physical temperature of the trap, 100 mK. By

cooling to this low temperature, the cyclotron quantum state is always in the ground state

unless excited

n̄c = 5.6× 10−32 ≈ 0. (2.28)
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frequency
damping

time
quantum
number

spin ωs/2π ≈ 149.7 GHz γ−1
s ≈ 5 year ms = 1

2
or ms = −1

2

cyclotron ω′c/2π ≈ 149.5 GHz γ−1
c ≈ 10 s n̄c = 5.6× 10−32

axial ωz/2π ≈ 115 MHz γ−1
z ≈ 0.03 s n̄z = 100

magnetron ωm/2π ≈ 48 kHz γ−1
m ≈ 1012 s n̄m = 100

Table 2.1: Typical frequencies, damping rate, and quantum number for the electron in the
Penning trap used for the measurement at 5.3 T.

Therefore, after loading an electron in the trap, the electron radiates its cyclotron energy

by synchrotron radiation until it reaches the quantum ground state nc = 0.

The axial motion’s temperature Tz is thermalized to the detection resonator and ampli-

fier. The physical temperature of the resonator is below 100 mK, but Tz is mainly heated by

the effective input temperature of the amplifier (currently high electron mobility transistor

amplifier, HEMT), and is about Tz = 0.5 K in this thesis. The magnetron motion is “cooled”

by magnetron-axial coupling drive to Tm = −(ωm/ωz)Tz ≈ −10−3 × Tz (Sec.2.3 [57]). The

minus sign is because of the meta-stable energy (Eq. 2.21). With Tz = 0.5 K, the magnetron

will be cooled to Tm = −0.5 mK, and the quantum numbers for the axial and magnetron

motion are n̄z = 100 and n̄m = 100 respectively. Therefore, they are close to the quantum

regime but not quite there yet. A new quantum limited detector is also being prepared to

achieve Tz = 20 mK or below (Chap. 5).

Table 2.1 summarizes the typical frequencies, damping rates, and average quantum num-

bers of the electron in the trap. The cyclotron damping rate γc is a value achieved in a closed

cylindrical cavity [56, 58] at 5.3 T, the axial damping rate γz is a value when coupled to a

resonant circuit, and the average quantum number of the magnetron motion n̄m is the value

after magnetron cooling.
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Figure 2.4: The entire setup of the experiment. A Penning trap (a) is housed in a titanium
vacuum chamber (b), and the vacuum chamber is suspended at the bottom of a dilution
refrigerator (c). The dilution refrigerator is inserted into the dewar (d), which has the
superconducting magnet at its bottom. See also Fig. 2.7.

2.2 Apparatus

To realize the ideal environment for the g-factor measurement, a Penning trap, a vacuum

chamber, filters, and amplifiers are fabricated and mounted onto a dilution refrigerator.

The dilution refrigerator is inserted into a cold bore superconducting magnet (Fig, 2.7). A

drastic improvement of the magnet and the dilution refrigerator has been made since the

last measurement of g-factor in 2008. We review the apparatus for the g-factor measurement

in this section.
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parameter value

magnetic field: B 5.3 T
temperature: T 100 mK
radius of the trap: ρ0 4.539 mm
half height of the trap: z0 3.906 mm
height of compensation electrode: zc 0.716 mm
magnetic bottle gradient: B2 300 T/m2

image charge parameter on endcap: c1 0.784
antisymmetric bias parameter: c3 0.320

Table 2.2: Typical parameters of the Penning trap.

2.2.1 Penning Trap System

At the heart of the experimental apparatus is the Penning trap. The trap is a five-

electrode orthogonal cylindrical trap [59]. The trap electrodes are made of 99.999% pure

silver, and the spacers are made of quartz to eliminate nuclear para-magnetism [60]. A

nickel magnetic bottle is used to generate quadratic magnetic field for detection (Sec. 2.3).

The entire trap assembly is enclosed in a high-vacuum can and cooled down by a dilution

refrigerator to 100 mK or below. The vacuum inside the trap chamber is estimated to be

better than 5×10−17 Torr [61,62], which allows stable trapping of an electron. In this thesis,

we operate the single electron trap for more than a year and have never observed difficulty

in trapping. Table 2.2 summarizes the parameters of the trap.

The Penning trap electrodes are the same as those used in the 2008 measurement. A

closed endcap cylindrical trap [59] is used (Fig. 2.5) to suppress the spontaneous cyclotron

decay [58]. The trap is designed such that the compensation electrode is used to tune

the fourth order anharmonicity at the trap center without changing the quadratic trap

potential [59]. The trap has been disassembled and reassembled several times.

Three parameters characterize the the trap geometry: the trap radius ρ0 = 4.539 (31) mm,

half of the trap height z0 = 3.906 (35) mm, and the length of the compensation electrode

zc = 0.766 (3) mm. The electric potential of a Penning trap around its center is characterized
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Figure 2.5: The cylindrical penning trap.

by the parameters Ck, defined as

φ(ρ, z) = −VR
(
z2 − ρ2/2

2d2

)
− VR

2

∑
k=0
even

Ck

(r
d

)k
Pk (cos θ) , (2.29)

where VR is the voltage on the ring electrode, d =
√

1
2
(z2

0 + ρ2
0/2) = 3.575 mm is the trap

dimension parameter, and the cylindrical coordinate ρ =
√
x2 + y2, spherical coordinate

r =
√
x2 + y2 + z2, polar angle θ = cos−1 (z/r), and the Legendre polynomial function

Pk(x) are used [58,59,63]. The trapping potential along the z axis can be simplified as

φ(z) ≡ φ(0, z) = −VR
2

(z
d

)2

− VR
2

∑
k=0
even

Ck

(z
d

)k
, (2.30)

Near the center of the trap, the potential is symmetric under the reversal z → −z, so

that all odd k components are negligible. The axial oscillation frequency in this notation is

νz =
1

2π

√
eVR
md2

(1 + C2). (2.31)
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The harmonic potential of the trap is mainly determined by the main ring voltage VR.

In addition, the compensation electrode is used to control the anharmonicity. In Eq. 2.30,

the coefficients Ck are function of the voltage on the compensation electrode Vc as

Ck = C0
k +Dk

(
1

2
− Vc
VR

)
, (2.32)

where C0
k represents the potential from the ring electrode, and Dk represents the tuning

coefficient from the compensation electrode. These coefficients are analytically calculated

from the trap geometry [59]

C0
k = −δk2 +

(−1)k/2

k!

πk−1

2k−3

(
d

z0

)k ∞∑
n=0

(−1)n+1(2n+ 1)k−1 cos2
[

1
2

(
n+ 1

2

)
πzc/z0

]
J0

[
i(n+ 1

2
)πρ0/z0

] (2.33)

and

Dk =
(−1)k/2

k!

πk−1

2k−3

(
d

z0

)k ∞∑
n=0

(−1)n(2n+ 1)k−1 2 sin2
[

1
2

(
n+ 1

2

)
πzc/z0

]
J0

[
i(n+ 1

2
)πρ0/z0

] . (2.34)

The values of coefficients for our trap are summarized in Table 2.3. The trap is designed

so that D2 is much smaller than D4. Under this condition, the fourth order anharmonicity C4

can be tuned without changing the axial frequency νz (Eq. 2.32). The amplitude dependence

of axial frequency is minimal at the tuned condition C4 = 0, which corresponds to Vc/VR =

0.704. When the self-excitation is used, we excite the electron to high axial amplitude, and

C4 is set to be slightly positive C4 = 2.8 × 10−4 to cancel the shift from C6 = −0.1. We

will also intentionally tune C4 to a large value to create anharmonic potential to diagnose

the trapped electrons’ internal motion (App. A). A new trap that can achieve a smaller

anharmonicity C4 = C6 = 0 is designed in Chap. 5.

Occasionally, we apply antisymmetric bias to the top and bottom endcap electrodes to

move the electron up or down. The electric field potential when +VA/2 and −VA/2 are
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parameter value parameter value when C4 = 0
C0

2 0.125
C2 0.125

D2 0.002
C0

4 −0.013
C4 0

D4 −0.067
C0

6 −0.091
C6 −0.094

D6 0.014
C0

8 0.016
C8 0.013

D8 0.016

Table 2.3: Anharmonicity parameters that defines the trap potential with ρ0 = 4.539 mm,
z0 = 3.906 mm, and zc = 0.766 mm. The right two rows show the coefficients when Vc is
tuned to get a harmonic potential (Vc/VR = 0.704 and C4 = 0).

applied to the top endcap electrode and bottom endcap electrode respectively is

φA(ρ, z) =
1

2

∑
k=odd

ck

(
r

z0

)k
Pk(cos θ). (2.35)

The expansion coefficient ck is easily obtained in Eq. (31) in [59] (note that the reference is

missing (−1)n in the numerator)

ck = δk1 +
2(iπ)k−1

k!

∞∑
n=1

(−1)nnk−1

J0 [inπρ0/z0]
. (2.36)

For large ρ0/z0, c1 approaches 1 and others approach 0. Qualitatively, c1 represents how close

the endcap electrodes are to ideal infinite planes. The next leading order c3 is important

when calculating the shift of axial frequency when moving electrons to z 6= 0. The calculated

values for c1 and c3 in the trap are also included in Table 2.2.

The trap chamber has been redesigned (Fig. 2.6). Grade 2 titanium is used for the cham-

ber to minimize nuclear paramagnetism [60]. The new chamber has more space and mod-

ularity to allow flexibility and quick troubleshooting. Standard 1.33 inch diameter conflat

flanges are used at the pinbase with non-magnetic feedthroughs with titanium flange (MPF

products, 8x pin non-magnetic feedthrough). The trap chamber is sealed with indium and

copper pinch-off tubes. The chamber is mounted to the silver tripod with filters and HEMT
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Figure 2.6: Schematic of titanium trap chamber and silver tripod.

amplifiers attached. The silver tripod is rigidly attached to the mixing chamber stage of

the dilution refrigerator. Ruthenium oxide temperature sensors are attached at the mixing

chamber stage and at the bottom of the tripod. The temperature gradient between the

bottom of the tripod and the mixing chamber stage is less than 1 mK when the HEMT am-

plifier is off, and is about 20 mK when the amplifier is on. This confirms that the thermal

link between the mixing chamber and the trap chamber is good, but the HEMT amplifier

is by far the largest heat load.

2.2.2 Dilution Refrigerator and Superconducting Magnet

The Penning trap and its surrounding amplifiers and filters are mounted to a dilution

refrigerator. The dilution refrigerator is constructed by the Janis ULT. The dilution refrig-

erator is inserted into the dewar, which has a niobium-titanium 6 Tesla solenoid magnet

at its bottom (Fig. 2.7). The magnet and the dilution refrigerator share the same liquid
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helium space, which allows the dilution refrigerator to be directly mechanically engaged to

the magnet.

The design of the dilution refrigerator directly engaging the magnet minimizes the rela-

tive fluctuation of the magnet center and the trap. In the 2008 measurement [7], the largest

systematic uncertainty was due to the relative motion of the magnet and the dilution refrig-

erator. Data collection was not possible during the daytime because of the high sensitivity of

the magnetic field to ambient conditions. Careful time-consuming shimming of the magnet

is required every time the magnetic field is changed. Temperature fluctuation of the room

changes the relative position of the refrigerator and the magnet. The current new system

requires neither frequent shimming nor careful room temperature regulation. The improved

stability allows continuous data-acquisition. This allows about 20 times more statistics and

measurements of g-factor at widely different fields.

The dewar’s helium boil-off rate is about 0.7 L/hour when the dilution refrigerator is

inserted. The boiled gas helium is collected and reliquified by a commercial reliquifier,

modified based on PT420RL-RM (Cryomech). The reliquifier is on during commissioning

and optimization, but is turned off during the g-factor measurement. Outside the liquid

helium bath, there are thermal shielding layers cooled by 190 L liquid nitrogen dewar. This

combined wet system allows minimal vibration and quiet operation of the system.

The dilution refrigerator has a specified cooling power of 150 µW at 100 mK and 10 µW

at 30 mK. With our Penning trap system attached, the base temperature reaches 25 mK

when the HEMT amplifier is off and 70 mK when the amplifier is turned on with typically

100 µW of power dissipation. The dilution refrigerator can maintain its base temperature

continuously for about a year.

The superconducting magnet has 11 shim coils in addition to the main coil that applies

a 6 Tesla field at maximum. The shim coils are adjusted to optimize the homogeneity of

the magnetic field at its center. The shim coils are labeled as X, Y, Z, ZX, ZY, Z2, C2, S2,

Z2X, Z2Y, and Z3. Each shim coil is designed to generate a field along the z direction to
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Figure 2.7: Cross section of the dilution refrigerator and magnet system. The Penning
trap is mounted at the bottom of the dilution refrigerator and inserted into the bore of the
magnet.
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Figure 2.8: The ringing-in method to suppress drift after changing the magnetic field.

compensate spacial gradient associated with its name. For example, the X coil generates

field as bXxẑ, the ZX coil generates bZXzxẑ, and the C2 coil generates bC2 cos2 φẑ, where

φ is the azimuth angle in the x–y plane. They are designed to essentially not interfere

with each other, which allows efficient shimming of the homogeneity. We first optimize the

homogeneity of the magnetic field using a purpose-built 3He NMR probe (Chap. 3).

In the past, a large drift of O(10 ppb)/hour was observed after changing the magnet. The

drift stayed high for a few months, and it was impossible to perform g-factor measurement

during that period. A new method, called the “ringing-in” method, is used to suppress

this drift. For example, when changing the magnet field from 5.140 T to 5.300 T, we first

charge to 5.367 T, then 5.267 T, 5.317 T, 5.292 T, 5.304 T, 5.298 T, 5.301 T, and then to

5.300 T (Fig.2.8). At each value, we settle for about 5 minutes. This method suppresses drift

to less than 0.3 ppb/h level even only after a day, making measurement at many different

fields possible.
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Figure 2.9: Wiring diagram of the Penning trap.

2.2.3 DC and RF Circuitry

The bias voltages on the electrodes determine the axial oscillation frequency as in

Eq. 2.31. The relative width of a single electron is about γz/ωz = 5 Hz/115 MHz = 5×10−9,

and the shift of axial frequency per quantum cyclotron jump is δc/ωz = 1.3 Hz/115 MHz =

1.1×10−9. Therefore, the short-term voltage fluctuation on the electrodes needs to be better

than a few ppb for reliable detection of the electron and identification of its quantum state.

Figure 2.9 shows the wiring of our Penning trap. All DC lines are filtered at room

temperature and at each stage by a 200 kHz LC low pass filter. The primary low pass filters

are located at the trap chamber. The time constant for the ring electrode filter is 2000

seconds, and those for the other electrodes are 10 seconds. The top endcap electrode and

bottom endcap electrode are grounded through a 10 MΩ resistor at the 1K pot stage, but

can also be biased to shift electron’s position in the trap1.

For the ring electrode, we stack three of the Stahl ultra high precision DC power supply

1These 10 MΩ resistors are limiting the filter time constant for the endcap electrodes and should be
removed in the future.
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UM1-14-LN-SW. Fluke 5720A and 5440B voltage supplies are used for the compensation

electrode and endcap electrode, respectively. They are all floating power supplies and are

grounded at the pinbase. To achieve sufficient voltage stability, the main ring power supply

needs to be temperature stabilized. The Stahl UM1-14-LN-SW power supply has a tem-

perature coefficient of about ±500× 10−9/◦C. Even a 0.1 ◦C change of temperature causes

much larger drift than the requirement for quantum jump detection δc/ωz = 1.1 × 10−9.

The slow drift of the axial frequency can be compensated with feedback, but a fast jump

at second-scale is indistinguishable from a true cyclotron or spin transition. Therefore, the

power supplies are enclosed in a thermally shielded box. The drift of temperature is sup-

pressed below 0.1 ◦C. This drift has a time scale of one day, which is easily suppressed by

feedback using the measured shift of axial frequency.

Two RF drive lines are wired to the Penning trap using micro-coaxial cables (UT-034C)

with 50 Ω impedance. 20 dB attenuators are attached at the 1 K pot stage to reduce the

room temperature Johnson noise. These lines are capacitively coupled to the trap. The

axial drive line used to drive anomaly transition requires higher drive power due to the

low transition probability of the anomaly transition. The value of the coupling capacitor

is optimized by measuring the transmission from the hat to the trap. Attenuation of the

compensation electrode drive line and the endcap electrode drive line are about 45 dB and

25 dB, respectively.

The electron’s axial motion is detected using the resonant circuit (Sec. 2.3). Physically, an

inductor is attached to the top endcap electrode. The electron is coupled and thermalized to

the resonant detection circuit. Its equivalent temperature is determined by the temperature

of the resonator and the equivalent input temperature of the detection amplifier. We have

observed a noise temperature of the resonant circuit of about 0.1–1 K, depending on the

bias power of the amplifier. The input stage of the room temperature amplifier has a

noise temperature of about 100 K. Therefore more than 30 dB of cryogenic amplification is

required. The first stage amplifier is currently a HEMT-based amplifier (but will be replaced
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by the SQUID amplifier in the future), and the second stage amplifier is a HEMT-based

amplifier. The details of the design of the amplifiers are discussed in [64].

2.2.4 Loading Electron with Field Emission

The electrons can be loaded using a field emission point (FEP) [64], a very sharp tungsten

needle. To load electrons, a high negative voltage (typically ranging from −100 to −1000

V) is applied to the FEP. The electric field near the tip of the tungsten needle is so strong

that electrons inside the tungsten tunnel through the work function’s potential.

In general, the emission current follows the simple Fowler-Nordheim’s law [65]

J = α|V |2 exp

(
− β

|V |

)
, (2.37)

where V is the applied voltage on the field emission gun, and α and β are two parameters

that contain other physical information such as work function, geometrical correction, and

others. Figure 2.10 shows the measured emission current by a shunt resistor versus the

applied FEP voltage. The measured current agrees with the fitting curve Eq. 2.37.

2.3 Detecting the Motion of the Electron

Among the four motional modes, only the axial motion is directly detected. The spin

and cyclotron states are detected by monitoring the axial frequency. Their frequencies are

too high to be directly detected. The magnetron motion cannot be monitored because of

its meta-stable potential energy. Any dissipative interaction with magnetron motion will

increase its radius until the electron escapes from the trap. Therefore, the axial motion is

the only probe of the trapped electron.
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Figure 2.10: FEP current as a function of bias voltage.

2.3.1 Resonant Circuit Detection of the Axial Motion

The equation of motion for a trapped electron without damping force is given by

m

(
d2z

dt2
+ ω2

zz

)
= F, (2.38)

where F (t) is externally applied force. Axially oscillating particle induces a current on the

electrodes due to its image charge [66]. The induced current I on an electrode is

I =
ec1

2z0

dz

dt
, (2.39)

where dz/dt is the instantaneous axial velocity, c1 = 0.784 is the constant that characterizes

the fractional amount of induced current on the electrode.

By moving to the general frequency domain representation, z(t) = z̃(ω)eiωt, F (t) =

F̃ (ω)eiωt, and I(t) = Ĩ(ω)eiωt, the equation of motion and the induced current becomes

m
(
−ω2 + ω2

z

)
z̃(ω) = F̃ (ω) (2.40)

34



and

Ĩ(ω) = iω
ec1

2z0

z̃(ω). (2.41)

We detect the induced current on the top endcap electrode and ground other electrodes

at the axial frequency. We denote the impedance between the detection electrode and the

ground as Z(ω). Then the induced current Ĩ(ω) generates voltage difference Ṽ (ω) between

the detection electrode and ground,

Ṽ (ω) = Ĩ(ω)Z(ω) = iω
ec1

2z0

Z(ω)z̃(ω). (2.42)

The induced voltage Ṽ (ω), in turn, acts on the trapped electron as

F̃ (ω) = −ec1

2z0

Ṽ (ω). (2.43)

Therefore, the force from the induced voltage is

F̃ (ω) = −iω
(
ec1

2z0

)2

Z(ω)z̃(ω). (2.44)

By putting this expression back to Eq. 2.40, we get

m

[
−ω2 + iω

(
ec1

2z0

)2
Z(ω)

m
+ ω2

z

]
z̃(ω) = 0. (2.45)

By solving this equation with the conditions z̃(ω) 6= 0 and
(
ec1
2z0

)2
Z(ω)
m
� ωz, we get damp-

ing term γz and the shift of axial frequency δωz|resonator by the coupling to the detection

impedance,

γz =
1

m

(
ec1

2z0

)2

Re [Z(ω)] (2.46)

and

δωz|resonator = − 1

2m

(
ec1

2z0

)2

Im [Z(ω)] = −γz
2

tan [arg [Z(ω)]] . (2.47)
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Figure 2.11: Induced current from trapped particle and resonant circuit. The only compo-
nent physically attached is the inductor L. C mainly comes from the parasitic capacitance
between the top endcap electrode and the top compensation electrode. Reff represents the
effective loss in the LCR resonance circuit is made as high as possible.

The axial damping rate γz needs to be maximized to achieve the best detection sensitivity.

The impedance Z(ω) would be dominated by the capacitance C between the detection

electrode and ground except that an inductor L attached in parallel forms an LCR circuit

and cancels its imaginary component near ωz (Fig. 2.11). The resonator is designed in a

way that its resonant frequency

ω0 =
1√
LC

(2.48)

is matched to the axial frequency ωz. By doing this, the real part of its impedance at axial

frequency Z(ωz) is maximized, and the resonator shift δωz|resonator is minimized. The real

component of the impedance at its resonance ω0 is given by effective parallel resistance

Z(ω0) = Reff . In this three-component model, the impedance is given by

Z(ω) =

(
iωC +

1

Reff

+
1

iωL

)−1

(2.49)

The effective parallel resistance Reff is related to the quality factor of the resonator Q by

Reff = Qω0L. (2.50)

For better detection sensitivity, a higher quality factor Q is desired. Any dissipative factor
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decreases the Q-factor. A silver inductor is used for the resonator to minimize conductive

loss. The resonator is shielded within a well-grounded can to suppress the radiative loss.

The tap ratio is optimized so that the loss from input coupling to the amplifier is minimized

but still large enough to get measurable signal.

The inductor is tapped and impedance matched to the input of the amplifier. Notice that

the total capacitance C is not only from the trap capacitance but also from other components,

such as the capacitance of the resonator, and the input capacitance of the amplifier. The

quality factor Q is determined by all components of the circuit, such as conductivity of the

inductor’s material, radiation loss, and the input impedance of the amplifier.

Our resonator is a silver helical resonator, placed next to the trap inside the trap cham-

ber (Fig. 2.12). The helical resonator is connected to the top endcap electrode. The resonator

is tapped with a tap ratio of about 1/3 from the grounded end and capacitively coupled to

the feedthrough. Then the signal is sent to the amplifier is placed outside the trap cap. With

the resonator placed in the trap chamber, we achieve a parallel resistance of Reff = 380 kΩ

at 90 MHz (Q = 1500), Reff = 240 kΩ at 114 MHz (Q = 1200), and Reff = 60 kΩ at

207 MHz (Q = 550). The design is more modular and tunable than the previous design

using the transmission line, and still yields better parallel resistance Reff .

So far, we have only discussed the detection of the axial motion. The other motions

are monitored via the change of axial motion. Figure 2.13 shows the four main methods to

detect and diagnose the axial motion. We first discuss our four main methods to detect the

axial motion, and then discuss how to measure other motions using the axial motion.

Dip Detection

The simplest method to detect the axial motion is to Fourier transform the output from

the amplifier. By connecting the output from the amplifier to the spectrum analyzer, we

can observe the Johnson noise resonance from the detection resonator and a dip from the

trapped electron.
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Figure 2.12: Location of the helical resonator. The cylindrical trap chamber is opened. The
resonator is placed next to the trap inside the trap chamber to minimize the loss on the wire
from the detection electrode (top endcap).

parametric excitation

2νz

axial excitation

5 MHz

νz – 5 MHz

RF combiner

dip detection

SA
self excitation

variable
G and φ

Figure 2.13: Four drives to detect the axial motion, dip detection, axial excitation, para-
metric excitation, and self excitation (from left to right).
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Figure 2.14: noise spectrum of the Johnson noise from the LCR resonance circuit without
electrons trapped (black) and with about N = 2000 electrons trapped (red).

The ideal output voltage from the first stage amplifier is the Johnson noise of the LCR

circuit. For a bandwidth ∆f , the Johnson noise voltage is

VN(ω) =
√

4kBTRe[Z(ω)]∆f, (2.51)

where kB is the Boltzmann constant.

The electric behavior of the electron in the trap chamber be represented by an equivalent

series LC circuit [66]. The electron shorts out the parallel LCR circuit at the axial frequency.

As a result, the Johnson noise resonance has a dip when particles are trapped, as shown in

Fig. 2.14. For one electron, the full width of the dip is given by γz/(2π). For N trapped

electrons, its width is given by Nγz/(2π) [66]. We can measure this width to deduce how

many electrons are trapped. This scheme does not require any external drive. The measured

axial frequency in this method is the frequency when the electron is at its thermal equilibrium

state.
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Axial Excitation with Two Drives

The axial motion can be excited by an external drive. The drive excite the electron to

a higher amplitude, which makes detection easier. A single drive near the electron’s axial

frequency νz will suffer from strong direct feedthrough from the drive electrode to the first

stage amplifier. To avoid this, a modulation drive at 5 MHz and an excitation drive at

νd − 5 MHz is used to drive at frequency νd. Typically, a modulation drive of about 150

mVpp and excitation drive of about −60 dBm is applied to the endcap electrode for one

electron. By exciting the trapped electron to a higher amplitude, we can also probe the

anharmonicity of the trap. The anharmonicity, mainly C4, can be tuned by changing the

bias voltage on the compensation electrode Vc. Figure 2.15 shows the response from an

axially excited electron for three different anharmonicities.

Parametric Excitation

The axial motion can also be excited by modulating the trap potential at twice its

frequency 2νz. The parametric excitation generates a large and broadband response, which

is useful for detecting the initially loaded electrons. When the electron is initially loaded, its

axial frequency has a large uncertainty due to the initial large magnetron orbit. Since the

parametric drive’s frequency response is much broader than this uncertainty, we can count

the number of loaded electrons by monitoring the excited power. Figure 2.16 (a) shows the

newly developed electron counting method using the parametric excitation.

We can also reduce the number of trapped particles by applying a strong parametric

drive. Figure 2.16 (b) shows the excited power from a strong parametric drive. Clear steps

that correspond to the escape of electrons from the trap are observed. This method is critical

when loading positrons in the future. If, by any chance, more than one positron are loaded,

we can use this excitation to reduce the number of trapped positrons.

Another newly invented application is to use the parametric drive to measure the axial

damping rate γz (Fig. 2.17). Due to its large response and absence of direct feedthrough,
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Figure 2.15: Probing the anharmonicity of the trap using one electron. The voltage on the
compensation electrode is adjusted to set C4.
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Figure 2.16: Counting the discrete loading of electrons using the parametric drive. (a) When
loading electrons, the parametric drive at 2νz is applied to the electrode, and the FEP is
weakly biased. (b) When reducing the number of trapped electrons, a strong parametric
drive is applied, and its response is monitored. Discrete jumps that correspond to electron
loading or escaping are clearly visible.

parametric excitation can excite the electron to a very high amplitude that can be observed

in the time domain. The electron is excited to high amplitude, and the parametric drive is

turned off. The decay constant of excited oscillation power directly tells the axial damping

rate γz. This method does not suffer from fast fluctuation of the axial frequency that can

arise from any fast voltage noise, which would limit the linewidth in the dip detection or

axial excitation methods.

Another feature of the parametric excitation is that it can drive the internal motion

of a trapped cloud of electrons very efficiently. The trapped cloud of electrons is efficiently

heated by the parametric drive, and it radiates energy by synchrotron radiation. The internal

temperature can be used to probe the microwave cavity structure of the Penning trap. This

feature will be discussed and used in detail in App. A.

Self-Excitation

A reliable and fast method to determine the electron’s axial frequency is the self-excitation

using positive feedback [67]. In this method, the signal from an electron is fed back to the

drive electrode. By adjusting the phase, we set this feedback to be positive, leading to a large
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Figure 2.17: Measurement of the number of trapped electrons and its damping rate γz using
the decay of parametrically excited motion. (a) The decay behavior of the excited power is
fit with exponential curves. (b) The obtained time constant τ−1/(2π) = γz shows discrete
steps, with its coefficient given by the damping rate for a single electron γz/(2π) = 10.8 Hz.
This data was taken at an axial frequency of 90 MHz.

excitation of electron by itself. To limit and control its excitation amplitude, a limiter based

on DSP (Digital Signal Processor)2 and voltage variable attenuator are used to limit the gain

of the feedback loop [64]. Figure 2.18 shows the power spectrum of a self-excited electron.

This method directly measures the oscillation frequency. We use this self-excitation method

to measure the shift of the axial frequency to decipher cyclotron and spin transition. Details

of the self-excitation are described in [64].

2.3.2 Measuring the Magnetron Frequency

The magnetron motion at νm can be measured by applying a cooling sideband drive at

νz + νm. This drive couples the magnetron motion with the axial motion and cools the

magnetron motion to

Tm = −νm
νz
Tz. (2.52)

The minus sign is necessary because the magnetron motion is meta-stable and higher orbit

has less energy. In the limit that the magnetron motion is well cooled and equilibrated

2The highest nc we can observe with this method is limited by the DSP. A new better limiting device
needs to be developed.
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Figure 2.18: Frequency spectrum of the self-excited one electron. The width is limited by
the resolution bandwidth of the spectrum analyzer, 1 Hz.

with the axial motion, the axial dip splits into two dips due to the drive (Fig. 2.19). For a

given magnetron coupling drive at νd, the frequency of the left dip and right dip, νL and νR

respectively, is related to the magnetron frequency as

νL + νR
2

− νz = νd − (νz + νm). (2.53)

Therefore, the dip splits symmetrically if the magnetron coupling frequency is exactly res-

onant with the cooling frequency, νd = νz + νm. By sweeping the drive frequency and

measuring the split dips, we can measure the magnetron frequency νm. With this method,

the magnetron frequency is determined with a precision of about 0.1 Hz.

2.3.3 Magnetic Bottle Detection of the Cyclotron and the Spin

States

Because of the low temperature of the trap, the cyclotron motion is always at its quantum

ground state nc = 0 unless an excitation drive is applied. Transitions between the quantum
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Figure 2.19: Split of electron’s noise dip at axial frequency due to magnetron-axial sideband
coupling.

states are detected using the magnetic bottle method [68,69].

In the magnetic bottle method, a strong ferromagnetic material, in our case nickel, is

placed near the center of the trap. The bottle alters the magnetic field and creates a

quadratic gradient

B(ρ, z) = B0ẑ +B2

(
z2 − ρ2

2

)
ẑ −B2zρρ̂. (2.54)

The radial term B2zρρ̂ is used to drive the anomaly transition and will be discussed in the

next section. We now focus on the magnetic field along the ẑ direction. Since the electron’s

total magnetic moment in the z direction depends on the spin and cyclotron states,

µz = −2µB

(
nc +

1

2
+
g

2
ms

)
(2.55)

the altered magnetic field couples the cyclotron state to the axial trapping potential by

adding bottle term

H ′z = −µzB(z) = 2µBB2z
2

(
nc +

1

2
+
g

2
ms

)
+ C. (2.56)
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The total confinement potential along the z axis is

φ(z) =
1

2
mω2

zz
2 + 2µBB2z

2

(
nc +

1

2
+
g

2
ms

)
≈ 1

2
m

[
ωz +

2µBB2

mωz

(
nc +

1

2
+
g

2
ms

)]2

z2

=
1

2
m

[
ωz + δc

(
nc +

1

2
+
g

2
ms

)]2

z2,

(2.57)

where the constant term is omitted, and

δc ≡
2µBB2

mωz
=

~eB2

m2ωz
(2.58)

is the bottle shift for one quantum jump. Therefore, by monitoring the shift of the axial

frequency, we can resolve the quantum state of the trapped electron. The axial frequency

shift, with constant term subtracted, is

δωz = δc

(
nc +

g

2
ms

)
. (2.59)

Notice that the bottle shift expression in Eq. 2.59 also contains the spin quantum number

ms. The spin-flip ms = 1
2
→ ms = −1

2
shifts the axial frequency by −(g/2)δc ≈ −1.001δc.

This method is also used to detect spin-flip transition. The axial frequency shift by anomaly

transition (|nc = 0,ms = 1
2
〉 → |nc = 1,ms = −1

2
〉) is about (g/2−1)δc ≈ 0.001δc, so is much

smaller. Instead, we wait for the subsequent decay (|nc = 1,ms = −1
2
〉 → |nc = 0,ms = −1

2
〉)

to detect the anomaly transition. Bottle jump parameter of δc/(2π) = 8.9 Hz was used in

commissioning, and δc/(2π) = 1.3 Hz is used for the g-factor measurement.

The magnetic bottle gradient can be measured by shifting the electron along the z axis

in the trap and measuring the change of the cyclotron frequency (Sec. 2.3.4). To shift the

electron’s position, an antisymmetric voltage of VA/2 at top endcap electrode and −VA/2 at

bottom endcap electrode are applied. The displacement of the electron’s position ze is given
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by [59]

ze
z0

=
1

2

(
d

z0

)2
c1

1 + C2

(
VA
VR

)
. (2.60)

Shifting the electron’s position also shifts the axial frequency by shifting the electron’s

position,

∆νz
νz

= −3

4

(
d

z0

)4
c1c3

(1 + C2)2

(
VA
VR

)2

. (2.61)

Figure 2.20 shows the change of magnetic field and the axial frequency for a displacement

of electron by applying the antisymmetric voltage. The magnetic field center shows about

17 µm of offset, and the axial frequency center shows about 8 µm of offset. The machining

tolerance of our electrodes and spacers is 5 µm for each, which can explain this offset.

2.3.4 Measuring the Cyclotron Frequency

The cyclotron transition is excited by applying a drive at around νc = eB/(2πm). We

need to send microwave drives between 80 GHz and 160 GHz. At this frequency range,

the drive can be treated as a propagating electromagnetic wave. Figure 2.21 shows the

schematic diagram of the microwave system. The microwave drive at νc is generated using

a combination of a signal generator and a multiplier. Two signal generators are used,

E8251A (Keysight) and SMA100B (Rohde & Schwarz). The frequency from the generator

at 4–15 GHz is sent by a 2.92 mm cable to the multiplier and is multiplied to the desired

drive frequency. Three generators are used to cover wide frequencies, IMPATT diode from

ELVA-1 (140–152 GHz), WR6.5SGX from Virginia Diodes (110–170 GHz), and 934EF-

20/387 from Millimeter Wave (60–90 GHz). The frequency and width of each combination

of a generator and a multiplier is measured by beating the two sources and mixing down to

RF range (Fig. 2.22). They all consistently give the right frequency and a width less than

1 Hz.

The maximum available power at multiplier’s output is about 10 dBm, and the power is

controlled by voltage variable attenuator for more than 100 dB dynamic range (Fig. 2.22). A
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Figure 2.20: Shift of magnetic field (top) and axial frequency (bottom) when antisymmetric
bias VA is applied to shift electron’s position.
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Figure 2.21: The system to generate and control cyclotron drive at microwave frequency νc.

TTL-triggered room temperature shutter is also installed to achieve clean attenuation. The

drive is radiated from a horn at the top of the dilution refrigerator, guided through waveg-

uides, collimated by PTFE lenses, and then radiated to the trap. Only about −200 dBm of

power is required to induce one quantum cyclotron excitation.

Because the cyclotron transition is very narrow, it takes time to find the frequency

initially. The cyclotron frequency is first estimated from νz and νm using the relation

ν ′c =
ν2
z

2νm
. (2.62)

The actual cyclotron frequency, however, is usually different from the frequency determined

by this method by about 10−4 due to the misalignment of the trap axis and magnetic field

axis [55]. We use Eq. 2.62 to deduce the cyclotron frequency, and then sweep the cyclotron

drive around its deduced value to find the actual cyclotron frequency in the trap.
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Figure 2.22: Measured microwave drive width (left) and attenuation on output power (right).

The cyclotron frequency can be found by monitoring the axial frequency and sweeping the

drive frequency. Typically, the microwave drive is swept around the frequency deduced from

Eq. 2.62 with the self-excitation is turned on. The self excited highly oscillating electron has

larger cyclotron linewidth of about 50 kHz due to the magnetic bottle gradient (Eq. 2.54),

compared to a few hundred Hz without axial excitation. When the drive is resonant with

the cyclotron frequency, a quantum jump between cyclotron states is observed (Fig. 2.23).

The cyclotron frequency used for the g-factor measurement is measured when no axial

excitation is applied. The resonant frequency without excitation is lower and much narrower

than that measured when the self-excitation is on. Typically, an electron has an oscillation

amplitude of about 100 µm by the self-excitation. This couples to the bottle gradient B2

and shifts the magnetic field for the electron. To measure the cyclotron frequency when no

excitation is applied, a microwave drive is applied with the self-excitation off, and then it is

turned on to measure the axial frequency immediately after the drive. The axial frequency

must be measured before the excited cyclotron state decays back with a timescale 1/γc = 5 s.

The exact procedure is discussed in Chap. 4.
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Figure 2.23: Quantum cyclotron transitions detected by monitoring axial frequency shift
with self excitation. The colored z-axis is the Fourier transformed power, so a slice at
particular time gives a Fourier spectrum similar to Fig. 2.18. (a) νz = 90 MHz and B2 = 1500
T/m2, which gives δc/(2π) = 8.9 Hz (b) νz = 115 MHz and B2 = 300 T/m2, which gives
δc/(2π) = 1.3 Hz.
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2.3.5 Measuring the Anomaly Frequency

The spin-flip is induced by driving the anomaly transition |nc = 0,ms = +1/2〉 ⇔ |nc =

1,ms = −1/2〉. Since the lifetime of the spin transition is much longer than the typical

experimental timescale γ−1
s ≈ 5 years, the spin state does not change unless an external

drive is applied.

The anomaly transition is driven by applying an RF drive at the bottom endcap electrode.

This drive modulates the electron’s axial motion.

z(t) = za cos (ωat) (2.63)

This modulation in the radial term of the magnetic bottle

Bρ(ρ, z) = −B2zρρ̂ (2.64)

creates transverse modulation of the magnetic field B(t) = −B2zaρ cos(ωat)ρ̂. The radius

ρ oscillates at its cyclotron frequency ω′c, which modulates the transverse magnetic field at

ω′c + ωa. This has the right frequency and field direction to cause a spin-flip transition [54].

The spin state can be determined by applying a strong anomaly drive. When an electron

is initially loaded, the spin state is unknown. After applying a strong anomaly drive, if the

axial frequency shifts downward by g/2× δc ≈ δc, it reveals that the electron was initially in

the spin-up (ms = +1/2) and now it is in the spin-down state (ms = −1/2). When it is in the

spin-down state, applying a strong resonant cyclotron drive and anomaly drive together and

then waiting for a time longer than τc brings the spin-down state |nc = 0,ms = −1/2〉 back

to the spin-up state |nc = 0,ms = +1/2〉 with 50 % of probability. Figure 2.24 demonstrates

how we manipulate the spin state with this method. Strong cyclotron and anomaly drives

are applied between the points. Clear manipulation of the spin states is demonstrated.
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Figure 2.24: Manipulation of spin state using cyclotron and anomaly drive at νz = 90 MHz
and B2 = 1500 T/m2. Between each point, we apply a strong cyclotron or anomaly drive,
or both, and then wait for 30 seconds to ensure that the cyclotron motion is in its ground
state nc = 0. The transition is clearly detected by the shift of axial frequency.

2.4 Summary

The setup for g-factor measurement has been described. The motion of an electron in a

Penning trap has been illustrated, with cryogenic setup that allows quantum manipulation

of the trapped electron’s states. Several detection methods of the trapped electron using the

axial motion has been described. All the oscillation frequencies of the trapped electron can

be measured with the described procedure. The following studies are done by combining

the methods listed in this chapter.
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Chapter 3

Gaseous Helium-3 Cryogenic NMR

Probe

Mechanical vibration was the largest systematic effect in the 2008 measurement [7]. We

have moved to a cryogenic cold bore magnet to improve the mechanical stability of the

apparatus. The bore of the magnet is filled with 4.2 K liquid helium. The homogeneity of

the new cold bore magnet needs to be optimized for the best robustness against external

mechanical perturbations. We have proposed and demonstrated a Helium-3 based Nuclear

Magnetic Resonance (NMR) probe to achieve this. Part of the work here is summarized and

published in [70].

NMR probes, such as water NMR probes, are used to optimize the homogeneity of

typical warm bore magnets. However, these probes cannot be used to make high frequency

resolution measurements in a cryogenic environment as they lose frequency resolution when

the liquid sample in the probe freezes. A gaseous Helium-3 (3He) NMR probe is designed

and constructed to work naturally in such cryogenic environments, 4.2 K and 5.3 T [70].

This probe can achieve a frequency resolution better than 0.4 part per billion in less than 1

second. We use it to shim and study a superconducting solenoid with a cryogenic interior.

The highly shimmed magnet produces a homogeneous magnetic field which reduces magnetic
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field fluctuation due to the vibration of the probe.

An introduction to the pulsed-NMR measurement is given in Sec. 3.1. Design and con-

struction of the 3He NMR probe is described in Sec. 3.2. The observed signals are shown

and discussed in Sec. 3.3. Measurements of the transverse and longitudinal time constants

are reported in Sec. 3.4. The stability of the cold-bore magnet is characterized in Sec. 3.5.

Sec. 3.6 discusses the possible future improvements.

3.1 Principle of Pulsed Fourier Transform NMR

Our technique to measure the homogeneity in a small region is to use pulsed Fourier

transform NMR. In the pulsed Fourier transform NMR, a sample is placed in a volume with

low magnetism. A strong magnetic field, ~B = Bẑ defines the initial spin quantization axis.

Then an RF drive pulse is applied to tip the spin by 90 degrees. After that, each spin starts

precession, whose frequency is defined by its local magnetic field value and is independent

of the initial drive frequency. The spin precession induces a current on the same RF coil.

The total induced signal is called the free induction decay (FID). Since the FID signal is a

sum of all spins, its Fourier transformation gives the integral of the magnetic field sampled

by each spin in the sample volume.

We first derive the essential features of the pulsed Fourier transform NMR from the

first principle. The conclusions are the same in either the classical picture or the quantum

picture. We use both classical and quantum picture and occasionally switch from one to the

other to emphasize the essential feature. If necessary, any of the following conclusions can

be derived using either classical or quantum picture only.
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Figure 3.1: Two energy levels of a spin in a magnetic field B.

Spin Precession

Suppose a spin S (3He in our case) is placed in a magnetic field B = Bẑ, with a magnetic

moment µ = γS, where γ represents the magnetic moment from the spin,

γ =
gne

2mn

. (3.1)

Here, gn is the gyromagnetic ratio of the species, and γ for 3He is known to be−32.434 MHz/T

[71].

The Hamiltonian for the spin is then

H0 = −µ ·B = −γS ·B. (3.2)

Using the quantum picture, the magnetic moment has either up or down state along the

magnetic field axis µ = ±µẑ, so the energy eigenvalues for up or down is (Fig. 3.1)

E± = ∓µB = ∓γ~
2
B. (3.3)

The torque from the magnetic field on the spin is given by

dS

dt
= µ×B = γS ×B = γBS × ẑ, (3.4)
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or explicitly,

d

dt
Sx = γBSy

d

dt
Sy = −γBSx

d

dt
Sz = 0.

(3.5)

Define the complex transverse spin vector Sxy ≡ Sx + iSy. Then the equation is simplified

as

d

dt
Sxy = −iγBSxy
d

dt
Sz = 0.

(3.6)

We can see that if the spin is pointing x̂ direction at t = 0, S = (~/2)x̂, then the time

evolution is

Sxy =
~
2
e−iγBt

Sz = 0.

(3.7)

or in vector form,

S =
~
2

cos(ωNMRt) x̂−
~
2

sin(ωNMRt) ŷ, (3.8)

where

ωNMR = γB (3.9)

is the NMR spin precession frequency. A spin in a magnetic field in the transverse direction

rotates with this spin precession frequency defined by its local magnetic field.

External Drive, π
2
-pulse, and π-pulse

Now we consider how the spin can be manipulated with an external drive. Suppose that

the spin is initially in the spin-up state S = +(~/2)ẑ. An external RF magnetic field drive
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with frequency ω is applied to the x̂ direction

B1 = B1 cos (ωt) x̂. (3.10)

The spin experiences a torque from the sum of the magnetic field. Using Eq. 3.4 with

B = Bẑ +B1 cos (ωt) x̂ gives

d

dt
S = γ [S × (Bẑ +B1 cos (ωt) x̂)]

= ωNMRS × ẑ + γB1 cos (ωt)S × x̂.
(3.11)

Define the Rabi frequency

ΩR =
γB1

2
(3.12)

and move to the rotating frame

Sx = S̃x cos(ωt) + S̃y sin(ωt)

Sy = S̃y cos(ωt)− S̃x sin(ωt)

Sz = S̃z.

(3.13)

In the rotating frame, Eq. 3.11 is now

d

dt
S̃x = −S̃y (ω − ωNMR)− 2S̃zΩR cos(ωt) sin(ωt)

d

dt
S̃y = S̃x (ω − ωNMR) + 2S̃zΩR cos2(ωt)

d

dt
S̃z = −2S̃yΩR cos2(ωt) + 2S̃xΩR cos(ωt) sin(ωt).

(3.14)

To solve this equation, we apply the rotating wave approximation, which drops the fast-

changing terms in the time scale of 2ω. We also define the detuning δ ≡ ω − ωNMR. The
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equations above are now

d

dt
S̃x = −δS̃y

d

dt
S̃y = δS̃x + ΩRS̃z

d

dt
S̃z = −ΩRS̃y.

(3.15)

The solution of this equation with the spin initially in the up (S̃x, S̃y, S̃z) = (0, 0, ~/2) is

S̃x =
~
2

ΩRδ

Ω2
R + δ2

[
cos

(√
Ω2
R + δ2t

)
− 1

]
S̃y =

~
2

ΩR√
Ω2
R + δ2

sin

(√
Ω2
R + δ2t

)
S̃z =

~
2

[
1− 2Ω2

R

Ω2
R + δ2

sin2

(√
Ω2
R + δ2

2
t

)]
.

(3.16)

Of particular interest is when the drive frequency is equal with the NMR spin precession

frequency ω = ωNMR, so δ = 0. Eq. 3.16 then becomes

S̃x = 0

S̃y =
~
2

sin (ΩRt)

S̃z =
~
2

cos (ΩRt) .

(3.17)

The amount of induced NMR signal is proportional to its transverse spin vector |S̃y|.

Figure 3.2 shows how the spin vector flips as a function of drive time and power ΩRt.

Two pulses are particularly interesting. One is the pulse that flips the spin vector by 90

degrees,

Tπ
2

=
π

2ΩR

. (3.18)

This pulse length is called π
2
-pulse and gives the largest observed transverse magnetization.
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Figure 3.2: Change of spin vector S̃y and S̃z versus the product of drive power and time
ΩRt.

Second, the pulse length that flips the spin vector 180 degrees is called π-pulse

Tπ =
π

ΩR

. (3.19)

The π-pulse flips the spin vector by 180 degrees. Small deviations from the ideal pulse length

has negligible effects in the following measurements. We use these pulses to prepare the spin

precession or to perform the spin echo measurement.

Measuring Homogeneity using Many Spins

The 90-degree flipped atom starts spin precession with its NMR frequency (Eq. 3.9).

The frequency is determined by its local magnetic field B. If the spins distribute uniformly

in a finite volume, their precession frequencies have a spread determined by the magnetic

field inhomogeneity over the volume. In our case, we use a spherical glass bulb with a 1 cm

diameter. We denote the variance of the magnetic field in the target volume as ∆B. The
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spread of the free precession frequency is then,

∆ωNMR

ωNMR

=
∆B

B
. (3.20)

Due to the frequency-time uncertainty principle, as we measure the spin precession fre-

quency with time, the spread in frequency domain ∆NMR appears in the decay time constant

of the total spin precession. As different spins precess with different angular frequencies,

they acquire different phases. The net spin direction cancels with each other because of

the decoherence of the phases. This is the so-called free-induction decay (FID) signal. By

taking the Fourier transform of the FID signal, we measure the inhomogeneity ∆ωNMR. The

decay constant of the FID signal due to the inhomogeneous field is called T ∗2 . Because of

the time-frequency uncertainty principle, T ∗2 is related to ∆ωNMR by

T ∗2 ≈
1

∆ωNMR

. (3.21)

Therefore, the inhomogeneity can be measured as

∆B = B
∆ωNMR

ωNMR

=
1

γT ∗2
(3.22)

So far, we have only discussed decoherence among the spins due to magnetic field inho-

mogeneity. However, even in an ideal homogeneous magnetic field, the free induction signal

has other decoherence effects, such as interactions among the spins. The physics behind this

is very complicated and beyond the target of this thesis (for example, see [72]). Instead, in

the practical application of NMR measurements, the decoherence time constant in an ideal

magnetic field is labeled as T2. This time constant T2 limits the resolution of frequency

resolution, so it needs to be long enough to make a useful measurement.
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Magnitude of Signal from Thermal Imbalance

The maximum size of the FID signal is given by the net magnetic moment of N spins. To

get a useful signal, the initial imbalance of the population between the spin states needs to

be large. For room temperature 3He NMR, optical pumping schemes are usually necessary to

establish a large enough signal [72]. This requires a complicated system and time-consuming

preparation. In our 4.2 K 3He NMR, we demonstrate that no external pumping scheme is

required because of the high density achieved by the low temperature.

In thermal equilibrium, each atom has spin-up or spin-down state. We assume µ > 0 for

simplicity, but the same discussion holds for µ < 0 as well. The distribution of population

between the two states (Fig. 3.1) is given by the Boltzmann distribution

Ndown

Nup

= exp

(
−2µB

kBT

)
, (3.23)

with the relation Nup +Ndown = N . The imbalance is then

|Ndown −Nup| = N
1− exp

(
− 2µB
kBT

)
1 + exp

(
− 2µB
kBT

) = N tanh

(
µB

kBT

)
, (3.24)

and the net magnetic moment M is

M = Nµ tanh

(
µB

kBT

)
. (3.25)

We will use this expression to estimate the magnitude of the signal in the next section.

The time constant to establish the thermal imbalance is called the longitudinal time

constant T1. For example, after an FID measurement, the spins point in different directions,

and the net magnetic moment is M = 0. The spins need to be realigned with the magnetic

field. For a completely randomized ensemble of spins, the time evolution of the net spin
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M(t) is given by

M(t) = M

[
1− exp

(
− t

T1

)]
. (3.26)

This T1 needs to be short enough to repeat the NMR measurement is a realistic time scale.

We measure the T1 for 3He using the saturation recovery method (Sec. 3.4).

Summary of Relaxation Time Constants

There are three important time constants that we have used to characterize the NMR

signal:

• The longitudinal time constant T1 is the time constant that establishes the initial spin

alignment along the z axis. If T1 is too long, it limits the repetition rate of the pulsed

NMR measurement.

• The transverse time constant T2 is the decoherence time of the horizontal net mag-

netism in an ideal homogeneous magnetic field. T2 limits the smallest homogeneity

that we can resolve.

• The time constant T ∗2 is the decoherence time in the actual inhomogeneous magnetic

field. T ∗2 probes the inhomogeneity in the target volume and is made as long as possible

by tuning the shim coils.

Typically there is a relation

T ∗2 < T2 < T1. (3.27)

Our target frequency broadening is about 1/(2πT ∗2 ) = 1 Hz, so T2 longer than 1 second is

desired. On the other hand, to repeat measurement in a realistic time scale, T1 needs to be

shorter than, for example, T1 < 1000 seconds.
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3.2 Design and Construction of the Probe

In a warm bore magnet, a water sample is typically used as an NMR sample to charac-

terize the homogeneity. However, in our 4.2 K cold bore magnet, a water sample cannot be

used. When water freezes, it not only increases its volume and could break the glass sample

bulb, but also loses its coherence time T2. Constructing a vacuum chamber and attaching

heaters to thermally isolate the water target from the 4.2 K liquid helium interior is not

ideal because it requires additional large hardware and introduces additional magnetism. A

natural approach is to use a gas sample instead. 3He gas is chosen since it is the only species

that exists as a gas at 4.2 Kelvin and still has a large nuclear magnetic moment. Our NMR

probe is designed to work at B = 5.3 T magnetic field, generating a 3He spin precession

frequency of ωNMR/2π = 172.3 MHz, but this frequency is widely tunable.

3.2.1 Estimate of NMR Signal Amplitude

We first estimate how much signal we can get from the 3He NMR probe and compare it

with the widely used water NMR probe. From Eq. 3.25, the NMR signal is approximated

as

M = Nµ tanh

(
µB

kBT

)
≈ Nµ

µB

kBT
, (3.28)

where N is the number of spins, T is the temperature of thermal equilibrium, µ is the

magnetic moment of each spin, and kB is the Boltzmann constant. The hyperbolic tangent

factor is the net fraction of the spins that are thermally aligned. As µB/(kBT ) is very small,

the approximation to the right in Eq. 3.28 suffices in all conditions considered here.

Since a room temperature water sample in a 1 cm diameter spherical volume (DSV) cell

produces a large enough NMR signal to be useful, we compare the size of the water moment

to that for 3He gas in the same sample volume in Table 3.1. The magnetic moments, µ, are

given in the unit of nuclear magneton µN . Since the 3He moment is 76% that of water, the

largest differences between the net moments come from the differing numbers of spins in the
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µ/µN T (K) µB/(kBT ) N M/µN
H2O 2.8 300 1.8× 10−5 3.5× 1022 1.8× 1018

3He only gas cell 2.1 4.2 9.8× 10−4 1.3× 1019 2.7× 1016

3He with reservoir 2.1 4.2 9.8× 10−4 9.1× 1020 1.9× 1018

Table 3.1: Comparison of NMR samples at B = 5.3 T.

cell N and polarization fractions, µB/(kBT ).

An atmosphere of 3He in the same sample cell volume, after cooled from 300 K to 4.2

K, results in ∼ 2700 times fewer spins than for the water sample (3He only gas cell in the

table). Even though the polarization factor increases by a factor of 54, the net magnetic

moment M (and hence the size of the NMR signal) is only 1.5% that of the water sample.

Increasing the room temperature pressure inside a sealed bulb to match the water signal

would require 60 atmospheres of pressure in the glass bulb at room temperature. Instead, we

connect the 1 cm diameter (=0.5 cm3) glass bulb through a capillary to a much larger (1200

cm3) reservoir volume that stays at room temperature (Fig. 3.3). Gas atoms move from

the reservoir into the bulb to keep approximately 1 atmosphere of pressure in the bulb as

it cools to 4.2 K. The last line in the table (3He with reservoir) shows that the number of

nuclear spins in the bulb is still 38 times smaller than for the water sample. However, as the

polarization fraction is 54 times larger, the net result (when the slightly different nuclear

moments are also factored in) is that the magnetic moment of the gas sample is 1.1 times

that of the water sample. The NMR signal size is thus 10% larger than a room temperature

water sample would produce in the same volume.

This high-density condition also suppresses the effect of motional narrowing [73]. At

4.2 K and 1 atmospheric pressure, the diffusion coefficient of 3He is as small as D ≈ 4 ×

10−7 m2/s (Sec. 3.4 and [74]). With this slow diffusion rate, we are in the limit D → 0,

and motional narrowing does not occur. This ensures that the measured T ∗2 reflects the

inhomogeneity over the volume directly.
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Figure 3.3: (left) Overview of an NMR probe and support. (right) Expanded view of the
NMR sample bulb and its pickup coil.

3.2.2 The Helium-3 Probe

Figure 3.3 shows the constructed gaseous 3He probe. It is designed to align the bulb

with the axis of the superconducting solenoid. The large room temperature reservoir is

connected to the NMR bulb via a capillary tube to ensure high density of 3He target. The

1 cm diameter glass bulb (Type I, Class A borosilicate glass, 529-A-12 Wilmad-LabGlass)

is produced for NMR use. The bulb is measured to have negligible magnetism at the level

discussed here. All other probe components are also measured to have minimal magnetism

and placed as far as possible from the bulb to avoid other magnetic perturbations. Special

care is taken with the alignment parts in the magnet mating section, which are fabricated

from only pure copper, aluminum, molybdenum, and titanium. The RF coil near the bulb

is made from a 99.9999 % pure thin copper foil and is loosely wound around the bulb. The

centering flange and centering pin ensure the radial alignment with our magnet. The 3He

line is mechanically fixed to the vertical translation stage at the hat and can be moved inside
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Figure 3.4: Circuit used to drive and detect the ωNMR/2π = 172.3 MHz NMR signal.

the magnet bore that is filled with liquid helium. We can rotate the NMR bulb, capillary

line, and the resonant circuit inside the magnet bore to check the residual magnetism of the

probe.

The circuit used to produce and detect the NMR signal from the 3He is a simple switching

circuit shown in Fig. 3.4. Two RF frequency generators referencing a GPS clock signal are

used. One drives the 3He spin at the resonant frequency, and the other is used to mix

the NMR signal down to 1.5 kHz. Then the signal is recorded by an Analog-to-Digital

converter (ADC). Both frequencies are monitored by a spectrum analyzer. A pulse-controlled

single pole, double throw (SPDT) RF switch is used to switch the driving side and the

detection side. Since the signal isolation of the SPDT switch is not enough, another RF

switch is used in the driving side to suppress direct feedthrough. Three RF amplifiers are

used to drive and detect the NMR frequency. A matching capacitor is mounted near the

NMR RF coil in the liquid helium to form a resonant circuit with a quality factor of about

100, which increases both driving and detection efficiency. The three applied pulse sequences

with the circuit are shown in Fig. 3.5. Details of them are given in the following sections.
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Figure 3.5: The drive pulse sequences for free induction decay (Sec. 3.3) and for both simple
and CPMG spin echos (Sec. 3.4).

3.3 Spin Precession Signal

In a thermal equilibrium at temperature T , the population in the lower of the two spin

states is slightly less, as described in Eq. 3.28. The 3He bulb has the net magnetic moment

given in the last line of Table 3.1. A nearly resonant drive pulse tips the resulting magnetic

moment vector by an angle of π/2, as is typical in pulsed NMR measurements [75]. The size

of the NMR signal depends upon the length of the drive pulse length and the intensity, as

well as on the net magnetic moment. Figure 3.6 shows how the initial signal size varies as a

function of the length of the drive pulse. Each peak in the graph corresponds to π/2, 3π/2,

5π/2, and so on. The decay constant is due to the inhomogeneity of the RF drive intensity.

By taking this scan, we can measure the π-pulse drive length Tπ.

The polarization, now tipped perpendicular to the magnetic field direction, rotates at

the NMR angular frequency ωNMR around the magnetic field direction. The changing flux

through the pickup coils induces a signal across the coil, which is detected. Figure 3.7 shows

how the free induction decay (FID) signal at 5.3 T, mixed down to about 1.5 kHz, decays

with a time constant T ∗2 = 52 ms, as field inhomogeneity in the sample causes the precessing

nuclear spins to get out of phase with each other. A Fourier transform of this oscillating

signal shows a sharp peak at the spin precession frequency (Fig. 3.8), with a signal-to-noise
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Figure 3.6: Dependence of the magnitude of the NMR precession signal upon the drive
pulse’s duration.

ratio of about 160. The width of this resonance divided by the drive frequency, ωNMR/2π =

172.3 MHz, gives the inhomogeneity of the field in the NMR bulb, 24 ppb. Figure 3.8 insert

shows the Fourier transform, which has wider “tails”. This is not surprising given that the

3He gas in the glass capillary, just above the glass cell, contributes to the NMR signal, and

the magnetic field in the capillary is different than in the center of the solenoid field. We

thus concentrate on the width of the central feature, shown in the black line in the insert.

3.3.1 Possible Magnetism of the Probe

In the end, a measurement that requires a high field homogeneity will need to have the

magnetic field shimmed to remove the unavoidable magnetism of the measurement appa-

ratus. The magnetism of the NMR probe itself is one example. At the level of relative

inhomogeneity we are interested in, O (10−9), the magnetism of the probe is not necessar-

ily negligible. To estimate the residual magnetism of the NMR probe, our NMR probe is

designed so that the NMR bulb and its support structure can be rotated inside the magnet
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Figure 3.9: The superconducting solenoid system with the 3He NMR probe inserted into the
4.2 K cold bore.

bore from the top of the dewar. Figure 3.9 shows our superconducting solenoid system with

the NMR probe inserted into the cold bore. The bore size is 5.1 inches (130 mm) in diam-

eter. It has 11 superconducting shim coils that can be used to optimize the homogeneity,

in addition to the main 5.3 T solenoid magnet. The center rod that supports the NMR

bulb is connected to the top. The NMR probe’s centering plate and pin mate with the

magnet structure as shown in the figure. We can rotate the NMR bulb, capillary line and

its supports, the electronics circuit board, and the RF coil. Note that the magnet mating

parts in Fig. 3.3 do not rotate, but they are made of pure copper and aluminum and much

further away from the bulb. The rotatable parts are made of a variety of materials, and

some of them are very close to the bulb. Thus the magnetism from the rotatable parts are

much higher than that from others.

After shimming the magnet, the probe is rotated to check the residual magnetism, as

shown in Fig. 3.10. The azimuthal angle of 0 degrees is defined as the initial position of
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Figure 3.10: Dependence of the NMR center frequency and linewidth on the azimuthal angle
of the probe. The initial orientation of the probe is defined to be 0 degrees.

the probe, and the initial center frequency is defined as 0 ppb shift on the left axis. Small

dependence on the azimuthal angle can be seen. At the worst angle measured, 225 degrees,

the linewidth increases to about 100 ppb, while the center frequency changes by about

50 ppb. Thus the effect of the residual magnetism is estimated to be 50 ppb.

Possible candidates for the residual magnetism in the probe have been investigated. The

absolute value of the magnetic field produced by a dipole magnetization vector µ at distance

r is |B| ∼ µ0/4π×µ/r3, where µ0 is the vacuum permeability. The value varies by a factor of

2 at most, depending on the direction of the magnetization vector. As can be seen, the effect

of residual magnetism is proportional to 1/r3. The closest part has the largest contribution

to the magnetic field inhomogeneity.

In our case, the closest part is the RF drive coil made of copper. The magnetism of

the 99.9999 % purity copper foil in the NMR probe is measured by a SQUID magnetome-

ter (MPMS 3, Quantum Design Inc. [76]) to be (5.0± 1.2) × 10−5 J/T cm3 at 5.3 T. Our

coil is made of a foil of cross-section 0.1 mm×3 mm. Even with this small volume, an in-

homogeneity would be seen. For example, if 1 cm of this foil is placed at 5 mm away from
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the NMR bulb, it will induce about 40 ppb inhomogeneity. This is as large as the rotational

dependence we have observed. Searches for high conductive metals with lower magnetism

to replace the current copper coil are underway. Measurements using a small fragment of

all other materials used (e.g., copper, tungsten, aluminum, circuit board, capacitor, SMA

connector, glass of the bulb) suggest that these give negligible contributions.

3.4 Longitudinal and Transverse Time Constants

There are three time constants that are important in NMR measurements, T1, T2, and T ∗2 .

T1 is the longitudinal relaxation time constant. T2 is the decoherence time that would arise

if the external magnetic field was perfectly homogeneous. It is the effect of the fluctuating

magnetic field of the spins upon each other and limits the linewidth of an NMR probe. T ∗2

is the decoherence time of the NMR signal because of the inhomogeneity of the magnetic

field. The best T ∗2 we have achieved is 52 ms, as shown in Fig. 3.7. Here we discuss the

measurement of T1 and T2. Note that the RF field extends approximately 1cm into the 1.2

mm diameter capillary. The diffusion time through this centimeter length tube is estimated

to be about 104 seconds [77], much longer than the T1 and T2 we measure.

3.4.1 Longitudinal Time Constant T1

The time constant T1 characterizes the time required for the initial thermal imbalance

between the two spin states to be re-established. Some measurements report T1 of 3He to

be as long as one day [78–81], and we were initially worried that this time constant was so

long that it might be impossible to make repetitive measurements.

We measure the T1 time of our 3He sample by the saturation recovery method [82]. First,

a very long pulse drive compared to the Tπ is applied several times to randomize the spins of

the 3He atoms. Then we wait for a certain length of time for the total magnetization of 3He

to naturally “recover” back along the magnetic field axis. Finally, A π/2 pulse is applied to
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(i)   default setup                      T

=411(51) s
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(ii)  6 dB weaker RF drive       T

=365(27) s
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(iii) 2.5 kHz detuned RF drive T
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1

(iv)  120 ppb homogeneity       T

Figure 3.11: Measurement of the longitudinal relaxation time T1 with saturation recov-
ery method. The dots are measured data, and the lines are fittings by Eq. 3.26. Several
parameters are varied to check the consistency.

measure the magnitude of the NMR signal after the recovery time. The time evolution of

the magnetization M(t) follows Eq. 3.26.

The T1 measurements with this method are shown in Fig. 3.11. We also varied some

parameters of the setup as systematic checks. In Fig. 3.11, (i) is the default setup as

in Figs. 3.6, 3.7, and 3.8. As for the other measurements, (ii) a 6 dB RF attenuator is

put in after the 26 dB amplifier on the drive side, (iii) the RF drive frequency is 2.5 kHz

detuned from the resonant frequency, and (iv) the z shim coil is intentionally ramped to

make the homogeneity worse. All the measurements are consistent within their error bars.

By taking the weighted average and assigning the largest discrepancy as the systematic error,

the longitudinal relaxation time is calculated to be T1 = 364 (31) s. The time constants

from magnetic dipole interaction and diffusion are much longer than this measured value

[73,78,80,81,83,84], and thus in our system, the wall relaxation effect is dominant. Similar

results of T1 measurements have been reported in [79,85,86].

Even though T1 time is long, it does not limit the application of our NMR probe. Due to
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the high signal-to-noise ratio achieved in our setup, as shown in Fig. 3.8, measurements with

a recovery time of 20 seconds still give a signal-to-noise ratio of about 10. Usually, we spend

about this much time changing the current on shim coils to avoid the magnet quenching.

A signal-to-noise ratio of 10 is good enough to see the effect of changing the currents on

the shim coils. When we monitor the drift of the superconducting magnet, we usually take

the NMR signal every 60 seconds. The drift rate of the magnet is much slower than the

longitudinal time constant T1.

3.4.2 Transverse Time Constant T2

T2 is the relaxation time constant of the transverse magnetization even when the external

magnetic field is perfectly homogeneous. This limits the coherence time of the NMR decay

and thus sensitivity to the inhomogeneity of the magnetic field. Note that the 3He atoms

are moving at an average speed of

vave =

√
8kBT

πm
= 172 m/s, (3.29)

and the relaxation timescale of 3He is on the order of 1 second. Therefore, even with the

small diffusion coefficient, the effect is not negligible here.

A spin echo signal is widely used to measure T2 [75]. Figure 3.12 shows the spin echo

measurements performed with the probe. A π/2 pulse is applied at t = 0 second and a π

pulse is applied at t = 0.05 second. A small FID signal after the π pulse arises from the

imperfection of the π pulse. A clear spin echo signal is observed.

Figure 3.13 shows the spin echo measurements with different intervals. In the graphs,

π/2 pulse and π pulses are applied at t = −τ and t = 0 respectively. In the top graph, the

interval between the π/2 pulse and the π pulse, τ , is varied among 16 different values. Clear

echos corresponding to each τ are observed. The bottom graph shows the amplitudes of the

echos as a function of τ . As mentioned above, the effect of diffusion has to be considered
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Figure 3.12: Spin echo signal observed with the 3He NMR probe. A π/2 pulse is applied at
t = 0 s and a π-pulse is applied at t = 0.05 s. A clear spin echo signal is observed after the
π-pulse.

to explain the observed decay of the echo signals. Since the data was taken after shimming

the magnet, we assume the largest source of inhomogeneity is the quadratic term of the

magnetic field gradient. The amplitude of the first echo at t = τ as a function of the interval

is given by [87,88]

A(τ) =

√
π

2βτ 1.5
Erf
(
βτ 1.5

)
exp

(
−2τ

T2

)
(3.30)

β =

√
8

3
Dγ2b2L2, (3.31)

where b represents quadratic magnetic field gradient Bz(r) = B0 + bz2, D is the diffusion

coefficient, γ is the gyromagnetic ratio, L is half of the typical size of the target volume, and

T2 is the intrinsic transverse decay constant. Figure 3.14 shows the echo signal is fitted by

Eq. 3.30 assuming βτ 2 � 2/T2. The best fit result gives β = 0.0023 (ms)−1.5.

The ±2σ linewidth during these measurements is about 230 ppb. Based on the discussion

of residual magnetism in Sec. 3.3, we conservatively assume the uncertainty of this value to
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Figure 3.13: (top) Spin echo signals observed with the 3He NMR probe. The horizontal axis
is the time after applying π pulse. Measurements with 16 different echo times τ are shown.
(bottom) Amplitudes of the echo are plotted as a function of echo time τ . Solid line is a
fitting by Eq. 3.30 without the T2 term.
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Figure 3.14: CPMG spin echo decay of 3He measured by the probe with the echo time
τ = 5 ms.

be ±50 ppb. The typical straight-line length of the bulb is 2L = 3
√

4π/3× (0.5cm)3 = 0.8

cm. Thus we estimate b = (7.6± 1.7)×10−2 T/m2. By using the gyromagnetic ratio of 3He,

γ = 2π × −32.434 MHz/T, the diffusion coefficient is calculated to be D = (5.9± 2.6) ×

10−7 m2/s. This agrees with a previous measurement [74] at a lower magnetic field that

found D = 3.6 × 10−7 m2/s. This small diffusion coefficient ensures that the motional

narrowing effect is small in the T ∗2 measurements [73].

To minimize the motional diffusion effects and measure T2 accurately, we next employ

the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence [89, 90]. As shown in Fig. 3.4, in a

CPMG echo measurement, multiple π pulses are applied with 2τ intervals, with the first π

pulse applied at τ after a π/2 pulse. The subscript x and y denote relative phases of the

drive pulses. The interval between CPMG pulses is set to be τ = τ0 = 5 ms. With this echo

time, the effect of diffusion is negligible as long as T2 � 1/β2τ 2
0 = 7500 s. Figure 3.14 shows

the CPMG spin echo signal. The initial rapid decay is a combined effect of diffusion and the

quadratic magnetic field [87,88]. The exponential decay at later times gives the time constant

T2. An exponential fitting in t > 1 s gives a transverse relaxation time constant T2 = 2.6 s.
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A similar value has been obtained by a room temperature NMR measurement [91].

We also performed this measurement with different π pulse lengths. The π pulse length

is varied by ±3%, and the measured T2 values fluctuates between 2.56 s and 2.81 s. We take

this spread as a systematic error and estimate T2 = 2.7(2) s. The corresponding relative

inhomogeneity is (1/T2)/ωNMR = 0.34(3) ppb. This is much smaller than the linewidth we

have achieved, so does not limit the performance of our probe.

3.5 Stability of a Cold Bore Solenoid Magnet

For the magnetic moment measurement, the stability of the magnet is also an important

parameter. We characterize the stability of the magnet using the probe. The NMR probe

apparatus is inserted so that the bulb containing the 3He gas is at the location that a single

electron would be suspended. The solenoid magnet has a register at the top that centers

the NMR probe and a hole at the bottom that centers the NMR probe.

The magnetic moment is measured from the spin and cyclotron frequencies. These

frequencies are proportional to the magnetic field, and this field dependence cancels out to

the lowest order. However, field variations are troublesome because the two frequencies are

measured at slightly different times, separated by about 1 minute. For example, if we want

to improve the limit by a factor of 10, the field needs to be stable or corrected for drifts

better than 1.8 ppb/h.

Once a narrow NMR linewidth is determined, we measure this frequency repetitively

to monitor the field stability. We are interested in the stability of times over which we

make individual frequency measurements and the long-term stability over the time it takes

to make the number of frequency measurements that must be averaged to get the desired

uncertainty. The uncertainty in the NMR spin precession frequency in a single measurement

is about 0.1 Hz, which corresponds to 0.5 ppb. By averaging the measurements over a long

period, we can reduce the uncertainty of the drift rate.
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Figure 3.15: Measurement of the 3He center frequency drift. 3He NMR signal is taken every
minute and fitted by a Lorentzian to acquire center frequency. Long term slow drift is slow
enough for the g-factor measurement. The NMR signal identifies the 6.9 min oscillation,
later also found in the single electron’s axial frequency, to be from the temperature regulation
heaters.

Figure 3.15 shows a sequence of measurements performed. The average pressure in the

helium space and the nitrogen space of the solenoid system were well regulated during this

measurement. The 3He NMR signal is taken every minute and is fitted by a Lorentzian to get

the center frequency. The center frequency is monitored for 12 hours, which shows a drift of

about −0.20 ppb/h. The long-term drift rate is good enough to perform magnetic moments

measurements. However, it also revealed a surprising periodic and non-negligible oscillation.

Later, we discovered the same oscillation in the trapped electron’s axial frequency. It turned

out that an on-off heater at the top of the dewar was generating this periodic oscillation.

Two observations from entirely different systems guided us to identify the source of the

fluctuation. As demonstrated in this example, the 3He probe works as an independent and

fast way to diagnose our complicated system.
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Figure 3.16: Design of the cryogenic XY stage. The top plate has three threaded holes. One
is for pivot, and the other two are for X and Y adjustment.

3.6 Future Improvements

The accuracy of the probe is limited by how well the probe is radially aligned with

the magnet. In the current probe, the vertical alignment can be changed in-situ inside the

magnet. However, the radial alignment needs to be done at room temperature and cannot be

changed in liquid helium. A new cryogenic XY stage is designed and implemented (Fig. 3.16).

The top plate has three threaded holes. One is for a pivot, and the others are to adjust the

XY plane. Turning the threaded rods pushes the bottom copper plate and tilts it. The bulb

is connected at the bottom, and the capillary line is fixed to the bottom plate. Therefore,

the position of the bulb can be adjusted in cryogenic environment by rotating the threaded

rods. The threaded rod is connected all the way up to the room temperature feedthrough

at the top. Although the two degree of freedom X and Y are not completely independent in

this scheme, this adjustment does not take long time. We can always find the optimal point

after several iterations.

Additionally, the inhomogeneity is limited by the magnetism of the RF coil. We have

been using 99.999% purity copper. No conductive metal with lower magnetism has been
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identified. A new coil with smaller material and larger diameter is also designed. The result

will be presented in the future.
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Chapter 4

Measurement of the Electron

Magnetic Moment

A new measurement of the electron’s magnetic moment is performed. Improved stabil-

ity due to the new dedicated dilution refrigerator and superconducting magnet (Chap. 2)

narrows the anomaly transition by a factor of 4. Careful shimming and optimization of the

magnet (Chap. 3) allows measurement of g-factor at various fields, from 3.1 T to 5.3 T.

Systematic errors are studied using a cloud of trapped electrons in-situ. The measurement

principle is described in Sec. 4.1. The data-taking process, the analysis, and fitting meth-

ods are summarized in Sec. 4.2 The most critical systematic correction—microwave cavity

correction—is studied in detail in Sec. 4.3. Other systematic effects are discussed in Sec. 4.4.

Finally, the measured electron’s magnetic moment is reported in Sec. 4.5.

4.1 Principle of Measurement

In principle, the g-factor can be determined by measuring the spin frequency and the

cyclotron frequency of a trapped electron. However, small corrections from the electric

field potential, imperfections of the trap, and microwave resonances need to be included.

Shifts from the magnetic field misalignment, inhomogeneity, trap potential, and microwave
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resonances are evaluated and summarized in this section.

4.1.1 Brown-Gabrielse Invariance Theorem

In an ideal Penning trap, a magnetic field B = Bẑ and a trap potential V (x, y, z) =

−φ0

(
z2 − x2+y2

2

)
is applied to confine one electron. While the cyclotron motion in the

trap shifts from the value in free space due to the applied electrostatic potential, the spin

frequency does not (Chap. 2). The trap potential can have elliptic distortion V (x, y, z) =

−εφ0

(
x2−y2

2

)
and misalignment angle θ with respect to the magnetic field. This imperfection

is small, ε� 1 and θ � 1, but shifts the measured frequencies ν̄c, ν̄z, and ν̄m, from the ideal

frequencies ν ′c, νz, and νm. L. S. Brown and G. Gabrielse derived an invariance theorem that

relates the measured frequencies to free space cyclotron frequency νc [55]

νc = ν̄c

{
1 +

1

2

(
ν̄z
ν̄c

)2

+
9

16

(
ν̄z
ν̄c

)4
[(

ν̄m
ν̃m

)2

− 1

]}
, (4.1)

where ν̃m = ν̄c/(2ν̄
2
z ) is the calculated magnetron frequency from the measured cyclotron

and the axial frequency. It is related to the measured magnetron frequency ν̄m by

ν̃m = ν̄m

(
1 +

1

2
ε2 − 9

4
θ2

)
. (4.2)

In general, the misalignment θ is larger than the elliptic distortion ε, and ν̃m tends to be

smaller than ν̄m. By comparing ν̃m and ν̄m, we observe about θ = 1◦ of misalignment. The

third term in Eq. 4.1 is then about 10−15. Therefore, the approximation

νc = ν̄c +
ν̄2
z

2ν̄c
(4.3)

suffices for all conditions in this thesis.

The cyclotron frequency also shifts due to the relativistic increase of the electron’s ef-

fective mass. At the precision level of parts-per-trillion, even a mass increase at meV scale
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Figure 4.1: Quantum spin and cyclotron states of the trapped electron and the cy-
clotron (blue) and anomaly (red) transitions that are measured for g-factor measurement.

needs to be properly handled. The shift of cyclotron frequency (from nc to nc+1) is derived

in [54],

∆νc = − δr
2π

(nc + 1 +ms) , (4.4)

where

δr
2π

=
hν2

c

mc2
≈ 180 Hz×

(
B

5.3 T

)2

. (4.5)

We measure the cyclotron transition |nc = 0,ms = 1/2〉 → |nc = 1,ms = 1/2〉 and

the anomaly transition |nc = 0,ms = 1/2〉 → |nc = 1,ms = −1/2〉 to determine the g-

factor. Figure 4.1 summarizes the quantum states and transitions used to determine the

electron’s g-factor. f̄c is defined as relativistically shifted cyclotron frequency. The g-factor

is determined from the measured frequency as

g

2
= 1 +

ν̄a − ν̄2
z

2f̄c

f̄c + 3
2
δr
2π

+ ν̄2
z

2f̄c

+ ∆
g

2
|cav, (4.6)

where ∆g
2
|cav is the shift of cyclotron frequency due to microwave cavity resonances and
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is discussed in details in Sec. 4.3. Importantly, all quantities f̄c, ν̄a, and ν̄z are measured,

and correction due to cavity shift ∆g
2
|cav is also applied based on the measured microwave

resonances.

4.1.2 Line Shape

The line shape theory derived by L. S. Brown [92, 93] has been widely used in Penning

trap experiments. We have derived an updated line shape that can also apply to the quantum

regime [94, 95]. Both line shapes yield a consistent result when the axial motion is in the

classical regime.

The ideal line shape is derived from the magnetic bottle and the axial oscillation ampli-

tude. Since the electron is trapped in the magnetic bottle gradient B2z
2, the cyclotron or

anomaly frequency, collectively ω0, depends on z as

ω(z) = ω0

(
1 +

B2

B
z2

)
, (4.7)

where ω0 is its oscillation frequency at z = 0. The electron’s average axial amplitude 〈z2〉 is

given by the average of the Boltzmann distribution.

〈z2〉 =
kBTz
mω2

z

(4.8)

Therefore, the scale of broadening is given by

∆ω = ω0
B2

B
〈z2〉 = ω0

B2

B

kBTz
mω2

z

=


eB2

m
kBTz
mω2

z
(cyclotron)

g−2
2

eB2

m
kBTz
mω2

z
(anomaly)

. (4.9)

Here, ∆ω is called the bottle broadening parameter. The quantum description gives the

same result from another perspective. The quadratic magnetic bottle adds a term in the
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Hamiltonian

H′ = ~δc
(
â†câc + 1

2

)
(â†zâz + 1

2
), (4.10)

where δc represents the shift of axial frequency by one quantum cyclotron, as well as the

shift of cyclotron frequency for an increase of axial quantum number. The average axial

quantum number n̄z at temperature Tz is

n̄z =

[
exp

(
~ωz
kBTz

)
− 1

]−1

≈ kBTz
~ωz

. (4.11)

The last approximation corresponds to the classical limit (Tz � ~ωz/kB). In this limit, the

bottle parameter for cyclotron transition is expressed by

∆ωc = n̄zδc = ωc
B2

B

kBTz
mω2

z

, (4.12)

The same discussion holds for the anomaly transition. Since our axial quantum number is

about n̄z = 100, we discuss the classical line shape below.

Line Shape in Classical Regime

The line shape in the classical regime is derived in [92, 93]. The line shape for general

damping rate γz and bottle broadening parameter ∆ω is given by

χ(ω) =
4

π
Re

[
γ′γz

(γ′ + γz)
2

∞∑
n=0

(γ′ − γz)2n(γ′ + γz)
−2n

(n+ 1
2
)γ′ + 1

2
(γc − γz)− i(ω − ω0)

]
(4.13)

where

γ′ =
√
γ2
z + 4iγz∆ω, (4.14)

Figure 4.2 shows the line shapes for several γz/∆ω’s.

Two limits are instructive to discuss, (I) the loose coupling limit γz � ∆ω, and (II) the
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Figure 4.2: Line shapes in the classical limit for four different γz/∆ω’s.

tight coupling limit γz � ∆ω.

χ(ω) =


θ(ω − ω0) 1

∆ω
exp

(
−ω−ω0

∆ω

)
, (γz � ∆ω)

1
π

∆ω2/γz
(ω−ω0−∆ω)2+(∆ω2/γz)2 , (γz � ∆ω),

(4.15)

where θ(x) is the Heaviside step function. The cyclotron transition is described by (I), and

the anomaly transition by (II).

(I) The loose coupling limit (γz � ∆ω)

In this limit, the rate of change of axial amplitude γz is slower than the transition’s

frequency scale ∆ω. The axial oscillation amplitude is constant during a transition.

Therefore, the transition picks up the instantaneous magnetic field when the transition

occurs. The instantaneous field is determined by the product of the bottle gradient
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B2 and the axial amplitude, following the Boltzmann distribution

P (z̄2) ∝ exp

(
−mω

2
z z̄

2

kBTz

)
. (4.16)

In this regime, the line shape has a sharp rise-up edge and exponential decay [Fig. 4.2 (a)].

For our experimental parameters ∆ωc/(2π) = 200 Hz and γz/(2π) = 5 Hz, the cy-

clotron transition is in this regime. We can use the exponential slope of the cyclotron

transition’s line shape to probe the axial temperature Tz.

(II) The tight coupling limit (γz � ∆ω)

In this limit, the rate of axial amplitude fluctuation γz is much faster than the time

scale of transition ∆ω. As a result, the transition picks up the average of the magnetic

field during its transition time scale 1/∆ω. The peak frequency of transition is given

by its average amplitude 〈z2〉. The magnetic field fluctuation during the transition is

averaged, so the linewidth is narrowed to (∆ω)2/γz.

The anomaly transition is in this regime, ∆ωa/(2π) = 0.22 Hz and γz/(2π) = 5 Hz.

Therefore, the anomaly transition has a narrower linewidth, as shown in Fig. 4.2 (d).

Line Shape with Driven Axial Motion

In the actual measurement, an RF drive is applied at the bottom endcap electrode to

excite the electron to an amplitude z(t) = za cos(ωat) when driving the anomaly transition.

The broadening parameter for the axially driven electron is defined as

∆pω = ω0
B2

B

z2
a

2
(4.17)

The line shape of the axially driven electron is complicated and given in [92]. However, the

shapes in two limiting coupling cases, loose coupling limit (γz � ∆ω) and tight coupling
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Figure 4.3: Line shape of axially driven electron for different drive broadening parameters
∆pω/∆ω in loose coupling limit (left) and tight coupling limit (right).

limit (γz � ∆ω), are instructive.

χ(ω) =


θ(ω − ω0) 1

∆ω
exp

(
−ω−ω0+∆pω

∆ω

)
I0

(
2
√

(ω−ω0)∆pω

∆ω

)
, (γz � ∆ω)

1
π

∆ω′2/γz
(ω−ω′0)2+(∆ω′2/γz)2 , (γz � ∆ω),

(4.18)

where I0(z) is the modified Bessel function of zero order with ω′0 = ω0 + ∆ω + ∆pω and

∆ω′ =
√

∆ω2 + 4∆pω∆ω.

Figure 4.3 shows the line shape for the axially driven electron. We typically drive the

amplitude to za = 150 nm to achieve 40% of transition probability. With the broadening

parameter for 150 nm driven oscillation only being ∆pω/∆ω = 1.5 × 10−4 and ∆pω/ω0 =

5.6 × 10−13, this shift is much smaller than the current experimental precision. Therefore,

we do not include the effect of driven broadening ∆pω.
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4.1.3 Drive-Time Broadening

Because of our narrow anomaly linewidth, the finite drive time is also important. For a

sinusoidal drive with its drive length td, the line shape needs to be convoluted with

χ(ω) = td

[
sin
(
ωtd
2

)
ωtd
2

]2

. (4.19)

Eq. 4.19 is the well-known sinc function and its FWHM is given by

∆ωdrive time
FWHM

2π
=

0.886

td
. (4.20)

The FWHM of the anomaly line in this thesis is partly limited by the cyclotron lifetime.

For example, a cyclotron lifetime of γ−1
c ≈ 5 s corresponds to FWHM of γc/(2π) = 0.032 Hz.

Since the statistical sensitivity is limited by the broader cyclotron linewidth, we chose a drive

time of td = 30 s, which corresponds to 0.03 Hz of drive-time broadening. With this drive

time, the anomaly linewidth is still significantly narrower than the cyclotron line, and the

measurement time is still reasonably short.

4.1.4 Other Smaller Broadenings from Anharmonicity and Mag-

netic Bottle

The anharmonicity C4 and C6, and B2 also generate coupling between the oscillation

frequencies. The results are summarized in [96–98], and we only cite its result here. The
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shifts are summarized as
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′
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EcEm
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, (4.21)

where

MB2 =
1

mω2
z

B2

B
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MC4 =
1

mω2
z
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MC6 =
1

m2ω4
z

C6

(1 + C2)d4
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,(4.24)

with η = ωz/ωc. Our typical parameters are B = 5.3 T, B2 = 300 T/m2, C4 = 2 × 10−4,

C6 = −0.1, and η = ωz/ωc = 7 × 10−4, together with Ec = ~ω′c/2 = 5 × 10−23 J, Ez =

kBTz = 7 × 10−24 J, and Em = kBTz × (ωm/ωz) = 2 × 10−27 J. One can numerically prove

that the broadening of cyclotron and spin frequency is dominated by the bottle term B2
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coupled with the energy of the axial motion Ez.

In addition, we experimentally observed additional broadening of the cyclotron transi-

tion line. The source of the broadening is still unknown. We fit the observed lineshape

with various noise models and extract the center frequency to determine the g-factor. The

discrepancy among different models is defined as line shape systematic uncertainty.

4.1.5 Measurement Cycle

The cyclotron and anomaly frequencies are the most important measured quantities. We

measure them alternately to cancel the effect of long-term drift. The measurement cycle

is automated and hardware-triggered. The measurement sequence can be categorized into

three phases: cyclotron trial, anomaly trial, and spin initialization.

Cyclotron Trial

1. Turn off the self-excited oscillator and wait for 1 s.

2. Turn on the magnetron cooling drive for 1 s.

3. Turn off the magnetron drive and wait for 2 s.

4. Apply a cyclotron drive and a detuned anomaly drive for 5 s.

5. Turn on the self-excited oscillator and wait for 0.5 s to build up a steady axial oscilla-

tion.

6. Trigger the computer data-acquisition and measure the axial frequency.

Anomaly Trial

1. Turn off the self-excited oscillator and wait for 1 s.

2. Turn on the magnetron cooling drive for 1 s.

3. Turn off the magnetron drive and wait for 2 s.
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4. Apply an anomaly drive and a detuned cyclotron drive for 30 s.

5. Wait for 60 s for the cyclotron state to decay to nc = 0.

6. Turn on the self-excited oscillator and wait for 0.5 s to build up a steady axial oscilla-

tion.

7. Trigger the computer data-acquisition and measure the axial frequency.

When either cyclotron or anomaly drive is applied, the other drive is also applied with

the same amplitude but far detuned from the resonance. Applying the detuned drive with

the same power cancels any potential shift of the two frequencies due to the driven amplitude

and heating from the drives.

Once the anomaly transition occurs, the quantum state changes as |nc = 0,ms = 1/2〉 →

|nc = 1,ms = −1/2〉, and this state decays to |nc = 0,ms = −1/2〉. In order to repeat the

measurement, a spin initialization drive is applied to drive the spin down cyclotron ground

state back to the original state |nc = 0,ms = −1/2〉 → |nc = 0,ms = 1/2〉. In the spin

initialization, both drives are applied with resonant frequencies and with a much stronger

power.

Spin Initialization

1. Turn off the self-excited oscillator and wait for 1 s.

2. Turn on the magnetron cooling drive for 1 s.

3. Turn off the magnetron drive and wait for 2 s.

4. Apply a 10 dB stronger resonant anomaly drive and a 10 dB stronger resonant cyclotron

drive for 10 s.

5. Wait for 60 s for the cyclotron state to decay to nc = 0.

6. Turn on the self-excited oscillator and wait for 0.5 s to build up steady state axial

oscillation.
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Figure 4.4: Cycle of the g-factor measurement. There are three main excitations, cyclotron
trial, anomaly trial, and spin initialization. Cyclotron trials are repeated N times, followed
by the anomaly trial. If we see an anomaly transition, the spin initialization excitation is
applied until the spin is brought back to |nc = 0, ↑〉. The sets of trials are repeated with
different drive frequencies.

7. Trigger the computer data-acquisition and measure the axial frequency.

This spin initialization drive is repeated until we find that the spin is flipped back to the

initial |nc = 0,ms = 1/2〉 state.

Because the cyclotron transition has a much wider linewidth, the cyclotron trial is re-

peated N times more often than the anomaly transition trial. We chose N = 8 for most of

the runs but also checked that the result does not depend on N . Figure 4.4 illustrates the

described measurement cycle. This cycle is repeated automatically; no manual adjustment

is needed during the sequence.
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4.1.6 Blinded Measurement

The measurement is performed “blindly”. The actual value of the measured g-factor

is not known during the data acquisition, analysis, and study of systematic effects. The

blinding is done by adding a constant offset to the anomaly drive frequency,

νa;drive[actual] = νa;drive[set in computer] +X. (4.25)

What the experimenters know is the frequency set in the computer, but the exact anomaly

drive frequency from the RF generator had been unknown until after analysis and a com-

prehensive study of systematic effects. The random offset X is generated by software in the

range

− 1 Hz < X < 1 Hz, (4.26)

which corresponds to ±6 ppt in g-factor at 150 GHz. The range is chosen to be large enough

to cover the previous error (0.28 ppt) and the discrepancy between the SM (0.5 ppt), but

small enough so that the anomaly transition can be found within a few hours of sweep-

ing. The offset X was generated on 8th June 2021. After all the systematic studies were

completed, the number was unblinded on 17th August 2022, and it was X = −0.100 Hz.

4.2 Spectroscopy

With the constructed and optimized apparatus, a new measurement of the g-factor is

performed. The cyclotron frequency ν̄c and the anomaly frequency ν̄a are measured using

a single trapped electron. Data sets, drift correction, fitting, and analysis methods are

summarized in this section.
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Figure 4.5: Change of axial frequency due to cyclotron and anomaly transitions. A cyclotron
or anomaly drive is applied between the points. Observed cyclotron (anomaly) transitions
are marked by blue (red) arrows. The measured axial frequencies after spin initialization
drives are marked with purple arrows, with long arrows indicating successful excitation back
to the spin-up state.

4.2.1 Data Acquisition

A series of measurements is conducted. Table 4.1 summarizes the data sets used for the

g-factor determination. The measurement is done by repeating the sequence described in

Sec. 4.1. What we actually measure is the change of axial frequency after applying cyclotron,

anomaly, or spin initialization drives. Whether the corresponding transition occurred or not

is judged by the shift of axial frequency.

Figure 4.5 shows the typical measured axial frequency during the measurement cycle.

A cyclotron or anomaly drive is applied between the points. When the anomaly transition

occurs, the spin initialization drive is repeated until the spin is moved back to the initial

state |nc = 0, ms = 1/2〉. The corresponding cyclotron transition, anomaly transition, and

spin initialization process are marked by colored arrows.

By repeating this process, we get a set of [time; drive frequency ; transition occurred or

not ] for both anomaly and cyclotron transitions. From this data, we construct a graph of
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run # time
magnetic cyclotron
field (T) frequency (GHz)

1-1 2021-12-19-14:45 – 2021-12-20-13:46
5.373 150.4111-2 2021-12-22-12:57 – 2021-12-23-10:37

1-3 2021-12-26-13:33 – 2021-12-27-15:31
2-1 2021-12-29-17:43 – 2021-12-30-17:37

5.300 148.361
2-2 2021-12-31-15:15 – 2022-01-01-23:18
2-3 2022-01-02-16:46 – 2022-01-04-11:43
2-4 2022-01-05-12:46 – 2022-01-06-10:49
3-1 2022-01-31-21:47 – 2022-02-02-12:01

5.269 147.498
3-2 2022-02-03-11:02 – 2022-02-04-13:58
3-3 2022-02-04-16:13 – 2022-02-05-19:17
3-4 2022-02-06-15:44 – 2022-02-07-16:30
3-5 2022-02-07-17:56 – 2022-02-08-21:15
4-1 2022-02-11-18:13 – 2022-02-14-00:14

5.326 149.0914-2 2022-02-15-19:47 – 2022-02-17-17:15
4-3 2022-02-19-11:38 – 2022-02-21-09:50
5-1 2022-04-07-19:37 – 2022-04-08-19:53

4.071 113.9565-1 2022-04-09-12:24 – 2022-04-10-21:49
5-1 2022-04-10-21:03 – 2022-04-11-14:04
6-1 2022-04-12-17:58 – 2022-04-13-15:10

4.245 118.8226-1 2022-04-13-16:13 – 2022-04-14-14:32
6-1 2022-04-14-16:58 – 2022-04-15-13:38
7-1 2022-04-17-19:26 – 2022-04-18-22:13

4.078 114.141
7-2 2022-04-18-22:16 – 2022-04-20-10:29
8-1 2022-06-26-11:38 – 2022-06-27-14:28

4.969 139.097
8-2 2022-06-27-15:02 – 2022-06-28-13:48
8-3 2022-06-28-14:59 – 2022-06-29-10:19
8-4 2022-06-29-11:33 – 2022-06-30-13:38
9-1 2022-07-01-16:05 – 2022-07-02-10:21

5.001 139.9899-2 2022-07-02-10:27 – 2022-07-03-11:37
9-3 2022-07-03-12:08 – 2022-07-04-11:33
10-1 2022-07-05-09:07 – 2022-07-06-11:10

4.537 127.00710-2 2022-07-06-12:56 – 2022-07-07-11:57
10-3 2022-07-07-17:10 – 2022-07-08-14:04
11-1 2022-07-11-10:59 – 2022-07-12-10:48

3.108 87.010
11-2 2022-07-13-09:45 – 2022-07-14-11:27
11-3 2022-07-14-11:31 – 2022-07-15-13:02
11-4 2022-07-15-13:07 – 2022-07-16-18:38

Table 4.1: Data sets used for the g-factor determination.
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transition probability versus drive frequency for both cyclotron and anomaly transitions and

extract the g-factor.

4.2.2 Extracting Cyclotron and Anomaly Frequencies

The cyclotron and anomaly frequencies are extracted from the recorded data. To extract

the resonant frequencies, the slow magnetic field drift must be first corrected for, and the

obtained transition probability is fit using the maximum likelihood method.

Drift Correction

The drift of the magnetic field is as small as O(10−10)/hour (Chap. 3), but is not negli-

gible at our precision. The drift rate is measured and corrected in-situ using the recorded

transition frequency. We first make a graph of (drive frequency that transition occurred) ver-

sus (time) for both transitions (Fig. 4.6). The drift rate of the magnetic field is now visible

by the two different transitions. To correct the drift effect, we fit the cyclotron transition

by a second-order polynomial function

δB

B
= p0 + p1 × t+ p2 × t2 (4.27)

and extract the drift rate p1 and p2. The cyclotron transition is used because it has more

data points. The drift is then corrected using the best-fit parameters. Whether the result

changes if we use other fitting functions is studied in Sec. 4.4.

Obtained Line Shapes and Fitting

After correcting the drift of the magnetic field, we integrate the data over time and

construct a histogram. Each bin in the histogram contains the probability of excitation at

its drive frequency. The width of the bin is much smaller than the linewidth, and consistency

by using different bin sizes is checked. The histogram illustrates the transition probability
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Figure 4.6: Correction of magnetic field drift. (top) Distribution of drive frequency that
transition occurred versus time for cyclotron (blue) and anomaly (red) transitions. Second-
order polynomial fitting is also shown to indicate the drift rate. (bottom) Distribution after
correcting the drift rate by second-order polynomial fitting. Data with an especially bad
drift rate is shown.
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at each frequency.

To extract the frequencies, we use the maximum-likelihood method. Ideally, there are

five parameters that we need to determine from the observed transition probabilities: cy-

clotron and anomaly frequencies ν̄c and ν̄a, the axial temperature Tz, and the maximum

transition probabilities Pmax
c and Pmax

a . However, because of the asymmetric line shape, the

determination of cyclotron frequency ν̄c is strongly correlated with its linewidth, so with

the axial temperature Tz. In addition, as we explain later, we observed a broadening in the

cyclotron line. The cyclotron frequency ν̄c also has a large correlation with the width of the

broadening.

Therefore, instead of fitting with these five parameters, we extract the mean of the

cyclotron ν̄∗c = ν̄c + ∆νc and the mean of the anomaly frequency ν̄∗a = ν̄a + ∆νa. The

cyclotron line is fitted with the classical line shape, convoluted with a broadening σc. The

broadening model is discussed later. The anomaly line is fitted by a Lorentzian with width

∆ν∗a , which includes cyclotron lifetime broadening γc and the transit time broadening. The

effect of using ν̄∗c and ν̄∗a instead of ν̄c and ν̄a is very small. This can be proved by taking

the partial derivative of Eq. 4.6

δ
(g

2

)
=

∂g

∂ν̄a
∆νa +

∂g

∂ν̄c
∆νc ≈ O(10−20). (4.28)

Therefore, the correction by using ν̄∗c and ν̄∗a instead of ν̄c and ν̄a is negligible.

Now the total number of fit parameters are seven: Four for the cyclotron transition ν̄∗c ,

∆νc, Pc|max, and σc, and three for the anomaly transition ν̄∗a ∆ν∗a , and Pa|max. After applying

the drift correction, we obtain a set of transition occurred or not versus drive frequency for

both cyclotron and anomaly transitions. Notice that the time information is eliminated

because it has been corrected in the drift correction. For a given i’th excitation trial at

νi (either cyclotron or anomaly) and particular fit parameters ν̄∗c , ν̄∗a , ∆νc, σc, ∆ν∗a , Pc|max,
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Pa|max, the probability of obtaining a transition at the i’th trial is calculated as

pi = P (ν̄∗c , ν̄
∗
a ,∆νc, σc,∆ν

∗
a , Pc|max, Pa|max). (4.29)

The probability of not obtaining a transition is, of course, given by 1− pi. Therefore for one

excitation trial, the probability of observing that result for given fitting parameters is.

Pi(ν̄
∗
c , ν̄

∗
a ,∆νc, σc,∆ν

∗
a , Pc|max, Pa|max) =


pi, if transition observed.

1− pi, if transition not observed.

(4.30)

We define the product of this for all trials as the likelihood function

L(ν̄∗c , ν̄
∗
a ,∆νc, σc,∆ν

∗
a , Pc|max, Pa|max) =

∏
i

Pi(ν̄
∗
c , ν̄

∗
a ,∆νc, σc,∆ν

∗
a , Pc|max, Pa|max). (4.31)

The most likely parameters are the ones that make this likelihood function L maximum. To

handle it conveniently, we take its logarithm

M = lnL =
∑
i

ln [Pi(ν̄
∗
c , ν̄

∗
a ,∆νc, σc,∆ν

∗
a , Pc|max, Pa|max)] . (4.32)

The uncertainties of the parameters are determined by the curvature near the best-fit pa-

rameters. If there is no correlation, for example, the uncertainty of parameter p is

∆p =

(
−∂

2M

∂2p

)−1/2

. (4.33)

The actual correlation and uncertainty are handled by the covariance matrix, see e.g. [99].

Validity of Fitting Model

The validity of the fitting model can be checked using the obtained best-fit parameters.

Using the best-fit parameters, we run a simulation experiment using the Monte-Carlo method
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and check how likely it is to observe the data we actually took. The steps are listed below.

1. Using the best fit parameters, the lineshape function is recalculated P best fit(ν).

2. For each drive frequency at νi among all trials, we generate “transition occurred” or

“transition not occurred” based on the probability P best fit(νi).

3. By doing this, we now get a simulated data set of [drive frequency ; transition occurred

or not ] for all trials.

4. The likelihood function M is calculated for this simulated data set.

By repeating this, we get a distribution of simulated likelihood M . If the experimentally

obtained data are well explained by the fitting model, its likelihood M should be within the

distribution of the simulated likelihood M . The probability of obtaining a likelihood value

worse than the experimentally obtained likelihood is called the p-value.

From its definition, the p-value ranges from 0 to 1. If p-value is too close to 1, that means

the experimentally obtained data is fit too good to the model. This happens, for example,

when the fitting model has too many parameters. If the p-value is too close to 0, that means

the obtained data is not well explained by the fitting model. This is the case when there is

some other source of broadening that is not included in the fitting model.

The observed anomaly line shape is consistent with the theoretical line shape, but the

observed cyclotron line shape is broader than the ideal line shape. We fit the cyclotron line

shape by the ideal line shape and also with curves convoluted with noise models: 30 Hz

noise broadening, 60 Hz noise broadening, Gaussian noise broadening, and Lorentzian noise

broadening. The validity of the model is tested by the p-value check (Fig. 4.7). One can

clearly see that for the line shape with no broadening model, −2M = −2× lnL is large and

is not a good fitting model. Among them, we reject the model with p-value lower than 0.01

or higher than 0.99. Only 30 Hz, 60 Hz, and Gaussian noise models are accepted by this

test (Fig. 4.8). We use the result from the Gaussian noise model as the primary result, and
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take the largest discrepancy as a systematic uncertainty from the line shape model (Sec. 4.4).

Observed Line Shape and Fitted Line

Figure 4.9 shows the typical line shape for the cyclotron transition and the anomaly

transition for one day of data. The anomaly linewidth is about 0.05 Hz (0.3 ppb at 5.3 T) at

full width at half maximum (FWHM) and is about 4 times narrower than the linewidth in the

2008 measurement. However, the cyclotron linewidth is wider than the ideal line shape [92]

by about 100 Hz (0.6 ppb at 5.3 T) in FWHM. This broadening was also observed in the

2008 measurement [7]. The transition probability of cyclotron transition is set approximately

below 20 %, and that of anomaly transition is set higher to avoid the possibility of missing

the narrow resonance. The measured line shapes, including the unexpected broadening, are

consistent among all measured fields. Despite the observed broadening, from one day of

data, we can typically determine cyclotron frequency ν̄∗c at 20 Hz (0.13 ppb at 5.3 T) and

anomaly frequency ν̄∗a at 0.01 Hz (0.06 ppb at 5.3 T). The fitting is done for every run

independently, and the g-factor for each run is extracted.

4.2.3 Statistical Distribution of the Measured g-factors

Using the extracted cyclotron frequency and anomaly frequencies, together with the

monitored axial frequency (when the self-excitation is off), the g-factor can be extracted

using Eq. 4.6. The reproducibility and reliability of measurement can be checked using the

measured g-factors done in nearly the same magnetic fields. The measured g-factor, with the

microwave cavity shift corrected (Sec. 4.3), should be distributed by statistical fluctuation.

We studied the reliability of the measurement using data around 150 GHz.

Figure. 4.10 shows the distribution of measured data around 150 GHz. The center value

is corrected using the microwave cavity shift (Sec. 4.3), but the error from the microwave

cavity shift is not included in the error bar. The distribution shows good χ2/(ndf) and
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Figure 4.7: p-value of the fitting models. The experimentally observed p-value is shown
by the solid line. From top to bottom, no broadening, 30 Hz noise, 60 Hz noise, Gaussian
broadening, and Lorentzian shape broadening.
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Figure 4.8: Different fitting of cyclotron line depending on the line shape model. Four
models, 30 Hz noise (top left), 60 Hz noise (top right), Gaussian shape broadening (bottom
left), and Lorentzian shape broadening (bottom right), are shown. The Lorentzian shape
broadening (bottom right) is rejected after calculating the p-value of the fitting. One can
see that the Lorentzian broadening has a long tail to the lower side.
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Figure 4.9: Typical line shape of cyclotron transition (left) and anomaly transition (right)
for one day of data. Fitting with a Gaussian noise model is shown. The determined center
frequencies ν̄∗c and ν̄∗a are shown by the black line, with the error indicated by the gray
region.

p-value. The data here demonstrates that the measurement is consistent within a narrow

range of magnetic fields. We also measure the g-factor at widely different magnetic fields to

check the other systematic errors.

4.3 Microwave Cavity Correction

The conductive electrode surface of the Penning trap electrodes forms a microwave cavity

that has resonances near the cyclotron frequency. In addition to the inhibited spontaneous

emission, it also alters the measured cyclotron frequency in the trap cavity ν̄cav
c from ν̄c

as [52,53]

ν̄cav
c = ν̄c + ∆ν̄cav

c = ν̄c

(
1 +

∆ν̄cav
c

ν̄c

)
(4.34)

The effect does not change the spin frequency, but the anomaly frequency—the difference

of spin and cyclotron frequencies–shifts from the true anomaly frequency as

ν̄a → ν̄a −∆ν̄cav
c . (4.35)
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Figure 4.10: Statistical distribution of data around 150 GHz. The center value is corrected
using the constructed microwave shift function, but the error from the microwave cavity
shift is not included in the error bar.

Therefore, the measured g-factor (Eq. 4.6) needs to be corrected as

∆
g

2
|cav =

ν̄a + ∆ν̄cav
c −

ν̄2
z

2(f̄c+∆ν̄cav
c )

f̄c + ∆ν̄cav
c + 3

2
δr
2π

+ ν̄2
z

2(f̄c+∆ν̄cav
c )

−
ν̄a − ν̄2

z

2f̄c

f̄c + 3
2
δr
2π

+ ν̄2
z

2f̄c

≈
(

1 +
ν̄a
ν̄c

)
∆ν̄cav

c

ν̄c
, (4.36)

where the last approximation is valid up to O(10−15) level. To determine the cavity shift,

we measure all the cavity modes and build the correction function.

4.3.1 Measuring the Microwave Resonances

There are two methods to measure the microwave cavity resonances: Using a cloud of

electrons and using a single electron. A cloud of trapped electrons radiates its internal

motion’s energy by synchrotron radiation γc (App. A). A colder cloud of electrons shows a

larger response to the axial excitation, so we can probe the change of γc by monitoring its

axial oscillation amplitude. The parametric drive is used because it can excite the internal

motion directly. The second method is to measure the cyclotron damping rate γc directly

using a single electron. Although this method takes much longer time and gives less accuracy,
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it relies on fewer assumptions. The single electron method is also more sensitive to the axial

and radial misalignment of the microwave center and the trap center. Since we do not

understand the detailed mechanism of the parametric drive method, we use the internal

motion method to measure cyclotron resonances, and then confirm the mapped resonances

with a single electron.

The physics behind the mapping of microwave modes is studied in detail in App. A.

Figure 4.11 shows the full range of the measured cavity spectrum. The mapping is taken at

four ranges, 60–90 GHz, 70–115 GHz, 100–140 GHz, and 134–160 GHz. The consistency is

checked in the overlapped regions. We discuss the details and assigned the systematic error

from this spectrum in the following. The mapping in 134–160 GHz is used as an example

here, but all three maps are taken and checked with the same procedure.

Calibration of Mapped Spectrum

The mapping is taken by monitoring the axial oscillation amplitude and sweeping the

current in the solenoid magnet. The exact cyclotron frequency that each resonance corre-

sponds to needs to be calibrated. The current on the power supply is monitored, but it is

not exactly the same as the current flowing in the magnet because of the large inductance of

the superconducting solenoid (about 195 H). Calibration of the mapped spectrum is done by

sending microwave drives of known frequencies and measuring the response from the cloud.

Figure 4.12 shows the circuit model of our superconducting magnet. In addition to the

main coil’s inductance L = 195 H, there is also a series resistance of the coil r1, parallel

resistance R that arises from the superconducting switch, and a series resistance r2 that

arises from the room temperature current leads. What we can monitor is the output voltage

at the power supply V (t) and the current flowing through the power supply I(t). The actual
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Figure 4.11: Mode mapping using parametrically driven electrons. Details of obtaining this
mapping are described in the text.
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V(t)

r1

R
L

r2

I(t) J(t)

Figure 4.12: Circuit model of superconducting magnet and charging unit.

magnetic field at the center of the trap is proportional to the current on the coil

B(t) = KJ(t), (4.37)

where K is later measured to be K = 0.1327 T/A. The relation between the quantities is

V (t) = R[I(t)− J(t)] + r2I(t)

= L
dJ(t)

dt
+ r1J(t) + r2I(t).

(4.38)

If the current on the power supply I(t) is ramped linearly, I(t) = I0 + I1t, then these

equations give

J(t) =
R

R + r1

(
I0 −

L

R + r1

I1 + I1t

)
. (4.39)

Therefore, as long as the current on the power supply is swept linearly, the current on

the coil also changes linearly. Two scans with sweep-up and sweep-down are taken for

each range. Figure 4.13 shows the change of the current on the power supply for two

directions. By monitoring the current on the power supply, we guarantee that the sweep

is done linearly. We only use the range where the current is more stable than 0.005 A.

Using the conversion coefficient K = 0.1327 T/A, this corresponds to frequency fluctuation

of 7 × 10−4 T = 18.5 MHz, which has negligible effects on the systematic error, as shown

later. The temporal fluctuation of the current in the coil is even smaller than the fluctuation
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Figure 4.13: Change of current on the power supply when (a) swept up and (b) swept down.

at the power supply because of its large inductance. We verify this later by comparing the

peak of resonances in the two scans.

Assuming the current is changing linearly, what we need to know is the cyclotron fre-

quency at several points in the scan. The exact cyclotron frequency is calibrated by applying

microwave drives with known frequencies. When the cloud of electrons is resonant with the

drive frequencies, the microwave drive heats the internal motion to a much higher tempera-

ture, and the axial oscillation amplitude drops significantly. The result is a dip that appears

exactly at the drive microwave frequency. An example of a dip from this calibration drive

is shown in Fig. 4.14.

In the range 134–160 GHz, four calibration frequencies are used: 142.100 000 000 GHz,

145.925 000 000 GHz, 149.650 000 000 GHz, and 151.870 000 000 GHz. The frequency of the

calibration drive is GPS locked and is better than 1 Hz. By fitting the dip with a Lorentzian,

we get the conversion formula from the current on the power supply to the cyclotron fre-

quency. The linearity of the calibration dip frequencies is also checked (Fig. 4.15).

For each range, two mode mappings with the sweep up and down are taken. To check

the validity of the calibration method, we fit the modes in Fig. 4.11 and compare the center
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Figure 4.14: Calibration dip in the parametrically excited cloud of electrons’ response on
TE243 mode. The dip corresponds to a calibration drive at 149.650 000 000 GHz.
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Figure 4.15: Fitting of measured dip frequency and current (a) in the sweeping up scan and
(b) in the sweeping down scan.
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Figure 4.16: Discrepancies of obtained resonant frequencies between sweep up and down in
the 135–160GHz range. The calibration frequencies are also shown with red arrows.

frequencies obtained in the sweep-up scan and in the sweep-down scan. Figure 4.16 com-

pares the obtained center frequencies between the two scans. The discrepancy between the

resonant frequencies is taken as the calibration error. This error is one of the systematic

errors when calculating the microwave cavity correction to the g-factor.

All maps at different ranges are produced using the methods described here. They overlap

with the adjacent map, and the consistency among them is checked. We then check the map

with a single electron and fit the peaks with Lorentzian to extract the center frequencies.

The measured resonant frequencies, with their coupling strength λ2
M for the strong coupling

modes (will be introduced in Sec. 4.3.2) are summarized in Table. 4.2.
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mode calculated frequency (GHz) measured frequency (GHz) (λM/2π)2 (108 Hz2)
TE121 59.236 59.015(11) 13.8
TM021 61.115 60.655(20)
TE113 60.719 62.130(32) 6.7
TM013 62.859 64.236(8)
TE013 70.247 70.253(8)
TM113 70.247 71.980(15) 6.6
TM121 76.201 72.935(9) 1.1
TE021 76.201 76.051(8)
TE114 79.139 79.846(10)
TE123 80.331 80.321(9) 13.8
TM023 81.727 81.787(26)
TM031 92.968 91.054(8)
TE131 91.761 91.713(9) 21.6
TE023 93.546 93.611(9)
TM123 93.546 95.282(18) 6.7
TE124 95.023 95.280(9)
TE132 97.592 97.625(8)
TE115 97.853 98.717(10) 6.7
TM015 99.196 101.959(9)
TE015 104.034 104.292(8)
TM115 104.034 105.101(16) 8.4
TM033 107.644 106.361(8)
TE133 106.603 106.472(16) 21.6
TM124 106.429 106.852(9)
TE031 108.650 108.481(8)
TM131 108.650 110.320(16) 0.8
TE125 111.093 111.370(9) 13.8
TM132 113.617 111.371(11)
TE116 116.720 117.441(10)
TM016 117.848 118.022(8)
TE134 118.070 118.095(10)
TE225 119.038 119.200(9)
TE233 119.561 119.447(8)
TE331 120.800 121.059(11)
TE025 120.993 121.338(8)
TE033 121.445 121.441(9)
TM133 121.445 122.994(149) 5.7
TM125 120.993 123.143(149)1 11.1
TE141 124.539 124.348(11) 29.5
TM232 128.031 128.320(8)
TE126 128.023 128.365(15)

1TM125 and TM133 overlap and it was impossible to distinguish them. Correction to the g-factor is
calculated with two choices of mode assignment and the discrepancy is taken as a systematic error.
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TM026 128.903 128.737(8)
TE142 128.895 128.778(9)
TM042 129.754 129.844(9)
TE135 131.350 131.377(12) 21.6
TM035 132.196 131.564(9)
TE143 135.846 135.646(13) 29.5
TE117 135.676 136.372(10) 6.7
TM126 136.703 137.572(11)
TE017 140.199 139.543(8)
TM117 140.199 141.161(10) 9.0
TM141 141.365 141.968(21) 0.6
TE041 141.365 142.066(9)
TE035 143.657 143.664(9)
TM135 143.657 144.329(10) 11.4
TE042 145.218 144.773(8)
TE144 145.018 144.887(9)
TM027 146.289 145.728(9)
TE127 145.514 145.947(9) 13.8
TE136 145.949 146.140(8)
TM044 145.782 146.183(9)
TE243 149.931 149.636(8)
TE043 151.421 151.130(8)
TM143 151.421 151.824(14) 4.8
TE027 153.206 153.570(8)
TM127 153.206 154.077(11) 13.6
TE118 154.688 155.380(9)
TE145 156.021 155.849(9) 29.5
TE151 157.418 157.172(10) 37.4
TM136 157.117 157.603(9)
TM144 159.701 159.467(9)
TM052 161.574 160.594(8)
TE152 160.886 160.654(8)

Table 4.2: Summary of calculated and measured modes, with its calculated coupling strength
λ2
M at the trap center (Sec.4.3.2).

Figure 4.17 shows the discrepancy between the measured frequencies and the calculated

frequency using ρ0 = 4539 µm and z0 = 3906 µm. Immediately, two features are apparent.

First, the discrepancy is smaller at high frequencies, 125–160 GHz. This is presumably from

the implemented choke flanges that work at such frequencies. The RMS scatter is 1.3 % in

the range 50–125 GHz, and 0.35 % at above 125 GHz. Second, the TE m = 0 modes (red)
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Figure 4.17: Discrepancy of measured resonant frequency from the calculated resonant fre-
quency with ρ0 = 4539 µm and z0 = 3906 µm. The TE1np modes are shown in red and other
modes are shown in black.

show smaller discrepancies from the calculated resonant frequency. We use these modes to

determine ρ0 and z0.

Determination of Trap Radius and Height

Among all the modes, the TE0np modes do not generate current that cross the horizontal

slits of the trap (but do generate current that crosses vertical slits on compensation elec-

trodes). Therefore their measured resonant frequency agrees with the predicted resonant

frequencies (Fig. 4.17). We use these modes to determine the trap radius ρ0 and height z0.

We fit the resonant frequencies of all TE0np modes by analytical resonant frequencies of a

cylindrical trap with the least squares method. Figure 4.18 shows the calculated contour.

Its minimum is normalized with the residual-mean-square (RMS) to be 1. The 68 % uncer-

tainty of the ρ0 and z0 are indicated by the black contour. The best fit parameters yield the

in-situ measured trap dimensions ρ0 = 4539 (31) µm and z0 = 3906 (35) µm.
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Figure 4.18: Determination of ρ0 and z0 using the TE0np modes. The z-axis is the square-
sum of the residual, normalized so that the minimum is equal to 1. The contour that
corresponds to 68 % uncertainty is also shown by the black curve. The best-fit dimensions
are ρ0 = 4539 (31) µm and z0 = 3906 (35) µm.

Measurement with a Single Electron

An alternative way to map microwave resonances is to use a single electron and measure

γc at many different fields. The method using a cloud works reliably, but its mechanism is

still not perfectly understood. The measurement using a single electron is very simple and

well understood and confirms the map generated by the parametrically driven cloud. In

addition, a single electron can be moved in the trap precisely to study the microwave center

offset from the trap center. Three methods are used.

In the first method [Fig. 4.19 (a)], the electron is excited to nc = 1 state with an external

microwave drive with the self-excitation on, and the time it takes to decay back to nc = 0

is measured. This process is repeated many times, and the dwell time at nc = 1 is filled in

a histogram. The dwell time distributes with an exponential shape, and the lifetime γc is

measured by fitting its exponential slope. To accumulate enough data, one usually has to

repeat the process for a few hours.
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Figure 4.19: Three methods to measure γc using single electron: (a) dwell time measurement
at nc = 1, (b) exponential decay method, and (c) parametric excitation method.
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Although this method works reliably, the fastest γc it can measure is limited by the

averaging time to resolve one quantum transition. Even with the previous large magnetic

bottle gradient B2 [51], the highest measured γc was only γc/(2π) = 0.3 Hz. This limits the

resolution of the center resonant frequency. Two new methods are developed to measure γc

more quickly and with a larger dynamic range.

The second method is to excite the electron to a higher nc state and measure the decay

to the ground state by measuring the shift of self-excited axial frequency [Fig. 4.19 (b)]. The

decay process is again fitted by an exponential curve and its time constant yields γc. Unlike

the first method, this measurement in principle yields γc in one excitation. The average of

γc and its error are obtained by repeating this measurement several times.

The third method is a completely different scheme. It uses the parametric drive in a

tuned condition, C4 = 0. In the tuned condition, the oscillation power of parametrically

driven electron with C6 < 0 is [100]

A2 = d2

√
8

15

1 + C2

|C6|

[
1

2

√
h2 − h2

T −
2(ω − ωz)

ωz

]

= d2

√
16

15

1 + C2

|C6|ωz

(
ωz +

ε+

2
− ω

)
,

(4.40)

where h is the modulation depth of the parametric drive, hT = 2γz/ωz is the parametric

excitation threshold, and ε+ = ωz
√
h2 − h2

T/2 is the rise-up frequency. Importantly, the

response has a square-root shape of detuning ωz + ε+/2− ω (Fig. 4.20).

When the cyclotron state is excited, ωz is a function of nc

ωz = ωz;0 + δcnc. (4.41)

If we keep the drive frequency at its rise-up threshold ω = ωz;0 + ε+/2, then the response is

A2 = d2

√
16

15

1 + C2

|C6|ωz
δc ×

√
nc. (4.42)
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Figure 4.20: Oscillation power of a parametrically driven single electron with C4 = 0 and
C6 = −0.1, with a square-root fitting function shown in red.

The cyclotron state nc decays with exponential nc = nc;0 exp(−γct), so Eq. 4.42 yields

A2 ∝ exp
(
−γc

2
t
)
. (4.43)

The parametrically driven oscillation power can be monitored very quickly using an oscillo-

scope. The limit of this method is given by twice the axial decay time 2× γz/(2π) = 10 Hz.

Still, this method has about two orders of magnitude wider range than the previous methods.

The γc can be measured closer to a cavity resonance using this method.

Although this method works for a much larger dynamic range, its uncertainty is also

large near resonances because of the large oscillation amplitude. With a strong parametric

drive, the electron can be axially excited up to a very high amplitude (sometimes 500 µm).

The coupling to the off-center component of microwave resonances becomes very strong.

The oscillation amplitude also changes while nc decays back to 0. Large uncertainties need

to be assigned to account for this effect. We fit the exponential decay with different time

windows, and take the discrepancy as the uncertainty.
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Figure 4.21: Confirmation of mode mapping by a cloud of electrons by the single electron
measurements. The red line is the predicted γc using the fit parameters from the cloud mode
mapping.

Despite its disadvantages, the parametric method is the only method that can measure

γc near the resonances. We measure the off-resonance γc with the other two methods and

the γc near resonances with the parametric method. Figure 4.21 shows the measured γc

around 150 GHz. The red line is the theoretical prediction using the parameters measured

using clouds of electrons. The consistency confirms our two methods.

4.3.2 Correction to the Cyclotron Frequency

Using the measured microwave resonances, we now construct the correction function

to the g-factor. The method to construct the correction function and its uncertainty are

discussed.

Renormalized Calculation

The coupling between the microwave resonant modes and trapped electron or electrons

are studied in details in [51–53,100–102]. We do not show the derivation again here. Instead,

we only summarize the essential conclusions used in this thesis. For an electron at position z
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and ρ with cyclotron frequency ωc
2, the shift of cyclotron frequency ∆ωcav

c and the damping

rate γc is given by

∆ωcav
c −

i

2
γc = − i

2
γc;0 + ωc

{
ΣS

[
ωc, z, ρ,Q

(E), Q(M)
]

+ ΣP

[
ωc, z, Q

(E), Q(M)
]}
, (4.44)

where γc;0 = 1
4πε0

3mc2

4e2ω2
c

is the free space synchrotron radiation rate, and Q(E) and Q(M) are

the quality factors associated with TE modes and TM modes respectively. In the two terms,

ΣS contains the effect from the cylindrical surface, and ΣP contains the effect from the top

and bottom endcap surfaces. It is possible to assign different quality factors for TE and TM

modes. However, it is not possible to assign quality factors for each mode. The correction

to handle this limitation is given later.

The cylindrical surface part ΣS is explicitly given by [102]

ΣS(ω, z, ρ,Q(E), Q(M)) = −r0

z0

∞∑
p=1

sin2

[
pπ

2

(
z

z0

+ 1

)]

×
∞∑
m=0

(1 + sgn(m))

[
K ′m(µ

(M)
p ρ0)

I ′m(µ
(E)
p ρ0)

RI(m;µ(M)
p ρ)

+

(
pπc

2ωz0

)2
(
Km(µ

(M)
p ρ0)

Im(µ
(M)
p ρ0)

RI(m;µ(M)
p ρ)−

Km(pπρ0

2z0
)

Im(pπρ0

2z0
)
RI

(
m;

pπρ

2z0

))]
(4.45)

with

µ(E)
p =

√(
pπ

2z0

)2

−
[
ω

c

(
1 +

i

2Q(E)

)]2

µ(M)
p =

√(
pπ

2z0

)2

−
[
ω

c

(
1 +

i

2Q(M)

)]2
(4.46)

and

RI (m;x) =
(m
x

)2

Im(x)2 + I ′m(x)2. (4.47)

2In this section we denote cyclotron frequency in the trap as ωc for conciseness. The difference between
using ω̄c, ω

′
c and ωc is negligible.
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Here, r0 is the classical radius of an electron r0 = e2/(4πε0mc
2), sgn(x) is the signum

function, Iν(x) is the modified Bessel function of the first kind, and Kν(x) is the modified

Bessel function of the second kind. The parallel surface part ΣP is explicitly given by

ΣP (ω, z) = −r0

[
2
∞∑
j=1

F (4jz0)−
∞∑
j=1

F (2(2j − 1)z0 + 2z)−
∞∑
j=1

F (2(2j − 1)z0 − 2z)

]
(4.48)

with

F (z) =
1

|z|

[
e
iω|z|
c

(
1 +

ic

ω|z|
− c2

ω2z2

)
+

c2

ω2z2

]
(4.49)

Single Mode Lorentzian Approximation

In the renormalized calculation, ΣS has poles at the right microwave resonant frequencies,

where the denominators in Eq. 4.45 cross 0. The resonant frequencies are

ω(E)
mnp = c

√(
x′mn
ρ0

)2

+

(
pπ

2z0

)2

(4.50)

ω(M)
mnp = c

√(
xmn
ρ0

)2

+

(
pπ

2z0

)2

, (4.51)

where xmn is the n-th zero of the order-m Bessel function Jm(x), and x′mn is the n-th zero

of the derivative of order-m Bessel function J ′m(x). The effect near the resonant frequencies

can be approximated as

ΣS(ω, z, ρ) ≈ λ
2 (E,M)
mnp(

ω
(

1 + i
2Q(E,M)

))2

− ω2 (E,M)
mnp

, (4.52)

where λ
2 (E,M)
mnp characterizes the coupling strength from a mode. λ2

M represents the coupling

of the electron and the cavity mode and is generally given by

λ2
M =

e2

mε0

| ~EM(ρ, z)x|2 + | ~EM(ρ, z)y|2∫
V
| ~EM(r)|2dr

(4.53)
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for the electron at ρ and z, where ~ex is the unit vector along the x-axis. For each TE or TM

mode, λ2
M is explicitly given by

λ2 (E)
mnp =

2r0c
2

z0ρ2
0

−(1 + sgn(m))

J ′′m(x′mn)Jm(x′mn)
sin2

[
pπ

2

(
z

z0

+ 1

)]
RJ

(
m;x′mn

ρ

ρ0

)
(4.54a)

=
2r0c

2

z0ρ2
0

−1

J ′′m(x′mn)Jm(x′mn)
(at ρ = 0 and z = 0 for m = 1 and p-odd)

λ2 (M)
mnp =

2r0c
2

z0ρ2
0

1 + sgn(m)

J ′m(xmn)2

(
pπ

2z0

c

ω
(M)
mnp

)2

sin2

[
pπ

2

(
z

z0

+ 1

)]
RJ

(
m;xmn

ρ

ρ0

)
(4.54b)

=
2r0c

2

z0ρ2
0

1

J ′m(xmn)2

(
pπ

2z0

c

ω
(M)
mnp

)2

(at ρ = 0 and z = 0 for m = 1 and p-odd).

Here, RJ(m;x) is defined by

RJ(m;x) =



m2

x2 Jm(x)2 + J ′m(x)2 (x 6= 0),

1
2

(x = 0, m = 1),

0 (x = 0, m 6= 1).

(4.55)

One can prove that λ2
M has non-zero value at the trap center ρ = z = 0 only for m = 1

and p-odd modes. These modes are called the strong coupling modes. This approximation

using the coupling strength is called the single-mode approximation. The correction to

cyclotron frequency and the modified damping rate from a single mode ωM with strength

λM is

∆ωcav
c − i

γc
2

=
ωλ2

M

ω2 + iωΓM − ω2
M

(single mode), (4.56)

where ΓM is the full-width at half maximum of the coupling of the mode, and is related to

the quality factor QM by

ΓM =
ωM
QM

(4.57)

This single mode approximation allows to assign different quality factors for different modes.
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Notice that the correction ∆cav
c is independent of ΓM when off-resonance

∆ωcav
c ≈ ωλ2

M

ω2 − ω2
M

(|ω − ωM | � ΓM) (4.58)

and only the resonant frequency ωM and the coupling strength λ2
M are important.

Divergence and Suppression with Hybrid Calculation

The reason we do not entirely use the single mode Lorentzian approximation for all

modes is that the sum of Eq. 4.65 for all resonant modes yields ultraviolet divergence. The

divergence arises from the electron’s self-energy. The renormalized calculation takes off this

divergence [53]. We first construct the renormalized function using the best fit of ρ0 and

z0. From the renormalized function, each mode is subtracted using its ideal frequency and

added back with the measured resonant frequencies using the Lorentzian approximation.

We use this hybrid method to suppress infinite divergence and assign the measured

resonant frequency and Q-factor to each mode. We found that to subtract the original

resonance perfectly, Q(E) and Q(M) in the renormalized calculation need to be same

Q(E) = Q(M) = Q(0). (4.59)

Since the shift ∆ωcav
c /ωc is independent of Q off resonance, assigning only one Q-factor does

not affect the result. In addition, we will assign the measured Q to each mode independently

after subtraction, so the original input Q(0) in the renormalized calculation only changed

modes far from resonances, and its effect is completely negligible.
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The exact procedure is summarized as

∆ωcav
c −

i

2
γc = − i

2
γc;0 + ωc

{
ΣS

[
ωc, z, ρ,Q

(0), Q(0)
]

+ ΣP

[
ωc, z, Q

(0), Q(0)
]}

+
∑

all measured
modes

(
− ωcλ

2 (calc.)
M

ω2
c + iωcΓ

(calc.)
M − ω2 (calc.)

M

+
ωcλ

2 (est.)
M

ω2
c + iωcΓ

(meas.)
M − ω2 (meas.)

M

)
,

(4.60)

where the quantities with the superscript (calc.) are the calculated ideal values, those with

(meas.) are the measured values, and the λ
2 (est.)
M is the estimated values discussed later. We

construct the renormalized function ΣS and ΣP with the typical quality factor Q(0) = 3000,

subtract each mode using the ideal resonant frequencies (Eq. 4.50 and Eq. 4.51) and coupling

strength (Eq. 4.54), and then add the Lorentzian function back with the measured Q-factor

and resonant frequencies. By doing this, we suppress infinite divergence, and can still assign

Q-factor and resonant frequency to each mode.

We know that the simple sum of the Lorentzian function diverges. To check if the

divergence occurs for the subtraction and re-adding method, we study the correction as a

function of the number of included modes. We calculate the correction from the second

line in Eq. 4.60 to the g-factor at 115 GHz. Figure. 4.22 shows the effect of Lorentzian

subtraction and re-addition on the g-factor at 115 GHz. The number of included modes is

changed from two nearest modes to all the measured strongly coupled modes in 60 GHz–

160 GHz (25 in total). Even with all measured modes included, the change of the correction

from two nearest modes to all 25 modes is only 0.04× 10−12. Some portion of the correction

by including more modes is real. It is difficult to judge if the small increase by including

more modes is because of the imperfection of the method, but the validity of the Lorentzian

subtraction and re-adding method is at least better than 0.04× 10−12.
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Figure 4.22: Dependence of the correction ∆g/2 at 115 GHz as a function of the number of
included modes. The number of included modes in the second line of Eq. 4.60 is varied, and
the correction at 115 GHz is calculated.

Measurement of Microwave Center Offset

In the 2008 measurement, the center of microwave cavity modes was found to be incon-

sistent with the center of the electrostatic field using the TE136 mode [7]. The observed

offset was about 165 µm, much larger than any tolerances. An offset of zoffset = 165 µm is

used for all modes. In this measurement, we study many more modes and observe different

discrepancies between the trap center and the microwave center depending on the modes.

The misalignment induces more systematic corrections because the coupling of an electron

to microwave modes depends on the misalignment.

There are two ways to measure the center of the microwave cavity modes. First, the

magnitude of axial sideband ωM ± ωz of a microwave mode is given by [51]

PωM±ωz
PωM

=

 cos
[
pπ
2

(
zoffset

z0
+ 1
)]

pπA
2z0

sin
[
pπ
2

(
zoffset

z0
+ 1
)] [

1−
(
pπA
4z0

)2
]


2

≈


(

A
zoffset

)2

(p-even)(
pπ
2z0

)4

A2z2
offset (p-odd)

. (4.61)

The last approximation is valid when the offset is small pπ
2
zoffset

z0
� 1.
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Figure 4.23: Examples of measurement of microwave offset using p-even modes. The axial
excitation amplitude in the mode mapping scan is fitted with Lorentzian.
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Figure 4.23 shows the spectrum around several modes. The amplitudes at ωM ± ωz

sidebands and the one at ωM are fit by the Lorentzian function to extract the misalignment

factor. The misalignment is observed mostly in the p-even modes, but also observed for

the strong coupling p-odd mode, TE145. We notice that TE145 is the only mode that shows

non-zero zoffset among the p-odd modes.

To determine the offset zoffset, the parametric oscillation amplitude A needs to be known

precisely. We determine A based on the measurement from a single electron. First, the

detected power on the spectrum analyzer is recorded when an electron is self-excited. The

amplitude of the self-excitation ASXO can be measured by measuring the cyclotron frequency

shift and using the known bottle size B2 = 300 T/m2. The oscillation power of a parametri-

cally driven cloud is proportional to the square of the number of electrons and its amplitude.

Pcloud = PSXO ×N2

(
A

ASXO

)2

(4.62)

For Pcloud, we use the peak of center ωM for p-even modes and ωM ± ωz for p-odd modes.

The observed non-zero zoffset is summarized in Table. 4.3.

mode zoffset (µm) mode zoffset (µm)
TE114 < 3 TE124 < 32
TE132 < 3 TE116 < 10
TM016 < 19 TM134 15(10)
TM232 148(50) TM126 30(23)
TM026 190(40) TE142 60(40)
TM042 < 5 TM126 < 30
TE042 < 5 TE144 < 10
TM044 120(40) TE136 55(33)
TE118 28(15) TE145 89(53)
TM136 < 6 TM118 < 3
TE152 < 10 TM144 < 44(10)

Table 4.3: Observed zoffset and its uncertainty. The uncertainty is dominated by the deter-
mination of the ratio PωM±ωz/PωM and is worse when there are other modes nearby.

Another method to measure microwave offset is to directly measure γc near a p-even

microwave mode. By setting the cyclotron near to a p-even mode, the synchrotron radiation
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Figure 4.24: Measured microwave resonant mode’s offset using an electron near TE116 (left)
and TE136 (right).

rate γc depends on the position of the trapped electron. The position of the electron can be

shifted by applying an antisymmetric bias to the endcap electrodes (Chap. 2). Figure 4.24

shows the measured microwave center offset using an electron near TE116 and TE136. The

results are consistent with the values in Table. 4.3 and verify the assigned error.

The radial misalignment ρoffset is measured by setting the cyclotron frequency at exactly

on resonance with the modes with m 6= 1. The damping rate γc at its resonance and at

a detuned frequency from that mode is measured. The change of γc is compared with the

theoretical model. Using Eq. 4.65, the synchrotron radiation rate at resonance of ωM mode

is

γc =
2QMλ

2
M

ωM
. (4.63)

This comparison is made for four modes, TE035, TE243, TE043, and TE025. Table 4.4 sum-

marizes the measured radial misalignment using several m 6= 1 cavity modes. Radial mis-

mode change of γc/(2π) (Hz) ρoffset (µm)
TE035 < 0.049 < 5.8
TE243 < 0.010 < 19.8
TE043 < 0.016 < 3.3
TE025 < 0.030 < 14.8

Table 4.4: Measurement of radial offset, upper limit of γc/(2π) and calculated ρoffset.
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alignment has not been observed for any modes. Based on this measurement, we assign

ρoffset < 3.3 µm. (4.64)

Splitting of Degenerated Modes

All modes with m 6= 0 are doubly degenerate. The degeneracy corresponds to two

possible directions of rotation of the photon in the cavity. The two degenerated modes

should have the same resonant frequency and Q-factor in an ideal cylindrical cavity, but the

slits, holes, and loss in the real cavity remove the degeneracy.

Large splitting of degeneracy is observed only in the TM143 [Fig. 4.25 (a)]. The splitting

can be handled by assuming two Lorentzian peaks, each with half of the coupling constant

∆ωcav
c − i

γc
2

=
ωcλ

2
M/2

ω2
c + iωcΓM − ω2

M ;low

+
ωcλ

2
M/2

ω2
c + iωcΓM − ω2

M ;high

, (for split mode) (4.65)

The effect of using two Lorentzians with λ2
M/2 instead of one Lorentzian with λ2

M is very

small if ωc is away from the resonance. Figure 4.25 (b) shows the difference of correction

∆ωcav
c /ωc if only one Lorentzian with λ2

M is used or two split Lorentzians with λ2
M/2 are

used. The effect is less than 0.003× 10−12 even in the closest frequency that we measure the

g-factor.

Uncertainty of the Coupling Strength λ2
M

In the single mode approximation function (Eq. 4.65), the resonant frequency ωM and

the width ΓM can be determined from the measured spectrum. However, the remaining

parameter, the coupling strength λ2
M cannot be directly measured. Since we do not know

the mechanism of the mapping, we cannot determine λ2
M precisely from the parametric

oscillation power. In addition, for most of the strong coupling mode, the peak of strong

coupling resonances are likely saturated.
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Figure 4.25: (a) Observed splitting of the degeneracy of TM143 mode. The small resonance at
152.06 GHz is TE043 mode. (b) Effect of splitting on the measured g-factor. The difference
between assuming one Lorentzian at the center of two split peaks with λ2

TM143
and two

Lorentzians with λ2
TM143

/2 is shown. The frequencies that the g-factor is measured at are
also shown.

We estimate the uncertainty of λ2
M comes from its original expression (Eq. 4.53). The

coupling strength λ2
M represents the normalized energy density at the center, which is pro-

portional to (length)−3. Since the resonant frequency scales as (length)−1 and λ2
M scales as

(length)−3, a natural estimate is that the λ2
M can be different three times larger than the

discrepancy of resonant frequency. The observed discrepancy between the calculated and

measured resonant frequencies is shown in Fig. 4.17. The RMS scattering of the strongly

coupled modes is 1.7 %, which corresponds to 5.1 % RMS scatter in λ2
M . The uncertainty

from λ2
M is calculated as follows. For each mode, the correction function Eq. 4.60 is recon-

structed with that mode’s λ2
M 5.1 % varied. The difference between using not-varied λ2

M

and varied λ2
M is taken as a systematic error3.

Different mode shifts the g-factor measured at different fields. For example, the uncer-

tainty of TE145 (156 GHz) affects the measurements around 150 GHz a lot, but does not

shift the measurement at 87 GHz so much. The correlation between the uncertainties and

their averaging method is discussed in Sec. 4.5.

3An improved method to calculate the uncertainty of λ2M using a finite-element-analysis method is being
discussed within the group. The uncertainty might be revised before publication.
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mode
ideal frequency λ2

M/(2π)2 ∆g/2 by 1 GHz shift ∆g/2 by 5.1% λ2
M change

(GHz) (108 Hz2) (10−12) (10−12)
TE137 161.510 21.6 0.053 0.032
TE153 166.507 37.4 0.045 0.037
TM145 169.755 10.7 0.009 0.009
TM137 171.669 15.6 0.011 0.012
TE119 173.738 6.7 0.004 0.005
TM151 174.197 0.5 0.000 0.000
TM119 177.293 9.3 0.004 0.005
TE129 181.525 13.8 0.005 0.007
TE147 182.141 29.5 0.009 0.014
TM153 182.452 4.1 0.001 0.002
TE155 183.339 37.4 0.011 0.017
TM129 187.747 15.0 0.003 0.006
TE161 190.347 45.2 0.009 0.017
TM147 194.035 16.0 0.003 0.005
TE139 194.582 21.6 0.004 0.007
TE163 197.929 45.2 0.006 0.014
TM155 197.933 9.7 0.001 0.003

Table 4.5: Estimated uncertainty from the unmeasured higher frequency resonances at
150.411 GHz. The modes between 160 GHz and 200 GHz are considered.

Microwave Cavity Shift from the Unmeasured Modes

We have explored correction and uncertainties from the measured modes between 60 GHz

and 160 GHz. There are also more modes below 60 GHz or above 160 GHz, which could

shift the measured g-factor. The modes below 60 GHz are not measured because our current

waveguide is not designed to deliver a strong microwave drive below 60 GHz. The modes

above 160 GHz are not measured because of the limitation of the niobium-titanium magnet.

On the higher side, the next several strong coupled modes are summarized in Table. 4.5.

The effect on the g-factor result at 150.411 GHz is also shown if their resonant frequency is

shifted by ±0.5 GHz or if λ2
M differs by 5.1 %. This effect is largest in the measurements

around 5.3 T and is negligible for the measurements at the lower fields.

The modes below 60 GHz are also summarized in Table. 4.6. The effect is the largest

in the 87.010 GHz measurement and is negligible for the other measurements at higher

frequencies. Notice that unlike the higher side, there are only two modes that were not
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mode
ideal frequency λ2

M/(2π)2 ∆g/2 by 1 GHz shift ∆g/2 by 5.1% λ2
M change

(GHz) (108 Hz2) (10−12) (10−12)
TM111 44.614 1.8 0.001 0.002
TE111 27.251 6.7 0.001 0.005

Table 4.6: Estimated uncertainty from the unmeasured lower frequency resonances on mea-
sured g-factor at 87.010 GHz. Notice that unlike the high frequency modes, there are only
two modes that were not measured.

measured. The coupling strength λ2
M is also much smaller than the modes on the higher

side. The correction and uncertainty on the 87.010 GHz measurement are much smaller

than the modes above 160 GHz.

4.3.3 Applied Microwave Cavity Correction and Uncertainty

Using the described methods, the cavity mode correction is calculated. We first construct

the renormalized function (Eq. 4.44) with the best fit ρ0 and z0 (Fig. 4.18). To include

the actual measured resonant frequencies, the resonance in the renormalized function is

subtracted with the Lorentzian approximation (Eq. 4.52) and added back with measured

resonant frequency and Q-factor(Eq. 4.60).

The uncertainty of measured radius, height, microwave resonant frequencies, offsets, Q-

factor, and coupling strength is taken into account by recalculating the correction function

with the shifted value and taking the difference. The square sum of all uncertainties yields

the uncertainty of microwave correction.

The applied cavity correction is shown in Fig. 4.26 (a), and its uncertainty is shown

in Fig. 4.26 (b) The major uncertainty comes from the uncertainty of λ2
M . We now have

taken a much wider range of microwave resonances, which allows estimating the uncertainty

properly. The studies here emphasize the importance of the microwave cavity correction.

The difficulty of the microwave correction motivates the measurement of g-factor at lower

fields than the traditional 5–6 T.
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Figure 4.26: (top) Applied Cavity correction from the measured resonances. Notice that the
correction at nearby fields is correlated. (bottom) Uncertainty of the cavity correction. The
frequencies that g-factor measurement is performed are indicated by the red dotted lines.
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4.4 Other Systematic Effects

In addition to the microwave cavity shift, other systematic effects are also investigated.

Several experimental parameters are also varied to search for possible shifts and broadening

effects. These other systematic shifts and uncertainties are discussed in this section.

4.4.1 Cyclotron Power Shift

The drive power to induce one cyclotron transition is only about −200 dBm. The tem-

perature of the mixing chamber stage increases by only 1 mK by a drive with 30 dB stronger

power. The shift from cyclotron drive power is first studied by measuring the anomaly fre-

quency’s shift when a strong detuned cyclotron drive is applied. Measuring the shift of

cyclotron frequency for a strong power is rather challenging because of excitation to higher

cyclotron states and the relativistic cyclotron frequency shift (Sec.4.1). Figure 4.27 shows

the measured anomaly frequency with different cyclotron drive power. The x-axis is the

relative drive power compared to the maximum power used in the spectroscopy. Even with

the 100 times stronger cyclotron drive, the shift of anomaly frequency is less than 1 ppb.

We fit the result with a linear line, and extract the possible shift that the cyclotron drive

for spectroscopy can induce (relative cyclotron power = 1 in the x-axis). The actual effect

on g-factor is even smaller by a factor of (g − 2)/2 ≈ 0.00115.

The drive power dependence can also be studied using the measured g-factors. Fig-

ure 4.28 shows the measured g-factor as a function of peak cyclotron transition probability.

Only the data around 150 GHz are used because they are shifted with the same amplitude

if there are any unaccounted cavity corrections. The linear fitting gives a slope consistent

with zero.

Based on these estimates, we take the product of (g/2−1) and the one sigma of anomaly
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Figure 4.27: Measurement of cyclotron drive induced anomaly frequency shift.
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Figure 4.28: Dependence of measured g-factor on the peak cyclotron transition probability.

138



frequency shift and assign the systematic shift due to cyclotron power as

∆
(g

2

)
< 4.9× 10−15. (4.66)

4.4.2 Anomaly Power Shift

The anomaly drive is relatively stronger than the cyclotron drive. What we measure is

the cyclotron or anomaly frequency of an electron under axial modulation from the anomaly

drive. Since a detuned anomaly drive is also applied during the cyclotron drive, the effect

anomaly drive should cancel when calculating the g-factor.

The 1987 experiment that used a smaller magnetic bottle (150 T/m2) suffered from

frequency shift due to a strong anomaly drive [103]. We reduced the magnetic bottle size by

a factor of 5 from the 2008 measurement, but it is still larger than the 1987 measurement.

The anomaly drive with voltage amplitude Va at the bottom endcap electrode excites

the electron to an amplitude [104]

za =
c1d

2

2z0

[(
ωa
ωz

)2

− 1

]−1
Va
VR
. (4.67)

The Rabi frequency for anomaly transition is

Ωa =
g

2

e~
2m

B2za

√
2

m~(ω′c − ωm)
. (4.68)

The probability of making a transition with drive length T in the weak drive limit is

P (ω) =
π

2
TΩ2

aχ(ω), (4.69)

where χ(ω) is the lineshape function that is given in Sec. 4.1.2. Its maximum value, χ(ωmax)
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Figure 4.29: Observed shift of axial frequency from much stronger anomaly drive power.

is inversely proportional to the linewidth.

χ(ωmax) =
2

π

(
2∆ω2

a

γz
+ γc

)−1

(4.70)

Using our typical parameters, B2 = 300 T/m2, ω′c/(2π) = 150 GHz, ωm/(2π) = 43 kHz,

γz/(2π) = 5 Hz, and γc/(2π) = 0.04 Hz, we estimate the drive amplitude of za = 150 nm to

account for the observed 40% of peak transition probability.

Another way to calibrate the actual modulation amplitude is to measure the shift of the

axial frequency. The shift of axial frequency due to anomaly drive is [104]

∆νz
νz

=
V 2
a

V 2
R

3c1c3

8

[(
ωa
ωz

)2

− 1

]−1

+
(1 + C2)2

16

[(
ωa
ωz

)2

− 4

]−1
 . (4.71)

Here, all the parameters other than the anomaly drive amplitude Va are known with much

better uncertainty. We can measure the axial frequency shift and calibrate the anomaly

drive amplitude Va at the electrode that is actually applied.
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Figure 4.29 shows the observed shift of axial frequency by anomaly drives. Much stronger

anomaly drives than the power used in the spectroscopy are applied to make a visible

axial frequency shift. The x-axis is the ratio of applied anomaly drive power here and the

maximum power used in the spectroscopy V 2
a /V

2
a;0. From this measurement, the maximum

drive amplitude used for spectroscopy is V 2
a;0 = (6.5 (3) mV)2 at 150 GHz. The corresponding

oscillation amplitude is za = 190 (9) nm. The corresponding shift from at za = 190 nm is

only

∆pω

ω0

= 1.1× 10−12, (4.72)

and the uncertainty on the g-factor is smaller by a factor of (g/2− 1).

The shift can also be directly measured by applying a detuned anomaly drive and mea-

suring the cyclotron shift (Fig. 4.30). A much stronger detuned anomaly drive is applied,

and the change of cyclotron frequency is measured. The x-axis is again the relative drive

power compared to the maximum power used in the spectroscopy. Even with the 31 times

stronger anomaly drive, the shift of cyclotron frequency is less than 1 ppb. We fit the result

with a linear line and extract the possible shift that the anomaly drive for spectroscopy can

induce (relative anomaly power = 1 in the x-axis). The actual effect on g-factor is even

smaller by a factor of (g − 2)/2 ≈ 0.00115 than the measured δνa/νa = 8.8× 10−15.

The drive power dependence can also be studied using the measured g-factors. Fig-

ure 4.31 shows the measured g-factor as a function of peak anomaly transition probability.

Only the data around 150 GHz are used because they are shifted with the same amplitude

if there are any unaccounted cavity corrections. The linear fitting gives a slope consistent

with zero.

From these estimates, we take the product of (g/2−1) and the one sigma of the cyclotron

frequency shift as the anomaly drive’s power shift

∆
(g

2

)
< 10× 10−15. (4.73)
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Figure 4.30: Power shift from the anomaly drive.
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Figure 4.32: Fluctuation of axial frequency during a run. The frequency fluctuation is less
than 1.3 Hz.

4.4.3 Fluctuation of Axial Frequency

The axial frequency is continuously monitored and regulated during the measurement.

Figure 4.32 shows the measured axial frequency during the measurement when the electron

is in |nc = 0,ms = 1/2〉. The axial frequency fluctuation is less than 0.6 Hz. Using Eq. 4.6,

the shift of axial frequency propagates as

∆
(g

2

)
= −

ν̄z
f̄c
δν̄z

f̄c + 3
2
δ + ν̄2

z

2f̄c

−
ν̄a − ν̄2

z

2f̄c(
f̄c + 3

2
δ + ν̄2

z

2f̄c

)2

ν̄z
f̄c
δν̄z

≈ −
(g

2
− 1
) ν̄z

f̄c
δν̄z

ν̄a − ν̄2
z

2f̄c

(
1 +

ν̄z
f̄c
δν̄z

f̄c + 3
2
δ + ν̄2

z

2f̄c

)

≈ −
(g

2
− 1
) g

2

ν̄z
f̄c
δν̄z

ν̄a − ν̄2
z

2f̄c

(4.74)

This approximation is valid up to 10−15 precision. Therefore, the induced systematic shift

from axial frequency fluctuation is

∆
(g

2

)
< 3.2× 10−15. (4.75)
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Figure 4.33: S21 measurement of the axial detection resonator.

4.4.4 Axial Frequency Shift by the Resonator

The measured axial frequency slightly shifts from coupling to the resonant circuit (Eq. 2.47).

The resonant circuit’s center frequency and parallel resistance are measured precisely from

its driven resonance. Figure 4.33 shows the measured resonance of the detection circuit.

The electron’s axial frequency is 114.4365665 (1) MHz. The discrepancy of 20.585 (32) kHz

causes an axial frequency shift of

∆ν̄z = −0.8738 (10) Hz (4.76)

from its value if the resonator were not there.

This shift changes the axial frequency that we use to calculate the g-factor using Eq. 4.74.

The shift and uncertainty on the g-factor is

∆
(g

2

)
= −4.4 (1)× 10−15. (4.77)
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Figure 4.34: The axial damping rate γz measured in three different methods, (a) dip detec-
tion, (b) axial driven scan, and (c) free decay method.

4.4.5 Uncertainty of the Axial Damping Rate γz

The axial damping rate γz was not measured in the previous 2008 measurement [102].

We improved the stability of the apparatus and invented new methods to measure the axial

damping rate γz in three ways. It can be measured from the width of the dip on noise

resonance, the width of the axially driven response, and the decay constant of the largely

excited motion. γz is a parameter that determines the fitting line. Uncertainty of γz causes

uncertainty of fitting shape, and thus the extracted cyclotron and anomaly frequencies.

Figure 4.34 shows the three independently measured axial damping rate γz’s. The damp-

ing rate is consistent among the three measurements. To be conservative, we take the
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weighted mean of the three measurements as mean γz and assign the discrepancy among the

three measurements as its one standard deviation uncertainty.

γz
2π

= 5.0 (4) Hz (4.78)

We construct the fitting function using different γz’s and extract the g-factor. The center

value of the measured g-factor changes less than 3×10−15, so the estimated systematic error

is

∆
(g

2

)
< 3× 10−15. (4.79)

4.4.6 Magnetic Field Drift

In the primary analysis, the magnetic field drift is corrected by the second-order polyno-

mial function. The change of the result using different correction models is studied. Since

both cyclotron frequency and anomaly frequency are proportional to the magnetic field,

the drift of the magnetic field should not change the measured g-factor to the first order

approximation.

To check the systematic shift related to magnetic field correction, the long-term drift is fit

by the third and fourth order polynomial functions. The extracted g-factor is compared with

the result using the second order drift correction function. By taking its largest discrepancy,

the systematic error from drift correction is estimated to be

∆
(g

2

)
< 9× 10−15. (4.80)

4.4.7 Fluctuation of Temperature

The magnetic field changes when the physical temperature of the trap changes. The

dominant effect comes from the nuclear paramagnetism, which has a very large temperature

dependence at low temperature [60].
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Figure 4.35: Dependence of cyclotron frequency on the temperature of trap can.

The temperature fluctuation during a measurement run is ∆T = 0.5 mK at maximum

during one run. The dependence of cyclotron frequency on trap temperature is measured as

Fig. 4.35. The fluctuation of temperature should cancel to the first order because the ratio

of cyclotron and anomaly frequency is measured. By calculating the change of magnetic

field by 0.5 mK fluctuation and multiplying by (g/2− 1), the systematic error is

∆
(g

2

)
< 12× 10−15. (4.81)

4.4.8 Line Shape Model of Residual Broadening

The anomaly linewidth agrees with the theoretical linewidth within its uncertainty, but

the cyclotron linewidth is broader than the theoretical line shape. To extract the cyclotron

frequency, we have constructed fitting lines with several noise models (Sec. 4.1). Figure 4.36

shows the dependence of the extracted g-factor on the three fitting models: 30 Hz sinusoidal

147



0.2−

0.15−

0.1−

0.05−

0

0.05

0.1

0.15

0.2

12
10×

( 
g/

2 
- 

g/
2[

G
au

ss
ia

n]
 )

30 Hz
60 Hz

Gaussian
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(Sec. 4.1).

noise, 60 Hz sinusoidal noise, and Gaussian shape noise. Notice that from the p-value

argument in Sec. 4.1, the Lorentzian broadening model has been rejected. By taking the

largest discrepancy among the three accepted models, we assign an uncertainty of

∆
(g

2

)
< 0.094× 10−12. (4.82)

4.4.9 Higher-Order Correction from the Invariance Theorem

There are higher-order corrections from the invariance theorem. The expression for the

free space cyclotron frequency νc from measured frequencies ν̄c, ν̄z, and ν̄m are

νc
ν̄c
≈ 1 +

1

2

(
ν̄z
ν̄c

)2

+
1

8

(
ν̄z
ν̄c

)4
[(

ν̄m
ν̄2
z/(2ν̄c)

)2

− 1

]
(4.83)

This expression is valid up to (ν̄z/ν̄c)
6 ≈ 10−19. The third term is the correction from the

imperfection of the trap, which causes a mismatch of measured magnetron frequency ν̄m and

the calculated magnetron frequency measured cyclotron and anomaly frequencies ν̄2
z/(2ν̄c).
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We measured these to be ν̄m = 43.835(1) kHz and ν̄2
z/(2ν̄c) = 43.808 kHz. Using these

frequencies, the correction to the g-factor is

∆
(g

2

)
= −5.3(2)× 10−20. (4.84)

Therefore, this effect is negligible in the current precision.

4.5 Determination of g-factor

Table 4.7 summarizes the raw g-factor, statistical uncertainties, and shift from the mi-

crowave cavity effect. The microwave cavity effect has various sources, as listed in the table.

For example, the zoffset of TE145 mainly affects the measurements at around 150 GHz. TM125

and TM133 overlap so well that it was impossible to identify the center frequencies precisely,

so they add uncertainty to the measurements near 120 GHz. Among them, the uncertainty

from the cavity modes’ coupling strength λ2
M is the largest.
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To extract the g-factor, the correlation of the uncertainties are considered. The un-

certainty of microwave cavity correction comes from several different sources, such as cal-

ibration error, zoffset, the uncertainty of unmeasured modes, and uncertainty of λ2
M . For

example, the error from a mode near 150 GHz (e.g., TM127) shifts all the measured g-factors

at 147.498 GHz, 148.361 GHz, 149.901 GHz, and 150.411 GHz approximately the same

amount. To estimate the correlation and uncertainty correctly, we construct the covariance

matrix Vij and the correlation matrix Cij.

A covariance matrix for each uncertainty in Table. 4.7 is constructed, and they are

summed.

Vij =
∑

k∈{all uncertainties}

δ
(g

2

)k
i
δ
(g

2

)k
j
, (4.85)

where i and j represent the measurement at different fields (i.e. i and j runs for the 11 run

numbers). The total covariance matrix is then normalized to get the correlation table

Cij =
Vij√
ViiVjj

(4.86)

Figure 4.37 shows the constructed correlation matrix for the microwave cavity shift. One can

see that the nearby modes have large correlations, for example, among the measurements

around 150 GHz. One can also notice that two measurements across modes have a negative

correlation. For example, the 4.245 T measurement and the 4.537 T measurement have a

negative correlation. This is because they are across the modes at around 123 GHz—TM133,

TM125, and TE141. The correction of the g-factor from these modes is negative on the lower

frequency side and positive on the higher frequency side. As a result, the two measurements

have a negative correlation.

The error studied in Sec. 4.4 are mostly common to all measured fields: such as the line

shape model, power shift, and determination of axial frequency. For example, the line shape

model uncertainty have 100 % correlation among all measurements. This can also be treated

by the covariance matrix method and added to the microwave shift covariance matrix. The
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Figure 4.37: Correlation matrix Cij of the microwave cavity correction uncertainty. Strong
correlations among the measurements at nearby fields are visible.

common-mode uncertainties are summarized in Table. 4.8.

After constructing the total covariance matrix, we follow the standard procedure to

obtain an average of the g-factor [105]. The weight for each measurement at i’th field is

defined by the inverse of the covariance matrix

wi =

∑
j (V −1)ij∑
ij (V −1)ij

. (4.87)

The average of the measured g-factor and its uncertainty are then given by

g

2
=
∑
i

wi

(g
2

)
i

∆
g

2
=

(∑
ij

(V −1)ij

)−1/2

,

(4.88)
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name shift (10−12) uncertainty (10−12)

statistical — 0.029
microwave cavity correction — 0.090

line shape model 0.000 0.094
cyclotron power shift 0.000 0.005
anomaly power shift 0.000 0.010

fluctuation of axial frequency 0.000 0.003
axial frequency shift by resonator −0.004 0.000
uncertainty of axial damping rate 0.000 0.003

magnetic field drift 0.000 0.009
temperature fluctuation 0.000 0.012

correction from the invariance theorem 0.000 0.000
total −0.004 0.134

Table 4.8: Summary of statistical and systematic uncertainties. The shift from microwave
cavity correction depends on the field and is listed in Table. 4.7.

with its chi-square χ2 given by

χ2 =
∑
ij

{(g
2

)
i
− g

2

}(
V −1

)
ij

{(g
2

)
j
− g

2

}
(4.89)

The measured g-factor, with the correction and systematic error is shown in Fig. 4.38.

The short error bars represent statistical uncertainty only, and the long error bars include

the systematic uncertainties. The newly measured g-factor, including all the correlated and

uncorrelated errors, is

g

2
= 1.001 159 652 180 59 (03) (13), (4.90)

where the uncertainties are statistical uncertainty and systematic uncertainty, respectively.

The χ2/(ndf) of the measurements are 13.04/10, with p-value of p = 0.22. Using the result

in Eq. 1.3 yields a new value of the fine structure constant

α−1 = 137.035 999 166 (16). (4.91)

The electron’s g-factor is measured in a wide range of magnetic fields for the first time.
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Figure 4.38: Measured g-factor as a function of the magnetic field. The short error bars
represent statistical uncertainty only, and the long error bars include the systematic uncer-
tainties. The SM predictions are also shown with the two gray bands.

The newly constructed system narrows the anomaly transition by a factor of 4. All tech-

niques here can be applied to the positron’s g-factor measurement. Despite all the efforts,

further improvements are still possible. The following chapters discuss improvements and

an application of the developed system for the dark matter search.
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Chapter 5

Towards Relativistic Bottle Detection

with a Quantum Limited Detector

We discuss possible future directions of the magnetic moment measurement. The linewidth

is dominated by the magnetic bottle broadening

∆ωc =
eB2

m

kBTz
mω2

z

(5.1a)

∆ωa =
g − 2

2

eB2

m

kBTz
mω2

z

. (5.1b)

The expressions are the same except for the initial factor (g − 2)/21. To improve the

precision of g-factor determination, the linewidth ∆ωc needs to be narrowed. We have seen

the additional broadening, but the study of the broadening will also be easier if the magnetic

bottle linewidth becomes narrower.

The parameters we have control are the magnetic bottle gradient B2, the axial tempera-

ture Tz, and the axial frequency ωz. In future measurements, Tz should be reduced as much

as possible as it is independent of other parameters. However, ωz and B2 are correlated. B2

should be made as small as possible, but it needs to be large enough that the axial frequency

1In this chapter we denote cyclotron frequency in the trap as ωc for conciseness. The difference between
using ω̄c, ω

′
c and ωc is negligible.
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shift for one quantum cyclotron jump δc = ~eB2/m
2ωz is larger than the resolution of the

axial frequency σωz

δc � σωz . (5.2)

Higher ωz is desired, but it is constrained as the Q-factor of the detection resonator drops

sharply at higher frequencies. As a result, γz and σz also decrease at higher frequencies.

Reducing B2 and increasing ωz are both beneficial, as long as the condition Eq. 5.2 is

satisfied. To run a long-term measurement, we require δc to be larger than σωz with a margin

factor C

δc =
~eB2

m2ωz
= Cσωz . (5.3)

Typically, a margin of C ≈ 3 is required. Then, the expression for bottle broadening becomes

∆ωc = C kBTz
~ωz

σωz . (5.4)

Since the quality factor of the resonator depends on its frequency, σωz is also a function of

ωz. Therefore, it is difficult to characterize their relation quantitatively. Qualitatively, σωz

gets worse when the quality factor of the detection circuit gets low. In the past, ωz/(2π) =

200 MHz has been used at maximum. In this thesis, we chose ωz/(2π) = 115 MHz for better

axial frequency resolution and reduced B2 by a factor of 5.

To summarize, in order to reduce the linewidth ∆ωc, one has to

• Reduce magnetic bottle B2 as much as possible. Our goal is to reduce B2 to 0 to use

the relativistic bottle effect (Sec. 5.1). Although this requires a much improved axial

frequency resolution σωz , we propose two new schemes to improve σωz : a new trap with

C6 = 0 (Sec. 5.2) and using spin-flip transition instead of cyclotron transition (Sec. 5.3)

• Reduce axial temperature Tz as much as possible. Lower axial temperature directly

narrows the linewidth. We have developed a new quantum limited detector with

Superconducting Quantum Interference Device (SQUID) to replace the traditional
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HEMT amplifier to achieve this (Sec. 5.4).

In this chapter, we propose a new experimental scheme that uses a relativistic bottle with a

newly developed SQUID detector. The other concerns are also addressed in Sec. 5.5

5.1 Relativistic Bottle

The magnetic bottle causes axial frequency shift for one cyclotron jump, δc = ~eB2/m
2ωz.

However, as we have seen, this also induces frequency broadening ∆ωc. A long ambition

in electron’s magnetic moment experiment [54, 106, 107] is to eliminate the magnetic bottle

completely and to use relativistic mass increase to detect one quantum jump.

One cyclotron transition increases the energy of the electron by ~ωc. This energy increase

causes a shift in the effective mass of the electron due to the relativistic effect m → m +

~ωc/c2. Since the axial frequency depends on the mass ωz ∝ m−1/2, the increase of mass

changes axial frequency by

δrel ≡ −
~ωc

2mc2
ωz. (5.5)

The relativistic shift δrel is very similar to the physical magnetic bottle B2. It is effectively

a magnetic bottle with

B2;rel = −mω
2
zωc

2ec2
. (5.6)

Our measurement parameters ωz/(2π) = 115 MHz and ωc/(2π) = 150 GHz yield δrel/(2π) =

−0.07 Hz and B2;rel = −15 T/m2. This value is about 20 times smaller than the current

axial frequency shift δc in this thesis. Therefore, 20 times better axial frequency resolution

is required. In the following sections, two new ideas are proposed to achieve this regime.

5.2 Orthogonalized and Compensated C6 = 0 Trap

The axial frequency is measured using the self-excitation of the trapped electron (Sec. 2.3).

Its fluctuation is determined by the trap’s anharmonicity, coupled with fluctuation of the
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Figure 5.1: Dependence of self-excitation frequency on oscillation amplitude [67]. The error
bar is the RMS scattering of the frequency at each amplitude.

axial oscillation amplitude. The amplitude dependence of axial frequency follows the anhar-

monicity of the trap

ωz(A
2) = ωz

[
1 +

3C4

4(1 + C2)

A2

d2
+

15C6

16(1 + C2)

(
A2

d2

)2
]

(5.7)

Fig. 5.1 shows the measured axial frequency dependence. Excitation amplitude is tuned so

that it comes to the flat top of the curve.

At its optimal dωz(A
2)/dA2 = 0, the fluctuation of oscillation amplitude σA2 results in

the fluctuation of axial frequency as

∆ωz = ωz
15C6

16(1 + C2)d4
(σA2)2 . (5.8)

σ2
A can arise, for example, from axial temperature or Tz, fluctuation of gain of amplification

chain, imperfection of amplitude limiting device (DSP) [64]. We design a new trap geometry

that achieves smaller C6.

There are three parameters when designing a five-electrode cylindrical trap, ρ0, z0, and
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zc. The electrostatic properties are determined by their relative dimensions, so we take z0,

ρ0/z0, and zc/z0 as three independent parameters. The trap height z0 only changes the

relative size of the trap, but not its electrostatic property (in a relative scale). Therefore

the anharmonicity is determined by two parameters ρ0/z0 and zc/z0.

First, for a given ρ0/z0, Eq. 2.33 and Eq. 2.34 are used to find the ratio zc/z0 that D2/D4

vanishes. This yields the orthogonality condition that C4 can be changed without changing

the axial frequency [59]. Figure 5.2 shows the required zc/z0 to make D2/D4 = 0 for given

ρ0/z0. The voltage ratio Vc/VR to achieve C4 = 0 is also shown.

Now we have one constraint that relates zc/z0 to ρ0/z0. We can still adjust ρ0/z0 without

breaking the D2/D4 = 0 condition. For each ρ0/z0, zc/z0 and Vc/VR are determined from

Fig. 5.2, and then C6 with the orthogonal condition is calculated. Figure 5.3 shows that we

can get both C4 = 0 and C6 = 0 at ρ0/z0 = 0.9684, zc/z0 = 0.6888, and Vc/VR = 0.7992.

How small C6 we can realize depends on machining tolerance and imperfection of the

trap. To estimate the realistic value of C6, we use z0 = 2540 µm (we will see that this

gives a suitable microwave cavity structure), vary each trap geometry by 25 µm, four times

larger than the machining tolerance, and calculate C6 again. By calculating C6 with 25 µm

tolerance, we estimate that the achievable C6 is

|C6| < 4.6× 10−3, (5.9)

which is still a factor of 20 smaller than the C6 of the current trap (C6 = −0.1). The

dominant anharmonicity axial fluctuation (Eq. 5.8) will be reduced by a factor of 20.

Now we have fixed zc/z0 and ρ0/z0. The remaining question is whether we can get a

good microwave cavity structure. The only free parameter now is z0, which only changes the

size of the cavity, but not the relative dimension. The distribution of the microwave cavity

modes cannot be changed, but its frequency scale is still variable.

A smaller trap is better for the microwave cavity structure. Practically, the smallest
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Figure 5.2: zc/z0 to make D2/D4 = 0 for given ρ0/z0. The voltage ratio Vc/VR to get C4 = 0
is also shown. The ideal ρ0/z0 to get C6 = 0 is shown by the red dotted line (derived later).
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possible size is limited by the machining capabilities. In the current trap, the smallest

dimension is the height of the compensation electrode, 766 µm. The smallest dimension in

the C6 = 0 trap is the height of the ring electrode zR = 2(z0− zc) ≈ 0.6224z0. For a realistic

assumption, we set half of the trap height to be z0 = 2540 µm. The height of zc and zR with

this condition are 1750 µm and 1579 µm, respectively, and is still two times larger than the

current trap. The trap dimension in this condition is summarized in Table 5.1.

Figure 5.4 shows the microwave resonance structure for a z0=2540 µm cavity as an

example. The red lines are the resonant modes that strongly couples to the electron at the

center (TEmnp mode or TMmnp mode with m = 1 and p-odd). The blue lines are the modes

that have z-node at the center (TEmnp mode or TMmnp mode with m = 1 and p-even). With

this geometry, there are many attractive regions for a g-factor measurement. Notice that

the interval is much larger than the trap used in this thesis (Chap. 4). The larger spacing

is because of the reduced trap size, which is possible because of the longer compensation

electrode length zc.
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Figure 5.4: Microwave resonant modes of the newly designed C6 = 0 trap. A trap height of
z0 = 2540 µm is assumed. Red lines are the strong coupling modes to the electron at the
center, and blue lines are the modes that have a node at the trap center.

The systematic uncertainty for g-factor measurement scales as

∆
g

2
|cav ∝ (interval of modes)−1 ∝ (trap size) (5.10)

The newly designed trap is about 40 % smaller than the trap used in this thesis (Chap. 2).

Additionally, by going to the lower cyclotron frequency, the spacing between the modes

becomes significantly larger than in the current measurement (12 GHz at maximum). More

than a factor of 3 reduction of systematic uncertainty from the microwave cavity correction

is expected.

Table 5.1 summarizes the trap parameters for the C6 = 0 trap. All parameters are

promising, and we should be able to get 20 times better anharmonicity and 3 times smaller

microwave cavity correction.
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parameter value
half of trap height: z0 2540 µm

trap radius: ρ0 2460 µm
height of compensation electrode: zc 1750 µm

height of ring electrode: zR 1579 µm
trap length parameter: d 2177 µm

image charge parameter: c1 0.630
asymmetry parameter: c3 0.492

optimal voltage ratio: Vc/VR 0.7992

parameter value parameter value at Vc/VR = 0.7992
C0

2 0.046
C2 0.046

D2 0.000
C0

4 −0.258
C4 0

D4 −0.863
C0

6 0.147
C6 0

D6 0.490
C0

8 −0.074
C8 −0.042

D8 −0.109

Table 5.1: Designed parameters for the C6 = 0 trap.

5.3 Directly Driven Spin Flip

Even with the same amplitude of axial frequency fluctuation, the resolution can be

increased by averaging for a longer time. The averaging time is currently limited by the

cyclotron lifetime τc = 5–10 s. This limit can be avoided if we measure spin frequency

ωs instead of cyclotron frequency. The g-factor can be obtained similarly with a slightly

different expression

g

2
=
νs
νc

=
νs

νs − νa
=

(
1− νa

νs

)−1

=

1−
ν̄a − ν̄2

z

2(ν̄s−ν̄a)

ν̄s + 1
2
δr
2π

−1

+ ∆
g

2
|cav, (5.11)

where δr/2π = ~ν2
c /mc

2 is the relativistic cyclotron frequency shift (Eq. 4.5), and the quan-

tities with bar are the measured quantities.

The largest challenge is to drive the spin-flip transition directly. The Rabi frequency for
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the spin-flip is smaller by

Ωs

Ωc

= 3× 10−5. (5.12)

Therefore, being able to drive the spin transition without heating the trap is not trivial. In

this section, the directly driven spin-flip is demonstrated, and the heating from the spin-flip

drive is measured.

5.3.1 Observation of Directly Driven Spin Flip

Spin-flips by directly applied microwave drive are achieved. The same microwave drive

source as in Chap. 2 is used, but with about 100 dB higher drive power. The cyclotron

frequency is set at 148.047 GHz, where the cyclotron lifetime is τc = 7.2 (2) s. This is far

from any of the microwave resonances, and thus the correction is small enough to perform

g-factor measurement.

Figure 5.5 shows the measured axial frequency shift after applying a resonant spin-flip

drive. A strong spin-flip drive is applied between each point, and the axial frequency is

measured after 60 seconds. An averaging time of 16 seconds is used to determine the axial

frequency shift. Clear jumps in the axial frequency are only visible when the drive is resonant.

The clear resolution of quantum jump demonstrates that reduction of bottle size is possible

with a longer averaging time.

The spin resonance can be measured similarly to the cyclotron resonance. The drive

frequency is swept and the probability of make a transition is measured (Fig. 5.6). The

lineshape fits well with the theoretical line convoluted with Gaussian broadening, which is

also observed in the cyclotron line (Chap. 4). Although unfortunate, observation of the same

broadening implies that the cyclotron and spin transitions are consistent.

The temperature increase by the spin-flip drive is also measured. The HEMT amplifier

is turned off to let the pinbase reach about 32 mK. The temperature increase of the pinbase

is monitored when a strong drive is applied (Fig. 5.7). The drive power that corresponds to
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Figure 5.6: Measured lineshape of the spin-flip transition.
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Figure 5.7: Temperature increase of pinbase by spin-flip drives. A drive power that can
induce 30 % transition probability is applied first, then a 10 times stronger drive is applied
later. The increase that corresponds to the first step implies a heat load of 2.5 µW.

30 % of transition probability is first applied, and then a ten times stronger drive is applied.

The heating from the first drive is estimated to be 2.5 µW using the cooling curve of the

dilution refrigerator. The heating is much lower than the power dissipation of the amplifier

and can be made significantly better with a dedicated microwave guide.

Averaging Time and Axial Frequency Resolution

Longer averaging time helps only if the drift of axial frequency is small. We measure

the axial frequency resolution as a function of averaging time. The shift of axial frequency

between successive two measurements

∆νz = νz;i+1 − νz;i (5.13)

is recorded for different averaging times. Measurement of ∆νz is sequentially repeated to

construct a histogram. The histogram is fitted by a Gaussian function to obtain its 1σ

standard deviation. Measured histograms with three different time constants are shown in
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Figure 5.8: Measure axial frequency stability for averaging time of 2 s (blue), 64 s (green),
and 1024 s (orange).

Fig. 5.8. As can be seen, the scatter of axial frequency ∆νz depends on the averaging time

and is the best with 64 s among the three histograms.

The axial frequency stability for a wider range of averaging time is shown in Fig. 5.9.

Each point corresponds to the fitted 1σ width in Fig. 5.8. The relativistic shift |δrel/(2π)| =

0.07 Hz is shown with the red line. With the current apparatus, the relativistic shift regime

is barely reachable, with a margin of only about 1.7. About 3σ of margin is required to

make a stable measurement of g-factor. The gain from C6 = 0 trap can lower the t−0.5
ave line.

These two improvements will make the relativistic detection possible.

167



1−10 1 10 210 310
 (s)avet

2−10

1−10

1

) zν∆(σ

-0.5)
ave

(t 1)
ave

(t

Figure 5.9: Measured axial frequency fluctuation σ(∆νz) for different averaging times. The
short time range is dominated by random scatter, and the long time range is dominated by
the drift from the bias voltage supply. The relativistic bottle size δrel/(2π) is shown by the
red dashed line.

5.4 Quantum Limited Detector With a New Magnet

Reducing Tz will narrow the linewidth ∆ωc directly. In the current measurement, the

axial temperature Tz is limited by the used HEMT amplifier. The dilution refrigerator

can reach 25 mK if the amplifier is off, but the temperature increases to 80 mK when

the amplifier is on. Additionally, heating of electron’s Tz depending on the bias power is

observed. Therefore, the HEMT amplifier must be replaced to achieve lower Tz.

We have developed a new quantum limited detector to achieve lower Tz. The detector

is based on a Superconducting Quantum Interference Device (SQUID). A SQUID is a very

sensitive magnetic field sensor, having sensitivity at a level of ∼fT/
√

Hz. It is so sensitive

that it can be used as an amplifier of an electric signal by detecting the induced magnetic

field. Moreover, we employ a SQUID with a resonant input coupling coil, called Microstrip

SQUID amplifier (MSA), which can operate in the RF range. The typical bias power of the

HEMT amplifier is about 50 µW. An MSA can achieve the same gain with about 1 nW of

bias power.
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Figure 5.10: The schematics of a DC SQUID.

5.4.1 Superconducting Quantum Interference Device

A SQUID consists of two Josephson junctions connected in parallel (Fig. 5.10). Each

junction has a parasitic capacitance C and is shunted by a resistor Rsh. The SQUID loop

has a geometrical inductance of L. When it is biased by a constant current Ib, the voltage

drop across the loop is a periodic function of the magnetic flux through the loop Φ

VSQ = Rsh

√
I2

b − 4I2
0 cos2

(
πΦ

Φ0

)
, (5.14)

where Φ0 = h/2e = 2× 10−15 T/m2 is the flux quantum.

In the typical operation parameter, Ib = 2I0 and Φ = 2n+1
4

Φ0, the sensitivity to flux

change is ∣∣∣∣dVSQ

dΦ

∣∣∣∣ =
√

2
πRshI0

Φ0

(5.15)

For example, with Rsh = 10 Ω and I0 = 10 µA, the slope is dV/dΦ = 2 × 1011 V/(Tm2).

This estimate illustrates the SQUID’s sensitivity if flux is efficiently coupled to its loop. The

concept of the MSA is to couple the magnetic field from RF input current to the SQUID

loop by a resonant coil and detect the output voltage VSQ.
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Figure 5.11: Schematic diagram of a microstrip SQUID amplifier.

5.4.2 Microstrip SQUID Amplifier

In traditional DC SQUIDs, the input current is coupled to the SQUID loop by winding

coils on top of the loop. The current flowing through the loop generates magnetic flux

through the loop. This coupling works well at low frequencies below a few 10 MHz, but the

gain drops significantly at higher frequencies because of the capacitive coupling between the

input coil and the SQUID washer [108].

An alternative approach to operate at higher frequencies is to feed the input signal from

one end and leave the other end open. The inductance and capacitance of the input coil

and SQUID plane form a resonant circuit. When the microstrip line’s length is equal to

half of the input signal’s wavelength λ/2, resonance is formed and the SQUID has a high

gain. This coupling scheme and the resulting amplifier is called microstrip SQUID amplifier,

MSA (Fig. 5.11) [109].

MSA is known to have gain higher than 20 dB up to a few GHz. The noise temperature

is typically below the ambient physical temperature and limited by the standard quantum-

limited (SQL) at high frequency. The standard quantum limited temperature at 200 MHz
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is

TSQL =
~ωz
kB

= 9.6 mK× ωz/(2π)

200 MHz
. (5.16)

Our ambient temperature is 25 mK, very close to the SQL temperature.

Our MSA is fabricated by ez-SQUID [110]. The microstrip SQUID amplifier has been

mainly used at higher frequencies [109, 111–113]. Our MSAs are designed for the trapped

electron’s axial frequency ωz/2π = 100–200 MHz. We test an MSA optimized for 230 MHz

operation. Figure 5.11 shows the schematics of the MSA. It consists of a dc SQUID and

a microstrip resonant input coupling circuit resonant at around 200 MHz. The SQUID

consists of a niobium washer, Josephson junctions, resistive shunts, and a niobium counter

electrode. The washer is made of 600 µm×600 µm niobium on an oxidized silicon substrate.

It has a slit with width of d = 10 µm and length of l = 300 µm to form a SQUID loop. The

Josephson junctions are made of about 3 µm2 of Nb-Al-AlxOy-Nb with a critical current of

about I0 = 10 µA. Each junction is shunted by a resistor Rsh = 10 Ω made by palladium.

The other side of the junction and the shunt is connected to a grounded niobium counter

electrode. The inductance of the SQUID loop is estimated to be LSQUID = 100 pH based

on [114].

An RF signal is coupled to the SQUID by a niobium microstrip resonator printed on

the SQUID washer (Fig. 5.11). The microstrip line and the SQUID washer are insulated

by t = 300 nm of SiO, whose permittivity is ε/ε0 ≈ 5. The microstrip line has spacing

and width of both 5 µm and is wound for N = 33 turns. The end of the microstrip line is

left open to form a resonant circuit. The microstrip line’s distributed inductance and the

capacitance between the SQUID washer form a resonant circuit at around 200 MHz.

The RF output signal is coupled through a large capacitor. The Josephson junctions are

biased by a constant current source with a low pass filter. A flux bias coil is also placed

beneath the SQUID washer to adjust DC flux Φ through SQUID. These DC and RF filters

and bias coils are designed not to affect each other.
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Figure 5.12: The gain of our fabricated microstrip SQUID amplifier. Ib = 11 µA and
Pin = −120 dBm.

Power Gain

The first figure of merit of the MSA is its power gain. A power gain of more than 20 dB

is desired to replace the HEMT. The input and output impedance are close to 50 Ω, so we

measure the power gain with the standard 50 Ω cables. Figure 5.12 shows the measured

gain of the fabricated MSA. As designed, our SQUID has a maximum gain higher than

20 dB at around 230 MHz. The axial oscillation frequency can be tuned to this maximum

frequency. The bias current is only Ib = 11 µA, which corresponds to a power dissipation of

I2
bRsh = 1.2 nW.

Noise Temperature

The theoretical noise temperature of MSA is about half of the bath temperature (25 mK)

[109]. The quantum-limited temperature TQ = ~ω/kB at 200 MHz is about 10 mK, so

comparable with the expected noise temperature.

We measure the noise temperature of the MSA at 3.6 K with a pulse tube refrigerator.

The noise temperature can be measured from the detected noise power on a spectrum ana-

lyzer. The noise temperature of the following stage amplifiers is designed to be negligible.
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Figure 5.13: Measured noise temperature of the MSA at 3.6 K. The conventional HEMT
amplifier used for the best measurement [7] is also shown.

Therefore, the noise temperature Tn of the MSA is measured by

Tn =
P on − P off

Gtot

− Tload, (5.17)

where P on and P off are the measured power on the spectrum analyzer when the MSA is

biased on and off, respectively, Gtot is the total gain of the MSA and its following stage

amplifiers including the losses, and Tload is the Johnson noise temperature of the SQUID

input load.

The noise temperature of the MSA is measured as in Fig. 5.13. The noise temperature

of the conventional HEMT amplifier used in the current measurement is also measured and

shown. The MSA has the lowest noise temperature of about 0.8 K at its resonant frequency.

Compared to the conventional HEMT amplifier, the SQUID amplifier will reduce the noise

temperature by about a factor of 10 even with an operation temperature of 3.6 K. The noise

temperature will be lower by about another factor of 10 when cooled below 100 mK by a

dilution refrigerator.
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Saturation Input Power

The SQUID output voltage responds linearly only near its operation point Φ = Φ0

(
2n+1

4

)
.

If the magnetic field modulation from the input RF coupling coil is too large, the SQUID

will be out of the linear response range, and the gain will decrease dramatically. Figure 5.14

shows the peak gain of the MSA for different RF input power. The gain at its resonant

frequency of 230 MHz is taken at each input power. The gain drops rapidly at around

−105 dBm input.

The electron in the Penning trap is sometimes driven very strongly to characterize its

behavior. Especially when a self-excitation scheme is applied, the electron has a peak-to-

peak amplitude of 1 mm [67]. The induced power from the electron can be calculated based

on the geometry of the trap and electronics to be −140 dBm [54], as in Fig. 5.14, thus much

lower than the saturation threshold.

When the electron is not driven by an external drive, the signal from the Penning trap

is much smaller. The only input power is the Johnson noise from the detection resonator

at 25 mK, whose bandwidth is typically 0.3 MHz [51]. The input power can be calculated

from the well-known Johnson noise P = kBT∆f and is only about −160 dBm, again much

smaller than the saturation threshold.

Impedance Matching to the Single Electron

One of the most challenging part is to couple the MSA to the Penning trap. Conven-

tionally, the first stage amplifier is placed as close as possible to the Penning trap to avoid

additional RF losses. The MSA must be placed about 50 cm away from the trap to operate

in a low magnetic field (Sec. 5.4.3). Therefore, we implement a new RF impedance matching

circuit and couple the electron’s signal to the amplifier.

Figure 5.15 shows the equivalent RF electronics diagram of the Penning trap. Typically,

the electrode has a parasitic capacitance of about Cp = 8.2 pF. A tune-out inductor L =

L1 + L2 = 80 nH is attached in parallel so that their impedance at ωz/2π ≈ 200 MHz
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Figure 5.14: Measurement of saturation of the MSA gain. The gain at the resonant frequency
is measured for different input power Pin. The signal from a strongly driven electron is also
shown [67].

cancel each other. The effective parallel resistance between the electrodes at resonance is

approximately Reff = 60 kΩ at 230 MHz. This value is made to be as high as possible. At

its resonant frequency, the resonator is effectively represented as a power source with an

output impedance of Reff .

The signal needs to be efficiently transferred to the MSA at about 50 cm away. For

flexibility, we use a conventional 50 Ω coaxial cable to transmit the signal. RF impedance

matching was achieved by two stages tap scheme; the inductive tap L1 and L2 and capacitive

L2
Cp

MSA

Penning trap

L1

C2

C1

Reff

50cm

Z0=50Ω

resonator 
and 
inductive tap

capacitive tap

Figure 5.15: RF electronics to detect and impedance match the particle to the MSA ampli-
fier.
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Figure 5.16: Noise resonance observed with the MSA compared to HEMT amplifier.

tap C1 and C2. They are designed so that each can be treated as an independent tap-down

scheme near the frequency of interest. The inductor is tapped at L1 = 60 nH and L2 = 20 nH,

and the capacitors are C1 = 2.0 pF and C2 = 20 pF respectively. Theoretically, the net

transformed impedance of the resonator is

Reff

(
L2

L1 + L2

)2(
C1

C1 + C2

)2

≈ 31 Ω. (5.18)

Since the particle’s dip width is also proportional to the effective parallel resistance, the

amplifier is undercoupled to keep the particle’s dip width large enough to be observed.

In the actual experiment, the value of C2 is adjusted to get the highest loaded Reff and

signal-to-noise ratio.

The noise resonance from the RLC circuit with an MSA is measured in Fig. 5.16. All

electronics and amplifiers are cooled to 3.6 K. The noise signal is also compared with a con-

ventional HEMT-based amplifier. The quality factor is about 750 with the HEMT amplifier

and 720 with the MSA. Both of them are large enough to detect a single electron.

The figure of merit is the amplitude of the resonance compared to the broad baseline

noise, SNR. The MSA shows nearly a factor of 10 improved signal-to-noise ratio compared
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to the conventional HEMT amplifier even at 3.6 K. This result is also consistent with the

measured noise temperature in Fig. 5.13. By using a dilution refrigerator and cooling down

to 100 mK or below, the MSA noise temperature and thus the signal-to-noise ratio will be

improved by another order of magnitude.

Based on the measured characteristics, a factor of 20 reduction of Tz, from 0.5 K to

25 mK, should be possible. The following section describes the shielding of the magnetic

field, a crucial development required for operation of a SQUID amplifier in our apparatus.

5.4.3 Magnet with low fringe field and its shielding

To operate the developed MSA with the Penning trap, a new magnet is designed. The

Penning trap’s magnetic field is about 5.3 T. On the other hand, the SQUID is sensitive to

fT scale magnetic field variation. The SQUID needs to be attached to the mixing chamber

of the dilution refrigerator. The mixing chamber stage is only 50 cm away from the magnet

center. The field at this point needs to be low and stable enough for the operation of the

SQUID. A new superconducting magnet and a superconductor-based magnetic shield are

designed and manufactured to overcome this challenge.

Superconducting Magnet with a Cancellation Coil

A new solenoid magnet with a much faster drop of the fringe field than ordinary solenoid

magnets is designed and fabricated (Fig. 5.17). Its principle is to have an inner small

main solenoid magnet, about 7 T, and an outer large counteracting solenoid, about −1.7 T

together. Two solenoids are connected in series, but the direction of the magnetic field is

opposite. At the center of the trap, the subtracted field value of the two is B = 5.3 T.

However, as one goes away from the center, the field from the inner solenoid drops more

sharply than the outer larger solenoid. As a result, cancellation of the fringe field can be

achieved at short distance.

The mixing chamber stage is about 50 cm away from the center the trap. If an ordinary
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Figure 5.17: (a) The schematic of the newly designed magnet. The inner small coil applies
about 7 Tesla to +z direction, and the outer larger coil applies −1.3 Tesla to −z direction.
(b) The magnetic field of the newly designed magnet. A typical magnetic field from the
same size magnet without the cancellation coil are also shown. The SQUID will be placed
at about z = 50 cm. The lower critical field of niobium is also shown.

solenoid magnet with the same size were used, the field at the mixing chamber would be

about 0.25 T. Due to the newly designed cancellation coil, the magnetic field value at the

mixing chamber stage becomes about an order of magnitude smaller, 0.03 T. This order of

magnitude improvement allows using a niobium superconducting shield, whose lower critical

field is 0.19 T. Niobium single layer magnetic shield suffices for MSA operation. We also

implement an outer higher temperature shield, discussed in the next section.

Double Layer Superconducting Magnetic Shield

The new magnet allows us to use a niobium superconducting shield. Ideally, if the shield

is cooled first and the magnetic field is ramped later, a single layer niobium shield is suf-

ficient to shield the ambient field of 0.03 T at the mixing chamber. However, discharging

and ramping the superconducting magnet every time is inefficient. Therefore, for an oper-

ation without changing the magnetic field, we implement a Bi-2223-based outer magnetic

shield (CST-22/100, CAN superconductor) in addition to the niobium inner superconducting

shield (Fig. 5.18).

The inhomogeneity of the field at the center of the trap caused by the niobium and the Bi-
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Figure 5.18: Superconducting double layer magnetic shield by niobium and Bi-2223.

2223 shield is calculated to be about 2.5 ppb for 1 cm diameter spherical volume (DSV) using

the finite element analysis method (ANSYS). This is much smaller than the superconducting

magnet’s inhomogeneity, 24 ppb for 1 cm DSV [70]. Bi-2223’s purpose is to shield the

magnetic field during the cooling process. It becomes superconducting at T = 110 K at

around 1.5 m away from the center, where the ambient magnetic field is 0.3 mT. At that

location, the Bi-2223 shield traps this 0.3 mT field, but also shields further increase of the

magnetic field inside until the inner niobium shield reaches its transition temperature. Once

the niobium shield becomes superconducting, it works as the primary magnetic shield. With

this double layer design, we can operate SQUID in a low enough field without turning off

the magnet every time.
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idea effect improvement on ∆ωc
new trap with C6 = 0 ×20 more harmonic trap 20
direct spin flip ×10 longer averaging time 3
SQUID detector ×50 smaller Tz 50

Table 5.2: List of possible improvements for g-factor measurement.

5.5 Summary of Improvements and Remaining Devel-

opments

We have proposed three methods to improve the precision of g-factor measurement. The

methods and improvements are summarized in Table 5.2. Better anharmonicity will re-

sult in smaller fluctuation of νz (Eq. 5.8). Longer averaging time allows better resolution

of axial frequency shift (Fig. 5.9). Lower axial temperature narrows the linewidth dras-

tically (Eq. 5.4). Improvements of the axial frequency resolution σωz allow for a smaller

magnetic bottle B2 and narrower linewidth (Eq. 5.4).

Notice that the improvements here are estimates based on the achieved parameters.

In the following section, we summarize other important developments and challenges and

propose possible solutions.

5.5.1 Driving Anomaly Transition without a Magnetic Bottle

One concern in the relativistic bottle scheme is that we cannot use the magnetic bottle

gradient to drive the anomaly transition (Sec. 2.3). In the current method, the electron is

axially modulated by an RF drive, and the ρ direction magnetic field from the magnetic

bottle induces the anomaly transition. If the magnetic bottle is completely eliminated, this

drive scheme will not work.

We now go back to the first principles calculation and estimate the possibility of driving

from a split compensation electrode. When an alternating transverse magnetic field

B(t) = b1ρ cos(ωat) (5.19)
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is applied, the Rabi frequency for anomaly transition is [104]

Ωa =
egb1

4m

√
2~
mωc

(5.20)

The transition probability also depends on the anomaly transition’s linewidth ∆ωa. The

required drive power is lower for a narrower line. The transition probability is approximately

given by

P =
π

2

Ω2
a

∆ωa
∆T, (5.21)

where ∆T is the drive length. The linewidth ∆ωa will be limited by the synchrotron radiation

rate in the relativistic bottle regime, and a realistic value with current trap at νc = 150 GHz

is ∆ωa/(2π) = 0.02 Hz.

To get a transition probability of 50% with ∆T = 30 s drive, a Rabi frequency of

Ωa/(2π) = 0.006 Hz is required. From Eq. 5.20, the required b1 gradient to achieve this value

is b1 = 2.6× 10−5 T/m. Our traditional excitation scheme achieves this size of modulation

by modulating the axial amplitude to about za = 100 nm with B2 = 300 T/m2.

In the proton’s experiment, a split compensation electrode has been used to drive the

spin-flip transition [115,116]. The current flowing through the split compensation electrode

generates the b1ρ field. The magnetic field gradient from current I flowing through a split

compensation electrode with radius a and distance l (Fig. 5.19) is given by

b1 =
3µ0I

4

a2l

(a2 + l2)5/2
. (5.22)

Taking the designed values of the new trap (Table 5.1), a = ρ0 = 2.5 mm and l =

z0 − zc = 0.8 mm, then one needs I = 0.58 mA to achieve b1 = 2.6× 10−5 T/m. Assuming

it is driven through a 10 Ω load, then the dissipated power is about 3.3 µW.

This power dissipation is manageable in the dilution refrigerator, but is still much larger

than the drive we currently use for spectroscopy. The drive power for the current spec-
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Figure 5.19: Current model for generating transverse magnetic field drive B1 by split com-
pensation electrode.

troscopy is about 0.6 µW. The drive power when anomaly power shift is studied is 18 µW

at maximum. We did not observe the shift of cyclotron frequency, but its effect needs to be

studied carefully.

One possibility to reduce the required drive power is to narrow the linewidth ∆ωa. In

the relativistic bottle regime, the linewidth will be limited by the synchrotron radiation rate

γc. The radiation rate roughly scales with the square of the magnetic field, so the proposed

measurement at 100 GHz or below also helps. Research about trap material and coating is

also ongoing to improve the quality factor of the cavity. Any improvement of γc will help

this anomaly drive scheme.

5.5.2 Microwave Cavity Shift

Once the transition linewidth is narrowed, the largest systematic error is the shift from

the microwave cavity. Ideally, one wants to construct a much smaller trap, but then the

effect from the gaps will be more dominant. Another way to reduce the cavity effect is to

move to lower cyclotron frequencies. In the past, the cyclotron frequency was chosen to be
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as high as possible because the linewidth from the magnetic bottle has been the dominant

linewidth

∆ωc
ωc
∝ B2

B
. (5.23)

Higher magnetic field (and thus cyclotron frequency) is preferred because the relative un-

certainty is smaller.

Once the B2 is reduced enough that it is not the dominant error anymore, we can reduce

the magnetic field B and lower ωc to suppress the cavity effect. The density of cavity mode

scales as

(density of cavity modes) ∝ ωc. (5.24)

Therefore, for example, a three times lower cyclotron frequency will suppress cavity shift by

a factor of 3.

5.5.3 Other Challenges

The broadening of cyclotron frequency needs to be studied. The fact that it only appears

in the cyclotron transition but not in the anomaly transition suggests that the timescale of

the noise is between ∆ωa/(2π) = 0.2 Hz and ∆ωc/(2π) = 200 Hz. The relativistic bottle

scheme with SQUID detector will reduce the linewidth to ∆ωc/(2π) = 1 Hz. This should

improve the robustness of the cyclotron line against the noise..

Once the cyclotron broadening is made as narrow as ∆ωc/(2π) = 1 Hz, then its linewidth

will be limited by the axial damping rate γz. In the current measurement, the damping rate

is γz/(2π) = 5 Hz. A new RF switch has been developed to further narrow down this

linewidth [94,95,117].

The requirement for axial frequency stability will become more stringent. We are now

using the Stahl UM-LN1-14 power supply with a 2000 s cryogenic low pass filter. The hour

scale drift is about 0.5 Hz, and the 10 s scale short-term fluctuation is smaller than 0.2 Hz.

Currently, the short-term stability is not very precisely measured because it is limited by the
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axial frequency resolution of the self-excitation. The proton’s experiments achieved better

long-term stability [115, 118–120]. Based on Fig. 5.9, the drift is negligible for averaging

time less than 100 seconds. If better long-term stability is needed, a low pass filter with a

longer time constant can be used.

The drift and stability of the magnetic field will be more critical. The target linewidth in

the relativistic bottle is ∆ωc/ωc = 6×10−11. The magnet has a drift rate of about O(10−10)

per hour. If we spend longer time to improve axial frequency resolution, the effect of drift

also becomes more significant. For example, if we spend 100 seconds to resolve one quantum

transition, then a drift rate of 10−10/hour corresponds to broadening of ∆ωc/ωc = 3×10−12.

This is still manageable, but needs to be monitored and compensated carefully.

Despite all the challenges listed here, there are no fundamental reasons that limit the pro-

posed scheme. A significantly improved magnetic field homogeneity and lower temperature

will improve the precision at least by another order of magnitude.

184



Chapter 6

Search for Dark Photon using a

Single Electron

The established cylindrical Penning system with a single electron quantum cyclotron

is so well understood and controlled that it can also be used for searches of dark photon

dark matter. The electron quantum cyclotron, trapped at its ground state, is completely

background-free due to the ultracold ambient temperature achieved by the dilution refrig-

erator. In this chapter, the physics of dark matter and dark photon is first reviewed in

Sec. 6.1. The idea of a dark photon search using the single electron quantum cyclotron is

explained in Sec. 6.2. The actual measurement and obtained limit are shown in Sec. 6.3,

and future prospects in such a search are described in Sec. 6.4. The results presented here

are in collaboration with Peter Graham, Harikrishnan Ramani, Samuel S. Y. Wong, and

Yawen Xiao from Stanford University, and Roni Harnik from Fermi National Accelerator

Laboratory. Part of the work here is summarized and published in [121]

6.1 Dark Matter and Dark Photon

Dark matter is one of the most important mysteries of the standard model of particle

physics. Despite an abundance of evidence [122–127], its interaction remains a mystery
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except for the gravitational force. Its direct detection will open a new path for physics. The

dark photon is a promising candidate for dark matter and motivated particle from many

theories beyond the Standard Model. The nature of DM and DP is summarized in this

section.

6.1.1 Dark Matter

Cosmological observations revealed that the Standard Model’s particles only consist of

4.9 % of the total energy in the universe [128]. The remaining 26.8 % consists of dark

matter (DM), and 68.3 % consists of dark energy. The existence of dark matter has also been

confirmed by many observations, such as the rotation speed of galaxies and the gravitational

lens effects [129].

Over the past decades of observations, several constraints have been set. The most

important features are that the DM is made of non-SM particles which interact weakly with

the SM particles and that it must be moving at non-relativistic speeds to be gravitationally

bound to a galaxy (so called cold dark matter, CDM) [130, 131]. Especially for the DM

bound to our galaxy, the fact that the earth is moving in the same gravitational potential

yields that the DM has a velocity of about v/c = 10−3 [132]. In this non-relativistic limit,

the Doppler shift of a massive particle yields linewidth of the DM signal

∆ωDM

ωDM

≈
(v
c

)2

= 10−6. (6.1)

The candidate particles beyond the SM can be classified into two categories: weakly-

interacting massive particles (WIMPs) that have a mass range of GeV–TeV [133], and

weakly-interacting slim particles (WISPs) with µeV–eV mass range [130, 134]. WIMPs

have been extensively searched with the recoil experiments, but so far, they have not been

detected [135–139]. Efforts to search for WISPs, such as sterile neutrinos, axions, axion-like

particles, and dark photons (DPs), have also been explored [140]. WISPs at ∼meV range
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are especially motivated by the dark energy density of the universe ρΛ ∼ (meV)4, the en-

ergy scale of the neutrinos, and the minimal dark photon dark matter model with purely

gravitational production [141].

Because of its light mass, the best methods to search for WISPs are low-energy ex-

periments using lasers, microwave cavities, or optomechanical systems [134]. Several ex-

periments have been proposed to explore this parameter space, but there is a gap in the

limit at the 10–200 GHz range. Below 10 GHz, the limits are mostly from the sensitive

dark matter haloscope experiments using a high-Q resonant cavities (e.g. ADMX [142,143],

CAPP [144–146], and HAYSTAC [147,148]) . However, its Q-factor drops sharply at above

10 GHz (or 0.04 meV). At the same time, the technology for single photon detection is not

widely available below 200 GHz [149].

The method proposed and demonstrated here explores this gap using a trapped electron.

The cyclotron motion of the electron is used as a background-free detector of CDM. Using

this highly controlled and well-understood system, we demonstrate a background-free search

of dark photon dark matter.

6.1.2 Dark Photon

The target in our search using the trapped electron is the dark photon (DP). The DP

is the gauge boson of a new U(1) symmetry added in the extended SM theory [150]. It is

analogous to the SM ordinary photon, except that the added DP field A′µ can have mass mA′

and kinetic mixing parameter χ with the ordinary electromagnetic field Aµ. The extended

Lagrangian (in natural units) includes

L ⊃ −1

4
F ′µνF

′µν − χ

2
FµνF

′µν +
m2
A′

2
A′µA

′µ, (6.2)

where Fµν and F ′µν are the field strength for the SM photon and the DP, respectively. The

mixing parameter χ yields conversion from the DP to the ordinary photon (Fig. 6.1). The
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dark photon
A’

ordinary photon
Aχ

Figure 6.1: Feynman diagram showing the kinetic mixing of DP field and the ordinary
electromagnetic field.

value of χ ranges widely depending on the model. For the model that the DP arises from

superstring theory, 10−12 < χ < 10−3 is predicted [134]. There are stringent limits on

allowed mA′ and χ, for example from cosmological observation [130] and solar lifetime [151],

but in general, wide range of mA′ and χ, especially around mA′ ∼meV and χ < 10−9, is

allowed for dark photon dark matter(DPDM).

The equation of motion for the DP follows the Proca equation

[
∂2

∂t2
−∇2 +

(
mA′c

2

~

)2
]
A′µ = 0. (6.3)

The explicit solution of its spatial component is

~A′(~x, t) = A′eiωA′ t~n(~x, t)eiφ(~x,t), (6.4)

where ~n(~x, t) is the unit vector of pointing direction, φ(~x, t) is the phase, and ωA′ is angular

oscillation frequency [152]

ωA′ =
mA′c

2

~
. (6.5)

The direction vector ~n(~x, t) and the phase term φ(~x, t) varies with a coherence length of

λ = c2/(vν) = 2 m × (150 GHz/ν). In our experiment, the typical length of the trap is

about a centimeter, so the position dependence of DPDM can be assumed to be constant.

The coherence time is given by τcoherence = c2/(v2ν). This arises from the Doppler broadening

of the DPDM and is included as the linewidth of DPDM (Eq. 6.1). Therefore, an alternative
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way to express Eq. 6.4 is to assume a spatially uniform field

~A′(~x, t) = ~nA′eiωA′ t, (6.6)

and assume that ωA′ has a spread of ∆ωA′/ωA′ = 10−6. In this picture, ~n is now a position-

independent unit vector.

The local density of the DM is measured to be ρDMc
2 = (0.4± 0.1) GeV/cm3 [153]. We

use a conservative value ρDMc
2 = 0.3 GeV/cm3 in this thesis. Assuming the DM is entirely

made of DP, the energy density is associated with the DP field as

ρDMc
2 =

ε0
2
ω2
A′A

′2. (6.7)

The electric field from the DPDM is then

~EDPDM(~x, t) = χ
∂ ~A′(~x, t)

∂t

= iχ~nωA′A
′eiωA′ t

= iχ~n

√
2ρDMc2

ε0
eiωA′ t.

(6.8)

The exact value using ρCMc
2 = 0.3 GeV/cm3 is

| ~EDPDM| = χ

√
2ρDMc2

ε0
= χ× 33 V/cm. (6.9)

We use the trapped electron’s cyclotron motion as a probe of this electric field | ~EDPDM|. The

DPDM signal is manifested as an excitation of cyclotron motion from the ground state to

the first excited state. Our demonstration search here probes to about χ ∼ 3 × 10−11 at a

single frequency. Future experiments using the demonstrated method can reach χ ∼ 10−10

for a wide range of frequencies.
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6.2 Principle of the Search

In the method proposed here, we employ the single electron in the Penning trap as

the “detector” for DPDM. The idea is to look for the excitation of cyclotron transition

nc = 0 → 1 driven by the DPDM electric field. Here, we revisit several advantages. Some

of them overlap with the other sections, but we rephrase them here in terms of the DPDM

search. Importantly, all features and advantages can be measured in-situ by the trapped

electron itself.

6.2.1 Quantum Cyclotron as a Probe of Dark Photon

The electric field associated with DPDM (Eq. 6.9) can excite the cyclotron state from

nc = 0 to nc = 1 in the absence of any drives. To search for DPDM, we leave the cyclotron

state at nc = 0 and monitor the state without applying an external drive. Resolution of

the quantum states nc has been clearly demonstrated, for example, in Fig. 2.23. A single

quantum transition nc = 0→ 1 can be detected with a very high fidelity, especially when a

large magnetic bottle is used.

One of the unique advantages is the complete suppression of background. Because of the

low temperature achieved by the dilution refrigerator, the quantum cyclotron “detector” is

completely background-free. With the typical experiment parameters, T = 50 mK, B =

5.3 T and γc = 0.14 s−1, excitation from ordinary blackbody radiation is

ΓSM = n̄cγc

=

[
exp

(
~ωc
kBT

− 1

)]−1

γc

= 1.9× 10−62 s−1 ≈ 0.

(6.10)

In this background free limit, the electron is always at the nc = 0 state. If no excitation

event is detected, the upper limit on the DPDM excitation rate ΓA′ is set. In the background
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free regime, the upper limit scales as the inverse of the time

(upper limit on ΓA′) ∝ T−1
obs, (6.11)

where Tobs is the total observation time. The background-free search provides a big ad-

vantage compared to ordinary detectors that have a non-zero background rate, where the

sensitivity scales as T
−1/2
obs .

Another feature is that the required power to drive one quantum cyclotron is very low,

~ωc = 10−22 J at ωc/2π = 150 GHz. The electron is very sensitive to the small field from

DPDM. As we will see later, the electron’s cyclotron motion is narrower than the DPDM

linewidth, so the drive force is modeled by an incoherent source. The excitation rate of

nc = 0→ 1 by an incoherent electric field at the center E0(t) is [154,155]

ΓA′ =
πe2|X12|2

~2

∫
SE(ω)χ(ω, ωc,∆ωc)dω =

∫
πe2

2m~ωc
SE(ω)χ(ω, ωc,∆ωc)dω, (6.12)

where X12 = 〈nc = 0|x̂|nc = 1〉 =
√

~
2mωc

, χ(ω, ωc,∆ωc) is the normalized cyclotron line-

shape function, and SE(ω) is the power spectrum density of E0(t) defined in angular fre-

quency space. The lineshape χ(ω, ωc,∆ωc) is determined by the cyclotron frequency ωc and

its linewidth ∆ωc. When we monitor the cyclotron state nc, the electron is excited to a high

axial amplitude zA along the z axis. This excited amplitude, coupled with the magnetic

bottle gradient B(z) = B2z
2, determines the linewidth ∆ωc = eB2z

2
A/m. The lineshape

function arising from this broadening is given by the Gaussian function

χ(ω, ωc,∆ωc) =
1√

2π∆ωc
exp

[
−1

2

(
ω − ωc
∆ωc

)2
]
. (6.13)
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For the DPDM field, the power spectrum density SE(ω) can be approximated as

SE(ω) =

∫ ∞
∞

E[E0;x(~0, t)E0;x(~0, t+ τ)]e−iωτdτ

=


|E0;x|2
2∆ωA′

, if ωA′ < ω < ωA′ + ∆ωA′ .

0, otherwise.

(6.14)

Here, E[X(t)X(t+ τ)] is the auto-correlation function and E0;x(~0, t) is the x-component of

the electric field at the center of the trap generated by the DPDM. Notice the factor 2 in the

denominator because we are calculating the average power spectrum density. The excitation

field at the center of the trap E0;x(t) is not exactly equal to EDPDM(t) because of the Penning

trap cavity and random polarization of the DPDM field. They are related by a coefficient κ

as

| ~E0;x(~0, t)| = κ× | ~EDPDM|eiωA′ t ×
√
〈sin2 θ〉

= κ× χ

√
2ρDMc2

ε0
eiωA′ t ×

√
〈sin2 θ〉.

(6.15)

Here, κ represents the enhancement from the geometry of the Penning trap, and
√
〈sin2 θ〉 =√

2/3 is the expectation value of DPDM’s random direction ~n (pointing at polar angle θ)

projected to the cyclotron motion’s plane (xy-plane). We now calculate κ in detail in the

following subsection.

6.2.2 Enhanced Sensitivity by the Cylindrical Penning Trap

The cylindrical microwave trap electrode not only increases the cyclotron lifetime, but

also enhances the DPDM signal amplitude. We will see that the correction coefficient κ is

larger than 1 in a broad range even away from any cavity resonance. The electric field at

the trap center E0;x(~0) driven by the DPDM field ~EDPDM (Eq. 6.15) is calculated as follows.

The DPDM field can be treated as an electric field drive source of the cavity. The electric
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field of the driven cavity at the location ~x is given by [156]

~E0(~x) =
∑
M

ω2

ω2 − ω2
M

∫
dr ~E∗M(r) · ~EDPDM(r)∫

dr| ~EM(r)|2
~EM(~x), (6.16)

where M runs all the resonant microwave modes (TEmnp and TMmnp for the cylindrical cav-

ity), and ~EM(r) is the electric field of the corresponding resonant mode. Since the coherence

length is much larger than the cavity size, the DPDM field is treated as a uniform field. The

random polarization factor 〈sin2 θ〉 (Eq. 6.15) allows us to assume that the direction of the

DPDM field is along x-axis ~EDPDM = | ~EDPDM|~ex. These two conditions simplify Eq. 6.16 as

~E0(~x) =
∑
M

ω2

ω2 − ω2
M

| ~EDPDM|
∫
dr ~E∗M(r) · ~ex∫

dr| ~EM(r)|2
~EM(~x). (6.17)

The κ from Eq. 6.15 is defined by the ratio of the amplitude of field at the center ~x = ~0,

κ =
~E0;x(~0)

| ~EDPDM|
=
∑
M

ω2

ω2 − ω2
M

∫
dr ~E∗M(r) · ~ex∫
dr| ~EM(r)|2

EM(~0)x, (6.18)

The resonant modes and the frequencies are mapped using a cloud of electrons. For DPDM

search, we use ρ0 = 4.527 mm and height 2z0 = 7.790 mm by fitting only the resonances

around 150 GHz. We calculate κ using this ideal cavity geometry and then correct the

actually measured frequency for the modes between 130 GHz and 160 GHz. Figure 6.2

shows the obtained κ2, with the line indicating the DPDM measurement frequency in this

thesis.

κ represents the enhancement of the DPDM field at the center of the trap. In a free space

with no cavity, κ is equal to 1. The excitation rate scales as ΓA′ ∝ | ~E0|2 ∝ |κ|2| ~EDPDM|2.

Therefore, to perform a sensitive search of the DPDM field, higher |κ|2 is desired. The

enhancement |κ|2 is obviously high near resonant modes, but it is also high even off res-

onance (Fig. 6.2). The cylindrical cavity wall focuses the converted electric field at the

center of the cavity and yields higher |κ|2. The ordinary photons, driven by DPDM and

193



0 50 100 150 200
cyclotron frequency (GHz)

4−10

2−10

1

210

410

610

810

2 κ
0 1 2 3 4 5 6 7

magnetic field (T)
0 1 2 3 4 5 6 7

magnetic field (T)

130 135 140 145 150 155 160
frequency (GHz)

3−10

2−10

1−10

1

10

210

310

410

510

610

710

2 κ

13
5

TE

14
3

TE

11
7

TE 12
7

TE

14
5

TE

15
1

TE

Figure 6.2: Calculation of κ for wide range (left) and for the range around this search (right).
The frequency demonstrated in this thesis, ωc/(2π) = 148 GHz, is indicated by the dash
line.

(a) (b)

Figure 6.3: Enhancement of DP induced electric field (red arrow) by a cylindrical trap (a)
and a spherical trap (b). DP induced field (red arrow) is emitted perpendicularly from the
wall and is focused at the center of the trap.

emitted from the cylindrical circumference 2πρ0, are focused at the center to its wavelength

λ = 2πc/ω,. Therefore, for a cylindrical cavity, the power is approximately enhanced by

[Fig. 6.3(a)].

|κ|2 ' ρ0ω

c
(6.19)

We later see that this focusing effect is even higher for spherical cavity [Fig. 6.3(b)] in

Sec. 6.4, which is consistent with the intuitive description here.
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dark photon
search

・・・

3h or 6h

Figure 6.4: Measurement cycle for the DPDM search. The cyclotron resonance line shape
χ(ω, ωc,∆ωc) is measured in period. In the dark photon search period, no external drive is
applied, and the electron is kept at nc = 0. Excitation to nc = 1 from DPDM is searched.

6.3 Search for Dark Photon Dark Matter

With the method described above, a search for DPDM is performed with the same trap

used for the g-factor measurement. The measurement sequence and the result of the search

are described in this section.

6.3.1 Measurement Sequence

The measurement sequence is shown in Fig. 6.4. It consists of two periods, (I) lineshape

measurement and (II) DPDM search period. The lineshape measurement period is to map

the cyclotron lineshape χ(ω, ωc,∆ωc), and the search period is to look for cyclotron excitation

of the electron from DPDM field. The lineshape measurement is repeated regularly, typically

every 3 or 6 hours. The axial self-excitation is used to resolve the cyclotron state quickly

and is kept on with the same amplitude in both periods.

(I) In the lineshape measurement period, a microwave drive is deliberately applied to

measure cyclotron line shape χ(ω, ωc,∆ωc). The average quantum number nc is measured

as the drive frequency is swept. Because of the self-excited axial oscillation, the line shape

is broader than the one in the g-factor measurement (Chap. 4) . Due of the coupling with

the magnetic bottle B2z
2, the linewidth is given by ∆ωc/ωc = B2z

2
A/B. This width is set to

be

∆ωc
ωc

= 2.2× 10−7 (6.20)
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Figure 6.5: Measured line shape with the axial self-excitation on. The quantum number nc
is measured as a function of the microwave drive frequency.

and is comparable with the DPDM field ∆ωA′/ωA′ = 10−6, which yields the widest sensitiv-

ity (Fig. 6.5).

The line shape mapping is repeated to measure the drift rate of the magnet. The drift

rate is measured to be less than 1 ppb per hour by the 3He NMR probe (Chap. 3) and one

electron’s cyclotron frequency (Chap. 4). Both measurements already guarantee that the

drift is much smaller than the linewidth here. This repeated line shape measurement is still

necessary to prove that χ(ω, ωc,∆ωc) stays the same during the search. Figure 6.6 shows the

repeated measurement of χ(ω, ωc,∆ωc). The plot shows time in the x-axis, drive frequency

in the y-axis, and the average quantum number nc is plotted in the z-axis with color. The

result confirms the expected low drift rate during the whole measurement.

(II) During the search period, the cyclotron quantum state nc is monitored without any

external drive. The axial frequency averaged for tave = 2 seconds is repeatedly measured.

The drift of the axial frequency longer than 600 s is regulated by PID control of the ring

voltage. The axial oscillation amplitude is set to be the same throughout the whole mea-

surement. The first 24 hours of the result is shown in Fig. 6.7. We define the measured
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Figure 6.6: Measured nc every 3 hours. The color represents measured nc.

run # time (day/hour:minute) observation length (s)

1 11/ 12:46 – 13/ 13:15 148058
2 14/ 18:26 – 15/ 11:33 58162
3 15/ 11:50 – 17/ 17:22 179698
4 17/ 18:38 – 18/ 18:40 80640
5 19/ 12:15 – 21/ 15:43 172312

total — 638870

Table 6.1: Data sets for DPDM search in March 2022. Each run consists of the repeated
measurement cycle in Fig. 6.4.

quantum number as

ñc ≡ (νz shift)/(δc/2π). (6.21)

Notice that ñc is now a continuous number because it is defined from the measured axial

frequency shift. No evident excitation to nc = 1 is observed during this period.

The data sets for the DPDM search are summarized in Table 6.1. The search is split

because of practical reasons such as cryogen fill, ramping of a nearby magnet, and mainte-

nance of the helium pressure system. The limits to excitation rate ΓA′ and DP parameters

χ and mA′ are calculated quantitatively in the next section.
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Figure 6.7: Monitored quantum state ñc for the first 24 hours. Breaks that correspond to
line shape measurements are visible.

6.3.2 Limit on Dark Matter Dark Photon

The measured quantum state ñc scatters with σ = 0.13 standard deviation (Fig. 6.8). We

define event with ñc > 5σ = 0.65 as an excited event. Conversion to the DPDM excitation

rate ΓA′ requires careful estimate of detection efficiency ζ. Even if there is an excitation,

if it immediately decays back to the nc = 0 state, we will not detect it. The quantitative

estimate is as follows.

An excited event nc = 1 has lifetime of τc = 7.2 (2) s. If there is an excitation at t = 0,

the probability that it decays back to nc = 0 between t and t+ dt is given by

P (t)dt =
1

τc
exp

(
− t

τc

)
dt. (6.22)

The detection efficiency of DPDM excitation ζ is estimated by calculating the probability

that an excited event stays longer than 5σ × tave=1.3 seconds and is recorded above the

detection threshold

ζ =

∫ ∞
1.3s

1

τc
exp

(
− t

τc

)
dt = 83 %. (6.23)

The conversion to ΓA′ is now straightforward. Using the standard estimate of an upper
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Figure 6.8: Distribution of measured ñc. It has standard deviation of σ = 0.13 × δc/(2π).
The 5σ detection threshold is also shown.

limit of a null measurement [157], the upper limit on the DPDM excitation rate with CL =

90% confidence level is

ΓA′ < −
1

ζTtot

log (1− CL) = 4.33× 10−6 s−1 (6.24)

The conversion to DPDM mass mA′ and mixing parameter χ can be done using Eq. 6.12.

|κ|2 is calculated to be 2.37 at ωc/(2π) = 148.047 856 GHz. The obtained limit, compared

with other experiments, is shown in Fig. 6.9. The limit for solar DP search from XENON1T

[158–160] and the limit from DM cosmology [130] are also shown.

6.4 Future Improvements

The DPDM search with the quantum cyclotron has been demonstrated in the previous

sections. In this section, we discuss how to improve the sensitivity drastically. Some of the

ideas and developments in this section are especially attributed to the collaborators listed

at the beginning of this chapter.
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Figure 6.9: Obtained limit on dark photon dark matter. The limit from XENON1T [158–160]
and DM cosmology [130] are also shown.

6.4.1 Wide Range Search

An important advantage of using the Penning trap is that the detection frequency can be

easily swept by changing the magnetic field, ωc = eB/m. The magnetic field can be swept

for wide range, as long as the background photon n̄c =
[
exp

(
~ωc
kBT

)
− 1
]−1

is not dominant.

With a typical dilution refrigerator, T = 10 mK, frequency range from 20 GHz to 200 GHz

can be covered. This range is very large compared to the conventional cavity resonant type

search such as ADMX [161].

The axial frequency (so the cyclotron state nc) can be monitored while sweeping the

field. The sweep rate of the magnetic field is very smooth and slow because of the large

inductance of the solenoid coil, ∼ 200 H. The magnet for this purpose does not require high

homogeneity and stability as needed for g-factor measurement, so a cryogen-free magnet

with a pulse-tube refrigerator is the most promising choice. Trap and detection of a single

electron cyclotron transition in such a magnet have been demonstrated with a cryogen-free

magnet in the lab (C2204M, Cryomagnetics, inc.). The magnetic field can be swept while

maintaining the high fidelity detection of cyclotron state nc.
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Figure 6.10: Observed axial frequency shift by cyclotron transition for ne = 2 trapped
electrons. The shift of axial frequency by one electron is half of the original shift δc/(2π).

6.4.2 Detecting Single Cyclotron Excitation from Many Trapped

Electrons

An ideal way to improve the sensitivity is to trap ne (≥ 2) electrons all at nc = 0 state,

and look for single electron’s excitation to nc = 1. If this succeeds, we gain a factor of ne

higher sensitivity in the DPDM search.

With ne trapped electrons, the axial frequency shift from one electron’s cyclotron transi-

tion will be ne times smaller δc/(2πne). We have observed this for two electrons (Fig. 6.10),

and in the past, the same phenomenon with three electrons has been observed [162]. We as-

sume that detecting one transition from ne electrons is reliably possible if B2 is also increased

by ne. The bottle used in this search, B2 = 300 T/m2, is made as small as possible for the

g-factor measurement. Much larger bottles are widely used in the proton’s experiments; for

example 1000 times larger bottle has been used in [115, 116, 118–120]. We conservatively

assume that detecting one transition from ne = 10 electrons should be possible if the bottle

is made larger.
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6.4.3 Large Spherical Cavity

The enhancement factor κ2 from the Penning trap’s boundary condition can be increased

further if we use a spherical Penning trap. The enhancement κ qualitatively comes from the

focusing of emitted photon on the surface of the trap at the center of the trap (Fig. 6.3).

For a cylindrical trap with radius ρ0, the emitted power from the circumference 2πρ0 is

focused to λ = 2πc/ω. For a spherical trap with the same radius ρ0, the emitted power

from the surface 4πρ2
0 is focused to λ2 = (2πc/ω)2. Therefore the focusing is approximately

proportional to

|κ|2 ∝


ωρ0, for cylindrical trap.

(ωρ0)2 , for spherical trap.

(6.25)

The analytically calculated κ2 can be calculated using the analytic solution of spherical

cavity [163]. We only quote the result,

κ =
∞∑
p=1

4

3

ω2(
u′pc

ρ0

)2

− ω2

up
5j1(up)

up4 + (2up − 1
2
up3) sin (2up)−

[
1 + cos(2u′p)

]
u′p

2 − 1 + cos(2up)
,

(6.26)

where jn(x) is the spherical Bessel function and up is p-th zero of jn(x) + xj′n(x). The

calculated κ2 is shown in Fig. 6.11, with ρ0 = 4.5 mm and ρ0 = 25 mm. The κ2 for the

current cylindrical trap is also compared with the black line. The enhancement over a wide

range is visible.

Spherical cavities have not been used, but there is no obvious technical difficulty. The

spherical cavity can be split into 5 electrodes in the same way as the cylindrical cavity

for anharmonicity tuning [163]. Microwave cavity mode should be much better because of

its higher degree of symmetry. The magnetic bottle can be implemented in the same way,

although a much larger bottle is preferred for large cavity, because γz scales as ρ−2
0 . However,

more than two orders of magnitude larger bottle has been used in proton and antiproton

experiments [115,116,118–120]. The only concern is that machining of the spherical trap is
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more challenging, but extreme machining precision is not required for the DPDM search, so

this should be possible. From the estimate here, the spherical cavity is a promising direction

for the DPDM search.

6.4.4 Remaining Challenges and Future Limit

The use of ne electrons and a larger trap with radius ρ0 decrease the axial frequency shift

for one electron’s cyclotron transition as

∆νz (from one cyclotron jump) ∝ B2 n
−1
e . (6.27)

The bottle size scales as

B2 ∝ ρ−2
0 (6.28)
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and the detected power also drops as

P ∝ γzz
2
A ∝ ρ−2

0 z2
A. (6.29)

Since the detected axial oscillation power is a product of γz and oscillation amplitude zA,

the decrease of the axial signal can be compensated to some extent. If the current ring

electrode is replaced by a cobalt-iron electrode, B2 will be 400 times larger than the B2 in

this thesis. Using ne = 10 electrons decrease jump size by 10, and making the trap larger

by 5 decreases by another factor of 25. The axial damping rate γz also decreases by a factor

of 25, but exciting to 5 times larger amplitude should compensate for this. We assume a 5

times larger ρ0 = 25 mm spherical trap is possible.

Future expected limit, with ne = 10 electrons and 1 year total sweep time, using ρ0 =

25 mm spherical cavity is shown in Fig. 6.12. One year of ramping is unrealistic with our

magnet that consumes liquid helium, but is possible with a cryogen-free magnet. A dedicated

apparatus for DPDM search yield much wider sensitivity and open a new method of DPDM

searches.
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Chapter 7

Conclusion

A single isolated electron in a Penning trap yields a new measurement of the electron

magnetic moment

g/2 = 1.001 159 652 180 59 (13). (7.1)

Combined with the Standard Model calculation, this yields an independent determination

of the fine structure constant

α−1 = 137.035 999 166 (16). (7.2)

Comparison of the measured g-factor and the predicted g-factor using an independent mea-

surement of the fine structure constant yields the most stringent test of the Standard Model.

A new dilution refrigerator–superconducting solenoid system with significantly improved

stability has been constructed. The new system has a more robust mechanical joint, which

improves the long-term stability of the magnetic field. A Helium-3-based cryogenic NMR

probe has been invented and used to optimize the homogeneity and the drift rate of the

cryogenic bore magnet. The achieved low drift rate and robustness enables measurement of

the g-factor at many widely different fields for the first time.

The statistical uncertainty has been improved by a factor of 4 because of the newly
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developed system. The large systematic shift—microwave cavity correction—is studied in

an eight times wider parameter range. A new correction model and characterization methods

have been proposed. The g-factor is measured at 11 fields to confirm the new systematic

correction method.

Three developments to improve the systematic error and precision for future measure-

ments have been proposed and demonstrated. A new trap with an order of magnitude better

anharmonicity is proposed and designed. The new trap is smaller than the current trap to

suppress the microwave cavity correction. A new scheme to measure g-factor with direct

measurement of the spin frequency is proposed and demonstrated. A superconducting quan-

tum limited detector has been also developed to achieve 20 times narrower linewidth. All

developments promise an improved measurement of the electron’s g-factor.

The constructed system has been also used to search dark photon dark matter. The

single trapped electron is used as a background-free detector at 0.6 meV. A new limit on

dark photon is set with a week of data. The search demonstrates the sensitivity of the single

electron and guarantees a future search in the 0.1–1 meV range.

The newly constructed system and a better understanding of the systematic error allow

tests of the Standard Model and theories beyond it in many aspects. The same technique

can be applied for the positron’s g-factor measurement, which will be the most precise test

of CPT in the lepton sector.
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Appendix A

Microwave Resonances Probed by a

Cloud of Electrons

The shift of the electron’s cyclotron frequency due to the coupling between the cyclotron

motion and Penning trap’s microwave resonances is the largest systematic shift in the g-

factor measurement (Chap. 4). A cloud of many trapped particles has been used to map

the microwave resonances in situ [51,166]. The resonances are mapped using the amplitude

of parametrically pumped electron oscillators [100, 101, 167], but the detailed mechanism

behind this method was not fully understood.

Here, we report another observation of coupling between microwave resonances and the

axial oscillation—the oscillation of directly axially pumped electrons also depends on the

microwave resonances. In addition to the traditional parametric drive, two different direct

axial pumping schemes are compared: axial drive and magnetron sideband cooling drive.

Although a complete understanding of the coupling has not been established yet, we sum-

marize the observed couplings of axial oscillation and the cyclotron motion here.
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A.1 Mapping Penning Trap Microwave Resonances

The microwave properties of the trap are approximated by an ideal cylindrical cavity

with radius ρ0 = 4.539 mm and height 2z0 = 7.812 mm. The characteristics of an ideal

cylindrical microwave cavity are discussed in detail, for example, in [156]. The resonant

modes are classified in two groups: transverse-electric modes TEmnp and transverse-magnetic

modes TMmnp, where each mode is labeled by three integers: m = 0, 1, 2, ..., n = 1, 2, 3, ...,

and p = 1, 2, ... for TE modes and p = 0, 1, 2, ... for TM modes. The complete expression of

the electric field and magnetic field are:

E = E0

(E)ωmnp
c

(
ρ0

x′mn

)2

sin

[
pπ

2

(
z

z0

+ 1

)]
[
∓ ρ̂m

ρ
Jm

(
x′mn

ρ

ρ0

)
cos
(

(E)ωmnpt∓mφ
)
− φ̂x

′
mn

ρ0

J ′m

(
x′mn

ρ

ρ0

)
sin
(

(E)ωmnpt∓mφ
) ]

(A.1)
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{
ẑJm

(
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ρ
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)
sin
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2

(
z

z0

+ 1

)]
cos
(

(E)ωmnpt∓mφ
)

+
pπ

2z0

(
ρ0

x′mn

)2

cos

[
pπ

2

(
z

z0

+ 1

)]
[
ρ̂
x′mn
ρ0

J ′m

(
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ρ

ρ0

)
cos
(

(E)ωmnpt∓mφ
)
± φ̂m

ρ
Jm

(
x′mn

ρ

ρ0

)
sin
(

(E)ωmnpt∓mφ
) ]}

(A.2)

for TEmnp modes, and

E = E0

{
ẑJm

(
xmn

ρ

ρ0

)
cos

[
pπ

2

(
z

z0

+ 1

)]
cos
(
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)

− pπ
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(
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)2
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(
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ρ
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(
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ρ
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(A.3)
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(A.4)

for TMmnp modes. The corresponding resonant frequencies are

(E)ωmnp = c

√(
x′mn
ρ0

)2

+

(
pπ

2z0

)2

(M)ωmnp = c

√(
xmn
ρ0

)2

+

(
pπ

2z0

)2

.

(A.5)

Here, xmn is the nth zero of the order-m Bessel function Jm(x), and x′mn is the nth zero

of the derivative of the order-m Bessel function J ′m(x). All but m = 0 modes are doubly

degenerate, indicated by the ± sign.

Only TM1np and TM1np modes have non-vanishing transverse electric field at ρ = 0.

Those with odd p have anti-node at the center z = 0 and thus couple to the trapped

electrons strongly. Those with even p have a node at z = 0, but finite axial oscillation

amplitude creates coupling. A large cloud of electrons also generates coupling between

trapped electrons and the modes other than TM1np and TM1np.

Coupling of the microwave resonances and the axial oscillation of driven electrons is

observed in three axial drives: (a) parametric drive, (b) axial drive, and (c) magnetron

sideband drive (Fig. A.1). The details of the drives are explained in Chap. 2. The frequency

of the resonant modes agree with the analytical resonant frequencies within a few percent

of relative uncertainty (Chap. 4).

The vertical axis of Fig. A.1 is the integral of the shaded region in Fig. A.2. Figure A.2

shows the output from the axial amplifier in the frequency domain measured by a spectrum

analyzer. The gray curve shows the spectrum when cyclotron frequency is off-resonant from

any cavity mode, and the black curve is the spectrum when on resonance. For the parametric
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drive (a) and the axial drive (b), the region is defined to cover the center of mass oscillation

power. For the magnetron drive (c), the region is defined to cover the “bump”, which we

interpret as the excitation of the electron cloud’s internal motion. The y-axis in Fig. A.1 (c)

is multiplied by −1 to compare the resonance with the other two plots.

A couple of important features need to be emphasized.

• Emergence of small “bump” is visible for all three excitation schemes when off-resonance.

We interpret this as the excitation of the internal motion of the trapped electrons. The

internal motion is cooled by high γc near resonances.

• The signal-to-baseline ratio of the parametric drive is much better than the other two

schemes. The black line in Fig. A.2 (a) is scaled by 10−3 to show in the same vertical

scale, so the actual amplitude is three orders of magnitude larger than the height in

Fig. A.2 (a).

• The mapping in the axial drive and magnetron sideband drive clearly shows saturation

[Fig. A.1 (b) and (c)]. The black lines in Fig. A.2 (b) and (c) are the spectrum when

this saturation occurs. They show dips at the axial frequency, which suggests that the

electrons’ internal motion is completely cooled, and they behave as one rigid sphere in

the saturated condition.

The consistency of three different excitation schemes suggests an underlying simplicity.

The small “bump” disappears near the cavity resonances, which suggests that it is related to

the efficiency of cooling of cyclotron motion. It is known that the transfer of energy between

the transverse cyclotron motion and axial internal motion is very efficient for the high number

of electrons [168, 169]. What is unique here is that the well-cooled internal motion results

in a higher axial center of mass amplitude, even if the axial drive amplitude is constant.

The extremely better signal-to-baseline ratio for the parametric drive also suggests that the

parametric drive has a unique feature compared to the other two methods.
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Figure A.3: Excitation of internal motion of N = 100 electrons for different anharmonicity
C4 by (a) parametric drive (b) axial drive, and (c) sideband drive.

A.2 Characterizing the Internal Motion

Observations about the coupling between the axial signal and microwave resonances are

summarized here. Based on these observations, We interpret the “bump” that appears at

off-resonance as the axial internal motion of electrons.

A.2.1 Exciting and Detecting the Internal Motion

We first find that the internal motion is more efficiently excited for larger C4 (Fig. A.3).

The excited small internal motion shifts further away from the main peak at νz for all three

drives, which suggests that the excitation of internal motion is related to the nonlinearity

C4. The frequency shift of the internal motion is plotted as a function of C4 for each drive

scheme in the insets of Fig. A.3. A linear line fits well with axial and magnetron sideband

drives, but has offset for the parametric drive.
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Figure A.4: Excitation of internal motion of N = 100 electrons for different drive power by
(a) parametric drive (b) axial drive, and (c) sideband drive with C4 = −0.036.

Figure A.4 shows the output signal for different drive power with C4 = −0.036. The

stronger excitation of the internal motion can be observed for all three drives for high drive

power. The peak frequency of the internal motion shifts downward for higher drive power.

We plot the shift of the peak frequency for different drive amplitudes in the insets of Fig. A.4.

The x-axis is the linear drive power normalized by the maximum drive amplitude for each

drive. A linear line fits well for axial and magnetron excitations, but has an offset for the

parametric excitation. The internal motion is excited more for a stronger axial drive.

The internal motion also should be excited if the cyclotron motion is heated. A strong

microwave drive excites the cyclotron motion, which transfers energy to the axial internal

motion through collisions. The excited microwave motion also heats the magnetron motion

if the drive is too strong and is applied for a long time. We tune our drive power to be weak

enough that the magnetron heating is negligible. Figure A.5 shows the Fourier spectrum

at C4 = −0.036 with different powers of resonant microwave drives. The shift of the dip is
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Figure A.5: Exciting the internal motion of N = 100 electrons by a microwave drive with
anharmonicity parameter C4 = −0.036.

visible as the microwave power increases.

Another indication of the heating and cooling of internal motion is observed when the

microwave drive is turned off. Figure A.6 (a) shows the relaxation of the dip frequency

to the original axial frequency when the microwave drive is turned off. Measurements at

the opposite sign of C4 and at different cyclotron damping rates γc are shown. The dip

frequency exponentially drifts back to the original axial frequency with a time constant

τ ′. The cyclotron lifetime τc is measured from the lifetime of the first excited quantum

cyclotron state [51] using the quantum non-demolition measurement [69]. Relaxation of

the dip frequency to the initial axial frequency with different time constants is observed.

Figure A.6 (b) plots the measured relaxation time constant τ ′ versus the cyclotron lifetime

τc. The data fit well with a linear function, with the coefficient 3/2. This factor of 3/2 has

been observed for the cooling rate of non-neutral plasma [166]. It originates from the cooling

of internal motion, which has three degrees of freedom, by cyclotron damping, which has

transverse two degrees of freedom [168,169].

In the completely cooled limit, all electrons move together as a rigid body and the

behavior is described by the center of mass motion of N electrons. We can observe the
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Figure A.6: Relaxation of the dip frequency after microwave drive is turned off. Mea-
surements with different C4 and γc are shown in time domain (a) and in two dimensional
plot (b).

deviation from the rigid body limit by comparing the driven signal at different cyclotron

damping γc. Figure A.7 shows the driven CM amplitude of N = 100 electrons at two

different cyclotron frequencies with C4 = −0.01. All parameters are the same except for

the cyclotron frequency. The black line is taken at a strong microwave resonance, where the

oscillation amplitude is “saturated” in Fig. A.1. The grey line is taken with the cyclotron

frequency far away from any microwave mode.

The vertical axis is the absolute amplitude of the center of mass motion of the cloud.

When the cyclotron damping γc is high enough that the internal motion is efficiently cooled,

the electrons behave as a rigid body, and the driven amplitude is exactly described by an

anharmonic oscillator (black line in Fig. A.7). The emergence of internal motion is observed

in the gray line, where the oscillation amplitude falls suddenly, but not all the way to zero,

and the driven response becomes much less stable. A long tail exists after the amplitude

drops, resulting from the excited internal motion. The Fourier spectrum on a spectrum

analyzer when the internal motion is excited has the “bump” shown in Fig. A.2, Fig. A.3,

and Fig. A.4

All the observations in this section suggest that the internal motion is excited for a

strongly driven cloud through anharmonicity C4. The observation of internal motion is
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Figure A.7: Center of mass oscillation of a cloud for large and small γc’s with C4 = −0.01
and Paxial = −30 dBm axial drive. γc is varied by changing the cyclotron frequency.

familiar in non-neutral plasma physics. However, it has not been investigated very much in

such a low temperature and a low number of electrons.

A.2.2 Temperature Effect, Saturation, and Hysteresis

The mapping of the microwave cavity modes by parametric drive shows a clear Lorentzian

shape. However the spectrum with axial excitation and magnetron sideband excitation

are less attractive due to the saturation in Fig. A.1. Our observations indicate that the

saturation is because of completely cooled internal motion, where all electrons move together

as a rigid body. We take one very well isolated cavity mode, TM127 at 153 GHz, and study

the conditions for saturation.

An intuitive way to mitigate saturation is to increase the physical temperature of the

Penning trap. Figure A.8 shows a scan of TE127 mode with different temperatures. The

temperature is measured by a calibrated Ruthenium oxide sensor attached to the vacuum

chamber. The interval between each measurement is 12 hours, much longer than the time

constant of cooling the electrodes from 1 K to 100 mK (about 3 hours). A gradual transition
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Figure A.8: Scanning the cyclotron frequency around the TM127 mode with different tem-
peratures.

from saturated line shape to smooth Lorentzian-like line shape is observed. The trend of

weak saturation at high temperatures has been observed for all three drive schemes.

A natural comparable temperature scale is the cyclotron motion’s energy ~ωc/kB = 7.3 K.

One hypothesis was that the reduction of saturation is due to occupancy of higher quantum

cyclotron states. To check if the temperature effect depends on the magnetic field, the

required power to excite internal motion is measured at different magnetic fields (Fig. A.9).

We measure the threshold power to excite the internal motion. A cloud shows a dip

when the internal motion is not excited. However, for a drive stronger than the threshold

power, the internal motion appears as a bump on the broad noise spectrum (Fig. A.4).

The magnetron sideband drive is employed to keep the magnetron radius small during the

whole measurement process. The same cloud is used without being damped during the

three measurements. It reveals that the temperature scale for internal motion excitation is

independent of the magnetic field.

A few concerns need to be addressed. Changing the physical temperature changes many

parameters. The dimension of the trap changes due to thermal expansion by only about
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Figure A.9: Dependence of threshold power to excite the internal motion on temperature.
Three curves for different magnetic fields are shown.

10−5 from 50 mK to 10 K, so this change is small to account for the observed drastic change.

At higher temperatures, the difference between internal motion’s temperature and the wall’s

temperature becomes smaller. However, the cloud’s oscillation amplitude is estimated to be

much higher than 100 K, so this effect should be negligible. We do not exactly know what

is causing the weaker saturation at higher temperatures, but the trend itself is reproducible

in any of the three drive schemes in many different cooldowns.

The temperature effect needs to be emphasized. Historically, the dependence of para-

metrically driven oscillation amplitude on the cavity resonances was discovered at 4.2 K

[100, 101, 167], where it was found that “the line shapes and widths remain constant as the

pump strength and number of electrons is varied over a wide range.” However, in the later

studies with the same trap dimensions but at 100 mK [7,50,51], it was found that they were

“not currently always able to robustly produce such spectra.” During our measurement cam-

paign, we also find that the mapping with any of the three drives shows less saturation and

is more robust at 4 K than at 50 mK. The axial oscillation frequency and damping rate are

also tested, but the saturation behavior is the same. These observations suggest that higher
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Figure A.10: (a) Mode mapping with different drive power. (b) Mode mapping with different
detuning.

temperature helps regardless of axial oscillation conditions. We believe that the physical

temperature of the trap is one of the key parameters for reliable mode mapping. Later data

are all taken at 4 K to avoid saturation and to reliably observe the ideal line shape.

Another way to avoid saturation even at the same temperature is to put more energy

into the internal motion. This can be done by (a) applying a stronger drive or (b) increasing

the detuning of the drive (Fig. A.10). Transitions from saturated line shape to smooth

Lorentzian-like line shape are observed for both scans.

Hysteresis is also observed when the internal motion is completely cooled and reaches

the rigid body limit. Figure A.11 shows the observed hysteresis for (a) axial drive and

(b) magnetron sideband drive. In both cases, as the drive power increase, the hysteresis

disappears. Notice that no hysteresis is observed when the cloud does not reach the rigid

body limit.

A.3 Summary

Excitation and cooling of electrons’ internal motion have been observed with three axial

drives. All the observed phenomena in this section support the hypothesis based on the

internal motion. Theories that can explain these phenomena is required.
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Figure A.11: Observed hysteresis of trapped cloud excited by (a) axial drive and (b) mag-
netron sideband drive for three different excitation powers.
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Even if the exact theory is unknown, the microwave cavity resonances are clearly de-

tected. Characterizing a microwave cavity through the axial oscillations does not require

any microwave drive or detection source. The studies here could trigger new studies of the

internal motion of trapped charged particles.
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