
The evolution of longevity in the context of 
epigenetic regulation and genetic sequence 
evolution

Citation
Richard, Daniel Joseph. 2022. The evolution of longevity in the context of epigenetic regulation 
and genetic sequence evolution. Doctoral dissertation, Harvard University Graduate School of 
Arts and Sciences.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37373712

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37373712
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=The%20evolution%20of%20longevity%20in%20the%20context%20of%20epigenetic%20regulation%20and%20genetic%20sequence%20evolution&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=a6d827aa66e5f9a07e1e6cdbfb20bed3&department
https://dash.harvard.edu/pages/accessibility


 
      

 

 
 

 
 

 
     

 
  

 
 

 
             

   
 

 
   

     
     

 
 
         

        

 
         

           

 
         

        

 
         

                             

 
         

        

 
 

HARVARD UNIVERSITY 
Graduate School of Arts and Sciences 

DISSERTATION ACCEPTANCE CERTIFICATE 

The undersigned, appointed by the 

Department of 

have examined a dissertation entitled 

presented by 

candidate for the degree of Doctor of Philosophy and hereby 
certify that it is worthy of acceptance. 

Signature __________________________________________ 

Typed name: Prof.   

Signature __________________________________________ 

Typed name: Prof. 

Signature __________________________________________ 

Typed name: Prof.

Signature __________________________________________ 

Typed name: Prof.

Signature __________________________________________ 

Typed name: Prof.

Date: 

u58960
Sello



 

The evolution of longevity in the context of epigenetic regulation and genetic sequence evolution 

 

 

A dissertation presented  

By 

 

Daniel Joseph Roger Richard 

 

To 

 

The Department of Human Evolutionary Biology 

In partial fulfillment of the requirements 

for the degree of  

Doctor of Philosophy 

In the subject of 

Human Evolutionary Biology 

 

Harvard University 

 

Cambridge, Massachusetts 

 

August 2022 

 



 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2022 by Daniel Joseph Roger Richard 

 

All Rights Reserved 

  



 iii 

Dissertation Advisor: Terence D. Capellini    Daniel Joseph Roger Richard 

 

 

The evolution of longevity in the context of epigenetic regulation and genetic sequence evolution 

 

Abstract 

 

Modern-day humans enjoy an elongated lifespan relative to chimpanzees, even when accounting 

for environmental factors such as healthcare. This suggests that genetic changes to the biological 

processes underlying longevity have taken place over the course of human evolution, changes resultant 

from the forces of natural selection. The goal of this dissertation is to explore the potential means by which 

these forces of natural selection may operate to shape the human genome, and the implications of genetic 

changes for the manifestation of ageing phenotypes – in particular, focusing on the incidence of late-onset 

diseases such as osteoarthritis. Over three data chapters, I will approach this goal in several ways: (1) 

considering the role for selection acting on development of a derived human trait in influencing the genetic 

risk for development of late-onset disease, (2) how shifts in epigenetic regulation over the course of 

development and aging influence the sequence properties and disease associations of genetic variants, 

and (3) how selection operating across long-lived species may act at the protein-coding level to alter the 

activity and function of aging-associated proteins. 

 

In the second chapter, I characterize the regulatory landscape of early knee development in mouse 

and human fetal tissues and consider the role that modifications to regulatory elements may have not only 

in the development of the knee, but in the potential for far-reaching consequences on knee disease later in 

life. Through my analyses, I develop an evolutionary model to describe the relationship between 

development, natural selection, and heritable risk for osteoarthritis incidence later in life. Ancient directional, 

and subsequent purifying, selection acts on developing knee regulatory regions, establishing and 

maintaining the derived human knee configuration; this imposes strong functional sequence constraint. 

More recently, genetic variants arising in these constrained regions via the effects of antagonistic pleiotropy 
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or random genetic drift contribute to a ‘violation of constraint’. This violation can lead to slight changes to 

knee morphology which may eventually contribute to knee dysfunction in late-life. Evidence in support of 

this model is established through the demonstration of changes to knee morphology, and incidence of 

spontaneous osteoarthritis, via functional experiments within the GDF5 locus, and the finding that human 

osteoarthritis patients have elevated mutational load within these constrained knee regulatory regions 

relative to background populations. 

 

In the third chapter I consider the interactions between developmental and aging processes more 

broadly, focusing on shifts in epigenetic regulation occurring across tissues as they transition from fetal to 

adult forms, and subsequently mature from a young-adult to old-adult state. I find that epigenetic trends 

occurring over development are continued across ageing, and that the genetic sequences subject to these 

trends have markedly divergent sequence properties depending on their directionality – suggesting that 

evolutionary pressures and regulatory activities act in a context-dependent manner. Furthermore, these 

sequences also diverge in their associations with heritable risk for late-onset diseases. I develop an 

evolutionary model in which sequences most epigenetically active in early adulthood have the strongest 

association with heritable risk for late-onset disease, while the behaviour of sequences most active during 

early development or far later in life suggest limitations to previously established evolutionary models of 

aging. 

 

In the fourth chapter I consider the potential for natural selection favouring longevity to act at the 

level of protein-sequence changes. Building upon previous studies, which take a cross-species approach 

to identifying amino acid substitutions which stratify across long/short-lived organisms, I explore the nature 

of these sequence changes in terms of their potential effects on protein structures and functions, as well as 

their distribution across the proteome. I find that these amino acid substitutions are over-represented in 

protein complexes, and in particular the interfaces between interacting proteins. I go on to develop an 

evolutionary model in which natural selection favouring longevity may act at the level of complex formation, 

rather than modifying the catalytic activities of proteins themselves, so as to avoid the prohibitive sequence 

constraints imposed by pleiotropic effects. 
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Overall, this thesis establishes three evolutionary models to describe the results of findings made 

throughout the three data chapters, and in the discussion of the thesis we integrate these three models into 

a more general framework. These models are not mutually exclusive and instead may be complementary 

in explaining different aspects of the broader evolutionary program underlying the extension of lifespan 

along the human lineage. 
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Chapter I: Introduction 

 

1.1: Life history as an evolutionary trait 

 

One universal truth of nearly all organisms on Earth is that of expiration – a combination of extrinsic and 

intrinsic factors which contributes to gradually increasing mortality risk and, consequently, decreased 

individual survivorship over time. Mortality curves compared across a diverse range of species and 

taxonomic groups(Croft et al., 2015; Jones et al., 2014; Tejada-Martinez et al., 2022) demonstrates 

considerable variation in survivorship trajectories which are likely the result of evolutionary interactions 

between a species’ physiology (i.e., heritable biological traits) and its environment. Mammals, broadly 

share similar patterns of age-dependent mortality and aging phenotypes – including an age-dependent 

mortality increase (Jones et al., 2014; Magalhães and Toussaint, 2002), suggesting that selection 

occurring quite anciently in the evolution of mammals acted on biological processes mediating functional 

decline. Within this general structure, however, exists substantial variation in aging rates(Austad, 1997) 

and overall lifespan, suggesting that, at a more rapid time-scale (e.g., within a given group, such as 

rodents and the naked mole rat(Lewis et al., 2016)) evolutionary innovations that accelerate or delay the 

aging process may have occurred within this background of mammalian aging physiology.  

 

A key example of recent evolutionary processes shaping functional decline is in comparing life-histories 

and maximal longevities of humans and chimpanzees. In particular, modern humans exhibit an extended 

period of reduced early- and mid-life mortality, followed by a marked acceleration in mortality risk, a 

pattern far reduced in chimps(Jones et al., 2014). Humans also feature elevated estimates for both 

average life-expectancy and maximal lifespan compared to their wild or captive chimp 

counterparts(Gurven, M., Gomes, 2017). While in the past it has been suggested that the remarkable 

longevity of humans is largely an artifact of modern-day civilization(Williams, 1957), demographic 

observations of hunter-gatherers challenge this notion. These groups enjoy increased life-expectancy 

throughout life relative to both captive and wild chimps(Croft et al., 2015; Gurven and Kaplan, 2007), and 

in particular experience a depressed age-specific mortality for their first forty years(Gurven, M., Gomes, 
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2017), mirroring that observed in industrial populations(Croft et al., 2015; Jones et al., 2014). Thus, there 

appears to be convergence of these species-level shifts across traditional and industrial humans 

(summarized in Table 1.0).  

 

Given the presence of similar extrinsic risk factors and causes of death between traditional humans and 

wild chimpanzees(Gurven, M., Gomes, 2017) the persistent extension of human longevity may result 

more from modifications to intrinsic physiological mechanisms, such as a decline in tissue maintenance 

and related function (i.e., senescence), than to external environmental interactions. This point is further 

suggested by observations that captive chimps, when benefiting from the same improvements in 

healthcare and diet (i.e., those that likely contribute to pre- and post-industrial human differences in 

lifespan and declines in mortality)(Finch, 2010; Riley, 2001), continue to lag behind humans in terms of 

both life expectancy and maximal lifespan(Gurven, M., Gomes, 2017). The increased importance of 

species-level differences, rather than environmental context, suggests that the modifications to these 

intrinsic physiological mechanisms may be encoded genetically, and that natural selection may have 

driven changes to life-history and the aging trajectory over the course of human evolution. It is worth 

noting, however, that other environmental influences, such as increased physical activity in humans, may 

also contribute to differences in maximal lifespan, and selection for increased physical activity may have 

indirectly lead to slowed senescence (Lieberman et al., 2021).  

 

In this dissertation, we seek to understand the manner by which natural selection favouring longevity may 

have operated to shape the human aging process. Through our analyses leveraging a combination of 

novel experimental and public datasets, we develop models describing the possible nature of these 

evolutionary programs acting to genetically modify the regulation of genes involved in both developmental 

and adult-homeostatic biological processes, as well as modifying the sequences of these genes 

themselves. These models highlight the importance of antagonistic pleiotropic effects and extend this 

concept further to suggest a more nuanced confluence of evolutionary forces at play. Our work points to 

several avenues of future research to move towards a more complete understanding of the selective 

mechanisms and proximate biological mechanisms underlying the evolution of longevity. 
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Organism Trait Trait Value 

Homo sapiens (traditional hunter-

gatherers) 

Average life-expectancy at fifteen 

years of age 

37.7 (Gurven and Kaplan, 2007)  

Homo sapiens Maximum Observed Lifespan 122 (Robine and Allard, 1998) 

Pan troglodytes (wild) Average life-expectancy at fifteen 

years of age 

14 (Gurven and Kaplan, 2007) 

Pan troglodytes Maximum Observed/Inferred 

Lifespan 

54-66 (Bronikowski et al., 2011; 

Gurven, M., Gomes, 2017) 

Homo sapiens Maximum Estimated Lifespana 126.1 (Weon and Je, n.d.) 

Homo sapiens Maximum Estimated Lifespanb 66-72 (Bogin and Smith, 1996; 

Hammer and Foley, 1996; Judge and 

Carey, 2000) (91 when H.sapiens 

excluded from predicting 

model)(Judge and Carey, 2000) 

Australopithecus Maximum Estimated Lifespanb 42-44 (Judge and Carey, 2000) 

Homo habilis Maximum Estimated Lifespanb 52-56 (Hammer and Foley, 1996; 

Judge and Carey, 2000) 

Homo erectus Maximum Estimated Lifespanb 60-63 (Hammer and Foley, 1996; 

Judge and Carey, 2000) 

 

Table 1.0: Lifespan/expectancies for extinct/extant primates. 

A: Extended Weibull model based on survival probabilities using life tables from an industrial population 

(Sweden) 

B: Regression analyses on brain/body mass and lifespan using observations from a mix of extant 

primates and traditional/industrialized humans. 
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1.2: Evolution and life-history theory  

Senescence may be broadly defined as the set of adverse biological changes in an organism which 

manifest as increased mortality risk in advancing chronological age(Comfort, 1954). Life history theory 

predicts a synchronization of somatic (i.e., adult tissue) and reproductive senescence, and thus a lack of 

a post-reproductive lifespan(Williams, 1957). This synchronization – wherein organisms would tend to be 

capable of reproduction up until death, has been suggested to be evolutionarily favoured under several 

different scenarios; below we describe three leading evolutionary models. It is important to note that all 

three of these models are not competing, but instead are complementary in explaining the presence of 

genetic factors that either directly promote early-life fitness benefits or permit late-life fitness costs. 

 

The concept of diminished selective pressures acting on older and post-reproductive individuals is a 

central tenant to a third model for the evolution of age-related decline - the Mutation Accumulation 

Hypothesis(Charlesworth, 2001; Turan et al., 2019). This model proposes that age-related decline is 

driven, in part, through the accumulation of deleterious mutations impacting adult biological processes. 

This accumulation is permitted given the relative weakness of negative selective pressures acting later in 

life, a phenomenon often termed the ‘selective shadow’ of selective pressures. There is less experimental 

evidence in model organisms favouring this hypothesis(Elliott et al., 2002; Kaya et al., 2015), though the 

aforementioned GWAS analysis did find suggestive evidence in support of this model using human 

genetic data(Rodríguez et al., 2017). 

 

The theory of antagonistic pleiotropy (AP) (Williams, 1957) broadly postulates that, given the pleiotropic 

roles of protein-coding genes within cells, genetic mutations to genes that confer some selective benefit 

to early-life development may have additional effects that manifest as negative consequences at a later 

stage of development (e.g., late adulthood). For example, mutations that confer a beneficial 

developmental growth phenotype, such as increased body size or height, could have pathogenic 

consequences far later in life, such as increasing the genetic risk of individuals to developing adult-onset 

diseases (e.g., osteoarthritis)(Capellini et al., 2017). Positive selection favouring mutations with early-life 
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benefits is substantially stronger than the forces of negative selection that would discourage mutations 

with late-life consequences; this is largely driven by the fact that fitness consequences decline with age, 

such that pressures favouring/discouraging mutations returns diminishing gains to fitness (Carnes and 

Olshansky, 1993; Ricklefs, 2008). There is now substantial evidence from model organisms to support 

antagonistic pleiotropy as being a very common, if not ubiquitous, phenomenon(Austad and Hoffman, 

2018; Byars and Voskarides, 2020), and there is also some evidence to suggest that antagonistic 

pleiotropy may contribute to human late-life phenotypes as well(Byars and Voskarides, 2020). 

Furthermore, analysis of Genome-Wide Association Study (GWAS) datasets from early- and late-onset 

diseases yields results consistent with the effects of antagonistic pleitropy, wherein for example variants 

associated with old-onset disease tend to exist at higher frequencies. Moreover, there is an excess of 

variants which are pleiotropic across early- and late-onset diseases(Rodríguez et al., 2017). 

 

The ‘Disposable Soma’ theory, which represents a special form of antagonistic pleiotropy (Rodriguez et 

al., 2017), suggests the existence of a functional trade-off between prioritizing physiological mechanisms 

that favour somatic tissue maintenance, and those favouring reproductive tissue activity and maintenance 

given a finite resource and the functional constraint of gene regulatory networks(Kirkwood and Holliday, 

1979; Kirkwood and Rose, 1991). There is evidence to support the existence of such trade-off scenarios 

in wild populations of many different vertebrate species(Lemaître et al., 2015). 

 

Given these models, the presence of a consistent post-reproductive lifespan is a unique, unexpected 

feature of humans(Alberts et al., 2013), with equivalents confined to similarly long-lived cetaceans(Bogin 

and Smith, 1996; Croft et al., 2015; Ellison, P.T., Ottinger, 2014). Theories such as the mother and 

(active) grandmother/parent hypotheses (Hamilton, 1966; Hawkes et al., 1998; Lieberman et al., 2021; 

Williams, 1957), and the ‘embodied capital hypothesis’(Gurven, M., Gomes, 2017; Gurven, M., Kaplan, 

2008; Kaplan, Hillard, Lancaster, Jane, Robson, 2003) have been proposed to explain how, despite the 

opposing selective forces (as described above) that would contribute to age-related decline, such a life-

history trait might emerge. These hypotheses stem from observations that human children require 

extensive provisioning and develop more slowly(Bogin and Smith, 1996; Schuppli et al., 2012). The 
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grandparent hypothesis, for example, suggests that indirect fitness benefits accrued by longer-living 

individuals, within the context of substantial food-sharing thought to have emerged by early 

Homo(Pontzer, 2012), may have been sufficient to select for increased longevity. Similarly, the embodied 

capital hypothesis suggests that the extensive skill set required for successful exploitation of the human 

dietary niche takes a substantial time to develop, and thus can only become beneficial in terms of net 

caloric returns (‘payoff’) when the period of productive activity extends into later age, thus selecting for 

extension of lifespan to maximize provisioning of relatives(Gurven, M., Gomes, 2017; Gurven, M., Kaplan, 

2008; Kaplan, Hillard, Lancaster, Jane, Robson, 2003). These two hypotheses need not be mutually 

exclusive; if anything, one might consider increasing caloric transfer to offspring through lifespan 

extension to be a general selective mechanism favoring longevity of both sexually active and post-

reproductive individuals, and that the gradual increase in complexity of the human dietary niche would 

have acted synergistically with pre-existing selection for longevity through an ‘additional payoff’ scheme. 

 

1.3: Lifespan shifts in the evolution of Homo 

The above discussion on evolutionary life-history theories for delayed late-life mortality and overall 

longevity suggest the importance of key transitions during human evolution that likely altered factors such 

as extrinsic mortality risks, energy availability, social dynamics, etc. These transitions likely coincide with, 

and in fact favour, modifications to the intrinsic physiological mechanisms governing age-related decline, 

modifications which may have driven changes to human life history. Examining these transitions provides 

a context for how, when, and why genetic changes to these mechanisms were selected upon in humans. 

Regression analyses using brain and body masses from a wide range of extant primates and fossil 

remains (see Table 1.0) suggest that expanded maximal lifespans relative to Pan may have post-dated 

Australopithecus and arose with the emergence of Homo(Bogin and Smith, 1996; Hammer and Foley, 

1996; Judge and Carey, 2000). These analyses also suggest further increases in lifespan between 

H.habilis and H.erectus, with additional increases in H.sapiens, albeit the latter are not expected to differ 

greatly from patterns in Neandertals (see(Trinkaus, 2011)). We note that these differences in lifespan are 

based on extrapolations of brain/body-mass, and do not take into account differences in extrinsic mortality 

factors between species of Homo, which could influence life expectancy rather than maximal theoretical 
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longevity. If one assumes an age at menopause of 50 years (Bogin and Smith, 1996; Isler and van 

Schaik, 2012; Judge and Carey, 2000), noting there is evidence for variation around this average (⁠see 

(Emery Thompson M., 2017; He et al., 2009)), this would imply that early Homo was at least capable of 

living into a post-reproductive state, which coincides with the earliest predicted selection scenarios for 

grandmothering (Hawkes et al., 1998). Further, mathematical models attempting to consolidate increased 

brain size with energetics-imposed life-history constraints (e.g., delayed growth, suppressed reproductive 

effort) suggest that substantial alloparenting would have been necessary to support the endocranial 

volumes of ~600cm3 as seen in early Homo⁠ (Hublin et al., 2015) while allowing for realistic population 

growth (Isler and van Schaik, 2012). Thus, the biological possibility for survival into post-reproductive life, 

paired with a requisite selection pressure for increased offspring provisioning would strongly imply 

selection for extended lifespan to have played a role in the evolution of Homo. Note, that this selection 

would not be limited to reduction of late-life degeneration; delayed tissue senescence at all ages (i.e., 

‘healthspan’ (Kirkland and Peterson, 2009)) would cumulatively contribute to increases in post-

reproductive lifespan, with the above kin-selection models predicting greater fitness returns the longer 

functionality (e.g., foraging ability) is extended later into an elongated life(Lieberman et al., 2021). 

 

1.4: Genetic changes and longevity 

As mentioned above, the consistency in lifespan differences observed between humans and chimps 

across different environmental contexts suggests modifications to intrinsic physiological mechanisms 

involved in tissue maintenance and decline (i.e., aging). These derived changes would need to have been 

genetically-encoded (i.e., heritable) in order for natural selection to operate upon them. However, genetic 

changes are not generated in a vacuum; they occur in the context of dense, complex gene regulatory 

networks that govern cellular behaviours. These gene regulatory networks are controlled at multiple 

levels; these include (1) the epigenetic level, which regulates the transcriptional potential of certain gene 

loci based on the presence and nature of chemical modifications to packaged genomic DNA, (2) the 

transcriptional level, the process which actually generates RNA transcripts from epigenetically-active loci, 

and (3) the post-transcriptional level, including both the translation process as well as post-translational 

modifications (as well as interactions with other proteins, e.g., to form complexes). Upstream of these 
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regulatory networks are the gene sequences themselves – that is, changes to the proteins encoded by 

gene loci also stand to impact cellular functions by modifying the activity and effects of protein ligands, 

enzymes, structural components, etc. Thus, genetic changes that are selected upon in the human lineage 

must impart a fitness-altering phenotype by means of modifying either gene-regulatory activity governing 

expression changes, or by directly modifying the encoded protein sequences themselves.  

 

Many genetic studies have suggested that modifications to the regulatory sequences active in gene 

regulatory networks likely drive some of the key phenotypic differences observed between primates(King 

and Wilson, 1975; Rogers and Gibbs, 2014). The logic being that regulatory sequences (e.g., enhancers) 

often exhibit modularity – acting in a tissue or context-specific manner to facilitate fine-grained control of 

expression(Prud’homme et al., 2007; Rubinstein and de Souza, 2013), such that their modification has a 

lower potential for unintended deleterious consequences as a result of pleiotropic effects, relative to the 

coding sequences of the genes being regulated. It should also be noted that while there is variation in 

lifespan in modern-day humans, a component of which can be explained by genetic traits(Timmers et al., 

2019), the averages in human and chimpanzee demographic patterns are markedly shifted, pointing to 

the importance of fixed genetic differences in mediating lifespan differences. We therefore consider the 

possible effects of both fixed and variable human sequence changes in our studies. 

 

Additionally, while most gene sequences are much more highly conserved (given the heightened potential 

for pleiotropic effects) several studies have pointed to the role that protein-coding substitutions may have 

in contributing to the evolution of altered longevity(Farré et al., 2021a; Jobson et al., 2010; Kowalczyk et 

al., 2020; Li and de Magalhães, 2011; Muntané et al., 2018; Treaster et al., 2021). Thus, when studying 

the genetic evolution of lifespan in humans, the works described in this thesis include considerations for 

changes at both the cis- and trans-regulatory and protein sequence levels.  

 

1.5: Overview of thesis 

In the studies described in this thesis, I will consider three possible models describing the manner by 

which genetic sequence changes may have been shaped by evolutionary forces in order to modify the 
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human aging process, including age-related diseases. Chapter Two outlines a model wherein strong 

directional selection for a crucial part of human anatomy, the structure of the bipedal hindlimb knee joint, 

imparts a functional constraint on developmental gene regulatory networks. Subsequent violations of 

these constraint may take two forms: (1) direct antagonistic pleiotropy selecting genetic mutations 

favurable for another trait, and (2) genetic drift occurring in modern humans. This violation manifests as 

increased genetic risk for the development of a highly prevelant age-related knee pathology, 

osteoarthritis, possibly by means of slightly altering the bony structure of the knee which elicits improper 

joint loading – the effects of which are moderate early in life but compound over decades of joint use.  

 

Chapter Three seeks to continue the concepts addressed in Chapter Two – i.e., the contribution of 

developmental gene-regulatory changes to the risk of late-life disease - and considers development and 

aging in a broader sense by taking a cross-tissue and cross-disease approach. By defining the epigenetic 

context of genomic regions active or inactive across tissues, and further how this context changes as 

tissues develop from their fetal to adult forms, we define epigenetic patterns suggesting a shared cross-

tissue trajectory in how gene networks are regulated. By further comparing epigenetic shifts across 

young- and old-adult tissue samples, we study the interactions between development- and aging-

associated epigenetic changes and focus on the nature of the sequences subject to modifications by 

these two processes. Through our analyses, we develop a novel model in which the shifting epigenetic 

context of mutations impacts their apparent contribution to late-life disease phenotypes, and thus 

influences the behaviour and strength of natural selection acting on these genetic variants.  

 

In Chapter Four, we continue the emphasis placed on epigenetic processes as key players in the aging 

process by considering changes to the sequences of epigenetic proteins themselves, which in turn may 

significantly impact their roles in shaping the epigenome. We build on previous works(Farré et al., 2021a) 

and take a phylogenetic approach to protein evolution, defining amino acid substitutions that stratify 

across long- and short-lived species, and consider the potential consequences of these substitutions on 

protein structure and function. Through our analyses we propose a model in which natural selection 

acting to shape the aging process in different species has modified proteins not just at the single-structure 
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level, but also at the biochemical complex level, modifying the interaction domains of protein pairs as an 

additional means of modifying cellular mechanisms.  

 

Finally, in the Discussion and Further Directions sections, I consider the merits and limitations of each of 

the three models described, as well as the potential for overlap and synergisms between them. I further 

discuss how using an evolutionary lens to understand the derived human lifespan, as well as the 

mechanisms by which natural selection may have acted, can help us to uncover novel aspects of aging 

biology. Future directions for this evolutionary line of research are discussed, with an emphasis for how 

selective models can inform the design of future studies which extend our understanding of longevity 

selection and aging-associated biology. 
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Chapter II 

 

Evolutionary Selection and Constraint on Human Knee Chondrocyte Regulation Impacts Osteoarthritis 

Risk 

 

This chapter has been published as an article in Cell: 

 

Richard, D., Liu, Z., Cao, J., Kiapour, A.M., Willen, J., Yarlagadda, S., Jagoda, E., Kolachalama, V.B., 

Sieker, J.T., Chang, G.H. and Muthuirulan, P., 2020. Evolutionary selection and constraint on human 

knee chondrocyte regulation impacts osteoarthritis risk. Cell, 181(2), pp.362-381. 

 

 

 

2.1 Introduction 

 

A derived feature of humans and our hominin ancestors is a unique bipedal gait (Darwin, 1888). From the 

last common ancestor with chimpanzees, natural selection shaped the hominin hindlimb to accommodate 

the biomechanical demands of bipedality, profoundly influencing human knee anatomy (Frelat et al., 

2017; Jungers, 1988; Morrison, 1970; Rose, 1991). For example, the condyles of the distal femur 

expanded, dissipating the higher forces generated during bipedal walking and running. The proximal 

plateau and condyles of the tibia became more symmetrical, its epicondyles buttressed with bone mass, 

permitting more equal weight distribution and greater knee stabilization (Bramble and Lieberman, 2004; 

Lovejoy, 2007). These and other derived features were approximately fixed by 1.6 million years ago in 

Homo erectus and today variation in human knees is reduced compared to earlier Homo and differs from 

patterns found in African apes (Frelat et al., 2017; Lovejoy, 2007; Tardieu, 1999). 

 

Derived human traits have been shaped by selection and its targeting of early development (Capra et al., 

2013; Gokhman et al., 2017; Kanton et al., 2019; Tardieu, 1999). The development of knee features, 
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many present by birth, is tied to the regulation of chondrocytes that prefigure joints (Andersen, 1961; 

Gardner and O’Rahilly, 1968; Gray and Gardner, 1950; Mérida-Velasco et al., 1997; O’Rahilly, 1951). 

During knee development chondrocytes differentiate within the early joint to form femoral and tibial 

articular cartilage, while directly adjacent to the joint they arise to form the epiphyseal cartilages of the 

condyles and plateau (Decker et al., 2014). These cartilages remain protected from ossification until 

postnatal life to respond to mechanical loading and hormonal signals during growth (Tardieu, 2010). 

Adaptive changes to these developmental processes underlie key anatomical features of the unique 

human knee. To this end, modifications to chondrocyte networks, in the form of regulatory sequence 

changes, are the likely candidates as they typically are modular in effect (King and Wilson, 1975; McLean 

et al., 2011; Varki and Altheide, 2005). Here, we first investigate the evolutionary basis of human knee 

development by examining accessible/open chromatin sequences, regions often involved in gene 

regulation (e.g., enhancers) (Shlyueva et al., 2014), via epigenomic profiling of long bone chondrocytes in 

human and mouse. We find evidence of the effects of ancient selection on knee-specific regulatory 

elements that likely underlie derived morphology in humans.  

 

Natural selection undoubtedly shaped human knee morphology but not without impacts to health. In the 

elderly today there is a high prevalence of knee osteoarthritis (OA), a condition in which joint- and 

epiphyseal-derived tissues deteriorate. Knee OA risk includes non-genetic factors, such as abnormal joint 

mechanics (Barr et al., 2016; Neogi and Felson, 2016; Neogi et al., 2013), obesity (Felson et al., 1988; 

Reyes et al., 2016), inflammation (Houard et al., 2013; Richette et al., 2011), and increased longevity 

(Berenbaum et al., 2018). However, knee OA risk is also ~40% heritable (Loughlin, 2015), a component 

that likely interacts with these modern environmental conditions. GWAS have revealed over 80 OA loci 

with ~95% of risk variants present in non-coding sequences, enriched near genes involved in chondrocyte 

and bone development (Klein et al., 2019; Miyamoto et al., 2007; Styrkarsdottir et al., 2018; Tachmazidou 

et al., 2019; Zengini et al., 2018). These findings suggest a key role for knee chondrocyte regulatory 

elements in mediating OA risk. Here, we build on our evolutionary analyses, and use chondrocyte open 

chromatin datasets to study how regulatory variation, shaped by ancient selection but also more recent 

evolutionary forces (genetic drift and antagonistic pleiotropy), influenced OA risk. We develop a model 
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that posits how nucleotide changes, occurring within evolutionarily constrained developmental regulatory 

sequences, violate this constraint and underlie genetic OA risk, and we find evidence using at-risk patient 

data and functional validation studies in human chondrocytes and the mouse model. Overall, our methods 

link an evolutionarily novel aspect of human anatomy to its pathogenesis, an approach that can be 

applied to other derived features to explore disease links. 

 

2.2: Results 

2.2.1: Epigenetic Profiling of Mouse and Human Long Bone Chondrocytes 

To investigate the human knee from an evolutionary developmental genetics perspective, we used the 

assay for transposase-accessible chromatin with sequencing (ATAC-seq) (Buenrostro et al., 2013) to 

profile open chromatin regions (hereafter, “elements”) in chondrocytes from E15.5 mouse and stage-

matched E59 human hindlimb proximal/distal femur and tibia samples (Methods, Fig. 2.1a, 

Supplementary Table S2.1). For the mouse, we catalogued a “general knee set” comprising elements 

from the distal femur and proximal tibia. This set was filtered for shared proximal femur, distal tibia, and 

embryonic brain elements to make a “knee-specific set” (Supplementary Table S2.2), consisting of 

elements unique to the distal femur (“DF-specific” set), the proximal tibia (“PT-specific” set) and both knee 

components (“knee-common (KC)-specific” set). An identical approach was used on homologous forelimb 

humeri and radii, and generated “elbow-specific” sets show minimal element overlap with knee-specific 

sets (Supplementary Table S2.2), highlighting each sets’ anatomical specificity. Comparing these 

datasets to those using FACS on Col2a1-eCFP-reporter mice, we found strong and significant overlap 

(Supplementary Table S2.2), indicating that dissection methods identify general chondrocyte cell 

populations typically marked by COL2A1. The lack of reliable FACs markers to isolate chondrocytes from 

procured human tissues makes this quality-control step important to ensure the reliability of dissection on 

rare human samples. We thus generated ATAC-seq element sets on E59 human skeletal structures using 

the same experimental/computational pipelines, and intersected human and mouse elements from 

equivalent tissues (e.g., distal-femur), finding a significant degree of overlap (Supplementary Tables S2.1, 

2.2). Overlapping mouse and human element sets show substantial one-to-one orthology (Supplementary 

Table S2.1). Though there is regulatory divergence between species (Yue et al., 2014), this overlap is 
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sizable despite disparate collection sites/protocols and uncontrollable differences in time-points. Mouse 

and overlapping E59 human elements intersect with biological signals related to chondrocytes and 

skeletal morphogenesis as determined via GREAT (McLean et al., 2010) (Supplementary Table S2.1). 

We also found significant overlap with regulatory activity in other mouse (Guo et al., 2017) and human 

E47 limb samples (Cotney et al., 2013) and bone marrow-derived chondrocytes (BMDCs, ENCODE 

Project Consortium, 2012) (Supplementary Table S2.2). We further observed enrichments for motifs 

similar to chondrogenesis-associated transcription factors (TFs), which show significant overlap with 

ChIP-seq datasets (Supplementary Table S2.2).  

Figure 2.1: Sequence Features of Chondrocyte Epigenetic Profiles 
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(A) Diagram of ATAC-seq tissues. Numbers indicate replicate-consolidated peak calls before filtering with 

brain data. Inset: genomic distribution of lifted-over DF (top) and PT (bottom) elements. 

(B) Per-bp conservation scores for 20 primates (phyloP20ways) aggregated for ATAC-seq sets and 

compared via Wilcoxon rank-sum test. 

(C) Overlaps of human acceleration regions and ATAC-seq sets. KC, knee-common; GM, GM12878; DF, 

distal femur-specific; PT, proximal tibia-specific; EB, embryonic brain. Overlaps shown relative to set size 

(per bp of sequence) for background (gray) and target (colored) sets. 

(D) Relationship between human-chimp sequence identity (red line, right y axis) and phyloP20ways score 

averaged over an ATAC-seq peak (blue line, left y axis) for DF-specific elements. Dashed curve and 

horizontal lines indicate average phyloP20ways scores for random background region set. Shaded 

regions reflect low/high %ID regions used in GREAT. Significance codes: not significant (ns), < 0.05 (∗), < 

0.01 (∗∗), < 1e−5 (∗∗∗). 

 

2.2.2: Inter-species Sequence Variation in Element Sets 

To understand how accessible elements involved in human knee development have been modified 

evolutionarily, we broadly examined how primates with diverse locomotor repertoires (Polk et al., 2009) 

modified these elements. We examined mouse and overlapping E59 human knee element sets for 

evidence of sequence evolution using phyloP (Pollard et al., 2010), a measure of nucleotide 

conservation/acceleration. Across primates, knee elements had elevated conservation, with strongest 

conservation towards each elements’ center (Supplemental Figure S2.1), likely due to conserved TF sites 

(Buenrostro et al., 2013). When comparing DF-, PT-, and KC-specific sets, conservation tended to be 

highest in KC-specific elements - i.e., those that are likely pleiotropic across the knee (Fig. S2.1b, 

Supplementary Table S2.2). Conservation was reduced in elements unique to each bone’s end, 

especially for the proximal tibia. These patterns were also observed for overlapping E59 human elements 

(Supplementary Table S2.2). 

 

We next examined signatures of evolution shapccelerated regions) relative to chimps and other apes, 

often indicative of positive selection (Bird et al., 2007; Bush and Lahn, 2008; Gittelman et al., 2015; 
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Pollard et al., 2006a; Prabhakar et al., 2006). Knee-specific elements significantly overlapped these 

regions (Fig. 2.1C, Supplemental Table S2.4), largely recapitulated using overlapping E59 human 

elements, despite smaller set sizes. This suggests that ancient positive selection acted on these 

elements. Mouse brain elements, mapped to their human orthologs, also enrich for overlaps, as reported 

for human brain elements (Pollard et al., 2006a-b), while enrichment was not seen for B-lymphocyte 

elements (Buenrostro et al., 2013). When examining en masse accelerated sequences in knee-specific 

elements using GREAT, we identified enrichments for “ossification”, “skeletal phenotypes”, and “limb 

developmental expression” (Supplemental Table S2.4). Two example loci are shown in Supplemental 

Figure S2.1. 

 

We next considered sequence change between humans and chimps (Methods). Nucleotide similarity 

(%ID) positively tracked with cross-primate sequence conservation for each element set (Fig. 2.1D, 

Supplemental Table S2.2). To understand the biological significance of different levels of human-chimp 

%ID, we ran GREAT on conserved sequences (i.e., third quartile of %ID) from DF- and PT-specific sets 

(Supplemental Table S2), and found enrichments for “regulation of ossification”, “skeletal system 

development” and “chondrocyte differentiation”. Since divergence in morphology can result from 

sequence changes in existing regulatory switches (Cotney et al., 2013), we ran GREAT on first quartile 

%ID sequences, which tended to retain conservation across primates (Fig. 2.1D, left shaded area), and 

found enrichments for “mild short stature”, “negative regulation of ossification”, etc. Weaker/insignificant 

enrichments were seen in the top/bottom 10% of sequences, with reduced strength due to smaller set 

sizes and the decreased power of GREAT to identify enrichments (Supplemental Table S2.2). 

 

Given that human-specific enhancer mutations can impact development (Boyd et al., 2015), we 

considered the potential for base-pair alterations (chimp-human substitutions) in knee elements to alter 

sequence motifs, as shown for brain enhancers (Zehra and Abbasi, 2018). Identified motifs in knee sets 

(Supplemental Table S2.3) were combined with those of known chondrogenesis-related TFs (Liu et al., 

2017) and used to identify the biased occurrence of alterations predicted to modify certain motifs (Fig. 

2.2A, Supplemental Table S2.3, Methods).  
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Figure 2.2: Sequence Modification of Putative Regulatory Elements 

(A) Histograms showing depletion and enrichment of human-chimp base pair alterations intersecting 

predicted FOXP1 and KLF5 TF motifs, respectively, in DF-specific elements relative to randomized sets 

(p < 0.01). Counts of altered bases in background (gray) and element (red) sets shown as a fraction of 

total set size. See Table S3. 

(B) KLF5 motif example in a DF-specific element intronic to PBX1, a TF regulating HOX expression and 

endochondral ossification (Capellini et al., 2006, Selleri et al., 2001). Predicted disruption by a human-

derived T/G nucleotide change shown. A region of acceleration in a knee element identified upstream of 

PBX1 (Table S3). Red shading indicates altered base relative to motif logo, blue indicates genomic 

position of sequence. ATAC-seq regions and phyloPways conservation tracks, UCSC sequence 

alignment shown. 

(C) Example of a human-chimp alteration predicted to improve a CTCF motif within a PT-specific element 

intronic to NCOR2, involved in skeletal biology (Blake et al., 2017). Format similar to (B). 

 

Across knee-specific sets for several chondrocyte TF motifs there is a strong tendency for protection from 

modification (biased against possessing substitutions). For example, putative sequence motifs (i.e. 

sequences similar to a known TF motif) for FOXP1/FOXP2, factors important for skeletogenesis and knee 

morphology (Xu et al., 2018; Zhao et al., 2015), were biased against disruptive changes (Fig. 2.2A, left). 

Human FOXP1/FOXP2 ChIP-seq data also shows strong overlap with knee-specific elements 

(Supplemental Table S2.2). Conversely, we observed alterations biasing towards TF motifs 

(Supplemental Table S2.3). For example, predicted motifs for KLF5, involved in chondrogenesis (Shinoda 

et al., 2008), displayed such biases in the DF-specific set (Fig. 2.2A, right), which also significantly 

overlap (p < 0.05) KLF5 binding data (Supplementary Table S2.2, S2.3) (Fig. 2.2B for an example). We 

also observed in knee-specific sets a bias for alterations at predicted CTCF motifs, whose loss-of-function 

results in skeletal defects and spontaneous OA (Hijazi, 2018). Knee-specific sets also significantly 

overlap with CTCF binding data (Supplemental Table S2.2) (Fig. 2.2C for an example). 
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2.2.3: Examination of Intra-Species Sequence Diversity in Element Sets 

As selection also shapes within-species sequence variation (Vitti et al., 2013), we acquired variant data 

for humans (Gibbs et al., 2015), chimps and gorillas (Prado-Martinez et al., 2013), examining whether 

mouse and overlapping E59 human element sets differ in patterns of sequence diversity within and 

between species. Considering human variation we found that sequence diversity in PT- and DF-specific 

elements is constrained compared to genomic backgrounds, as well as promoter-TSS and intronic 

elements (Fig. 2.3A, Supplemental Table S2.5, Methods). Comparing knee-sets directly we observed that 

DF- and PT-specific elements have significantly reduced diversity compared to KC-specific elements, with 

more marked constraint in PT relative to DF (Fig. 2.3B). These diversity patterns between specific knee 

element sets were not observed for orthologous forelimb sets, nor unfiltered ‘general’ knee sets (Fig. 

2.3B, Supplemental Tables S2.5, S2.6, Supplemental Fig. S2.2). 
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Figure 2.3. Intra-species Variation in Regulatory Elements and Human Variation in Knee Morphology 

(A) Counts of common human variants per bp of sequence for element sets compared to random region 

sets along with other genomic features; labels correspond to Supplemental Table S2.5. (B) Common 

human variants intersecting elements in the elbow (left) and knee (right) specific sets were counted and 

compared across sets. (C) Comparisons of chimp sequence diversity across knee-specific sets. (D–F) 
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Common variants in human, chimp, and gorilla intersecting a given ATAC-seq peak counted for all 

variable sequences in knee-specific sets, expressed as “SNPs per sequence”—mean/median values 

shown in dashed/bold lines, respectively. (D) Distal femur-specific (DF). (E) Proximal tibia-specific (PT). 

(F) Knee-common-specific (KC). (G) Measurements of human medial/lateral tibia and femur via MRI 

dataset. Volume of cartilage (left) and total area of subchondral bone (right) for medial/lateral portions of 

both bones were measured across all subjects. Individual points are plotted alongside an outlined density 

curve, quartiles indicated in dashed lines. Significance codes: not significant (ns), < 0.05 (∗), < 0.01 (∗∗), < 

1e−5 (∗∗∗). 

 

Corresponding sets in chimps and gorillas were examined for similar patterns of diversity between DF-, 

PT- and KC-specific elements (Fig. 2.3C). No significant differences were observed, similarly true for the 

forelimb and ‘general knee’ sets (Supplemental Table S2.5). Comparing patterns of sequence diversity 

between humans and African apes, we observed consistently reduced variation within DF- and PT-

specific elements in humans compared to corresponding chimp and gorilla elements (Fig. 2.3D-E). We 

note that no significant differences in diversity levels in KC-specific elements between species were 

observed (Fig. 2.3F, Supplemental Table S2.5). These patterns were recapitulated in overlapping E59 

human elements (Supplemental Fig. S2.2A-C, J-L, Supplemental Tables S5-S6).  

 

However, the human pattern we observed (Fig 2.3B-F) could reflect a more general increase in genetic 

diversity in apes, notably chimps (Prado-Martinez et al., 2013). We therefore performed an analysis of 

sequence set constraint by generating chimp genomic backgrounds and functional annotations and 

comparing diversity with knee-element sets. We found elevated background diversity across the chimp 

genome, indicated by the left skew in the background distribution. Regardless of skew, knee-specific sets 

in chimp behave markedly different; specifically, they each exhibit less constraint than promoter-TSS and 

intronic elements (Fig. 2.3A, Supplemental Fig. S2.2P, Supplemental Table S2.5). Overall, these data 

reveal a unique human pattern of constraint among DF- and PT-specific elements (i.e., reduction of 

genetic diversity relative to KC elements and functional annotations, not in African apes), suggesting 

earlier results were capturing, at least in part, these signals.  
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2.2.4: Examination of Human Knee Morphological Diversity 

Given these patterns in sequence constraint, we sought a corresponding phenotypic signal in human 

knee morphology (Methods). Using morphometric data from OABCP MRI images we confirmed reduced 

variation in all proximal tibia measurements compared to matched distal femur features (Fig. 2.3G, 

Supplemental Table S2.5). Intersecting OABCP sequence data with knee elements we found significantly 

less variation in PT-specific compared to DT-specific elements (Supplemental Table S2.5), supporting a 

genotype-phenotype link between reduced knee regulatory sequence variation genome-wide and 

reductions in morphological diversity. 

 

2.2.5: Examination of the Biological Impacts of Human Sequence Variation in Element Sets 

We next examined how genetic diversity in knee elements generally impacts phenotypic and regulatory 

variation within species. Human and chimp sequences in knee sets partitioned by variation were 

examined using GREAT (Methods). For the least variable (first quartile) human and chimp elements, 

similar enrichments were observed for terms such as “cartilage development” and “chondrocyte 

differentiation.” Conversely, the most variable (third quartile) sequences showed different enrichments for 

humans and chimps. The most variable human elements yielded enrichments for “collagen 

catabolism/metabolism”, “anchoring collagen”, and “osteoarthritis”, functional terms not identified with 

variable chimp elements (Supplemental Table S2.5). 

 

The initial findings in variable human sequences lead us to examine the relationship between common 

variation in knee sets and OA loci identified via GWAS. We aggregated 95 lead variants across 83 OA 

GWAS loci (Supplemental Table S2.7) and found that such variants were enriched in knee-specific 

element sets, including overlapping E59 human elements (Fig. 2.4A, Supplemental Table S2.7). We saw 

no enrichment of variants in less-specific human E47 limb datasets, BMDCs, nor for the brain. These 

findings suggest a specific link between human variation in knee chondrocyte regulatory sequences and 

OA risk. 
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Figure 2.4: Human Variation in Knee Elements and Its Impacts on OA Risk 

(A) Enrichments for OA risk variants in general knee, knee-specific, human E59 hind limb, and brain 

region sets, along with human E47 and BMDC H3K27ac ChIP-seq regions. Calculated Z score 
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enrichments over randomized sets shown as -log (p value); red line indicates significance threshold (p < 

0.05). (B) Distribution of predicted motifs intersected by OA risk variants, counted per TF. Significantly 

enriched factors are indicated—FOXP1 significant following p value correction (p < 0.05). (C) Distribution 

of predicted motifs intersecting OA risk variants in knee elements for a set of chondrogenesis-related TFs. 

(D) Overlaps of region sets and signals of recent selection calculated for general knee, knee-specific, 

brain, and human H3K27ac ChIP-seq region sets, along with OA risk-variants and the regions 

intersecting them. Clustered set overlaps also shown. Hypergeometric tests represented as -log (p value), 

with sign denoting enrichment/depletion; red lines indicate respective significance cut-offs (p < 0.05). (E) 

Top: formalized model for the role of evolutionary history in modern heritable OA risk. Ancient selection 

acting on ancestral sequence diversity in regulatory elements establishes a derived knee configuration, 

which is subsequently maintained through ancient purifying selection (i.e., functional constraint). More 

recently, genetic drift, in combination with antagonistic selection for other traits, increases the frequency 

of alternative alleles in functionally constrained sites. Bottom: the presence of moderate mutational load in 

highly constrained elements (e.g., prox. tibia elements), or high mutational load in less-constrained 

elements (e.g., dist. femur elements), stand to disrupt knee homeostasis and promote pathology risk, 

while low mutational loads (or low sequence constraint) are more tolerated (i.e., harbor lesser risk of 

pathology). (F) The number of alternative alleles falling in chondrocyte regulatory elements counted per-

individual for the 1KG3 population (blue) and the OAI patient cohort (red), shown as density distributions 

with mean values (dashed lines); significance bar indicates Student’s t test result (p < 0.05). 

 

 

As GWAS variants are thought to alter gene expression via TF modifications (Zhang and Lupski, 2015), 

we examined whether OA variants within knee elements modify sequence motifs (Supplemental Table 

S2.7). Although we had observed that human-chimp substitutions within knee-specific elements bias 

against altering FOXP1/FOXP2 motifs, OA variants bias towards altering them (adj. p-value < 0.05, Fig. 

2.4B, Supplemental Table S2.7). We also observed these OA variants intersecting motifs for 

chondrogenesis-associated TFs (Figure 2.4C, Supplemental Table S2.7); in particular, pooled knee-

specific and PT-specific elements have variants tending to overlap predicted CTCF and KLF5 motifs (adj. 
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p-value < 0.05). Furthermore, knee-specific elements capture a significant proportion of all OA GWAS 

variants intersecting these motifs (> 3-fold enrichment, adj. p-value < 0.05, Supplemental Table S2.7). We 

examined whether common variants in knee element sets (i.e., all SNPs with MAF >= 0.05) frequently 

modify chondrogenesis-related TF motifs but found a lack of significant bias (Supplemental Table S2.3), 

pointing to the specific enrichment of signals for OA GWAS variants. Nevertheless, at some functionally 

determined OA-annotated loci (i.e., found via GREAT) common variants were predicted to alter relevant 

motifs within knee-specific elements. Two examples are shown in Supplemental Fig. S2.3A-B. 

 

Given the highly polygenic nature of OA (Hunter and Bierma-Zeinstra, 2019), smaller effect-size variants 

in knee elements may also cumulatively contribute to alter chondrocyte regulation, and ultimately the 

heritability of risk. We assessed the contributions that variants in knee elements, chondrocyte elements 

generally, and other genomic features have to OA risk heritability. Using LDSC (Finucane et al., 2015), 

we found that orthologous chondrocyte elements pooled from all long-bones, along with pooled human 

E59 hindlimb elements, captured variants explaining a significant proportion of OA heritability (adj. p < 

0.05, Supplemental Table S2.7), a feature not seen using embryonic brain or B-lymphocyte elements. 

Variants captured by more refined knee-specific element sets did not reach LDSC significance, owing to 

limits in ascertaining significant partitioned heritability from very small region sets (Finucane et al., 2015). 

Interestingly, annotations pertaining to sequence conservation, i.e., GERP score (Davydov et al., 2010), 

primate phastCons (Hubisz et al., 2011) and predicted allele age (Rasmussen et al., 2014) also 

associated with OA heritability. 

 

2.2.6: Examination of Recent Evolutionary Forces  

The enrichments of OA GWAS variants in knee elements, and the heritability patterns seen in 

chondrocyte elements and conserved sequences reflect in part the effects of constraint on knee 

regulatory element function. But, how have more recent genetic drift and positive selection shaped human 

variant frequencies within knee-specific elements, and influenced the observed disease associations? We 

considered the behavior of variants within knee elements, investigating pairwise Fst (Weir and 

Cockerham, 1984) across 18 populations (Methods). PCA was used to visualize the separation of knee 
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variants based on shared behaviors in population stratification (Supplemental Fig. S2.3C, Supplemental 

Table S2.8). The first two components represented population differences between Eurasia/Africa (PC1) 

and Europe/Asia (PC2) populations (Supplemental Fig. S2.3D), capturing the majority (> 60%) of 

observed variation. K-means clustering of variants based on Fst resulted in two groups per knee set 

(Supplemental Table S2.8, Methods): Cluster 1 variants have a narrower Fst range across populations 

(Fig. S3E-F), while cluster 2 trends towards increased Eurasia/Africa divergence. Using GREAT, we 

determined whether clusters have divergent functional enrichments (Supplemental Table S2.8). Cluster 2 

variants were functionally associated with “skeletal development” and related chondrocyte terms, while 

cluster 1 variants tended to occur near genes with annotations such as ‘arthritis’, ‘arthralgia’, 

‘osteoarthritis’ and ‘knee joint’. 

 

We next assessed whether recent positive selection shaped the patterns of clustered variants, and OA 

variants in general (Methods). We found that only 18% of regions containing clustered knee elements 

(cluster 1) are known to have undergone positive selection in the last 30,000 years (Jagoda et al., 2017; 

Pagani et al., 2016), a significant depletion (1.25 fold-decrease, adjusted p-value: 5.26e-11; Supplemental 

Table S2.8; Fig. 2.4D). No cluster 2 set was enriched in selection windows; rather, they trended towards 

depletion (Fig. 2.4D). We then examined loci for which OA GWAS variants fell in both knee elements and 

selection windows, identifying four (Supplemental Tables S2.7, S2.8). For three loci (UNC5C-BMPR1B, 

ENPP1/3, LSM5) the putative OA risk variant occurred on the non-selected, recombined haplotype 

(Supplemental Fig. S2.3G-J). However, at GDF5, OA risk variants were found to reside on the positively 

selected haplotype (Capellini et al., 2017; Miyamoto et al., 2007). OA GWAS variants, in general, were 

not enriched in selection regions (Fig. 2.4D), and by one test (Grossman et al., 2013) were strongly 

depleted (Supplemental Table S2.8). Lastly, TF motif analyses on clustered low- and high-Fst variants did 

not see show strong biases for intersections, indicating a consistent lack of directionality in regulatory 

modification more in line with genetic drift effects (Supplemental Table S2.3). 

 

2.2.7: Formal Model of Chondrocyte Knee Developmental Regulation, Evolution, and OA Risk 



 27 

Our analyses revealed that DF- and PT-specific regulatory elements exhibit evidence in humans of 

ancient positive selection (Fig. 2.1C), followed by more recent sequence constraint not observed in 

African-apes (Fig. 2.3A-E). Furthermore, the allele frequencies of human common variants within these 

elements, and OA risk variants in general, appear to have been shaped by genetic drift on the 

background of constraint (Supplemental Tables S2.7, S2.8), rather than recent positive selection (Fig. 

2.4D). These variants have consistent links to OA (Supplemental Table S2.8), likely by impacting TF 

motifs under constraint (Fig. 2.4B-C), and contribute to overall heritability of risk (Supplemental Table 

S2.7). We propose a model in which violations to constraint in functional conserved sequences, tolerated 

during knee development, have pathological consequences later in life (Fig. 2.4E; Discussion). Two 

evolutionary mechanisms may cause violation to constraint thereby increasing genetic risk for OA: 

genetic drift and antagonistic selection. We now provide additional genetic and functional evidence 

addressing how both processes may drive heightened OA risk genome-wide as well as on a locus-

specific level. 

 

2.2.8: Functional Sequence Variation Within At-Risk Individuals 

Since it is anticipated that genetic drift should increase the frequency of violations underlying OA risk, 

patients should have higher loads of violating mutations than the general population. To test this, we took 

the OAI patient cohort, consisting of individuals suffering from, or identified as being at high risk of 

developing OA, in comparison to the 1000Genomes population (Methods). We considered sequence 

variants falling in knee-specific elements and asked whether, across the set of variable sites, patients 

tended to possess more alternative alleles. Indeed, we observed a significant increase in the average 

number of alternative alleles possessed by subsets of the OAI cohort (Fig. 2.4F), results replicated using 

an additional population control (Pagani et al., 2016) (Supplemental Table S2.7). To confirm that it is 

specifically sequence violation within constrained knee regulatory elements that is related to the 

heightened OA risk in this cohort, we compared the number of alternative alleles falling within B-

lymphocyte elements as a control, observing different variant behaviors (Supplemental Table S2.7).  

 

2.2.9: Functional Interrogation of an OA Risk Locus in Humans and Mice 
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Another mechanism that may lead to violations of constraint is antagonistic selection or pleiotropy, in 

which positive selection increases a beneficial allele along with linked deleterious alleles. We refer to 

pleiotropy here in the context of linked genetic variants, rather than the multiple possible different effects 

of single variants (i.e. horizontal pleiotropy) Earlier, we uncovered one such locus, Growth Differentiation 

Factor Five (GDF5). GDF5 is a BMP with quintessential roles in knee development across mammals 

(Basit et al., 2008; Rountree et al., 2004; Settle et al., 2003), and yet is the most reproducibly associated 

OA locus to date (Miyamoto et al., 2007; Zengini et al., 2018). At GDF5, selection on reduced height via a 

regulatory variant (rs4911178) in GROW1, an enhancer active in femoral and tibial growth plates, likely 

increased frequencies of linked OA risk variants (Capellini et al., 2017). As our model predicts high-

frequency sequence violations contribute to OA risk, we explored this exemplar locus in-depth.  

 

We first intersected GDF5 GWAS OA risk variants (Zengini et al., 2018) with general E15.5 mouse/E59 

human knee elements, and found putatively-causal variants, rs4911178 (G/A) in GROW1 and rs6060369 

(C/T) (Fig. 2.5A). Rs4911178 and GROW1 do not impact knee morphology when deleted in mice 

(Capellini et al., 2017), implicating rs6060369 as causative. Rs6060369 overlaps a knee element, R4, 

located in sequence downstream of GDF5 shown in rescue experiments to regulate expression and 

mediate knee morphology of Gdf5 null (bp) mice (Chen et al., 2016; Pregizer et al., 2018). To 

characterize R4 activity, we made stably-expressing R4 lacZ reporter mice and found at E14.5/15 

expression in the early knee, including the condylar regions and notch but not the trochlea, and 

postnatally, expression restricted to femoral condyle and tibia plateau articular chondrocytes and cruciate 

ligaments (Fig. 2.5B). Compiling human functional genomics data on E47 limbs, E59 distal femur 

chondrocytes, and BMDCs, we found R4 activity at each timepoint (Fig. 2.5A), indicating a similar 

regulatory time-course as in mouse. 
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Figure 2.5: Functional Characterization of the GDF5 Locus and R4 Enhancer in the Mouse 
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(A) UCSC Genome Browser view of human GDF5 locus with intersections of OA variants, knee ATAC-

seq regions (for human and mouse tissue), GDF5 enhancers, and H3K27ac ChIP-seq signals from 

human embryonic limbs (E47) and BMDCs. Rs4911178 (left red line) and rs6060369 (right red line) 

overlap functional knee sequences. (B) R4-driven lacZ expression in inferior-most distal femur (DF) and 

superior-most proximal tibia (PT) (left) tissues and in adult distal femora (right two images). AC, articular 

cartilage; FN, femoral notch; IC, inferior condyles; CL, cruciate ligaments; TG, trochlear groove. Scale 

bars, E14.5 = 250 μm; adult = 1 mm. (C) P30 knee anatomy in C57BL/6J R4 null mice. #, same trends for 

medial condyle. R4+/+ (wild-type [WT]), R4−/− homozygous (HOM). (D) 1-year knee anatomy. (E) OARSI 

scores on WT and HOM knees at P30 and 1 year. Triangles, heterotopic ossification. (F) 3D renditions 

(top) and histology (bottom) of WT/HOM knees with minimum (blue), mean (green), and maximum (red) 

OARSI scores. Heterotopic ossification observed in HOM knees with highest OARSI scores and most 

cartilage damage. Scale bars, 50 μm. (G) X-ray 3D cartilage scanning of WT/HOM distal femur condyles 

(top) and proximal tibia platforms (bottom) at 1 year, showing OA lesions (white arrows). Scale bars, 1 

mm. (H) Linear regressions between knee morphology and OARSI score at 1 year. In (C)–(E) colored 

dots correspond to specimens shown in (F). Significance code: <0.05 (∗). 

 

ASE on R4-deletion mice found that R4+/- significantly down-regulated Gdf5 expression in E15.5 distal 

femur chondrocytes (deletion-allele Gdf5 expression 69.6 ± 0.05% of control expression; N = 4/genotype; 

p = 0.001). At P30, R4 loss (R4-/-) led to significant distal femur changes, specifically, smaller femoral 

condyle curvature radius and notch sizes, among other changes (Fig. 2.5C; Fig. 2.7; Supplemental Fig. 

S2.4A-C, Supplemental Table S2.9). R4+/- mice displayed a non-significant trend in the same direction 

(Supplemental Table S2.9). Despite changes, a normal articular cartilage and joint cavity formed in R4-/- 

mice (Fig. 2.5F, Left). Given that R4+/- mice lacked overt phenotypes at P30, our 1 year comparisons 

focused on R4+/+ and R4-/- mice. At 1 year, R4-/- mice exhibited exacerbated defects in the same distal 

femur features (Fig. 2.5D, p < 0.05) and new alterations to the proximal tibia (Supplemental Table S2.9). 

The observed changes are related to genetic variants and not aging as morphological comparisons 

occurred between genotypes at each time point separately. Strikingly, OA developed in R4-/- mice as 

observed via histology, OARSI score (Mann-Whitney test, p = 0.041), and cartilage imaging (Fig. 2.5E-G, 
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Supplemental Fig. S2.5). This phenotype included a loss of glycosaminoglycans throughout articular 

cartilage surfaces with minor fibrillations of isolated surfaces in most individuals, and severe damage up 

to complete denudation of isolated joint surfaces in some individuals (Fig. 2.5F). Using X-ray 3-D 

scanning we observed OA lesions on the femoral condyle and proximal tibia (Fig. 2.5G). In the most 

effected mice, heterotopic ossification was observed, a phenotype that occurs in late stage human OA 

(Fig. 2.5F). Finally, several morphologic features of R4-/- knees (e.g., condyle curvature, notch size, etc.) 

were correlated with OA severity; features which have been shown to change during human OA 

progression (Barr et al., 2016; Hunter et al., 2016; Neogi et al., 2013)(Fig. 2.5H, Supplemental Fig. 

S2.4D). However, as these measurement changes were also detected in R4-/- mice at P30, such shape 

alterations preceded and may have caused OA. 

 

Figure 2.6. Functional Characterization of the R4 Enhancer in Human and Mouse Chondrocytes 

(A) Expression by qRT-PCR of CEP250 (not significant [n.s.]), GDF5 (p < 0.005), and UQCC1 (n.s.) in 

human T/C-28a2 chondrocytes lacking R4. (B) Expression of CEP250 (n.s.), GDF5 (p < 0.05), and 

UQCC1 (n.s.) in cells lacking 41 bp containing rs6060369 in R4. (C) In vitro reporter analyses of R4-
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driven luciferase activity comparing constructs with the OA risk “T” or non-risk “C” variant in T/C-28a2 

cells. (D) PITX1 ChIP on a R4 sub-region containing rs6060369 in T/C-28a2 cells showing input (left) and 

pull-down (right) in image. (E) UCSC Genome Browser view of mouse R4 corresponding to knee ATAC-

seq region and PITX1 binding via ChIP-seq (Infante et al., 2013). 

 

Figure 2.7. Functional Characterization of the rs6060369 OA Risk Allele in Humanized Replacement Mice 

(A) ASE assays on E14.5 distal femur chondrocytes from C57BL/6J/129SVJ R4rs6060369-T, rs6060369-

A replacement mice (right, p = 0.0005) and C57BL/6J/129SVJ R4 heterozygous (R4+/−) mice (left, p = 

0.001). (B) 3D comparative analysis indicating the locations of largest morphological differences between 

(left) WT R4rs6060369-A, rs6060369-A and HOM R4rs6060369-T, rs6060369-T hind limbs, as well as 

between (right) R4+/+ and R4−/− hind limbs (zoom-in images focus on inferior distal femur [top], superior 
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proximal tibia [bottom]). Areas with largest variations are highlighted in red (WT > HOM) and dark blue 

(WT < HOM), with minimal variation in green/yellow. (C) μCT measurements of indicated features in base 

pair replacement and R4 mice at postnatal days P30, P56, and 1 year. 

 

We next explored R4 function and its OA variant (rs6060369) in human and mouse chondrocytes in vitro. 

R4 deletion in human T/C-28a2 articular chondrocytes caused significant down-regulation of GDF5 

expression (p<0.005), but not nearby genes (Fig. 2.6A, Methods). Deletion of a 41 bp subregion 

containing rs6060369 had a similar effect (p < 0.05, Fig. 2.6B). Luciferase reporter assays in these cells 

for rs6060369 found that the risk allele “T” drove significantly reduced expression (Fig. 2.6C, p=0.000044; 

Fisher-combined p=8.79E-09). We computationally predicted that Pituitary homeobox 1 (PITX1), a major 

TF in knee formation (Nemec et al., 2017) and OA risk factor (Butterfield et al., 2019; Picard et al., 2007), 

binds to this variant position. Using ChIP on T/C-28a2 cells (Fig. 2.6D), E15.5 distal femur and proximal 

tibia cartilage, and PITX1 ChIP-seq data (Fig. 2.6E), we validated PITX1 binding at this position, 

indicating that it likely mediates the cis-acting effects of rs6060369 in the R4 element on GDF5 

expression. 

 

We finally edited the rs6060369 orthologous position in C57BL/6J mice to contain the human risk “T” 

allele. ASE on mice with one humanized R4 “T” allele significantly down-regulated Gdf5 expression in 

E15.5 distal femur chondrocytes (replacement “T” allele Gdf5 expression 82.3% +/-0.05% of control 

expression; N = 8/genotype; p=0.0005, Fig. 2.7A), revealing an endophenotype within an anatomically 

relevant context. Phenotyping P56 humanized mice found that several distal femur features, also 

dysmorphic in R4-/- mice (including notch width and lateral condyle sagittal curvature radius), display 

alterations in R4rs6060369-T, rs6060369-T compared to controls, and in the same direction of effect (Fig. 2.7B-C; 

Supplemental Table S2.9). While adjusted comparisons did not yield many significant differences, 

matched unadjusted analyses demonstrate marked differences in condyle curvature and width, and tibial 

spine size (Supplemental Table S2.9). These precise enhancer-mediated alterations are evident in 

heatmaps of morphological change between wildtype and R4rs6060369-T, rs6060369-T hindlimbs (Fig. 2.7B). As a 

subset of effected measures are correlated with OARSI score in R4-/- mice (Fig. 2.5H), and as knee 
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morphology and OA risk are complex polygenic phenotypes, these findings constitute evidence that the 

derived “T” variant at rs6060369 is a causal variant. Moreover, its location in a conserved TF binding site 

within a functional element that modifies knee development supports our model’s expectations that 

violations to constraint can confer elevated OA risk. 

 

2.3: Discussion 

2.3.1: Insights on the Evolutionary Developmental Regulation of the Human Knee 

To examine the developmental genetic changes involved in the evolutionary transformation of the human 

knee, we profiled open chromatin regions from both human and mouse developmental samples, 

comparing patterns of inter- and intra-species sequence evolution across a variety of hindlimb and 

forelimb elements. Open chromatin regions specific to distal femur and proximal tibia, which reflect site-

specific regulatory elements involved in knee chondrogenesis, exhibited several features reflecting the 

effects of ancient selection during primate and hominin evolution. These include reduced sequence 

conservation among primates relative to pleiotropic elements, enrichments for human accelerated 

regions, and significantly reduced diversity relative to pleiotropic elements and certain genome features 

(e.g. TSS and promoter elements) within humans but not chimps. These findings augment our limited 

understanding of prenatal human knee development, pointing to a series of adaptive regulatory 

modifications to human knee formation. 

 

Furthermore, we observed that PT elements display a stronger reduction in genetic diversity than DF 

suggestive of greater purifying selection acting on this part of the knee to maintain its anatomical integrity. 

Importantly, we observed corresponding reductions in morphological variation in features of the proximal 

tibia relative to distal femur in the OAI dataset. As we were limited to studying patients with KL = 1 (i.e., 

the lowest score depicting initial OA onset) we cannot rule out confounding issues regarding the time-

course of OA on different anatomical knee subdomains, though there is currently no consensus as to 

whether one particular bone end is the primary site of OA and morphological change. These findings on 

PT constraint in human genetic and morphological data, together with reduced PT sequence conservation 

across primates, suggest a more evolutionarily-labile feature for locomotor adaptations which, when a 
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more optimal configuration is achieved, becomes ‘locked-in’ and is subject to negative selection 

pressures to maintain its morphology. 

 

We were unable to examine gained human-specific open chromatin regions, which could show additional 

evidence of regulatory evolution in the human lineage. Similarly, the assumption of conserved chimp 

regulatory activity for overlapping elements present in mouse and human may not hold in all cases. 

Resolving these questions, however, would require chimp developmental samples, which is infeasible 

and unethical. As the majority of regions identified here were shared across chondrocyte growth zones 

and hence were uninformative on specific anatomical evolution and patterns, use of chondrocytes derived 

from chimp iPS cells, while providing a general “chondrocyte” signal, would not inform on anatomically-

specific open chromatin regions. 

 

Nevertheless, given the expectation that changes to human knee development are mediated at the 

regulatory level, accelerated regions and more targeted nucleotide changes within existing knee-specific 

elements (i.e. isolated substitutions modifying TF binding) likely participated in altering conserved 

regulatory networks. For example, biased occurrence of human-chimp changes intersecting motifs of 

chondrogenesis-associated factors, such as KLF5, CTCF, and FOXP1/FOXP2, suggest that some 

network components were modified (KLF5 and CTCF) whilst ancient functional constraints precluded the 

exploitation of others (FOXP1/FOXP2). Once modified, these regulatory elements fell under new 

functional constraints to maintain the derived human knee, manifesting in reduced genetic diversity within 

modern humans at these sites relative to orthologous ape sequences, as well as to pleiotropically-acting 

knee elements. 

 

2.3.2: Evolutionary Insights on the Genetic Risk of OA and Causal Variant Discovery 

Despite evidence of ancient selection, human variants falling within knee elements show little evidence of 

recent positive selection (i.e., within the past 30,000 years), display weak population-level differentiation, 

exhibit no biases in their intersection of predicted TF motifs, and are generally enriched near genes that 

impact OA. These point to the predominant effects of genetic drift on functionally-constrained regulatory 
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elements in joint disease. To this end, we found that when regulatory constraint is violated, e.g., through 

the emergence of a variant disrupting a TF motif, there is greater likelihood for pathogenic consequences. 

Knee elements more variable in humans, but not chimps, are linked with OA gene annotations, knee-

specific elements are enriched for OA GWAS variants, and notably, while predicted FOXP1/FOXP2 motifs 

are protected against human-chimp substitutions, they were also those likely to be disrupted by OA risk 

variants. We find it interesting that conditional excision of FoxP2 using Prx1-cre mice leads to knee 

defects, changes in articular cartilage thickness and OA (Xu et al., 2018). These observations suggest 

that numerous genetic perturbations to constrained FOXP binding sites might also underlie OA risk in 

humans. Importantly, we also observed impacts at TGF-� and BMP loci, which not only exhibit signals of 

adaptive evolution but are involved in knee development (Lyons and Rosen, 2019), OA (Wang et al., 

2014; Wu et al., 2016) and possess GWAS variants overlapping knee-specific elements (e.g., BMPR1B 

and GDF5). 

 

We formulate a model of human knee evolution that impacts OA risk at the regulatory level (Figure 2.4E). 

Normally, it would be expected that variants violating constraint in particular regulatory sequences - i.e. 

those integral to knee development, structure and/or maintenance - would be selected against due to the 

fitness consequences of an inefficient bipedal gait. However, recently these violations may have become 

tolerated due to buffers (e.g., improved health, medical care, footwear, etc.). If so, their selective removal 

on a genome-wide level would become less efficient (Carnes and Olshansky, 1993), permitting retention 

and accumulation. Additionally, prehistorically-tolerated variants in these elements – i.e., those that only 

mildly influenced OA risk in the past - may have become more potent risk effectors given complex 

interactions with modern factors, including obesity, inflammation, and changes in activity (Hunter and 

Bierma-Zeinstra, 2019). In both contexts, given typical late-life onset of OA the deleterious consequences 

of variants to aspects of morphology and joint homeostasis may emerge later, as joint stress compounds 

over decades, contributing to elevated disease risk. We observed that chondrocyte open-chromatin 

regions collectively capture a significant portion of OA heritability, and that the OAI patient cohort 

exhibited a greater proportion of alternative alleles in knee elements specifically. These indicate an 

increased common variant load in constrained elements, consistent with our model (Fig. 2.4E). 
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However, it remains unclear how OA prevalence differs between primates. Studies on captive baboons 

reveal similar prevalence to humans (Macrini et al., 2013), whereas in wild and captive gorillas and 

chimps showing OA at joint sites prevalence is lower than humans and captive baboons (Lowenstine et 

al., 2016). This suggests that the nature of OA in humans is quite different compared to African-apes. 

Understanding prevalence is also complicated as wild catarrhine primates typically show high levels of 

past trauma, which can be associated with OA and obscure connections to genetic effects (Lowenstine et 

al., 2016). We did find that both sequence conservation within primates, as well as the predicted age of 

variants, significantly associate with OA heritability. The latter has been suggested to represent negative 

selection acting on complex diseases, wherein recent risk variants have had less time to be removed 

(Gazal et al., 2017). These findings support our model and suggest that part of human OA heritability may 

result from how genetic variants violate a phylogenetic sequence constraint retained from primates.  

 

Our evolutionary model suggests that violations to constraint may arise not only via genetic drift but also 

through antagonistic pleiotropy. Recent selection acting on other traits may oppose the functional 

constraints of a derived knee. Furthermore, recent selection may target the same loci used to sculpt the 

hominin knee because of their recurring importance to development, growth and homeostasis of the 

musculoskeletal system (Salazar et al., 2016; Chan et al., 2010; Capellini et al., 2017), and underlying 

modular cis-regulatory systems (e.g., Chen et al., 2016; DiLeone et al., 1998; Guenther et al., 2008; 

Indjeian et al., 2016). While we did not find enrichment of OA variants nor knee-specific regulatory 

elements in regions of recent positive selection, several loci were identified which fell within selection 

windows, and may represent examples of pleiotropy-driven sequence violation (here, again, we refer to 

pleiotropy at the level of linked genetic variants). Here, we show that one common OA risk variant 

(rs6060369), present on a haplotype under recent positive selection for height (Capellini et al., 2017), is 

located within a classic BMP locus involved in knee development, GDF5, and within a knee enhancer 

(R4) located using our ATAC-seq strategy. This enhancer and its variant (rs6060369) alter knee 

regulation in vivo and in vitro, and contribute to OA susceptibility.  
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The R4 enhancer is found in humans, mice, and anole lizards (Wang et al., 2018), and is therefore part of 

a conserved BMP network involved in knee development. Loss of the conserved enhancer in human 

chondrocytes down-regulates GDF5 expression, whereas its loss in mice (R4-/-) down-regulates Gdf5 

expression locally and alters knee shape at the specific anatomical locations of activity in prenatal and 

early postnatal development. Note, the localized knee defects seen in R4-/- mice represent only a subset 

of those plaguing Gdf5 null knees (Pregizer et al., 2018), revealing the modular effects that regulatory 

elements can have on morphology and disease risk. While the R4-/- knee remains functional, these mice 

do not require any experimental joint insult (e.g., surgical destabilization of the medial meniscus) to 

recapitulate several characteristic features of human OA progression. 

 

The human OA risk “T” allele at rs6060369 on the selected haplotype now exhibits frequencies between 

40-70% across Eurasia, making it present in billions of people, and confers a 1.3 to 1.8-fold increase in 

OA risk (Miyamoto et al., 2007; Zengini et al., 2018). As it resides at a PITX1 binding site, whose binding 

we demonstrate in human and mouse, this risk variant alters an evolutionary-constrained transcriptional 

complex governing normal R4 function, which our model would predict to be causally linked to OA risk. 

Mice hetero/homozygous for the single base-pair human risk “T” allele display significant reductions to 

Gdf5 expression in vivo and present with alterations in some of the same structures and directions of 

effect as found in R4 null mice. Yet, this variant modifies knee shape not so dramatically as to markedly 

disrupt development or early postnatal locomotion. We suggest that by slightly altering knee shape in 

mice and humans, abnormal joint biomechanics and excessive cartilage wear and degeneration over time 

may lead to OA, especially when compounded with other risk factors. However, we cannot rule out other 

non-biomechanical influences for this variant on knee phenotypes. We believe this novel-engineered 

mouse model (and that of the R4-/- model) will provide an effective and realistic tool for testing OA 

treatments in the context of genetic and non-genetic risk factors. Moreover, that this single base-pair 

change has such an observable effect on phenotype lends support for GWAS variant testing in the mouse 

model, especially when it permits the proper three-dimensional and physiological context to observe an 

effect. Overall, the model proposed here represents a generalized means by which hypotheses linking 

functional sequences, evolutionary history, and modern-day disease may be made. We present genetic 
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and functional analyses, which seek to test such hypotheses in the context of heritable OA risk, and 

suggest an evolutionary framework in considering the molecular underpinnings of complex diseases as a 

useful avenue for scientific research. 
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Chapter III: 

 

Shifting epigenetic contexts influence regulatory variation and disease risk 

 

This chapter has been published as an article in Aging (Albany NY): 

 

Richard, D. and Capellini, T.D., 2021. Shifting epigenetic contexts influence regulatory variation and 

disease risk. Aging (Albany NY), 13(12), p.15699. 

 

3.1: Introduction 

It has been suggested that the process of aging, and the concomitant manifestation of aging-related 

disease, is subject to both genetic and non-genetic factors impacting the regulatory networks (and 

subsequent behaviours) of aging cells(Brunet and Berger, 2014; Rodríguez-Rodero et al., 2011). 

Nongenetic regulation of aging refers to epigenetics; chemical changes to the genome (e.g., at the 

chromatin level) that impact transcriptional programs(Brunet and Berger, 2014), and which have been 

shown to accumulate with age(Booth and Brunet, 2016; Criscione et al., 2016; López-Otín et al., 2013). 

The epigenetic state of chromatin can be broadly classified into activating or repressing 

modifications(Dunham et al., 2012), referring, in part, to the increased/decreased accessibility of DNA to 

gene-regulatory machinery (e.g. transcription factors), and is established, maintained, and reset to switch 

between states(Dunham et al., 2012). Ample evidence suggests a causal relationship between changes 

in epigenetic state with age and hallmarks of aging in cells(Booth and Brunet, 2016; López-Otín et al., 

2013). Much recent work has focused on elucidating this relationship and how, ultimately, this contributes 

to age-related tissue decline and adult diseases(Zhang et al., 2020a).  

 

As aging can also be considered a continuation of development(Blagosklonny and Hall, 2009), the 

epigenetic changes that are retained from early-life development may have important consequences for 

the adult epigenome – establishing the context within which epigenetic aging occurs(Hanson et al., 2011). 

A ‘fetal programming’ model has been suggested whereby early epigenetic plasticity in response to 
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environmental and nutritional stimuli, while being adaptive and beneficial to fetal and early post-natal 

growth, has deleterious consequences later in life by contributing to adult disease risk(Gicquel et al., 

2008; Godfrey et al., 2013; Hanson et al., 2011; Rinaudo and Wang, 2012). This serves as one possible 

mechanism for the theorized consequences of selection favouring early-life development at the cost of 

late-life function(Hanson et al., 2011; Kirkwood, 2008, 2002). Evidence supporting this model has been 

largely limited to DNA methylation(Conradt et al., 2018; Fraga et al., 2005; Hanson et al., 2011; Ollikainen 

et al., 2010), though replication of important loci findings has been difficult(Saffery and Novakovic, 2014). 

 

Epigenetic marks established during development can persist into adulthood(Hanson et al., 2011), but 

they do so in the context of shifts in epigenetic states (see below) as tissues transition into their adult 

forms and functions. This transition process has been characterized with respect to DNA methylation, 

chromatin state, and gene expression across multiple tissues(Aagaard-Tillery et al., 2008; Horvath and 

Raj, 2018a; Yan et al., 2016). Furthermore, these fetal to adult epigenetic shifts can be compounded by 

additional modifications through aging-associated epigenetic changes. Such epigenetically-regulated 

biological pathways involved in development, such as Wnt signalling, subsequently take on a role in 

tissue homeostasis in adults and are implicated in age-related tissue decline(Maiese et al., 2008; 

Salminen and Kaarniranta, 2010) – suggesting a molecular link between processes mediating growth and 

aging(Blagosklonny and Hall, 2009; Magalhães, 2012). Thus, an important component of understanding 

the contributions of fetal programming as well as epigenetic aging to disease biology and risk is 

characterizing the epigenetic changes between fetal and adult tissues and how these might interact with 

subsequent aging-associated modifications.  

 

While epigenomes vary between cell types(Rivera and Ren, 2013; Roadmap Epigenomics Consortium et 

al., 2015) and changes to epigenetic state with age may be expected to manifest differently, the aging 

epigenetic shifts outlined above have been repeatedly observed across tissues(Brunet and Berger, 2014; 

Day et al., 2013; Horvath and Raj, 2018a; Kubben and Misteli, 2017; López-Otín et al., 2013). Similarly, 

while age-related expression changes do exhibit tissue-specificity, there is evidence of potential 

synchronized changes across different sets of tissues(J. Yang et al., 2015), particularly for certain sets of 
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genes and pathways(Frenk and Houseley, 2018; J. Yang et al., 2015), and these changes may integrate 

at multiple different epigenetic levels(Bou Sleiman et al., 2020). Together, these findings suggest that a 

central trajectory for epigenetic state that reflects innate aging processes may exist(Horvath and Raj, 

2018a), upon which extrinsic and cell-type effects are layered. Similarly, studies between fetal and adult 

tissues have found that, while epigenetic change is observed within individual tissues, there are also 

common trends of development (e.g., chromatin restriction, particularly at loci involved in early 

development)(Yan et al., 2016; Yuen et al., 2011; Zhu et al., 2013).  

 

Importantly, the epigenetic state of genetic variants (e.g., single nucleotide polymorphisms) influences 

their regulatory effects, and subsequent association with heritable disease risk(Boyle et al., 2012). Thus, 

general epigenetic trends across early development and later aging may influence the phenotypic effects 

of regulatory mutations, albeit the extent to which this occurs is unknown. These phenotypes, if impacting 

an individual’s fitness, may be acted upon by natural selection. Evolutionary theories have been proposed 

which suggest that mutations contributing to aging pathologies are ‘allowed’ to accumulate due to the 

reduced fitness consequences of disease in older, post-reproductive individuals(Charlesworth, 2001), or 

that beneficial mutations selected for early development become deleterious with age(Kirkwood and 

Rose, 1991; Richard et al., 2020; Rodríguez et al., 2017). Studying the added dimension of epigenetic 

context may provide a fresh perspective on theories of aging and selection. For example, deleterious 

mutations that change epigenetic context later in life may have different regulatory effects, and thus 

different fitness consequences, which alter the selective pressures acting on them. 

 

In the present study, we seek to characterize common epigenetic trends between fetal and adult tissues, 

and examine the potential interaction of these developmental changes with later changes associated with 

epigenetic aging in adult tissues. We utilize our findings to propose a model for how evolutionary forces 

may have acted at these loci in humans, and how these forces in turn influence the distribution of 

mutations conferring heritable disease risk across a number of age-associated pathologies. 
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3.2: Results 

3.2.1: Defining chromatin accessibility change, its genomic context, and loci subject to change 

To investigate epigenetic changes occurring over the course of post-natal development and aging, we 

focused on chromatin accessibility, as it reflects the regulatory potential of a genetic locus and can be 

considered a property of the epigenome which integrates a number of possible epigenetic phenomena 

(e.g., regulatory factor binding, chromatin remodelling, etc.)(Klemm et al., 2019). We thus consider 

regions with altered chromatin accessibility as being indicative of epigenetic modifications or ‘shifts’ in 

context. As a read-out of accessibility we analyzed DNase-I hypersensitivity datasets acquired from 

primary human tissue, and obtained fetal/adult sample pairs for eight distinct primary tissues (spleen, 

lung, muscle, stomach, kidney, brain, heart, and skin, see Supplemental Table S3.1)(Davis et al., 2018; 

Dunham et al., 2012). For each tissue at each time-point, called accessible or “open” chromatin regions 

were consolidated across biological replicates, then further aggregated by tissue and stage (see 

Appendix C). 
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 Figure 3.1. Cross-tissue accessibility. (A) Representative heatmap of Dnase-I accessibility for regions 

significantly different between fetal/adult tissues. Color scale indicates magnitude of chromatin 

accessibility signal (see Appendix C). Horizontal lines denote defined fetal-biased (left) and adult-biased 

regions. (B) Genomic distribution of regions changing accessibility in fetal and adult comparison. 

Red/blue: density of defined differentially-accessible regions. Solid black line: relative proportion of 

regions more accessible in adult (top) or fetal (bottom) tissues. First five autosomes shown 

(see Supplementary Figure 3.2). (C) The proportion of defined altered-accessibility regions between adult 

and fetal samples for indicated tissues which are unique to that tissue, or captured in the pan-tissue set. 

(D) Overlaps between regions defined as differentially-accessible in fetal/adult comparison and those 

defined in the young/old-age comparison. Directionality in accessibility change is significantly shared 

(see Supplementary Table 3.1). 

 

We first identified chromatin regions exhibiting recurrent accessibility changes between fetal and adult 

samples across tissue types (see Appendix C, Figure 3.1A-B, Supplemental Figure S3.1-2). We define 

regions as ‘adult-biased’ if they exhibit increased differential accessibility in adults compared to in fetuses. 
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Conversely, we define regions as ‘fetal-biased’ if they exhibited decreased differential accessibility in 

adults compared to in fetuses. These ‘pan-tissue’ altered regions were compared to those defined in 

individual tissue comparisons, showing substantial but not complete overlap (Figure 3.1C) – suggesting 

that our approach captures cross-tissue signals of broader developmental changes and not tissue-

specific effects. We next explored possible signals of epigenetic aging occurring in the context of fetal to 

adult changes, by further dividing our adult tissue samples into ‘younger’ and ‘older’ age categories 

(Methods, Supplemental Figure S3.3). We then assessed accessibility change between young and old 

occurring within the ‘adult-biased’ and ‘fetal-biased’ regions defined above (Figure 3.1D). This approach 

identified regions for which young-old differences mirrored fetal-adult differences, as well as regions 

where aging changes appear to counter developmental patterns. We observed a tendency for shared 

directionality in gains or losses of accessibility; i.e., adult-biased regions tended to also have increased 

accessibility in older adult samples, while regions losing accessibility in adult samples (i.e. are fetal-

biased) continued this trend in older samples (chi-sq test, p < 0.05, Supplemental Table S3.1). In this text, 

we therefore refer to regions with greater accessibility in older samples as ‘old-biased’ and regions with 

lower accessibility in older samples as ‘young-biased’. As described in Appendix C, we considered 

histone mark and DNA methylation changes, key features of developmental(Roadmap Epigenomics 

Consortium et al., 2015; Yan et al., 2016; Zhu et al., 2013) and aging epigenetic changes(Booth and 

Brunet, 2016; Horvath and Raj, 2018a) as additional means to validate the behaviour of these region sets 

(see also Supplemental Table S3.1). 

 

To gain insights into the roles these region sets have in transcriptional regulation, we next characterized 

the genomic distribution of our adult-biased and fetal-biased region sets using adult tissue epigenetic 

states(Roadmap Epigenomics Consortium et al., 2015) (Appendix C). We found that our region sets 

preferentially fell within different epigenetic states (e.g., enhancers, heterochromatin) depending on the 

nature of their accessibility shift (e.g., adult-biased, old-biased), suggesting that these shifts may be 

associated with altered regulatory biology at different loci, and that the interaction between fetal and adult 

shifts as well as young and old-age shifts heavily favours developmental changes to accessibility (see 

Supplemental Figures S3.4-S3.5, Appendix C).  
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As accessible chromatin regions often serve to regulate gene expression(Klemm et al., 2019) by acting 

as cis-regulatory sequences, we next sought to identify the potential role of our regions in regulatory 

changes occurring during development and aging. We did this by considering promoter-level accessibility 

(see Methods, Figure S6), promoter-capture (Hi-C) interactions(Jung et al., 2019), and regulatory-domain 

annotations(McLean et al., 2010) for genes which may be subject to control by these regulatory regions. 

We found a general pattern for enrichment of immune-related gene sets with the adult-biased set, while 

development-related (e.g. cellular proliferation) terms were enriched with fetal-biased regions, patterns 

echoed when considering old-biased and young-biased region sets, respectively (see Appendix C, 

Supplemental Table S3.2). 

 

We next incorporated tissue-expression datasets looking for general gene expression trends between 

fetal and adult tissues (see Methods). We observe similar enrichment terms as well as significant 

overlaps with gene sets defined on the regulatory level (see Appendix C, Supplemental Table S3.2). 

Similarly, we utilized GTEx (gene tissue expression) datasets(GTEx Consortium, 2013) to look for 

corresponding shifts in gene expression with age, similar to previous work(Benayoun et al., 2019) (see 

Methods)(Supplemental Table S3.2). While we did not observe significant overlaps between these aging-

expression gene sets and those defined using aging-accessibility changes, we did see significant 

overlaps with the fetal/adult expression comparisons, along with enriched gene sets with relevance to 

aging biology (see Appendix C, Supplemental Table S3.2, Discussion). 

 

As development and aging are phenomena subjected to the actions of random and directed evolutionary 

forces(Carroll, 2008; Kirkwood, 2008; Kirkwood and Holliday, 1979), we next develop expectations for 

how these epigenetically-altered regions may have evolved over time. 

 

3.2.2: Sequence evolution of epigenetically-altered regions 

Development and aging are simultaneously very ancient and variable(Carroll, 2008; Jones et al., 2014) 

biological processes and are particularly divergent in key species(Ferris et al., 2018). Thus, it may be the 
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case that both development and age-associated regions have been shaped by a mix of evolutionary 

forces acting to either maintain or modify genetic sequences (e.g., regulatory enhancers). To address this 

possibility, we examined patterns of sequence conservation in our epigenetic datasets using 

phyloP(Pollard et al., 2010), a measure of nucleotide conservation and/or acceleration across species 

(Figure 3.2A). Across primates, we observed that fetal-biased regions tended to have greater sequence 

conservation than adult-biased regions, and furthermore that both sets differed significantly from those 

regions not defined as developmentally-altered (Supplemental Table S3.3). These patterns were similarly 

observed when comparing age-associated regions (Supplemental Table S3.3). These findings of 

conservation differences between sets suggests that the greater regulatory and developmental role 

associated with fetal-biased and young-biased regions (e.g., enriched for enhancer elements) exerts 

functional sequence constraint while adult-biased and old-biased regions (e.g., enriched for repressed 

segments) are less conserved across species. 
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Figure 3.2: Sequence evolution of age-altered regions. (A) Distribution of average per-region sequence 

conservation (phyloP20ways) in differentially-accessible regions (see color legend). (B) Overlaps of 

developmental and age-related region sets and human acceleration regions. Overlaps shown relative to 

set size (per bp of sequence) for background (gray) and target (colored) sets; labels correspond to 

Supplemental Table S3.3. (C) Intersections of common human variants (per bp of sequence) for target 

(colored) and randomized (grey) region sets; labels correspond to results in Supplemental Table S3.3. (D) 

Diagram summarizing results of evolutionary sequence analyses. Accessible regions, here diagrammed 

as an upstream enhancer element (thick blue box), which either gain or lose accessibility over 

development (left) or ageing (right) exhibit different patterns of evolutionary sequence behavior. Created 

with BioRender.com. 

 



 50 

 

Within this broader context of species diversity and evolution, humans and chimpanzees display marked 

and obvious differences in development and longevity(Carroll, 2008; Kirkwood, 1997). This relatively 

recent divergence is thought to be driven largely by non-coding changes to cis-regulation(Varki and 

Altheide, 2005). We therefore next looked for evidence of regulatory modifications to biological processes 

that may contribute to these human/chimp differences. To do this, we intersected our regions sets with 

sequences demonstrating significant divergence along the human lineage (e.g., ‘human accelerated 

regions’ (Hubisz and Pollard, 2014)). We found that fetal-biased regions were enriched for signals of 

acceleration while adult-biased regions were depleted (Figure 3.2B). Similar patterns were seen for young 

versus old-biased regions (Figure 3.2B, Supplemental Table S3.3). We found a number of genes involved 

in development and aging processes with putative nearby regulatory elements intersecting accelerated 

regions, two examples of which are shown in Supplemental Figure S3.7 (see also Appendix C). 

To gauge the evolutionary interaction between sequence constraint across species and within-species 

variation, we next assessed modern-day human diversity within region sets (Methods). We found that 

genetic diversity in fetal-biased regions was markedly reduced (i.e., constrained) compared to genomic 

backgrounds, as well as to intronic and promoter-TSS elements (Figure 3.2C, Supplemental Table S3.3). 

Conversely, adult-biased regions were enriched for sequence diversity, at the level of annotated repeat 

elements. These patterns were accentuated when examining young- and old-biased region datasets, and 

comparing region sets directly (Supplemental Table S3.3, Appendix C). Importantly, when we considered 

sequence diversity within other ape species, we also observed a decrease in fetal-biased, and young-

biased sequence diversity (relative to adult-biased and old-biased, respectively). This latter finding further 

suggests that fetal-biased regions are associated with conserved regulatory function that discourages 

mutation and/or drift (Supplemental Figure S8, Supplemental Table S3.3).  

 

Overall, natural selection appears to have acted upon regions subject to accessibility shifts in 

development and aging, modifying some loci (i.e., accelerated divergence indicative of ancient positive 

selection) while protecting others (i.e., reduced variation indicative of more recent negative selection) 

(Figure 3.2D).  
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Importantly, selective forces, both positive and negative, manifest phenotypically through the effects of 

random genetic mutations, which act to modify gene regulatory networks to varying degrees. We next 

examine this relationship. 

3.2.3: Epigenetic shifts in age-associated trait associations 

In our above analyses, the observed signals of consistent inter- and intra-species conservation in regions 

most associated with early development (i.e., the fetal-biased set) follows with the expectation that 

variants negatively impacting early-life would be subject to stronger purifying selection(Carnes and 

Olshansky, 1993; Hanson et al., 2011; Ricklefs, 2008). Conversely, variants with later-manifesting effects, 

i.e., those within regions increasing in local accessibility with age (i.e., the adult-biased set), would be 

subjected to substantially weaker selection and may therefore be ‘tolerated’(Williams, 1957; Wright et al., 

2003a). To test expectations of the possible deleterious effects of variants subject to accessibility change 

over development and aging, we utilized GWAS datasets available from the UK Biobank(Sudlow et al., 

2015). We extracted summary-statistics for a collection of 127 complex diseases/pathologies falling into 

aging-related categories(Chang et al., 2019), including metabolic disorders, cancers, cardiovascular 

disease, and musculoskeletal impairment (Supplemental Table S2.4, Methods). We similarly analyzed a 

set of developmental trait GWAS to act as a control for our fetal/adult accessibility comparisons, and 

finally considered longevity GWAS data (Supplemental Table S2.4, see Appendix C). 

It has been suggested that the highly polygenic nature of complex traits and diseases reflects cumulative 

regulatory modification to a ‘core’ set of genes which functions most proximately in relevant biology(Boyle 

et al., 2017). Across age-associated diseases, this may reflect general aging processes, and regulatory 

variants impacting these would be expected to contribute to heritable aging-disease risk broadly. Given 

this rationale, we first considered the behaviour of individual SNPs nearby accessibility-altered regions 

across diseases, and subsequently these behaviours at the gene-locus level (below). We aggregated per-

SNP associations across diseases as a singular cross-set metric of risk association (Appendix C). We 

confirmed that ClinVar variants, variants for which possible clinical significance have been 

described(Landrum et al., 2018), tended to be more risk-associated by this metric, as we would expect 
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(Supplemental Table S2.4). Additionally, across all diseases we individually performed enrichment tests 

for strongly-associated variants nearby our region sets, which corroborated the cross-disease results 

described below (Figure 3.3A, see Appendix C). 
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Figure 3.3: Epigenetic context and heritable disease associations. (A) Adjusted p-values for 

hypergeometric tests showing enrichment/depletion (positive/negative) for GWAS variants nearby regions 

increasing (blue) or decreasing (red) accessibility across adult tissues for a number of age-associated 

diseases (see Supplemental Table S3.4). (B) Cross-set disease associations, and additional per-SNP 
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metrics, for variants nearby developmental and age-altered region sets along with unaltered DNase sites 

and variants not nearby accessible regions. See Supplemental Table S3.4 and Methods. (C)  Model for 

the effects of epigenetic context on disease association and sequence evolution. (Top): Example 

enhancer elements more accessible in fetal, adult, and old-adult tissues (left-right) which have been 

modified by mutations. (Left): Deleterious mutations disrupting regulation in development stand to have 

the biggest impact on fitness, while having a moderate effect on tissue homeostasis. (Middle): Mutations 

disrupting regulation in young-adult tissues have a moderate impact on fitness, but a larger effect on 

tissue homeostasis (particularly over adulthood). (Right): Mutations disrupting regulation in old-adult 

tissues have weak impacts on fitness, and a weak effect on tissue homeostasis (which has already 

deteriorated with age). (Bottom): Illustrating patterns of accessibility, disease association, sequence 

constraint and variant allele age for these sets of regions changing accessibility over time. 

 

As variants in accessible non-coding regions likely have regulatory impacts generally(Klemm et al., 2019), 

we confirmed that variants within or nearby regions not classified as strictly developmental nor age-

altered tended to have greater association than non-accessible variants. However, this control set had 

significantly less association than variants nearby sets of both developmentally- and age-altered regions 

(i.e. fetal/adult-biased, and young/old-biased regions) (Supplemental Table S3.4). 

Considering first developmental change, we found that variants in regions gaining nearby accessibility in 

adults (i.e., adult-biased) have greater association with disease than in regions those losing nearby 

accessibility (i.e., fetal-biased) (Figure 3.3B). Unexpectedly, when looking at aging accessibility changes, 

we observed that variants in regions gaining nearby accessibility in older-samples actually have lower 

cross-disease associations than those in regions becoming more accessible in younger samples (Figure 

3.3B, Supplemental Table S3.4). Furthermore, we found that for intersections of development and age-

altered regions that the increased disease association with adult-biased regions was abrogated when 

intersected with old-biased regions. The magnitude of region-set differences in disease associations was 

also greater in the young/old-biased comparisons (see Figure 3.3B, Appendix C). 
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Taken together, these results would suggest that those variants most accessible in younger adults stand 

to have the greatest impact (in terms of association p-value) on late-life disease risk – a finding that may 

have important implications for understanding the development of disease over adulthood (see Figure 

3.3C, Discussion). 

We next considered these disease-association patterns at the gene-locus level. Briefly, for a given 

disease we assign the most significant nearby SNP to all genes, and subsequently rank genes based on 

their assigned GWAS signal. Gene ranks are then aggregated across diseases, looking for genes 

consistently ranked higher across sets (Appendix C). To confirm the behavior of this gene-ranking 

method, we compared the cross-set ranking of genes associated with homeostatic processes (based on 

GO annotations) to randomized gene sets, finding that these gene loci tend to harbor stronger genetic 

variants across a larger number of diseases than expected (compared to randomized sets), but not so for 

genes involved in reproductive organ development (see Appendix C, Supplemental Table S3.4). 

We applied this method to the sets of development and age-associated genes we defined above and 

asked whether they tended to have more or less cross-disease GWAS signals than expected. Our sets 

defined by accessibility-region contacts supported our earlier findings on strong GWAS signals nearby 

development and age-altered regions – namely, loci of both adult-biased and young-biased gene sets 

were enriched for strong GWAS signals across diseases, while fetal-biased and old-biased gene sets 

were associated with relatively weaker GWAS signals (Supplemental Table S3.4). Sets defined by RNA-

seq data showed more of a mix of enriched/depleted GWAS signals across developmental and age 

comparisons, reflecting the possibility that a mixture of genes increasing and decreasing expression over 

time may additively contribute to aging disease biology (see Appendix C). 

Given our results, found at both genome-wide and gene-locus set levels, we finally sought to take an 

unbiased approach to identify relevant ‘core’ aging-related genes solely on the basis of aggregate GWAS 

signals (see Appendix C). Overall, we had limited success in defining a set of genes with clear, pan-tissue 

biological relevance, suggesting that, if such a core does exist, that it may be too broad, or the per-locus 

signals too moderate, for our method to robustly detect. However, since our results suggest the 

importance of altered epigenetics in modifying GWAS associations, we performed a similar gene-
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prioritization analysis using variants occurring nearby altered-accessibility regions (Appendix C). This 

yielded markedly different enrichments for terms relating to immune processes and gene regulation (see 

Appendix C, Supplemental Table S2.4). One particular set of genes, involved in histone deacetylation, 

has repeatedly been linked to aging and epigenetics(Hall et al., 2013; Sen et al., 2016a) and was 

identified using our set of young-age regions (see Figure 3.4). We explore this set in more detail below. 

 

 

Figure 3.4: Altered-accessibility regions identify relevant aging biology. (A) (Left) Distribution of cross-

disease ranks for all protein-coding genes, when ranking by local variants independent of accessibility 
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data (see Appendix C). Red lines indicate genes within the ‘histone deacetylation’ (HDAC) GO term; top 

ranked genes (by geometric mean) are indicated. (Right) Similar distribution of cross-disease ranks, 

ranking genes with variants nearby young-biased regions. Red lines indicate top HDAC genes by rank. 

(B) (Left) Fold-change of normal cumulative distribution function (CDF) p-values of variants within HDAC 

gene loci associated with different region sets, relative to CDF test performed using all variants, for cross-

disease Z-score metric (see Appendix C). (Right) Similar plot for per-variant LINSIGHT scores. See 

Supplemental Table S3.4. (C) Variants directly intersecting young-biased regions which interact with 

the SIRT6 promoter. (Top) Visualized promoter-capture data across multiple cell-types. (Bottom) Tracks 

indicating variants which overlap young-biased regions within the SIRT6 gene locus. 

 

3.2.4: Sequence evolution and disease association 

Our previous analyses found that patterns of inter- and intra-species sequence conservation depended 

on epigenetic status (i.e. degree of accessibility) of regulatory elements. Subsequently, we found that the 

risk association of variants across a number of age-associated diseases also varied based on 

accessibility change in the vicinity of the variant. Much work has been done on understanding the 

relationship between sequence conservation and disease risk(Cooper et al., 2010; Cooper and Shendure, 

2011; Hujoel et al., 2019; MacArthur et al., 2014). For example, a transcription factor (TF) binding site 

may be subjected to negative selection to conserve its sequence and hence function. Mutations that 

occur within this site would more likely impact cis-regulatory biology, and therefore manifest an 

association with disease. If this disease impacts fitness, then over time, such mutations will be eliminated, 

so that genetically ‘older’ mutations are less prevalent(Gazal et al., 2017; Hujoel et al., 2019). Given our 

interest in the evolution of development and aging processes, we wanted to investigate the role that 

epigenetics has on this disease-evolution relationship - and whether this holds with our data. By 

comparing the cross-trait associations of variants falling within and outside primate-conserved sequences 

(phastCons)(Siepel et al., 2005) (Appendix C), we found that variants within conserved sequences tend to 

have greater disease associations, along with younger estimated allele age (Supplemental Table S3.4). 

These patterns also hold true for phastCons sequences within age- and developmentally-altered regions 
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(Supplemental Table S3.4), and follow with previously observed enrichments for GWAS associations of 

conserved, younger (allele age) variants(Finucane et al., 2015; Gazal et al., 2017; Hujoel et al., 2019). 

We next considered primate conservation, estimated allele age, and cross-set association of variants, 

looking for the effects of nearby accessibility change on these metrics (Appendix C). As an additional 

metric for predicted fitness consequences, particularly of non-coding variants, we also included per-bp 

LINSIGHT scores(Huang et al., 2017), which integrates data on chromatin accessibility, TF binding 

motifs, and comparative genomics. 

First, we found that variants falling near fetal-biased regions were more conserved, younger, and had 

lower cross-set association, while variants near adult-biased regions behaved oppositely (Figure 3.3B, 

Supplemental Table S3.4). We also found that the predicted functional consequences associated with 

fetal-biased regions were greater than with adult-biased regions, despite the lower cross-set association 

with aging-associated diseases (Figure 3.3C, see Discussion). Variants falling near old-biased regions 

were less conserved, had older allele age, and had lower cross-set association than their young-biased 

counterparts (Supplemental Table S3.4). These old-biased regions were also associated with the lowest 

predicted functional consequences (in aggregate) of any set, while the set of young-biased regions had 

the second-highest average. To compare these behaviours with variants of annotated clinical significance 

we independently examined ClinVar variants, which while demonstrating increased cross-set association, 

tended to also be more conserved, younger, and have stronger predicted fitness consequences 

(Supplemental Table S3.4). 

Collectively, our results indicate that variants stratified by nearby accessibility change violate the 

expected relationship between sequence conservation and disease association (behaviours instead 

observed for ClinVar variants). Namely, those regions exhibiting the highest sequence constraint (Figure 

3.3C, left) do not also exhibit the strongest aging-disease associations, nor do those regions exhibiting 

the weakest constraint, as might be expected in a ‘mutation accumulation’ theory of aging(Charlesworth, 

2001). However, when considering predicted functional consequences (LINSIGHT), which are not defined 

based on aging demographic data, this pattern is reversed (i.e. the most-constrained set, fetal-biased 

regions, had the strongest predicted consequences despite weaker aging-disease associations). This 
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unexpected behaviour may have important implications for evolutionary models of late-onset complex 

disease genetics. Based on our results, we propose such a model suggesting the outsized impact of 

regulatory sequences active in early adulthood on genetic contributions to aging-associated disease risk 

(see Figure 3.3C, Discussion). 

Our proposed model suggests that focusing on disease risk loci containing such putative regulatory 

sequences (i.e. young-biased regions), should implicate sets of genes involved in aging biological 

processes. Our gene-level GWAS analyses using young-biased regions identified genes involved with 

histone deacetylation as being more consistently associated with aging-disease GWAS signal, a pattern 

which was diminished when considering gene-level associations in the absence of this epigenetic 

information (Figure 3.4A), and when using other region sets (e.g., old-biased regions) (Figure 3.4B). 

Histone deacetylation enzymes have known impacts on epigenetic aging biology(Hall et al., 2013; Sen et 

al., 2016a; Zhang et al., 2020a) and aging diseases(Tang et al., 2013). Within our young-biased enriched 

gene set we identified SIRT6 and SIRT7 as having multiple variants falling nearby young-biased regions 

which contacted their respective gene promoters (Figure 3.4C). Both these enzymes have been 

associated with maintaining heterochromatin during aging(Benayoun et al., 2015; Bi et al., 2020; Tasselli 

et al., 2017); SIRT7 decreases expression with age, and antagonizes hMSC epigenetic aging(Bi et al., 

2020), while SIRT6 loss manifests an aging-like state(Mostoslavsky et al., 2006). It may be possible that 

decreased accessibility of regulatory regions controlling the expression of these genes are involved in 

decreases in sirtuin expression and heterochromatin(Benayoun et al., 2015). 

3.3: Discussion 

In this study we sought to describe how changing epigenetic context, defined here as changes to 

chromatin accessibility over both development and subsequent aging, influences the behaviour of 

evolutionary forces and genetic disease risk at the sequence level. To address this question, we defined 

genomic regions whose chromatin accessibility consistently shift over the course of development and 

aging. Our approach to identify epigenetic shifts relies on the observation that chromatin accessibility 

broadly reflects the regulatory capacity at a given locus (Klemm et al., 2019), though we acknowledge 
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that more subtle epigenetic changes (e.g. post-translational modifications, CpG methylation) may not be 

well captured by this accessibility-based definition of epigenetic context. 

We performed several analyses suggesting that these regions reflect developmental and aging signatures 

from previous literature, including genomic features (e.g., repeat elements, CpG sites), epigenetic states 

(e.g., euchromatin/heterochromatin) and histone mark data. Gene sets associated with developmentally-

altered regions were enriched for immune system function and cellular proliferation terms, echoing an 

earlier study of fetal to adult epigenetic changes(Yan et al., 2016). Furthermore, we found 

correspondence between these gene sets and genes whose RNA-seq expression generally shifted 

between fetal and adult tissues. Incorporating an independent RNA-seq dataset of adult age-stratified 

tissues we did not observe the same level of correspondence with age-altered regions – it is possible that 

some aspects of epigenetic aging (e.g., global de-repression(Booth and Brunet, 2016; López-Otín et al., 

2013; Tsurumi and Li, 2012)) may account for this disconnect, whereby local accessibility changes are 

less-directly linked to local expression changes. Interestingly, comparing patterns of expression change in 

our fetal-adult and young-old comparisons, we saw similar gene-set enrichments (i.e., cell-cycling biased 

towards fetal and younger-age samples, immune responses biasing towards adult and older-age 

samples), suggesting that the continuation of epigenetic shifts we observed across development and 

aging (Figure 3.1D) may be mirrored at the expression level. 

Given that epigenetic state impacts the potential regulatory effects of deleterious variants(Boyle et al., 

2012), we looked to see if local development and/or ageing changes to epigenetic context impacts the 

strength of association between variants and aging-associated diseases. While it is possible that a 

number of these aging diseases share genetic correlations(Bulik-Sullivan et al., 2015), that these variants 

are associated with multiple age-associated diseases is also a key expectation for the functional 

relevance of age-altered regions. In other words, it is the change in epigenetic context that modifies the 

regulatory potential of these variants, and this has direct impacts on individual associations with multiple 

diseases. 

According to the fetal programming model, we would expect that regulatory regions most active during 

early development, both dictating developmental processes as well as responding to environmental 
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perturbations(Hanson et al., 2011), would have an out-sized impact on the manifestation of adult-onset 

diseases. This would be evident in the increased associations of nearby variants with heritable risk for 

these diseases. However, we found that such fetal-biased regions were not those having the greatest 

impact with regards to aging disease associations, despite having greater predicted fitness consequences 

– finding instead that adult-biased regions are depleted for aging disease GWAS signals, and associated 

more with developmental diseases/traits (Table S3.4). A recent study of fetal chromatin accessibility at 

the single-cell level similarly found genetic associations with developmental traits (e.g., height) using 

regions accessible in different cell-types(Domcke et al., 2020). We suggest that the ‘fetal programming’ of 

epigenetic status during early development, genome-wide, has a more moderate impact on aging disease 

biology than has been previously suggested – though we note that certain developmental loci (e.g.. Wnt 

genes) can and do play a role in aging(Blagosklonny and Hall, 2009; Magalhães, 2012). 

 

According to a model wherein epigenetic aging influences the phenotypic effects of regulatory mutations, 

we would expect that mutations with increased local accessibility in adult tissues, particularly aged adult 

tissues, would have stronger impacts on aging disease biology in these tissues (reflected in increased 

association with heritable disease risk). Here, we found that variants gaining nearby accessibility (i.e., 

adult-biased regions) have stronger associations across a number of aging-related diseases including 

several kinds of neoplasms, arthritis, and atherosclerosis. This finding suggests that the regulatory effects 

of deleterious variants may become ‘uncovered’ as tissues mature and follows with proposed links 

between development and ageing processes(Blagosklonny and Hall, 2009; Horvath and Raj, 2018a; 

Magalhães, 2012). However, we also found that regions most accessible later in life, when these 

diseases manifest, are actually associated with weaker GWAS variants. This young/old bias in aging-

disease GWAS signal was far stronger than the fetal/adult bias (i.e., the young-biased set was more 

strongly enriched than adult-biased, and vice-versa). Taken together, these results suggest that (1) 

accessibility changes in aging tissues have a greater effect on aging tissue diseases, but (2) that variants 

more accessible earlier in adult life play a bigger regulatory role in contributing to disease risk than do 

those which gain accessibility later on. Disruptions to regulation in younger tissues may act to set tissues 
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down a path of increasing dysfunction and decline, especially if deleterious variants are able to 

(cumulatively) contribute to dysfunction as they gradually lose activity with age. In other words, by the 

time an individual reaches old-age their tissues have had sufficient time to accumulate these 

dysfunctional effects, ‘setting the stage’ for disease manifestation. Variants more active in old-age, by 

contrast, have less of an impact on disease manifestation, as their regulatory effects have had less time 

to integrate. It may be that the time at which disease prevention and/or intervention would be most 

effective is, perhaps non-intuitively, early in adult life rather than once phenotypes manifest.  

We cannot rule out the effects of cell-type specific epigenetic (accessibility) shifts influencing the 

phenotypic impacts of regulatory sequence modifications on aging-associated disease risk. Similarly, it 

has been suggested that a facet of aging is ‘epigenetic drift’ – the accumulation of epigenomic aberrations 

that contribute to mis-regulation of gene regulatory networks, a component of which is tissue-

specific(Teschendorff et al., 2013; Zampieri et al., 2015). However, the pan-signals which we do observe 

with respect to evolutionary forces, disease associations, and sets of implicated gene loci indicates the 

relevance of our approach in understanding the broader components of development and aging-

accessibility changes, which may be complemented with future research focusing on those more tissue-

specific components. 

Regulation of general aging-related mechanisms, as well as increases in heritable disease risk, represent 

phenotypes upon which evolutionary forces may act to modify aging and mortality rates. We found that 

young-biased regions were enriched for signals of positive selection, a number of which implicated 

relevant aging-associated genes, and exhibited increased phylogenetic and within-human sequence 

constraint. Given that these behaviours are intermediate between those observed with regions more 

accessible in fetal and older-adult tissues, we suggest the following model (Fig. 3.3D):  

Regulatory sequences most active during development are subjected to strong negative selection, both to 

maintain human-derived functional sequences and discourage subsequent modifications, as 

dysregulation of development would have the largest fitness consequences. Similarly, sequences most 

active during early adulthood are subjected to negative selection to maintain proper tissue maintenance 

and discourage disease. However, the strength of this selection is reduced, as we expect fitness 
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benefits/costs to diminish with age as individuals reproduce less frequently(Carnes and Olshansky, 1993; 

Ricklefs, 2008; Williams, 1957). Thus, despite the fact that mutations within or nearby these functional 

sequences stand to have the greatest impact on disease risk (as noted above) they are less-efficiently 

purged, and are allowed to accumulate over generations(Charlesworth, 2001). Finally, sequences most 

active in older adults are under relaxed selective pressures and allowed to drift – mutations are permitted 

and retained, particularly due to the reduced associations that these mutations have with heritable 

disease risk. Overall, this model suggests that considering the changing epigenetic context of disease-

associated variants may help in prioritizing GWAS signals to loci involved in disease biology (e.g. as we 

saw for histone deacetlyases) and, ultimately, the aging processes driving tissue decline and eventual 

manifestation of aging-associated disease. 

 

3.4: Materials and Methods 

Accessibility Datasets: 

DNase-I hypersensitivity datasets were obtained from ENCODE(Davis et al., 2018) for eight different fetal 

and adult tissues (adrenal gland, brain, heart, lung, muscle, skin, spleen and stomach) (see Supplemental 

Table S3.1 for accessions and metadata). Raw data was processed as described in the Supplemental 

Methods, with called open-chromatin regions consolidated across replicates and tissues in order to define 

a final set of reproducible regions. This aggregated set of peaks was then used to assess both pan-

tissue, as well as per-tissue, accessibility changes between fetal and adult datasets using the limma 

package (version 3.46) in R(R Development Core Team, 2008; Ritchie et al., 2015). Differentially-

accessible regions were defined using a Benjamini-Hochberg FDR(Benjamini and Hochberg, 1995) cutoff 

of < 0.05. 

 

Adult DNase samples were further stratified in order to define age-altered chromatin regions, splitting 

samples used in the above analysis into those individuals younger than 50 (‘young-adult’) and those older 

than 50 (‘old-adult’), this age representing a roughly equal split of sample numbers. Not all tissues used in 
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the initial fetal/adult comparison were represented in these age-stratified sets – thus we restricted the 

tissue comparisons to brain, heart, lung, muscle and stomach tissues. A similar computational method as 

that used in defining fetal- and adult-biased regions was applied here (see Appendix C). We compared 

accessibility changes between young and old-adult samples within those regions exhibiting fetal/adult 

biases, defining young-biased and old-biased regions (again, using an FDR cutoff of < 0.05). 

 

Promoter accessibility change: 

All hg19 Refseq gene TSS were obtained from the UCSC Genome Browser(Karolchik et al., 2004) ⁠and 

padded 1kb up/downstream to define promoter regions. For each promoter region, DNase read coverage 

was compared between adult and fetal samples, with resulting data processed using a similar differential-

accessibility method as that used above (see Appendix C). Significantly differentially-accessible 

promoters were defined using an FDR cut-off of 0.05. As an additional, more stringent analysis, we also 

defined differentially-accessible promoters based on intersections with the above defined region sets (see 

Appendix C).  

Promoter capture datasets: Promoter-capture data was obtained from Jung et al., 2019(Jung et al., 

2019); this dataset was generated from promoter-capture assays across a number of different tissues and 

cell-types. Given our pan-tissue approach, we considered all data (with the exception of OV2, as we 

excluded sex-specific tissues from all previous obtained datasets). To generate a set of genomic regions 

which show evidence of contacting gene promoters, we filtered interacting regions to those which 

contacted their respective promoters in at least two different tissues/cell-types. This moderate filter was 

used to exclude those regions for which interactions appear to be exclusive to one dataset, while allowing 

for regions that do not show such exclusivity. 

Gene-set enrichment analyses: Gene sets generated in our analyses were tested for enrichment in 

different GO Biological Process terms using the ‘enrichGO’ function from the clusterProfiler(Yu et al., 

2012a) ⁠ package version 3.16.1, with semantically-similar GO terms collapsed and significantly-enriched 

terms defined as adjusted p-value < 0.05. 
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ENCODE RNA-seq datasets: Processed per-gene quantification files, as generated by the ENCODE 

pipeline were obtained from the ENCODE web portal(Davis et al., 2018) (see Table S3.2 for file 

accessions and metadata). Given the limited availability of adult tissue samples for use in differential-

expression analysis, we instead defined a less-stringent method to identify broad changes in gene 

expression which demonstrate consistency across tissues (see Appendix C). 

GTEx RNA-seq processing: Processed RNA-seq quantification files were obtained from the GTEx web 

portal(GTEx Consortium, 2013) for the following tissues (matching the above young/old-age accessibility 

comparison): brain (Brain - Cerebellum), heart (Heart – Left Ventricle), lung (Lung), muscle (Muscle - 

Skeletal) and stomach (Stomach). Similar to the processing performed in Benayoun et al.(Benayoun et 

al., 2019), we applied quality filters to remove lowly-expressed and non-coding genes, and subsequently 

used the same definitions of ‘young-age’ and ‘old-age’ (as in the above analyses) to calculate differential 

expression using limma-voom (see Appendix C). 

Human sequence variation datasets: Variation data from the 1000 Genomes Project phase 3 

(1KGP)(Gibbs et al., 2015) ⁠ (n = 2504 individuals) in .vcf.gz format was obtained and intersected with our 

region sets using tabix(Li, 2011) (version 1.9) to obtain variants occurring within these altered-

accessibility regions. Common variants were defined using a minor allele frequency (MAF) threshold 

of >= 0.05. These sets of intersected variants were subsequently used to compare sequence variation 

across region sets, as well as comparing region-intersected variation to genomic backgrounds and 

feature sets (see Appendix C). 

GWAS summary statistics data: To define a set of aging-associated diseases for use in our analyses, we 

first used broadly-defined categories as described in Chang et al., 2019(Chang et al., 2019). This study 

described 92 age-related diseases grouped into broader disease categories based on analyses of large-

scale demographic datasets. We took these classifications and manually extracted relevant GWAS 

phenotypes assessed by the UK Biobanks study(Sudlow et al., 2015), obtaining pre-processed summary 

statistics for these phenotypes provided by the Neale lab(Bulik-Sullivan et al., 2015) 

(https://nealelab.github.io/UKBB_ldsc/downloads.html). These data were subsequently utilized across 

several bioinformatic analyses (see Appendix C). 
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Additional computational methods, including implementations of statistical tests described in the Results, 

are described in detail in Supplemental File 2. The datasets supporting the findings of this study are 

publicly-available – accession codes and URLs are provided in Supplemental File 2 and Supplemental 

Tables. 
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Chapter IV: The importance of protein structure, function, and interactions in convergent sequence 

evolution of long-lived species 

 

4.1: Introduction 

 

One universal feature of organisms on Earth is that of expiration – a combination of extrinsic and intrinsic 

factors which contributes to the progressive increase in mortality risk and, consequently, decreased 

survivorship over time. Comparing mortality curves for species across a diverse range of groups(Croft et 

al., 2015; Jones et al., 2014) indicates the presence of considerable variation in survivorship trajectories, 

and overall longevity. These result from evolutionary interactions between a species’ physiology and its 

environment. Mammals, broadly, share similar patterns of age-dependent mortality and senescence 

phenotypes(Magalhães and Toussaint, 2002), suggesting that ancient selection acted on biological 

processes mediating functional decline. However, within mammals there is also substantial variation in 

senescence rates(Austad, 1997), suggesting that more recent evolutionary modifications may have 

occurred on this background of ancient selection. This is particularly true in instances where species 

exhibit substantially increased longevity relative to closely related taxa. For example, genomic studies of 

long-lived bats(Seim et al., 2013), whales(Keane et al., 2015), and naked mole-rats(Lewis et al., 2016) 

have revealed key genes/pathways which could be causally-linked with these lifespan extensions, 

corresponding with several ‘hallmarks of aging’(López-Otín et al., 2013), including insulin/IGF 

signaling(Junnila et al., 2013), DNA repair(MacRae et al., 2015) and proteostasis(Draceni and 

Pechmann, 2019; Pan and Finkel, 2017), among others.  

Of note, longevity studies have also highlighted the possibility that changes to epigenetic processes may 

act to alter aging programs in long-lived species(Horvath et al., 2021a; Keane et al., 2015; Wilkinson et 

al., 2021). Perhaps the best-characterized link between epigenetics and aging is DNA methylation 

patterns, which exhibit an extraordinarily consistent age-dependence(Horvath, 2013). This has been 

suggested to represent a biological ‘clock’ that is reflective of development and maintenance processes 
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throughout life whose pacing can reflect disease states and risk(Horvath and Raj, 2018a). Notably, this 

clock behaviour has been demonstrated in other species(Horvath, 2013; Horvath et al., 2021b; Prado et 

al., 2021), suggesting that the underlying biological basis for this phenomenon is conserved within 

mammals(Horvath et al., 2021b). DNA methylation patterns have been complemented with substantial 

research establishing the links between additional epigenetic features (e.g. chromatin states) and aging 

processes(Booth and Brunet, 2016; López-Otín et al., 2013; Moskalev et al., 2014).These studies have 

shown that epigenetic states shift with age in both a locus-specific and genome-wide manner, that these 

shifts can be causally linked with altered gene regulation (e.g., the deleterious expression of 

retrotransposons(Villeponteau, 1997; Wood et al., 2016)), and that mitigation and/or reversal of these 

shifts can ameliorate aging phenotypes and prolong lifespan(Benayoun et al., 2015; Booth and Brunet, 

2016; Sen et al., 2016b; Zhang et al., 2020b). These epigenetic shifts are not limited to gene 

promoters/bodies to regulate expression, but also extend to more distal cis-regulatory elements (Booth 

and Brunet, 2016) containing disease-associated variants whose effects may only manifest upon age-

associated remodeling(Richard and Capellini, 2021). Given the myriad of mechanistic ties between 

epigenetics and aging, it may be the case that proteins involved in epigenetic maintenance and 

remodeling are subject to evolutionary pressures for longevity, similar to how their target loci may have 

evolved (Lowdon et al., 2016; Prendergast et al., 2014).  

The recurrent patterns observed in studies of notably long-lived species suggests that a comparative, 

evolutionary framework may help to illuminate additional genes/pathways involved in the aging process. 

Given a phylogenetic tree of species, patterns of stratified genetic changes can be used to identify genes 

with an impact on aging biology, and thus could be subject to selection for these effects. These findings 

are then often validated based on existing knowledge of aging/longevity-related processes(Farré et al., 

2021b; Jobson et al., 2010; Kowalczyk et al., 2020; Li and de Magalhães, 2011; Muntané et al., 2018; 

Treaster et al., 2021). More recently, studies have moved from the gene-level down to individual non-

synonymous protein-coding changes, looking for mutations which may modify longevity within 

primates(Muntané et al., 2018), and across mammals(Farré et al., 2021a). In particular, Farre et al., 

(Farré et al., 2021a) identified thousands of amino-acid (AA) substitutions associated with lifespan which 

are fixed or approach fixation in modern-day humans and are enriched in longevity-associated pathways 



 69 

such as immune signaling(Ferrucci and Fabbri, 2018; Fulop et al., 2014) and coagulation(Kanapuru and 

Ershler, 2009). This study also showed that these changes could serve to improve the stability of these 

modified proteins in long-lived species. Given this resolution at the level of AA, a more detailed analysis 

of these modifications may help to elucidate the molecular targets (e.g. protein activities, complexes, etc.) 

upon which selection for longevity may have converged across long-lived species. 

 

Much research effort has gone towards the study of non-synonymous mutations from the perspective of 

human variation and disease(Cargill et al., 1999; Cooper and Shendure, 2011; Lek et al., 2016; Ng and 

Henikoff, 2006). Computational approaches have been developed to predict the functional consequences 

of AA changes using a combination of evolutionary conservation (i.e., conserved sites are more likely to 

be functionally relevant)(Ng and Henikoff, 2006) and protein structure(Bromberg and Rost, 2007; 

Chasman and Adams, 2001; Sunyaev et al., 2001) information. In addition to computational predictions, 

functional assays have been used to test the effects of individual mutations in-vitro or in-vivo, while for 

key proteins (e.g., p53(Kato et al., 2003)) exhaustive scans of many possible mutational effects have 

been tested, an approach which has benefitted from modern high-throughput advancements(Fowler and 

Fields, 2014; Starita et al., 2017). Mutations can impact proteins in a number of ways, including changes 

to protein stability(Yue et al., 2005), modifying functional domains(Miller et al., 2015; F. Yang et al., 2015), 

and impacting interaction interfaces between pairs of proteins(Jubb et al., 2017a; Kumar et al., 2015; 

Yates and Sternberg, 2013). These effects can be modelled and tested on an individual protein basis, for 

example, considering human polymorphisms in genes acting as known disease risk-factors(Dakal et al., 

2017), or recurrent mutations in key oncogenic genes(H. Liu et al., 2020). Furthermore, the field of cancer 

genomics has investigated patterns in mutation occurrence, highlighting key genes and pathways in 

cancer development(Campbell et al., 2020; Martínez-Jiménez et al., 2020), as well as identifying broader 

trends in mutations at the level of functional domains(Miller et al., 2015).  

 

In this study, we consider the properties of these convergent amino acid substitutions in the context of 

protein structure and function, looking both for general trends which may suggest broader-scale 

evolutionary pressures on particular biological mechanisms (e.g. protein activities) as well as specific 
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examples wherein the functional consequences of these changes may be intimated. We make several 

key findings; (1) proteins subject to modification are over-represented in certain activities, (2) modified 

residues can cluster with, and in some cases directly overlap, mutations observed in cancer samples, and 

(3) modified residues are over-represented in protein-protein interaction interfaces, possibly impacting 

complex formation. 

 

4.2: Results 

4.2.1: CAAS description and gene-set integration: 

We considered a set of convergent amino acid substitutions (CAAS) between long-lived and short-lived 

species, which we defined on the basis of their respective size-adjusted longevity (see Methods, including 

information on species used). Each CAAS can be defined as falling under one of four possible scenarios 

(Figure 4.1A); invariant across long-lived and short-lived species (#1), invariant across long-lived, variable 

across short-lived species (#2), variable across long-lived, invariant across short-lived (#3) and variable 

across both sets of species (#4). We first asked whether CAAS-containing genes are enriched in 

particular biological processes or pathways. We combined CAAS from Scenarios #1-3 for statistical 

purposes, considering them to be broadly different between long/short-lived species. Using this combined 

set, we found enrichments for terms relating to immune signaling, cell-cycle regulation, and DNA 

replication (Figure 4.1B), terms which were also enriched (at nominal significance) in individual Scenario 

subsets (Supplementary Table S4.1). These enrichments are consistent with those previously observed 

using similar CAAS definitions on lifespan-stratified species(Farré et al., 2021b). Conversely, Scenario #4 

CAAS enrichments were dominated by immune-related processes, particularly the adaptive immune 

system, which may reflect the generally increased rate of evolution occurring in these proteins between 

species(Shultz and Sackton, 2019) (Supplementary Table S4.1). For all subsequent analyses we 

considered the combined Scenario #1-#3 CAAS only. 
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Figure 4.1: Convergent amino-acid substitutions across species. (A) Illustrative protein alignment, with 

CAAS (highlighted) defined under four different Scenarios. (B) GO term enrichment for CAAS defined 

under Scenarios 1-3. (C) Biases in CAAS occurrence within the GO term ‘chromatin’. (Left): Lower 

occurrence of CAAS hits in genes of this set. (Middle): Lower occurrence of CAAS hits in genes which 

interact with genes in this set. (Right) within the GO term, CAAS-hit genes tend to interact with other 

CAAS-hit genes (Methods). See also Supplemental Table S4.1. 

 

We next evaluated the occurrence of CAAS within genes involved in epigenetic regulation, as 

modifications to these genes can significantly impact aging(Benayoun et al., 2015; Booth and Brunet, 
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2016; Sen et al., 2016b; Zhang et al., 2020b). First, we aggregated a number of GO biological process 

terms related to epigenetic regulation (see Supplementary Table S4.1 for full gene sets) and tested 

whether these gene sets tended to be biased (in terms of associations with heritable disease risk) for a 

number of age-associated diseases curated from the UKBiobank datasets(Chang et al., 2019; Richard 

and Capellini, 2021; Sudlow et al., 2015) (Methods). Indeed, we observed that several epigenetic gene 

sets tended to have greater-than-expected per-gene rankings across a set of aging-related diseases 

(Supplementary Table S4.1). As we may similarly expect such associations of genes containing longevity-

defined CAAS, we also observed that cross-set rankings of CAAS genes were also elevated (P=1.5e-21, 

Supplementary Table S4.1). Finally, we looked for the occurrence of CAAS genes within these epigenetic 

sets (Supplementary Table S4.1) and asked whether these genes were disproportionately associated 

with disease risk (i.e., when conditioning on the associations of their respective sets). We observed 

significantly-greater associations for CAAS genes within several terms, including ‘heterochromatin’ 

(GO0000792), and ‘chromatin binding’ (GO0003682) (adjusted P<0.05) (Supplementary Table S4.1). 

Given these conditioned associations with heritable disease risk, we asked whether our CAAS were 

enriched in these gene sets. We found that these sets of genes were less likely to contain CAAS than 

expected by chance (Figure 4.1C, left) (Supplementary Table S4.1).  

 

Epigenetic regulation often occurs through the activity of protein complexes(Medvedeva et al., 2015). We 

thus considered the possibility that proteins which interact with proteins in a given GO term may also be 

the targets of CAAS, in that modifying these interacting proteins may impact epigenetic regulation in a 

similar manner to directly modifying epigenetic genes. Utilizing previously-annotated protein-protein 

interactions (PPI) from the STRING database(Szklarczyk et al., 2021), we found that interacting proteins 

were also depleted for CAAS hits (Figure 4.1C, middle) (Supplementary Table S4.1). We next considered 

the occurrence of CAAS within groups of interacting proteins. Considering all CAAS-hit proteins within a 

GO term, and all proteins interacting with these hits, we asked whether (a) the interacting proteins also 

had CAAS, and (b) whether those interacting proteins also fell within the same GO term. We found that 

these internal pairs of CAAS-hit genes occur at a higher frequency than expected across the majority of 

terms (with the exception of chromatin components) (Figure 4.1C, right) (see Supplementary Table S4.1). 
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However, when we performed a similar set of tests against randomly-selected GO terms (see Methods) 

we observed a similar pattern. Specifically, we observed a bias against CAAS occurrence within a term 

and their interactors, but significant over-representation of CAAS genes interacting within sets 

(Supplementary Table S4.1). That these patterns are not exclusive to epigenetic sets may suggest that, 

generally, when such cross-species protein-coding changes occur, they tend to co-occur between sets of 

functionally-related interacting proteins, a finding that has important implications for our understanding of 

how selection may act on longevity (see Discussion). 

This could be driven by several possible scenarios; for example, CAAS-hit genes could be biased in their 

protein domain composition, such that PPI are more common between hits involved in coordinated 

biological processes (e.g., DNA damage sensing and repair). Another possibility is that CAAS directly 

modify the protein-protein interface of interacting pairs. We explore each scenario in more detail below 

(see Supplementary Figure S4.1 for results overview). 

4.2.2: Domain-level integration 

If the occurrence of multiple CAAS hits within a set is indicative of effects on longevity, and given that 

many of these proteins exert their biological effects via protein domains, we then considered (a) the 

occurrence of protein domains within CAAS-hit genes, and (b) where CAAS occur on individual proteins. 

Focusing first on epigenetic GO terms, we found several domains for which CAAS-hit genes were 

enriched, even after conditioning on inherent enrichment of terms for certain domains. Figure 4.2A 

illustrates these results for the GO cellular-component term ‘chromatin’, for which CAAS-hit genes are 

over-represented across several domains, including the PAS and SRC-1 domains (see Discussion). More 

generally, we found several protein domains which were over-represented in our global set of CAAS 

genes (Supplemental Table S4.2); these also significantly overlapped with domains enriched in aging-

associated genes from the GenAge database(Tacutu et al., 2018), including epigenetic domains such as 

histone deacetylase domains, bromodomains, and helicases, along with domains involved in genome 

maintenance and repair (Figure 4.2B, Supplemental Table S4.2). 
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Figure 4.2: CAAS occurrence in functional domains and spatial clustering. (A) GO chromatin components 

have a greater occurrence of certain protein domains relative to the global occurrence of these domains 

(green bars). CAAS-hit chromatin components similarly have increased occurrence of these domains 

(blue), and when conditioned on the initial domain enrichments (orange). See Supplemental Table S4.2. 

(B) (Top) Venn diagram showing overlap between protein domains enriched in CAAS-hit genes (red) and 

GenAge genes (yellow). Relative to all unique PFAM domains occurring in CAAS genes (n = 3342) there 

is significant overlap between these sets. (Bottom) Enriched domains occurring in indicated sets, with 

parentheses indicating their broad functionality. (C) DOSE enrichments for genes with CAAS hits within 

mutational clusters. (D) (Top): Distribution of clustered mutations across EGFR. Different colored dots 
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represent mutations belonging to different clusters. Taller dots denote clusters containing CAAS, which 

are indicated with asterisk. Red dots denote the cluster highlighted in (E). (Bottom): Protein alignment 

indicating the D (long-lived) to E (short-lived) CAAS occurring within the indicated EGFR mutational 

cluster. (E) Protein crystal structure for EGFR, red atoms and asterisk indicating the position of the CAAS 

falling within the Furin-like domain. Differently-colored atoms indicate positions of other cancer-related 

mutations clustering within the EGFR protein. 

 

Next, we looked for instances in which the potential targeting of longevity-relevant genes could be 

occurring through direct AA changes within specific functional protein domains (e.g., those we observed 

to be enriched in CAAS-hit genes). We found that the majority of CAAS-hit protein domains tended to 

occur at lower rates than the background occurrence of these domains across the proteome 

(Supplementary Table S4.2), the same evident for broader domain-clan groups. However, we found two 

exceptions to these trends: Serpin domains and the ‘Aha1_BPI’ clan occur more frequently in CAAS 

genes than the background occurrence of these domains (see Discussion).  

 

We next examined those domains which showed biased occurrence within CAAS-hit genes of our 

assembled GO terms, and asked whether any CAAS directly hit these domains (Supplementary Table 

S4.2). We found the proportion of CAAS-hit genes with CAAS directly overlapping domains of interest 

varied across sets and domains. For example, of nine ‘chromatin binding’ CAAS-hit genes containing 

Helicase C domains, only one (WRN) had a CAAS directly within the domain. This domain has been 

implicated in surveys of WRN patient mutations(Huang et al., 2006) and is required for WRN 

accumulation at double strand breaks (DSBs)(Lan et al., 2005). Conversely, two of the three NCOA 

genes containing CAAS had these hits fall within their SRC-1 domains (involved in steroid receptor 

binding(Nolte et al., 1998)). 

 

We also looked for instances in which domain-hitting CAAS are predicted to impact protein structure 

and/or function. Using the dbNSFP database of annotated coding mutations(X. Liu et al., 2020) we 

identified 279 domain-hit CAAS with predicted deleterious effects based on protein structure 
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(Supplementary Table S4.2) (Methods). The most consistently-predicted effect CAAS was within the 

CFTR gene, where an A1006V mutation within the ABC transporter domain may be associated with cystic 

fibrosis(George Priya Doss et al., 2008; Mercier et al., 1994). We also found an R1217K mutation in the 

BRCA2 domain of BRCA2 of unknown clinical significance (see Supplementary Table S4.2). 

 

4.2.3 Integration at the structural level - 3D clustering: 

Another key factor in a protein’s function is its three-dimensional configuration. As a complementary 

analysis we employed mutational clustering, an approach often used in cancer genomics to identify 

spatial ‘hotspots’ where tumor mutations tend to cluster(Niu et al., 2016b). By treating CAAS in a similar 

manner to somatic cancer mutations, we may identify important functionalities, especially since there is 

substantial evidence for overlap between biological mechanisms underlying both aging and cancer(Aunan 

et al., 2017; De Magalhães, 2013). Thus, we combined our set of CAAS with a previously published set of 

somatic non-truncating cancer mutations based on the TCGA(Campbell et al., 2020; Niu et al., 2016b) 

and applied the HotSpot3D(Niu et al., 2016a) algorithm to identify clusters of residue modifications 

(Methods). We identified 1876 clusters across 735 individual genes - and also yielded clusters in 40 

additional genes not identified with cancer data alone (Supplementary Table S4.3). Our approach did not 

lead to substantial loss of existing gene hits (e.g., due to the addition of noise). This suggests that 

combining these data improves our power to detect spatial clusters, rather than obfuscating spatial 

patterns (Supplementary Table S4.3). 

 

Of these 1876 clusters, 222 included CAAS across 218 unique genes. Specifically, this set of genes was 

largely enriched for biological processes related to immunity, such as cytokine regulation and 

innate/adaptive responses (Supplementary Table S4.3). Similar enrichment results were observed when 

we separated genes based on the CAAS scenario (Supplementary Table S4.3). When we tested these 

cluster-containing genes for enriched disease annotations (see Methods) we saw enrichments for several 

different disease categories. These included diseases related to immunity, along with several disease 

categories for which age is a known risk factor - including cardiovascular, metabolic, and arthritic disease 

(Figure 4.2C, Supplementary Table S4.3). Several CAAS-containing genes were associated with multiple 
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different diseases; e.g., VEGFA (Supplementary Figure S4.2), a growth factor known to be beneficial in 

aging tissues(Lähteenvuo and Rosenzweig, 2012) while also being associated with tumor 

angiogenesis(Carmeliet and P, 2005). Such multi-disease associations are expected for certain genes, 

particularly those with important biological roles and for which mutations may impact their functional 

domains. 

 

As an illustrative example, we observed a cluster of four mutations within EGFR of which a CAAS formed 

the centroid (which was not detected using TCGA data alone). Three of these four mutations fell within a 

Furin-like domain while the fourth fell within a Receptor L-domain on the protein (Figure 4.2D). EGFR 

mutations are more common within this Furin-like domain, with several known or thought to be 

oncogenic(H. Liu et al., 2020). It may be that these clustered mutations similarly have oncogenic effects 

including, by association, our CAAS hit. This hit is one in which long-lived species have a fixed ‘E’ at this 

position, relative to a short-lived ‘D’ (Figure 4.2D-E) (see also below). 

 

We next asked whether CAAS-containing mutational clusters hit certain domains at increased frequency 

(Methods). We observed 14 domains (FDR < 0.05) for which this was true (Supplementary Table S4.3). 

One of the strongest enrichments was observed for the “Matrixin” domain which occurred in clusters of 

five matrix-metalloprotease genes (MMP7,8,9,10,14). Another notable enriched hit was the p450 domain, 

for which we observed clustered hits in five different CAAS genes (CYP19A1, CYP27A1, CYP2A13, 

CYP7A1, PTGIS). We also observed a three-fold enrichment for the Serpin domain - which was expected 

given the general enrichment of CAAS directly hitting this domain. 

 

We next looked for the occurrence of CAAS-containing mutational clusters within our epigenetic gene 

sets. We identified 13 genes (Supplementary Table S4.3), including the aforementioned EGFR. For 

example, we observed a cluster of mutations within the POLA1 protein which implicates two protein 

domains with distinct functions (polymerase elongation and exonuclease activity), both containing CAAS. 

Notably, as these domains were also identified in our analyses of protein-protein interactions (PPI), we 

thus considered the potential for mutational clusters to occur within PPI interfaces (see below). 
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Our ‘function-by-association’ analysis led us to also consider that CAAS may not only cluster with cancer 

mutations, but directly overlap at the same residues. Globally, we identified 1101 CAAS across 896 

unique genes which directly overlapped with cancer mutations, though this overlap was not significantly 

more than expected from randomly-shuffled sets of CAAS (p = 0.31, Supplementary Table S4.3). A 

similar degree of overlap was observed when using an expanded set of mutations from the TCGA 

(Supplementary Table S4.3). Of these genes containing overlaps, 36 had clustered mutations including 

overlapping residues. Several of these genes have known roles in cancer and aging, including DNA 

repair genes like PARP14(CM et al., 2015) and BRCA1(Cao et al., 2003), and pro-proliferation proteins 

like VEGFA, PRLR(Lopez-Pulido et al., 2013), and EGFR(Sigismund et al., 2018). A number of these 

overlapping CAAS also hit protein domains, such as a CAAS within a cluster of five mutations in VEGFA 

which hits the PDGF/VEGF domain - such instances are presented in Supplemental Table 4.3. 

 

4.2.4: CAAS occurring within protein-protein interaction domains: 

The major finding that within a given GO term CAAS hits tended to occur between interacting pairs of 

genes suggests that CAAS are not randomly distributed across genes - but instead may reflect physical 

relationships between proteins, i.e., protein-protein interactions (PPI). Given the potential evolutionary 

targets presented by PPI(Choi et al., 2009), we made use of the ProtCID(Xu and Dunbrack, 2020) 

database which aggregates PPI at the protein-domain level. We looked for any instances of PPI occurring 

between our set of CAAS-hit proteins and observed 39 interaction pairs (across 32 unique gene pairs) for 

which CAAS fall within both protein domains, significantly more than expected by chance (p = 6.4e-12, 

Supplemental Table S4.4, Methods). These consisted of several examples with relevance to aging and 

cancer biology, including PLAT- and PLAU-SERPINE1 (involved in coagulation), several interactions 

between complement proteins, CD47-SIRPa(Willingham et al., 2012), and DNA damage response genes 

(e.g., FANCM-FAAP24)(Huang et al., 2010). We found seven instances where shared CAAS hits 

implicated genes from epigenetic gene sets (Supplemental Table S4.4). For example, multiple CAAS 

occur within similar interaction domains of POLA1, POLA2, and PRIM1, all of which are key components 

of the DNA polymerase alpha – primase complex(Weiner et al., 2007) (Figure 4.3A). We also reasoned 
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that a CAAS hit could occur in one domain of an interacting pair - potentially impacting how proteins 

interact in a unilateral fashion. Thus, we scanned our CAAS set, and again found a greater occurrence of 

these instances than expected by chance (p = 1e-3, Supplemental Table S4.4). Overall, these results 

suggest that a significant portion of CAAS may preferentially occur within interaction domains, possibly 

acting to improve, maintain, or disrupt the interactions between binding partners. 
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Figure 4.3: CAAS occurring at PPI interfaces. (A) Multiple CAAS occurring within the human DNA 

polymerase-primase complex. Ribbon colors as indicated, CAAS occurring in each chain are highlighted 

as red balls. PDBID: 5exr. (B) CASP9 - APAF1 interaction. Key residues involved in CASP9 (orange) 
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recruitment by APAF1 (purple) indicated(Qin et al., 1999a). (Left): long-lived residue at position 37 of 

APAF1 CARD domain. (Inset): short-lived residue at this position, which is a predicted unfavorable 

mutation (ΔΔG = 2.4 kcal mol-1 (Huang et al., 2020)). I37P residue side-chain shown in green.  

 

To prioritize CAAS hits for potential functional follow-up studies, we applied a more stringent criteria by 

first defining residues as being directly involved in the PPI interface (Methods), and second looking for 

CAAS residues that fulfill these criteria. We found seven protein pairs in which CAAS residues were 

directly implicated at the PPI interface, observing significant enrichments despite this increased 

stringency (Supplemental Table S4.4). For example, APAF1 is a key component of the ‘apoptosome’ 

complex, which regulates apoptosis through the activation of the initiator caspase CASP9(Bao and Shi, 

2006; Yoshida et al., 1998); we observed a CAAS interacting residue within the caspase recruitment 

domain (see Figure 4.3B, Discussion). Interestingly, we also observed multiple instances of ligand-

receptor interactions for which CAAS are potential interface residues, including IL17/ IL17RA 

(Supplemental Figure S4.3), IL20/IL20RA, and transferrin/transferrin receptor (Supplemental Table S4.4). 

Ligand-receptor co-evolution is a well-studied phenomenon(Moyle et al., 1994), so instances of such 

concomitant modification of pairs identified with our CAAS sets may be expected. 

 

Given our analyses on CAAS and interaction domains between pairs of different proteins, we also 

considered the possibility that CAAS may impact homodimer formation, or domain interactions within a 

single protein, again noting an enriched occurrence of such instances both at the levels of interaction 

domains and interface residues (see Supplemental Table S4.4). 

 

We next looked for previous experimental data (del-Toro et al., 2019; Jankauskaite et al., 2019) which 

describes CAAS effects on PPI in the IntAct database(del-Toro et al., 2019); we found 10 interaction pairs 

for which mutations at CAAS residues were described; of these, three had possible mutational effects 

(see Supplemental Table S4.4). Most notable was a Q67K mutation at a critical binding residue in SIRPA, 

whose mutation disrupts CD47 binding(Liu et al., 2007). Using the SSIPE(Huang et al., 2020) server (see 

Methods) to predict the disruptive effects of mutations on dimeric complexes, we found that a CAAS 
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hitting an interaction domain of the aforementioned APAF1-CASP9 complex was a predicted strongly-

unfavorable mutation (ΔΔG ≥ 1.5 kcal mol-1(Huang et al., 2020)), leading to a substantial decrease in 

binding affinity (the short-lived residue yielding a predicted ΔΔG = 2.4 kcal mol-1) (Figure 4.3B). This 

further supports the possibility that a CAAS in this complex could alter apoptotic signaling cascades (see 

Discussion). 

 

4.2.5: Spatial clustering and protein interactions 

In our characterization of CAAS occurrence within both mutational clusters and protein-protein domain 

interactions, we observed several instances where genes were identified in both analyses. Specifically, 

we observed 28 interfaces for which one interaction domain intersected a mutational cluster 

(Supplemental Table S4.4). Of these, nine had a mutational cluster intersecting both domains. We found 

that a majority (7 of 9) of these instances were shared with our above CAAS-level analysis. A notable 

example is that we observed two mutational clusters occurring within the interaction domains of POLA1 

and POLA2 (Supplemental Table S4.4). This congruence may be expected given that interaction domains 

may also have catalytic activity (e.g., exonuclease activity in POLA1), and that mutational clusters can 

preferentially occur within some functional protein domains (see above). When considering instances in 

which one interaction domain contains a mutational cluster, we identified 32 additional interfaces which 

were not defined as having CAAS falling directly within either domain (Supplemental Table S4.4). These 

additional hits expand our set of interfaces by including CAAS that may be spatially adjacent to an 

interface domain, without requiring that they fall within domains. 

 

4.2.6: Functional impacts of CAAS on protein function in-vitro: 

The advent of ‘deep mutational scan’ techniques has allowed for high-throughput testing of AA 

substitution effects. These studies generate large numbers of substitutions in-vitro, apply some selective 

factor (e.g. drug treatment) and assay biochemical metrics, most often DNA sequencing to test effects on 

cell survival/proliferation(Fowler and Fields, 2014; Starita et al., 2017). We looked for previous protein 

studies for which our particular CAAS modifications (i.e., long-lived to short-lived AA substitutions) had 

been made and assayed for some biochemical trait, taking advantage of a database for multiplex assays 
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of variant effects (MAVEdb(Esposito et al., 2019)). Despite the practical limitations of these studies(Starita 

et al., 2017) we found five studies (on p53, CCR5, MSH2, LDLRAP1, HMGCR) for which the observed 

long/short substitution had been assayed. Giacomelli et al.(Giacomelli et al., 2018) performed a 

mutational scan containing all p53 missense and nonsense mutations, exposing cells to etoposide and 

subsequently sequencing genomic DNA as a metric of a particular mutation’s effects on survival. Our 

CAAS, a glutamine-to-alanine substitution at residue 51, was associated with positive phenotypic 

selection in cells following treatment (Figure 4.4A).  
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Figure 4.4: CAAS characterized in mutational scan studies. (A) Effects of substitutions engineered in 

TP53, as measured by variant enrichment following etoposide treatment in TP53-null A549 cells. 

Red/white/blue color scale refers to effects of termination codon (blue), synonymous mutations (white) 

and hyper-active mutations (red). The CAAS of interest, E51A, is indicated in green box within the Tad2 

domain. Black boxes refer to the reference residue at a given position. Top graph indicates consensus 

effects of mutations (i.e., the predominate effects of mutations at this residue). (B) Protein structure of p53 

(orange) in complex with Taz2 domain of p300 (pink), with key residues involved in stabilizing the 

complex(Miller Jenkins et al., 2015) labelled along with side-chains (red). Glu51 on p53 (CAAS-modified 
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residue), and the p300 residues with which it interacts, are highlighted in green. (C) Effects of 

substitutions engineered into CCR5, as measured by 2D7 antibody binding affinity in Expi293F cells. 

Red/white/blue color scale refers to log2 (mutant/wt) enrichment values centered at zero. 

Negative/positive values indicate decreased/increased binding affinity, respectively. (D) Protein structure 

of CCR5, showing the CAAS residue (S114G) within the 7tm_1 transmembrane domain. CCR5 

homodimer complex shown (pink/orange). 

 

Another example is CCR5, a key chemokine receptor involved in regulating effector cells of both the 

innate and adaptive immune system, with evidence to suggest a role in ‘inflammaging’ and age-related 

diseases such as atherosclerosis(Balistreri et al., 2007). Heredia et al.(Heredia et al., 2018) performed a 

mutational scan of CCR5, assaying the effects of missense mutations on CCR5 binding affinity to the 

monoclonal antibody 2D7, a blocker of HIV-I entry which competitively binds CCR5(Lee et al., 1999). A 

CAAS falling within one of the transmembrane domains of CCR5, a serine-to-glycine substitution at 

residue 114, leads to a slightly increased binding affinity for the 2D7 antibody (Figure 4.4B). Additional 

examples are shown in Supplemental Figure S4.4. 

 

4.3: Discussion 

Similar to how recurrent cancer mutations can illuminate key pathways involved in tumorigenesis and 

growth(Reyna et al., 2020), studying trends in convergent genomic changes in long-lived species has 

illuminated key aging pathways(Kowalczyk et al., 2020; Lambert and Portfors, 2017; Li and de 

Magalhães, 2011; Muntané et al., 2018). In this study, we sought to extend these analyses by considering 

convergent amino-acid substitutions (CAAS), as defined using species stratified based on longevity(Farré 

et al., 2021b) at the level of protein structure and function. As expected based on previous studies, we 

observed enrichments for CAAS in GO terms related to cell-cycling, DNA replication, and immune system 

biology. Given the known associations between epigenetics and aging(Horvath et al., 2021a; Keane et 

al., 2015; Wilkinson et al., 2021), we aggregated genes associated with epigenetic processes and 

identified several CAAS occurring within these sets (Supplemental Table S4.1). We also observed that 

CAAS-containing genes tended to be more associated with heritable disease risk across several aging-
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associated diseases (Supplemental Table S4.1). These findings follow with the observation that genes 

with convergent longevity signals capture a significant portion of heritable longevity variance(Farré et al., 

2021b), and that genomic lifespan associations also implicate aging-associated diseases such as 

cardiovascular decline and Alzheimer’s disease(Timmers et al., 2019).  

 

Interestingly, we found that epigenetic proteins and their interactors were depleted for CAAS occurrence. 

It may be the case that a number of these proteins are under strong purifying selection (e.g., due to 

functional constraint), and thus biased against CAAS occurrence. Indeed, genes under loss-of-function 

constraint(Karczewski et al., 2020) made up ~40% and ~30% of epigenetic proteins and their interactors, 

respectively (Methods). We instead observed that internal interacting pairs (within an epigenetic gene set) 

were enriched for CAAS hits, suggesting that part of the non-random distribution of CAAS could reflect 

protein partner co-occurrence. Unexpectedly, this finding was not unique to epigenetic genes, but instead 

was found consistently across GO terms. Thus, the effect of protein interactions on convergent 

substitutions is a general phenomenon across sets of functionally-related genes. This is consistent with a 

role for epistasis in protein evolution, wherein a mutation on one protein can impact the phenotypic effects 

of other mutations through direct or indirect physical interactions(Starr and Thornton, 2016), potentially 

altering evolutionary rates and trajectories(Dasmeh et al., 2017; Salverda et al., 2011).  

 

Looking at the level of protein functional domains we found that those proteins containing CAAS 

possessed certain domains at a greater frequency. For example, CAAS genes in the GO term ‘chromatin’ 

had a disproportionate number of PAS and SRC-1 domains (Figure 4.2A). PAS domains are associated 

with redox signaling sensors(BL and IB, 1999) such as hypoxia-inducible factors (CAAS hits in this set 

included HIF1-3A), as well as the hormone-responsive NCoA co-activator family (NCoA1-3, which were 

also CAAS hits), the latter of which also contain SRC-1 domains. HIF factors and oxidative stress have 

been associated with longevity(Belenguer-Varea et al., 2020; Salmon et al., 2010; Zhang et al., 2009). It 

may be that modification to the nuclear regulators of the stress response modulate the sensitivity of this 

system to insult, particularly under chronic stress(Salmon et al., 2010). Additionally, we observed 

increased occurrence of some domain families, several of which overlap with domains over-represented 
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in aging-related genes(Tacutu et al., 2018) and related to aging processes. These included helicase 

domains (e.g., with CAAS hits in the RecQ family(Brosh and Bohr, 2007)), forkhead domains (with CAAS 

hits in the FOXO family(Greer and Brunet, 2005)), and PI3/PI4 kinase domains(Weichhart, 2018). These 

instances of over-occurrence of aging-relevant domains could imply that the evolutionary forces behind 

CAAS may target genes with particular protein activities, even if CAAS themselves tend to not fall within 

the majority of protein domains (Supplementary Table S4.2). 

 

This tendency to fall outside protein domains may be expected if the majority of CAAS are predicted to be 

benign(Farré et al., 2021a) and domain modifications more likely to be damaging(Adzhubei et al., 2013). 

That we see biased occurrence of certain domains within CAAS-hit genes, but not directly hit by CAAS 

themselves, may be explained if CAAS are only tolerated when they subtly modify protein activity – e.g., 

by altering complex formation (see below) or indirectly impacting the active site via conformational shifts. 

Distal mutations can have profound impacts on enzymatic activity at active sites(Gagné et al., 2015; 

Osuna, 2021; Wang et al., 2021); this may be true for CAAS hits outside domains, though given the 

difficulty in predicting such distal effects(Osuna, 2021) this possibility remains an open question. 

 

The only domains/clans for which direct CAAS-hits were enriched were the Serpin domain and the 

‘Aha/BPI’ clan; Serpins are serine protease inhibitors with known roles in several important pathways, 

including mammalian coagulation(Law et al., 2006; Rau et al., 2007). A previous study of lifespan and AA 

substitutions within primates highlighted genes involved in coagulation (Muntané et al., 2018); our results 

here suggest that this pattern holds when considering lifespan diversity more broadly. Interestingly, 

Serpin domains were also detected in a study of adaptive selection in mammals(Slodkowicz and 

Goldman, 2020), establishing these as molecular targets upon which selection can act. CAAS genes 

containing domains of the ‘Aha1_BPI’ clan included several innate immunity genes (e.g. LBP); immunity 

has been previously linked with cross-species longevity differences(Farré et al., 2021b; Kowalczyk et al., 

2020) and aging more generally(Franceschi et al., 2007). Notably, a longevity-associated variant in 

BPIFB4 (which we also identify as a CAAS gene), has been described(Villa et al., 2015) and protects 

against age-linked atherosclerosis when genetically engineered in mice(Puca et al., 2020). 
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We next considered the spatial distribution of CAAS mutations, using a similar logic of applying spatial 

information in understanding cancer mutation. Such a spatial-clustering approach has been previously 

applied to associate positively-selected residues in mammals with putative functional effects in immune 

proteins(Slodkowicz and Goldman, 2020), and derived residues more broadly(Adams et al., 2017), 

supporting our use of spatial information as an important aspect of characterizing CAAS. Through this 

analysis we found numerous examples of CAAS spatially clustering with cancer mutations (Niu et al., 

2016b). These included several proteins associated with both aging and cancer, such as BRCA1(Cao et 

al., 2003), VEGFA(Carmeliet and P, 2005; Lähteenvuo and Rosenzweig, 2012) and EGFR(H. Liu et al., 

2020; Rongo, 2011). We also found several domains enriched for clustered mutations, including the 

Matrixin and p450 domains. Extracellular matrix (ECM) maintenance and turnover are important 

processes in longevity(75, 76) and cancer, while p450 enzymes are involved in processing environmental 

toxins, decrease expression with age, and can contribute to cancer risk(Agundez, 2005; Wauthier et al., 

2007). Given the substantial links between aging and cancer(De Magalhães, 2013), that we see such 

instances of selection for tumorigenesis, as well as putative longevity selection, modifying similar spatial 

regions on proteins suggests that the molecular targets of selection, i.e., certain proteins or protein-

activities, may be shared. This sharing is further supported by the observation that CAAS residues can 

directly overlap cancer-mutated residues, though they do not do so at a significantly-elevated rate 

(Supplementary Table S4.3). We also found that these mutational clusters can occur within protein-

protein interaction domains, such that a molecular target for selection may be the interactions between 

protein pairs, in addition to the functional domains of individual proteins themselves. 

 

Our finding of CAAS occurrence between protein pairs suggested a possible interplay between 

evolutionary forces and protein interactions. The unique evolutionary constraints experienced by protein 

pairs to preserve interaction kinetics can result in co-evolution, particularly at domains acting at the 

interface(Choi et al., 2009; Duarte et al., 2012; Teppa et al., 2017), and conversely modifications to 

partners can lead to large phenotypic changes(Jubb et al., 2017b). Furthermore, PPI domains can be 

modified evolutionarily to either increase or decrease the specificity of a protein for different possible 
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partners as gain/loss-of-function events(Plach et al., 2017; Sikosek and Chan, 2014), with simulations 

suggesting that as few as two substitutions may be sufficient to produce a novel interaction 

interface(Levy, 2010). 

 

Interestingly, we found that CAAS were over-represented in annotated PPI domains, lending credence to 

the notion that PPI may be directly targeted for modification. This follows with the idea that the evolution 

of longevity may be influenced by complex relationships between proteins, with PPI acting as a more 

explicit form of epistasis(YV and SL, 2010). Indeed, PPI interfaces tend to be more evolutionarily 

conserved(Choi et al., 2009), as would be expected if these interactions are functionally important and 

members can exhibit evolutionary histories and modification rates that are influenced by partners(Goh 

and Cohen, 2002; Makino and Gojobori, 2007). We observed an enrichment of CAAS hitting both 

interaction domains of protein pairs as well as instances in which both proteins contained CAAS, one of 

which occurs within an interaction domain (Supplemental Table S4.4). In the case of the latter, it may be 

that CAAS occurring outside the interaction domain indirectly impact binding kinetics at the interface, 

such that the combination of a direct interface mutation on one protein and an indirect conformation-

altering mutation in the partner protein are sufficient to achieve some phenotypic effect. Further in-silico 

modelling and functional testing may reveal the extent to which such a scenario holds across PPI pairs. It 

is also possible that members of a PPI are modified unilaterally (i.e., only one protein of a pair is CAAS 

hit), either to alter binding kinetics, or to allow for more or less promiscuous interactions with other 

potential partners(Aakre et al., 2015). As well, while we did not focus on homo-oligomers in this study, we 

did observe an enrichment of CAAS falling within these interaction domains (Supplemental Table S4.4). 

We describe these instances for use by others (Supplemental Table S4.4). 

 

In our analysis of PPI modifications, we highlighted two examples of particular interest. One of which was 

between APAF1 and CASP9, wherein an I37P CAAS falls within the CARD domain of APAF1. The 

caspase-recruitment (CARD) domain of APAF1 is essential to recruiting and activating CASP9 to the 

assembling apoptosome complex(Li et al., 1997; Qin et al., 1999a; Yoshida et al., 1998). The short-lived 

residue within this domain was predicted to be strongly unfavorable in terms of binding affinity, suggesting 
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that the long-lived residue may act to improve the interactions between these two proteins. Indeed, a 

structural analysis of CASP9 recruitment by APAF1(Qin et al., 1999b) identified core residues making up 

the hydrophobic interface that confers specificity in CAPS9 recognition, which included Ile37 (Figure 

4.3B). Several mutations in the CARD domain were also shown to abolish interactions with CASP9(Qin et 

al., 1999b), suggesting the possibility that mutation to the short-lived residue at Ile37 could have similar 

effects. Programmed cell death (PCD) can become dysregulated with age(Kavathia et al., 2009), 

increasing in some cell types but decreasing in others(Tower, 2015) - especially in the context of 

mitochondrial dysfunction(Kujoth et al., 2005) - and also plays an important role in cancer 

suppression(Lowe and Lin, 2000; Tower, 2015). It may be that modification to APAF1-CASP9 

recruitment, a critical step in initiating apoptosis(Li et al., 1997; Yoshida et al., 1998), may impact 

aging/longevity by altering the sensitivity of PCD, either under homeostatic conditions or following severe 

stress/damage. 

 

An additional CAAS-PPI occurrence was in the CD47/SIRPa interaction, where a Q67K mutation in 

SIRPA falls within the interaction domain. Point mutation experiments have demonstrated that Q67 plays 

a key role in mediating SIRPa binding to CD47(Liu et al., 2007). This study generated a mutant version of 

SIRPA with the short-lived residue (K) and found this to substantially inhibit CD47 binding, providing 

experimental evidence to suggest a functional effect of this CAAS. Furthermore, mutation of Q67 also 

reduces in-vitro cell adhesion and suppression of leukocyte migration, pointing at a potential for in-vivo 

effects as well. The CD47-SIRPA interaction acts in an immune inhibitory circuit(Logtenberg et al., 2020), 

particularly in controlling myeloid cells and phagocytosis(Veillette and Chen, 2018), a pathway often 

exploited by tumor cells seeking to avoid elimination(Logtenberg et al., 2020; Veillette and Chen, 2018; 

Willingham et al., 2012). Interestingly, CD47-SIRPA also plays a role in removal of aging cells and HSCs 

during normal homeostasis(Logtenberg et al., 2020); it is tempting to speculate that the increased affinity 

of this interaction conferred by the long-lived residue may represent a trade-off between improved 

maintenance of homeostasis at the cost of increased risk for tumor escape. 
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Finally, we looked for instances in which CAAS long/short-lived residue mutations have been phenotyped 

as part of deep mutational scans (Esposito et al., 2019). p53 is a well-known factor involved in a myriad of 

cellular processes(Kastenhuber and Lowe, 2017) as well as in aging(Rufini et al., 2013), for which we 

identified a CAAS falling within the transactivating domain (TAD2). This domain is important for binding of 

p53 to other proteins; a detailed NMR study(Miller Jenkins et al., 2015) of this domain in complex with the 

Taz2 domain of p300 found that the positively-charged GLU51 consistently forms salt bridges and/or 

hydrogen bonds with two residues of Taz2. It may be expected that, were this residue replaced with a 

neutrally-charged substitution that this may impact TAD2-Taz2 binding. Indeed, this study replaced 

GLU51 with an uncharged amino-acid (E51Q) and found that this change led to a two-fold decrease in 

binding affinity. It may therefore also be the case that the substitution of a similar neutral residue, the 

short-lived alanine at this position, also decreases binding affinity of p53 for protein partners. This could 

impact p53 function in certain instances but not others; E51A cells exhibited positive selection following 

etoposide treatment, indicating that the mutated p53 retained some WT-like activity(Giacomelli et al., 

2018). That mutations in the transactivating domain generally appeared to retain functionality in the 

context of DSB-inducing agents suggests the effects of modifying p53 interactions at the TAD2 domain 

may only be evident under certain cellular conditions, a topic ripe for future research. 

 

A CAAS falling within a transmembrane domain of CCR5 was associated with slightly altered binding of 

the 2D7 antibody(Heredia et al., 2018), though given 2D7 recognizes an epitope on the extracellular loop 

of CCR5(Khurana et al., 2005), this effect could be due to subtle conformational changes. Given its 

position within the protein, it is also possible that this CAAS impacts chemokine binding, particularly 

receptor activation through interactions between the N-terminus of cytokines and the transmembrane 

helix bundle(Blanpain et al., 2003; Howard et al., 1999). While characterizing CCR5-chemokine 

interactions with deep mutational scanning was infeasible in the initial study(Heredia et al., 2018), 

targeted functional assays specific to this particular S114G mutation could suggest that the long-lived 

residue (S114) facilitates increased sensitivity of CCR5 to chemokine signaling, with ramifications for 

immune regulation and possibly ‘inflammaging’(Franceschi et al., 2007).  
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Overall, our study extends our understanding of how evolutionary routes towards increased longevity can 

converge by considering convergence not only at the gene-level, but within the context of protein 

structure, function, and interactions. Given that these properties play an obvious role in the phenotypic 

effects of mutations, we believe these findings offer compelling concepts for studies characterizing the 

longevity-altering effects of protein changes. Importantly, these concepts need not be limited to changes 

generated by natural selection but can serve as a basis for guiding protein design of novel longevity-

increasing mutations. 

 

4.4: Materials and Methods 

 

Convergent amino-acid substitution (CAAS) definition 

 

The global set of genes considered in the CAAS analysis (see Supplemental Table S4.1) was obtained 

using the criteria previously described in Farre et al., 2021. Mammal species from Multiz protein 

alignments were selected based on the distribution of longevity quotients (LQ), selecting the top (longest-

lived) and bottom (shortest-lived) four species. Longevity information was aggregated from the AnAge 

database, which is a record of largely zoo-based longevity data for different species. The number of 

species used at these extremes represented a trade-off between the total number of detected CAAS hits 

and the percent of hits which could be validated using additional statistical tests (see Figure S3 of Farre 

et al., 2021). The following species were selected as top: Myotis lucifugus (myoLuc2), Homo 

sapiens (hg19), Myotis davidii (myoDav1), and Heterocephalus glaber (hetGla2); and as 

bottom: Condylura cristata (conCri1), Rattus norvegicus (rn5), Pantholops 

hodgsonii (panHod1), and Mesocricetus auratus (mesAur1).  

CAAS were annotated according to four different scenarios: (1) invariant across long-lived and short-lived 

species, (2) invariant across long-lived, variable across short-lived species, (3) variable across long-lived, 

invariant across short-lived, and (4) variable across both sets of species. For all CAAS, a phylogenetic 

ANOVA test that accounts for phylogenetic relationships (using the RRPP package in R(Collyer and 
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Adams, 2018; R Development Core Team, 2008)) was performed using 10,000 iterations for significance 

testing (Table S4.1). 

 

Gene-set enrichment analyses 

 

Gene set enrichments, whenever indicated in text, were performed using GO Biological Process (BP) 

terms via the ‘enrichGO’ function from the clusterProfiler(Yu et al., 2012b) package version 3.13.1. For 

the initial enrichment of CAAS-containing genes at the scenario-level (Table S4.1), the background set of 

all genes considered in the CAAS analysis (as described above and in Farre et al.(Farré et al., 2021a), 

and provided in Table S4.1) was used as the background set for enrichment testing. For other instances 

in which GO term enrichments were performed, subsequent methods text details the background sets 

used. Benjamini-Hochberg(Benjamini and Hochberg, 1995) p-value adjustments are applied to correct for 

the number of tests performed, with a minimum adjusted p-value threshold of 0.05 used to define 

enriched terms. Semantically-similar enriched GO terms were subsequently collapsed using the ‘simplify’ 

function from clusterProfiler, using default settings. Enrichment visualizations were performed using the 

‘dotplot’ function from ggplot2, showing the top 30 enriched terms (see Table S4.1 for full sets). For the 

initial gene-set enrichments shown in Figure 1B, we combined CAAS falling under Scenarios #1-#3. 

 

Collecting epigenetic gene sets and interactors 

 

GO gene sets related to epigenetics were manually collected from MSigDB(Subramanian et al., 2005) 

using search criteria including ‘chromatin’, ‘histone’, and ‘DNA methylation’ (see Table S2 for full set of 

processes). To consider proteins interacting with those contained in these GO terms we downloaded the 

STRING database (9606.protein.actions.v11.0.txt.gz) and defined interactions as those having a 

‘combined’ score of 700 or greater (as implemented in Ratnakumar et al. 2020(Ratnakumar et al., 2020) 

and suggested on the STRING version 11 FAQ). As a more stringent definition, we also defined 

interactions as those for which physical binding data (9606.protein.physical.links.detailed.v11.0.txt.gz) 

scores were >= 700. Results of analyses using both definitions of interactions are shown in Table S4.1. 
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Enriched gene-ranks for cross-disease heritability 

 

A set of aging-related diseases was assembled based on epidemiological datasets(Chang et al., 2019) 

and used to extract GWAS summary statistics from the UK Biobanks dataset(Sudlow et al., 2015), as 

described more thoroughly in Richard and Capellini 2021(Richard and Capellini, 2021). Briefly, for each 

disease, SNPs were tied to genes using a 200kb window around protein-coding gene TSS, with the most 

significant association p-value assigned to that gene. All genes were subsequently ranked according to 

these assigned p-values. This was repeated across all 127 GWAS sets used in that study. For each 

gene, the number of times in which it ranked in the top 75th percentile of ranks (i.e. was ranked highly in 

its association with the given disease) was counted. This establishes a genome-wide distribution of 

counts (from 1 to 127). For a given gene set (e.g. CAAS-hit genes), the distribution of counts for the 

target genes was compared to that of the global distribution of protein-coding genes (exclusive of the 

target set) using a one-sided (alternative = “greater”) Student’s t-test in base R. Resulting p-values were 

adjusted for the number of GO terms tested using a BH correction, with significance defined as adjusted p 

< 0.05. Given our interest in proteins interacting with epigenetic gene sets (see below), we also ran the 

above cross-rank enrichment testing on gene sets expanded to including interacting partners (see Table 

S4.1). 

 

To test whether CAAS-hit genes had greater cross-disease association than expected, a similar method 

was applied, with the background distribution instead consisting of protein-coding genes (exclusive of 

CAAS-hit genes) subset to those considered in the initial CAAS definition (see above and Table S4.1). 

 

In order to test whether CAAS-hit genes within a given GO term had proportionally greater cross-disease 

association, we tested the bias in gene-wise ranks conditioned on the GO term. The global distribution of 

protein-coding genes was subset to those genes included in a given GO term, with this used as a 

background distribution and compared to the distribution of rank-counts for the target set – CAAS-hit 

genes within this GO term, again using the Student’s t-test in base R. A BH adjustment was again 
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applied. As above, we also performed these conditional-enrichment tests using gene sets expanded to 

include interacting partners, for which we saw greater significance – possibly due to the larger size of the 

background gene sets for t-test comparison (see Table S4.1). 

 

CAAS occurrence across proteins and interactors 

 

For a given gene set (i.e. GO term), the frequency of CAAS occurrence was compared to random 

expectations by generating a set of 1000 randomly-generated gene sets of equal size (sampling from the 

global set of genes used in the initial CAAS definition). The number of CAAS-hit genes (ignoring multiple 

hits per-gene) in the target set was tested for statistical significance by comparing to the set of 

standardized background values using a CDF of the standard normal distribution with the ‘pnorm’ function 

in base R. P-values for significant deviations from the background distribution were corrected for the 

number of GO terms (n = 9) using a Benjamini-Hochberg FDR correction. Significance was defined as 

adjusted p < 0.05 (Table S4.1). 

 

Next, for the given gene set, all interactors (as defined above) were defined via the STRING database, 

and the number of interacting proteins which were CAAS hit was counted. The same procedure was 

applied to all randomized background gene sets. The number of CAAS-hit interacting genes was tested 

for statistical significance against the background distribution using a normal distribution CDF as above. 

Testing was performed using both the ‘combined score’ based interaction definition, as well as those 

defined solely using physical binding scores (see Table S4.1). 

 

Finally, for each gene set, the set of interacting genes containing CAAS was intersected with the set of 

CAAS-hit genes in the gene set itself to define ‘internal interactors with shared CAAS’. This was also 

done for all randomly-generated gene sets, with statistical significance again calculated comparing the 

target value to a standardized background distribution using a normal distribution CDF, with BH correction 

applied for the number of GO terms tested. This was again done for both definitions of interactors. 
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To test whether our findings were unique to epigenetic gene sets, we randomly collected GO terms to run 

the above analyses. For each epigenetic GO term, all GO terms in the GO BP database (obtained from 

MsigDB – file c5.go.v7.4.symbols.gmt) were ranked by absolute (# of genes in epigenetic term - # of 

genes in term), with the 100 closest size-matched terms selected. Of these, five terms were randomly 

selected to include in the final set. The final sets of randomized GO terms were then combined to give a 

background set of unique terms. This was done to account for possible confounding effects of selecting 

random GO terms substantially smaller/larger than the epigenetic GO terms used. For each randomly-

selected GO term, the above statistical tests for the occurrence of CAAS were performed, with BH 

correction applied for the total number of randomly-selected GO terms (n = 44) for each statistical test 

(see Table S4.1). 

 

Protein Domain Occurrence 

 

The PFAM human protein domain database was obtained (9606.tsv – Release 34.0) from 

(http://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/proteomes/). Gene symbols were subsequently 

mapped to Uniprot accessions and intersected with this database, yielding lists of domain occurrence for 

genes in individual epigenetic GO terms, as well as a global list of genes considered in the CAAS 

background set. We tested the occurrence of certain PFAM domains within epigenetic GO terms as 

follows. For each PFAM domain occurring at least more than once within a given GO term, the total 

number of instances of this domain across all genes in the PFAM database (counting multiple hits in a 

given gene as a single count) was considered the total number of ‘true’ cases for that domain. We 

compared the occurrence counts of this domain in the GO set vs. the background using the ‘phyper’ 

function from base R. P-values from these hypergeometric tests were adjusted for the number of domains 

tested using BH correction for each GO set considered. Enrichments were plotted as log-FC values using 

ggplot2 (see Figure 4.2A). Within each GO term, we also extracted those genes containing at least one 

CAAS hit as the ‘CAAS Target’ set. Similar to above, the occurrence of a given PFAM domain within this 

target set was compared to the global occurrence of said domain using the ‘phyper’ function followed by 

BH correction. Finally, within a given GO term, we compared the number of occurrences for a given 
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domain in CAAS-hit genes to the occurrence of said domain in the GO term as a whole (counting multiple 

hits in a given gene as a single count). The ‘phyper’ function was again used along with BH correction for 

the number of domains tested for a given GO term. 

 

Separately, to test the occurrence of PFAM domains within CAAS-hit genes as an entire set (not stratified 

by membership within GO terms), we performed similar per-domain hypergeometric tests, with the 

background defined as the occurrence of domains within the CAAS background set of genes (as 

presented in Table S4.1) which had entries in the PFAM database. To test the occurrence of PFAM 

domains within GenAge genes as a separate set, we performed similar per-domain hypergeometric tests, 

using the global occurrence of domains across PFAM as the background set. The overlap between 

enriched PFAM domains in CAAS-hit genes and GenAge genes was tested for significance using a 

hypergeometric test comparing the number of overlapped domains to the total number of enriched 

domains in the CAAS-hit set – relative to the total number of unique domains occurring within CAAS-hit 

proteins (see Table S4.2). 

 

Within each gene, for a given PFAM domain hit, we took the annotated start-end positions of the HMM 

match and looked for CAAS hit residues falling in this range. Per-CAAS domain hits are presented in 

Table S4.2. For all protein domains directly hit by at least one CAAS residue, we counted the number of 

genes containing these CAAS-hit domains (counting multiple hits in a given gene as a single count) and 

compared to the number of genes in the background CAAS set containing these domains using the 

‘phyper’ function (see Table S4.2), again applying BH correction for the number of domains tested. 

 

dbNSFP Integration 

 

The dbNSFP database(X. Liu et al., 2020) was obtained from http://database.liulab.science/dbNSFP. This 

database contains nucleotide modifications which are subsequently translated into non-synonymous 

mutations and fed into various predictive model software in order to assign the potential for deleterious 

effects of these mutant residues. In order to align our CAAS dataset to this database, we used the 
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backlocate program(Lindenbaum, 2015) with the hg19 reference genome sequence and gene annotation 

file (GRCh37.87.gtf) obtained from Ensembl. We intersected the chromosomal positions of mutations 

leading to CAAS residue modifications (via backlocate) with the chromosomal positions from dbNSFP, 

further requiring that the specific CAAS change (i.e. long-lived to short-lived amino acid) was shared with 

a matched dbNSFP entry. Given our interest in the predicted impacts of CAAS on protein 

structure/function, we considered the columns in dbNSFP describing the predicted mutation effects 

generated from different computational software, using the codes ‘H’, ‘M’ and ‘D’ provided by researchers. 

The number of software predictions of non-benign/tolerated effects for a given residue change were 

summed, with all residues having at least one predicted effect retained. To increase the stringency of 

these results, we further required that all residues in this set also directly intersected a PFAM protein 

domain, using our previously-generated per-CAAS PFAM mappings. See Table S4.2 for this complete 

set. 

 

Spatial clustering of residues 

 

We obtained the HotSpot3D(Niu et al., 2016b) software version 0.6.0 from Github 

(https://github.com/ding-lab/hotspot3d). Pre-processed proximity files were obtained from 

https://www.synapse.org/#!Synapse:syn8699796/wiki/421392 for the GRCh37 genome build, with gene 

names converted to PDB accessions using the ‘hugo.uniprot.pdb.transcript.csv’ file also made available. 

To generate a MAF format suitable for use with this software we implemented a custom-made script in 

base R. Briefly, for each CAAS we used the associated Refseq accession number to retrieve information 

via biomaRt version 2.44.4 (using the ENSEMBL ‘hsapiens’ database). For each CAAS we formatted the 

mutation code as ‘p.[Long-lived AA][position][Short-lived AA]’. For CAAS falling under Scenarios 2 or 3 

(multiple long-lived or short-lived AAs) we added one entry for each AA version (this not impacting the 

distribution of unique residue modifications along proteins for clustering purposes). We also obtained 

Supplemental Table 24 (41588_2016_BFng3586_MOESM25_ESM.xls) from the original HotSpot3D 

publication, which provides somatic mutation data for 1,818,754 mutations across 19 TCGA cancer types 

in a pre-prepared format for use with HotSpot3D. This dataset was subset to those genes included in the 
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CAAS background gene set, and for which pre-processed HotSpot3D files were available. The subset 

TCGA dataset was then pooled with the reformatted CAAS dataset to generate a combined input file for 

use with HotSpot3D. Residue clustering was performed using the following flags: ‘--3d-distance-cutoff 10’ 

and ‘--meric-type intra’. The resulting cluster information was then filtered to retain only those cluster calls 

containing at least three residues; this set of calls was then further filtered to retain clusters containing 

CAAS residues. Additionally, the subset TCGA dataset was separately processed with HotSpot3D in 

order to determine the amount of additional information (i.e. additional cluster calls) provided by the 

inclusion of the CAAS dataset. The CAAS dataset by itself was too small to generate cluster calls using 

this algorithm (data not shown). Gene set enrichments were performed as described above, using as 

background the set of CAAS background genes for which pre-processed HotSpot3D files were available 

(and for which TCGA mutations were described). These were performed using all genes for which at least 

one cluster call contained a CAAS residue, as well as genes subset by the scenario of CAAS residues (1-

3). 

 

Clustered residue disease annotations 

 

Enrichments for DOSE(Yu et al., 2015) terms were performed using the clusterProfiler(Yu et al., 2012b) 

package version 3.13.1 along with the DOSE package version 3.18.3, using as background the set of 

CAAS background genes for which pre-processed HotSpot3D files were available and applying a BH p-

adjustment. Significant enrichments were visualized with the ggplot2 package version 3.3.5 using the 

‘dotplot’ function for the top 20 enriched DOSE terms. In order to look at the distribution of gene 

associations within these enriched terms, we downloaded the set of human disease ontology terms 

(https://github.com/DiseaseOntology/HumanDiseaseOntology/blob/main/src/ontology/HumanDO.obo) and 

for the top 30 enriched DOSE terms (sorted by gene ratio) extracted all associated ontology hits. The set 

of genes possessing at least one CAAS-containing cluster was analyzed using the disgenet2r library 

(version 0.99.2)(Piñero et al., 2020) function ‘gene2disease’ to map genes to disease annotations. 

Finally, we took the gene-to-disease mappings and intersected them with our subset ontology hits. The 
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resulting object was visualized using the network plotting function built into the disgenetR using the 

following flags: prop = 5. 

 

Visualization of mutant residues on EGFR 

 

To visualize the mutated residues occurring in the EGFR protein, we first obtained the relevant protein 

sequence from Uniprot (P00533), and also retrieved the PFAM domain hits for this protein from our 

previous datasets. All called clusters in the EGFR protein were plotted as dots using base graphics in R, 

using a rainbow colour scheme to differentiate residues belonging to different clusters. All clusters for 

which CAAS residues were members were plotted at a taller height to help in visually distinguishing them, 

with asterisk used to denote CAAS residues themselves. Visualization of cluster distribution on the EGFR 

protein was performed using the ‘visual’ program from Hotspot3D with a PDB crystal structure obtained 

from the PDB database (accession 4KRP); CAAS residues were manually coloured red using the PyMol 

interface. 

 

Domain occurrence of CAAS-containing clusters 

 

We next considered those instances in which residues of CAAS-containing clusters fall within PFAM 

domains within their respective proteins. For a given cluster, we took all residue positions and intersected 

them with PFAM domain hits for that protein, assigning domains to residues when they intersected. This 

is different from the above analysis where we test for the occurrence of CAAS within PFAM domains – 

here we consider either the CAAS directly, or a residue which lies spatially adjacent to a CAAS within the 

3D protein structure, and test domain-hitting biases in this expanded residue set. For a given domain, we 

compared the number of genes containing instances of residue-hit domains to the total number of genes 

containing this domain. We performed these tests for all domains which had at least two genes with 

domain-hitting residues (n = 30), and subsequently applied BH correction. 

 

Overlap of CAAS and TCGA residues 
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Using our pooled MAF-formatted dataset of CAAS residues along with pre-processed TCGA residues 

(from(Niu et al., 2016b)), we counted the number of instances in which a TCGA-mutated residue on a 

given protein was also a CAAS-modified residue at this position. We next considered all proteins shared 

between the TCGA and CAAS sets. For each given protein we obtained the amino-acid sequence from 

Ensembl via biomaRt version 2.44.4, then counted the number of CAAS occurring within said protein. 

These CAAS were then randomly shuffled across the length of the protein to generate a randomized set 

of CAAS residues for that protein. This CAAS-shuffling was performed across all proteins containing at 

least one CAAS for 1000 iterations, yielding a background of 1000 sets of randomly-shuffled CAAS 

datasets to match the true target set. For each shuffled set we then counted the number of TCGA residue 

positions which overlapped the simulated CAAS residues, establishing a background for the number of 

TCGA-CAAS overlaps which would be expected if CAAS were randomly distributed across protein 

sequences. We then compared standardized values from this background distribution to the number of 

CAAS-TCGA overlaps of true CAAS residues via the ‘pnorm’ function in base R (Table S4.3). 

 

As an additional test for the significance of overlap between CAAS residues and cancer mutations, we 

downloaded an expanded set of somatic mutations based on the TCGA(Campbell et al., 2020) 

(https://gdc.cancer.gov/about-data/publications/mc3-2017, using the file mc3.v0.2.8.PUBLIC.maf.gz). We 

similarly pooled this dataset with our MAF-formatted CAAS data, and again looked for overlap at the level 

of residue positions within proteins shared between these two sets. The same background of 1000 

randomized CAAS sets was used to compare the number of true residue overlaps to that expected from 

randomly-shuffled residue positions using the same statistical approach as described above (Table S4.3). 

 

ProtCID Integration 

 

ProtCID(Xu and Dunbrack, 2020) is a database of protein-protein interactions which extends the 

resolution of PPI captured from crystal structures to the level of interactions between PFAM domains of 

protein binding partners, and provides additional information as to patterns of domain-domain interactions 
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across large sets of protein complexes. We subset our set of CAAS-containing proteins to those for which 

a CAAS intersected at least one annotated PFAM domain. Given this set of CAAS-hit PFAM proteins, the 

developers of this database kindly provided us with a dataset of all domain-domain interactions involving 

at least one of these proteins, along with the corresponding crystal structures. This domain-domain 

interaction dataset was separated into homo-dimeric and hetero-dimeric interactions for processing. For 

homo-dimeric interactions, we identified all instances in which CAAS residues fell within either one or 

both of the annotated PFAM domains involved in the interaction, as well as cases where a CAAS fell 

within a self-interacting domain (e.g. the PDGF domain of VEGFA) (see Table S4.3 for full set of homo-

dimeric interfaces). For hetero-dimeric interactions, we identified all instances in which CAAS residues fell 

within either one or both of the annotated PFAM domains involved in an interaction. 

 

To more stringently identify CAAS residues potentially involved in the protein-protein interface, we took 

the crystal structures obtained from ProtCID for all domain-domain interactions and imported them into R 

via the Rpdb library version 2.3. These structure files detail the chains in the protein pair which are 

involved in the protein-protein interaction, as well as the domain regions in these chains that are involved 

in the interface. The distances between all atoms of all residues in the interaction domain of one protein 

and all atoms of all residues in the interaction domain of the partner protein were calculated using the 

‘distances’ function from Rpdb, and the norm of the xyz distance vectors was calculated using the ‘norm’ 

function. The minimum distance between all atoms of one residue and all atoms of a residue on the 

partner domain was assigned to each residue-residue pair. Interface residues on one domain were 

defined as those within 5Å of any other residue on the partner domain. These interface residue definitions 

were generated across all hetero-dimeric protein interfaces in our set, and subsequently intersected with 

our CAAS set to identify CAAS residues which may also function as potential interface residues (Table 

S4.3). This interface residue definition was also applied to all homo-dimeric protein interfaces in our set. 

 

To test the significance of the observed number of CAAS residues falling within interaction domains 

(either hetero- or homo-dimer interactions), we used our sets of randomly-shuffled CAAS residues to 

establish the expected rate of CAAS-interaction domain overlaps if CAAS were randomly distributed 
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across proteins. For each randomly-shuffled set, we first assigned shuffled residues to PFAM domain 

annotations using the PFAM database. We then looked across all interactions in our set and looked for 

overlap between fake-CAAS PFAM hits and PFAM domains involved in these interactions, using the 

same algorithm as applied above for the true set of CAAS. This was done across all 1000 randomly-

shuffled sets, defining background expected rates of occurrence of different scenarios of overlap. These 

scenarios included: 

(1) Overlapping at least one homo-dimer interaction domain 

(2) Overlapping both interaction domains of a homo-dimer, where both domains are the same PFAM type 

(3) Overlapping both interaction domains of a homo-dimer, where domains are different PFAM types 

(4) Overlapping at least one hetero-dimer interaction domain 

(5) Overlapping both interaction domains of a hetero-dimer 

(6) Overlapping at least one homo-dimer interacting residue (defined as above) 

(7) Overlapping interacting residues within both interaction domains of a homo-dimer, where both 

domains are the same PFAM type 

(8) Overlapping interacting residues within both interaction domains of a homo-dimer, where both 

domains are different PFAM types 

(9) Overlapping at least one hetero-dimer interacting residue 

(10) Overlapping interacting residues within both interaction domains of a hetero-dimer 

 

To visualize the position of CAAS within protein complexes, we used SIFTS residue mappings (obtained 

from ftp://ftp.ebi.ac.uk/pub/databases/msd/sifts/flatfiles/tsv/pdb_chain_uniprot.tsv.gz) to map mutant 

residue numbers to their equivalent positions in PDB structures. For a given PDB structure, we mapped 

our set of CAAS residues, then subsequently used the Rpdb package to annotate CAAS residues as 

metadata in the PDB format. The resulting file was then imported to Chimera version 1.15 for visualization 

(see Figure 4.3A-B, Figure S4.3). 

 

IntAct database and SSIPE integration 
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The IntAct database contains annotated experimental evidence of mutations shown to impact protein-

protein interactions – this was obtained at the following link: 

ftp://ftp.ebi.ac.uk/pub/databases/intact/current/various/mutations.tsv. We intersected this set with our set 

of CAAS residues, requiring that the exact long-lived (human) to short-lived amino acid substitution was 

experimentally described. This yielded a set of three protein-protein interactions for which the CAAS 

mutation was described (Table S4.4). 

We took our set of CAAS residues falling within protein interaction interface domains and formatted 

mutation strings (of the form long-lived vs. short-lived) for use with the SSIPE webserver(Huang et al., 

2020), though, given that the webserver only handles protein dimers (and not larger complexes), we 

limited our searches to interactions involving only two proteins. Within this limited search space we 

identified the CASP9-APAF1 interaction as being significantly-deleteriously disrupted by the long-to-short 

residue change. Wild-type and mutant protein structures (generated by the SSIPE webserver) were 

visualized using Chimera version 1.15, as shown in Figure 4.4C. 

 

Clusters and protein-protein interfaces 

 

All cluster calls (generated from our above analyses in section ‘Spatial clustering of residues’) for which 

CAAS residues were at least one member were considered. All residues within these clusters falling 

within annotated PFAM hits (in their respective proteins) were assigned to said domains. We then 

subsequently intersected these residue-domain hits with the sets of interaction domains from the ProtCID 

dataset, looking for instances in which either (a) a CAAS residue (belonging to a cluster) falls within an 

interaction domain (which can be considered a subset of the above analysis) or (b) a residue occurring 

adjacent to a CAAS residue (i.e. belonging to the same cluster) falls within an interaction domain. Finally, 

we intersected the set of interfaces identified in this analysis with the set generated using CAAS residues 

overlapping interaction domains, yielding sets of interfaces for which CAAS residues fall within both 

interaction domains while also being members of mutational clusters. We also identified interfaces for 

which CAAS residues do not fall within both interaction domains, but are members of mutational clusters 
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with adjacent residues falling within interaction domains. Both sets of interfaces are indicated in Table 

S4.4. 

 

Multiplex assay of variant effect database 

 

The rapimave package in R (version 0.2.0.9) was used to access the MaveDB database(Esposito et al., 

2019), retrieving details on all entries. These data were intersected with our set of CAAS-hit proteins to 

identify proteins characterized in at least one study in the database, retrieving the results for all studies 

describing proteins of interest. Within each study, we looked for instances in which the CAAS residue(s) 

of interest were tested, at that position, and further that the long-to-short amino acid substitution was 

directly tested in the assay. This yielded five studies, the results of which are shown in Figure 4.4A,C and 

Supplemental Figure 4.1. To visualize the assay results for the experiments describing our CAAS hits, we 

used the mavevis library in R version (https://github.com/VariantEffect/mavevis). A modified version of the 

‘genophenogram’ function from mavevis was implemented to highlight our particular CAAS residue 

changes in the genophenogram output, as well as integrating information on the distribution of PFAM 

domains across proteins of interest (as shown in Figure 4.4). 

 

Intersection with loss-of-function gene sets 

Data from gnomAD(Karczewski et al., 2020) was retrieved 

from https://gnomad.broadinstitute.org/downloads#v3variants (file: forweb_cleaned_exac_r03_march16_z

_data_pLI_CNV-final.txt), with genes subsequently filtered for those with a pLi score of > 0.9. This yielded 

a set of 3230 unique loss-of-function-intolerant genes. This set was subsequently intersected with the 

aggregated set of unique epigenetic genes, along with their interactors, and expressed as a percentage 

overlap. 
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Chapter V: Discussion and Conclusions 

 

Throughout this dissertation, the analyses presented have contributed to our understanding of how 

natural selection, acting either in favour of derived developmental traits (e.g., hindlimb morphology) or 

successively elongated lifespans along the hominid lineage, may have modified genetic sequences 

controlling aging-related processes. While much work has been done here using evolutionary tenets to 

explain the history of these sequence changes, their patterns on the genome-wide level, and how they 

reflect function (e.g., in modifying certain transcription factor binding sites in enhancers), the actual causal 

mechanisms by which most of these sequence changes mediate alterations to organismal aging and 

overall lifespan remain to be determined. In this chapter, I will summarize the main findings and 

conclusions of this dissertation and discuss future avenues of research. 

 

5.1: Key findings and discussion 

 

There were several key conceptual advancements in the realm of evolutionary theory put forward 

throughout this dissertation. In Chapter 2, we considered a key human derived trait, the bipedal knee, and 

how its unique configuration has been achieved in part via natural selection acting on gene regulatory 

regions controlling chondrogenesis during early fetal joint development. By analyzing chromatin 

accessibility datasets generated from developing mouse and human skeletal tissues we identified signals 

of ancient positive selection, followed by more recent and potentially ongoing purifying selection, in knee 

regulatory regions. Furthermore, we found that these regulatory regions were enriched for heritability for 

osteoarthritis, while osteoarthritis risk loci (as defined through our mining of GWAS literature) were 

depleted for selection signals, and instead behaved as if subject to genetic drift (Figure S2.3). Since the 

onset of osteoarthritis is typically later in life, with age as a substantial risk factor(Loeser et al., 2016), this 

presented a potential example of antagonistic pleiotropy. This led us to formulate an evolutionary model 

(diagrammed in Figure 5.1) in which strong selection on developmental processes causes genetic 

variants in regulatory sequences to contribute to heritable risk for late-onset disease via a ‘violation of 

constraint’ – possibly via alterations to knee structure away from an optimized configuration. 



 108 

Figure 5.1: Graphical summary of model presented in Chapter 2. (Top): Ancient directional selection for a 

derived knee configuration is followed by a wave of purifying selection, imposing a functional constraint 

on knee regulatory regions. (Bottom): This constraint is violated by two processes; antagonistic pleiotropy 

favouring other traits (e.g. height), and the accumulation of random mutations which are inefficiently 

purged (due to moderate early-life effects). 
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Antagonistic pleiotropy has been used as a framework for the understanding of several age-related 

diseases, including Alzheimer’s, coronary heart disease, etc.(Byars and Voskarides, 2020) – our study 

adds to this literature by suggesting that heritable osteoarthritis risk may be interpreted in a similar 

framework. Though we would note that the model presented here is a special case of antagonistic 

pleiotropy – in addition to direct selection for certain alleles beneficial for other traits (e.g., as was 

observed at the GDF5 locus), our model suggests that ancient positive selection on the bipedal knee 

imposed unique biomechanical constraints on knee development. This established constraint goes on to 

cause emerging variants, which might otherwise be phenotypically neutral, to impose a risk-increasing 

effect for osteoarthritis; effects which are only apparent later in life. The effects of these variants are 

minimally deleterious to knee functionality earlier in life, or like other developmental traits the alleles 

would have been purged by negative selection. Thus, rather than selection for an early-life trait directly, it 

is instead the tolerable violation of previous selection on the early-life (i.e., developmentally-based) trait 

that contributes to late-life disease risk via antagonistic pleiotropy. It is worth noting that this unique 

conception of antagonistic pleiotropy is consistent with the contributions of mutation accumulation effects 

– variants which become deleterious later in life due to functional constraints (imposed during early 

development) are permitted to accumulate and contribute to increased late-life decline. We suggest that 

this general framework, that of considering the links between derived human traits and modern-human 

disease risk, may be applied to other traits and diseases. Indeed, studies in Alzheimer’s genetics have 

suggested a role for evolution in shaping Alzheimer’s-associated loci(Nitsche et al., 2020), as well as 

possible antagonistic pleiotropy acting on certain alleles (e.g. the apoE system(Byars and Voskarides, 

2020; Finch and Sapolsky, 1999). Moreoever, it has been suggested that the enhanced neuroplastic 

potential that emerged over the course of human evolution contributes to the deleteriousness of brain 

aging(Neill, 2012). Interestingly, it has been observed that the brain regions most impacted by tau fiber 

aggregation are those which have been most expanded in the hominid lineage(Arendt et al., 2017; 

Rapoport, 1989), which has also been hypothesized to reflect possible developmental constraints 

contributing to disease risk(Arendt et al., 2017). It may be that, upon more detailed studies (e.g., 

considering the regulatory networks underlying early brain development), Alzheimer’s disease presents a 

similar scenario of violated constraint leading to increased disease risk later in life. Though we note that 
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these developmental contributions could be balanced by the activity of many variants of small effect 

active in adult brain tissue(Keller and Miller, 2006)(see discussion below). 

 

Given the links we observed between development and an age-related disease in Chapter 2, in Chapter 3 

we considered the interactions between developmental and aging-related processes at the level of 

epigenetic regulation, and the importance of regulation for many diseases across the lifespan. The focus 

on epigenetic interactions is based on the observation that the epigenome plays a key role in 

orchestrating developmental processes(Kiefer, 2007), and is considered a key hallmark of aging(Brunet 

and Berger, 2014; López-Otín et al., 2013), while epigenetic studies (e.g., those focusing on epigenetic 

clocks) suggests that development and aging represent a continuous-progressing process that is 

recorded in the epigenetic ‘record’(Horvath and Raj, 2018b; Raj and Horvath, 2020). By comparing 

consistent biases in chromatin accessibility across tissues in fetal and adult samples, and comparing 

these directional biases to those observed when comparing accessibility across young-adult and old-adult 

samples, we posit that the directionality of epigenetic trends through development are continued as adult 

individuals age. In support of this, we find that regions biased towards accessibility in fetal and young-

adult tissues were enriched for active regulatory annotations (e.g., enhancers, promoters), active 

chromatin marks (e.g., H3K27ac) as well as bivalent domains(Bernstein et al., 2006), and associated with 

genes involved in growth processes, all of which are expected for epigenetic patterning to encourage 

growth and development. In contrast, regions biased towards accessibility in adult and old-adult tissues 

were enriched for repressed genomic annotations (e.g., heterochromatin, repeat elements), repressive 

chromatin marks (e.g., H3K9me3), and associated with genes involved in immune processes. These 

enrichments were also expected given epigenetic and expression observations in different aging tissues, 

as described in the heterochromatin loss(Lee et al., 2020; Villeponteau, 1997), 

retrotransposon(Gorbunova et al., 2021), and inflammaging(Nardini et al., 2018; Xia et al., 2016) theories 

of aging.  

 

The sequence properties of these region sets also pointed to the increased effects of phylogenetic 

constraint, as well as ancient positive selection, and subsequent purifying selection acting on fetal- and 
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young-adult-biased regions, whereas adult- and old-adult-biased regions showed patterns more 

consistent with relaxed selection, and possibly increased permissivity to accumulated mutations. When 

we considered genome-wide heritability across many aging-related disease GWAS, we found that adult- 

and old-adult biased regions were enriched for nearby associated variants across the vast majority of 

diseases, while fetal- and young-adult-biased regions were depleted for variants. Under the model of 

antagonistic pleiotropy favouring developmental processes we discussed in Chapter 2, it would be 

expected that variants most accessible during development would be those most associated with 

heritable disease risk, as would be the expectation under a ‘fetal programming’ model of aging(Godfrey et 

al., 2013). Under this form of antagonistic pleiotropy, we would also expect that variants in regulatory 

regions most active in early development (e.g., the fetal knee joint) would be the most strongly associated 

with late-onset disease when these variants tolerably violate ancient sequence constraint.  

 

However, our findings in Chapter 3 on a broader set of regulatory regions, that are shared across many 

tissues suggest that developmental regulatory activity does not account for a disproportional proportion of 

the genome-wide distribution of risk heritabilities for these diseases. It may be that the model we 

proposed for osteoarthritis is more unique to skeletal structures or structures acquiring functionality early 

in life and their compartmentally specific (i.e., modularized) regulatory architecture. Once a structure is 

patterned using its site-specific regulatory architecture for its final adult configuration in early 

development, regulatory regions active in the adult tissue have a smaller impact on disease risk – that is, 

there is an ontogenic constraint on the effects of variants active later in life. While less site-specific 

regulatory regions controlling general homeostatic processes may still impact tissue decline in the adult 

structures, as suggested by our findings on osteoarthritis in Chapter 3, the effects of ontogenic constraint 

dominate. In contrast, those tissues/structures which are more dynamic (e.g., the kidney), have more 

cross tissue regulatory useage, and therefore have less ontogenic rigidity patterned in early development 

may stand to be more greatly impacted by variants active in adult tissues. For example, it has been 

suggested that, given the large number of genes and loci involved in maintaining adult human brain 

function, that the brain regulatory landscape presents an enormous mutational target wherein many 
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variants (i.e., those epigenetically active in adult brain tissue) of small effect size spread across the 

genome can cumulatively contribute to risk for late-onset neurological disorders(Keller and Miller, 2006). 

 

In contrast to models of antagonistic pleiotropy contributions to disease, the mutation accumulation theory 

would predict that regions most active in late-life should (1) be subjected to the weakest selection 

pressures due to reduced fitness consequence later in life, (2) accumulate more variants as a result of 

this reduced sequence constraint, and (3) that the accumulated variants should be associated with late-

onset disease risk. Our set of old-adult-biased regions fulfill the first two expectations; however, we found 

that these regions were not those for which variants had the strongest cross-disease associations, 

arguing against this model as explaining a disproportionate amount of late-onset disease risk heritability. 

We first note that our GWAS aggregation method does not take into account effect sizes, such that 

variants of larger effect for any particular disease may not be proportionally represented – that is, we 

consider aggregate association signal across diseases. Secondly, we note that our aggregated GWAS 

data was based on late-onset disease incidence – it may be the case that regions most active in late-life 

(i.e., contemporaneously with disease onset) may instead be enriched for heritability for disease 

progression (i.e., individuals with a plethora of disease progressing variants may progress more quickly 

down disease pathophysiology), though we currently lack the genetic data to fully understand this 

possibility. 

 

In between models favouring developmental processes and those favouring the effects of mutations 

active in late-life, we therefore propose a model where the time in which variants have the greatest 

association with late-onset disease risk is during early adulthood. During this period regulatory variants 

stand to impact homeostatic processes and contribute to tissue dysfunction – if these variants are most 

active in early adulthood and gradually lose their activity later into life, then their regulatory effects could 

accumulate over time, additively contributing to disrupted homeostasis. This would be in contrast to 

variants most active far later in life, i.e., contempareously with disease onset, where their potential 

deleterious effects may not have had time to integrate. For example, a regulatory variant may cause a 

slight down-regulation of a tissue-protective gene. If that variant is most active during development, but 
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diminishes in activity within adult tissue, this slight down-regulation will have less impact on adult tissue 

function; similarly, if this variant is most active far later in life, then the effects of this down-regulation have 

less time to accumulate. Down-regulation of that protective gene as one transitions from early- to late-

adulthood would therefore stand to have the greatest impact on tissue function, ‘setting the stage’ for 

eventual disease manifestation.  

 

There is substantial literature in the medical field to support the importance of early adulthood processes 

and functional decline later in life. Numerous studies have linked cardiovascular risk factors measured in 

mid-life and cognitive decline in late-life(Knopman et al., 2001; Qiu and Fratiglioni, 2015; Whitmer et al., 

2005; Yaffe et al., 2021); importantly, a recent study demonstrated a much stronger association with 

cardiovascular risk factors measured in early adults, and suggested that young adulthood may be the 

time at which interventions to reduce cognitive decline would be most effective(Yaffe et al., 2021). 

Additionally, an observational cohort study of UK individuals found that individuals presenting with 

depressive symptoms in early adulthood had significantly elevated risk for developing physical 

multimorbidities later in life(Arias-de la Torre et al., 2021), while variability in blood pressure 

measurements in early adulthood (possibly indicative of cardiac remodelling) has been associated with 

deleterious changes to myocardial function later in life(Nwabuo et al., 2020). Early adults with diminished 

lung function are also at elevated risk of developing later comorbidities and suffering from premature 

death, though this may be driven in part by sub-optimal development of the lung earlier in utero(Agustí et 

al., 2017).  

 

We would note that the late-onset diseases we focus on are complex traits – that is, the effects of many 

individual loci spread across the genome likely contribute to disease risk(Pasaniuc and Price, 2016). This 

organization of genetic contributions is important in the context of late-onset diseases, where it has been 

suggested that variants of small effect size are inefficiently purged by natural selection, and can go on to 

cumulatively contribute to disease risk(Keller and Miller, 2006; Wright et al., 2003). Furthermore, this 

facilitates an increased potential for antagonistic pleiotropy – individual alleles can be selected in favour 

of different traits at different loci, such that a sizable component of disease risk may be contributed by 
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different selective forces(Wright et al., 2003). For example, Blekhman et al.,(Blekhman et al., 2008) found 

that, while Mendelian-disease genes were under purifying selection across species, genes associated 

with complex diseases were not.  

 

This complex organization of variants is a key component of our findings from Chapters 2 and 3. In 

Chapter 2, we found evidence to suggest that osteoarthritis risk is made up of a combination of general 

‘violation of constraint’ across the genome, wherein variants arising in constrained regulatory regions are 

permitted to accumulate, and antagonistic pleiotropy acting in favour of certain traits with the example of 

selection for height in the GDF5 locus. Both sets of phenomenon contribute to disease risk given the 

complex architecture of genomic heritability. In Chapter 3, we considered variants falling widely across 

the genome, implicitly relying on the complex nature of the late-onset diseases we studied.  

 

In considering the evolution of lifespans across animals, not only can the expression level of a given gene 

be subject to change, as we focused on in our first two chapters with regards to changes in regulatory 

networks, but the coding sequence of the protein itself may also be subject to modification(Tejada-

Martinez et al., 2022). Given our findings in Chaper 3 focusing on the role of epigenetic processes in 

aging, and how epigenetic context influences the selective forces acting on genomic sequences, we 

considered the potential for the actual proteins that mediate these processes to themselves be subject to 

natural selection. We built upon a previous study which sought to define amino acid substitutions in 

orthologous proteins that stratify based on the longevity of mammalian species (Farré et al., 2021a), 

considering the distribution of these ‘convergent amino acid substitutions’ (CAAS) across protein groups, 

as well as the individual protein structures themselves. We found that, while epigenetic proteins were 

depleted of CAAS as a set, CAAS-containing chromatin genes were disproportionately represented in 

certain activities, such as redox-sensing, while CAAS-containing genes in general were enriched for 

protein domains involved in fatty acid metabolism, DNA repair and replication, and telomere biology – 

domains which were similarly enriched for previously-established longevity-associated genes(Tacutu et 

al., 2018). Additionally, while CAAS positions themselves were depleted for occurrence in the majority of 

protein domain classes, we observed a significant enrichment within serpin domains. Serpin proteins are 
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involved in coagulation, which has been previously linked to evolution and lifespan in primates(Muntané 

et al., 2018), and serpins more generally have been linked with the immune system in modulating 

inflammatory responses(Bao et al., 2018). This enrichment for evolutionary signal in proteins with this 

immune-related domain follows with our findings in Chapter 3 highlighting the increased epigenetic (and 

transcriptomic) activity around immune-associated loci – it may be the case that late-expressing genes 

involved in immunity are subject to protein sequence evolution. Given that we know that immunity is 

linked with aging and lifespan(Singh et al., 2019), that immune-related proteins have undergone positive 

selection in great apes(Tejada-Martinez et al., 2022), and that there exists a relationship between time of 

expression and evolutionary rate(Cheng and Kirkpatrick, 2021), this scenario is plausible.  

 

Through our analyses, we found that CAAS-containing proteins were over-represented in biochemically 

interacting pairs, suggesting the possibility that selection for longevity may be acting not only at the level 

of individual proteins, but at the protein-protein complex level. This also follows with our findings on over-

representation of CAAS proteins for certain protein activities – proteins which share complementary 

protein activities (e.g., DNA binding domains, DNA polymerase domains) might be expected to interact as 

part of larger complexes (as in the example of the human primase complex we highlighted in Figure 4.3). 

A more in-depth analysis found that CAAS were over-represented in the annotated interaction domains 

between protein pairs, and further that these residues were also enriched directly at the interface (i.e., 

within 5A of the partner protein residues). A recent study of D. melanogaster proteins found that protein-

protein interaction sites are hotspots for adaptive evolution(Peng et al., 2022), providing suggestive 

evidence supporting our findings on CAAS enrichments at interfaces. We posit that our results suggest 

direct modification of interaction dynamics, which could fall under three scenarios: (1) compensatory 

mutations in both members of a protein pair to preserve function, (2) modification to one member to 

strengthen or weaken the affinity of a known interaction, or (3) gain or loss of binding partners. We 

observed an enrichment of instances in which both proteins had CAAS in their respective interaction 

domains, suggesting the possibility of epistasis acting to preserve the interface (scenario 1 above), as 

has been suggested to occur for functionally-constrained complexes (Choi et al., 2009; Duarte et al., 

2012; Teppa et al., 2017). We also found an enriched occurrence of CAAS falling within one interaction 
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domain of a pair, which would be congruent with the latter two scenarios. There is evidence in favour of 

interface mutations changing specificity of binding partner interactions (Lite et al., 2020; Plach et al., 

2017; Sikosek and Chan, 2014), with simulations indicating that novel interaction interfaces may be 

achieved with small numbers of substitutions (Levy, 2010), so it is possible that the CAAS we observe at 

interfaces are mediating changes to complex formation.  

 

This could represent a means for natural selection favouring longevity to avoid the potential for high 

fitness costs of protein mutation, as described in the following example based on the CASP9-APAF1 

interface (Figure 4.3). If natural selection favoured changes to the regulation of caspase activation (e.g., 

to enhance cancer suppression(Lowe and Lin, 2000; Tower, 2015)), it could do so either by increasing 

the activity of CASP9 (e.g., by altering the active site), or by increasing the affinity of the CASP9-APAF1 

interaction. It might be that altering the activity of CASP9 could have deleterious pleiotropic 

consequences (e.g., impacting apoptosis during development), whereas tuning the interaction with the 

activator APAF1 might reduce the potential for deleterious effects. We suggest that modifying the post-

translational regulation of protein activity at the level of protein-protein interactions may represent an 

additional means of ‘fine-tuning’ biological processes that natural selection can use to modify phenotypes. 

This may potentially preclude the need for natural selection to modify protein functional domains (e.g., 

catalytic sites), for which the fitness costs would vastly limit the mutational landscape available for 

innovation. In support of this evolutionary concept, it has been found that catalytic residues exhibit far 

greater evolutionary constraints than protein-protein interaction residues across a large number of 

enzymes(Jack et al., 2016), results replicated in another study considering evolutionary rate as a function 

of distance from catalytic and protein-interaction sites(Sharir-Ivry and Xia, 2019). Interestingly, a study of 

the HoxA11-Foxo1a developmental complex found that changes outside the direct interaction interface 

can also mediate changes in protein-protein interactions, which the authors suggest may be a means to 

reduce the pleiotropic effects of protein evolution yet further(Brayer et al., 2011); this could serve as a 

further generalization of the model we propose. 
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I summarize the models developed throughout this dissertation in a graphic illustration (see Figure 5.2), 

using development/maintenance of the human knee and osteoarthritis risk as an exemplar that integrates 

the effects of both developmental and adult tissue processes. We highlight that these concepts are all 

complementary with one another; it is possible that each of these scenarios reflects some part of the 

broader evolutionary program shaping human longevity. 

 

Figure 5.2: Integrative model emergent from studies described in thesis. (Left): Regulatory sequences 

active in early development are subjected to strong directional, and subsequent purifying, selection in 

favour of a given trait (here, derived knee morphology). Violation of this constraint alters adult knee 

structures which increases risk for late-onset disease but has moderate effects on early-life fitness. 

(Middle) Regulatory sequences active in young adulthood are subjected to a mixture of moderate 

directional selection (e.g., for some facet of adult knee biology), antagonistic pleiotropy favouring 

developmental traits, and moderate genetic drift. The effects of variants present in developmental 

enhancers on adult tissue processes is limited due to diminished epigenetic activity. Variants active in 

young adulthood stand to integrate their effects over time, cumulatively contributing to increased risk for 

late-onset disease (OA). (Right) Regulatory sequences active in old adulthood are under the weakest 

directional/purifying selection, and thus largely impacted by antagonistic pleiotropy favouring other traits 
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and the permitted accumulation of deleterious variants. However, these regions have moderate 

associations with disease incidence, possibly given that their epigenetic activity coincides with the timing 

of disease onset. Protein sequences of late-expressing genes (e.g., immune proteins) are subjected to 

evolutionary pressures favouring longevity. Selection acting at the level of complex formation is favoured 

given the decreased potential for pleiotropic consequences. 

 

5.2: Study Caveats: 

We acknowledge several limitations in the studies comprising this thesis.  

 

5.2.1: Chapter 2: 

Firstly, it is known that gains-of-enhancers in great apes (relative to primates)(Tejada-Martinez et al., 

2022; Trizzino et al., 2017), as well as more generally gains/losses of enhancer activity between humans 

and chimpanzees(Long et al., 2016; McLean et al., 2011; Prabhakar et al., 2008) are associated with both 

developmental and aging-related gene loci and pathways. Given our use of mouse and human fetal 

tissues, and our inability for ethical and practical reasons to assess regulation on non-human primate 

tissues, we are unable to comment on the gain/loss of enhancers either within primates or between 

humans and chimpanzees. It may be that some of these evolved cis-regulatory sequences also contribute 

to knee development and are subject to unique evolutionary pressures – however, given the consistent 

patterns we observed when using either mouse-orthologous regions or human chromatin data 

independently, we maintain that our model is generally applicable. While we suggest that the early-life 

fitness effects of mutations that ‘violate constraint’ are moderate, and that late-life negative selection on 

these mutations is weak, we lack data on the reproductive consequences of such mutations that would 

allow the sort of inferences between osteoarthritis risk loci and reproductive success that have been 

made for other late-onset diseases such as coronary heart disease(Byars et al., 2017). Finally, 

osteoarthritis is a complex disease whose aetiology includes surrounding joint tissue (e.g., the synovium) 

as well as systemic factors (e.g. obesity, chronic inflammation)(Lee et al., 2013); we do not discount the 

effects of homeostatic processes active in adult knee tissues in contributing to osteoarthritis risk, but 

rather suggest it is the additive effects of deleterious alterations to developmental regulation, as well as 
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adult tissue homeostasis, that drive disease risk, with important implications to the rate of disease 

progression.  

 

5.2.2 Chapter 3: 

We considered DNase-I accessibility as a proxy for chromatin activity in our cross-tissue, cross-timepoint 

analyses. While it has been suggested that chromatin accessibility reflects the regulatory potential of a 

locus, integrating several different epigenetic phenomena(Klemm et al., 2019), it is possible that we lose 

finer-grained regulatory information through this use of a broad epigenetic read-out. We did seek to utilize 

more specific histone modification (ChIP-seq) information (see Appendix C) to compare fetal and adult 

tissue samples, finding concordance between the epigenetic annotation enrichments observed using our 

chromatin accessibility analysis and changes in chromatin state between fetal/adult tissues. However, we 

lacked sufficient resolution of our chromatin mark datasets to perform a similar young/old-adult 

comparison. As these datasets continue to be developed, these analyses may be done to confirm 

concordance with our accessibility results. 

 

While we sought to identify broad trends in epigenetic state between fetal/young, and young/old-adult, 

and did so by explicitly requiring shared behaviour across our tissue sets, there are important differences 

in epigenetic state across diverse tissue types(Roadmap Epigenomics Consortium et al., 2015), 

epigenetic reprogramming in the transition between fetal and adult tissues has a tissue-specific 

component(Yuen et al., 2011), and certain facets of aging, e.g., ‘epigenetic drift’ also exhibit tissue-

specific effects(Teschendorff et al., 2013; Zampieri et al., 2015). As the availability of larger per-tissue 

sample sizes increases with time, and further single-cell epigenetic datasets (e.g., scATAC-seq) become 

available, questions as to tissue-specific epigenetic changes that occur over the course of development 

and aging may be addressed in more detail.  

 

5.2.3 Chapter 4: 

Our initial definition of CAAS was based on the comparison of aligned proteins across four long-lived and 

four short-lived mammals. While additional computational analyses were performed to validate these 
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residue changes using additional independent sets of mammals (for details see Farre et al 2021), it may 

still be the case that the set of CAAS we used to perform our analyses may be biased by our species 

choice. Performing our analyses using alternate sets of CAAS based on additional species would allow us 

to confirm the robusticity of our results. We found enrichments of CAAS within protein-protein interaction 

domains, and further refined this by considering residues at the interaction interface. However, we note 

that we used a simple definition of interaction residues (using a molecular distance cutoff), and thus it 

may be that CAAS we considered to be interacting residues are not biochemically relevant for binding, 

and similarly we may be missing residues not directly adjacent to the partner protein that play an 

important role in mediating binding. More refined predictions of interaction residues using in-silico 

methods, such as BPred(Mukherjee and Zhang, 2011) or JET(Ripoche et al., 2017) may help to refine 

our interface analysis further. Additionally, while we highlighted two examples of CAAS occurring between 

interacting proteins, describing the potential effects of these residue changes on binding affinity via both 

computational predictions and experimental data, a comprehensive picture of the effects of CAAS 

mutations on protein interactions was not explored. While it is likely the case that the direction and 

magnitude of predicted effects are specific to the protein pairs and biological processes involved, any 

global trends may suggest general principles behind the evolutionary forces responsible for establishing 

these CAAS.  

 

5.3 Future Directions: 

In Chapter 2 we focused on the role of derived changes to developmental processes in contributing to 

osteoarthritis risk; as discussed, it may be the case that the uniqueness of the human knee as a derived 

feature renders it particularly sensitive to the effects of development. Nevertheless, our findings from 

Chapter 3, along with knowledge of the complex aetiology of osteoarthritis(Lee et al., 2013), suggest that 

a focus on the contributions of homeostatic processes in the adult knee tissue to osteoarthritis risk is also 

warranted. Epigenetic and transcriptomic datasets derived from adult knee samples have started to 

become available(Liu et al., 2018), although these are opportunistically sourced and thus skewed towards 

much older individuals. Using these datasets, as well as new datasets in the future from younger-adult 
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samples, would allow a comprehensive analysis comparing fetal- and adult-tissue associations with 

osteoarthritis, incorporating the methodology and concepts developed over the course of this dissertation. 

 

As mentioned briefly above, expanding the cross-tissue, cross-time analyses performed in Chapter 3 to 

focus on tissue-specific epigenetic processes is an additional avenue of future research. With the 

increased availability of tissue-specific datasets from the ENCODE project(Abascal et al., 2020), as well 

as the potential for increased resolution at the level of single-cell epigenomic datasets across tissues 

(similar to that which has already been generated at the transcriptomic level(Jones et al., 2022)), future 

studies could elucidate development- and ageing-associated epigenetic changes – particularly in 

exploring whether the evolutionary model we developed in Chapter 3 holds when considering shifts in 

epigenetic context specific to individual tissues, as well as the potential interaction between tissue-

specificity and diseases with obvious tissue biases (e.g., neurological disorders, diabetes, etc.). We would 

also note the potential in this model for the role of antagonistic pleitropy acting across adulthood – that is, 

variants that confer some benefit to tissue function in early adulthood could have deleterious 

consequences in late-life, either directly (e.g., altering regulatory networks in old-adult tissues) or 

indirectly (e.g., mediating tissue changes that impact late-life function). An increased resolution in the 

number and tissue representation of young/old-adult samples will help to elucidate the possible effects of 

adult-tissue antagonistic pleiotropy. 

 

Our results presented in Chapter 4, which lead us to suggest a possible mode of natural selection action 

which favours fine-tuning of protein-protein interactions rather than protein functional domains, present a 

future direction of research focused on the role of antagonistic pleiotropy in shifting the preferred 

evolutionary landscape for modifications. It may be that preserving the functional domains of a certain 

protein (e.g., CASP9) is more important for developmental processes (e.g., developmental apoptosis), 

whereas modifying the interaction domain of that protein for a given partner is more beneficial for aging-

related processes (e.g., cancer suppression). Given the biophysical constraints of protein structure and 

function, this could establish instances where protein changes favoring development come at the 

expense of aging processes, and vice-versa. Exploring the distribution of such evolutionary trade-off 
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scenarios across a broad set of proteins could lead us to a broader understanding of the role of 

antagonistic pleiotropy in shaping protein evolution in long-lived species. 

 

5.4 Conclusion: 

This dissertation sought to explore the evolutionary basis for the emergence of extended lifespan in 

humans, and through our analyses developed three main models for how natural selection favouring 

longevity can shape (1) regulatory sequences active during development, (2) regulatory sequences 

whose activity changes as a function of developmental/aging processes, and (3) the sequences of the 

aging-related proteins themselves (Figure 5.2). This work improves our conceptual understanding for the 

means by which natural selection may operate, and points towards biological processes and their 

associated loci which may be prime follow-up candidates for further elucidation – particularly with regards 

to functional validation. As we progress to a more complete understanding of the evolutionary pathways 

taken to achieve longevity, the integration of additional experimental data to bridge the divide between 

models, predictions and biological phenomenon will be a key progression in the field. 

 

 

 

  



 123 

 

 

Appendix A: Supplemental Figures 

 

 

 

Supplemental Figure 2.1: Related to Figure 2.1 

 

(A-C): phyloP scores (phyloP20ways) were averaged per-bp across all specific-knee ATAC-seq regions in 

a peak set and plotted in respective colors as a function of distance along a 1kb window centered on the 

peak middle; a random background distribution of conservation scores is indicated in gray (see Methods). 

(A) Specific Distal Femur (B) Specific Proximal Tibia (C) Specific Knee-common. (D-E): HAR enrichment 

gene loci screenshots. (D) A general distal-femur element overlaps a human-accelerated region (HAR) 

(Prabhakar et al., 2006) upstream of BMP2, a TGF-β family member with a well-established role in 

chondrogenic differentiation, that is expressed in the knee (Rosen, 2009) and which been linked to 
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osteoarthritis (Gamer et al., 2018, Valdes et al., 2006). ATAC-seq regions (“General DF”), ENCODE 

DNase hypersensitivity sites and phyloP100ways conservation tracks are shown on bottom. (E) A 

proximal-tibia-specific element overlaps an accelerated region (Bird et al., 2007) intronic to IQGAP1, a 

protein complex scaffold (Hedman et al., 2015) expressed in embryonic mouse cartilage (Cupit et al., 

2004) which impacts skeletal development, particularly in the tibia (Dickinson et al., 2016). Format as in 

(D), with ATAC-seq track “PT” shown. 
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Supplemental Figure S2.2: Related to Figure 3. 
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Intra-species sequence diversity in humans and apes. The number of intra-species variants intersecting a 

given ATAC-seq peak were counted for all variable sequences in a set within a given species and 

expressed as ‘SNPs per sequence’. Mean and median values of distributions are indicated in dashed and 

bold lines, respectively. Supplemental Table S2.5 lists numerical values for each comparison. (A) General 

Knee Distal Femur, (B) General Knee Proximal Tibia, (C) General Knee Common, (D) General Elbow 

Distal Humerus, (E) General Elbow Proximal Radius, (F) General Elbow Common, (G) Elbow Distal 

Humerus-Specific, (H) Elbow Proximal Radius-Specific, (I) Elbow-Common-Specific. (J) Knee Distal 

Femur-Specific, overlapping human E59 Distal Femur data. (K) Knee Proximal Tibia-Specific, overlapping 

human E59 Proximal Tibia data. (L) Knee-Common-Specific, overlapping pooled human E59 Distal 

Femur and Proximal Tibia data. (M) Elbow Distal Humerus-Specific, overlapping human E59 Distal 

Humerus data. (N) Elbow Proximal Radius-Specific, overlapping human E59 Proximal Radius data. (O) 

Elbow-Common-Specific, overlapping pooled human E59 Distal Humerus and Proximal Radius data. (P) 

Counts of common chimpanzee variants (via the GADP dataset) per bp of sequence for element sets 

were compared to random region sets along with other genomic features for enrichment/depletion 

analysis; labels correspond to results in Supplemental Table S2.5. Significance codes: not significant 

(ns), < 0.05 (∗), < 0.01 (∗∗), < 1e-5 (∗∗∗). 
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Supplemental Figure 2.3: Related to Figure 2.4 
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Examining modern human sequence variation in knee sets. (A-B): Motif alteration in putative regulatory 

elements near osteoarthritis-related genes. Red shading indicates altered base relative to motif logo, blue 

shading below indicates genomic position of sequence. ATAC-seq regions and phyloP100ways 

conservation tracks are shown on bottom. (A) Common human variant (rs265053: C/T) within an intron of 

UNC5C, improves a predicted CEBPB sequence motif downstream of BMPR1B (Baugé et al., 2013, Zhai 

et al., 2015). (B) Common human variant (rs2280153: G/A) improves a predicted SOX9 sequence motif 

within the WISP3 promoter (Kannu et al., 2009, Sen et al., 2004). (C) Common human variants within the 

indicated peak sets distributed across the first two PCs of an Fst-based PCA analysis. Two sub-groups 

based on k-means clustering are indicated in red (Cluster 1) and blue (Cluster 2). Variance explained by 

each PC is indicated on axes. (D) Representative correlation heatmap between PCs and population 

comparisons across all variants in the knee-specific pooled set. Pearson’s correlation between PCs and 

population pairs are clustered, with populations colored by continent: red - Asia, green - Europe, blue - 

Africa. (E, F) Calculated Fst for common variants across populations. Fst values for a single variant 

across multiple pairwise population comparisons are shown, with each row representing a single variant; 

the particular pairwise comparison is indicated below, color scheme as for (D). Red/blue scale for Fst 

values is indicated on far right. Both variants and pairwise comparisons are grouped by hierarchical 

clustering. (E) Cluster 1 variants within the knee-specific pooled set. (F) Cluster 2 variants within the 

knee-specific pooled set. (G-J) Visual genotype plots for selected populations in a given locus. SNP 

sequences for all individuals are arranged according to a maximum-likelihood tree. Red/Blue indicates 

ancestral-derived assignments, respectively. Solid orange lines indicate SNPs which are gapped in 

chimpanzee, solid green lines indicates individuals carrying alleles besides the ancestral/derived 

annotations. Vertical yellow dashed lines indicate proxy variants, vertical green dashed lines indicate lead 

variants, when present in indicated region. For plots with a distinguishable haplotype (G, H) the alternate 

haplotype is indicated with a thick green line. (G) Visual genotypes for selected population (Volga-Ural 

region of Russia) (Capellini et al., 2017) within a ∼150kb haploblock in the GDF5-UQCC1 locus. 

Distribution of genotypes indicates the presence of a high-frequency haploblock carrying the lead GWAS 

variant “A” at rs143383 (Miyamoto et al., 2007, Valdes et al., 2011) and linked variants (rs4911178, 

rs6060369). (H) Visual genotypes for selected population (South-East Asia) within a ∼64kb haploblock in 
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the UNC5C-BMPR1B locus; variant rs2626053 (arcOGEN Consortium et al., 2012) appears on a low-

frequency haploblock. (I) Visual genotypes for selected population (South-Western Europe) in the 

ENPP1/3 locus; given the lack of clearly-defined haploblock structure in the locus, a 200kb region 

centered on rs3850251 (arcOGEN Consortium et al., 2012, Klein et al., 2019) was used to generate this 

plot, with linked rs7744039, rs7773292, rs9493095 indicated. (J) Visual genotypes for selected population 

(Central Siberia) in the LSM5 locus; given the lack of clearly-defined haploblock structure in the locus, a 

200kb region centered on rs4141788, linked to rs7785659 (arcOGEN Consortium et al., 2012), was used 

to generate this plot. 
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Supplemental Figure S2.4: Related to Figures 2.5 and 2.7. 
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Additional morphometric analyses on R4 enhancer null mice. (A) Quantified anatomical indices of the 

femur and tibia used in this study. Femoral length (FL), bicondylar width of the femur (BCW), trochlear 

groove depth (TD), width of the lateral femoral condyle (LCW), width of the medial femoral condyle 

(MCW), intercondylar notch width (NW), trochlear groove sulcus angle (SA), width of the tibial plateau 

(TPW), height of the medial tibial spine (MTSH), height of the lateral tibial spine (LTSH), posterior slope of 

the tibial plateau (PSTP), and tibial length (TL). Curvature radius of the femoral condyle and the posterior 

slope of the tibial plateau were measured across both medial and lateral compartments. (B,C) 

Morphological defects in 1 year old R4 enhancer null mice (HOM), compared to heterozygous mice (HET) 

and wild-type mice (WT). A number of measurements were carried out at 1 year of age (see (A)). This 

figure displays only those which revealed significant differences between control and R4 enhancer null 

mice in distal femur (B) and proximal tibia (C) structures. See Supplemental Table S2.9 for complete 

results of statistical comparisons for all measurements as well as significance values for each 

comparison. (D) Correlation between OARSI scores and morphometric measures of the distal femur and 

proximal tibia on R4 enhancer mice. Correlation (R2) and p value results for Pearson’s correlation tests 

are indicated on each graph. 
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Supplemental Figure S2.5: Related to Figure 5. 
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Additional histological sections on R4 enhancer null mice at P30 and 1 year. (Left) Comparison of WT 

and HOM knee joints at P30, showing microCT renditions (top row), high-magnification images of 

sections of the unaffected knee joint in both genotypes as reported in Figure 5 (second row), and low-

magnification images of the of same medial sections but at different planes (third and fourth rows). (Right) 

Comparison of WT and two HOM knee joints of differing phenotypic severity (HOM-1 mild osteoarthritis 

(green); HOM-2 severe osteoarthritis (red)) at 1 year, showing microCT renditions (top row), including an 

X-ray image of HOM-2 specimen with heterotopic ossification (top row, far right), high-magnification 

images showing effected medial and lateral sections (when effected) as reported in Figure 2.5 (second 

row), low-magnification images of the same medial and lateral sections of the joint but in two different 

planes (third and fourth rows), and total joint images for all three specimens (fifth row). Note, the loss of 

articular cartilage matrix in the lateral compartment and clustering and loss of cells in the cartilage of the 

medial compartment in HOM knees. Scale bars, 50 μm (second row); 500 μm (third/fourth rows); 250 μm 

(fifth row). 
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Supplemental Figure 3.1: Per-tissue heatmaps for brain and heart tissue. (A) Z-score accessibility values 

for regions defined as differentially-accessible comparing fetal and adult brain tissue samples. (B) Z-score 

accessibility values for regions defined as differentially-accessible comparing fetal and adult heart tissue 

samples. Red-blue colour scale indicates increased/decreased accessibility, z-score normalized per-

column. 
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Supplemental Figure 3.2: Autosome distribution of accessibility-altered regions. Genomic distribution of 

regions changing accessibility in fetal/adult comparison. Red/blue: density of defined differentially-
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accessible regions. Line: relative proportion of regions more accessible in adult (top) or fetal (bottom) 

tissues. 
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Supplemental Figure 3.3: Changes in regional accessibility across young-age and old-age adult tissue 

samples. Equivalent to Figure 3.1A. Red-blue colour scale indicates increased/decreased accessibility, z-

score normalized per-column. 
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Supplemental Figure 3.4: Enrichment for epigenetic states. Bar plots indicate log10 logFC 

enrichment/depletion values for different region sets (e.g., young-biased regions) falling within different 

Roadmap HMM-annotated epigenetic states. Asterik (*) indicates significant hypergeometric test for 

enrichment/depletion of an indicated region set for indicated epigenetic state (p < 0.05). Intersection sets 

(e.g., young-biased, fetal-biased intersected regions) are indicated with “—".  
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Supplemental Figure 3.5: LOLA enrichment plots. Enrichment q-values for top terms in the LOLA 
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regional-enrichment analyses. (A) Fetal-biased Regions (B) Adult-biased Regions (C) Young-biased 

Regions (D) Old-biased Regions (E) Young-biased – Fetal-biased Regions (F) Young-biased– Adult-

biased Regions (G) Old-biased – Fetal-biased Regions (H) Old-biased – Adult-biased Regions. All listed 

terms are significant, q-value < 0.05. See also Supplementary Table 3.2. 
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Supplemental Figure 3.6: Promoter accessibility heatmaps. Red-blue colour scale indicates 

increased/decreased accessibility, z-score normalized per-column. (A) Promoter accessibility differences 

between fetal and adult tissue samples, for significantly-altered promoters (adj. p-val < 0.05). (B) 

Promoter accessibility differences between young-age and old-age adult tissue samples, for significantly-

altered promoters (adj. p-val < 0.05). 
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Supplemental Figure 3.7: UCSC genome screenshots for two representative human divergent-sequence 

loci. Additional tracks (top to bottom): Layered H3K27ac signal from ENCODE datasets, layered DNase-I 
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hypersensitivity sites from ENCODE datasets, aggregated ENCODE transcription-factor ChIP-seq data, 

phyloP100ways conservation track (per-bp), multiple-sequence alignment to human reference sequence. 

(A) A human-accelerated region (top track – highlighted in light blue) intersects a region losing 

accessibility in adult tissue (bottom track) intronic to the FGF1 gene (and which also has promoter-

capture data to suggest promoter contact). Also intersects a possible CEBPB binding site (ENCODE TF-

ChIP-seq track). (B) A human-accelerated region (top track - highlighted in light blue) intersects a region 

losing accessibility in old-age adult tissue (bottom track) intronic to the PKNOX2 gene (and which also 

has promoter-capture data to suggest promoter contact). Upstream of this region lies the variant 

rs590211(highlighted in red), which has been associated with human-longevity via GWAS studies. 

 

 

Supplemental Figure S3.8: Chimpanzee genomic distribution plot. Counts of chimpanzee common 

variants per bp of sequence for region sets were compared to random region sets along with other 

genomic features; labels correspond to results in Supplementary Table S3.3. 
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Figure S4.1: Graphical overview of main findings. (Top) CAAS gene hits are not enriched in assembled 

epigenetic GO terms (left) – however, when considering protein-protein interactions, CAAS hits interact 

with other CAAS hits within a GO term more than CAAS within randomized gene sets (middle). This 

pattern was not unique to epigenetic GO terms, but instead true across many GO terms (right). This lead 
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us to consider whether CAAS-hit genes were over-represented in certain protein activities (1), occurred in 

certain spatial patterns within proteins (2), or were themselves over-represented at protein-protein 

interfaces (3). 

 

Figure S4.2: Gene-disease associations of clustered residue mutations. (A) Disgenet(Piñero et al., 2020) 

gene-disease association network for the enriched diseases highlighted in Figure 2C. Example of VEGFA 

highlighted in green. 
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Figure S4.3: IL17 in complex with IL17RA. Cyan: IL17RA chains. Orange: IL17 ligand chains. Red: 

Putative defined interface residues (see Methods). Green: CAAS occurring within either protein 

sequence. Purple (labelled): One CAAS, at K114 of the IL17 ligand, was also considered a potential 

interface residue. PDBID: 4hsa. 
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Figure S4.4: CAAS characterized in additional mutational scan studies. 

(A) Effects of substitutions engineered in HMGCR, as measured by a functional complementation assay 

for the ability of mutant human HMGCR to recue growth of an hmg1 hmg2 double deletion yeast strain in 

rosuvastatin-supplemented media (MAVEDB accession: urn:mavedb:00000035-a-1). Red/white/blue 

color scale refers to effects of termination codon (blue), synonymous mutations (white) and hyper-active 

mutations (red). The CAAS phenotyped in this assay is indicated in green box. Black boxes refer to the 

reference residue at a given position. (B) Effects of substitutions engineered in LDLRAP1, as measured 

by a yeast two-hybrid assay to determine effects of mutations on LDLRAP1 binding affinity with partner 

proteins, wherein variant enrichment is assessed by ability for strains to grow via LDLRAP1-controlled 

expression of histidine production (MAVEDB accession: urn:mavedb:00000036-a-1). Red/white/blue color 

scale refers to effects of termination codon (blue), synonymous mutations (white) and hyper-active 

mutations (red). The CAAS phenotyped in this assay is indicated in green box. Black boxes refer to the 

reference residue at a given position. (C) Effects of substitutions engineered in MSH2, as measured by a 

functional complementation assay using the compound 6-TG, which is selectively toxic to MMR-deficient 

cells (MAVEDB accession: urn:mavedb:00000050-a-1). Positive scores in this assay correspond to loss 

of function (coloured red), while negative scores correspond to functionally-neutral variants (coloured 

white-blue). The CAAS phenotyped in this assay is indicated in green box. Black boxes refer to the 

reference residue at a given position. 
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Appendix B: Supplemental Table Legends 

 

 

Supplementary Table 2.1. ATAC-seq datasets from mouse and human long bone samples, with 

downstream analyses. Related to Figure 2.1. 

(Sheets 1-8, “IDR-Filt. Prox. Femur” – “IDR-Filt. Dist. Radius”): narrowPeak-formatted peak (mm10) 

information for called ATAC-seq peaks from indicated tissue following IDR replicate filtering. (Sheet 9, 

“IDR Filtering Results”): Summarized numbers of called peaks on individual biological replicates and 

final peak sets (mm10) following replicate consolidation. (Sheet 10, “IDR Consistency Check”): Results 

of analyses for within- and between-sample concordance. Columns A-C, E-G similar to those in Sheet 9. 

Self-consistency and rescue-ratios for the distal femur and proximal tibia replicate pairs used are 

indicated. (Sheet 11, “Human E59 ATAC-seq”): Summarized numbers of called peaks for ATAC-seq 

performed on human E59 embryonic tissue. (Sheets 12-25, “General Knee Dist. Femur (hg19)” – 

“Embryonic Brain (hg19)”): Lifted-over peak regions (hg19) in BED format from indicated tissue. 

“General” sets refer to original IDR-filtered, brain-filtered peak sets intersected as shown in Sheets 26-27, 

“Peak Set Intersections”. “Specific” sets refer to knee/elbow peak set intersections, filtered for opposing 

bone-ends (e.g. distal tibia, proximal femur). (Sheets 26-27, Peak Set Intersections): Intersections 

between peak sets in mm10/hg19 (indicated) in generating the indicated general/specific joint sets. 

(Sheet 28, “Fore-Hindlimb Intersections”): Intersections of homologous forelimb/hindlimb peak sets. 

(Sheet 29, “Human E59 – Mouse Intersections”): Human E59 peak sets intersecting equivalent lifted-

over mouse sets. Percent overlaps for mouse (‘A’) and human (‘B’) sets (respectively) are indicated. 

(Sheet 30, “Human-Mouse Orthology”): Mouse knee-specific sets were lifted-over to hg19, then lifted 

back to mm10 in order to confirm one-to-one orthology. The same analysis was performed for human E59 

region sets. (Sheet 31, “Genomic Annotations”): Elements in each lifted-over set assigned genomic 

annotations based on distance to nearest TSS. (Sheets 32 – 47, “Distal Femur Brain-filtered” – 

“Elbow-Common-Specific”): GREAT output using ATAC-seq region sets. GREAT analysis was 

performed on sets of called ATAC-seq peaks, lifted over to hg19. Sheet titles indicate the set used - 

‘brain-filtered’ sets are those in which ATAC-seq peaks were filtered for brain tissue, but not separated 
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from the opposing end of the long bone, nor separated at the knee/elbow. Table shows top hits per each 

category for which FDR (both binomial and hypergeometric tests) <= 0.05. See great.stanford.edu for 

details on column headings. Sheets reporting no GREAT data indicate that there were no significantly 

enriched terms using that dataset). (Sheets 48 – 50, “DF - E59 Overlap” – “KC - E59 Overlap”): 

GREAT results for lifted-over knee-specific sets intersecting human E59 data. (Sheets 51-52, 

“Mouse_ATAC” – “Human_E59_ATAC”): ATAC-seq quality/control data and primers. Column headings 

are self-explanatory. “Mouse_ATAC”: ATAC-seq performed on E15.5 mouse embryonic tissue. 

“Human_E59_ATAC”: ATAC-seq performed on E59 human embryonic tissue. 

 

 

Supplementary Table 2.2. ATAC-seq dataset overlaps with evolutionary and functional genomics 

datasets. Related to Figure 2.1. 

(Sheet 1, “Col2a-eCFP”): Intersections between gross-dissected proximal and distal femur ATAC-seq 

region sets and Col2a-eCFP-sorted equivalent region sets were performed using regioneR to test for 

significance of overlap compared to a randomized background. Columns: “Enrichment p-value”: p-value 

for overlap enrichment test compared to randomized background. "Observed Intersections”: Observed 

number of overlaps between indicated peak set and chromatin mark regions. “Enrichment Z-score”: Z-

score calculated as comparison of observed overlaps compared to randomized distribution. (Sheets 2-4, 

“Overlaps - E47 Limb Bud - H3K27” – “Overlaps - Human E59 - ATAC”): Intersections between 

ATAC-seq region sets and chromatin mark data were performed using regioneR to test for significance of 

overlap compared to a randomized background. Columns as above. Sheet “Overlaps - E47 Limb Bud - 

H3K27ac” provides overlap enrichment tests for specific and general knee sets, along with knee-specific 

sets separated by human sequence diversity, for H3K27ac ChIP-seq called regions obtained from human 

embryonic (E47) forelimb/hind limb bud. Sheet “Overlaps - BMDC - H3K27ac” provides overlap 

enrichment tests for specific and general knee sets, along with knee-specific sets separated by human 

sequence diversity, for H3K27ac ChIP-seq called regions obtained from bone marrow derived 

chondrocytes. Sheet “Overlaps - Human E59 – ATAC-seq” provides overlap enrichment tests for 

indicated knee-specific sets, for Human E59 ATAC-seq region sets from matched tissues (as indicated by 
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‘Mouse Set’ and ‘Human Match’ columns). (Sheets 5-7, “ChIP-seq Overlaps - Dist. Femur” – “ChIP-

seq Overlaps - KC”): Overlaps between transcription factor ChIP-seq and ATAC-seq peak sets with 

regioneR, columns as above with additional: “Factor”: TF assayed (mouse experiments indicated), 

“Source Reference”: ENCODE or GEO Datasets experiment accession code for a given ChIP-seq 

experiment. (Sheets 8, “Conservation - PhyloP20ways”): phyloP20ways per-bp values for ATAC-seq 

region sets were compared across sets either through averaging per-bp values across 500bp for all 

regions (“Per-BP”) or averaging values per-region (“Region-Averaged”). One-sided p-values for Wilcoxon 

rank-sum tests are shown, along with adjusted values. Yellow bars indicate region sets being compared. 

(Sheets 9-14, “Dist. Femur Bottom 25%” – “Knee-Common Top 25%”): Human-chimp sequence 

identity for ATAC-seq peaks was calculated for all sequences and used to generate top/bottom 25% 

slices. GREAT results for hg19 peaks in each of these slices are shown; tables show top hits per each 

category for which FDR (both binomial and hypergeometric tests) <= 0.05. See great.stanford.edu for 

details on column headings. Sheets reporting no GREAT data indicate that there were no significantly 

enriched terms using that dataset. (Sheets 15 – 20, “Dist. Femur Bottom 10%” - “Knee-Common Top 

10%”): Equivalent GREAT results to above for top/bottom 10% slices. (Sheets 21 – 23, “Dist. Femur - 

Peak Data” – “Knee-Common - Peak Data”): Region information for human-chimp phyloP20ways 

analysis, for indicated set. “chromosome”, “start” and “end” columns indicate the location of a given 

ATAC-seq peak in hg38 coordinates. “hg38.sequence” and “panTro4.sequence” columns contain the 

extracted sequences from multiz20ways MAF, with */- indicating gaps. “Raw.Match.Score”, “Total.length” 

and “Sequence.Identity” refer to the number of matched nucleotides, length of sequence (ignoring shared 

gaps) and calculated sequence identity, respectively. “phyloP20ways.score” refers to phyloP20ways 

score averaged over the length of the indicated region. “random.region.phyloP20ways.score” refers to the 

averaged phyloP20ways score for a randomly-generated, size-matched region, and is used to generate 

the random distribution as seen in Fig.1D. 

 

Supplementary Table 2.3. Transcription factor binding analyses using ATAC-seq sets. Related to Figure 

2.2. 
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(Sheets 1-6, “Distal Femur (mm10)” – “Knee Common (hg19)”): HOMER de-novo motif analysis 

results for the indicated peak set, using original mm10 and lifted-over hg19 sequence sets. Columns: 

“Motif Logo”: Logo of generated de novo motif. “Rank”: Motifs ranked by calculated p-value. “P-value” and 

“log p-value”: p-values for motif enrichment calculated by HOMER. “% of Targets/Background”: Percent of 

target and background sequences predicted to contain a given motif. “STD(Bg STD)”: Standard deviation 

of motif occurrence (bp) away from the center of the 500 bp sequence for target and background sets, 

respectively. “Similar Motif”: Similar motif as identified through search of HOMER vertebrate motif library; 

similarity score shown in parentheses. (Sheets 7 – 9, “Motif Alteration - Distal Femur” – “Motif 

Alteration – Knee-Common”): Lifted-over knee region sets were tested for enrichment/depletion of 

human-chimp divergences predicted to alter potential binding motifs for a set of relevant transcription 

factors. Columns: "Transcription Factor Motif”: transcription factor PWM for which predicted binding sites 

are being tested. “Distribution p-value”: p-value for enrichment/depletion test against randomized 

background. “Adjusted p-value”: p-value corrected for multiple tests of different TFs. “Direction of Bias”: 

Whether a given region set had more (enrichment) or less (depletion) divergences predicted to alter a 

given TF motif than expected for randomized region sets. ChIP-seq signal enrichments for available TFs 

are shown in Supplementary Table 2, Sheets 5-7. (Sheets 10-17, “Knee-Specific Pooled Cluster 1” – 

“SK-Common Cluster 2”): Clusters of common human variants were tested for biases to modify 

potential binding motifs for a set of relevant transcription factors. Columns as above. “SK” sheets refer to 

specific-knee sets. (Sheets 18-20, “Distal Femur Intra-species” – “Knee-Common Intra-species”): 

Common human variants falling within ATAC-seq regions (of a fixed 500bp size) from the three knee-

specific sets (unclustered) were tested for biases to modify potential binding motifs. Columns as above. 

 

Supplementary Table 2.4. Putative knee regulatory regions and acceleration signals. Related to Figure 

2.1. 

(Sheet 1, “HAR Region Set”): Genomic coordinates (hg19) of regions showing evidence of acceleration 

in humans aggregated from multiple studies; citations for particular regions are indicated in the “source” 

column. (Sheets 2-10, “Embryonic Brain” – “Knee-Common-Specific”): Intersections between regions 

detailed in Sheet 1 and the indicated ATAC-seq region set. Columns: “chr”, “start”, “end”: hg19 
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coordinates for a given ATAC-seq region intersecting a region of acceleration. “HAR.chr”, “HAR.start”, 

“HAR.end”: hg19 coordinates for region of acceleration intersected. “Nearest.Refseq.Gene”,"Entrez.ID”, 

"Gene.Symbol”, : Nearest annotated TSS to the indicated ATAC-seq region, as RefSeq accession, Entrez 

ID or human gene symbol, respectively. “Nearest.TSS”: Distance (bp) from intersected region to nearest 

TSS, negative values denoting elements upstream. “Gene.Description”, “Gene.Type”: Short description 

and type of nearest annotated gene. (Sheets 11-13, “Dist. Femur - E59 Overlap” – “Knee Common - 

E59 Overlap”): Intersections between mouse embryonic ATAC-seq regions with equivalent human E59 

embryonic data, overlapping acceleration signals. Columns as in sheets 2-10. (Sheet 14, "Intersection 

Enrichment Testing”): Accelerated region intersections for each set were compared to a 10K random 

background to test for enrichment of overlap. “Set”: ATAC-seq region set tested. “Set size (bp)”: size of 

indicated region set in base-pairs. “Number of Accelerated Region Intersections”: Number of accelerated 

region intersections in this set. “Number of Intersections per bp”: Accelerated region intersections 

expressed as a percentage of total set size. “Beta Distribution P-value”: Significance value for enrichment 

test against background using a fitted beta distribution. “Adjusted p-value”: Correction for multiple 

hypothesis testing using BH correction. (Sheet 15, “Great Annotations”): GREAT output using an 

aggregate of all lifted-over mouse hindlimb ATAC-seq regions intersecting regions of acceleration. Table 

shows top 50 hits per each category for which FDR (both binomial and hypergeometric tests) <= 0.05. 

See great.stanford.edu for details on column headings. Sheets reporting no GREAT data indicate that 

there were no significantly enriched terms using that dataset. 

 

Supplementary Table 2.5. Analyses of inter- and intra-species diversity in ATAC-seq sets. Related to 

Figure 2.3. 

(Sheets 1 – 24, “Inter-species - DF General” – “Intra-Spec. (Gor) Elbow-Spec.”): Intra-species 

diversity across and within taxa. Columns: “Model”: Statistical method for which results are indicated. 

“Comparison”: Species/Sets being compared. “p-value”: Result of Tukey post-hoc testing for the indicated 

pair. “Direction (wrt first in pair)”: direction of variance between the pair, with respect to the first in the 

‘Comparison’ pair. “t.ratio”: Test statistic for Tukey post-hoc test. Note for certain sheets resampling tests 

are indicated by “BOTTOM 25%” and “TOP 25%” headings, which refer to statistical results based on 
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taking the 25th and 75th percentile (respectively), rather than the mean, for human subsampling.  The “N 

= 100 subsampling” heading refers to statistical results based on increasing the human sub-sample size 

for testing. Sheets 1-3, 7-9, 13-15, 19-21: Comparisons of intra-species diversity in humans, 

chimpanzees and gorillas for sequences in the indicated joint region sets, either “general” or “specific”. 

Sheets 4-6, 10-12, 16-18, 22-24:  Comparisons of intra-species diversity in sequences between 

forelimb/hindlimb joint region sets, either “general” or “specific”, for human, chimpanzee and gorilla. 

(Sheet 25, “Inter-Spec. E59 Knee Overlap”): Comparisons of intra-species diversity in humans, 

chimpanzees and gorillas for knee-specific and elbow-specific region sets overlapping with matched 

human embryonic tissue (E59). (Sheet 26, “Intra-Spec. E59 Knee Overlap”): Comparisons of intra-

species diversity in humans, chimpanzees and gorillas (comparing sets within species) for knee-specific 

and elbow-specific region sets overlapping with matched human embryonic tissue (E59). (Sheet 27, 

“Human Seq. Constraint”): Elements/regions in each set were intersected with common human 

variants, with intersections compared to a set of 1000 randomized region sets to test for 

depletion/enrichment. Columns: “Set”: Genomic feature set tested. Order is equivalent to left-right in Fig. 

3A. “Set size (bp)”: Size of indicated region set in base-pairs. “Number of Common Variants Intersected”: 

Number of common human variants intersecting this set. “Number of Intersections per bp”: Common 

variant intersections expressed as a percentage of total set size. “Background Average”: Average SNP/bp 

value from background region sets. “CDF P-value”: Significance value for testing significant deviation 

from background using normal CDF. “Corrected CDF p-value”: Correction for multiple hypothesis testing 

using BH correction. “Direction”: Whether set value falls to the left/right of background distribution. (Sheet 

28, “Chimpanzee Seq. Constraint”): Elements/regions in each set were intersected with common 

chimpanzee variants, with intersections compared to a set of 1000 randomized region sets to test for 

depletion/enrichment. Columns as indicated in Sheet 27, with the addition of ‘Gamma P-value’ and 

‘Corrected Gamma P-value’, which refer to distribution p-values obtained when using a fitted gamma 

distribution in addition to those obtained using a normal CDF (Methods). (Sheet 29, “Morphological 

Constraint”): MRI measurement data for femur and tibia from the OAI dataset were tested for significant 

differences in variation across individuals; average and standard deviations of measurements for 

tibia/femur are indicated in columns B-E, with test statistics and resulting p-values for performed Fligner-
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Killeen and Levene’s tests shown. (Sheet 30, “OAI Diversity”): Genotype information from the OAI 

dataset was intersected with knee-specific elements to compare sequence diversity across sets. Column 

titles as for Sheets 1-24. “BOTTOM 25%” and “TOP 25%” headings refer to statistical results based on 

taking the 25th and 75th percentile (respectively), rather than the mean, for cohort subsampling. (Sheets 

31 – 42, “Dist. Femur Most Cons 25%” – “Elbow-Common Least Cons 25%”): GREAT output using 

lifted-over ATAC-seq peaks from specific joint region sets, further separated based on the intersection of 

common human variants (averaged over sub-samples) using most/least constrained (i.e. least/most 

variable) 25% slices. (Sheets 43-54, “Chimp Dist. Femur Most Cons 25%” – “Chimp Elbow-Comm. 

Least Cons 25”): Equivalent GREAT output for lifted-over ATAC-seq peak sets separated on basis of 

chimpanzee variant intersections. Sheets reporting no GREAT data indicate that there were no 

significantly enriched terms using that dataset). 

 

Supplementary Table 2.6. Analyses of intra-species diversity in ATAC-seq sets. Related to Figure 2.3. 

(Sheets 1 – 36, “Human General Knee Distal Femur” – “Gorilla Elbow-Common-Specific”): Genetic 

variants from human, chimpanzee and gorilla intersecting each element set.  Columns: “chr”, “start”, 

“end”: ATAC-seq region coordinates (padded to fixed length of 500 bp), sorted by sequence diversity. 

“Mean Values”: Mean number of common variants intersecting the indicated region across sub-samples. 

“Standard Deviation”: Standard deviation of common variant intersections across sub-samples. “25th 

Percentile”: First quartile value for subsampled common variant intersections. “75th Percentile”: Third 

quartile value for subsampled common variants intersections. “Subsample X”: Number of common 

variants intersecting the indicated region within a particular subsample (X being a particular subsample 

number). Note that human subsamples refer to 200 subsamples of n = 25 from 1KG3 individuals. Gorilla 

subsamples consist of 5 subsamples of n=25 for 31 individuals. For chimpanzee diversity the entire set 

was used as a single sample for 25 individuals. Chimpanzee/Gorilla region coordinates are in hg18, 

human sheets are in hg19. 

 

Supplementary Table 2.7. Heritable osteoarthritis risk in ATAC-seq peaks. Related to Figure 2.4. 
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(Sheet 1, “OA Lead Set”): Information on the lead OA risk-variants aggregated for analysis. Columns: 

“rsid”: DBSNP160 accession. “chromosome”, “Chromosome Start (hg38)”, “Chromosome End (hg38)”: 

Coordinates for the indicated SNP in hg38. (Sheet 2, “OA Lead-Proxy Intersections”): Intersections of 

independent OA risk loci and ATAC-seq region sets. Columns: “lead_RSID”: lead variant identified in 

GWAS studies. “chrom”, “bp”, “proxy_chr”, “proxy_bp”: position (hg19) of lead variant and its proxies, 

respectively. “proxy_rsid”: DBSNP accession for proxy variant. Columns G-P: Intersection between 

indicated ATAC-seq region set (e.g. “Distal Femur-Specific”) and a given proxy variant, ‘1’ indicating 

overlap. (Sheet 3, “OA - Intersections – Selection”): Those proxy variants intersecting ATAC-seq 

regions, subsequently intersected with EGDP selection windows. Columns: “Chr”, “Start”, “End”: 

coordinates for a given selection window (hg19). “pclr”: Results of test for ancient selection via 3P-CLR. 

Columns E-P: Results of test for recent selection in each of the indicated populations. ’1’ indicates a 

significant test result. “Genes”: Genes within the indicated selection window. Columns R-AB are 

equivalent to those described for Sheet 2. (Sheet 4, “rs143383 Pop. Allele Freq.”): Frequency of the OA 

risk-variant rs143383 in EGDP populations. Columns: “ref”, “alt”: allele frequency of reference and 

alternate allele, respectively. “reference, alternate”: Reference and alternate allele, respectively. “# of 

individuals”: Number of individuals in a given EGDP population. “Final_Group”: EGDP population for 

which allele frequencies are reported. “RSID”: accession of given variant in chr:pos format. Columns H-J: 

Results (p-values) of recent selection tests for the indicated population within the selection window 

overlapping the given OA risk locus. “proxy”: Proxy variant intersected by ATAC-seq data. “lead”: Lead 

OA-risk variant in LD with proxy. “selected”: Whether or not the current selection window gives a 

significant (p < 0.05) selection test for an EGDP population, as demarcated by “*”. (Sheets 5-7, 

“rs2626053 Pop. Allele Freq.” – “rs7785659 Pop. Allele Freq.”): Population allele frequencies for 

additional ATAC-seq intersected OA risk loci, with columns as described for "rs143383 Pop. Allele Freq.”. 

(Sheet 8, “OA Variant Enrichments”): Results of enrichment testing for OA risk loci. Columns: “Set”: the 

ATAC-seq peak set tested. “OA Variants Intersected”: Number of unique OA risk loci intersected by 

peaks. “Average/SD Intersections in Background”: Average/standard-deviation (of) number of unique OA 

risk loci intersected in randomized backgrounds (Methods). “Z-score”: Resulting Z-score of target 

intersections. “Enrichment p-value”: one-sided p-value for enrichment (Methods). (Sheet 9, “OA Variant 
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Motif Intersections”): OA variants captured by element sets were assessed for overlap with predicted 

chondrogenesis-associated TF binding sequences. Columns: “SNP_ID”: String-formatted information for 

given variant, corresponding to columns C-F. “RSID”: DBSNP identifier. “TF Motif”: Transcription factor 

PWM matching a given sequence. Columns F-J: Information on PWM sequence match. “Predicted 

Effect”: Whether the alternate allele results in a higher/lower PWM sequence match. “Element Set 

Capturing Variant”: The element set intersecting the given variant. Note that some of these sets are 

overlapping, so duplicate rows are possible. (Sheet 10, “Motif Biases - All OA Vars”): Predicted TF 

binding sites overlapping any OA variant were counted to look for biases in the incidence of variants 

within certain predicted sites. Columns: “Factor”: Specific TF PWMs compared to the superset distribution 

(Methods). “# of Variants”: Number of OA variants which intersect predicted sites for this TF. “Average 

Intersections for all TFs”: Average number of OA variants intersecting any predicted TF site. “Gamma 

Distribution p-value”: Significance value for testing significant deviation from superset using a fitted 

gamma distribution. “Adjusted p-value”: Correction for multiple hypothesis testing using BH correction. 

“Direction”: Whether set value falls to the left/right of superset distribution. (Sheet 11, “Motif Biases - 

Element OA Variants”): Predicted TF binding sites overlapping element-captured OA variants were 

counted for particular TF PWMs, similar to Sheet 10. Only tests for which un-adjusted p < 0.05 are 

shown. Columns are as in Sheet 10, with “Set” indicating the element set considered. (Sheet 12, 

“Element – OA Motif Proportions”): The predicted TF binding sites intersected by element-captured OA 

variants were compared to all OA variants to look for biased occurrence in element sets. Columns: “Set”: 

OA variants captured by a particular element set. “Factor”: particular TF PWM being tested. “Number of 

Target TF Predicted Binding Sites”: Number of predicted TF binding sites (of those tested) intersected by 

variants from this set. “Number of Predicted TF Binding Sites”: Number of predicted sites for the target TF 

intersected by element variants. “Total Number of Target TF Predicted Binding Sites”: Number of 

predicted sites for the target TF intersected by any OA variant. “Total Number of Predicted TF Binding 

Sites”: Number of predicted TF binding sites (of those tested) intersected by any OA variant. “% of Target 

TF sites of Set”: Percent of target TF sites intersected by element-variants, relative to all TFs tested. “% of 

Target TF Sites of Total”: Percent of target TF sites intersected by any OA variant, relative to all TFs 

tested. “% of Target TF Sites Captured in Set”: Percent of OA variant-intersected target TF sites captured 
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by element set. “Hypergeometric Test”: p-value for hypergeometric test. “Adjusted P-value”: Adjusting for 

multiple hypotheses with BH correction. “Direction”: whether target set captures more/less target sites 

than expected. “Fold-Change”: Enrichment/depletion of sites in target set. (Sheet 13, “OA - Partitioned 

Heritability”): LDSC analysis was performed on OA GWAS summary statistics, utilizing a custom set of 

genomic features in addition to a modified baseline LD model. Columns: “Category”: Genomic annotation 

used to partition genome-wide heritability. Custom element set annotations are highlighted in yellow; 

other annotations are taken from the LDSC baseline model 

(http://data.broadinstitute.org/alkesgroup/LDSCORE), which are described in their original publications 

(Finucane et al., 2015; Gazal et al., 2017). “Prop._SNPs”: Proportion of SNPs captured by features; note 

that feature sets are overlapping, so column sums to > 1. “Prop._h2”: Proportion of genome-wide 

heritability, similarly sums to > 1.“Prop._h2_std_error”: Standard error of partitioned heritability estimate. 

“Enrichment”: Proportion of heritability / proportion of SNPs. “Enrichment_p”: Significance of heritability 

proportion captured by feature. “P_ADJ”: Adjusted p-values for multiple hypothesis correction. Columns I 

– K: Coefficients relating to LD score regression, see Finucane et al., 2015. (Sheet 14, “OAI Cohort 

Variation”): The number of alternate alleles falling within indicated element sets for subsampled 

individuals from the OAI cohort as well as additional control populations (1KG3, EGDP) was compared 

(see Methods). T-test statistic, group averages and p-values shown were averaged over 1000 

permutations (Student’s T-test, alternative of greater variation in OAI), with standard-errors similarly 

reported (‘sd’); headers indicate results when using n = 20 and n = 200 subsets. 

 

Supplementary Table 2.8. Common human variant clustering and region selection tests. Related to 

Figure 2.4. 

(Sheet 1, “Cluster Properties”): Columns: “Set”: Source of the indicated set of clustered variants from 

knee-specific ATAC-seq regions. “# of Variants”: Number of common variants grouped in the indicated 

cluster. “Cluster Mean Fst”: Average Fst value, across all pairwise population comparisons, for all 

common variants within the cluster. “Cluster SD Fst”: Standard deviation of Fst values across all pairwise 

population comparisons for all common variants in the cluster. “Cluster Max Fst”: Maximum Fst value, 

across all pairwise population comparisons, for all common variants within the cluster. (Sheets 2-9, 
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“Knee-Specific Pool Cluster 1” – “Knee-Common-Specific Cluster 2”): Position information for 

clusters described in “Cluster Properties” (hg19), with variant accessions indicated. (Sheets 10 – 17, 

“GREAT KS Pool Cluster 1” – “GREAT Knee Common-Sp. Cluster 2”): GREAT output using 

clustered variants, sheet titles indicate set/cluster used, KS indicating ‘Knee-Specific’, Pool indicating 

“Pooled”, Sp. Indicating “Specific”. (Sheet 18, “Selection Window Intersects”): Intersects of region sets 

and EGDP selection windows. Columns: “Chr_Mb”, “Chr”, “Start”, “End”: coordinates for a given selection 

window (hg19). “pclr”: Results of test for ancient selection via 3P-CLR. Columns F-Q: Results of test for 

recent selection in each of the indicated populations. ’1’ indicates a significant test result. “Genes”: Genes 

within the indicated selection window. Columns S-AE: Intersection between indicated ATAC-seq region 

set (e.g. “Distal Femur-Specific”) and a given selection window, ’0’ indicating no overlap. (Sheet 19, 

“Grossman Region Intersects”): Intersects of region sets and CMS selection regions. Columns: “chr 

hg19”, “start”, “end”: Genomic coordinates for a given selection region. Columns E-Q: Intersection 

between indicated ATAC-seq region set and a given selection region. (Sheet 20, “Ancient Sel. Window 

Testing”): Intersections between region sets and signals of ancient selection. Columns: “Region Set”: 

ATAC-seq region set used for testing. “Number.of.Windows.Intersected”: Number of 200kb windows 

intersected by a given set. “Number.of.Windows.Under.Selection”: Of the windows intersected, the 

number of windows for which at least one population had a significant selection signal. 

“Total.Number.of.Windows.Under.Selection”: Of all the windows tested across the genome, how many 

had at least one population with a significant selection signal. "Total.Number.of.Windows”: Number of 

200kb windows across the genome used for testing. “Hypergeometric.Test”: p-value for a hyper-

geometric test of over/under-representation. "Direction (Over/Under-represented)”: Direction of indicated 

hyper-geometric test (i.e. more/less selection signal intersections than expected). “Adjusted.P.value”: p-

value for indicated hyper-geometric test after BH multiple-hypothesis correction. “Fold-Change”: 

Enrichment/depletion of selection window overlaps in target set. (Sheet 21, “Recent Sel. Window 

Testing”): Intersections between region sets and signals of recent selection. Columns are as described 

for Sheet 3. (Sheet 22, “Grossman Selection Enrichments”): Intersections between region sets and 

CMS selection regions. Columns: “Region Set”: Region sets typically used for overlap testing in this 

study, but also consisting of the following sets: ‘OA Variants’: Lead OA-risk variants and their proxies; 
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‘General Knee Pooled - OA Intersections’: Those regions from the general knee pooled set intersecting 

OA-risk variants and/or their proxies; ‘Limb Bud - OA Intersections’: Those regions from the human E47 

limb bud H3K27ac set intersecting OA-risk variants and/or their proxies; ‘BMDC - OA Intersections’: 

Those regions from the human BMDC H3K27ac set intersecting OA-risk variants and/or their proxies. 

“Enrichment p-value”: p-value for overlap enrichment/depletion test compared to randomized background. 

"Observed Intersections”: Observed number of overlaps between indicated peak set and ChIP-seq mark 

regions. “Enrichment/Depletion Z-score”: Z-score calculated as comparison of observed overlaps 

compared to randomized distribution. 

 

Supplementary Table 2.9. Experimental and bioinformatics results on the GDF5 R4 enhancer. Related 

to Figures 2.5-7. 

(Sheets 1 – 4, “R4 null P30” – “R4 rs6060369 P56 t-test”): P30, P56, and 1 year microCT statistics of 

R4 Engineered Mice. (Sheet 1, “R4 null P30”): Differences in key morphological features of the R4 null 

knee joint at P30. All outcome measures were defined as continuous variables (N=5 per genotype) and 

compared between the genotypes using multivariate linear regression analysis with anatomy used as 

dependent variable, and genotype and line as independent variables. Sidak post-hoc was used to correct 

for multiple comparisons between genotypes. P values are two-sided and the statistical significance was 

assessed at alpha = 0.05 for all the comparisons. Significant differences are highlighted in bold. WT: Wild 

Type; HET: Heterozygotes; HOM: Homozygotes. (Sheet 2, “R4 null 1 year”): Differences in key 

morphological features of the R4 null knee joint at 1 year. Statistical treatment similar to ‘R4 null p30’ 

results, with similarly-defined continuous variables (6 wildtype, 15 heterozygous and 14 homozygous). 

Formatting as above. (Sheet 3, “R4 rs6060369 P56”): Differences in key morphological features of the 

R4 rs6060369 replacement knee joint at P56. All outcome measures were defined as continuous 

variables (6 wildtype, 8 heterozygous and 6 homozygous) and compared between the genotypes using 

oneway ANOVA analysis with anatomy used as dependent variable and genotype as independent 

variable. Sidak post-hoc was used to correct for multiple comparisons between genotypes. P values are 

two-sided and the statistical significance was assessed at alpha = 0.05 for all the comparisons. 

Formatting as above. (Sheet 4, “R4 rs6060369 P56 t-test”): Differences in key morphological features of 
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the R4 rs6060369 knee joint at P56 body size normalized. All outcome measures were determined using 

paired T-test on littermate WT, Homozygotes, and Heterozygotes (N=6 mixed male and female per 

genotype). P values are two-sided. Significant differences, which are uncorrected, are highlighted in bold. 

(Sheet 5, “R4 null P30 histology data”): Analysis of osteoarthritis on R4 WT and HOM outcomes based 

on total joint OARSI Score at P30 indicating that significant joint osteoarthritis is absent at P30 in WT and 

HOM knees. A Mann-Whitney test was used to compare the OARSI Score between the wild type (N=5) 

and homozygous (N=5) knees. P-values are two-sided and the statistical significance was assessed at 

alpha = 0.05. (Sheet 6, “R4 null 1 Year histology data”): Analysis of osteoarthritis on R4 WT and HOM 

outcomes based on total joint OARSI Score and Osteophyte Score at 1 year. Significantly more 

osteoarthritis as measured using OARSI Score was observed in HOM knees. No significant difference 

was observed in Osteophyte Score between genotypes. A Mann-Whitney test was used to compare the 

OARSI Scores as well as Osteophyte Scores between the wild type (N=6) and homozygous (N=14) 

knees. P-values are two-sided and the statistical significance was assessed at alpha = 0.05. (Sheets 7-9, 

“UniProbe - Non-Risk TTTAGCCGAGC” – “UniProbe - Risk vs Non-Risk”): UniProbe Analysis of 

rs6060369 variant position. Two 15 bp sequences centered on the non-risk “C” (Sheet 5 - black font) and 

risk “T” (Sheet 6 - red font) alleles at rs6060369 were investigated for evidence of in vitro experimental TF 

binding affinities. Comparisons of the output for each allele (Sheet 7) reveals a number of reduced or 

gained TFs, for the risk allele with the PITX1 TF being highlighted (yellow) as a binding gain (i.e., >0.10 

enrichment change) and factor expressed in and required for knee development. (Sheet 10, “Construct 

Primers”): Sequences of primers and sgRNAs used in this study to clone and target the GDF5 R4 

regulatory element in mouse and human cells. 

 

 

 

 

Table S3.1 Region Set Characterization. 

Contains information on region sets defined as differentially-accessible between either fetal/adult, or 

young-adult/older-adult tissue samples. Sheet 1 – “Sample Metadata”: Sample Metadata for ENCODE 
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Dnase-I datasets used. Sheet 2 – “Developmental Regions”: Sets of regions differentially-accessible 

between fetal (FETAL-BIASED) and adult (ADULT-BIASED) samples. Sheet 3 - “Aging Regions”: Sets of 

regions differentially-accessible between young-age (YOUNG-BIASED) and old-age (OLD-BIASED) adult 

samples. Sheet 4 – “Development – Age Regions”: Chi-sq testing of overlaps between fetal/adult and 

young-age/old-age accessibility analyses. Sheet 5 - “Methylation Sites Analyses”: Intersections and 

enrichment tests for altered-accessibility region sets and methylation clock sites. Sheet 6 – “Histone Mark 

Accessions”: Sample Metadata for ENCODE Histone ChIP-seq datasets used. Sheets 7 – 14 – 

“FETALBIASED-GREAT” – “OLD-ADULT-BIASED -GREAT”: GREAT enrichment tool results for the 

indicated sets of regions, including intersection sets. See great.stanford.edu for details on column 

headings.  

 

Table S3.2. Regulatory Gene Associations and Expression Data. 

Describes results of analyses integrating additional chromatin-accessibility, as well as gene-expression, 

data with the differential-accessibility regions outlined in Results and Table S3.1. 

Sheet 1 - “Development Promoter Access.”: Differential-accessibility results for gene promoters 

differentially-accessible between fetal (FETAL-BIASED) and adult (ADULT-BIASED) samples. Sheet 2 - 

“Aging Promoter Accessibility”: Differential-accessibility results for gene promoters differentially-

accessible between young-adult (YOUNG-BIASED) and old-adult (OLD-BIASED) samples. Sheet 3 - 

“Region-Associated Genesets”: Sets of genes associated with the indicated region sets (see 

Supplemental Methods).  Sheet 4 – “Genesets – GO Enrich”: Gene-set enrichment results for gene sets 

shown in Sheet 3. ‘Intersection’ refers to promoters with differentially-accessible regions intersecting, 

‘Accessibility’ refers to promoters which themselves are differentially-accessible. Sheet 5 - 

“Developmental RNA-seq METADATA”: Sample Metadata for ENCODE RNA-seq pre-processed datasets 

used. Sheet 6 - “Aging RNA-seq Data METADATA”: Sample Metadata for GTEx RNA-seq pre-processed 

datasets used. Sheet 7 - “Region and Expression Overlaps”: Intersections between gene sets defined 

using altered-accessibility regions and those defined using gene expression datasets. ‘Intersection’ refers 

to promoters with differentially-accessible regions intersecting, ‘Accessibility’ refers to promoters which 
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themselves are differentially-accessible. Sheet 8 - “RNA-seq Genes - GO Enrich”:  Gene-set enrichment 

results for gene sets defined using gene expression datasets. 

 

Table S3.3: Evolutionary Sequence Analyses. 

Describes the results of evolutionary sequence analyses, both between- and within-species, performed 

on sets of differentially-accessible regions outlined in Results and Table S3.1. 

Sheet 1 – “phyloP20ways”: Comparing distributions of per-region-averaged phyloP20ways scores across 

different region sets. (Top) – Wilcoxon test results. (Bottom) – Student’s t-test results. See Supplemental 

Methods. Sheet 2 – “Divergent Sequence Set”: Aggregated set of human-divergent sequences used 

(hg19 coordinates). Sheet 3 - “Intersection Enrichment Testing”: Intersection-enrichment test results for 

divergent sequences intersecting the indicated region set. P-values shown using both a normal CDF as 

well as a fitted beta-distribution. Sheets 4 – 9, “BOCA Brain” – “GM12878”: Intersected divergent 

sequences broken down by region set. Genes nearest to each intersected divergent sequence are 

indicated. Final column indicates whether or not the particular region has a putative promoter contact with 

the indicated gene using processed promoter-capture datasets. Sheet 10 – “Zero-Hurdle Modelling”: 

Comparisons of sequence diversity (counts of common variants falling within the indicated region sets) 

between region sets, using variation data from humans, chimpanzees and gorillas. Sheet 11 - “Intra-

species (Human) Diversity”: Comparison of human sequence diversity (counts of common variants falling 

within the indicated region sets) for indicated region sets when compared with randomized genomic 

region sets (see Supplemental File 2), enrichment/depletion evaluated using a normal CDF. Sheet 12 – 

“Intra-species (Chimp) Diversity”: Comparison of chimpanzee sequence diversity (counts of common 

variants falling within the indicated region sets) for indicated region sets when compared with randomized 

genomic region sets (see Supplemental File 2), enrichment/depletion evaluated using a normal CDF. 

 

Table S3.4: Disease Associations. 

Describes the results of analyses exploring the effects of changes to nearby epigenetic context (i.e. local 

accessibility) on the heritable aging-associated disease risk of human genetic variants, at the genome-

wide and per-locus level. Sheet 1 – “UKB Summary Stat Files”: Metadata of UK Biobanks summary-
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statistic datasets used. Sheet 2 - “SNP Enrichments - DNase Regions”: Enrichment results comparing the 

occurrence of significance-thresholded (1e-6) SNPs nearby DNase regions generally, when compared to 

randomly-generated region sets (see Supplemental Methods). Sheet 3 - “SNP Enrich - Hypergeo – 

ADULTBIASED”: Hypergeometric testing results for nearby significance-thresholded variants using the 

adult-biased region set. Additional developmental trait GWAS and longevity GWAS testing at bottom of 

sheet. Sheet 4 - “SNP Enrich - Hypergeo – FETALBIAS”: Hypergeometric testing results for nearby 

significance-thresholded variants using the fetal-biased region set. Additional developmental trait GWAS 

and longevity GWAS testing at bottom of sheet. Sheet 5 - “SNP Enrich - Hypergeo – YOUNGBIAS”: 

Hypergeometric testing results for nearby significance-thresholded variants using the young-biased 

region set. Sheet  6 - “SNP Enrich - Hypergeo – OLDBIAS”: Hypergeometric testing results for nearby 

significance-thresholded variants using the old-biased region set. Sheet 7 - “SNP Enrich - Intersects”: 

Hypergeometric testing results for nearby significance-thresholded variants using the indicated 

developmental/age-altered region intersect sets. Sheet 8 – “Effect-Size Dists”: Wilcoxon testing results for 

differences in absolute effect size values of variants nearby fetal-biased and adult-biased region sets, per-

disease (see Supplemental File 2). Sheet 9 - “Per-SNP Comparisons”: Comparisons of indicated metric 

(e.g. Cross-Disease association metric) across variants nearby the indicated region sets using Tukey 

post-hoc corrections (see Supplemental File 2). Sheet 10 - “PhastCons Tests + CLINVAR”: (Top) 

Comparing the cross-disease association metric of variants falling within or outside phastCons elements 

globally, or when constraining by nearby altered-accessibility region sets. (Bottom) Comparing multiple 

per-variant metrics of ClinVar variants to genome-wide randomly sampled variants (see Supplemental File 

2). Sheet 11 – “Genewise Rank Testing”: Comparing the cross-disease rankings (based on disease-

associations) of the indicated gene sets compared to randomly-sampled sets of protein-coding genes 

(see Supplemental File 2). Sheet 12 - “Genewise Rank Agg”: Gene-set enrichments for sets of genes 

defined when aggregating within-disease gene rankings across diseases, when using an RRA-based 

approach (top), or when using an FGSEA rank-value based approach (bottom) (see Supplemental File 2). 

Top significant (q-value < 0.05) GO BP enrichments for each analysis are shown. Sheet 13 – “HDAC 

Gene Set”: Comparing the per-gene behaviour of top genes in the FGSEA-enriched ‘HDAC’ term in terms 

of different metrics, when compared to randomized gene sets. ‘ANN’ refers to the use of different region 
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sets (e.g. YOUNG_BIASED) in binning variants prior to assigning per-gene metrics (see Supplemental 

File 2). ‘ALL’ refers to enrichment/depletion testing independent of region set binning; log-odds values are 

calculated based on ‘ALL’ results p-values. 

 

 

Table S4.1: Description of CAAS datasets. 

Sheet 1: Description of convergent amino-acid substitutions used in this study. For each CAAS, the 

residue position, long and short-lived amino acid, and significance testing (see Methods) are shown, 

along with the Scenario in which each CAAS falls (see Methods). 

Sheet 2: (Left) Global set of protein-coding genes considered in the definition of CAAS. (Right) set of age-

associated genes obtained from GenAge. 

Sheet 3: GO BP enrichments for genes hit by CAAS pooled from Scenarios 1-3. 

Sheet 4: GO BP enrichments for genes hit by CAAS separated by Scenario. 

Sheet 5: GO terms related to epigenetics used in this study, describing the number of genes in each set, 

as well as the number of genes containing at least one CAAS, and the number of interacting genes 

containing at least one CAAS. 

Sheet 6: Statistical results of t-tests comparing the cross-disease ranking of genes in different gene sets 

relative to background ranks (see Methods). 

Sheet 7: Statistical results of comparing the instances of CAAS residues in different contexts (as denoted 

in the ‘TYPE’ column) to randomly-sampled genesets. 

 

Table S4.2: Protein functionality and CAAS 

Sheet 1: Hypergeometric tests of all PFAM domains for which at least one CAAS in one protein 

overlapped. Columns refer to individual test parameters, as well as the final adjusted p-values for 

enrichment/depletion. ‘Genes’ column refers to CAAS-hit genes containing the indicated domain. 

Sheet 2: Overlap of CAAS domain enrichments with domains enriched in GenAge genes (listed in Table 

S1). (Top): Hypergeometric test comparing the number of enriched domains in GenAge genes to the 
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number of overlapping enriched domains between GenAge and CAAS sets. (Bottom) Per-domain 

hypergeometric tests of all domains occurring at least once in GenAge genes. 

Sheet 3: Subset of domains listed in Sheet 1 – enriched domains which overlapped domains enriched in 

GenAge genes. 

Sheet 4: Mapping of all individual CAAS residues overlapping PFAM domains.  

Sheet 5: Hypergeometric tests of all PFAM domains for which at least one CAAS directly overlaps at least 

one domain instance in a protein. Serpin domain (enriched) is highlighted in green. 

Sheet 6: Hypergeometric tests of all PFAM clans for which at least one CAAS directly overlaps at least 

one instance of a domain in this clan. The ‘Aha1_BPI’ clan (enriched) is highlighted in green. 

Sheets 7 – 14: Hypergeometric tests of individual PFAM domains occurring within genes of the indicated 

GO term. Columns largely as in previous sheets. ‘Condition’ column refers to the specific test performed. 

TARGET: GO term relative to global background, TARGET_CAAS: CAAS-hit genes within the GO term 

relative to the global background, COND_TARGET_CAAS: CAAS-hit genes within the GO term relative to 

all genes in the GO term. “HIT_GENES” column refers to those genes in the given set (GO term as a 

whole, CAAS-hit genes with GO term) containing at least one instance of the indicated domain. 

Sheet 15: For all domains enriched in CAAS-hit genes within different GO terms (above Sheets 7-14), the 

hypergeometric tests have been aggregated. Additionally, the percentage of genes in the indicated GO 

term which have the indicated domain, and also are CAAS-hit is indicated in the far right column. Sheet 

16: dbNSFP data on CAAS residue changes. DbSNFP dataset was subset to include those columns 

pertaining to computational predictions of functional effects of the indicated non-synonymous mutations. 

The ‘PREDICTED_EFFECTS’ column refers to the total number of different software predictions which 

describe a given mutation as possibly non-benign. ‘PREDICTED_EFFECTS_STRING’ refers to the 

individual prediction softwares making these non-benign predictions (separated by ‘@’ symbol). The far-

right columns indicate the PFAM domains which are overlapped by a given mutated residue. 

 

Table S4.3: Spatial distribution of CAAS and cancer-related residues. 
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Sheet 1: HotSpot3D cluster calls for pooled set of residues from CAAS dataset and pre-processed TCGA 

mutation calls. Columns “CAAS_AA” and “CAAS_NUM” refer to the residue(s) within the given cluster call 

which are CAAS hits. 

Sheet 2: Subset of Sheet 1 for all cluster calls occurring within genes in collected epigenetic GO terms. 

Sheet 3: GO term enrichments for genes containing at least one cluster call containing a CAAS residue. 

(Left) Combining all calls across all CAAS residues. (Right) Gene sets generated by separating cluster 

calls by the scenario annotation of individual CAAS hits. 

Sheet 4: Domain enrichments for mutational clusters directly overlapping PFAM domains within proteins. 

Sheet 5: (Left) Residue position overlaps between TCGA and CAAS datasets. Dashes under 

‘amino_acid_change’ refer to instances of multiple long-lived/short-lived amino acid substitutions in the 

defined CAAS. (Right) Statistical results comparing the number of overlapping residue positions between 

TCGA and CAAS datasets to that expected when randomly-shuffling CAAS data (see Methods).  

Sheet 6: (Left) Subset of overlapping residues in Sheet 5 which also fell within cluster calls. (Right) 

Overlapping residues which both fall within cluster calls and overlap domain hits. 

 

Table S4.4: CAAS occurring at protein-protein interfaces. 

Sheet 1: (Top) ProtCID entries in which CAAS occur in at least one of the two indicated interaction 

domains of the interacting protein pair (as labelled in columns ‘Pfam1’ and ‘Pfam2’). See 

http://dunbrack2.fccc.edu/ProtCiD for details on column information. (Bottom) The CAAS residues hitting 

the indicated domains within respective proteins. 

Sheet 2: (Top) ProtCID entries in which CAAS occur in both indicated interaction domains of the 

interacting protein pair. (Bottom) CAAS residues hitting the indicated domains within respective protein 

pairs. 

Sheet 3: (Top) ProtCID entries in which CAAS occur in interaction domains, for entries involving homo-

dimeric complexes that interact via the same domain type. (Bottom) CAAS residues hitting the indicated 

domains. 
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Sheet 4: (Top) ProtCID entries in which CAAS occur in interaction domains, for entries involving homo-

dimeric complexes that interact via different domain types. (Bottom) CAAS residues hitting the indicated 

domains. 

Sheet 5: More stringent definition of interactions based on intra-molecular distances in crystal structures. 

For each indicated scenario, columns are as follows. Columns A-F: Information on the interacting 

residues between the protein pair. G: Minimum distance (Angstroms) between the two residues. K: 

Information on the CAAS residue which is an interacting residue in the protein pair. Blanks indicate that 

the CAAS is on the other protein (geneB). L: Information on the CAAS residue which is an interacting 

residue in the protein pair. Blanks indicate that the CAAS is on the other protein (geneA). M: PFAM 

domain hit of residue in column K, if occurring. N: PFAM domain hit of residue in column L, if occurring. 

Sheet 6: Enrichment testing results for the occurrence of CAAS residues in protein-protein interaction 

interfaces. See also Methods. 

Sheet 7: (Top) ProtCID entries in which at least one residue in a cluster call overlaps an interaction 

domain in the indicated protein-protein interaction. Interactions here are shared with the previous CAAS-

residue-hit interactions. Highlighted in yellow are interfaces for which cluster calls overlap interaction 

domains on both proteins in a pair. 

(Bottom) Cluster call information for the clusters implicated in the highlighted protein-protein interactions. 

Highlighted in green is the interaction between POLA1 and POLA2 mentioned in the main text. Columns 

as in Table S4.3. 

Sheet 8: (Left) Protein-protein interaction domain pairs which were overlapped by cluster calls, but are not 

hit by CAAS residues directly (expanding on the set of domains detailed in Sheet 7). (Right) Cluster call 

information for the clusters calls overlapping interaction domain pairs. 
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Appendix C: Supplemental Notes and Methods for Chapter 3 

 

Comparing altered accessibility regions to genomic annotations, epigenetic states, and additional 

epigenetic datasets: 

 

As past studies have found that altered distribution of certain histone marks (e.g., H3K27ac) are a key 

feature of fetal to adult epigenetic changes (1–3)⁠ as well as epigenetic aging (4)⁠, the changes in 

chromatin accessibility we observe likely also reflects, in part, histone mark modification. 

 

To define the epigenetic context within which our development- and age-altered regions fall, we utilized 

genome-wide assignments of epigenetic state as defined by the Roadmap Epigenomics Project 

Consortium (3)⁠, which employs a Hidden Markov Model to assign one of several possible epigenetic 

annotations to 200bp segments of the genome, integrating both chromatin-modification and accessibility 

datasets to define state probabilities, for different epigenomes (e.g. skin, brain tissues, etc.). Given that 

our altered regions were defined using a pan-tissue approach, for each 200bp segment we subset those 

epigenetic states defined for adult tissue samples, and took the state definition recurrent in the majority of 

samples as an ‘adult-majority’ assignment (see Supplemental Methods). We next intersected our region 

sets with these assigned segments, comparing the distribution of regions falling within different epigenetic 

states to the genome-wide distribution of these states to look for biases (Figure S3.4). Adult-biased 

regions were enriched for epigenetic states associated with transcription, heterochromatin, and repressed 

Polycomb regions (Table S3.1). Conversely, fetal-biased regions were enriched for states associated with 

enhancers, promoters, and ‘primary DNase’, while also showing a more moderate enrichment for 

repressed Polycomb regions. Likewise, old-biased regions were enriched for heterochromatin and 

quiescent states, while young-biased regions were enriched for all other states (Table S3.1). By 

intersecting the fetal and adult as well as young and old-biased regions, we saw that the enrichments for 

different fetal and adult sets -  i.e. adult-biased with heterochromatic states, fetal-biased with euchromatic 

states - overrode the young-biased and old-biased enrichment patterns (Figure S3.4). Utilizing publicly-
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available epigenetic datasets and annotations through the LOLA (5)⁠ software (see Supplemental 

Methods), we again saw overlaps of the adult-biased region set for genomic annotations of ‘repressed 

segments’ and repeat sequences in this set, similar to the Roadmap epigenetic state results above 

(Figure S3.4). Considering fetal-biased regions, we observed enrichments for TSS segments, 

Promoter/enhancer segments, and Vista enhancers, along with annotated CpG islands. We also saw 

similar enrichments for young- and old-biased sets (relative to their Roadmap enrichment results), and 

again saw the overriding fetal and adult patterns of enrichments in intersection sets (Figure S3.5). 

 

We next sought to validate the expected correspondence between development-associated chromatin 

accessibility and histone modifications, first using an independent dataset of fetal ChIP-seq 

experiments(1)⁠. This study defined fetal bivalent promoter regions, which are thought to poise expression 

of developmental genes for rapid induction upon appropriate signaling(6)⁠. Bivalent promoters tended to 

not be intersected by adult-biased regions, while fetal-biased regions were enriched in these sets (p < 1e-

16, hypergeometric test, see Supplemental Methods). That these marked promoters responding to 

developmental signals lose accessibility in adult tissues would be expected(6) ⁠, suggesting that our 

approach is capturing signals of epigenetic change in development. As additional validation of 

correspondence between development-, and potentially age-, associated chromatin accessibility and 

regions subject to histone modification, we again used LOLA enrichments, along with histone-mark ChIP-

seq datasets acquired from primary tissues samples processed by ENCODE(7, 8)⁠. 

 

ChIP-seq Analyses: 

Given our use of DNA accessibility datasets, which should reflect the state of local chromatin with respect 

to chemical modifications increasing/decreasing accessibility, there is an expected concordance between 

open-chromatin regions defined by DNase-I hypersensitivity and the presence of nearby marks for 

histone post-translational modifications (i.e. histone ChIP-seq data). To first confirm this expected 

behaviour in our accessibility data obtained from ENCODE, we further obtained ChIP-seq datasets from 

fetal and adult tissues matching those used in our accessibility analyses (see Table S3.1 for accessions 
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and metadata). Datasets included H3K27ac (an active, euchromatin mark), H3K27me3 and H3K9me3 

(facultative and constitutive heterochromatin marks, respectively). Replicable open-chromatin regions in 

fetal and adult tissues were compared to their respective called ChIP-seq peak datasets looking for 

adjacency between accessibility and chromatin marks (within 1kb, see Supplemental Methods). For 

H3K27ac marks in adult tissues, between 33-82% of replicable DNase peaks in a given tissue had 

adjacent ChIP-seq peak calls. For H3K27ac in fetal tissues, between 37-71% of replicable DNase peaks 

had adjacent ChIP-seq peak calls. For H3K27me3 in adult tissues, between 0.6-10% of replicable DNase 

peaks in a given tissue had adjacent ChIP-seq peak calls. For H3K27me3 in fetal tissues, between 4-27% 

of replicable DNase peaks had adjacent ChIP-seq peak calls. For H3K9me3 in adult tissues, between 

0.05-4% of replicable DNase peaks in a given tissue had adjacent ChIP-seq peak calls. For H3K9me3 in 

fetal tissues, between 0.19-22% of replicable DNase peaks had adjacent ChIP-seq peak calls. The 

increased adjacency of DNase regions with H3K27ac (an active mark) compared to H3K27me3 and 

H3K9me3 (repressive marks) may be expected, given that DNase hypersensitivity should denote more 

accessible, active regions of chromatin. 

We next asked whether the patterns of accessibility change we observed between fetal and adult tissue 

samples were also evident at the level of histone modifications. We thus applied a similar pipeline to that 

used in defining altered accessibility to define altered signals for histone marks (using ChIP-seq read 

coverage as an approximate, continuous metric) (see Supplemental Methods). This resulted in sets of 

H3K27ac, H3K27me3, and H3K9me3 peaks whose ChIP-seq signal significantly changed across tissues 

in comparing fetal and adult samples. Conditioning on the above DNase/ChIP-seq adjacency, we first 

asked whether significantly-DA DNase peaks tended to be adjacent to altered H3K27ac ChIP-seq peaks, 

above the general expectation for DNase peaks nearby H3K27ac peaks. We observed a 1.21 fold-

change (FC) increase in the adjacency of altered DNase and ChIP-seq peaks (hypergeometric test p-

value < 1e-16). Given this, we next asked whether, for these adjacent pairs, directionality was shared (i.e. 

DNase peaks gaining accessibility are adjacent to H3K27ac peaks gaining signal). We found that, of 

these adjacent pairs, those sharing direction (i.e. adult-biased DNase, adult-biased H3K27ac ChIP-seq) 

pairs were significantly over-represented (1.72 FC and 1.19 FC for adult/adult-biased and fetal/fetal-

biased, respectively, hypergeometric tests comparing overlaps of sets, adjusted p-values < 1e-16). 



 173 

 

We similarly checked this adjacency with H3K9me3 peaks changing signal across fetal/adult tissues. We 

did see a significantly-greater adjacency between significantly-DA DNase peaks and these altered 

H3K9me3 peaks, above general DNase/H3K9me3 adjacency (1.13 FC increase, hypergeometric test p-

value < 1e-16). Of these adjacent pairs, those sharing direction (i.e. adult-biased DNase, adult-biased 

H3K9me3 ChIP-seq) were significantly under-represented, while those opposing direction were over-

represented (1.152 FC and 1.212 FC for adult-biased DNase/fetal-biased H3K9me3 and fetal-biased 

DNase/adult-biased H3K9me3, respectively, hypergeometric tests comparing overlaps of sets, adjusted 

p-value < 1e-16). This follows with an expectation that regions gaining constitutive heterochromatic marks 

should lose local DNA accessibility, and vice-versa. 

 

Next, we considered the adjacency of H3K27me3 changing signal across fetal/adult tissues. We did 

observe a slight, but significant, increased adjacency between significantly-DA DNase peaks and altered 

H3K27me3 peaks, above general DNase/H3K27me3 adjacency (1.03 FC increase, hypergeometric test 

p-value < 1e-16). Of these, those sharing direction (i.e. adult-biased DNase, adult-biased H3K27me3 

ChIP-seq) were significantly over-represented (1.20 FC and 1.38 FC for adult/adult-biased and fetal/fetal-

biased, respectively, hypergeometric tests comparing overlaps of sets, adjusted p-values < 1e-16). 

 

Finally, we compared adjacent/overlapping (i.e., within 1 kb) developmentally-altered histone signals 

across different marks. For a given developmentally-altered H3K27ac peak, adjacent H3K27me3 peaks 

tended to also change (1.24 FC enrichment, hypergeometric test p-value < 1e-16), with regions gaining 

H3K27ac signal tending to lose adjacent H3K27me3 signal over development and vice-versa (1.59 FC 

and 1.09 FC for adult-biased H3K27ac/fetal-biased H3K27me3 and fetal-biased H3K27ac/adult-biased 

H3K27me3, respectively, adjusted p-values < 1e-16 and 1.9e-6, respectively). Comparing adjacent 

H3K27me3 and H3K9me3 developmentally-altered peaks, we observed opposing patterns, which may 

reflect their associations with predominantly facultative and constitutive heterochromatin, respectively. 

Altered H3K27ac and H3K9me3 peaks showed a small but significant degree of adjacency (~3%, 1.19 FC 

enrichment, hypergeometric test p-value < 1e-16), though the direction change of adjacent peaks were 
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not consistently biased between adult/adult-biased, fetal/fetal-biased, etc., which may reflect the limited 

number of adjacent pairs (data not shown). 

 

We also considered the LOLA enrichments for external histone-mark datasets, observing that adult-

biased regions showed strong enrichments with ChIP-seq datasets for repressive histone modifications 

H3K36me3, H3K9me3, and H3K27me3 (see Figure S3.5). Conversely, fetal-biased regions showed 

enrichments for both active (including H3K4me2/3, H3K9ac) and repressive (including H3K9me3 and 

H3K27me3) histone modifications. 

 

Clock Sites Analysis: 

Given the substantial literature on changes in DNA-level methylation across both development and aging, 

and the observed enrichments for annotated CpG sites in the above LOLA analyses, we next looked for 

correspondence between our development- and age-altered region sets and CpG sites. In particular, we 

considered so-called ‘clock sites’ capable of predicting age across the entire lifespan(9–11)⁠. Firstly, we 

re-confirmed the enrichment of CpG sites within developmental and age-altered DNase regions using 

UCSC annotated CpG sites (see Supplemental Methods), then confirmed that this enrichment held for 

clock sites, observing a small but significant capturing of these sites by developmentally-altered regions 

(40 of 353 clock sites, p-value < 1e-3 against 1000 randomized region sets). Of these regions, we saw 

that the fetal-biased set were enriched for overlaps with both clock sites losing methylation with age 

(hypo-methylated sites) and those gaining methylation with age (hyper-methylated sites), while the adult-

biased set was not enriched for either set. We also saw a significant enrichment for clock sites by age-

altered regions (16 of 353 clock sites, p-value < 1e-3 against 1000 randomized region sets). Of these, 

young-biased regions were enriched for overlaps of both hyper- and hypo-methylated clock sites, while 

we found no overlaps for clock sites with old-biased regions. Finally, we looked for overlaps between 

clock sites and our region sets at the gene-locus level – clock sites tied with particular genes (e.g. due to 

falling within promoter or gene-body regions) which overlap gene loci we associated with our region sets 

(see Supplemental Methods). This yielded significant overlaps for genes associated with 

developmentally-altered regions (58 genes, hypergeometric p-value = 0.005), though not those 
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associated with age-altered regions (12 genes, hypergeometric p-value = 0.19), and we observed no 

significant biases in direction sharing (e.g. old-age-associated genes and hypo-methylated regions – chi-

sq test p-value > 0.05) (see Table S3.1). 

 

Promoter capture datasets: 

To better identify biological process whose cis-regulatory activity are subject to change we made use of a 

compendium of promoter-capture Hi-C interactions(12)⁠ (see Supplemental Methods) to identify possible 

promoter contacts made by our region sets. We also sought to incorporate accessibility information for 

gene promoters (in addition to the regions contacting them), and did this by (1) intersecting gene 

promoters with adult- or fetal-biased regions, or (2) similar to our treatment of region accessibility changes 

we also assessed promoter accessibility using DNase-seq read coverage across tissue samples (Figure 

S3.6, Supplemental Methods). Genome-wide, adult-biased regions tended to have more putative 

promoter contacts than fetal-biased regions, while old-biased regions tended to have less putative 

contacts than young-biased regions (zero-hurdle modeling, p-value << 1e-16). Gene promoters gaining 

accessibility are preferentially contacted by adult-biased regions, with those losing accessibility contacted 

by more fetal-biased regions than expected (chi-sq test, p < 1e-16), patterns which held when considering 

young- and old-age accessibility (chi-sq test, p < 1e-16). This bias was also true when considering gene 

promoter accessibility defined by intersection with our development- and age-altered region sets (see 

Supplemental Methods). In the context of enhancer-promoter interaction, we observed enrichments in the 

adult-biased set for gene-ontology terms associated with immune response, sensory perception, and 

keratinization (Table S3.2). Conversely, fetal-biased sets were enriched for many developmental terms, 

as well as terms relating to cellular proliferation and TGF-B signaling (Table S3.2). Echoing the fetal-

biased enrichments, we found that old-biased regions were weakly enriched (adjusted p-value = 0.037) 

for chemokine-response terms, as well as sensory perception. However, no significant term enrichments 

were observed for young-biased regions and promoters.  

 

As an additional means to consider the sets of genomic loci in which our development- and age-altered 

sets are distributed, we used the GREAT genome-ontology tool (see description of GREAT in 
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Supplemental Methods). Fetal-biased regions were located near genes associated with several 

developmentally-related terms, such as ‘animal organ morphogenesis’ and ‘embryo development’ (Table 

S3.2). The adult-biased region set yielded enrichments relating to immune processes, such as ‘innate 

immune response’ and ‘immune effector process’, as well as terms related to keratinization (Table S3.2). 

Young-biased regions were enriched for terms relating to cell-cycling, such as ‘mitotic cell cycle process’. 

Enrichments for old-biased regions were associated with immune processes such as ‘regulation of 

defense response’, while also hitting terms related to DNA break repair and ‘negative regulation of 

telomere maintenance’ (Table S3.2). Interestingly, when intersecting the fetal/adult and young/old-biased 

regions we saw a number of additional GREAT terms, while many signals persisted in intersect sets 

(Table S3.2). For example, adult-biased regions which were also more accessible in older-adult samples 

were enriched for the ‘positive regulation of immune response’ term; a signal of post-natal development of 

immune function would be expected(13) ⁠ and that this signal persists into old-age might suggest that we 

also capture signals of inappropriate immune system behaviour (so-called ‘inflammaging’(14)⁠). 

 

RNA-seq expression datasets: 

Given the biological signals we observed by associating our region sets with gene loci, we next looked to 

see if similar signals are evident with tissue expression datasets. We utilized ENCODE RNA-seq 

datasets(8)⁠ for fetal and adult tissues – however, given the limited availability of adult tissue samples we 

performed a less-stringent method for identifying genes whose expression changes over development 

(see Supplemental Methods). These broad sets of genes yielded similar enrichments to those seen 

previously on the regulatory level, with genes generally less-expressed in adult tissues enriched for terms 

involved in growth (e.g. cell-cycling) and chromatin regulation, while those generally more-expressed in 

adult tissues enriched for terms relating to immune response (e.g. ‘humoral immune response’), sensory 

perception and keratinization (Table S3.2). These gene sets significantly overlapped those genes 

associated with adult-biased and fetal-biased regions (all genes – 1.11 FC enrichment, hypergeometric p-

value = 6.73e-10) and tended to share directionality (chi-sq test, p-value < 1e-16). 

We performed a similar expression analysis using adult tissue samples, stratified by the same age 

categories used in our accessibility analyses, for those adult tissues available from the GTEx      
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dataset(15)⁠ which overlapped our adult-tissue accessibility datasets (brain, heart, lung, muscle and 

stomach) (see Supplemental Methods). Genes generally less-expressed in older samples were enriched 

for terms relating to growth, including cell-cycling, mitochondrial function, and protein synthesis/turnover 

(Table S3.2).  

Conversely, genes generally more-expressed in older samples were enriched for terms relating to 

development, including terms such as ‘ECM organization’, ‘ossification’ and ‘angiogenesis’. Whether or 

not this follows with the suggested role for aberrant mysregulation of developmental pathways in aging 

biology(16, 17)⁠ signalling pathways, is unclear however. Comparing these aging accessibility and 

expression-defined gene sets we did not observe significant overlaps (hypergeometric test, 1.04 FC, p-

value = 0.19); this may be the result of a disconnect between epigenetic dysregulation and expression 

changes with aging at particular loci. 

Finally, we looked for overlaps between gene expression in our fetal/adult and young/old-adult 

comparisons, finding that genes broadly less-expressed in adult tissues (relative to fetal) are also less 

expressed in older adult tissues (hypergeometric, p = < 1e-16). While we did not see significant overlap in 

the adult-biased/old-age-biased expression sets, those genes which did overlap were enriched for 

immune response terms similar to those seen in the adult-biased set (data not shown). 

Divergent sequence intersection enrichments: 

We took an aggregated set of sequences showing increased divergence along the human lineage (18–

23)⁠ and intersected these with our region sets. Subsequently, we assigned each intersection to the 

nearest annotated gene, and asked whether these elements are actually contacted by these nearby 

genes via the promoter-capture datasets we had previously integrated with our region sets. These 

intersections, as well as whether the nearest annotated gene shows some contact data for the indicated 

region, are presented in Table S3.3. We highlight two example loci, one associated with the fetal-biased 

region set, the other with the young-biased region set (both of these sets showing general enrichments 

for overlaps with our aggregated sequence-divergence set, see Figure 3.2B, Figure S3.7, Table S3.3). 

 

A region losing accessibility in adult tissues (i.e. a ‘fetal-biased’ region) intersects a human-accelerated 

region(20)⁠ intronic to FGF1, a fibroblast growth factor associated with numerous developmental 
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processes as well as tissue repair(24)⁠; this region also has promoter-capture data to suggest contact with 

the FGF1 promoter. A region losing accessibility in old-adult tissue intersects a human-accelerated 

region(20)⁠ intronic to the PKNOX2 gene, and which also has promoter-capture data to suggest contact 

with the PKNOX2 promoter. This region lies downstream of the variant rs590211, which has previously 

been identified in a GWAS of extreme longevity(25, 26). 

 

Comparing sequence diversity between region sets: 

 

Given the patterns of our different region sets in terms of the presence of common human sequence 

variation (relative to genomic backgrounds and other features, see Figure 3.2C), we directly compared 

the occurrence of common variants in different sets to one another in humans, chimps and gorillas (Table 

S3.3). Within humans, fetal-biased regions tended to have far lower variation when compared to every 

other set, with the exception of young-biased regions (for which the difference was insignificant). 

Conversely, adult-biased regions had greater variation when compared to every other set, with the 

exception of old-biased regions (which had higher variation). Accordingly, old-biased regions tended to 

have greater variation when compared to young-biased regions. Within both chimpanzees and gorillas 

these differences between accessibility-altered region sets were similarly observed (Table S3.3). 

 

Developmental trait GWAS: 

 

Considering our region sets comparing fetal/adult accessibility changes, we would expect that regions 

(which may potentially act as regulatory elements) more accessible in fetal tissues may have more of an 

impact on developmental processes than those regions less accessible in fetal tissues, and vice-versa 

when considering processes such as tissue homeostasis (e.g. in adult tissues). Therefore, in addition to 

our focus on aging-associated diseases/traits, we similarly collected a set of developmental traits/disease 

GWAS to confirm this expected behaviour with regards to developmental processes. 

We observed that fetal-biased regions trended towards having greater numbers of nearby significance-

thresholded SNPs (reported association p-value < 1e-6) compared to a general DNase background set 



 179 

across almost all traits used (with the exception of childhood epilepsy). Significant enrichments 

(hypergeometric test, adjusted p-value < 0.05) were limited to birthweight(27)⁠ and height (28)⁠, though this 

may be due to the larger number of SNPs nearby target/background sets observed with these traits (see 

Table S3.4). 

 

Conversely, adult-biased regions trended towards having decreased numbers of nearby significance-

thresholded SNPs across almost all traits used (with the exception of childhood epilepsy). Significant 

(hypergeometric test, adjusted p-value < 0.05) depletions were observed for birth length, maternal-effect 

birth weight, childhood BMI, fetal-effect birth weight, gestational-duration and height (Table S3.4). 

 

Longevity GWAS: 

Given the patterns of association with our altered-accessibility region sets and aging-associated 

diseases, we also considered four different GWAS summary-statistics datasets for parental lifespan (29, 

30)⁠. Compared to DNase regions generally, we observed that fetal-biased regions were not enriched for 

nearby significance-thresholded longevity SNPs (and trended slightly towards depletion). By contrast, 

adult-biased regions were significantly enriched for the nearby presence of such variants (hypergeometric 

test, adjusted p-value < 0.05). Similar to adult-biased regions, young-biased regions were significantly-

enriched for two of the four longevity datasets, trending slightly with a third. Old-biased regions were 

neither significantly enriched nor depleted for longevity GWAS signals, unlike what was seen for aging-

associated diseases in general. 

 

Effect-size Distributions: 

In addition to determining whether or not a given variant can act to significantly impact disease heritability, 

the epigenetic state of a region may also determine the magnitude of this impact. For those variants 

falling nearby developmentally-altered regions, we also considered the reported effect size for their 

respective diseases. We observed 40 diseases for which variants nearby adult-biased regions had 

significantly greater absolute effect sizes, compared to only 3 diseases for which nearby variants had 

significantly reduced effect sizes (Table S3.4). Given that lowering significance thresholds can increase 
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the amount of heritable variation explained for a given trait, we also considered the effect size distribution 

of all variants falling near our region sets. Nearly all diseases had biased distributions, with the majority 

(106 of 127) having larger absolute effect sizes for adult-biased regions (Table S3.4). 

 

Per-disease enrichment testing: 

For each GWAS set, we defined single nucleotide polymorphisms (SNPs) with strong association signals 

(p-value < 1e-6) and looked for the presence of nearby epigenetically-altered regions (Supplemental 

Methods). We observed that, generally, our accessibility data were enriched for nearby variants (Table 

S3.4), which is expected given that these data will capture non-coding regulatory elements which are 

concentrated for GWAS signal(31)⁠. First considering accessibility change between fetal and adult tissues, 

we found that of this general enrichment adult-biased regions associate with a significant proportion of 

variants across a majority of diseases, while fetal-biased regions associated with significantly less 

variants than expected (Table S3.4). 

 

We next considered the effects of age-associated accessibility changes on age-related disease GWAS 

signals. Unexpectedly, we observed that old-biased regions, unlike adult-biased regions, are actually 

depleted of nearby strong variants across the majority of age-related diseases, while young-biased 

regions are enriched for such signals (Table S3.4). Furthermore, we found that for intersections of 

development and age-altered regions that this age-associated behaviour outweighs the earlier 

development behaviour. Of the general enrichment in adult-biased regions, a significant portion of this 

can be attested to adult-biased regions which lose accessibility in old-age (i.e. young-biased regions), 

while adult-biased regions which gain accessibility in old-age are actually depleted for such signals (Table 

S3.4). Conversely, of the general depletion in fetal-biased regions, an insignificant portion of this can be 

attested to fetal-biased, old-biased region intersects (hypergeometric test adjusted p-value > 0.05), while 

those strong variants which do fall nearby fetal-biased regions tend to be concentrated near those regions 

also considered young-biased (Table S3.4). 

 

Gene set ranking tests: 



 181 

 

To confirm the behaviour of our within-disease gene ranking strategy (see Supplemental Methods), we 

defined a positive-control gene set which would be expected to be strongly-associated with aging 

diseases using the GO term ‘homeostatic process’ (GO:0042592). When compared to randomly-sampled 

gene sets this set had significantly-increased cross-disease gene rankings (Table S3.4). As a negative 

control, we took a gene set which would not be expected to be strongly associated with aging diseases, 

those involved in the development of reproductive structures (GO:0003006). This set did not have 

significantly-increased cross-disease gene rankings. 

 

When looking at gene sets defined by RNA-seq data, we found that genes generally less expressed in 

adult tissues (fetal-biased) were enriched for cross-disease GWAS signals, while genes more expressed 

in adults were actually significantly depleted for such signals (Table S3.4). Gene loci with increased 

expression in older adult tissues were enriched for GWAS signals, as were loci with decreased older-

adult expression – suggesting the possibility that a mixture of genes increasing and decreasing 

expression over time may additively contribute to aging disease biology. It is worth noting that the fetal-

biased (expression) genes significantly overlap with young-biased genes (defined by expression), 

possibly explaining the shared enrichment for GWAS signals, while adult-biased and old-biased genes 

(by expression) did not significantly overlap - though this overlap set itself, containing a number of 

immune-related genes, was enriched for GWAS signals (data not shown).  

 

Cross-disease gene ranking genome-wide: 

 

It has been suggested that the highly polygenic nature of complex traits and diseases reflects cumulative 

regulatory modification to a ‘core’ set of genes who functions most proximately in relevant biology (i.e., 

the ‘Omnigenic model’)(32)⁠. If this is indeed the case, we would expect that, for age-associated diseases 

across multiple tissues, those genes most involved with general pan-tissue aging processes would 

represent a ‘core’ set of genes whose dysregulation contribute to heritable risk across aging-associated 

diseases. We took an unbiased approach to relevant gene discovery, identifying a putative set of ‘core’ 
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aging-related genes solely on the basis of aggregate GWAS signals genome-wide (without considering 

accessibility change) (Supplemental Methods). The resulting set of genes was enriched for terms relating 

to keratinization, sensory perception of smell, and neuron-related terms (e.g. glutamate receptor 

signaling) (Table S3.4). We previously observed the former two terms in our region-association analyses, 

which may suggest that the effects of gene clustering (e.g. clustering of keratin genes, olfactory 

receptors) may bias our locus ranking method. We note that similar enrichments for these terms in our 

fetal/adult RNA-seq analyses were observed (Table S3.2), though whether this GWAS signal – 

expression - accessibility concordance is due to broad changes in accessibility and subsequent 

transcription in gene clusters is unclear. The fact that we observe consistent enrichments for 

keratinization and smell perception using the RRA-based method may indicate that this method is 

particularly sensitive to gene-clustering effects. 

Our per-disease GWAS analyses suggested the importance of altered epigenetic state, particularly that 

which occurs between young/old adult tissues, in considering the risk association of variants with aging-

associated diseases. Therefore, we looked for consistent cross-set ranking using variants occurring 

nearby age-association regions (Supplemental Methods). Again, applying an RRA-based method to 

different accessibility region sets yielded broadly similar terms relating to keratinization and smell 

perception. However, when applying a functional gene-set enrichment analysis (FGSEA)-based method, 

we saw greater differentiation in enrichment results. Ranking genes based on variants nearby fetal-biased 

regions yielded terms relating to developmental processes (e.g. embryonic development, skeletal system 

morphogenesis), while considering adult-biased regions again yielded enrichments for keratinization. 

Young-biased regions yielded enrichments for ‘histone deacetylation’ (discussed in more detail in main 

text), as well as terms relating to viral infection (e.g. ‘viral gene expression’). Finally, old-biased regions 

yielded the previously-seen enrichments for smell perception and keratinization, though also including 

enrichments for immune processes (e.g. ‘antibacterial humoral response’) and DNA methylation. 

Intersection set comparisons: 

 

We compared our developmentally-associated and age-associated regions directly, here explicitly 

comparing age-associated regions with developmental regions not changing with age as a more stringent 
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contrast (Supplemental Methods). Here we also saw the much-stronger biasing of young/old-biased 

regions; old-biased regions associating with significantly less cross-trait heritability than fetal-biased, 

while young-biased regions associated with significantly more heritability than all other sets (Table S3.4). 

Comparing development and age-altered intersection sets, we found that the strong disparity in GWAS 

associations between the young -and old-biased region sets outweighed the differences between the 

fetal- and adult-biased region sets. For example, the young-biased /fetal-biased set had the second-

highest average cross-trait association, despite fetal-biased regions generally being associated with 

weaker GWAS signals in the previous fetal/adult comparison. Conversely, the weaker GWAS signals 

associated with the old-biased region set outweighed the generally-higher signals of the adult-biased 

region set, actually having a lower average cross-trait association than fetal-biased regions not 

significantly changing accessibility in the young/old accessibility analysis (see Table S3.4). 

 

Supplementary Materials and Methods: 

Please see the attached supplemental document. 
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