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Summary:

The mathematical discipline known as

finite geometry was founded by Gino Fano

In 1892. In 1962, Hans Freudenthal said of the
axiomatic approach used by Fano (and later
by Hilbert), "The bond with reality is cut.”

The diamond theorem may be viewed

as restoring that bond.

It describes a group of 322,560 permutations, later
known as "the octad group,” that now plays a role
In speculative high-energy physics.

See (for instance) . ..

Harvey, J.A., Moore, G.W.

"Moonshine, superconformal symmetry,
and quantum error correction.”

J. High Energ. Phys. 146 (2020).
https://doi.org/10.1007/JHEP05(2020)146 .

From the online Encyclopedia of Mathematics :

Cullinane diamond theorem

Finite projective geometry underlies the structure of the 35 square patterns in B. T. Curfis's Miracle Qctad Generator, and
also explains the surprising symmetry propertias of some simple graphic designs— found, for instance, in quilts.

Four-diamond figure
made up of 16 tiles in a
x4 array.

We regard the four-diamond figure D above as a 4x4 array of two-color diagonally-divided sguare tiles.

Let G be the group of 322 560 permutations of these 14 tiles generated hy arbitrarily mixing random permutations of rows
and of columns with random permutations of the four 2x2 quadranis.

THEOREM: Every G-image of D {as at right, beiow) has some ordinary or color-interchange symmetry.
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Here g, a permutation in G, is a product of two disjoint 7-cycles.
Mote that Dg has rotational color-interchange symmetry like that
of the famed yin-yang symbol.
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Remarks:

Some of the patterns resulting from the action of G on D have been known for thousands of years. It is perhaps surprising
that the patierns’ interrelationships and symmetries can be explained fully only by using mathematics discoverad just
recentty (relative to the patterns® age)-- in particular, the theory of automorphism groups of finite geometries.

Ising this theory, we can summarize the patterns’ properties by saying that G is isomorphic to the affine group A on the
linear 4-space over GF(2) and that the 35 structures of the 840 = 35 x 24 G-images of D are isomorphic to the 35 lines in
the 3-dimensional projeciive space over GF{2}.

This can be seen by viewing the 35 structures as three-sets of line diagrams, based on the three paditions of the four-set of
sguare two-color tiles into two two-seis, and indicating the locations of these two-sets of fites within the 4x4 patterns. The
lines of the line diagrams may be added in a binary fashion (i.e., 1+1=0). Each three-set of line diagrams sums to Zero--
i.e_, each diagram in a three-set is the binary sum of the other two diagrams in the set. Thus, the 35 three-sets of line
diagrams correspond to the 35 three-point ines of the finite projective 3-space PG(3,2).

Introduction to the Square Model
of Fano's 1892 Finite 3-Space

By Steven H. Cullinane
(April 22, 2021)

For example, here are the line diagrams for the figures above:

Line diagrams indicate squares' structure.

Shown below are the 15 possible line diagrams resulting from row/column/guadrant permutations. These 15 diagrams may,
as noted above, be regarded as the 15 points of the projective 3-space PG(3,2).

Graphic versions of the 15 points of PG(3,2)

The symmetry of the line diagrams accounts for the symmetry of the two-color patterns. {A proof shows that 3 2n2n two-
color triangular half-squares pattern with such line diagrams must have a 2x2 center with a symmeiry, and that this
symmetry must be shared by the entire pattern.)

Among the 35 structures of the 840 4x4 arrays of tiles, orthogonality (in the sense of Latin-square othogonality)
commesponds to skewness of lines in the finite projective space PG(3,2).

YWe can define sums and products so that the G-images of O generate an ideal (1024 pafterns characterized by all
horizantal or vertical "cuts”™ being uninterrupted) of a ring of 40968 symmefric patterns. There is an infinite family of such
"diamond” rings, isomaorphic to rings of matrices over GF{4).

The proof uses a simple, but apparently new, decomposition technigque for functions into a finite field.

The underlying geometry of the 4x4 patterns is closely related to the Miracle Octad Generator of B. T. Curtis-- used in the
construction of the Steiner system 5(5.8.24)-- and hence is also related to the Leech lattice, which, as Walter Feit has
remarked, "is a blown up version of 5(5.8,24)."
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The 35 square patterns within the
Curtis Miracde Octad Generator (MOG)

The 35 sguare patterns within the ariginal
(1978) MOG of R. T. Curtis

As originally presented, the Curtis MOG was a correspondence between the 35 partitions of an §-set into two 4-sets and
the 35 patterns illustrated above. That correspondence was preserved by the actions of the Mathieu group Mog on a
reciangular array.

The same line diagrams that explain the symmetry of the diamond-theorem figures also explain the symmetry of Curtis's
sQuare paiterns. The same symmetry group, of order 322 560, underlies both the diamond-theorem figures and the square
patterns of the MOG. In the diamond theorem the geometry of the underlying line diagrams shows that this is the group of
the affine 4-space over GF(2). In Curtis's 1976 paper this group, under the non-geometric guise 24.,-’13, is shown to be the
ociad stabilizer subgroup of M,

The above article iz an expanded version of Abstract 7OT-A37, "Symmetry invariance in a diamond ring,” by Steven H.
Cullinane, Motices of the American Mathematical Society, February 1879, pages A-193, 184
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The abowe iz an image of an article that was added to
the Encyclopedia of Mathematics on 10 May 2013.
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