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Abstract 

Cancer is one of the leading causes of death for people worldwide. Since the 

completion of the Human Genome Project, Next-Generation Sequencing has made leaps 

in understanding of the cancer genome possible. Such a deep understanding has allowed 

researchers to develop novel targeted therapy options and improve survival rates. As the 

amount of complex genomic data increases, powerful tools are necessary to discern 

underlying genomic drivers and therapeutic targets in a patient’s cancer. Machine 

learning has been an asset in the discovery of new relationships in cancer genomes and is 

explored in this research. Using publicly available genomic data from several databases, 

machine learning models were designed and implemented to classify variants as 

pathogenic or benign in APC, RB1, TP53, EGFR, ERBB2, and PIK3CA genes, all 

previously implicated in various cancers. The output of the classification experiments 

demonstrates the utility of random forest and extremely randomized trees classifiers and 

highlights the value of several key data features across these datasets. In addition, the 

implementations offer guidelines for future researchers by emphasizing reproducibility 

and generalizability of similar models. Through this framework, future machine learning 

research may be faster to implement using real-world data. By leveraging the power of 

machine learning, scientists can continue to expand the cancer genomics knowledgebase 

and take steps toward improved outcomes for patients.
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Chapter I. 

Introduction 

The family of diseases known collectively as cancer have been a central focus of medical 

research for much of recorded history and continue to drive medical innovation today (Di 

Lonardo et al., 2015). A molecular understanding of cancer began in 1914 when Theodor 

Boveri proposed the theory that chromosomal abnormalities played an essential role in 

tumor development (Di Lonardo et al., 2015). In the 1970s and 1980s, scientists 

identified two important families of genes: oncogenes and tumor suppressors (Berry et 

al., 2019; Bister, 2015). In normal cells, these two classes of genes work in harmony, to 

initiate or inhibit cell growth, replication, rest, repair, and death at key points in the cell’s 

lifecycle (Lee & Muller, 2010). Genomic mutations affecting oncogenes and tumor 

suppressors confer unique survival advantages to emerging cancer cells, allowing the 

disease to attain qualities central to its survival (Hanahan & Weinberg, 2011). The 

discovery of oncogenes and tumor suppressors further supported the hypothesis that 

cancer is a disease of the genome (Macconaill & Garraway, 2010). Later research would 

certify this hypothesis via study of HRAS genes in cancerous bladder tissue and in 

normal bladder cells, adding to a growing body of evidence demonstrating that mutated 

genes can enable cancer cell growth (Macconaill & Garraway, 2010).  

The recognition of cancer as a molecular disease had profound implications for 

the study of cancer’s survival mechanisms. As a disease of the genome, mutations in 

various genes can produce mutated proteins and enable tumor growth via acquisition of 

several key disease hallmarks (Hanahan & Weinberg, 2011). These hallmarks of cancer 
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include sustained proliferative signaling, evading growth suppressors, activating invasion 

and metastasis, enabling replicative immortality, inducing angiogenesis, and resisting cell 

death (Hanahan & Weinberg, 2011). Collectively, genomic mutations trigger changes to 

cellular behavior and capability, facilitating rapid expansion of cancerous cells (Hanahan 

& Weinberg, 2011).  

Not all mutations in the genome are inherently pathogenic. Scientists estimate that 

about 1.1% of the human genome encodes functioning proteins, while the purpose of the 

remaining non-translated regions is less well understood (Ponting & Hardison, 2011). 

Beyond the scarcity of translated regions in the genome, acquisition of genomic 

mutations is also rare. The normal mutation rate can be approximated as 2.5 x 10-8 

mutations per nucleotide site or about 175 mutations per diploid genome, per generation 

(Nachman & Crowell, 2000). In contrast, cancer genomes demonstrate both increased 

potential for mutation and more rapid positive selection for mutations conferring survival 

advantage (Temko et al., 2018). Reduction of cellular DNA repair capabilities may 

contribute in part to the elevated number of mutations acquired in cancer cell lineages 

(Hanahan & Weinberg, 2011).  

Between 2011 and 2018, cancer disease was the 2nd highest cause of death 

worldwide (Rana et al., 2021). Many factors contribute to cancer’s high rate of mortality. 

First, cancer is a diverse family of diseases with different origins and progression. Many 

cancers are classified based on the type of tissue they affect, however numerous unique 

subtypes have been described, each with various possible stages, progression patterns, 

and mortality trends (Carbone, 2020). Second, the genomic mechanisms of cancer 

progression are complex and difficult to generalize (Martin & Santaguida, 2020). Third, 
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there are an insufficient number of targeted treatment options available for cancer 

patients. Through the discovery that cancer is a disease of the genome, research which 

emphasizes discovery and characterization of cancer-relevant mutations will have the 

greatest opportunity to improve treatment options and outcomes for patients in a diverse 

set of cancer subtypes. The association of cancer mutations to changes in cellular 

behavior will enable clinical intervention at the molecular level, inhibiting the cells’ 

ability to acquire disease hallmarks (Hanahan & Weinberg, 2011). 

Sequencing Technology and Treatment Opportunities 

Genomic sequencing has become an invaluable tool in the research and discovery 

of novel cancer mutations. Modern sequencing technology originated in 1977 and is 

credited to Frederick Sanger, who developed a chain termination method to sequence 

genetic code (Heather & Chain, 2016). Next-Generation Sequencing, or NGS, is a 

revolutionary tool for present day genomic research (Shyr & Liu, 2013). Commercially 

developed in 2004, NGS is defined by a high-throughput, massively parallel architecture, 

allowing researchers and clinicians to probe test specimens for comprehensive genomic 

profiling (Kamps et al., 2017).  

The cost associated with modern NGS sequencing technology has decreased 

significantly in recent years. The Human Genome Project incurred an estimated cost of 

$3 billion USD and required 13 years to complete (Sboner et al., 2011). By 2019, the cost 

of sequencing a human genome had dropped to about $1,000 USD (NHGRI, 2019). The 

increased accessibility and affordability of sequencing technology has led to substantial 

growth in industry revenue overall. According to Phillips & Douglas (2018) the global 
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diagnostic NGS oncology market will realize $7.7 billion USD in revenue as of 2020, and 

the market is expected to experience continued growth.  

The reduced cost of sequencing has enabled many different applications for the 

technology, including the study of cancer genomes. Sequencing of cancer genomes 

confers significant value in both diagnostic and prognostic applications (Mardis & 

Wilson, 2009), especially in the characterization of disease hallmarks (Hanahan & 

Weinberg, 2011). Today, the affordability of NGS sequencing enables individual patients 

to sequence their cancer genome to identify targeted therapy opportunities for treatment 

(Saito et al., 2018).     

 The growing accessibility of NGS technology throughout the 21st century has 

allowed investigation of the cancer genome at unprecedented scale. Such research has 

produced large databases, many of which are available to the public. The Cancer Genome 

Atlas (TCGA) is one such dataset, comprised of more than 20,000 different primary 

cancer and matched normal samples, together covering 33 different cancer types and 

more than 2.5 petabytes of data (NCI, 2019). The Catalogue of Somatic Mutations In 

Cancer (COSMIC) is another database experiencing substantial growth. Today, COSMIC 

comprises over 6 million coding mutations spanning more than 1.4 million tumor 

samples. Notably, COSMIC incorporates various publicly available data from both 

TCGA and the International Cancer Consortium (ICGC) (Tate et al., 2018). The growth 

of public repositories such as TCGA, COSMIC, and others is reflective of broader cancer 

NGS market trends. Collectively, these projects allow clinical utility for cancer genomics 

and diagnostics.  
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The effort to determine functional significance of genomic mutations is at the 

heart of modern cancer research and treatment advances. A functional variant is some 

mutation which leads to a change at the molecular level of a protein (Gonzalez-Perez et 

al., 2013). This change can be classified by a gain, loss, or change in function of the 

protein compared to wild-type (Gonzalez-Perez et al., 2013). Conversely, many 

mutations may be considered non-functional. These benign alterations can include 

germline mutations, passenger mutations, or mutations in non-coding regions of the 

genome (Stratton et al., 2009). Identifying a key genomic driver in a patient population 

can often lead to targeted therapy development, increased survival rates, and improved 

quality of life. There are many approaches to determine functional significance, and over 

time these methodologies have become more robust and complex. A promising approach 

to mutation classification involves the use of an artificial intelligence method known as 

machine learning. 

Machine Learning and Cancer 

Machine learning is a collection of different mathematical algorithms which can 

determine the relationship between features or characteristics of underlying data 

(Edwards, 2020). This capability is well suited for discovery of novel relationships 

between data and subsequent classification or prediction of future data against an existing 

model (Edwards, 2020). Machine learning has quickly become an attractive option for 

cancer genomics researchers, in part due to the complexity of highly dimensional 

genomics data. 

Relevant genomic data features may include descriptions of sample type, the 

tissue of origin, the sample size, and other pathological characteristics. The specific 
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datapoints describing the observed mutation are recorded in detail, involving complex 

nomenclature to describe the change relative to the genome, the chromosome, the gene, 

the exon, and the nucleotide sequence itself. Other observations and contextual 

information can quickly expand the dimensionality of each entry in the dataset. Machine 

learning can navigate high dimensionality and peel away uninformative features to 

elucidate unseen relationships between key datapoints (Sidey-Gibbons & Sidey-Gibbons, 

2019). The algorithms used in machine learning leverage a process known as training 

which uses real data to help the algorithm identify and learn about relationships 

(Edwards, 2020). As new data is interpreted, the model can improve its generalization 

(Edwards, 2020). This research will employ machine learning to explore best practices 

and key considerations in approaches to cancer mutation classification problems. Several 

computational methodologies have already been developed to assess driver status of 

mutations and a subset will be described herein: CanPredict, CHASM, and Cerebro. 

CanPredict Classifier 

The CanPredict method is a supervised machine learning algorithm developed by 

Kaminker et al. in 2007. The algorithm is based on the belief that cancer genome 

instability coupled with increased cellular divisions causes an explosion of passenger 

mutations which may obfuscate true somatic drivers (Kaminker et al., 2007). The 

researchers utilize a random forest algorithm to distinguish between mutations from the 

COSMIC database that are suspected cancer drivers versus non-synonymous single 

nucleotide polymorphisms (nsSNPs) with high mutant allele frequencies (MAFs) 

(Kaminker et al., 2007). To build their algorithm, the researchers gathered: (a) common 

variants from NCBI, which included overall minor allele frequencies; (b) cancer-
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associated mutations, which were collected from the COSMIC database – further filtered 

based on analysis by Forbes et al. (2006) to include only variants likely to be involved in 

oncogenesis; (c) Mendelian disease-associated variants from Swiss-Prot (Kaminker et al., 

2007). The researchers then segregated missense mutations and began by looking to the 

SIFT and LogR.E-value algorithms, two independent algorithms to predict the tolerability 

of different mutations and score protein products based on their distinction from wild 

type (Kaminker et al., 2007). The CanPredict random forest was built to incorporate 

output from SIFT, Pfam-based LogR.E-values, and GO (Gene Ontology) log-odds scores 

as part of the feature set for each variant (Kaminker et al., 2007). The research showed 

that many activating mutations impair protein function, positing that variants in kinases 

appear to affect amino acids involved in the control of enzymatic activity (Kaminker et 

al., 2007). The researchers also note several limitations, including their use of expressed 

sequence tags, or ESTs in the discovery phase for variant identification. Coverage and 

library bias were prevalent in the ESTs, leading to the exclusion of some well 

characterized somatic cancer drivers, such as BRAF V600E (Kaminker et al., 2007). 

CHASM Classifier 

CHASM is an alternate machine learning classification tool developed by Carter 

et al. in 2009. The CHASM classifier is built upon on the idea that methodologies which 

classify mutations must not be wholly dependent on mutation frequency, and their 

research thus comes as an expansion on the CanPredict method (Carter et al., 2009). The 

researchers hypothesize that a classifier can be trained with improved specificity if 

passenger mutations are represented with in silico simulations, incorporating mutation 

profiles reflective of tumor type and context (Carter et al., 2009). This model expanded 
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upon the CanPredict method by looking beyond high-MAF nsSNPs and made the 

classification of passenger mutations more complex. The researchers similarly trained a 

random forest classifier using 2,488 missense mutations previously identified as playing a 

functional role in oncogenesis from the COSMIC database, with samples sourced from 

various breast, colorectal, and pancreatic tumor studies (Carter et al., 2009). To assess 

their classifier, the researchers used two threshold-independent measures – Receiver 

Operating Characteristic (ROC) and Precision-Recall (PR) curves. Of note, the CHASM 

classifier identified several dominant features, such as SNP density, frequency of 

missense change type in COSMIC, and nucleotide-level conservation (Carter et al., 

2009). The researchers found that there is a potential difference in distinguishing 

characteristics of neutral mutations in the cancer genome and the germline genome, and 

their CHASM classifier works to recognize the former, offering improved performance 

over prior methods (Carter et al., 2009). This work also highlights the importance of a 

null model, which in this research represents key assumptions about the nature of benign 

variants (Carter et al., 2009). At the time of publication, this research was perhaps the 

first to identify candidate driver mutations via control over false discovery rate (FDR) 

(Carter et al., 2009). By utilizing this method of FDR control, the researchers were able 

to achieve improved power in their model (Benjamini et al., 2001). 

Cerebro Classifier 

Another machine learning analysis performed by Wood et al. (2018) utilized data 

from The Cancer Genome Atlas (TCGA). Their machine learning implementation 

involved an extremely randomized trees classification model called Cerebro (Wood et al., 

2018). The algorithm selected for dominant features such as allele frequency, nearby 
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sequence complexity, and presence of alterations in the matched normal specimen. The 

implementation of Cerebro was not well trained for tumors with low cellularity and low-

frequency alterations, a shortcoming that the researchers predict could be alleviated with 

a more robust training set (Wood et al., 2018). Of note, the researchers found that 

Cerebro improved clinical outcomes for both melanoma and lung cancer patients when 

compared to a tumor mutation load assessment alone (Wood et al., 2018). Concordance 

calculated between paired tumor-normal exome data from 1,368 TCGA samples was only 

74%, elucidating potential false positives in the core dataset (Wood et al., 2018). The 

Cerebro team’s results identified an inaccuracy rate in TCGA datasets of about 16% 

which represents nearly 500,000 mutations incorrectly classified based on their modeling 

(Wood et al., 2018). 

Limitations to Current Methods 

 Collectively, these machine learning implementations and others offer attractive 

options to researchers looking to discover and classify key biomarkers in the cancer 

genome. However, none of these approaches are without shortcomings. One shortcoming 

is the challenge of defining a universal set of important features that any successful 

machine learning implementation should contain. In some cases, feature selection may be 

directly influenced by the underlying data and the nature of each record in the dataset. In 

other situations, researchers may custom-fit features which are difficult to reproduce and 

may be dependent on proprietary methods.  
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Universal Features 

To address this shortcoming, this work will define several suggested universal 

features which can be reproduced in future machine learning implementations. There are 

a growing number of valuable datasets describing cancer data which enable robust feature 

creation, such as COSMIC, dbSNP, Pfam, and others. The accessibility of this data will 

allow more rapid integration of independent sources to train intelligent machine learning 

models, a practice which will be performed in this research. 

One such universal feature will be the inclusion mutational co-occurrence, which 

was not explicitly denoted in prior research studied, and which must be accounted for 

where possible (Temko et al., 2018). A subset of the reviewed studies considered the 

proximity of mutations to key conserved functional domains (Carter et al., 2009), which 

this research will also address. By defining a set of recommended universal features using 

data available to the public, faster implementation across different datasets and reduced 

risk of overfitting may be achieved. 

Algorithm Selection 

In addition to feature selection and reproducibility, a broader challenge of 

algorithm selection exists for researchers. Many mutation classification and discovery 

pipelines in the reviewed literature utilized a random forest algorithm, a classification 

algorithm which is often highly accurate and able to minimize error (Yiu, 2019). 

However, other machine learning algorithms may be viable alternatives in cancer 

genomics classification problems. The extremely randomized trees or extra-trees 

algorithm extends the randomness of a random forest classifier to further minimize 

variance (Geurts et al., 2006; Pedregosa et al., 2011). The adaboost classifier is another 
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popular ensemble-based machine learning algorithm. The adaboost algorithm utilizes 

continued boosting of so-called weak learners to vote on final prediction and 

classification, an alternative to the bagging approach employed by random forest and 

extra-trees classification (Freund & Schapire, 1997; Pedregosa et al., 2011). 

This research will also explore the different performance characteristics of these 

classification algorithms. Beyond a comparison of performance outcomes, the key 

considerations for model design, dataset structure and training input will be evaluated. By 

comparing both the capabilities and relevant features of these models, this research will 

present important considerations and future direction for cancer driver classification 

using machine learning. 
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Chapter II. 

Research Methods 

This work explores considerations for in silico analysis of mutations in cancer. 

Throughout the research process, reproducibility and generalizability of the data was 

emphasized as a primary measure of success of the methods, in addition to key 

performance indicators following implementation. All data, software, and analyses were 

performed using public and open-source toolkits and genomic data. Where necessary, 

custom data features are described in greater detail to facilitate reproducibility.  

This research was performed using the Python programming language and 

utilized a combination of Python libraries to achieve the desired machine learning 

outcomes. In addition to the base Python functionality, the Scikit-learn toolkit was 

utilized and provided the basis for each machine learning algorithm explored (Pedregosa 

et al., 2011). Supplemental Python libraries were incorporated for simplified data 

manipulation and to extend base capabilities, including Pandas (Team, 2020), NumPy 

(Harris et al., 2020), and Imbalanced-Learn (Lemaitre et al., 2017). The Matplotlib 

library was also used for data visualization (Hunter, 2007). 

Collecting Genomic Data 

The primary data source for this research was genomic data collected from The 

Catalogue of Somatic Mutations In Cancer, or COSMIC (Tate et al., 2018). Genomic 

information is taken directly from a filtered subset of COSMIC’s mutation data file from 
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database release v94. For preliminary data aggregation, filters were applied on gene name 

alone. Due to the large number of genes implicated in cancer development, this research 

was focused on a selection of genes with some prior characterization in cancer. The 

utility of various cancer variant classifier implementations was tested on both oncogenes 

and tumor suppressors, including EGFR, PIK3CA, and ERBB2 (oncogenes) and TP53, 

APC, and RB1 (tumor suppressors). In addition to COSMIC mutation data collection, 

other sources of supplemental data were gathered from COSMIC, including FASTA files 

for both the coding sequence (CDS) and protein (amino acid) sequence for the genes 

studied, as well as COSMIC mutational signatures (Alexandrov et al., 2020). 

Protein Domains 

Protein domains are key regions in the protein sequence which can contribute 

both structurally and functionally to the encoded protein (Buljan & Bateman, 2009). 

Preservation of some domains may be essential to producing a functioning product and 

may be detrimental to cancer development, while mutations in other domains can have 

the opposite effect, removing important regulatory regions and conferring a survival 

advantage to cells expressing the mutated allele (Miller et al., 2015). Thus, the 

localization of mutations in the context of protein domains is predicted to be an important 

feature in the construction of any viable machine learning classification algorithm. 

To describe mutations relative to protein domains, data from Pfam was 

incorporated into the COSMIC dataset for feature creation. Pfam is a resource dedicated 

to the collection and annotation of protein families and functional domain information. 

Such data is represented by a combination of multiple sequence alignments (MSAs) and 

hidden Markov models (HMMs) (Mistry et al., 2020). The integration of domain data 
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with these classifiers was performed to enrich the feature sets via additional datapoints of 

interest.  

Single-Nucleotide Polymorphisms 

Single-nucleotide polymorphisms (SNPs) are a type of heritable DNA mutation, 

estimated to occur at a frequency of about 1 in 1,000 base pairs throughout the genome 

(Shastry, 2009). While some SNPs are silent (synonymous or affecting non-coding 

regions), others may change amino acid composition and confer uniqueness unto an 

individual genome (Shastry, 2009). A causal relationship may exist between some SNPs 

and tumorigenesis based on prior research, but the extent of such a relationship more 

generally is yet unclear (Deng, et al., 2017). Denoting potential SNPs for the COSMIC 

entries studied is predicted to improve the quality of the feature sets for each classifier 

implementation.    

Although COSMIC places emphasis on somatic mutations in cancer, information 

about single nucleotide polymorphisms (SNPs) is integrated into the default COSMIC 

mutation data. Discrepancies were observed in SNP designation between COSMIC and 

dbSNP for some mutations following a manual comparison of a random sampling of the 

data. To further enrich the information for labeled SNPs and ensure accurate 

representation, comprehensive SNP records were collected from dbSNP (Sherry et al., 

2001). Data including classification of the SNP, as well as the validation method and a 

prediction of clinical significance were appended to the existing COSMIC dataset (Kitts, 

2011; Sherry et al., 2001). The clinical significance attribute includes assertions made by 

the submitter, except where data from OMIM were utilized in assessment (Sherry et al., 

2001). 
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Mutational Signatures 

Genomic mutations are often attributable to various agents which damage DNA, 

such as carcinogens (Barnes et al., 2018). Through both exogenous and endogenous 

processes, different carcinogens and reactive species can influence DNA damage in cells, 

often triggering or accelerating cancer development (Barnes et al., 2018). Mutational 

signatures represent emergent patterns in mutated genomic data that are often directly 

linked to a specific agonist or phenotype and frequently observed in cancer genomes 

(Alexandrov et al., 2020). Signatures can be used to estimate a patient’s age (SBS1), their 

tobacco smoking history (SBS4), and their exposure to ultraviolet light (SBS7a-d) 

(Alexandrov et al., 2020), all of which can influence the acquisition of new mutations in 

the genome. Several signatures point to specific breakdowns in cellular processes, such as 

a defective DNA mismatch repair process, while others may show the impact of prior 

treatment (Alexandrov et al., 2020).  

COSMIC mutation signatures are captured as Single Base Substitutions (SBS), 

and 96 signature contexts are classified as of COSMIC Signatures v3.2, published in 

March 2021. The signatures are denoted by a reference and alternate nucleotide for a 

mutated base, flanked by the nucleotide immediately 5’ and 3’ in the coding sequence of 

the gene (Alexandrov et al., 2020). For each signature, prevalence of every combination 

of this 5’-[Ref/Alt]-3’ sequence is computed based on data from SigProfiler, extracted 

from 2,780 whole-genome variant calls (Alexandrov et al., 2020; Bergstrom et al., 2020; 

Tate et al., 2018). For this research, a contribution fraction for each 3-nucleotide mutation 

context to a signature was gathered and compared against the raw COSMIC mutation 

data gathered for each gene studied (Tate et al., 2018). Each single nucleotide mutation 
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was extracted along with the 5’ and 3’ flanking bases, and the fractional contribution of 

that mutational context to each of the 96 signatures was recorded and added to the feature 

set for the mutation data (Alexandrov et al., 2020; Tate et al., 2018). Several COSMIC 

signatures listed as possible sequencing artifacts were excluded from the feature set as 

detection of sequencing artifacts is not a focus of this research. 

Defining Custom Features 

 To improve the overall performance of the classifiers, custom features were 

designed and implemented. Design of custom features was deliberate to capture 

information predicted to be meaningful to any classification algorithm. Beyond COSMIC 

mutation data, several other descriptors were incorporated for each mutation in each of 

the genes studied. 

Domain Mapping 

Data from Pfam provides a mapping of functional domains onto the amino acid 

sequence of a protein (Mistry et al., 2020). This domain information was downloaded 

directly from the Pfam database. Using a combination of FASTA amino acid sequence, 

mutation annotation, and functional domain information, a domain mapping feature was 

developed. The novel feature examined whether a mutation is contained within a specific 

functional domain, the name of which was recorded. If a mutation was not contained 

within a defined functional domain, the closest characterized domain was recorded 

instead. Using the middle amino acid position (for mutations spanning multiple residues), 

the distance to the nearest characterized functional domain was calculated. This domain-

based feature is predicted to elucidate genomic mutation hotspots within a specific gene 
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based on proximity to key functional regions within the gene. Beyond genomic 

coordinates, which are a default COSMIC dataset feature, such information may be 

helpful in extrapolating the model to other genes with shared superfamilies without 

needing to fully re-train the model. 

Mutation Co-occurrence 

For each gene-specific model generated, the mutational burden of tumor samples 

was measured and incorporated into the overall feature set. Mutational burden or co-

occurrence in this research was defined simply as the total count of mutation records in 

COSMIC for each specific tumor by identifier in the dataset. Mutational burden can vary 

greatly between different tumor types and can be used clinically as an indicator of tumor 

genome instability, making some high-burden tumors excellent candidates for 

immunotherapy treatments (Sha et al., 2020). In this research, overall mutation co-

occurrence from each tumor was used to inform pathogenicity prediction for each 

mutation record. In highly mutated tumors, it may be challenging to ascertain the true 

drivers of the tumor due to the accumulation of tumor-specific somatic alterations. While 

these accumulated alterations do often coincide with overall genome instability (Yao & 

Dai, 2014), they may be misclassified as pathogenic without the contextual information 

of mutational co-occurrence. 

Exploration of the complete COSMIC mutation data containing all mutation 

records showed substantial variation in the number of co-occurring mutations across all 

recorded tumors. To reduce the degrees of freedom of this feature category, uniform bins 

were generated based on the distribution of mutation co-occurrence between each 

COSMIC tumor. Each mutation entry was then categorized into one of the resulting bins 
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describing a range of mutational burden to characterize a mutation’s uniqueness in the 

context of the tested specimen.  

Mutation Count 

While mutational co-occurrence helps to assess tumor burden, a measure of 

mutation count was also included as an additional feature calculated from the dataset. In 

this research, mutation count represented the number of entries of a single mutation by 

protein effect in the COSMIC database across all tumors. Mutations which confer unique 

survival advantages to tumors will be inherently more likely to appear in different 

patients within the same cancer population (Vogelstein et al., 2013). Thus, a 

measurement of how many COSMIC records describe the same mutation is another 

feature included in the set. A similar system was used to produce several bins describing 

a range of the number of duplicate entries, allowing each mutation record to be 

categorized according to the number of occurrences in the dataset. 

Data Normalization and Preparation 

 Once each feature was incorporated into the core dataset, the data required 

standardization before building the classifier. Several steps were taken to ensure 

execution of the classifier and to achieve high performance. The first action was to strip 

any leading or trailing characters from the feature names and from the data, as visual 

inspection of COSMIC data identified inconsistent formatting. Next, several features 

were dropped from the dataset. These dropped features included gene name and 

accession number, as well as gene CDS length, all of which were identical for each item 

in the set. Other identifiers were also removed, such as COSMIC mutation ID, sample 
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name, and tumor ID. This removal was performed after these features had been utilized to 

map tumor-specific mutation burden via total COSMIC mutation data (Tate et al., 2018). 

Feature Encoding 

An important consideration in machine learning implementations is feature 

encoding (Yu et al., 2018). The COSMIC mutation data is described with a combination 

of numerical and categorical features and modification to the representation of the 

features can be performed, both to allow the chosen machine learning algorithm to 

execute, as well as to optimize performance on the dataset. The scikit-learn (sklearn) 

package is equipped with a Label Encoder, which converts categorical variables into a 

numerical representation by assigning each a unique identifier (Pedregosa et al., 2011). 

However, label encoding may not be suitable for all features in a dataset. For categories 

with moderate to high numbers of different possible values, the numerical encoding led to 

a skewed weighting of features with a greater number of possible states or degrees of 

freedom (Shaikh, 2018). 

Other scikit-learn packages are available to address this concern. Following label 

encoding, a One Hot Encoder was used to transform the data. A one hot encoding scheme 

can be visualized as a dimensional transform on the set of categorical states for a given 

feature. Rather than representing each state by a number under a single feature, a new 

feature is appended to the dataset for each possible state (Pedregosa et al., 2011). Now, a 

Boolean representation can be used for each entry in the dataset based on which of the 

new features are true or false for that entry, which may alleviate issues introduced by the 

Label Encoder alone (Shaikh, 2018). 
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Other features in the dataset required custom representation to improve 

performance of the classifier. Genomic coordinates represent the unique positions of each 

nucleotide within a given chromosome sequence (Dunnen & Hong, 2019). Because these 

positions can take on large values, dividing the gene into different balanced subsets or 

bins helps reduce the dimensionality of the feature. Genomic start and end positions were 

averaged for each alteration in the raw COSMIC output and placed into evenly 

distributed bins based on their position. While this representation may have reduced 

resolution, it was predicted to make the feature more useful for the model overall by 

reducing the cardinality or number of possible states.  

Defining The Target Class 

For each of the classification algorithms tested, a target class was defined. The 

target class represents the output class or category that each data point was classified into 

and which the models output when fitting a specific data point (Pedregosa et al., 2011). 

The models were designed to treat the FATHMM Prediction as the target class for each 

mutation. FATHMM, or Functional Analysis through Hidden Markov Models, is a 

methodology to predict the pathogenicity of coding and non-coding variants incorporated 

into the COSMIC data structure (Shihab et al., 2013). In addition to the categorical 

FATHMM prediction, COSMIC mutants also include a FATHMM probability score 

which was excluded from this classification approach. The models were trained to 

classify datapoints into pathogenic or benign FATHMM target classes. In this work, a 

mutation with a FATHMM prediction of pathogenic was considered a driver mutation, 

representing a mutation which would positively influence tumor development and 

survival. Conversely, mutations with a FATHMM prediction of unknown or benign were 
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considered non-functional variants which would have no meaningful impact on tumor 

development or survival. Other mutation classifications such as germline, passenger, or 

non-coding may be relevant, however these mutation types were not distinguished in this 

research for simplicity. 

Random Forest Classifier 

 The random forest classifier was the first classifier approach implemented as part 

of this cancer mutation study. The random forest algorithm uses a consensus method, 

leveraging multiple estimators and averaging them together, which has the effect of 

reduced variance compared to any one estimator in most cases (Pedregosa et al., 2011). 

The feature set was segregated after incorporating new features and dropping features not 

explicitly used in modeling.  

Model Parameter Customization 

The implementation of the random forest algorithm was further customized 

through changes to default execution parameters enabled by the scikit-learn framework 

(Pedregosa et al., 2011). By varying different input parameters from their default states, 

the classifier implementation could be perturbed to evaluate impacts on performance. The 

goal of this customization was to establish a routine evaluation system to implement a 

model that maximizes performance for the data in question. Such a system is predicted to 

be necessary for any machine learning application to achieve robust, data-driven results 

without compromising efficiency. 

Several parameters were adjusted for the random forest algorithm while keeping 

other parameters constant. Once favorable tuning for each parameter of interest was 
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determined, other parameters were changed from default values and the model was 

implemented once more in an iterative fashion. Upon the addition of each new custom 

parameter, the performance was re-evaluated. This process continued repeatedly until 

optimal combination of parameters was determined and was executed independently for 

each of the genes studied to further customize the performance of the model. 

The first parameter evaluated was the number of estimators, which defaults to n = 

100 for the scikit-learn RandomForestClassifier (Pedregosa et al., 2011). The number of 

estimators, or trees in the forest, was assigned an initial value of n0 =10, and incremented 

such that n1 = n0 * 2 for each new value of N. This doubling of the number of trees in 

each forest was performed for each unique implementation until the total number of 

estimators reached n = 320 trees, with a maximum tree count of 400 evaluated for each 

implementation. The number of trees used can improve the convergence of a random 

forest system based on the Strong Law of Large Numbers, as described by Breiman in 

2001. Breiman notes that while random forests do not overfit as more trees are added, 

there is a limiting value reached for the overall generalization error for the model 

(Breiman, 2001). Thus, the number of estimators were varied, the model was iteratively 

re-generated, and performance evaluated to determine the optimal number of trees based 

on the dataset and on the quality of the model and performance optimization.  

In addition to the number of estimators, the bootstrapping parameter and related 

out-of-bag score parameter was utilized. The bootstrapping parameter improves the 

randomness of the trees in the forest by drawing samples with replacement, allowing 

duplicates (Breiman, 2021; Pedregosa et al., 2011). The scikit-learn random forest 

implementation performs bootstrapping by default. While the bootstrapping parameter 
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was enabled, out-of-bag (OOB) samples were also used to aid in calculation of the 

generalization score. The OOB method relies on some classifier h(x, Tk) built on a 

bootstrap training set, Tk. An OOB classifier can then be constructed by assessing each y, 

X in the training data and aggregating the votes from all trees within h(x, Tk) which do 

not include y, X themselves (Breiman, 2001). With this approach, Breiman (2001) argues 

that the error rate of the OOB classifier on the training data can act as a measure for 

generalization error more broadly.  

Another parameter which was adjusted for random forest implementations was 

scikit-learn’s criterion field, which represented a tree-specific split assessment (Pedregosa 

et al., 2011). The random forest classifier can be assessed using the Gini impurity (default 

method) and an entropy method, also called information gain (Pedregosa et al., 2011). 

The Gini impurity is a system to measure the overall quality of a split for a given tree in 

the forest (Nembrini et al., 2018). The entropy or information gain criterion for the 

random forest model also assesses split quality on a per-tree basis, relying on a 

logarithmic approach to assess uncertainty (Fan et al., 2011). Both algorithms were 

assessed in separate implementations of the random forest algorithm to determine overall 

impact to performance. 

Finally, the proportion of test cases to use from the overall training and test subset 

of the data was modified across a range of values, beginning with a test size of 10% of 

the data and incrementing at 10% intervals until 90% of the data was segregated into the 

testing subset. A model built on a smaller training set (large test size) may be insufficient 

to classify most representative data from the broader dataset, especially if the training set 

is significantly unbalanced. Conversely, a model with a large training set (small test size) 
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may be more prone to overfitting. Thus, various train-test splits were evaluated for each 

random forest classifier generated. 

The dataset for each gene was split into X and y subsets, where X represented 

each of the features used to make a prediction, and y represented the 

FATHMM_PREDICTION target class for each of the entries in the COSMIC dataset. 

These data were further segregated into training and test sets via the train_test_split 

sklearn function (Pedregosa et al., 2011). A series of test set sizes were evaluated before 

selecting the split to use on the feature set. The RandomForestClassifier was instantiated 

and fit on the X and y training sets, called X_train and y_train, respectively. Following 

model fitting, a set of predicted and actual target features were generated by mapping the 

X_test set onto the trained classifier. This predicted value, y_pred, was then compared 

against y_true. Such comparison was essential to ensure the same randomized subsets of 

the entire dataset were used following the train_test_split function. After defining y_pred 

and y_true, a classification report was generated to examine key performance metrics of 

the classifier. Additionally, a ranked list of features by importance was outputted and 

examined for each gene. 

Extremely Randomized Trees Classifier 

 While the random forest classifier was used extensively in the reviewed literature 

(Carter et al., 2009; Kaminker et al., 2007), other ensemble-based classification methods 

were implemented to explore performance of different classification approaches on the 

studied genomic datasets. The Extremely Randomized Trees algorithm (Geurts et al., 

2006; Pedregosa et al., 2011) is another algorithm available with scikit-learn and is an 

extension of the core random forest methodology, also seen in the reviewed literature 
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(Wood et al., 2018). The algorithm extends the randomness incorporated into the 

classification, specifically concerning different splits of the training set (Geurts et al., 

2006; Pedregosa et al., 2011). Thresholds for splits are selected randomly for each of the 

candidate features. From this selection, the best threshold is selected for further splitting 

rules (Geurts et al., 2006; Pedregosa et al., 2011).  

Model Parameter Customization 

The extra-trees classifier has shared customization options with the random forest 

classifier in the scikit-learn toolkit. As such, the same model parameters were evaluated 

and adapted, beginning with the number of estimators or trees used. Following an 

assessment of the number of estimators, the extra-trees classifier bootstrapping was 

assessed in combination with the out-of-bag (OOB) sample inclusion for generalization 

error enhancement (Pedregosa et al., 2011). Finally, the criterion for split quality 

assessment was also modified from the default Gini impurity to assess the entropy or 

information gain approach as an alternative. 

 As performed for the random forest implementation, the ExtraTreesClassifier was 

instantiated and fit using training data from the X and y subsets of the COSMIC mutation 

data, generated via the same incrementally adjusted training subset to enable better cross-

model comparison and to optimize the training and test set sizes on the dataset for each 

gene. Once fit, the y_pred target subset was generated by mapping the X_test data onto 

the trained model, and a classification report and feature importance list were generated. 
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AdaBoost Classifier 

 In addition to the random forest and extremely random trees classifiers, another 

ensemble classifier was applied to the datasets. The adaboost classifier is an ensemble 

boosting algorithm, first introduced by Freund and Schapire in 1997. The method of the 

adaboost classifier differs from both random forest and extremely randomized trees 

approaches. The AdaBoost algorithm works by fitting a sequence of so-called weak 

learners, described as models providing marginal improvement over random guessing 

(Freund & Schapire, 1997; Pedregosa et al., 2011). This process is performed on different 

versions and subsets of the data. The result combines a weighted majority vote/sum to 

produce a final prediction. Throughout the training process, weights are applied to 

different training samples and modified based on the correctness of the prediction at each 

boost step (Pedregosa et al., 2011) 

Model Parameter Customization 

The adaboost classifier takes fewer customization parameters which 

predominantly differ from both the random forest and extra-trees model parameters. The 

first parameter modified was the number of estimators. This parameter is like the number 

of estimators or trees utilized in both the random forest and extra-trees classifiers, but 

instead represents the number of estimators that are used for boosting before termination 

(Pedregosa et al., 2011). Should a perfect fit be achieved, this process is stopped early. 

The parameter was incremented from n = 10 estimators to n = 320 estimators, doubling 

the number of estimators at each increment, as was the case for both random forest and 

extra-trees models. A maximum n = 400 estimators was also assessed. 
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In addition to the number of estimators, the learning rate parameter was also 

tuned. This parameter is a measure of the weight that is applied to each classifier for each 

iteration of boosting (Freund & Schapire, 1997; Pedregosa et al., 2011). As learning rate 

increases, fewer iterations may be needed as defined by the number of estimators used 

(Pedregosa et al., 2011). Conversely, reducing the learning rate may cause the algorithm 

to regress toward a weak learner, which in turn would require a greater number of 

estimators for boosting to achieve improved accuracy and performance (Freund & 

Schapire, 1997). Thus, learning rate will also be examined at several values and 

compared against the number of estimators to identify the optimal tuning for the dataset 

at hand. 

Finally, the last parameter adjusted for the adaboost classifier was the algorithm 

used for implementation. The scikit-learn toolkit offers two options, the SAMME 

(Stagewise Additive Modeling using a Multi-class Exponential loss function) and real 

SAMME.R boosting algorithms (Hastie et al., 2009; Pedregosa et al., 2011). The 

SAMME algorithm was developed as a multi-class extension of the base adaboost 

algorithm and may reduce test error overall for binary classification problems (Hastie et 

al., 2009). The real SAMME.R algorithm is the default choice, and uses the predicted 

class probabilities to boost, whereas the discrete SAMME alternative uses errors in the 

predicted class labels to adapt (Pedregosa et al., 2011). While real SAMME.R is expected 

to reduce both train and test error compared to the discrete alternative (Pedregosa et al., 

2011), both were examined to confirm this assumption in the examined datasets. 

 Similar steps were taken for model training and testing, including developing a 

training subset using a split of the total dataset data, and mapping the test data for the 
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independent features onto the model to yield a predicted target feature set, y_pred. Once 

generated, a classification report was constructed using the predicted vs true target 

features on the test set. Additionally, feature importance rankings were exported for 

further comparison. Precision-recall (PR) and receiver operating characteristic (ROC) 

curves were generated by the final implementation.  
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Chapter III. 

Results 

The dataset of COSMIC mutation data supplemented with other customized 

features was used to train three different ensemble-based machine learning classifiers, 

including the random forest, extremely randomized trees, and adaboost classifiers. Each 

classifier model was trained and tested for each of the genes of interest to compare 

behaviors between models and between gene-specific feature sets.  

APC Analysis and Model Evaluations 

 The Adenomatous Polyposis Coli or APC gene serves various cellular functions, 

including Wnt signaling pathway antagonism and secondary functions such as facilitating 

cellular migration and adhesion, among others (Hanson & Miller, 2005). Research has 

also elucidated APC functionality independent of Wnt signaling, demonstrating further 

tumor suppressive capabilities via mitotic spindle regulation and DNA replication 

inhibition (Hankey et al., 2018). As such, this gene plays an important role in normal 

tumor suppressive behaviors. The APC gene is the most frequently mutated gene in 

colorectal cancers and other epithelial cancer syndromes (Lesko et al., 2014). As of 2018, 

colorectal cancers are estimated to be the third most deadly and fourth most diagnosed 

worldwide and pose a significant threat to patient health and survival. (Rawla et al., 

2019), making the study and classification of APC mutations important to improve 

treatment options for patients. Three machine learning classifiers were constructed using 
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ensemble-based methods to define an approach for classification of APC genomic 

mutations in cancer. 

Random Forest 

The random forest classifier was the first classifier implemented for this research. 

Following the training of the classifier using a subset of the input data for each gene 

independently, predictions on the test data were made using the model. To simplify 

performance measurement, the problem was reduced to a binary classification problem to 

describe each entry in the dataset as either pathogenic or benign.  

The APC random forest tuning was assessed using various parameter 

combinations (See Chapter II, Research Methods). In each instance of the APC random 

forest classifier, the square root method for determining the maximum number of features 

used to train each tree matched or improved performance over the alternative log2 

method. When other parameters were constant, the differences in precision and recall 

between the two methods typically stayed within 0.2%. The number of estimators used 

for each implementation did contribute to changes in overall performances, though with 

less consistency as compared to the changing method for determining the maximum 

number of features. As the number of estimators rose, so too did precision, recall, and F1-

score for most classifier instances. The model using 400 total estimators achieved the 

highest performance and minimized out-of-bag error compared to other classifiers (OOB 

error = 3.5%). However, improvements in these output measurements were marginal 

compared to the implementation using only 160 estimators in model fitting. In the 160-

estimator model, OOB error marginally increased by ~0.1% while other metrics remained 

consistent. From a computational resource efficiency perspective, the lower estimator 
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model was the more practical choice for this application. Finally, the use of Gini impurity 

to assess the quality of each split was superior for each estimator level, which was 

apparent in the consistent reduction of OOB error where the Gini impurity was used 

compared to the entropy-based alternative. 

The data for the APC gene was used to train this optimized random forest 

classifier using the parameter tunings described previously (See Chapter II, Methods). 

The test set included 5125 variant entries from the COSMIC Mutation Data set. A 

classification report was generated using scikit-learn’s classification_report function 

(Pedregosa et al., 2011). The classifier achieved a positive predictive value (PPV) of 0.95 

for classification of pathogenic alterations, and a PPV of 0.98 for benign alterations. The 

recall (sensitivity) of the classifier was 0.97 for pathogenic alterations and 0.96 for 

benign alterations. For pathogenic and benign, a F1-score of 0.97 and 0.96 was achieved, 

respectively. The out-of-bag error for the implemented random forest algorithm was 

0.041, which was an improvement over the other random forest iterations examined for 

APC data. A plot of the receiver operating characteristic (ROC) curve and precision-

recall (PR) curve is included in Figure 1. In addition to ROC and PR curves for the 

classifier, a list of the top weighted features was also gathered and can be found in Table 

1. 

Extremely Randomized Trees 

The extremely randomized trees (extra-trees) classifier was the next ensemble-

based method implemented on the APC dataset. The extra-trees classifier can be 

considered an extension of the random forest classifier in that a new layer of randomness 

is introduced (Pedregosa et al., 2011). While a random subset of candidate features is 
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utilized in each tree, thresholds are taken randomly for each candidate feature, allowing 

the model to select the best threshold to define a new splitting rule (Pedregosa et al., 

2011). For each extra-tree’s implementation, the same training split size (0.33) was used 

from the sample data.  

The performance distribution observed for the extra-trees classifier was 

comparable to the random forest implementations, which is not unsurprising given the 

relatedness of these algorithms (Pedregosa et al., 2011). Review of performance 

indicators again demonstrated that 160 estimators was most appropriate for the size and 

complexity of the dataset for APC. Additionally, a square root max feature method and 

use of Gini impurity for split quality assessment were selected as other tuning parameters. 

Except for models with a low (10) or high (400) number of estimators, precision and 

recall calculations were quite similar for many of the different models. Thus, out-of-bag 

error and number of estimators were the primary parameters leveraged to achieve high 

modeling performance and to optimize computational efficiency. 

The APC data generated using the extra-trees classifier produced a PPV of 0.95 

for pathogenic variants and 0.98 for benign calls. The algorithm also produced a recall of 

0.98 and 0.94, pathogenic and benign variants, respectively. The F1-score was 0.97 for 

the pathogenic class and 0.96 for the benign class. These values were notably similar to 

the random forest implementation output, albeit with a slightly elevated out-of-bag error 

of 0.042. The ROC and PR curves for the APC extra-trees classifier are displayed in 

Figure 2. Additionally, the top weighted features by importance for this classifier are 

listed in Table 2. 
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AdaBoost 

Finally, the adaboost classifier was also executed on the APC dataset. The 

adaboost method differs from both random forest and extra-trees through boosting, 

whereby a combined weighted majority vote of predictions is used to produce a final 

prediction on modified versions of the data (Freund & Schapire, 1997; Pedregosa et al., 

2011).  

The parameter tuning for the adaboost classifier presented a more extreme 

variation in performance between different iterations. The learning rate had a significant 

impact on precision and recall. Increasing the learning rate to 2.0 from the default 1.0 rate 

caused a substantial drop in performance, with precision and recall falling to roughly half 

their achieved levels when using the SAMME algorithm, regardless of the number of 

estimators used. The default SAMME.R algorithm was more heavily affected by the 

change in learning rate, causing precision and recall falling below 0.1 in some cases for 

benign alterations, and below 0.4 for pathogenic cases. Thus, it was clear that a default 

learning rate and default algorithm selection would be optimal for this algorithm. With 

learning rate and algorithm constant, the selection of number of estimators had a marginal 

impact on the performance of the classifier. Performance generally improved as the 

number of estimators was increased but stabilized between 40 and 80 estimators. 

Furthermore, the parameter began to negatively affect some metrics as the number of 

estimators approached 400. Thus, 40 estimators were selected as the optimal target, 

which maximized key performance metrics while also maintaining computational 

efficiency. The adaboost algorithm cannot calculate an out-of-bag error (Pedregosa et al., 

2011) so no OOB error rate was used to directly inform optimal parameter tuning. 
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The performance of the adaboost classifier was varied overall as compared to the 

random trees or extra trees ensemble methods, producing a PPV of 0.94 and 0.97 for 

pathogenic and benign variants, respectively. Similarly, recall showed slightly altered 

performance for both pathogenic (0.98) and benign (0.93) variants as compared to 

sensitivity achieved by either random forest or extra-trees approaches. F1-score for both 

pathogenic and benign alterations was 0.96 and 0.95, respectively. The ROC and PR 

curves for the APC adaboost classifier are shown in Figure 3, and the top feature rankings 

are listed in Table 3. 

Feature Comparisons 

Each of the models identified different feature rankings and relative importance 

scores when using the same train-test split. The top two features for the random forest 

model were related to mutation descriptions (nonsense, frameshift deletion), while feature 

three was a feature describing mutations without a SNP identifier. Features four and five 

for the random forest were a mutation description of missense, and a feature describing 

variants with unknown clinical significance as determined by dbSNP.  

For the extra-trees model, the top four features were identical to the random 

forest, including mutation descriptions of nonsense, frameshift, and missense, as well as a 

feature describing unknown SNPs. Although relative importance of these features was 

slightly different, their inclusion at the top of the list is not unexpected. As a tumor 

suppressor, inactivation of APC is known to play a role in tumorigenesis (Zhang & Shay, 

2017), and the importance of frameshift and nonsense events is understood. The fifth 

highest ranked feature by importance described variants that are confirmed SNPs 
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according to dbSNP, suggesting that the SNP designation of a mutation was a valuable 

descriptor to predict variant status. 

The adaboost classifier selected a different list of top features when constructing 

the model on the same training data. The highest ranked feature for this model denoted 

mutations with a nonsense functional effect, again highlighting the relevance of 

truncating alterations in tumor suppressors. Beyond the nonsense designation, adaboost 

classifier ranked a dbSNP prediction of likely pathogenic to be the second highest feature 

by importance. The third feature ranking described a genome position region, spanning 

coordinates chr5:112839769-112839942. Visual inspection of the APC genomic mutation 

landscape shows a clear hotspot region based on localization of mutations in this region. 

Interestingly, the fifth through seventh feature also identified genomic coordinate bins, 

suggesting the presence of key genomic hotspot regions in APC. The fourth highest 

ranked feature described mutations in tumors with a primary site of large intestine, which 

is relevant given APC’s prevalence in colorectal cancer syndromes (Zhang & Shay, 

2017). The fifth highest ranked feature denoted mutations within the range of chr5: 

112839769-112839942. 

TP53 Analysis and Model Evaluations 

 The TP53 gene was the next tumor suppressor gene examined in this research. 

Discovered in 1979, TP53 performs essential tumor suppressor activities via cell cycle 

arrest and induced apoptosis, responding to numerous stressors faced during a cell’s 

lifetime (Brady & Attardi, 2010). Research has also demonstrated TP53 mutation is a 

common aspect of many cancers, including those related to inherited TP53 deficiency 

and Li-Fraumeni Syndrome (Guha & Malkin, 2017). When altered, TP53 can impact a 
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host of different processes, from transcription and DNA damage response to reduction in 

both apoptosis signaling and cell proliferation control (Kastenhuber & Lowe, 2017). 

Thus, TP53’s status as an established cancer-related gene makes it an ideal target for 

study in the context of mutation classification. 

Random Forest 

The TP53 COSMIC data supplemented with custom features was also modeled 

using a random forest classifier. Compared to other genes studied, the test set included a 

large fraction of samples, totaling 11,588 unique COSMIC mutation data entries. As 

observed for other genes, the out-of-bag error was inversely related to the number of 

estimators, stabilizing once at least 40 estimators were used in the modeling. Overall 

precision (PPV) and recall (sensitivity) values were relatively stable throughout different 

iterations of the parameter tuning. Using the square root maximum feature determination 

proved more successful than the log2 method, the latter reducing performance overall. 

Optimum performance was achieved when 80 estimators were used by the classifier, 

especially given the size of the dataset and the computational time needed for a greater 

number of estimators. The classification report for this model achieved a PPV of 0.95 for 

both pathogenic and benign target classes. The recall (sensitivity) was calculated at 0.97 

for pathogenic alterations, while the sensitivity to benign classification suffered and was 

reduced to 0.89. Pathogenic and benign target classes achieved F1-scores of 0.97 and 

0.89, respectively. Class splits were not perfectly balanced (8,922 pathogenic and 2,666 

benign), but synthetic re-balancing of classes did not meaningfully improve measures of 

performance and thus was not used (Lemaitre et al., 2017). The ROC and PR curves for 

the TP53 random forest implementation can be found in Figure 4. Additionally, the top 



 

37 

features by importance were extracted from the model for comparison to the other 

algorithms implemented and are listed in Table 4. 

Extremely Randomized Trees 

For TP53 data, changes in performance were observed for the extra-trees 

classifier compared to random forest, with slight reductions in performance overall for 

each of the key evaluated metrics. A total of 80 estimators were once again used, striking 

an ideal balance between suppression of out-of-bag error, and maximizing both PPV and 

sensitivity for each of the target classes. The Gini impurity for split assessments and 

square root determination of maximum features used in training once more proved 

superior over the entropy or log2 alternatives, respectively. Compared to the random 

forest, similar performance was observed for PPV (0.95 and 0.95) and recall (0.99 and 

0.84) for pathogenic and benign variants, respectively. Additionally, a slight 

improvement was measured for the F1-score for benign alterations (0.89) compared to 

the random forest classifier. The use of synthetic re-balancing of classes was once again 

ineffective in improving performance for the classifier and was excluded from model 

training (Lemaitre et al., 2017). The achieved OOB error was 0.049. The TP53 extra-trees 

ROC and PR curves can be found in Figure 5, while the top ranked features can be found 

in Table 5. 

AdaBoost 

The adaboost classifier again demonstrated greater variability in performance 

based on the parameters tuned throughout each iteration of the TP53 models. The default 

learning rate of 1.0 was ideal, whereas a learning rate of 2.0 significantly impacted both 
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precision and recall for each target class, regardless of either the number of estimators or 

the algorithm of choice. The algorithm choice was still impactful, with the default 

SAMME.R algorithm proving far superior over the alternative SAMME option. The use 

of 40 estimators was optimal based on a balance between key performance indicators and 

computational speed of the model training and execution. For the optimal adaboost 

classifier for TP53 data, a PPV of 0.91 was achieved for pathogenic alterations, and a 

PPV of 0.88 was achieved for benign. Sensitivity was high for the pathogenic class 

(0.97), although substantially reduced for the benign class (0.69). Although the target 

classes did differ in size (8,922 for pathogenic and 2,666 records for benign), synthetic 

balancing during model training did not measurably improve performance for any key 

indicators examined (Lemaitre et al., 2017). The TP53 adaboost ROC and PR curves are 

displayed in Figure 6. Additionally, the top features were exported from the adaboost 

classifier and are listed in Table 6. 

Feature Comparisons 

The top TP53 features were compared between the three algorithms implemented. 

For the random forest model, the top feature by importance described missense 

mutations, followed closely by frameshift deletion mutations. Interestingly, the feature 

for nonsense mutations ranked 13th, significantly lower than in the APC data. The third 

and fourth highest ranked features described mutations designated as non-SNPs and those 

for which SNP status was unknown, suggesting that a lack of assigned rsID was highly 

informative to the classifier. Finally, the fifth highest ranked feature by importance 

describes a specific mutation genome position range, spanning from chr17:7675221.0-
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7687510. The high importance ranking of this feature suggests that key mutation hotspots 

may be relevant in TP53 variant classification. 

The extra-trees feature list demonstrated exact overlap with the random forest for 

the top five entries reviewed. The top features once again highlighted missense 

mutations, deleterious frameshifts, non-SNP or unknown SNP status, and finally a 

mutation genome region of chr17:7675221.0-7687510. The classifier feature rankings 

between random forest and extra-trees began to differ at about the 10th feature ranking. 

Beyond the 10th highest ranked feature, random forest and extra-trees highlighted 

additional mutation descriptions, genome position ranges, and bins of duplicate entries 

with different priority rankings compared to each other. 

The adaboost classifier feature list differed from both the random forest and extra-

trees models overall, however several top features did overlap. The top feature by 

importance was a mutation genome region defined as spanning chr17:7675221.0-

7687510, the same mutation genome region identified in both random forest and extra-

trees top five. The second highest ranked feature denoted mutations that were not near 

any characterized domain according to Pfam data, while the third entry described TP53 

mutations with between 294 and 743 supporting records in COSMIC describing the same 

mutation. This ranking suggests the adaboost classifier weighted classification differently 

depending on the level of redundancy of a given mutation in the COSMIC database. The 

remaining features demonstrated identical ranking, and the next several features included 

mutations with unknown origin (according to COSMIC records), as well as several other 

mutation genome bins spanning different regions of the TP53 gene. 
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RB1 Analysis and Model Evaluations 

 The RB1 gene is another important tumor suppressor in the context of normal 

cellular function and study of cancer progression. The RB1 gene was notably the first 

tumor suppressor identified when researchers recognized that inactivation of the protein 

directly caused pediatric retinoblastoma (Chinnam & Goodrich, 2013). Prior study also 

points to RB1’s pivotal role in various transcription regulation and in controlling the 

assembly or disassembly of different proteins via complex signaling interactions 

(Chinnam & Goodrich, 2013). As mentioned, deleterious mutations in RB1 may trigger 

tumorigenesis in various cell types throughout the body. Based on RB1’s demonstrated 

role in cancer development and in the history of tumor suppressor research it was 

included in the study of machine learning classification in this work. 

Random Forest 

The third tumor suppressor gene, RB1, was also run through a random forest 

classifier using the same data preparation approach described (see Chapter II, Research 

Methods). Compared to both APC and TP53, RB1 used only 1,262 variants in the 

classifier’s test set due to a significantly smaller collection of mutations available in the 

COSMIC database (Tate et al., 2018). The random forest implementations varied the 

number of features, the criterion to assess splits, and the max feature determination to 

evaluate the optimal tuning settings. In general, the out-of-bag error decreased as the 

number of estimators went up, a trend observed previously for both APC and TP53. The 

OOB error was minimized when 400 estimators were used, however the implementation 

performance was inefficient, even with a relatively small test set to evaluate. The OOB 

error did begin to stabilize once the number of estimators reached 80, which was then 
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used as a starting point for evaluation of other model parameters. Precision and recall for 

each classifier were assessed alongside the F1-score, and optimal performance was 

achieved with 160 total estimators and with the square root method of determining the 

max number of features. The difference between Gini and entropy-based split criteria was 

negligible, so the default Gini impurity was selected for convenience. With this tuning, 

the RB1 classifier achieved a PPV (precision) of 0.91 and 0.93 for pathogenic and benign 

classes, respectively. Additionally, sensitivity for pathogenic variants was 0.94, while 

sensitivity for benign alterations was calculated at a lower level of 0.90. The F1-scores 

for pathogenic and benign classes were 0.92 and 0.91, respectively. The calculated OOB 

error was calculated as 0.074. The ROC and PR curves for the RB1 random forest 

implementation are displayed in Figure 7 and the top features by importance can be found 

in Table 7. 

Extremely Randomized Trees 

The RB1 extra-trees implementations followed a parameter tuning pattern like 

those used in the random forest implementations. Out-of-bag error remained relatively 

high regardless of the number of estimators used when the number of estimators 

exceeded 40. The performance of the extra-trees implementations mirrored that of the 

random forests, with 80 and 160 estimator models yielding similar results. Because the 

time efficiency of both 80 and 160 were comparable, the 160 estimator models were 

preferred given slightly improved behavior on the RB1 dataset. Once more, the default 

Gini impurity proved superior when assessing the quality of each split, and the default 

square root calculation for the maximum number of features also exceeded the alternative 

log2 method. With the optimal model parameters, a PPV of 0.91 was achieved for 
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pathogenic alterations, and PPV for benign alterations was higher at 0.93. The model was 

more sensitive to pathogenic alterations (0.94) than benign (0.90). The F1-scores were 

identical to the random forest at 0.92 and 0.91 for the two classes. Additionally, the OOB 

error was identical at 0.074. The ROC and PR curves for the extra-trees implementation 

are displayed in Figure 8. Additionally, the top feature rankings extracted from the model 

are listed in Table 8. 

AdaBoost 

The adaboost classifiers demonstrated greater extremes in performance as 

compared to either random forest or extra-trees approaches based on the parameter 

tuning. Models built on the default SAMME.R algorithm consistently outperformed the 

alternative SAMME algorithm selection. A learning rate of 2.0 proved more unstable, 

maximizing sensitivity for pathogenic alterations at the expense of precision, which 

would be unacceptable a clinical setting. Using the default 1.0 learning rate and 80 total 

estimators, optimal performance balance was achieved for both target classes. With such 

an implementation, pathogenic and benign classes had calculated PPVs of 0.89 for both 

classes. Sensitivity was different for each class, with a calculated recall of 0.90 for 

pathogenic and 0.87 for benign. The F1-scores were 0.89 and 0.88 for pathogenic and 

benign classes, respectively. The RB1 adaboost ROC and PR curves are shown in Figure 

9. Additionally, feature rankings by importance were exported and can be visualized in 

Table 9. 
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Feature Comparisons 

Feature importance was extracted from each of the three algorithms implemented 

and compared. The random forest classifier ranked the feature describing variants with 

unknown SNP status as the highest by importance. The second through the fourth highest 

ranked feature captured mutation descriptions of missense, deleterious frameshifts, and 

nonsense mutations. Again, the role of truncating short variant alterations was reinforced 

in the context of tumor suppressor genes, as seen in both APC and TP53 data. The fifth 

highest ranked feature described variants with a clinical significance ranking of 

pathogenic, a ranking predicted by the integrated dbSNP data. 

The extra-trees classifier shared identical features with the random forest 

classifier. The top five features once more described SNP unknown status, followed by 

missense, frameshift (deletion), and nonsense functional statuses. The fifth feature once 

again denoted a pathogenic prediction from the dbSNP dataset. The feature set rankings 

for both random forest and extra-trees classifiers remained nearly identical until the ninth 

ranked feature was reached, at which point the features sets diverged slightly in terms of 

rank order.  

The adaboost implementation highlighted several other features as being 

important for model training and performance. The top ranked feature by importance for 

adaboost was the feature describing a clinical significance of pathogenic, as predicted by 

the integrated dbSNP dataset. Interestingly, the second highest weighted feature denoted 

mutation from tumors with between 12,308.5 and 219,194 other mutation records in the 

COSMIC database, identified by matching the tumor ID of the variant in question against 

the entirety of the COSMIC mutation database. Indeed, mosaicism and hypermutation 
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has been characterized in some inherited cancer syndromes such as retinoblastoma 

(Rodriguez-Martin, et al., 2019). Such a weighting suggests a perceived relationship 

between overall tumor burden and pathogenicity of RB1 alterations, a feature which was 

not ranked highly in either random forest or extra-trees classifiers. Beyond these two 

features, the third feature listed was COSMIC signature SBS87. The COMSIC dataset 

asserts the SBS87 signature originates from Thiopurine chemotherapy treatment based on 

experimental evidence (Alexandrov et al., 2020). Another clinical study further supports 

the ototoxicity of this treatment regimen in children treated for retinoblastoma (Soliman 

et al., 2018). Beyond these features, the adaboost classifier ranked another tumor 

mutation burden-related feature highly, denoting mutation records from tumors with 

between 6,059 and 12,308.5 other detected mutations present in the COSMIC database. 

Finally, the fifth feature listed describes a mutation genome position span, ranging from 

chr13:48376917-48380217. Visual inspection of the RB1 COSMIC landscape shows 

relatively consistent distribution of mutations across the span of the gene. However, the 

region of chr13:48376917-48380217 does show some clustering of mutations, many of 

which are nonsense or frameshift deletions/insertions.  

EGFR Analysis and Model Evaluations 

 The epidermal growth factor receptor (EGFR) is an important protein involved in 

a multitude of cellular functions. The EGFR protein localizes on the cell surface, 

facilitating cellular differentiation and proliferation to further cell growth (Voldborg et 

al., 1997). Modern cancer research overwhelmingly recognizes EGFR’s role in 

tumorigenesis in several cancer subtypes, whereby upregulation and over expression fuel 

unrestricted cell growth (Sigismund & Lanzetti, 2018). Several targeted EGFR therapies 
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have been developed, improving survival rates of patients with EGFR-driven disease in 

several different tumor types (Xu et al., 2017). Thus, a machine learning implementation 

to categorize somatic EGFR alterations in a clinical setting would prove valuable in 

determining prognosis and developing future treatment options for various patient 

populations. 

Random Forest 

The COSMIC mutation data for EGFR was the first of the oncogenes to be 

modeled using the random forest classifier. In total, 1,432 variants were included as part 

of the test set once the model was trained, with 671 variant records being classified as 

pathogenic, and 761 being classified as benign. The model was assessed by manually 

adjusting different parameters as performed for other random forest implementations. As 

seen previously, the Gini impurity proved to be the best assessment of split quality, and 

the max features was set to the default square root value. A model using these parameters 

along with n = 80 estimators produced the best balance of OOB score minimization, 

maximization of precision and recall, and computational efficiency. This optimized 

model recorded a PPV of 0.94 for pathogenic variants, and a PPV of 0.98 for benign 

alterations. For sensitivity, pathogenic and benign variants each scored identically with a 

calculated recall of 0.96. The F1-score was also calculated as 0.96 for both target classes. 

The out-of-bag error for the random forest implementation was 0.03. The top features 

identified by the model can be found in Table 10. Additionally, ROC and PR curves for 

the EGFR random forest implementation are displayed in Figure 10. 
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Extremely Randomized Trees 

The extra-trees implementation for EGFR showed similar performance 

distribution to the random forest implementation, where standard parameter tuning was 

performed in accordance with the research methods. When trained using a total of 80 

estimators, performance metrics were maximized while the out-of-bag error remained 

relatively low. While little difference was observed between the Gini and entropy split 

assessment methods, the Gini method was selected as the default value for simplicity. As 

with the random forest algorithm, the use of a log2 method to determine the maximum 

features negatively impacted performance, so the default square root method was utilized. 

With these parameters, PPV of 0.94 and 0.98 was achieved for pathogenic and benign 

variants respectively, while sensitivity for both classes remained high (0.98 for 

pathogenic alterations, 0.95 for benign). The F1-scores were once again 0.96 for both 

target classes, with an OOB error consistent with that achieved by the random forest 

(0.031). The top features identified by the model can be seen in Table 11, and ROC and 

PR curves for EGFR extra-trees modeling displayed in Figure 11. 

AdaBoost 

The adaboost classifier was the third classifier trained using the EGFR training 

data. The adaboost classifier had reduced performance output overall compared to the 

random forest and extra-trees algorithms, though the reduction was not as extreme as that 

observed for classifiers trained using other genomic data. Based on performance output 

and computational time, ideal performance was achieved when 40 total estimators were 

used to train the model. Additionally, the learning weight of 1.0 proved superior, as did 

the SAMME.R algorithm over the SAMME alternative. With these parameters, a PPV of 
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0.95 was achieved for pathogenic variants, and a PPV of 0.96 was achieved for benign 

alterations. Sensitivity for pathogenic and benign alterations was also high, calculated as 

0.96 and 0.95, respectively. The F1-scores were like both random forest and extra-trees 

models, with an F1-score of 0.95 for pathogenic alterations and 0.96 for benign. The 

ROC and PR curves for the EGFR adaboost implementation are displayed in Figure 12. 

The top features from the adaboost classifier can also be found in Table 12. 

Feature Comparisons 

Feature comparisons for each of the three EGFR models was also performed. For 

the random forest, the top five features were ranked with similar feature weights. The 

highest ranked feature described mutations with a missense functional effect, while the 

second ranked feature described mutations with an unknown SNP status according to 

either COSMIC or dbSNP. The third through fifth features were all COSMIC signatures; 

SBS40, SBS2, and SBS16, respectively. SBS40 has an unknown signature designation in 

COSMIC and the signature composition is generally balanced in terms of percentage of 

single base substitutions contributing to the signal itself. COSMIC also notes that SBS40 

was described by validated evidence, and additionally mutations contributing this 

signature may correlate with patient age for some cancers (Alexandrov et al., 2020). The 

SBS2 signature is attributed to the activity of the AID/APOBEC family of cytidine 

deaminases, according to COSMIC (Alexandrov et al., 2020). Research suggests that this 

signature may manifest directly via DNA replication errors across uracil, or via error-

prone polymerases replicating in the presence of sites generated by excision repair 

removal of uracil (Alexandrov et al., 2020). The fifth-ranked SBS16 signature also has 

unknown significance in the COSMIC database. The signature is notably defined by a 
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high percentage of T>C single base substitutions. Preliminary data suggests that low 

levels of nucleotide excision repair on untranscribed strands and elevated levels of DNA 

damage on untranscribed strands may contribute to the signature (Alexandrov et al., 

2020). 

The extra-trees features were notably different than the random forest features, 

which was not usually the case for other genomic data studied. The top ranked feature 

according to this classifier described mutations with a missense functional effect. The 

second and third highest ranked features by importance described variants with an 

unknown SNP status or with a non-SNP designation. The fourth ranked feature described 

mutations near a disordered domain, based on incorporated Pfam data. The Pfam 

database describes disordered regions as being conserved, however such regions often 

demonstrate biased sequence composition (Mistry et al., 2020). The fifth highest ranked 

feature is a genome region, spanning chr7:5519182-55191822. This 41-base pair span 

covers a region of EGFR intron 2 (NM_005228.5). While the COSMIC data examined 

does not explicitly contain intronic variants, a complex deletion with a protein effect of 

p.V30_R297>G spans the intron 2 region. Because of the position averaging approach to 

simplify description for complex alterations, this mutation was localized to the region 

described, thus suggesting the relevance of this 801 base pair deletion and others in the 

same region. 

Finally, the adaboost classifier features were examined and compared to the other 

algorithm implementations. The top ranked feature was COSMIC signature SBS89. 

Although SBS89 has an unknown etiology, it is predicted to be active in the first decade 

of life, according to COSMIC records (Alexandrov et al., 2020). The signature shows 
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similar percent contribution of different base substitutions, though C>T and T>G appear 

to be enriched for some combinations of flanking bases. The next highest feature denoted 

mutations with a coding silent status, which may include synonymous or non-protein 

changing mutations which conserve the overall amino acid sequence of the protein. The 

third highest ranked feature described COSMIC signature SBS17b. According to the 

COSMIC database, SBS17b has some prior association to a form of fluorouracil 

chemotherapy treatment, characteristic of damage caused by reactive oxygen species 

resulting from treatment (Alexandrov et al., 2020). A causal link has been established 

between the impact of reactive oxygen species on EGFR-mediated cancer progression, 

especially where EGFR resistance is concerned in the context of tyrosine kinase 

inhibitors or TKIs (Weng et al., 2018). This signature may describe patterns in the dataset 

indicative of some tumors developing resistance alterations conferring survival advantage 

to their tumors. The fourth highest ranked feature described mutations with missense 

functional status, while the fifth highest ranked feature described mutations near low 

complexity domains as modeled by Pfam. Although difficult to study evolutionarily, 

some researchers suggest low complexity domains play a role in mediating types of 

protein-protein interaction (Kastano et al., 2021).  

ERBB2 Analysis and Model Evaluations 

 The ERBB2 gene was the next oncogene tested in these experiments. A relative of 

EGFR in the epidermal growth factor receptor family (Negro et al., 2004), the ERBB2 

gene encodes a transmembrane tyrosine kinase receptor or TKR (Bertucci et al., 2004). 

Notably, the receptor can heterodimerize to promote neuregulin signaling (Negro et al., 

2004). In humans, this complex network of signals can play a role in neural circuitry, 
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myelination, and neurotransmission/plasticity (Mei & Nave, 2014). Deregulation and 

overexpression of ERBB2 in humans is a known driver of oncogenesis, frequently 

observed in human breast cancers (Bertucci et al., 2004). Notably, the monoclonal 

antibody Trastuzumab was one of the first developed for treatment of ERBB2-positive 

breast cancer (Dean & Kane, 2015). Because pathogenic ERBB2 genotypes typically 

manifest as over-expression via amplification (Bertucci et al., 2004), the gene is an 

interesting target for machine learning-based classification of short variant alterations in 

this research to elucidate possible drivers in cancer.  

Random Forest 

 COSMIC mutation data for ERBB2 was split into training and testing sets and 

executed on several random forest model implementations as was done previously. With 

a variant test set of only 885 total records in the test set, performance was notably 

reduced compared to the previously trained classifiers, though category splits were 

comparable in size (339 benign alterations versus 546 pathogenic alterations). As the 

number of estimators increased, the out-of-bag error decreased, however above 160 

estimators the out-of-bag error began to increase once more. This is predicted to be a 

consequence of the relatively small test set size. Overall, the classifier with 160 

estimators demonstrated the best balance of different performance indicators when using 

both the default Gini impurity and the square root max features method. While the out-of-

bag error of 0.112 was elevated, other precision and recall metrics were improved. A 

PPV of 0.91 was achieved for the pathogenic class, while a PPV of 0.89 was achieved for 

the benign class. The sensitivity of pathogenic alterations was higher at 0.94, while 

benign variant sensitivity suffered at a calculated level of 0.85. The F1-scores registered 



 

51 

at 0.92 and 0.87 for pathogenic and benign, respectively. The ROC and PR curves for 

ERBB2 random forest performance can be found in Figure 13. Additionally, the top 

features were explored from the model and are listed in Table 13. 

Extremely Randomized Trees 

Performance characteristics for the extra-trees implementation on ERBB2 once 

more mirrored those of the random forest due to the relatedness of the two algorithms. 

The classifier instance using 160 estimators, default Gini impurity, and a square root max 

features cap exceled in each of the performance categories. Worth noting is that nearly 

identical performance was achieved using only 80 estimators and using the entropy-based 

split quality assessment. If performance considerations were of high importance, this 

implementation may reduce computational time of the algorithm. However, given the 

small test set size for this data, the 160-estimator model with default settings was chosen 

for simplicity. The out-of-bag error for this implementation was marginally reduced 

compared to the random forest at an error fraction of 0.107. Precision (PPV) for the 

pathogenic class was 0.91, while the benign class had a PPV of 0.89. The sensitivity 

registered at 0.94 and 0.85 for pathogenic and benign, respectively. The F1-scores were 

identical to the random forest, at 0.92 and 0.87 for pathogenic and benign classes, 

respectively. The ROC and PR curves for the ERBB2 extra-trees model are displayed in 

Figure 14. The top features were also exported from the model and are listed in Table 14.  

AdaBoost 

The adaboost implementations for ERBB2 were varied according to the number 

of estimators, the learning rate, and the algorithm selection. As seen in prior 
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implementations, the SAMME.R algorithm proved superior to the SAMME alternative, 

stabilizing both PPV and sensitivity between classes compared to the more extreme 

differences in calculated values observed for the SAMME implementations. An 

acceptable balance of performance was achieved with 40 estimators used and a learning 

rate of 1.0. While fewer estimators (20) did yield promising performance, improvements 

were at the expense of PPV for pathogenic alterations. With 40 estimators, PPV was 0.89 

for pathogenic alterations and just 0.83 for benign. Sensitivity was higher for pathogenic 

alterations (0.90) than benign (0.83). The F1-scores showed a similar disparity, calculated 

at 0.89 for pathogenic and just 0.83 for benign. Displays of the ROC And PR curves for 

this adaboost implementation can be found in Figure 15. Additionally, the top features 

were examined and are listed in Table 14. 

Feature Comparisons 

A comparison was performed between the top features of each of the algorithms 

implemented for ERBB2. The random forest algorithm ranked the missense functional 

effect feature highest by importance. The second highest ranked feature described 

mutations near unknown functional domains, while the third feature denoted mutations 

with an unknown SNP status according to both COSMIC and dbSNP. The fourth highest 

ranked feature described in-frame insertion mutations, and the fifth highest ranked feature 

denoted mutations predicted to be pathogenic according to dbSNP.  

The extra-trees model shared the same top five features with the random forest 

classifier, however with slightly modified rankings by importance. The top three features 

were missense functional designation, followed by unknown nearby domains and a SNP 

unknown designation. The fourth feature was a clinical significance prediction of 
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pathogenic based on data from dbSNP. The fifth ranked feature described in-frame 

insertion mutations, as was seen in the random forest feature list. 

The adaboost features differed from both the random forest and the extra-trees 

classifiers. The top adaboost feature by importance was COSMIC signature SBS9, 

followed by COSMIC signature SBS8 as the second highest ranked feature. The SBS9 

signature characterizes mutations arising from replication by polymerase eta, specifically 

as part of somatic hypermutation in lymphoid cells (Alexandrov et al., 2020). However, 

COSMIC notes that this etiology is made by statistical association alone, so the signature 

may have different origins and be relevant in ERBB2-mediated cancers as well. The 

SBS8 signature has an unknown etiology according to COSMIC. The signature 

composition is heavily weighted toward C>A and T>A mutations based on experimental 

data (Alexandrov et al., 2020). The third highest ranked feature identified mutations with 

a primary tumor site of prostate. Research suggests that signaling from ERBB2 can 

increase the expression of the Androgen Receptor, a common driver in some prostate 

cancer patients (Gao et al., 2016). The fourth listed feature denoted mutations with a 

deleterious frameshift functional effect, while the fifth listed feature describes mutations 

with a malignant melanoma tumor type. While deleterious protein effects may be 

detrimental to translation of oncogenic proteins, the inclusion in the list may be to further 

separate benign or non-activating alterations in the dataset. Although the role of ERBB2 

mutation in melanoma is not well characterized, recent research suggests it can represent 

a targetable option for some patients with BRAF V600 wild type melanoma 

(Gottesdiener et al., 2018). 



 

54 

PIK3CA Analysis and Model Evaluations 

 The PIK3CA gene is the third and final oncogene examined as part of this 

research. The PIK3CA protein product is a phosphoinositide kinase (PIK), involved in 

phosphorylation and signal transduction (Samuels & Waldman, 2010). As with other 

proto-oncogenes, PIKICA supports a host of cellular activities including proliferation, 

survival, motility, and general cell growth upon activation (Karakas et al., 2006). While 

somatic alterations were initially discovered in patients with colorectal cancers, PIK3CA 

has widespread prevalence in various human tumors including breast, brain, skin, and 

ovarian cancers, among others (Samuels & Waldman, 2010). Thus, PIK3CA was selected 

for study to explore more robust machine learning variant classification approaches. 

Random Forest 

The random forest classifier was implemented by assessing different 

combinations of parameters to tune the model for optimal performance. The split for 

PIK3CA test data included 3,853 pathogenic variants and 515 benign alterations. Given 

the highly unbalanced test set, the Imbalanced-learn library was included to synthetically 

boost the minority class in the model training (Lemaitre et al., 2017). A comparison of 

the raw unbalanced data and the synthetically balanced data showed no meaningful 

change in key performance metrics, so the balancing library was not used. Overall, each 

model exhibited high quality performance, and improvements were incremental for each 

combination of parameters. Once again, out-of-bag error decreased sharply at about 40 

estimators and remained low throughout the remaining implementations. Beyond 40 

estimators used, all models performed similarly regardless of the use of Gini or entropy 

split assessments and regardless of the max features used in training. As a result, a model 
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with 40 estimators was used with default settings of Gini impurity and square root max 

feature determination. With this tuning, a PPV of >0.99 was achieved for the pathogenic 

target class and a PPV of 0.97 for benign. Sensitivity and F1-scores for both target 

classes were the same as their respective PPVs (>0.99 for pathogenic and 0.97 for 

benign). For this implementation, OOB error was calculated at 0.009. The ROC And PR 

curves for PIK3CA are shown in Figure 16, while the top features extracted from the 

model are listed in Table 16. 

Extremely Randomized Trees 

The extra-trees implementations followed similar patterns to the random forest 

models tested. As seen in the random forest models, the out-of-bag error declined sharply 

for models using at least 40 estimators, which was again selected as the ideal number of 

estimators based on performance metrics. Within the implementations using 40 

estimators, the default square root max feature value was preferred. While the entropy 

method for split assessment did reduce the OOB error for all implementations on the 

dataset over the default Gini impurity, the Gini impurity showed consistent performance 

and was selected for simplicity. Using this optimal tuning, the same values for PPV, 

sensitivity, and F1-score for both pathogenic and benign classes were achieved when 

compared to the random forest implementation (>0.99 for the pathogenic class and 0.97 

for benign for each calculation). The ROC and PR curves for the PIK3CA extra-trees 

implementation are shown in Figure 17. Additionally, the top features were extracted 

from the model and can be found in Table 17. 
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AdaBoost 

Finally, the adaboost classifier was deployed on the PIK3CA dataset. As observed 

previously, elevated learning rate (2.0) created more extreme separation of both PPV and 

sensitivity calculations between the two classes and was non-viable. Using a default 

learning rate of 1.0, the SAMME.R algorithm improved performance over the SAMME 

alternative. Using 40 estimators balanced performance output and computational time. 

With these parameters, the adaboost classifier achieved a PPV of 0.99 for the pathogenic 

class and 0.96 for benign. The same values (0.99 and 0.96) were calculated for sensitivity 

and F1-scores for the pathogenic and benign classes, respectively. The ROC and PR 

curves for PIK3CA adaboost modeling are displayed in Figure 18 while the top feature 

rankings are listed in Table 18. 

Feature Comparisons 

The top PIK3CA features for each classifier were exported and compared. For the 

random forest classifier, the top ranked feature by importance was the mutation 

description of missense. The second highest ranked feature described mutations that were 

not localized near a characterized domain according to Pfam data. The third and fourth 

highest ranked features by importance described variants with predictions of likely 

pathogenic and pathogenic according to dbSNP prediction algorithms incorporated into 

the dataset. Finally, the fifth highest ranked feature described mutations in tumors with a 

primary site of meninges. The role of PIK3CA is well studied in ovarian, breast, and 

colorectal cancer syndromes (Ligresti et al., 2009). However, clinical evidence also 

characterizes activation of PIKCA in some meningioma cancers, representing a possible 

target for neoadjuvant therapy for patients (Zadeh et al., 2016).  
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The extra-trees model demonstrated some variation in top features used to train 

the model compared to the random forest. The top ranked domain described mutations 

that were not near a known functional domain based on Pfam data, followed closely by a 

mutation description of missense as the second highest ranked feature by importance. The 

third feature was not listed in the random forest top five, describing mutations with 1.0 – 

10.0 duplicate entries present in the COSMIC database. This finding suggests that 

mutation prevalence in the sample population informed classification behavior during 

training of the model. The fourth highest ranked feature described variants predicted to be 

likely pathogenic according to dbSNP data. The fifth feature described variants with an 

unknown SNP status according to dbSNP and COSMIC designations. 

The adaboost classifier highlighted several other features ranked uniquely 

compared to either random forest or extra-trees models. The top ranked feature by 

importance denoted mutations without a known functional domain nearby according to 

Pfam data. The second and third top features listed were COSMIC signatures SBS88 and 

SBS39. The SBS88 signature is characterized by strong presence of T>C and to a lesser 

extent, T>G single base mutations with various flanking base combinations (Alexandrov 

et al., 2020). The signature is believed to originate from exposure to E. coli bacteria 

carrying a pks pathogenicity island. The result of such exposure is production of a 

genotoxic compound called colibactin (Alexandrov et al., 2020). The SBS39 signature is 

characterized by a strong percentage contribution of C>G single base substitutions, with 

the other changes of C>A/T and T>A/C/G showing similar contribution with various 

flanking bases for each. The etiology for this signature remains unknown, however 

evidence shows the signature is commonly observed (in terms of mutations per 
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megabase) in head small cell carcinoma and breast cancers (Alexandrov et al., 2020). 

Clinical evidence supports PIK3CA’s involvement in both breast and head small cell 

carcinomas, among others (Ligresti et al., 2009). The fourth and fifth highest features 

listed correspond to mutation descriptions of coding silent mutations and nonsense 

mutations, respectively.  
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Chapter IV. 

Discussion 

 In the rapidly expanding field of cancer genomics, mutation classification is 

essential for the diagnosis of cancer, as well as the discovery and prescription of 

personalized therapy options for patients living with the disease. In this research, machine 

learning was shown to be a viable, efficient, and effective tool when used to address the 

complex problem of variant classification in cancer. Based on the observed results of this 

research, several factors should be considered to improve the efficacy of future machine 

learning applications in cancer. 

Feature Selection and Creation 

 For supervised machine learning implementations, feature selection is an essential 

step toward developing a robust model. The need for thoughtful feature creation was 

clear in this research, and enrichment of the feature set was essential for each of the 

classifiers constructed. In addition to the default COSMIC mutation records, information 

from other reputable public databases such as NCBI’s dbSNP database, the Pfam 

database, and COSMIC mutation signatures was incorporated. By extracting key 

attributes from these external datasets and supplementing the existing records, new 

relationships between the data could be discovered during model training. The use of 

external data also enabled further extrapolation to create linkage between datasets, 

allowing features to be transformed or encoded more thoughtfully. Once the features 
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predicted to be of high importance could be structured and encoded systematically, the 

entire aggregate dataset could be constructed in real-time to train the classifier of interest. 

This templatizing of features based on available data may enable greater reproducibility 

in development and refinement of a machine learning approach to cancer variant 

classification. 

Mutation Functional Effect 

 This research showed that functional effects are often a strong predictor of 

pathogenic or benign status for a variant with unknown clinical significance. For tumor 

suppressor genes, all of implementations studied reinforced the relevance of truncating 

alterations, whether nonsense point mutations or deleterious frameshift truncations. 

Conversely, a functional status of missense was repeatedly ranked higher for oncogenes. 

Taken together, these observations suggest that missense mutations may be a more 

common mechanism of activation for oncogenes, while deleterious mutations are 

generally expected to hinder the expression potential for genes which harbor them. The 

functional effect feature can be further refined in future adaptations to predict the 

tolerability of different amino acid changes in the protein. 

Relevance of dbSNP Data 

A notable finding was the relevance of dbSNP data and its impact on model 

performance. Data incorporated from dbSNP included not only dbSNP identifiers (which 

denote reported germline mutations), but also dbSNP pathogenicity prediction. This extra 

information proved valuable for each machine learning classifier, signifying that somatic-

germline information from dbSNP is an essential component of any machine learning 
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implementation. As sequencing becomes more accessible to patients and providers, this 

database is expected to grow. Discovery of new SNPs is expected to improve 

understanding of the role of SNPs in cancer development and cancer predisposition. 

Genomic Positions and Recurrence 

The features for genome position and the prevalence of each mutation (via the 

duplicate entry feature mapping) were informative in several machine learning model 

implementations. The genome position of each mutation was simplified and divided into 

one of 10 bins for each gene to prevent any classifier from over-weighting this feature. 

The combination of mutation genome position and presence of duplicate entries strongly 

support the notion of genomic hotspots in genes, a proposition which can enable rapid 

estimations of variant classification when few other features or descriptors are available. 

Additionally, the presence of duplicate entries suggests that population prevalence is a 

meaningful way to estimate relevance of a mutation in cancer, either for a common 

germline SNP or for a canonical disease-specific mutation. The emergence of such 

common somatic alterations in different patient populations and different disease 

subtypes may readily lend itself toward classification of otherwise uncharacterized 

mutations. 

Utility of COSMIC Signatures  

The various COSMIC signatures incorporated were ranked highly in different 

classification approaches for both tumor suppressors and oncogenes. Although 

widespread discussion of genomic mutation signatures began in the last few decades 

(Brash et al., 1991), the growing list of recognized mutation signatures continues to 
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provide insight into the influences of environmental conditions and of treatment on 

patient tumor progression. The genomic signatures weighted highly by the various 

machine learning implementations often had a clear link to diseases in which the gene in 

question was frequently mutated or treatment side effects related to standard of care for 

that disease or gene. Other genomic signatures represented a novel finding with unclear 

implications, possibly due to low evidence to support the impetus of the signature. Such 

signatures with unknown etiology were especially prevalent in the oncogenes studied 

which represent future research opportunities. Still, genomic signatures provided unique 

perspective on the predicted relevance of certain mutations in cancer, and for some genes 

may be highly important considerations for an effective machine learning classifier. 

Selecting the Optimal Algorithm 

 In this research, three different ensemble-based learning approaches were 

implemented, including the random forest classifier, the extremely randomized trees 

classifier, and the adaboost classifier. As demonstrated by this work, the choice of 

classifier can vary greatly depending on the application at hand and the data available for 

training and classification.  

 The random forest classifier was consistently high performing for each of the 

different genes tested, a testament to the robustness and reliability of this algorithm. This 

algorithm has proven utility in the field of cancer variant classification as evident by prior 

research (Carter et al., 2009; Kaminker et al., 2007). The extra-trees classifier operated as 

an extension of the random forest, introducing additional randomness in the training 

process (Geurts et al., 2006). Despite this increased randomness, performance remained 
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nearly identical to the random forest classifier for each gene, both in terms of standard 

performance measures and when examining the top features selected. In some instances, 

the extended randomness appeared to worsen performance, albeit only slightly. It may be 

valuable to compare the random forest and extra-trees performance with the dataset being 

studied to determine the necessity of increased randomness.  

The adaboost classifier employed a different method than either random forest or 

extra-trees models, using a weighted boosting approach instead of a set of random 

decision trees (Freund & Schapire, 1997). Overall, the adaboost classifier demonstrated 

reduced precision, recall, and F1-score when compared to both random forest and extra-

trees models trained on the same dataset. Despite the lower performance metrics overall, 

the adaboost models consistently identified novel features not ranked as favorably in the 

other models used. In some implementations, these extra features described COSMIC 

mutational signatures ranked comparatively lower in the other implementations, though 

with etiology often supporting the ranking which they were assigned and their perceived 

relevance in cancer. The uniqueness of adaboost feature lists often compensated for the 

sub-par performance of the model, offering new perspectives not captured in either of the 

other implementations. For this reason, the adaboost classifier provided additional areas 

of interest that future research may find valuable, especially in genes not well studied. 

Research Limitations 

 Several limitations influenced the scope of this research and are necessary 

acknowledgements for future study. The databases used may have limited the overall 

utility of the algorithms developed. Aggregate public databases such as COSMIC and 
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dbSNP provide valuable information, and accessibility was a primary focus in this 

research. However, larger uniformly curated datasets may be optimal for such variant 

analyses. Curated databases are expected to control for artifacts more robustly and will 

also enable more rapid feature design and streamlined implementation. 

 The design of features in this study was also a limiting factor. The feature set was 

designed based on publicly available databases and the use of proprietary algorithms or 

expanded feature sets was not within scope. Additionally, institutions gathering their own 

data directly from sequenced tumor tissue are expected to have access to various other 

performance metrics such as sequencing depth, variant allele frequency, and matched 

normal tissue data, among others. The feature set of future implementations can then be 

enriched with additional relevant descriptors to further strengthen the classification 

performance. 

 The methods used emphasized single gene datasets, with independent classifiers 

developed for each gene. The decision to utilize focused classifiers based on single gene 

data was made to highlight the variability in variant classification based on the gene and 

other contributing factors. Due to resource constraints, a more robust universal classifier 

on the entire COSMIC dataset was not possible in this research. However, a classifier that 

can evaluate different mutations for various genes will likely identify different feature 

importance rankings which can be informative to researchers examining specific 

problems.  

 Another limitation was the challenge of determining a ground truth for the 

classifiers designed and implemented. Information about the samples from which the 

mutation records were gathered was not known, and thus clinical context about the 
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patients in question was unknown at the time of research. Information related to patient 

disease history and other comorbidities will further inform pathogenicity prediction, 

though this was not possible in this research. In a real-world setting, such information 

will be essential to evaluate the business use case and approved use of a machine learning 

classifier where direct patient care or clinical trial enrollment is concerned. 

 Finally, simplification of the classification problem also had implications for 

clinical utility of the research outcomes. Several mutation subtypes have been studied and 

provide unique perspectives on the role of mutations in the cancer genome (Stratton et al., 

2009). In this research, the target class was simplified into a binary classification 

problem, characterizing pathogenic driver mutations and benign mutations which were 

predicted to be non-functional. This classification does not allow for more nuanced 

reporting of mutation subtypes, such as passenger mutations, germline mutations, or 

silent non-coding mutations (Stratton et al., 2009).  

Future Research Opportunities 

 Future research can expand upon the methodologies described herein in several 

ways. Consensus building from a multi-model approach to machine learning has shown 

promise (Xiao et al., 2018) and may improve outcomes in real-world applications. 

Additionally, advancements in the field of three-dimensional protein modeling have 

enormous potential for improved accuracy in machine learning models. Such predictions 

of protein structure can enable more complete understanding of the tolerability of 

mutations in cancer and the impact on protein-protein interactions. (Chevalier et al., 
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2017). The integration of protein structure and tolerability prediction into machine 

learning classifiers may therefore strengthen their performance and application.  

 The inclusion of genomic data from various sources, including single cell 

sequencing, is also predicted to enhance future research endeavors. Single-cell 

sequencing has the potential to resolve observed cellular heterogeneity in sequenced data 

(Kim et al., 2021). Incorporation of single-cell data may also offer additional insight into 

expression patterns, providing a more complete understanding of tolerability and 

expression of mutated proteins (Kim et al., 2021). Exploration of machine learning in the 

context of single-cell data and other sources of genomic data is expected to enrich 

training sets and provide better real-world applications, especially in the context of 

therapy development. 

 Research design to enable more robust target classification of mutations is also 

predicted to improve the utility of classification algorithms in cancer. Clonal 

hematopoiesis of indeterminant potential, or CHIP, is proving to be an important 

consideration in modern cancer diagnostics and study (Marnell et al., 2022). Research has 

demonstrated that CHIP mutations arise from a clonally expanded hematopoietic stem 

cell and may obfuscate overly simplistic classification frameworks (Marnell et al., 2022). 

Future research which applies more rigorous classification to such nuanced genomic 

contexts is predicted to identify therapeutic targets with higher confidence compared to 

the binary classification approach utilized in this research. 
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Conclusions 

 It is apparent that machine learning is a powerful tool for bioinformaticians 

navigating the growing collections of complex cancer genomics data. The ability to 

rapidly instantiate new learning algorithms and continue to train and improve upon the 

models used provides longevity to machine learning solutions as the collective 

understanding of cancer increases. The random forest algorithm represents a consistently 

serviceable option for variant classification applications, both for its ease of 

interpretability and study as well as the results it produces for different genes and 

different datasets. An approach utilizing different modeling workflows may elucidate 

meaningful features and directions for future research, as demonstrated herein using the 

extra-trees and adaboost classifier alternatives. Beyond these classifiers, several others 

may be used to adequate effect depending on the data and the hypothesis being tested. By 

incorporating custom features, protein domain conservation, dbSNP data, and mutational 

signatures, meaningful predictions can be made about the pathogenic or benign status of a 

novel mutation. Through use of machine learning to predict pathogenicity of a mutation 

in cancer, new mutations of interest can be discovered, and new treatments may emerge 

for patients living with the disease. Such research can continue to provide new 

opportunities for improved patient health and survival and will lead to improved patient 

quality of life.  
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Appendix 1. 

Tables 

The following tables describe the top features for each of the models 

implemented. Review and comparison of the top five features between models for each 

gene can be found in Chapter III: Results.  

Table 1. APC Random Forest Feature Rankings 

 
This table lists the feature rankings for the random forest classifier trained on APC 
genomic data. Mutation description features describe different functional effects of the 
mutations. Additionally, each SBS## feature represents a COSMIC mutation signature. 
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Table 2. APC Extra-Trees Feature Rankings 

 
This table lists feature rankings for the extra-trees classifier trained on APC data. 
Mutation description features describe different functional effects of the mutations. 
Additionally, each SBS## feature represents a COSMIC mutation signature. Mutation 
genome bins represent a specific range of the gene studied on the appropriate 
chromosome.  

Table 3. APC AdaBoost Feature Rankings 

 
This table shows feature rankings for the adaboost classifier trained on APC data. 
Mutation description features describe different functional effects of the mutations. 
Additionally, each SBS## feature represents a COSMIC mutation signature. Mutation 
genome bins represent a specific range of the gene studied on the appropriate 
chromosome. Primary site features describe the tissue of origin of the tumor sample as 
per COSMIC records. 
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Table 4. TP53 Random Forest Feature Rankings 

 
This table shows feature rankings for the random forest classifier trained on TP53 
genomic data. Mutation description features describe different functional effects of the 
mutations. Mutation genome bins represent a specific range of the gene studied on the 
appropriate chromosome. The duplicate entries bins represent balanced bins listing the 
number of times a specific mutation appears in the COSMIC database. 

Table 5. TP53 Extra-Trees Feature Rankings 

 
This table shows feature rankings for the extra-trees classifier trained on TP53 genomic 
data. Mutation description features describe different functional effects of the mutations. 
Mutation genome bins represent a specific range of the gene studied on the appropriate 
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chromosome. The duplicate entries bins represent balanced bins listing the number of 
times a specific mutation appears in the COSMIC database. Additionally, mutation 
somatic status is a somatic-germline prediction made by COSMIC. 

Table 6. TP53 AdaBoost Feature Rankings 

 
This table shows feature rankings for the adaboost classifier trained on TP53 genomic 
data. Mutation description features describe different functional effects of the mutations. 
Mutation genome bins represent a specific range of the gene studied on the appropriate 
chromosome. The duplicate entries bins represent balanced bins listing the number of 
times a specific mutation appears in the COSMIC database. Additionally, mutation 
somatic status is a somatic-germline prediction made by COSMIC. 
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Table 7. RB1 Random Forest Feature Rankings 

 
This table shows the top 15 feature rankings for the random forest classifier trained on 
RB1 genomic data. Mutation description features describe different functional effects of 
the mutations. Mutation genome bins represent a specific range of the gene studied on 
the appropriate chromosome. The co-occurring bins are balanced bins indicating the 
total number of co-occurring mutations in COSMIC for a specific tumor.  

Table 8. RB1 Extra-Trees Feature Rankings 

 
This table shows the top 15 feature rankings for the extra-trees classifier trained on RB1 
genomic data. Mutation description features describe different functional effects of the 
mutations. Mutation genome bins represent a specific range of the gene studied on the 
appropriate chromosome. The co-occurring bins are balanced bins indicating the total 
number of co-occurring mutations in COSMIC for a specific tumor. Additionally, the 
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duplicate entries bins represent balanced bins listing the number of times a specific 
mutation appears in the COSMIC database. 

Table 9. RB1 AdaBoost Feature Rankings 

 
This table shows the top 15 feature rankings for the adaboost classifier trained on RB1 
genomic data. Mutation description features describe different functional effects of the 
mutations. Mutation genome bins represent a specific range of the gene studied on the 
appropriate chromosome. The co-occurring bins are balanced bins indicating the total 
number of co-occurring mutations in COSMIC for a specific tumor. Additionally, the 
duplicate entries bins represent balanced bins listing the number of times a specific 
mutation appears in the COSMIC database. Features with SBS## nomenclature 
represent unique COSMIC mutation signatures. 

Table 10: EGFR Random Forest Feature Rankings 
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This table shows the top 15 feature rankings for the random forest classifier trained on 
EGFR genomic data. Mutation description features describe different functional effects 
of the mutations. Features with SBS## nomenclature represent unique COSMIC mutation 
signatures. 

Table 11. EGFR Extra-Trees Feature Rankings 

 
This table shows the top 15 feature rankings for the extra-trees classifier trained on 
EGFR genomic data. Mutation description features describe different functional effects 
of the mutations. Mutation genome bins represent a specific range of the gene studied on 
the appropriate chromosome. Additionally, the duplicate entries bins represent balanced 
bins listing the number of times a specific mutation appears in the COSMIC database. 
Features with SBS## nomenclature represent unique COSMIC mutation signatures. 
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Table 12: EGFR AdaBoost Feature Rankings 

 
This table shows the top 15 feature rankings for the adaboost classifier trained on EGFR 
genomic data. Mutation description features describe different functional effects of the 
mutations. Features with SBS## nomenclature represent unique COSMIC mutation 
signatures. 

Table 13. ERBB2 Random Forest Feature Rankings 

 
This table shows the top 15 feature rankings for the random forest classifier trained on 
ERBB2 genomic data. Mutation description features describe different functional effects 
of the mutations. Mutation genome bins represent a specific range of the gene studied on 
the appropriate chromosome. Additionally, the duplicate entries bins represent balanced 
bins listing the number of times a specific mutation appears in the COSMIC database. 
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Table 14. ERBB2 Extra-Trees Feature Rankings 

 
This table shows the top 15 feature rankings for the extra-trees classifier trained on 
ERBB2 genomic data. Mutation description features describe different functional effects 
of the mutations. Mutation genome bins represent a specific range of the gene studied on 
the appropriate chromosome. Additionally, the duplicate entries bins represent balanced 
bins listing the number of times a specific mutation appears in the COSMIC database. 

Table 15. ERBB2 AdaBoost Feature Rankings 

 
This table shows the top 15 feature rankings for the adaboost classifier trained on 
ERBB2 genomic data. Mutation description features describe different functional effects 
of the mutations. Mutation genome bins represent a specific range of the gene studied on 
the appropriate chromosome. Additionally, features with SBS## nomenclature represent 
unique COSMIC mutation signatures. 
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Table 16. PIK3CA Random Forest Feature Rankings 

 
This table shows the top 15 feature rankings for the random forest classifier trained on 
PIK3CA genomic data. Mutation description features describe different functional effects 
of the mutations. Mutation genome bins represent a specific range of the gene studied on 
the appropriate chromosome. The co-occurring bins are balanced bins indicating the 
total number of co-occurring mutations in COSMIC for a specific tumor. Additionally, 
the duplicate entries bins represent balanced bins listing the number of times a specific 
mutation appears in the COSMIC database. 

Table 17. PIK3CA Extra-Trees Feature Rankings 

 
This table shows the top 15 feature rankings for the extra-trees classifier trained on 
PIK3CA genomic data. Mutation description features describe different functional effects 
of the mutations. Mutation genome bins represent a specific range of the gene studied on 
the appropriate chromosome. The co-occurring bins are balanced bins indicating the 
total number of co-occurring mutations in COSMIC for a specific tumor. Additionally, 
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the duplicate entries bins represent balanced bins listing the number of times a specific 
mutation appears in the COSMIC database.  

Table 18. PIK3CA AdaBoost Feature Rankings 

 
This table shows the top 15 feature rankings for the adaboost classifier trained on 
PIK3CA genomic data. Mutation description features describe different functional effects 
of the mutations. Additionally, features with SBS## nomenclature represent unique 
COSMIC mutation signatures. 



 

79 

Appendix 2. 

Figures 

The following figures show receiver operating characteristic (ROC) and 

precision-recall (PR) curves for each of the models and genes studied in this research. 

The ROC and PR curves included represent performance output for the optimal model 

hyperparameter tunings determined during this research. 

 

Figure 1. Random Forest ROC and PR Curves - APC 

The ROC curve (left) for APC shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the random forest algorithm. The plot 
was generated using output prediction scores and the target class entries for the test set. 
The PR Curve (right) for APC shows the relationship between precision (PPV) and recall 
(sensitivity) for the pathogenic target class. The PR curve was generated using output 
prediction scores and the target class entries for the test set. Both plots were generated 
using Matplotlib. 
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Figure 2. Extra-Trees ROC and PR Curves - APC 

The ROC curve (left) for APC shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the extremely randomized trees 
(extra-trees) algorithm. The plot was generated using output prediction scores and the 
target class entries for the test set. The PR Curve (right) for APC shows the relationship 
between precision (PPV) and recall (sensitivity) for the pathogenic target class. The PR 
curve was generated using output prediction scores and the target class entries for the 
test set. Both plots were generated using Matplotlib. 

 

Figure 3. AdaBoost ROC and PR Curves - APC 

The ROC curve (left) for APC shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the adaboost algorithm. The plot was 
generated using output prediction scores and the target class entries for the test set. The 
PR Curve (right) for APC shows the relationship between precision (PPV) and recall 
(sensitivity) for the pathogenic target class. The PR curve was generated using output 
prediction scores and the target class entries for the test set. Both plots were generated 
using Matplotlib. 
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Figure 4. Random Forest ROC and PR Curves – TP53 

The ROC curve (left) for TP53 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the random forest algorithm. The plot 
was generated using output prediction scores and the target class entries for the test set. 
The PR Curve (right) for TP53 shows the relationship between precision (PPV) and 
recall (sensitivity) for the pathogenic target class. The PR curve was generated using 
output prediction scores and the target class entries for the test set. Both plots were 
generated using Matplotlib. 

 

Figure 5. Extra-Trees ROC and PR Curves – TP53 

The ROC curve (left) for TP53 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the extremely randomized trees 
(extra-trees) algorithm. The plot was generated using output prediction scores and the 
target class entries for the test set. The PR Curve (right) for TP53 shows the relationship 
between precision (PPV) and recall (sensitivity) for the pathogenic target class. The PR 
curve was generated using output prediction scores and the target class entries for the 
test set. Both plots were generated using Matplotlib. 
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Figure 6. AdaBoost ROC and PR Curves – TP53 

The ROC curve (left) for TP53 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the adaboost algorithm. The plot was 
generated using output prediction scores and the target class entries for the test set. The 
PR Curve (right) for TP53 shows the relationship between precision (PPV) and recall 
(sensitivity) for the pathogenic target class. The PR curve was generated using output 
prediction scores and the target class entries for the test set. Both plots were generated 
using Matplotlib. 

 

Figure 7. Random Forest ROC and PR Curves – RB1 

The ROC curve (left) for RB1 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the random forest algorithm. The plot 
was generated using output prediction scores and the target class entries for the test set. 
The PR Curve (right) for RB1 shows the relationship between precision (PPV) and recall 
(sensitivity) for the pathogenic target class. The PR curve was generated using output 
prediction scores and the target class entries for the test set. Both plots were generated 
using Matplotlib. 
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Figure 8. Extra-Trees ROC and PR Curves – RB1 

The ROC curve (left) for RB1 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the extremely randomized trees 
(extra-trees) algorithm. The plot was generated using output prediction scores and the 
target class entries for the test set. The PR Curve (right) for RB1 shows the relationship 
between precision (PPV) and recall (sensitivity) for the pathogenic target class. The PR 
curve was generated using output prediction scores and the target class entries for the 
test set. Both plots were generated using Matplotlib. 

 

Figure 9. AdaBoost ROC and PR Curves – RB1 

The ROC curve (left) for RB1 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the adaboost algorithm. The plot was 
generated using output prediction scores and the target class entries for the test set. The 
PR Curve (right) for RB1 shows the relationship between precision (PPV) and recall 
(sensitivity) for the pathogenic target class. The PR curve was generated using output 
prediction scores and the target class entries for the test set. Both plots were generated 
using Matplotlib. 
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Figure 10. Random Forest ROC and PR Curves – EGFR 

The ROC curve (left) for EGFR shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the random forest algorithm. The plot 
was generated using output prediction scores and the target class entries for the test set. 
The PR Curve (right) for EGFR shows the relationship between precision (PPV) and 
recall (sensitivity) for the pathogenic target class. The PR curve was generated using 
output prediction scores and the target class entries for the test set. Both plots were 
generated using Matplotlib. 

 

Figure 11. Extra-Trees ROC and PR Curves – EGFR 

The ROC curve (left) for EGFR shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the extremely randomized trees 
(extra-trees) algorithm. The plot was generated using output prediction scores and the 
target class entries for the test set. The PR Curve (right) for EGFR shows the relationship 
between precision (PPV) and recall (sensitivity) for the pathogenic target class. The PR 
curve was generated using output prediction scores and the target class entries for the 
test set. Both plots were generated using Matplotlib. 
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Figure 12. AdaBoost ROC and PR Curves – EGFR 

The ROC curve (left) for EGFR shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the adaboost algorithm. The plot was 
generated using output prediction scores and the target class entries for the test set. The 
PR Curve (right) for EGFR shows the relationship between precision (PPV) and recall 
(sensitivity) for the pathogenic target class. The PR curve was generated using output 
prediction scores and the target class entries for the test set. Both plots were generated 
using Matplotlib. 

 

Figure 13. Random Forest ROC and PR Curves – ERBB2 

The ROC curve (left) for ERBB2 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the random forest algorithm. The plot 
was generated using output prediction scores and the target class entries for the test set. 
The PR Curve (right) for ERBB2 shows the relationship between precision (PPV) and 
recall (sensitivity) for the pathogenic target class. The PR curve was generated using 
output prediction scores and the target class entries for the test set. Both plots were 
generated using Matplotlib. 
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Figure 14. Extra-Trees ROC and PR Curves – ERBB2 

The ROC curve (left) for ERBB2 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the extremely randomized trees 
(extra-trees) algorithm. The plot was generated using output prediction scores and the 
target class entries for the test set. The PR Curve (right) for ERBB2 shows the 
relationship between precision (PPV) and recall (sensitivity) for the pathogenic target 
class. The PR curve was generated using output prediction scores and the target class 
entries for the test set. Both plots were generated using Matplotlib. 

 

Figure 15. AdaBoost ROC and PR Curves – ERBB2 

The ROC curve (left) for ERBB2 shows the relationship between True Positive and False 
Positive rates for the pathogenic target class using the adaboost algorithm. The plot was 
generated using output prediction scores and the target class entries for the test set. The 
PR Curve (right) for ERBB2 shows the relationship between precision (PPV) and recall 
(sensitivity) for the pathogenic target class. The PR curve was generated using output 
prediction scores and the target class entries for the test set. Both plots were generated 
using Matplotlib. 
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Figure 16. Random Forest ROC and PR Curves – PIK3CA 

The ROC curve (left) for PIK3CA shows the relationship between True Positive and 
False Positive rates for the pathogenic target class using the random forest algorithm. 
The plot was generated using output prediction scores and the target class entries for the 
test set. The PR Curve (right) for PIK3CA shows the relationship between precision 
(PPV) and recall (sensitivity) for the pathogenic target class. The PR curve was 
generated using output prediction scores and the target class entries for the test set. Both 
plots were generated using Matplotlib. 

 

Figure 17. Extra-Trees ROC and PR Curves – PIK3CA 

The ROC curve (left) for PIK3CA shows the relationship between True Positive and 
False Positive rates for the pathogenic target class using extremely randomized trees 
(extra-trees) algorithm. The plot was generated using output prediction scores and the 
target class entries for the test set. The PR Curve (right) for PIK3CA shows the 
relationship between precision (PPV) and recall (sensitivity) for the pathogenic target 
class. The PR curve was generated using output prediction scores and the target class 
entries for the test set. Both plots were generated using Matplotlib. 
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Figure 18. AdaBoost ROC and PR Curves – PIK3CA 

The ROC curve (left) for PIK3CA shows the relationship between True Positive and 
False Positive rates for the pathogenic target class using adaboost algorithm. The plot 
was generated using output prediction scores and the target class entries for the test set. 
The PR Curve (right) for PIK3CA shows the relationship between precision (PPV) and 
recall (sensitivity) for the pathogenic target class. The PR curve was generated using 
output prediction scores and the target class entries for the test set. Both plots were 
generated using Matplotlib. 
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