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Abstract. This paper presents an inter-procedural heap analysis that computes
information about how programs access regions within recursive data structures,
such as sublists within lists or subtrees within trees. The analysis is able to accu-
rately compute heap access information for statements and procedures in recur-
sive programs with destructive updates. We formulate our algorithm as a dataflow
analysis which computes shape information and heap access information at each
program point. We use an abstraction of the heap based on shape graphs, whose
nodes represent heap regions and whose edges encode the reachability between
these regions. Our analysis is able to summarize the effects of procedures: it com-
putes the heap regions being accessed by each procedure in terms of the heap
abstraction at the entry of the procedure. We use node labels to express the re-
gions at program points inside procedures in terms of the regions at procedure
entry points. The inter-procedural analysis uses a fixpoint algorithm to compute
the heap regions accessed by the whole execution of each procedure, including all
of the procedures it invokes. We demonstrate how our analysis computes precise
heap region access information for a recursive quicksort program that sorts a list
in-place, using destructive updates.

1 Introduction

Programs often build and manipulate dynamic structures such as trees or lists. To check
or enforce the correct construction and manipulation of dynamic heap structures, the
compiler must automatically discover invariants that characterize the structure (or shape)
of the heap in all of the possible executions of the program; such algorithms are usually
referred to as shape analysis algorithms. In the past decades, researchers have developed
a number of shape analysis algorithms that identify various properties of the heap, in-
cluding aliasing, sharing, cyclicity, or reachability [23]. Such properties allow the com-
piler to distinguish between heap structures such as trees and cyclic graphs. However,
none of the existing shape analysis algorithms aim at characterizing the heap regions
being accessed (i.e., read or written) by statements and procedures in the program.

There has been recent research to provide language support for dynamic allocation
of heap regions [5, 6, 9], or to provide algorithms for region inference [22, 10, 16]. How-
ever, these approaches typically allocate all of the elements of a recursive data structure,
such as a list or a tree, in a single heap region. They are not able to model regions within
recursive data structures, such as sublists within lists or subtrees within trees.



This paper presents a context-sensitive inter-procedural analysis that extracts infor-
mation about how the program accesses (i.e., reads or writes) heap regions within recur-
sive data structures, for languages with destructive updates. To accurately compute how
programs access the heap, our analysis computes: 1) precise shape information, using
an abstraction which models heap regions and characterizes cyclicity and reachability
properties for these regions; and 2) region access information, which describes which
regions are being read or written by statements and procedures in the program. For each
procedure, the analysis summarizes the regions being accessed by the whole execution
of that procedure, including all of the procedures it invokes.

The shape analysis algorithm uses a finite abstraction of the heap based on shape
graphs. The nodes in a shape graph are summary nodes, representing connected heap
regions, and the edges describe the reachability between regions. To compute accurate
shape information, the analysis keeps track of potential cycles in each region. The anal-
ysis also uses the materialization and summarization techniques proposed in [20]; and it
identifies heap regions based on reachability from stack variables, similarly to the shape
analyses presented in [23, 3]. But unlike the heap abstractions in these analyses, our ab-
straction exclusively uses summary nodes. This leads to a smaller shape abstraction for
certain programs, such as list traversals using multiple traversing pointers.

The difficulty of characterizing accessed heap regions strongly depends on the ab-
straction that the analysis uses. It is straightforward to determine the accessed regions
when the abstraction uses a global partitioning of the heap, with one summary node
per allocation site. Such abstractions have been used in some shape analyses [1] and
pointer analyses [24, 19]. The fact that makes it easy to characterize heap accesses in
this case is that each summary node represents the same set of concrete heap locations
throughout the program. However, heap abstractions based on allocation sites are not
accurate in the presence of destructive updates. More precise heap abstractions use a
per program point partitioning of the heap, according to the referencing relationships
or reachability from stack pointers at each point in the program [20, 23, 3]; our algo-
rithm uses such an abstraction. In this case, a summary node may model different sets
of locations at different program points, because the referencing and reachability rela-
tionships of heap locations with resprect to stack pointers may change. This makes it
difficult to summarize heap accesses at different program points; in particular, it makes
it difficult to summarize the heap accesses for the whole execution of each procedure.

We solve this problem using node labels in the shape abstraction. The analysis as-
signs a fresh new label to each region at the beginning of a procedure. Then, during the
analysis of the procedure, it computes a set of labels for each summary node. This set
describes the origins of the node’s locations with respect to the regions at the procedure
entry. Using the computed labels, the analysis can summarize all of the heap accesses
in each procedure in terms of the regions at the beginning of the procedure.

The analysis uses a context-sensitive interprocedural algorithm to analyze function
calls. At each call site, the analysis maps the shape and access region information before
the call into the analysis domain of the callee, analyzes the invoked procedure, and then
unmaps the result back into the caller’s domain to determine the information right after
the call. The analysis handles recursive procedures using a standard iterative fixpoint
algorithm.



This paper makes the following contributions:

– Analysis Problem. It identifies a new analysis problem, that of computing the heap
regions that statements and procedures in the program may access, in the presence
of destructive updates;

– Heap Abstraction. It presents a new heap abstraction, where summary nodes rep-
resent connected heap regions and edges model reachability between regions. The
abstraction further uses node labels to express the concrete locations of summary
nodes in terms of the regions at the beginning of the procedure;

– Shape Analysis. It presents a dataflow analysis which computes shape information
using this abstraction. It gives a precise, formal definition of the algorithm;

– Theoretical Properties. It gives formal results showing that the analysis algorithm
is sound and is guaranteed to terminate.

The remainder of the paper is organized as follows. Section 2 presents an exam-
ple. Section 3 presents the shape analysis algorithm and the computation of accessed
regions. Finally, Section 5 discusses related work.

2 Example

Figure 1 presents an example of a program that our analysis is designed to handle.
This is a quicksort program which recursively sorts a list region (i.e. a sublist) in-place,
using destructive updates. For this program we want to automatically check that the
two recursive calls access disjoint sublists within the same list. We first describe the
execution of this program and then we discuss the analysis information required to
check this property.

2.1 Program Execution

At each invocation, the function ���������
	����� sorts a sublist, consisting of all the list
elements between �
��
	�� and ����	�� , exclusively (i.e., not including �
���	�� and ����	�� ).
At the end of the invocation, �
��
	�� -> ������� will point to the first element in the sorted
sublist, and the ������� field of the last element in the sorted sublist will point to ����	�� .
When the function is first invoked, ����
	�� must be not ������� , different than ����	�� , and
the element pointed to by ����	�� must be reachable from ����
	�� .

The function first looks for the base cases of the computation, where the sublist
has at most one element, in which case it immediately returns (lines 11 and 14). If the
argument sublist has at least two elements, the function sorts the sublist according to
the standard quicksort algorithm. The variable ����� represents the pivot and is initialized
(line 10) to point to the next element after ����
	�� . To partition the sublist with respect to
the pivot’s value, the program traverses the list with two pointers,  !"��# and ���� , using
the loop between lines 16 and 27. During the partitioning, the list region between �
��
	��
and ����� contains the elements less than or equal to the pivot, and the list region between
�$��� and ���� contains the elements greater than the pivot. Note that the program uses
destructive updates to move elements into the “less than” partition (lines 22-24).

Finally, the program recursively sorts the two partitions (lines 29, 30); each of these
calls sorts its partition in-place.



1 typedef struct cell {
2 int val;
3 struct cell *next;
4 } list;
5
6
7 void quicksort(list *first, list *last) {
8 list *mid, *crt, *prev;
9
10 mid = prev = first->next;
11 if (mid == last) return;
12
13 crt = prev->next;
14 if (crt == last) return;
15
16 while(crt != last) {
17 if (crt->val > mid->val) {
18 /* append to "greater than" part */
19 prev = crt;
20 } else {
21 /* prepend to "less than" part */
22 prev->next = crt->next;
23 crt->next = first->next;
24 first->next = crt;
25 }
26 crt = prev->next;
27 }
28
29 quicksort(first, mid);
30 quicksort(mid, last);
31 }

Fig. 1. Quicksort on lists

2.2 Required Analysis Information

To determine that the recursive calls to ���������
	����� access disjoint regions of the list,
the analysis must extract the following key pieces of information:

1. Regions. The analysis must use an abstraction that distinguishes between different
list regions. For instance, the analysis must distinguish between the sublist from
�
� 
	�� to ����� , from ����� to  �"��# , and from ���� to ����	�� . The abstraction must thus
use different summary nodes for each of these regions.

2. Cyclicity Information. The analysis must accurately determine that the program
preserves listness. That is, it must establish that the sorting function produces an
acyclic list whenever it starts with an acyclic list. In particular, it must determine
that the destructive updates that move elements into the “less than” partition (lines
22-24) preserve the listness property.
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Fig. 2. Abstract shape graphs at selected program points for example

3. Reachability Information. The analysis must precisely determine which sublists are
reachable from which other sublists.

4. Access Information. The analysis must determine what sublists each invocation of
��� �����
	����� accesses. It must give a precise characterization of the accessed heap
locations, with respect to the regions at the beginning of the function.

Figure 2 shows the abstraction that our analysis computes at several key points in
the program. This abstraction precisely captures the above pieces of information. None
of the nodes in the graphs are cyclic. The solid edges are must edges and the dashed
edges are may edges.

The graph uwv shows the abstract shape graph at the beginning of the function, which
represents the portion of the heap reachable from the function arguments, ����
	�� and
����	�� . The abstraction consists of two summary nodes, denoting two list regions. The
summary node pointed to by �
��
	�� represents the sublist between �
��
	�� , inclusively,
and ����	�� , exclusively. The summary node pointed to by ����	�� represents the tail of the
list. Each of these sublists is a connected, single-entry heap region, whose entry point
is directly accessible from the stack. These summary nodes represent disjoint regions
within the same list structure.

The goal of the analysis is to compute the regions that ���������
	����� accesses, with re-
spect to the heap state at the beginning of the function (i.e. u v ). Therefore, the analysis



assigns different fresh new labels, � and
�

, to the summary nodes in u v . These labels
model the regions that these nodes represent at the beginning of the function. Then, at
each point in the function body, the analysis expresses the concrete locations of each
summary node in terms of the regions � and

�
.

The graph u�� shows the abstract information at line 12 , after the assignments at
line 10 and the test at line 11. The assignments traverse the ������� selector of the ele-
ment pointed to by �
� 
	�� and assign the resulting value to ����� and  !"��# . Since the
summary node pointed to by ����
	�� has two outgoing edges, the analysis must con-
sider traversing each of them. In the first case, the analysis traverses the edge between
the two nodes, which makes ����� ,  !"��# and ����	�� be aliased. The analysis then elimi-
nates this possibility because of the test condition at line 11, which requires that ����	��
and  !"��# must be unaliased. In the second case, the analysis traverses the self edge of
����
	�� , performing materialization and creating a new node. As part of the materializa-
tion process, the analysis assigns label � to the newly created node, because it models a
subset of the region that the materialized node models. Note that during materialization,
the analysis transforms the may self edge of �
� 
	�� into a must edge between �
��
	��
and � ����� ,  !!��#�� . The algorithm similarly analyzes the statements at lines 13 and 14, to
produce the graph u�� at line 15.

Figure 2 also shows the fixed-point information that the analysis computes at the
beginning of the loop, at line 17. This fixed-point solution consists of two shape graphs,
u	� and u�
 , which represent the two possible heap configurations at this point: u��
shows the case where ����� and  !"��# are aliased, that is, when the “greater than” partition
is empty; and u 
 describes the case where this partition contains at least one element,
and thus ����� and  !"��# point to different sublists. Similarly, the analysis computes two
possible shape graphs, u� and u�� , right after the loop and before the first recursive call.
In all of these graphs, the summary nodes pointed to by ����
	�� , ����� , and  !"��# all have
the label � . This indicates that each of these summary nodes models a subset of the
locations that the region � represents in u v .

Note that the previous shape analyses [3, 23] would produce a larger number of
possible configurations for this program, because they distinguish between locations
pointed to by stack pointers and locations pointed to only from the heap. The number of
possible shape graphs that those analyses would produce is exponential in the number
of traversing pointers with self edges: � graphs instead of u�� and ��� graphs instead of
u�
 . Those shape graphs would also have a larger numbers of nodes, up to 9 nodes each.

2.3 Computing Heap Access Regions

The analysis can now use the computed shape and label information to determine that
the two recursive calls access disjoint regions of the list. First, the analysis inspects
every statement which accesses the heap using the pointers ����
	�� , ����� ,  �"��# , and
���� . For each of these heap accesses, it examines the shape graphs at the corresponding
access points and looks up the nodes where these pointers are pointing to. Since all
these nodes are labeled with � , the analysis establishes that all these statements access
locations from region � . The interprocedural analysis of the two recursive calls further
determines that the whole execution of ���������
	����� , including the recursive invocations,
only accesses locations in � .



The analysis can then use the computed access region for the whole execution of
���������
	����� to determine that the two recursive calls access disjoint sublists. A compiler
could use this information to automatically parallelize this program and execute the
recursive calls concurrently.

2.4 Detecting Potential Bugs

The analysis is able to help in the detection of potential bugs. Suppose the second
recursive call (line 30) is incorrectly invoked with ���������
	������� ������� ����	�� -> �"������� . In
that case, the input shape graphs at each program point would be unchanged. However,
the analysis would detect that the access region for the whole execution of ���������
	�����
is � ��� � � . Using this information at the recursive calls, the analysis will determine that
both calls may access the tail of the list. Thus, it can no longer conclude that the two
recursive calls access disjoint list regions.

Alternatively, consider if the programmer incorrectly writes the loop test condition
at line 16 as  �"��#���	 ����	�� . As a result, the analysis will compute two more possi-
ble shape graphs at the beginning of loop body; in each of these, ���� points to the
summary node labelled with

�
. Therefore, when the analysis inspects the assignment

���� -> �"�����
	 �
���	�� -> ������� , it will determine that this statement writes a heap loca-
tion represented by

�
. As a result, the analysis will compute an access region � ��� � � for

quicksort and will report that the two recursive calls may access the same list elements.
Although both of the above situations are bugs, in general such messages may be

false positives, because the analysis is conservative. Nonetheless, when the analysis
computes access region information different than a given specification, the program-
mer can treat it as an indication of a potential bug in the program.

3 Algorithm

This section presents the analysis algorithm in detail. Although the algorithm computes
shape graphs, label information, and accessed regions at the same time, we discuss
them separately for clarity in presentation. We first show the basic intra-procedural
algorithm which computes shape graphs. We then present how the algorithm keeps
track of labels and how it computes the accessed heap regions. Finally, we describe the
inter-procedural analysis algorithm.

3.1 Shape Analysis.

We formulate our shape analysis algorithm as a dataflow analysis which computes a
shape graph at each program point. This section defines the dataflow information, the
meet operator, and the transfer functions for statements.

We assume that that the program is preprocessed to a form where each statement is
of one of the following six forms: ��	 ������� , �	�� , �	 �
�!����������� , � -> �	 ������� ,
� ->��	�� , or ��	�� ->� . Without loss of generality, we assume that each variable
update ��	������ is preceded by a statement ��	 ���"��� and that each selector update



� ->� 	 � is preceded by � -> � 	 ������� . We assume that � is the unique selector name
in the program.

Our algorithm expresses the shape information using predicates in three-valued
logic [21], which consists of truth values 0 (false), 1 (true), and 1/2 (unknown). We use
the standard three-valued order and operators: the conjunction

��� � ��� 	��	��
 � � � ��� � ; the
disjunction

�� � ��� 	��	��� � � � ��� � ; the partial order
��� � ��� for

� 	 ��� or
��� 	 ����� ; and

the meet
��� � ��� equal to

�
if
� 	 ��� and 1/2 otherwise. We explicitly use subscript 3

when we refer three-valued operators, and we don’t use any subscripts for the standard,
two-valued operators.

Concrete Heaps. Concrete heaps represent the statically unbounded set of concrete
heap locations and the points-to relations between them. We formalize concrete heaps
as follows. Let ��� be the set of stack variables in the program. A concrete heap is a
triple ���! �#"$� �%"& � consisting of:

– A set �! of heap locations;
– A set "&�&'(���&)	�! +* �-, � � � of edges from stack variables to heap locations;
– A set "& .'��/ .)(�/ * �-, ��� � of edges from heap locations to heap locations;

For edges, a value 1 indicates the presence of the edge in the concrete heap; a value 0
indicates its absence. We then consider two predicates which characterize the paths in
this graph: 0 �21��%3�� indicates if there is a path in the concrete heap between the variable
14'5� � and the concrete location 36'��  ; and 7 ��1 �#3 � �%3�� indicates that there is a path in
the concrete heap between variable 1�'8� � and location 3�'9�  which doesn’t contain
the location 3 � '��/ .

For each set of stack variables :<;=� � , :?>	A@ , we define the heap root 3�BC as
the heap location pointed to exactly by the variables in : : "D� �2� �%3EBC �GFH�I'I: . We
also define the set 
JBC of nodes owned by : as the concrete locations that can only be
reached from 3KBC , and only on paths that don’t traverse other roots:


 BC 	 �L3NMPO��('(:��Q0 �2� �#3 � � OSR�>'(:��UT67 �2R �%3 BC �%3�� �
Finally, for : 	V@ we define the set 
JBW of all heap locations reachable from the stack,
but not owned by any set : of variables. These are heap locations reachable from the
stack through different roots. We emphasize that all of the sets 
 BC represent disjoint sets
of concrete heap locations. Also, each of the sets 
XBC , :Y>	Z@ are connected, single-entry
subgraphs of the concrete heap, with entry node 3[BC ; however, 
JBW is not a single-entry
subgraph, and is not connected either.

Dataflow Information. Let �!\ 	 �$
 C MU:];^��� � be a set of abstract heap nodes,
where each node 
 C models the concrete heap locations in 
NBC . The dataflow informa-
tion of our analysis is an abstract shape graph u 	 �E_ �%" �a` � , where:

– _b;I�!\ is the set of nodes;
– "dc�_e)	_f* ��, �����U� � � � is the set of edges with reachability information.
– `gc�_=* �-, � ��������� � , the cyclicity information on nodes.



The above predicates have the following meaning. If " ��
 ��� ��	 � , the edge be-
tween 
 and � is definitely reachable (i.e., the locations in � are definitely reachable
from the locations in 
 ); if " �2
 �%� � 	 �Q�U� , the edge is possibly reachable; otherwise,
it doesn’t exist. The cyclic predicate ` ��
 � is 1 if there definitely is a cycle in the con-
crete heap structure modeled by 
 ; it is 1/2 if there may be a cycle; and it is 0 if there
definitely isn’t any cycle. The predicate ` refers to internal cycles consisting only of
locations modeled by 
 . We denote by � the set of all abstract shape graphs.

We graphically represent nodes 
 with ` �2
 �9>	 , with double circles; definitely
reachable edges with solid lines; and possibly reachable edges with dashed lines. Fi-
nally, we omit 
 W if it has no incoming or outgoing edges to other abstract nodes. The
shape graphs from Figure 2 use this graphical representation.

The abstraction function � characterizes the relation between concrete heaps and
abstract shape graphs. Given a concrete heap �E�L �%"&� �%"$ � , we define its abstraction
��_ �#" �#` ��	������! ��#"$� �%"& � as follows:

_�	 �!
 C M 
 BC >	 @���� �!
 W �
" �2
 C �%
���� 	 � �!"  �E3	� �#3	
 �!M-3	�.' 
 BC �%3	
 '	
 B� �

` �2
 C � 	�� � if  3 v � � � � �%3�� '	
 BC �Q"$ ��3����%3 v � ��� �L"$ �E3	� �#3	��� v �LM ���I����� �
, otherwise

The node 
 W models a subgraph of the heap which is not connected and may have
multiple entries. Intuitively, 
 W contains imprecise shape information and the analysis
uses it as a fallback mechanism to conservatively handle the case of shared structures.

Merge Operation. The dataflow analysis merges shape graphs at each control-flow
point in the program. The merge operation is non-trivial in our abstraction, because
it must account for the following scenario. Consider two abstract graphs u v and u��
that we want to merge. Also consider that one of these graphs contains a definitely
reachable edge ��
 ��� � , but the other graphs contains only the target node � . In this
case, � is not reachable from 
 in the second graph, so the analysis must conclude
that ��
 ��� � is possibly reachable in the merged graph. The following merge operation
precisely captures this behavior. If u v 	 �E_ v �%" v �#` v � and u � 	 �E_ � �%" � �#` � � , the
merged graph is u v � u � 	 ��_ �%" �a` � , where:

_ 	�_ v��	_��
` ��
 � 	��� � ` v �2
 � � � ` � �2
 � if 
 '�_ v� _ �

` v �2
 � if 
 >'�_ �
` � �2
 � if 
 >'�_ v

" ��
 ��� � 	 �!!� !!�
"�v ��
 ��� � � � " ���2
 �%� � if �-
 ��� � ; _ v  _ �
� if ��"�v ��
 ��� � 	 � � � >'	_ � � � ��" � �2
 ��� ��	 � � � >'(_ v��
, if � 
 >'(_ v � � >'	_ v�� � � 
 >'	_ � � � >'�_�� �
���U� otherwise

In general we may have abstract shape graphs containing nodes 
 C and 
 � such
that : and " each include a stack variable ��'^�S� . Clearly, in no execution of the



Case: ������� ���
	�����
��� � ��� ��������� �� �  � � � � � if

� � � �!����  � �
otherwise"#�  �%$'& � � � � if
���!���#( ���%$)& �"  �%$'& �

otherwise

Case: � �+*
� � � �-,  � �/. �0( � �� �  � � � �  ,21 �  � �'�"#�  �%$)& � � "  , 1 �  � � $), 1 �  & �'�,43 �657� �

,  �98 � � � � 8;: �!�'� if * (�<�28
otherwise

Case: � -> =>�@?
A�B
B
� � � �� �  �DC � � � � if � (FE�  �DC �

otherwise" �  � C $'� 8 � � � � if � (FE"  � C $'� 8 �
otherwise

Case: � -> = �G*
� � � �� �  �2H � � �JI if

� � $ * ��K@L�  ��H �
otherwise" �  � C $)� 8 � � � I if � (�ENM * (�<"  � C $'� 8 �

otherwise
Case: ���@=�O ��� $ if �P�!���RQ( �

��� � �TS  � �U. �0( � �� �  � � � �  S 1 �  � �'� $!V��W( �" �  �%$'& � � "  S 1 �  � � $'S 1 �  & �'�SX3 �65Y���S  �2H � � � H 1 �!�'�
Fig. 3. Transfer function Z Z []\ \ conf

 � $ " $ � � �  � � $ " � $ � � � for simple cases

program can there coexist a concrete heap location from 
NBC with one from 
JB� . We
say that a graph u is incompatible if it contains two nodes 
 C and 
�� such that : >	" � :  " >	Z@ . Given a shape graph u , we say that u � is a possible configuration if it
is a maximal compatible subgraph of u . We use the term “maximal subgraph” relative
to the partial order relation induced by the merge operator defined above. Finally, we
denote by Confs (G) the set of all possible configurations of a graph u .

Transfer Functions. For each statement ^ in the program, we define a transfer function_ _ ^a` ` c �A* � , which describes how the statement modifies the input abstract shape
graph. The analysis first splits the input graph u into all of the possible configurations
in Confs (G). It then analyzes each configuration separately. At the end, it merges the
result for each configuration. Therefore, we express the transfer function as follows:_ _ ^b` ` � u � 	 cdUe�f Confs g dUh

_ _ ^a` ` conf � u � �

where
_ _ ^a` ` conf is a transfer function defined to operate only on compatible graphs. Fig-

ures 3, 4, and 5 present the full definition of the transfer functions
_ _ ^a` ` conf that the algo-

rithm uses to analyze each configuration.
Figure 3 shows the transfer function for statements � 	 � �!�����"� ��� , � 	 � , � ->� 	

������� , � -> � 	�� , and ��	 ������� when 
/i)jlkI>' _ . These equations use two helper
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, which performs summarization. The
predicate

�T �%$)& �
evaluates to 1 in the case of precise summarization of

&
into

�
and 1/2 for

imprecise summarization.
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Fig. 6. Summarization for �>�+? A�B�B : a) precise summarization, b) imprecise summarization.

functions
�

and  , which are invertible because the input graph u is compatible. Hence,��� v and  � v are well-defined.
The materialization and summarization of nodes is significantly more complex. Fig-

ure 4 presents the equations for the summarization of nodes, which takes place for a
statement � = ������� , when 
/i j]kG'(_ . Let 
 � be a node with an edge to 
/i j]k . The analy-
sis can precisely summarize the node 
Ti j]k into 
 � only if there a single incoming edge
to 
 i j]k , and that edge is definitely reachable. Figure 6(a) shows this case. If there are
multiple incoming edges to 
Ti)jlk , and two or more are definitely reachable edges, then
the analysis summarizes 
/i j]k into 
 W . Finally, if there are multiple incoming edges to

 i)jlk , and at most one is a definitely reachable edges, then the analysis must summarize

 i)jlk both into 
 W and into the nodes that point to 
/i j]k using definitely reachable edges.
Figure 6(b) shows a case of imprecise summarization.

Figure 5 presents the transfer functions for an assignment � 	�� ->� . Consider that

 � is a node such that � ' " . If 
 � has multiple outgoing edge, the variable � may
traverse any of them during the execution of this statement. The algorithm analyzes each
of these situations separately and then merges the results together. When traversing a
self edge of 
 � , the analysis performs a materialization: it “extracts” one location from

 � and creates the abstract node 
Ti j]k to model the remaining locations. If the node

 � may have cycles, the analysis performs an imprecise materialization and adds back
edges to 
 � . Otherwise, the analysis performs a precise materialization and doesn’t
create spurious back edges.

3.2 Formal Results

We summarizes the main theoretical results for our abstraction and and our analysis in
the following theorems. We show that the meet operation is well-defined, the transfer
functions are monotonic, and the analysis is sound. We use

_ _ ^b` ` B to denote the concrete
semantics of ^ . Because the analysis lattice has finite height, the monotonicity of the
transfer functions implies that the analysis is guaranteed to terminate.

Theorem 1. The merge operation
�

is idempotent, commutative, and associative.

Theorem 2. For all statements ^ , the transfer function
_ _ ^b` ` is monotonic.

Theorem 3 (Soundness). If � B is a concrete heap, then for all statements ^ we have��� _ _ ^a` ` B ��� B � � � _ _ ^a` ` � ����� B � � , where � is the abstraction function defined in Section 3.1.



3.3 Node Labels

This section presents the algorithm for computing accessed heap regions for statements
and procedures in the program. The main difficulty when computing the accessed heap
regions in our abstraction is that the same node may represent different concrete heap
locations in shape graphs at different program points. This makes it difficult to sum-
marize heap accesses at different program points. In particular, it makes it difficult to
summarize the heap accesses for each procedure in the program.

Our algorithm overcomes this difficulty using node labels to record information
about the concrete heap locations that each abstract node represents. At the beginning
of each procedure, the analysis assigns fresh labels to each node in the shape graph.
Each label represents the set of concrete locations that the corresponding node models
in the initial shape graph. During the analysis of individual statements, the algorithm
computes, for each node and at each program point, the set of labels that describe the
concrete locations that the node currently models. Finally, for each statement that reads
or writes a heap location, the algorithm records the labels of the node being accessed
by the statement. The analysis can therefore summarize the heap locations accessed by
the whole execution of each procedure as a set of labels.

For allocation statements, the analysis uses one label per allocation site to model all
of the heap cells allocated at this site in the current execution of the enclosing procedure.
For an allocation site ^ , we denote by �6� the label for this site. We denote by Lab the
set of all labels in the analysis. This set consists of allocation site labels and fresh labels
at the beginning of procedures. Within each procedure, different labels model disjoint
sets of concrete heap locations.

Our analysis algorithm computes shape graphs, node labels, and access regions
simultaneously. It uses an extended heap abstraction which incorporates information
about labels and accessed regions. An extended shape graph is a tuple ��_ �#" �#` �#� ������� � ,
where _ , " , and ` are the same as before, � cG_ *�� � Lab � represents the la-
bel information for nodes, and ����� ; Lab characterize the heap locations that have
been read and written from the beginning of the enclosing procedure. The merge op-
eration is the pointwise union for labels and read and write sets. That is, if u v 	
��_ v �%" v �#` v �%� v ��� v ��� v � and u � 	 ��_ � �#" � �a` � �%� � ��� � ��� � � , then the merged graph
is u v � u � 	 �E_ �%" �#` �%� ������� � , where _ , " , and ` are computed as before, and:

�
	�� v ��� �
� 		� v �
� �

� �2
 ��	��� � � � �2
 � � � � �2
 � if 
8'�_ v� _ �
� � �2
 � if 
8'�_ v�� _ �
�!� �2
 � if 
8'�_ �� _ v

Figure 7 shows how the analysis computes the labels for each statement. For an
allocation statement ^ , the analysis assigns the label � � of that allocation site to the
newly created node. During summarization the analysis adds the labels of the summa-
rized node to the set of labels of the node which gets summarized into. During ma-
terialization, the newly created node inherits the labels from the node on which the
materialization has been performed.
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Fig. 7. Equation for computing label sets, using the summarizarization predicate
�

and the func-
tions

,
,
S

, and
+

defined in Figures 3, 4, and 5.

Finally, the analysis computes the locations being read and written by each state-
ment in a straightforward manner. For each heap update � -> � 	 ������� or � -> � 	 � ,
the analysis augments the set of written locations with the labels of all the nodes �
points to: � � 	 � ��� j f C � �2
 C � . Similarly, for each assignment � 	 � ->� , the
analysis augments the set of read locations with the labels of all the nodes � points to:
� � 	 ��� ��� f � � �2
�� � . In all of the other cases, the sets of locations being read or
written remain unchanged.

3.4 Interprocedural Analysis

Our algorithm performs a context-sensitive inter-procedural analysis to accurately com-
pute shape information for procedure calls. At each call site, the algorithm maps the
current analysis information into the name space of the invoked procedure, analyzes
the procedure, then unmaps the results back into the name space of the caller. This
general mechanism is similar to existing inter-procedural pointer analyses [4, 24, 19].
However, our mapping and unmapping processes are different than in pointer analysis
because they operate on a different abstraction. In particular, our analysis maps and un-
maps shape graphs, node labels, and read and write sets. Like existing context-sensitive
pointer analyses, our algorithm caches the analysis results every time it analyzes a pro-
cedure. At each call site, the analysis sets up the calling context and looks this context
up in the cache to determine if an analysis result is available for this context. If so, it
uses the results of the previous analysis of the procedure. Otherwise, it analyzes the
caller in the new context.

Mapping and Unmapping. The mapping process sets up the calling context for the
invoked procedure. Consider a call statement � � �	� � � � � � ��
 � which invokes procedure
f. Without loss of generality, we assume that each of the actual arguments �	� � � � � � ��

are local variables in the caller’s environment. Let  �� � � � � �  
 be the formal parame-
ters of the invoked procedure f. If the analysis information at the call site is u 	
��_ �#" �#` �#� ������� � , the mapping process builds the input context u � for the invoked
procedure � as follows:

– It first partitions the nodes _ of u into two sets: _�� , representing the nodes reach-
able from the actual parameters � � � � � � � � 
 at the call site, and _�� 	b_ � _�� ,



representing the nodes unreachable from the actual parameters. Let u�� be the sub-
graph of u restricted to the nodes in _�� , and u � be the unreachable subgraph of u ,
restricted to the nodes in _�� . The analysis proceeds with u�� to set up the calling
context; it recovers the unreachable subgraph u � later, during the unmapping.

– It then removes all of the local variables, except for the actual arguments, from
the shape graph u � and produces a new graph u �� . For this, the analysis performs
assignments ��	 ������� for each variable � which is not an actual parameter. During
the removal of local variables, the analysis constructs a node map � cD_ �� *
� ��_ � � that records, for each node in u �� , which nodes of u � it represents.

– The analysis re-labels each node in u �� with a fresh label and produces a new graph
u � �� . It records the re-labeling information using a function 3Xc Lab * _ �� such that
3 � � � � represents the node of _ �� which has been re-labeled with � � .

– Finally, the analysis replaces each actual parameter � � in u � �� with the corresponding
formal parameter � � , and produces the graph u ��	 ��_ � �%" � �#` � �%� � �#@ �#@ � , which is
the calling context for the invoked procedure � .

Next, the analysis uses the constructed calling context u � to determine the output
graph u�� 	 ��_�� �%"�� �#`�� �#��� ���	� ���
� � . The analysis computes u�� either by re-using a
previous analysis for this context from the cache, or by analyzing the invoked function
� . Further, the analysis unmaps the output graph u�� and computes the graph u � in
the caller’s analysis domain, at the program point right after the call. The unmapping
process consists of the following steps:

– The analysis replaces each formal parameter  � with the corresponding actual pa-
rameter � � at the call site, and produces a graph u � � 	 ��_ �� �%" �� �#` �� �#� � � ��� � ��� � � .
Here we assume that the formal parameters are never modified in the procedure
body. Hence, they point to the same location throughout the procedure. One can re-
lax this condition using temporary variables and assignments which copy the initial
values of the formal parameters into these temporary variables.

– Next, the analysis replace nodes in u � � with nodes from the reachable subgraph u��
before the call; it produces a new graph u � �� 	��E_ � �� �#" � �� �a` � �� �#� � �� ��� � �� ��� � �� � . Intu-
itively, the analysis recovers the caller’s local information, which has been removed
during the mapping process.
The algorithm computes the shape information _ � �� , " � �� , ` � �� , and � � �� as follows.
For each node 
 � '�_ �� , it examines the following possibilities:
� if � � � �2
 � � 	 � � � � and � � >'
� � � � � : the region � � was neither read nor written

by the execution of � . It means that the internal structure of this region has not
been modified by the call, and no pointers into the middle of this structure have
been created. It is therefore safe to replace the node labeled with � � in u � � with
its corresponding subgraph from u � , consisting of all the nodes in � ��3 � � � � � .

� if � � � �2
 � � 	 � � � � , � � ' � � � � � , � � >'9� � � �2
 � � � �[OS
 � � >	V
 � , M � ��3 � � � � � � M 	 � :
the heap structure represented by the region � � may have been read or written,
but it represents exactly one node in both u�� and u � � . The analysis can safely
replace the node 
 � with the unique node 
 of ��E3 � � � � � .

� Otherwise, the heap structure represented by region node 
 � may have been
modified or represents multiple nodes in u�� . The analysis conservatively re-
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Fig. 8. Computed shape graphs during mapping and unmapping for quicksort example

places 
 � with all of the nodes in � �-��E3 � � � � �M � � '�� � � ��
 � � � , adds edges
between any two of these nodes, and makes all of the nodes cyclic.

The analysis computes the access region information � � �� and � � �� as follows:

� � �� 		� � U
�-� � �2
 �!M 
8'	��E3 � � � � � � � � ' �	� �

� � �� 	 � � U
�-� � �2
 �!M 
 '	��E3 � � � � � � � � ' �
� �

where � � is the label map of subgraph u � .
– Finally, the analysis adds back the unreachable subgraph u � into u � �� . The resulting

graph u � represents the shape graph at the program point after the call.

Although the mapping and unmapping process is conservative, it may be imprecise
for regions modified by the callee. In particular, the unmapping process imprecisely
restores the local variables of the caller when these variables belong to regions modified
by the invoked procedure. To reduce this kind of imprecision, our analysis performs
early nullification: it runs a dead variable analysis, identifies the earliest points where
local variables are guaranteed to be dead, and inserts nullifying statements � 	 �������
for such variables at these program points. This technique reduces the amount of local
information and improves the efficiency and the precision of our algorithm.

Figure 8 shows the shape graphs that the analysis constructs during maping and un-
mapping for the first recursive call site in the quicksort example from Section 2. Using
early nullification, the analysis inserts the statements  !"��# 	 ������� and �����	 �������
before the first call. These statements yield the graph u in Figure 8 at the call site. Dur-
ing the mapping process, the analysis derives the label map 3Lc � � �WV* 
 iYX �Z�[�\ k � � �]V*




 i�� ��� k � and the node map �ec � 
/iYX �Z [\ k V* �-
 iYX �Z�[\ k � �%
 i�� ��� k V* � 
 i�� ��� k ��
 i���� [�\ k � � .
During the unmapping process, the analysis starts with the output u � , whose heap ac-
cess information indicates that only the first node has been read and written: ��� 	
� � � ����� � 	 � � � � . The analysis can accurately replace the node 
Ti�� ��� k of u � with the
subgraph of u � consisting of nodes 
/i�� ��� k and 
 i���� [\ k , because the label

� �
in u � � de-

notes a region that hasn’t been read or written by the invoked procedure. The resulting
graph u � �� 	 u � represents the information after the call.

Recursive Procedures. For the analysis of recursive procedures, our algorithm uses a
standard fixed-point approach [19]. For each calling context u � , the analysis maintains
a best analysis result u�� for that context. The analysis initializes the best result u � to
the bottom element in the analysis domain, which is a graph with an empty set of nodes
and empty sets of read and written locations. During the analysis of the program, the
algorithm creates a stack of analysis contexts that models the call stack in the execution
of the program. Whenever the analysis encounters an invoked procedure already on
the stack, with the same calling context, it uses its current best analysis result for that
context. When the algorithm finishes the analysis of a procedure and computes a new
analysis result, it merges this result with the current best analysis result for that calling
context. If the current best result changes, the algorithm re-analyzes all of the dependent
analyses. The process continues until it reaches a fixed point.

4 Extensions

In this section we discuss three extensions to the algorithm presented so far. These
extensions improve the precision, the efficiency, and the functionality of our algorithm.

4.1 Configurations Versus Merged Graphs

During the analysis of each individual statement, our algorithm splits the current shape
graph into possible configurations, analyzes each configuration separately, then merges
the results together, as presented in Section 3.1. However, the merge operation may lose
precision because the analysis may not be able to accurately recover the component
configurations from the merged graph.

We can avoid this kind of imprecision using a more precise dataflow information
consisting of sets of compatible graphs. In this case, the algorithm computes a set of
shape graphs at each program point. The drawback of this approach is that the dataflow
information may consists of a large number of graphs at each program point, making
the analysis more expensive. With this extension, the algorithm trades efficiency for
precision.

A possible trade-off is to have a single graph at join points in the control flow, but
keep multiple graphs during the analysis of each basic block. In that case, the analysis
splits the shape graph into configurations at the beginning at each basic block, then
merges the configurations back into one single shape graph at the end of the block.



4.2 Refining the ��� node

In our algorithm, the 
 W node models all concrete heap locations that are reachable from
at least two stack variables on a path that does not go through any other root locations
(i.e., locations pointed to directly from stack variables). Essentially, these locations are
shared, being reachable from multiple variables. Merging all of these locations into one
single abstract node is imprecise — such an abstraction cannot accurately describe the
shape of the heap structure represented by these locations.

We can extend our algorithm with a more precise heap abstraction which refines
the 
 W node. More precisely, we can replace the 
 W node with several shared nodes^ C , where : is a non-empty set of stack pointers. Each shared node ^ C represents all
of the locations reachable exactly from the variables in : , through at least two root
nodes. This approach is similar to the abstractions used in previous shape analyses [3,
23], which distinguish between nodes based on the set of variables they are reachable
from.

4.3 Multiple Selectors

Our current algorithm assumes one single selector name. This restricts the data struc-
tures that this algorithm can analyze to linked lists. We briefly describe how to extend
our algorithm to support multiple selector names, allowing it to handle more complex
structures such as binary trees.

We first extend our abstraction with information about selector names. If Sel repre-
sents the set of all selector names in the program, a shape graph for multiple selectors
is a tuple u 	 ��_ �#" �#` ��� � , where:

– _ is the set of nodes.
– "H'd_ ) _ * � � Sel �+) �-, ��������� � � is the set of edges. Each edge contains

information about the set of selector names it represents.
– `g' _A)�� � Sel ��* ��, � �Q�U� � � � describes the cyclicity information for self-edges.

A self-edge on a node 
 is cyclic on a set of selectors � � v � � � � ��� � if there is a cycle
over some concrete locations modeled by 
 , and that cycle uses only selectors in
the set � � v � � � � ��� � .

– � 'I_ ) � ���	��3 �&* ��, �����U� � � � describes the shared information for self-edges.
A node 
 is shared for a set of selectors � � v � � � � ��
 � if it models a concrete heap
location which be pointed to by multiple heap locations, though selectors in the set
� � v � � � � � 
 � .

This extension tracks the predicates ` and � for each subset of �	��3 separately. It
allows the analysis to accurately capture the shape of structures with multiple selectors.
For instance, consider a binary tree with selectors ������� and  ����!� , with all of the
leaves connected in a (non-cyclic) linked list with selector ������� . For this structure,
the shared predicate � for ��������� � �"����� � and �  ����!� � ������� � is non-zero; however, the
shared predicate for ��������� �  ����!� � of � ������� � is zero, thus allows us to deduce that the
selectors ������� and  ����!� define a tree structure, and the selector ������� defines a list.

The materialization and summarization operations are generalizations of the corre-
sponding operations for a single selector. The analysis peforms precise summarization



for a statement ��	�� -> 	��!� on a self edge if the node being summarized is not cyclic
on any set which includes the selector name 	��!� , used to traverse the structure. Simi-
larly, the analysis performs precise materialization for a statement � 	 ������� if the node
that � points to is precisely reachable from exactly one other node.

Tracking both the cyclic and shared predicates allows us to distinguish certain types
of graphs represented by a given abstract node 
 , based on possible combinations of the
predicates, as shown in the following table:


 is not cyclic 
 is cyclic


 is not shared tree large cycle

 is shared DAG arbitrary graph

In this table, a large cycle represents a cycle which include of all of the locations that
node 
 models.

5 Related Work

Early approaches to shape analysis [14, 1] propose graph abstractions of the heap based
on allocation sites: each summary node in the shape graph represents all of the heap
locations allocated at a certain site. Because of the abstraction based on allocation sites,
these algorithms are imprecise in the presence of destructive updates.

A number of approaches to shape analyses have used access paths in the form of
regular expressions to describe reachability of heap locations from the stack. Larus
and Hilfinger present a dataflow analysis algorithm which computes access paths [15].
Other approaches use matrices of access paths to describe the reachability informa-
tion [13, 12]. They propose algorithms that use the computed access paths to determine
whether structures pointed to by different stack locations always access different heap
locations, and use this information to parallelize applications that manipulate recursive
heap structures. Researchers have also proposed language support for heap structures:
in the Abstract Description of Data Structures (ADDS) [11], programmers can specify
properties such as disjointness or backward pointers, and the compiler then uses analy-
sis techniques based on access path matrices to check these properties. Deutsch [2] pro-
poses a shape analysis which expresses aliasing using pairs of symbolic access paths.
The analysis can parameterize the computed symbolic alias pairs, and show, for in-
stance, that a list copy program produces a list whose elements are aliased with the
corresponding elements of the original list.

Similar approaches use matrices of booleans to express reachability information [7,
8]. For instance, the interference matrix indicates whether there may be heap locations
reachable from different stack locations; and the direction matrix indicates if the heap
location pointed to by a stack variable may be reachable from the heap location pointed
to by another variable. The analysis uses the reachability information in these matrices
to distinguish between trees, DAGs, and arbitrary graphs.

A more sophisticated analysis proposes a shape graph abstraction of the heap which
distinguishes between heap locations depending on the stack variables that point to
them [20]. This approach keeps track of the sharedness of summary nodes to iden-
tify acyclic lists or tree structures. The algorithm also introduces two key techniques



that allow the analysis to compute accurate heap information: summarization into and
materialization from summary nodes. Using these techniques, the analysis is able to
determine that an in-place list reversal program preserves listness. Later analyses [23,
3] extend this algorithm with reachability information and thus are able to distinguish
between sub-regions of the same heap structure. However, none of these algorithms is
able to summarize heap access information for the whole execution of each procedure
in the program.

More recently, researchers have proposed the use of three valued logic to express
heap properties [21]. They propose a general framework which allows to express the
heap abstraction using three valued logic formulas and show that existing analyses are
instances of this framework. Subsequent work shows how to apply this framework to
check the correctness of an insertion sort algorithm [17], and how to extend this frame-
work for interprocedural analysis [18].

6 Conclusion

We have presented an inter-procedural analysis which is able to compute information
about the program accesses heap regions within recursive data structures, such as sub-
lists within lists. The analysis is designed to handle recursive programs which destruc-
tively update heap structures. We use a shape graph abstraction whose edges record
reachability information and nodes record cyclicity information, and we formulate our
algorithm as a dataflow analysis which computes shape and region information at each
program point. As part of the analysis algorithm, we summarize the heap regions ac-
cessed by each procedure in terms of the regions at the beginning of the procedure. For
this, we use labels on the nodes of the initial shape graph, to denote the regions as of the
procedure entry point. Our analysis is able to accurately analyze a recursive quicksort
program which sorts a list in-place, and determine that the two recursive calls access
disjoint sublists within the list.
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