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In this work, we introduce a model that combines direct and indirect reciprocity within a unified frame-

work. Players do not only react to the games they are involved in. They also observe how their co-players

act in interactions with third parties. We use this model to explore how individuals make use of different

sources of information, and to compare how direct and indirect reciprocity facilitate the spread of coop-

eration throughout a population.

In the following, we describe the framework and the employed methods in detail. In Section 1, we

begin by summarizing the previous literature on direct and indirect reciprocity. Section 2 introduces

our baseline model, for which we assume that players use simple reactive (first-order) strategies. In

Section 3, we derive explicit formulas for the players’ payoffs for any given population composition.

Section 4 offers an equilibrium analysis. We show under which conditions reactive strategies suffice to

sustain a fully cooperative equilibrium. We prove that the respective conditions are stringent: if reactive

strategies cannot sustain cooperation, more complex strategy classes cannot sustain it either. In Section 5
we study the co-evolution of direct and indirect reciprocity among reactive players. We show that indirect

reciprocity is most likely to evolve when there are only a few interactions, information is reliable, and

mutations are not too abundant. In addition, we provide a framework for the evolution of strategies when

individuals are able to use a mixture of direct and indirect reciprocity. Section 6 discusses several model

extensions. We explore how our model can capture different kinds of errors and incomplete information.

We also discuss an alternative implementation of indirect reciprocity, according to which players can

choose to ignore any direct information they may have. Finally, we incorporate higher-order strategies.

The Appendix contains the proofs of our analytical results and the code for our evolutionary simulations.

1 Related literature

1.1 Previous literature on direct reciprocity.

There is by now an extensive literature on direct reciprocity, that is, the evolution of cooperation in

repeated games. This literature has suggested various strategies that succeed in evolutionary simulations

and tournaments1–11, and it has discussed under which conditions cooperation can be evolutionarily

stable12–18. Moreover, it has explored how the evolution of cooperation depends on model parameters,

such as the players’ memory19–22 or which strategies players have access to23–25. A general summary of

this literature can be found in recent reviews26,27.

In the context of our paper, the literature most relevant is the recent work on zero-determinant (ZD)

strategies for repeated games28–42. For the repeated prisoner’s dilemma, Press and Dyson28 have shown

that a player can use such strategies to unilaterally enforce a linear relationship between the players’

payoffs. A special case of these zero-determinant strategies are equalizers43, with which a player can

enforce that any co-player will get some fixed payoff, independent of the co-player’s strategy. In our

work, we use such equalizer strategies to construct Nash equilibria for both direct and indirect reciprocity.

Our work is also related to a previous study on crosstalk in repeated games44. Under crosstalk, play-
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ers pay forward somebody’s cooperation: if Alice helps Bob, this may increase the chance that Bob helps

some third unrelated player Charlie, even though Bob has no prior positive experiences with that player.

This form of generalized reciprocity is maladaptive: crosstalk undermines cooperation, and is disfavored

to evolve in the first place. Herein, we adapt some of the mathematical techniques used in that paper44

to derive a general payoff formula for direct and indirect reciprocity.

Our study adds to the previous literature on direct reciprocity in the following way:

(i) We fundamentally generalize the theory of ZD strategies, by extending it to settings in which players

are unlikely to ever meet again, and in which direct reciprocity fails to maintain cooperation.

(ii) We explore in which scenarios players engage in direct reciprocity in the first place. To this end,

we analyze for which parameters players learn to ignore any indirect information they might have

about their present co-player.

1.2 Previous literature on indirect reciprocity.

Indirect reciprocity is an alternative mechanism for cooperation45. It can sustain cooperation even when

players only interact once with each other, such that direct reciprocity is infeasible46–48. Much of the

work has focused on the question how complex strategies need to be in order to establish stable cooper-

ation49–59. This work has been summarized recently60–62.

Since the influential work of Ohtsuki and Iwasa53,54, it is a widely shared belief that successful

strategies of indirect reciprocity need to be sufficiently complex. The complexity of strategies is typi-

cally evaluated in terms of how much information is needed to assess the reputation of a co-player. When

players use first-order strategies, they assess a player purely based on the players’ actions. For example,

simple scoring assigns a good reputation to players who cooperated in their last interaction, and it assigns

a bad reputation to players who defected63. Second-order strategies additionally depend on the reputa-

tion of the recipient. For example, according to the ‘Stern’ strategy55, a player who defects against a

good co-player deserves a bad reputation, whereas a player who defects against a bad co-player deserves

a good reputation. In addition, third-order strategies take the actors’ original reputation into account.

For example, when players adopt the Staying strategy64, a good player should keep his good reputation

no matter how he treats a co-player who is deemed bad. By systematically exploring all deterministic

third-order strategies, Ohtsuki and Iwasa have shown that there are only eight strategies that yield stable

cooperation, called the ‘leading eight’53,54. None of these eight strategies is first-order.

Most relevant to our study, Ohtsuki65 has explored the adaptive dynamics of stochastic first-order

strategies. He shows that the dynamics admits a fixed point in which everyone cooperates. However,

since ALLD is the only locally stable fixed point, he concludes that no first-order strategy can sustain

cooperation. Some subsequent studies have suggested that first-order strategies may suffice when they

record more than a player’s last action66–68. For example, in the recent paper by Clark et al68 players

count how often each other population member has defected so far. To sustain at least partial coop-

eration in the population, the paper suggests an innovative strategy called GrimK. Players with that
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strategy cooperate provided that both players’ defection record is below K. For games in which there is

a coordination-motive to cooperation, they show that one can always find a K such that GrimK is a strict

Nash equilibrium.

Our study adds to this literature on indirect reciprocity in the following way:

(i) We prove that cooperation can be sustained in a Nash equilibrium when players use Generous Scor-

ing. GSCO has an intuitive interpretation, it only depends on the co-player’s very last action, and

it is robust with respect to various kinds of errors (see Section 6.1).

(ii) Our results continue to hold when players differ in the information they have about each co-player,

which has been a major obstacle for cooperation in some previous models of indirect reciprocity69.

(iii) We show through simulations that the strategy dynamics in finite populations exhibits cycles.

ALLD is typically invaded through conditionally cooperative strategies, which in turn are invaded

by even more cooperative strategies.

1.3 Literature that combines elements of direct and indirect reciprocity.

There is only a handful of studies that explore how direct and indirect reciprocity interact. In an early

study on the subject, Raub and Weesie explore the effectiveness of reciprocity when players are placed

on a lattice70. They explore the stability of cooperation for three scenarios, differing in whether players

do or do not receive information about their co-players’ interactions with third parties. To this end, they

analyze whether Grim/Trigger is an equilibrium, assuming there are no implementation or perception

errors. In addition they explore the case that third-party information is received with some time lag. The

study finds that immediate information about third-party interactions is most favorable to cooperation.

Pollock and Dugatkin propose a strategy for the repeated prisoner’s dilemma called ‘Observer Tit For

Tat’ (OTFT)71. Against a co-player with a joint previous history of play, OTFT behaves the same way as

a TFT player. However, against an unknown co-player, OTFT takes into account third-party information.

The paper explores the static competition between three strategies, OTFT, TFT, and ALLD. It is shown

that OTFT can be stable against these three strategies even if the continuation probability approaches

zero. However, for larger continuation probabilities, TFT is shown to be superior.

Roberts presents simulations for a meta-population setup when players can choose among a finite set

of strategies72. The strategy set represents a selection from the direct and indirect reciprocity literature,

and it includes first-order strategies (scoring) as well as second-order strategies (standing). When there

are only few interactions between each pair of players, Roberts observes that most players adopt strate-

gies of indirect reciprocity. This trend towards indirect reciprocity is even stronger when players have

access to standing strategies. Importantly, however, the study assumes that there is public information

about each player’s reputation (i.e., it requires that all players agree on a given co-player’s reputation at

any point in time). For noisy and private information, most previously considered higher-order strategies

of indirect reciprocity fail to maintain cooperation69.
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Finally, our work is related to two previous studies in which players are able to misrepresent their

own reputation73,74.

The first study is by Nakamaru and Kawata73. They consider a setup where players engage in two

kinds of interactions. First, players interact in a series of prisoner’s dilemma games. As in our study,

players can decide whether to cooperate or defect, depending on the reputation of the opponent. Second,

players are matched in pairs to communicate which reputation they assign to every population member.

In particular, the model considers the case of private information – different individuals may assign

different reputations to the same co-player. Compared to our study, strategies are more complex. Players

do not only need to determine what they do in the prisoner’s dilemma. They also need to specify to

which extent they participate in rumour exchange, and whether or not they initiate wrong rumours about

themselves. To this end, the study considers typical archetypes of strategies. For example, ‘liars’ defect

in the prisoner’s dilemma, and they misrepresent themselves as cooperative. In contrast, ‘Advisors’

are conditionally cooperative in the prisoner’s dilemma. In the rumour exchanges, they spread true

rumour about those co-players who defected against them. Finally, TFT-like players ignore rumours and

just implement the traditional tit-for-tat strategy. The strategy dynamics is explored through computer

simulations with up to 39 different strategies. Defectors win if players interact on average for one round

or less. When there are slightly more interactions, rumour-based strategies like Advisor can succeed.

Finally, with many pairwise interactions, TFT-like strategies persist.

The second study by Seki and Nakamaru74 considers a similar setup as the first. However, this

time strategies are represented differently. Each player’s strategy is encoded as a list of numbers. One

number represents how the player acts in the prisoner’s dilemma. Two further numbers represent under

which circumstances the player would spread positive or negative rumour, respectively. Another number

represents under which condition the player would take third-party rumour into account into his own

assessment of a player. This decision may depend on the reputation of the person who communicates the

respective rumour. With four further numbers, the player represents to which extent direct information

(positive or negative) or indirect information (positive or negative) affect the respective co-player’s rep-

utation. This reputation is measured by a number between -5 and 5. In addition to the liars whose aim is

to self-advertise themselves, this study now also involves players who aim to destabilise the reputation

system altogether. For example, such players may spread good rumours about everyone, which adds

further noise to the system. The relative weight that players attribute to indirect information does not

evolve. However, through extensive computer simulations, the paper shows that the more noise defectors

introduce, the more difficult it becomes for cooperation to evolve through indirect reciprocity. Strategies

that put more weight on direct reciprocity are more effective under these conditions.

Our study adds to this literature in the following way:

(i) We provide a general framework to explore the interaction of direct and indirect reciprocity. This

framework allows us to systematically explore the evolution of reciprocity when players can

choose among all possible first-order strategies, including stochastic strategies. It can easily be
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extended to include more complex strategies (see Section 6.4).

(ii) By focusing on comparably simple strategies in the main text, we allow for a more transparent

comparison between direct and indirect reciprocity. In particular, we are able to derive analytical

conditions when each kind of reciprocity is stable.

(iii) Simulation results necessarily depend on which strategies have competed. Adding further strategies

can sometimes change the respective conclusions. In contrast, our analytical results are robust.

When we find a cooperative strategy to be an equilibrium, it is stable against any possible deviation,

even if more complex strategies become available.

2 Model description

We consider a well-mixed population of n players. Interactions take place in discrete time. In each time

step, two players are chosen from the population at random to engage in one round of the prisoner’s

dilemma. The two chosen players independently decide whether to cooperate (C) or to defect (D). A

cooperator pays a cost c>0 which yields a benefit b>c to the co-player. Hence, the possible payoffs are

b−c if both players cooperate, −c if only the focal player cooperates, b if only the co-player cooperates,

and 0 if both defect. After each game, the process iterates with probability d. That is, with probability d,

again two players are chosen at random to interact in a prisoner’s dilemma. Otherwise, with probability

1−d, the game terminates. Upon termination, the players’ payoffs are calculated by averaging over all

interactions in which they participated in.

To model how a player forms and updates her opinions about other group members, we consider

players who use separate finite state automata to represent each other group member’s reputation. In

the baseline model, we assume each automaton only has two states, which we denote by G (the player

considers the respective group member to be ‘good’) and B (the respective group member is considered

‘bad’). Players cooperate with those group members they consider as good, and they defect against the

bad ones. Such a binary representation of the co-player’s current social standing has become standard in

the literature on indirect reciprocity53,60,61. However, in Section 6.3 we illustrate how our framework can

be extended to allow for more nuanced representations of the co-player. With this extended framework,

we can capture previous models in which players have a third ‘neutral’75 or ’unknown’76 state, or models

in which the co-player’s score is measured in integer values49,50. The extended framework also allows us

to capture situations in which a player’s assessment of a co-player depends on more than the co-player’s

last observed action19,66.

While a player can be in different states with respect to different group members, each player uses

a uniform rule to update all his automata. We interpret this rule as the player’s strategy. In the base-

line model, players use simple reactive strategies. The strategy of player i is represented by a vector

(yi, pi, qi, λi)∈ [0, 1]4. The first entry yi is the probability that player i initially assigns a good reputation

to a given co-player (without having observed any interaction of that co-player before, see Fig. 1d). We

assume that all of the player’s n−1 automata are initialized independently. In particular, for 0<yi<1,
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the player may assign different initial states to different co-players. However, all our qualitative results

remain unchanged if a player’s initial assignments are fully correlated, such that the player assigns the

same initial reputation to all other group members. The values of pi and qi determine how the player

updates a co-player’s state after a direct interaction (Fig. 1e,f). A cooperative co-player is assigned a

good reputation with probability pi, whereas a defecting co-player is assigned a good reputation with

probability qi. As an example, the strategy ALLD sets y=p=q=0, whereas ALLC uses y=p=q=1.

Finally, the last parameter λ encodes to which extent players take indirect information into account

when assigning reputations to others (Fig. 1g). To model the impact of indirect information, we assume

that all players can observe the interactions of all other population members (for the case of incomplete

information, see Section 6.1). After player i witnesses an interaction between player j and some third

party, i updates player j’s reputation with probability λi. If player j’s reputation is updated, the new

reputation is good with probability pi if player j has cooperated with the third party, and it is good with

probability qi if player j has defected. We refer to λ as the player’s receptivity, as it controls to which

extent the player is receptive to indirect information.

In the special case that all players set λ=0, they completely ignore third party interactions. We refer

to this case as ‘direct reciprocity’. In the other limit λ=1, a player equally takes into account all actions

of the other group members, no matter whether the player is directly involved. We refer to this case as

‘indirect reciprocity’. We note that even a player with λ= 1 may occasionally cooperate based on her

direct experience with the given co-player. Such an instance occurs for example if the same two players

are randomly chosen to interact twice in a row. In that case, a player’s behavior in the second round

will depend on what happened in the first. This seems natural: in most applications, even a player who

routinely takes into account third-party information would not ignore any piece of information merely

because it stems from a direct encounter. Nevertheless, it can be useful from a conceptual perspective to

consider an alternative model of indirect reciprocity, where all decisions are solely based on third-party

information. We consider such a model in Section 6.2.

The archetypal strategy of direct reciprocity, Tit-for-Tat, corresponds to the vector TFT=(1, 1, 0, 0).

The analogous strategy in the indirect reciprocity literature, simple scoring63, is given by SCO=(1, 1, 0, 1).

In Extended Data Fig. 1a–d, we provide a graphical illustration of our model and the resulting reputa-

tion dynamics. Table S1 gives a summary of the parameters of our model.

Previous work has shown that the evolution of reciprocity is sensitive to the presence of noise69,77,78.

We thus assume that observations may be subject to perception errors. In this way, we allow indirect

information to be less reliable than direct information. Specifically, we assume that when observing an

indirect interaction, player imisinterprets somebody’s cooperation as defection with probability ε<1/2.

Similarly, a player’s defection may be taken as cooperation with the same probability. For simplicity

direct interactions are not subject to perception errors in the baseline model. However, in Section 6.1,

we analyze a model extension that includes perception and implementation errors for both modes of

reciprocity.

We note that the strategies in this baseline model only make use of first-order information52,54. A
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Parameter Interpretation

Fixed
Parameters

n Population size

b, c Benefit and cost of cooperation

ε Error rate for indirect information

d Probability of another interaction in the entire population

δ Probability of another interaction between a given pair of players,
introduced in Section 4

µ Mutation rate, introduced in Section 5

β Selection strength, introduced in Section 5

Evolving
traits

y Probability to assign a good reputation to unknown players

p Probability to assign a good reputation to co-players who cooperate

q Probability to assign a good reputation to co-players who defect

λ Probability to use indirect information

Table S1: Parameters of the model. Our model involves a number of fixed parameters that are the same for
all players and kept constant over time. In addition, our model considers four evolving traits. The values of the
evolving traits may differ between individuals. They are kept constant over the course of a game, but they may
change over an evolutionary timescale (see Section 5).

player’s reputation only depends on the player’s action. It does not depend on the standing of the re-

cipient, or on the player’s previous reputation. The assumption of first-order strategies greatly facilitates

the calculation of the players’ payoffs in Section 3. However, in Section 6.4 we revisit higher-order

strategies, and we discuss how they can be captured by our framework.

Finally, we note that starting with the influential work of Ohtsuki and Iwasa53,54 much of the litera-

ture on indirect reciprocity considers the case of public information55,58,64,79. In such models, players do

not observe each others’ interactions with third parties directly. Rather there is a central observer who

monitors all interactions in a population, assigns new reputations, and disseminates the updated reputa-

tions to all population members. Models of public information have the useful mathematical property

that all players agree on the reputation of any other population member (because everyone receives the

same information from the same source). In contrast, herein we are interested in the formation of reputa-

tions when some players base their decisions on direct interactions, whereas others may also take indirect

information into account. In such a situation, players may no longer agree on the reputation they assign

to some given co-player. Our model is thus – necessarily – a model of private information69,73,74,78.
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3 A unified payoff equation for direct and indirect reciprocity

In this section we derive an explicit expression of the payoffs when all players use reactive strategies

(y, p, q, λ). To this end, let xij(t), be the probability that player i assigns a good reputation to co-player

j at time t. As shown in the Methods section of the main text, this quantity satisfies the recursion,

xij(t+1) = (1−w̄)xij(t)

+ w
(
xji(t) pi + (1−xji(t)) qi

)
+ (w̄−w) (1−λi)xij(t)

+ wλi
∑
l 6=i,j

((
1−ε

)
xjl(t)+ε

(
1−xjl(t)

))
pi +

((
1−ε

)(
1−xjl(t)

)
+ εxjl(t)

)
qi,

(1)

with

xij(0)=yi. (2)

The parameter w̄= 2/n is the probability that a particular player is chosen to interact in the next round,

and w=2/
(
n(n−1)

)
is the probability that a particular pair of players is chosen. To obtain an expression

for the payoffs, we take Eq. (1), collect all terms with xkl(t), and define ri :=pi−qi, which yields

xij(t+1) =
(

1−w−λi(w̄−w)
)
xij(t) + w ri xji(t) + wλi(1−2ε)ri

∑
l 6=i

xjl(t)

+
(
w qi + λi(w̄−w)(εri + qi)

)
.

(3)

Eq. (3) indicates that the value of xij(t+1) is a linear function of the respective probabilities xkl(t) in

the previous round.

For further manipulation, it is useful to rewrite Eq. (3) using matrix notation. To this end, we collect

the players’ probabilities to assign a good reputation to their co-players in an n(n− 1)-dimensional

column vector,

x(t) :=
(
x12(t), . . . , x1n(t); x21(t), . . . , x2n(t); . . . ; xn1(t), . . . xn(n−1)(t)

)ᵀ
. (4)

Similarly, we collect the factors in the first line of Eq. (3) in an n(n−1)×n(n−1) matrix M=(mij,kl),

with entries

mij,kl =



1−w−λi(w̄−w) if i=k and j= l

w ri if i= l and j=k

wλi(1−2ε)ri if i 6= l, j 6= l, and j=k

0 otherwise.

(5)

Finally, we collect the constant term in the second line of Eq. (3) in an n(n−1)-dimensional column
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vector v = (vij) with entries

vij = w qi + λi(w̄−w)(εri + qi) for all j. (6)

Using this notation, we can write Eq. (3) as x(t+1) =Mx(t)+v. Based on this equation, we calculate

the weighted average

x := (1−d)

∞∑
t=0

dt ·x(t) = (1−d·M)−1
(
(1−d)x0 + dv

)
. (7)

Here, 1 denotes the identity matrix, and x0 is the shorthand notation for x(0) with entries as defined

by Eq. (2). The n(n−1) entries xij of this vector x can be interpreted as the probability to find player i’s

automaton with respect to j in the good state in a randomly picked round. We use Eq. (7) to compute the

expected payoff πi of player i as

πi =
1

n−1

∑
j 6=i

(xji b−xij c). (8)

In Extended Data Fig. 10, we compare this analytically derived payoff with the payoff obtained from

simulations of the game dynamics. For these simulations, we consider a population where n−1 players

use the conditionally cooperative strategy σC = (1, 1, q, λ), whereas the remaining player is a defector,

σD = (0, 0, 0, λ). We compute and simulate the payoffs for different values of λ for two different

scenarios (with different continuation probabilities and error rates). In all cases, we observe that the

analytically derived payoffs fully match the simulation results.

When using the above equations to calculate payoffs, the computationally most expensive step is to

find the inverse of the n(n−1)×n(n−1) matrix (1−dM) in Eq. (7). This computation can be made

more efficient when several players in a population adopt the same strategy (which will often be the case

in evolutionary simulations). In that case, one can exploit the symmetries of a well-mixed population:

all players who adopt the same strategy are expected to receive the same payoff. For the computation of

payoffs it is thus not necessary to distinguish between all n players. It suffices to distinguish between all

strategies that are present in the population – a usually far smaller number. In the Appendix, we show

how payoffs can be computed more efficiently when these symmetries are taken into account.

4 Equilibrium analysis

4.1 Characterization of all reactive Nash equilibria

In the following, we wish to characterize which reactive strategies σi = (yi, pi, qi, λi) are Nash equilibria

(in the next subsection we will then focus on those Nash equilibria that yield full cooperation). A strategy

is a Nash equilibrium if no player has an incentive to unilaterally deviate from it. To simplify the notation,

and to make our results comparable to the previous literature on direct and indirect reciprocity, it is useful
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to introduce an additional parameter δ, which is the continuation probability for a pair of players.

Lemma 1. Consider a population of size n, and let d be the probability that another random pair is

drawn from the population after the current round. Let δ be the probability that a given pair of players

interacts again after it has just participated in an interaction. Then

δ =
2d

2d+ (n−1)n(1−d)
. (9)

All proofs are provided in the Appendix. While d is the global continuation probability (the probability

that another game will be played in the entire population), the parameter δ is the continuation probability

for each pair of players. We note that the above formula implies that δ= 1 if and only if d= 1, and that

δ = 0 if and only if d = 0, as one may expect. Using the pairwise continuation probability δ, we can

formulate the following result that will help us to characterize the set of all Nash equilibria.

Lemma 2. Consider a homogeneous population with strategy σ= (y, p, q, λ), and let r := p−q. Then

on average, players assign a good reputation to each other with probability

x =

(
1−δ

)
y + δ

(
q + λ(n−2)(q+rε)

)
(

1−δ
)

+ δ
(

1−r +λ(n−2)(1−r+2rε)
) (10)

In particular, for a generic game with n>2, ε>0, and 0<δ<1 we have:

1. The population is fully cooperative (all players’ automata are in the G state for the entire game)

if and only if y=p=1 and either λ=0 or q=1.

2. The population is fully defecting (all players’ automata are in the B state for the entire game) if

and only if y=q=0 and either λ=0 or p=0.

Finally, the following lemma describes which payoff a single player can get from deviating from the

resident strategy (the strategy everyone else in the population applies). For brevity, we will sometimes

refer to the deviating player as the mutant.

Lemma 3. Consider a population where all but one player apply the resident strategy σ= (y, p, q, λ).

Let r := p−q. Then the mutant’s payoff π′ takes the form

π′ = A1 +A2(r − r∗λ)x′. (11)

Here, x′ is the mutant’s average cooperation rate against the residents, A1, A2 > 0 are constants that

only depend on the resident strategy, and

r∗λ =
1 + (n−2)δλ

1 + (n−2)(1−2ε)λ
· c
δ b
. (12)

According to Lemma 3, the payoff of the mutant is a linear function of the mutant’s cooperation rate. Due
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to the properties of linear functions, it follows that the mutant’s payoff is either maximized by choosing

x′=1 (if r≥r∗λ), or by choosing x′=0 (if r≤r∗λ). That is, for a resident strategy σ with r>r∗λ, ALLC is a

best response. In analogy to the case of reactive strategies for the repeated prisoner’s dilemma80, we call

the set of all such strategies σ ∈ [0, 1]4 the cooperation rewarding zone. Conversely, for any strategy σ

with r<r∗λ, ALLD is a best response, yielding the defection rewarding zone. In between these two zones,

for r= r∗λ, any mutant strategy obtains the same payoff π′=A1. Strategies for which r= r∗λ are called

equalizers. Equalizer strategies have been previously described in models of direct reciprocity28,43,81.

Lemma 3 guarantees that analogous strategies also exist when players take arbitrary amounts of indirect

information into account.

It is important to note that Lemma 3 makes no restrictions on the mutant strategy. For the lemma

to hold, we do not require the mutant to choose a strategy of the form σ′ = (y′, p′, q′, λ′). Instead the

mutant may take arbitrarily many past actions of the co-player into account, and she may combine direct

and indirect information in non-trivial ways. According to Lemma 3, the mutant’s eventual payoff is

solely determined by her resultant average cooperation rate.

Based on the above lemmas, we can now characterize all Nash equilibria among the reactive strategies.

Theorem 1 (Characterization of Nash equilibria).
Consider 0<δ<1, and a strategy σ=(y, p, q, λ).

1. In a game with n>2 and ε>0, a strategy σ with λ>0 is a Nash equilibrium if and only if it is either

ALLD or an equalizer strategy,

y=p=q=0, or p−q=r∗λ. (13)

We refer to strategies of the form (13) as generic Nash equilibria.

2. If λ= 0, n= 2 or ε= 0, the strategy σ is a Nash equilibrium if and only if it is either generic, or if

one of the following two cases applies,

y=q=0, p<r∗λ or y=p=1, q<1−r∗λ. (14)

Remark 1. We emphasize that while Theorem 1 characterizes the Nash equilibria among the reactive

strategies, it does not restrict the strategies deviating players may employ. The Nash equilibria described

in Theorem 1 are robust against any possible mutant strategy, including mutant strategies that take higher

order information into account, or mutant strategies that depend on the whole history of previous play.

4.2 Cooperative Nash equilibria

In the following, we are interested in those strategies that can sustain high levels of cooperation in a

population. To this end, we call a strategy σ a cooperative Nash equilibrium if
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(i) it constitutes a generic Nash equilibrium, and

(ii) the cooperation rate in a homogeneous σ-population approaches one as the error rate ε goes to zero.

From Eqs. (10) and (13), it follows that cooperative Nash equilibria need to be equalizers of the form

σ=(1, 1, q∗λ, λ) with q∗λ :=1−r∗λ and r∗λ defined by Eq. (12). In the case of direct reciprocity (λ=0), the

corresponding cooperative Nash equilibrium thus takes the form

y = 1, p = 1, q∗0 = 1− c

δ b
. (15)

This strategy has been described earlier and is known as Generous Tit-for-Tat (GTFT)2,3. Surprisingly

the analogous strategy for indirect reciprocity (λ=1) has not been described before, given by

y = 1, p = 1, q∗1 = 1− 1 + (n−2)δ

1 + (n−2)(1−2ε)

c

δ b
. (16)

In analogy to the previous case, we call this strategy Generous Scoring (GSCO). These two Nash equilib-

ria do not need to exist for all parameter values because the respective value of q∗ may become negative.

Theorem 2 summarizes the necessary and sufficient conditions for cooperative Nash equilibria to exist.

Theorem 2 (Existence of cooperative Nash equilibria).

1. There is a cooperative Nash equilibrium σ = (1, 1, q∗0, 0) in which players exclusively use direct

information if and only if δ≥δ0 with

δ0 =
c

b
. (17)

2. There is a cooperative Nash equilibrium σ= (1, 1, q∗1, 1) in which players use indirect information if

and only if 2ε<1−c/b+1/(n− 2), and δ≥δ1 with

δ1 =
c

b+ (n−2)
(
(1−2ε)b−c

) . (18)

3. For 0 < λ < 1, there is a cooperative Nash equilibrium σ = (1, 1, q∗λ, λ) if and only if there is a

cooperative Nash equilibrium for λ=0 or λ=1.

Theorem 2 gives three major insights:

First, for sustaining cooperation in a Nash equilibrium there is no advantage of using both direct and

indirect information simultaneously (i.e., to choose 0 < λ < 1). From the third part of Theorem 2 it

follows that if some cooperative Nash equilibrium in reactive strategies exists at all, there is always a

cooperative Nash equilibrium for either λ=0 or λ=1.

Second, the first two parts of Theorem 2 suggest that for δ0, δ1 ∈ [0, 1] we can partition the parameter

space of the game into four distinct regions:

(i) When δ < min{δ0, δ1}, there is no cooperative Nash equilibrium;
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(ii) When δ0<δ<δ1, full cooperation can be sustained with direct but not with indirect reciprocity;

(iii) When δ1<δ<δ0, cooperation can be sustained with indirect but not with direct reciprocity;

(iv) When δ > max{δ0, δ1} both direct and indirect reciprocity allow for stable cooperation.

We provide a graphical illustration of these parameter regions as Fig. 2c in the main text.

Third, parameter changes affect the feasibility of cooperation as follows.

Corollary 1. If a cooperative Nash equilibrium exists for given values n, δ, and ε, then there also exists

a cooperative Nash equilibrium for any n′≥n, δ′≥δ, and ε′ ≤ ε.

In a nutshell, the above corollary states that the stability of cooperation is monotonic in the population

size, the pairwise continuation probability, and the error rate. All other parameters kept equal, the con-

ditions for a cooperative Nash equilibrium are easier to meet if the population size is larger, if there are

more rounds to be played in expectation, or if there is less noise on indirect information.

Several remarks are in order.

1. While the above results for λ= 0 fully recover previous results on direct reciprocity among reac-

tive players2,3, the results on indirect reciprocity (λ= 1) may come as a surprise. Previous work

on indirect reciprocity suggests that reactive (‘first-order’) strategies are unable to sustain coop-

eration50,51,53. The intuition for this pessimistic result is that in a resident population of perfect

discriminators (with y = p= 1, q = 0), a resident may have no incentive to discriminate against

a rare ALLD mutant. By punishing a defector, discriminators harm their own reputation, which

puts them at risk to receive less cooperation in future. Our model circumvents this problem by

allowing for stochastic strategies. By increasing their q-value from zero, discriminators are able

to reduce the effective cost of punishment. Once they reach q=q∗λ, the expected long-term loss in

reduced reputation after defecting against an ALLD mutant exactly matches the short-term gain in

saved cooperation costs. In the Nash equilibrium, discriminators no longer bear an effective cost

of punishing defectors.

2. The strategies Generous Tit-for-Tat and Generous Scoring are Nash equilibria, but they are not

evolutionarily stable. That is, if the entire population adopts one of these strategies, no mutant is

favored to invade, but mutants are not opposed to invade either. Evolutionary stability is generally

difficult to achieve in repeated interactions. For the repeated prisoner’s dilemma, it has been shown

that no strategy is evolutionary stable in the absence of errors12,13. Any resident strategy can be

invaded by ‘stepping-stone’ mutations, which in turn may facilitate the invasion of further mutant

strategies18. Simulations suggest that cooperation comes and goes in cycles; the frequencies of

cooperative and defecting strategies oscillate over time26. However, how often cooperative strate-

gies are played over an evolutionary timescale critically depends on whether or not cooperative

Nash equilibria exist17. We will revisit this issue in the next section.
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For indirect reciprocity it has been suggested that evolutionary stability is feasible if more complex

strategies are permitted53,54. The respective ‘leading-eight’ strategies require that the reputation

of a player does not only depend on a player’s action, but additionally on the reputation of the

opponent (and sometimes also on the player’s own previous reputation). While these results of

Ohtsuki and Iwasa have been tremendously important for understanding which properties stable

norms ought to have, their framework is based on some rather restrictive assumptions. Most im-

portantly, information transmission is assumed to be public. In particular, all population members

agree on the reputation they assign to a given co-player. In contrast, we allow some players to use

a co-player’s public record to assign reputations, whereas others may make their judgments solely

based on their direct experiences. As a consequence, different players may assign a different rep-

utation to the same co-player. For such a private information scenario, it has been recently shown

that not even the leading-eight strategies are able to sustain high cooperation rates in the presence

of perception errors69.

3. Previous results on the stability of cooperation with indirect reciprocity only show stability within

the given strategy set considered53,57,64,67. This leaves it open whether more complex strategies

could invade, either due to neutral drift or because of a selective advantage. In contrast, the equilib-

rium results presented in this section do not restrict which strategies mutants are permitted to take.

The Nash equilibria that we describe are equilibria with respect to all possible mutant strategies

(see Remark 1).

4. In the limit of rare errors, the conditions that we obtain for the feasibility of cooperation with direct

and indirect reciprocity are strict, as the following result shows.

Theorem 3 (Optimality of equilibrium conditions).
Consider a population of size n interacting in a population game as introduced in Section 2, and suppose

ε → 0. Then there exists a Nash equilibrium (not necessarily in reactive strategies) that yields full

cooperation if and only if there is a cooperative Nash equilibrium in reactive strategies.

That is, our focus on simple reactive strategies does not restrict the player’s ability to sustain cooperation.

Theorem 3 says that if full cooperation is feasible at all in the limit of rare errors, it is already feasible

with reactive strategies.

With the above equilibrium analysis we explore which strategies can maintain cooperation if the respec-

tive strategy is already adopted by a large majority of the population. Importantly, however, ALLD is

also an equilibrium for all considered parameter values (Theorem 1). Therefore, even if cooperative

equilibria exist, our results do not imply that evolving populations would settle at these equilibria. Be-

fore we discuss the corresponding evolutionary questions in the next section, we highlight a few reasons

why we deem equilibrium analyses, like the one provided above, valuable: (i) The existence of cooper-

ative equilibria can be considered a minimum requirement for cooperation to evolve. (ii) Our analytical
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equilibrium conditions in Theorem 2 allow predictions on how certain parameter changes affect the fea-

sibility of cooperation (see Corollary 1). (iii) Even if we are to find that cooperative Nash equilibria

have problems to evolve, this may have important policy implications. For example, such a finding could

suggest that temporarily, additional incentives for cooperation are necessary.

5 Evolutionary analysis

5.1 Description of the evolutionary process

In the previous section, we have considered a static setup. We have explored which reactive strategies

can sustain an equilibrium with full cooperation. In the following, we no longer assume that players

settle at an equilibrium automatically. Instead players may choose arbitrary reactive strategies. Over

time, they adapt their behaviors through social learning.

To model this adaptation dynamics, we consider a pairwise comparison process82 in a well-mixed

population of constant size n. Initially, all players are assumed to use some arbitrary strategy (y0, p0, q0, λ0).

Then in every time step of the evolutionary process, two possible events can happen.

Exploration event. With probability µ (the mutation rate), one of the players is chosen at random. All

players have the same probability to be chosen. This player then adopts a randomly chosen new

strategy (y′, p′, q′, λ′). The new values for y′, p′, q′ are drawn from a uniform distribution on the

unit interval. For λ′ we first focus on the case that players either use direct or indirect reciprocity,

such that λ′∈{0, 1}. We discuss the case of intermediate values of λ′ in Section 5.4.

Imitation event. With probability 1−µ, two players are randomly drawn from the population, a learner

and a role model. Given the composition of the population, their expected payoffs πL and πR are

calculated using Eq. (8). We assume the learner adopts the role model’s strategy with probability

ξ =
1

1 + e−β(πR−πL)
(19)

The parameter β≥ 0 reflects the strength of selection. It determines to which extent the learner’s

decision depends on the role model’s relative success. In the special case that β=0, the imitation

probability simplifies to ξ = 1/2, such that imitation occurs purely at random. As β becomes

larger, the learner is increasingly biased to only imitate role models with a higher payoff.

The above two elementary events, exploration and imitation, give rise to an ergodic process on the space

of all population compositions. We explore this process with computer simulations. For each simulation,

we use a fixed set of parameter values. Simulations are run for sufficiently long, such that the population’s

average cooperation rate has converged and is independent of the initial population. In addition to this

cooperation rate, we record which strategies the players use over time.

Such simulations are computationally expensive. Even when using optimized algorithms (see Sec-

tion 7.1), they need to keep track of all s strategies in the population and to invert s2×s2 matrices at each
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selection event. To make these computations more efficient, we have employed the method of Imhof and

Nowak83 for some of our results. This method assumes that mutations are rare, µ→ 0. In that case, once

a mutant enters the population, this mutant can be expected to reach fixation or to go extinct before the

next mutation arises84,85. As a result, at any given time at most two different strategies are present in the

population. The mutant’s fixation probability in a resident population with strategy σR can be calculated

explicitly, using the formula86

ρ(σM , σR) =
1

1 +
∑n−1

i=1

∏i
k=1 e

−β (πM (k)−πR(k))
. (20)

Here, πM (k) and πR(k) are the respective payoffs when k individuals in the population employ the

mutant strategy. Once the mutant has gone extinct, or taken over the population, the next mutation occurs.

This rare-mutation limit allows for more efficient computation of the resulting dynamics. The saved

computation time can then be used, for example, to run the process for a larger number of generations. In

this way we can ensure that sufficiently many mutant strategies are drawn over the course of a simulation

to obtain a representative sample of the entire strategy space.

Overall, the process generates a sequence of strategies (σ0, σ1, . . .) that the residents use after each

introduced mutant strategy. Based on this sequence, we can again calculate the average cooperation rate

and the average strategy traits that evolve for different parameter values.

5.2 Impact of parameters on the evolutionary results

As summarized in Table S1, our model includes a number of different parameters. Throughout most of

the main text, we have focussed on two of them, (i) the game’s continuation probability δ, and (ii) the

probability ε that indirect observations are subject to perception errors. In addition, our model depends

on the benefit-to-cost ratio b/c of cooperation; the population size n; the strength of selection β; and

the mutation rate µ. In the following, we describe the effect of each of these parameters on the co-

evolution of cooperation and reciprocity. In particular, we focus on two aspects. (1) How do changes

in the respective parameter affect the evolution of cooperation? (2) How do changes in the respective

parameter affect the proportion of players who use indirect reciprocity? In each case, we first use our

static equilibrium results and the previous literature to form expectations on the impact of the respective

parameter. After that, we compare these expectations with the actual behavior observed in simulations.

(i) Continuation probability δ.

Because the expected number of rounds between two given players is given by 1/(1−δ), the pa-

rameter δ determines how often two players interact on average. Based on our static equilibrium

analysis (Corollary 1 in Section 4), larger values of δ should facilitate the evolution of cooperation.

With respect to the abundance of indirect reciprocity, our equilibrium analysis suggests that indirect

reciprocity should be particularly favoured for intermediate values of δ, where direct reciprocity has

difficulties to evolve. For sufficiently large continuation probabilities, our static equilibrium analysis
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does not allow us to make a clear prediction, because both GTFT and GSCO are equilibria for δ→1.

We have performed two sets of simulations in which we have varied the continuation probability

systematically, one for the limit of rare mutations (Fig. 5d) and one for a positive mutation rate

(Fig. 5h). In both cases, our simulation results are in line with the above predictions. For any error

rate ε, cooperation becomes more likely as we increase δ. Moreover, indirect reciprocity is most

abundant when δ is intermediate. For δ→1, we find that direct reciprocity is more likely to emerge.

We provide some analytical insight into this last effect in Section 5.3.

(ii) Error rate ε on indirect observations.

Based on our equilibrium analysis, we would expect that an increase in ε tends to reduce coopera-

tion (Corollary 1 in Section 4). This reduction may be less severe for large continuation probabilities,

where players may switch to direct reciprocity instead. With respect to the abundance of indirect reci-

procity, we expect errors to either have no effect (e.g., when no cooperation evolves and information

is irrelevant), or to have a negative effect.

Again, there are two sets of evolutionary simulations in which we vary the error rate ε systematically,

see Fig. 5d,h. In general, these simulations are in agreement with the above expectations. In case the

error rate has an effect on cooperation at all (i.e., for intermediate δ), this effect is negative. Similarly,

in those cases in which the error rate affects the player’s propensity to use indirect reciprocity (i.e.,

for intermediate to large values of δ), this effect is again negative.

The next four parameters are not specific to models of reciprocity. They feature an important role in

any evolutionary model of cooperation. Some of these parameters are known to have non-trivial effects

on simulation outcomes. For example, it has been shown that strategy abundances may change non-

monotonically in population size and selection strength87–89. Similarly, an increase in the system’s

mutation rate can change the evolutionary dynamics altogether90. Analytical predictions for these effects

are usually only possible in simple systems with a few strategies. In the following, we therefore only

provide some basic intuition.

(iii) Benefit-to-cost ratio b/c .

According to Theorem 2, a larger benefit-to-cost ratio is favorable to both, a GTFT equilibrium and a

GSCO equilibrium. We would thus expect that an increase in b/c enhances cooperation. With respect

to the abundance of indirect reciprocity, our equilibrium analysis does not make any predictions.

We explore the effect of the benefit-to-cost ratio on evolution in Extended Data Fig. 3a,b. There,

we distinguish between three scenarios, depending on how many interactions occur on average and

on how noisy third-party information is. In all scenarios, we find that cooperation is an increasing

function in b/c. The effect of b/c on the abundance of indirect reciprocity is more irregular. However,

for all benefit-to-cost ratios, we observe that an environment with intermediately many interactions

and reliable information is more favorable to indirect reciprocity than an environment with many

interactions and unreliable information.
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(iv) Population size n .

The effect of n is more difficult to predict because population size affects the dynamics on multiple

levels. First, according to Eq. (18), it affects the stability of conditional cooperation under indirect

reciprocity. The intuition here is that the larger the population, the more likely players already have

some third-party information when they encounter a given co-player for the first time. Increases in

population size would therefore increase cooperation, because players can more easily avoid helping

an unconditional defector. However, this effect should become weaker once the population is already

sufficiently large. Second, the size of a population affects the evolutionary process. On the one hand,

small populations tend to select for spiteful behaviors87,91. The intuition here is that the smaller

a population, the easier it becomes for players to show an above-average performance by simply

diminishing the payoff of all their co-players. On the other hand, the dynamics in small populations

is more stochastic. Even if a strategy is slightly disfavored, it still has a reasonable chance to reach

fixation due to stochastic effects if the population is sufficiently small.

Based on these mechanisms, we can expect the following behavior. For the smallest meaningful pop-

ulation size, n= 2, cooperation is disfavored by the evolutionary process (i.e., the cooperation rate

is smaller than 1/2), because of the effects of spite. Moreover, since direct and indirect reciprocity

are indistinguishable for n= 2, both should have equal frequency. While these predictions for n= 2

hold for all scenarios, the predictions for n>2 will depend on the other model parameters. However,

here again one may predict that scenarios with sufficiently many interactions tend to favor coopera-

tion. Scenarios with intermediately many interactions and reliable information tend to favor indirect

reciprocity.

Our simulations for varying population sizes indeed follow this general pattern (Extended Data
Fig. 3c,d). We note that in comparably large populations (n > 500), cooperation rates are non-

monotonic when simulations are run for a short time-span (green and orange curves in Extended
Data Fig. 3d). In large populations, it takes on average more time until any given population is

invaded. Therefore, the outcome of short simulations is more dependent on the initial population.

Because the defection rewarding zone of our strategy space is larger than the cooperation rewarding

zone (Section 4.1), non-cooperative populations are initially favored. This may explain the decline of

cooperation for larger population sizes when simulations are run for a short time span.

(v) Selection strength β .

Selection strength only affects the evolutionary process. Therefore we cannot directly infer its ef-

fects based on our static equilibrium predictions. Still we can form some intuition in the following

way. In the most simple case of β= 0, payoffs are irrelevant for the spread of a strategy. For such a

neutral process, we expect the average cooperation rate and the average abundance of indirect reci-

procity to approach 50%. For small but positive selection strengths, we would expect cooperation to

be slightly disfavored in all scenarios. The intuition for this is as follows: Because selection is weak,

all strategies are played with almost equal abundance. Because the best response to a majority of
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strategies is ALLD (Section 4.1), this effect is expected to give a slight advantage to non-cooperative

strategies. For intermediate to strong selection, we expect the outcome to depend again on the sce-

nario. In scenarios with sufficiently many interactions, cooperation can evolve. In addition, provided

that cooperation evolves, we expect more indirect reciprocity when there are intermediately many

interactions and information is reliable.

We systematically vary selection strength in the simulations shown in Extended Data Fig. 3e,f.
Again, the results seem to generally agree with the intuition provided above. As with population

size, we find that the effect of selection strength on cooperation can be non-monotonic. However,

this time, we observe this non-monotonicity even in the case that simulations are run for a long

time (orange curve in Extended Data Fig. 3e; for the respective simulations, we have consecutively

introduced 5·107 mutant strategies into the population. We have checked with additional simulations

that 108 mutant strategies yield the same output).

In Extended Data Fig. 4, we explore this non-monotonicity in more detail. Contrary to what one may

expect, we do not observe that this non-monotonicity is due to a reduced robustness of cooperators

(Extended Data Fig. 4a). Moreover, mutants that succeed in invading a conditionally cooperative

resident are highly cooperative themselves (Extended Data Fig. 4d). As a result, highly cooperative

populations actually become more abundant as we increase selection strength. At the same time,

however, we find that highly non-cooperative strategies also increase, and at a faster rate than the

highly-cooperative strategies (Extended Data Fig. 4c–e). Combined, these effects result in overall

smaller cooperation rates under strong selection.

(vi) Mutation rate µ .

In several of our figures we consider the limit of rare mutations83–85 (e.g, Fig. 3,Fig. 5a–d). That is,

we assume the mutation rate is vanishingly small, such that at any given point in time, the population

employs at most two different strategies. This assumption comes with several mathematical and

computational advantages84 and it has been employed in many studies of reciprocity23,31,69,79 and

beyond92–94. At the same time, such an assumption entails the risk that important mixed equilibria are

overlooked, because they cannot be reached by the evolutionary process. To explore the robustness

of our rare mutation results, we have thus performed additional simulations for positive mutation

rates (e.g., Fig. 4, Fig. 5e–h). There we have observed that our rare-mutation results do not require

mutation rates to be exponentially small (as assumed by the respective theory85). Instead, we observe

a reasonable agreement between the rare-mutation limit and our simulations for positive mutation

rates once µ is of the order 1/n or smaller.

In Extended Data Fig. 3g,h, we further explore the effect of mutation rates. To gain some intuition

for the effect of mutation rates, consider first the limit µ→ 1. In this limit, strategy abundances are

again independent of the strategies’ payoffs. Every strategy is therefore played with equal likelihood.

Both, the average cooperation rate as well as the average abundance of indirect reciprocity simplify

to 1/2. If µ is sufficiently close to one but smaller than one, we would again expect that cooperation is
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slightly disfavored (because ALLD is a best response to a uniformly random population). While these

predictions apply for all scenarios, the behavior of the system for small mutation rates depends on the

exact game parameters. As mutations become sufficiently rare, we expect to recover our main text

results based on the method by Imhof and Nowak83 for the limit µ→0 (as depicted in Fig. 5a–d).

Our simulations in Extended Data Fig. 3g,h largely follow this intuition. Interestingly, however,

we again observe that cooperation based on direct reciprocity is more robust than cooperation based

on indirect reciprocity when mutations occur at an intermediate rate (Fig. 4, Fig. 5). As noted in

the main text, this can occur because in indirect reciprocity, the payoffs of conditional cooperators

increase nonlinearly in the number of other conditional cooperators. We explore this non-linearity in

more detail in the next section.

5.3 An analysis of the competition between defectors and cooperators

According to the simulations, we observe a certain bias in favor of direct reciprocity when interactions

are common (i.e., when δ→1). Surprisingly, this bias exists even if indirect information is completely re-

liable (i.e., when ε→0). A static equilibrium perspective cannot explain this effect. After all, Theorem 2

suggests that whenever cooperation can be sustained with direct reciprocity, it can also be sustained with

indirect reciprocity if the error rate is sufficiently small. In the following, we aim to provide an evolution-

ary argument for this phenomenon. This argument also sheds some light on why cooperative strategies

of indirect reciprocity may have problems to evolve for larger mutation rates.

To this end, let us assume that players can only choose between two strategies, a cooperative strategy

(1, 1, q, λ) and ALLD = (0, 0, 0, λ). We explore the competition between these two strategies for both

λ=0 and λ=1 in the limit of no errors, ε→0.

1. Direct reciprocity (λ=0).
In a population with k cooperators and n−k defectors, we can use Eq. (8) to explicitly calculate

the players’ payoffs as

π0
C =

k−1

n−1
· (b−c)− n−k

n−1
·
(

(1−δ)+δq
)
· c

π0
D =

k

n−1
·
(

(1−δ)+δq
)
· b.

(21)

Importantly, both players’ payoffs are linearly increasing in the number of cooperators k (see

Extended Data Fig. 2a,c for an illustration of π0
C and π0

D for two different values of δ). We can

simplify these payoff expressions further if we define z := k/n to be the fraction of conditional

cooperators in the population, and let n→∞. In that case, payoffs become

π0
C = (b−c)·z − (1−δ+δq)c·(1−z)

π0
D = (1−δ+δq)b·z.

(22)
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For z → 0, cooperators always obtain a lower payoff than defectors. In the other limit, z → 1,

cooperators outperform defectors if q<1−c/(δb). Under that condition, the dynamics is bistable:

each strategy is favored if it is adopted by sufficiently many players. The minimum fraction of

cooperators to make cooperation beneficial can be calculated as

z0 =
1− δ + δq

(1−q)δ
· c

b−c
. (23)

This critical threshold becomes arbitrarily small as the number of repetitions increases (δ→ 1),

and as the cooperative strategy approaches TFT (q→0). That is, if only there are sufficiently many

repetitions, already a small minority of TFT players can easily invade into an ALLD population.

2. Indirect reciprocity (λ=1).
Again, we consider k conditional cooperators with strategy (1, 1, q, 1) and n−k defectors with

strategy (0, 0, 0, λ). According to Eq. (54), their respective payoffs are now

π1
C =

k−1

n−1

1+
(
(n−1)q−1

)
δ

1+(n−2)δ

1+
(
n−2+(n−k)(1−q)

)
δ

1+
(
n−2−(k−1)(1−q)

)
δ
· (b−c)− n−k

n−1

1+
(
(n−1)q−1

)
δ

1+(n−2)δ
· c.

π1
D =

k

n−1
·

1+
(
(n−1)q−1

)
δ

1+(n−2)δ
· b

(24)

The defectors’ payoffs still depend linearly on the cooperators’ generosity parameter q and on the

number of cooperators k. However, the cooperators’ payoffs are nonlinear (see Extended Data
Fig. 2b,d). If we again define z := k/n, and let n→∞, the above payoffs simplify to

π1
C =

q + q(1−q)(1−z)
1− (1− q)z

·z(b− c)− q(1−z)c

π1
D = q ·zb

(25)

We note that ∂π1
C/∂z > 0 and ∂2π1

C/∂z
2 > 0 for q > 0. That is, the payoff of cooperators

increases disproportionally in the number of other cooperators. When z → 0, cooperators are

again outperformed by the defectors. Conversely, when z→1, cooperators succeed if q<1−c/b.
In that case, there is again a bistable competition between cooperators and defectors. The critical

threshold for cooperators to be favored is now

z1 =
c

b(1−q)
. (26)

In contrast to the case of direct reciprocity, we note that this critical threshold is independent of

the continuation probability. In particular, even when the game is infinitely repeated, indirect

reciprocity always requires a critical mass of conditional cooperators present in the population for
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cooperation to succeed. The critical mass required is at least c/b.

The above results highlight that direct and indirect reciprocity differ in their relative strengths.

On the one hand, indirect reciprocity leads to a faster spread of information. As a consequence,

conditional cooperators are better able to restrict the payoff of defectors. In fact, we find π1
D≤π0

D for all

parameter values. This faster spread of information is particularly important if players only interact for

a few number of rounds. For δ→ 1, this comparative advantage of indirect reciprocity disappears, and

π1
D=π0

D.

On the other hand, successful cooperation in indirect reciprocity is based on synergy effects. Cooper-

ators only obtain a high payoff if they are present in sufficient numbers. That is, π1
C<π

0
C for sufficiently

large δ. Overall, a comparison of the thresholds for direct and indirect reciprocity yields

z0 < z1 ⇔ δ ≥ b

b− c+ (1−q)b
. (27)

That is, once the continuation probability is sufficiently high, direct reciprocity requires fewer coopera-

tive mutants to undermine an ALLD population.

5.4 Evolutionary dynamics for probabilistic information usage

In our previous analysis of the evolutionary dynamics, players incorporate any third-party information

according to a deterministic rule. They either never take such information into account (λ= 0) or they

always do so (λ = 1). In the following, we consider an evolutionary process where individuals can

interpolate between these two extremes.

To this end, we need to adapt the evolutionary process as described in Section 5.1 to allow for mutant

strategies with intermediate values of λ. One rather immediate way to incorporate values of λ is to

assume that new mutant strategies (y′, p′, q′, λ′) are uniformly drawn from the four-dimensional unit

cube [0, 1]4. Such a mutation scheme, however, would predominantly result in mutant strategies that

rarely engage in direct reciprocity. To see why, we note that in a population of size n, two players have

on average n−2 third-party interactions each before they have a direct encounter again. As a result,

even players with comparably small values of λ have quite a high probability to update a co-player’s

reputation state between two direct encounters.

In the following, we formalize the above intuition. To this end, consider a player with strategy

(y, p, q, λ) who just had a direct interaction with some given co-player. Let γ̄ denote the probability that

the player does not update the co-player’s reputation until the next direct interaction of the two players.

This probability can be computed as follows:

γ̄ =
∞∑
k=0

(
n−2

n−1

)k 1

n−1
(1− λ)k =

1

1 + (n−2)λ
. (28)

In sum on the right hand side,
(
(n−2)/(n−1)

)k
/(n−1) is the probability that the co-player engages
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in k third party interactions until the next direct interaction happens. The remaining factor (1−λ)k is

the probability that the focal player decides not to update the co-player’s reputation after each of these

third-party interactions. The resulting quantity γ̄ reflects how likely the player’s decision in the next

game with the co-player is based on their last game with each other. We thus refer to γ̄ as the effective

probability that a player engages in direct reciprocity. Similarly, we refer to

γ := 1−γ̄ =
(n−2)λ

1+(n−2)λ
(29)

as the player’s effective probability to engage in indirect reciprocity. In particular, for a player with λ=0

who ignores any third-party information, we obtain γ=0 as one may expect. On the other hand, if λ=1,

then γmax :=(n−2)/(n−1); in this case, the only time the player’s reaction is based on direct experience

is when the co-player happens not to have any third-party interactions between two direct encounters (we

revisit this case in Section 6.2).

Importantly, the effective probability to engage in indirect reciprocity according to Eq. (29) is non-

linear in λ. For example, even if a player is rather unlikely to take into account any particular piece

of third-party information (e.g., λ = 10%) may have a considerable effective probability to engage in

indirect reciprocity (γ≈ 82.8% for a moderate population of size n= 50). In particular, for simulations

in which λ is chosen uniformly between [0,1], most mutant strategies would predominantly engage in

indirect reciprocity. For our simulations in Extended Data Fig. 12, we thus do not employ such a mu-

tation scheme. Instead, we generate mutant strategies (y, p, q, λ) such that the resulting γ according to

Eq. (29) is distributed uniformly in [0, γmax]. In this way, we ensure that a randomly generated mutant is

approximately equally likely to engage in direct and in indirect reciprocity.

For the simulations, we first consider the case that the player’s value of γ is fixed. We then let γ vary

between γ = 0 and γ = γmax. For Extended Data Fig. 12a, we have re-run the simulations shown in

Fig. 3a for the case that players are comparably unlikely to interact again, δ=1/2. Here we observe that

players are most likely to adopt cooperative strategies when γ is large (i.e., when players have a large

effective probability to engage in indirect reciprocity). Conversely, for Extended Data Fig. 12b, we

consider the limit of infinitely many pairwise interactions, δ→ 1. As already suggested by Fig. 3b, our

results here indicate that direct reciprocity is more effective in generating high cooperation rates. While

these two results are obtained in the limit of rare mutations, we obtain similar qualitative results for more

abundant mutations (Extended Data Fig. 12c,d). When δ=1/2, strategies with higher γ generate more

cooperation, irrespective of the considered mutation rate. On the other hand, when δ=1, strategies with

smaller γ are more conducive to the evolution of cooperation (which reflects our earlier results in Fig. 4).

We note that these simulations make a similar prediction as the theoretical results in our Theorem 2. The

results suggest that in general, intermediate values of λ are not more favorable to cooperation. Instead,

the highest cooperation rates are achieved either for λ=0 (i.e., γ=0) or for λ=1 (i.e., γ=γmax).

In a second step, we then allow the value of γ to co-evolve along with the other strategy parameters

24



y, p, and q. Repeating the simulations done for Fig. 5a–c, we consider three different scenarios. (i) If

errors are abundant and players only interact for a few rounds, we observe that no cooperation evolves

and that selection among the player’s γ values is neutral (Extended Data Fig. 12e). (ii) If errors are

rare and players interact for an intermediate number of rounds, cooperation can evolve (Extended Data
Fig. 12f). In that case, we also observe that players tend to have a higher effective probability to engage

in indirect reciprocity. In particular, among all possible values of γ, players most abundantly choose

γ ≈ γmax. (iii) If errors occur at an intermediate rate and players interact often, players show a bias

towards sustaining cooperation based on direct reciprocity (Extended Data Fig. 12g). Now the most

abundant strategies adopt γ≈0.

In a last step, we have systematically varied the considered error rate and the continuation probability

(Extended Data Fig. 12h). Compared to the baseline case in Fig. 5d, we observe some notable differ-

ences. On the one hand, when errors are abundant, players seem to have more difficulties to establish

cooperation. On the other hand, also the average value of γ seems to be closer to 1/2 (note that the

color legend in Extended Data Fig. 12h is rescaled to allow for a better contrast between the different

regions). Nevertheless, the general patterns outlined in Fig. 5d are conserved. Cooperation is most likely

to evolve when the continuation probability is large and when errors are rare. At the same time, players

show a bias towards indirect reciprocity if they only interact for intermediately many rounds, whereas

they prefer direct reciprocity when there are many rounds and many errors.

6 Model extensions

6.1 The impact of errors and incomplete information

Our baseline model introduced in Section 2 is based on a number of simplifying assumptions. In par-

ticular, we assumed that only third-party interactions are subject to perception errors, that player always

implement the correct action, that both actions (C and D) are equally likely to be misperceived, and that

all players can observe all interactions in a population. In the following, we discuss the impact of each

of these assumptions separately.

Direct reciprocity with perception errors. We first discuss how our results need to be adapted when

players misperceive the actions of a direct interaction partner with probability ε0>0. For better clarity,

we now refer the probability that players misperceive third-party interactions as ε1. The baseline model

corresponds to the case ε0 = 0 and ε1 = ε. In general, it is reasonable to assume that indirect observa-

tions are more prone to misinterpretation than direct observations, in which case ε0 ≤ ε1. When direct
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reciprocity is subject to perception errors, the main equation (1) becomes

xij(t+1) = (1−w̄)xij(t)

+ w
((

(1−ε0)xji(t)+ε0(1−xji(t))
)
pi +

(
(1−ε0)(1−xji(t)) + ε0xji(t)

)
qi

)
+ (w̄−w) (1− λi)xij(t)

+ λi w
∑
l 6=i

[(
(1−ε1)xjl(t) + ε1(1−xjl(t))

)
pi +

(
(1−ε1)(1−xjl(t)) + ε1xjl(t)

)
qi
]
.

(30)

We note that the new parameter ε0 only affects the second line of this recursion, which captures the

direct interaction between i and j (Extended Data Fig. 1f). As in Section 2, we can use this equation to

calculate the players’ average cooperation rates and payoffs. Again, we are interested in which strategies

are able to sustain cooperation. To this end, we need to slightly modify our definition of cooperative

Nash equilibria. We say a strategy σ=(y, p, q, λ) is a cooperative Nash equilibrium if

(i) σ is a Nash equilibrium, and

(ii) the cooperation rate in a homogeneous σ-population approaches one as both ε0→0 and ε1→0.

Based on recursion (30), the equilibrium results of Section 4 can be adapted as follows.

Theorem 4 (Cooperative Nash equilibria when direct interactions are subject to perception errors).

1. A strategy σ=(y, p, q, λ) is a cooperative Nash equilibrium if and only if

y=1, p=1, q=1−r∗λ, with r∗λ=
1 + (n−2)δλ

(1−2ε0) + (n−2)(1−2ε1)λ
· c
δb
. (31)

2. In particular, cooperation can be sustained through direct reciprocity (λ= 0) if and only if δ≥ δ0

with

δ0 =
1

1−2ε0
· c
b
. (32)

It can be sustained through indirect reciprocity (λ=1) if and only if δ≥δ1∈ [0, 1] where

δ1 =
c

(1−2ε0) b+ (n−2)
(
(1−2ε1) b− c

) . (33)

In Fig. 2d, we illustrate the equilibrium conditions (32) and (33) for the special case ε0 =ε1. As one may

expect, it is more difficult to sustain cooperation when also direct interactions are subject to perception

errors. This increased difficulty is reflected in the additional (1− 2ε0)-terms in the denominator of

equations (32) and (33). However, the impact of ε0 on the threshold value δ1 for indirect reciprocity

vanishes as the population size n becomes large. Again, this is intuitive: if a players’ reputation is based

on his entire behavior, errors that only affect direct encounters become negligible in large populations.

To explore how perception errors in direct interactions affect the evolutionary dynamics of strategies,

we have re-run the simulations in Fig. 5d, but now assuming that ε0 = ε1 = ε. As shown in Extended
Data Fig. 5b, there are two effects. First, players are now less likely to cooperate, especially for high
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error rates. Second, players become more likely to take indirect information account (as it is now just as

reliable as direct information).

Implementation errors. In addition to perception errors, models of direct and indirect reciprocity often

consider an alternative source of noise in the form of implementation errors or trembling hand errors95,96.

To account for these kinds of errors, we assume that when a player intends to cooperate (defect), he mis-

takenly defects (cooperates) with probability e. Under this assumption, Eq. (1) for player i’s probability

to be in the good state with respect to co-player j becomes

xij(t+1) = (1−w̄)xij(t)

+ w
((

(1−e)xji(t)+e(1−xji(t))
)
pi +

(
(1−e)(1−xji(t))+exji(t)

)
qi

)
+ (w̄−w) (1− λi)xij(t)

+ λi w
∑
l 6=i

[(
(1−e)(1−ε)xjl(t)+(1−e)ε

(
1−xjl(t)

)
+e(1−ε)

(
1−xjl(t)

)
+eεxjl(t)

)
pi

+
(
e(1−ε)xjl(t)+eε

(
1−xjl(t)

)
+(1−e)(1−ε)

(
1−xjl(t)

)
+(1−e)εxjl(t)

)
qi

]
.

(34)

Here, the second and fourth line have changed in comparison to Eq. (1). For example, the second line

reflects that in direct interactions, we need to distinguish four cases, depending on whether or not the

co-player intended to cooperate, and whether or not there was an implementation error. Also the payoff

formula (8) needs to be adapted accordingly,

πi =
1

n−1

∑
j 6=i

(
(1−e)xji+e(1−xji)

)
b−

(
(1−e)xij + e(1−xij)

)
c. (35)

Again, we are interested in those Nash equilibria in which everyone is fully cooperative as errors become

rare (that is, when ε→0 and e→0).

Theorem 5 (Cooperative Nash equilibria under implementation errors).
1. A strategy σ=(y, p, q, λ) is a cooperative Nash equilibrium if and only if

y=1, p=1, q=1−r∗λ, with r∗λ=
1 + (n−2)δλ

(1−2e)
(
1+(n−2)(1−2ε)λ

) · c
δb
. (36)

2. In particular, cooperation can be sustained through direct reciprocity if and only if δ≥δ0 with

δ0 =
1

1−2e
· c
b
. (37)

It can be sustained through indirect reciprocity if and only if δ≥δ1∈ [0, 1] where

δ1 =
c

(1−2e) b+ (n−2)
(
(1−2e)(1−2ε) b− c

) . (38)

Interestingly, when we compare Theorem 5 with the respective conditions in Section 4, we note that the
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effect of implementation errors is equivalent to a rescaling of the benefit parameter from b to (1−2e)b.

That is, with respect to the static equilibrium predictions, increasing the rate of implementation errors

by 10% has the same effect as reducing the benefit of the game by 20%. To explore the effect of

implementation errors on the evolution of cooperation, we have re-run the simulations in Fig. 5d, but

now for e = 0.01 instead of e = 0 (Extended Data Fig. 5c). As one may expect, the addition of

implementation errors renders the evolution of cooperation more difficult. In the new scenario, players

need to interact for a larger number of rounds to establish substantial cooperation rates.

Asymmetric errors. One way how misperceptions can occur is when the acting player herself has an

incentive to misrepresent her action. This is particularly relevant for defectors, who may wish to conceal

the true nature of their actions. Excellent models of strategic miscommunication in indirect reciprocity

can be found in the papers by Nakamaru and Kawata and by Seki and Nakamaru73,74. In the context of

our model we can approximate the workings of strategic miscommunication by assuming that the two

possible actions C and D have different probabilities to be misperceived, εC and εD. A scenario where

defectors are more likely to misrepresent their actions can then be represented by assuming εD > εC .

For asymmetric errors, we obtain the following recursion for the pairwise probability to assign a good

reputation to a co-player,

xij(t+1) = (1−w̄)xij(t)

+ w
(
xji(t) pi + (1−xji(t)) qi

)
+ (w̄−w) (1− λi)xij(t)

+ λi
∑
l 6=i

w
[(

(1−εC)xjl(t) + εD(1−xjl(t))
)
pi +

(
(1−εD)(1−xjl(t)) + εCxjl(t)

)
qi
]
.

(39)

The players’ payoffs are again defined by Eq. (8). In the case of asymmetric errors, we speak of a strategy

as a cooperative Nash equilibrium if it is stable and if the cooperation rate against itself approaches one

if both εC→0 and εD→0. We obtain the following characterization:

Theorem 6 (Cooperative Nash equilibria under asymmetric errors).
1. A strategy σ=(y, p, q, λ) is a cooperative Nash equilibrium if and only if

y=1, p=1, q=1−r∗λ, with r∗ =
(1 + (n−2)δλ)

1 + (n−2) (1−εD−εC)λ

c

δb
. (40)

2. In particular, cooperation can be sustained through direct reciprocity if and only if δ≥δ0 with

δ0 =
c

b
. (41)

It can be sustained through indirect reciprocity if and only if δ≥δ1∈ [0, 1] where

δ1 =
c

b+ (n−2)
(
(1−εD−εC)b−c

) (42)

In case εC = εD, these conditions recover the respective results of the baseline model, which is reassur-
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ing. In Extended Data Fig. 5d, we show simulation results for the asymmetric case where εC = 0 and

εD = ε> 0. For the parameter range considered previously, 0≤ δ≤ 1 and 0.001≤ ε≤ 0.1, we observe

more cooperation compared to our baseline model. This occurs because the effective rate at which errors

happen is now reduced, because only some of the players’ actions are subject to noise.

However, we note that in contrast to the previous scenarios, it is not unreasonable to assume that

error probabilities may exceed 10% when they are the result of strategic miscommunication. Larger

values of εD can impede cooperation considerably. In fact, even if εC = 0, it follows from Eq. (42) that

indirect reciprocity is no longer able to sustain cooperation if εD > (1−c/b)(n−1)/(n−2). That is,

for cooperation to evolve through indirect reciprocity, there need to be limits on how well defectors can

deceive others.

Incomplete information. In our baseline model we assume that each player is informed about everyone

else’s interactions. This assumption of complete information though standard is unrealistic, especially

if the population is large. In the following, we thus introduce an additional parameter ν ∈ [0, 1]. This

parameter reflects which fraction of third-party interactions players observe on average. With incomplete

information, the main equation (1) now becomes

xij(t+1) = (1−w̄)xij(t)

+ w
(
xji(t) pi + (1−xji(t)) qi

)
+ (w̄−w) (1−νλi)xij(t)

+ wνλi
∑
l 6=i,j

((
1−ε

)
xjl(t)+ε

(
1−xjl(t)

))
pi +

((
1−ε

)(
1−xjl(t)

)
+ εxjl(t)

)
qi.

(43)

Here, the third and fourth line have changed in comparison to Eq. (1). That is, a player’s probability λi to

take into account indirect information is now scaled by a factor of ν, the probability that this information

is learned in the first place. A player with λi=1 no longer takes every action of the other group members

into account when assigning reputations, but every action he is aware of. The condition for cooperation

to be feasible is now given as follows.

Theorem 7 (Cooperative Nash equilibria under incomplete information).
1. A strategy σ=(y, p, q, λ) is a cooperative Nash equilibrium if and only if

y=1, p=1, q=1−r∗λ, with r∗λ=
1 + (n−2)δνλ

1+(n−2)(1−2ε)νλ
· c
δb
. (44)

2. The condition for cooperation under direct reciprocity is unchanged, δ ≥ δ0 = c/b. For indirect

reciprocity there exists a cooperative Nash equilibrium if and only if δ≥δ1∈ [0, 1] where

δ1 =
c

b+ (n−2)
(
(1−2ε) b− c

)
ν
. (45)
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In the limiting case that players obtain no third-party information at all, such that ν=0, the two threshold

values coincide, δ0 = δ1, as expected. In Extended Data Fig. 5d, we present evolutionary simulation

results when there is almost no third-party information (ν=0.01, such that only every 100th interaction

is observed on average). In that case, players who take indirect information into account are almost

indistinguishable from those players who do not. Indeed, we find that cooperation only evolves once it

can be sustained through direct reciprocity, and that indirect reciprocity is generally disfavored.

6.2 A model of pure indirect reciprocity

Our baseline model makes two assumptions on how individuals assign reputations to each other: (i) Indi-

viduals always update a co-player’s reputation after a direct interaction, and (ii) if the respective co-player

interacts with a third party, the co-player’s reputation is updated with probability λ. These assumptions

imply that a player with λ=0 acts based on direct experiences only, whereas a player with λ=1 equally

takes into account all of a co-player’s interactions, no matter whether the focal player was directly in-

volved. Since interactions occur randomly, however, it may happen that the same two players are chosen

to interact for two consecutive rounds. In such a case, the players’ decisions in the second round are

necessarily based on their respective direct experience made in the first round – even if players generally

base their decisions on indirect reciprocity (that is, even if λ = 1). On a conceptual level, this effect

may make it more difficult to compare the two modes of reciprocity. It can thus be useful to study a

model where individuals use pure versions of each behavior (such that individuals who opt for indirect

reciprocity neglect any additional direct information they may have). In the following we present such a

model, and we show that it leads to qualitatively similar conclusions.

For this model, we assume the players’ strategies are given by a 4-tuple (y, p, q, κ). The interpretation

of the first three entries is the same as in the baseline model. For the last entry, we assume that if a

focal player directly directly interacts with a given co-player, the co-player’s reputation is updated with

probability 1−κ. In contrast, if the co-player interacts with a third-party, the co-player’s reputation is

updated with probability κ. This model implies that for κ=0 only direct interactions lead to a reputation

update, whereas for κ= 1 reputations are only updated after third-party interactions. Similar to Eq. (1)

for the baseline model, we can derive a recursion for the probability xij(t) that player i considers j to be

good at time t. This recursion now takes the form

xij(t+1) = (1−w̄)xij(t)

+ w(1−κi)
(
xji(t) pi + (1−xji(t)) qi

)
+ wκi · xij(t)

+ (w̄−w) (1−κi)xij(t)

+ wκi
∑
l 6=i,j

((
1−ε

)
xjl(t)+ε

(
1−xjl(t)

))
pi +

((
1−ε

)(
1−xjl(t)

)
+ εxjl(t)

)
qi.

(46)

This recursion only differs from Eq. (1) in the second and third line. These two lines both refer to direct
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interactions of players i and j, which happen with probability w. For the model considered here, direct

interactions lead to a reputation update with probability 1−κi. In that case, the new reputation depends on

co-player j’s action, as encoded by xji(t), and on the values of pi and qi. Otherwise, with probability κi,

player j’s reputation remains unaffected.

Based on this recursion (46) can now derive the corresponding versions of all results of the baseline

model. We summarize the respective findings in the following.

Theorem 8 (Cooperative Nash equilibria for the model with pure indirect reciprocity).
Consider a group of size n≥3.

1. A strategy σ=(y, p, q, κ) is a cooperative Nash equilibrium if and only if

y=1, p=1, q=1−r∗κ, with r∗κ=
1 + (n−3)δκ

1−κ+(n−2)(1−2ε)κ

c

δb
. (47)

2. In particular, if players only use direct reciprocity (κ= 0), we obtain the same condition for the

existence of a cooperative Nash equilibrium as in the baseline model, δ≥ δ0 = c/b. For indirect

reciprocity (κ=1) there is a cooperative Nash equilibrium if and only if δ≥δ1∈ [0, 1] where

δ1 =
c

b(n−2)(1−2ε)− c(n−3)
. (48)

For any κ>0, we note that the equilibrium value of q according to Eq. (47) approaches q=1−c/(1−2ε)/b

in the limit of large populations. This limit coincides with the respective limit of the baseline model

according to Eq. (16). This is unsurprising: when populations are sufficiently large, the probability that

two particular players interact with each other twice in a row becomes negligible. In that case, already

our baseline model yields a model of pure indirect reciprocity. But even for finite population sizes,

the two models typically yield similar predictions. For example, for the parameters in Fig. 3 (b/c= 5,

n= 50, ε= 0) the baseline model suggests that full cooperation is feasible for δ0 = 0.2 (when λ= 0)

and δ1 = 0.0051 (when λ= 1). For the alternative model considered here, the respective values become

δ0 =0.2 (when κ=0) and δ1 =0.0052 (when κ=1), respectively. As a result, we also observe a similar

dynamics in evolutionary simulations (see Extended Data Fig. 11).

6.3 Finite-state automata with multiple states

So far we have studied the evolution of direct and indirect reciprocity in the most simple strategy space

possible. Players can only assign two possible reputations to their co-players, and a player’s updated rep-

utation only depends on the last action taken into account. In the following two subsections, we sketch

how our framework can be extended to scenarios that do not meet these two assumptions.

Strategies represented by finite-state automata with multiple states. We begin by allowing players to
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assign more nuanced reputations to their co-players. To this end, we consider players who use finite state

automata with more than two states. In addition to the dichotomous characterization of a player being

either ‘good’ or ‘bad’, this allows us to capture models in which players can have a third, ‘unknown’

or ‘neutral’ reputation. Such third states have been important in models in which players can forget76.

Similarly, these automata also allow us to capture scenarios in which it takes multiple defections in

memory to yield a bad reputation66,67.

For this model extension, we assume that each player’s strategy takes the form (Ω, γ, τ0, τ, λ). Here,

the first component Ω={ω1, . . . , ωm} is the number of (reputational) states the player does distinguish.

The second component γ : Ω→{C,D} determines for each assigned reputational state whether or not to

cooperate with a co-player who has the respective reputation. The third component τ0 ∈ ∆Ω determines

the initial reputational state of the co-players. Here, ∆Ω = {x ∈ [0, 1]m | x1 + . . .+xn = 1} is the

set of probability distributions over the set of states. The fourth component τ : Ω × {C,D} →∆Ω is

the transition function. It determines how likely the updated reputation of a given co-player is ω′ ∈ Ω,

depending on the previously assigned reputation ω ∈ Ω and on the co-player’s action a ∈ {C,D}. As

before, we assume that the co-player’s reputation is always updated after a direct interaction. Whether or

not the co-player’s reputation is also updated if the co-player interacts with a third party depends on the

player’s receptivity λ. Third party interactions are ignored when λ= 0, whereas they are fully included

when λ = 1. In the first case, we again obtain a model with direct reciprocity only. In that case, our

framework captures previous studies on repeated games among players with finite state automata17,18,26.

If λ=1, we obtain a model of indirect reciprocity. In that case, we can capture previous models in which

players can have more than two possible reputations49,75,76.

The reactive strategies considered in the previous sections represent a special case of these finite state

automaton strategies. For a reactive strategy σ=(y, p, q, λ) we have

Ω={G,B}, γ(ω)=

{
C if ω=G

D if ω=B
, τ0 =(y, 1−y), τ(ω, a)=

{
(p, 1−p) if a=C

(q, 1−q) if a=D.
(49)

From this representation, the two important simplifications of reactive strategies become immediately

apparent: (i) reputations are binary, and (ii) when a co-player’s reputation is updated, the new reputation

only depends on the co-player’s action but not on her previous reputation. This latter assumption has

been crucial for the explicit calculation of the players’ payoffs in Section 3. Due to this assumption,

the pairwise reputation variable xij(t+1) can be written as a linear function of the respective quantities

xkl(t) in the previous round. This no longer needs to hold for more general finite state automata, where

transitions depend on both the current state and the respective co-player’s action. Instead of calculating

the payoffs explicitly, we instead use numerical simulations of the game dynamics to obtain the players’

payoffs in the following.

Three examples of finite-state automata with multiple states. We illustrate this approach with three ex-

amples (Extended Data Fig. 6). In each case, we assume the respective finite state automaton has three
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states, ‘good’ (G), ‘neutral’ (N), and ‘bad’ (B). Initially, players assign a good reputation to everyone.

Each time the co-player defects, the co-player’s reputation deteriorates (from good to neutral, or from

neutral to bad, respectively). Similarly, each time the co-player cooperates, his reputation improves.

Players are assumed to cooperate against good opponents and to defect against bad opponents. The

three automata differ in how they deal with opponents with a neutral reputation: we consider the case

that players may either cooperate (A1, Extended Data Fig. 6a), cooperate with 50% probability (A2,

Extended Data Fig. 6b), or defect (A3, Extended Data Fig. 6c). The automata A1 and A3 have been

referred to as ‘generous discriminator’ and ‘rigorous discriminator’, respectively75.

Stability of the three-state automata against ALLD and ALLC. In a next step we considered a scenario

in which n−1 residents employ the respective automaton strategy. The remaining player either employs

ALLD or ALLC. Keeping the population composition fixed, we simulate the players’ payoffs for various

values of λ∈ [0, 1] (Extended Data Fig. 6d–f). We used the fixed game parameters b=5, c=1, n=50,

and ε=0.05. To compute the payoffs, we use the same simulation scheme as in a previous study69. That

is, initially, all players are assumed to assign a good reputation to each other. Then we simulate a game

with 2·106 rounds. To compute the players’ payoffs , we average over the second half of these rounds; in

this way, we avoid any transient effect during the early rounds arising from our assumption on the initial

reputation assignments. We checked that averaging over all rounds would not alter our conclusions.

For direct reciprocity only (λ= 0), we observe that all of the three automaton strategies are stable

with respect to invasion by ALLD, and neutrally stable with respect to invasion by ALLC. However, once

indirect information is considered (λ> 0), A2 and A3 can both be invaded by ALLC. Moreover, if resi-

dents adopt A3, they fail to cooperate with each other altogether. Only the first automaton A1 is stable

against ALLC and ALLD for all considered λ values. Automaton A1 can be considered as a threshold

strategy in the sense of Berger and Grüne67: players are certain to defect only if the co-player defected

twice in a row. For appropriate parameter values, such threshold strategies can sustain cooperation al-

though they only rely on first-order information66,67. Our results in Extended Data Fig. 6d suggest that

the same is true when players blend direct and indirect reciprocity (i.e., for 0<λ<1).

Evolutionary competition between the three-state automata, ALLD, and ALLC. In a final step, we sketch

how our framework can be used to explore the evolutionary performance of finite-state automata which

depend on both, direct and indirect information. In the following, we assume players use a fixed recep-

tivity λ=0.1 (but it should become clear how our methods extend to more general settings). Players can

choose between three different strategies: ALLD, ALLC, and one of the three automata discussed above.

In contrast to reactive strategies, there is no known efficient payoff formula for arbitrary finite-

state automata in the context of indirect reciprocity with private information. We therefore determined

the players’ payoffs by simulation. To this end, we considered all possible population compositions

(kA, kC , kD). Here, kA is the number of players who use the respective finite-state automaton strategy,

kC is the number of unconditional cooperators, and kD is the number of defectors. The possible popula-
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tion compositions are those for which kA+kC+kD =n. Based on these payoffs, we again employ the

process described in Section 5.1.

First, we considered the dynamics for β=1 in the limit of rare mutations, µ→0, for each of the three

finite-state automata. For the given parameter values, we find that only the first automaton A1 is played

with substantial frequency (Extended Data Fig. 7a–c). We observe that rare defectors are disfavored to

invade into an A1 population. However, cooperators can invade through (almost) neutral drift, because

they get a payoff only slightly lower than the residents’. Because unconditional cooperators are in turn

easily invaded by ALLD, there is a cyclic dynamics. Most of the time, the population either adopts A1

(65.4%) or ALLD (32.8%). As a result, the average cooperation rate over time is below 70%. The other

two finite-state automata generate even lower cooperation rates;A2 is quickly invaded by ALLC, whereas

A3 can be invaded by both, ALLC and ALLD.

Next we have explored the dynamics for a mutation rate of µ= 0.01, such that different strategies

may coexist in a population. For all three automata we find that most of the time, the population either is

in the vicinity of ALLD, or in the vicinity of the edge between the the finite-state automaton and ALLC

(Extended Data Fig. 7d–f). How often these two neighborhoods are visited depends on the considered

automaton strategy. For A1 and A2, we observe substantial cooperation, whereas for A3 players adopt

ALLD most of the time.

In a final step we have re-run these calculations for different parameter values. We have varied

the benefit of cooperation, the selection strength, and the mutation rate. As baseline parameters we

took the values used in (Extended Data Fig. 7d–f). For all parameter values, we find that A1 is most

likely to induce cooperation (Extended Data Fig. 7g–i). However, also the second automaton can yield

substantial cooperation rates.

Most strikingly, while the mutation rate had a negative impact on cooperation for reactive strategies

(Fig. 4), here we find that an intermediate mutation rate is most favorable to cooperation. However, in

our view the two sets of simulations need to be compared with caution. In Fig. 4, we have considered

the entire space of all strategies of a given complexity. In particular, the space is balanced: for every

conditional strategy that becomes more cooperative if the co-player cooperates, there is an analogous

strategy that reduces its cooperation rate. Only under this assumption, an increase of mutation rates does

not per se change the resulting cooperation rate. In contrast, the simulations in this section are based

on only a small sample of possible strategies, and the strategy space is not balanced. This shortcoming

is not specific to our Extended Data Fig. 7, but it is rather common in the indirect reciprocity litera-

ture49–52,55–58,69. One reason for this prevalence of unbalanced models is the difficulty of deriving the

players’ payoffs. In the absence of a general payoff equation that applies to all strategies of a given

complexity, researchers have to focus on strategies that seem most relevant. Such an approach does not

naturally induce balanced strategy sets. In this sense, we consider the simulations performed for our

baseline model as more transparent. They allow for all strategies of some given complexity, without any

preselection on the part of the researcher.
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6.4 Higher-order strategies

Another class of strategies that has received considerable attention in the literature on indirect reciprocity

(but less so in direct reciprocity) is the class of higher-order social norms53,60,61. The first-order social

norms correspond to the reactive strategies considered in the baseline model. When two players interact,

then the updated reputation of each player only depends on whether or not that player has cooperated.

Second-order norms additionally take the reputation of the respective opponent into account. An exam-

ple of such a second-order norm is stern judging55,59,79. This norm suggests that to maintain a good

reputation, one should cooperate with good opponents and defect against bad opponents. Finally, in

third-order norms the updated reputation of some player additionally depends on the player’s previous

reputation. In that way, higher-order social norms take an increasing number of information into account

when assigning a reputation to another group member.

Using an exhaustive method, Ohtsuki and Iwasa have shown that under public information, there are

exactly eight deterministic third-order social norms that can maintain cooperation53,54. These norms are

called the leading-eight. They consist of two components, an assessment-rule and an action rule (see

Extended Data Fig. 8a). The assessment rule determines how to update the reputation of other group

members, depending on their actions, their previous reputation, and the reputation of the opponent. The

action rule determines whether to cooperate; this decision may depend on one own’s reputation, as well

as on the reputation of the opponent. Crucially, Ohtsuki and Iwasa assume public information. In the

following, we explore the performance of the leading-eight rules when reputations are based on both

direct interactions and indirect observations, and when information is private.

Representation of third-order strategies. To this end, we now assume the players’ strategies have the

form σi=(αi, βi, λi). The first component is player i’s assessment rule,

α = (αGCG, αGCB, αBCG, αBCB, αGDG, αGDB, αBDG, αBDB)∈{G,B}8. (50)

For example, an entry of αGCB = G means that i deems it as good if a good population member j

cooperates with a bad population member k. Importantly, whether or not j and k had a good and bad

reputation to start with, depends on the individual perspective of player i (that is, it depends on xij(t)

and xik(t) at time t). The second component of player i’s strategy corresponds to his action rule,

β = (βGG, βGB, βBG, βBB)∈{C,D}4. (51)

For example, if player i considers himself to be in a good standing but his co-player to be bad, then

an action rule with βGB = D would prescribe to defect. Again, these assessments need to be taken

from i’s individual perspective. To this end, we assume that each player i now also has one additional

automaton that captures i’s own reputation. For this automaton, we set xii(t) = 0 if player i considers

himself to be bad at time t (which depends on i’s assessment rule and his previous interactions). Other-

wise, if xii(t) = 1, player i deems himself as good. We assume the automaton that captures player i’s
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self-perception is updated every time player i interacts with a co-player. With regard to the reputation of

others, we assume that i updates a co-player j’s reputation after a direct interaction with probability 1,

and after an indirect observation with probability λi, as before.

Stability of the leading-eight strategies against ALLD and ALLC. To explore the stability of third-order

social norms in the presence of both direct and indirect reciprocity, we proceed along the same lines as

in the previous section on finite-state automata. Again, we first consider a population in which n−1

players adopt some leading-eight strategy Li. The remaining player either adopts ALLC or ALLD. To

compute the player’s payoffs for various values of λ, again we simulate the game dynamics for fixed

game parameters b= 5, c= 1, n= 50, and ε= 0.05. Our results for λ > 0 resemble previous findings

on indirect reciprocity69: in the presence of perception errors, all leading-eight strategies are susceptible

to invasion. Either a single ALLC player or a single ALLD player obtains a higher payoff than the resi-

dents (Extended Data Fig. 8b–i). Only for λ=0 (when perception errors are absent), the leading-eight

strategies are stable against both mutant strategies.

Evolutionary competition between the leading-eight, ALLD, and ALLC. In a next step, we have again

explored how the leading-eight perform in an evolutionary context, when competing with the two un-

conditional strategies. We use exactly the same setup as in our previous analysis on finite-state automata.

That is, we fixed a receptivity value λ = 0.1 for all population members. Then we pre-computed the

payoffs with simulations for all possible population compositions (kL, kC , kD) where kL+kC+kD =n

(using the above payoff parameters). Based on these payoffs, we first considered the rare-mutation dy-

namics. As in a previous analysis for indirect reciprocity only69, we find that all of the leading-eight

strategies have problems to persist in the population (Extended Data Fig. 9a–h). The only strategy that

achieves notable frequencies in the population is L8. However, L8 is sensitive to noise, and thus tends to

defect in the presence of errors.

In a next step, we have considered the evolutionary process for a positive mutation rate, µ=0.01. As

we observed for the finite-state automaton strategies, populations tend to be clustered in one of two re-

gions of the space of all population compositions (Extended Data Fig. 9i–p). Either most players adopt

ALLD, or the population consists of a mixture of leading-eight players and unconditional cooperators.

Cooperative strategies are most abundant for three of the eight cases, for L1, L2, and L7, as observed

previously in the case of indirect reciprocity only69.

Finally, we have again explored how often players cooperate on average as we change three key

parameters, the benefit of cooperation, the strength of selection, and the mutation rate. Across all pa-

rameters considered, we find that only the three previously identified strategies L1, L2, and L7 can result

in a population that predominantly cooperates (Extended Data Fig. 9q–s). For these strategies we find

more cooperation when the mutation rate is intermediate, for 0.01 ≤ µ ≤ 0.1. This again disagrees

with the findings of our baseline model, according to which such mutation rates are detrimental to in-

direct reciprocity. However, as explained before, the two scenarios should not be compared directly.
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The simulations for our baseline model consider a complete and balanced strategy space. In contrast,

the simulations Extended Data Fig. 9 only allow for three particular strategies, none of which being

anti-reciprocal (i.e., none of which reducing its cooperation rate in response to a cooperative co-player).

When a strategy space is not balanced, larger mutation rates may yield more cooperation even in the

absence of selection.

To address such problems, it would be desirable to have simulations in which all third-order strate-

gies (or strategies with different values of λ) compete. However, because there is no general payoff

formula for third-order strategies under private information, such an approach is computationally out of

reach. For our baseline model, we have thus analyzed a more elementary strategy space, the set of all

(stochastic) first-order strategies. We find that even in this simpler strategy space, there is an unexpected

strategy of indirect reciprocity that can maintain cooperation under appropriate conditions. This strategy

is GSCO (Generous Scoring). GSCO does not require higher order information. All it requires is that

players sometimes forgive when they witness a defection.

7 Appendix

7.1 Efficient computation of payoffs

Here we show how the payoffs according to Eq. (8) can be computed more efficiently by taking into

account that players with the same strategy receive the same expected payoff.

To this end, suppose the population contains players with s different strategies in total. Let ki denote

the number of players using strategy i, such that
∑s

i=1ki=n. Slightly abusing our previous notation, we

now refer to xij(t) as the probability that a player with strategy i deems a player with strategy j as good

at time t. When rewriting recursion (3) for this special case, we get two types of equations, depending

on whether a player with strategy i meets a co-player with the same strategy or with a different one,

xii(t+1) =
(

1−w− λi(w̄−w) + wri
(
1+λi(1−2ε)(ki−2)

))
· xii(t)

+ wλiri(1−2ε) ·
∑
l 6=i

kl · xil(t) +
(
w qi + λi(w̄−w)(εri + qi)

)
,

xij(t+1) =
(

1−w− λi(w̄−w)
)
· xij(t) + wri

(
1+λi(1−2ε)(ki−1)

)
· xji(t)

+ wλiri(1−2ε) ·
∑
l 6=i

(kl−1jl) · xjl(t) +
(
w qi + λi(w̄−w)(εri + qi)

)
.

(52)

In the above equation, the symbol 1jl is an indicator function; its value is one if j= l and zero otherwise.

Similar to the previous section, we can rewrite the above equation as x(t+1) = Mx(t)+v, where M

is now an s2×s2 matrix, and x(t) and v are s2-dimensional vectors. From this recursion, we can again

compute the expected probability xij to find an i-player’s automaton with respect to a j-player in a good
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state, using Eq. (7). The payoff πi of a player with strategy i then becomes

πi =
s∑
j=1

kj− 1ij
n− 1

·
(
xji·b−xij·c

)
. (53)

Especially when there are only a few different strategies in a large population, this algorithm can be

expected to run considerably faster compared to the algorithm derived in Section 3.

For the limit of rare mutations and for the characterization of Nash equilibria it is useful to have explicit

formulas for the special case that only s = 2 strategies are present in the population (a resident and a

deviating mutant). Suppose there are k players with strategy σ1 =(y1, p1, q1, λ1) and n−k players with

strategy σ2 =(y2, p2, q2, λ2). Then the matrix M takes the following form,

M=



1−w−λ1(w̄−w)+
wr1

(
1+λ1(1−2ε)(k−2)

) wλ1r1(1−2ε)(n−k) 0 0

0 1−w− λ1(w̄−w) wr1
(
1+λ1(1−2ε)(k−1)

)
wλ1r1(1−2ε)(n−k−1)

wλ2r2(1−2ε)(k−1) wr2
(
1+λ2(1−2ε)(n−k−1)

)
1−w− λ2(w̄−w) 0

0 0 wλ2r2(1−2ε)k
1−w−λ2(w̄−w)+

wr2
(
1+λ2(1−2ε)(n−k−2)

)


The vectors v and x0 are given by

v=
(
wq1+λ1(w̄−w)(εr1+q1), wq1+λ1(w̄−w)(εr1+q1), wq2+λ2(w̄−w)(εr2+q2), wq2+λ2(w̄−w)(εr2+q2)

)ᵀ
,

x0 = (y1, y1, y2, y2)ᵀ.

The weighted average probability that an i-player considers a j-player as good again can be written as

x = (x11, x12, x21, x22) = (1−dM)−1
(
(1−d)x0 + dv

)
.

The equations for the two payoffs then become

π1 =

(
k−1

n−1
·x11 +

n−k
n−1

·x21

)
b−

(
k−1

n−1
·x11 +

n−k
n−1

·x12

)
c,

π2 =

(
k

n−1
·x12 +

n−k−1

n−1
·x22

)
b−

(
k

n−1
·x21 +

n−k−1

n−1
·x22

)
c.

(54)
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7.2 Proofs of the equilibrium results

Proof of Lemma 1. Let us calculate the converse probability 1−δ that a given focal pair does not interact

again after it has interacted in the current round. This case occurs if either the entire population game

ends immediately after the current round; or the population game continues for one more round but the

focal pair does not interact in that game; or the population game continues for two more rounds without

the focal pair interacting, etc. That is, we obtain

1−δ = (1−d) + d(1−d)(1−w) + d2(1−d)(1−w)2 + . . . =
1−d

1− d(1−w)
. (55)

Solving this equation for δ and using w = 2/
(
n(n−1)

)
yields Eq. (9).

Proof of Lemma 2. As introduced in Section 3, let xij(t) denote the probability that player i considers

player j to be good at time t (or equivalently, that player i would cooperate with j in round t). Assume

for the moment that players apply arbitrary strategies (yi, pi, qi, λi). We consider the following quantity,

fij(T ) := (1− d)
T∑
τ=0

dτ
(
d · xij(τ+1)−xij(τ)

)
. (56)

In this formula, we can express xij(τ+1) in terms of xij(τ) using Equation (1). This yields

fij(T ) = (1− d)

T∑
τ=0

dτ ·
[
−
(

1−d+dw+dλi(w̄−w)
)
· xij(τ) + dwri · xji(τ)

+ dλi(1−2ε)ri ·
∑
l 6=i,j

wxjl(τ) + d
(
wqi+λi(w̄−w)(εri+qi)

)]
.

(57)

Taking the limit as T becomes large, Eq. (57) becomes

lim
T→∞

fij(T ) = −
(

1−d+dw+dλi(w̄−w)
)
· xij + dwri · xji

+ dλi(1−2ε)ri ·
∑
l 6=i,j

wxjl + d
(
wqi+λi(w̄−w)(εri+qi)

)
,

(58)

where xij =(1−d)
∑∞

τ=0 d
τxij(τ) is again the weighted average probability that player i deems player j

as good, as defined in Eq. (7).

On the other hand, fij(T ) takes the form of a telescopic sum. So we obtain an alternative representation

of the limit by calculating

lim
T→∞

fij(T ) = lim
T→∞

(1−d)
(
dTxij(T )− xij(0)

)
= −(1−d)yi. (59)
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Because the two right hand sides of Eq. (58) and Eq. (59) need to agree, we obtain(
1−d+dw+dλi(w̄−w)

)
·xij−dwri ·xji−dλi(1−2ε)ri ·

∑
l 6=i,j

wxjl−d
(
wqi+λi(w̄−w)(εri+qi)

)
= (1−d)yi. (60)

Now, due to the assumptions of the lemma we are considering a homogeneous population such that all

players employ the same strategy, (yi, pi, qi, λi) = (y, p, q, λ) for all i. Due to symmetry, it follows that

xij =xji=xjl=:x for all i, j, l. In that case, Eq. (60) simplifies to

(
1−d+dw+dλ(w̄−w)

)
x− dwrx− dλ(1−2ε)r(w̄−w)x− d

(
wq+λ(w̄−w)(εr+q)

)
= (1−d)y. (61)

Solving this equation for x yields

x =
(1−d)y + d

(
wq + λ(w̄−w)(εr+q)

)
(1−d) + d

(
w(1−r) + λ(w̄−w)(2εr+1−r)

) . (62)

Plugging in the definitions w = 2/(n(n−1)) and w̄ = 2/n, and using the expression for δ derived in

Lemma 1, Eq. (62) simplifies to Eq. (10). The second part of the lemma follows by solving Eq. (10) for

x=1 and x=0, respectively.

Proof of Lemma 3. Suppose without loss of generality that the first n−1 individuals apply the resident

strategy (y, p, q, λ), whereas player n applies some arbitrary strategy (not necessarily reactive). Then

each resident enforces a relationship of the form (60), with i∈
{

1, . . . , n−1
}

and j=n,

(
1−d+dw+dλ(w̄−w)

)
xin−dwrxni−dλ(1−2ε)rw

∑
l 6=i,n

xnl = (1−d)y+d
(
wq+λ(w̄−w)(εr+q)

)
. (63)

Multiplying both sides of the equation with 1/(n−1) and summing over all i∈{1, . . . , n−1} yields

(
1−d+dw+dλ(w̄−w)

) n−1∑
i=1

xin
n−1

−dwr
n−1∑
i=1

xni
n− 1

−dλ(1−2ε)r(w̄−w)

n−1∑
i=1

xni
n− 1

= (1−d)y+d
(
wq+λ(w̄−w)(εr+q)

)
.

(64)

By rearranging the terms in Eq. (64), we can calculate how often the first n−1 players cooperate on

average against the mutant player,

n−1∑
i=1

xin
n−1

=
(1− d)y + d

(
wq+λ(w̄−w)(εr+q)

)(
1−d+dw+dλ(w̄−w)

) +
dr
(
w + λ(1−2ε)(w̄ − w)

)(
1−d+dw+dλ(w̄−w)

) n−1∑
i=1

xni
n− 1

. (65)

Note that according to Eq. (65), there is a linear relationship between how often residents cooperate on

average against the mutant, and how often the mutant cooperates on average against each resident.
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According to the payoff formula (8), the mutant’s payoff is given by

πn =

n−1∑
i=1

xin
n−1

b−
n−1∑
i=1

xni
n−1

c. (66)

We can then plug Eq. (65) into Eq. (66). Using the definitions w=2/(n(n−1)) and w̄=2/n, and using

the formula for δ derived in Lemma 1, we obtain after some rearranging,

πn = A1 +A2(r − r∗λ)
n−1∑
i=1

xni
n− 1

, (67)

where

A1 =
(1−δ)y + δ

(
q+(n−2)(q+rε)λ

)
1 + (n−2)δλ

· b,

A2 =
1+(n−2)(1− 2ε)λ

1+(n−2)δλ
· δb,

r∗λ =
1+(n−2)δλ

1+(n−2)(1−2ε)λ
· c
δb
.

(68)

Proof of Theorem 1. Depending on r=p−q, we distinguish three cases:

(a) r=r∗λ. In this case, Lemma 3 implies that any strategy yields the same payoff π′=A1 against n−1

co-players with strategy σ. In particular, there is no profitable deviation from σ. Hence σ is a Nash

equilibrium.

(b) r<r∗λ. It follows from Lemma 3 that a strategy is a best response to σ if and only if it defects in

every interaction. In particular, σ is a best response to itself if and only if a population of σ players

is fully defecting. By Lemma 2, the population is fully defecting if and only if y=p=q=0, or if

y=q=0 and either λ=0, n=2, or ε=0.

(c) r>r∗λ. For a strategy with r>r∗λ, Lemma 3 implies that σ is a best response to itself if and only if

a population of σ players is fully cooperative. While y= p= q= 1 is a fully cooperative strategy

according to Lemma 2, this strategy does not satisfy r=p−q>r∗λ. Hence, this case only permits

a Nash equilibrium if y=p=1, q<1−r∗λ, and either λ=0, n=2, or ε=0.

Proof of Theorem 2. The first two cases follow directly from Eqs. (15) and (16) by solving for q ≥ 0.

For the third case, consider a cooperative Nash equilibrium σ=(1, 1, q∗λ, λ) with 0<λ<1. We calculate
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the partial derivative of q∗λ=1−r∗λ with respect to λ,

∂q∗λ
∂λ

=
(n−2)(1−δ−2ε)(

1 + (n−2)(1−2ε)λ
)2 · cδb . (69)

We can distinguish three cases:

(i) δ=1−2ε. In this case, we obtain ∂q∗λ/∂λ= 0 for all values of λ. In particular, if q∗λ ≥ 0 for some

given λ∈(0, 1), then also q∗0≥0 and q∗1≥0.

(i) δ<1−2ε. In this case we have ∂q∗λ/∂λ>0 for all λ. In particular, if q∗λ≥0 for some given λ∈(0, 1),

then q∗1≥0.

(i) δ>1−2ε. We conclude that ∂q∗λ/∂λ<0 for all λ; if q∗λ≥0 for λ∈(0, 1), then q∗0≥0.

Proof of Corollary 1. Suppose σ= (1, 1, q∗λ, λ) is a cooperative Nash equilibrium for given values of n,

δ and ε. We distinguish two cases:

(i) δ≥1−2ε. It follows from the proof of Theorem 2 that also GTFT=(1, 1, q∗0, 0) is a Nash equilibrium

for the given parameter values. Moreover, because the threshold value δ0 in Eq. (17) is independent

of n and ε, it follows that GTFT is also a cooperative Nash equilibrium for all n′≥n, δ′≥ δ, and

ε′ ≤ ε.
(i) δ<1−2ε. In this case it follows that GSCO= (1, 1, q∗1, 1) is also a Nash equilibrium for the given

parameter values. Because the threshold δ1 is monotonically increasing in ε and monotonically

decreasing in n (for δ<1−2ε), GSCO is also a cooperative Nash equilibrium for all n′≥n, δ′≥δ,

and ε′ ≤ ε.

Proof of Theorem 3. In the limit ε → 0, it follows from Theorem 2 that there is a cooperative Nash

equilibrium in reactive strategies if and only if

δ≥δ1 =
c

(n−1)b− (n−2)c
. (70)

Now suppose to the contrary there is some arbitrary other strategy σ that is a cooperative Nash equi-

librium for some δ < δ1. In particular, players must not have an incentive to deviate by playing ALLD.

Because players in a cooperative equilibrium need to cooperate against unknown co-players, a player

who deviates to ALLD obtains at least the payoff of b in the first interaction he participates in. Thus,

ALLD’s expected deviation payoff from σ satisfies

πD ≥ (1−d)b ·
(

1 + (1−w̄)d+ (1−w̄)2d2 + . . .
)

=
(1−d)b

1− (1−w̄)d
. (71)
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For σ to be a Nash equilibrium it thus needs to be the case that πD≤b−c, which implies

d ≥ c

w̄b+ (1−w̄)c
. (72)

Using the identities w̄=2/n and d=n(n−1)δ/
(
2+(n−2)(n+1)δ)

)
, this inequality simplifies to δ≥δ1,

with δ1 as defined in Eq. (70).

Proof of Theorem 4. The first part of the proof of Theorem 4 is analogous to the proof of Lemma 3

and Theorem 1, and is therefore omitted here. The second part follows from the requirement that the

conditional cooperation probability q needs to satisfy q≥0 for λ=0 and λ=1, respectively.

Proof of Theorem 5. If implementation errors occur with a probability e, a player with strategy σ =

(y, p, q, λ) effectively employs the strategy σ̂=(ŷ, p̂, q̂, λ̂) where

ŷ=(1−e)y+e(1−y), p̂=(1−e)p+e(1−p), q̂=(1−e)q+e(1−q), λ̂=λ. (73)

For the strategy σ to be a generic Nash equilibrium, it now needs to be the case that

r̂ := p̂−q̂ = r∗λ, (74)

where r∗λ is as defined in the model without implementation errors, Eq. (12). In addition, for a homoge-

neous σ-population to be fully cooperative in the absence of errors, we require

y=1 and p=1. (75)

Jointly solving Eqs. (73)–(75) for q yields

q = 1− 1 + (n−2)δλ

(1−2e)
(
1+(n−2)(1−2ε)λ

) c

δb
. (76)

This proves the first part. The second part again follows from q≥0 for both λ=0 and λ=1.

Proof of Theorem 6. Again, the first part of the proof of Theorem 6 is analogous to the proof of Lemma 3

and Theorem 1; the second part follows from requiring q≥0 for λ=0 and λ=1, respectively.
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Proof of Theorem 7. The first part follows immediately from Lemma 3, by replacing λ by the effective

probability λν to take indirect information into account. The second part again is a consequence of the

requirement that q≥0 for both λ=0 and λ=1.

Proof of Theorem 8. As with the previous results, the first part of the proof of Theorem 8 is analogous

to the proof of Lemma 3. For example, Eq. (63) needs to be replaced by(
1−d+wd(1−κ)+d(w̄−w)κ

)
xin−dw(1−κ)rxni−dwr(1−2ε)κ

∑
l 6=i,n

xnl = (1−d)y+d
(
w(1−κ)q+κ(w̄−w)(q+εr)

)
.

(77)

As a result, the analogous quantities to A1, A2, and r∗λ in Lemma 3 are given by

A1 =
(1− δ)y + δ

(
(1− κ)q + (n− 2)κ(q + rε)

)
1 + (n− 3)δκ

· b

A2 =
1− κ+ κ(n− 2)(1− 2ε)

1 + (n− 3)δκ
· δb

r∗κ =
1 + (n− 3)δκ

1− κ+ κ(n− 2)(1− 2ε)

c

δb
.

(78)

The second part of the Theorem then follows from requiring q :=1−r∗κ ≥ 0.

7.3 Python code used for the evolutionary analysis

Simulation of the game dynamics for a given population composition.

1 import math, random
2 import numpy as np
3 import itertools
4 from itertools import islice
5

6 ctr=0
7 c2=0
8 b=5 #benefit of cooperation
9 c=1 #cost of cooperation

10 eps=float(sys.argv[1]) #error on observations of indirect interactions
11 delta=float(sys.argv[2]) #round continuation probability
12 payoffplotmat=[] #matrix to hold
13 payoffalld=[]
14 gammamat=[]
15 N=int(sys.argv[3]) #number of players
16 #defining a player as a class, with
17 #ID of player,
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18 #accumulated payoff
19 #automata states with regard to co-players
20 #strategy
21 #IDs of connected players: everyone save for player himself
22 #player's average payoff over all rounds if he played at least once
23 class player:
24 def __init__(self, playerid, payoffsum=0, states=np.zeros((N)),strat=[1,0]):
25 self.playerid=playerid
26 self.payoffsum = payoffsum
27 self.stateslist = states
28 self.strategy = strat
29 self.connected =[]
30 for i in range(0,N):
31 if i!=self.playerid:
32 self.connected.append(i)
33 self.rounds=0
34 def avg(self):
35 if self.rounds!=0:
36 return (1.*self.payoffsum)/self.rounds
37 else:
38 return 0
39

40

41 #function that advances repeated game by one round of Prisoner's Dilemma
42 def gamemove(player1,player2,la,ctr):
43 #get automata states of focal players
44 state1=player1.stateslist[player2.playerid]
45 state2=player2.stateslist[player1.playerid]
46

47

48 #payoffs from one round of interaction between P1 and P2,
49 #according to PD payoff matrix with parameters b,c
50 if (state1==0 and state2==0):
51 player1.payoffsum+=0
52 player2.payoffsum+=0
53 elif (state1==0 and state2==1):
54 player1.payoffsum+=b
55 player2.payoffsum-=c
56 elif (state1==1 and state2==0):
57 player1.payoffsum-=c
58 player2.payoffsum+=b
59 else:
60 player1.payoffsum+=(b-c)
61 player2.payoffsum+=(b-c)
62

63

64

65 #Both players update the state of their automaton with respect to each other,
66 # according to their strategies
67 if state2==1:
68 if random.random()<=player1.strategy[0]:
69 player1.stateslist[player2.playerid]=1
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70 else:
71 player1.stateslist[player2.playerid]=0
72 if state2==0:
73 if random.random()<=player1.strategy[1]:
74 player1.stateslist[player2.playerid]=1
75 else:
76 player1.stateslist[player2.playerid]=0
77

78 if state1==1:
79 if random.random()<=player2.strategy[0]:
80 player2.stateslist[player1.playerid]=1
81 else:
82 player2.stateslist[player1.playerid]=0
83 if state1==0:
84 if random.random()<=player2.strategy[1]:
85 player2.stateslist[player1.playerid]=1
86 else:
87 player2.stateslist[player1.playerid]=0
88

89 #Rounds played by the two players increase by one
90 player1.rounds+=1
91 player2.rounds+=1
92

93 #Players connected to focal players update their automata
94 #with probability la, error eps
95 #and also according to their strategies
96 for i in player1.connected:
97 if i!=player2.playerid:
98 if random.random()<=la:
99 if state1==1:

100 if random.random()>=eps:
101 if random.random()<=playerarray[i].strategy[0]:
102 playerarray[i].stateslist[player1.playerid]=1
103 else:
104 playerarray[i].stateslist[player1.playerid]=0
105 else:
106 if random.random()<=playerarray[i].strategy[1]:
107 playerarray[i].stateslist[player1.playerid]=1
108 else:
109 playerarray[i].stateslist[player1.playerid]=0
110 if state1==0:
111 if random.random()>=eps:
112 if random.random()<=playerarray[i].strategy[1]:
113 playerarray[i].stateslist[player1.playerid]=1
114 else:
115 playerarray[i].stateslist[player1.playerid]=0
116 else:
117 if random.random()<=playerarray[i].strategy[0]:
118 playerarray[i].stateslist[player1.playerid]=1
119 else:
120 playerarray[i].stateslist[player1.playerid]=0
121
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122 for j in player2.connected:
123 if j!=player1.playerid:
124 if random.random()<=la:
125 if state2==1:
126 if random.random()>=eps:
127 if random.random()<=playerarray[j].strategy[0]:
128 playerarray[j].stateslist[player2.playerid]=1
129 else:
130 playerarray[j].stateslist[player2.playerid]=0
131 else:
132 if random.random()<=playerarray[j].strategy[1]:
133 playerarray[j].stateslist[player2.playerid]=1
134 else:
135 playerarray[j].stateslist[player2.playerid]=0
136 if state2==0:
137 if random.random()>=eps:
138 if random.random()<=playerarray[j].strategy[1]:
139 playerarray[j].stateslist[player2.playerid]=1
140 else:
141 playerarray[j].stateslist[player2.playerid]=0
142 else:
143 if random.random()<=playerarray[j].strategy[0]:
144 playerarray[j].stateslist[player2.playerid]=1
145 else:
146 playerarray[j].stateslist[player2.playerid]=0
147

148 return
149

150 #function that starts a game round by choosing two random players to interact
151 def startgame(playerarray):
152 while 1:
153 i=random.randint(0,N-1)
154 j=random.randint(0,N-1)
155 if i!=j:
156 break
157 return playerarray[i], playerarray[j]
158

159 rounds=100000 #number of rounds
160 files = [open("SIM_complete_s2_{}.".format(x),'wb') for x in range(10)]
161

162 #run game for specified number of rounds,
163 #for 101 values of lambda from 0 to 1,
164 #record players' average payoffs and save them to files
165 for g in islice(itertools.count(),101):
166 c2=0
167 playerarray=[]
168 #give players strategies
169 for p in range(0,N):
170 playerarray.append(player(p,0,np.ones(N),[1,0.01]))
171 playerarray[3].strategy=[0,0]
172 playerarray[3].stateslist=np.zeros(N)
173
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174 while c2<=rounds:
175 payoffaverageavg=0
176 ctr=0
177 la=0.01*g
178 for p in playerarray:
179 p.stateslist=np.ones(N)
180 playerarray[3].stateslist=np.zeros(N)
181 currentplayers=startgame(playerarray)
182 gamemove(currentplayers[0],currentplayers[1],la,ctr)
183 #if random number is smaller than delta,
184 #continue, otherwise, end the game and calculate average payoffs
185 while 1:
186 roundcont=random.random()
187 if roundcont<=delta:
188 currentplayers=startgame(playerarray)
189 gamemove(currentplayers[0],currentplayers[1],la,ctr)
190 ctr+=1
191 else:
192 break
193 c2+=1
194

195 #save payoffs of all players to files
196 for i in range(10):
197 print>>files[i],playerarray[i].avg()
198

199 for f in files:
200 f.close()

Exact calculation of the player’s payoffs for a given population composition, with k strategies.

1 import math, numpy as np, random, sys, scipy
2 from scipy import sparse
3 from scipy.sparse import linalg
4

5 n=int(sys.argv[1])
6 b=float(sys.argv[2])
7 c=float(sys.argv[3])
8

9 slist=[[[0,1,1,0.01],9],[[0,0,0,0],1]]
10

11

12 def rcalc(i,pvec,qvec):
13 r=pvec[i]-qvec[i]
14 return r
15

16 #This function calculates the index of the entries x_ji (reversed indices)
17 #in a vector or matrix that's indexed with k
18 def kprime(k,l,strat):
19 return k+strat*(k%strat-k/strat)-(k%strat)+l
20
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21 #This function creates the matrix M from which the vector x
22 #and later payoffs are calculated
23 def matrixcalc(kvec,lavec,yvec,pvec,qvec,delta,eps,strat):
24 mat=np.zeros((strat**2,strat**2))
25 rvec=[rcalc(i,pvec,qvec) for i in range(len(pvec))]
26 w_ij=2./(n*(n-1))
27

28 #populate quadratic matrix that has (stratˆ2) many rows and columns
29 #according to algorithm in section˜\ref{sec:kdifferent}
30 for k in range(0,strat**2):
31 i=k/strat #calculate i,j indices
32 j=k%strat
33 if i==j: #More than one can have same strategy
34 mat[k][k]=(1.*(n-2))/n + w_ij*rvec[i] + \
35 w_ij*lavec[i]*(kvec[i]-2)*rvec[i]*(1-2*eps) + \
36 w_ij*(n-2)*(1-lavec[i])
37 for l in range(0,strat):
38 if l!=i:
39 mat[k][kprime(k,l,strat)]=w_ij*lavec[i]*\
40 kvec[l]*rvec[i]*(1 - 2*eps)
41 elif i!=j:
42 mat[k][kprime(k,i,strat)]=w_ij*rvec[i] + w_ij*lavec[i]*\
43 (kvec[i] - 1)*rvec[i]*(1 - 2*eps) #term with i,j interchanged
44 mat[k][k]=(1.*(n-2))/n+w_ij*(n-2)*(1-lavec[i])
45 for l in range(0,strat):
46 if (l!=j)and(l!=i):
47 mat[k][kprime(k,l,strat)]=w_ij*lavec[i]*\
48 (kvec[l])*rvec[i]*(1 - 2*eps)
49 if l==j:
50 mat[k][kprime(k,l,strat)]=w_ij*lavec[i]*\
51 (kvec[l]- 1)*rvec[i]*(1 - 2*eps)
52

53 return mat
54

55 #This function calculates the inhomogeneity in Eq.XXXX
56 def vcalc(kvec,lavec,fvector,pvec,qvec,delta,eps,strat):
57 rvec=[rcalc(i,pvec,qvec) for i in range(len(pvec))]
58 v=np.zeros(strat**2)
59 w_ij=2./(n*(n-1))
60 for k in range(0,strat**2): #this vector has the same entries *strat* often.
61 i=k/strat
62 j=k%strat
63 v[k]=(lavec[i]*(n - 2)*w_ij*(qvec[i] + eps*rvec[i]) + w_ij*qvec[i])
64 return v
65

66 #This function calculates payoffs given a list of strat, delta and epsilon
67 #by using Eq.XXXX
68 def payoffcalc(slist,delta,eps):
69 strat=len(slist)
70 kvec=[k[1] for k in slist]
71 lavec=[k[0][0] for k in slist]
72 yvec=[k[0][1] for k in slist]
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73 pvec=[k[0][2] for k in slist]
74 qvec=[k[0][3] for k in slist]
75 v=vcalc(kvec,lavec,fvector,pvec,qvec,delta,eps,strat)
76 M2=matrixcalc(kvec,lavec,fvector,pvec,qvec,delta,eps,strat)
77 x0=[]
78 for k in range(0,strat**2):
79 i=k/strat
80 x0.append(fvector[i])
81 matrixval=np.identity(strat**2)-np.dot(delta,M2)
82 if strat>1:
83 matrixvalsparse=sparse.csc_matrix(matrixval)
84 lu = sparse.linalg.splu(matrixvalsparse)
85 eye = np.eye(strat**2)
86 ba = lu.solve(eye)
87

88 else:
89 ba=np.linalg.inv(matrixval)
90 x=np.dot(ba,(np.dot((1-delta),x0)+np.dot(delta,v)))
91 payvec=np.zeros(strat)
92 for i in range(strat):
93 for l in range(0,strat):
94 if l!=i:
95 payvec[i]+=1./(n-1)*(kvec[l]*x[strat*l+i]*b-\
96 kvec[l]*x[strat*i+l]*c)
97 if l==i:
98 payvec[i]+=1./(n-1)*((kvec[l]-1)*x[strat*l+i]*b-\
99 (kvec[l]-1)*x[strat*i+l]*c)

100 return payvec
101

102 lamatrix=[]
103 paymatrixcalc=[]
104 paymatrixalldcalc=[]
105 for i in range(0,101):
106 la=0.01*i
107 lamatrix.append(la)
108 for i in range(2):
109 slist[i][0][0]=la
110 p=payoffcalc(slist,0.999,0.45)
111 paymatrixcalc.append(p[0])
112 paymatrixalldcalc.append(p[1])

Simulation of the strategy dynamics in an evolving population.

1 import math, numpy as np, random, sys
2

3 #Function that can calculate payoff time averages, having
4 #two lists (time steps list and payoff list)
5 def average(list1,list2):
6 prd=[]
7 for j in range(0,len(list1)):
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8 prd.append(list1[j]*list2[j])
9 average=sum(prd)/sum(list1)

10 return average
11

12 #Function that calculates p-q
13 def rcalc(s):
14 r=s[2]-s[3]
15 return r
16

17 #Function that calculates payoffs in a population with 2 strategies
18 #of type (y,p,q,la),
19 #where k players play strategy 1
20 def payoffcalc(k,s1,s2,delta,eps):
21 r1=rcalc(s1)
22 r2=rcalc(s2)
23 la1=s1[0]
24 la2=s2[0]
25 w_ij=2./(n*(n-1))
26 m11=(1.*(n-2))/n + w_ij*r1 + \
27 w_ij*la1*(k-2)*r1*(1-2*eps) + w_ij*(n-2)*(1-la1)
28 m12=w_ij*la1*(n - k)*r1*(1 - 2*eps)
29 m13=0
30 m14=0
31 m21=0
32 m22=(1.*(n-2))/n+w_ij*(n-2)*(1-la1)
33 m23=w_ij*r1 + w_ij*la1*(k - 1)*r1*(1 - 2*eps)
34 m24=w_ij*la1*(n - k - 1)*r1*(1 - 2*eps)
35 m31=w_ij*la2*(k - 1)*r2*(1 - 2*eps)
36 m32=w_ij*r2 + w_ij*la2*(n - k - 1)*r2*(1 - 2*eps)
37 m33=w_ij*(n-2)*(1-la2)+(1.*(n-2))/n
38 m34=0
39 m41=0
40 m42=0
41 m43=w_ij*la2*k*r2*(1 - 2*eps)
42 m44=(1.*(n - 2))/n + w_ij*(n - 2)*(1 - la2) +\
43 w_ij*r2 + w_ij*la2*(n - k - 2)*r2*(1 - 2*eps)
44 M=np.array([[m11,m12,m13,m14],[m21,m22,m23,m24],\
45 [m31,m32,m33,m34],[m41,m42,m43,m44]])
46 M2=M #.T
47 for i in range(4):
48 if i<2:
49 v[i]=(la1*(n - 2)*w_ij*(s1[3] + eps*r1) + w_ij*s1[3])
50 else:
51 v[i]=(la2*(n - 2)*w_ij*(s2[3] + eps*r2) + w_ij*s2[3])
52

53 x0=np.array([s1[1],s1[1],s2[1],s2[1]])
54 #print x0
55 #print M2
56 #delta=0.85
57 matrixval=np.identity(4)-np.dot(delta,M2)
58 #print matrixval
59 x=np.dot(np.linalg.inv(matrixval),(np.dot((1-delta),x0)+np.dot(delta,v)))
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60 #x=np.dot(np.linalg.inv(matrixval),v)
61 #print x
62 payoff1 =1./(n-1)*(((k-1)*x[0]+(n-k)*x[2])*b-((k-1)*x[0]+(n-k)*x[1])*c)
63 payoff2=1./(n-1)*((k*x[1]+(n-k-1)*x[3])*b-(k*x[2]+(n-k-1)*x[3])*c)
64 return payoff1, payoff2
65

66 #Function that calculates exponential term
67 #in formula for the fixation probability
68 def db(i,s1,s2,delta,eps):
69 p=payoffcalc(i,s1,s2,delta,eps)
70 db=math.exp(-s*(p[0]-p[1]))
71 return db
72

73 #Function that calculates fixation probability
74 #of a mutant strategy in resident strategy
75 def fixprob(s1,s2,delta,eps):
76 l=0.
77 a=1.
78 for i in range(1,n):
79 a*=db(i,s1,s2,delta,eps)
80 #print a
81 l+=a
82 xf=1./(1+l)
83 return xf
84

85 #running evolutionary simulation for *rounds*, with parameters
86 #delta (global round continuation probability),
87 #eps (error on indirect information),
88 #b (benefit of cooperation) and c (cost of cooperation),
89 #s (strength of selection)
90 def main(delta, eps, n, b, c, s, rounds)
91 s1=np.zeros(4)
92 s2=np.zeros(4)
93 ctr=0
94 e=epsstart
95 stratcounter=1
96 savearray=[]
97 switch=0
98 for i in range(rounds):
99 s1[0]=random.randint(0,1)

100 s1[1]=random.random()
101 s1[2]=random.random()
102 s1[3]=random.random()
103 y1=fixprob(s1,s2,d,eps)
104 z=random.random()
105 if z<=y1:
106 #save datapoints in array that will be reused only
107 #if strategy fixes in population
108 savearray.append([[s2[0],s2[1],s2[2],s2[3]],\
109 payoffcalc(0,s1,s2,d,eps)[1],stratcounter])
110 stratcounter=1
111 s2[0]=s1[0]
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112 s2[1]=s1[1]
113 s2[2]=s1[2]
114 s2[3]=s1[3]
115 switch+=1
116 else:
117 #strategy is not switched, so increase its counter
118 stratcounter+=1
119 i+=1
120 savearray.append([[s2[0],s2[1],s2[2],s2[3]],\
121 payoffcalc(0,s1,s2,d,eps)[1],stratcounter])
122 #save trajectories to files
123 payofflist=[row[1] for row in savearray]
124 lalist=[row[0][0] for row in savearray]
125 tlist=[row[2] for row in savearray]
126 #average payoff and receptivity for parameter combination
127 payoffavg=average(tlist,payofflist)
128 laavg=average(tlist,lalist)
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