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 14 
Evolutionary dynamics in large asexual populations is strongly influenced by multiple 15 
competing beneficial lineages, most of which segregate at very low frequencies. However, 16 
technical barriers to tracking a large number of these rare lineages have so far prevented a 17 
detailed elucidation of evolutionary dynamics in large bacterial populations. Here, we 18 
overcome this hurdle by developing a chromosomal barcoding technique that allows 19 
simultaneous tracking of ~450,000 distinct lineages in E. coli. We used this technique to 20 
gather insights into the evolutionary dynamics of large (>107 cells) E. coli populations 21 
propagated for ~420 generations in the presence of sub-inhibitory concentrations of 22 
common antibiotics.  By deep sequencing the barcodes, we reconstructed trajectories of 23 
individual lineages at high frequency resolution (< 10-5). Using quantitative tools from 24 
ecology, we found that populations lost lineage diversity at distinct rates corresponding to 25 
their antibiotic regimen.  Additionally, by quantifying the reproducibility of these dynamics 26 
across replicate populations, we found that some lineages had similar fates over 27 
independent experiments. Combined with an analysis of individual lineage trajectories, 28 
these results suggest how standing genetic variation and new mutations may contribute to 29 
adaptation to sub-inhibitory antibiotic levels. Altogether, our results demonstrate the power 30 
of high-resolution barcoding in studying the dynamics of bacterial evolution. 31 
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Advances in sequencing technologies have generated tremendous breakthroughs in 1 

identification of beneficial mutations arising in controlled laboratory evolution 2 

experiments, as well as mutations contributing to the emergence of anti-cancer or anti-3 

bacterial drug resistance in the clinic1-4. Yet, experimental measurements of the dynamics 4 

of evolutionary processes remains a major challenge, particularly in large asexual 5 

populations, where multiple low-frequency small-effect mutations are known to spread 6 

simultaneously5-8. A quantitative description of evolutionary dynamics requires the ability 7 

to follow numerous individual lineages, most of which occur at extremely low frequency 8 

(10−5-10−6), and to do so in parallel and over multiple generations. Whole genome 9 

sequencing (WGS) techniques, although becoming routine and well-established, fall short 10 

of fulfilling this requirement, as they are usually unable to detect mutations at frequencies 11 

below ~0.1%9,10.  Various alternative solutions have been applied over the years to 12 

reconstruct population dynamics from trajectories of individual lineages at much higher 13 

resolution than accessed by WSG11-13. A particularly successful method that dramatically 14 

increases the frequency resolution of individual lineages is based on uniquely tagging 15 

chromosomes of individual cells with a genetic “barcode” that can be easily recovered by 16 

deep sequencing14. This approach was implemented in S. cerevisiae, where chromosomal 17 

insertion of ~500,000 random barcodes using the Cre-loxP recombination system allowed 18 

a quantitative description of evolutionary dynamics of yeast populations (~108 cells)5,15,16. 19 

In bacteria, however, technical barriers have limited the number of uniquely-incorporated 20 

chromosomal barcodes to ~100-40017-19. Such low levels of barcode diversity preclude us 21 

from answering important questions in bacterial evolution. For instance, highly-efficient 22 

chromosomal labeling is particularly relevant in characterizing the evolution of drug 23 

resistance in the presence of sub-inhibitory amounts of antibiotics, where the dynamics is 24 

driven by multiple mutations of low frequency and small fitness effects20.  25 

Here, we present a method based on the Tn7 transposon to generate E. coli 26 

populations of > 107 cells carrying 105-106 unique chromosomal barcodes. We 27 

demonstrate its implementation by quantifying the dynamics and patterns of lineage 28 

diversity loss in barcoded populations propagated in a month-long experiment (~420 29 

generations) in the presence of sub-inhibitory concentrations of two commonly applied 30 

antibiotics, chloramphenicol and trimethoprim. We found that different selection regimes 31 

elicited unique lineage diversity dynamics. By comparing the identity of individual 32 
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barcodes in independent replicates evolving in parallel under identical conditions, we were 1 

also able to infer the relative contributions of pre-existing versus de novo mutations to the 2 

observed evolutionary dynamics. In general, stronger selection pressure generated faster 3 

loss of lineage diversity and more reproducible dynamics driven by standing genetic 4 

variation.  In contrast, weaker selection pressure produced slower diversity loss and less 5 

reproducible dynamics due to a greater role of new mutations. In particular, ultra-low 6 

amounts of trimethoprim (0.01 Pg/ml that amounts to 0.1% of minimal inhibitory 7 

concentration (MIC)) unexpectedly slowed the rate of lineage diversity loss even beyond 8 

conditions without any antibiotic, hinting the possibility that in this regime the antibiotic 9 

could be primarily functioning as a signaling molecule21,22.  10 

 11 

Results 12 

Highly efficient chromosomal barcoding of E. coli cells. Several robust genome-editing 13 

methods available for E. coli have long made this organism a flagship of genetic 14 

manipulations23. A high-resolution chromosomal labeling technique, however, has not 15 

been available, making it difficult to analyze the evolutionary dynamics of large bacterial 16 

populations segregating at low frequencies. To address this problem, we harnessed the 17 

well-established site-specific recombination machinery of the Tn7 transposon24,25. We 18 

placed the tnsABCD genes that encode the transposase biochemical machinery under the 19 

control of an arabinose-inducible pBAD promoter in a temperature-sensitive helper 20 

plasmid (Fig. 1A). The Tn7 arms (Tn7L, Tn7R) that target the genetic cargo at a neutral 21 

attnTn7 attachment site were relocated to a suicide integration plasmid (Fig. 1B). We 22 

placed the barcode cassette carrying a 15-nucleotide long random sequence (the “barcode”) 23 

and the adjacent marker of selection between the Tn7 arms on the integration plasmid (Fig. 24 

1B,C). To minimize the preparation of barcode libraries to two consecutive PCR reactions, 25 

we added sequences complementary to Illumina adapter primers flanking the barcode 26 

cassette (Fig. 1C). These sequences were used to both PCR amplify barcodes directly from 27 

cell cultures as well as anchor i5/i7 Illumina indexes to the amplified barcodes (Methods). 28 

Using this binary Tn7 transposon system, we integrated barcodes into a fixed location on 29 

the E. coli chromosome in two steps. First, we transformed cells with the Tn7 helper 30 

plasmid and pre-conditioned them by inducing the transposase machinery. Second, we 31 

transformed the pre-conditioned cells with the barcoded integration plasmid.  32 
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Figure 1: Barcoding E. coli cells with Tn7 transposon machinery.  (A) Map of the helper 33 
plasmid expressing the Tn7 transposition machinery (tnsABCD) under the control of a pBAD 34 
promoter.  Using a temperature-sensitive origin of replication (PSC101 Ori ts), we cure the plasmid 35 
by growing the strains at a non-permissive temperature after the chromosomal integration of 36 
barcodes is complete.  (B) Map of a suicidal integration plasmid carrying the barcode cassette and 37 
spectinomycin resistance-conferring gene (SpR) nested between the left and right Tn7 arms.  The 38 
SpR gene is flanked by FRT sites and can be later excised from the chromosome with Flp 39 
recombinase.  The pir+ dependent origin of replication (R6K gamma Ori) renders this plasmid 40 
suicidal in pir- cells.  (C) A map of the segment undergoing chromosomal integration into the Tn7 41 
attachment site (attnTn7).  Inset: sequence of the barcode-carrying cassette.  The 5’ and 3’ ends are 42 
flanked by sequences complementary to the Illumina adapter primers (upper case, blue) (see also 43 
Methods).  The location of the 15 nt variable region (the barcode) is marked with uppercase red 44 
Ns.  The barcode is placed upstream of a 9 nt stretch (underlined, lowercase).  The barcode is the 45 
only variable part of the cassette.  (D) Preparation of the barcoded plasmid and chromosomal 46 
libraries.  We incorporate the cassettes carrying unique barcodes into Tn7 integration plasmids 47 
using Gibson assembly and then transform them into pir+ cells.  We achieve the chromosomal 48 
incorporation of the barcodes and curing of the Tn7 helper plasmids in a single plating step on 49 
spectinomycin at 37 °C (see also Methods).   50 
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We simultaneously selected for chromosomal barcode integration and removal of the 1 

helper plasmid by plating on selective media and incubating the plates at 37oC (Fig. 1D, 2 

Methods). Sequencing the ‘raw’ barcode library – as synthesized by the manufacturer and 3 

prior to incorporation of barcode cassettes into the integration plasmid (Methods) – 4 

revealed that the total number of unique barcodes was ~1.3 × 106 (Table S1). The ‘raw’ 5 

library had a fairly uniform distribution of frequencies: all barcodes but one had 6 

frequencies between 10−7 and 10−5 (Fig. S1A,B).  The nucleotide composition of these 7 

barcodes was also very close to random, as quantified by the entropy of nucleotides per 8 

position (Fig. S1C). Incorporating the barcodes onto plasmids and then onto chromosomes 9 

reduced this diversity (~8.4 × 105 unique barcodes on plasmids and ~4.5 × 105 on 10 

chromosomes; Table S1). The process also introduced more redundancy into the 11 

distribution of frequencies, with some barcodes reaching frequencies of 10−3 (Fig. S1A,B). 12 

These increases in redundancy also led to a minor decrease in sequence entropy (Fig. S1C). 13 

However, the presence of a few barcodes with high initial frequencies did not appear to 14 

play a major role in the resulting lineage dynamics during evolution, as we show below.  15 

 16 

Laboratory evolution of the barcoded population. Bacteria are often exposed to 17 

antibiotic concentrations far below the minimal inhibitory concentration (MIC), both in 18 

natural environments and in patients receiving antimicrobial therapy26,27. Previous studies 19 

have shown that, compared to a lethal dosage, sub-MIC concentrations greatly expand the 20 

mutational space by allowing a large number of small-effect mutations to enter a population 21 

simultaneously21. The importance of low-frequency lineages in sub-MIC conditions make 22 

them a perfect setting to employ our barcoded population of E. coli.  To this end, we chose 23 

two common antibiotics with distinct modes of actions: chloramphenicol (CMP), which 24 

inhibits protein synthesis via inactivation of peptidyl transferase activity of bacterial 25 

ribosome28; and trimethoprim (TMP), which functions as a competitive inhibitor of the 26 

essential protein dihydrofolate reductase29. It was demonstrated that sub-inhibitory 27 

concentrations of antibiotics as low as MIC/100 can still select for resistant mutants over 28 

the wild type30. Thus, to track the dynamics of adaptations at sub-MIC concentrations we 29 

chose antibiotic concentrations around MIC/100. To reduce the selection pressure even 30 

further, below the minimal selective concertation, we also chose ultra-sub-MIC 31 

concentrations (~MIC/1000). To fine-tune the sub-MIC concentrations of both antibiotics 32 
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to the conditions of the laboratory evolution experiment, we identified concentrations that 1 

reduced the total number of cells by no more than 30% by the end of a single propagation 2 

cycle (~10 hours), comparatively to the untreated culture (Methods). These concentrations 3 

were 1 Pg/mL CMP (6.25% MIC) and 0.1 Pg/mL TMP (1% MIC) (Fig. S2, Methods). For 4 

ultra-sub-inhibitory regime, we chose 10% of the aforementioned concentrations. We then 5 

conducted laboratory evolution via serial passaging in the presence of CMP initially at 6 

6.25% (‘low’) and 0.625% (‘ultra-low’) MIC, in TMP at 1% (‘low’) and 0.1% (‘ultra-low’) 7 

MIC, and in the absence of any antibiotics (Fig. S3A,B). We evolved 14 independent 8 

replicate populations in each of these five conditions (Fig. S3C,D). We diluted batch 9 

cultures (500 PL each) grown in 96 well plates by 1:100 every ~6 generations (that is, 10 

passing twice daily; Fig. S3E,F) with a bottleneck population size of ~3 × 107 cells (Fig. 11 

S3C,D). To sustain the selection pressure along the evolutionary experiment (~420 12 

generations), we gradually increased CMP in the ‘low’ condition from 1 Pg/mL to 2.8 13 

Pg/mL (Fig. S3A); and in the ‘low’ TMP condition, we increased the antibiotic from 0.1 14 

Pg/mL to 1.2 Pg/mL (Fig. S3B).  We kept the ‘ultra-low’ CMP environment constant at 15 

0.1 Pg/mL throughout the experiment (Fig. S3A), while ‘ultra-low’ TMP increased from 16 

0.01 Pg/mL to 0.1 Pg/mL at generation ~288 (Fig. S3B).  As intended, the number of cells 17 

at the end of each passage remained roughly constant for each condition and along the 18 

entire evolutionary experiment (Fig. S3C,D).  19 

In the experiment, we expected at least two forms of selective pressure, one due to 20 

the specific type and concentration of antibiotic, and another due to general growth 21 

conditions (growth medium, aeration, etc.).  Additionally, there might also be fitness cost 22 

associated with the acquisition of drug resistance31,32. To analyze the effects exerted by 23 

these two selection forces, and a possible fitness cost, we measured the fitness of the 24 

barcoded populations at several time points during the experiment. Specifically, due to the 25 

limitation of the number of samples that can be loaded into a single NextSeq run, we chose 26 

a total of 12 randomly picked populations over the five conditions: three replicates for 27 

‘low’ CMP, three replicates for ‘ultra-low’ CMP, two replicates for ‘low’ TMP, two 28 

replicates for ‘ultra-low’ TMP, and two replicates for ‘no drug’ condition. We measured 29 

fitness with respect to growth under antibiotics in units of IC50 (antibiotic concentration 30 

inhibiting 50% of growth) at the whole-population level (Fig. S4, Methods). These 31 

measurements revealed a moderate increase in antibiotic resistance over the experiment for 32 
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‘low’ CMP and TMP conditions (Fig. S5A,B). In contrast, both ‘ultra-low’ conditions 1 

produced no measurable improvement in IC50 (Fig. S5A,B). 2 

Furthermore, the increases in drug resistance evolved in the ‘low’ conditions were 3 

accompanied by a fitness cost in the absence of antibiotics, measured by the growth rate 4 

(Fig. S5C,D). In particular, the population that evolved to resist the highest levels of CMP 5 

(‘low’ CMP replicate 1, Fig. S5A) showed the strongest fitness cost among the three 6 

replicate populations in the same condition (Fig. S5C). However, we observed no fitness 7 

cost in the populations evolved under ‘ultra-low’ CMP. Instead, the growth rate trajectories 8 

for these populations were generally similar to those for the populations that evolved in the 9 

absence of antibiotics (Fig. S5C). Surprisingly, in the populations evolved under ‘ultra-10 

low’ TMP, the improvement in growth rate lagged behind the populations evolved under 11 

no antibiotics (Fig. S5D), suggesting that the rate of adaptation to growth conditions at 12 

0.1% MIC of TMP was diminished, despite the fact that no improvement in TMP IC50 was 13 

observed (Fig. S5B). 14 

 15 

Barcodes allow high-resolution monitoring of lineage trajectories. To elucidate the 16 

evolutionary dynamics of these populations at the level of individual lineages, we 17 

sequenced the barcodes of the same 12 populations at 16 time points.  From the sequenced 18 

barcodes we assembled frequency trajectories for all ~4.5 × 105 initial lineages over the 19 

course of the experiment (Figs. 2, S6). These trajectories immediately raised several 20 

important qualitative insights.  First, we saw that just one or two lineages dominate each 21 

population (> 85%) by the end of the experiment (see also Table S2). Second, some 22 

lineages rose to high frequency in several independent populations (lineage colors match 23 

across panels in Fig. 2).  Third, we saw evidence of widespread clonal interference: some 24 

lineages that initially increased in frequency due to positive selection later decreased due 25 

to competition from fitter lineages. Furthermore, Fig. 2 suggests that the rate of lineage 26 

diversity loss was reproducible between replicate populations in the same condition, while 27 

systematically distinct across different conditions. Although genetic drift alone can cause 28 

a drop in lineage diversity, this occurs on the time scale of 2𝑁 generations, where 𝑁 is the 29 

effective population size33. Since the effective population size in our experiments was of 30 

order 107 (Fig. S3C,D), neutral dynamics at the scale of the whole population was 31 
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negligible on the time scale of the experiment. Therefore, we could assume that the 1 

dynamics of lineage diversity was dominated by selection. 2 

 3 

Ecological tools allow quantification of lineage diversity dynamics across conditions. 4 

To quantify the dynamics of lineage diversity, we adopted a measure of diversity widely 5 

used in ecological studies34,35:  6 

Diversity index 𝐷 = ( ∑ 𝑥𝑘
𝑞

lineage 𝑘

)

1/(1−𝑞)

,𝑞 (1) 7 

where 𝑥𝑘 is the frequency of the 𝑘th barcoded lineage, and 𝑞 is the “order” of the diversity 8 

index, which determines the sensitivity of diversity to abundant versus rare barcodes 9 

(Methods). In general, we can interpret the diversity index as the effective number of 10 

lineages present in the population.  When 𝑞 = 0, the diversity index simply counts the 11 

number of unique barcoded lineages, irrespective of their frequencies. This regime is 12 

equivalent to measuring diversity as “species richness” in ecological contexts34. When 𝑞 =13 

1, the diversity index weighs all barcoded lineages by their frequency. This regime is 14 

equivalent to the exponential of the Shannon entropy of the frequencies.  In the limit of 15 

𝑞 → ∞, the diversity index equals the reciprocal of the maximum lineage frequency, 16 

meaning that it depends only on the most abundant lineage and no others. Thus, by 17 

comparing the lineage diversity index across different 𝑞 values, we can estimate the relative 18 

contributions of rare and abundant lineages to that diversity. Note, that if all lineages have 19 

equal frequencies, then the diversity index equals the actual number of lineages for any 20 

value of 𝑞. Figure 3A shows the dynamics of the lineage diversity index for each 21 

population over the time of the experiment, for three different values of 𝑞. At the beginning 22 

of the experiment, 𝐷 ≈ 4.5 × 1050 , since that is the total number of unique barcodes.  23 

However, the effective number of lineages, accounting for their unequal frequencies (Fig. 24 

S1A,B), is approximately 10-fold lower, 𝐷 ≈ 4.6 × 1041 . ‘Low’ CMP produced the 25 

fastest collapse of lineage diversity, extinguishing over 90% of unique barcodes in less than 26 

50 generations. This behavior was displayed at all 𝑞 values, indicating that rare and 27 

frequent barcodes contributed equally to these dynamics. In contrast, populations under 28 

‘low’ TMP lost 𝐷0  diversity more rapidly compared to ‘ultra-low’ CMP and ‘no drug’  29 
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Figure 2: Dynamics of barcoded lineage frequencies over evolution experiment.  Each panel 1 
shows the frequency trajectories for all barcoded lineages in a single population over time of the 2 
experiment.  Each colored band corresponds to a unique lineage, with its vertical width indicating 3 
its frequency at a particular time point.  The panels in each row correspond to a different antibiotic 4 
regimen, while each column corresponds to a different replicate.  For the top 10 (according to 5 
average frequency) lineages in each population, we assign a unique color to each lineage that is 6 
consistent across panels (Table S2).  We use random colors for all lower-frequency lineages, while 7 
gray represents the frequency of reads without identified barcodes. 8 
 9 

 10 
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conditions, although it lost 𝐷1  and 𝐷∞  diversities at approximately the same rate; this 1 

indicates that the dynamics of abundant lineages were similar in these three conditions, but 2 

that low-frequency lineages disappeared more quickly in ‘low’ TMP.  More surprising was 3 

the fact that populations under ‘ultra-low’ TMP lost diversity even more slowly than did 4 

populations under no antibiotics. Indeed, the diversity of populations under ‘ultra-low’ 5 

TMP maintained 40-50% of the initial effective diversity (𝑞 = 1) up to generation ~120, 6 

whereas populations without antibiotics had only 1% of their initial diversity by that time 7 

point. This difference in the rates of lineage diversity deterioration between ‘ultra-low’ 8 

TMP and ‘no drug’ conditions is consistent with our fitness cost measurements, wherein 9 

the rate of adaptation under ‘ultra-low’ TMP lagged behind that of ‘no drug’ populations 10 

(Fig. S5D). Interestingly, 𝑞 = 0 diversity under ‘ultra-low’ TMP is similar to the other 11 

populations by generation ~250, but its diversity at larger 𝑞 remains higher until the very 12 

Figure 3: Dynamics of lineage diversity 
over time.  We measure diversity of 
barcoded lineages using the index 𝐷𝑞  
(Eq. 1, Methods), where the parameter 𝑞 
controls the weight of low- versus high-
frequency lineages: (A) 𝐷𝑞  for 𝑞 = 0 
(number of unique barcodes), 𝑞 = 1 
(exponential of Shannon entropy of 
lineage frequencies), and 𝑞 = ∞ 
(reciprocal of the maximum lineage 
frequency).  (B) Pearson correlation 
coefficient between diversity trajectories 
( 𝐷1 ) from all pairs of populations. 
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end of the experiment. Towards the end of the experiment, we saw that the effective 1 

diversity of all populations is 1 or 2 lineages (𝑞 = 1), consistent with the observations from 2 

Fig. 2.  However, we note that despite the drop in lineage diversity, there was still an ample 3 

number of surviving barcode lineages: each population retained a few thousand barcodes 4 

by the end of the experiment, as seen in the 𝑞 = 0 diversity (Fig. 3A). 5 

 6 

Reproducibility of individual lineage dynamics.  Not only did different antibiotic 7 

regimens produced distinct patterns of lineage diversity loss, but we also observed that 8 

these patterns are consistent across replicate populations.  In Fig. 3B we show that the 9 

Pearson correlation coefficients between the 𝑞 = 1 diversity trajectories from all pairs of 10 

populations. While all trajectories are somewhat correlated, since they all monotonically 11 

decrease, we saw stronger similarity among trajectories from the same condition. To further 12 

dissect whether individual lineages have similar fates across populations, we must quantify 13 

the similarity between lineage frequencies in different populations. 14 

To compare the lineage composition of two or more populations at a single time 15 

point, we used a definition of diversity dissimilarity from ecology. Suppose we have 𝑀 16 

populations whose lineage compositions we want to compare. We first calculated the 17 

diversity index (Eq. 1) for all populations pooled together, 𝐷pooled
𝑞  (Methods).  We then 18 

calculated the diversity index for each population alone and determined the mean across 19 

all populations, 𝐷mean
𝑞  (Methods).  The ratio of these two quantities, shifted and rescaled, 20 

measures the dissimilarity among lineage compositions34,35: 21 

Diversity dissimilarity index =
𝐷pooled

𝑞 / 𝐷mean
𝑞 − 1

𝑀 − 1
. (2) 22 

If the lineage compositions of all populations are identical, then the pooled population has 23 

diversity equal to the mean diversity, and the dissimilarity index equals zero.  In contrast, 24 

if the lineage compositions of 𝑀 populations have zero overlap, then the pooled population 25 

has diversity 𝑀 times greater than that of the mean single population, and the dissimilarity 26 

index equals 1.  As with the diversity index, the parameter 𝑞 allows us to vary the 27 

importance of low and high-frequency lineages in the dissimilarity index.  For 𝑞 = 0, the 28 

dissimilarity index measures how many lineages multiple populations have in common, 29 

regardless of their frequencies, while for 𝑞 → ∞, it compares only the highest-frequency 30 

lineages (Methods). 31 
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 In Fig. 4A (left panel), we calculated the 𝑞 = 1 dissimilarity between all pairs of 1 

populations at generation 120.  At the beginning of the experiment, the populations were 2 

identical and so the dissimilarity between all pairs of populations was zero.  By generation 3 

120, we saw that many pairs of populations from different conditions have already diverged 4 

(dissimilarity close to the maximum value of 1), while pairs of populations from the same 5 

conditions remained more similar (except for ‘low’ TMP).  Furthermore, we saw some 6 

similarity even between conditions: populations under the weakest antibiotic pressures 7 

(‘ultra-low’ CMP, ‘ultra-low’ TMP, and ‘no drug’) all maintained similarity between 8 

conditions comparable to their similarity between replicates.  However, by the end of the 9 

experiment at generation 420 (Fig. 4A, right panel), we saw that most of this similarity 10 

between populations had disappeared. The main exception was ‘low’ CMP, where the three 11 

replicate populations maintained strong similarity. There was also a small amount of 12 

similarity between ‘low’ CMP, ‘ultra-low’ CMP (two out of three replicates), and ‘low’ 13 

TMP.  In contrast, replicate populations under ‘ultra-low’ TMP and ‘no drug’ showed no 14 

similarity to each other by the end of the experiment.  There was also strong similarity 15 

between replicate 3 in ‘ultra-low’ CMP and replicate 2 of ‘ultra-low’ TMP. 16 

 We could further quantify the reproducibility of lineage dynamics by calculating 17 

diversity dissimilarity among all replicate populations in each condition over time (Figs. 18 

4B, S7).  For 𝑞 = 0, we saw the dynamics of within-condition dissimilarity were similar 19 

to the dynamics of the diversity indices themselves in Fig. 3A. That is, populations under 20 

‘low’ CMP diverged from each other most rapidly, followed by ‘low’ TMP, then 21 

concurrently by ‘ultra-low’ CMP and ‘no drug’, and, finally, by ‘ultra-low’ TMP diverging 22 

last. Interestingly, we saw all conditions settle at an intermediate amount of 0.8 23 

dissimilarity by the end of the experiment; this value corresponds to having about 20% of 24 

their lineages in common (Methods). The dissimilarity index with 𝑞 = 1, which accounts 25 

for heterogeneity in lineage frequencies, shows some differences with the 𝑞 = 0 case that 26 

simply counts barcodes.  With 𝑞 = 1, ‘low’ CMP populations actually diverged more 27 

slowly from each other than did populations in the other conditions.  Moreover, the ‘low’ 28 

CMP populations actually reached some maximum level of 𝑞 = 1 dissimilarity around 29 

generation 150, and then began converging toward more similar lineage compositions.  At 30 

the other extreme, ‘ultra-low’ TMP and ‘no drug’ populations reached maximum 31 

dissimilarity by the end of the experiment, while ‘low’ TMP and ‘ultra-low’ CMP 32 
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populations had an intermediate value of dissimilarity.  The dissimilarity index with 𝑞 =1 

∞ shows a similar pattern of rise and fall for ‘low’ CMP populations; since this case 2 

depends only on the most frequent lineage, it implies that the high level of similarity 3 

between ‘low’ CMP populations by the end of the experiment was due to them sharing the 4 

same dominant lineage. 5 

 6 
Figure 4: Dynamics of lineage dissimilarity among populations over time.  (A) Diversity 7 
dissimilarity index for 𝑞 = 1 (Eq. 2, Methods) between all pairs of populations at generation 120 8 
(left) and the final time point at generation 420 (right).  (B) Diversity dissimilarity index among all 9 
replicate populations in each condition, with 𝑞 = 0, 𝑞 = 1, and 𝑞 = ∞. 10 
 11 

Altogether, this analysis shows that lineage dynamics under identical conditions are highly 12 

reproducible, even at the level of individual lineages. Specifically, it suggests that some 13 

lineages repeatedly rose to high frequency over multiple experiments. To demonstrate this 14 

more explicitly, in Fig. 5A we compared the frequencies of all barcoded lineages at the end 15 

of the experiment for two replicate populations in ‘low’ CMP, while in Fig. 5B we 16 
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compared the trajectories for the top three lineages (ranked by average frequency over the 1 

experiment). Furthermore, in Fig. 5C we show the overlap of the top 10 barcodes between 2 

all three replicate populations in ‘low’ CMP: four of the top 10 in each population are 3 

shared among all replicates; with three more barcodes shared between two replicates (see 4 

also Table S2).  Indeed, the most frequent lineage in replicates 2 and 3 is the exact same 5 

lineage (see purple trajectories in Fig. 2); this lineage is also the second-most frequent 6 

lineage in replicate 1.  In contrast, Fig. 5D,E,F shows these same plots for the ‘no drug’ 7 

populations, which have little similarity among their most frequent lineages. In particular, 8 

they do not share any of their top 10 barcodes (Fig. 5F, Table S2).  In Figs. S8, S9 we 9 

show direct comparisons of lineage frequencies between all pairs of populations. The 10 

dominant lineages in each population do not appear to have started at unusually high 11 

frequencies (Fig. S10), suggesting another mechanism must explain their dominance. 12 

 13 

 14 
Figure 5: Repeatability of lineage dynamics.  (A) Final frequencies of all barcoded lineages 15 
between two replicate populations in ‘low’ CMP.  (B) Traces of lineage frequency over time for 16 
the union of the top three barcodes (by average frequency) in two replicate ‘low’ CMP populations.  17 
(C) Venn diagram of the top 10 barcodes (ranked by mean frequency over the experiment) in each 18 
replicate of ‘low’ CMP.  (D) Same as (A) but for two replicate populations in ‘no drug’.  (E) Same 19 
as (B) but for two replicate populations in ‘no drug’.  In all panels, the dashed black lines mark the 20 
line of identity.  (F) Same as (C) but for ‘no drug’ condition. 21 
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Dynamics of individual lineages reveal clonal interference and the relative 1 

contribution of standing genetic variation versus and de novo mutations. One of the 2 

most salient features of individual lineages is that many of them appear to follow very 3 

similar trajectories (Fig. S6). To further elucidate the striking amount of similarity among 4 

some populations, we turned to the analysis of individual lineage trajectories in these 5 

populations. To that end, we performed hierarchical clustering of a subset of high-6 

frequency lineage frequency trajectories in each population, based on the correlation 7 

coefficients between trajectories (Figs. S11, S12).  We saw that the trajectories indeed 8 

formed well-defined clusters of distinct behaviors (Fig. S13); in particular, similar clusters 9 

appeared in replicate populations from the same condition, while more different clusters 10 

appeared in populations from different conditions.  A few clustered trajectories also shared 11 

barcodes with very similar sequences, suggesting these lineages are actually the same (the 12 

distinct barcodes arising from sequencing errors) (Fig. S14).  However, the fact that the 13 

vast majority of clustered trajectories involved unrelated barcode sequences suggests they 14 

are truly distinct lineages with highly correlated dynamics. 15 

Arguably, the most interesting trajectory clusters are those that are non-monotonic 16 

with time, suggesting clonal interference. For example, Fig. 6A,B,C shows trajectory 17 

clusters from three populations in ‘low’ CMP with this property: these trajectories initially 18 

increased due to positive selection, but then later decreased as new mutations arose on other 19 

trajectories and outcompeted them. Every other population showed a similar cluster of 20 

trajectories, except those in ‘low’ TMP (Fig. S13); for example, Fig. 6E,F shows these 21 

trajectories in populations evolved without drug. The fact that these trajectories started 22 

increasing immediately suggests that beneficial mutations must have already been present 23 

on these lineages before the experiment. Indeed, the chromosomal barcoding process 24 

requires ~30 generations of growth from the common ancestor.  We surmised that during 25 

this time, random mutations began to accumulate in the population and, inevitably, were 26 

carried over to the evolution experiments.  This also suggests an explanation for why some 27 

lineages rose to high frequency in multiple populations; these lineages likely carried 28 

beneficial mutations from the beginning, which allowed them to repeatedly dominate. We 29 

also observed a qualitatively different class of clonal interference trajectories, which did 30 

not start increasing immediately, but rose later in the experiment.  For example, Fig. 6G,H 31 

shows these clusters in populations evolved with no drug.  These trajectories appear to 32 
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increase due to new mutations that arose during the experiment itself, rather than because 1 

of pre-existing mutations.  We saw clusters of these trajectories in every population except 2 

those in ‘low’ CMP (Fig. S13).  However, in replicate 1 of ‘low’ CMP, we do saw 3 

trajectories demonstrating both pre-existing beneficial mutations as well as new mutations, 4 

which initially rose due to the pre-existing mutations, then decreased from clonal 5 

interference, but then rose again due to the occurrence of a new mutation (Fig. 6D). 6 

 7 

 8 
Figure 6: Distinct patterns of trajectories from pre-existing and new mutations.  Clustered 9 
trajectories in (A) ‘low’ CMP replicate 1, (B) ‘low’ CMP replicate 2, and (C) ‘low’ CMP replicate 10 
3 with putative pre-existing beneficial mutations.  (D) Clustered trajectories in ‘low’ CMP replicate 11 
1 with multiple beneficial mutations.  Clustered trajectories in (E) ‘no drug’ replicate 1 and (F) ‘no 12 
drug’ replicate 2 with putative pre-existing beneficial mutations; clustered trajectories in (G) ‘no 13 
drug’ replicate 1 and (H) ‘no drug’ replicate 2 with putative new beneficial mutations. 14 

 15 

 16 

Discussion 17 

Detailed understanding of evolutionary processes depends on our ability to follow 18 

individual lineages at a whole population level throughout multiple generations.  19 

Abundance of small-effect mutations in large populations makes it important to track 20 

lineages down to very low frequencies, ideally 10-5 – 10-6, in particular, during the initial 21 

rounds of evolution. However, methods for labeling lineages or whole-genome sequencing 22 

typically limit this resolution to orders of magnitude higher.  Here we overcome this hurdle 23 

by developing a method that, for the first time, generates E. coli populations carrying 105-24 

106 unique chromosomal barcodes. We tested the utility of the method by subjecting the 25 
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barcoded population to serial passaging in presence of sub-inhibitory concentrations of 1 

common antibiotics. The relatively large size of the evolving populations (>107) and the 2 

limited number of generations (~420) have practically eradicated the contribution of drift 3 

to fixation of lineages in our experimental system, rendering selection the main force 4 

driving the loss of lineage diversity. Therefore, we can interpret the loss of lineage diversity 5 

as a proxy for the rate of adaptation in the population. We found that each condition 6 

prompted a different rate of adaptation (Fig. 3A), with the exception of ‘ultra-low’ CMP 7 

and ‘no drug’ conditions, which exhibited similar dynamics. Unexpectedly, ‘ultra-8 

low’ TMP substantially reduced the rate of adaptation and lineage diversity loss, even 9 

compared to the rates observed for ‘ultra-low’ CMP and ‘no drug’ conditions.  Since the 10 

growth dynamics of these populations indicate they experience a similar number of 11 

generations per passage as the other populations (Fig. S3E,F), we hypothesize that the 12 

observed delay in adaptation is due to a reduction in selection coefficients on beneficial 13 

mutations, compared to both the higher concentration of TMP (‘low’ TMP) and the 14 

condition without antibiotics. It was suggested that, at a low dosage, antibiotics might 15 

operate not as a weapon, but rather as signaling molecules that trigger transcriptional 16 

activation of multiple genes, including genes involved in the biosynthesis of amino acids, 17 

ribosomal proteins, purines, and pyrimidines21. If TMP, which is known to affect 18 

transcription36, indeed induces a new metabolic state in the bacterial cells at ultra-low 19 

concentration, it can potentially lead to a shift in the distribution of beneficial mutations. 20 

Namely, the fitness advantage of mutations under growth in the absence of antibiotics can 21 

decrease in the presence of 10 ng/ml of TMP, which is the ultra-sub-MIC concentration 22 

used in our experiment. It is important to note that we could not have easily detected a 23 

delayed adaptation in populations subjected to ‘ultra-low’ TMP, had we not used the 24 

barcode sequencing approach. Investigating the mechanism underlying the delayed 25 

adaptation at ‘ultra-low’ TMP is the subject of another work in the immediate future. 26 

One of the important problems in evolutionary biology is robustly quantifying the 27 

reproducibility of evolutionary processes37,38. The deterministic nature of adaptation at 28 

near-lethal drug concentrations has been demonstrated at the level of a handful of strongly-29 

beneficial mutations that have repeatedly accumulated in almost pre-determined order in 30 

replicate populations39. However, quantifying the reproducibility of evolutionary dynamics 31 

driven by many small-effect mutations at the whole-population level has remained elusive 32 
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in bacteria. Our chromosomal barcoding system in E. coli allowed us to directly address 1 

this problem by quantitatively comparing lineage dynamics across independent replicate 2 

populations subjected to identical antibiotic regimes. We found that the rate of lineage 3 

diversity loss was highly reproducible for each selection condition (Fig. 3A), indicating 4 

that lineage diversity analysis provides a robust way to quantify the reproducibility of 5 

evolution at a whole-population level. Curiously, the diversity dynamics were reproducible 6 

regardless of the rate of adaptation, For example, both ‘low’ CMP condition, which induced 7 

the fastest rate of adaptation, and ‘ultra-low’ TMP condition, which induced the slowest 8 

adaptation dynamics, exhibited high reproducibility between evolutionary replicates. This 9 

observation implies a surprising deterministic dynamics at the level of lineage diversity, 10 

despite differences in the distributions of fitness effects across conditions in our 11 

experiment.  12 

The dynamics were furthermore deterministic at the level of individual lineages in 13 

some cases, with a few lineages rising to high frequency in multiple independently evolving 14 

populations.  Populations can adapt to new environments using two sources of beneficial 15 

mutations: pre-existing mutations (i.e., standing genetic variation) and new mutations40. 16 

These two mechanisms can have different effects on the rates and outcomes of evolution, 17 

yet delineating the evolutionary dynamics with respect to the relative contributions of pre-18 

existing and new mutations is nontrivial.  Competition experiments in presence of sub-MIC 19 

amounts of antibiotics demonstrated that pre-existing mutations can be enriched for by sub-20 

MIC selection30,41. Sub-MIC selection was also shown to increase the frequency of new 21 

resistance-conferring mutations in evolving populations30,42. However, neither the relative 22 

contribution of standing genetic variation versus novel mutations in a single population 23 

under sub-MIC selection, nor the evolutionary dynamics resulting from the interplay 24 

between these two mutational sources have been demonstrated. Here, we developed a 25 

quantitative approach to address this problem. By applying a measure of lineage 26 

composition dissimilarity from ecology34,35, we compared the change in frequency of 27 

identical lineages between independent replicates subjected to identical conditions over the 28 

evolutionary time course.  These results suggest that lineages present at very low 29 

frequencies at the initial population, but nonetheless independently reaching high 30 

frequency in the replicate populations, are repetitively selected for because they carry pre-31 

existing beneficial mutations. Thus, the extent of similarity in lineage composition between 32 
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evolutionary replicates at a particular time point quantitatively reports on the contribution 1 

of standing genetic variation to the observed dynamics. Expectedly, the rapid adaptation 2 

under ‘low’ CMP was accompanied by the lowest dissimilarity index among selection 3 

regimes (Fig. 4), indicating a heavy contribution of standing genetic variation. Conversely, 4 

very little indication of the contribution of pre-existing variation can be seen for ‘ultra-low’ 5 

TMP and ‘no drug’ conditions (Fig. 4), indicating that the evolutionary dynamics of the 6 

latter was driven mostly by newly acquired mutations. Further support for the importance 7 

of pre-existing beneficial mutations comes from our analysis of individual trajectories. 8 

Lineages increasing in frequency due to a newly-acquired beneficial mutation show a finite 9 

establishment time (time required for a lineage prior to committing to a deterministic 10 

growth after acquisition of a mutation). In contrast, lineages carrying pre-existing 11 

mutations increase immediately upon applying selection pressure, with zero establishment 12 

time. Indeed, among all the identified individual lineages exhibiting clonal interference 13 

trajectories (Fig. S13), no establishment time can be seen under ‘low’ CMP conditions, 14 

while finite establishment times can be detected in all other conditions.  15 

Overall, our results demonstrate significant evolutionary insights gleaned from 16 

high-resolution lineage tracking using chromosomal barcodes in E. coli.  Our experimental 17 

barcoding protocol based on the Tn7 transposon machinery is straightforward to implement 18 

and can readily be reproduced in a variety of systems.  We have furthermore shown how 19 

to obtain a robust quantitative analysis of the resulting lineage data using ecological 20 

diversity indices. Altogether, we envision that this tool will find wide applicability in 21 

addressing diverse questions in bacterial population and evolutionary dynamics. 22 

 23 

Methods 24 

Design of the chromosomal barcode integration system in E. coli. The design of the 25 

chromosomal integration system of the barcode library is based on the pGRG25 plasmid, 26 

which carries all the components of the Tn7 transposon site-specific recombination 27 

machinery25,43,44. We separated the Tn7 transposase machinery (tnsABCDE) from the Tn7 28 

arms (Tn7L, Tn7R) onto two independent plasmids: the temperature-sensitive helper 29 

plasmid (pSC101 temperature-sensitive origin of replication) carrying the tnsABCD genes 30 

under the control of an arabinose-inducible pBAD promoter (Fig. 1A), and the suicide 31 

integration plasmid (R6K gamma pir+ dependent origin of replication) with the Tn7 arms 32 
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flanking the barcode-carrying cassette and spectinomycin resistance gene (Fig. 1B,C). The 1 

separation of the recombination machinery tnsABCD from the integration segment flanked 2 

by the Tn7 arms achieves two major goals. First, the introduction of the helper plasmid into 3 

the cells prior to the integration plasmid allows us to precondition the cells for 4 

chromosomal recombination by inducing the expression of the transposase complex, which 5 

is expected to increase the integration efficiency. Second, the transient nature of the 6 

integration plasmid will eliminate any possibility of barcodes lingering outside of their 7 

designated chromosomal location due to unsuccessfully cured plasmids. This is especially 8 

important for barcoding temperature-sensitive strains that cannot be grown at non-9 

permissive temperatures.  The design of the barcode carrying cassette (Fig. 1C) is aimed 10 

at minimizing the number of library preparation steps required for Illumina deep-11 

sequencing technology. The only variable region in the cassette is the barcode sequence of 12 

15 random nucleotides. Thus, the barcode library has a theoretical diversity of 415 (~109) 13 

unique barcodes. The barcodes are asymmetrically located 9 nt downstream of the 5’ end 14 

of the cassette. This short stretch of 9 nt is sufficient to locate the barcodes in the raw 15 

sequencing data files and to reduce the sequence redundancy in the Illumina flow cell.  The 16 

cassette is flanked by the sequences complementary to the Illumina adapter primers used 17 

to anchor library specific indexes recognized by the Illumina sequencing platforms (MiSeq, 18 

HiSeq, or Nextseq) (Fig. 1C).  The Integrated DNA Technology (IDT) gBlocks service 19 

synthesized the barcode cassettes (allowing the incorporation of 15 consecutive and 20 

variable nucleotides), which we then cloned into the Tn7 integration plasmid (Fig. 1B). We 21 

characterized the resulting library of barcodes by deep sequencing prior to integration into 22 

the genome (Fig. S1).   23 

 24 

Design of the barcode-carrying cassette. The barcodes comprise 15 random nucleotides, 25 

which we placed 9 nt downstream of the 5’ end of the 288-nt long cassette: 26 

 27 

gtcgcgccggNNNNNNNNNNNNNNNtatctcggtagtgggatacgacgataccgaagaca28 

gctcatgttatatcccgccgttaaccaccatcaaacaggattttcgcctgctggggcaaa29 

ccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgt30 

tgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctc31 

cccgcgcgttggccgattcattaatgcagctggcacgacaggtttccc 32 
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 1 

We placed the barcode-carrying cassette between sequences complementary to Illumina 2 

adaptor primers (forward overhang: 5’ 3 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG; reverse overhang: 5’ 4 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG) and, finally, flanked by 5 

sequences complementary to the integration site in the Tn7 integration plasmid: 6 

 7 

gatatcggatcctagtaagccacgttttaattaatcagatccctcaatagccacaacaac8 

tggcgggcaaacagtcgttgctgattggtcgtcggcagcgtcagatgtgtataagagaca9 

gtcgcgccggNNNNNNNNNNNNNNNtatctcggtagtgggatacgacgataccgaagaca10 

gctcatgttatatcccgccgttaaccaccatcaaacaggattttcgcctgctggggcaaa11 

ccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgt12 

tgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctc13 

cccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccctgtctcttata14 

cacatctccgagcccacgagacgccactcgagttatttgccgactaccttggtgatctcg15 

cctttcacgtag 16 

 17 

Integrated DNA Technology (IDT) (https://www.idtdna.com/pages/products/genes-and-18 

gene-fragments/gblocks-gene-fragments) synthesized the resulting 492 nt-long sequence 19 

as double-stranded gBlock with randomly mixed bases (at the 15 consecutive positions 20 

indicated by N). 21 

 22 

Generation of plasmid barcode library. We digested the empty Tn7 integration plasmids 23 

with NotI, purified them by ethanol precipitation, and then mixed the plasmids with 24 

gBlocks in a 1:3 molar ratio in the presence of NEBbuilder HiFi DNA (New England 25 

Biolabs) assembly mix according to the manufacturer’s instructions. We used a control 26 

without NEBbuilder HiFi DNA assembly mix to determine the background level (Tn7 27 

integration plasmid lacking the cassette).  We concentrated the reactions by ethanol 28 

precipitation and transformed them into 100 PL of TransforMax™ EC100D™ pir+ cells 29 

(Lucigen).  We resuspended the transformed cells in 1 mL of SOC medium, regenerated 30 

them for 1 hour at 37 °C with shaking followed by overnight incubation on the bench, and 31 

then plated the cells on 35 Pg/ml kanamycin LB agar plates (100 PL of transformed cells 32 
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per plate).  We plated several microliters of diluted cultures separately to determine the 1 

number of colony-forming cells. We incubated plates overnight at 37 °C. Cells transformed 2 

with DNA but without the assembly mix produced no colonies. Transformation of DNA 3 

with the assembly mix generated a total of ~2.4 × 106 colonies (Fig. 1D). We scraped all 4 

the colonies from the plates, pooled them together, and thoroughly mixed them.  Finally, 5 

we extracted plasmids from the pooled cells with a Qiagen midi kit. 6 

 7 

Chromosomal integration of the barcode library into E. coli cells. This is a two-step 8 

process, the first step being the transformation of the recipient E. coli MG1655 cells with 9 

the Tn7 helper plasmid and induction of the transposase integration machinery.  The second 10 

step is the transformation of the Tn7 integration plasmid library, which will integrate the 11 

barcodes into the chromosome (Fig. 1D).  We grew cells transformed with the Tn7 helper 12 

plasmid overnight until saturation in LB supplemented with 100 Pg/mL ampicillin at 30 13 

°C.  We then diluted these cells 1:100 and grew them under the same condition for 45 min.  14 

We added 0.2% arabinose and diluted cells to OD600nm of 0.5.  We then harvested the cells, 15 

washed them 3 times with ice-cold water, and transformed them with the Tn7 integration 16 

plasmid library using electroporation.  We resuspended the transformed cells in 1 mL of 17 

SOC medium, regenerated them for 1 hour at 30 °C with shaking followed by overnight 18 

incubation on the bench, and then plated them on 100 Pg/mL spectinomycin LB agar plates 19 

(100 PL of transformed cells per plate). We plated several microliters of diluted culture 20 

separately to determine the number of colony-forming cells. We incubated plates overnight 21 

at 37 °C and produced ~2 × 106 colonies in total. All randomly-picked colonies (over 50) 22 

failed to grow on ampicillin, suggesting that overnight incubation at 37 °C is sufficient to 23 

cure the majority of cells of the Tn7 helper plasmids. Similarly, we observed no growth on 24 

kanamycin, showing that the Tn7 integration plasmids were no longer present. We further 25 

validated the chromosomal incorporation of the barcode-carrying cassettes by colony PCR 26 

with a pair of primers directed to the Tn7 integration site. All randomly-picked colonies 27 

(over 50) were positive for the chromosomal integration. We scraped all the colonies from 28 

the plates, pooled them together, thoroughly mixed them, aliquoted them with 15% 29 

glycerol, and stored them at -80 °C. 30 

 31 
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Deep sequencing of the gBlocks library, the Tn7 integration plasmid library, and the 1 

naïve barcoded E. coli population. Sample preparation for deep sequencing involved four 2 

steps. First, we amplified the barcode-carrying cassettes with Illumina adaptor primers 3 

(forward overhang: 5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG; reverse 4 

overhang: 5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). We used 5 

gBlocks and the Tn7 integration plasmid library directly as DNA templates in the PCR 6 

reaction. In the case of the naïve barcoded E. coli population, we performed the PCR 7 

reaction either directly on the cells or, alternatively, on the genomic DNA extracted from 8 

the barcoded population with Nucleospin Microbial DNA prep kit (Machary-Nagel). 9 

Second, we separated the PCR product on 1% agarose gel, excised it, and purified it using 10 

NucleoSpin Gel extraction kit (Machary-Nagel). Third, we subjected the gel-purified 11 

product of the first PCR reaction to a second PCR reaction using a pair of index primers 12 

from Nextera XT DNA library preparation kit (Illumina). Fourth, we purified the product 13 

of the second PCR reaction with Agencourt AMPure XP PCR purification kit (Beckman 14 

Coulter). We performed sequencing on MiSeq or NextSeq platforms (Illumina).  15 

 16 

Laboratory evolution. We subjected the naïve barcoded E. coli population to laboratory 17 

evolution via serial passaging under five distinct growth conditions: ‘low’ chloramphenicol 18 

(CMP) (1-3 Pg/mL), ‘ultra-low’ CMP (0.1 Pg/mL), ‘low’ trimethoprim (TMP) (0.1-1.2 19 

Pg/mL), ‘ultra-low’ TMP (0.01-0.1 Pg/ml), and ‘no drug’ (Fig. S3A,B). We grew cells at 20 

37 °C in a 96-well microtiter plate (500 PL per well) in supplemented M9 medium (0.2% 21 

glucose, 1mM MgSO4, 0.1% casamino acids, 0.5 mg/ml thiamin). Between passages, we 22 

grew cultures for 8-9 hours (during the day) or 10-12 hours (during the night). We used 23 

saturated culture from a previous passage to inoculate a fresh plate by 1:100 dilution (5 PL 24 

of saturated cultured into 500 PL of fresh medium). Overall, we performed 70 passages. 25 

We measured optical density (OD) of the cultures at 600 nm at the end of each passage.  26 

We convert the raw OD measurements to an estimated number of cells (Fig. S3C,D) as 27 

follows: we first multiply by 10 to correct for dilution of the measured culture, then 28 

multiply by 2 to standardize the OD to 1 cm path length, then multiply by cell density 108 29 

cells/mL/OD, and finally multiply by 0.2 mL as the volume of the well.  We stored every 30 

second passage at -80 °C after addition of 15% glycerol.  31 

 32 
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Fitness measurements of the evolving barcoded E. coli populations. We estimated 1 

fitness of the evolving populations by calculating the change in IC50 of chloramphenicol 2 

or trimethoprim. To this end, we sampled cells from three populations evolved in ‘low’ 3 

CMP (wells A1, B1, and C1), three populations evolved in ‘ultra-low’ CMP (wells A3, B3, 4 

and C3), and two populations evolved without antibiotics (wells E9 and F9) at passages 0, 5 

8, 10, 12, 20, 30, and 70.  We diluted these samples 1:100 into growth medium 6 

supplemented with 0, 1, 2, 4, 8, or 16 Pg/mL of chloramphenicol, and followed their growth 7 

by OD measurements at 600 nm (Figs. S2A, S4A). We calculated the area under these 8 

growth curves over the time of growth (Fig. S4B) and normalized the area values so that 9 

they equaled 1 at zero antibiotic (Fig. S4C).  We determined the IC50 by calculating the 10 

concentration of antibiotic at which growth (defined as normalized area under the growth 11 

curve) was reduced by 50% relative to zero antibiotic (Fig. S4C).  We inferred the IC50 12 

concentration by interpolating the area vs. drug concentration curves.  We similarly 13 

obtained IC50 values for two populations evolved in ‘low’ TMP (wells A5 andB5), two 14 

populations evolved in ‘ultra-low’ TMP (wells G7 and H7), and two populations evolved 15 

without antibiotics (wells E9 and F9), all at the same time points as for CMP.  We used 16 

TMP concentrations 0, 0.5, 1, 2, 5, 10, and 20 Pg/mL. 17 

 18 

Deep sequencing of the evolving barcoded E. coli populations. We sequenced barcodes 19 

at 16 time points over the evolution experiment for the same 12 independent populations 20 

used for the fitness measurements: three populations in ‘low’ CMP (wells A1, B1, and C1), 21 

three populations in ‘ultra-low’ CMP (wells A3, B3, and C3), two populations in ‘low’ 22 

TMP (wells A5 and B5), two populations in ‘ultra-low’ TMP (wells G7 and H7), and two 23 

populations in no antibiotics (wells E9 and F9). We first amplified these 192 bacterial 24 

cultures with Illumina adaptor primers (15 PL of defrosted cells from each culture). We 25 

performed the second PCR in two groups, each with 96 unique Nextera XT primers.  We 26 

then pooled together 96 PCR reactions from each group, spiked them with 30% of PhiX 27 

DNA, and sequenced them on a Nextseq High Output 75 platform. The sequencing 28 

protocol commenced with 9 dark cycles to account for the sequence redundancy preceding 29 

the barcode area.  For one sample  ̶  ‘ultra-low’ CMP, replicate 2 (well A3) at passage 54  ̶   30 

all PCR reactions failed, and thus we excluded this sample from all further analysis. 31 
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Analysis of sequencing data. First, we exclude sequencing samples that report fewer than 1 

106 reads; this affects one of the samples from the initial population and six of the samples 2 

from the evolving populations (Table S1).  All remaining samples have between 106 and 3 

7 × 106 reads.  Next, we exclude all reads with minimum base quality score less than 10 4 

(Phred scale), which affects 0.02-0.05% of reads (Table S1).  To identify barcodes, we 5 

first align each read to the reference sequence for the barcode cassette. We allow up to 6 

three mismatches or one indel with respect to the reference; we also require that the read 7 

overlap the barcode by at least 10 nt.  With these criteria we identify barcodes on more than 8 

95% of reads in almost all samples (Table S1).  For each read with a valid alignment, we 9 

extract a barcode as the sequence aligning to the variable region in the reference. 10 

To correct for sequencing errors in the raw barcodes, we use the bartender 11 

package45 on default settings to cluster together barcodes with similar sequences.  In 12 

general, this method assumes that a low-frequency barcode differing at only one or two 13 

bases from a high-frequency barcode is the result of a sequencing error, so that the low-14 

frequency barcode is merged into the high-frequency one.  This produces a set of putatively 15 

true barcodes for the sample.   16 

To ensure that we identify true barcodes consistently across samples, we first pool 17 

raw barcodes and perform clustering on these pooled samples. We pool barcodes both 18 

across time points for each population (to build trajectories of barcodes over time in each 19 

population) as well as across populations for each time point (to compare barcodes between 20 

populations).  After clustering we disaggregate the true barcodes from the pooled data back 21 

into the individual samples, where we normalize them by the total number of reads in that 22 

sample. This yields a set of lineage frequencies {𝑥𝑘} (where the index 𝑘 runs over all 23 

barcodes) for each population at each time point. 24 

 25 

Quantifying lineage diversity. The simplest way to quantify the diversity of lineages in a 26 

population is to count the number of unique barcodes observed at a particular time point 27 

(Fig. 3A).  However, if lineages differ widely in frequency, then this measure may not be 28 

very informative and will suffer from significant sampling bias (since very low-frequency 29 

barcodes will be under-sampled).  A more general approach is to define the effective 30 

number of lineages using the diversity index 𝐷𝑞  from ecology34. We construct this 31 
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definition in analogy with the case where all lineages are at equal frequency, so that the 1 

number of lineages is simply the reciprocal of this frequency: 2 

number of lineages =  
1

frequency of each lineage . (1) 3 

When lineages are not at equal frequencies, we replace the frequency in the denominator 4 

by a mean frequency over all lineages.  Define the generalized mean (also known as the 5 

power mean) of a quantity ℎ𝑘, with normalized weights 𝑝𝑘 (∑ 𝑝𝑘𝑘 = 1) and parameter 𝑞: 6 

〈ℎ𝑘|𝑝𝑘, 𝑞 − 1〉 = (∑ 𝑝𝑘ℎ𝑘
𝑞−1

𝑘

)
1/(𝑞−1)

. (2) 7 

The parameter 𝑞 controls how strongly the mean depends on very small or very large values 8 

of ℎ𝑘: lower values of 𝑞 more strongly weigh low values of ℎ𝑘, while higher values of 𝑞 9 

weight high values of ℎ𝑘 more strongly.  When 𝑞 = 2, Eq. 2 reduces to the ordinary 10 

arithmetic mean; when 𝑞 = 1, it is equivalent to the geometric mean; and when 𝑞 = 0, it 11 

is the harmonic mean. 12 

We therefore define the effective number of lineages as the reciprocal of the 13 

generalized mean frequency over all lineages, weighing each frequency by itself34,35: 14 

𝐷𝑞 =
1

⟨𝑥𝑘|𝑥𝑘, 𝑞 − 1⟩  

= ( ∑ 𝑥𝑘
𝑞

lineage 𝑘

)

1/(1−𝑞)

.
(3) 15 

The diversity index is mathematically equivalent to the exponential of the Renyi entropy 16 

in physics46. Special values of the parameter 𝑞 correspond to common ecological measures 17 

of diversity: 18 

𝑞 = 0: 𝐷𝑞 = number of lineages with nonzero frequency (species richness) (4) 

𝑞 = 1:  𝐷𝑞 = exp(∑ 𝑥𝑘 log 𝑥𝑘lineage 𝑘 ) (Shannon diversity) (5) 

𝑞 = 2: 𝐷𝑞 = (∑ 𝑥𝑘
2

lineage 𝑘 )
−1

 (reciprocal Simpson concentration) (6) 

𝑞 = ∞: 𝐷𝑞 = 1
max

lineage 𝑘
𝑥𝑘

 . (7) 

Note that the effective number of lineages according to Eq. 3 equals the actual number of 19 

lineages for any 𝑞 if all lineages have equal frequency.  Figure 3 shows the diversity 20 

indices for 𝑞 = 0, 𝑞 = 1, and 𝑞 = ∞ for each population over the course of the evolution 21 

experiment. 22 
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Quantifying dissimilarity of lineage composition between populations. We can also use 1 

ecological diversity indices to quantitatively compare the lineage compositions of two or 2 

more populations.  Let 𝑀 be the number of populations we comparing (𝑀 ≥ 2), and let 3 

𝑥𝑘
(𝑝) be the frequency of lineage 𝑘 in population 𝑝 (= 1, 2, … , 𝑀) at a particular time point.  4 

If we pool together all 𝑀 populations, the frequency of lineage 𝑘 is 5 

�̅�𝑘 =
1
𝑀

∑ 𝑥𝑘
(𝑝)

population 𝑝

. (8) 6 

The total diversity of the pooled population (“gamma diversity”) is34,35: 7 

𝐷pooled
𝑞 =

1
〈�̅�𝑘|�̅�𝑘, 𝑞 − 1〉

= (∑ �̅�𝑘
𝑞

𝑘

)
1/(1−𝑞)

.
(9) 8 

We can decompose this total diversity into two factors: 9 

𝐷𝑞
pooled = 𝐷𝑞

mean 𝑀𝑞
eff. (10) 10 

The first factor on the right-hand side of Eq. 10 is the mean diversity across all populations 11 

(“alpha diversity”): 12 

𝐷𝑞
mean =

1

⟨ 1
𝐷𝑞 (𝑝) | 1

𝑀 , 𝑞 − 1⟩

= (
1
𝑀

∑ [ 𝐷𝑞 (𝑝)(𝑡)]
1−𝑞

population 𝑝

)

1
1−𝑞

,

(11) 13 

where 𝐷𝑞 (𝑝) is the diversity of population 𝑝 alone (Eq. 3).  The second factor on the right-14 

hand side of Eq. 10 is the effective number of distinct populations (“beta diversity”): 15 

𝑀𝑞
eff =

𝐷𝑞
pooled

𝐷𝑞
mean

= (
∑ �̅�𝑘

𝑞
lineage 𝑘

1
𝑀 ∑ ∑ [𝑥𝑘

(𝑝)]
𝑞

lineage 𝑘population 𝑝

)

1/(1−𝑞)

.

(12) 16 

This quantity has a minimum value of 1 if the populations have identical lineages at 17 

identical frequencies, and a maximum value of 𝑀 if none of the populations have any 18 

lineages in common.  To simplify the interpretation of this quantity across cases where we 19 

may be comparing different numbers of populations (e.g., three replicates in ‘low’ CMP 20 
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versus two replicates in ‘low’ TMP), we shift and rescale 𝑀𝑞
eff to obtain a measure of 1 

dissimilarity between populations that ranges from 0 to 1: 2 

Dissimilarity between populations =
𝑀𝑞

eff − 1
𝑀 − 1

. (13) 3 

We plot this normalized quantity in all figures (Figs. 4, S8, S9). 4 

In the case of 𝑞 = 0, 𝑀𝑞
eff simply measures how many lineages are in common 5 

between the populations under comparison.  Let 𝐵(𝑝) be the set of lineages with nonzero 6 

frequencies in population 𝑝, and let |𝐵(𝑝)| denote the number of lineages in this set.  Then 7 

the effective number of distinct populations is 8 

𝑀𝑞
eff =  

|⋃ 𝐵(𝑝)
population 𝑝 |

1
𝑀 ∑ |𝐵(𝑝)| population 𝑝

. (14) 9 

For two populations (𝑀 = 2), we can rewrite this as 10 

𝑀𝑞
eff =

|𝐵(1) ∪ 𝐵(2)|
1
𝑀 (|𝐵(1)| + |𝐵(2)|)

= 2 −
1

1
2 ( |𝐵(1)|

|𝐵(1) ∩ 𝐵(2)| + |𝐵(2)|
|𝐵(1) ∩ 𝐵(2)|)

,
(15) 11 

where we have invoked the inclusion-exclusion principle for sets: |𝐵(1) ∪ 𝐵(2)| = |𝐵(1)| +12 

|𝐵(2)| − |𝐵(1) ∩ 𝐵(2)|.  That is, 𝑀𝑞
eff equals two minus the harmonic mean of the fractions 13 

of overlapping lineages between the populations.  For example, 𝑀𝑞
eff = 1.8 means that 14 

the two populations have 20% of their lineages in common. 15 

In the case of 𝑞 = 1, the effective number of lineages is the Shannon diversity 16 

(Eq. 5).  Therefore the effective number of distinct populations is equivalent to the 17 

exponential of the Jensen-Shannon divergence between the 18 

populations:19 

 𝑀𝑞
eff =  exp [ 1

𝑀
∑ ∑ 𝑥𝑘

(𝑝) log (𝑥𝑘
(𝑝)

�̅�𝑘
)lineage 𝑘population 𝑝 ] . (16) 20 

This is also equivalent to the weighted sum of the Kullback-Leibler divergences between 21 

each population and the pooled population. 22 

In the case of 𝑞 = ∞, the effective number of distinct populations depends only on 23 

the most abundant lineage in the pooled population and across all populations.  That is, 24 
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 𝐷∞
pooled =

1
max

lineage 𝑘
�̅�𝑘

, (17) 1 

and  2 

 𝐷∞
mean =

1

max
population 𝑝

 max
lineage 𝑘

𝑥𝑘
(𝑝) , (18) 3 

and so 4 

 𝑀∞
eff =

max
population 𝑝

 max
lineage 𝑘

𝑥𝑘
(𝑝)

max
lineage 𝑘

�̅�𝑘
. (19) 5 

 6 

Clustering lineage frequency trajectories. For each population, we exclude barcoded 7 

lineages that have zero detected frequency at more time points than a minimum number 8 

calculated as 9 

  ⌊0.5(total number of time points + 11)⌋, (20) 10 

where ⌊ ⌋ is the floor function that rounds the argument down to the nearest integer.  This 11 

ensures that all pairs of remaining lineages have at least 10 time points at which they both 12 

have nonzero frequency.  This leaves between 310 and 695 lineages for each population.  13 

We cluster the frequency trajectories 𝑥𝑘(𝑡) for these lineages using the hierarchical 14 

clustering routine in SciPy47. The distance metric between two lineages 𝑘1 and 𝑘2 is 15 

  Δ (𝑥𝑘1(𝑡), 𝑥𝑘2(𝑡)) = 1 −  𝜌(log 𝑥𝑘1(𝑡) , log 𝑥𝑘2(𝑡))), (21) 16 

where 𝜌(log 𝑥𝑘1(𝑡) , log 𝑥𝑘2(𝑡))) is the Pearson correlation coefficient between the 17 

logarithms of both frequency trajectories (excluding time points where either frequency is 18 

zero); Fig. S13 shows matrices of all pairwise trajectory distances.  We use the “average” 19 

linkage method (equivalent to unweighted pair group method with arithmetic mean, or 20 

UPGMA), which calculates the distance between two clusters as the arithmetic mean of 21 

the distances between all trajectories in both clusters. Other linkage methods produce 22 

qualitatively similar results. The hierarchical clustering results in dendrograms as shown 23 

in Fig. S13.  Finally, we form flat clusters by setting thresholds on the dendrograms, which 24 

we manually choose for each population; these thresholds are shown on the dendrograms 25 

in Fig. S13 and range from 0.35 to 0.65, which roughly mean that the correlation between 26 

trajectories within clusters is at least 0.35 or 0.65.  27 

 28 
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Supplementary Figures 
 

 
Figure S1: Statistics of the initial barcode libraries.  (A) Distributions of barcode frequencies at 
different stages of library preparation.  For a given frequency on the horizontal axis, the vertical 
axis shows the number of unique detected barcodes with that frequency.  ‘Raw library’ (blue): 
NextSeq Illumina sequencing of the barcode library as synthesized by IDT (prior to plasmid library 
creation).  ‘Plasmid library’ (red): MiSeq Illumina sequencing of barcodes incorporated into the 
Tn7 integration plasmid library.  “Chromosomal library” (orange): NextSeq Illumina sequencing 
of the barcode library integrated into E. coli chromosomes and generated by PCR performed on 
chromosomal DNA pooled from five independent extractions.  (B) Same as panel (A), but showing 
the cumulative distributions of frequencies.  (C) Shannon entropy of nucleotides at each position 
in the 15 nt barcode for the same libraries in panel (A).  The horizontal black line marks the entropy 
(ln 4 ≈ 1.386) for a truly random library of barcodes, where all nucleotides are equally abundant 
at each position. 
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Figure S2: MIC values of the naïve barcoded population.  We grew the naïve barcoded 
population for 20 hours in the presence of (A) 0-16 Pg/ml of chloramphenicol (CMP) or (B) 0-20 
Pg/ml of trimethoprim (TMP).  We defined the MIC for each drug as the lowest concentration of 
antibiotic at which we observed no growth. 
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Figure S3: Drug concentrations and population growth over evolution experiment.  (A) 
Trajectories of ‘low’ and ‘ultra-low’ chloramphenicol (CMP) concentrations over time of the 
evolution experiment.  (B) Same as (A) but for trimethoprim (TMP) conditions.  (C) Approximate 
number of cells at the end of each passage for ‘low’ and ‘ultra-low’ CMP conditions, along with 
the populations evolved without drug.  Lines are averages over all 14 replicate populations for each 
condition.  (D) Same as (C) but for TMP conditions.  (E) Same as (C) but showing the fold-change 
of population size during each passage on the vertical axis.  (F) Same as (E) but for TMP conditions.  
Periodic oscillations in cell numbers and yields result from the fact that cultures were propagated 
in two intermittent growth regimes: 9 hours during the day, followed by 12 hours during the night 
(see Methods). 
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Figure S4: Example of IC50 calculation.  (A) Growth curves of cells from a barcoded population 
evolving in ‘low’ chloramphenicol (CMP) at generation 120 (passage 8), measured with different 
concentrations of CMP.  (B) For each growth curve in (A), we calculate the area under it and plot 
the area as a function of CMP concentration.  (C) We similarly calculate growth curve areas for 
generations 48, 60, 72, 180, and 420 and normalize them by the area of the growth curve with zero 
CMP.  The IC50 is then defined as the antibiotic concentration leading to 50% of growth relative 
to growth at zero CMP. 
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Figure S5: Fitness of the evolved populations.  (A) Chloramphenicol (CMP) concentration 
inhibiting 50% of growth (IC50) of the barcoded populations evolving in ‘low’ and ‘ultra-low’ 
CMP as well as without drug.  (B) Same as (A) but for trimethoprim (TMP).  (C) Growth rate, 
measured in the absence of drug, of barcoded populations evolving in ‘low’ and ‘ultra-low’ CMP 
as well as without drug.  Points represent the mean and error bars represent standard deviation over 
replicate measurements.  (D) Same as (C) but for populations evolved in ‘low’ and ‘ultra-low’ 
TMP. 
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Figure S6: Trajectories of barcoded lineage frequencies.  Frequency trajectories for barcodes 
with average frequency greater than 10−4.  Each row corresponds to a different condition and each 
column corresponds to a different replicate.  Lineages that rank in the top 10 (according to average 
frequency) in any population are colored in all panels (Table S2); the colors are consistent across 
panels and match Fig. 2.  Lineages that do not rank in the top 10 for any population are in gray and 
made transparent to show their density.  The dashed black line shows the frequency of reads without 
identified barcodes. 
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Figure S7: Dissimilarity of 
lineage frequencies between 
populations.  Each panel 
shows the diversity 
dissimilarity index (Eq. 2, 
Methods) between all pairs of 
populations at a particular 
time point: (A) 𝑞 = 0, (B) 
𝑞 = 1, (C) 𝑞 = ∞. 
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Figure S8: Correlation of lineage frequencies between populations.  Scatter plots comparing 
lineage frequencies at the end of the experiment between each pair of populations.  Each point 
represents a unique barcoded lineage; the dashed line is the line of identity. 
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Figure S9: Correlation of top lineage trajectories between populations.  Plots show traces of 
the top three (by average frequency) lineages over time between each pair of populations.  Colors 
of lineages are consistent across panels and match Fig. 2. The dashed line is the line of identity. 
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Figure S10: Correlation of lineage 
frequencies before and after evolution.  
Scatter plot comparing lineage frequencies at 
the final time point (vertical axis) with 
frequencies at the beginning of the experiment 
(horizontal axis).  Each point represents a 
single lineage; the dashed line is the line of 
identity.  Each row corresponds to a different 
condition and each column corresponds to a 
different replicate. 
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Figure S11: Summary of trajectory 
clustering.  In each panel we show the matrix of 
Pearson correlation coefficients between all 
pairs of trajectories used for hierarchical 
clustering and the resulting dendrogram 
(Methods).   The horizontal dashed line marks 
where we cut off the dendrogram to form flat 
clusters used for further analysis.  Each row 
corresponds to a different condition and each 
column corresponds to a different replicate. 
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Figure S12: Distributions of trajectory correlations.  In each panel we show the histogram of 
Pearson correlation coefficients between all pairs of lineage trajectories used for hierarchical 
clustering population (see Methods).  Each column corresponds to a different condition and each 
row corresponds to a different replicate. 
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Figure S13: Clusters of lineage trajectories.  Each panel shows a set of lineage trajectories that 
clustered together in our analysis.  Each row corresponds to a single population.  The first 10 
columns show the top 10 clusters in decreasing order of cluster size (number of trajectories), while 
the last column shows trajectories from all other clusters. 
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Figure S14: Hamming distances among sequences within trajectory clusters.  Each panel 
shows the histogram of Hamming distances between all pairs of barcode sequences whose 
trajectories clustered together in our analysis.  The first 10 columns show the top 10 clusters in 
decreasing order of cluster size (number of trajectories), while the last column shows trajectories 
from all other clusters.  The vertical dashed line marks the expected Hamming distance between 
two random barcode sequences (11.25).  Empty histograms correspond to clusters with only one 
trajectory. 
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