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Abstract

Quantum computation is an exciting and rapidly developing paradigm of computing, which has

the potential to improve or accelerate numerous important applications ranging from cryptography

to drug discovery. Inspired by these prospects, researchers and engineers across the world have, in

recent years, made tremendous advances in building programmable quantum devices. Nevertheless,

the size and error rates in state-of-the-art quantum computers are still several orders of magnitude

away from those required to achieve computational speedups using existing quantum algorithms.

These developments, along with their limitations, motivate us to consider two important questions:

First, are there any useful applications in which current or near-term quantum devices can outper-

form classical computers? Second, can we develop efficient error-correction schemes to suppress the

error rates in near-term quantum devices?

In this dissertation, we present novel solutions to both of these questions. To address the first

question, we identify an important class of problems in condensed-matter physics, namely the

identification and characterization of quantum phases of matter, as one promising application

of current and near-term quantum information processors. We develop new algorithms for using

such quantum devices to solve these problems, and we demonstrate how our methods substantially

outperform existing approaches. In addition, we respond to the second question by developing

hardware-efficient quantum error correction protocols. By leveraging the distinctive properties and
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advantages of a given experimental setup to overcome its particular limitations, our proposals signif-

icantly reduce the number of quantum bits and operations required for performing quantum error

correction and fault-tolerant quantum computation. Together, the works in this dissertation thus

pave the way for the near-term realization of quantum computational advantages.
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1
Introduction

1.1 Background

Throughout the last half-century, rapid progress and developments in technology have revolution-

ized our world and our daily lives. Notable examples include the development of personal comput-

ers and cellular communication, or of big data and machine learning techniques. Many of these

breakthroughs can be accredited to the so-called Moore’s Law scaling119, which projects the dou-
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Figure 1.1: Moore’s Law scaling. The size of individual transistors has decreased exponentially over time in the
last several decades. Since these transistors form the building blocks of modern electronics, this has resulted in an
exponential increase in the computational power of microprocessors or cores in devices such as our personal computers
or cell phones. Figure credit to Ref.56.

bling every two years in the number of components (transistors) in an integrated circuit, such as

the microprocessors or cores used in our personal computers and cell phones. Over the past several

decades, this empirical prediction has guided and motivated the semiconductor industry to develop

novel methods to reduce transistor sizes and thereby increase the transistor density and computa-

tional power per core. Indeed, while transistors sizes were on the order of one micrometer in 1960,

they have now reduced to several nanometers (see Refs.56,113 and Figure 1.1). Unfortunately, this

exponential scaling must inevitably come to an end: a 2 nm transistor, such as the one recently an-

nounced by IBM113, has a width which is only 10 to 20 times the diameter of each silicon atom

within the transistor. At such length-scales, quantum-mechanical effects arise; because such effects

are not considered in the classical, digital model of computation, new computing paradigms are re-

quired to continue the consistent increase in computational power that enables developments of

newer, more complex technologies such as faster smartphones or self-driving cars.

One promising solution to this upcoming challenge is quantum computing, a rapidly devel-

oping, exciting computational paradigm with the potential to accelerate numerous applications
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ranging from cryptography to drug discovery. Indeed, this paradigm explicitly leverages quantum-

mechanical properties to achieve computational speedup, and its individual components can be as

small as a single atom. In this model of computation, information is encoded in qudits, which are

quantum systems that can exist in d possible states, |0〉, |1〉, ..., |d − 1〉. For the present discussion

and throughout much of this thesis, we focus on the typical choice of d = 2 (where the qudits are

called qubits); this could, for example, be realized through the spin of an electron which can be ori-

ented either upwards or downwards. In certain later sections, we will also consider the more general

scenario and specify this explicitly.

Quantummechanically, the state of a single qubit can be represented as a generic superposition

|ψ〉 = α|0〉 + β|1〉, where the coefficients α and β are complex numbers satisfying a normalization

condition |α|2 + |β|2 = 1. More generally, a string of n qubits can be described as a superposition of

2n possible states:

|ψn〉 =
∑

b0∈{0,1}

∑
b1∈{0,1}

...
∑

bn−1∈{0,1}

αb1,b2,...bn−1 |b0b1...bn−1〉 (1.1)

Here, the coefficients are again complex numbers satisfying

∑
b0∈{0,1}

∑
b1∈{0,1}

...
∑

bn−1∈{0,1}

∣∣αb1,b2,...bn−1

∣∣2 = 1.

We notice two important distinctions between the quantum and classical models of computation.

First, while the basic unit of classical information, a bit, can only be in one of two states, 0 or 1, a

qubit can be in a superposition of the two quantum states |0〉 and |1〉. Second, and more impor-

tantly, a classical string of n bits can be described in terms of the state of each bit individually; this is

not possible for a generic n-qubit quantum state of the form shown in Equation (1.1), as the state of

any one qubit can depend on the state of the other n − 1 qubits. This second property of quantum
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states is known as quantum entanglement, and it and forms the basis of the computational speedup

obtained in quantum computing. In particular, while a classical string of n bits can be describ-

ing by using only n numbers, specifying an n-qubit quantum state in general requires 2n complex

numbers—an enormous amount of information even for modest values of n ∼ 50− 100. These 2n

complex numbers can be represented as a vector which belongs to a 2n-dimensional Hilbert space,

which is the n-qubit Hilbert space. Thus, the presence of quantum entanglement makes classical

simulation of generic quantum systems particularly difficult and is believed to differentiate the com-

putation power of classical and quantum computers.

Given a set of n qubits, the operations that can be performed on these qubits are known as quan-

tum gates or unitary gates. The most general quantum gate acting on n qubits can be represented

a 2n × 2n unitary transformation acting on the n-qubit Hilbert space. However, most 2n × 2n

unitary gates are extremely difficult to implement experimentally, as they require high-fidelity (i.e.,

low-noise) manipulation and entanglement of all n qubits simultaneously. Instead, these complex

operations are typically broken down into a series of single-, two-, or three-qubit gates, which act

nontrivially on one, two, or three out of the n qubits, respectively, while leaving the remaining

qubits unchanged. Two examples of such single-qubit gates are the Pauli-X and Pauli-Z gates, which

perform bit-flips or phase-flips on a single qubit:

X : |0〉 ↔ |1〉, Z : |+〉 ↔ |−〉 (1.2)

where |±〉 = 1√
2(|0〉 ± |1〉) denote superposition states. Likewise, we can consider two examples of

4



two-qubit gates:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (1.3)

The CNOT gate performs a bit-flip on the second (a.k.a. “target”) qubit conditioned on the state

of the first (a.k.a. “control”) qubit, while the CZ gate performs a phase-flip on the target qubit con-

ditioned on the state of the control qubit. The decomposition of an n-qubit unitary operation into

d-qubit unitaries (for small d, such as 1, 2, or 3) is known as a quantum circuit realization of the

n-qubit operation.

While quantum circuit decompositions are already very helpful for efficient and high-fidelity im-

plementation, many experiments impose two further conditions, namely the locality of multi-qubit

gates and the depth of the overall quantum circuit. More specifically, given any geometric arrange-

ment pattern of qubits (e.g., a square lattice), a multi-qubit gate is said to be local if the distance

between any two qubits involved the gate can be bounded by some small, finite value which remains

constant as the number n of qubits is increased. Local gates are typically easier to implement than

non-local ones, as the involved qubits are closer together, which facilitates high-fidelity entangling

interactions between these qubits. One further useful property of local gates involving few qubits is

that a sequence of such gates can be performed in parallel, if the gates act on disjoint sets of qubits.

Upon applying all such parallelizations in a given quantum circuit, one can then define the depth of

a quantum circuit to be the length of the longest sequence of gates involving a single qubit, which

cannot be performed in parallel with one another. Increasing the depth of a quantum circuit often

increases the complexity of the n-qubit transformation it implements, but it typically also increases

5



the difficulty of the circuit’s experimental implementation. As such, one class of circuits which is

frequently studied is that of finite-depth local unitary circuits—namely, quantum circuits whose

depths are bounded by some fixed constant dwhich remains constant as the number of qubits n

is increased. This class of circuits becomes particularly useful when studying quantum phases of

matter, as seen in subsequent chapters of this thesis.

Given a quantum computer with a large number n of qubits on which operations can be per-

formed with very high fidelity, quantum algorithms have been proposed for solving several impor-

tant tasks with provable speedup compared to the best-known classical algorithms. For instance,

Shor’s algorithm for factoring integers145 is believed to have exponential speedup over any classi-

cal factoring algorithm. This has momentous implications for cryptography, as it could be used

to efficiently break cryptographic schemes which are widely used for encrypting email and other

digital transactions performed on the Internet132. Another notable quantum algorithm with prov-

able speedup is Grover’s algorithm for searching through an unstructured database, which has a

quadratic advantage in the number of database entries when compared to classical methodologies67.

Motivated by these exciting possibilities, many groups across the globe have made extraordinary

advances in experimental quantum information, especially during this past decade. Moreover, mul-

tiple potential hardware platforms have emerged for realizing quantum computation, including

neutral Rydberg atoms, superconducting circuits, trapped ions, among many others44,27,72,95,136.

Given this remarkable progress, it is reasonable to envision the development of quantum comput-

ers with∼ 10, 000 − 100, 000 qubits and gate fidelities of∼ 99.999%within the next decade.

Such systems are likely impossible to simulate classically. However, they are not yet sufficient for

observing the true quantum advantage by applying the aforementioned impactful algorithms.
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1.2 Key Problems

The above developments and considerations motivate us to ask two important questions regarding

how to use and improve state-of-the-art quantum computers:

1. Given the apparent difficulty of classically simulating large quantum systems, are there any

useful applications in which current or near-term quantum devices can outperform classical

computers?

2. Can we develop efficient error-correction schemes to suppress the error rates and further

improve qubit and gate fidelities in near-term quantum devices?

While approaches have been considered throughout the literature for addressing each of these

questions, fully practical and useful solutions still remain elusive. For example, two groups have re-

cently demonstrated “quantum supremacy” by using state-of-the-art quantum computers to sample

from a specific probability distribution associated with a pseudo-random quantum circuit. In these

prominent experiments, the quantum computers were observed to perform significantly faster than

the projected runtime for any known classical algorithm, even when using the world’s fastest super-

computers3,183. Nevertheless, these works only partially address Question 1 above, as it is highly

unclear whether there is any practical usage for the algorithms that were performed.

To answer Question 2, many elegant, theoretical proposals have been developed for perform-

ing quantum error correction, where the state of an individual, logical qubit is delocalized and en-

coded using multiple physical qubits (see Chapter 3 and Ref.155). The redundant encoding then

ensures that the state of the logical qubit can be recovered, even when a small number of the under-

lying physical qubits are damaged by noise. However, due to the complexity of such encodings, it

becomes particularly difficult to perform error-corrected, fault-tolerant operations on the logical

qubits: indeed, performing certain logical operations may then require hundreds of physical qubits
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and/or thousands of physical gates, which is highly impractical for near-term quantum devices (see

Chapter 6). The problem of developing efficient quantum error correction schemes thus remains

important and largely unsolved.

1.3 Main Contributions

In this thesis, we present novel solutions to both of the questions above. As one candidate answer

to Question 1, we consider an important problem in condensed-matter and quantum physics—

namely, the recognition and characterization of quantum phases of matter. To solve this problem,

we first design a new, machine-learning-inspired quantum algorithm, the quantum convolutional

neural network (QCNN), which is realizable on near-term quantum devices. We find that QCNN

substantially outperforms existing approaches for recognizing and characterizing one-dimensional

quantum phases. Moreover, we find that this exceptional performance of our algorithm can be

understood through a combination of well-known theoretical concepts ranging from condensed-

matter and high-energy physics, to computer science and quantum information.

Motivated by this success, we further extend this theoretical framework to detect and character-

ize two-dimensional, topologically ordered states of matter, which have important implications for

many subfields of physical sciences and engineering. Our approach, locally error-corrected decora-

tion (LED), allows for particularly efficient and robust identification of topological order, especially

when compared to existing approaches. We demonstrate the power of LED through numerical

simulations of Kitaev’s toric code model92, a canonical example of topological order, and we subse-

quently apply it to a recent experimental realization of a quantum spin liquid using a Rydberg-atom

quantum simulator143.

In response to Question 2, we notice that the exceedingly large cost of performing fault-tolerant

quantum computation can be largely accredited to the fact that most existing approaches attempt to
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protect against a generic set of errors which can be present in any hardware platform for quantum

computation, rather than targeting the specific errors in the experimental platform under consid-

eration. As such, we propose hardware-efficientmethods for quantum error correction and fault-

tolerant quantum computation, which are designed to best mitigate errors in the quantum device.

As a first example, we find that the same QCNN algorithm with which we study quantum phases

of matter can also be used to optimize a logical qubit encoding scheme based on the underlying

error model of any given experiment. In a subsequent work, we focus specifically on the class of

quantum computers based on arrays of neutral atoms, where qubits are encoded in non-interacting

ground states of neutral alkali or alkaline earth(-like) atoms, and multi-qubit quantum gates are

performed by exciting the atoms to highly-excited states (the so-called “Rydberg states”). In par-

ticular, we provide the first complete characterization of the dominant sources of error in such a

Rydberg-atom quantum computer. We then leverage the unique capabilities of neutral atoms to

design hardware-efficient, fault-tolerant quantum computation schemes that mitigate these errors.

Notably, we develop a novel and distinctly efficient method to address the most important errors,

which are leakage errors associated with the decay of atomic qubits to states outside of the computa-

tional subspace. These advances allow us to significantly reduce the resource cost for fault-tolerant

quantum computation compared to existing, general-purpose schemes.

1.4 Structure of Thesis

The rest of this thesis is structured as follows. Chapters 2 and 3 provide background on quantum

phases of matter and quantum error correction, respectively; this forms the foundation on which

our results are built. In Chapter 4, we present a new quantummachine-learning based paradigm,

the quantum convolutional neural network (QCNN). We show that QCNNs are powerful both for

recognizing exotic quantum phases of matter and for efficiently optimizing logical qubit encodings
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depending on which errors are present in the experimental system at hand. We then delve deeper

into each of these questions: In Chapter 5, we design a new framework which is inspired by QCNN

and error-correction techniques, namely locally error-corrected dressing (LED), and demonstrate its

success at detecting and characterizing two-dimensional topological phases of matter. Subsequently,

in Chapter 6 we present our novel approaches for performing hardware-efficient, fault-tolerant

quantum computation on Rydberg-atom platforms, and we illustrate the striking advantages of

these approaches compared to existing, general-purpose methods. Finally, we conclude in Chapter 7

with a discussion of the exciting future directions for each of these projects.
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The more that you read, the more things you will know.

The more that you learn, the more places you’ll go.

Dr. Seuss

2
Quantum Phases of Matter

With many scientific and practical implications, the study of different phases of matter

constitutes an important focus of theoretical and experimental physics. For example, classical phase

transitions, such as transitions between the solid and liquid phases of matter, account for many

important observations in our everyday lives. Meanwhile, in the quantum-mechanical realm, the

theory of quantum phases transitions elucidates scientifically and technologically significant phe-
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nomena such as the superconductor-insulator and metal-insulator transitions6,135. Such discoveries

have led to a widespread interest in the subject of quantum phases and phase transitions.

In this chapter, we provide a brief introduction to this subject. We subsequently discuss a par-

ticular class of quantum phases—the so-called topological and symmetry-protected topological

phases—which have recently attracted attention due to their technological implications, such as

their potential to aid in the realization of scalable, fault-tolerant quantum computation. This then

leads us to pose an important problem which we study throughout this thesis: how to efficiently

and accurately identify and characterize different quantum phases of matter.

2.1 Introduction toQuantum Phases and Phase Transitions

Quantum phases and phase transitions describe the behavior of many-body systems at zero tempera-

ture, governed by quantum-mechanical effects. In the simplest example, we can consider a family of

HamiltoniansH(g)which are characterized by a single, dimensionless coupling constant g. We sup-

pose that eachH(g) acts on the same degrees of freedom, which reside on the sites of a lattice. When

this underlying lattice is finite, the ground state energy is generically a smooth, analytic function of

g; however, in the case of an infinite lattice, non-analyticities can emerge at specific critical points

where the energy gap between a ground and excited state vanishes. Such a non-analyticity then cor-

responds to a quantum phase transition: typically, it results in a significant qualitative change in the

properties of the ground state ofH(g)135. Additionally, as we will see throughout this chapter, the

ability to adiabatically deform one Hamiltonian (e.g.,H(g1) for some g1) to another (e.g.,H(g2))

without closing an energy gap plays an important role in determining whether their ground states

belong to the same quantum phase of matter.
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1DQuantum IsingModel

As a concrete example, we consider the 1D quantum Ising model, where qubits are placed on along

a one-dimensional chain. We begin by defining the Pauli matrices acting on any given qubit:

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 . (2.1)

The quantum Ising HamiltonianH(g) is then expressed in terms of Pauli matrices acting on each

qubit:

HI(g) = −J
∑
i
ZiZi+1 − Jg

∑
i
Xi. (2.2)

When g = 0,HI reduces to the familiar classical Ising Hamiltonian; however, for nonzero g, the

second term in (2.2) induces quantum-mechanical fluctuations which can flip qubit values.

To study the ground state characteristics given a generic value of g, we can consider two limiting

cases. First, when g � 1, the second term dominates, so the ground state |ψ0〉 satisfies Xi|ψ0〉 =

|ψ0〉 for all i and is given by |ψ0〉 = ⊗i|+〉i, where⊗ denotes the tensor product, and

|±〉 = 1√
2
(|0〉 ± |1〉) . (2.3)

On the other hand, when g � 1, the first term dominates; indeed, in the classical case of g = 0,

each spin must be in an eigenstate of the Pauli-Z operator (|0〉 or |1〉). In this case, because the op-

erators ZiZi+1 are mutually commuting for all i, they can be simultaneously diagonalized, so that

the ground state lies in the+1 eigenspace of each such operator. In particular, there are two ground

states in this case, namely |0〉 = ⊗i|0〉i and |1〉 = ⊗i|1〉i. More generally, one can show that this

two-fold ground state degeneracy survives for any small g � 1. This is because the HamiltonianHI
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has an exact, globalZ2 symmetry transformation

Zi 7→ −Zi, Xi 7→ Xi, (2.4)

asHI remains invariant upon applying the transformation. The symmetry is generated by the uni-

tary operator
∏

i Xi, and it interchanges the two ground states |0〉 and |1〉.

As such, when any thermodynamic system ofH(g � 1) is cooled to zero temperature, it must

“choose” one of the ground states; this is the so-called “spontaneous symmetry breaking” of theZ2

symmetry. In contrast,H(g) has only a single ground state at large g, which is invariant under the

Z2 symmetry transformation. These considerations suggest the presence of two distinct quantum

phases of matter in this model, which are separated by a critical point gc: for g > gc, the ground state

belongs to a paramagnetic phase (sometimes called a disordered phase), while for g < gc, the ground

state belongs to amagnetically ordered phase (also referred to as the spontaneous symmetry-broken

phase). Indeed, one finds that paramagnetic states cannot be transformed into magnetically ordered

states (and vice versa) via a finite-time adiabatic Hamiltonian evolution; furthermore, the two cases

can be distinguished by measuring the expectation value 〈Zi〉 on any site i, a local order parameter

which is nonzero in the magnetically ordered phase and zero throughout the paramagnetic phase.

As seen above, the two phases in the quantum Ising model can be characterized by the action of

theZ2 symmetry on a ground state ofH(g). More generally, symmetry transformations and the

associated symmetry-breaking can be used to characterize a plethora of quantum phases of mat-

ter. This led to a general theory of quantum phases and phase transitions, developed by Landau96,

where different phases were differentiated based on their symmetries. Later, Ginzburg and Lan-

dau62 introduced generic order parameters which transform nontrivially under the symmetry trans-

formations to detect the corresponding phases. In this formalism, every quantum phase of matter

can be characterized by a pair of groupsGψ ⊆ GH, whereGH is the symmetry group of the system’s
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Hamiltonian, andGψ is the unbroken symmetry group of the equilibrium state.

This elegant theory of quantum phases and phase transitions has been largely successful: it allows

one to classify all 230 different kinds of three-dimensional crystals and compute important critical

properties associated with phase transitions, and can be used to understand superconducting and

superfluid states. Nevertheless, theoretical and experimental developments in the last few decades

have shown that this theory is incomplete: for example, different fractional quantumHall states,

which belong to different phases of matter, all have the same symmetry152,97,169. Such observations

have led to paradigms for understanding these new, more exotic phases of matter, several of which

are discussed in the rest of this chapter.

2.2 Two-Dimensional Topological Phases ofMatter

To overcome the limitations of Landau theory, we return to the understanding of quantum phase

transitions in terms of the energy gap between ground and excited states of the Hamiltonians under

consideration. Using this understanding, one can define a (gapped) quantum phase of matter as an

equivalence class of gapped Hamiltonians—Hamiltonians that have a finite energy gap between the

ground and excited states, independent of the system size—which can be analytically deformed into

one another without closing the energy gap169. Equivalently, one may also view this equivalence

relation in terms of the ground states of the relevant Hamiltonians, where two ground states |ψ1〉

and |ψ2〉 belong to the same phase if and only if they are related by a local unitary transformation—

that is, if one can transform |ψ1〉 into |ψ2〉 by applying a finite-depth sequence of local quantum

gates (see Chapter 1).

In general, local quantum operations can change the short-range entanglement structure of

quantum states, namely the entanglement properties between qubits separated by a finite distance

that is independent of the system size. Meanwhile, they cannot change the long-range entanglement
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Figure 2.1: Kitaev’s toric code model. (a) Qubits are placed on the edges of a square lattice, and the Hamiltonian
consists of vertex and plaquette terms as highlighted. (b) When the lattice is placed on a torus, the top and bottom
boundaries in this illustration are identified, and then the left and right boundaries are identified. The ground state space
in this case is four‐fold degenerate and can be used to encode two qubits. The logical operators for these qubits are
supported on axial loops (e.g., LX,2 and LZ,1) and equatorial loops (e.g., LX,1 and LZ,2) of the torus as illustrated.

structure between regions of qubits separated by an extensive distance. As a result, the above defi-

nition distinguishes different quantum phases based on their long-range entanglement structure.

In this setting, if a state can be connected via a finite-depth local unitary transformation to a trivial

product state, such as a state with all qubits in the |0〉 state, it belongs to a trivial phase with no long-

range entanglement. On the other hand, any other state must exhibit long-range entanglement and

is considered to be topologically ordered; furthermore, the different equivalence classes characterize

different kinds of topological order. This definition of quantum phases can therefore distinguish

two systems with the same symmetries if they exhibit different long-range entanglement structures,

thereby circumventing some of the limitations of Landau’s theory.

Kitaev’s Toric CodeModel

As a concrete example of a topological phase of matter, we consider the paradigmatic toric code

model introduced by Kitaev92. In this model, qubits are localized on the edges of a square lattice,
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and the Hamiltonian is given by

HTC = −J
∑
v

Av − J
∑
p

Bp (2.5)

where

Av =
∏

i∈adj(v)

Xi, Bp =
∏

i∈adj(p)

Zi (2.6)

are stabilizer operators of the toric code, and adj(v) and adj(p) denote the set of edges touching a

given vertex v or forming a plaquette p of the lattice, respectively (Figure 2.1(a)). Notice how all

terms Av and Bp are mutually commuting, so that they can be simultaneously diagonalized. This

implies that any ground state ofHTC must satisfy Av = 1 at every vertex, and Bp = 1 at every

plaquette.

To see howHTC gives rise to topological ordering, we consider different scenarios in which the

square lattice is placed on surfaces with differing topology. For a spherical surface, the ground state

ofHTC is unique, as there is only one state satisfying Av = 1 at every vertex and Bp = 1 at every

plaquette. On the other hand, when the square lattice is placed on a torus, the ground state space is

four-fold degenerate: let LX,1 and LX,2 be particular choices of non-contractible axial and equatorial

loops of the torus, respectively, supported on the edges of our lattice. Furthermore, let LZ,1 and LZ,2

be the corresponding axial and equatorial loops supported on the dual lattice, which is defined as

the lattice where the vertices and plaquettes are switched (see Figure 2.1(b)). Then one can define

logical operators XL1 = ⊗i∈LX,1 Xi, XL2 = ⊗i∈LX,2 Xi, ZL1 = ⊗i∈LZ,1 Zi, and ZL2 = ⊗i∈LZ,2 Zi.

Notice how, in this case, each of the four operators XL1 , XL2 , ZL1 , and ZL2 commutes with all the

stabilizer operators (2.6), but cannot be written as any product of stabilizers. However, XL1 an-

ticommutes with ZL2 , and XL2 anticommutes with ZL1 . This implies thatHTC must have four

degenerate ground states on a torus, which span the simultaneous+1 eigenspace of all stabilizers.
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Moreover, this ground state space forms a quantum error-correcting code (see Chapter 3): all local

operators either act trivially on ground states or couple them to excited states92. This means that the

topological ordering and associated ground state degeneracy is robust to small, local perturbations

of the HamiltonianHTC. In particular, to convert between any two distinct ground states ofHTC,

one must apply an operator with support comparable to the lattice height or width.

Due to the changes in ground state degeneracy upon varying the topology of the underlying

manifold,HTC (and locally perturbed variants) must belong to a different phase of matter than a

trivially-ordered Hamiltonian such asHX = ⊗iXi, which has a single ground state (a trivial prod-

uct state) independent of topology. However, the toric code Hamiltonian and ground states have

the same symmetries asHX = ⊗iXi and its ground states—namely, the symmetries generated by

UX = ⊗iXi andUZ = ⊗iZi, where the tensor products are taken over all qubits. As such, the

Ginzburg-Landau theory cannot distinguish these two phases; indeed, because the ground states

ofHTC appear disordered or liquid-like at short length-scales, they cannot be identified or charac-

terized by any local order parameters. Instead, to capture the distinctive long-range correlations in

such states, one must measure operators or quantities supported on an extensive number of qubits.

These include, for example, the Wilson loop observables supported on large closed loops75,171,169,69

and nonlocal topological invariants such as topological entanglement entropy91,102.

2.3 Symmetry-Protected Topological Phases

The above framework, which defines a quantum phase of matter as an equivalence class of gapped

Hamiltonians which can be adiabatically deformed into one another, allows us to study a wide range

of quantum phases beyond the reach of Landau theory. However, it is still incomplete: indeed,

with this definition, two Hamiltonians can belong to the same phase even if they have different

symmetries—that is, even if they belong to different phases according to Landau’s theory. To ac-
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count for the effects of symmetries, it is thus necessary to adjust our equivalence relation.

As a first step, we require all HamiltoniansH belonging to the same phase to possess the same

symmetries. Then, we can further refine our equivalence relation: in particular, we consider two

Hamiltonians to belong to the same phase if and only if they can be adiabatically deformed into one

another using transformations which commute with the global symmetry40. With this definition,

each equivalent class becomes smaller, and there are more classes or quantum phases.

Several examples of such classes can be considered. First, with the new definition, short-range-

entangled (trivial) states can belong to different equivalence classes if they have different broken

symmetries—these correspond precisely to Landau’s symmetry-breaking states40. Second, we find

certain states which can be connected to the trivial states with generic local transformations, but not

with symmetry-preserving transformations; we say these states possess “symmetry-protected topo-

logical” (SPT) order. Third, topologically-ordered states which do not break any symmetry may in

general belong to distinct phases under the new equivalence relation. In what follows, we consider

the second case, namely the SPT phases. In particular, we illustrate the intriguing physical prop-

erties which distinguish SPT phases from the trivial phase by examining a simple one-dimensional

example with Z2 × Z2 symmetry.

1D ZXZModel

Let us consider a family of Hamiltonians acting on a one-dimensional spin-1/2 chain with open

boundary conditions:

H = HZXZ + hHX (2.7)

where

HZXZ = −J
N−2∑
i=1

ZiXi+1Zi+2, HX = −J
N∑
i=1

Xi. (2.8)
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For simplicity, we assume that the numberN of qubits is even. This family of Hamiltonians pos-

sesses a globalZ2 × Z2 symmetry, which is generated by the operators Peven(odd) =
∏

i even(odd) Xi.

When h � 1, the ground state is a quantum paramagnet, with all spins aligned in the X-direction.

In this case, theZ2 × Z2 symmetry operators act trivially on the ground state.

Meanwhile, when h = 0, all terms in the Hamiltonian are mutually commuting, so that any

ground state has+1 expectation value for all stabilizer operators ZiXi+1Zi+2 = 1. Upon con-

catenating a list of these stabilizers, one finds that the string operators Z1X2X4...XN−2ZN−1 and

Z2X3X5...XN−1ZN are both equal to+1. In this case, the global symmetries act locally on the left

and right boundaries:

Peven = PLevenPReven (2.9)

Podd = PLoddP
R
odd (2.10)

where PLeven = Z1, PReven = ZN−1XN, PLodd = X1Z2, and PRodd = ZN are fractionalized symmetry

operators which commute with all stabilizers in the Hamiltonian. Moreover, because PLeven (respec-

tively, PReven) anticommutes with PLodd (P
R
odd), the ground state space ofHZXZ is four-fold degenerate

due to the existence of edge modes161.

This distinction between the ground state degeneracies suggest that the h = 0 case and h �

1 case belong to two different quantum phases. Indeed, this Hamiltonian is exactly solvable via

Jordan-Wigner transformation135, which confirms the presence of a quantum phase transition

at the point h = 1 from a SPT phase to the trivial paramagnetic phase. Mathematically, the two

phases are distinguished by the projective representation of the symmetry group on the edges of the

1D chain, which is nontrivial in the SPT phase, and trivial in the paramagnetic phase41. Moreover,

the nonlocal Jordan-Wigner transformation shows that, like the topological phases discussed in the

preceding section, the SPT phase can only be characterized by nonlocal order parameters such as the
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aforementioned string operators.

2.4 Challenge: Quantum Phase Recognition

In this chapter, we have discussed two particularly intriguing classes of exotic quantummatter,

namely the topologically-ordered and SPT-ordered phases. In particular, we have found that these

phases are both outside the reach of Landau’s classification of quantum phases, and cannot be iden-

tified using local order parameters. Instead, they are characterized through the measurement of

nonlocal quantities such as topological invariants or string and loop operators. However, the ex-

tensive support of such operators also causes them to decay rapidly when local fluctuations, such

as coherent perturbations or incoherent noise processes, are present in the system. This makes the

identification of such phases particularly difficult in experiments, where such fluctuations are com-

monly present.

These considerations motivate us to pose the problem of quantum phase recognition (QPR): can

we efficiently determine whether a given input quantum state ρin belongs to a particular quantum

phase of matter? In Chapters 4 and 5 of this thesis, we develop methods which utilize near-term

quantum computers to solve QPR, which are substantially more efficient and accurate than existing

approaches.
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If you don’t make mistakes, you’re not working on hard

enough problems. And that’s a mistake.

FrankWilczek

3
Quantum Error Correction

As discussed in Chapter 1, quantum computation has the potential to improve and accelerate

a broad range of applications ranging from factoring and cryptography, to chemistry and drug dis-

covery. However, these computational advantages are only seen when a large number of operations

are needed—otherwise, the problems can likely be solved using modern-day supercomputers. In the

quantum setting, this implies that many qubits and quantum gates are needed; for example, mil-
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lions of logical gates are required to use Shor’s algorithm to factor 2000-bit numbers (an estimated

size which would have cryptographic implications, and cannot be performed classically)57,58,159,177.

Meanwhile, current state-of-the-art experiments exhibit two-qubit gate fidelities ranging from 10−2

to 10−4, due to decoherence effects and hardware imperfections3,54,105,181. As such, it is necessary

to adopt quantum error correction techniques, which use redundancy to protect quantum informa-

tion in the presence of errors or noise.

In a typical experiment, the quantum errors can be divided into two classes. The first class of

errors consist ofmemory errors, where a qubit may undergo a process such as spontaneous emis-

sion and decay from one state to another even if it is not involved in any quantum gate; we will

begin by considering only this class of errors. On the other hand, operation errors such as over- or

under-rotation of laser pulses constitute a second class of quantum errors. This larger class of errors

requires the implementation of fault-tolerant quantum computation, and will be discussed later in

Section 3.3. Finally, we conclude by discussing resource estimates for implementing fault-tolerant

quantum algorithms, and pose a problem of how to efficiently perform fault-tolerant quantum

computation.

3.1 Classical Error Correction

Before addressing quantummemory errors, let us first review the basic concepts of classical error

correction. In this case, we would like to store a single classical bit ∈ {0, 1} for some time τ, during

which a bit flip error that interchanges 0 ↔ 1 may occur with probability pe. The idea of classical er-

ror correction is then to use redundant coding to detect and correct any possible error. For example,

our single bit (which we call the logical bit) can be encoded into three physical bits as follows:

0L ≡ 000, 1L ≡ 111. (3.1)
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Let us now consider, for example, the logical state 0L after time τ. With probability (1 − pe)3, the

three physical bits will still be in the state 000. On the other hand, one of the bits may be flipped

to 1, and the probability of being in of of these configurations is 3pe(1 − pe)2. Similarly, the prob-

ability of having two of the three bits flipped is 3p2e (1 − pe), while the probability for all three bits

undergoing the bit-flip error is p3e .

If the error probability pe is small, classical error correction may be done after the storage time τ

by measuring the three bits; if the same result is obtained for all three measurements, we know what

the logical state is from Equation (3.1), while if we obtain different results, we use majority voting

to decode the logical bit (e.g. 001 7→ 0L, 101 7→ 1L). In this way, error correction can allow us to

obtain the correct result with probability

pcorrect = (1− pe)3 + 3pe(1− pe)2 = 1− 3p2e + 2p3e . (3.2)

Equivalently, the error rate for the logical bit (i.e., the logical error rate) is 1 − pcorrect = 3p2e − 2p3e .

Thus, the error correction allows us to reduce the error rate if 3p2e − 2p3e < pe, which occurs if

pe < 1/2.

Typically, the error rate scales linearly with the storage time τ: pe = cτ for sufficiently small τ. To

store a logical bit for a longer time twithout incurring too large of an error rate, one can divide the

total storage time t intoN shorter time segments of duration τ = t/N, and perform the above error

correction procedure after each time segment. For largeN, the probability of obtaining the correct

result after time twill be

pcorrect(t) ∼=
(
1− 3

( ct
N

)2
)N

. (3.3)

Notice that pcorrect(t) can be made arbitrarily close to 1 by choosing a large enough value ofN.
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3.2 Ideas Behind Quantum Error Correction

For quantum error correction, we would like to use the same idea of redundant coding as in classical

error correction. However, there are a few potential challenges:

1. Errors can be continuous (e.g. |0〉 7→ |0〉 + ε|1〉, |1〉 7→ |1〉 − ε|0〉 instead of just discrete

bit-flips |0〉 ↔ |1〉).

2. Due to the quantum no-cloning theorem122, it is not possible to replicate an arbitrary quan-

tum state multiple times.

3. There are multiple types of errors (e.g. bit-flip |0〉 ↔ |1〉 or phase-flip |0〉+ |1〉 ↔ |0〉− |1〉).

4. Error detection needs to be performed without measuring all qubits and destroying the

quantum superpositions.

To address the first challenge, we note that an arbitrary single-qubit error can be expressed as a

linear combination of Pauli errors

U = 1+ αX+ βY+ γZ, (3.4)

so it suffices to consider the bit-flip and phase-flip errors X and Z (note Y ∝ XZ errors can be cor-

rected if both X and Z errors are corrected). To address the final challenge, we will first consider the

storage of a state

|ψ〉 = c0|0〉+ c1|1〉 (3.5)

with probability pe of bit-flip errors X|ψ〉; we will later consider extending our framework to also

address phase-flip errors.
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To store |ψ〉while protecting against bit-flip errors, we use three physical qubits in analogy to the

classical repetition code discussed above, and introduce the logical encoding

|0L〉 = |000〉, |1L〉 = |111〉. (3.6)

The subspace of Hilbert space spanned by the logical states {|0L〉, |1L〉} is known as the code sub-

space and contains our logically encoded state |ψL〉 = c0|0L〉 + c1|1L〉. Notice that in general,

|ψL〉 6= |ψ〉⊗3, so this error-correction scheme does not violate the no-cloning theorem as discussed

in the second challenge above.

After a storage time τ, the three-qubit state will, with probability (1 − pe)3, remain as |ψL〉 (i.e.

if no errors occur). On the other hand, the probability of a bit-flip error occurring on exactly one of

the qubits i ∈ {1, 2, 3} and resulting in the state Xi|ψL〉 is 3pe(1− pe)2. Likewise, the probability of

two bit-flip errors occurring and producing the state XiXj|ψL〉 is 3p
2
e (1 − pe), while the probability

of all three qubits undergoing bit-flip errors is p3e .

To detect and correct for these errors without collapsing the quantum state, we can perform

collective measurements onto the code subspace using a projector

P0 = |0L〉〈0L|+ |1L〉〈1L|, (3.7)

If we measure P0 = 1, to leading order in the error probability, the state is the same as before; other-

wise, a bit-flip error must have occurred. In the latter case, we measure the operators

Pi = XiP0Xi (3.8)

for i = 1, 2, 3. Because

PiXj|ψL〉 = δijXi|ψL〉, (3.9)
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the measurement outcomes for these operators can be used to determine which bit was flipped, and

the appropriate error correction operator Xi can then be applied. Similar to the classical case, this

approach works perfectly if only one qubit was flipped, but does not produce the correct result if

two or three qubits underwent errors. Thus, after the error-correction procedure, the correct state

|ψL〉 is obtained with probability

pcorrect = 1− 3p2e + 2p3e , (3.10)

and the error rate is reduced compared to the physical qubit error rate if pe < 1/2. As discussed in

the context of classical error correction, long storage times can be divided into short intervals and

the quantum error-correction procedure can be applied between consecutive intervals to reduce the

final error rate.

Notice that this approach naturally addresses the challenge of continuous errors: for example, if a

coherent error

|ψL〉 7→ |ψL〉+ ηXi|ψL〉 (3.11)

occurred, measurement of P0 and all Pi will force the system into |ψL〉 if P0 = 1 or Xi|ψL〉 if Pi = 1,

and the same correction steps can be applied as before. The physical understanding here is that the

measurement of P0 and Pi projects the state into one subspace of the three-qubit space—either the

logical (code) subspaceHL if P0 = 1, or onto one of the orthogonal subspaces if Pi = 1.

While the P0 and Pi are theoretically the most straightforward to use for error detection in this

setup, one can instead measure the simpler operators Z1Z2 and Z2Z3. This is because the opera-

tor ZiZj compares the ith and jth qubits and produces+1 if the qubits are the same in the Z basis,

and−1 if they are different. Thus, each of the four possible outcomes for these measurements will

project the quantum state into one of the four subspaces as discussed above, and a corresponding

error-correction operation can be applied if necessary.
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3.2.1 Phase Errors

The logical qubit encoding of Equation (3.6) can be used to correct bit-flip (Pauli-X) errors, but it

does not protect against phase-flip errors

|ψ〉 = Z|ψ〉 = c0|0〉+ c1|1〉 7→ c0|0〉 − c1|1〉. (3.12)

Because Z acts on the states |±〉 = (|0〉 ± |1〉)/
√
2 as Z|±〉 = |∓〉, a three-qubit code which

protects against such Pauli-Z errors can be designed by using the above code in a rotated basis:

|0L〉 = |+++〉, |1L〉 = | − −−〉. (3.13)

For this code, the error detection and correction steps work as before, except by measuring the oper-

ators X1X2 and X2X3 in place of Z1Z2 and Z2Z3.

While the code (3.13) now corrects for Z errors, it no longer corrects for the bit-flip errors. To

address both kinds of errors together, we must introduce more qubits as discussed below.

3.2.2 Shor’s Nine-Qubit Code

Peter Shor’s trick to addressing both X and Z errors was to combine the protection from the three-

qubit codes (3.6) and (3.13) into a nine-qubit code146

|+L〉 =
1

23/2
(|000〉+ |111〉)⊗3 , |−L〉 =

1
23/2

(|000〉 − |111〉)⊗3 . (3.14)

To correct bit-flip errors, one can measure the operators Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, and Z8Z9.

Then, for example, the measurement outcome Z1Z2 = −1, Z2Z3 = +1 would signify that the first

qubit underwent a bit-flip error. On the other hand, phase-flip errors can also be detected by mea-
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suring the operators X1X2X3X4X5X6 and X4X5X6X7X8X9. For instance, the outcome X1X2X3X4X5X6 =

−1, X4X5X6X7X8X9 = +1 would indicate that one of the first three qubits experienced a phase-flip

error. Notice that this detection procedure cannot distinguish which of these three qubits had the

error. However, this is not a problem: indeed, assuming only a single phase-flip error occurred, ap-

plying Zi for any i = 1, 2, or 3 will result in the same (correct) logical state. Thus, Shor’s nine-qubit

code works to correct X errors by comparing the qubit values (|0〉 or |1〉) within blocks of three

qubits using the ZiZj measurements, and comparing the relative phases of adjacent blocks by mea-

suring the products of Pauli-X operators. In this way, Shor’s code can be used to correct arbitrary

single-qubit errors.

To determine when Shor’s code results in a smaller logical error rate compared to the original

error rate, we assume that the physical qubits each undergo bit-flip and phase-flip errors with prob-

ability p. Then, the error probability for the resulting logical qubit is given by the sum of the proba-

bility for two bit-flip errors occurring within one block of three qubits (9p2), and the probability for

two of the three blocks to contain a phase-flip error (3p2). Thus, Shor’s code improves the error rate

for storing a quantum state if 12p2 < p.

In general, the threshold error rate below which error correction can improve the logical qubit

fidelity depends on both the choice of quantum error-correction code and the underlying error

model (for example, if bit-flip and phase-flip errors do not occur with equal probability). In Chap-

ter 4, we utilize our novel, machine-learning-inspired quantum algorithm to optimize this thresh-

old error rate by tailoring the choice of error-correction code based on the specific error model at

hand. In doing so, we find that our resultant codes significantly outperform traditional codes such

as the nine-qubit code, so that our strategy can be used to facilitate experimental realizations of high-

fidelity logical qubits.
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3.2.3 Stabilizer Codes

Shor’s nine-qubit quantum error-correction code is one example of a stabilizer code. In particular, if

we define stabilizer operators S1, S2, ... S8 as

S1 = Z1Z2 S2 = Z2Z3 S3 = Z4Z5 S4 = Z5Z6 (3.15)

S5 = Z7Z8 S6 = Z8Z9 (3.16)

S7 = X1X2X3X4X5X6 S8 = X4X5X6X7X8X9 (3.17)

then it follows from the above discussion that the logical subspace of the nine-qubit code is the

simultaneous+1 eigenspace of all stabilizer operators. Notice that the stabilizer operators are all

tensor products of Pauli operators which commute with one another; as such, they generate an

abelian subgroup of the nine-qubit Pauli groupP9, where the n-qubit Pauli groupPn is defined as

the group of operators which are n-qubit tensor products of 1, X, Y, or Zwith an overall phase of

±1 or±i. Any single-qubit error Xi or Zi then anticommutes with a subset of the stabilizer opera-

tors, so that we can identify such an error when stabilizer operators within this subset are measured

to be−1. Moreover, the nontrivial logical operators acting on the code subspace correspond to uni-

tary operators which commute with all stabilizers, but cannot be constructed from a product of

stabilizer operators. In general, such logical gates may be a complicated nine-qubit unitary opera-

tor; however, for some specific gates, the logical operation is transversal, meaning it can be decom-

posed into a tensor product of the corresponding physical gates. For example, the logical operator

XL which flips |0L〉 ↔ |1L〉 in the nine-qubit code is given by

XL = X1X2...X9, (3.18)
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while the logical Z operator is given by

ZL = Z1Z2...Z9. (3.19)

More generally, we can consider stabilizer operators Si which belong to an abelian subgroup of

the n-qubit Pauli group, S ⊊ Pn. Because
[
Si, Sj

]
= 0 for all Si, Sj ∈ S, the operators Si ∈ S

are simultaneously diagonalizable. We then say that a state |ψ〉 is stabilized by S if for all stabilizer

operators Si ∈ S, Si|ψ〉 = |ψ〉64. In general, if the subgroup S has l generators for n physical

qubits, each subspace labeled by a set of eigenvalues s1, ..., s2l of S1, ..., S2l has dimensionality 2n−l.

The logical subspace (i.e., the space with all si = +1) can therefore be used to encode n − l logical

qubits. Then, errors can likewise be detected through−1 measurements of stabilizer operators Si,

and logical operators are also given by unitary operators which commute with all Si ∈ S.

This stabilizer-based framework can be used to identify and characterize many quantum error-

correcting codes. In this thesis, we consider three important stabilizer codes. The first is known as

the seven-qubit Steane code150, which has six stabilizer operators

g1 = IIIXXXX g2 = IXXIIXX g3 = XIXIXIX

g4 = IIIZZZZ g5 = IZZIIZZ g6 = ZIZIZIZ, (3.20)

and whose code subspace is spanned by the logical states

|0L〉 =
1

2
√
2
(|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+|0001111〉+ |1011010〉+ |0111100〉+ |1101001〉)
(3.21)
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Figure 3.1: Circuit to measure the operator X1...X6 for the nine-qubit Shor code. The ancilla qubit (pink, A)
is prepared in the superposition state |ψA〉 = |+〉 = (|0〉 + |1〉)/

√
2, and controlled‐NOT gates (with A as the

control qubit) are performed between A and each data qubit (blue,Di) for i = 1, 2, ...6. The measurement of A in the
X basis then gives the desired eigenvalue.

|1〉L =
1

2
√
2
(|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉) .
(3.22)

Second, we consider the X-basis repetition code introduced in Section 3.2.1, where the stabilizer

operators are X1X2 and X2X3. Finally, we consider the surface code92,22, where the physical qubits

are placed on a two-dimensional square lattice. In the surface code, the logical subspace is precisely

the ground state space of the toric code HamiltonianHTC introduced in Section 2.2, and the sta-

bilizer operators are given by the vertex and plaquette terms of Equation (2.6); this logical subspace

is non-trivial when the lattice is placed on an underlying surface with non-trivial topology, such as

a torus or an annulus. In Chapter 5, we discover that stabilizer-based ideas from the surface code

can be used to facilitate certain solutions of the quantum phase recognition problem introduced in

Section 2.4.

When using one of these stabilizer codes to implement quantum error correction, one of the

most important tasks is to measure stabilizer operators, which are products of Pauli operators. For

example, to detect and correct for Pauli-Z errors in the nine-qubit code, we must measure the stabi-
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lizer operator X1...X6. Such an operator can be measured by preparing an ancilla qubit A in the state

|ψA〉 = |+〉 = (|0〉 + |1〉)/
√
2 and performing CNOT gates between the ancilla and each data

qubit i, as shown in the circuit of Figure 3.1. Upon measuring the ancilla qubit in the X basis and

projecting it into one of the states |0〉 ± |1〉, we obtain the desired eigenvalue X1...X6 = ±1. Similar

circuits can be used to measure the other operators for quantum error correction such as X4...X9

and Z1Z2, Z2Z3, etc.; in total, we find that 24 CNOT gates are needed to measure all operators for

one round of quantum error correction.

3.3 Challenge: Fault-Tolerant QuantumComputation

As mentioned in the beginning of this chapter, in addition to memory errors which can occur on

any qubit, we must also consider operational errors which occur on qubits involved in quantum

gates. These operational errors arise mainly from two sources: First, when multi-qubit entangling

gates are involved, an error on any one of the qubits may be propagated to all qubits involved in the

gate. For example, if a Pauli-X error is present on the control qubit of a CNOT gate, it will spread to

Pauli-X errors on both the control and target qubits after the CNOT:

UCNOTX1|ψ〉 = (UCNOTX1U†
CNOT)UCNOT|ψ〉 = X1X2UCNOT|ψ〉. (3.23)

A second type of operational error arises when the gate itself is imperfect, for instance if an en-

tangling gateU is implemented instead as some quantum channel E . For a two-qubit gate, such an

error can also be expressed as a linear combination of two-qubit Pauli operators.

Unfortunately, errors such as (3.23) can be particularly destructive—for example, if a circuit

creates two errors within a single logical qubit in the nine-qubit code, then the original state can no

longer be recovered. However, if only single-qubit errors are produced, these operational errors can

be addressed in the same way as memory errors. These observations lead to the concept of fault-
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tolerant quantum computation, where the idea is to create conditions such that at most one error

per logical qubit is introduced at each computational step, and any such error gets corrected at the

subsequent step. That is, given the probability p of failure of each individual component (e.g. a

CNOT gate), the evolution must be constructed carefully such that the probability to introduce

two errors within the same logical qubit is Cp2 for some constant factor C.

Due to the possibility of propagation of errors following Equation (3.23) during error-detection

circuits such as Figure 3.1, enforcing this property can often require a prohibitively large overhead

in terms of the number of additional qubits required, or the number of gates needed within each

logical component. In Chapter 6 of this thesis, we propose methods to address this important

challenge for building scalable, error-corrected quantum computers. In particular, by introduc-

ing hardware-efficient approaches which utilize the features of the underlying hardware platform to

address its possible errors, we substantially reduce the resource cost of fault-tolerant quantum com-

putation through protocols which can be implemented in current or near-term neutral-atom-based

quantum computers.
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Learning is not attained by chance, it must be sought for

with ardor and attended to with diligence.

Abigail Adams

4
QuantumConvolutional Neural Networks

Neural network-based machine learning has recently proven successful for many com-

plex applications ranging from image recognition to precision medicine. As such, given the intricate

complexity of quantummany-body physics, it is natural to consider utilizing such methods for solv-

ing problems such as the quantum phase recognition problem posed in Chapter 2. However, the

direct application of machine learning methods to quantum physics is challenging due to the ex-
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ponential complexity of many-body systems. Motivated by recent advances in realizing quantum

information processors, we introduce and analyze a quantum circuit-based algorithm inspired by

convolutional neural networks, a highly effective model in machine learning. Our quantum con-

volutional neural network (QCNN) uses onlyO(log(N)) variational parameters for input sizes

ofN qubits, allowing for its efficient training and implementation on realistic, near-term quan-

tum devices. To explicitly illustrate its power for solving quantum phase recognition, we show that

QCNN can accurately recognize quantum states associated with a 1D symmetry-protected topo-

logical (SPT) phase, with performance surpassing existing approaches. We further demonstrate that

QCNN can be used to devise a quantum error correction scheme optimized for a given, unknown

error model that significantly outperforms known quantum codes of comparable complexity. Fi-

nally, we discuss potential experimental realizations of QCNN in near-term quantum devices.

4.1 Introduction andMotivations

The complex nature of quantummany-body systems motivates using machine learning techniques

to analyze them. Indeed, large-scale neural networks have successfully solved classically difficult

problems such as image recognition or improving classical error correction99, and their architec-

tures have been related to various physical concepts106,115. As such, a number of recent works have

used neural networks for studying properties of quantummany-body systems30,157,32,167,105,182,112.

However, the direct application of these classical algorithms is challenging for intrinsically quan-

tum problems, which take quantum states or processes as inputs. This is because the extremely large

many-body Hilbert space hinders efficiently translating such problems into a classical framework

without performing exponentially difficult quantum state or process tomography70,100.

Recent experimental progress towards realizing quantum information processors95,118,49,5 has led

to proposals for using quantum computers to enhance conventional machine learning tasks15,52,55,81.
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Motivated by such developments, we introduce and analyze a machine learning-inspired quantum

circuit model—the quantum convolutional neural network (QCNN)—and demonstrate its ability

to solve important classes of intrinsically quantummany-body problems. The first class of problems

we consider is quantum phase recognition (introduced in Chapter 2), which asks whether a given

input quantum state ρin belongs to a particular quantum phase of matter. In contrast to many ex-

isting schemes based on tensor network descriptions80,149,90, we assume ρin is prepared in a physical

system without direct access to its classical description. The second class, quantum error correc-

tion (QEC) optimization (introduced in Chapter 3), asks for an optimal QEC code for a given, a

priori unknown error model such as dephasing or potentially correlated depolarization in realistic

experimental settings. We provide both theoretical insight and numerical demonstrations for the

successful application of QCNN to these important problems, and show its feasibility for near-term

experimental implementation.

4.2 QCNNCircuitModel

Convolutional neural networks (CNNs) provide a successful machine learning architecture for

classification tasks such as image recognition98,93,99. A CNN generally consists of a sequence of

different (interleaved) layers of image processing; in each layer, an intermediate 2D array of pixels,

called a feature map, is produced from the previous one (Figure 4.1a). (More generally, CNN layers

connect volumes of multiple feature maps to subsequent volumes; for simplicity, we consider only

a single feature map per volume and leave the generalization to future works.) The convolution

layers compute new pixel values x(ℓ)ij from a linear combination of nearby ones in the preceding map

x(ℓ)i,j =
∑w

a,b=1 wa,bx
(ℓ−1)
i+a,j+b, where the weights wa,b form a w × wmatrix. Pooling layers reduce

feature map size, e.g. by taking the maximum value from a few contiguous pixels, and are often

followed by application of a nonlinear (activation) function. Once the feature map size becomes
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Figure 4.1: The concept of QCNN. (a) Simplified illustration of classical CNNs. A sequence of image processing
layers—convolution (C), pooling (P), and fully connected (FC)—transforms an input image into a series of feature maps
(blue rectangles), and finally into an output probability distribution (purple bars). (b) QCNNs inherit a similar layered
structure. (c) QCNN and MERA share the same circuit structure, but run in reverse directions.
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sufficiently small, the final output is computed from a function that depends on all remaining pixels

(fully connected layer). The weights and fully connected function are optimized by training on large

datasets. In contrast, variables such as the number of convolution and pooling layers and the size

w of the weight matrices (known as hyperparameters) are fixed for a specific CNN99. CNN’s key

properties are thus translationally invariant convolution and pooling layers, each characterized by a

constant number of parameters (independent of system size), and sequential data size reduction (i.e.,

a hierarchical structure).

Motivated by this architecture, we introduce a quantum circuit model (QCNN) extending these

key properties to the quantum domain (Figure 4.1b). The circuit’s input is an unknown quantum

state ρin. A convolution layer applies a single quasi-local unitary (Ui) in a translationally-invariant

manner for finite depth. For pooling, a fraction of qubits are measured, and their outcomes deter-

mine unitary rotations (Vj) applied to nearby qubits. Hence, nonlinearities in QCNN arise from

reducing the number of degrees of freedom. Convolution and pooling layers are performed un-

til the system size is sufficiently small; then, a fully connected layer is applied as a unitary F on the

remaining qubits. Finally, the outcome of the circuit is obtained by measuring a fixed number of

output qubits. As in the classical case, QCNN hyperparameters such as the number of convolution

and pooling layers are fixed, and the unitaries themselves are learned.

A QCNN to classifyN-qubit input states is thus characterized byO(log(N)) parameters. This

corresponds to doubly exponential reduction compared to a generic quantum circuit-based classi-

fier55 and allows for efficient learning and implementation. For example, given classified training

data {(|ψα〉 , yα) : α = 1, ...,M}, where |ψα〉 are input states and yα = 0 or 1 are corresponding

binary classification outputs, one could compute the mean-squared error

MSE =
1

2M

M∑
α=1

(yi − f{Ui,Vj,F}(|ψα〉))
2. (4.1)
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Here, f{Ui,Vj,F}(|ψα〉) denotes the expected QCNN output value for input |ψα〉. Learning then con-

sists of initializing all unitaries and successively optimizing them until convergence, e.g. via gradient

descent.

To gain physical insight into the mechanism underlying QCNNs and motivate their application

to the problems under consideration, we now relate our circuit model to two well-known concepts

in quantum information theory—the multiscale entanglement renormalization ansatz165 (MERA)

and quantum error correction (QEC). TheMERA framework provides an efficient tensor network

representation of many classes of interesting many-body wavefunctions, including those associ-

ated with critical systems165,1,126. AMERA can be understood as a quantum state generated by a

sequence of unitary and isometry layers applied to an input state (e.g. |00〉). While both types of

layers apply quasilocal unitary gates, each isometry layer first introduces a set of new qubits in a pre-

determined state, e.g. |0〉 (Figure 4.1c). This exponentially growing, hierarchical structure allows

for the long-range correlations associated with critical systems. The QCNN circuit has similar struc-

ture, but runs in the reverse direction. Hence, for any given state |ψ〉with a MERA representation,

there is always a QCNN that recognizes |ψ〉with deterministic measurement outcomes; one such

QCNN is simply the inverse of the MERA circuit.

For input states other than |ψ〉, however, such a QCNN does not generally produce determinis-

tic measurement outcomes. These additional degrees of freedom distinguish QCNN fromMERA.

Specifically, we can identify the measurements as syndrome measurements in QEC129, which de-

termine error correction unitariesVj to apply to the remaining qubit(s). Thus, a QCNN circuit

with multiple pooling layers can be viewed as a combination of MERA— an important variational

ansatz for many-body wavefunctions— and nested QEC— amechanism to detect and correct local

quantum errors without collapsing the wavefunction. This makes QCNN a powerful architecture

to classify input quantum states or devise novel QEC codes. In particular, for QPR, the QCNN

can provide a MERA realization of a representative state |ψ0〉 in the target phase. Other input states
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within the same phase can be viewed as |ψ0〉with local errors, which are repeatedly corrected by the

QCNN in multiple layers. In this sense, the QCNN circuit can mimic renormalization-group (RG)

flow, a methodology which successfully classifies many families of quantum phases135.

4.3 Detecting a 1D Symmetry-Protected Topological Phase

We first demonstrate the potential of QCNN by applying it to QPR in a class of one-dimensional

many-body systems. Specifically, we consider a Z2 × Z2 symmetry-protected topological (SPT)

phaseP , a phase containing the S = 1 Haldane chain73. We study ground states {|ψG〉} of a family

of Hamiltonians on a spin-1/2 chain with open boundary conditions (see Section 2.3):

H = −J
N−2∑
i=1

ZiXi+1Zi+2 − h1
N∑
i=1

Xi − h2
N−1∑
i=1

XiXi+1. (4.2)

Xi,Zi are Pauli operators for the spin at site i, and the Z2×Z2 symmetry is generated by Peven(odd) =∏
i∈even(odd) Xi. Figure 4.2a shows the phase diagram as a function of (h1/J, h2/J). When h2 = 0,

the Hamiltonian is exactly solvable via Jordan-Wigner transformation135, confirming thatP is char-

acterized by nonlocal order parameters. When h1 = h2 = 0, all terms are mutually commuting, and

a ground state is the 1D cluster state. Our goal is to identify whether an given, unknown ground

state drawn from the phase diagram belongs toP .

As an example, we first present an exact, analytical QCNN circuit that recognizesP (Figure 4.2b).

The convolution layers involve controlled-phase gates as well as Toffoli gates with controls in the

X-basis, and pooling layers perform phase-flips on remaining qubits when one adjacent measure-

ment yields X = −1. This convolution-pooling unit is repeated d times, where d is the QCNN

depth. The fully connected layer measures Zi−1XiZi+1 on the remaining qubits. Figure 4.2c shows

the QCNN output for a system ofN = 135 spins and d = 1, ..., 4 along h2 = 0.5J, obtained

using matrix product state simulations. As d increases, the measurement outcomes show sharper
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Figure 4.2: Application to quantum phase recognition. (a) The phase diagram of the Hamiltonian in the main
text. The phase boundary points (blue and red diamonds) are extracted from infinite size DMRG numerical simulations,
while the color represents the output from the exact QCNN circuit for input sizeN = 45 spins (see Appendix A.1).
(b) Exact QCNN circuit to recognize aZ2 × Z2 SPT phase. Blue line segments represent controlled‐phase gates, blue
three‐qubit gates are Toffoli gates with the control qubits in the X basis, and orange two‐qubit gates flip the target
qubit’s phase when the X measurement yields−1. The fully connected layer applies controlled‐phase gates followed
by an Xi projection, effectively measuring Zi−1XiZi+1. (c) Exact QCNN output along h1 = 0.5J forN = 135 spins,
d = 1, ..., 4. (d) Sample complexity of QCNN at depths d = 1, ...4 (blue) versus SOPs of lengthN/2,N/3,N/5,
andN/6 (red) to detect the SPT/paramagnet phase transition along h1 = 0.5J forN = 135 spins. The critical
point is identified as h2/J = 0.423 using infinite size DMRG (bold line). Darkening colors show higher QCNN depth
or shorter string lengths. In the shaded area, the correlation length exceeds the system size and finite‐size effects can
considerably affect our results. Inset: The ratio of SOP sample complexity to QCNN sample complexity is plotted as a
function of depth d on a logarithmic scale for h1/J = 0.3918. In the numerically accessible regime, this reduction of
sample complexity scales exponentially as 1.73e0.28d (trendline).
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changes around the critical point, and the output of a d = 2 circuit already reproduces the phase

diagram with high accuracy (Figure 4.2a). This QCNN can also be used for other Hamiltonian

models belonging to the same phase, such as the S = 1 Haldane chain73, as discussed at the end of

this section. More details on the construction of this exact, analytical QCNN circuit can be found

in Appendix A.3.

4.3.1 Sample Complexity

The performance of a QPR solver can be quantified by sample complexity70: what is the expected

number of copies of the input state required to identify its quantum phase? We demonstrate that

the sample complexity of our exact QCNN circuit is significantly better than that of conventional

methods. In principle,P can be detected by measuring a nonzero expectation value of string order

parameters (SOP)71,128 such as

Sab = ZaXa+1Xa+3...Xb−3Xb−1Zb (4.3)

where a < b. In practice, however, the expectation values of SOP vanish near the phase boundary

due to diverging correlation length128; since quantum projection noise is maximal in this vicinity,

many experimental repetitions are required to affirm a nonzero expectation value. In contrast, the

QCNN output is much sharper near the phase transition, so fewer repetitions are required.

Quantitatively, given some |ψin〉 and SOP S, a projective measurement of S can be modeled as a

(generalized) Bernoulli random variable, where the outcome is 1 with probability p = (〈ψin| S |ψin〉+

1)/2 and−1 with probability 1 − p (since S2 = 1); afterM binary measurements, we estimate p.

p > p0 = 0.5 signifies |ψin〉 ∈ P . We define the sample complexityMmin as the minimumM to test
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whether p > p0 with 95% confidence using an arcsine variance-stabilizing transformation26:

Mmin =
1.962

(arcsin
√p−

√
arcsin p0)2

. (4.4)

Similarly, the sample complexity for a QCNN can be determined by replacing 〈ψin| S |ψin〉 by the

QCNN output expectation value in the expression for p.

Figure 4.2d shows the sample complexity for the QCNN at various depths and SOPs of differ-

ent lengths. Clearly, QCNN requires substantially fewer input copies throughout the parameter

regime, especially near criticality. More importantly, although the SOP sample complexity scales in-

dependently of string length, the QCNN sample complexity consistently improves with increasing

depth and is only limited by finite size effects in our simulations. In particular, compared to SOPs,

QCNN reduces sample complexity by a factor which scales exponentially with the QCNN’s depth

in numerically accessible regimes (inset). Such scaling arises from the iterative QEC performed at

each depth and is not expected from any measurements of simple (potentially nonlocal) observables.

We show in Appendix A.2 that our QCNN circuit measures amultiscale string order parameter—a

sum of products of exponentially many different SOPs which remains sharp up to the phase bound-

ary.

4.3.2 MERA andQEC

Additional insights into the QCNN’s performance are revealed by interpreting it in terms of MERA

and QEC. In particular, our QCNN is specifically designed to contain the MERA representation of

the 1D cluster state (|ψ0〉) such that it becomes a stable fixed point. When |ψ0〉 is fed as input, each

convolution-pooling unit produces the same state |ψ0〉with reduced system size in the unmeasured

qubits, while yielding deterministic outcomes (X = 1) in the measured qubits. The fully connected

layer measures the SOP for |ψ0〉. When an input wavefunction is perturbed away from |ψ0〉, our

44



X

QECZX

X

X

Z

| (L)
0 i | (L)

0 i

| (L/3)
0 i⌦|010...0ix1|010...0ix

X

X X X

XZ

Z

Z

Z

Z

Z

Z

X X X X XXXX

XZ

Figure 4.3: MERA and QEC in the QCNN circuit. The convolution‐pooling unit of our circuit identifies and
corrects single‐qubit X errors acting on the cluster state, while reducing the system size by a factor of 3. This process
resembles the combination of MERA and QEC.

QCNN corrects such “errors.” For example, if a single X error occurs, the first pooling layer identi-

fies its location, and controlled unitary operations correct the error propagated through the circuit

(Fig. 4.3). Similarly, if an initial state has multiple, sufficiently separated errors (possibly in coher-

ent superpositions), the error density after several iterations of convolution and pooling layers will

be significantly smaller178. If the input state converges to the fixed point, our QCNN classifies it

into the SPT phase with high fidelity. Clearly, this mechanism resembles the classification of quan-

tum phases based on renormalization-group (RG) flow. This theoretical understanding also enables

the construction of QCNN circuits for more generic QPR problems (see Appendix A.4 and Fig-

ure A.1).

4.3.3 Obtaining QCNN from Training Procedure

Having analytically illustrated the computational power of the QCNN circuit model, we now

demonstrate how a QCNN forP can also be obtained using the learning procedure. Details of

the QCNN’s hyperparameters can be found in Appendix A.5 and Figure A.2. Initially, all unitaries

45



Figure 4.4: Output of a trained QCNN.We numerically optimize our QCNN for a system ofN = 15 spins and
depth d = 1 starting from random initial values. The training data points are 40 equally spaced points h1 ∈ [0, 2]
along the line h2 = 0 where the Hamiltonian is solvable by Jordan‐Wigner transformation (e.g. gray dots). The blue
and red diamonds are phase boundary points extracted from infinite size DMRG numerical simulations, while the colors
represent the expected QCNN output value.

are set to random values. Because classically simulating our training procedure requires expensive

computational resources, we focus on a relatively small system withN = 15 spins and QCNN

depth d = 1; there are a total of 1309 parameters to be learned (see Appendix A.5). Our training

data consists of 40 evenly spaced points along the line h2 = 0, where the Hamiltonian is exactly

solvable by Jordan-Wigner transformation. Using gradient descent with the mean-squared error

function (4.1), we iteratively update the unitaries until convergence (see Appendix A.5). The clas-

sification output of the resulting QCNN for generic h2 is shown in Figure 4.4. Remarkably, this

QCNN accurately reproduces the 2D phase diagram over the entire parameter regime, even though

the model was trained only on samples from a set of solvable points which does not even cross the

lower phase boundary.

This example illustrates how the QCNN structure avoids overfitting to training data with its ex-

ponentially reduced number of parameters. While the training dataset for this particular QPR prob-

lem consists of solvable points, more generally, such a dataset can be obtained by using traditional

methods (e.g. measuring SOPs) to classify representative states that can be efficiently generated ei-

ther numerically or experimentally142,61.
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Figure 4.5: Exact QCNN output (at depth d = 1, ...4) for the Haldane chain Hamiltonian withN = 54
spins.

4.3.4 QCNN for the S = 1 Haldane Chain

As discussed at the beginning of this section, the (spin-1/2) 1D cluster state belongs to an SPT

phase protected byZ2 × Z2 symmetry, a phase which also contains the celebrated S = 1 Hal-

dane chain73. It is thus natural to ask whether this circuit can be used to detect the phase transition

between the Haldane phase and an S = 1 paramagnetic phase, which we numerically demonstrate

here.

The one-parameter family of Hamiltonians we consider for the Haldane phase is defined on a

one-dimensional chain ofN spin-1 particles with open boundary conditions73:

HHaldane = J
N∑
j=1

Sj · Sj+1 + ω
N∑
j=1

(Szj )2 (4.5)

In this equation, Sj denotes the vector of S = 1 spin operators at site j. The system is protected

by a Z2 × Z2 symmetry generated by global π-rotations of every spin around the X and Y axes:
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Rx =
∏

j e
iπSxj ,Ry = eiπS

y
j . When ω is zero or small compared to J, the ground state belongs to the

SPT phase, but when ω/J is sufficiently large, the ground state becomes paramagnetic73.

To apply our QCNN circuit to this Haldane phase, we must first identify a quasi-local isomet-

ric mapU between the two models, because their representations of the symmetry group are dis-

tinct. More specifically, since the cluster model has a Z2 × Z2 symmetry generated by Peven(odd) =∏
i∈even(odd) Xi, we requireURxU† = Podd andURyU† = Peven. Such a map can be constructed

following Ref.161. Intuitively, it extends the local Hilbert space of a spin-1 particle by introducing a

spin singlet state |s〉 and mapping it to a pair of spin-1/2 particles: |x〉 7→ |+−〉, |y〉 7→ − |−+〉,

|z〉 7→ −i |−−〉, |s〉 7→ |++〉. Here, |±〉 denote the±1 eigenstates of the (spin-1/2) Pauli matrix X.

|μ〉 denotes a spin-1 state defined byRν |μ〉 = (−1)δμ,ν+1 |μ〉 (μ, ν ∈ {x, y, z}). The QCNN circuit

for the Haldane chain thus consists of applyingU followed by the circuit presented in the main text.

Figure 4.5 shows the QCNN output for an input system ofN = 54 spin-1 particles at depths

d = 1, ..., 4, obtained using matrix product state simulations with bond dimensionD = 160.

For this system size, we numerically identified the critical point as ω/J = 1.035 ± 0.005, by using

DMRG to obtain the second derivative of energy density as a function of ω and J. The QCNN

provides accurate identification of the phase transition.

4.4 Optimizing Quantum Error Correction

As seen in the previous example, the QCNN’s architecture enables one to perform effective QEC.

We next leverage this feature to design a new QEC code itself that is optimized for a given error

model. More specifically, any QCNN circuit (and its inverse) can be viewed as a decoding (encod-

ing) quantum channel between the physical input qubits and the logical output qubit. The en-

coding scheme introduces sets of new qubits in a predetermined state, e.g. |0〉, while the decoding

scheme performs measurements (Fig. 5a). Given a error channelN , our aim is therefore to maxi-
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Figure 4.6: QCNN for optimizing quantum error correction. (a) Schematic diagram for using QCNNs to opti‐
mize QEC. The inverse QCNN encodes a single logical qubit |ψl〉 into 9 physical qubits, which undergo noiseN . QCNN
then decodes these to obtain the logical state ρ. Our aim is to maximize 〈ψl| ρ |ψl〉. (b) Logical error rate of Shor code
(blue) versus a learned QEC code (orange) in a correlated error model. The input error rate is defined as the sum of all
probabilities pμ and pxx. The Shor code has worse performance than performing no error correction at all (identity, gray
line), while the optimized code can still significantly reduce the error rate.
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mize the recovery fidelity

fq =
∑

|ψl⟩∈{|±x,y,z⟩}

〈ψl|M
−1
q (N (Mq(|ψl〉 〈ψl|))) |ψl〉 , (4.6)

whereMq(M−1
q ) is the encoding (decoding) scheme generated by a QCNN circuit, and |±x, y, z〉

are the±1 eigenstates of the Pauli matrices. Thus, our method simultaneously optimizes both en-

coding and decoding schemes, while ensuring their efficient implementation in realistic systems.

Importantly, the variational optimization can be carried out with a unknownN since fq can be

evaluated experimentally.

To illustrate the potential of this procedure, we consider a two-layer QCNNwithN = 9 physical

qubits and 126 variational parameters (Figure 4.6a and Appendix A.6). This particular architecture

includes the nested (classical) repetition codes and the 9-qubit Shor code146; in the following, we

compare our performance to the better of the two. We consider three different input error models:

(1) independent single-qubit errors on all qubits with equal probabilities pμ for μ = X, Y, and Z

errors or (2) anisotropic probabilities px 6= py = pz, and (3) independent single-qubit anisotropic

errors with additional two-qubit correlated errors XiXi+1 with probability pxx.

Upon initializing all QCNN parameters to random values and numerically optimizing them to

maximize fq, we find that our model produces the same logical error rate as known codes in case (1),

but can reduce the error rate by a constant factor of up to 50% in case (2), depending on the specific

input error probability ratios (see Appendix A.6 and Figure A.3). More drastically, in case (3), the

optimized QEC code performs significantly better than known codes (Figure 4.6b). Specifically,

because the Shor code is only guaranteed to correct arbitrary single-qubit errors, it performs even

worse than using no error correction, while the optimized QEC code performs much better. This

example demonstrates the power of using QCNNs to obtain and optimize new QEC codes for

realistic, a priori unknown error models.
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4.5 Experimental Realizations

Our QCNN architecture can be efficiently implemented on several state-of-the-art experimental

platforms. The key ingredients for realizing QCNNs include the efficient preparation of quan-

tummany-body input states, the application of two-qubit gates at various length scales, and pro-

jective measurements. As in stabilizer-based QEC, the measurements of intermediate qubits and

feed-forwarding can be replaced by controlled two-qubit unitary operations so that measurements

are only performed at the end of an experimental sequence. These capabilities have already been

demonstrated in multiple programmable quantum simulators consisting ofN ≥ 50 qubits based

on trapped neutral atoms and ions, or superconducting qubits12,180,28,74.

As an example, we present a feasible protocol for near-term implementation of our exact clus-

ter model QCNN circuit via neutral Rydberg atoms12,94, where long-range dipolar interactions

allow high fidelity entangling gates104 among distant qubits in a variable geometric arrangement.

The qubits can be encoded in the hyperfine ground states, where one of the states can be cou-

pled to the Rydberg level to perform efficient entangling operations via the Rydberg-blockade

mechanism104; an explicit implementation scheme for every gate in Figure 4.2b is provided in Ap-

pendix A.7. Our QCNN at depth dwithN input qubits requires at most 7N
2 (1 − 31−d) + N31−d

multi-qubit operations and 4d single-qubit rotations. For a realistic effective coupling strength

Ω ∼ 2π × 10 − 100MHz and single-qubit coherence time τ ∼ 200 μs limited by the Rydberg

state lifetime, approximately Ωτ ∼ 2π × 103 − 104 multi-qubit operations can be performed, and a

d = 4 QCNN onN ∼ 100 qubits is feasible. These estimates are reasonably conservative as we have

not considered advanced control techniques such as pulse-shaping60, or potentially parallelizing

independent multi-qubit operations.
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Nothing is impossible, the word itself says “I’m possible”!

Audrey Hepburn

5
Enhancing Detection of Topological Order

by Local Error Correction

The exploration of topologically-ordered states of matter is a long-standing goal at the

interface of several subfields of the physical sciences. Such states feature intriguing physical proper-

ties such as long-range entanglement, emergent gauge fields and non-local correlations, and can aid
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in realization of scalable fault-tolerant quantum computation. However, these same features also

make creation, detection, and characterization of topologically-ordered states particularly challeng-

ing. Motivated by recent experimental demonstrations, we introduce a new approach for quantify-

ing topological states—locally error-corrected decoration (LED)—by combining methods of error

correction with ideas of renormalization-group flow. Our approach allows for efficient and robust

identification of topological order, and is applicable in the presence of incoherent noise sources,

making it particularly suitable for realistic experiments. We demonstrate the power of LED using

numerical simulations of the toric code under a variety of perturbations, and we subsequently apply

it to an experimental realization of a quantum spin liquid using a Rydberg-atom quantum simula-

tor. Extensions to the characterization of other exotic states of matter are discussed.

5.1 Introduction andMotivations

Topological order is an exotic state of matter, which can occur when quantum fluctuations and local

constraints stabilize a state with long-range entanglement169. With their non-local correlations,

topologically-ordered states feature remarkable properties and can be used for protecting quantum

information non-locally169,121,155. Yet, because these states appear to be liquid-like at short length-

scales134, they cannot be identified or characterized using any local order parameters. Instead, the

canonical approach to discern topological order is to measure operators supported on large closed

loops, the Wilson loops75,171,169,69. However, such operators are often challenging to identify or

measure: while they have simple forms in certain fixed-point models, this is generally not the case for

states realized experimentally. This is because experimental systems are typically affected by coherent

perturbations generated by realistic Hamiltonians, or incoherent noise due to coupling with the

environment (e.g., single qubit-flips or spontaneous emission). In these cases, the expectation values

of the simple or ‘bare’ Wilson loop operators described above decay exponentially with the length of
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the loop, which hinders the experimental certification of topological order.

To address these challenges, several methods have been developed to construct ‘fattened’ Wil-

son loops which do not decay with loop size. These include a systematic method utilizing quasi-

adiabatic connections to the fixed-point models75, as well as variational and tensor-network-based

approaches24,82,51,85. Nevertheless, these methods are challenging to apply in realistic experiments,

especially in the presence of decoherence and noise. Other signatures, such as topological entangle-

ment entropy91,102 are likewise difficult to measure in large systems.

Motivated by these considerations, we introduce a systematic method to construct and effi-

ciently measure ‘decorated’ Wilson loop operators, a variant of the fattened loop operators. Our

method, locally error-corrected decoration (LED), leverages the error-correcting properties of the

topological phase155,92,48, and is also applicable to mixed states with incoherent noise. With a dis-

tinctive, hierarchical structure (Figure 5.1b), LEDmimics the classification of quantum phases us-

ing RG flow139,41. ForZ2 topological order, LED can be performed efficiently using classical post-

processing of experimental measurements in a few fixed bases. These properties make LED applica-

ble to a wide range of experiments where the prepared state is known to approximate a fixed-point

state with zero correlation length (see Appendix B.7), and it allows for the verification of topological

order at large length-scales, which is particularly challenging or impossible using conventional meth-

ods. In what follows, we demonstrate the power of the method by simulating perturbed toric code

states generated using an efficient 2D tensor network sampling algorithm, and subsequently apply it

to analyze the topologically-ordered states created in recent Rydberg atom array experiments143.

5.2 LEDApproach

The key idea of LED can be understood by considering Kitaev’s toric code model, a canonical ex-

ample of topological order. Specifically, we consider qubits localized on the edges of a square lattice,
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Figure 5.1: Detecting topological phases via LED. (a) In the absence of perturbations, a topologically‐ordered
state with zero correlation length such as Kitaev’s toric code state92 is characterized by+1 expectation values of ‘bare’
Wilson loop operators, which are typically tensor products of single‐site operators (dotted blue loop). In realistic sys‐
tems, however, coherent perturbations give rise to virtual anyon pairs (red dots/straight lines), and incoherent errors
introduce physical anyon pairs (orange dots/wavy lines); this causes the expectation value of bare Wilson operators
to decay exponentially with the loop’s perimeter. To account for these local fluctuations, one can measure ‘fattened’
Wilson operators supported on an annulus (blue); the LED loops constitute one realization of this. (b) LED method to
measure decorated Wilson loop observables forZ2 topological order: given an experimental snapshot of all qubits in
the Z or X basis, one can obtain values for all stabilizer operators in that basis, thereby identifying the locations of all e
orm anyons, respectively. Here, the qubits live on the links of the square lattice, and stabilizers are associated with ver‐
tices. In the first step, neighboring anyons are paired using a local decoder (dashed pairings), and each pair is removed by
flipping the value(s) of qubit(s) lying on a path of minimal length connecting the two anyons; subsequently, the lattice is
coarse‐grained so that only a fraction of the original qubits remain. These two steps are iterated n times (here, n = 2),
after which a bare Wilson loop is evaluated on the final, coarse‐grained state. (c) The final, bare Wilson loop operator
evaluated on the final state is equivalent to decorated Wilson loop operators evaluated at earlier iterations.
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and the ideal, fixed-point Hamiltonian is defined as (see Section 2.2 and Ref.92):

HTC = −J
∑
v

Av − J
∑
p

Bp (5.1)

where Av =
∏

i∈adj(v) Xi, Bp =
∏

i∈adj(p) Zi, and adj(v) (resp., adj(p)) denote the set of edges touch-

ing a given vertex v (plaquette p) of the lattice. The ground state space, given by the simultaneous

+1 eigenspace of all stabilizer operators {Av,Bp}, forms a quantum error-correcting code: all local

operators either act trivially on ground states or couple them to excited states92. By measuring the

stabilizers, one can detect the presence of excitations and apply a recovery procedure to return the

system back to this ground state space.

In this model, contractible Wilson loops can be constructed by multiplying stabilizers Av (Bp),

so their expectation values in any ground state ofHTC are+1, independent of loop size. However,

in realistic situations, the prepared state differs from the fixed-point state by local fluctuations such

as coherent perturbations and incoherent errors (Figure 5.1a). This causes bare Wilson loops to

decay exponentially with the number of locations where a fluctuation can intersect the loop (i.e., its

perimeter).

Our LED approach begins with a measurement of all qubits in the same (Pauli-Z or Pauli-X) ba-

sis. For each measurement snapshot, one can calculate the stabilizer andWilson loop values. Local

fluctuations appear as stabilizer violations, which are identified with anyonic excitations92 (Fig-

ure 5.1b). A local decoder partially removes such fluctuations by flipping measured qubits using

only nearby stabilizer values. The simplest such local decoder can remove single-qubit errors, by flip-

ping a qubit if and only if both adjacent vertices (resp., plaquettes) are occupied by anm (e-anyon).

However, it cannot remove higher-weight errors, which flip two or more adjacent qubits. After cor-

rection, the lattice is coarse-grained, which can be also done efficiently on measurement snapshots

(see Appendix B.2). Together, the anyon-pairing and coarse-graining steps are repeated for n layers.
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Crucially, the weight of uncorrected errors is reduced in each layer, so that all local errors eventu-

ally become single-qubit errors which can be corrected by the decoder, as shown in Section 5.5; this

mimics a real-space RG flow towards the fluctuation-free fixed-point state (see Appendix B.7). Fi-

nally, a bare Wilson loop is measured on the final, corrected and coarse-grained state (Figure 5.1b).

This bare Wilson loop operator measured on the final state is equivalent to a decoratedWilson

loop operator measured on the original state (see Appendix B.2). In particular, this operator is de-

termined solely by the fixed-point state and is independent of the specific fluctuations in the relevant

system; this crucially differentiates LED from prior approaches to construct fattened loop opera-

tors75,24,82 (see also Section 5.5). Moreover, all steps in LED can be performed in post-processing

(see Appendix B.2), making LED uniquely suited for integration into experimental measurement

procedures.

The hierarchical LED procedure is also inspired by the quantum convolutional neural network

(QCNN) approach to phase classification, and the decoratedWilson loop operators resembles the

“multiscale string order parameter” studied in Chapter 4. However, in this context, the LED frame-

work is more general, as the hierarchical procedure shown in Figure 5.1 is merely one way of con-

structing LEDWilson operators of a particular diameter L and correction distance d (Figure 5.2a) *.

More generally, given a desired value of d, one can construct the associated LEDWilson operators

by choosing a local decoder which pairs anyons up to distance d (see Appendix B.3). The construc-

tion of Figure 5.1b, with alternating local-decoding and coarse-graining layers, is a particularly effi-

cient way to construct local decoders and LED loops with longer-range (e.g. d,L ∝ 2n).

*Note that technically, the correction distance d is related to the annulus thickness cd by a decoder-
dependent constant c > 1, since the range of information propagation is generally larger than the range of
allowed anyon-pairings (see Appendix B.3).
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Figure 5.2: Numerical demonstration with coherently perturbed toric code states. (a) In a general con‐
struction of our LED Wilson loop operator, we use a local decoder which pairs anyons within a region of radius d (blue
annulus). Conjugate LED open string operators (red stripe) anti‐commute with Wilson loops, and hence must vanish in
the topological phase. (b) Order parameter 〈Xloop〉〈Zloop〉 for a trivial state (gZ = 0.0, gX = 0.26) and a topological
state (gZ = 0.12, gX = 0.12), upon varying n, using a distance‐four patch decoder and coarse‐graining blocksize
two respectively (see Appendix B.3). (c) Output at different n along the gZ = 0.14 line of the phase diagram. Gray
dotted line is conjectured phase transition region. (d) Expectation values of generic LED Wilson loops with the same
diameter L, using the pairing decoder (d = 1) and distance‐four patch decoder (d = 2) without coarse‐graining. (e,f)
Corresponding expectation values of bare and decorated open string operators.
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Figure 5.3: Two-dimensional phase diagrams for coherently perturbed toric code states. Order parameter
values constructed from bare Wilson loops (n = 0) and LED Wilson loops (n = 3), using the same LED procedure
as (c,e), across varying values of (gX, gZ). Dark gray regions are numerical estimates for the phase boundary between
topological and trivial (see Appendix B.9). Light gray regions correspond to locations where sampling is expensive due to
large correlation length.
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5.3 Numerical Detection of Topological Order with Coherent Perturba-

tions

To demonstrate the applicability of LED for coherent local perturbations toHTC, we consider a

family of states

|ψ(gX, gZ)〉 =
1
N

egX
∑

i Xi+gZ
∑

i Zi |ψTC〉 , (5.2)

generated by imaginary-time evolution of a toric code ground state |ψTC〉. As each operator Zi

(resp., Xi) creates a pair ofm anyons (e anyons), |ψ(gX, gZ)〉 contains virtual anyon fluctuations

on top of |ψTC〉. In the special case where gX = 0, topological order is known to survive for pertur-

bations gZ ≤ gc = 0.220343, beyond which them-anyons condense, driving a second-order phase

transition into the Z paramagnet state34. More generally, |ψ(gX 6= 0, gZ 6= 0)〉 is also topologically-

ordered for small gX and gZ, but the transitions to paramagnetic phases can occur at points which

differ from gc.

In testing LED, we numerically simulate projective measurements of |ψ(gX, gZ)〉 and use them as

the input “experimental snapshot” in Figure 5.1b (see Appendix B.1). Figure 5.2b shows the value

of the LED order parameter for a trivial and a topological state with gZ = 0.14, when n is varied

(and d,L ∝ 2n). Clearly, the order parameter stays at 0 for the trivial state, but increases from a

small, finite value to one for the topological state as n is increased. Similar behavior is also observed

throughout a one-dimensional parameter space in Figures 5.2c and 5.2d, whenever the correction

distance d is increased, while keeping d � L to prevent overcorrection (see Figure 5.7). Importantly,

amplification occurs only if the input state is topological, and the order parameter approaches 0 for

all trivial states.

Another important set of observables for characterizing topological order are X and Z open
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string operators, which detect the transition from the topological phase to the trivial, paramagnet

phase. Because LEDWilson Z-loop operators (resp., X-loop operators) are linear combinations

of Z (X) closed loops supported on an annulus, they anti-commute with conjugate X (Z) open

strings connecting the interior and exterior of the annulus. As such, the expectation value of long,

open strings must flow to zero in the topological phase, where closed-loop LED operators flow to

unity with increasing d †. The topological-to-trivial phase transition occurs when long, open X or Z

strings acquire non-zero expectation value, due to the condensation ofm or e anyons, respectively.

Indeed, deep in the paramagnetic phase the state limgx→∞ |(gx, gz)〉 is polarized along the X direc-

tion, and X open strings become unity. However, at generic points in the trivial phase, open strings

also decay exponentially with length, due to local fluctuations of the opposite type (e orm anyons,

respectively); nevertheless, LED can still amplify the trivial order signaled by open strings by remov-

ing the effect of local fluctuations. This behavior is demonstrated in our numerical simulations: in

Figure 5.2e,f, open string expectation values stay at 0 in the topological phase, but are amplified and

saturate to a non-zero value in the trivial (paramagnetic) phase.

Let us note that the boundary dividing the states whose LED operators approach zero and one

does not necessarily correspond to the topological phase boundary: in general, it depends on the

choice of decoder and coarse-graining length-scale. For instance, this is observed in Figure 5.3, where

closed loops are nearly one after n = 3 layers for a large region within, but not fully encompass-

ing, the topological phase. Nevertheless, we show that any state with LEDWilson loops flowing to

unity at large d and L is topologically-ordered—that is, LED gives rise to a new sufficient condition

or witness for topological order, even if it is not always a necessary condition (see Section 5.6). Thus,

because LED amplifies the contrast between trivial states and a large class of topological states, it

lowers the sample complexity of detecting topological order. This means that a statistically signif-

icant, nonzero expectation value of the order parameter can be obtained using substantially fewer

†This holds for any LED open string.
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experimental repetitions (see Chapter 4, Ref.70, and Appendix B.5).

5.4 Effect of Incoherent Errors

We next demonstrate the application of LED in the presence of incoherent local noise such as spon-

taneous emission or dephasing, which commonly occur in experiments. Because local decoders can

recover topologically encoded information in the presence of small, local error channels48,91 it is

reasonable to ask whether the mixed states prepared in these systems exhibit topological ordering.

To study such examples, we introduce incoherent bit- and phase-flip errors by independently

flipping, with probability pflip, each measured qubit in a snapshot of |ψ(gX, gZ)〉. Here, we asso-

ciate topological order with states that can be transformed into a ground state ofHTC via local

operations. Our analysis then suggests that the resulting mixed-state phase space contains a Z2-

topological phase, a Z-paramagnet, an X-paramagnet, and a disordered phase with large incoherent

error rates. However, it is especially difficult to distinguish the topological and disordered phases

using measurements of bare operators alone: in both phases, open strings remain close to zero, while

bare Wilson loops decay exponentially with perimeter as e−αL, where the exponent α interpolates

smoothly between the phases (Figure 5.4a,b). This is in contrast to the paramagnet phases, where

closed loops exhibit similar behavior, but certain open strings decay with the same exponent α as the

closed loops59.

However, upon studying the behavior of LED operators, one finds that the mixed-state phase

space exhibits two qualitatively different regimes (Figure 5.4b). Upon increasing d, LED reduces

α to 0 in the ‘correctable’ regime, while α grows in the ‘uncorrectable’ regime. Further, correctable

states with small pflip are connected to topologically-ordered pure states, suggesting these mixed

states are topologically-ordered as well. Indeed, we show theoretically that any state in the cor-

rectable regime has long-range topological order at least up to distances of order L − d (see Sec-
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Figure 5.4: Application to mixed states. (a) Without error correction, generic points in the topological and trivial,
disordered phase (gZ = 0.12, gX = 0.18, pflip = 0.0 and gZ = 0.06, gX = 0.0, pflip = 0.11 resp. shown in
the plot) appear very similar qualitatively, as closed loops decay exponentially with loop perimeter in both cases, while
open strings remain close to zero. In contrast, in the trivial, paramagnet phase (gZ = 0.32, gX = 0.2, pflip = 0),
open loops decay with the same perimeter‐law as closed loops. (b) gZ = 0.14 slice of mixed state phase diagram,
containing topological, disordered, and X‐paramagnetic phases. These phases are associated with fixed‐point states
gx = gz = pflip = 0, gz →∞, gx →∞, and pflip → 0.5, respectively. The flow of the closed‐loop decay exponent
α under LED provides a sharp divider between two kinds of perimeter‐law decay, observed in different regimes of the
mixed‐state phase diagram. (c) In the uncorrectable regime (i), the local decoder of LED pairs anyons incorrectly, re‐
sulting in perimeter‐law decay with large α in disordered and paramagnet phases. Moreover, the probability of such an
incorrect pairing can increase with the number n of LED iterations. Here, the black pairings are made by LED at or be‐
fore one specific value of n, and gray pairings are made upon performing one additional LED iteration. In the correctable
(topological) regime (ii), increasing n can reduce α to zero, as fluctuations of higher characteristic length ξ can be reliably
corrected using only local information. In the conceptual framework where an LED operator is embedded in a surface
code on an annulus (see Figure 5.2a), incorrect pairings corresponds to logical errors (e.g. XL). (d) Expectation values of
LED loop observables upon increasing n (d,L ∝ 2n), in thermal states of varying temperatures (between 0 and 0.35,
with darker colors indicating higher temperatures) and pflip = 0.02.
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tion 5.6). Thus, LED enables a more efficient and accurate detection of topological order.

The ability of LED to distinguish between the topological and disordered phases can be under-

stood by analogy to quantum error correction. Conceptually, since any given LED loop operator is

supported on an annulus, we can consider this operator as being embedded in a surface code on this

annulus with open boundary conditions, which supports a logical qubit. For example, in consider-

ing an LED Z-loop as in Figure 5.2a, the LED loop operator corresponds to the logical-Z operator

for this qubit after applying error correction. Meanwhile, any X-string connecting the interior of the

annulus to the exterior corresponds to a logical-X operator, as it anti-commutes with the logical-Z

operator. In this framework, the decay rate α of Wilson loops corresponds to a local logical error

rate per unit length, and in the correctable phase, LED-based decoding succeeds with high proba-

bility as long as the code distance d is sufficiently large (Figure 5.4c). However, in the uncorrectable

phase, such as when pflip is above the error correction threshold or when long, open strings condense

in a paramagnetic phase, decoding cannot correctly pair anyons, resulting in a high rate of logical

errors48.

The above results are deeply rooted in the stability of topological order against local perturba-

tions. In contrast, any finite temperature destroys long-range topological order as it leads to freely

propagating thermal anyons. In Figure 5.4d, we consider the toric code model at finite tempera-

ture, with local incoherent errors, and find that the LED loop operators indeed approach zero upon

increasing n. Interestingly, their expectation values flow non-monotonically: the loops are ampli-

fied at small n before eventually turning to 0. This occurs because of a competition between two

effects: thermal anyons are uncorrectable, so their density accumulates under RG flow; however,

local fluctuations are corrected at early layers, which initially amplifies LED loop expectation values.

Because loops at different n probe correlations at different length-scales, the turning point in these

curves can be used to identify the characteristic length-scale of separation between thermal anyons,

or equivalently, the system’s temperature.

63



5.5 Arbitrary Local Perturbations

We now prove a key property of LED: any state which differs from the fixed-point state by an ar-

bitrary local perturbation has LEDWilson loops which flow to one. This property implies that

LED loop operators are independent of the exact perturbation, unlike the fattenedWilson loops of

Refs.75,102. For concreteness, we examine perturbations on top of a toric code ground state.

To prove our claim, we consider a local unitary operatorO supported on a local region A of

diameter l. It follows thatO can only flip a stabilizer from+1 to−1 if it overlaps with A, andO

cannot couple any ground state |ψ〉 to another ground state |ψ′〉 6= |ψ〉. We now show that LED re-

moves all flipped stabilizers after 1+logb d layers, where b is the coarse-graining length-scale. Because

the coarse-graining step effectively reduces l → l/b, after logb d layers, there are three possibilities:

1. A becomes fully contained within a single b× b region at some layer c < logb d. Then, A has

zero support after another layer of coarse-graining and disappears.

2. Before iteration logb d,O is supported on two adjacent b × b regions. Then,O becomes a

single-qubit error after this iteration and is removed by the subsequent LED step.

3. Before iteration logb d,O is supported at the corner of three or four regions. In this case, it

becomes a two-qubit diagonal error after this iteration, which can also be removed by the

subsequent LED step.

Notice that handling the third case requires the inclusion of diagonal pairing in the pairing decoder.

Finally, while this proof focuses on the pairing decoder, it also generalizes directly to more advanced

local decoders, such as the patch-based decoder presented in Appendix B.3, when they are combined

with coarse-graining.
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5.6 Topological OrderWitness

In this section, we show that LED provides a topological order witness—that is, it does not misclas-

sify any trivial product state as topological. For simplicity, we study the case of Z2 topological order

on a surface with trivial topology, where the fixed-point state is the unique ground state |ψTC〉 of

HTC. We begin by considering the ideal case where LED operators flow to unity.

Theorem 1. Let |ψ〉 be an arbitrary input state defined on a surface with trivial topology. Then,

after performing LED with correction distance d, assume the resultant state |ψd〉 has, as a subsys-

tem, qubits living on the links of a square lattice, as in the toric code. Then, if the stabilizer expecta-

tion values
〈 1+Av

2
〉

=
〈
1+Bp
2

〉
= 1 at every vertex v and plaquette p of the subsystem, then, the

input state |ψ〉 is topologically-ordered, in the sense that it is connected to an output state of the form

|ψd〉 = |ψTC〉 ⊗ |φanc〉 by generalized local unitary (gLU) transformation of depth O(d).

Proof. The LED procedure forms a local quantum channel, and we begin our proof by construct-

ing a purification of this channel. To mediate stabilizer measurement and local error correction,

one can first introduce an ancilla in the state |0〉 at every vertex and plaquette. Next, a sequence of

Hadamard and controlled-NOT (CNOT) gates is applied such that a Z-basis measurement on an

ancilla is equivalent to the associated stabilizer measurement of Av or Bp. Then, local quantum error

correction is performed using a local unitary evolution on the combined system, which contains the

original state and the added ancilla qubits. This local unitary evolution applies gates which perform

X and Z spin flips on the system qubits, conditioned on the state of the ancilla qubits. Finally, the

coarse-graining step can also be performed with local unitary transformations by using a quantum

circuit corresponding to a multiscale entanglement renormalization ansatz (MERA) representation

of the fixed-point state1. The transformations generated by introducing product state ancillas and

performing local unitary operations are called generalized local unitaries (gLU); this class of transfor-

mations includes our LED procedure described above and is known to preserve phase boundaries40.
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If the system part of the final state, |ψd〉 ∈ Hsys ⊗ Hanc, has stabilizer expectation values〈 1+Av
2

〉
=

〈
1+Bp
2

〉
= 1 at every vertex v and plaquette p, then |ψd〉must belong to the ground

state space of the toric code. This is because the projector onto the ground state space is given by the

product of all the stabilizers PTC =
∏

v
1+Av
2

∏
p
1+Bp
2 . On a surface with trivial topology, there is a

unique state |ψTC〉, so the output state factors into |ψd〉 = |ψTC〉 ⊗ |φanc〉.

If, in addition to the conditions in Theorem 1, we further assume the output ancillas |φanc〉 are

in a trivial state, the above proof guarantees that the input state is in the toric code phase. However,

we do not certify this condition holds, which is in general more difficult: measurements in multiple

bases are needed to uniquely determine |φanc〉, and with incoherent errors, the ancillas are described

by a mixed state. Instead, LED certifies that the toric code state can be distilled from the input state

by gLU transformations. Because long-range entanglement cannot be created from a trivial state by

gLU transformations40, Theorem 1 implies that LED operators flowing to unity forms a sufficient

condition for topological order, or equivalently, a topological order witness (see also Ref.69).

While the above argument works well in theory, any practical system cannot measure LED ob-

servables equal to one with infinite precision. Indeed, even infinitesimal local perturbations to the

toric code ground state, such as e−iεH |ψTC〉 for arbitrarily small ε and some local HamiltonianH,

can create error strings larger than the correction length d. This causes LED loop expectation values

to decay exponentially, even in the topological phase. To show that LED still provides a topological

order witness in the presence of local perturbations, finite measurement errors, and finite system

size, we show the following Theorem:

Theorem 2. Consider an arbitrary state |ψ〉 and LED with correction distance d, as in Theorem 1.

Suppose the corresponding subsystem of |ψd〉 has stabilizer expectation values
〈 1+Av

2
〉

> 1 − ε,〈
1+Bp
2

〉
> 1 − ε at every vertex v and plaquette p. Then, the input state |ψ〉 exhibits topological or-

dering at least up to a length-scale O(L − d); that is, the input state |ψ〉 cannot be prepared using a
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local quantum circuit of depth less than O(L − d), whereL ∼ 1/
√
ε.

Our proof of Theorem 2 hinges on the following two Lemmas:

Lemma 3. Given an output state |ψd〉 satisfying the conditions of Theorem 2, and a simply con-

nected (L − 2) × (L − 2) square region R on the system part, the reduced density matrix ρd =

TrRc [|ψd〉 〈ψd|] is indistinguishable from the toric code reduced density matrix σTC = TrRc [|ψTC〉 〈ψTC|]

defined on the same region, up to the bound ||ρd − σTC|| ≤ max
(√

ε, 2L 2ε
)

Proof. To bound the trace distance, we will use the fact that our state ρd locally looks almost the

same as the toric code state. Specifically, trace distance is related to distinguishability by122

||ρ− σ|| = 1
2

sup
||O||≤1

Tr [O(ρ− σ)] . (5.3)

To upper bound this, we can consider all possible unit norm operatorsO. Specifically,O can al-

ways be written as a linear combination of Pauli strings. These Pauli strings can be analyzed by

considering two cases, closed strings and open strings. First consider operators C supported on

R, which commute with all stabilizers Av,Bp supported on a slightly largerL × L region (1-

ball orR) , constructed by expanding on all sides by one unit cell. These operators must be prod-

ucts of contractible Wilson loops, and hence can be written as product of stabilizers. Therefore,

Tr[σTCC] = 1 for the toric code state. For the LED output state, we instead bound the expectation

value of PTC =
∏

v
1+Av
2

∏
p
1+Bp
2 , where the product over v (resp., p) runs over all vertices (plaque-

ttes) within theL × L region. The expectation value of this projector, evaluated on the output

state, is given by 〈ψd|PTC|ψd〉. To lower bound this quantity, we first notice that every term in PTC

has spectrum {0, 1}, and that the terms are mutually commuting.

This allows us to approximate 〈PTC〉 using the individual expectation values
〈 1+Av

2
〉
> 1− ε and〈

1+Bp
2

〉
> 1 − ε. To do so, we note that if two commuting operators A and B, each with spectrum
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{0, 1}, satisfy 〈A〉 > 1 − ε and 〈B〉 > 1 − ε, then 〈AB〉 > 1 − 2ε. To show this, we add the two

individual bounds to obtain 〈A〉+ 〈B〉 > 2− 2ε; moreover, since AB has spectrum {0, 1}, we have

〈A〉 + 〈B〉 − 〈AB〉 < 1. It thus follows that 〈AB〉 > 1 − 2ε, and upon applying this recursively

to include all vertex and plaquette terms within theL × L region, we obtain
〈
ψd|PTC|ψd

〉
>

1− 2L 2ε.

Using this fact, along with CPTC = PTC we can similarly lower bound the expectation value

Tr[ρdC] ≥ 1− 4L2ε. Thus, for any C, we have 1
2 |Tr

[
C(ρd − σTC)

]
| ≤ 2L2ε.

Next, we consider operatorsOwhich anti-commute with some stabilizers. In particular, these

operators are Pauli strings with at least one endpoint (open strings). Naturally, their expectation

value vanishes in the toric code state. To see this, let S be one of the stabilizers which anti-commutes

withO. Now, S andO form an anti-commuting pair of Pauli operators, so they satisfy an uncer-

tainty relation 〈S〉2 + 〈O〉2 ≤ 1. As such, in the toric code where 〈S〉 = 1, this implies 〈O〉 = 0.

Similarly, the condition Tr[ρdS] ≥ 1 − 2ε leads to the upper bound Tr[ρdO] ≤ 2
√
ε. Combining

these two results, we see the trace distance is at most T(ρd, σTC) ≤ max
(√

ε, 2L 2ε
)
.

Lemma 4. Consider an input state |ψ〉 and an LED procedure satisfying the conditions of Theorem 2.

Then the final state |ψd〉 after LED cannot be prepared using a local quantum circuit with depth less

than O(L ) ∼ O(1/
√
ε).

To prove these results, we extend and generalize the proof techniques developed by Ref.69.

Proof. Consider a pair of Z-basis and X-basis Wilson loops A and B, supported on two overlapping

annuli. The twist product of the two operators A∞B is defined such that at one intersection region,

operator B is applied first, while at the other operator A is applied first (Fig. 5.5). By the arguments

of Ref.69, such a pair of locally non-commuting observables, whose twist product does not factorize

into a product of the individual observables, can serve as a witness for long-range entanglement. In

our case, since Z- and X-strings locally anti-commute, we can remove the twist to get A∞B = −AB.
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Then, Ref.69 showed that, assuming the observables A and B satisfy an additional important

property called local invisibility (see below), then the following correlation serves as a witness for

long-range order

|〈ψ|A∞B |ψ〉 − 〈ψ|A |ψ〉 〈ψ|B |ψ〉| > 0. (5.4)

Specifically, the state |ψ〉 cannot be prepared from a trivial state by a circuit of depthO(L), where L

is the separation between the two intersection regions. Indeed, in the exact case, where the expecta-

tion value of large Wilson loops with |ψd〉 are one, these results can be directly applied.

However, the proofs in Ref.69 do not immediately apply to the realistic case considered here,

where stabilizers have expectation value 1 − ε, and residual entanglement between the ancilla and

system qubits prevents exact knowledge of the state. Nevertheless, with sufficient care and a few

additional assumptions, approximate versions of key results in Ref.69 can be recovered.

First, we develop a notion of approximate local invisibility. Throughout, we follow the spirit

of the proofs in Section III of Ref.69; the reader is encouraged to consult the original reference for

additional details and insights.

Definition 5 (Approximate (Δ, r, t)-local invisibility.). Let A be a region of radius r and B be a t-ball

around A. An operatorOwith unit norm is (Δ, r, t)-locally invisible with respect to a state |ψ〉 if, for

any state |φ〉whose reduced density matrix on B is equivalent to |ψ〉, it satisfies

∣∣∣∣∣∣∣∣TrAc [O |φ〉 〈φ|O†]

Tr[O |φ〉 〈φ|O†]
− TrAc [|ψ〉 〈ψ|]

∣∣∣∣∣∣∣∣ ≤ Δ, (5.5)

where the norm is the standard trace norm. In other words, locally invisible operators leave local

reduced density matrices approximately unchanged. Note that we restrict to states |φ〉 for which the

expectation value does not vanish, such that this remains well-defined. This subtlety is also present
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in the original definition of Ref.69.

Next, we will show that Wilson loops that nearly stabilize |ψd〉 are approximately locally invisible.

Let A be a region of radius r, which can only cover a patch of the loop. Furthermore, let t = 0, i.e.

region B is identical to region A. Since the Wilson loop is a tensor product of local unitaries, we can

writeO = OB ⊗ OBc andO†
BcOBc = 1. This allows us to work directly with the reduced density

matrices of region B, and we can use Lemma 3 to reduce to the toric code case

TrAc [OρdO] = TrAc [OσTCO] + TrAc [O(ρd − σTC)O] (5.6)

Indeed, sinceO is locally invisible with respect to to the toric code, this gives us our result, where the

error term depends on the size of B.

∣∣∣∣TrAc
[
OρdO

]
− TrAc [σTC]

∣∣∣∣ ≤ max
(√

ε, 2(r+ 1)2ε
)

(5.7)

More microscopically,O spans the region, so locally looks like a logical operator. The reduced den-

sity matrix σTC on region B is an equal weight mixture of all logical states, soO leaves it invariant.

This shows that Wilson loops are (Δ, r, t)-locally invisible with respect to |ψd〉 for t ≥ 0 and

Δ = max
(√

ε, 2(r+ 1)2ε
)
. When combined with the fact that Wilson loops have large expectation

value on |ψd〉, this will serve as a witness for long-range topological order.

To prove this, we need to confirm that, even for the weaker notion of approximate local invisibil-

ity, the twist product approximately factorizes for trivial states.

Lemma 6. The twist product of two (Δ, r, t) locally invisible operators A and B, acting on a trivial

product state |ψ〉 = |00...0〉, must satisfy

|〈ψ|A∞B |ψ〉 − 〈ψ|A |ψ〉 〈ψ|B |ψ〉| ≤ O(
√

ΔR/r) (5.8)
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Alow

Ahigh

Blow

Bhigh

Figure 5.5: Consider two operators A and B, each supported on an annulus which intersects at two regions, one higher
and one lower. The twist product A∞B consists of applying B first in the higher region, and A first in the lower region
(see also Figure 1 and Equation (4) in Ref. 69). In the diagram, the order of operations goes back to front. Furthermore,
for tensor product operators which can be written as A = AlowAhigh, B = BlowBhigh, we can write the twist product
as A∞B = BlowAhighAlowBhigh.

where A and B are supported on two annuli which intersect at two regions (Figure 5.5) whose separation

is≥ 2(r+ t).

Proof. In the first step of the proof, we bound the expectation value of ΠR =
∏

i∈R |0〉 〈0|i, the

projector onto |ψ〉 supported on regionR evaluated with respect toO |ψ〉 for unitaryO.

Invoking the definition of local invisibility, we show for A of radius r, that 〈ψ|O†ΠAO |ψ〉 ≥

1− Δ.

∣∣∣∣∣∣TrAc

[
O |ψ〉 〈ψ|O†

]
−ΠA

∣∣∣∣∣∣ ≤ Δ (5.9)

Thus, the expectation value of the observable ΠA satisfies:

|Tr
[
ΠAO |ψ〉 〈ψ|O†

]
− 1| ≤ Δ (5.10)

〈ψ|O†ΠAO |ψ〉 ≥ 1− Δ (5.11)
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Next, we can use the fact that ΠR can be written as a product of ΠA approximatelyR/r times. It

follows from the same union bound argument in Lemma 3, that 〈ψ|O†ΠRO |ψ〉 ≥ 1−ΔR/r. This

result can be used to bound the distance between the two states,

||ΠRO |ψ〉 − O |ψ〉 ||2 ≤ ΔR/r, (5.12)

by noticing the left side is equal to 1 − 〈ψ|OΠRO |ψ〉. We will use this below, to show that we can

replaceO |ψ〉with ΠRO |ψ〉without incurring significant error.

To prove Lemma 4, we use the same construction as Ref.69. Specifically, we want to use the

above result to show that A∞B |ψ〉 = (AΠR)∞B |ψ〉 + O(ΔL2). We do this by carefully in-

serting projectors. For Wilson loops, which are tensor product operators, we the twist product can

be split up as follows (see Figure 5.5),

A∞B = BlowAhighAlowBhigh. (5.13)

Our above result implies ΠRBhigh |ψ〉 = Bhigh |ψ〉+O(ΔR/r). We can subsequently pull projectors

from |ψ〉 to cover the region of support of A, e.g. low and the parts of high. Thus, we get

A∞B |ψ〉 =BlowAhighΠhighAlowΠlowBhigh |ψ〉

+ O(
√

ΔR/r)

=(AΠ)∞B |ψ〉+ O(
√

ΔR/r)

(5.14)

as we wanted. Finally, we this implies the expectation value of the twist product approximately fac-

torizes 〈ψ|A∞B |ψ〉 = 〈ψ|A |ψ〉 〈ψ|B |ψ〉+ O(
√

ΔR/r).

Although we proved that the twist product must factorize for the trivial product state, this holds

for a much wider class of short-range entangled states, generated from a trivial state by a finite-depth
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unitary circuit. In particular, using the same argument as Lemma III.3 of Ref.69 shows that, given

a (Δ, r, t)-locally invisible operatorO and state |ψ〉, if we evolve under a local unitary circuitW of

depth d, then the operatorWOW† is (Δ, r − d, t + 2d)-locally indistinguishable with respect to

W |ψ〉. This will be used to show that non-factorizability of the twist product lower bounds the

depth of a quantum circuit required to produce the state from the trivial product state.

Finally, we can use the trace distance Lemma 3, to show the twist product does not factorize for

|ψd〉. Specifically, let A and B beWilson loops supported on anL × L region. Then,

| 〈ψd|A∞B |ψd〉 − 〈ψd|A |ψd〉 〈ψd|B |ψd〉 | ≥ 2− cL 2ε (5.15)

for a constant c. Combining this Lemma 6 for trivial states, we see the bound is violated when

2− cL 2ε > c′
√

ΔL /r (5.16)

2− cL 2ε− c′2(r+ 1)
√

L ε/r ≥ 0 (5.17)

We choose r to be a constant fraction ofL , and see that we can roughly makeL ∼ O(1/
√
ε)

and still certify long-range order. In particular, the state |ψd〉 cannot be generated by a finite depth

circuit of depth smaller than r ∼ O(L ). Since |ψd〉 is connected to the input state by a depth-d

quantum circuit, this implies LEDWilson loops close to one certify topological order up to length-

scalesO(L − d).

Upon combining the result of Lemma 4 with the fact that our LED procedure corresponds to a

local quantum circuit with depthO(d), we find that the original input state |ψ〉 cannot be prepared

using a quantum circuit of depth smaller thanO(L − d)—which is precisely the statement of

Theorem 2. So, if we measure loops of length L � d to be 1 − ε, this shows that LED provides a
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Figure 5.6: Perimeter-law decay of Wilson loops. The exponential decay with loop size is clearly visible at various
points in the topological phase — gZ = 0, gX = 0.18, pflip = 0 (orange), gZ = 0.18, gX = 0.18, pflip = 0 (red),
and gZ = 0.10, gX = 0.18, pflip = 0.03 (purple). This is observed for both (a) uncorrected loops and (b) d = 6
corrected loops under two layers of d = 3MWPM patch decoding. (c) LED Wilson loops appear to approach one faster
than exponential in n. (d) In a model with only incoherent errors (pflip = 0.02 (blue), 0.03 (orange), 0.04 (green), 0.05
(red)), we can study the effect of even more layers, where we see hints that the decay is doubly‐exponential in n, or
exponential in d ∼ 2n.
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Figure 5.7: Over-correction for small Wilson loops. a) Small LED loops with d > L can give non‐zero signal deep
in the trivial phase, as in this regime, correction can pump anyons from the interior of the annulus to the exterior. b)
However, once d < L, the effects of over‐correction become insignificant. LED Wilson loops are theoretically expected
to certify topological order in the regime of d � L.
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topological order witness up to length-scales ofO(L/
√
ε).

We now discuss how these theoretical results are reflected in our numerical simulations. First,

when fluctuations are local, the probability of having an error string of length ℓ decays exponentially

with ℓ, and the exponent is determined by the characteristic length-scale ξ of fluctuations. In these

systems, we expect the error rate after an optimal LED procedure with correction distance d to be

given by ε(d) ∝ e−d/ξ, so the length-scaleL with which we can certify topological order grows

exponentially with d. Second, when LED uses the hierarchical, anyon-pairing decoder, the anyon

density is observed to decrease faster than exponentially in the number n of LED steps (Figure 5.6).

In this case, both the measured stabilizer size and the correction distance d grow exponentially with

n, which implies that the certification length-scaleL grows at least exponentially with n as well.

Third, our argument does not certify topological order to any length-scale when L < d; this is

because the support of such an LED operator no longer has an interior, potentially giving rise to

signal even in the trivial phase. Indeed, this is reflected in our numerics as well (Figure 5.7).

Finally, we notice a connection between the flow of LED closed loops to+1 expectation value

and the input state’s topological entanglement entropy. Specifically, whenever the underlying state

has finite correlation length and area-law entanglement, the LED loops which flow to unity are

direct witnesses for nonzero topological entanglement entropy. This is because the flow to unity

implies that the superselection sector of the region—that is, which anyons are contained in the

region—is a well-defined quantum number. Indeed, the+1 expectation value of all contractible

LEDWilson loops implies the region enclosed by any such loop is in the vacuum superselection sec-

tor. These constraints lead to a topological entanglement entropy of 2 log 2102,91. As described in

Ref.172, this argument also generalizes when the decoder is non-local (see Appendix B.10).
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Figure 5.8: Enhancing experimental detection of Z2 spin liquid. (a,d) In the experiment 143, 219 qubits are
placed on the links of a kagome lattice. Upon applying LED, the Z and X closed‐loop observables are amplified for
certain ranges of Δ/Ω. The shaded purple regions show the support of large, decorated Wilson loops with d = 1. (b,e)
Expectation value of Wilson loops depicted in (a,c) for different correction layers n. Plotted error bars (shaded regions)
show expected variation (one standard deviation) of the mean. The regime in which both types of loops are amplified
corresponds to the spin‐liquid regime identified in Ref.143 (shaded blue region). (c,f) The behavior of expectation values
of open Z‐ and X‐strings under LED further confirms our findings, as both types of open strings stay at 0 in the spin‐
liquid regime. Here, the measured open strings are half of the Wilson loops. By considering the behavior of all types of
loops and strings—closed and open, Z and X—we find that there are four regimes (I‐IV), corresponding to four phases:
(I) Z paramagnet, (II) X paramagnet, (III) topological spin liquid (blue), and (IV) a phase which is consistent with strong
decoherence effects (gray). In our analysis, the progression from Regime (III) to (IV) appears to be smooth.
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5.7 Experimental Realization in Rydberg AtomArrays

Motivated by these exciting theoretical results and numerical demonstrations, we now show the use

of LED for characterization of topological order in a recent experimental realization of aZ2-spin

liquid on a 219-qubit programmable quantum simulator143. In the experiment, qubits are encoded

in ground states and n = 70 Rydberg states of neutral 87Rb atoms and placed in an array on the

links of a kagome lattice (Figure 5.8). This model maps onto a dimer model, where each Rydberg

atom can be viewed as a dimer covering the two adjacent vertices of the kagome lattice160: the Ryd-

berg blockade interaction between nearby atoms enforces a “dimer constraint” by preventing, with

high probability, any vertex from being covered by more than one dimer136.

This dimer model is predicted to support aZ2-topologically-ordered state of the resonating va-

lence bond (RVB) type, involving the equally-weighted superposition of all dimer coverings160,117,127.

In this model, Z-stabilizers are given by (−1) times the product of single-qubit Z-operators on the

edges touching a vertex, X-stabilizers are given by the product of off-diagonal operators supported

on the triangles bordering a hexagon (see Appendix B.6), and the RVB state forms a fixed-point

state. An e (resp.,m) anyon arises when a Z (X) stabilizer is violated137,154,163 ‡.

In the experiment, a topologically-ordered state is prepared by quasi-adiabatically adjusting

the detuning Δ and Rabi frequency Ω of a global laser drive143. The onset of topological order

is observed by studying the expectation values of Wilson loops and open strings59,23,66,160,143. A

state consistent with Z2 topological order emerges when using a quasi-adiabatic sweep from initial

Δ/Ω < 0 to a final value of Δ/Ω in the range 3.3 ≲ Δ/Ω ≲ 4.5. In practice, several factors

make quantitative characterization of such states difficult, as they cause the prepared state to differ

from the ideal fixed-point state for the dimer model. In particular, the Rydberg interaction Hamil-

‡The (−1) factor for Z-stabilizers ensures stabilizer expectation values of+1, because each vertex is
touched by exactly one dimer.
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tonian is only an approximation of the parent Hamiltonian of the fixed-point state §. Moreover, the

finite speed of the detuning ramp and experimental imperfections (e.g., off-resonant scattering, laser

phase noise, spontaneous emission events) also modify the experimentally created state. These fac-

tors correspond to both coherent and incoherent perturbations, similar to those considered in our

toric code simulations. As a result, while topological order can be discerned at modest length-scales,

the expectation values of large, bare Wilson loop observables have nearly vanishing signal for almost

all final values of Δ/Ω (Figure 5.8b,e).

To circumvent these imperfections, we measure LED loops on the experimentally prepared

states. Due to the limited experimental system size, it is not possible to consider loops which strictly

satisfy the limit where ξ � d � L, resulting in relatively small expectation values for the LED

loop operators. Nonetheless, we clearly observe a range of values of Δ/Ωwhere both Z- and X-

loops are amplified, which corresponds to the spin-liquid interval identified in Ref.143 (blue shaded

region in Figure 5.8). In particular, some of the largest loops within the system acquire non-zero

expectation values in this parameter regime. To further confirm our findings in this intermediate

system size setting, we examine the behavior of open Z- and X-strings under LED; upon consid-

ering the flow of all types of loop and string operators—closed and open, Z and X—we find that

there are four regimes (I-IV). Regimes I, II, and III correspond to the Z-paramagnet, X-paramagnet,

and spin-liquid regime, in agreement with the experimental paper143. We emphasize that our anal-

ysis of Regime III goes beyond that of143, showing non-trivial coherence in closed loops at signifi-

cantly longer length-scales. In Regime IV, our analysis appears to be consistent with a decoherence-

dominated disordered phase, instead of a valence-bond solid (VBS) phase, predicted for the ground

state. In particular, we find that the amplification of X-loops continuously decreases, without any

§For example, the 1/r6 interaction between Rydberg atoms gives rise to long-range tails in the interac-
tion Hamiltonian. These long-range tails also destabilize the spin-liquid ground state, which could cause a
first-order phase transition between regions (II) and (IV) in Figure 5.8. Nonetheless, a spin-liquid state can be
prepared by using finite ramp speeds, as was done in the experiments63,42,160.
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amplification of open Z-strings. This is analogous to the disordered part of the mixed-state phase

diagram (Figure 5.4c), which has a high density of dephasing (Z) errors.

These results demonstrate that our LEDmethod constitutes a promising approach to enhance

the detection and characterization of topological order, both theoretically and experimentally. In

particular, as experimental developments in quantum simulation and quantum information pro-

cessing develop over the next several years and decades, techniques such as LED can become in-

dispensable parts of quantum simulation toolboxes for understanding exotic states of entangled

quantummatter.
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Working hard is important, but there is something else that

matters even more: believing in yourself.

J. K. Rowling, Harry Potter and the Order of the Phoenix

6
Hardware-Efficient, Fault-Tolerant

Quantum Computation

Throughout human history, the specialization of labor has led to remarkable advances in

knowledge and productivity. Analogously, in quantum information, general-purpose quantum

error correction protocols can only be as efficient as the society in which every member has the same
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duties. Indeed, despite major efforts across different platforms, most general-purpose approaches

for error-corrected quantum computation are still out of reach even for the most advanced systems,

due to significant overhead in extra qubits and quantum gates. Motivated by these considerations,

we propose and analyze the specialized design of fault-tolerant quantum computation protocols

tailored to a quantum computer built from arrays of neutral Rydberg atoms, atoms in which one

electron is in an extremely excited state.

Inspired by recent experimental advances in quantum control of arrays exceeding 200 atoms, our

work provides the first comprehensive study of the relevant error channels in this system and iden-

tifies several decay mechanisms that are challenging to address using traditional, general-purpose

techniques. We exploit the specific structure of the error model to considerably simplify several

error correction requirements, and we make use of important features of neutral atoms to greatly

facilitate the key steps in our protocols. These approaches to error correction for neutral Rydberg

array quantum computation is dramatically more efficient than existing methods and could be im-

plemented in near-term experiments involving hundreds of programmable atoms. Our results thus

open the door towards large-scale fault-tolerant quantum computation using Rydberg atoms.

6.1 Introduction andMotivations

Neutral atom systems have recently emerged as a promising platform for quantum information pro-

cessing. While the exceptional coherence times of their ground states enable long-lived quantum

memories, fast, high-fidelity quantum operations can be achieved by individually addressing atoms

with laser pulses and coupling them to highly-excited Rydberg states84,109,136. Furthermore, large

numbers of individual neutral atoms can be deterministically arranged with arbitrary geometry in

two- and three-dimensional systems7,53,8,9. Recent experiments have demonstrated quantumma-

nipulation in large arrays of atoms for applications ranging from quantum computing to quantum
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simulations and quantummetrology12,104,94,111,105,65,89,88,124,143,16. Several latest advances allowing

for the dynamic reconfiguration of atoms have even led to realization of logical qubits encoded in

color, surface, or toric codes, which is a first step to performing quantum error correction (QEC) on

neutral atom platforms16.

While current experiments are already demonstrating a remarkable level of quantum control,

experimental imperfections such as Rydberg state decay will eventually limit the depth of acces-

sible quantum operations. To scale up the computation size, it is therefore essential to consider

QEC protocols122. In particular, such protocols should be fault-tolerant and protect against the

key sources of errors occurring within any of the computation, error detection, and encoding and

decoding stages. Multiple fault-tolerant protocols have been proposed for generic quantum plat-

forms147,92,64,175,38,37,131,35,39, but they do not address certain errors present in Rydberg atom se-

tups. Indeed, Rydberg-atomQEC seems to face a daunting challenge at first glance: Rydberg states

could decay into multiple other states, which not only results in leakage errors out of the compu-

tational space, but could also give rise to high-weight correlated errors from ensuing undesired

blockade effects. Motivated by these considerations, we investigate the effects of these intrinsic

errors. Remarkably, by utilizing the unique capabilities of Rydberg systems and the structure of

the error model, we can design hardware-efficient, fault-tolerant quantum computation (FTQC)

schemes that address these errors despite the aforementioned challenges (Figures 6.1 and 6.2). This

tailored FTQC approach can even be much more resource efficient than generic proposals116,36

(Tables 6.1 and 6.2), which often require a larger number of qubits and quantum operations with

smaller threshold error than what is achievable in near-term experiments to perform non-Clifford

logical operations, either directly176,37 or by using state distillation147,21. The high overhead associ-

ated with such protocols is why experimental demonstrations of QEC have thus far been limited to

only one or two logical qubits123,133,29,47,54.

In this work, we first provide a detailed understanding, from the QEC perspective, of the errors
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arising from the finite lifetime of the Rydberg state or from imperfections in Rydberg laser pulses.

We then show that nine atoms—seven data qubits and two ancilla qubits—are sufficient to encode

each logical qubit fault-tolerantly based on the seven-qubit Steane code150; we demonstrate how

a universal set of fault-tolerant quantum operations can be performed. For atomic species with

sufficiently large nuclear spin and high-fidelity ground-state operations, we show that quantum

computation with leading-order fault-tolerance can be achieved even using a simple three-atom

repetition code *. We find that both the seven-atom and three-atom codes can be implemented on

scalable geometries with atoms placed in a triangular lattice configuration (Figure 6.1a,c), allowing

for their demonstration and study in near-term experiments.

Our work provides an important advance over prior methods by introducing a novel and dis-

tinctly efficient approach to address the leakage of qubits out of the computational subspace. For

traditional QEC proposals, such leakage is one of the most difficult and costly types of errors to

detect and address, making it unfavorable to encode qubits in large multi-level systems such as neu-

tral atoms. Our method to address these leakage errors makes use of techniques based on optical

pumping, such that the multi-level structure of each atom can be utilized as part of the redundancy

required for QEC.While we focus on neutral atom-based quantum information processors, these

techniques are adaptable to many other hardware platforms—for example, they could also greatly

facilitate the correction of leakage-type errors in superconducting qubits or trapped ions. For the

Rydberg-atom systems we study, we design a method that even converts all leading-order errors to

Pauli-Z type errors (Figure 6.2), which then allows us to develop particularly efficient FTQC proto-

cols.

The chapter is organized as follows: we begin in Section 6.2 by outlining the key insights and

*The three-qubit repetition code cannot correct any Pauli-X errors, so it cannot be used for FTQC in
typical setups. However, because the error model for Rydberg-atom setups does not contain any Pauli-X
errors at the leading order (as shown in Section 6.3), the repetition code is applicable in these platforms. We
thus use the term “leading-order fault-tolerance” when describing our Ryd-3 protocol to emphasize this point
explicitly.
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Figure 6.1: Architecture for FTQC with Rydberg atoms. (a) Geometrical layout of atoms for FTQC using the
seven‐qubit encoding. Data (D, blue) and ancilla (A, pink) atoms are placed on the vertices of a triangular lattice, with
seven data atoms comprising a logical qubit (blue dotted hexagons). The dotted grey line indicates the Rydberg in‐
teraction range required. (b) Circuit illustrating our procedure to measure a stabilizer operator, X1X2X3X4, for the
seven‐qubit code supported on the four data atoms highlighted in (a). Optical pumping (light blue, OP) is performed
following every controlled‐phase gate (black) to correct for leakage into other ground states. Ancilla qubitA2 (darker
pink) measures the stabilizer eigenvalue, while ancilla qubit A1 (lighter pink) is used to detect and correct for Rydberg
leakage errors (red). In this way, all gate errors are converted to Pauli‐Z type errors (purple) and do not spread to other
qubits. (c) Geometrical layout for quantum computation with leading‐order fault‐tolerance using the three‐atom encod‐
ing. Data and ancilla atoms are placed on the vertices of a triangular lattice, with three data atoms comprising a logical
qubit (blue dotted triangles). In this case, two Rydberg states with different blockade radii,RB,1 andRB,2 (dark and light
grey, respectively) are required. (d) Our circuit for measuring a stabilizer operator, X1X2, of the repetition code, which is
supported on the two data atoms highlighted in (c). By combining a novel entangling pulse sequence with Rydberg leak‐
age correction and optical pumping, we implement a bias‐preserving CNOT gate (see Figure 6.5), allowing us to perform
QEC without introducing X or Y errors at any point in the computation.
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main results of this work. A detailed analysis of the error channels in the Rydberg system is pre-

sented in Section 6.3. Under this realistic error model, we design FTQC schemes based on the

seven-qubit Steane code in Section 6.4. Furthermore, by utilizing atomic species with high nuclear

spin, we develop an alternative, leading-order fault-tolerant protocol in Section 6.5 based on a sim-

ple repetition code. We then show in Section 6.6 how the key ingredients of our proposals can be

implemented in near-term experiments. Finally, we present conclusions in Section 6.7.

6.2 Overview ofMain Results

We consider neutral atoms in a static magnetic fieldB = Bzẑ. Due to the nonzero nuclear spin I,

the electronic ground state manifold consists of many sub-levels split by hyperfine coupling and a

finiteB field. These levels exhibit remarkably long lifetimes, making them particularly good candi-

dates for encoding qubits (or more generally, qudits) for quantum information processing. Further-

more, although neutral atoms in ground electronic states are effectively non-interacting, entangling

gates between nearby atoms can be performed by coupling one of the qubit states (e.g. |1〉) to a Ryd-

berg nS state |r〉with large n, which exhibits strong van der Waals interactions (Figure 6.3a). Under

certain conditions, these interactions can be interpreted effectively as a blockade constraint pro-

hibiting simultaneous Rydberg population within a blockade radiusRB. These can be leveraged to

perform, for example, fast multi-control, multi-target phase gatesR(C1,C2, ...,Ca;T1,T2, ...Tb)

(sometimes also referred to as “collective gates”), which are related to the standard CaZb gates upon

conjugating all control qubits Cj and the first target qubit T1 by Pauli-X gates84,83,105; this is achieved

by applying individually addressed, resonant π and 2π pulses between the qubit |1〉 state and the

Rydberg state (Figure 6.3b). Such an operation is also related to the gate CaNOTb by single-qubit

unitaries and has been demonstrated in recent experiments for small a, b105.

While this procedure provides an efficient scheme to entangle two or several atoms, for large-
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scale quantum computations, the finite lifetime of Rydberg states presents an important source

of error even if the rest of the experimental setup is perfect. This lifetime is determined by several

contributions. First, interactions with blackbody photons can induce transitions from the nS state

to nearby Rydberg n′P states of higher or lower energy; such errors are subsequently referred to as

blackbody radiation-induced (BBR) errors. Second, spontaneous emission of an optical frequency

photon can result in radiative decay (RD) to a low-lying P state, which will quickly relax into the

ground state manifold. In addition, if a multi-photon Rydberg excitation scheme is used for the

Rydberg pulses, another intrinsic source of error during Rydberg gates is photon scattering from an

intermediate state. These error channels are illustrated in Figure 6.2.

For the purposes of QEC, these errors can be formally described as follows (see Section 6.3): BBR

errors give rise to quantum jumps from the qubit |1〉 state to Rydberg P states (corresponding to a

leakage error), as well as Pauli-Z errors within the qubit manifold, while RD and intermediate state

scattering may also result in quantum jumps from |1〉 to the Rydberg nS state or other hyperfine

ground states. The relative error probabilities are determined by selection rules and branching ra-

tios. In addition to these intrinsic errors, we also study the errors in the experimental setup such as

Rydberg pulse imperfections or finite atomic temperature. We find that these experimental errors

fall within a subset of the RD error model and can therefore also be addressed using our techniques.

We note that, throughout this work, we assume the rotations within the hyperfine manifold have

much higher fidelity than the Rydberg pulses, as is typically the case. Such errors can also be sup-

pressed to high orders by using existing experimental methods such as composite pulse sequences or

by incorporating traditional QEC techniques such as concatenation.

6.2.1 Reduction to Pauli-Z errors

To protect against the errors mentioned above, three critical observations are used (see Figure 6.2).

First, we note that quantum jumps from |1〉 to Rydberg states associated with BBR can be detected
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Figure 6.3: Quantum computing with Rydberg atoms. (a) Rydberg blockade mechanism. Δ is the Rydberg laser
detuning, and the Rydberg interaction strengthU ∝ n11/r6, where n is the principal quantum number and r is the
atom separation. (b) Protocol for performing a multi‐qubit entangling Rydberg gateR(C1,C2, ...,Ca;T1,T2, ...Tb)
on a set of atoms which are all within one given blockade volume. Resonant π pulses |1〉 ↔ |r〉 are first applied to
each control qubit (red arrows), followed by 2π pulses on each target qubit (blue arrows). The control qubits are then
returned to the ground state manifold via the π pulses shown in orange. Labels on the arrows indicate the ordering of
pulses. This Rydberg gate is related to the more conventional controlled‐phase gateCaZb by conjugating all control
qubits and one target qubit by Pauli‐X operations, or by applying Pauli‐Z gates on both control and target qubits in the
special case of a = b = 1 (CZ = R(C1;T1)ZC1ZT1 ). It can also be used to implementC

aNOTb fromCaZb by
conjugating the target qubits by Hadamard gates. The Rydberg gateR(C1,C2, ...,Ca;T1,T2, ...Tb) is sometimes
referred to as a “collective gate.”

via the Rydberg blockade effect by using a nearby ancilla qubit, and subsequently converted to a

Pauli-Z type error by ejecting the Rydberg atom and replacing it with a fresh atom prepared in the

|1〉 state16. Second, quantum jumps from |1〉 to ground state sublevels outside the qubit subspace

can be corrected via optical pumping techniques. This is particularly efficient as it does not require

any qubit measurement for feed-forward corrections, unlike traditional proposals for correcting

leakage errors4. Third, for atomic species with large enough nuclear spin, dipole selection rules

prevent a stretched Rydberg state from decaying to certain ground state sublevels. By making use of

this multi-level structure of neutral atoms along with the high-fidelity manipulations of hyperfine

states, we can ensure that RD and intermediate state scattering errors do not result in |1〉 → |0〉

transitions, thereby eliminating X and Y type errors from the error model. This reduction of error
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2-qubit gates 3-qubit gates Ancillas
7-qubit flagged38 36 (48) 0 2
15-qubit flagged38 80 (112) 0 2

Ryd-7 24 (36) 0 2
Ryd-3 8 (16) 4 (8) 4

Table 6.1: Comparison of resource costs for leading-order fault-tolerant measurement of all stabilizers.
Numbers in parentheses indicate the maximum number of operations required in the unlikely scenario where an error is
detected. Details on how to obtain the gate counts for the Ryd‐7 and Ryd‐3 protocols can be found in Appendix C.8.

2-qubit gates 3-qubit gates Ancillas
Yoder, Takagi, and Chuang176 (CCZ) 162 21 72

Chao and Reichardt37 (CCZ) 1352 (1416) 84 4
Ryd-7 (CCZ) 0 (78) 27 (29) 2
Ryd-3 (CCZ) 0 (18) 27 (27) 4
Ryd-3 (H) 20 (28) 53 (57) 10

Table 6.2: Comparison of resource costs for the highest-cost fault-tolerant logical operation. CCZ de‐
notes the three‐qubit controlled‐controlled‐phase gate, whileH denotes the single‐qubit Hadamard gate. Numbers in
parentheses indicate the maximum number of operations required in the unlikely scenario where an error is detected.
For the Rydberg protocols, the gate counts presented assume a blockade radius of 3d, where d is the nearest‐neighbor
lattice spacing. Derivations of the gate counts for the Ryd‐7 and Ryd‐3 protocols can be found in Appendix C.8, while
details on how to obtain the blockade radius requirement can be found in Appendix C.9.

types can significantly alleviate the resource requirement for FTQC.

6.2.2 Fault-tolerant protocols

We now describe two FTQC protocols to address these intrinsic errors in neutral Rydberg atom

platforms. The first is based on the seven-qubit Steane code150, while the second uses the three-

qubit repetition code; the latter is more compact and efficient, but has additional experimental

requirements such as control over multiple Rydberg states and more complex encoding of logi-

cal operations. To realize the seven-qubit code (Ryd-7), we notice that logical state preparation,

stabilizer measurements, and a universal set of logical gates (Hadamard and Toffoli144) can be im-

plemented using only controlled-phase (CZ) or controlled-controlled-phase (CCZ) gates, up to

89



single-qubit unitaries at the beginning and end of the operation. For example, while the stabilizer

measurements are typically presented as a sequence of CNOT gates between the data atoms and

an ancilla atom, these CNOT gates can be constructed by conjugating a CZ gate with Hadamard

gates on the target qubit. By mapping each Rydberg gate error to a Pauli-Z error, we therefore en-

sure that it will commute with all subsequent entangling gates in the logical operation or stabilizer

measurement, so it does not spread to other qubits (Figure 6.1b). The resulting single-qubit X or Z

error can be corrected by the seven-qubit code in a subsequent round of QEC. This eliminates the

need for “flag qubits,” which are otherwise necessary to prevent spreading of errors as discussed in

Refs.38,37. To further reduce resource costs for experimental implementation, we make additional

use of the structure of the Rydberg error model, stabilizer measurement circuits, and logical opera-

tions of the seven-qubit code. For instance, one of our key findings is that leakage errors into other

Rydberg states do not need to be corrected after every Rydberg gate, but can be postponed to the

end of a stabilizer measurement (e.g. Figure 6.1b). This allows us to minimize the number of inter-

mediate measurements necessary for each FTQC component, which is typically a limiting factor in

state-of-the-art neutral atom experiments.

The simplified error model introduced by conversion of all Rydberg gate errors to Pauli-Z er-

rors motivates us to use the three-qubit repetition code instead of the seven-qubit code to design a

leading-order fault-tolerant protocol (Ryd-3). In this case, the stabilizer measurement circuits are

also comprised of CNOT gates on data atoms controlled by the ancilla. However, the implemen-

tation of each CNOTmust be modified: when a CZ gate is conjugated by Hadamard gates as in

Figure 6.1b, a Pauli-Z type error that occurs during the CZ gate will be converted to a Pauli-X error

after the Hadamard. Such an error can no longer be corrected by the repetition code. Additional

errors, such as radiative decay of a control qubit prior to manipulation of the target qubit, can lead

to error spreading and correlated errors.

These errors can be addressed via a protocol to directly implement CNOT gates in a bias-preserving
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way, such that these implementations will not generate any Pauli-X and Y errors to leading order

(Figures 6.5 and 6.6). Our protocol makes use of the rich multilevel structure of atoms with large

nuclear spin (I ≥ 5/2, e.g. 85Rb, 133Cs, 87Sr, …), as well as additional Rydberg states for shelving.

Furthermore, we leverage the fact that pulses between certain (i.e. hyperfine) levels can be performed

with very high fidelity, so that leading-order errors involve only Rydberg state decay or Rydberg

pulse imperfections. This assumption is particularly important, as Ref.68 shows a no-go theorem

stating that a bias-preserving CNOT gate cannot be implemented in any qudit system with a finite

number of levels without such structure in the error model. To circumvent this, our pulse sequence

directly implements a hyperfine Pauli-X gate on the target qubit only if a nearby Rydberg atom is

present (without the need for subsequent Hadamard gates), and we show that errors during this

sequence can all be mapped to Pauli-Z errors. Additionally, correlated errors due to control-atom

decay can be prevented by using multiple control atoms, such that if one atom decays, the remaining

atom(s) still ensure proper gate operation on the target atom. This bias-preserving CNOT protocol

can be directly generalized to implement a bias-preserving Toffoli operation, enabling a leading-

order fault-tolerant implementation of each operation of the three-atom repetition code. Through-

out the chapter, we use the term “leading-order fault-tolerance” in referring to the Ryd-3 protocol

as our framework does not inherently address all single-qubit errors, but existing experimental tech-

niques such as composite pulse sequences can be used in conjunction with our protocol to suppress

such errors to higher orders (see Section 6.3.4).

Upon comparing our protocols with existing, general-purpose FTQC proposals, we find that the

number of required physical qubits and gates for both of our approaches is dramatically reduced

(Tables 6.1, 6.2). For example, as seen in Table 6.2, performing the highest-cost operation from

our logical gate set, our Ryd-7 protocol requires only 2 ancilla qubits compared with 72 ancillas

in Yoder, Takagi, and Chuang176. Likewise, Ryd-7 uses at most 60 2-qubit gates (when errors are

detected) to perform this logical operation, instead of 1416 gates as in Chao and Reichardt37. Such
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a significant reduction is possible for our protocols because we leverage both the special structure of

the error model and the unique capabilities of Rydberg setups.

Several aspects of the comparison above should be considered. Specifically, we note that certain

single-qubit errors addressed in Refs.176,37 cannot be corrected in our protocols (e.g. Pauli-X errors

arising from rotations in the hyperfine manifold). However, we emphasize that Refs.176,37 also did

not consider additional types of errors such as leakage errors which are corrected by our protocol.

Indeed, incorporating leakage correction would further increase the resource cost for the earlier

proposals considerably. As such, Tables 6.1, 6.2 must be interpreted as a comparison of the cost

ensuring fault-tolerance against the leading-order sources of error in a given setup. In the case of

Refs.176,37, these errors include all single-qubit Pauli errors but not leakage errors, while in Rydberg

systems, one must address leakage errors at leading order but can neglect certain single-qubit errors.

6.2.3 Towards experimental implementation

For scalable implementation of our FTQC protocols, it is important to consider the geometrical

placement of atoms. In addition, because Rydberg entangling gates can only be implemented be-

tween atoms within the blockade radiusRB, each protocol defines a minimum value ofRB (in units

of d, which is the smallest atom-atom separation). We find that both the Ryd-7 and Ryd-3 proto-

cols can be implemented naturally when the atoms are placed on the vertices of a triangular lattice as

shown in Figure 6.1a,c. For both protocols, the required Rydberg gates can be implemented when

the blockade radius (RB for Ryd-7, or the larger radiusRB,1 for Ryd-3) is greater than 3d, an inter-

action range which has already been demonstrated in recent experiments12. This requirement can

be further reduced in both cases if it is possible to move atoms in between certain operations while

preserving the coherence of hyperfine ground states, a capability which has been recently realized16.

Each component of our FTQC schemes can be implemented in near-term experiments. For neu-

tral alkali-atom systems, recent experiments have already achieved high-fidelity control and entangle-
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ment leading to remarkable demonstrations of quantum simulations and computations104,105,136.

The near-deterministic loading of atoms into lattice structures as shown in Figure 6.1 has already

been realized in two and three dimensions7,53,8,9.

To performQEC in our protocol, an important requirement is the ability to measure individual

qubits and/or detect Rydberg population while preserving coherence in nearby atoms, such that

feed-forward correction can be performed. Several approaches for performing fast measurements

of individual qubit states in selected atoms can be realized. For example, these selected atoms can

be moved into a “readout zone” where their qubit state can be rapidly detected via fast, resonant

photon scattering on a cycling transition. Alternatively, one could use arrays with two species (such

as two isotopes of the same atom or two different atomic species), where the data atoms are en-

coded in one atomic species and ancilla atoms are encoded in another species that can be easily mea-

sured179,148. Finally, the fast detection of Rydberg states has been recently demonstrated in small

atomic ensembles using Rydberg electromagnetically induced transparency (EIT)174. These could

be integrated with the tweezer array platforms currently used for quantum information processing.

In these EIT-based procedures, the Rydberg blockade effect translates to clean signatures in the ab-

sorption spectrum, and the collectively enhanced Rabi frequency allows for ultrafast detection on a

microsecond time scale174.

While we focus primarily on neutral alkali atoms in this work, significant developments have

also been made using alkaline-earth atoms for Rydberg-based quantum computations110,170. The

clock transition in these atoms allows for high-fidelity qubit encodings, and the large nuclear spin in

fermionic species is particularly advantageous for our protocols, so we conclude by discussing how

our FTQC schemes can be generalized and applied to these experiments. More detailed experimen-

tal considerations are discussed in Section 6.6.

93



6.3 Error Channels in Rydberg Atoms

In this section, we analyze dominant error mechanisms for quantum operations involving Ryd-

berg a6.2). Because the predominant errors in single-qubit operations can be suppressed to high

orders via composite pulse sequences158,16, we may primarily focus on errors occurring during

Rydberg-mediated entangling operations. The decay channels of the Rydberg states include black-

body radiation-induced (BBR) transitions and spontaneous radiative decay (RD) transitions to

lower-lying states14. Depending on the specific choice of atomic species, another source of error for

Rydberg gates can be the scattering from an intermediate state if a two- or multi-photon excitation

scheme is used; this is the case for excitation of 87Rb or 85Rb to Rydberg nS states12. We will as-

sume these effects are the predominant source of errors that occur during the entangling operations,

and we consider contributions to the error model to leading order in the total error probability.

6.3.1 Error modeling for BBR transitions

When a BBR transition occurs on one of the atoms during an entangling gate, it signals that this

atom has started in the |1〉 state, since |0〉 is not coupled to |r〉. Such a procedure corresponds to a

‘quantum jump’ as discussed in, for example, Ref.31. The resulting state will predominantly be a

nearby Rydberg state |r′〉 compatible with dipole selection rules. Due to the relatively long lifetimes

of Rydberg states, we may assume that the atom will not decay again within the timescale of several

Rydberg gate operations, as these would be higher-order processes. In this case, because the states

|r′〉 are not de-excited in the ensuing operations, one serious consequence of BBR quantum jumps

is that the remaining Rydberg operations on atoms within the interaction range will be affected by

blockade, potentially resulting in multiple, correlated Pauli-Z type errors. Less intuitively, even if

a quantum jump does not occur during the gate operation, the atom’s state is still modified due to

evolution under a non-Hermitian Hamiltonian: it will be more likely that the atom started out in
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the |0〉 state. More details on the theory of quantum jumps can be found in Ref.31.

For the purposes of QEC, it is useful to express the decay channels in the Kraus operator form,

where time evolution of a density operator is given by ρ 7→
∑

α MαρM†
α and theKraus operators Mα

satisfy the completeness relation
∑

α M
†
αMα = 1129. For the BBR error model, there will be one

Kraus operator

Mr′ ∝ |r′〉〈1| (6.1)

for each possible final Rydberg state |r′〉, where the proportionality constant is determined by the

BBR transition rate from |r〉 to |r′〉 (see Appendix C.1). In the absence of quantum jumps, the

evolution is given by the Kraus map

M0 =
√
1− P|1〉〈1|+

∑
|n⟩≠|1⟩

|n〉〈n|, (6.2)

where P is the probability for a BBR transition to occur.

During entangling operations, these BBR errors can give rise to correlated errors. For example,

in the Rydberg gates shown in Figure 6.3, a target qubit can only incur a BBR error if the control

qubits were all in the |0〉 state. Thus, for the CaZb gates shown in Figure 6.3, the possible correlated

errors may involve one of the Kraus mapsMr′ orM0 occurring on one of the qubits, together with

Z-type errors on some or all of the remaining qubits involved in that gate.

The rate of BBR transitions from a given Rydberg state nL to another specific state n′L′ can be

calculated from the Planck distribution of photons at the given temperature T and the Einstein

coefficient for the corresponding transition (see Ref.14). For 87Rb atoms excited to the 70SRydberg

state, there are four dominant final states associated to these BBR errors (see Appendix C.1); these

are illustrated in Figure 6.2 as red arrows. The total rate of BBR transitions summed over all possible
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final states is46

ΓBBR =
4kBT
3c3n2eff

, (6.3)

where kB is Boltzmann’s constant, c is the speed of light, and neff is the effective principal quantum

number of the Rydberg state which determines its energy136: EnL ∝ −1/(2n2eff). We note that the

overall rate of BBR transitions can be suppressed by operating at higher neff or operating at cryo-

genic temperatures.

6.3.2 Error modeling for RD transitions

The spontaneous emission events corresponding to RD transitions can be modeled as quantum

jumps involving the emission of an optical-wavelength photon. Unlike BBR, however, the resulting

state will be a low-lying P state, which will quickly decay back into the ground state manifold. For

the stretched Rydberg state of 87Rb, the RD transitions are almost entirely two- or four-photon

decay processes to one of the five states in the ground state manifold indicated by light blue arrows

in Figure 6.2 (see Appendix C.1 for the precise branching ratios). For the purpose of QEC, we will

separately consider the cases of decay into the qubit |1〉 state and decay into one of the other ground

state sub-levels. Because the spontaneous emission event can occur anytime during the Rydberg

laser pulse, the first type of decay can result in a final state which is a superposition of |1〉 and |r〉.

Upon averaging over all possible decay times during the entire pulse (see Appendix C.2), one finds

that these errors can be modeled using a combination of Z-type errors and leakage into the |r〉 state,

with the Kraus operators

M0 = |r〉〈r|+ α|1〉〈1|+ β|0〉〈0|,

Mr ∝ |r〉〈1|, M1 ∝ |1〉〈1|, M2 ∝ |0〉〈0|,
(6.4)
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where α, β, and the proportionality constants depend on the probability for the atom to incur an

RD transition to the |1〉 state and the specific Rydberg pulse being performed.

At the same time, decay to one of the other ground state sublevels shown in Figure 6.2 leads to

leakage out of the computational subspace as in the traditional QEC setting (without influencing

Rydberg operations on neighboring atoms). That is, for each hyperfine state |f〉 6= |1〉, we have a

Kraus operator

Mf ∝ |f〉〈1|, (6.5)

where the proportionality constant depends on the probability for an RD transition and the branch-

ing ratio from |r〉 to the specific state |f〉 (see Appendix C.1). Note that due to dipole selection rules,

the number of RD channels with non-negligible final state probability is minimized by choosing to

couple the |1〉 state to a so-called “stretched Rydberg state” for entangling gates †. In particular, in

this analysis, the decay into the qubit |0〉 state is negligible to leading order. Such an event, corre-

sponding to the Kraus operatorM ∝ |0〉〈1| (or equivalently, Pauli-X and Y errors), is considered

when we discuss methods to suppress residual errors in our protocols.

As in the BBR case, the absence of quantum jumps results in the atom’s population being shifted

toward the |0〉 state, which can be modeled using Pauli-Z errors. RD errors can also give rise to

correlated errors when they occur during the primitive entangling gates illustrated in Figure 6.3. In

this case, possible correlated errors may involve one of the aforementioned Kraus maps occurring on

one of the qubits, together with Pauli-Z and/or |r〉〈1| errors on some or all of the remaining qubits

involved in that gate.

While as noted above, the rate of BBR transitions depends upon the temperature T and neff, the

total RD rate is temperature-independent. Due to reduced overlap between the atomic orbitals,

it scales as Γ0 ∼ 1/n3eff
107. Comparing this with the scaling for the BBR decay rate, we see that

†If, for example, we had instead chosen a Rydberg state withmJ + mI = 0, there would be several addi-
tional final states in each case.
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while both error rates decrease for larger n, BBR processes dominate for large n, and RD processes

dominate for smaller n or very low T.

6.3.3 Errors from intermediate state scattering

When multi-photon excitation is used to couple the |1〉 state to the Rydberg state, scattering from

an intermediate state can give rise to another important intrinsic source of error. By using σ+-

polarized light in the first step of the excitation and choosing the intermediate state to be a P3/2

state with the lowest possible n, the intermediate state scattering channels form a subset of the RD

channels—they can only result in decay into the qubit |1〉 state or two other hyperfine ground states,

as shown in grey in Figure 6.2 ‡. Thus, whenever intermediate state scattering is not explicitly men-

tioned in the following sections, we will assume it has been incorporated with RD errors. We also

note that this error rate can be suppressed by increasing intermediate laser detuning in the multi-

photon transition, while also increasing laser power.

6.3.4 Experimental imperfections

While BBR, RD, and intermediate state scattering processes constitute the dominant errors for

Rydberg-mediated collective gates, it is also important to consider other forms of error, such as tech-

nical imperfections in the experimental setup. As discussed in Refs.12,104,16, the most significant

errors of this kind are atom loss and fluctuations in laser phase, intensity, and frequency. The Ryd-

berg laser fluctuations can all be modeled using Pauli-Z errors and leakage into the |r〉 state, so these

errors can be addressed together with the other errors discussed above. Finite atomic temperature,

resulting in velocity spread and Doppler broadening on the Rydberg transition104, likewise leads to

‡If an intermediate state with higher n is used, such as 6P3/2, this is still true to leading order; however, a
(highly improbable) four-photon process could potentially lead to mixing between the qubit states |1〉 and
|0〉.
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Pauli-Z errors and leakage into the |r〉 state. Temperature-induced positional spread causes similar

errors, and due to the robustness of the blockade-based gate, these errors can even be rendered neg-

ligible with sufficiently large interaction strengths105. On the other hand, atom loss forms a more

complicated version of a leakage error (called erasure in the quantum information literature64).

However, as discussed in Appendix C.3, we find that such errors can also be addressed efficiently in

the present framework. In certain cases, the special properties of these errors can be further lever-

aged to improve QEC efficiency, as done in the recent proposal of Ref.173.

Experimental imperfections can also affect the hyperfine qubits used for storing quantum in-

formation and performing single-qubit gates; however, these primarily result in Pauli-Z errors and

leakage to other hyperfine states, which group together with the error types described above. More-

over, these tend to be significantly smaller sources of error than the two-qubit gates16. By choosing

a magnetically insensitive transition for our qubit states, we eliminate the leading order errors arising

frommagnetic field fluctuations. However, Z-type dephasing errors can still arise from the differ-

ential light shift from the optical trap. Finite atomic temperature, fluctuating tweezer power, and

atom heating can thus cause dephasing, although these can be alleviated to achieve qubit coherence

times T2 ∼ 1 s by applying standard dynamical decoupling sequences16. Leakage to other hyperfine

mF states can also occur due to so-called Raman scattering from the tweezer light, but these effects

can be greatly suppressed to timescales> 10 s by sufficiently detuning the tweezer light16. Since

our qubit states are separated by ΔmF = 2 (a nuclear-spin-flip transition), bit-flip X and Y error

rates from tweezer-induced scattering are even smaller. Finally, temperature-induced Doppler ef-

fects, which could in principle result in Z-type errors, are negligible since the qubit transition is of

microwave-frequency, and microwave phase stability can be exceptional on the Raman laser used for

single-qubit manipulations.

At the same time, as noted earlier, certain experimental imperfections associated with the hyper-

fine rotations are not directly corrected with our protocol, but can be minimized or suppressed via
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other mechanisms such as composite pulse sequences. For example, the primary source of single-

qubit gate errors in recent experiments involves laser amplitude drifts or pulse miscalibrations,

which can result in X,Y, and Z-type errors16. However, these coherent errors can be significantly

suppressed by using composite pulse sequences, as done in Ref.16: in particular, the BB1 pulse se-

quence suppresses pulse amplitude errors to sixth order158. On the other hand, the error rates as-

sociated with phase noise in single-qubit gates are typically much smaller: for example, the phase

noise in 171Yb+ hyperfine qubits has been shown to limit coherence to order 5000 seconds168. Al-

though other sources of frequency flucutations result in a T∗
2 of approximately 4 ms for the Rb

qubit of Ref.16, thereby inducing pulse frequency errors, these errors are strongly suppressed to

second-order due to the MHz-scale Raman Rabi frequencies, and they can be further suppressed

with improved cooling and microwave source stability. Furthermore, they can be made completely

negligible by using appropriate composite pulse sequences158. Finally, incoherent scattering from

the Raman beams used for single-qubit rotations can also cause leakage and X,Y-type errors, which

can be on the 10−5 level16 for far-detuned Raman beams used for electron-spin-flip transitions but

may be higher for nuclear-spin-flip transitions as used for the qubit states here. These remaining hy-

perfine qubit error rates are significantly smaller than the primary sources of error considered, and

they can be further corrected via concatenation of additional error correction codes.

6.3.5 Summary of error channels

We have shown that the multi-level nature of neutral atoms gives rise to various complexities in the

error model, including a large number of decay channels and the possibility for Rydberg leakage

errors to influence many future operations, resulting in high-weight correlated errors. Despite these

complications, one important feature of our error model makes it substantially simpler than the

set of all Pauli errors studied in more generic setups—no Pauli-X or Y-type errors are introduced

during our Rydberg gates. Indeed, in the following sections, we will show how all the additional
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leakage errors and correlated errors in our error model can be converted into Z-type errors, and we

use this to design FTQC protocols with substantially reduced resource costs. This reduction to

Pauli-Z errors can be found in Sections 6.4.1, 6.4.2 for the seven-qubit code and Section 6.5.1 for

the repetition code.

6.4 FTQCwith the Seven-Qubit Steane Code

Having established the error model for the Rydberg operations, we now proceed to develop fault-

tolerant schemes to detect and correct these errors and perform a universal set of logical operations.

The key concept for this construction is the ability to convert all errors described in the previous

section into Pauli-Z type errors by introducing ancilla qubits and using the blockade effect, dipole

selection rules, and optical pumping (see Figure 6.2). We begin by demonstrating the protocol when

only BBR errors are significant (i.e. in the limit of higher Rydberg principal quantum number n),

as the error model and QECmechanisms are simpler to understand in this case. The universal gate

set we develop comprises a logical Hadamard gate and a logical controlled-controlled-phase (CCZ)

or Toffoli gate144. We then describe the more general case involving both BBR and RD errors. Sub-

sequently, we compare the resource cost of our protocol against other fault-tolerant computation

schemes and discuss considerations for scalable computation. The final scheme we present in this

section is referred to as Ryd-7. Throughout this section, we will use qubits encoded in 87Rb as a

concrete example to illustrate our protocols.

While various equivalent definitions of FTQC have been given in the literature for traditional

error models, to accommodate the possibility of Rydberg leakage errors—that is, any Rydberg pop-

ulation remaining after the gate operation—we must use the following, stricter one:

Definition 7. A distance-dQEC code is fault-tolerant if after any round of error detection and

correction, to order (ptot)t, at most t single-qubit Pauli errors are present, where t =
⌊d−1

2
⌋
and
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ptot is the sum of all error probabilities. In addition, no Rydberg population can be present after any

round of error detection and correction.

The final requirement is important because any remnant Rydberg population could blockade

future Rydberg gates.

In the following, we will examine the case of code distance d = 3 and ptot ∼ O ((ΓBBR + Γ0)/Ω) .

Our QEC proposal has the following properties: to leading order in ptot,

1. Code states can be prepared with at most a single physical qubit error, without leaving any

final Rydberg state population.

2. After each round of error detection and correction, there is at most a single physical qubit

error per logical qubit, and there is no Rydberg state population.

3. Each logical gate introduces at most a single physical qubit error per involved logical qubit,

without leaving any final Rydberg state population.

It is straightforward to show that any distance-3 code satisfying the above properties is fault-tolerant.

Throughout the rest of the chapter, we will use the term data qubit to refer to physical qubits

used to encode a logical qubit, and ancilla qubit for physical qubits which are used to perform stabi-

lizer measurements or detect errors.
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6.4.1 FTQCwith BBR errors

Qubit encoding

Our quantum code is based on the seven-qubit Steane code, introduced in Chapter 3, which uses a

logical state encoding derived from classical binary Hamming codes150:

|0〉L =
1

2
√
2
(|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |0111100〉+ |1101001〉)
(6.6)

|1〉L =
1

2
√
2
(|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉).
(6.7)

The stabilizer operators for this code are

g1 = IIIXXXX g2 = IXXIIXX g3 = XIXIXIX

g4 = IIIZZZZ g5 = IZZIIZZ g6 = ZIZIZIZ. (6.8)

In Equation (6.8) and the rest of the chapter when appropriate, we omit tensor product symbols

and qubit indices and assume that the jth operator in each product acts on qubit j. Measurements of

the stabilizers g1, ..., g6 allow for unique identification and correction of single-qubit X and Z errors.

For instance, the absence of any error corresponds to all stabilizers gj = +1, and a Z error on the first

qubit would be detected by g3 = −1 and gj = +1 for all j 6= 3. The error can then be corrected via

an appropriate single-qubit gate.
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Error detection and correction

To fault-tolerantly detect and correct for the errors associated with BBR events, we must be able to

address both Rydberg leakage and Pauli-Z errors. For the former case, even though leakage errors

in traditional QEC settings can be particularly difficult to detect and correct, the particular form

of leakage caused by BBR errors make themmuch easier to identify—we can use an ancilla and the

blockade effect to detect the leaked Rydberg population. Specifically, we prepare a nearby ancilla

qubit in the state |+〉 = 1√
2(|0〉 + |1〉) and apply a 2π Rydberg pulse to detect whether there is

another Rydberg atom within the blockade radius. Due to the blockade effect, the ancilla will be in

the |+〉 (respectively, |−〉) state if nearby Rydberg population is (is not) present.

Once detected, such errors can be easily converted to atom loss errors or Z-type errors. To con-

vert the error to an atom loss error, we notice that the Rydberg atom naturally expels itself due to

the anti-trapping potential of the tweezer16, and can also be directly ejected in∼ 100 ns by puls-

ing a weak, ionizing electric field (∼ 10 V/cm45,10,173) which removes the ion and electron. The

exact location of the ejected atom can be determined by following the atom loss protocol outlined

in Appendix C.3 and Figure C.2; subsequently, the error can be corrected by replacing the ejected

atom with a fresh atom prepared in the |1〉 state16 (thereby converting it to a Z-type error) and ap-

plying another round of QEC. To reduce the need for applying the atom loss correction protocol,

one could add a preventative step after every entangling gate which incoherently re-pumps any rem-

nant population in several most probable Rydberg states into the qubit |1〉 state. This procedure,

along with more details on the conversion of Rydberg population errors, is further discussed in Ap-

pendix C.4.

For fault-tolerant error detection and correction, it is important to note that the ancilla used to

probe for Rydberg population may also incur a BBR error. This can be resolved by repeating the

detection protocol upon finding a BBR error and also using a multi-step measurement procedure
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for the ancilla qubit; details are given in Appendix C.5. Such a protocol will be assumed in all future

sections when we use an ancilla to detect for Rydberg population.

To fault-tolerantly detect and correct for Pauli errors, we must measure the stabilizers (6.8) in a

manner robust against errors that may occur during the detection procedure. The stabilizers for this

seven-qubit code are either products of Pauli-X operators or products of Pauli-Z operators, since

the Steane code is a CSS code64. The traditional (non-fault-tolerant) way to measure a product of

four Pauli-X operators (i.e. stabilizers g1, g2, or g3) uses four controlled-phase gates conjugated by

Hadamards (Figure 6.1b, black parts). Since Rydberg gate errors can occur during this protocol, we

utilize a second ancilla qubit to detect for BBR errors after each entangling operation and convert

them to Z-type errors when detected.

The Z errors that occur during a Rydberg gate (or result from conversion of a BBR error) com-

mute with the remaining CZ operations. Thus, the only errors that can occur during a round of

stabilizer measurements, to first order in ptot, consist of a Pauli error acting on the ancilla and a Pauli

error on one of the data qubits (Figure 6.1b). By resetting the ancilla and repeating the measure-

ment protocol when a−1 measurement outcome is obtained, we can eliminate the effect of the

error on the ancilla qubit. An analogous method can be used for the Z stabilizers. In this way, after

each round of stabilizer measurements, the correct stabilizer eigenvalues can be obtained to leading

order in ptot, while introducing at most one physical qubit X or Z error.

While we have presented the fault-tolerant stabilizer measurement protocol in the simplest form

where Rydberg state detection is performed after every physical gate, this is in fact not necessary.

Indeed, if we postpone all such detection operations to the end of a circuit which measures the sta-

bilizer XαXβXγXδ (where Rydberg gates are applied to data atoms in the order α, β, γ, δ), the only

possible correlated errors that can arise are XβXγXδ, XγXδ, or Xδ, corresponding to BBR transitions

on data atoms β, γ, or δ, respectively. For the stabilizers of Eq. (6.8), these errors will all give rise to

distinct error syndromes upon measuring Z⊗4 stabilizers and can thus be corrected (see Appendix
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C.6). This can substantially reduce the number of measurements required to implement our pro-

tocol, making it more feasible for near-term experiments. A similar procedure can be applied to

measure the Z⊗4 stabilizers.

Logical Operations

Logical Hadamard, Paulis, and S gate. One particular advantage of the Steane code is the transver-

sality of the logical Hadamard, Pauli, and S = diag(1, i) gates150. Specifically, the logical Hadamard

simply consists of a Hadamard on each physical qubit:

HL = ⊗7
j=1Hj. (6.9)

These operations can be performed without ever populating the Rydberg state, and hence without

introducing Rydberg gate errors. Similar decompositions exist for the S gate and the Pauli gates X,

Y, and Z.

Logical controlled-phase gate. The controlled-phase gate in the Steane code is also transver-

sal150:

CZAB =

7⊗
jA=jB=1

CZ(jA, jB). (6.10)

We can thus implement a logical controlled-phase operation by performing only seven physical

controlled-phase operations and probing for BBR errors in between each physical controlled-phase

gate (to convert them to Z-type errors). This eliminates the possibility of correlated multi-qubit

errors within a single logical qubit.

Logical Toffoli gate. To implement the Toffoli gate fault-tolerantly and complete our uni-

versal gate set, we implement the logical CCZ gate where the target qubit has been conjugated by

Hadamard gates. While this gate is not transversal in the Steane code, it may still be decomposed
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into a product of physical CCZ gates in a round-robin fashion176 (see Appendix C.10 for a deriva-

tion):

CCZABC =
∏

jA,kB,lC∈{1,2,3}

CCZ(jA, kB, lC), (6.11)

so that a logical CCZ operation can be implemented using 27 physical CCZ operations. In the Ryd-

berg setup, this is implemented with the three-qubit Rydberg gate

R(jA, kB; lC) = diag(1,−1,−1,−1,−1,−1,−1,−1) (6.12)

and conjugating all involved data qubits by Pauli-X. To avoid propagation of correlated errors re-

sulting from an input X error which does not commute with these Rydberg gates, we begin by

fault-tolerantly measuring all the Z⊗4 stabilizers, and correcting any detected errors; it is simple

to verify that this protocol can only result in single-qubit Z errors. This can also be achieved in a

more resource-efficient manner by requiring that the stabilizer measurements immediately preced-

ing every logical CCZ gate be done in a way which measures all Z⊗4 stabilizers last. Furthermore,

Rydberg population detection (followed by conversion to Z-type errors, if necessary) is performed

after every Rydberg gate, but stabilizers do not need to be measured until the very end; this is be-

cause only Z errors occur during the gate operations. In this way, the logical CCZ satisfies the fault-

tolerance property.

Although the physical implementation of the CCZ gate is not transversal, the physical gates may

be reordered as they all commute with each other. In doing so, we can eliminate some but not all of

the intermediate Rydberg population detection steps, to reduce the total number of measurement

operations as we did for the fault-tolerant stabilizer measurements. Specifically, we group the three-

qubit physical Rydberg gates of the protocol into nine groups of three, G1, ...,G9, so that each phys-

ical qubit jA, kB, lC ∈ {1, 2, 3} is used in every group. One example of such a grouping G1, ...,G9
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G1 G2 G3 G4 G5

G6 G7 G8 G9

Figure 6.4: Reordering of physical gates in performing the logical CCZ operation. For each logical qubit,
only the first three data qubits are shown, since the other data qubits are not involved in the logical gate. Within each
group Gi, the Rydberg gatesR(a, b; c) are ordered by increasing index of the physical control qubit a (i.e. the data qubit
of A involved in the gate).

is shown in Figure 6.4. With this reordering, detection for Rydberg leakage only needs to be per-

formed after each group Gi. This is because a Rydberg leakage error can only result in the blockad-

ing of the last two, the last, or no Rydberg gates within a group Gi, and these cases correspond to

disjoint possible sets of stabilizer eigenvalues (g2, g3) for the three logical qubits (see Appendix C.6).

The Hadamard and CCZ gates together form a universal gate set for quantum computation144,

so we have demonstrated a scheme to construct any quantum operation on the code space fault-

tolerantly against BBR errors.

Logical state preparation

Finally, we show that we can prepare the logical |0〉L state in a fault-tolerant manner. The most

straightforward preparation of this state uses Steane’s Latin rectangle encoding method, whose cir-

cuit is shown in Figure 6.5150. In the Rydberg setup, we replace controlled-NOT gates by Rydberg

controlled-phase gates with target qubit conjugated by Hadamard gates. Because the Z errors asso-
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Figure 6.5: Protocol to prepare the logical |0〉L state for the Steane code.

ciated with Rydberg gates commute with controlled-phase operations, to leading order in ptot, there

will be at most one Pauli-Z error among the three data qubits initially in the |+〉 state, and at most

one Pauli-X error among the four data qubits initially in the |0〉 state. Although this could be a two-

qubit error, it is correctable because the Steane code identifies and corrects X and Z errors separately.

In this procedure, we have assumed we detect for Rydberg population arising from BBR errors after

each physical entangling gate and convert these errors to Z errors as necessary. In this way, by apply-

ing one round of stabilizer measurements and error correction, we will obtain (to leading order in

ptot) a logical |0〉L state with a Pauli error on at most one physical qubit.

6.4.2 FTQCwith BBR and RD errors

To address RD errors and intermediate state scattering, we must consider two new classes of leakage

errors following the discussion of Section 6.3: (1) leakage into the original Rydberg state |r〉 and (2)

leakage into the other hyperfine ground states, which we will also call “non-Rydberg leakage.” The

first class of errors is similar to the quantum jumps in the BBR error model, and can be detected and
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5P3/2

1
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|0〉
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Figure 6.6: Illustration of the optical pumping protocol to convert non-Rydberg leakage errors to Pauli-
Z errors in a 87Rb atom. First, we apply π pulses |1〉 ↔ |F = 2,mF = 2〉 and |0〉 ↔ |F = 2,mF = −2〉 (red
arrows). In the second step, we use σ+ light to excite states in the F = 1 ground state manifold to the 5P3/2 F = 2
manifold (orange arrows). These states decay quickly back into the ground state manifold, as indicated by light blue
wavy arrows. Thirdly, we apply resonant π pulses |F = 2,mF〉 ↔ |F = 1,mF〉 (grey arrows). The second and third
steps are repeated until all population withmF ≥ −1 has been transferred to the stretched state |F = 2,mF = 2〉.
Finally, the first step (red) is repeated to restore the qubit state populations.

corrected in the same way using an ancilla qubit. In the following sections, we will group this error

together with BBR errors and refer to them as “Rydberg leakage” errors.

On the other hand, we demonstrate that leakage to other states in the hyperfine manifold can

be converted into Pauli-Z type errors using optical pumping. For example, for 87Rb, we design the

novel optical pumping protocol shown in Figure 6.6. One crucial property of this optical pumping

procedure is that it does not affect the qubit coherence when there is no error. Furthermore, no-

tice that while leakage in traditional QEC settings may be particularly difficult to address, requiring

additional entangling gates or ancilla qubits, the particular multi-level structure of neutral atoms

allows for efficient correction of these errors. Notably, this optical pumping can be performed with-

out the need for qubit measurement and feed-forward corrections, allowing for efficient implemen-

tation in experiments.
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Algorithm 1 Fault-tolerant method to measure X
⌦4

stabilizers for Rydberg 7-qubit code.

1) For each X
⌦4

stabilizer X↵X�X�X�:

a. Initialize ancilla qubit A2 to |+i state.
b. Apply gate ZjHj to all data qubits j 2 {↵, �, �, �}.
c. For each j 2 {↵, �, �, �}, apply the Rydberg gate R(A1;Dj). If j = �, use ancilla qubit A1

to detect for Rydberg population as described in Section 6.4.2; if a Rydberg leakage error

is detected, convert it to a non-Rydberg leakage error |F = I + 1/2,mF = I + 1/2ih1|.
Finally, use the optical pumping technique of Section 6.4.1 to convert any possible non-

Rydberg leakage error into a possible single-qubit Z error.

d. Apply Hadamard gates to all data qubits j 2 {↵, �, �, �}.
e. Measure A2 in the X basis.

f. If A2 measurement yields �1, break.

2) If any stabilizers are measured to be �1:

a. Measure all X
⌦4

stabilizers again, this time in the unprotected way and without checking

for leakage. There was either already an error in the input, or an error occurred in the

initial measurement process. The resulting outcomes will then be the correct stabilizer

values to leading order in ptot.

Algorithm 2 Fault-tolerant logical CZ for Rydberg 7-qubit code.

1) Apply single-qubit Z gates to all physical control and target qubits.

2) For each j = 1, 2, ..., 7:

a. Apply the two-qubit Rydberg gate R(Cj;Tj).

b. Use ancilla qubit A1 to detect for Rydberg population as described in Section 6.4.1.

c. If a Rydberg leakage error is detected, convert it to a non-Rydberg leakage error |F =

I + 1/2,mF = I + 1/2ih1|.
3) Use the optical pumping technique of Section 6.4.2 to convert any possible non-Rydberg

leakage error into a possible single-qubit Z error.

The correction of non-Rydberg leakage errors can be incorporated into the fault-tolerant pro-

tocols of the previous section by performing this procedure between the Rydberg entangling gates.

Thus, our protocols from the previous section will be fault-tolerant against generic intrinsic Ryd-

berg decay errors. Furthermore, note that when considering this full error model including both

BBR and RD events, it is no longer necessary to swap population between the |1〉 state and the

stretched ground state |F = I + 1/2,mF = I + 1/2〉when addressing Rydberg leakage errors

(i.e., one can omit Steps 1 and 3 in Appendix C.4); instead, the Rydberg population can be pumped

directly to the |F = I + 1/2,mF = I + 1/2〉 state, converting it into a non-Rydberg leakage error

which is corrected by optical pumping. The full protocols for fault-tolerant stabilizer measurement,

the logical controlled-phase gate, and the logical CCZ gate are given in Algorithms 1-3.

While the above discussion has focused on intrinsic RD errors, the non-intrinsic errors of Sec-

tion 6.3.4 can also be incorporated into our FTQC protocols. Specifically, the errors resulting from

Rydberg laser imperfections such as intensity and phase fluctuations only cause Pauli-Z errors and
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1

Algorithm 1 Fault-tolerant method to measure X
⌦4

stabilizers for Rydberg 7-qubit code.

1) For each X
⌦4

stabilizer X↵X�X�X�:

a. Initialize ancilla qubit A2 to |+i state.
b. Apply gate ZjHj to all data qubits j 2 {↵, �, �, �}.
c. For each j 2 {↵, �, �, �}, apply the Rydberg gate R(A1;Dj). If j = �, use ancilla qubit A1

to detect for Rydberg population as described in Section 6.4.2; if a Rydberg leakage error

is detected, convert it to a non-Rydberg leakage error |F = I + 1/2,mF = I + 1/2ih1|.
Finally, use the optical pumping technique of Section 6.4.1 to convert any possible non-

Rydberg leakage error into a possible single-qubit Z error.

d. Apply Hadamard gates to all data qubits j 2 {↵, �, �, �}.
e. Measure A2 in the X basis.

f. If A2 measurement yields �1, break.

2) If any stabilizers are measured to be �1:

a. Measure all X
⌦4

stabilizers again, this time in the unprotected way and without checking

for leakage. There was either already an error in the input, or an error occurred in the

initial measurement process. The resulting outcomes will then be the correct stabilizer

values to leading order in ptot.

Algorithm 2 Fault-tolerant logical CZ for Rydberg 7-qubit code.

1) Apply single-qubit Z gates to all physical control and target qubits.

2) For each j = 1, 2, ..., 7:

a. Apply the two-qubit Rydberg gate R(Cj;Tj).

b. Use ancilla qubit A1 to detect for Rydberg population as described in Section 6.4.1.

c. If a Rydberg leakage error is detected, convert it to a non-Rydberg leakage error |F =

I + 1/2,mF = I + 1/2ih1|.
3) Use the optical pumping technique of Section 6.4.2 to convert any possible non-Rydberg

leakage error into a possible single-qubit Z error.

single-qubit Rydberg leakage errors, so they are already addressed within our current framework.

Similarly, atom loss can be detected by using an ancilla qubit and performing a small leakage detec-

tion circuit; this is discussed in Appendix C.3. In this case, if a reservoir of atoms is available, we can

also convert the atom loss error into a single-qubit Pauli-X or Z error, for instance by replacing the

lost atom with a new atom initialized to the |0〉 state.

6.4.3 Comparison to existing fault-tolerant quantum computing protocols

To demonstrate the significance of our Ryd-7 FTQC protocol and emphasize the importance of

considering specific error models when designing QEC approaches, we now compare our model

with existing general-purpose FTQC schemes proposed in Refs.38,37,176. Specifically, we compare

the costs of measuring stabilizers and implementing fault-tolerant logical operations, using as met-

rics the number of two- and three-qubit entangling operations required for the physical qubits, and

the minimum number of ancilla qubits needed. Details on how these numbers can be obtained for

the Ryd-7 protocol are provided in Appendix C.8.

Table 6.1 compares the minimum number of two-qubit gates and ancilla qubits required for

fault-tolerant stabilizer measurement (and associated error correction) in various QEC proposals.

The results for general-purpose FTQC protocols for the 7- and 15-qubit CSS/Hamming codes
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2

Algorithm 3 Fault-tolerant logical CCZABC for Rydberg 7-qubit code.

1) Apply X gate to all physical qubits jA, kB, lC 2 {1, 2, 3}.
2) For each group Gi of physical three-qubit Rydberg gates to apply (where Gi are ordered as

discussed in the main text or Figure 6.4:

a. Apply gates in Gi.

b. Use ancilla qubit A1 to detect for Rydberg population as discussed in Section 6.4.1. If

Rydberg leakage is detected:

i) Convert this leakage error to a possible single-qubit X error.

ii) Measure stabilizer eigenvalues g2 and g3 for each logical qubit in an unprotected way.

This is safe because an error already occurred.

iii) Apply the appropriate correction circuit for the correlated error (since the possible

correlated errors all result in disjoint sets of possible syndromes.

iv) Measure Z
⌦4

stabilizers for all logical qubits in an unprotected way to detect for a

possible single-qubit X error induced by step i) above; correct this error if found.

v) The remaining three-qubit Rydberg gates needed to implement the logical CCZ oper-

ation can all be applied in an unprotected way.

c. Use the optical pumping technique of Section 6.4.2 to convert any possible non-Rydberg

leakage error into a possible single-qubit Z error.

3) Apply X gate to all physical qubits jA, kB, lC 2 {1, 2, 3}.

are based on the “flagged syndrome extraction” procedures presented in Refs.38,175,37. For each

protocol, we separately present the resource cost for cases without any errors and the worst-case

cost when an error is present (numbers in parentheses), as the former case is typically much more

probable. While the number of ancilla qubits required is the same for all cases, we find that our

protocol requires the smallest number of entangling operations in either case even though we must

detect for leakage, an additional kind of error not considered in Refs.38,175,37.

Similarly, Table 6.2 demonstrates this comparison for the fault-tolerant logical CCZ gate, where

our improvements are striking. The general-purpose implementation of this non-Clifford gate for

three logical qubits in the 7-qubit Steane code is given by Yoder, Takagi, and Chuang176; while this

implementation requires only a modest number of physical two- and three-qubit gates, it requires

a considerable overhead of 72 additional ancilla qubits, making an experimental demonstration

very challenging. On the other hand, while Chao and Reichardt’s proposal37 for a fault-tolerant
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Toffoli gate using the [[15, 7, 3]] code significantly reduces the ancilla qubit count, the number of

physical entangling operations is substantial. Our protocol uses only 2 ancilla qubits compared with

72 required in Yoder, Takagi, and Chuang176, while using significantly fewer entangling operations

(e.g. 60 two-qubit gates) than Chao and Reichardt37 (1416 two-qubit gates) even in the unlikely

scenario where we must correct for an error. We note that while our protocol does use more three-

qubit entangling gates than Ref.176, such gates are nearly as straightforward to implement as two-

qubit CZ gates in the Rydberg atom setup (see Section 6.2).

These results clearly demonstrate the advantage of considering a hardware-specific error model

and leveraging the unique capabilities of the Rydberg setup when designing FTQC schemes. In

particular, even though we must correct for additional errors not considered in traditional settings,

we can still dramatically reduce the required number of entangling gates or ancilla qubits.

6.4.4 Scalable implementation

We now discuss some more details regarding the scalable implementation of our protocols, includ-

ing potential geometrical layouts of physical qubits, resource trade-offs, and residual error rates.

Geometrical considerations. One particular advantage of the Rydberg atom platform is the

flexibility in allowing arbitrary geometrical arrangements of atoms. Motivated by recent experi-

mental demonstrations of near-deterministic loading and rearrangement of neutral atoms into

regular lattice structures, we propose scalable FTQC architectures in which logical qubits form a

coarser lattice on top of the lattice of physical atoms. For the Ryd-7 scheme, one natural layout in

a two-dimensional atomic array setup could comprise placing physical atoms on the vertices of a

triangular lattice (Figure 6.1a). In this geometry, the hexagonally shaped logical qubits (dark blue

dotted hexagons) form a coarser triangular lattice, with ancilla qubits (A, pink) placed on the edges

of this coarser lattice to mediate error correction and logical gates. Fault-tolerant universal quan-

tum computation can be performed if nearest-neighbor logical qubits can be entangled; because
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physical entangling gates can only be implemented between atoms within a blockade radiusRB, this

defines a minimum required value ofRB in terms of the closest atom-atom separation d. Upon ex-

amining the physical gates required to implement the logical operations for the seven-qubit code,

we find that the requirement in this case isRB > 3d (dotted grey line), an interaction range which

has already been demonstrated in recent experiments12. Details on the derivation of this minimal

blockade radius can be found in Appendices C.9 and C.10. This requirement onRB can be further

reduced if atoms can be moved in between certain logical operations while preserving coherence

between the hyperfine ground states16.

Resource tradeoffs. For any experiment, resource trade-offs may be made to minimize the total

logical error probability. For instance, if the timescale of one round of measurements is much larger

than typical gate times (as is the case in certain atomic setups), one may wish to reduce the number

of measurement shots required at the expense of performing additional operations. This can be

incorporated into our protocol by incoherently driving Rydberg states to the low-lying P state after

each entangling gate to convert any possible Rydberg leakage error into the non-Rydberg leakage

|F = I+ 1/2,mF = I+ 1/2〉〈1|. In this case, ancilla measurements are no longer necessary to detect

and correct for Rydberg leakage errors, but this incoherent pumping would be done after every gate,

regardless of whether an error had actually occurred. Alternatively, the number of entangling gates

can be further reduced at the cost of additional measurements.

Improvements. The FTQC protocol presented in this section relies upon selection rules which

impose restrictions on the possible RD error channels. Specifically, as mentioned in Section 6.3, to

leading order in the error probability, we ignored the decay channel |0〉〈1| arising from RD. Given

the low branching ratio (determined numerically to be∼ 10−3 in 87Rb, see Appendix C.1) from the

stretched Rydberg state to |0〉, this is already a reasonable assumption; however, several approaches

can be taken to suppress the probability of such errors even further. First, this probability can be

reduced by a factor of roughly 3 or 4 by employing a “shelving” procedure in which population in
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the |0〉 state is swapped with the stretched ground state |F = −mF = I+ 1/2〉 before and after each

entangling gate, due to the lower branching ratio from |r〉 to this stretched state. To avoid errors

arising from near-degenerate Rydberg transitions in this case, one would also transfer population in

the |1〉 state to |F = I− 1/2,mF = 1〉 to perform Rydberg excitation in this case, instead of exciting

out of the F = I + 1/2 manifold. Moreover, by utilizing higher magnetic fields to reduce the

branching ratio for RD processes involving large |ΔmF|, or by using a species with higher nuclear

spin (e.g. 85Rb) where the shelving state can be further separated from the stretched Rydberg state,

one can suppress the probability of such errors to even higher orders.

6.5 Leading-Order Fault-Tolerance with a Repetition Code

Given that all Rydberg errors can be converted to the Z-type, one may naturally ask whether the full

seven-qubit Steane code is even necessary to detect and correct these errors; in particular, one may

be tempted to simply use a three-qubit repetition code in the X basis to detect and correct Z-type

errors. In such a code, the logical states are

|+〉L = |+++〉

|−〉L = |−−−〉,
(6.13)

and stabilizer operators are

g1 = X1X2, g2 = X2X3. (6.14)

However, direct application of such a repetition code for FTQC is challenging even with this biased

noise model, as one must be able to implement every physical gate in the encoding, decoding, sta-

bilizer measurement, and logical gate procedures without introducing Pauli-X or Y-type errors at

any stage—that is, each gate must be implemented in a bias-preservingway. This requirement can

easily be satisfied for certain physical gates such as the Rydberg controlled-phase or collective gates
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Figure 6.4: Circuit to measure the stabilizer X1X2 for the repetition code. CNOT gates must be performed be‐
tween the ancilla qubit and data qubits 1 and 2. A standard implementation of the CNOT gate using Rydberg controlled‐
phase gates conjugated by single‐qubit Hadamard gates on the target qubits would not be bias‐preserving, as a Z error
on a target qubit during a controlled‐phase gate would become an X error once the final Hadamard gate is applied
(purple).

(after all leakage errors are mapped to Pauli-Z type), but is much more difficult to fulfill for other

gates. Specifically, measurement of the stabilizers of Eq. (6.14) requires performing controlled-

NOT (CNOT) gates as shown in orange in Figure 6.1d.

While a standard implementation of the CNOT gate in a Rydberg setup would comprise the

Rydberg controlled-phase gate conjugated by single-qubit Hadamard gates on the target qubit, this

would not be bias-preserving: for example, a Z error on a target qubit during a controlled-phase

gate would become an X error once the final Hadamard gate is applied (Figure 6.4). In other se-

tups, where a π-rotation of the target qubit about the x̂ axis on the Bloch sphere can be performed

conditioned on the state of the control qubit (e.g. by engineering aHint = ZX interaction), an over-

rotation or under-rotation error would also translate to an X error and violate the bias-preserving

constraint.

Indeed, the implementation of a bias-preserving CNOTmay seem unfeasible at first, in light

of a no-go theorem proven in Ref.68: a bias-preserving CNOT gate is not possible between two

qubits encoded in systems where the underlying Hilbert space is finite-dimensional, because the

identity gate cannot be smoothly connected to CNOTwhile staying within the manifold of bias-

preserving operations. One way to circumvent this no-go theorem was recently developed for circuit

QED systems in Refs.68,130, where the qubits can be encoded in the continuous phase space of the
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photon field, and the dominant source of error—photon loss—can be manipulated via parametric

driving schemes to cause only Z-type errors. In our setup, we circumvent the no-go theorem using

the special fact that certain pulses in our finite-dimensional atomic system—the pulses between

hyperfine states—can be implemented at very high fidelities, so that our leading-order errors arise

only from Rydberg pulse imperfections and Rydberg state decay. This allows us to develop a novel

laser pulse sequence for entangling Rydberg atoms that directly implements a CNOT or Toffoli gate

while preserving the noise bias. Our protocol can be applied on any atomic species with sufficiently

high nuclear spin (I ≥ 5/2). For concreteness, we will illustrate the protocol using the example case

of 85Rb throughout the section.

6.5.1 Bias-preserving CNOT in a Rydberg atom setup

As shown in Figure 6.4, the standard implementation of a CNOT gate in a Rydberg system is not

bias-preserving. In particular, given the error model for Rydberg gates, X errors on the target qubit

can be induced in two ways. First, the target qubit could directly undergo a Rydberg error (e.g.

radiative decay) during the controlled-phase gate, resulting in a Pauli-Z error that is transformed into

an X error after the Hadamard gate (purple in Figure 6.4). Alternatively, the control atom could

decay from the Rydberg state to the ground state at some point during the controlled-phase gate, so

that the target qubit Rydberg pulses, which should have been blockaded, are now resonant during

the controlled-phase gate. This results in a two-qubit correlated error between the control and target

atoms, where the target atom undergoes an X-type error.

Here, we begin by introducing a novel entangling gate pulse sequence for Rydberg atoms to ad-

dress the target atom X errors. In this discussion, we first assume that the Rydberg pulses on the

target atom are either all resonant or all blockaded; that is, we ignore the possibility of a neighbor-

ing Rydberg atom decaying during the target atom sequence. We then include this effect and also

eliminate the correlated errors by introducing an ancilla qubit and making use of two Rydberg states
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Figure 6.5: Pulse sequence for the target atom in a bias-preserving CNOT gate between 85Rb atoms.
Rydberg pulses are resonant if and only if no nearby Rydberg population is present; otherwise, the Rydberg levels are
shifted due to the blockade effect (dotted levels). This pulse sequence eliminates target atom X errors in the stan‐
dard implementation of CNOT shown in Figure 6.4. Step 1: Coherent transfer of population from the qubit states to
stretched Rydberg states |d±〉 ≡ |nD3/2,mJ = 3/2,mI = I = 5/2〉. To do this, we first apply hyperfine π pulses
|1〉 ↔ |F = 2,mF = 2〉 and |0〉 ↔ |F = 3,mF = −2〉, then apply Rydberg π pulses |F = 2,mF = 2〉 ↔ |d+〉,
|F = 3,mF = −2〉 ↔ |d−〉, and finally reapply the hyperfine π pulses |1〉 ↔ |F = 2,mF = 2〉 and
|0〉 ↔ |F = 3,mF = −2〉 (orange arrows). Step 2: Apply resonant π pulses from the qubit states to the Rydberg
states |1〉 ↔ |nS1/2,mJ = 1/2,mI = 3/2〉 and |0〉 ↔ |nS1/2,mJ = −1/2,mI = −3/2〉 (red arrows). Step
3: Apply a resonant π pulse between the |0〉 and |1〉 ground states (thick pink arrow). Step 4: Repeat Step 1, but use
−π instead of π pulses on all transitions. Step 5: Incoherently drive any remaining Rydberg population into stretched
ground states (thick blue arrows). Specifically, send Rydberg states withmJ+mI > 0 (respectively,< 0) to a stretched
5P state with F = mF = I + 3/2 (F = −mF = I + 3/2), which decays quickly and only to the stretched ground
state with F = mF = I + 1/2 (F = −mF = I + 1/2). Step 6: Use optical pumping techniques (see Appendix C.12
for details) to map states outside the computational subspace withmF > 0 (respectively,mF < 0) to the qubit state
|1〉 (|0〉) (thin blue arrows).
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with different blockade radii.

To remove the target atom X errors, we wish to design an entangling gate protocol which uses

Rydberg states to conditionally swap |0〉 and |1〉 population directly, without the change-of-basis

fromHadamard gates. This can be accomplished for atomic species with high enough nuclear spin

(I ≥ 5/2). We consider qubits encoded in the 85Rb clock states |1〉 ≡ |F = I + 1/2,mF = +1〉,

|0〉 ≡ |F = I− 1/2,mF = −1〉 (orange levels in Figure 6.5), which have a magnetic field-insensitive

transition frequency at low fields. The protocol then proceeds as illustrated in Figure 6.5.

The first step of the procedure aims to transfer population in the qubit state |1〉 (respectively,

|0〉 to the Rydberg state |d+〉 ≡ |nD3/2,mJ = 3/2,mI = I = 5/2〉 (respectively, |d−〉 ≡

|nD−3/2,mJ = −1/2,mI = −I = −5/2〉) conditionally, dependent on the state of a control

atom. This is achieved because the Rydberg pulses from the qubit states to |d±〉 are resonant if and

only if there are no neighboring atoms in |r±〉 or nearby Rydberg states. Since each stretched Ryd-

berg state predominantly decays only into ground states with |ΔmF| = |Δ(mJ + mI)| ≤ 2 during

RD processes, the |0〉 and |1〉 populations will not be mixed by Rydberg state decay; however, due

to the possible decay channels |F = 2,mF = 2〉〈d+| and |F = 3,mF = −2〉〈d−|, it is possible

that the first step fails to excite the atom into a Rydberg state even in the absence of nearby Ryd-

berg population. Consequently, in the second step, we again attempt to transfer the qubit states

to Rydberg states, this time using resonant π pulses |1〉 ↔ |nS1/2,mJ = 1/2,mI = 3/2〉 and

|0〉 ↔ |nS1/2,mJ = −1/2,mI = −3/2〉. Then, in the third step, the population in the qubit states

is swapped via the π pulse |0〉 ↔ |1〉. We note that this only swaps population if nearby Rydberg

atoms prevented transfer out of the qubit manifold in Steps 1 and 2. Step 4 then acts to invert the

first step.

After Step 4, we find that if no Rydberg errors have occurred, the atomic state is restored to the

original qubit state (identity map) when no nearby Rydberg population is present, or to the op-

posite qubit state |0〉 ↔ |1〉 otherwise. Rydberg errors can occur only if the pulses of Step 1 are
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Figure 6.6: Using an ancilla qubit and multiple Rydberg states to eliminate X-type errors arising from
control qubit decay. The atoms are positioned on a line, such that atom T is in the middle, and the distance between
neighboring atoms is d ≡ dCT = dAT. The ancilla qubit is initially prepared in the |0〉 state. The protocol consists of
three steps, labelled (a)‐(c), and can be visualized as a quantum circuit. We use two different pairs of Rydberg S states,
|r1,±〉 and |r2,±〉, with blockade radiiRB,1 andRB,2, respectively, such thatRB,1 > 2d and d < RB,2 < 2d. Steps
(a), (c): Apply a CNOT gate with C as control and A as target. This is done by applying a π pulse |1〉 ↔ |r1,+〉 on atom
C, performing the pulse sequence of Figure 6.5 on atom A, and applying a−π pulse |1〉 ↔ |r1,+〉 on atom C, so that
the Rydberg pulses on A are resonant only if C is not in |r1,+〉 (or a nearby Rydberg state). For these steps, the Rydberg
levels |r±〉 in Figure 6.5 are chosen to be |r1,±〉 (see Table 6.3). Step (b): Apply a three‐atom gate between C, A, and
T. This is done by applying π pulses |1〉 ↔ |r2,+〉 on both atom C and atom A, performing the pulse sequence of
Figure 6.5 on atom T, and applying−π pulses |1〉 ↔ |r2,+〉 on both atom C and atom A, so that the Rydberg pulses
on T are resonant only if neither C nor A is in |r2,+〉 (or a nearby Rydberg state). For this step, the Rydberg levels |r±〉
in Figure 6.5 are chosen to be |r2,±〉 (see Table 6.3).

resonant (i.e. if no nearby Rydberg atoms are present); moreover, because transitions from |d+〉 (re-

spectively, |d−〉) only result in states withmF > 0 (mF < 0), any Pauli errors must be of Z-type

(for example, projectors |0〉〈0|, |1〉〈1|), and any leakage error must be of the form |mF > 0〉〈1| or

|mF < 0〉〈0|. One can then verify that after the pumping steps (5 and 6), the resulting state is the

same as in the error-free case, up to a local error of Z type (e.g. |0〉〈0|, |1〉〈1|). As before, the error

channels for intermediate state scattering and other Rydberg pulse imperfections can be captured by

our error model which contains BBR and RD errors.

Having eliminated X errors arising from target qubit Rydberg errors, we now proceed to address

the second type of potential X error arising from control qubit decay. The crux here is to utilize

multiple Rydberg atoms (e.g. a control atom and an ancilla atom) to blockade the target atom if the
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Rydberg Transitions Addressed
Step Atom C Atom T Atom A

(a), (c) |1〉 ↔ |r1,+〉 none |0〉 ↔ |r1,−〉
|1〉 ↔ |r1,+〉

(b) |1〉 ↔ |r2,+〉
|0〉 ↔ |r2,−〉
|1〉 ↔ |r2,+〉

|1〉 ↔ |r2,+〉

Table 6.3: Rydberg transitions used to implement the bias-preserving CNOT gate between two atoms
C and T as shown in Figure 6.6. Within each step, one Rydberg transition (|1〉 ↔ |r1,+〉 or |1〉 ↔ |r2,+〉) is
addressed for each “control” atom, while two Rydberg transitions (|0〉 ↔ |r1,−〉, |1〉 ↔ |r1,+〉 or |0〉 ↔ |r2,−〉,
|1〉 ↔ |r2,+〉) are addressed for each “target” atom. |r1,±〉 and |r2,±〉 have different blockade radiiRB,1 andRB,2 as
explained in the main text and in the caption of Figure 6.6.

control is in the |1〉 state; in this way, if one of the atoms decays, the remaining Rydberg atom(s)

can still ensure (to leading order in the total error probability) that the Rydberg pulses on the target

atom do not become resonant. For the simplest case, the bias-preserving CNOT gate can be imple-

mented with one ancilla qubit. Let us assume that the control (C), target (T), and ancilla (A) atoms

are placed evenly along a line, with the target atom in between the control and ancilla atoms; the

ancilla atom is initialized in the state |0〉. We can make use of two sets of Rydberg states, |r1,±〉 and

|r2,±〉, with blockade radiiRB,1 andRB,2, respectively, such thatRB,1 > 2d and d < RB,2 < 2d,

where d is the distance between neighboring atoms (i.e. between C and T or T and A); as such,

atoms C and A are within the blockade radiusRB,1, but beyondRB,2, whereas neighboring atoms

are within the blockade radiusRB,2. The full bias-preserving CNOT gate between the control and

target atoms then consists of the three-step procedure illustrated in Figure 6.6, followed by correc-

tion of Rydberg leakage errors (as discussed in Appendix C.4) and optical pumping to eliminate

non-Rydberg leakage errors (Figure 6.6). The Rydberg transitions addressed in each step of Fig-

ure 6.6 are listed in Table 6.3.

This protocol is robust against control atom decay errors, as the Rydberg pulses on atom T are

resonant only if neither C nor A is excited to the Rydberg state, and one can see that, to leading or-

der in the total error probability, this can only occur if C starts in the |0〉 state: first, if C begins in
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the |0〉 state, Amust also remain in |0〉, so the state of Twill not be flipped. On the other hand, if C

begins in the |1〉 state and no decay events occur during Step (a), |C,A〉 = |1, 1〉 after this step. The

Rydberg pulses for T are blockaded in Step (b), so its state will be flipped. Finally, if C begins in the

|1〉 state but decays during the first step, |C,A〉 = |1, 1〉 or |1, 0〉 after this step. The Rydberg pulses

for T are still blockaded in Step (b), so its state will be flipped. Finally, Rydberg decay errors in Step

(c) will result in projections of the form |0〉〈0| or |1〉〈1|, which can be expressed in terms of Z er-

rors. In this way, we have eliminated any possible source of X errors arising from the CNOT gate,

to leading order in the total error probability. The protocol can also be generalized to implement a

bias-preserving Toffoli gate (see Appendix C.7 and Figure C.3). Potential improvements leading to

suppression at higher orders are discussed in Section 6.5.3.

The ability to couple atoms to two sets of Rydberg states |r1,±〉 and |r2,±〉 in our bias-preserving

CNOT implementation allows atom C to interact with atom A during Steps (a) and (c) of Fig-

ure 6.6, but not during Step (b). Alternatively, this tunability of interaction could be achieved with

only a single set of addressable Rydberg states |r1,±〉 if the atoms can be rearranged while preserv-

ing coherence between hyperfine ground states16. In this case, one could move atoms in between

Steps (a) and (b) to further separate C, T, and A from each other such that the distance between C

and A becomes greater thanRB,1, while the distance between either of them and atom T remains less

thanRB,1. The atoms can then be returned to their original configuration after Step (b) to allow for

interaction between C and A during Step (c).

6.5.2 Leading-order fault-tolerance with the repetition code

The bias-preserving operations discussed above allow for a direct implementation of each com-

ponent of the three-atom repetition code to perform quantum computation with leading-order

fault-tolerance on a Rydberg setup. In particular, logical states (6.13) can be prepared or measured

fault-tolerantly in the X basis by transversally preparing or measuring each atom. The measurement
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Figure 6.7: Pieceable fault‐tolerant implementation of the Toffoli gate in the repetition code.

of stabilizers (6.14) can be achieved using the circuit of Figure 6.1d, where each controlled-NOT

gate is done in the bias-preserving way described above; for robustness against errors occurring dur-

ing this circuit, one must repeat the stabilizer measurement if either g1 or g2 is measured to be−1.

A universal set of logical operations can be achieved by implementing a logical Toffoli gate and

a logical Hadamard gate as in the seven-qubit case, using the bias-preserving pulse sequences pre-

sented above. While not strictly necessary, we will also discuss the implementation of logical controlled-

phase and CCZ gates. These may be of use for simplifying the implementation of certain quantum

algorithms, as they do not require the new bias-preserving pulse sequences and can be implemented

using the standard method for performing Rydberg-mediated entangling gates as described in Fig-

ure 6.3.

Logical Toffoli gate. One important feature of the encoding (6.13) is that the logical |0〉L (re-

spectively, |1〉L) state consists of an equal superposition of states with an even (odd) number of
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physical qubits in the |1〉 state:

|0〉L =
1
2
(|000〉+ |110〉+ |101〉+ |011〉)

|1〉L =
1
2
(|111〉+ |001〉+ |010〉+ |100〉) .

(6.15)

From this observation, one can see that the Toffoli gate CCXABC with logical control qubits A, B

and logical target qubit C can be implemented as a product of nine physical Toffoli gates:

CCXABC =
∏

jA,kB∈{1,2,3}
lC=jA

CCX(jA, kB, lC). (6.16)

Each physical Toffoli gate can be implemented in a bias-preserving fashion as described previously,

resulting in at most one physical Z error in each logical qubit, assuming that Rydberg and non-

Rydberg leakage errors are converted to possible Z errors after each physical gate. In this case, how-

ever, while Z errors on the control qubits A or Bwould commute with remaining Toffoli gates,

a Z error on one of the physical qubits of C could spread to multiple Z errors within A or B after

subsequent Toffoli gates if uncorrected. To address this, we order the physical gates as shown in Fig-

ure 6.7 and perform error correction after every three physical Toffoli operations by measuring the

stabilizers (6.14); this follows the pieceable fault-tolerant implementations of non-transversal gates

discussed in Refs.176,68. In this way, after the entire logical gate, there will be at most one physical

qubit Z error per involved logical qubit.

Logical Hadamard gate. Unlike the Steane code, the repetition code is not a CSS code, and its

logical Hadamard gate is not transversal. However, as discussed in Ref.68, the logical Hadamard gate

can be implemented using a logical Toffoli gate combined with fault-tolerant measurements in the X

basis, as shown in Figure 6.8. The logical Hadamard gate combined with the logical Toffoli or CCZ

gate form a universal set of logical operations.
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Figure 6.8: Implementing the logical Hadamard in the repetition code using the logical Toffoli gate, as discussed in
Ref. 68.

Logical controlled-phase gate. A logical controlled-phase operation in the three-qubit code

can be implemented using the standard Rydberg pulse sequences for controlled-phase gates between

each pair (jA, kB) of physical qubits, where jA and kB belong to the encoding of logical qubits A and

B, respectively:

CZAB =
∏

jA,kB∈{1,2,3}

CZ(jA, kB). (6.17)

To correct for the errors that occur during gates, one should remove any Rydberg population and

apply the optical pumping scheme to convert non-Rydberg leakage errors into possible Z errors

after each physical controlled-phase operation. The stabilizers only need to be measured after the

entire logical operation, since Rydberg gates can only produce Z errors which commute with all the

physical CZ gates being performed (and hence do not spread to higher-weight errors).

Logical CCZ gate. Similarly, a logical controlled-controlled-Z operation between logical qubits

A, B, C,

CCZABC = 1A1B −
1
4
(ZA − 1A)(ZB − 1B)(ZC − 1C), (6.18)

can be implemented as a sequence of physical CCZ operations:

CCZABC =
∏

jA,kB,lC∈{1,2,3}

CCZ(jA, kB, lC). (6.19)
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As with the case of logical CZ, Rydberg and non-Rydberg leakage errors should be converted to

possible Z errors after each physical gate. Notice that even though the logical CCZ is not transversal,

this implementation is leading-order fault-tolerant because any given physical gate can result in at

most one physical qubit Z error per logical qubit; since Z errors commute with the remaining gates

applied, they do not propagate to become multi-qubit errors. While the CCZ gate is not strictly

needed for the universal gate set given a leading-order fault-tolerant implementation of the logical

Toffoli gate, it requires fewer resources to implement than the logical Toffoli as it uses the standard,

simpler Rydberg gatesR(C1,C2;T) instead of the more complicated bias-preserving CNOT pulse

sequences (see Table 6.2). Thus, this operation may be useful for reducing the resource cost of cer-

tain quantum algorithms.

6.5.3 Scalable implementation

We now discuss some important considerations for the scalable implementation of our Ryd-3 proto-

col, including the geometrical layout, resource requirements, and potential improvements.

Geometrical layout. Based on the implementations of logical gates, stabilizer measurement,

and the underlying bias-preserving CNOT given in the previous sections, we find that a convenient

geometry is to place data and ancilla atoms on the vertices of a triangular lattice as shown in Fig-

ure 6.1c, with three data atoms comprising a logical qubit. In this configuration, the logical qubits

form a coarser triangular lattice, as in the case of Ryd-7. As discussed in Section 6.5.1, two Rydberg

states with different blockade radiiRB,1 > RB,2 are required to implement the bias-preserving

CNOT gate. Based on the interaction ranges required for performing fault-tolerant stabilizer mea-

surements and logical operations as described previously, we find that the larger blockade radius

must be greater than 3d (dark grey in Figure 6.1c, where d is the nearest-neighbor spacing on the

square lattice; this is required for some of the physical gates in the logical CCZ and Toffoli gates.

On the other hand, the smaller blockade radiusRB,2 should be strictly between d and 2d for ef-
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ficient implementation of the bias-preserving CNOT and fault-tolerant stabilizer measurements

(light grey in Figure 6.1c). Details on how to obtain the requirementRB,1 > 3d can be found in

Appendix C.9.

Alternatively, the data and ancilla atoms can be placed on the vertices of a square lattice in an al-

ternating fashion (see Appendix C.11). In this case, the blockade radius requirements areRB,1 >

3.61d and d < RB,2 < 2d. For both the triangular lattice and square lattice geometries, experimen-

tal developments allowing for rearrangement of atoms while preserving the coherence of hyperfine

ground states could be used to further reduce the requirement onRB,1 and eliminate the need for a

second set of Rydberg states with blockade radiusRB,2.

Improvements. While our bias-preserving CNOT suppresses X-type errors to leading order,

the amount of bias preservation is ultimately limited by the decay rate of the stretched RydbergD

state into the qubit states. To further suppress these errors, one can shelve to stretched Rydberg

states with higher angular momentum, which would have lower decay rate to the qubit states. Al-

ternatively, one can also use an atomic species with higher nuclear spin, where the qubit states can

be separated from the stretched Rydberg state by a larger amount |ΔmF|. Likewise, one could also

increase the magnetic field in the experimental setup to suppress the rate of transitions with high

|ΔmF|. To achieve suppression beyond the leading order, one can then use more Rydberg “shelv-

ing” states in the target atom pulse sequence of Figure 6.5 and more ancillas to suppress the effects

of control atom decay.

The Ryd-3 hardware-tailored FTQC approach inherently addresses errors due to Rydberg pulse

imperfections in addition to those arising from the finite Rydberg state lifetime, as these errors fall

within a subset of the radiative decay errors. As in the Ryd-7 case, the Ryd-3 approach can also be

enhanced to further protect against atom loss errors at the expense of additional physical operations

by incorporating the atom loss detection scheme described in Appendix C.3 in between Rydberg

operations.
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6.6 Further Considerations Towards Experimental Implementation

In this section, we discuss further considerations on how our FTQC protocols can be implemented

in near-term experiments. Recent experiments using neutral alkali atom systems have already achieved

near-deterministic trapping, loading, and rearrangement of tens to hundreds of atoms into two-

dimensional lattice structures such as the triangular lattice needed for our protocol17,53,7,89. Fur-

thermore, high-fidelity manipulations within the ground state manifold and two- and three-atom

Rydberg blockade-mediated entangling gates have been demonstrated104,105,65. Blockade interac-

tions between Rydberg atoms separated by three times the lattice spacing, which is the interaction

range required for both of our protocols, have also been realized12.

6.6.1 Measurements and feed-forward corrections

To performQEC, an important ingredient is the ability to measure the states of ancilla qubits

and/or detect Rydberg population and perform feed-forward corrections. Several approaches can

be considered. One promising way to rapidly measure individual qubit states is to resonantly drive

a cycling transition and detect the scattered photons11. At lattice spacings of a few microns, this de-

tection scheme could be limited by atom heating and cross-talk from the reabsorption of scattered

photons by neighboring atoms151. To this end, recent developments in coherent transport of entan-

gled atom arrays16 can be used to mitigate these effects by moving the selected ancillary atom(s) into

a detection zone far away from the rest of the array before it is measured.

To estimate the maximum speeds of coherent transport before atom loss and heating become sig-

nificant, one can consider the harmonic oscillator potential (i.e. the optical tweezer) that the atom

is trapped in. Following the analysis in Refs.33,16, the average energy increase to the atom will be

ΔE = m|ã(ω0)|2/2, wherem is the particle mass and ã(ω0) is the Fourier transform of the accelera-

tion profile a(t) evaluated at the trap frequency ω0. When a(t) is linear in time, this energy depends

129



on the total displacementD and the time of movement T as approximately ΔE = 36mD2/(ω20T4).

Based on this estimate, it is reasonable to achieve substantial atom displacementsD > 50 μmwithin

250 μs for performing feed-forward applications: for typical trap frequencies ω0 ≈ 2π × 50 kHz,

the atom’s vibrational quantum number would increase by only ΔN < 1. Indeed, such trans-

port has been demonstrated by Ref.16 without significant decoherence or atom loss due to heating.

Moving the atoms by a distanceDwould then suppress reabsorption rates during ancilla readout to

σ/(4πD2), where σ is the absorption cross-section151. Moreover, detuning the optical transitions

for ancilla atoms by Δ further suppresses reabsorption by a factor≈ (Γ/2Δ)2, where Γ is the res-

onance linewidth, and Δ > 10 Γ can be readily achieved with moderate powers of a light-shifting

beam151. Between moving and light-shifting the ancillary atoms, cross-talk errors on the data qubits

can be suppressed by five or more orders of magnitude, to negligible levels.

Alternatively, the measurement of ancilla qubit states can be achieved by using two different

atomic species for the data and ancilla atoms (such as two different isotopes of the same atom or two

different atomic species). In this approach179,148, the ancilla atoms can still interact with the data

atoms when both are coupled to Rydberg states, while they can be measured independently without

disturbing the data atom states.

Finally, fast detection schemes were recently demonstrated in experiments with small atomic

ensembles using Rydberg electromagnetically induced transparency (EIT)174. These could be po-

tentially utilized to identify Rydberg population after entangling gates. These schemes could be

incorporated into the tweezer array platforms by creating larger, elongated traps at selected locations

containing optically dense atomic ensembles. In this approach, the Rydberg blockade effect leads

to a sharp signature in the absorption spectrum of a weak EIT probe beam depending on whether

a nearby Rydberg atom is present. Due to the collectively enhanced Rabi frequency, the detection

time can be reduced to∼ 6μs174, comparable to the duration of an entangling gate. This ultrafast,

non-destructive Rydberg atom detector thus provides a promising implementation for the measure-
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Figure 6.9: Relevant level diagram for implementing our FTQC protocols with neutral alkaline earth
Rydberg atoms such as 87Sr. The qubit is encoded in the stretched 1S0 ground state (orange). Transitions to a 5SnS,
3S1 Rydberg state can be driven by first coherently mapping one of the qubit states to the 3P0 clock state and then
exciting the clock state to the Rydberg state (R, black). Optical pumping to correct for non‐Rydberg leakage is imple‐
mented in two stages by driving the light blue transitions (P1) followed by the dark blue transition (P2). State readout
and strong cooling for state initialization are implemented via the 1S0 ↔ 1P1 transition (C, red), while narrow‐line
cooling can be implemented via the P2 transition.

ment and feed-forward corrections needed for our protocols.

In this work, we have focused primarily on developing FTQC protocols for neutral alkali atoms

coupled to Rydberg states. Recently, significant progress has also been made towards using alkaline

earth(-like) atoms such as Sr and Yb for Rydberg-based quantum computations110,170. In this sec-

tion, we show how our methods can also be applied for such setups. While we focus on an example

of 87Sr for concreteness, our discussion is generic for fermionic species of alkaline earth(-like) atoms.

For alkaline earth(-like) atoms, the 1S0 ground states have no electronic orbital or spin angular

momentum, so the only source of degeneracy is the nonzero nuclear spin (which can be quite large,

e.g. I = 9/2 for 87Sr). For our protocols, a most convenient qubit encoding uses the stretched

ground states: |0〉 ≡ |mI = −I〉, |1〉 ≡ |mI = +I〉. In this encoding, strong cooling and
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state readout can be implemented via the 1S0 ↔ 1P1 transition, while narrow-line cooling can be

performed on the 1S0 ↔ 3P1 transition. Entangling gates can be implemented by selectively exciting

the |1〉 state to a stretched Rydberg 3S1 state. This state selectivity can be achieved by coherently

mapping one of the qubit states to the 3P0 clock state, performing Rydberg pulses between the

clock state and the Rydberg state, and mapping back to the 1S0 ground state, where we have utilized

the linear Zeeman shift in the clock transition arising from hyperfine coupling between the 3P0 and

3P1 states20. The relevant level diagram is shown in Figure 6.9 for the case of 87Sr (see also Ref.108).

During these entangling operations, an atom in the Rydberg state may undergo various errors

such as BBR transitions, RD, or intermediate state scattering as described in Section 6.3. For alka-

line earth(-like) atoms, the resulting Kraus operators can be described by Pauli-Z errors and quan-

tum jumps to Rydberg states, 1S0 ground states, or metastable 3P states as allowed by dipole selec-

tion.

Following our approach for alkali atoms, we must convert all such errors to Pauli-Z errors to ap-

ply our FTQC protocols. By using ancilla atoms and the blockade effect, the quantum jumps to

Rydberg states can be corrected in the same fashion as for alkali atoms. However, due to the pres-

ence of metastable 3P levels, the correction of non-Rydberg leakage errors is more complicated,

and the optical pumping must be done in two stages (see Figure 6.9): (1) Use σ+-polarized light

from the 3P0,2 states to the triplet excited 3S1 state to re-pump all 3P states to the 3P1 manifold;

these states will decay back into the 1S0 ground states. (2) Use σ+-polarized on the narrow-line cool-

ing transition 1S0 ↔ 3P1 to pump ground states withmF > −I to the stretched ground state

|1〉 = |mI = +I〉. After these two steps, all non-Rydberg leakage errors will be mapped to the er-

ror |1〉〈1|, which is expressible in terms of Pauli-Z errors. We note that while Pauli-X errors could in

principle arise from polarization impurities in the 1S0 ↔ 3P1 beam in the second stage, this would

require several consecutive polarization imperfections, each of which has a very low probability of

roughly 0.2 − 0.5%; thus, the overall probability of Pauli-X errors arising from imperfect polar-
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ization is negligible. Therefore, by using this optical pumping scheme to convert all non-Rydberg

leakage errors to Z errors, the FTQC schemes of Sections 6.4 and 6.5 can be implemented in alkaline

earth(-like) atoms.

6.7 Conclusions

In this work, we have presented a detailed analysis of the dominant error channels arising in quan-

tum computation using neutral Rydberg atoms. We show that although the multilevel nature of

atoms and the complex decay channels for Rydberg states lead to many additional types of errors

not considered in traditional QEC settings, the specific structure of the error model allows us to de-

sign hardware-efficient FTQC protocols based on the seven-qubit and hardware-tailored three-qubit

codes with significantly reduced overhead compared to general-purpose schemes. The crux of these

results is the ability to convert the complicated error model to Pauli-Z errors by introducing ancilla

atoms and making use of the Rydberg blockade effect, dipole selection rules, and new schemes for

optical pumping. To use the three-atom repetition code, we designed a new laser pulse sequence

to implement bias-preserving CNOT and Toffoli gates. For both protocols, we propose simple,

scalable geometrical layouts and demonstrate feasibility of all components of FTQC for near-term

implementation.

Our results provide an important step towards building large-scale quantum computers based

on neutral atom setups and highlight the importance of designing FTQC schemes based on the

specific structure of the error model and the unique capabilities of the hardware platform. Com-

pared to some general-purpose FTQC protocols, our hardware-efficient approaches for Rydberg

systems enable an order-of-magnitude improvement in resource overhead in terms of the number of

physical gates or required ancillas. We believe many of the ideas developed in this work, such as the

exploitation of the multi-level structure of the physical system, are transferable to other quantum
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computing platforms such as trapped ions and superconducting qubits. In the former case, an op-

tical pumping-based protocol to mitigate leakage in ions with low nuclear spin such as 171Yb+ was

recently developed and realized experimentally76; we believe that insights from our work would be

helpful for developing more general leakage correction methods in such setups and incorporating

them into FTQC protocols.
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It matters not how strait the gate,

How charged with punishments the scroll,

I am the master of my fate:

I am the captain of my soul.

William Ernest Henley

7
Conclusions and Future Directions

In conclusion, we have presented several solutions to two important questions for quantum

information theory, as introduced in Section 1.2:

1. Given the apparent difficulty of classically simulating large quantum systems, are there any

useful applications in which current or near-term quantum devices can outperform classical

computers?
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2. Can we develop efficient error-correction schemes to suppress the error rates and further

improve qubit and gate fidelities in near-term quantum devices?

We focused on the problem of quantum phase recognition in answering the first question; mean-

while, we approached the second using the concept of hardware-efficient quantum error correction.

More specifically, we developed a novel quantummachine learning paradigm in Chapter 4, the

quantum convolutional neural network (QCNN), and we demonstrated its success at both recog-

nizing one-dimensional quantum phases and optimizing quantum error-correcting codes. Drawing

inspiration from this QCNN framework, we then introduced in Chapter 5 a novel method (LED)

to detect and characterize two-dimensional topological phases of matter by using techniques from

quantum error correction. Through theoretical proofs, numerical simulations, and an experimen-

tal realization, we found that LED is substantially more efficient and robust than traditional ap-

proaches to recognize topological order. Finally, in Chapter 6, we developed hardware-efficient,

fault-tolerant protocols to perform quantum computation with neutral Rydberg atoms. By leverag-

ing the unique advantages of Rydberg atoms to protect against the hardware-specific error model,

our protocols became substantially more efficient than existing, general-purpose approaches.

Following these exciting results, there are multiple intriguing future directions to consider for

each of these works, which we outline below.

7.1 Future Directions for QCNN

In Chapter 4, we found that QCNNs provide a promising quantummachine learning paradigm.

Several interesting generalizations and future applications can be considered. For example, to rec-

ognize more exotic phases, we could also relax the translation-invariance constraints, resulting in

O(N logN) parameters for system sizeN, or we can use ancilla qubits to implement parallel feature

maps following traditional CNN architecture. Further extensions can incorporate optimizations
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for fault-tolerant operations on quantum error-correcting code spaces: for instance, it would be par-

ticularly exciting if one could use quantummachine learning ideas to develop hardware-efficient,

fault-tolerant quantum computing protocols such as the ones we designed in Chapter 6. In addi-

tion, while we have used a finite-difference scheme to compute gradients in our learning demonstra-

tions, the structural similarity of QCNNwith its classical counterpart motivates adoption of more

efficient schemes such as backpropagation99.

Recently, our work on QCNN has seen two exciting developments. First, the application of

QCNNs for quantum phase recognition was recently demonstrated on a seven-qubit superconduct-

ing quantum processor77. Second, the QCNN has recently been featured as a major example on

Google’s new TensorFlow Quantum package25, enabling a wide range of quantum enthusiasts to

further explore our framework. It will be particularly interesting to see how these developments can

lead to larger-scale experimental realizations or the discovery of novel applications for QCNNs.

7.2 Future Directions for LED

Our results in Chapter 5 demonstrate that our LEDmethod constitutes a promising approach to

enhance the detection and characterization of topological order. Several generalizations and future

avenues can be considered. For example, while our present LED work analyzes a spin-liquid state

prepared using a Rydberg-atom quantum simulator, LED is also directly applicable to other quan-

tum simulation and computation platforms, such as superconducting qubits138 or trapped ions153.

Moreover, while our current analysis uses classical post-processing of Z- and X-basis experimental

snapshots, it can be mapped to a quantum circuit model within the QCNN framework of Chap-

ter 4. Such a quantum circuit can allow for simultaneous measurement of both Z- and X-basis dec-

orated loop operators in each experimental repetition. Furthermore, the variational framework of

QCNN circuits can enable adaptive measurement procedures, which can better accommodate states
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differing from the fixed-point by large quasi-local unitary rotations. Another promising direction

is to study the relationship between the “correctability” of states in our mixed-state phase diagram

(Figure 5.4c) and other methods of studying topological order in mixed states, such as entanglement

negativity125,79,101. In particular, it could be intriguing to further explore the dependence of the

correctable regime on the choice of local error correction and/or coarse-graining procedure. Finally,

while our approach can be directly applied to any abelian topological phase described by the quan-

tum double of a finite abelian group92, it could be interesting to consider more exotic topological

phases, such as fracton phases, non-abelian topological orders, or gauge theories with continuous

gauge groups162,163. Such methods can then become indispensable parts of quantum simulation

toolboxes for understanding exotic states of entangled quantummatter.

7.3 Future Directions for Fault-Tolerant QuantumComputationwith Ry-

dberg Atoms

The hardware-efficient, fault-tolerant quantum computation protocols which we developed in

Chapter 6 provide an important step towards building large-scale quantum computers based on

neutral atom setups. Several interesting extensions can be considered. For example, while we have

primarily quantified the resource cost for fault-tolerant quantum computation proposals by study-

ing the number of qubits and gates required, another related and commonly used metric is the error

threshold, which amounts to the physical qubit and gate fidelities required to produce logical error

rates that are lower than the physical error rate. One may estimate the error thresholds for two- and

three-qubit gates directly by using the numbers presented in Tables 6.1 and 6.2 and requiring each

logical operation or stabilizer measurement step to have at most a single error, but it can be more

useful to obtain the precise numbers for these thresholds via numerical simulation.

A more detailed study of the error threshold would be especially helpful if one intends to extend
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our work to codes with distance greater than 3 and compare the relative performance and scalability

of these approaches with our current proposal. One particularly intriguing direction could be to

evaluate the performance and resource cost of existing fault-tolerant quantum computation pro-

tocols based on topological codes such as surface codes or color codes22,58,18,19,155,4 upon applying

our techniques to address Rydberg and non-Rydberg leakage errors. Indeed, one recent work has

already demonstrated ultrahigh error threshold in the surface code when the underlying noise model

is biased156; this motivates the use of surface codes in a Rydberg system where dominant errors have

all been converted to Pauli-Z type. Going further in this direction, one could eliminate all of the

Rydberg-specific leakage errors using our fault-tolerant quantum computation protocols, and then

concatenate our codes with more traditional quantum error correction approaches to address any

higher-order Pauli-X or Y-type errors that were neglected in our studies, or to further suppress the

logical error rate to even higher orders.

Experimentally, there have been many rapid developments in Rydberg-atom quantum com-

puting in the last few years, and further advances are expected in the near future. In particular, the

newly-demonstrated ability to transport atomic qubits while preserving quantum coherence opens

many doors for performing error correction and fault-tolerant quantum computing16. It would be

particularly exciting to combine this groundbreaking new feature of neutral-atom platforms with

our hardware-efficient protocols to enable large-scale fault-tolerant quantum computation with

Rydberg atoms.
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A
Supplementary Information for Chapter 4

A.1 Phase Diagram andQCNNCircuit Simulations

The phase diagram in Chapter 4 (Figure 4.2a) was numerically obtained using the infinite size

density-matrix renormalization group (DMRG) algorithm. We generally follow the method out-

lined in Ref.114 with the maximum bond dimension 150. To extract each data point in Figure 4.2a,

we numerically obtain the ground state energy density as a function of h2 for fixed h1 and computed
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its second order derivative. The phase boundary points are identified from sharp peaks.

The simulation of our QCNN in Figure 4.2b also utilizes matrix product state representations.

We first obtain the input ground state wavefunction using finite-size DMRG114 with bond dimen-

sionD = 130 for a system ofN = 135 qubits. Then, the circuit operations are performed by

sequentially applying SWAP and two-qubit gates on nearest neighboring qubits164. Each three-

qubit gate is decomposed into two-qubit unitaries122. We find that increasing bond dimension to

D = 150 does not lead to any visible changes in our main figures, confirming a reasonable conver-

gence of our method. The color plot in Figure 4.2a is similarly generated for a system ofN = 45

qubits.

A.2 Multiscale String Order Parameters

We examine the final operator measured by our circuit that recognizes the SPT phase in the Heisen-

berg picture. Although a QCNN performs non-unitary measurements in the pooling layers, similar

to QEC circuits129, one can postpone all measurements to the end and replace pooling layers by

unitary controlled gates acting on both measured and unmeasured qubits. In this way, the QCNN

is equivalent to measuring a non-local observable

O = (U(d)
CP ...U

(1)
CP)

†Zi−1XiZi+1(U
(d)
CP ...U

(1)
CP) (A.1)

where i is the index of the measured qubit in the final layer andU(l)
CP is the unitary corresponding

to the convolution-pooling unit at depth l. A more explicit expression ofO can be obtained by

commutingUCP with the Pauli operators, which yields recursive relations:

U†
CPXiUCP = Xĩ−2XĩXĩ+2 (A.2)
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U†
CPZiUCP =

1
2
(Zĩ + Zĩ−2Xĩ−1 + Xĩ+1Zĩ+2

− Zĩ−2Xĩ−1ZĩXĩ+1Zĩ+2)

(A.3)

ĩ enumerates every qubit at depth l − 1, including those measured in the pooling layer. It follows

that an SOP of the form ZXX...XZ at depth l transforms into a weighted linear combination of

16 products of SOPs at depth l − 1. Thus, instead of measuring a single SOP, our QCNN circuit

measures a sum of products of exponentially many different SOPs:

O =
∑
ab

C(1)
ab Sab +

∑
a1b1a2b2

C(2)
a1b1a2b2Sa1b1Sa2b2 + · · · , (A.4)

O can be viewed as amultiscale string order parameter with coefficients computed recursively in d

using Eqs. (A.2,A.3). This allows the QCNN to produce a sharp classification output even when

the correlation length is as long as 3d.

A.3 Construction of QCNNCircuit

To construct the exact QCNN circuit in Figure 4.2b, we followed the guidelines discussed in Sec-

tion 4.3. Specifically, we designed the convolution and pooling layers to satisfy the following two

important properties:

1. Fixed-point criterion: If the input is a cluster state |ψ0〉 of L spins, the output of the convolution-

pooling layers is a cluster state |ψ0〉 of L/3 spins, with all measurements deterministically

yielding |0〉.

2. QEC criterion: If the input is not |ψ0〉 but instead differs from |ψ0〉 at one site by an error

which commutes with the global symmetry, the output should still be a cluster state of L/3

142



spins, but at least one of the measurements will result in the state |1〉.

These two properties are desirable for any quantum circuit implementation of RG flow for per-

forming QPR.

In the specific case of our Hamiltonian, the ground state (1D cluster state) is a graph state, which

can be efficiently obtained by applying a sequence of controlled phase gates to a product state. This

significantly simplifies the construction of the MERA representation for the fixed-point criterion.

To satisfy the QEC criterion, we treat the ground state manifold of the unperturbed Hamiltonian

H = −J
∑

i ZiXi+1Zi+2 as the code space of a stabilizer code with stabilizers {ZiXi+1Zi+2}. The

remaining degrees of freedom in the QCNN convolution and pooling layers are then specified such

that the circuit detects and corrects the error (i.e. measures at least one |1〉 and prevents propagation

to the next layer) when a single-qubit X error is present.

A.4 QCNN for General QPR Problems

Our interpretation of QCNNs in terms of MERA and QECmotivates their application for recog-

nizing more generic quantum phases. For any quantum phaseP whose RG fixed-point wavefunc-

tion |ψ0(P)〉 has a tensor network representation in isometric orG-isometric form139 (Figure A.1a),

one can systematically construct a corresponding QCNN circuit. This family of quantum phases

includes all 1D SPT and 2D string-net phases41,139,103. In these cases, one can explicitly construct

a commuting parent Hamiltonian for |ψ0(P)〉 and aMERA structure in which |ψ0(P)〉 is a fixed-

point wavefunction (Figure A.1a for 1D systems). The diagrammatic proof of this fixed-point prop-

erty is given in Figure A.1b. Furthermore, any “local error” perturbing an input state away from

|ψ0(P)〉 can be identified by measuring a fraction of terms in the parent Hamiltonian, similar to

syndrome measurements in stabilizer-based QEC129. Then, a QCNN forP simply consists of the

MERA for |ψ0(P)〉 and a nested QEC scheme in which an input state with error density below the
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Figure A.1: QCNN for generic QPR problems. (a) Given a state with a translationally invariant, isometric matrix
product state representation (e.g. a fixed point state for a 1D SPT phase), we explicitly construct an isometry for the
MERA representation of this state. Blue squares are the matrix product state tensors, while black lines are the legs of
the tensor. While we have illustrated a 3‐to‐1 isometry, the generalization to arbitrary n‐to‐1 isometries is straightfor‐
ward. (b) Diagrammatic proof showing that a MERA constructed from the above tensor maps the fixed‐point state back
to a shorter version of itself. The first equality uses the definition of isometric tensor, and loops in the middle diagram
simplify to a constant number unity. The generalization of this isometry to higher dimensions is discussed in Ref. 56.
(c) One helpful initial parameterization for QPR problems consists of a MERA for the fixed point state |ψ0(P)〉 and a
choice of nested QEC, so that states within the QEC threshold flow toward |ψ0(P)〉. Training procedures then expand
this threshold boundary to the phase boundary.
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Figure A.2: Circuit parameterization for training a QCNN to solve QPR. Our circuit involves 4 different
convolution layers (C1 − C4), a pooling layer, and a fully connected layer. The unitaries are initialized to random values,
and learned via gradient descent.

QEC threshold2 “flows” to the RG fixed point. Such a QCNN can be optimized via our learning

procedure.

While our generic learning protocol begins with completely random unitaries, as in the classical

case99, this initialization may not be the most efficient for gradient descent. Instead, motivated by

deep learning techniques such as pre-training99, a better initial parameterization would consist of a

MERA representation of |ψ0(P)〉 and one choice of nested QEC.With such an initialization, the

learning procedure serves to optimize the QEC scheme, expanding its threshold to the target phase

boundary (Figure A.1c).
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A.5 Demonstration of Learning Procedure for QPR

To perform our learning procedure in a QPR problem, we choose the hyperparameters for the

QCNN as shown in Figure A.2. This hyperparameter structure can be used for generic (1D) phases,

and is characterized by a single integer n that determines the reduction of system size in each convolution-

pooling layer, L → L/n. (Figure A.2 shows the special case where n = 3). The first convolution

layer involves (n + 1)-qubit unitaries starting on every nth qubit. This is followed by n layers of

n-qubit unitaries arranged as shown in Figure A.2. The pooling layer measures n − 1 out of every

contiguous block of n qubits; each of these is associated with a unitaryVj applied to the remain-

ing qubit, depending on the measurement outcome. This set of convolution and pooling layers is

repeated d times, where d is the QCNN depth. Finally, the fully connected layer consists of an arbi-

trary unitary on the remainingN/nd qubits, and the classification output is given by the measure-

ment output of the middle qubit (or any fixed choice of one of them). For our example, we choose

n = 3 because the Hamiltonian in Equation 4.2 involves three-qubit terms.

In our simulations, we consider onlyN = 15 spins and depth d = 1, because simulating quan-

tum circuits on classical computers requires a large amount of resources. We parameterize unitaries

as exponentials of generalized a × aGell-Mann matrices {Λi}, where a = 2w and w is the number

of qubits involved in the unitary13: U = exp
(
−i

∑
j cjΛj

)
.

This parameterization is used directly for the unitaries in the convolution layers C2 − C4, the

pooling layer, and the fully connected layer. For the first convolution layer C1, we restrict the choice

ofU1 to a product of six two-qubit unitaries between each possible pair of qubits:

U1 = U(23)U(24)U(13)U(14)U(12)U(34), (A.5)

whereU(αβ) is a two-qubit unitary acting on qubits indexed by α and β. Such a decomposition is
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useful when considering experimental implementation.

In the QCNN learning procedure, all parameters cμ are set to random values between 0 and 2π

for the unitaries {Ui,Vj, F}. In every iteration of gradient descent, we compute the derivative of

the mean-squared error function (Equation 4.1 in Section 4.2) to first order with respect to each of

these coefficients cμ by using the finite-difference method:

∂MSE
∂cμ

=
1
2ε

(
MSE(cμ + ε)−MSE(cμ − ε)

)
+ O(ε2). (A.6)

Each coefficient is thus updated as cμ 7→ cμ − η∂MSE
∂cμ , where η is the learning rate for that iteration.

We compute the learning rate using the bold driver technique frommachine learning, where η is

increased by 5% if the error has decreased from the previous iteration, and decreased by 50% other-

wise78. We repeat the gradient descent procedure until the error function changes on the order of

10−5 between successive iterations. In our simulations, we use ε = 10−4 for the gradient computa-

tion, and begin with an initial learning rate of η0 = 10.

A.6 Demonstration of Learning Procedure for QEC

To obtain the QEC code considered in Section 4.4, we consider a QCNNwithN = 9 input physi-

cal qubits and simulate the circuit evolution of its 2N × 2N density matrix exactly. Strictly speaking,

our QCNN has three layers: a three-qubit convolution layerU1, a 3-to-1 pooling layer, and a 3-to-1

fully connected layerU2. Without loss of generality, we may ignore the optimization over the pool-

ing layer by absorbing its effect into the first convolution layer, leading to the effective two-layer

structure shown in Figure 4.6a. The generic three-qubit unitary operationsU1 andU2 are parame-

terized using 63 Gell-Mann coefficients each.

As discussed in Section 4.4, we consider three different error models: (1) independent single-

qubit errors on all qubits with equal probabilities pμ for μ = X, Y, and Z errors, (2) independent
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Figure A.3: Ratio between the logical error rate of the Shor code and that of the QCNN code for the anisotropic depo‐
larization error model. We fix the total input error rate ptot = px + py + pz = 0.001 and py = pz, while varying the
ratio px/ptot.

single-qubit errors on all qubits, with anisotropic probabilities px 6= py = pz, and (3) independent

single-qubit anisotropic errors with additional two-qubit correlated errors XiXi+1 with probability

pxx. More specifically, the first two error models are realized by applying a (generally anisotropic)

depolarization quantum channel to each of the nine physical qubits:

N1,i : ρ 7→ (1−
∑
μ

pμ)ρ+
∑
μ

pμσ
μ
i ρσ

μ
i (A.7)

with Pauli matrices σμi for i ∈ {1, 2, . . . , 9} (the qubit indices are defined from bottom to top in

Figure 4.6a). For the anisotropic case, we trained the QCNN on various different error models with

the same total error probability px + py + pz = 0.001, but different relative ratios; the resulting

ratio between the logical error probability of the Shor code and that of the QCNN code is plotted as

a function of anisotropy in Figure A.3. For strongly anisotropic models, the QCNN outperforms

the Shor code, while for nearly isotropic models, the Shor code is optimal and QCNN can achieve
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the same logical error rate.

For the correlated error model, we additionally apply a quantum channel:

N2,i : ρ 7→ (1− pxx)ρ+ pxxXiXi+1ρXiXi+1 (A.8)

for pairs of nearby qubits, i.e. i ∈ {1, 2, 4, 5, 7, 8}. Such a geometrically local correlation is mo-

tivated from experimental considerations. In this case, we train our QCNN circuit on a specific

error model with parameter choices px = 5.8 × 10−3, py = pz = 2 × 10−3, pxx = 2 × 10−4

and evaluate the logical error probabilities for various physical error models with the same relative

ratios, but different total error per qubit px + py + pz + pxx. In general, for an anisotropic logi-

cal error model with probabilities pμ for σμ logical errors, the overlap fq is (1 − 2
∑

μ pμ/3), since

〈±ν| σμ |±ν〉 = (−1)δμ,ν+1. Becuase of this, we compute the total logical error probability from fq

as 1.5(1 − fq). Hence, our goal is to maximize the logical state overlap fq defined in Equation (4.6).

If we naively apply the gradient descent method based on fq directly to bothU1 andU2, we find

that the optimization is easily trapped in a local optimum. Instead, we optimize two unitariesU1

andU2 sequentially, similar to the layer-by-layer optimization in backpropagation for conventional

CNN99.

A few remarks are in order. First, sinceU1 is optimized prior toU2, one needs to devise an effi-

cient cost function C1 that is independent ofU2. In particular, simply maximizing fq with an as-

sumptionU2 = 1 may not be ideal, since such choice does not capture a potential interplay between

U1 andU2. Second, becauseU1 captures arbitrary single qubit rotations, the definition of C1 should

be basis independent. Finally, we note that the tree structure of our circuit allows one to view the

first layer as an independent quantum channel:

MU1 : ρ 7→ tra[U1N (U†
1(|0〉 〈0| ⊗ ρ⊗ |0〉 〈0|)U1)U†

1 ], (A.9)
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where tra[·] denotes tracing over the ancilla qubits that are measured in the intermediate step. From

this perspective,MU1 describes an effective error model to be corrected by the second layer.

With these considerations, we optimizeU1 such that the effective error modelMU1 becomes

as classical as possible, i.e. MU1 is dominated by a “flip” error along a certain axis with a strongly

suppressed “phase” error. Only then, the remant, simpler errors will be corrected by the second

layer. More specifically, one may representMU1 using a mapMU1 : r 7→ Mr + c, where r ∈ R3

is the Bloch vector for a qubit state ρ ≡ 1
21 + r · 122. The singular values of the real matrixM

encode the probabilities p1 ≥ p2 ≥ p3 for three different types of errors. We choose our cost

function for the first layer as C1 = p21 + p2 + p3, which is relatively more sensitive to p2 and p3

than p1 and ensure that the resultant, optimized channelMU1 is dominated by one type of error

(with probability p1). We note thatM can be efficiently evaluated from a quantum device without

knowingN , by performing quantum process tomography for a single logical qubit. OnceU1 is

optimized, we use gradient decent to find an optimalU2 to maximize the fidelity fq. As with QPR,

gradients are computed via the finite-difference method, and the learning rate is determined by the

bold driver technique99.

A.7 Experimental Resource Analysis

To compute the gate depth of the cluster model QCNN circuit in a Rydberg atom implementation,

we analyze each gate shown in Figure 4.2b. By postponing pooling layer measurements to the end of

the circuit, the multi-qubit gates required are

CzZij = eiπ(−1+Zi)(−1+Zj)/4 (A.10)

CxZij = eiπ(−1+Xi)(−1+Zj)/4 (A.11)
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CxCxXijk = eiπ(−1+Xi)(−1+Xj)(−1+Xk)/8. (A.12)

By using Rydberg blockade-mediated controlled gates136, it is straightforward to implement CzZij

and CzCzZijk = eiπ(−1+Zi)(−1+Zj)(−1+Zk)/8. The desired CxZij and CxCxXijk gates can then be

obtained by conjugating CzZij and CzCzZijk by single-qubit rotations. For input size ofN spins,

the kth convolution-pooling unit thus applies 4N/3k−1 CzZij gates,N/3k−1 CxCxXijk gates, and

2N/3k−1 layers of CxZij gates. The depth of single-qubit rotations required is 4d, as these rotations

can be implemented in parallel on allN qubits. Finally, the fully connected layer consists ofN31−d

CzZij gates. Thus, the total number of multi-qubit operations required for a QCNN of depth d

operating onN spins is 7N
2 (1 − 31−d) + N31−d. Note that we need not use SWAP gates since the

Rydberg interaction is long-range.
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B
Supplementary Information for Chapter 5

B.1 Numerical Simulations for the Toric Code

In this section, we explain how the numerical simulations underlying Figures 5.2, 5.3, and 5.4 are

performed. We begin by constructing a projected entangled pair state (PEPS) representation of the
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Figure B.1: PEPS sampling algorithm. Expectation values are computing with respect to both |ψ〉 (back) and 〈ψ|
(front). (a) Tracing, or averaging over measurement outcomes can be done by contracting the physical indices, and is
needed to compute marginal probabilities. (b) To compute the probability of a particular Z basis measurement, the
physical index is assigned a particular value ab. (c) We can efficiently contract a 2D PEPS tensor network on an infinite
strip of finite height, by using a left and right boundary MPS (only top four rows shown). The probability distribution
for projective measurements on a particular site, e.g. xy = 11 can then be computed efficiently. (d) Once an entire
column has been sampled, the measurement‐dependent MPO can applied to the boundary MPS. Although performing
this contraction exactly causes the bond‐dimension to grow rapidly, away from phase boundaries, finite bond dimension
is sufficient for accurate simulation. See Appendix B.9 for more details.
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exact toric code ground state140. This construction utilizes a parity tensor P defined as

Pijkl =


1 if i+ j+ k+ l = 0 mod 2

0 otherwise
(B.1)

where each index i, j, k, l ∈ {0, 1} (i.e., the tensor P has bond dimension two). Because the toric

code is defined with qubits on the links of a square lattice, our PEPS representation of the state has

one PEPS tensor with two physical indices per unit cell. Letting p, q be the physical indices and ijkl

be the virtual indices, the toric code PEPS tensor A is then given by Apq
ijkl = δpi δ

q
j Pijkl. Our perturbed

states |ψ(gX, gZ)〉 are constructed from the toric code state by applying imaginary time evolution to

each site L(gX, gZ) = egXX+gZZ:

A(gX, gZ)
pq
ijkl =

∑
p′,q′

L(gX, gZ)
p
p′L(gX, gZ)

q
q′A

p′q′
ijkl . (B.2)

Notice that this operation does not change the PEPS bond dimension, thereby allowing for efficient

simulation.

Our goal is to simulate projective Z-basis measurements to serve as the “experimental snapshot”

input in Figure 5.1b. The key ingredient which enables efficient sampling is an algorithm for effi-

ciently computing marginal and conditional probabilities. To illustrate how the algorithm works,

consider the following procedure. We first label every unit cell by its coordinate (x, y). There are

four possible measurement outcomes at each unit cell, and we compute the probability P(σ(1,1) =

ab) that measurement of the first site (x, y) = (1, 1) yields the outcome ab = 00, 01, 10, or 11.

Next, we select a sample ab11 based on this probability distribution. With this information, we com-

pute the probability distribution on the second site, P(σ21 = ab|ab11) conditioned on the first mea-

surement outcome, and sample the second measurement outcome ab21. The process then repeats,
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with each subsequent distribution being conditioned on all prior measurements.

Computing the probabilities requires contracting a 2D tensor network (Figure B.1), which is in

general#P-hard141. In practice, however, the states we encounter have finite correlation length,

and the computation becomes remarkably efficient throughout much of the phase diagram43. In

particular, we work on a strip of finite height Lx and infinite length Ly, and introduce boundary

matrix product states (MPS) to efficiently capture the effect of the environment—that is, the sites

different from the one currently being sampled120. Because singular-value decomposition (SVD)

truncation is used at each step to prevent the bond dimension of the boundary MPS from growing

exponentially166, the method is approximate; however, we only discard singular values smaller than

< 10−8, so truncation errors are insignificant. Details of the boundary conditions and contraction

ordering are discussed in Appendix B.8.

In our simulations, we choose Lx = 300 unit cells and sample 1000 columns, giving us access

to very large snapshots with 600,000 qubits. To minimize boundary effects, we compute observ-

ables which are supported on sites at least 30 unit cells away from the boundaries. Near the phase

boundaries, the bond dimension (entanglement) of the boundary MPS becomes large due to the

large correlation length, which increases the computational demands for sampling (gray data points

in Figure 5.3). We numerically confirm this phase boundary with an independent calculation (see

Appendix B.9).

B.2 Details on Error-Correction and Coarse-Graining Procedures

In this section, we explain the details of the LED decoding and coarse-graining procedures and

demonstrate how bare Wilson loops become decorated under the LED protocol. Without loss of

generality, we consider Z-basis measurements, from which we can calculate plaquette stabilizers Bu.

Here, each plaquette is labelled by the 2D coordinate of its unit cell u = (x, y). Since there are two

155



qubits per unit cell, each qubit carries a coordinate and a link label v or h, depending on whether its

corresponding edge in the square lattice is vertical or horizontal, respectively. Finally, the projective

measurement outcomes are denoted by σ ∈ {+1,−1} (see Figure B.2).

To illustrate local error correction, we consider the “pairing decoder,” which flips a qubit if and

only if its two neighboring plaquettes are simultaneously occupied. Importantly, to preserve locality,

we first compute all stabilizer values, and then flip qubits based on these values. The decision of

whether to flip any qubit then depends only on its value, and the values of the six adjacent qubits

with which it shares a plaquette. Equivalently, this error correction procedure corresponds to an

operator transformation

σu+x̂,v → σu+x̂,v (1+ Bu + Bu+x̂ − BuBu+x̂) /2 (B.3)

σu+ŷ,h → σu+ŷ,v
(
1+ Bu + Bu+ŷ − BuBu+ŷ

)
/2 (B.4)

To ensure all local errors are removed after a finite number of LED steps, we also pair anyons which

occupy two plaquettes separated by a diagonal, such as Bu and Bu+x̂+ŷ. The locality of the decoder

ensures that the support of any local operator only grows by a finite amount with each step. Sub-

sequently, the coarse-graining procedure replaces each b × b block of plaquettes with a single pla-

quette whose value is the product of b2 plaquettes; microscopically, this can be done by defining

new qubits as a product of b corresponding qubits in the original lattice. The combination of a lo-

cal pairing step and a coarse-graining step forms a layer of real-space RG; upon applying this RG

procedure n times, one can correct errors of higher and higher weight.

The bare Wilson loops measured in the final state are equivalent to decorated loop operators

acting on the original state. These decorated operators can be efficiently computed from projective

measurement data, since the eigenstates of the LED Z-loop and X-loop operators are product states

in the Z and X bases, respectively. Furthermore, in the operator transformation picture, any loop or
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Figure B.2: LED coarse-graining and operator transformation. (a) In the toric code model, qubits are located
on the links of a square lattice, and the stabilizer associated with any plaquette is given by a product of four single‐qubit
Pauli‐Z operators. (b) Coarse‐graining maps a b× b block of plaquettes to a single plaquette whose value is the product
of the b2 plaquettes (here b = 2). Microscopically, coarse‐grained qubits σ′ are products of b lower‐level qubits σ.
Coarse‐grained stabilizers B′

u are therefore equivalent to a product of b × b stabilizers at the lower level. (c) Pairing
correction flips a qubit conditioned on the state of its two neighboring stabilizers. This is equivalent to an operator
transformation where the qubit is decorated by products of closed loops.

string of length Lmaps onto a linear combination of exponentially many (2O(L)) loops or strings,

respectively. Thus, while the operator transformation picture is helpful for conceptual reasons, it is

computationally much easier to use the original picture of error-correction and coarse-graining.

A few remarks are in order. First, one important property of LED is that it preserves commu-

tation relations: consider two anti-commuting X and Z strings which intersect at a single point,

far from the strings’ endpoints. Upon applying LED, the resulting decorated strings still anti-

commute. This is because the correction is computed only using stabilizers, so it decorates Z-operators

by a linear combination of closed Z-loops, and similarly for X. Moreover, other local decoding al-

gorithms, such as cellular automata and RG decoders, can also be used to generate different LED

operators50. In the following section, we describe a flexible, “patch-based” local decoder for the toric

code, which allows LED to classify a wider range of states as topological.
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Figure B.3: MWPM-based patch decoder. (a) Example of an error chain which creates four e‐anyons. (b) The de‐
coding algorithm performs correction using only local information by splitting the large system into smaller overlapping
regions, within each of which the MWPM algorithm is used to find the lowest‐weight pairing of anyons. These local re‐
gions have open boundaries, hence MWPM can also pair anyons to the boundaries if this is of lower weight. In practice,
a slight boundary bias is added to break ties in favor of boundary pairing. (c) The final step requires locally combining the
pairing outputs to determine the final pairing. In particular, we count the number of times each site p is paired to sites
q > p. In the diagram, two equal‐weight pairings contribute 0.5 each, though we randomly break the tie in practice.
Then, the algorithm pairs p with the q that appears most often. In this example diagram, we connect two pairs which
have weight= 5.5, and do not form the weight= 2 pairing. We see in the simple four‐anyon case depicted above, the
procedure correctly recovers the pairing with windows of size l = 3. In general, this patch‐based decoder can correct
errors up to distance d = bl/2c; moreover, the distance by which it spreads information and the thickness of any
associated LED operators are both proportional to l.

B.3 Patch-Based Decoder

The patch-based decoder with variable correction distance d is based on a local minimumweight

perfect matching (MWPM) procedure. In the first decoding step, a local MWPM decoder is con-

volved with all l by l square regions of the toric code, where l ∼ d; for each region, MWPM takes

as input the location of the enclosed anyons. Because both e andm anyons can freely move into and

out of the region, this is analogous to decoding a surface code with open boundaries. Therefore,

MWPM pairs any given anyon either with another anyon or with the boundary.
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The second step aggregates MWPM pairings. Since the square regions can overlap, a pair may

appear more than once. As such, after choosing a natural indexing of the plaquettes, we create a list

of all MWPM pairings between two plaquettes (p, q)with p < q; pairings with the boundary are

not included (Figure B.3). For each plaquette p containing an anyon, the patch-based decoder then

performs the pairing (p, q)which occurs most often. This procedure naturally favors pairings that

flip fewer qubits, because shorter-range pairings can be included in more local patches.

A critical property of this decoder is that it preserves locality. In the first step, MWPM only uses

information from local l by l patches. The second step is also local: for each plaquette p, its distance

from any possible partner plaquette must be less than l. Aggregation can thus be performed using

only the results from a small number of overlapping local patches.

B.4 Decoder Dependence

We now examine how different choices of LED decoders can change the size of the “correctable”

region—that is, the region classified as topological. The main text demonstrates results for an l = 4

(or d = 2) patch-based decoder with coarse-graining size b = 2; in Figure B.4, we compare this

with the pairing decoder and an l = 6 (d = 3) patch-based decoder which also uses b = 2. We

see clearly that the l = 4 and l = 6 decoders both produce significantly larger correctable regions

than the simple pairing decoder, for both coherent and incoherent errors. Meanwhile, the l = 4

and l = 6 decoders perform similarly, so it appears that the decoder threshold saturates with l. In-

triguingly, we observe saturation at an incoherent error rate which is significantly below the known

error correction threshold of pc ≈ 10.9%. An interesting open question is to determine whether

this discrepancy arises because the patch-based decoder is suboptimal, or because local decoders have

some fundamental limit. In Appendix B.10, we show that a “annulus-based” decoder which applies

MWPM in a non-local fashion results in a much larger correctable regime.
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Figure B.4: Decoder choice can significantly affect the extent of the region certified as topological. Here
we show LEDWilson loops using coarse‐graining with block size b = 2 together with (a‐c) a d = 1 pairing decoder and
(d‐f) a d = 3 patch decoder. Coherent perturbations are considered in panels (a,d), while incoherent errors are studied
in (b,e). Panels (c,f) show LED expectation values for various combinations gX,gZ after three layers of correction. Note
that in the main text, analogous plots are made using the d = 2 patch decoder, whose classification boundaries roughly
match the d = 3 decoder shown here.
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Figure B.5: Sample complexity. (a) Effect of LED on loops of fixed size L = 10. Snapshots are drawn from a toric
code defined on a 25 × 25 square lattice with various bit‐flip error rates. Sample complexity is computed as described
in the main text. Note that sample complexities less than one imply that only a fraction of the system needs to be mea‐
sured to certify topological order with 95% confidence. As such, the y‐axis is also multiplied by the number of unit cells
Nuc. (b) The histogram of expectation values averaged over a single snapshot confirms that these expectation values
are approximately Gaussian distributed. The distribution for LED loops (purple) has much lower weight at zero than un‐
corrected loops (green), highlighting how fewer samples are needed to verify with high confidence that the closed loops
are non‐zero. (c,d) We also study the effect of coarse‐graining on sample complexity, where the loop length L = 5×2n
grows exponentially with correction layer n. Here, snapshots are taken from a 1024× 1024 square lattice. Initially, the
sample complexity increases due to a reduction in the number of independent loops available at higher layers. However,
it eventually reduces and approaches zero in the topological phase. (d) This turnaround occurs in the limit ξ � d, where
correction is able to remove almost all errors, and loop expectation values approach one.

B.5 Sample Complexity

A key figure of merit for certification of phases is the sample complexity, defined here as the number

of samples required to confirm with 95% confidence that the measured loop operator is non-zero.

To compute sample complexity, we approximate the LEDWilson loop expectation value evaluated

on a large but finite size system as a Gaussian random variable. In this scenario, the important quan-

tity is the ratio of the standard deviation σ to the mean 〈Zclosed〉. The estimator of the expectation
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value has a standard deviation that decreases as 1/
√
Swhere S is the number of samples. Thus, to

confirm the mean is non-zero to two standard deviations (95% confidence), we require approxi-

mately S = (2σ/〈Zclosed〉)2 samples.

In Figure B.5, we compare the sample complexity of certifying non-zeroWilson loops using bare

and LED observables. Two scenarios are considered. In the first, bare and LEDWilson loops are

compared at fixed length-scale. Indeed, the sample complexity decreases by an order of magnitude

for a range of incoherent error rates below the correction threshold. In the second scenario, coarse-

graining is considered, where larger length-scales are probed at each layer. Here, the sample com-

plexity in fact increases at early layers for moderate error rates before falling dramatically. This is

because the variance of the signal initially increases, since coarse-graining reduces the number of

loops available for averaging in a fixed size system. However, for sufficient correction layers, LED

reliably removes almost all errors. This is the regime where ξ � d, so the Wilson loops saturate at

one and their variance approaches zero (see histograms in Figure B.5).

Nevertheless, the initial increase in sample complexity is not simply due to information being re-

moved. Upon further examination of the scenario without coarse-graining, we find a similar initial

increase in sample complexity. We interpret this as correction causing adjacent LED loops to be-

come correlated. Finally, we note that the sample complexity measured in this way only improves in

the topological phase. In the uncorrectable, disordered phase, the inverse ratio 〈Zclosed〉/σ rapidly

approaches zero.

B.6 Decoder Details for the Ruby Lattice Spin Liquid

We now explain the decoding procedure for a dimer model where qubits lie on the vertices of the

ruby lattice, or equivalently, on the links of a kagome lattice. This dimer model supports a Z2 spin-

liquid phase, whose fixed-point is a resonating valence-bond (RVB) state160. This state is in the same
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Figure B.6: Decoding for the ruby lattice spin liquid realized in Ref.143. (a) For Z‐loops, two layers of LED
can be performed. In both layers, we use the pairing decoder, which flips a qubit (e.g., red or orange circle) if and only if
both neighboring stabilizers (e.g., red or orange squares) are equal to−1. Stabilizers in the first layer (e.g., red squares)
are given by (−1)

∏
i∈v Zi for each vertex v of the kagome lattice. The coarse‐graining procedure after the first de‐

coding step maps three stabilizers to a single stabilizer (e.g., orange square) in the coarse‐grained lattice (blue lines),
whose value is determined by the product of the qubits along a loop enclosing a triangle (e.g., purple closed loop). The
open strings considered in the main text start and end at hexagons (e.g., purple open string). (b) To measure X‐loops, a
basis rotation is first performed within each triangle of the kagome lattice, so that the X‐string operators become di‐
agonal in the measurement basis (inset and Refs. 143,160). Each configuration is then mapped to a triangular lattice (blue
lines), where each edge of the triangular lattice is determined by the product of four qubits in the original lattice (e.g.,
red circles); moreover, the X stabilizers of the dimer model become vertex stabilizers in the triangular lattice (e.g., pur‐
ple hexagons). As before, the pairing decoder flips qubits (orange edges) conditioned on the values of stabilizers (e.g.,
orange squares). Open strings on the triangular lattice also map to open strings in the kagome lattice (e.g., red string),
although the resulting strings are slightly different from the ones measured in Refs.143,160.
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Z2 universality class as the toric code, as it supports e andm anyons with similar string operators.

We first describe the decoding procedure for e anyons, which correspond to vertices with an even

number of adjacent dimers *. In the first correction step, we apply the pairing decoder between ad-

jacent vertices. We then coarse-grain the kagome lattice to a triangular lattice by grouping vertices

within each upward-pointing triangle. This transforms vertex stabilizers in the kagome lattice to

vertex stabilizers in the triangular lattice (Figure B.6a). The pairing decoder is then applied between

adjacent triangles in the second correction step. In the main text, we study the flow from uncor-

rected loops to vertex-paired and triangle-paired loops, which are denoted as as layers 0, 1, and 2,

respectively.

We next consider them anyons, which are associated with hexagonal plaquettes. A rotation is

first performed within each triangle, such that the string operators associated withm anyons be-

come diagonal in the measurement basis. This allows us to map each configuration onto triangular

lattice, whose vertices are located at the center of each hexagon in the kagome lattice; this mapping

transforms the X-stabilizers of the dimer model into vertex Z-stabilizers in the triangular lattice (Fig-

ure B.6b). Due to the small experimental system size, we can only perform one layer of correction,

and we use the simple pairing decoder on the triangular lattice. We note that open strings on the tri-

angular lattice map onto open strings on the ruby lattice, although the resultant strings are slightly

different from the ones measured in160,143.

B.7 Definition and Properties of Fixed-Point States

As discussed in Chapter 5, one important component for defining any LED procedure is to identify

a fixed-point state of the target phase of matter. Here, we review the definition and key properties of

a fixed-point state.

*Notice that this is an odd Z2 spin liquid, and the trivial empty state corresponds to maximal occupation
of e anyon states.
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It is well-known in the literature that gapped quantum ground states can be classified by a real-

space RG flow40,139. To implement such an RG flow, one notes that any two states in the same

phase can be connected by finite-depth local unitary transformations. The hallmark property of

topologically-ordered states is the presence of long-range entanglement, and finite-depth local uni-

tary transformations can add or remove local short-range entanglement; thus, for any given state in

a topological phase of matter, one can construct a procedure which hierarchically removes all short-

range entanglement from this state at increasing length-scales. Then, the resulting state then has

zero correlation length, as all short-range entanglement has been removed; this state is known as a

fixed-point state of the topological phase.

We also consider important properties of the fixed-point state in the context of our LED proce-

dure and the closely related QCNN procedure of Chapter 4. In both of these procedures, a fixed-

point state of the phase under consideration is chosen, and the protocol identifies states within this

phase by removing local errors or perturbations on top of this fixed-point state; this is done by per-

forming a decoding operation and a coarse-graining operation, and repeating them n times. In these

settings, the fixed-point state has a few special properties: If the input state is equal to the fixed-point

state, no errors are detected within each decoding step, and furthermore, the state after each layer

of decoding and coarse-graining is equal to the input state, defined on a subsystem of the original

system with fewer qubits. Finally, because fixed-point states have zero correlation length, the bare

Wilson loops defined in the main text have expectation value equal to+1 without performing any

correction or LED.

B.8 PEPS Sampling Contraction Details

We start by computing the left boundary MPS of an infinite strip. For sites with y ≤ 0, we average

over measurement outcomes, and hence the doubled PEPS tensor for each site, which contains both
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the bra and the ket tensors, is Ti′,j′,k′,l′
i,j,k,l =

∑
pq(A∗)

pq
i′,j′,k′,l′A

pq
i,j,k,l. The boundary conditions we

choose are |+〉i |+〉i′ at the lower x = 1 boundary and δi,i′ at the x = Lx boundary. Contracting

the doubled tensor along an entire column x = 1, ...,Lx results in a matrix product operator (MPO)

Ty acting on the boundary MPS. Then, we can compute the effect of an infinite environment by

repeatedly applying Ty to some initial boundary MPS until it converges. The right boundary MPS

can be similarly computed, by exchanging the input and output directions of the MPO. Note that

at each application of Ty, we use SVD truncation to prevent the bond dimension of the boundary

MPS from growing too rapidly, rendering the method approximate. However, only singular values

smaller than< 10−8 are discarded, so truncation errors should be insignificant. We refer to the

resulting tensors as the left and right fixed-point of Ty.

The algorithm continues by using the left and right boundary MPS to sample a column of sites.

Computing the marginal probability P(ab) on the first site requires contracting a 1D tensor net-

work (see Figure B.1), where the doubled tensor at x, y = 1, 1 is replaced by a measurement-

dependent one T(ab)i
′,j′,k′,l′
i,j,k,l = (A∗)abi′,j′,k′,l′A

ab
i,j,k,l, while the doubled tensor at sites x > 1 remain

measurement-independent. Note that the tensor network outputs an unnormalized probability

distribution; however, since there are only four states per site, the normalization can be computed

with little overhead. After drawing a sample ab11 for the first site, we replace the doubled tensor at

x, y = 1, 1 by T(ab11), and then compute the distribution of the second site. The process is repeated

until the entire column is sampled. To minimize repeat 1D contractions, upper and lower environ-

ment tensors can be stored and updated during the sweep x = 1, ...,Lx.

Next, the history of samples along the column are used to construct a measurement-dependent

MPO Ty(ab1, ab2, ..., abLx), where the doubled tensor at each site is replaced by a measurement-

dependent one. Then, the left boundary MPS can be updated by contraction with Ty({abi}), and

the process repeated for the second column. Thus, the left boundary MPS keeps track of the effect

of past measurements on future measurements, as the algorithm sweeps from left to right. Mean-
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while, the right boundary MPS remains unchanged, as it is modelling a static, infinite environment.

B.9 Calculation of Phase Diagram

To compute the phase diagram, we use the PEPS tensors to construct a transfer matrix with periodic

boundary conditions, on small cylinders with circumference Ly measured in unit cells. The largest

few eigenvalues of the transfer matrix can be efficiently computed using Krylov algorithms in this

regime, and the degeneracy of the largest eigenvalue serves as an alternative signature of the topologi-

cal transition82,51. In particular, the localZ2 gauge symmetry of the PEPS tensor becomes aZ2×Z2

symmetry of the doubled tensor (bra and ket). Hence the topological, e-condensate (Z-paramagnet),

andm-condensate (X-paramagnet) correspond to three distinct symmetry broken phases from the

point of view of the virtual legs, with degeneracy two, one, and four respectively.

As such, along the transition from topological to e-condensate, which occurs for gX small and

gZ ≈ 0.2 − 0.3, the relevant ratio is between the first and second eigenvalues, Δ12(gZ, gX) =

log(λ1/λ2). In contrast, for the transition from topological tom-paramagnet, the relevant gap

is between the first and third eigenvalues Δ13(gZ, gX). Furthermore, the model is self-dual, so the

wavefunction at |ψ(gz, gx)〉 is equivalent to the wavefunction at |ψ(gx, gz)〉 by a basis rotation and

spatial translation. We will use this duality to compute the phase boundary in a way which mini-

mizes finite-size effects, by computing the two gaps at their dual points (Figure B.7a). Therefore,

we introduce two parameters g0, g1, and let g1 be the parameter which changes across the transition.

The relevant parameter is therefore Δ12(g1, g0) for the topological to e-condensate transition, and

Δ13(g0, g1) for the topological tom-condensate transition.

As Δ12 grows with increasing g1, while Δ13 reduces with increasing g1, these two ratios will even-

tually cross. Indeed, in the limit Ly → ∞, the crossing point should exactly correspond to the phase

boundary. In general, finite Ly may shift the boundary. Empirically, we see that at g0 = 0, the
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Figure B.7: (a) For a given point (g0, g1) on the phase diagram, the phase transition from topological to e‐condensate
is signaled by the transfer matrix gap ratio Δ12(g0, g1), while the transition from topological tom‐condensate is sig‐
naled by Δ13(g1, g0), where both quantities are evaluated at the self‐dual point with gz ↔ gx switched. When
these two gaps are equal, the system must be at the critical point, due to the self‐duality. We observe that the cross‐
ing point coincides exactly with the known critical point gc (vertical dotted line), for Ly = 4, 5, 6 (blue, purple, or‐
ange resp.). (b) Quatitatively, we extract the phase boundary using Ly = 4 by finding points where the difference
|Δ12(g0, g1) − Δ13(g1, g0)| ≤ 0.01 is close to zero. (c) Along the cut of the phase diagram with g0 small, the phase
boundary computed from the difference has no visible finite size effects. (d) For larger g0 ≥ 0.1, small finite size effects
start to appear. Shown are g0 = 0.1, 0.14, 0.18, 0.22, 0.26 from left to right. The phase boundary clearly shifts to
larger g1 with increasing g0, but Ly = 4 (blue) appears to slightly overestimate the transition point compared to Ly = 6
(orange).
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solvable point, there are essentially no finite size effects, and the agreement with the analytical value

gc = 0.2203434 is almost exact (Figure B.7ac). For larger g0, the dependence on Ly appears minimal

until around g0 = 0.01: indeed, even in this case, Ly = 4 only overestimates the phase boundary

compared to Ly = 6 by a few percent (Figure B.7d). As such, we use Ly = 4 and compute the phase

boundary by identifying points where the difference Δ12 − Δ13 is close to zero (Figure B.7b).

B.10 Annulus Decoders

In this section we consider an alternative approach to constructing error corrected operators, by ap-

plyingMWPM to an annulus. Anyons supported on the annulus can be paired either with other

anyons, or with the boundary of the annulus. Interestingly, MWPM is a global decoder, where

introducing or removing anyons can change the pairing far away. However, by construction, the

decoder cannot connect the interior of the annulus to the exterior.

We show in Figure B.8 the behavior of these corrected loop operators for coherent, incoherent,

and mixed errors. In particular, for the incoherent error model, we see the region classified as topo-

logical seems to coincide with the known error recovery threshold of≈ 10.1% for MWPM. This is

much closer to the theoretical optimal error correction threshold of≈ 10.9%, where we expect the

phase transition from topological to disordered to occur.

Since this decoder is non-local, our existing theoretical arguments, and the connection to RG,

may not apply. Nevertheless, an annulus decoder cannot change the super-selection sector—whether

or not an anyon is contained within the annulus. Therefore, if the annulus-correction decorated

loops go to one, then asymptotically large regions have well-defined super-selection sectors, suggest-

ing the state is topologically-ordered. Indeed, it has been argued that such an annulus decoder could

be considered a witness for topological entanglement entropy172.
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Figure B.8: LED loops using MWPM on an annulus. We see the region classified as topological extends sig‐
nificantly further than the LED loops, for both incoherent (a,b) and coherent (c,d) perturbations. However, additional
subtleties arise. When we study fixed loop size and increasing annulus thickness (a,c), there appears to be amplification
even on the trivial and disordered sides. However, if we scale the loopsize such that the size of the interior is fixed (b,d),
then the improper amplification disappears. An interesting direction for future work is to develop a rigorous under‐
standing of whether non‐local annulus‐based decorating can also serve as a topological order witness.
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C
Supplementary Information for Chapter 6

C.1 Numerical Computation of Branching Ratios and Transition Rates

In this section, we present the results of numerical computation of branching ratios for BBR and

RD transitions out of the stretched Rydberg state 70S1/2,mJ = 1/2,mI = 3/2 for 87Rb.
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Figure C.1: Branching ratios for BBR transitions between Rydberg states of 87Rb, from the stretched 70S1/2 state with
mJ = 1/2,mI = 3/2 to different P states withmJ = 3/2 (empty orange circles) ormJ = 1/2 (filled blue diamonds).

C.1.1 Blackbody radiation-induced transitions

To quantify the relative probability of transitioning into different nearby Rydberg P states, we com-

pute the rateW(nL → n′L′) of BBR transitions from a given Rydberg state nL to other Rydberg

states n′L′ using the Planck distribution of photons at the given temperature T and the Einstein

coefficient for the corresponding transition:

W(nL → n′L′) = A(nL → n′L′)n̄ω (C.1)

where ω = EnL − En′L′ is the transition frequency (EnL and En′L′ are energies of the initial and final

states) and

A(nL → n′L′) =
4ω3

3c3
Lmax

2L+ 1
R2(nL → n′L′). (C.2)
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In the above equations, ℏ = 1, Lmax = max(L,L′), andR(nL → n′L′) is the radial matrix element

for the electric dipole transition nL → n′L′.

For this work, we used analytic formulas from Refs.87 and86 to numerically compute the ra-

dial dipole matrix elements for single-photon BBR transitions from the stretched Rydberg state

70S1/2,mJ = 1/2,mI = 3/2 of 87Rb. We then computed the corresponding transition rates using

Eq. (C.1), and normalized these by the total BBR rate ΓBBR (see Eq. (6.3)) to obtain the branching

ratios. The branching ratios for P states withmJ = 3/2 andmJ = 1/2 are plotted in Figure C.1

as empty orange circles and filled blue diamonds, respectively. Indeed, we find that the atom decays

primarily to the 69P and 70P states as illustrated in Figure 6.2.

C.1.2 Radiative decay

As shown in Figure 6.2 of the Chapter 6, the radiative decay transitions from the stretched 70S1/2,

mJ = 1/2,mI = 3/2 Rydberg state of 87Rb are almost entirely two- or four-photon decay pro-

cesses to one of the five states in the ground state manifold; this fact was important for converting all

Rydberg errors to Z type for fault-tolerant quantum computation. To justify this, we numerically

computed the branching ratios for multi-photon spontaneous emission processes by evaluating the

ratios of individual transition rates for each decay channel, which are given by the Einstein A coeffi-

cients of Eq. (C.2). Due to the cubic dependence of these coefficients on transition frequency, the

primary contributions arise from dipole-allowed transitions to states near the ground state manifold.

The dipole matrix elements for such transitions scale with the effective principal quantum number

neff of the Rydberg state as∼ 1/n1.5eff . The total RD rate is then given by a sum over Einstein coeffi-

cients for all possible target states:

1
τ0

= Γ0 =
∑

n′L′:EnL>En′L′

A(nL → n′L′). (C.3)
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FFF mmmFFF Branching ratio
2 2 0.534
2 1 0.177
2 0 0.055
2 −1 0.003
2 −2 0.001
1 1 0.168
1 0 0.059
1 −1 0.003

Table C.1: Branching ratios for transition to each ground state of 87Rb for radiative decay processes from the 70S1/2,
mJ = 1/2,mI = 3/2 stretched Rydberg state, accounting for transitions involving up to four‐photon emission
processes. The contribution from transitions of even higher order is less than 2.5× 10−4.

By computing the radial dipole matrix elements using analytic formulas from Refs.87 and86, we

evaluated the branching ratios for RD processes out of the 70S1/2,mJ = 1/2,mI = 3/2 stretched

Rydberg state for 87Rb.

The results of this computation are shown in Table C.1. Indeed, we find that the branching ra-

tios for the remaining three states are each on the order of 10−3, significantly smaller than those for

the dominant five transitions. If the total error probability is already very small, these three processes

(in particular, the decay to the stretched state with minimalmF = −2) are highly unlikely.

C.2 An Example ofMaster Equation Solution for Radiative Decay

In Section 6.3.2, we argued that the Kraus operators corresponding to spontaneous emission events

from the Rydberg state |r〉 to the qubit |1〉 are

M0 = |r〉〈r|+ α|1〉〈1|+ β|0〉〈0|,

Mr ∝ |r〉〈1|, M1 ∝ |1〉〈1|, M2 ∝ |0〉〈0|,
(C.4)
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where α, β, and the proportionality constants depend on the specific Rydberg pulse being per-

formed and the probability for an atom in the Rydberg state to decay to the |1〉 state. We now pro-

ceed to derive these constants for the special case of a 2π pulse on the Rydberg transition |1〉 ↔ |r〉

by analytically solving the quantummaster equation. For this example calculation, we will ignore

BBR transitions and RD transitions to other hyperfine states; these can be included as a straightfor-

ward extension.

The master equation for this driven three-level system is (setting ℏ = 1)

dρ̂
dt

= −i[Ĥd, ρ̂]−
γ
2

(̂
c†ĉρ̂+ ρ̂̂c†ĉ− 2̂cρ̂̂c†

)
, (C.5)

where ρ̂ denotes the density matrix of the system, Ĥd = iΩ (|r〉〈1| − |1〉〈r|) is the driving Hamilto-

nian, ĉ = |1〉〈r| is the quantum jump operator corresponding to spontaneous emission |r〉 7→ |1〉,

and γ is the probability for an atom in the Rydberg state to decay to |1〉. We assume the qubit is

initially encoded in the hyperfine manifold Span{|0〉, |1〉}, so that the initial density matrix can be

written as

ρ̂0 =


0 0 0

0 ρ11 ρ10

0 ρ01 ρ00

 (C.6)

(we order the matrix columns and rows as {|r〉, |1〉, |0〉}). Upon solving the resulting coupled first-

order differential equations, we find that the final state after the 2π pulse with decay is, to leading

order in γ/Ω,

ρ̂f =


3γtπρ11/4 0 0

0 (1− 3γtπ/4)ρ11 −e−γtπ/2ρ10

0 −e−γtπ/2ρ01 ρ00

 . (C.7)

Here, tπ = π
2Ω is the duration of a π pulse. Indeed, Eq. (C.7) confirms our intuition from Section
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Figure C.2: Circuit for detecting atom loss.

6.3.2 that the coherences ρr1, ρ1r vanish upon “averaging” over all possible transition times during

the 2π pulse.

One can then verify that, to leading order in γ/Ω, the Kraus operators

M0 = |r〉〈r|+
√
1− p2|0〉〈0|+

√
(1− p1)(1− p2)|1〉〈1| (C.8)

Mr =
√
p1(1− p2)|r〉〈1| (C.9)

M1 =
√
p2|1〉〈1| M2 =

√
p2|0〉〈0| (C.10)

give rise to the desired evolution from ρ0 to ρf provided we take p1 = 3γtπ/4 and p2 = γtπ/8.

C.3 Atom Loss Errors

As mentioned in Section 6.3.4, neutral atom setups can also suffer from atom loss errors if the trap-

ping is imperfect, or if the trapping lasers need to be turned off during Rydberg excitation (e.g. as

done for 87Rb in Ref.12). Fortunately, such errors can also be detected and corrected within our

FTQC framework at the cost of one ancilla qubit and some extra gates for each operation. In par-

ticular, an atom loss event can be detected by applying the circuit of Figure C.2 for each data qubit

after using the optical pumping technique to correct for leakage out of the computational subspace.

The ancilla measurement will then produce+1 in the presence of atom loss, and−1 if such an er-

176



ror did not occur. Once detected, an atom loss error can be converted to a single-qubit Pauli-Z or X

type error if a reservoir of atoms is available, for instance by replacing the lost atom with a new atom

initialized to the |0〉 state.

We now discuss the steps needed for establishing robustness against errors occurring during this

circuit. As in the case of fault-tolerant Rydberg leakage detection discussed in Appendix C.4, to

protect against ancilla errors in Figure C.2, we again adopt a multi-step ancilla measurement proto-

col and require two positive ancilla measurements to confirm an atom loss error. On the other hand,

any phase-flip error on the data qubit cannot propagate to more than a single physical qubit error

per logical qubit in the universal gate set implementations for Ryd-7 or Ryd-3. Leakage errors (Ry-

dberg or non-Rydberg) can be addressed by repeating the respective re-pumping procedures after

applying the atom loss detection circuit. Thus, by incorporating this circuit into the implementa-

tion of fault-tolerant stabilizer measurements and logical operations in Sections 6.4 and 6.5, we can

also address atom loss errors in our FTQC protocols.

Notice that this circuit can be used for atom loss after correcting for leakage into atomic states

outside the computational subspace by using the blockade effect and optical pumping techniques.

In addition, this approach does not distinguish between atom loss and leakage into other hyperfine

states, so it can also be used to suppress any residual hyperfine leakage errors.

C.4 Converting Rydberg Leakage to Pauli Errors

Once a Rydberg leakage error is detected, it can be converted to an atom loss error by ejecting the

Rydberg atom, which is naturally done by the anti-trapping potential from the tweezer16 and can

be expedited by pulsing a weak, ionizing electric field10,45,173. The exact location of the ejected atom

can be determined by following the atom loss protocol outlined in Appendix C.3 and Figure C.2 *;

*In this case, the atom loss protocol does not need to be applied in a robust fashion, since an error has
already occurred.
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subsequently, the ejected atom can be replaced with a fresh atom prepared in the |1〉 state. Although

this process simply replaces the Rydberg atom by an atom in the |1〉 state, by using the operator

identity |1〉〈1| = 1
2 (1− Z), it is straightforward to see that the resulting state is now a superposition

of the original state without error, and the same state with a Z error on this physical qubit. Such Z-

type errors can be detected and corrected for using stabilizer measurements in both the seven-qubit

and three-qubit codes. This procedure can also be modified to convert the Rydberg leakage error

to a Pauli X-type error by applying Hadamard gates at the beginning and end; this is used to in the

logical CCZ gate for Ryd-7 (see Algorithm 3).

To reduce the need for applying the atom loss correction circuit, one could add a preventative

step after every entangling gate which incoherently re-pumps any remnant population in several

most probable Rydberg states into the qubit |1〉 state. This re-pumping can be implemented via the

following three-step procedure:

1. Swap the population in |1〉 and the stretched ground state |F = I+ 1/2,mF = I+ 1/2〉.

2. For the most probable final states |r′〉 of a BBR transition (or the Rydberg state |r〉 in the

case of RD), perform a Rydberg laser pulse that sends |r′〉 (or |r〉) to a short-lived P state. In

particular, we choose the P state with the smallest possible n, largest possible F, and largest

possiblemF. This state will quickly decay to the stretched state |F = I+ 1/2,mF = I+ 1/2〉,

and cannot decay to any other ground state.

3. Repeat Step (1).

By applying this procedure preventatively, one can convert a large fraction of Rydberg leakage errors

to Z-type errors without the need for the atom loss correction circuit of Figure C.2.
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C.5 Fault-Tolerant Detection of Rydberg Leakage Errors

As mentioned in Section 6.4, for fault-tolerant error detection and correction, it is important to

address any errors that may occur on an ancilla used to probe for Rydberg population. This can be

done by using a multi-step measurement procedure to detect leakage for the ancilla qubit:

1. Perform a Hadamard gate on the ancilla.

2. Check whether the ancilla is in the |1〉 state (e.g. by coupling |1〉 to a cycling transition and

detecting fluorescence).

3. Perform an X gate on the ancilla.

4. Check for |1〉 population again.

If neither the second nor the last step yields |1〉, the ancilla atommust have undergone a leakage

error. In that case, we convert any possible ancilla atom Rydberg error to a possible Z-type error as

described in Appendix C.4. Similarly, because the Rydberg pulses can potentially cause a phase-flip

error on the ancilla qubit, if a Rydberg leakage error is detected by the ancilla, the detection protocol

must be repeated once more to ensure that the outcome did not result from such an error.

C.6 Error Syndromes with PostponedMeasurements

In Section 6.4.1, we discussed how Rydberg leakage detection can be postponed in the Ryd-7 stabi-

lizer measurement and controlled-phase gate protocols to facilitate experimental implementation.

This relied on the ability to use stabilizer measurements to distinguish between the possible corre-

lated errors that can result from postponed detection of a Rydberg leakage error. Here, we present

details on how to use error syndromes to identify the corresponding correlated error in each case. As
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Error g4 g5 g6
X5X6X7 −1 +1 +1
X6X7 +1 +1 −1
X7 −1 −1 −1

Table C.2: Using error syndromes to distinguish between correlated errors resulting from postponed detection of Ry‐
dberg leakage during measurement of the X4X5X6X7 stabilizer in the Ryd‐7 FTQC protocol. Because the possible
correlated errors are all products of Pauli‐X errors, we show the corresponding values of Z⊗4 stabilizer measurements.

in Section 6.4, we assume the stabilizers for the Steane code are ordered as

g1 = IIIXXXX g2 = IXXIIXX g3 = XIXIXIX

g4 = IIIZZZZ g5 = IZZIIZZ g6 = ZIZIZIZ. (C.11)

For the stabilizer measurement, we will consider (without loss of generality) the measurement of

g1 on qubits 4, 5, 6, 7 using a circuit of the form shown in Figure 6.1b. If a Rydberg leakage error

occurs on the ancilla atom at any point, the data atoms do not suffer any correlated errors. On the

other hand, if a data atom suffers a Rydberg leakage error during the circuit, the possible correlated

errors that can result are X5X6X7, X6X7, or X7. These errors can be distinguished by measuring the

Z⊗4 stabilizers of the seven-qubit code; the corresponding error syndromes are shown in Table C.2.

For the case of the logical CCZ gate, we grouped the 27 physical Rydberg gates into groups Gi of

three, and performed Rydberg leakage detection after each group. Without loss of generality, we will

consider the group G1 in Figure 6.4. There are two possible correlated errors that could result from

the delayed detection of Rydberg leakage in this case (up to a single-qubit error within each logical

qubit): R(2A, 2B; 2C)R(3A, 3B; 3C) andR(3A, 3B; 3C). By writing the Rydberg gate as

R(j, k; l) = (1+ Zj)(1+ Zk)(1+ Zl)− 1, (C.12)

we find that the two cases can be distinguished by measuring the stabilizers g2 and g3 for each of
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gate between control atoms C1, C2, and target atom T. The ancilla atoms (A1 and A2) are chosen to lie on
either side of the target atom. The dotted boxes indicate the most natural bias‐preserving three‐qubit gate for Rydberg
systems, where π pulses |1〉 ↔ |r+〉 are applied to each of the first two (i.e., the upper two) involved atoms, the bias‐
preserving pulse sequence of Figure 6.5 is applied to the third (lower) atom, and−π pulses |1〉 ↔ |r+〉 are applied to
the first two qubits; the Rydberg states |r±〉 are chosen to be either |r1,±〉 or |r2,±〉 for each such gate. In this circuit,
we set |r±〉 = |r1,±〉 in the first, second, fourth, and fifth cases, while choosing |r±〉 = |r2,±〉 for the third one. With
this choice of Rydberg levels, the two ancillas will not interact with each other during the third Rydberg gate. However,
we note that the two control atoms may interact with each other during the first, second, fourth, and fifth entangling
gates if the distance between them is less than one blockade radius; this is not problematic because Rydberg errors can
occur during at most one of these gates, so at least one ancilla atom will generate the correct interaction with the target
atom during the third gate.

the logical qubits. In the former case, at least one of the the logical qubits would have either a Z2 or

Z2Z3 error, giving rise to stabilizer eigenvalues (g2, g3) = (−1,+1) or (+1,−1), while in the latter

scenario, all three sets of stabilizer measurements would yield (−1,−1) or (+1,+1).

C.7 Implementation of a Bias-Preserving Toffoli Gate

In Figure 6.6, we showed how an ancilla atom can be used to eliminate X-type errors resulting from

control atom decay in the implementation of a bias-preserving CNOT gate. Analogously, a bias-

preserving Toffoli gate can be implemented by making use of two ancilla atoms which lie on either

side of the target atom. This protocol is illustrated in Figure C.3.

As with the case of the bias-preserving CNOT, the choice of Rydberg states differs throughout

the procedure. By coupling the atoms to |r2,±〉 during the third gate of Figure C.3 and using an-
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cilla atoms on opposite sides of the target atom, we ensure that the ancilla atoms do not interact

with each other via Rydberg blockade during this gate; this is important in case one of the ancilla

atoms undergoes a radiative decay transition during this gate. On the other hand, the other entan-

gling gates in Figure C.3 all use the Rydberg states |r1,±〉, due to larger distances between the atoms

during these gates. We note that the two control atoms may interact with each other during these

four gates if the distance between them is less than one blockade radius, which is different from the

case of the third gate. This is acceptable because Rydberg errors can occur during at most one of

these four gates, so at least one ancilla atom will generate the correct interaction with the target atom

during the third gate.

C.8 Computing Resource Costs for Rydberg FTQC Protocols

We now provide details on how to obtain the resource costs for Ryd-7 and Ryd-3 presented in Ta-

bles 6.1 and 6.2.

For the Ryd-7 protocol, each stabilizer measurement requires four two-qubit Rydberg gates in

the absence of errors (see Algorithm 1); thus, 24 two-qubit gates are required to measure all stabi-

lizers. If an error occurs, the worst case scenario for the stabilizer measurement is when the first five

stabilizers all have+1 eigenvalues, while the very last stabilizer is measured to be−1. In this case,

g4, g5, and g6 need to be re-measured, which requires 12 additional two-qubit gates. The logical

CCZ gate for Ryd-7 is implemented using 27 physical three-qubit gates in the absence of error, as

described in Algorithm 3. The worst case error in this case is a Rydberg leakage error that occurred

during the first entangling gate in the final group G9 of Figure 6.4. In this scenario, identifying the

location of the Rydberg leakage error requires up to 18 additional two-qubit gates, while measur-

ing the stabilizers g2, g3, ..., g6 for all three logical qubits would amount to 60 additional two-qubit

gates; the correction circuit could require up to two additional three-qubit gates.
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In the Ryd-3 protocol, each of the two stabilizer measurements requires two bias-preserving

CNOT gates (Figure 6.1d), and each bias-preserving CNOT gate is broken down to two two-atom

gates and one three-atom entangling gate (see Section 6.5.1). Thus, in the absence of error, the sta-

bilizer measurements would require eight two-qubit gates and four three-qubit gates. If an error

occurs, the worst case scenario is if the second stabilizer is measured to be−1; in this case, both sta-

bilizers need to be re-measured, and the gate cost is doubled. The Ryd-3 CCZ gate can be imple-

mented in a round-robin fashion in the same way as the Ryd-7 CCZ, which is bias-preserving and

uses 27 physical three-qubit gates.

Finally, the Ryd-3 Hadamard gate consists of a fault-tolerant, bias-preserving Toffoli gate fol-

lowed by single-qubit measurements and rotations (Figure 6.8). The pieceable fault-tolerant Toffoli

gate in the Ryd-3 code consists of nine physical bias-preserving Toffoli gates and two rounds of error

correction. As discussed above, each round of error correction involves eight two-atom Rydberg

gates and four three-atom Rydberg gates. When the data atoms within each logical qubit are in-

dexed as in Figure C.4b and we are implementing a logical Toffoli gate CCXABC between the three

qubits A, B, C highlighted in bold, the number of Rydberg gates required to implement each physi-

cal Toffoli gate depends on the blockade radiusRB,1. If the blockade radiusRB,1 is larger than 3.61d,

each physical Toffoli gate can be implemented using two ancilla atoms (one on either side of the

target atom) and five three-atom Rydberg gates, as described in Appendix C.7; this is because the

distance between any physical control atom Ci and any ancilla Aj in Figure C.3 will always be less

than the blockade radiusRB,1, so the entangling gates can be implemented directly. In this case, each

physical Toffoli gate involves five three-atom Rydberg gates, so the total gate count (upon including

the QEC steps) is 16 two-atom gates and 53 three-atom gates in the absence of errors. On the other

hand, if we wish to reduce the blockade radius requirement toRB,1 > 3d, there are two physical

Toffoli gates (corresponding to the choices jA = lC = 1, kB = 2 and jA = lC = 3, kB = 2),

where the distance between one of the physical control atoms and one of the ancilla atoms (2B and
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A3 in Figure C.4b) would be too large to directly implement a Rydberg entangling gate required

for the physical Toffoli gate. Instead, in place of the first (respectively, second) three-atom Rydberg

gate involving A3, we would implement a Rydberg gate with the same two control atoms and one of

the ancilla atoms A1 or A2, whichever is not involved in the rest of the Figure C.3 circuit, followed

(respectively, preceded) by a bias-preserving CNOT gate between that ancilla and A3. These gates

can be implemented directly because both A1 and A2 are within the blockade radius of 2B, 1A, 2A,

3A, and A3. In this way, four extra two-atom gates are required for the logical Toffoli (two for the

physical Toffoli with jA = lC = 1, kB = 2 and two for the physical Toffoli with jA = lC = 3,

kB = 2), which increases the total gate count to 20 two-atom gates and 53 three-atom gates in the

absence of error, as shown in Table 6.2. With errors, the worst case scenario is if the final stabilizer

measurement in the second round of QEC yields−1, in which case the stabilizers need to be mea-

sured again; this adds another eight two-atom gates and four three-atom gates to the total resource

cost.

C.9 Computing Rydberg Blockade Radius Requirements for Rydberg FTQC

Protocols

To obtain the blockade radius requirement for the Rydberg FTQC protocols, we must identify each

physical qubit with an atom on the lattice, and then determine the maximum distance between two

atoms which must interact with each other during a Rydberg gate. When the underlying atoms are

placed in a triangular lattice, Figure C.4 depicts convenient identifications for both the Ryd-7 and

Ryd-3 codes. In this figure, numbers are used indicate the indices of data atoms within each logical

qubit. (The index of a physical qubit within each logical qubit is the position, counting from the

left, of that qubit in the definition of the logical states; see Equations (6.6) and (6.7) for the seven-

qubit code, or Equation (6.13) for the three-qubit code.)
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Figure C.4: Example labeling of atoms for the Ryd-7 and Ryd-3 FTQC protocols used to derive the gate
counts and blockade radius requirements. As in Figure 6.1, data atoms are shown in blue, while ancilla atoms
are shown in pink. (a) In the Ryd‐7 protocol, each logical qubit consists of seven data atoms (blue dotted hexagons). For
each data atom, a number is used to indicate which physical qubit of the seven‐qubit logical state the atom encodes.
With this labeling, the blockade radiusRB is defined by the interaction range needed to perform a logicalCCZ gate
between three neighboring logical qubits such as A, B, and C. Using the specificCCZ protocol given in Algorithm 3,
the blockade radius requirement is thenRB > 3.61d, where d is the spacing between nearest neighbors on the lattice;
this is determined by the distance between physical atoms 3A and 1C (thinner, light grey dotted line). However, by using
a different set of physicalCCZ gates to implement the logicalCCZ, this requirement can be reduced toRB > 3d
(thicker, dark grey dotted line). (b) In the Ryd‐3 protocol, each logical qubit consists of three data atoms (blue dotted
triangles). For each data atom, a number is used to indicate which physical qubit of the three‐qubit logical state the
atom encodes. With this labeling, the larger blockade radiusRB,1 is determined by the interaction range required for
performing a logical Toffoli gate between three neighboring logical qubits such asA, B, and C. In this case, there are
two possibilities forRB,1—eitherRB,1 > 3.61d (thinner, light grey dotted line) orRB,1 > 3d (thicker, dark grey dotted
line). When the larger blockade radius of 3.61d can be realized, the resource cost for the logical Toffoli and Hadamard
gates can be reduced by four two‐qubit entangling gates compared to the numbers presented in Table 6.2 (see also
Appendix C.9).
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In the Ryd-7 protocol, the blockade radius is defined by the interaction range needed to perform

a logical CCZ gate between three neighboring logical qubits such as A, B, and C. Using the specific

protocol given in Algorithm 3, which involves 27 physical CCZ gates between atoms jA, kB, lC ∈

{1, 2, 3}, we find the largest interaction range is required to perform the physical CCZ gate between

farthest-separated triples such as (jA, kB, lC) = (3, 3, 1). For this specific case, the distances between

atom pairs are dist(jA, kB) = 3d, dist(jA, lC) =
√
(7/2)2 + 3/4d ≈ 3.61d, and dist(kB, lC) = 4d.

To apply the three-qubit Rydberg gateR(jA, kB; lC) as defined in Section 6.2, this would require a

blockade radius ofRB > 4d. However, this is not entirely necessary for our purposes: instead, it is

sufficient that two out of the three distances dist(jA, kB), dist(jA, lC), and dist(kB, lC) be less than the

blockade radius. To see this, let us suppose, for example, that the distance between the two control

atoms jA and kB is greater thanRB. In this case, applying the same pulse sequence as illustrated in

Figure 6.3b would result in a three-qubit gateR = diag(1,−1,−1,−1,−1,−1, 1, 1), which can also

be obtained from the CCZ gate by single-qubit unitaries (R ∝ Y1Y2(CCZ)X1X2).

The argument above allows the blockade radius requirement for Ryd-7 to be reduced toRB >

3.61d (thinner, light grey dotted line in Figure C.4). In fact, by modifying the implementation of

the logical CCZ gate, it is possible to further reduce this requirement toRB > 3d (thicker, dark grey

dotted line in Figure C.4); this is shown in Appendix C.10.

In the Ryd-3 protocol, the blockade radiusRB,1 is determined by the interaction range required

to implement the logical Toffoli gate between neighboring logical qubits (e.g., A, B, and C in Fig-

ure C.4). As discussed in Appendix C.8, there are two possibilities in this case. To directly imple-

ment every physical bias-preserving Toffoli gate using the circuit of Figure C.3, the distance between

2B and A3 must be less thanRB,1; this requiresRB,1 >
√
(7/2)2 + 3/4d ≈ 3.61d (thinner, light

grey dotted line in Figure C.4). However, this requirement can be reduced toRB,1 > 3d (thicker,

dark grey dotted line in Figure C.4) at the expense of four additional two-atom entangling gates per

logical Toffoli or Hadamard operation.
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C.10 Blockade Radius Reduction for Ryd-7

To reduce the blockade radius requirement fromRB = 3.61d toRB = 3d in the Ryd-7 protocol,

we must modify the implementation of the logical CCZ operation. Recall that Algorithm 3 im-

plements a logical CCZ gate using 27 physical CCZ gates between the first three physical qubits of

every logical qubit. This round-robin decomposition makes use of Eq. (6.11), which we now derive:

CCZABC =
∏

jA,kB,lC∈{1,2,3}

CCZ(jA, kB, lC), (C.13)

To begin the derivation, we first recall that the logical states (6.6) and (6.7) of the seven-qubit code

have well-defined parity: the number of physical qubits in the |1〉 state is always even for |0〉L and

odd for |1〉L. It then follows that the logical CCZ gate can be implemented in a fully round-robin

fashion involving all physical qubits

CCZABC =
∏

jA,kB,lC∈{1,2,...,7}

CCZ(jA, kB, lC). (C.14)

This is because the round-robin implementation results in a−1 phase accumulation for each triple

(jA, kB, lC) of physical qubits in the |1〉 state, and the number of such triples is odd if all logical

qubits are in the |1〉L logical state, while it is even if at least one logical qubit is in the |0〉L state. To

reduce this to Eq. (C.13), we notice that for each choice of jA and kB, the product

∏
lC∈{4,5,6,7}

CCZ(jA, kB, lC) (C.15)

acts as an identity operation on the logical qubits, because g4 = Z4Z5Z6Z7 is a stabilizer of the

seven-qubit code. We then multiply both sides of Eq. (C.14) by this operator, and use the fact that

all the CCZ gates commute with each other and square to the identity operator. In this way, the
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product over lC in the logical CCZ gate can be reduced from lC ∈ {1, 2, ..., 7} to lC ∈ {1, 2, 3}.

Because the CCZ gate is symmetric in the three involved qubits, this same argument can be applied

to reduce the products over jA and kB to obtain Eq. (C.13).

To reduce the blockade radius requirement fromRB = 3.61d toRB = 3d, we can replace the

product (C.15) by ∏
lC∈{1,2,4,7}

CCZ(jA, kB, lC) (C.16)

in our derivation for one of the logical qubits, say qubit C. This is because the single-qubit operator

Z1Z2Z4Z7 = g2g3 is the product of two stabilizers, so the operator (C.16) also acts trivially on the

logical subspace. It follows that

CCZABC =
∏

jA,kB∈{1,2,3}
lC∈{3,5,6}

CCZ(jA, kB, lC). (C.17)

Thus, the 27 physical CCZ gates in Algorithm 3 may be replaced by the 27 CCZ gates used in the

right hand side of Equation (C.17).

Given the geometrical layout of individual atoms within each logical qubit shown in Figure C.4a,

we see that the required interaction range for implementing the logical CCZ operation using these

27 gates is smaller than the interaction range required to perform the 27 gates of Algorithm 3.

Furthermore, following the observation made in Appendix C.9, we notice that these 9 physical

qubits need not all be within the blockade radius of each other, so long as every physical qubit

jA ∈ {1, 2, 3} is within distanceRB of every lC ∈ {3, 5, 6}, and every kB ∈ {1, 2, 3} is within

distanceRB of every lC ∈ {3, 5, 6}. This requirement is satisfied for anyRB > 3d, as shown in

Figure C.4a.
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Figure C.5: Square lattice geometry for the Ryd-3 FTQC protocol. Data (blue) and ancilla (pink) atoms are
placed on the vertices of a square lattice in an alternating fashion, with three data atoms comprising a logical qubit (blue
dotted boxes). The numbers on each data atom indicate the index of that atom within each logical qubit; this is relevant
for the implementation of stabilizer measurements and logical operations. Two Rydberg states with different blockade
radii are required to implement the bias‐preserving CNOT and Toffoli gates. The larger blockade radiusRB,1 must be
larger than

√
10d (dark grey), where d is the nearest‐neighbor spacing on the lattice, while the smaller blockade radius

must satisfy d < RB,2 < 2d (light grey). The interaction rangeRB,1 is needed to perform a logical CCZ gate between
the three logical qubits indicated in bold.

C.11 Square Lattice Geometry for Ryd-3

As mentioned in Section 6.5.3, the Ryd-3 protocol can also be implemented when the underlying

physical atoms are placed on a square lattice. In this case, the data and ancilla atoms are placed on

the vertices of the lattice in an alternating fashion as shown in Figure C.5. The stabilizer measure-

ments can be implemented as discussed in Section 6.5.2 if the smaller blockade radiusRB,2 satisfies

d < RB,2 < 2d. The logical operation requiring the largest interaction range is the logical CCZ gate

CCZABC =
∏

jA,kB,lC∈{1,2,3}

CCZ(jA, kB, lC), (C.18)

which is implemented from 27 physical CCZ gates. To implement each physical gate, the distance

between every pair (jA, lC) and (kB, lC)must be less than the larger blockade radiusRB,1, as dis-
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cussed in Appendix C.9. The longest such distance is
√
10d as shown in the dark grey dotted line of

Figure C.5, so the corresponding blockade radius requirement for this geometry isRB,1 >
√
10d.

With these blockade radii, the protocols of Section 6.5.2 can be directly applied to perform all

logical operations. We note that the higher density of ancilla atoms in this arrangement allows us

to implement every physical Toffoli gate in the logical Toffoli operation directly using the circuit of

Figure C.3, without the need for additional ancilla atoms or CNOT gates (as was the case for two

physical Toffoli operations under the triangular lattice geometry). In this way, for the square lattice

geometry, the number of two-qubit entangling operations required for the logical Hadamard or

Toffoli operations may be reduced by 4 compared to the numbers shown in Table 6.2.

C.12 Optical Pumping Procedure for the Bias-Preserving CNOT

To implement the bias-preserving CNOT pulse sequence shown in Figure 6.5 of Chapter 6, it is

important that the optical pumping procedure in the final step pumps only themF > 0 states to

the |1〉 state, and only themF < 0 states to the |0〉 state. This requirement is essential to ensuring

that the CNOT does not generate any X- or Y-type errors. For magnetic field regimes typically used

in alkali atom Rydberg experiments, this state selectivity may not be straightforward to implement,

as the level separation between differentmF states within a single hyperfine manifold may be much

smaller than the linewidth of the lasers used for optical pumping. To address this challenge, we can

utilize a Rydberg state as a shelving state (due to its long lifetime) to avoid unwanted pumping of

mF < 0 (respectively,mF > 0) states to |1〉 (|0〉). Thus, in Step 6 of Figure 6.5, the optical pumping

ofmF > 0 states into the |1〉 state can be implemented for 85Rb as follows:

1. Swap the population between the |1〉 state and the stretched ground state |F = I+1/2,mF =

I+ 1/2〉.

2. Swap the population between the |0〉 state and the ground state |F = 3,mF = 0〉.
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3. Apply a resonant π pulse to shelve any population in the |F = 2,mF = −2〉 state into the

Rydberg state |nS1/2,mJ = −1/2,mI = −5/2〉.

4. Use σ+ light to excite states in the F = 2 ground state manifold to the 5P3/2 F = 3 manifold;

these excited states decay quickly back to the ground state.

5. Apply resonant π pulses |F = 3,mF = 1〉 ↔ |F = 2,mF = 1〉 and |F = 3,mF = 2〉 ↔

|F = 2,mF = 2〉.

6. Repeat Steps 4 and 5 as necessary; after several iterations, all population that started with

mF > 0 will be in the |F = 3,mF = 3〉 state.

7. Repeat Steps 1, 2, and 3.

Because the |F = 2,mF = −2〉 state can only be populated if a Rydberg error occurred in one of

the earlier steps of the bias-preserving CNOT, to leading order in the total error probability, we may

assume that the Rydberg state |nS1/2,mJ = −1/2,mI = −5/2〉will not decay if it is populated

in the above procedure. In this way, the only F = 2 states that can be populated at the beginning

of Step 4 above will be themF > 0 states, so the optical pumping will work in the same way as the

protocol described in Section 6.4.2 (Figure 6.6). An analogous procedure can then be applied to

pump themF < 0 states into |0〉. In this latter case, it will not be necessary to shelve population in

the Rydberg state, as allmF > 0 population will already have been transferred to the |1〉 state.
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