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Abstract

Over the past half century, new methods for quantitative risk prediction and validation
were formalized and the number of models, both statistical and algorithmic, increased
exponentially. However, this literature has largely focused on descriptive predictions of
the world as it is, what I term factual prediction, instead of the world as it would be if we
intervened, or counterfactual prediction. In this dissertation, I argue that in many instances
counterfactual predictions are desired, but targeting them requires new methods based on
causal inference.

In Chapter 1, I take a method traditionally associated with causal inference, the g-
formula, and repurpose it as a model for factual and counterfactual prediction. In doing so,
I highlight the potential of the g-formula as unifying framework for prediction as well as the
assumptions required. Through simulation and an applied data example in the Framingham
Offspring Study, I show how the g-formula can estimate factual and counterfactual quantities
and leverage multiple repeated measurements over time to produce predictions that update
dynamically.

In Chapter 2, I consider an example of a common clinical prediction task, i.e. developing
a model for risk-based treatment decisions, where the ideal target is counterfactual. Building
on prior work, I clarify the single-arm target trial of interest and propose two estimation
methods that allow for separation between the causal and prediction tasks. I apply these
methods to predict the statin-naive risk of cardiovascular disease using an emulated trial
based on the Multi-Ethnic Study of Atherosclerosis. I find that traditional methods lead to
underallocation of treatment at common thresholds by 5 percentage points.

Finally, in Chapter 3, I tackle the theoretical question of how to train and validate
models for counterfactual prediction when the relevant potential outcomes are not observed
for all units. I discuss how to tailor a model for use in the same population under a
counterfactual shift in treatment policy, how to assess its performance, and how to perform
model and tuning parameter selection. I also provide identifiability results for measures of
counterfactual performance for a potentially misspecified prediction model. I illustrate the
methods using simulation and apply them to validate the performance of the statin-naive
risk prediction model from Chapter 2.
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Introduction

Predicting who is likely to get disease and who isn’t is a foundational goal in clinical

medicine and epidemiology. In the past, clinicians largely relied on a combination of

biological theory, historical experience, and subject matter expertise to form opinions

about a patient’s prognosis. But starting with the landmark early investigations into the

multivariable risk of cardiovascular disease using data from the Framingham Heart Study in

the 1960s and 1970s, over the past half century, new methods for the quantitative prediction

of disease were formalized [1, 2]. Models, either statistical or algorithmic, proliferated across

a variety of specialties and, to varying degrees, were incorporated into clinical practice

guidelines [3]. By 2016, more than 350 prediction models had been published in cardiology

alone [4].

Over time a culture1 of prediction emerged, both within statistics, but also in fields as

diverse as computer science, epidemiology, and marketing [5, 6]. Often, but not always,

adherents organized under the cross-disciplinary banner of “machine learning” [2]. This

culture emphasized the differences between prediction and other tasks of statistics such

as description or causal explanation. Unlike classical statistics, which often preceded from

the premise that the data were generated according to a particular mechanism, proponents

of the prediction culture were agnostic about the inherent validity of any model or algo-

rithm. Rather they tended to focus on rigorous evaluation of model performance through

techniques such as bootstrapping or cross-validation. Algorithms were chosen on the basis

of their predictive accuracy rather than interpretability or relation to causality. Some even

1Those less well disposed may even call it a cult

1



championed the black box nature of modern prediction algorithms as they diverted attention

away from persistent distractions such as the sign and value of coefficients. Marquee ac-

complishments of this new culture included the remarkable performance of many machine

learning algorithms on previously challenging prediction tasks such as computer vision

and natural language processing. In particular, so-called deep learning algorithms, neural

networks with billions of parameters and trained on truly massive datasets, now dominate

across a number of prediction domains and benchmarks. In clinical practice, deep learning

has been less successful outside computer vision tasks, but more traditional methods have

been successfully deployed and integrated into standard care.

With the increased visibility of the culture of prediction came more sophisticated critiques

[5, 7, 8]. Prominent among these was the inability of prediction models to readily generalize

beyond the settings in which they were trained. For example, in his response Leo Breiman’s

famous paper describing the “two cultures” of statistics, Sir David Cox wrote of the pure

prediction approach

The success of a theory is best judged from its ability to predict in new contexts.
[...] If the prediction is localized to situations directly similar to those applying
to the data there is then an interesting and challenging dilemma. Is it preferable
to proceed with a directly empirical black-box approach, as favored by Professor
Breiman, or is it better to try to take account of some underlying explanatory
process? The answer must depend on the context but I certainly accept, although
it goes somewhat against the grain to do so, that there are situations where a
directly empirical approach is better. [...] However, much prediction is not like
this. [5]

The degradation of model performance when applied to a new setting, sometimes called

dataset shift [9], can be a result of any of a number of factors. For instance, in the clinical

settings, it could be due to differences in distribution of baseline prognostic factors [10]

or differences in policies or interventions [11]. While dataset shift can be at least partially

addressed through re-calibration or re-fitting the model in the new setting, both are often

infeasible either because collecting data in the new setting is difficult or expensive or because

the dynamics of the applied setting are constantly shifting.

In his response, Professor Cox also mentions another critique of prediction: namely, that
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prediction is often performed without respect for the “underlying explanatory” (i.e. causal)

proccess. This is important as often the true target of prediction is not simply predicting in

conditions exactly as they occurred during training but to instead posit some change and

predict the response. Indeed, Professor Cox continues

Often the prediction is under quite different conditions from the data. what
is the likely progress of the incidence of the epidemic of v-CJD in the United
Kingdom, what would be the effect on annual incidence of cancer in the United
States of reducing by 10% the medical use of X-rays, etc.? That is, it may be
desired to predict the consequences of something only indirectly addressed
by the data available for analysis. As we move toward such more ambitious
tasks, prediction, always hazardous, without some understanding of underlying
process and linking with other sources of information, becomes more and more
tentative. [5]

Such predictions are counterfactual in the sense that they are concerned not with what

occurred but what would occur under a hypothetical intervention. For instance, in clinical

practice, a patient may not only wish to know their prognosis but what their prognosis

might be if they were to initiate treatment or change their diet. However, accurately forming

predictions involving counterfactuals requires a more systematic approach to the estimation

of causal effects.

Interestingly, at the same time that a prediction culture was emerging within statistics,

another band of iconoclasts from computer science, epidemiology, and economics were

revolutionizing the statistician’s notion of cause and effect [12–14]. Throughout most of the

20th century, statisticians had steadfastly refused to entertain causal inference outside the

narrow confines of a randomized trial. But what started as a rogue set of techniques for

estimating causal effects from observational data in various fields, by the early 21st century

had gradually developed into unified theory of causal inference. Using the formalism of

causal graphs and potential outcomes, the new field of causal inference clarified the causal

queries at the heart of many scholarly investigations and made precise the assumptions

necessary to estimate causal effects from observational data.

This dissertation lies at the intersection of prediction and causal inference. As such, it

is part of a growing literature which views prediction through a causal lens [11, 15–17]. A
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major contention of this dissertation is that many of the prominent issues in prediction may

be more fruitfully addressed by introducing the causal formalisms pioneered by those in

causal inference. Throughout I focus on instances where problems in prediction can be

recast as problems involving estimation of counterfactual quantities. In this section, in what

follows, I formalize the distinction between factual and counterfactual prediction. I then

provide an overview of the succeeding chapters and how they relate to emerging issues in

factual and counterfactual prediction.

Assume the data O available to the analyst has the following structure:

O = {(Xi, Yi)}n
i=1

where Xi is a p-dimensional vector of predictors taking values in X ∈ Rp, and Yi ∈ {0, 1} is

an indicator of disease. A prediction model is an arbitrary map2 of inputs X to probabilistic

outputs about Y, i.e.

Pr[Y = 1 | X] = µ(X).

Adopting the terminology from Dickerman and Hernan [15], we call this target a factual

prediction. Factual predictions typically answer “what is?” questions such as “what is

the 10-year risk of developing cardiovascular disease for a patient with characteristics X”.

Crucially traditional methods for factual prediction typically assume that new observations

{Xnewi}m
i=1 are independent samples from the same population process. Therefore they are

valid mostly in deployment settings that are approximately the same as those in which the

model was trained. Agnostic validation of factual predictions produced by model µ(X) is

possible by comparing observed Y against model predictions, generally in an independent

test set, for instance by estimating the mean squared error

E[(Y − µ(X))2].

2While there are a number of ways in which the word model is used in statistics and aligned fields, we use
this definition to be as expansive as possible as to the range of possible algorithms and estimators model can
encompass.
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Counterfactual predictions, by contrast, target quantites such as

Pr[Yg = 1 | X] = µg(X)

where Yg denotes the potential outcome in a world in which everyone received intervention

g. They typically answer “what if?” or “what would?” questions such as “what would

the 10-year risk of developing cardiovascular disease be for a patient with characteristics X

if they were to quit smoking”. They posit a world in which we intervened to change the

conditions prevalent in the source population at the time the model was trained. As we will

see, a principal problem is that Yg is generally not observed for all individuals. Unbiased

estimation will therefore require untestable assumptions as essentially we must borrow data

from a subset of those for whom Yg is observed.

In Chapter 1, I take a method traditionally associated with causal inference, the g-

formula, and repurpose it as a model for factual and counterfactual prediction. In doing

so, I highlight the potential of the g-formula as a unifying framework for prediction as

well as the assumptions required. Through simulation and an applied data example

in the Framingham Offspring Study, I show how the g-formula can estimate factual and

counterfactual quantities and leverage multiple repeated measurements over time to produce

predictions that update dynamically.

In Chapter 2, I consider an example of a common clinical prediction task, i.e. developing

a model for risk-based treatment decisions, where the ideal target is counterfactual. More

specifically, when using risk thresholds to determine who should be treated, the ideal risk is

the so-called “treatment-naive” risk, i.e. the risk if treatment is never initiated. When, as is

often the case, participants in the training data do initiate treatment, this risk is represented

by the counterfactual quantity

Pr[Yak=0 = 1 | X]

or equivalently

Pr[Tak=0 ≤ t | X]

for failure time outcome T. Using the target trial framework [18, 19], I identify the hypo-
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thetical single-arm trial corresponding to these quantities and show how an analog can

be constructed from observational data. I then propose two estimation methods based on

inverse probability weighting and g-estimation of structural nested accelerated failure time

models. Importantly, both methods allow for effective separation between the causal and

prediction tasks, permitting one to use many of the black-box pure prediction algorithms

mentioned above. I apply these methods to predict the statin-naive risk of cardiovascular

disease using an emulated trial based on the Multi-Ethnic Study of Atherosclerosis. I find

that traditional methods lead to underallocation of treatment at common thresholds by

about 5 percentage points.

Finally, in Chapter 3, I tackle the theoretical question of how to train and validate models

for counterfactual prediction when the relevant potential outcomes are not observed for all

units. For instance, to evaluate the mean squarred error of a model targeting counterfactual

outcome Yg we need to estimate

E[(Yg − µ(X))2].

However, under consistency, Yg is only observed among those who follow regime g. In this

chapter, I show that counterfactual performance metrics such as that above can sometimes

be estimated directly from the test data. I provide identiability results for most commonly

used metrics. Importantly, throughout I allow for the model µ(X) to be potentially mis-

specified, effectively separating the choice of prediction algorithm from the estimation of its

performance. This opens up more agnostic evaluation of counterfactual prediction models

that is in the spirit of the prediction “culture”. I also show how to tailor a model for use in

the same population under a counterfactual shift in treatment policy and how to perform

model and tuning parameter selection. Lastly, I illustrate the methods using simulation and

apply them to estimate the counterfactual performance of the statin-naive risk prediction

model from Chapter 2.
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Chapter 1

Factual and counterfactual risk

prediction using the parametric

g-formula1

Over the last several decades, clinical prediction models have proliferated and are now

prominent in research and clinical care. However, most models have several limitations: (1)

they use a single baseline examination cycle despite the fact that the underlying data sources

often include longitudinal assessments of risk factors over time, (2) they make predictions

under the “natural course” for the population from which they were derived without making

explicit how risk factors and treatments changed over time, and (3) they are not appropriate

for predictions under counterfactual interventions such as if an individual were to initiate

treatment or adopt healthy lifestyle changes. In this study, we consider an alternative

approach to risk prediction based on a modified version of the parametric g-formula which

resolves these limitations and compare it to conventional modeling approaches. We argue

that the g-formula provides a useful unifying framework for targeting a variety of prediction

estimands of interest to clinicians and researchers. We provide guidance for estimation

1Co-authored with James Robins, Andrew Beam, and Goodarz Danaei
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and modeling and discuss the assumptions required. We then compare a g-formula-based

approach to prediction modeling to standard approaches via Monte Carlo simulation as

well as in empirical datasets.

1.1 Introduction

Models predicting a patient’s risk of developing a disease or other clinical outcome are

common in the medical literature [4]. Most follow the same basic archetype: an analyst

acquires data from a cohort of individuals at risk for an outcome, including a set of plausible

predictors or “risk factors” measured at baseline as well as detailed follow up data on the

occurence of the outcome. Then drawing on a vast and varied literature on regression

modeling strategies [1, 20, 21], they fit a model for the probability of the outcome conditional

on the values of the predictors at baseline. Once developed, the model is then applied

prospectively to similar individuals to estimate their risk of developing the outcome with

the intention that this information can be used to guide clinical decision-making — either

as the basis for counseling individuals about treatment options or to stratify or prioritize

individuals by risk. Alternatively, model predictions can be used at the population level to

guide public health policy.

While in many cases a carefully-developed risk prediction model can provide valuable

clinical information, there are also several limitations which may contribute to the reluctance

to fully adopt them in clinical practice. First, there is often a mismatch between the

descriptive information provided by the model and the types of questions that clinicians

and their patients have regarding their treatment plan. For instance, while knowing one’s

10-year risk of developing cardiovascular disease may be useful for actuarial purposes,

it doesn’t answer the natural follow up question of what one’s risk might be if certain

treatment or intervention strategies were pursued. Furthermore, the risk provided may

be misleading if the population in which the model was trained includes individuals who

initiate treatment over the follow-up period. Existing approaches are not designed or

appropriate for answering these sorts of questions, many of which are counterfactual [15].
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Second, by relying on a single baseline examination, models often neglect subsequent

changes in treatment patterns, risk factors, or other determinants. They therefore represent

risk under the “natural course” of the population on which the model was originally

fit. For instance, models fit to data from the Framingham Heart Study typically assume

the constancy of treatment patterns prevalent in the area during follow up decades later.

Therefore, most models may be rendered invalid due to changes in coverage of treatments.

This is further compounded by the fact that clinicians are often unaware of this natural

course assumption, or of the treatment or risk factor patterns that predominate in the

derivation cohort. They may als inappropriately apply the estimated risk reductions under

treatment from randomized trials to this risk, rather than to the true risk under no treatment.

Finally, this also present challenges for transporting models to new settings, even when

some specific changes in the “natural course”, such as shifts in treatment policy, are known

in advance [16].

Finally, despite the fact that the underlying data sources often include repeated ob-

servations on individual over time, most existing modeling approaches do not account

for changes within individuals over time. They also do not dynamically update when

new information becomes available incorporating an individual’s complete examination

history. This ignores relevant information on risk factor trajectory which may lead to over

or underestimation of risk.

In this paper, we argue that many of these limitations can be addressed by using

a Robins’ g-computation algorithm, or more specifically the parametric g-formula [22].

While traditionally used to estimate population-level causal effects, we show how it can

be modified to target a range of prediction estimands, both factual and counterfactual. In

this respect, our work contributes to a larger project which attempts to bridge the divide

between causal inference and prediction methods [5, 6, 15, 23].

We begin by distinguishing between estimands of interest and highlight the requisite

assumptions to estimate them using the g-formula. We then describe the modeling process

for estimating the components of the g-formula. Using simulation, we explore the finite
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sample properties of the g-formula and compare it to a more conventional approach across

a range of prediction scenarios. Finally we investigate the real-world performance of the

g-formula in the prediction setting by means of an applied example using data from the

Framingham Offspring Study.

1.2 Theory

1.2.1 Setup and Notation

Consider the common model development setting in which an analyst observes i.i.d. longitu-

dinal samples {Oi}n
i=1 from n participants following distribution P. For each observation, let

Oi = {(Xk, Ck+1, Dk+1, Yk+1)}K
k=0 where Xk is a vector of, possibly time-varying, covariates

measured at time k, Ck is an indicator of loss to follow-up by interval k, Dk as an indicator

that a competing event has occurred by interval k, and Yk+1 is an indicator of whether the

outcome of interest has occurred by time k + 1 for k = 0, . . . , K. By definition C0 ≡ 0, D0 ≡ 0,

and Y0 ≡ 0 as we restrict to those who are event-free at the start of follow up. We assume

that covariates in Xk can be further categorized into modifiable variables for which we can

imagine interventions (Ak), predictors of the outcome which do not act as confounders (Pk),

as well as other important determinants of the outcome and the intervention variables which

may act as confounders (Lk), i.e. Xk = (Lk, Pk, Ak). Throughout, we use overbars to denote

past history of a variable and underbars to denote future history, such that Xk = (X0, . . . , Xk)

and Xk = (Xk, . . . , XK). Capital letters represent random variables and their lower case

equivalents are realizations.

Our main interest is in the case that Yk is a survival outcome, i.e. Yk+1 = (1, . . . , 1) if

Yk = 1, as this is the most common prediction outcome in epidemiology. However, for

simplicity of presentation, we begin by assuming no loss to follow up (CK = 0) and no

competing events (DK = 0), in which case we can treat YK+1 as an end of follow up outcome.

An example directed acyclic graph for a two time point process under these simplyifying

assumptions is shown in Figure 3.1.
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Figure 1.1: Example two time point directed acyclic graph for prediction.

1.2.2 Factual prediction estimands

Classically, the goal of a risk prediction model is to estimate the probability that an individual

develops a clinical outcome at future time K + 1 conditional on their baseline risk factor

levels. Generally, we assume that this probability is well approximated by the proportion of

people with the same risk factor levels who develop the outcome in the population from

which the individual is derived. Using the notation above, this corresponds to the estimand

Pr(YK+1 = 1 | X0 = x0).

In the time-dependent setting, where repeated measurements of an individual’s risk

factor levels are collected over time, a further goal might be to estimate an “updated”

sequence of probabilities that the individual develops a clinical outcome conditional on

their risk factor history up until the present time k (where k < K). Under similar logic, this

can be represented by the population estimand

Pr(YK+1 = 1 | Xk = xk).

Notice, in both instances the estimands are written in terms of the observed data and

therefore relate strictly to facts about the population; facts which we can hope to learn to

an arbitrary level of precision by drawing samples and applying the standard tools for
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statistical estimation and inference. As long as the relationship between covariates and

the outcome are stable across time and the prediction is applied to member of the original

population, we require no additional assumptions.

1.2.3 Counterfactual prediction estimands

By contrast, there are many clinical questions in which the relevant prediction is not the

extant risk among similar individuals, but rather a “hypothetical” assessment of what their

risk would be under different intervention strategies. For instance, in addition to the 10-year

risk of developing coronary heart disease among those with risk factor levels similar to our

own, we may also be interested in knowing the risk if we quit smoking, started taking statins,

or committed to exercising more regularly. Again, assuming this individual prediction is

well approximated by the proportion of people with same or similar risk factor levels who

would develop the outcome in a population in which everyone followed the strategy of

interest, this suggests targeting counterfactual estimands of the form

Pr(Yak
K+1 = 1 | Xk = xk)

where Yak
K+1 denotes the potential outcome that would be observed at time K + 1 if, possibly

contrary to the fact, the intervention sequence Ak = ak were followed at times between k

and K among those with same history up to to time k.

Note that, in addition to the fixed intervention sequences such as those above, we can

also imagine a more general class of counterfactual regimes in which interventions may be

probabilistically assigned or in which intervention assignment can be a function of previous

covariate history. For example, we might be interested in predicting cardiovascular risk

under a regime in which we initiated anti-hypertensive medication only once our blood

pressure crossed a particular threshold. Following the definitions in Hernán & Robins

[12], we define a regime which depends on previous covariate values to be dynamic and

one which does not to be static as well as defining a regime in which an intervention is

deterministically assigned to be deterministic and a regime in which it is probabilitically
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assigned to be random. For a particular regime g where g ∈ {gk(lk, ak−1), k = k, . . . , K} we

can write our target estimand as

Pr(Yg
K+1 = 1 | Xk = xk).

Unlike the factual estimands of the previous sections, estimation and inference of these

estimands requires additional untestable assumptions, namely

1. Exchangeability: Yg
K+1 ⊥⊥ Ak | Lk, Pk, Ak−1

2. Consistency: YK+1 = Yg
K+1, Lk = Lg

k , and Pk = Pg
k if Ak = ag

k

3. Positivity: Pr(Ak = ak | Lk = lk, Pk = pk, Ak−1 = ak−1) > 0

for all k from k to K. These assumptions are discussed in more detail elsewhere [12, 22].

Briefly, exchangeability implies that treatment assignment at time k is as good as randomized

within strata of covariate histories Lk, Pk, and Ak−1 . Consistency implies that observed

outcomes reflect potential outcomes under the observed treatment sequence and could be

violated if there were interference between units such that outcomes may be affected by

another unit’s treatment assignment, or alternatively if there are multiple hidden versions

of treatment. Finally, positivity means that there must be a positive nonzero probability of

observing all possible treatment conditions ak at time k conditional on covariate history for

all values of k; it would be violated if, for instance, within some stratum of Lk, Pk, and Ak−1

it is not possible to receive treatment.

1.2.4 The g-formula, identification, and the natural course

In a now classic result, Robins [22] showed that —under the assumptions of exchangeability,

consistency and positivity— counterfactual estimands for time-varying interventions are

consistently estimated by the g-formula, i.e.

Pr(Yak
K+1 = 1) = ∑

lk

Pr(Yk+1 = 1 | Lk = lk, Ak = ak)×
K

∏
j=0

f (lj | l j−1, aj−1) (1.1)
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where, in a slight abuse of notation, here we use f (·) to represent the (conditional) probability

density function for covariate Lk given it’s past. This results can be generalized to random

and dynamic regimes, i.e.

Pr(Yg
K+1 = 1) = ∑

lk

∑
ak

Pr(Yk+1 = 1 | Lk = lk, Ak = ag
k )×

K

∏
j=0

{
f (lj | l j−1, ag

j−1)× f g(aj | l j, aj−1)

} (1.2)

where f g(aj | l j, aj−1) is the intervention density specified by the random regime (i.e. the

probability rule for how treatment is assigned).

This generalized g-formula expression is written in terms of the marginal counterfactual

distribution. This makes sense as in most settings in which the g-formula has been applied

the targets are population-level counterfactual effects. However, in the context of time-

dependent risk prediction the target estimand is conditional on past covariate history.

Therefore, we modify it slightly to produce what we term here the conditional g-formula, i.e.

Pr(Yg
K+1 = 1 | Lk = lk, Pk = pk, Ak = ak) =

∑
lk

∑
p

k

∑
ak

Pr(Yk+1 = 1 | Lk = lk, Pk = pk, Ak = ak, Lk = lk, Pk = p
k
, Ak = ag

k )×

K

∏
j=k

{
f (lj | l j−1, pj−1, ag

j−1)× f (pj | l j, pj−1, ag
j−1)× f g(aj | l j, pj, aj−1)

} (1.3)

where sums (or integrals in the case of continuous covariates) are now taken over just

the period between k and K, where k is the examination cycle history of interest and K is

selected based on the follow-up for the relevant cumulative risk. We also further condition on

predictor history Pk and sum out future values. In section C.1 we show that this conditional

g-formula recovers the conditional counterfactual prediction estimand under the modified

exchangeability, consistency, and positivity assumptions in section 1.2.3, motivating it’s use

as a risk prediction model for counterfactual estimands.

Perhaps less appreciated, is that the g-formula can also recover factual risk prediction

estimands. Indeed, it can be shown that the risk under no intervention is equivalent to the

g-formula under a random dynamic regime in which the intervention density is equivalent
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to the observed probability of treatment, i.e. f g(aj | l j, pj, aj−1) = f obs(aj | l j, pj, aj−1)), where

the latter is often termed the natural course. We can write the g-formula under the natural

course as

Pr(Yg
K+1 = 1 | Lk = lk, Pk = pk, Ak = ak) =

∑
lk

∑
p

k

∑
ak

Pr(Yk+1 = 1 | Lk = lk, Pk = pk, Ak = ak, Lk = lk, Pk = p
k
, Ak = ag

k )×

K

∏
j=k

{
f (lj | l j−1, pj−1, ag

j−1)× f (pj | l j, pj−1, ag
j−1)× f obs(aj | l j, pj, aj−1)

} (1.4)

or, recognizing that we defined Xk = (Lk, Pk, Ak) previously, more simply

Pr(YK+1 = 1 | Xk = xk) = ∑
xk

Pr(Yk+1 = 1 | Xk = xk, Xk = xk)×
K

∏
j=k

f (xj | xj−1). (1.5)

The connection between random dynamic regimes and traditional factual prediction

estimands through the concept of the natural course is useful for thinking about the role

of modifiable variables (e.g. treatments) in factual prediction settings. For instance, a

common problem in clinical risk prediction modeling is how to interpret estimates when

some participants in a training data set receive treatment during follow up. One way to

think about these risk estimates is that they represent the risk under the natural course

of treatment, i.e. under a hypothetical dynamic regime in which treatment is assigned

probabilistically according to observed treatment and covariate history, and therefore should

be applicable in settings in which the “natural course” mechanism, f obs(aj | l j, pj, aj−1), is

the same or similar.

In the prediction literature, dynamic prediction rules are said to be consistent2 when a

prediction at future time K conditional on covariates through time k can be obtained by

summing or integrating over the conditional probability distribution of the longitudinal

outcome in the interval between k and K [24]. This is a desirable property as it implies a

degree of coherence among longitudinal models. Although this has generally been applied

to joint modeling of a single biomarker, a consequence of the result above is that factual

2Meant here in a different sense than it is used in section 1.2.4.
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predictions using the g-formula also satisfy this condition.

1.2.5 Censoring and competing events

In the real world, participants are lost to follow up or their covariate data may be missing.

Additionally, competing events may preclude a subset of participants from experiencing

the outcome of interest. Both affect the quality of predictions [25, 26]. Additionally, in both

cases a nominally factual prediction estimand may be re-conceived as a counterfactual pre-

diction estimand [27]. However, to do so invariably involves invoking additional untestable

assumptions about the nature of the data generation process.

Following the framework of Young et al. [27] we conceive of two types of estimands

involving competing events, the risk with and without elimination of competing events.

The former is a counterfactual estimand which imagines a world in which no one ever

had a competing event, for instance if there were an intervention which could eliminate

the possibility of the event occurring. While this can make sense as a target of inference

in certain circumstances, when the competing event is death, as is commonly the case in

epidemiological studies, this estimand may be less plausible. In the statistics literature, the

former (i.e. the risk under elimination) is also known as the marginal cumulative incidence

or the net risk, while the latter is often referred to as the cause-specific cumulative incidence

or the subdistribution function.

Elimination risk: Pr(Yd=0
K+1 | Xk = xk)

Outcome-specific risk: Pr(YK+1 | Xk = xk)

Loss to follow up is generally understood as a form of censoring and often the analytical

goal is to remove the influence of censoring from predictions. This can be conceived as a

counterfactual estimand that posits a world in which we intervened to follow everyone fully

until the conclusion of the study, i.e.

Pr(Yc=0
K+1 | Xk = xk).

While traditional risk prediction techniques for competing risks and missing data and/or
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loss to follow up exist, they are often estimand-specific and therefore figuring out which to

use can be confusing. On the other hand, the g-formula can readily be adapted to target any

of the estimands discussed above, depending on which components of the joint distribution

are explicitly modeled versus which are treated as censoring events. When a competing

event is considered a censoring event, the g-formula targets the risk under the elimination of

competing events, just as it targets the risk under the elimination of loss to follow up. When

a competing event is considered an element of Lk, and therefore explicitly modeled, the

g-formula targets the risk without elimination of competing events. Modified identification

assumptions and g-formula expressions under censoring and competing events are given in

section A.1.2 of the appendix.

1.2.6 Variable selection

Often, in clinical prediction tasks, the predictors in Xk are determined by the information

available to the decision-maker rather than what might be optimal from a statistical or

theoretical point-of-view. For instance, certain laboratory values may be cost prohibitive

or may take too long to collect relative to the decision timeline. For factual prediction

tasks, this is not an issue and the covariates in Xk can be determined by the operating

constraints of the decision-maker. However, for counterfactual prediction tasks, during

training Xk must include all Lk sufficient to ensure exchangeability of potential outcomes

with respect to treatments Ak in order to yield unbiased predictions. In practice, this may

necessitate selecting training data where either (1) exchangeability is assured by design,

such as in a randomized controlled trial, or (2) covariate data for Xk is sufficiently rich

to make identification plausible. Once accomplished, the g-formula can be modified to

produce predictions based on a subset Vk ⊂ Xk of covariates available to the decision-maker

by summing/integrating out the covariates that are not available V∗
k = Xk − Vk as shown in

section A.2 of the Appendix.
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1.2.7 Estimation

When the number of possible risk factor histories is small, we can estimate the components

of the g-formula nonparametrically and sum over all possible histories. However, when

the number of histories is large or when they include continuous covariates, we often

rely on parametric models to estimate the components of the g-formula and approximate

the high-dimensional sum/integral via Monte Carlo simulation, this estimation procedure

is often referred to as the parametric g-formula and is described in detail in [22, 27–30].

Depending on the estimand the parametric g-formula requires us to specify models for the

conditional hazard of the outcome p(xk, xk, k; θ), for the time-varying covariate trajectories for

treatments h(xj−1, j; α) as well as possible confounders or other predictors ℓ(xj−1, j; λ), and

for the conditional hazard of competing events q(xj−1, j; η), which we index by parameters

θ, α, λ, and η respectively. For instance, when targeting the outcome-specific risk under the

natural course the parametric g-formula estimates

∑
x

K

∑
k=k

p(xk, xk, k; θ̂)
K

∏
j=k

[1 − p(xj, j; θ̂)][1 − q(xj−1, j; η̂)]ℓ(xj−1, j; λ̂)h(xj−1, j; α̂)

While the full sequence of steps have been outlined previously, here we modify the

standard algorithm slightly to recover the appropriate conditional estimand for prediction.

Example steps are:

1. Fit models for each component of the g-formula. Specifically,

(a) Fit pooled (over persons and time) models ℓ(xj−1, j; λ) for the conditional dis-

tribution of each confounder in Lk as well as each predictor Pk at time k as a

function of k, past treatment, confounder, and predictor history based on those

who are alive, uncensored, and competing event free at k.

(b) Fit pooled (over persons and time) models h(xj−1, j; α) for the conditional distri-

bution of each possible treatment in Ak at time k as a function of k, past treatment,

confounder, and predictor history based on those who are alive, uncensored, and

competing event free at k.
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(c) Fit a pooled logistic regression model p(xk, xk, k; θ) for the probability of the

outcome by time k + 1 as a function of k, past treatment, confounder, and

predictor history based on those who are alive, uncensored, and competing event

free at k.

(d) If there is a competing event and the target estimand is the risk without elim-

ination of competing events, then also fit a pooled logistic regression model

q(xj−1, j; η) for the probability of the competing event by time k + 1 as a function

of k, past treatment, confounder, and predictor history based on those who are

alive, uncensored, and competing event free at k.

2. For each conditional history of interest, approximate the sum (or integral) over future

treatment and covariate histories by performing the following Monte Carlo simulation

B number of times based on the intervention of interest. For k > 0:

(a) Simulate covariate values from the fitted models ℓ(xj−1, j; λ̂) in Step 1(a) using

previously simulated covariates and assigned treatment values through time

k − 1.

(b) i. If the target is a deterministic regime, assign treatment according to the

intervention based on simulated covariates and assigned treatment values

through time k − 1.

ii. If the target is a random regime, simulate treatment according to the specified

intervention density f g(aj | ·).

iii. Otherwise, if target is natural course, simulate treatment using fitted model

for treatment h(xj−1, j; α̂) in Step 1(b) based on simulated covariates and

treatment values through time k − 1.

(c) Compute the hazard of the outcome at time k from the fitted model p(xk, xk, k; θ̂)

in Step 1(c) using previously simulated covariates and either assigned treatment

values (deterministic regimes) or simulated treatment values (random regimes

and natural course) through time k.
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(d) If there is a competing event and the target estimand is the risk without elimi-

nation of competing events, compute the hazard of competing events at time k

from the fitted model q(xj−1, j; η̂) in Step 1(d) using previously simulated covari-

ates and either assigned treatment values (deterministic regimes) or simulated

treatment values (random regimes and natural course) through time k.

3. Calculate the average cumulative probability of the outcome by time K over all possible

futures.

Confidence intervals for g-formula predictions can be obtained by using the boot-

strap and re-fitting models p(xk, xk, k; θ), h(xj−1, j; α), ℓ(xj−1, j; λ), and q(xj−1, j; η) in each

resampled dataset, but calculating predictions using the same initial values at time k. Im-

plementation of the modified g-formula algorithm above are available as an R package at

https://github.com/boyercb/gmethods.

1.3 Simulations

To investigate the finite sample properties of risk prediction modeling using the g-formula

as compared to a more conventional approach, we designed a simulation study. We generate

data from a process meant to approximate the cardiovascular disease application in section

1.4. R code to reproduce the simulations can be found at https://github.com/boyercb/g-

formula-prediction.

1.3.1 Setup and data generation process

We focus on a ten time point prediction process in which we have examination values

for six variables Xk = (L0, L1k , L2k , P0, P1k , Ak), consisting of five continous covariates

(L0, L1k , L2k , P0, P1k ), three of which (L1k , L2k , P1k ) vary over time and two of which (L0,

P0) are fixed at baseline, as well as a binary treatment variable (Ak). We allow for treatment-

confounder feedback between L1k , L2k , and Ak as the former affect the decision to administer

treatment and are themselves affected by treatment. We wish to predict cumulative risk of
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the survival outcome event (Yk) for which there is optionally a competing risk (Dk) as well

as the possibility of being lost to follow up (Ck). We allow past covariate values to affect

future values.

More specifically, we draw baseline values L0 and P0 as well as initial values of L1k , L2k

and P1k from Normal(0, 1). Then for times k ∈ {1, . . . , 9}, we generate data according to the

model

L1k ∼ Normal
(
0.5 · k + L1k−1 + 0.25 · L2k−1 − 1.5 · Ak−1 − 0.5 · Ak−2, 0.2

)
L2k ∼ Normal

(
0.5 · k + 0.25 · L1k + L2k−1 , 0.2

)
P1k ∼ Normal

(
P1k−1 , 0.2

)
Ak ∼ Bernoulli(expit{log(0.001) + log(4) · L1k + log(4) · L2k + 4 · Ak−1 +

log(0.75) · L0 − log(4) · L1k · Ak−1 − log(4) · L2k · Ak−1})

Ck+1 ∼ Bernoulli (expit{log(0.01) + log(0.5) · Ak−1})

Dk+1 ∼ Bernoulli(expit{log(0.005) + log(1.25) · L1k + log(1.25) · L2k + log(1.25) · P1k +

log(0.75) · L0 + log(0.75) · P0 + log(0.5) · Ak})

Yk+1 ∼ Bernoulli(expit{log(0.0005) + log(1.5) · L1k + log(1.5) · L2k + log(1.5) · P1k +

log(1.25) · L0 + log(0.5) · P0 + log(0.5) · Ak})

Intercepts were chosen such that the cumulative risk of the outcome in untreated with mean

covariate values was roughly 20% and treatment initiation over follow up was roughly

40%. For any of Ck+1, Dk+1, and Yk+1, when the current value is one, future values are

deterministically set to one and the others are set to zero. In simulations without competing

risks Dk is set to zero at all time points.

In each simulation experiment, we generate training samples of size N = 3000 from

the process above and fit all models. We then generate an independent test dataset of size

N = 3000 and apply our fitted models to estimate the cumulative risk at time 10, Pr(Y10 |

Xk∗ = xk∗) = p(xk∗), conditioning on the first exam, first three exams, and first six exams, i.e.

k∗ ∈ {0, 3, 6}. We repeat this same sequence across J = 500 simulations and then evaluate

the finite sample performance of each estimator based on time-dependent extensions of
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the mean-squared error and the area under the receiver operating characteristics curve,

MSE(∆k, k∗) and AUC(∆k, k∗), which are ajusted for censoring and competing risks [31, 32]

and further described in the Appendix.

1.3.2 Simulation scenarios and comparators

To evaluate the performance of the g-formula, we consider three prediction scenarios.

1. Factual prediction. Training and test data are generated from process above, except

competing events are removed as Dk+1 are set to zero at all time points. Target is

cumulative risk Pr(Y10 | Xk∗ = xk∗) for k∗ ∈ {0, 3, 6}.

2. Competing risk prediction. Training and test data are generated from process above with

competing events, i.e. Dk+1 are drawn as described. Target is cumulative risk without

elimination of competing risks Pr(Y10 | Xk∗ = xk∗) for k∗ ∈ {0, 3, 6}.

3. Counterfactual prediction. Training data are generated from process above but test

data are generated from a population in which treatment is unnavailable, i.e. Ak are

deterministically set to zero. Target is counterfactual cumulative risk Pr(Yak=0
10 | Xk∗ =

xk∗) for k∗ ∈ {0, 3, 6}.

The third scenario is meant to mimic the scenario in which the estimand is the treatment-

naive risk, but models are fit in a population in which treatment is initiated over the

follow up period. In the second scenario, the target is the risk without elimination of

competing events and performance metrics, i.e. MSE(∆k, k∗) and AUC(∆k, k∗), are adjusted

for competing events.

The g-formula estimator is constructed using parametric models for covariates (L1k , L2k ,

P1k ), treatment (Ak), the outcome (Yk), and competing event (Dk) that are initially specified

correctly relative to the data generation process. As comparators we use pooled landmark

logistic regressions to model the discrete-time hazard of Yk based on covariates Xk∗ up to

landmark times k∗ ∈ {0, 3, 6}. That is we fit separate pooled logistic regressions conditional

on covariate values up to k∗ for the period from k∗ to K. We separately consider landmark
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models using just the most recent values and those that include lagged terms for previous

values.

To understand performance under model misspecification, we modify the data genera-

tion process above under two types of misspecification: misspecification of the covariate

process and misspecification of the outcome process. In the case of the former, L1k is drawn

from

L1k ∼ Normal
(√

0.5 · k + L1k−1 + 0.05 ·
k−1

∑
j=0

L2j − 1.5Ak−1
)

but the models in the g-formula and landmark estimators are unchanged. In the latter, Yk+1

is drawn from

Yk+1 ∼ Bernoulli
(
expit{log(0.00075) + log(1.1) ·

k−1

∑
j=0

L1j + log(1.1) ·
k−1

∑
j=0

L2j + log(1.1) ∗
k−1

∑
j=0

P1j +

log(1.25) · P0 + log(0.5) · L0 + log(0.5) · Ak}
)

1.3.3 Simulation results

Simulation results under correct specification of parametric models are presented in Table

1.1. The best performing estimator in each row is highlighted in bold. In all scenarios the

MSE and AUC of all estimators improved when we condition on additional exam values

as a richer covariate history and a shortened prediction window yield better predictions.

In the factual and competing risk prediction scenarios, the g-formula outperformed the

landmark estimators with and without lags by a small margin, reflecting performance gains

from the correct specification of the intermediate process as well as correct estimation of the

subdistribution function when there are competing risks. In the counterfactual prediction

scenario, the g-formula performed substantially better than the landmark methods, even

when treatment was included in these models and naive adjustments were made (i.e. forcing

treatment terms to zero). This was likely due to the fact that the g-formula correctly

estimates the effect of removing treatment from the treated, including via paths mediated

through time-varying counfounders L1k and L2k .

Results when models for the covariate process and the outcome process are misspecified
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are shown in Tables A.1 and A.2 in the Appendix. As expected performance of all estimators

degrades under misspecification. However, they suggest that, at least under some data gen-

eration processes, the advantages of the g-formula for factual and competing risk estimands

may be reduced when models are misspecified, as they inevitably are in practice. On the

other hand, the advantages of the g-formula persist across all counterfactual prediction

scenarios, as estimates remain less biased than those produced by the landmark estimators.

1.4 Application

In this section, we provide an example of factual and counterfactual prediction using the

g-formula in real data.

The Framingham Study was initiated in 1948 as a longitudinal, population-based study

of cardiovascular disease among 5,209 men and women in Framingham, Massachusetts. In

1971, 5,135 offspring of original participants of the study and their spouses were recruited to

participate in the Framingham Offspring Study. Across nine examination cycles, members

of the Framingham Offspring Study returned, on average, every 3 to 4 years for a physical

examination, questionnaires, laboratory tests, and assessment of cardiovascular and other

risk factors. Both the original study and the offspring study have been used extensively for

the development of risk prediction models for cardiovascular disease [33]; however, most

popular implementations use a single examination cycle rather than the full set.

We began follow up at the fifth examination (1991-1994) and included longitudinal data

from examinations six (1994-1998) and seven (1998-2001). We restricted to 2,828 cohort

members who were under 70 years of age, had complete baseline data, were not currently

on lipid-lowering treatment and had no prior coronary heart disease event all at baseline

(1991-1994). We used atherosclerotic cardiovascular disease (ASCVD), defined as a nonfatal

myocardial infarction, coronary heart disease death, or ischemic stroke, as our primary

outcome. There were 192 ASCVD events and 119 non-ASCVD deaths during follow up.

Descriptive characteristics of our sample across examination cycles are shown in Table A.3.

To implement the g-formula, we used separate regressions to model ASCVD, non-
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Table 1.1: Monte carlo simulation results comparing g-formula and landmark approaches.

MSE(∆k, k∗) AUC(∆k, k∗)

k∗ g-formula landmark landmark (lags) g-formula landmark landmark (lags)

Scenario 1: Factual prediction
0 0.112 0.116 0.116 0.881 0.880 0.880

(0.006) (0.007) (0.007) (0.011) (0.011) (0.011)
3 0.099 0.104 0.104 0.903 0.901 0.900

(0.006) (0.006) (0.006) (0.010) (0.010) (0.010)
6 0.087 0.091 0.091 0.918 0.916 0.916

(0.006) (0.006) (0.006) (0.010) (0.010) (0.010)

Scenario 2: Competing risk prediction
0 0.102 0.104 0.104 0.893 0.892 0.892

(0.006) (0.007) (0.007) (0.014) (0.014) (0.014)
3 0.097 0.099 0.099 0.915 0.913 0.911

(0.006) (0.006) (0.006) (0.013) (0.013) (0.013)
6 0.089 0.090 0.091 0.925 0.923 0.921

(0.006) (0.006) (0.006) (0.012) (0.012) (0.012)

Scenario 3: Counterfactual prediction
0 0.164 0.388 0.388 0.960 0.943 0.943

(0.009) (0.018) (0.018) (0.006) (0.007) (0.007)
3 0.116 0.290 0.285 0.970 0.965 0.966

(0.007) (0.014) (0.014) (0.004) (0.005) (0.005)
6 0.086 0.158 0.158 0.972 0.971 0.971

(0.006) (0.012) (0.015) (0.004) (0.004) (0.004)

Note:
All results based on 500 Monte Carlo simulations using data generation process described
in section 3. Standard deviations of Monte Carlo estimates are provided in parentheses.
The best performing estimator is shown in bold. All simulations use correctly specified
models. For results under misspecification see the appendix.
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ASCVD death and each of the following time-varying risk factors: cigarette smoking,

BMI, diabetes, anti-hyertension medication use, lipid-lowering medication use, serum

LDL cholesterol, serum HDL cholesterol, and systolic blood pressure. We used pooled

discrete-time logistic regression to model the probability of ASCVD and the probability of

non-ASCVD death in each year. Each time-varying risk factor was classed as binary, binary-

to-failure, or continuous, and then modelled using a generalized linear model as specified

in Table A.4. To increase efficiency all models were pooled over all examination cycles. All

models included, as predictors, age, the two previous values of all time-varying risk factors,

and the fixed covariates baseline age and sex. Binary predictors were entered into the models

as indicators; continuous predictors were entered as polynomials (linear, quadratic and cubic)

and restricted cubic splines in sensitivity analyses. Table A.4 summarizes the information on

the covariates included in the primary analysis. Tables tables A.5 and A.6 provide estimated

model coefficient values and fit statistics for the outcome and covariate models respectively.

We estimate the 10-year cumulative risk using the Monte Carlo procedure outline in section

1.2.7 with 500 simulations per individual, or 1,297,500 total.

Figure 1.2 shows an example of the predictions generated using the g-formula. In the

figure, we present predictions for a single covariate profile: a 60 year-old male smoker

with a BMI of 30 kg/m2, no history of diabetes, no history of treatment and elevated risk

factors levels. The first row shows the full 10-year predicted risk trajectory based on baseline

values alone. The left panel shows the predicted risk of ASCVD and the right panel shows

the expected trajectory of their risk factors. Unlike conventional methods, which only

model the outcome, the latter gives us some insights into the expected “natural course” of

similar individuals in Framingham dataset. For instance, the model suggests that men like

him have a fair chance of starting lipid-lowering or anti-hypertensive medication over the

follow up period. The second row shows an example of an updated risk prediction for

the same covariate profile at a subsequent examination 3 years later in which the man has

now developed diabetes, but the levels of other risk factors are the same. This prediction

is conditional on the man’s full examination history to date. Compared to the previous
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Figure 1.2: Example risk predictions using the g-formula for a single covariate profile. Panel A is the 10-year
risk under the natural course. Panel B is updated after 3 years and a diabetes diagnosis. Panel C is the
counterfactual risk under statin-initiation at visit at year 3. Dotted lines show predictions from panel above for
comparison.
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Table 1.2: Optimism-corrected estimates of model performance for factual prediction in the Framingham
Offspring Study.

k∗ Model MSE(∆k, k∗) 95% CI AUC(∆k, k∗) 95% CI

0 g-formula 0.0607 (0.0551, 0.0671) 0.746 (0.719, 0.773)
landmark 0.0613 (0.0537, 0.0698) 0.740 (0.707, 0.774)
landmark (lags) 0.0613 (0.0537, 0.0698) 0.740 (0.707, 0.774)

3 g-formula 0.0488 (0.0435, 0.0552) 0.738 (0.708, 0.771)
landmark 0.0493 (0.0420, 0.0568) 0.732 (0.694, 0.771)
landmark (lags) 0.0497 (0.0427, 0.0572) 0.732 (0.694, 0.773)

6 g-formula 0.0272 (0.0227, 0.0319) 0.717 (0.661, 0.766)
landmark 0.0276 (0.0215, 0.0339) 0.702 (0.641, 0.758)
landmark (lags) 0.0283 (0.0225, 0.0343) 0.684 (0.621, 0.738)

prediction (dotted line), the man’s risk of developing ASCVD has increased. Finally, the last

row shows an example counterfactual prediction at the same examination which estimates

the risk if the man were to initiate lipid-lowering treatment. Compared to the factual

prediction at 3 years (dotted line), his risk is reduced. However, unlike previous predictions

this one rests on the strong, untestable, assumptions outlined in section 1.2.4.

To assess the performance of factual predictions using the g-formula, we conducted

the following internal validation. We drew 500 bootstrap replicates from the Framingham

Offspring sample and repeated the entire modeling process to estimate the optimism-

corrected dynamic MSE and AUC at baseline (k∗ = 0), after four years (k∗ = 3), and after

seven years (k∗ = 6). For comparison we repeated the same procedure using landmark

Cox regressions using the same covariate set with and without lagged terms. The latter

mimics models traditionally used in risk prediction for cardiovascular disease such as the

Pooled Cohort Equations [34]. The results are displayed in Table 1.2. At all time points

the g-formula outperforms traditional methods, although the differences are modest. In

the appendix, we show that the g-formula predictions are also better calibrated against the

ASCVD-specific risk than traditional methods.

To highlight the use of the g-formula for counterfactual prediction we estimated the

treatment-naive risk, i.e. the risk if, contrary to fact, none of the participants initiated
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Table 1.3: Population-level risk estimates under lipid-lowering therapy interventions using the g-formula in
the Framingham Offspring Study and then transported to Framingham Study.

Intervention Risk 95% CI RR 95% CI % intervened on

Framingham Offspring Cohort
Never treat 7.6 % (7.0%, 8.2%) ref 13%
Natural course1 7.1% (7.0%, 8.2%) 0.95 (7.0%, 8.2%) 0%
Always treat 6.0% (7.0%, 8.2%) 0.79 (7.0%, 8.2%) 87%

Framingham Original Cohort
Never treat2 11.2% (7.0%, 8.2%) ref 0%
Offspring course 9.9% (7.0%, 8.2%) 0.88 (7.0%, 8.2%) 18%
Always treat 7.3% (7.0%, 8.2%) 0.65 (7.0%, 8.2%) 100%

1 For reference, the observed risk in the Framingham Offspring sample was 7.1% using an
inverse probability of censoring weighted estimator.

2 For reference, the observed risk in the (untreated) Framingham sample was 13.7% using an
inverse probability of censoring weighted estimator.

lipid-lowering therapy over follow up. When counselling a patient on whether to start

treatment, the treatment-naive risk is the more relevant, but harder to estimate, risk for

weighing costs and benefits of treatment. To estimate the treatment-naive risk using the

g-formula, we simulate the risk under an intervention which sets the indicator lipid-lowering

therapy to zero in all intervals. Table 1.3 shows the population-level risk estimates under this

intervention as compared to the natural course and an intevention which sets the indicator

to one in all intervals (always treat). As expected the treatment-naive risk is larger than both

the natural course and the always treat intervention. Compared with the factual predictions

from tradiational methods, as shown in Figure 1.3, the treatment-naive predictions from the

g-formula are higher.

Assessing the performance of counterfactual predictions is substantially more challeng-

ing as potential outcomes are not observed for those who do initiate treatment over follow

up. On the one hand, we can take some comfort from the fact that the population-level

estimate of the relative risk of lipid-lowering therapy (RR = 0.79) in Table 1.3 is consistent

with those from cholesterol treatment trials. However, this could simply be co-incidence.

It also doesn’t speak to the validity of individual predictions, which are conditional and
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Figure 1.3: Comparison of factual predictions using traditional methods and ‘treatment-naive’ predictions
using the g-formula.
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require correct modeling of effect modifiers.

In lieu of better options and in the model-agnostic spirit in which most prediction models

are deployed, we conduct the following validation exercise. In the original Framingham

Study, modern lipid-lowering therapies, notably statins, were unavailable. Therefore the

participants in the original study, who were direct relatives of those in the Offspring study,

are a treatment-naive cohort that, in some sense, may resemble the counterfactual experience

of the Offspring under no treatment. In practice, this is almost surely false, as there are

many other differences in dietary patterns, education, and non-statin treatment options

between the Original and Offspring cohorts. However, given that prediction models are

often applied agnostically to new settings and judged on their “performance” rather than

their “correctness” in an abstract sense, we investigate whether using a counterfactual

treatment-naive model performs better than a simple factual model in the Original cohort.

We used the 10th examination cycle (1968-1971) as a baseline as this was the only time a full

serum cholesterol panel was conducted, and retained exams 11 through 16 for evaluation

of model fit. We applied both the g-formula and the landmark models used previously to

the original cohort. Compared to the observed 10-year risk in the Framingham Study of

13.7% the average of treatment-naive predictions was 11.2%, while the average using the

landmark predictions was only 9.5%, indicating the treatment-naive predictions were closer

to observed. In the appendix, we show that MSE and AUC of transported treatment-naive

predictions outperform those of traditional methods. This suggests that, if the choice were

between the two models only, the counterfactual model would be the better option. However,

it’s probable that a more structured approach to transporting the model which considered a

richer set of possible differences in participants over follow up in the two cohorts would

perform better still.

1.5 Discussion

We applied the parametric g-formula to provide more reliable estimates of time-dependent

factual and counterfactual risk using longitudinal data. We demonstrated the flexibility
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of the g-formula in targeting different prediction estimands of interest to clinicians and

researchers and discussed the assumptions necessary for unbiased estimation. Through

simulation we showed some of the trade-offs of modeling the natural course of treatment

and risk factors. When models are correctly specified (or approximately so) we find that

the g-formula performs better than conventional approaches by making efficient use of

longitudinal data. However, we also show that poor specification of covariate models can

lead to bias. We further demonstrate the flexibility of the g-formula to target competing-risk

and counterfactual estimands. We conclude by applying these insights to the practical

problem of cardiovascular disease prediction in the Framingham Offspring Study.

Our work builds on a growing literature clarifying estimands for factual prediction and

counterfactual risk prediction using the potential outcomes framework [11, 15] as well as

other efforts to synthesize traditional prediction modeling approaches with modern casual

inference methods. We focus here on the (non iterated conditional expectation) g-formula

as we see it as most similar to traditional strategies based on outcome regression modeling,

but there are other estimators that could also be used to target counterfactual prediction

estimands, including the iterated conditional expectation version of the g-formula [35] as

well as those based on maringal structural models or inverse-probability weighting [17, 36]

which model the treatment process. There are also doubly- or multiply-robust estimators

[37–40] which consistently estimate counterfactuals under correct specification of either

a model for the outcome or a model for treatment. Finally, our work is also related to a

large literature on the estimation of the conditional average treatment effect (CATE), which

proposes estimators for the treatment effect rather than the expected outcome risk.

Dickerman et al. propose an alternative way to use the parametric g-formula to target

counterfactual prediction estimands. Specifically, they use the joint distribution for the

outcome under a proposed intervention implied by the parametric g-formula to generate

alternative training data. This simulated data can then be used by any prediction algorithm

to create a new model for the outcome under the proposed intervention. Their approach

nicely separates the casual and prediction tasks. However, to date, there isn’t a clear way to
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construct valid confidence intervals for the models fit on the simulated data.

In the prediction literature, when targeting factual prediction estimands our approach

most resembles joint-modeling [41] as both the g-formula and joint modeling posit models

for the joint distribution of a survival outcome and a set of time-varying predictors; however,

the latter generally uses a random or mixed-effect modeling framework, assumes covariates

are measured with error, has mostly been used to predict changes based on the time-

evolution of a single biomarker, with a few exceptions. In theory though many of the

advantages of adopting a joint modeling approach apply equally to the g-formula, such as

the ability to dynamically update predictions over time [42]. Several previous studies have

also showed the benefits of incorporating data from longitudinal assessments in clinical

prediction models using traditional regression-based approaches [43, 44]. This is consistent

with results in our simulation and application.

We note several important limitations of the present study. First, as emphasized through-

out counterfactual predictions require untestable assumptions that may not be met in

observational settings. Estimation of counterfactual predictions requires careful attention to

all assumptions. Unlike in RCTs, the conditional exchangeability assumption is not satistifed

by design and requires subject matter expertise to determine whether sufficient confounding

control is, even approximately, possible in any given circumstance. Real-world analoges of

the interventions estimated in observational settings may not exist or may not be applicable

to the clinical decision in question [45]. Analysts must also pay careful attention to possible

structural sources of non-positivity and modeling assumptions that may lead to poor extrap-

olations [46]. Finally, throughout we have implicitly assumed that covariates were measured

without error, which is almost certainly violated in practice. In principle, measurement error

could be accounted for within our framework, although example implementations of the

g-formula which account for measurement error are lacking.

Second, as our simulations have shown, applying the parameteric g-formula to model

the time-dependent evolution of treatment and risk factors requires the correct specification

of several longitudinal models for the evolution of covariates over time. This is in contrast to
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a traditional regression approach which requires the correct specification of a single outcome

model to yield valid estimates. The trade-off is that when these models are correct or nearly

correct the g-formula-based predictions can substantially improve on traditional approaches.

While previous literature has suggested ways to check for gross model misspecification

[30] these are often harder to verify when there’s loss to follow up and competing risks,

although we do so here using inverse probability of censoring weighting. For counterfactual

prediction, an additional challenge is that for even a moderate number of time points it

may be impossible to correctly specify parametric models under the null, i.e. the so called

g-null paradox [47, 48]. An alternative is to use more flexible modeling approaches for the

components of the g-formula. One could also consider other nonparametric methods based

on machine learning [49], however the asymptotic properties of these estimators is not well

established. In some cases, applying machine learning methods to estimators that are not

based on the efficient influence function, i.e. are not “doubly-robust”, such as the g-formula

can lead to estimators that actually perform worse than those based on parametric models

[50].

While our application focused on a observational cohort, in principle our g-formula

based approach could be equally applied to data from a randomized trial, in which case

random assignment ensures exchangeability, at least at baseline, by design. This may

increase the plausibility of the estimation of some counterfactual prediction estimands.

However, given the challenges in recruitment and strictness of eligibility criteria, additional

modeling assumptions may still be required to transport this model to a non-trial population

without bias [51, 52].

In summary, the parametric g-formula can be a flexible tool for both factual and counter-

factual risk prediction. As large longitudinal databases such as electronic health records

become increasingly common, it is interesting to consider how more dynamic approaches

to risk prediction such as the one considered in this paper may be integrated into existing

systems.
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Chapter 2

Target trials for prediction: emulating

a trial to estimate the treatment-naive

risk1

Clinical prediction models are commonly used to determine treatment eligibility. However,

depending on the data used to train the model, predicted risks may include the possibility

that treatment is initiated over follow up, which can lead to underallocation. A better option

would be to determine treatment eligibility using a model for the treatment-naive risk, that

is the counterfactual risk had no one received treatment. Yet, outside of a randomized or

single arm trial, estimating this risk generally requires the tools of causal inference. In this

paper, we propose methods for estimating the treatment-naive risk based on emulating a

target trial corresponding to the clinical decision in question. We use inverse probability of

censoring weighting and g-estimation of structural nested accelerated failure time models

to estimate the effect of removing treatment from the treated. We apply these methods to

create a statin-naive risk prediction model in the Multi-Ethnic Study in Atherosclerosis.

Clinical prediction models are commonly used to determine treatment eligibility. However,

1Co-authored with James Robins, Andrew Beam, and Goodarz Danaei
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depending on the data used to train the model, predicted risks may include the possibility

that treatment is initiated over follow up, which can lead to underallocation. A better option

would be to determine treatment eligibility using a model for the treatment-naive risk, that

is the counterfactual risk had no one received treatment. Yet, outside of a randomized or

single arm trial, estimating this risk generally requires the tools of causal inference. In this

paper, we propose methods for estimating the treatment-naive risk based on emulating a

target trial corresponding to the clinical decision in question. We use inverse probability of

censoring weighting and g-estimation of structural nested accelerated failure time models

to estimate the effect of removing treatment from the treated. We apply these methods to

create a statin-naive risk prediction model in the Multi-Ethnic Study in Atherosclerosis.

2.1 Introduction

A common use of prediction models in clinical care is to guide decisions about initiating

treatment [1]. This generally involves a model-based estimate of a patient’s risk and then

a decision rule to determine whether they should start treatment [53]. For instance, the

AHA guidelines on the treatment of cholesterol [3] state that patients aged 40 to 75 with

serum LDL cholesterol levels above 70 mg/dL and no history of diabetes should initiate a

moderate intensity statin if their predicted 10-year risk of cardiovascular disease exceeds

7.5% based on the pooled cohort equations.

Ideally, the risk prediction model would be estimated in a single arm trial in which

treatment is withheld from all participants. Alternatively, it could be estimated in the

control arm of a two arm randomized trial comparing treatment against a placebo. Likewise,

the decision rule should be determined by identifying the risk threshold that maximizes

expected clinical utility while minimizing any costs or adverse effects. However, for many

reasons, this paradigm is rarely realized in practice. For one, changes in the clinical

landscape and eligibility drift often lead to a mismatch between the eligibility criteria

for trials, which are more restrictive, and indications for use in clinical care, which are
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more relaxed [54]. Additionally, trial data may not be conducive to the development of a

prediction model as relevant predictors may not be collected, outcomes may be composite or

surrogate, and follow up may be shorter than that deemed necessary for prediction. Finally,

changes in risk over time due to shifts in population health or other treatment innovations

may render original risks obsolete [9, 55]. Instead, observational data are often used to

train the model and the decision rule is determined based on a combination of evidence

summaries and expert consensus.

Yet, as previous work has noted [11, 15, 17, 56], an issue arises when the model is trained

in a cohort where participants initiate treatment over the follow up period. In this case, risk

estimates may no longer be appropriate as they include the possibility that the patient will

be treated. We term these risks the natural course risk as they represent the risk under the

natural course of treatment in the derivation cohort. In contrast, the risk desired is often

called the treatment-naive risk as it is the risk that would be obtained in a cohort where

treatment is unavailable or withheld [11].

If treatment reduces the risk, natural course estimates may understate the true risk,

particularly among those most likely to initiate treatment. Depending on the decision rule,

using the natural course estimates might yield a substantial fraction of people not receiving

treatment, who otherwise might have been treated using the true treatment-naive risk. This

fraction may grow further as treatment use increases, until eventually the decision rule

is no longer useful. This has prompted efforts to estimate the treatment-naive risk from

observational data [17, 36, 57]. However, estimating the treatment-naive risk in a non-naive

cohort generally requires the tools of causal inference.

In this paper, we propose two methods for estimating the treatment-naive risk based

on emulating a target trial [18, 19] that matches the conditions of the clinical decision

under consideration. First, we use g-estimation of structural nested accelerated failure

time models (SNAFTM) [58–61] to construct pseudo-outcomes representing a participant’s

hypothetical failure time under no treatment. These pseudo-outcomes can then be used to

predict the treatment-naive risk conditional on the subset of predictors desired using any
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prediction algorithm. Second, we censor participants when they initiate treatment and use

inverse probability of censoring weights to construct a treatment-naive pseudopopulation.

These weights can also be used by many prediction algorithms to construct models for the

treatment-naive risk. Both methods effectively separate the causal inference and prediction

tasks.

2.2 Methods

2.2.1 Setup and Notation

Consider the common model development setting in which we observe i.i.d. longitudinal

samples {Oi}n
i=1 from n participants following distribution P. For each observation, let

Oi = (Xk, Ak, Ck+1, Yk+1, T)

where Xk is a vector of time-varying covariates measured at time k, Ak is an indicator of

treatment in the interval (k, k + 1], Ck+1 is an indicator of loss to follow-up by time k + 1,

Yk+1 is an indicator of whether the outcome of interest has occurred by time k + 1, and

T is the failure time for outcome Yk+1 that is either exactly observed or interval censored.

Overbars denote past history of a variable and underbars to denote future history, such that

Xk = (X0, . . . , Xk) and Xk = (Xk, . . . , XK). Capital letters represent random variables and

their lower case equivalents are realizations.

By definition C0 ≡ 0 and Y0 ≡ 0 as we restrict to those who are uncensored and event-

free at the start of follow up. We assume that covariates in Xk can be further categorized into

predictors of the outcome which do not act as confounders (Pk), as well as joint determinants

of the outcome and treatment variables which act as confounders (Lk), i.e. Xk = (Lk, Pk). By

convention, when Yk = 1 then Yk+1 = 1, Xk+1 = 0, and Ck+1 = 0, and likewise when Ck = 1

then Yk+1 = 0, Xk+1 = 0, and Ck+1 = 1. An example directed acyclic graph for a two time

point process under the above process is shown in Figure 3.1.

To define causal estimands of interest, let Ya be the potential outcome under an inter-
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L0 A0 C1 Y1 L1 A1 C2 Y2

P0 P1

Figure 2.1: Example two time point directed acyclic graph for prediction. In the main text, we omit the
possibility of an unmeasured confounder U with arrows into L0, Y1, L1, and Y2 for simplicity, but note that
the treatment-naive risk could still be identified if such U were present.

vention which sets treatment A to a. For a sequence of time-varying treatments Ak, we

further define a treatment regime as a collection of functions {gk(ak−1, xk) : k = 0, . . . , K} for

determining treatment assignment at each time k, possibly based on past treatment and

covariate history. In this paper, we are primarily concerned with the “never treat” regime

g = (0, 0, . . . , 0) also denoted a = 0.

2.2.2 Defining the treatment-naive risk

To better inform clinical decision-making, we’d like to estimate the treatment-naive risk, that

is, the risk of the outcome at time t if, possibly contrary to fact, all participants remained

untreated during the follow up period, or

Pr(Ta=0 ≤ t | X∗)

conditional on a subset of clinical predictors, X∗ where X∗ ⊂ X0, that are available during a

preliminary examination visit and are commonly selected for their ease of collection and

prognostic value rather than the causal structure of their relationship with the outcome.

If we observed Ta=0 for everyone, we could estimate the treatment-naive risk by defining
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a model Pr(Ta=0 ≤ t | X∗) = g(X∗; β), such as the Cox proportional hazards model

λ(t | X∗) = λ0(t) exp(β′X∗)

where parameters are determined by maximizing the partial likelihood. Using estimated

values β̂, we can calculate the risk the risk using

Pr(Ta=0 ≤ t | X∗) = 1 − exp{−Λ̂0(t)}exp(β̂′X∗)

where Λ̂0(t) is an estimate of the cumulative baseline hazard using, for instance, the Breslow

or Kalbfleisch and Prentice estimator. Unfortunately, instead of Ta=0 we observe T which,

under consistency, is equivalent to the potential outcome under an intervention which set

the treatment to its natural course value, that is the treatment value actually observed for

each individual T = TAk and therefore we say Pr(T < t | X∗) is the risk under the natural

course of treatment.

2.2.3 Identification assumptions

To estimate the treatment-naive risk requires additional assumptions. Namely, we require

1. Sequential Exchangeability: Ta=0 ⊥⊥ Ak | Xk, Ak−1, T > k

2. Consistency: T = Ta=0, Yk+1 = Ya=0
k+1, and Xk = Xa=0

k if Ak = 0

and either of

3a. Positivity: Pr(Ak = 0 | Xk, Ak−1 = 0, T > k) > 0

3b. Known semi-parametric model: Ta=0 follows a SNAFTM.

for all k = 0, . . . , K. The first condition stipulates that treatment at time k is conditionally

independent of the counterfactual failure time under no treatment. This would be ensured

by design in a sequentially randomized trial in which, at each time k, participants are

randomized to treatment or no treatment conditional on their past treatment and covariate

history. The second condition implies that observed outcomes and covariates among the
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untreated reflect potential outcomes under no treatment. It would be violated if, for instance,

there were multiple hidden versions of the therapy under consideration.

When both conditions hold, estimation of the treatment-naive risk is possible, provided

that we further assume Ta=0 is related to T via a known semiparametric model, a SNAFTM,

discussed in the next section.

2.2.4 Structural Nested Accelerated Failure Time Models

Structural nested accelerated failure-time models are models for the removal of treatment

which assume that the counterfactual time under no treatment Ta=0 is related to observed

time via

Ta=0 =
∫ T

0
exp{γ(t, At, Xt; ψ)}dt (2.1)

where γ(t, At, Xt; ψ) is the instantaneous expansion (or contraction) in survival time com-

paring treatment at time t to no treatment. Often the simplifying assumption is made that

this effect of treatment is constant over time, in which case

Ta=0 =
∫ T

0
exp(ψAt)dt (2.2)

and parameter ψ is the survival time ratio comparing continuous treatment to no treatment.

In either case, under the assumptions of section 2.2.3, ψ can be consistently estimated from

the observed data using g-estimation or inverse probability weighting.

Because they are models for the removal of treatment, SNAFTMs are a natural choice for

estimating the treatment-naive risk. Unlike alternative methods, such as marginal structural

models, they do not require a positivity assumption, i.e. that there is a nonzero possibility

of receiving all levels of treatment in every history strata [62]. This is because ψ is only

defined for those who are treated during the follow up period. Indeed, note that under the

model above for those for whom Ak = 0 equation 2.2 simplifies to Ta=0 = T. Furthermore,

estimating the treatment-naive-risk requires a weaker partial exchangeability condition. Only

the potential outcome under a single regime, a = 0, must be conditionally independent of

past treatment and covariate history, rather than the potential outcome under all possible
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regimes.

SNAFTM are nested in the sense that for any time k we can write

T(Ak ,0) =
∫ T

k
exp(ψAt)dt

where the model is now for the removal of treatment from time k to T, and relate it back to

equation 2.2 by partitioning the integral as

Ta=0 =
∫ k

0
exp(ψAt)dt +

∫ T

k
exp(ψAt)dt

Note that from the perspective of someone alive at time k the first integral is a function of past

treatment history, Ak−1, only and therefore a fixed constant and uniformative for estimating

ψ. As suggested in [18, 61, 63], this feature of SNAFTMs permits two conceptualizations

of the trial being targeted in an observational study. We can think of the study as a single

sequentially randomized trial in which, at each time k, participants are randomly assigned

to treatment or no treatment conditional on their past history. Alternatively, we can think of

it as sequence of k nested randomized controlled trials, starting at each visit, where eligible

participants who are event free are randomized to treatment or no treatment conditional on

their baseline history and followed until time K. The latter interpretation is the basis for

commonly used methods for emulating nested target trials from observational data.

As written, the structural models above are deterministic or rank-preserving as they

assume the counterfactual failure time under no treatment Ta=0 can be computed without

error from T and ψ. This implies, for instance, that two participants with same exposure

history and failure time would have the exact same failure time in the absence of treatment,

which is nonsensical. However, as has been shown previously [59], we can apply the g-

estimation and pseudo-outcome regression methods elaborated below unchanged whether

or not rank preservation is strictly true. Finally, a particular SNAFTM γ(t, At, Xt; ψ∗)

may be misspecified, relative to the true model γ(t, At, Xt; ψ), when there is time-varying

effect modification by past treatment and covariate history that is unnaccounted for by the

proposed parameter vector ψ∗. This occurs when overly parsimonious specifications are
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chosen, either due to omitting particular effect modifiers or misspecifying their functional

form.

2.2.5 G-estimation

Here we briefly review g-estimation of the parameters of a SNAFTM, although this is covered

in more detail elsewhere [60, 61, 64]. It is often convenient to first define pseudo-outcome

H(ψ∗) as

H(ψ∗) =
∫ T

0
exp{ψ∗A(t)}dt

such that H(ψ) = Ta=0 when ψ∗ is set to the true value ψ, but may, in general, be computed

for any value ψ∗. Equivalently, under a nested conceptualization we can define pseudo-

outcome H(k, ψ∗) as

H(k, ψ∗) =
∫ T

k
exp{ψ∗A(t)}dt

where each subject now contributes K pseudo-outcomes (one for each trial).

Under the sequential exchangeability assumption in section 2.2.3,

H(k, ψ) ⊥⊥ Ak | Xk, Ak−1, T > k

when evaluated at the true value ψ. This permits two equivalent approaches for estimating

ψ. First, note that the conditional independence assumption above implies that Pr{Ak =

ak | Xk, Ak−1, T > k} = Pr{Ak = ak | Xk, Ak−1, T > k, H(k, ψ)}. Thus, we can find ψ by

searching over a grid of possible ψ∗ values and determining the value of ψ∗ for which Ak is

conditionally independent of H(k, ψ∗). For instance, we find the value of ψ∗ that makes this

θ3 = 0 in the pooled logistic regression model

logit[Pr{Ak = ak | Xk, Ak−1, T > k, H(k, ψ∗)}] = θ0 + θ′1Xk + θ′2Ak−1 + θ3H(k, ψ∗)

where we regress treatment at time k on past treatment and covariate history as well as

the pseudo-outcome H(ψ∗). Alternatively, ψ can be determined by solving the estimating
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equation
N

∑
i=1

K

∑
k=0

Hi(k, ψ∗)[Ai,k − Pr{Ak = ak | Xk, Ak−1, T > k}] = 0

where Pr{Ak = ak | Xk, Ak−1, T > k} can be estimated using a pooled logistic regression

model for treatment at time k conditional on past treatment and covariate history. Both

methods require the correct specification of a model for Pr{Ak = ak | Xk, Ak−1, T > k},

although doubly-robust estimating equations are also possible [60].

A complication arises when failure times are not observed for all participants as it

is not possible to calculate H(ψ) or H(k, ψ) for everyone. In this case, the g-estimation

above procedure must be modified to accomodate administrative censoring. Specifically,

we replace H(ψ) with a function of H(ψ) and the end of follow up time K(ψ) which is

observed for all participants. Examples are

∆(ψ) = I{H(ψ) < K(ψ)}

Z(ψ) = min{H(ψ), K(ψ)}

where the first is just an indicator that is one if H(ψ) is observed and zero if it is adminis-

tratively censored, and the second is the minimum of H(ψ) and K(ψ). Because any such

function of H(ψ) is also conditionally independent of past treatment and covariate history,

we can replace H(ψ) with ∆(ψ) or Z(ψ) in previous paragraphs and estimate ψ in the same

way. In the g-estimation literature, this process is often called artificial censoring because

treated participants who are uncensored in observed data may be censored in the estimation

of ψ.

In the appendix, we describe additional details for g-estimation in the presence of loss

to follow up (as opposed to administrative censoring) and competing events. In both cases

the steps above to estimate ψ must be slightly modified.

2.2.6 Pseudo-outcome regression

In this section, we describe how to use the estimate of ψ to construct treatment-naive pseudo-

outcomes that can then be regressed on the relevant set of clinical predictors using any
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standard prediction algorithm. Recall, that during the g-estimation procedure we defined

treatment-free outcome H(ψ) which could be computed for any value of ψ, including our

g-estimate of the true value ψ̂

H(ψ̂) =
∫ T

0
exp{ψ̂A(t)}dt

Because g-estimators are consistent estimators of the true value and, under our model, H(ψ)

evaluated at the true value is the counterfactual failure time under no treatment, it follows

that we can replace Ta=0 with H(ψ̂) in a regression to estimate the treament-naive risk

conditional on covariates X∗

Pr(Ta=0 ≤ t | X∗) = Prn{H(ψ̂) ≤ t | X∗}

More concretely, if for a particular individual their observed failure time is T = 8 but

they were treated starting from time four and our estimate is ψ̂ = 0.5 then the corresponding

pseudo-outcome is

H(ψ̂) =
∫ T

0
exp{−0.5A(t)}dt

=
∫ 4

0
exp(−0.5 · 0)dt +

∫ T

4
exp(−0.5)dt

= 4 + 4 exp(−0.5)

≈ 6.43

implying their treatment-naive failure time is 6.43. This pseudo-outcome can then be used

in place of their observed T when modeling the treatment-naive risk using any standard

algorithm, for instance in a Cox proportional hazards model.

One of the advantages of this procedure is that, by using treatment-naive pseudo-

outcomes, the causal inference and predictive portions of the task are effectively separated.

Under the assumptions outlined, this allows analysts to use their preferred algorithm for

the prediction task as if they had the true counterfactual values for every individual. To

review the complete set of steps are:
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1. Define the target trial corresponding to treatment decision of interest.

2. Estimate the parameter(s), ψ, of the SNAFTM using g-estimation.

3. Using the estimated ψ̂, construct pseudo-outcomes H(ψ̂).

4. Estimate Prn{H(ψ̂) ≤ t | X∗} using any prediction algorithm.

When administrative censoring is present, H(ψ̂) may be replaced by Z(ψ̂) without loss of

generality.

2.2.7 Inverse probability of censoring weighting

A limitation of g-estimation of SNATFM is that they require correct specification of the

structural model for the removal of treatment. In particular, the analyst must specify any

time-varying effect modification by past treatment and covariate history. In priniciple, this

could be avoided by using saturated SNATFM with terms for all possible effect modifiers;

however, in practice g-estimation of multi-parameter SNATFMs has proven difficult [62,

65]. An alternative approach is to use inverse probability of censoring weighting (IPCW).

Returning to our conceptualization of a single-arm target trial in which the regime of

interest is to withhold treatment at all time points, starting treatment can be viewed as a

form of non-adherence. As in a trial, we can censor participants when they deviate from

their “assigned” regime and use inverse probability weighting to adjust for time-varying

non-adherence. Practically, this suggests starting with a treatment-naive population who

meet the eligibility criteria relevant to the clinical decision in question, censoring participants

when they initiate treatment, and then constructing the following stabilized weights

Wc =
K

∏
k=0

I(Ak = 0)Pr(Ak = 0 | X∗, Ak−1 = 0, T > k)
Pr(Ak = 0 | Xk, Ak−1 = 0, T > k)

where the denominator, Pr(Ak = 0 | Xk, Ak−1 = 0, T > k), may be estimated from a

model for treatment initiation among those who remain treatment free conditional on past

covariate history and the numerator, Pr(Ak = 0 | X∗, Ak−1 = 0, T > k) may be estimated

from a similar model excluding time-varying covariate history. Unlike traditional adherence
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adjustment, the numerator and denominator must be conditional on covariates X∗ for them

to be used in the resulting risk prediction model. Under conditions 1, 2, and 3b in section

2.2.3, the treatment-naive risk is identified and can be estimated using inverse probability

weights Wc. Unlike g-estimation of SNAFTM, this approach requires a positive probability

of nontreatment at each time point for all untreated individuals. This would be violated if,

for instance, within strata of past treatment and covariate history, there were a subset of

participants who always receive treatment.

In theory, once estimated, the weights Wc can be used by any prediction algorithm which

permits time-varying weighted optimization to predict the treatment-naive risk. Effectively

they create a pseudo-population in which treatment is withheld at all time points. As an

example, the Wc could be used to fit the pooled logistic regression model

logit{Pr(Yk = 1 | X∗, Yk−1 = 0)} = θ0(k) + θ′1X∗

using weighted maximum likelihood, which for flexible θ0(k) and sufficiently small time

steps approximates the Cox proportional hazards model [66].

2.2.8 Sensitivity analysis

In an observational setting, where treatment initiation over the follow up is not strictly

controlled by the investigator the exchangeability assumption is likely violated but we

often proceed as if it’s at least approximately true given a “plausible” set of covariates.

However, in the presence of unmeasured confounding, we can conduct a sensitivity analysis

as follows. Suppose that the amount of unmeasured confounding were known in the sense

that the degree of dependence between Ta=0 and the conditional probability of treatment

were known on the log-odds scale. Then we could solve for the parameter ω and function

q(k, Xk, Ak−1, Ta=0) in the logistic regression

logit[Pr{Ak = ak | Xk, Ak−1, T > k, Ta=0}] = θ0 + θ′1Xk + θ′2Ak−1 + ωq(k, Xk, Ak−1, Ta=0)
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where, if there were no unmeasured confounding, q(k, Xk, Ak−1, Ta=0) = 0. Since ω and

q(k, Xk, Ak−1, Ta=0) are unknown, we could instead vary them over a plausible range of val-

ues and functional forms and examine the influence of unmeasured confounding on our re-

sulting counterfactual prediction models. That is, for each value of ω and q(k, Xk, Ak−1, Ta=0)

we re-estimate the ψ parameters of the SNAFTM and form the pseudo-outcomes or, al-

ternatively, re-estimate the inverse probability of censoring weights, and use the resulting

pseudo-outcomes or weights with the desired prediction algorithm. This sensitivity analysis

builds on that suggested in [67] for estimating causal effects.

2.3 Application

2.3.1 Study design and data

The Multi-Ethnic Study on Atherosclerosis (MESA) study is a population-based sample

of 6,814 men and women aged 45 to 84 drawn from six communities (Baltimore; Chicago;

Forsyth County, North Carolina; Los Angeles; New York; and St. Paul, Minnesota) in the

United States between 2000 and 2002. The sampling procedure, design, and methods of the

study have been described previously [68]. Study teams conducted five examination visits

between 2000 and 2011 in 18 to 24 month intervals focused on the prevalence, correlates, and

progression of subclinical cardiovascular disease. These examinations included assessments

of lipid-lowering (primarily statins) and other medication use as well as cardiovascular risk

factors such as systolic blood pressure, serum cholesterol, cigarette smoking, height, weight,

and diabetes.

Our goal was to emulate a single-arm trial corresponding to the AHA guidelines on

initiation of statin therapy for primary prevention of cardiovascular disease in the MESA

cohort and use the emulated trial to develop a prediction model for the treatment-naive

risk. The AHA guidelines stipulate that patients aged 40 to 75 with serum LDL cholesterol

levels between 70 mg/dL and 190 mg/dL and no history of cardiovascular disease should

initiate statins if their risk exceeds 7.5%. Therefore, we considered MESA participants
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who completed the baseline examination, had no recent history of statin use, no history

of cardiovascular disease, and who met the criteria described in the guidelines (excluding

the risk threshold) as eligible to participate in the trial. The primary endpoint was time to

atherosclerotic cardiovascular disease (ASCVD), defined as nonfatal myocardial infarction,

coronary heart disease death, or ischemic stroke.

Follow up began at the second examination cycle to enable a “wash out” period for statin

use and to ensure adequate pre-treatment covariates to control confouding. We constructed

a sequence of nested trials starting at each examination cycle from exam 2 through exam

5 and pooled the results from all 4 trials into a single analysis and used a robust variance

estimator to account for correlation among duplicated participants. In each nested trial,

we used the corresponding questionnaire to determine eligibility as well as statin initiators

versus non-initiators. Because the exact timing of statin initiation was not known with

precision, in each trial, we estimated the start of follow up for initiators and non-initators by

drawing a random month between their current and previous examinations. We explored

alternative definitions of the start of follow up in sensitivity analyses in the appendix. To

mimic the targeted single-arm trial we limited to non-initiators for development of the

prediction models.

Our trial emulation is only as good as the strong assumptions which underpin it. While

these assumptions cannot be evaluated empirically, we performed a benchmarking exercise

to determine whether gross violations of the assumptions were likely. As described in

detail in the appendix, we emulated a nested sequence of two-arm trials comparing statin

therapy to no therapy and compared the estimated intention to treat and adherence adjusted

effects to those from existing randomized trials. Because statins have been extensively

evaluated, the range of effect estimates that are “plausible” is available. The estimated

hazard ratios for the ITT effects from our trial emulation in MESA fell within range of

estimates from meta-analyses (HR = 0.79 vs. HR = 0.75). While these results don’t imply

that the assumptions required to emulate our single-arm trial for prediction are valid, they

at least seem consistent with our prior expectations. Based on this result, we felt confident
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Figure 2.2: Probability of statin initiation and probability of adherence among initiators and non-initiators in
nested target trial emulation, Multi-Ethnic Study of Atherosclerosis, 2000 to 2010.

proceeding with the development of a model for the statin-naive risk in this setting.

2.3.2 Predicting statin-naive risk

Of the 6,814 MESA participants who completed the baseline examination, 4,149 met the

eligibility criteria for our trial emulation. There were 288 ASCVD events, 190 non-ASCVD

deaths, and 414 were lost over the 10 year follow up period. In the nested trial dataset, there

were 1,592 initiators and 12,767 non-initiators. Table 1 shows the baseline characteristics of

initiators and non-initiators of statins in the emulated nested trials. Figure B.2 shows the

probability of statin initation over the follow up period. After ten years approximately 40%

of MESA participants had initiated statins.

To illustrate the proposed methods, we created prediction models for the statin-naive risk

in the emulated single arm trial data based on both g-estimation of SNAFTMs and inverse

probability of censoring weighting. For the prediction task, we selected baseline predictors

commonly used in development of models for cardiovascular disease including age, sex,

smoking status, diabetes history, systolic blood pressure, anti-hypertensive medication use
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Table 2.1: Baseline characteristics of initiators and non-initiators in emulated nested trials

Initiators Non-initiators
(N = 1,592) (N = 12,767)

Demographics
Age, years 65.1 (8.2) 62.5 (8.8)
Male, % 45.1 46.8
Married, % 64.6 63.3
Less than high school, % 18.2 15.0
High school graduate, % 48.2 44.9
College or postgraduate, % 33.5 39.8
Non-Hispanic white, % 40.1 37.9
Non-Hispanic black, % 22.9 21.9
Hispanic, % 26.1 27.4
Asian, % 11.0 12.9
Currently employed, % 51.4 59.2
Retired, % 33.3 26.8
No health insurance, % 3.6 8.2
CES Depression scale (0-60) 7.4 (7.5) 7.5 (7.5)
Chronic burden scale (0-5) 1.1 (1.2) 1.1 (1.2)
Perceived discrimination scale (0-4) 0.1 (0.4) 0.1 (0.4)
Emotional support scale (0-30) 24.3 (5.1) 24.1 (5.3)
Everyday hassles scale (0-54) 14.4 (6.0) 15.2 (6.2)
Spielberger trait anger scale (0-40) 15.0 (3.8) 15.0 (3.7)
Spielberger trait anxiety scale (0-40) 15.9 (4.5) 16.0 (4.5)
Neighborhood problems scale (0-28) 10.4 (3.4) 10.5 (3.4)

CVD risk factors
Systolic blood pressure, mmHg 125.6 (19.7) 122.0 (20.2)
Diastolic bood pressure, mmHg 71.3 (10.2) 71.1 (10.1)
LDL cholesterol, mg/dL 135.4 (31.7) 119.7 (27.6)
HDL cholesterol, mg/dL 50.2 (13.9) 52.3 (15.1)
Triglycerides, mg/dL 147.5 (87.7) 120.5 (66.1)
Baseline ASCVD risk, % 10.1 7.6
Diabetes mellitus, % 38.4 23.0
Hypertension, % 51.9 36.2
Waist circumference, cm 99.6 (14.3) 96.9 (14.7)
Smoked <100 cigarettes in lifetime, % 49.6 48.8
Current smoker, % 10.7 12.9
Drinks per week 2.9 (5.9) 3.4 (7.6)
Exercise, MET/min 1471.6 (2187.1) 1509.3 (2187.7)
Family history of CVD, % 58.9 53.5
Calcium score 124.2 (340.7) 72.4 (256.2)
Left ventricular hypertrophy on ECG, % 1.0 0.8
C-reactive protein, mg/dL 4.3 (6.0) 3.5 (5.0)
Interleukin-6, pg/mL 1.5 (1.2) 1.4 (1.2)
Number of pregnancies 3.1 (2.2) 3.0 (2.3)
Years on birth control pills 3.6 (5.8) 3.7 (5.8)
Age at menopause, years 41.1 (17.5) 37.2 (20.4)

Medications
Anti-hypertensive medication, % 61.7 34.7
Insulin or oral hypoglycemics, % 22.7 8.6
Daily aspirin use, % 47.2 25.0
Diuretics, % 21.4 12.5
Any anti-depressants, % 11.7 7.8
Any vasodilator, % 3.8 3.3
Any anti-arrhytmic, % 0.6 0.6
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and total and HDL serum cholesterol levels.

To build a model for the statin-naive risk using g-estimation, we estimated the SNAFTM

parameter ψ̂ for the effect of an instantaneous blip of statin treatment in the full trial

population. The estimated value, exp(−0.28) = 0.76, suggests, on average, removing

treatment from initiators reduces time to ASCVD by 24%. Next, using our estimates ψ̂

we formed statin-naive pseudo-outcomes H(ψ̂) based on the corresponding SNAFTM and

regressed them on our predictors of interest using a Cox proportional hazards model to

create a model for the statin-naive risk (Table 2.2). Table ?? in the appendix also includes

estimates from SNAFTMs that allow for time-varying effect modification by baseline risk

(column 2) and serum LDL cholesterol level (column 3).

We constructed a second model for the statin-naive risk using inverse probability of

censoring weights. To calculate the weights, we estimated two pooled logistic regression

models: one for the probability of remaining untreated given past covariate history (denom-

inator model) and one for probability of remaining untreated given the selected baseline

predictors (numerator model). The mean of the stabilized weights was 1.02. To create

a statin-naive prediction model, we used the estimated weights to fit a weighted pooled

logistic regression model conditional on the baseline predictors of interest. As mentioned

previously, this model approximates a Cox proportional hazards model for sufficiently small

time steps and flexible specification of the baseline hazard (we used restricted cubic splines).

For comparison, we also fit a traditional (factual) prediction model by regressing the

observed failure times on the same set of baseline predictors, but ignoring treatment

initiation over the follow up period. As mentioned previously, this approach targets the

natural course risk rather than the statin-naive risk. Model coefficients, p-values, and

confidence intervals for both factual and counterfactual prediction models are shown in

Table 4. In general, associations between baseline predictors and ASCVD were stronger in

the counterfactual models of the statin-naive risk. This makes sense as most predictors in the

model are risk factors for cardiovascular disease that are also used to determine eligibility

for statins. Therefore, in the absence of statins, we’d expect risk factors associations with
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Figure 2.3: Comparison of predictions using Factual, SNAFTM, and IPCW models.

cardiovascular disease to be stronger as they are no longer partially moderated by statin use.

To determine how the choice of model may affect clinical guidance, in Figure 2.3 we examine

the proportion recommended for treatment under natural course and statin-naive prediction

models at different risk thresholds. At the 7.5% threshold 53% would be eligible for statins

using the statin-naive model compared to 48% using the natural course model, implying for

every 1000 patients screened about 50 who would be eligible under the statin-naive model

would not be recommended statins using traditional methods. At the 10% threshold this

increases to nearly 60 out of every 1000 patients screened.

2.4 Discussion

Treatment initiation over follow up is common in many risk prediction settings, especially

when the time horizon for predictions is long. This causes issues particularly when model

estimates are used to determine eligibility for the very same treatment. We argue that

in this case clinical decision-making is best informed by the treatment-naive risk, i.e. the
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counterfactual risk if no one were treated. However, this risk requires additional untestable

assumptions and appropriate causal inference methods to estimate. In this paper, we

proposed methods for building a model for the treatment-naive risk based on g-estimation

of SNAFTMs and inverse probability of censoring weighting. We also applied the target trial

framework to better clarify the clinical decision that is to be informed by the model and to

guide analytic choices for emulating the trial in observational data. We used these methods

to emulate a trial corresponding to the AHA guidelines on risk-based treatment eligibility

for statins and then develop models for the statin-naive risk. Compared to traditional

approaches which don’t account for treatment initiation, statin-naive models produced

estimates that were systematically higher and suggested that traditional approaches may

lead to underallocation of treatment among those eligible.

Our work builds on a growing literature at the intersection of the “two cultures” of

statistical modeling: prediction and causal inference [5, 6]. While one might be tempted

to prefer a clean separation between the two, like previous approaches, we emphasize that

many important prediction questions can be recast as counterfactual questions, especially

when data are imperfect, clinical settings change, or predictions under hypothetical inter-

ventions are required. In practice, these situations are quite common. However, the strength

of assumptions required may exceed our ability to effectively answer them using the data

assembled.

For example, both the g-estimation and IPCW approaches suggested here to estimate

the counterfactual treatment-naive risk require sequential exchangeability of treatment

intitiation. Only subject matter expertise can inform whether this assumption is plausible

in a given analysis. Therefore, it must be evaluated on a case-by-case basis. In general,

counterfactual prediction will likely require higher quality data than is routinely collected

for prediction including rich data on time-varying predictors of treatment initiation.

An alternative for well studied treatments might be to use treatment effect estimates from

randomized trials. For instance if we had “trusted” estimates of ψ based on a meta-analysis

of RCTs, we could forgo steps 1 and 2 in section 2.2.6 and constuct treatment naive pseudo-
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outcomes under the SNAFTM and then a treatment-naive model could be created using the

pseudo-outcomes. This is similar to the approach taken in [57]. However, this exchanges

one set of untestable assumptions for another, in this case, the assumption that treatment

initiation within the observational study is unconfounded is exchanged for the assumption

that the treatment effects from RCTs are transportable to the observational setting [69, 70]. In

particular, the latter requires that either treatment effects are constant or the distribution of

effect modifiers is the same between populations and all effect modification by time-varying

covariates is properly modeled in the SNAFTM. Attempts to transport results from RCT are

also hampered by the fact that, unless compliance with assigned treatment is 100%, effect

estimates are generally intent to treat and therefore may understate the effect of removing

treatment even whe effects are constant.

In the prediction of the treatment naive risk, the positivity assumption may require more

thoughtful evaluation than traditionally appreciated, as there is often imperfect overlap

between the population used to train the model and the population eligible for treatment.

Furthermore, there may be subsets for whom treatment is always recommended. In some

instances conceptualizing the single-armed target trial of interest may be helpful here.

Througout this paper, our focus has been on estimating the treatment-naive risk specif-

ically, as opposed to other possible counterfactual estimands, and our choice of methods

reflect the desire to make minimal assumptions. Both g-estimation and IPCW require fewer

assumptions than alternatives such as marginal structural models or the g-formula that

model risk under all possible regimes. However, they may be less efficient choices when

the additional assumptions are valid and are less flexible in their ability to target other

estimands of interest. Where possible we have also focused on approaches that are agnostic

to the final prediction algorithm chosen, allowing the analyst to chose the most suitable to

the task from among a proven toolkit of prediction algorithms.

The g-estimation procedure for estimating the parameter of a SNAFTM has a number

of known limitations in the presence of administrative censoring. Because the estimating

function is non-smooth the algorithm may fail to converge or multiple optimal solutions
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may be possible. This is most likely to occur when the number of observed failure times

is low and the blip function γ(t, At, Xt; ψ) is complex. Alternatives such as structural

nested cumulative failure time models (SNCFTM) [71] and structural nested cumulative

survival time models (SNCSTM) [72] have been suggested previously. Under certain

parameterizations of the blip function they could still be used to generate pseudo-outcomes

for use in the approach described here.

We have taken for granted that treatment decisions should be informed by risk under

no treatment. However, other rules for allocating treatment are possible such as modeling

the conditional average treatment effect [73–75] and assigning treatment to anyone with

net benefit (i.e. estimated treatment effect minus costs or side effects). Indeed, a major

limitation of a risk-based approach is that once treatment coverage is close to 100%, i.e.

when nearly everyone who becomes eligible initiates treatment immediately, it’s unclear

how to continue to update a treatment-naive model without strong assumptions such as

assuming that effects are stable over time.

Finally, we have ignored other possible uses of prediction modeling such as public health

planning, where a descriptive summary of the risk across different groups is needed and

treatment initiation over follow up is not an issue (in fact it’s desirable to know risk under

the natural course). Ideally, the same models shouldn’t be used to serve dual roles without

proper adjustment.
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Table 2.2: Cox proportional hazards model using observed survival times compared with counterfactual models
(SNAFTM and IPCW).

Factual Counterfactual (SNAFTM) Counterfactual (IPCW)

Characteristic HR1 95% CI1 p-value HR1 95% CI1 p-value HR1 95% CI1 p-value

bl_age 1.27 (1.18, 1.37) <0.001 1.28 (1.19, 1.38) <0.001 1.20 (1.11, 1.30) <0.001
gender 1.64 (1.27, 2.13) <0.001 1.66 (1.28, 2.15) <0.001 1.59 (1.21, 2.11) 0.001
bl_cursmk 1.86 (1.41, 2.46) <0.001 1.86 (1.41, 2.46) <0.001 1.62 (1.19, 2.16) 0.002
bl_dm03 1.28 (1.00, 1.63) 0.051 1.32 (1.03, 1.69) 0.026 1.52 (1.17, 1.98) 0.002
bl_sbp 1.25 (1.15, 1.36) <0.001 1.25 (1.15, 1.36) <0.001 1.27 (1.16, 1.39) <0.001
bl_hdl 0.81 (0.73, 0.89) <0.001 0.79 (0.72, 0.87) <0.001 0.75 (0.67, 0.84) <0.001
bl_chol 1.03 (1.00, 1.06) 0.034 1.05 (1.02, 1.08) <0.001 1.09 (1.06, 1.13) <0.001
bl_htnmed 1.35 (1.04, 1.74) 0.025 1.47 (1.13, 1.90) 0.004 1.57 (1.16, 2.11) 0.003
bl_sbp * bl_htnmed 0.83 (0.75, 0.93) 0.002 0.83 (0.74, 0.93) 0.001 0.88 (0.78, 0.99) 0.039

1HR = Hazard Ratio, CI = Confidence Interval
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Chapter 3

Validating counterfactual predictions1

Counterfactual prediction methods may be required when treatment policies differ between

model training and deployment settings or when the prediction target is explicity coun-

terfactual. However, validating counterfactual predictions is challenging as typically one

does not observe the full set of potential outcomes for all individuals. We consider methods

for validating a prediction model under counterfactual shifts in treatment policy. We dis-

cuss how to tailor a model for use in the same population under a counterfactual shift in

treatment, how to assess its performance, and how to perform model and tuning parameter

selection. We also provide identifiability results for measures of counterfactual performance

for a potentially misspecified prediction model based on training and test data from the

(factual) source population only. We illustrate the methods using simulation and apply

them to the task of developing a statin-naive risk prediction model for cardiovascular disease.

3.1 Introduction

Prediction models are often deployed in settings that are different from those in which they

are trained. One of the ways settings may differ is that the natural course of treatment after

1Co-authored with James Robins, Andrew Beam, and Goodarz Danaei
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baseline may vary, particularly for models with a longer time horizon [11]. For example, a

prediction model fit in a population where 5% are treated over the follow up period may not

produce valid predictions in one where 50% are treated and vice versa. Even when models

are deployed in the same population, treatment policies may change over time, affecting

who is likely to be treated and leading to problems of “domain adaption” or “dataset shift”

[9, 55]. These differences between the training and deployment environments can cause the

performance of models to degrade, particularly when, as is often the case, model predictors

are themselves correlated with, or direct determinants of, treatment [36].

Ideally, when faced with such a change in the treatment environment one would simply

re-train the model. However, collecting the necessary data in the new setting may be

inordinately expensive or time consuming. Absent sufficient resources or as a stop gap, one

might consider tailoring the original model to target the expected outcome that would be

observed were treatment administered to everyone as in the deployment setting but using

only training data. Alternatively, one might simply wish to estimate how poorly the existing

model is likely to perform in the deployment setting, to determine whether data collection

efforts are worthwhile. In either case, the implicit inquiries are counterfactual.

Beyond accounting for descrepancies between training and deployment, there are also

instances in which the target prediction estimand is explicitly counterfactual. For instance, a

model may be used to inform clinical decisions about whether to initiate treatment or to

compare outcomes under alternative treatment strategies [16, 76, 77]. This could involve risk-

based rules for treatment adoption or the transportation or direct estimation of treatment

effects. In some circumstances, models may be built and evaluated without explicit appeal

to counterfactuals, such as when effects are modeled in a randomized trial and used in

the same population. However, as often is the case, when training data are obtained in an

observational setting where treatment initiation over follow up is not strictly controlled by

the investigator, the predictions most relevant to decision-making are counterfactual [15, 77].

In both instances, we need methods for tailoring models to target counterfactual queries,

even when data on the full set of potential outcomes is not available. We also need perfor-
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mance metrics that agnostically evaluate model performance in these new environments

independent of whether the prediction model itself is correctly specified. In this paper, we

examine the conditions under which tailoring a prediction model to counterfactual outcomes

is possible using training data alone. Under similar conditions, we also show that the coun-

terfactual performance of the model may be estimated independently from the method used

to fit the model and may be evaluated even if the model is misspecified or does not target

the counterfactual estimand directly. This is a key result as it implies the counterfactual

performance of a model can be identified and estimated even for models that are “wrong”.

Absent better data or in the meantime while such data are being collected, performance

metrics may therefore be used to differentiate between better and worse-performing models

or to quantify how badly a model is likely to perform in a hypothetical environment.

3.2 Set up and notation

Let Y be the outcome of interest, X a baseline covariate vector, and A an indicator of

treatment over the follow up period. We assume all are obtained via a simple random

sample from a population {(Xi, Ai, Yi)}n
i=1 in which the initiation of treatment follows it’s

natural course. Covariates in X include possible predictors of the outcome which do not act

as confounders (P), as well as joint determinants of the outcome and treatment which act as

confounders (L). We would like to build a prediction model for Y using covariates X∗ which

are a subset of X, i.e. X∗ ⊂ X, and are chosen on the basis of availability and prediction

potential rather than necessarily for their causal relationship to the outcome. To fix concepts,

we assume for now A is a point treatment, i.e. that either treatment is always initiated

immediately after baseline or there is no effect of duration of treatment on the outcome.

However, we extend this to the case that treaments are time-varying in the appendix. We

also assume for now that there is no loss to follow up. An example directed acyclic graph

for this process is shown in Figure 3.1.

The data are randomly split into a training set and a test set with n = ntrain + ntest.

Let Dtrain and Dtest be indicators of whether an observation is in the training set or test
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Figure 3.1: Example directed acyclic graph for prediction in a setting with a single time fixed treatment A
over follow up.

set respectively. As is customary, we use the training set to build a prediction model for

the expected outcome conditional on covariates E[Y|X∗] and the test set to evaluate model

performance. Let µβ(X∗) be a parametric model indexed by parameter β and µβ̂(X∗) be the

“fitted” model using parameter estimates β̂. We allow for the possibility that model µβ(X∗)

is misspecified. For a particular estimand such as E[Y|X∗], a model is correctly specified if

there exists β0 ∈ B, where B is the parameter space of β, such that µβ0(X∗) = E[Y|X∗] and

the model is misspecified if no such β0 exists. In several places, we use f (·) generically to

denote a density.

To define counterfactual estimands of interest, let Ya be the potential outcome under

an intervention which sets treatment A to a. To keep our notation simple, here we limit

our focus to so-called static and deterministic interventions, in which the potential outcome

desired is the outcome under a fixed value of A, but extend to random and dynamic regimes,

such as those mentioned in the introduction, in the appendix.

3.3 Training and performance targets

Our goal is to make and assess predictions in a counterfactual version of the source

population in which treatment policies differ, for instance if no one in source population
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took treatment, if everyone did, or if specific guidelines changed. To make predictions,

we posit a parametric model µβ(X∗) for the expected potential outcome conditional on

covariates E[Ya|X∗], which we wish to estimate from the training dataset. The model may be

tailored to the counterfactual outcome Ya, in the sense that it was trained to target E[Ya|X∗]

directly, or it may be a model for another target such as the expected (factual) outcome

in the source population E[Y|X∗] and we would like to know how it might perform in a

counterfactual setting.

To determine the performance of the model, one generally relates its fitted predictions

µβ̂(X∗) to the observed outcomes Ya using any of a number of metrics from the prediction

literature [1, 21, 78]. However, for counterfactual predictions, this is not as simple as the

potential outcome Ya is not observed for all individuals. Yet, as we will show, under certain

conditions the expected value of the metric may still be identified from the observed data in

the test set. An example target performance metric of interest is

ψ = E[(Ya − µβ̂(X∗))2]

where the squared error loss (Ya −µβ̂(X∗))2 quantifies the discrepancy between the potential

outcome under treatment level A = a and the model prediction µβ̂(X∗) in terms of the

squared difference. In the main text, we focus on the mean squared error as the metric ψ for

assessing performance of the model. However, in the appendix we extend our results to

that case that ψ is any member of a generic class of loss functions L(Ya, µβ̂(X∗)) as well as

common metrics such as model discrimination and risk calibration. Importantly, ψ is always

defined without assuming µβ̂(X∗) is correctly specified.

3.4 Identifiability conditions

We will assume the following identifiability assumptions which have been described in

more detail elsewhere [12, 22, 79].

1. Exchangeability. Ya ⊥⊥ A | X
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2. Consistency. Ya = Y if A = a

3. Positivity. For all x, Pr(A = a | X = x) > 0

The first condition stipulates that treatment initiation over follow up is conditionally

independent of the potential outcome given covariates X. This would be ensured by design

in a randomized trial in which, participants are randomized to treatment or no treatment

conditional covariates X. The second condition implies that observed outcomes among

those with A = a reflect potential outcomes under corresponding level of treatment. It

would be violated if, for instance, there were multiple hidden versions of the therapy

under consideration. Finally, the third positivity condition implies that there is a positive

probability of observed treatment level A = a in all strata of X.

3.5 Tailoring a model for counterfactual predictions

As we show in section C.1.1 of the appendix, under the conditions above the expected

potential outcome conditional on covariates X∗ is identified by the expression

E[Ya | X∗] = E[E[Y | X, A = a, Dtrain = 1] | X∗, Dtrain = 1] (3.1)

or, equivalently

E[Ya | X∗] = E
[

I(A = a)
Pr(A = a | X, Dtrain = 1)

Y | X∗, Dtrain = 1
]

(3.2)

in the training dataset. Both suggest possible targets for tailoring the model for counterfac-

tual predictions using only the training data.

For simplicity, assume for a moment that X = X∗, that is the predictors included in

the model are also those necessary to ensure exchangeability. Note that in this case the

right hand side of equation 3.1 above reduces to E[Y | X, A = a, Dtrain = 1] which suggests

tailoring the model for the counterfactual prediction target E[Ya | X] using the training data

could be accomplished by subsetting to participants with corresponding treatment level

A = a and fitting model µβ(X) for the observed Y conditional X. Such a model will be
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consistent for E[Ya | X] provided it is correctly specified. Generally though there will not

be perfect overlap between the covariates necessary to ensure exchangeability and those

available for prediction. When X∗ is a subset of X, tailoring a model for counterfactual

prediction will require some method of marginalizing over the covariates in X that are not

in X∗, either analytically or using Monte Carlo methods. This will also generally be true for

random and dynamic interventions.

Under the same identifiability conditions, equation 3.2 suggests an alternative approach

to targeting E[Ya | X] using the training data is to fit a weighted model µβ(X∗), using for

instance weighted maximum likelihood, with weights equal to the probability of receiving

treatment level A = a conditional on covariates X necessary to ensure exchangeability,

i.e. W = I(A=a)
Pr(A=a|X,Dtrain=1) . This is the basis for several previously proposed methods for

counterfactual prediction based on inverse probability of treatment weighting [17]. Note

that, unlike the first approach, it is possible to specify a subset of predictors X∗ used

in the prediction model µβ(X∗) as compared to the full set of covariates X required for

exchangeability which are only necessary for defining the weights W. This means tailoring

the model for counterfactual predictions using this approach can be accomplished using

off-the-shelf software.

3.6 Assessing model performance

Using the same conditions, in section C.1.2 of the appendix we show the model performance

metric ψ is identifiable using data from the test set through the expression

ψ = E
[

E[(Y − µβ̂(X∗))2 | X, A = a, Dtest = 1] | Dtest = 1
]

(3.3)

or, equivalently using an inverse probability weighted expression

ψ = E
[

I(A = a)
Pr(A = a | X, Dtest = 1)

(Y − µβ̂(X∗))2 | Dtest = 1
]

(3.4)

regardless of whether the model µβ̂(X∗) has been tailored to target E[Ya | X] or is correctly

specified in general. As previously the two expression suggest two different approaches for
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the estimation of model performance using the test data alone.

First, using the sample analog of expression (3.3), an estimator of the target MSE is

ψ̂CL =
1

ntest

n

∑
i=1

I(Dtest,i = 1)ĥa(Xi) (3.5)

where ĥa(X) is an estimator for the conditional loss E[(Y − µβ̂(X∗))2 | X, A = a, Dtest = 1].

To keep notation simple, we supress the dependency of ĥa(X) on µβ̂. When the dimension

of X is small it may be possible to use the sample analog of ĥa(X) as an estimator as well.

In practice, though, some form of modeling will often be required. In this case, ψ̂CL is a

consistent estimator for ψ as long as ĥa(X) is correctly specified.

Next, using the sample analog of expression (3.4), an alternative weight-based estimator

of the target MSE is

ψ̂IPW =
1

ntest

n

∑
i=1

I(Ai = a, Dtest,i = 1)
êa(Xi)

(Yi − µβ̂(X∗
i ))

2 (3.6)

where êa(X) is an estimator of the probability of receiving treatment level A = a conditional

on X, i.e. Pr(A = a | X, Dtest = 1). Again, when the dimension of X is small it may be

possible to use the sample analog of êa(X) as an estimator, but in practice, it will have to be

modeled. The weighting estimator ψ̂IPW is a consistent estimator of ψ as long as êa(X) is

correctly specified.

The conditional loss estimator (3.5) relies on correctly specifying the model for the

conditional loss and the weighting estimator (3.6) relies on correctly specifying the model

for the probability of treatment. In some settings, one estimator may be preferred over the

other when more is known about one process, such as when the algorithm for administering

treatment is clearly defined. In practice though, both may be difficult to specify correctly.

Using data-adaptive and more flexible machine learning estimators for estimation of these

nuisance models offers the possibility of capturing arbitrarily complex data generation

processes. However, these estimators generally have slower rates of convergence than the
√

n rates of parametric models and therefore will not yield asymptotically valid confidence

intervals [38]. An alternative is to use a doubly-robust estimator which combines models
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for ĥa(X) and êa(X), such as

ψ̂DR =
1

ntest

n

∑
i=1

I(Dtest,i = 1)
[

ĥa(Xi) +
I(Ai = a)

êa(Xi)

{
(Y − µβ̂(X∗

i ))
2 − ĥa(Xi)

}]
(3.7)

As we show in the Appendix, under mild regularity conditions [80], this estimator will

be consistent if one of ĥa(X) and êa(X) is correctly specified. They also permit the use of

machine learning or data-adaptive estimators that are not
√

n-covergent allowing for more

flexible estimation of the nuisance functions. This is due to the fact that the empirical process

terms governing the convergence of ψ̂DR involve a product of the errors for ĥa(X) and êa(X)

which converge under the weaker condition that only the combined rate of convergence for

both nuisance functions is at least
√

n.

3.7 Model and tuning parameter selection

To this point, we have assumed that µβ(X∗) is a pre-specified parametric model and ignored

any form of model selection (e.g. variable or other specification search) or data-adaptive

tuning parameter selection. However, in reality analysts often select between multiple

models or perform a data-adaptive search through a parameter space for tuning parameter

selection when developing a prediction model [1]. When done rigorously, analysts typically

use methods such as cross-validation or the bootstrap to perform selection. These techniques

rely on optimizing some measure of model performance, such as the MSE.

When performing model or tuning parameter selection for counterfactual prediction,

the results from the previous sections suggest that the model performance measure should

be targeted to the counterfactual performance in a population in which the hypothetical

intervention were universally applied. For example, when using cross-validation for model

selection the analyst splits the data into K mutually exclusive “folds” and estimates the

candidate models using K − 1 of the folds and estimates the performance of each in the

held out fold. This process is repeated K times where each fold is left out once. The final

estimate of performance is the average of the K estimates and the model with best overall

performance is selected (or, alternatively, the tuning parameter with the best performance).
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When targeting counterfactual predictions, at each stage in the procedure the analyst should

use modified performance measures such as those in section 3.6 above. Failure to do so, can

lead to sub-optimal selection with respect to the counterfactual prediction of interest.

3.8 Simulation

In this section we perform two simulation experiments to illustrate (i) the benefits of tailoring

models to the correct counterfactual estimand of interest, (ii) the potential for bias when

using naive estimators of model performance such as the MSE, (iii) the importance of correct

specification of the nuisance models when estimating counterfactual performance, and

(iv) the properties of the doubly-robust estimator under misspecification of the nuisance

models. We adapt data generation processes previously used for transporting models

between settings under covariate shift [10, 81].

3.8.1 Experiment 1

We simulated treatment initiation over the follow up period based on the logistic model

Pr(A = 1 | X) = expit(1.5− 0.3X), where predictors X are drawn from X ∼ Uniform (0, 10).

Under this model, about 50% initiate treatment over follow up but those with higher values

of X are less likely to start treatment than those with lower values of X. We then simulated

the outcome using the linear model Y = 1+ X + 0.5X2 − 3A + ε, where ε ∼ N (0, X). We set

the total sample size to 1000 and the data were randomly split in a 1:1 ratio into a training

and a test set. The full process may be written:

X ∼ Unif(0, 10)

A ∼ Bernoulli{expit(−1.5 + 0.3 · X)}

Y ∼ Normal(1 + X + 0.5X2 − 3A, X)

Our goal was to estimate a model in a counterfactual population in which no one

initiated treatment over follow up, i.e. we targeted E[Ya=0 | X]. Under this data generating
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mechanism, the MSE under no treatment is larger than the MSE under the natural course

and identifiability conditions 1-3 are satisfied. We considered two specifications of prediction

models µβ(X∗):

1. a correctly specified linear regression model that included the main effects of X and

X2, i.e. µβ(X∗) = β0 + β1X + β2X2.

2. a misspecified linear regression model that only included the main effect of X, i.e.

µβ(X∗) = β0 + β1X.

For each specification, we also considered two estimation strategies: one using ordinary least

squares regression (OLS) and ignoring treatment initiation and the other using weighted

least squares regression (WLS) where the weights were equal to the inverse of the probability

of being untreated. As discussed above the latter specifically targets the counterfactual

estimand under no treatment. Finally, we considered two approaches for estimating the

performance of the models in the test set: a naive estimate of the MSE using observed

outcome values, i.e.

ψ̂Naive =
1

ntest

n

∑
i=1

I(Dtest,i = 1)(Yi − µβ̂(X∗))2,

and the inverse-probability weighted estimator ψ̂IPW from section 3.6. For the latter, we

fit a correctly specified logistic regression model for ea(X), i.e. ea(X) = expit(α0 + α1X),

in the test set to estimate the weights. Lastly, we also calculated the true counterfactual

MSE if we had access to the potential outcomes Ya=0 by generating test data under same

process as above but forcing A = 0 for everyone and then estimating counterfactual MSE

and averaging across simulations.

Table 1 shows the results of the experiment based on 10,000 monte carlo simulations. In

general, correctly specified models yielded smaller average MSE than misspecified models.

Comparing the performance of OLS and WLS estimation, when using ψ̂Naive, the naive

estimator of the MSE, OLS seemed to produce better predictions than WLS when correctly

specified (average MSE of 2.9 vs. 5.5) as well as when misspecified (average MSE of 16.8 vs.
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Model µβ(X) ψ̂Naive ψ̂IPW Truth

Correct
OLS 2.9 3.6 3.6
WLS 5.5 1.0 1.0

Misspecified
OLS 16.8 17.5 17.5
WLS 19.5 15.0 15.0

Correct and misspecified refers to the specifi-
cation of the prediction model µβ(X). OLS =
model estimation using ordinary least squares
regression (unweighted); WLS = model esti-
mation using weighted least squares regres-
sion with weights equal to the inverse prob-
ability of being untreated. Results were aver-
aged over 10,000 simulations. The true coun-
terfactual MSE was obtained using numerical
methods.

19.5). In contrast, when using ψ̂IPW , the inverse-probability weighted estimate of the MSE,

WLS performed better than OLS both when the model was correctly specified (average MSE

of 1.0 vs. 3.6) and when misspecified (average MSE of 15.0 vs. 17.5). For reference, in the

last column we show the true counterfactual MSE that would be obtained if one had access

to the potential outcomes (obtained via numerical methods). We find that the average of

the inverse probability weighted estimator across the simulations was equivalent to this

quantity for all specifications and for both OLS and WLS estimation. This suggests that only

the modified estimators of model performance in section 3.6 are able to accurately estimate

the counterfactual performance of the model. Indeed, under this data generation process, if

one were to use the naive estimator one might erroneously conclude that the OLS model is

the better choice.

3.8.2 Experiment 2

In the previous experiment we assumed the nuisance models for the MSE were correctly

specified. Here we consider estimation of the MSE in the more likely case that nuisance

models are misspecified. This time, we simulated treatment initation over follow up A
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based on the logistic model Pr[A = 1 | X] = expit
(
−0.3 + 0.2 ∑3

i=1 X(i) + 0.3 ∑3
i=1

(
X(i)

)2
)

,

where X is now a vector of predictors drawn from a 10-dimensional mean zero multivariate

normal and X(i) is the ith component of the vector X. This resulted in expected treatment

initiation over follow up of 61%. We also simulated a binary outcome from a Bernoulli

distribution with mean expit
(
−0.3 + 0.2 ∑3

i=1 X(i) + 0.3 ∑3
i=1

(
X(i)

)2
− 0.5A

)
. Again, we

set the total sample size to 1000, but this time we randomly split the data in a 2:1 ratio into

a training and a test set.

X ∼ MVN(0, Σ)

A ∼ Bernoulli

{
expit

(
−0.3 + 0.2

3

∑
i=1

X(i) + 0.3
3

∑
i=1

X2
(i)

)}

Y ∼ Bernoulli

{
expit

(
−0.3 + 0.2

3

∑
i=1

X(i) + 0.3
3

∑
i=1

X2
(i) − 0.5A

)}

Our prediction model was a main effects logistic regression model fit in the training

data, i.e. µ (X∗) = expit(β0 + ∑10
i=1 βiX(i)). This model was misspecified with respect to

the true generation process. As previously, we assessed the counterfactual performance

of the model in an untreated population using the MSE, which for a binary outcome is

equivalent to the Brier score [82]. In general, positing a parametric model for h0(X) =

E[(Y − g (X∗))2 | X, A = 0] may be difficult as the outcome is the squared difference.

However, for binary outcomes, by expanding the square we can show it is enough to

estimate Pr[Y = 1 | X, A = 0], which is what we did in practice. To determine the effect

of the specification of nuisance models ea(X) and ha(X) on performance estimates, we

compared four MSE estimators (ψNaive, ψIPW , ψCL, and ψDR) using different combinations

of correctly specified and misspecified models for ea(X) and ha(X):

1. Correct ea(X) - main effects logistic regression model with linear and quadratic terms,

i.e. ea(X) = expit(α0 + ∑10
i=1 α1,iX(i) + ∑10

i=1 α2,iX2
(i)).

2. Misspecified ea(X) - main effects logistic regression model with linear terms only

terms, i.e. ea(X) = expit(α0 + ∑10
i=1 α1,iX(i)).
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Estimator ψ̂ Mean Bias (×102) Bias (%)

Naive 0.244 0.603 2.5
Correct

CL 0.238 0.058 0.2
IPW 0.238 0.095 0.4
DR 0.238 0.045 0.2

ea(X) misspecified
CL 0.238 0.058 0.2
IPW 0.245 0.770 3.2
DR 0.238 0.059 0.2

ha(X) misspecified
CL 0.246 0.867 3.6
IPW 0.238 0.095 0.4
DR 0.238 0.076 0.3

both misspecified
CL, gam 0.240 0.227 1.0
IPW, gam 0.240 0.275 1.2
DR, gam 0.238 0.095 0.4

Truth 0.238 0.000 0.0

Correct and misspecified refers to the specification
of the nuisance models (ea(X) or ha(X)) for the MSE.
Results were averaged over 10,000 simulations.

3. Correct ha(X) - main effects logistic regression model with linear and quadratic terms,

i.e. ha(X) = expit(γ0 + ∑10
i=1 γ1,iX(i) + ∑10

i=1 γ2,iX2
(i)).

4. Misspecified ha(X) - main effects logistic regression model with linear terms only

terms, i.e. ha(X) = expit(γ0 + ∑10
i=1 γ1,iX(i)).

Finally, we also considered using more flexible estimation techniques for nuisance terms

ea(X) and ha(X). Specifically, we fit generalized additive models for both using the mgcv

package in R entering all covariates as splines using the default options in the gam function.

Table 2 shows the results. As in the previous experiment, the naive empirical estimator

of the MSE was biased relative to the true counterfactual MSE with a relative bias of

2.5%. When all models were correctly specified, the weighting, conditional loss, and

doubly robust estimators were all unbiased (relative bias between 0.2% to 0.4%). When

ea(X) was misspecified, the weighting estimator was biased (relative bias of 3.2%) but the

conditional loss and doubly robust estimator were unbiased (relative bias of 0.2%). Under

misspecification of ha(X) (relative bias of 3.6%), the conditional loss estimator was biased,

but the weighting estimator and the doubly robust estimator were unbiased (relative bias
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of 0.4% and 0.3%). When both models ea(X) and ha(X) were misspecified all estimators,

including the doubly robust estimator, were biased. Finally, when a generalized additive

model was used to estimate both ea(X) and ha(X), only the doubly robust estimator was

approximately unbiased (relative bias of 0.4%). Across all scenarios, the weighting estimator

generally had the largest standard errors and widest confidence intervals and the conditional

loss estimator had the smallest standard errors and the shortest confidence intervals.

3.9 Application to prediction of statin-naive risk

Here we apply our proposed methods to evaluate the counterfactual performance of two

prediction models targeting the statin-naive risk of cardiovascular disease: one that was

explicitly tailored for the counterfactual estimand of interest and a second that was not.

3.9.1 Study design and data

The Multi-Ethnic Study on Atherosclerosis (MESA) study is a population-based sample

of 6,814 men and women aged 45 to 84 drawn from six communities (Baltimore; Chicago;

Forsyth County, North Carolina; Los Angeles; New York; and St. Paul, Minnesota) in the

United States between 2000 and 2002. The sampling procedure, design, and methods of the

study have been described previously [68]. Study teams conducted five examination visits

between 2000 and 2011 in 18 to 24 month intervals focused on the prevalence, correlates, and

progression of subclinical cardiovascular disease. These examinations included assessments

of lipid-lowering (primarily statins) medication use as well as cardiovascular risk factors

such as systolic blood pressure, serum cholesterol, cigarette smoking, height, weight, and

diabetes.

In a previous analysis, we used MESA data to emulate a statin trial and benchmarked

our results against those from published randomized trials. To construct a model of the

statin-naive risk, we then emulated a single arm trial in which no one started statins over a

10-year follow up period. To determine trial eligibility, we followed the AHA guidelines [3]

on statin use which stipulate that patients aged 40 to 75 with serum LDL cholesterol levels
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between 70 mg/dL and 190 mg/dL and no history of cardiovascular disease should initiate

statins if their (statin-free) risk exceeds 7.5%. Therefore, we considered MESA participants

who completed the baseline examination, had no previous history of statin use, no history

of cardiovascular disease, and who met the criteria described in the guidelines (excluding

the risk threshold) as eligible to participate in the trial. The primary endpoint was time to

atherosclerotic cardiovascular disease (ASCVD), defined as nonfatal myocardial infarction,

coronary heart disease death, or ischemic stroke.

Follow up began at the second examination cycle to enable a “wash out” period for statin

use and to ensure adequate pre-treatment covariates to control confouding. In the original

analysis, we constructed a sequence of nested trials, however here for simplicity we limited

our attention to the first trial. We used the questionnaire in examinations three through

five to determine statin initiation over the follow up period. Because the exact timing of

statin initiation was not known with precision, we estimated it by drawing a random month

between the current and previous examinations.

Of the 6,814 MESA participants who completed the baseline examination, 4,149 met

the eligibility criteria for our trial emulation. There were 288 ASCVD events and 190

non-ASCVD deaths. For the sake of clarity, here we dropped those lost to follow up and

ignored competing risks although in practice both can be accommodated in our framework

for evaluting the performance of a counterfactual prediction model. For model training and

evaluation we further split the dataset into training and test sets of equal size.

3.9.2 Model estimation and performance

We compared two prediction models: one that was explicitly tailored to the statin-naive

risk and a second that was not. Both models used the same specification with baseline

predictors commonly used in cardiovascular risk prediction: age, sex, smoking status,

diabetes history, systolic blood pressure, anti-hypertensive medication use and total and

HDL serum cholesterol levels. In the main text, to be consistent with our initial set up we

assume the effect of statins is independent of duration and therefore may be viewed as a

73



time-fixed intervention. Both trial evidence and subject matter knowledge suggest this is

implausible, and we consider time-varying effects in the appendix.

We tailored the first model for the statin-naive risk using inverse probability of censoring

weights. In the emulated single arm trial, statin initiation can be viewed as “non-adherence”

which can be adjusted for by inverse probability weighting, therefore we censored par-

ticipants when they initiated statins. To calculate the weights, we estimated two logistic

regression models: one for the probability of remaining untreated given past covariate

history (denominator model) and one for probability of remaining untreated given the

selected baseline predictors (numerator model). The list of covariates in the weight models

are given in the appendix. To create a prediction model for the statin-naive risk, we used

the estimated weights to fit a weighted logistic regression model conditional on the baseline

predictors of interest.

For comparison, we fit a second traditional (factual) prediction model by regressing

the observed ASCVD event indicator on the same set of baseline predictors, but ignoring

treatment initiation over the follow up period. This approach targets the natural course risk

rather than the statin-naive risk. We fit the model using standard logistic regression based

on maximum likelihood.

To assess the performance of the models, we estimated the naive and counterfactual

MSE in the test set. For the latter we used the conditional loss, inverse probability weighting,

and doubly robust estimators of the MSE. Models for the initiation of treatment ea(X) and

for the conditional loss ha(X) were implemented as main effects logistic regression models.

As in the simulation example, to estimate the conditional loss it is sufficient to model

Pr[Y = 1 | X, A = 0] alone. To quantify uncertainty, we used the non-parametric bootstrap

with 1000 bootstrap replicates.

3.9.3 Results

Table 3 shows estimates of the MSE and the associated standard errors in a hypothetical

statin-naive population for both prediction models using the naive empirical, conditional
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Table 3.1: Estimated MSE in a statin-naive population for two prediction models using emulated trial data
from MESA.

Model µβ(X) ψ̂Naive ψ̂CL ψ̂IPW ψ̂DR

Logistic 0.066 0.091 0.111 0.095
(0.003) (0.006) (0.012) (0.007)

Weighted Logistic 0.070 0.090 0.102 0.091
(0.003) (0.004) (0.008) (0.005)

The first column refers to the posited prediction model:
the first model is an (unweighted) logistic regression
model and the second is a logistic regression model
with inverse probability weights for remaining statin-
free. ψ̂Naive is the empirical estimator of the MSE using
factual outcomes, ψ̂CL is the conditional loss estimator,
ψ̂IPW is the inverse probability weighting estimator,
ψ̂DR is the doubly-robust estimator. Standard error
estimates are shown in parentheses obtained via 1000
bootstrap replicates.

loss, weighting, and doubly robust estimators. The conditional loss, weighting, and doubly

robust estimators of the MSE yielded estimates that were substantially (30-50%) greater

than those of the naive empirical estimator, suggesting performance of both models in

statin-naive population is worse than in the source population. Of the three estimators of

the statin-naive MSE, the weighting estimator had greater standard errors than the doubly

robust estimator (by 50-70%) as well as the conditional loss estimator (by 100%). Consistent

with the first simulation experiment, the inverse probability weighted logistic model, which

was tailored to target the statin-naive risk, performed worse in the source population, but

had lower MSE in the counterfactual statin-naive population.

3.10 Discussion

Many practical problems in prediction modeling involve counterfactuals, such as when

treatment varies between training and deployment or when predictions are meant to inform

treatment initiation. Here, we considered cases where predictions under hypothetical

interventions were desired but only training data from observational sources were available.
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We described how to tailor models to target counterfactual estimands and the identification

conditions necessary to unbiasedly estimate them. Separately, we also discussed how to

adjust common measures of model performance to estimate the counterfactual performance

of the model under the same hypothetical interventions. Importantly, our performance

results were valid even when the prediction model is misspecified. A key insight was that for

counterfactual prediction standard performance measures will be biased, but performance

could be assessed independently from the method used to tailor the model. For loss-based

metrics of performance, we proposed three estimators based on modeling the conditional

loss, the probability of treatment, and a doubly robust estimator that can be used with

data-adaptive estimators of either nuisance function.

In this paper, we have focused on measures of performance under a particular treatment

regime. However, prediction models may instead target the estimation treatment effects,

i.e. the comparison between treatment regimes. In some cases, effects may be easier to

communicate to end users or may be desirable to evaluate benefits versus harms of treatment

initiation [53]. Several authors have proposed model performance metrics which are similar

to our own [83–87].

Throughout, we did not assume that the covariates needed to satisfy the exchangeability

assumption were the same covariates used in the prediction model. This is important as,

in practice, predictors are often chosen subject to clinical contraints in the data available to

end users rather than what would be optimal from a causal perspective [1]. However, we

did assume that a sufficient set of covariates could be identified at the time of training to

ensure exchanageability. Alternative identification conditions are beyond the scope of this

study, but it is possible that counterfactual performance metrics could also be identified, for

instance, if an instrumental variable [88] were available or under a more general proximal

inference framework [89]. It’s also possible to develop sensitivity analyses for exploring

how violations of this assumption might affect model performance estimates [67].

In this work, we have also implicitly assumed that the distribution of predictors are

the same in the training and deployment setting. However, in many cases the covariate
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distributions are likely to differ [90, 91]. Like differences in treatment initiation, this may

cause the performance of the prediction model to degrade, particularly when the model is

misspecified. Methods for transporting prediction models from source to target populations

which mirror our own have previously been proposed [10, 81, 92, 93]. In future work,

it’s possible that our results could be integrated with those to allow for both sources of

difference between training and deployment.
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Appendix A

Appendix to Chapter 1

A.1 Identification results

A.1.1 End of follow up outcome

Here we apply the proofs in Robins [22] to our conditional g-formula estimator for any

deterministic regime g. Assume the data structure outlined in section 1.2 and the following

conditions hold:

1. Exchangeability: Yg
K+1 ⊥⊥ Ak | Lk, Pk, Ak−1

2. Consistency: YK+1 = Yg
K+1, Lk = Lg

k , and Pk = Pg
k if Ak = ag

k

3. Positivity: Pr(Ak = ak | Lk = lk, Pk = pk, Ak−1 = ak−1) > 0

By the rules of probability

Pr(Yg
K+1 = 1 | Lk, Pk, Ak) =

∑
lk+1

∑
pk+1

Pr(Yg
k+1 = 1 | Lk, Ak, Pk, Lk+1 = lk+1, Pk+1 = pk+1)×

f (lk+1 | Lk, Pk, Ak)× f (pk+1 | lk+1, Lk, Pk, Ak)
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By exchangeability condition (1)

Pr(Yg
K+1 = 1 | Lk, Pk, Ak) =

∑
lk+1

∑
pk+1

Pr(Yg
k+1 = 1 | Lk, Ak, Pk, Lk+1 = lk+1, Pk+1 = pk+1, Ak+1 = ag

k+1)×

f (lk+1 | Lk, Pk, Ak)× f (pk+1 | lk+1, Lk, Pk, Ak)

Arguing recursively from k to K for the complete regime g(ak) = ag
k

Pr(Yg
K+1 = 1 | Lk, Pk, Ak) =

∑
lk

∑
p

k

∑
ak

Pr(Yg
k+1 = 1 | Lk, Pk, Ak, Lk = lk, Pk = p

k
, Ak = ag

k )×

K

∏
j=k

{
f (lj | l j−1, pj−1, ag

j−1)× f (pj | l j, pj−1, ag
j−1)

}
By consistency (2) and positivity (3)

Pr(Yg
K+1 = 1 | Lk, Pk, Ak) =

∑
lk

∑
p

k

∑
ak

Pr(Yk+1 = 1 | Lk, Pk, Ak, Lk = lk, Pk = p
k
, Ak = ag

k )×

K

∏
j=k

{
f (lj | l j−1, pj−1, ag

j−1)× f (pj | l j, pj−1, ag
j−1)

}
For random and dynamic regimes g, following the arguments in Young et al. [30] and

Lemma 4.2 of Robins [22], we can show that the generalized g-formula expression in 1.3

is a particular weighted average of the g-formula for a deterministic regime for the set of

all deterministic regimes that satisfy positivity when f obs(aj | l j, pj, aj−1) is replaced with

f g(aj | l j, pj, aj−1) and only depend on past covariate history.

For continuous outcomes, the conditional g-formula estimator for an end of follow up
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outcome is given by

E(Yg
K+1 | Lk = lk, Pk = pk, Ak = ak) =

∑
lk

∑
p

k

E(Yk+1 | Lk, Pk, Ak, Lk = lk, Pk = p
k
, Ak = ag

k )×

K

∏
j=k

{
f (lj | l j−1, pj−1, ag

j−1)× f (pj | l j, pj−1, aj−1)

}

noting that when YK+1 is binary E(YK+1 | Xk = xk) = Pr(YK+1 = 1 | Xk = xk).

A.1.2 Survival outcome

For survival outcomes, we introduce the possibility that subjects are lost to follow up and

the possibility of competing events. In section, 1.2.5 we distinguished between estimands

involving elimination of competing events and those that do not. We start by identifying

estimands with elimination of competing events. The modified eligibility criteria are:

1. Exchangeability:

Yg,c=0,d=0
k+1 ⊥⊥ (Ak, Ck+1, Dk+1) | Lk, Pk, Ak−1, Yk = Ck = Dk = 0

2. Consistency:

Yk+1 = Yg,c=0,d=0
k+1 , Lk+1 = Lg,c=0,d=0

k+1 , and Pk+1 = Pg,c=0,d=0
k+1

if Ak = ag
k , Dk = 0, and Ck = 0

3. Positivity:

Pr(Ak = ag
k , Ck+1 = 0 | Lk = lk, Pk = pk, Ak−1 = ag

k−1, Yk = Ck = Dk = 0) > 0
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For simplicity of exposition let Yg,c=0,d=0 = Yg∗By definition for a survival outcome Yg,c=0,d=0
K+1

we have

Pr(Yg∗
K+1 = 1 | Lk, Pk, Ak) =

K

∑
k=k

Pr(Yg∗

k+1 = 1 | Lk, Pk, Ak, Yg∗

k = 0)×
K

∏
j=k

Pr(Yg∗

j = 0 | Lk, Pk, Ak, Yg∗

j−1 = 0)

By the rules of probability

Pr(Yg∗
K+1 = 1 | Lk, Pk, Ak) =

∑
lk+1

∑
pk+1

K

∑
k=k

Pr(Yg∗

k+1 = 1 | Lk, Pk, Ak, Lk+1 = lk+1, Pk+1 = pk+1, Yg∗

k = 0)×

K

∏
j=k

Pr(Yg∗

j = 0 | Lk, Pk, Ak, Lk+1 = lk+1, Pk+1 = pk+1, Yg∗

j−1 = 0)×

f (lk+1 | Lk, Pk, Ak, Yg∗

k = 0)× f (pk+1 | lk+1, Lk, Pk, Ak, Yg∗

k = 0)

By exchangeability condition (1)

Pr(Yg∗
K+1 = 1 | Lk, Pk, Ak) =

∑
lk+1

∑
pk+1

K

∑
k=k

Pr(Yg∗

k+1 = 1 | Lk, Pk, Ak, lk+1, pk+1, ag∗

k+1, Yg∗

k = Dk+1 = Ck+1 = 0)×

K

∏
j=k

Pr(Yg∗

j = 0 | Lk, Pk, Ak, lk+1, pk+1, ag∗

k+1, Yg∗

j−1 = 0)×

f (lk+1 | Lk, Pk, Ak, Yg∗

k = 0)× f (pk+1 | lk+1, Lk, Pk, Ak, Yg∗

k = 0)

Arguing recursively from k to K for the complete regime g(ak) = ag
k

Pr(Yg∗
K+1 = 1 | Lk, Pk, Ak) =

∑
lk

∑
p

k

∑
ak

K

∑
k=k

Pr(Yg∗

k+1 = 1 | Lk, Pk, Ak, Lk = lk, Pk = p
k
, Ak = ag

k , Yg∗

k = Ck = Dk = 0)×

K

∏
j=k

{
Pr(Yg∗

j = 0 | Lj−1 = l j−1, Pj−1 = pj−1, Aj−1 = ag
j−1, Yg∗

j−1 = Dj = Cj = 0)×

f (lj | l j−1, pj−1, ag
j−1, Yg∗

j = Dj = Cj = 0)× f (pj | l j, pj, ag
j−1, Yg∗

j = Dj = Cj = 0)
}
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By consistency (2) and positivity (3)

Pr(Yg,c=0,d=0
K+1 = 1 | Lk, Pk, Ak) =

∑
lk

∑
p

k

∑
ak

K

∑
k=k

Pr(Yk+1 = 1 | Lk, Pk, Ak, Lk = lk, Pk = p
k
, Ak = ak, Yk = Ck = Dk = 0)×

K

∏
j=k

{
Pr(Yj = 0 | Lj−1 = l j−1, Pj−1 = pj−1, Aj−1 = aj−1, Y j−1 = Dj = Cj = 0)×

f (lj | l j−1, pj−1, ag
j−1, Y j = Dj = Cj = 0)× f (pj | l j, pj−1, aj−1, Y j = Dj = Cj = 0)

}
(A.1)

Applying similar logic we can also derive the estimator for the risk without elimination of

competing events under slightly weaker conditions, i.e.

1. Exchangeability:

Yg,c=0
k+1 ⊥⊥ (Ak, Ck+1) | Lk, Pk, Ak−1, Dk = dk, Yk = Ck = 0

2. Consistency:

Yk+1 = Yg,c=0
k+1 , Dk+1 = Dg,c=0

k+1 , Lk+1 = Lg,c=0
k+1 , and Pk+1 = Pg,c=0

k+1

if Ak = ag
k , and Ck = 0

3. Positivity:

Pr(Ak = ag
k , Ck+1 = 0 | Lk = lk, Pk = pk, Ak−1 = ag

k−1, Dk = dk, Yk = Ck = 0) > 0
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We omit the steps for brevity but the resulting expression is

Pr(Yg,c=0
K+1 = 1 | Lk, Pk, Ak) =

∑
lk

∑
p

k

K

∑
k=k

Pr(Yk+1 = 1 | Lk, Pk, Ak, Lk = lk, Pk = p
k
, Ak = ag

k , Yk = Ck = Dk = 0)×

K

∏
j=k

{
Pr(Yj = 0 | Lj−1 = l j−1, Pj−1 = pj−1, Aj−1 = ag

j−1, Y j−1 = Cj = Dj = 0)×

Pr(Dj+1 = 0 | Lj−1 = l j−1, Pj−1 = pj−1, Aj−1 = ag
j−1, Y j = Cj+1 = Dj = 0)×

f (lj | l j−1, pj−1, ag
j−1, Y j = Dj = Cj = 0)× f (pj | l j, pj−1, aj−1, Y j = Dj = Cj = 0)

}
(A.2)

91



L0 A0 | a0 La0
1 Aa0

1 | a1 Ya0,a1
2

P0 Pa0
1

U

Figure A.1: Example single world intervention graph for end of follow up outcome.
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Figure A.2: Example single world intervention graph for survival outcome with competing event Dk.
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A.2 What if not all covariates are available during counseling?

Often, in clinical prediction tasks, the predictors in Xk are determined by the information

available to the decision-maker rather than what might be optimal from a statistical or

theoretical point-of-view. For instance, certain laboratory values may be cost prohibitive

or may take too long to collect relative to the decision timeline. For factual prediction

tasks, this is not an issue and the covariates in Xk can be determined by the operating

constraints of the decision-maker. However, for counterfactual prediction tasks, during

training Xk must include all Lk sufficient to ensure exchangeability of potential outcomes

with respect to treatments Ak in order to yield unbiased predictions. In practice, this may

necessitate selecting training data where either (1) exchangeability is assured by design,

such as in a randomized controlled trial, or (2) covariate data for Xk is sufficiently rich

to make identification plausible. Once accomplished, the g-formula in the main text can

be modified to produce predictions based on a subset Vk ⊂ Xk of covariates available

to the decision-maker by summing/integrating out the covariates that are not available

V∗
k = Xk − Vk, e.g.

Pr(Yg
K+1 = 1 | Vk = vk) =

∑
v∗k

∑
lk

∑
ak

K

∑
k=k

Pr(Yk+1 = 1 | Vk = vk, V∗
k = v∗k , Ak = ag

k , Lk = lk, Yk = 0)×

K

∏
j=k

{
Pr(Yj = 0 | Aj−1 = ag

j−1, Lj−1 = l j−1, Y j−1 = 0)×

f (lj | ag
j−1, l j−1, Y j = 0)× f g(aj | aj−1, l j, Y j = 0)

}
(A.3)

An alternative approach, as in [16], is to use the g-formula based on Xk to simulate datasets

(Xk, Yg
) under the regime of interest g and then fit a new model on the simulated data

using traditional approaches such as logistic or Cox regression.

A.3 Simulation study results

Below we include additional results not featured in the main text.
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Table A.1: Monte carlo simulation results comparing g-formula and landmark approaches under misspecified
covariate models.

MSE(∆k, k∗) AUC(∆k, k∗)

k∗ g-formula landmark landmark (lags) g-formula landmark landmark (lags)

Scenario 1: Factual prediction
0 0.126 0.126 0.126 0.834 0.834 0.834

(0.007) (0.007) (0.007) (0.013) (0.013) (0.013)
3 0.115 0.117 0.116 0.850 0.851 0.851

(0.006) (0.007) (0.007) (0.012) (0.012) (0.012)
6 0.102 0.104 0.103 0.871 0.870 0.870

(0.006) (0.006) (0.006) (0.012) (0.012) (0.012)

Scenario 2: Competing risk prediction
0 0.111 0.112 0.112 0.838 0.838 0.838

(0.007) (0.007) (0.007) (0.017) (0.017) (0.017)
3 0.107 0.107 0.107 0.854 0.855 0.853

(0.006) (0.007) (0.007) (0.016) (0.016) (0.016)
6 0.099 0.099 0.099 0.870 0.869 0.869

(0.006) (0.006) (0.006) (0.015) (0.015) (0.016)

Scenario 3: Counterfactual prediction
0 0.233 0.543 0.543 0.930 0.906 0.906

(0.012) (0.023) (0.023) (0.007) (0.010) (0.010)
3 0.172 0.418 0.411 0.939 0.932 0.933

(0.010) (0.017) (0.017) (0.006) (0.008) (0.008)
6 0.128 0.227 0.209 0.943 0.943 0.943

(0.008) (0.017) (0.020) (0.006) (0.006) (0.006)

Note:
All results based on 500 Monte Carlo simulations using data generation process described
in section 3. Standard deviations of Monte Carlo estimates are provided in parentheses.
The best performing estimator is shown in bold. All simulations use correctly specified
models. For results under misspecification see the appendix.
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Table A.2: Monte carlo simulation results comparing g-formula and landmark approaches under misspecified
outcome models.

MSE(∆k, k∗) AUC(∆k, k∗)

k∗ g-formula landmark landmark (lags) g-formula landmark landmark (lags)

Scenario 1: Factual prediction
0 0.106 0.115 0.115 0.911 0.911 0.911

(0.006) (0.007) (0.007) (0.010) (0.010) (0.010)
3 0.091 0.100 0.100 0.930 0.930 0.929

(0.005) (0.006) (0.006) (0.008) (0.008) (0.008)
6 0.082 0.088 0.088 0.939 0.938 0.938

(0.005) (0.005) (0.005) (0.008) (0.008) (0.008)

Scenario 2: Competing risk prediction
0 0.102 0.106 0.106 0.929 0.928 0.928

(0.006) (0.007) (0.007) (0.013) (0.013) (0.013)
3 0.096 0.098 0.099 0.947 0.947 0.946

(0.006) (0.006) (0.006) (0.012) (0.012) (0.012)
6 0.088 0.091 0.091 0.948 0.948 0.946

(0.005) (0.006) (0.006) (0.011) (0.011) (0.011)

Scenario 3: Counterfactual prediction
0 0.148 0.257 0.257 0.958 0.948 0.948

(0.011) (0.014) (0.014) (0.006) (0.007) (0.007)
3 0.111 0.187 0.185 0.969 0.968 0.967

(0.009) (0.010) (0.010) (0.005) (0.005) (0.005)
6 0.088 0.113 0.129 0.971 0.971 0.971

(0.008) (0.010) (0.014) (0.004) (0.004) (0.004)

Note:
All results based on 500 Monte Carlo simulations using data generation process described
in section 3. Standard deviations of Monte Carlo estimates are provided in parentheses.
The best performing estimator is shown in bold. All simulations use correctly specified
models. For results under misspecification see the appendix.
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Figure A.3: Simulation results - factual prediction MSE
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Figure A.4: Simulation results - factual prediction AUC
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Figure A.5: Simulation results - competing risk prediction MSE
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Figure A.6: Simulation results - competing risk prediction AUC
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Correct Covariate misspecified Outcome misspecified
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Figure A.7: Simulation results - counterfactual prediction MSE
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Correct Covariate misspecified Outcome misspecified
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Figure A.8: Simulation results - counterfactual prediction AUC

101



A.4 Description of the Framingham Offspring Cohort data

Table A.3: Descriptive summary of outcomes and time-varying covariates across examination cycles.

Characteristic (Z) Variable
5th exam

(1991–1994)
6th exam

(1994–1998)
7th exam

(1998–2001)

Age, mean (SD) age 55.2 (8.8) 59.0 (8.7) 61.7 (8.6)

Current smoker, (%) smk 18.2 14.6 12.1

Body mass index (kg/m2), mean (SD) bmi 27.2 (4.8) 27.7 (5.0) 27.9 (5.1)

Diabetes mellitus, (%) dm 5.6 7.7 9.0

Blood pressure medication, (%) hrx 16.8 25.2 31.5

Lipid lowering medication, (%) liprx 5.3 9.5 16.2

Total cholesterol (mg/dL), mean (SD) tc 205.5 (35.7) 206.7 (36.4) 202.9 (35.0)

LDL cholesterol (mg/dL), mean (SD) ldl 127.5 (32.9) 128.3 (32.8) 122.3 (31.7)

HDL cholesterol (mg/dL), mean (SD) hdl 51.1 (14.9) 52.3 (15.9) 54.9 (16.6)

Systolic blood pressure (mmHg), mean (SD) sbp 126.2 (18.3) 128.2 (18.1) 127.2 (18.1)

Coronary heart disease events (Y) event_chd 54 57 55

Atherosclerotic cardiovascular disease events (Y) event_ascvd 68 69 64

non-CHD deaths (D) event_dth 42 38 49

non-ASCVD deaths (D) event_dth_ascvd 39 37 46

Lost to follow up (C) event_cen 0 73 2341

102



A.5 Parametric g-formula

A.5.1 Model definitions

To implement the g-formula, we used separate regressions to model:

• ASCVD (Yk)

• non-ASCVD death (Dk)

and each of the following time-varying risk factors (Xk):

• cigarette smoking

• BMI

• diabetes

• anti-hyertension medication use

• lipid-lowering medication use

• serum LDL cholesterol

• serum HDL cholesterol

• systolic blood pressure

Specifications relating to parametric model choice and functional form are provided in Table

A.4. We used pooled discrete-time logistic regression to model the probability of ASCVD

and the probability of non-ASCVD death in each year.

Each time-varying risk factor was classed as binary, binary-to-failure, or continuous,

and then modelled using a generalized linear model as specified in Table A.4. To increase

efficiency all models were pooled over all examination cycles. All models included, as

predictors, age, the two most recent values of all time-varying risk factors, and the fixed

covariates baseline age and sex. We included product terms between lipid-lowering drugs

and serum LDL and HDL cholesterol as well as between anti-hypertensive medications and
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SBP. Binary predictors were entered into the models as indicators; continuous predictors

were entered as polynomials (linear, quadratic and cubic) and restricted cubic splines in

sensitivity analyses. tables A.5 and A.6 provide estimated model coefficient values and fit

statistics for the outcome and covariate models respectively.

Because values of time-varying risk factors are assessed contemporaneously during

the examination, we need to specify an ordering of the covariates to correctly model the

joint distribution. Based on substantive knowledge of the biology and the examination

process we elected to use the following ordering (also given in Table A.4): cigarette smoking,

BMI, diabetes, anti-hypertension medication use, lipid-lowering medication use, serum total

cholesterol, serum HDL cholesterol, and systolic blood pressure.

Based on the estimation procedure outlined in section 1.2.7, we estimate the 10-year

cumulative risk using the Monte Carlo procedure outline in section 1.2.7 with 500 simulations

per individual, or 1,297,500 total. We then took the mean of the probability of ASCVD across

all simulations for each observation as its predicted probability of ASCVD.
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Table A.4: Model specifications for the parametric g-formula.

Variable Order
Dependent variable:

parametric model
Independent variable:

functional form(s)

Time-fixed covariates (X0)

Sex sex - Not predicted Indicator

Age, (years) age - Not predicted Linear, cubic spline

Time-varying covariates (Xk)

Current smoker, (%) smk 1 Logistic Indicator

Body mass index (kg/m2) bmi 2 Linear Linear, cubic spline

Diabetes mellitus, (%) dm 3 Logistic to failure Indicator

Blood pressure medication, (%) hrx 4 Logistic Indicator

Lipid lowering medication, (%) liprx 5 Logistic Indicator

LDL cholesterol, (mg / dL) ldl 6 Linear Linear, cubic spline

HDL cholesterol, (mg / dL) hdl 7 Linear Linear, cubic spline

Systolic blood pressure, (mmHg) sbp 8 Linear Linear, cubic spline

Outcomes

Coronary heart disease events (Y) event_ascvd - Logistic to failure -

Deaths due to other causes (D) event_dth - Logistic to failure -

Censored due to loss to follow up (C) event_cens - Logistic to failure -
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A.5.2 Model fits

Table A.5: Outcome, competing event, and censoring event regression models

ASCVD Death Censor

(Intercept) −9.147*** −10.191*** −7.736***

(1.035) (1.269) (1.586)

sex −0.561*** −0.758*** 0.644**

(0.165) (0.204) (0.233)

age 0.044*** 0.106*** −0.001

(0.010) (0.012) (0.013)

dm 0.545 −0.304 0.161

(0.549) (0.871) (1.534)

hrx 0.344 0.564 −1.578

(1.123) (1.512) (1.154)

liprx −0.517 0.673 −13.741

(1.581) (2.081) (557.843)

smk 1.147* 0.576 1.490

(0.537) (0.682) (1.650)

bmi −0.070 −0.010 −0.225

(0.044) (0.056) (0.169)

ldl 0.005 −0.009 0.006

(0.005) (0.007) (0.014)

hdl −0.018 0.003 −0.011

(0.014) (0.015) (0.029)

sbp 0.023** −0.004 0.008

(0.008) (0.011) (0.021)

log(year + 1) 0.217 0.381+

(0.159) (0.200)

lag1_dm 0.471 1.016 −0.825

(0.565) (0.877) (1.563)

lag1_hrx 0.353 0.428 1.084

(0.405) (0.561) (1.154)

lag1_liprx 1.036 1.874 −12.358

(0.816) (1.160) (597.519)

lag1_smk −0.678 0.368 −0.760

(0.561) (0.695) (1.650)

lag1_bmi 0.067 −0.042 0.190

(0.044) (0.056) (0.168)

lag1_ldl 0.001 0.005 −0.009

(0.006) (0.007) (0.014)

lag1_hdl −0.003 0.002 −0.027

(0.015) (0.015) (0.029)

lag1_sbp −0.011 0.002 0.004

(0.008) (0.011) (0.022)

liprx × ldl −0.014 −0.023

(0.010) (0.015)

liprx × hdl 0.024 −0.004

(0.021) (0.027)

hrx × sbp −0.001 −0.006

(0.007) (0.011)

I(year == 8) 5.295***

(0.825)

year 0.099

(0.200)

Num.Obs. 26 767 26 890 26 890

RMSE 0.08 0.07 0.06

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table A.6: Covariate history regression models

dm smk bmi hrx liprx ldl hdl sbp

(Intercept) −9.763*** −4.965*** 0.580*** −13.700*** −8.246*** 9.640*** 3.396*** 5.307***

(1.074) (0.849) (0.061) (1.379) (0.853) (0.803) (0.313) (0.509)

sex 0.013 0.094 0.023+ 0.133 0.140 0.347* 0.610*** −0.016

(0.195) (0.156) (0.012) (0.100) (0.123) (0.155) (0.060) (0.098)

age 0.015 −0.028** −0.003*** 0.005 0.014* −0.033*** −0.004 0.066***

(0.011) (0.009) (0.001) (0.006) (0.007) (0.009) (0.003) (0.006)

lag1_smk 0.292 9.560*** 1.221*** 1.358*** −0.871+ −3.698*** 1.781*** −0.073

(0.231) (0.202) (0.057) (0.282) (0.494) (0.756) (0.294) (0.477)

lag1_bmi 0.100*** 0.006 0.995*** −0.256*** −0.335*** −2.177*** 0.714*** −1.546***

(0.014) (0.016) (0.001) (0.039) (0.048) (0.085) (0.034) (0.055)

lag1_hrx 0.131 0.059 0.014 12.764*** −1.924*** −1.126* −0.891*** 7.877***

(0.205) (0.220) (0.014) (0.965) (0.177) (0.488) (0.190) (0.879)

lag1_liprx −0.573 −0.014 −0.021 −0.421+ 15.072*** 29.254*** −2.206+ 0.406

(0.469) (0.377) (0.026) (0.239) (1.187) (2.967) (1.155) (0.448)

lag1_ldl 0.002 −0.001 0.000** −0.001 0.034*** 0.948*** −0.007** 0.002

(0.003) (0.002) (0.000) (0.001) (0.004) (0.002) (0.003) (0.004)

lag1_hdl −0.041*** 0.002 0.000 −0.014*** −0.034*** −0.025*** 0.966*** −0.162***

(0.008) (0.005) (0.000) (0.004) (0.005) (0.005) (0.002) (0.011)

lag1_sbp 0.012* 0.000 −0.001** 0.075*** −0.006+ 0.010* −0.003 0.924***

(0.005) (0.004) (0.000) (0.011) (0.003) (0.004) (0.002) (0.003)

log(year + 1) 0.578**

(0.193)

dm −1.627** 0.500*** 1.668*** 0.612 −0.573 −1.973*** 0.369

(0.504) (0.065) (0.283) (0.375) (0.853) (0.331) (0.538)

year −0.050+ −0.001 0.061*** 0.134*** −0.113*** 0.057*** −0.027

(0.029) (0.002) (0.018) (0.024) (0.028) (0.011) (0.018)

lag1_dm 1.675** −0.602*** −0.962** −0.193 0.416 1.828*** −0.027

(0.570) (0.067) (0.307) (0.401) (0.879) (0.341) (0.554)

smk −1.240*** −1.640*** 0.571 3.189*** −1.850*** −0.065

(0.058) (0.303) (0.506) (0.767) (0.298) (0.484)

bmi 0.265*** 0.317*** 2.154*** −0.744*** 1.568***

(0.038) (0.046) (0.084) (0.033) (0.054)

I(lag1_sbp ≥ 130) 6.622***

(1.403)

lag1_sbp × I(lag1_sbp ≥ 130) −0.048***

(0.011)

lag1_hrx × lag1_sbp −0.034***

(0.007)

hrx 2.903*** 0.977* 0.890*** −6.262***

(0.177) (0.479) (0.186) (0.322)

I(lag1_ldl ≥ 160) 3.013***

(0.857)

lag1_ldl × I(lag1_ldl ≥ 160) −0.017**

(0.005)

lag1_liprx × lag1_ldl −0.047***

(0.009)

liprx −43.933*** 2.892*** −0.500

(0.592) (0.255) (0.408)

liprx × lag1_liprx 12.501*** −1.111

(3.038) (1.181)

ldl 0.003 0.003

(0.003) (0.004)

hdl 0.161***

(0.010)

hrx × lag1_hrx −1.752+

(0.939)

Num.Obs. 22 546 24 062 24 062 24 062 24 062 24 062 24 062 24 062

RMSE 0.08 0.09 0.82 0.14 0.12 10.68 4.15 6.73

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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A.5.3 Model Diagnostics
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Figure A.9: Model specification tests for the parametric g-formula - one lag specification. A comparison of
estimated (dotted line) and observed (solid line) means under the natural course for outcome and covariate
models with 90% confidence intervals obtained using the nonparametric bootstrap.
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A.6 Comparison models

As comparators we considered de-novo developed landmark Cox proporitional hazards

models at baseline (k∗ = 0), after four years (k∗ = 3), and after seven years (k∗ = 6), i.e.

h(t | Xk∗) = h0(t) exp{βtXk∗},

where Xk∗ include same covariate set as used in fitting the g-formula. We included both

version with lagged values of covariates and without. Models included the following risk

factors (Xk∗) measured at the landmark time:

• cigarette smoking

• BMI

• diabetes

• anti-hyertension medication use

• lipid-lowering medication use

• serum LDL cholesterol

• serum HDL cholesterol

• systolic blood pressure

Lagged models included previous values before time k∗. As in the g-formula models we

included product terms between lipid-lowering drugs and serum LDL and HDL cholesterol

as well as between anti-hypertensive medications and SBP. The 10-year cumulative incidence

was calculated using Breslow estimates of the baseline hazard. Fitted model coefficients are

shown in Table A.7.
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Table A.7: Model fits for landmark Cox regressions.

landmark landmark (lags)

k* = 0 k* = 3 k* = 6 k* = 0 k* = 3 k* = 6

sex −0.546*** −0.486** −0.329 −0.546*** −0.499** −0.310
(0.163) (0.188) (0.250) (0.163) (0.188) (0.251)

age 0.045*** 0.046*** 0.036* 0.045*** 0.047*** 0.036*
(0.009) (0.011) (0.015) (0.009) (0.011) (0.015)

dm 0.889*** 0.726** 0.820** 0.889*** −1.006 −0.296
(0.203) (0.239) (0.295) (0.203) (0.971) (0.988)

hrx 0.769 0.368 0.695 0.769 0.194 0.853
(1.144) (1.284) (1.631) (1.144) (1.381) (1.694)

smk 0.407* 0.364+ 0.628* 0.407* −0.661 0.133
(0.180) (0.214) (0.300) (0.180) (0.769) (1.032)

bmi 0.006 0.005 −0.010 0.006 −0.013 0.030
(0.016) (0.018) (0.024) (0.016) (0.106) (0.117)

ldl 0.004+ 0.005+ 0.005 0.004+ 0.001 0.005
(0.002) (0.003) (0.004) (0.002) (0.007) (0.004)

hdl −0.018** −0.019** −0.021* −0.018** −0.026 −0.021*
(0.007) (0.007) (0.010) (0.007) (0.019) (0.010)

sbp 0.013** 0.016** 0.006 0.013** 0.028* 0.007
(0.005) (0.005) (0.009) (0.005) (0.011) (0.009)

hrx × sbp −0.003 −0.002 0.000 −0.003 −0.003 0.000
(0.008) (0.009) (0.012) (0.008) (0.009) (0.012)

liprx −0.373 0.535 −0.595 0.284
(0.721) (1.880) (0.779) (1.977)

liprx × ldl −0.010 −0.009
(0.012) (0.012)

liprx × hdl 0.013 0.015
(0.028) (0.029)

lag1_dm 1.841+ 1.207
(0.979) (0.985)

lag1_hrx 0.403 −0.147
(0.512) (0.564)

lag1_smk 1.028 0.525
(0.758) (1.007)

lag1_bmi 0.020 −0.042
(0.108) (0.120)

lag1_ldl 0.004
(0.007)

lag1_hdl 0.007
(0.019)

lag1_sbp −0.014
(0.011)

lag1_liprx 0.164
(0.746)

Num.Obs. 2828 2750 2648 2828 2750 2648
AIC 2915.3 2230.0 1197.2 2915.3 2237.3 1205.0
RMSE 0.26 0.23 0.17 0.26 0.23 0.17

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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A.7 Counterfactual prediction results

Table A.8: Validation of model performance for counterfactual prediction of ’treatment-naive’ risk in Framing-
ham Heart Study.

k∗ Model MSE(∆k, k∗) AUC(∆k, k∗)

0 g-formula 0.1062 0.734

landmark 0.1088 0.714

landmark (lags) 0.1088 0.714

3 g-formula 0.0950 0.725

landmark 0.0965 0.701

landmark (lags) 0.0970 0.700

6 g-formula 0.0625 0.689

landmark 0.0633 0.655

landmark (lags) 0.0637 0.653
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A.8 Code testing and validation
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Figure A.10: Comparison of new conditional g-formula and gfoRmula R package to validate coding.
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Appendix B

Appendix to Chapter 2

B.1 Loss to follow up

When there is censoring due to loss to follow up, a natural prediction target is the counter-

factual risk if everyone remained untreated and no one was lost to follow up, i.e.

Pr(Ta=0,c=0 ≤ t | X∗).

In this case, the treatment-naive risk is identified only if censoring is non-informative given

past treatment and covariate history. Therefore, we require the following modified set of

identification conditions

1. Sequential Exchangeability:

Ta=0,c=0 ⊥⊥ (Ak, Ck+1) | Xk, Ak−1, Yk = Ck = 0

2. Consistency:

T = Ta=0,c=0, Yk+1 = Ya=0,c=0
k+1 , and Xk = Xa=0,c=0

k if Ak = 0 and Ck+1 = 0

and one of

3a. Positivity: Pr(Ak = 0, Ck+1 = 0 | Xk, Ak−1 = 0, Yk = Ck = 0) > 0
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3b. Known semi-parametric model: Ta=0,c=0 follows a SNAFTM.

We also make the following modifications to the g-estimation and IPCW procedures

described in the main text. When estimating ψ using estimating equations we solve

N

∑
i=1

K

∑
k=0

Wi(k)Hi(k, ψ∗)[Ai,k − Pr{Ak = ak | Xk, Ak−1, Yk = Ck = 0}] = 0

where Wi(k) are inverse probability weights for the probability of being uncensored through

time k, i.e.

Wi(k) =
K

∏
k=0

I(Ck+1 = 0)
Pr(Ck+1 = 0 | Xk, Ak−1 = 0, Yk = Ck = 0)

.

Similarly, when ψ is estimated using a manual grid search based on score statistic of a term

from a pooled logistic regression with H(k, ψ∗) as a covariate, we can use weighted logistic

regression with weights Wi(k) above.

For the IPCW method, we modify the existing weights to be

Wc =
K

∏
k=0

I(Ak = 0, Ck = 0)Pr(Ak = 0 | X∗, Ak−1 = 0, Yk = Ck = 0)
Pr(Ak = 0 | Xk, Ak−1 = 0, Yk = Ck = 0)Pr(Ck+1 = 0 | Xk, Ak−1 = 0, Yk = Ck = 0)

where the denominator is now the product of the probability of remaining untreated through

time k and the probability of remaning uncensored through time k + 1 conditional on past

treatment and covariate history.

B.2 Competing events

Here we modify our original set up slightly, we now observe i.i.d. samples of

Oi = (Xk, Ak, Ck+1, Dk+1, Yk+1, T)

where Dk+1 is an indicator of a competing event at time k + 1 and the other variables are

defined as previously. By definition C0 ≡ 0, D0 ≡ 0, and Y0 ≡ 0 as we restrict to those

who are uncensored and event-free at the start of follow up. By convention, all subsequent

variables are zero when when any of Yk+1 = 1, Ck+1 = 1, or Dk+1 = 1. An example directed

acyclic graph for a two time point process with the addition of competing events is shown
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Figure B.1: Example directed acyclic graph for survival outcome with competing event Dk.

in Figure C.1.

In the presence of competing events, there are a number of different prediction estimands

of interest. On the one hand, we might be interested in the treatment-naive risk under the

elimination of competing events, e.g.

Pr(Ta=c=d=0 ≤ t | X∗).

However, in many cases, it’s unclear whether such an intervention to remove the competing

event is feasible or desirable, such as in our application to cardiovascular disease in section

4 where the competing event is non-ASCVD death. Alternatively, we might instead be

interested in which non-ASCVD deaths were not eliminated, but rather occurred at the

counterfactual rate if no one were treated, i.e.

Pr(Ta=0,c=0 ≤ t | X∗).

In the main text, we target the latter, which requires the following identification assump-

tions
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1. Sequential Exchangeability:

Ta=0,c=0 ⊥⊥ (Ak, Ck+1) | Xk, Ak−1, Yk = Ck = Dk = 0

2. Consistency:

T = Ta=0,c=0, Yk+1 = Ya=0,c=0
k+1 , Dk+1 = Da=0,c=0

k+1 , and Xk = Xa=0,c=0
k

if Ak = 0 and Ck+1 = 0

and one of

3a. Positivity: Pr(Ak = 0, Ck+1 = 0 | Xk, Ak−1 = 0, Yk = Ck = Dk = 0) > 0

3b. Known semi-parametric model: Ta=0,c=0 follows a SNAFTM.

To estimate the treatment-naive risk under competing events, we modify our g-estimation

and IPCW procedures to target the subdistribution hazard as follows. In our dataset,

whenever a competing event occurs we artificially set all future values of Xk, Ak, Ck+1, and

Yk+1 to zero and then adjust the inverse probability weights for both approaches described

in section A.1. to reflect the deterministic fact that when Dk+1 = 1

Pr(Cj+1 = 0 | X j, Aj−1 = 0, Y j = Cj = 0) = 1

and

Pr(Aj = 0 | X j, Aj−1 = 0, Y j = Cj = 0) = 1

for j > k where the first applies to both approaches and the latter to only the IPCW approach.

B.3 Benchmarking emulation of a statin trial

In the main text, our goal was to emulate a single arm trial in the MESA cohort and then

use the proposed methods to develop a prediction model for the statin-naive risk. These

methods crucially rely on the identification conditions given in section 2.2.3 which may

not hold in many observational settings. While these assumptions cannot be empirically
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evaluated, here we describe a benchmarking exercise which may at least help us determine

whether they are massively violated.

Statin therapy has been extensively studied across dozens of large randomized trials. We

emulated a standard two arm trial comparing statin initiation to control and benchmark our

findings against those from previous trials. While average effects may vary from trial to trial

for reasons such as changes in distribution of effect modifiers, in theory if our emulation

fell well outside the bounds of previous trials it may suggest residual confounding or other

violations are present which would inhibit the development of a statin-naive model from

these data.

We emulated a randomized trial corresponding to the AHA guidelines on initiation of

statin therapy for primary prevention of cardiovascular disease in the MESA cohort. An

example protocol is shown in Table X. The AHA guidelines stipulate that patients aged

40 to 75 with serum LDL cholesterol levels between 70 mg/dL and 190 mg/dL and no

history of cardiovascular disease should initiate statins if their risk exceeds 7.5%. Therefore,

we considered MESA participants who completed the baseline examination, had no recent

history of statin use, no history of cardiovascular disease, and who met the criteria described

in the guidelines (excluding the risk threshold) as eligible to participate in the trial. The

primary endpoint was time to atherosclerotic cardiovascular disease (ASCVD), defined as

nonfatal myocardial infarction, coronary heart disease death, or ischemic stroke.

Follow up began at the second examination cycle to enable a “wash out” period for statin

use and to ensure adequate pre-treatment covariates to control confouding. We constructed

a sequence of nested trials starting at each examination cycle from exam 2 through exam

5 and pooled the results from all 4 trials into a single analysis and used a robust variance

estimator to account for correlation among duplicated participants. In each nested trial,

we used the corresponding questionnaire to determine eligibility as well as statin initiators

versus non-initiators. Because the exact timing of statin initiation was not known with

precision, in each trial, we estimated the start of follow up for initiators and non-initators by

drawing a random month between their current and previous examinations. We explored
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Table B.1: Protocol for the specification and emulation of a target trial of statin therapy initiation strategies in
the MESA cohort.

Protocol component Target trial specification Emulation

Eligibility Age 40 to 75 years
No prior statin use
No history of ASCVD
LDL-C > 70 mg/dL
LDL-C < 190 mg/dL

same

Treatment strategies (1) initiation of statins within 3
months of baseline
randomization
(2) no initiation of statins over
follow up

same

Treatment assignment non-blinded random assignment
to either (1) or (2) at baseline

same but randomization is
emulated conditional on
covariates necessary to control
confounding

Outcomes cumulative incidence of ASCVD
defined as nonfatal myocardial
infarction, coronary heart
disease death, or ischemic stroke

same

Follow up Start at baseline and follow until
ASCVD event, non-ASCVD
death, or until 10 years have
elapsed, whichever happens first

same but exact starting time was
estimated from time of
questionnaire return

Statistical analysis ITT - compare cumulative
incidence of ASCVD under each
strategy, adjusting for
prognostic factors to increase
efficiency
Per protocol - Use
IPW/g-estimation to account for
time-varying non-adherence.

same but additionally emulating
baseline randomization
conditional on covariates
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Figure B.2: Probability of statin initiation and probability of adherence among initiators and non-initiators in
nested target trial emulation, Multi-Ethnic Study of Atherosclerosis, 2000 to 2010.

alternative definitions of the start of follow up in sensitivity analyses in section B.4.

For intention-to-treat (ITT) analyses, we estimated the effects of statin initiation by

comparing initiators versus non-initiators as defined at baseline, regardless of whether they

adhered to therapy or no therapy throughout follow up. We used pooled logistic regression

in nested trial data to estimate ITT hazard ratios conditional on covariates listed in X.

We also considered adherence-adjusted analyses comparing always treat versus never

treat. To do so we censored initiators and non-initiators when they deviated from their

baseline regime and adjusted for time-varying confounding using inverse probability of

censoring weighting and g-estimation.

Of the 6,814 MESA participants who completed the baseline examination, 4,149 met the

eligibility criteria for our trial emulation. There were 288 ASCVD events, 190 non-ASCVD

deaths, and 414 were lost over the 10 year follow up period. In the nested trial dataset, there

were 1,592 initiators and 12,767 non-initiators. Table 1 shows the baseline characteristics of

initiators and non-initiators of statins in the emulated nested trials.

Figure B.2 shows the probability of statin initation over the follow up period. After ten

years approximately 40% of MESA participants had initiated statins. The 5-year estimated
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Table B.2: Baseline characteristics of initiators and non-initiators in emulated nested trials

Initiators Non-initiators
(N = 1,592) (N = 12,767)

Demographics
Age, years 65.1 (8.2) 62.5 (8.8)
Male, % 45.1 46.8
Married, % 64.6 63.3
Less than high school, % 18.2 15.0
High school graduate, % 48.2 44.9
College or postgraduate, % 33.5 39.8
Non-Hispanic white, % 40.1 37.9
Non-Hispanic black, % 22.9 21.9
Hispanic, % 26.1 27.4
Asian, % 11.0 12.9
Currently employed, % 51.4 59.2
Retired, % 33.3 26.8
No health insurance, % 3.6 8.2
CES Depression scale (0-60) 7.4 (7.5) 7.5 (7.5)
Chronic burden scale (0-5) 1.1 (1.2) 1.1 (1.2)
Perceived discrimination scale (0-4) 0.1 (0.4) 0.1 (0.4)
Emotional support scale (0-30) 24.3 (5.1) 24.1 (5.3)
Everyday hassles scale (0-54) 14.4 (6.0) 15.2 (6.2)
Spielberger trait anger scale (0-40) 15.0 (3.8) 15.0 (3.7)
Spielberger trait anxiety scale (0-40) 15.9 (4.5) 16.0 (4.5)
Neighborhood problems scale (0-28) 10.4 (3.4) 10.5 (3.4)

CVD risk factors
Systolic blood pressure, mmHg 125.6 (19.7) 122.0 (20.2)
Diastolic bood pressure, mmHg 71.3 (10.2) 71.1 (10.1)
LDL cholesterol, mg/dL 135.4 (31.7) 119.7 (27.6)
HDL cholesterol, mg/dL 50.2 (13.9) 52.3 (15.1)
Triglycerides, mg/dL 147.5 (87.7) 120.5 (66.1)
Baseline ASCVD risk, % 10.1 7.6
Diabetes mellitus, % 38.4 23.0
Hypertension, % 51.9 36.2
Waist circumference, cm 99.6 (14.3) 96.9 (14.7)
Smoked <100 cigarettes in lifetime, % 49.6 48.8
Current smoker, % 10.7 12.9
Drinks per week 2.9 (5.9) 3.4 (7.6)
Exercise, MET/min 1471.6 (2187.1) 1509.3 (2187.7)
Family history of CVD, % 58.9 53.5
Calcium score 124.2 (340.7) 72.4 (256.2)
Left ventricular hypertrophy on ECG, % 1.0 0.8
C-reactive protein, mg/dL 4.3 (6.0) 3.5 (5.0)
Interleukin-6, pg/mL 1.5 (1.2) 1.4 (1.2)
Number of pregnancies 3.1 (2.2) 3.0 (2.3)
Years on birth control pills 3.6 (5.8) 3.7 (5.8)
Age at menopause, years 41.1 (17.5) 37.2 (20.4)

Medications
Anti-hypertensive medication, % 61.7 34.7
Insulin or oral hypoglycemics, % 22.7 8.6
Daily aspirin use, % 47.2 25.0
Diuretics, % 21.4 12.5
Any anti-depressants, % 11.7 7.8
Any vasodilator, % 3.8 3.3
Any anti-arrhytmic, % 0.6 0.6
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Figure B.3: Exclusion criteria.
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Table B.3: Benchmarking intention to treat and per protocol effects in emulated nested target trial of statin
therapy, Multi-Ethnic Study of Atherosclerosis, 2000 to 2010

5-yeara 10-year

HR 95% CI HR 95% CI

ITT
Pooled logit 0.79 (0.65, 0.93) 0.70 (0.56, 0.88)
g-estimation 0.77 (0.56, 0.98) 0.69 (0.47, 1.06)
Weibull κ 1.7 1.7

Adherence-adjusted
IPCW 0.68 (0.48, 0.94) 0.60 (0.39, 0.92)
g-estimation 0.66 (0.44, 0.98) 0.59 (0.37, 0.94)
Weibull κ 1.7 1.7

HR = Hazard Ratio, CI = Confidence Interval
a 5-year estimate from HPS: HR = 0.75

ITT hazard ratio (HR) for statin initiation was 0.79 (95% CI: 0.65, 0.93) using pooled logistic

regression in the nested trial data and 0.77 (95% CI: 0.56, 0.98) using g-estimation (Table

B.3) after transforming from the survival time ratio using a Weibull distribution with scale

parameter value 1.7. Both compared favorably with published 5-year ITT estimates from

meta-analyses of statin treatment trials (HR = 0.75).

The probability of adherence among initators and non-initiators in the the nested trial

emulation is shown in Figure B.2. The estimated HR comparing the always treat and never

treat strategies was 0.68 (95% CI: 0.48, 0.94) using inverse probability of censoring weighting

and 0.66 (95% CI: 0.44, 0.98) using g-estimation (Table B.3), suggesting stronger benefit of

statins under full adherence. The estimated stabilized inverse probability weights had mean

1.02 in initiators and 0.99 in non-initiators.

B.4 Sensitivity Analyses

Below we provide sensitivity analyses in which we vary:

• The covariate adjustment sets.

• The estimated time zero.

122



To properly estimate the effect of statin initation in our benchmark two-arm trial, we assume

we have conditioned on a sufficient set of covariates to make the exchangeability assumption

plausible. In the first analysis, we show how our estimate changes as we include additional

classes of covariates.

Because the timing of statin initiation was not known with certainty for all participants in

MESA, we estimated it by drawing a random start month between the current and previous

exam. Crucially, we applied this definition equally to initiators and noninitiators. Here we

consider alternative definitions in which we use the earliest possible time (the last exam

plus one month) and the latest possible time (the current exam minus one month) to see

how sensitive our estimates are to the definition.
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Table B.4: Estimates of intention to treat effect of statin initation under different adjustment sets in emulated
target trial for benchmarking, Multi-Ethnic Study of Atherosclerosis, 2000 to 2010.

Model HR 95% CI P-value

unadjusted 1.03 (0.81, 1.31) 0.8
demographicsa 0.90 (0.71, 1.14) 0.4
demographicsa and risk factorsb 0.81 (0.65, 0.91) 0.007
demographicsa, risk factorsb, and medicationsc 0.79 (0.64, 0.89) 0.004

CI = Confidence Interval; HR = Hazard Ratio
a Age, gender, marital status, education, race/ethnicity, employment, health

insurance status, depression, perceived discrimination, emotional support,
anger and anxiety scales, and neighborhood score

b Systolic and diastolic blood pressure, serum cholesterol levels (LDL, HDL,
Triglycerides), hypertension, diabetes, waist circumference, smoking, alcohol
consumption, exercise, family history of CVD, calcium score, hypertrophy
on ECG, CRP, IL-6, number of pregnancies, oral contraceptive use, age of
menopause

c Anti-hypertensive use, insulin use, daily aspirin use, anti-depressant use,
vasodilator use, anti-arryhtmic use

Table B.5: Estimates of intention to treat effect of statin initation under different estimated trial start times in
emulated target trial for benchmarking, Multi-Ethnic Study of Atherosclerosis, 2000 to 2010.

Model HR 95% CI P-value

randomly selected mo. 0.79 (0.64, 0.89) 0.004
last exam + 1 mo. 0.72 (0.62, 0.81) <0.001
current exam - 1 mo. 0.76 (0.65, 0.84) <0.001

CI = Confidence Interval; HR = Hazard Ratio
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Appendix C

Appendix to Chapter 3

C.1 Time-fixed treatment initiation

C.1.1 Tailoring models for counterfactual predictions

Our goal is to build a model that targets the expected potential outcome under a hypothetical

intervention, e.g. the parametric model

E[Ya | X∗] = µβ(X∗).

However, we do not observe Ya for all individuals. Here we show there are alternative

targets written only in terms of observables in the training set that are identified under the

conditions in section 3.4, namely

E[Ya | X∗] = E[E[Y | X, A = a, Dtrain = 1] | X∗, Dtrain = 1] (C.1)

and

E[Ya | X∗] = E
[

I(A = a)
Pr(A = a | X, Dtrain = 1)

Y | X∗, Dtrain = 1
]

(C.2)

in which case we can build a model for E[Ya | X∗] by targeting either estimand in the

training dataset.
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Proof. For the first representation we have

E[Ya | X∗] = E[Ya | X∗, Dtrain = 1]

= E(E[Ya | X, Dtrain = 1] | X∗, Dtrain = 1)

= E(E[Ya | X, A = a, Dtrain = 1] | X∗, Dtrain = 1)

= E(E[Y | X, A = a, Dtrain = 1] | X∗, Dtrain = 1)

where the first line follows from the random sampling of the training set, the second from

the law of iterated expectations, the third from the exchangeability condition, and the

fourth from the consistency condition. Recall that X∗ is a subset of X. For the second

representation, we show that it is equivalent to the first

E[Ya | X∗] = E(E[Y | X, A = a, Dtrain = 1] | X∗, Dtrain = 1)

= E
(

E
[

I(A = a)
Pr(A = a | X, Dtrain = 1)

Y | X, Dtrain = 1
]
| X∗, Dtrain = 1

)
= E

(
I(A = a)

Pr(A = a | X, Dtrain = 1)
E [Y | X, Dtrain = 1] | X∗, Dtrain = 1

)
= E

[
I(A = a)

Pr(A = a | X, Dtrain = 1)
Y | X∗, Dtrain = 1

]
where the second line follows from the definition of conditional expectation, the third

removes the constant fraction outside expectation, and the last reverses the law of iterated

expectations.

C.1.2 Identification of general loss functions

Here we show, for general counterfactual loss function L{Ya, µβ̂}, the expected loss is

identified by the functionals

ψβ̂ = E
(

E[L{Y, µβ̂(X∗)} | X, A = a, Dtest = 1] | Dtest = 1
)

(C.3)

and

ψβ̂ = E
[

I(A = a)
Pr(A = a | X, Dtest = 1)

L{Y, µβ̂(X∗)} | Dtest = 1
]

(C.4)
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in the test set under the time-fixed setup described in section 3.2. Many common perfor-

mance measures, such as the mean squared error, Brier score, and absolute error, are special

cases of the general loss function.

Proof. For the first representation we have

ψβ̂ = E[L{Ya, µβ̂(X∗)}]

= E[L{Ya, µβ̂(X∗)} | Dtest = 1]

= E(E[L{Ya, µβ̂(X∗)} | X, Dtest = 1] | Dtest = 1)

= E(E[L{Ya, µβ̂(X∗)} | X, A = a, Dtest = 1] | Dtest = 1)

= E(E[L{Y, µβ̂(X∗)} | X, A = a, Dtest = 1] | Dtest = 1)

where the first line follows from the definition of ψβ̂, the second from random sampling of the

test set, the third from the law of iterated expectations, the fourth from the exchangeability

condition, and the fifth from the consistency condition. Recall that X∗ is a subset of X. For

the second representation, we show that it is equivalent to the first

ψβ̂ = E(E[L{Y, µβ̂(X∗)} | X, A = a, Dtest = 1] | Dtest = 1)

= E
(

E
[

I(A = a)
Pr(A = a | X, Dtest = 1)

L{Y, µβ̂(X∗)} | X, Dtest = 1
]
| Dtest = 1

)
= E

(
I(A = a)

Pr(A = a | X, Dtest = 1)
E
[

L{Y, µβ̂(X∗)} | X, Dtest = 1
]
| Dtest = 1

)
= E

[
I(A = a)

Pr(A = a | X, Dtest = 1)
L{Y, µβ̂(X∗)} | Dtest = 1

]
where the second line follows from the definition of conditional expectation, the third

removes the constant fraction outside expectation, and the last reverses the law of iterated

expectations.
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C.1.3 Plug-in estimation

Using sample analogs for the identified expressions C.3 and C.4, we obtain two plug-in

estimators for the expected loss for a generalized loss function

ψ̂CL =
1

ntest

n

∑
i=1

I(Dtest,i = 1)ĥa(Xi)

and

ψ̂IPW =
1

ntest

n

∑
i=1

I(Ai = a, Dtest,i = 1)
êa(Xi)

L{Y, µβ̂(X∗
i )}

where ĥa(X) is an estimator for E[L{Y, µβ̂(X∗)} | X, A = a, Dtest = 1] and êa(X) is an

estimator for Pr(A = a | X, Dtest = 1). Using the terminology in Morrison et al., we call

the first plug-in estimator the conditional loss estimator ψ̂CL and the second the inverse

probability weighted estimator ψ̂IPW .

C.1.4 Random and dynamic regimes

Above we consider static interventions which set treatment A to a particular value a. We

might also consider interventions which probabilistically set A based on a known density,

possibly conditional on pre-treatment covariates, e.g. f int(A | X). For instance, instead of a

counterfactual prediction if everyone or no one had been treated, we may be interested in the

prediction if 20% or 50% were treated. We term such an intervention a random intervention

to contrast it with static interventions considered previously. Random interventions are

closer to the counterfactual interventions of interest under dataset shift which may be

approximated as probabilistic changes in the natural course of treatment due to changes

in guidelines or prescribing patterns or the wider-availability. For general counterfactual

loss function L{Yg, µβ̂}, the expected loss under a random intervention is identified by the

functionals

ψβ̂ = E
{

E f int

(
E[L{Y, µβ̂(X∗)} | X, A = a, Dtest = 1] | Dtest = 1

)}
(C.5)
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and

ψβ̂ = E
[

I(A = a)
Pr(A = a | X, Dtest = 1)

L{Y, µβ̂(X∗)} | Dtest = 1
]

(C.6)

in the test set under the time-fixed setup described in section 3.2. The primary difference

between these expressions and the ones in section A.1. is that the expectation is taken with

respect to the intervention density.

C.2 Time-varying treatment initiation

C.2.1 Set up

Here we extend the set up of section 3.2 in the case that treatment initiation is time-varying

over the follow up period. We now observe n i.i.d. longitudinal samples {Oi}n
i=1 from a

source population. For each observation, let

Oi = (XK, AK, YK+1)

where overbars denote the full history of a variable, such that Xk = (X0, . . . , Xk), and

variables Xk, Ak, and YK+1 are defined as previously. We still assume interest lies in building

a prediction model for the outcome YK+1 conditional on baseline covariates X∗ which are

now a subset of X0, i.e. X∗ ⊂ X0. An example DAG for a two time point process is shown

in Figure C.1

We would like to assess the performance of the model in a counterfactual version of the

source population in which a new treatment policy is implemented. As previously, Ya is

the potential outcome under an intervention which sets treatment A to a. For a sequence of

time-varying treatments Ak, we further define a treatment regime as a collection of functions

{gk(ak−1, xk) : k = 0, . . . , K} for determining treatment assignment at each time k, possibly

based on past treatment and covariate history. For a hypothetical treatment regime g, we

would like to determine the performance of fitted model µβ̂(X∗) under the new regime by

estimating the expected loss

ψβ̂ = E[L{Yg, µβ̂(X∗)}]
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for generalized loss function L{Yg, µβ̂(X∗)}.

C.2.2 Identifiability conditions

We now consider modified identifiability conditions under time-varying treatment initiation.

For all k from 0 to K, we require

1. Exchangeability: Yg
K+1 ⊥⊥ Ak | Xk, Ak−1

2. Consistency: YK+1 = Yg
K+1 and Xk = Xg

k if Ak = ag
k

3. Positivity: 1 > Pr(Ak = ak | Xk = Xk, Ak−1 = ak−1) > 0

C.2.3 Identification of general loss functions

Under time-varying treatment initiation, the expected counterfactual loss for general loss

function L{Yg, µβ̂} is identified by the functionals

ψβ̂ = EX0

[
EX1

{
. . . EXK−1

(
EXK [L{Y, µβ̂(X∗)} | XK, AK = ag

K, Dtest = 1]

∣∣ XK−1, AK−1 = ag
K−1, Dtest = 1

)
. . .

∣∣ X0, A0 = ag
0 , Dtest = 1

} ∣∣ Dtest = 1
] (C.7)

and

ψβ̂ = E

[
I(AK = ag

K, Dtest = 1)

∏K
k=0 Pr(Ak = ag

k | Xk, Ak−1 = ag
k−1, Dtest = 1)

L{Y, µβ̂(X∗)} | Dtest = 1

]
(C.8)

in the test set, where the first is a sequence of iterated expectations and the second is an

inverse-probability weighted expectation.

Proof. For the first representation we have

ψβ̂ = E[L{Yg, µβ̂(X∗)}]

= E[L{Yg, µβ̂(X∗)} | Dtest = 1]

= E(E[L{Yg, µβ̂(X∗)} | X0, Dtest = 1] | Dtest = 1)

= E(E[L{Yg, µβ̂(X∗)} | X0, A0 = ag
0 , Dtest = 1] | Dtest = 1)
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L0 A0 L1 A1 Y2

U

P0 P1

(a) Example two time point directed acyclic graph for prediction.

L0 A0 | a0 La0
1 Aa0

1 | a1 Ya0,a1
2

U

P0 Pa0
1

(b) Single world intervention graph of intervention on A0 and A1.

Figure C.1: Example directed acyclic graph (DAG) and single world intervention graph (SWIG) for a two
time point process.
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where the first line follows from the definition of ψβ̂, the second from random sampling

of the test set, the third from the law of iterated expectations, and the fourth from the

exchangeability condition. Arguing recursively from k = 0 to K, we can repeatedly invoke

iterated expectations and exchanageability to insert Xk and Ak = ag
k , such that

ψβ̂ = EX0

[
EX1

{
. . . EXK−1

(
EXK [L{Yg, µβ̂(X∗)} | XK, AK = ag

K, Dtest = 1]

∣∣ XK−1, AK−1 = ag
K−1, Dtest = 1

)
. . .

∣∣ X0, A0 = ag
0 , Dtest = 1

} ∣∣ Dtest = 1
]

= EX0

[
EX1

{
. . . EXK−1

(
EXK [L{Y, µβ̂(X∗)} | XK, AK = ag

K, Dtest = 1]

∣∣ XK−1, AK−1 = ag
K−1, Dtest = 1

)
. . .

∣∣ X0, A0 = ag
0 , Dtest = 1

} ∣∣ Dtest = 1
]

where the last line follows by consistency. For the second representation, note that for the

inner most expectations we can proceed as previously

E(E[L{Y, µβ̂(X∗)} | XK, Ak = ag
K, Dtest = 1] | XK−1, Ak−1 = ag

K−1, Dtest = 1)

= E
(

E
[
WK L{Y, µβ̂(X∗)} | XK, AK−1, Dtest = 1

]
| XK−1, AK−1, Dtest = 1

)
= E

(
WKE

[
L{Y, µβ̂(X∗)} | XK, AK−1, Dtest = 1

]
| XK−1, AK−1, Dtest = 1

)
= E

[
WK L{Y, µβ̂(X∗)} | XK−1, AK−1, Dtest = 1

]
where the second line follows from the definition of conditional expectation, the third

removes the constant fraction outside expectation, and the last reverses the law of iterated

expectations and where

WK =
I(AK = ag

K, Dtest = 1)
Pr(AK = ag

K | XK, AK−1, Dtest = 1)

Arguing recursively from k = 0 to K, we get

ψβ̂ = E

[
I(AK = ag

K, Dtest = 1)

∏K
k=0 Pr(Ak = ag

k | Xk, Ak−1 = ag
k−1, Dtest = 1)

L{Y, µβ̂(X∗)} | Dtest = 1

]

which is the inverse-probability weighted representation with weights equal to

Wk =
I(AK = ag

K, Dtest = 1)

∏K
k=0 Pr(Ak = ag

k | Xk, Ak−1 = ag
k−1, Dtest = 1)
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.

C.2.4 Plug-in estimation

Using sample analogs for the identified expressions C.7 and C.8, we obtain two plug-in

estimators for the expected counterfactual loss under a generalized loss function

ψ̂CL =
n

∑
i=1

I(Dtest,i = 1)ĥa0(Xi)

and

ψ̂IPW =
n

∑
i=1

I(AK = ag
K, Dtest,i = 1)

∏K
k=0 êak(Xi)

L{Y, µβ̂(X∗
i )}

where ht+1 = L{Y, µβ̂(X∗
i ) and ha0(X) is recursively defined for t = K, . . . , 0

hat : (xt, at)E[hat+1(Xt+1) | Xt, At = ag
t ]

ĥa(X) is an estimator for E[L{Y, µβ̂(X∗)} | X, A = a, Dtest = 1] and êak(X) is an estimator

for Pr(Ak = ag
k | Xk, Ak−1 = ag

k−1, Dtest = 1). Note that as the number of time points (i.e.

K) increases, the proportion in the test set who actually follow the regime of interest, i.e.

those for whom I(AK = ag
K, Dtest,i = 1) = 1 may be prohibitively small, in which case

plug-in estimation may not be feasible. In this case, additional modeling assumptions will

be necessary to borrow information from other regimes.
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C.3 Doubly robust estimators

C.3.1 Efficient influence function

As we’ve shown previously, under the identifiability conditions of section 3.4, the expected

counterfactual loss of a generalized loss function L{Ya, µ(X∗)} is identified by the observed

data functional

ψ = E (E[L{Y, µ(X∗)} | X, A = a]) .

The influence function for ψ under a nonparametric model for the observable data O =

(X, A, Y) is

χ1
P0
=

I(A = a)
Pr(A = a | X)

(L{Y, µ(X∗)} − E[L{Y, µ(X∗)} | X, A = a]) +

(E[L{Y, µ(X∗)} | X, A = a]− ψ).

As the influence function under a nonparametric model is always unique, it is also the

efficient influence function.

Proof. To show that χ1
P0

is the efficient influence function, we will use the well-known fact

that the influence function is a solution to

d
dt

ψPt

∣∣∣∣
t=0

= EP0(χ
1
P0

gP0)

where gP0 is the score of the obeservable data under the true law P0 and Pt is a parametric

submodel indexed by t ∈ [0, 1] and the pathwise derivative of the submodel is evaluated at

t = 0 corresponding to the true law P0. Let ha(X) = EP0 [L{Y, µ(X∗)} | X, A = a]. Beginning
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with the left hand side

d
dt

ψPt

∣∣∣∣
t=0

=
d
dt

EPt (EPt [L{Y, µ(X∗)} | X, A = a])
∣∣∣∣
t=0

=
∂

∂t
EPt (EP0 [L{Y, µ(X∗)} | X, A = a])

∣∣∣∣
t=0

+

EP0

(
∂

∂t
EPt [L{Y, µ(X∗)} | X, A = a]

∣∣∣∣
t=0

)
= EP0 [{ha(X)− ψ} gX,A,Y(O)] +

EP0

{(
I(A = a)

Pr(A = a | X)

[
L{Y, µ(X∗)} − ha(X)

])
gX,A,Y(O)

}
= EP0

{(
ha(X)− ψ +

I(A = a)
Pr(A = a | X)

[
L{Y, µ(X∗)} − ha(X)

])
gX,A,Y(O)

}
where the first line is the definition, the second line applies the chain rule, the third applies

definition of the score, and the last uses linearity of expectations. Returning to original

supposition, it follows that the influence function is

χ1
P0
=

I(A = a)
Pr(A = a | X)

(L{Y, µ(X∗)} − E[L{Y, µ(X∗)} | X, A = a]) +

(E[L{Y, µ(X∗)} | X, A = a]− ψ).

C.3.2 One-step estimator

Given the efficient influence function above and random sampling in the test set, the one-step

estimator for ψ is given by

ψ̂DR =
1

ntest

n

∑
i=1

I(Dtest,i = 1)ĥa(Xi) +
I(Ai = a, Dtest,i = 1)

êa(Xi)

[
L{Y, µ(X∗

i )} − ĥa(Xi)
]

C.3.3 Asymptotic properties

In previous sections, the asymptotic properties of ψ̂CL and ψ̂IPW follow from standard

parametric theory1. However, here the asymptotic properties of ψ̂DR are complicated by

1after separating estimation of µβ(X∗) from the evaluation of performance by random partition of test set.
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the estimation of two nuisance functions, ĥa(X) and êa(X), and the fact that, we do not

immediately assume a parametric model for either. To simplify the derivation of the large

sample properties of ψ̂DR we begin by defining

H
(
e′a(X), h′a(X)

)
= h′a(X) +

I(A = a)
e′a(X)

[
L (Y, µ (X∗))− h′a(X)

]
for arbitrary functions e′a(X), and h′a(X). Here we suppress the dependence on being in

the test set for ease of exposition, but note that the rest procedes the same if we were

to limit our focus to the test set. Note, the doubly robust estimator can be written as

ψ̂DR = 1
n ∑n

i=1 H
(

êa (Xi) , ĥa (Xi)
)

. We define the probability limits of êa(X) and ĥa(X) as

e∗a(X) and h∗a(X), respectively. By definition, when êa(X) and ĥa(X) are correctly specified,

the limits are e∗a(X) = Pr[A = a | X] and h∗a(X) = E [L (Y, µ (X∗)) | X, A = a].

To derive the asymptotic properties of ψ̂DR, we make the following assumptions:

D1. H(êa(X), ĥa(X)) and its limit H (e∗a(X), h∗a(X)) fall in a Donsker class.

D2.
∥∥∥H(êa(X), ĥa(X))− H (e∗a(X), h∗a(X))

∥∥∥ P−→ 0.

D3. (Finite second moment). E
[

H (e∗a(X), h∗a(X))2
]
< ∞.

D4. (Model double robustness). At least one of the models êa(X) or ĥa(X) is correctly speci-

fied. That is, at least one of e∗a(X) = Pr[A = a | X] or h∗a(X) = E [L (Y, µ (X∗)) | X, A = a]

holds, but not necessarily both.

Assumption D1 is a well-known restriction on the complexity of the functionals êa(X) and

ĥa(X). As long as êa(X), ĥa(X), e∗a(X), and h∗a(X) are Donsker and all are uniformly bounded

then Assumption D1 holds by the Donsker preservation theorem. Many commonly used

models such as generalized linear models fall within the Donsker class. This requirement can

be further relaxed through sample-splitting, in which case more flexible machine learning

algorithms such as random forests, gradient boosting, or neural networks may be used to

estimate êa(X) and ĥa(X).

Using Assumptions D1 through D4, below we prove:
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1. (Consistency) ψ̂DR
P−→ ψ.

2. (Asymptotic distribution) ψ̂DR has the asymptotic representation

√
n
(
ψ̂DR − ψ

)
=

√
n

(
1
n

n

∑
i=1

H (e∗a(Xi), h∗a(Xi))− E [H (e∗a(X), h∗a(X))]

)
+ Re + oP(1),

where

Re ≤
√

nOP

(∥∥∥ĥa(X)− E [L (Y, µ(X∗)) | X, A = a]
∥∥∥2

2
×
∥∥∥êa(X)− Pr[A = a | X]

∥∥∥2

2

)
and thus if ĥa(X) and êa(X) converge at combined rate of at least

√
n then

√
n
(
ψ̂DR − ψ

) d−→ N (0, Var [H(e∗a(X), h∗a(X))])

Consistency

Using the probability limits e∗a(X) and h∗a(X) defined previously, the double robust estimator

ψ̂DR converges in probability to

ψ̂DR
P−→ E

[
h∗a(X) +

I(A = a)
e∗a(X)

(L (Y, µ (X∗))− h∗a(X))

]
Here we show that the right-hand side is equal to ψ under assumptions D1- D4 when either:

1. êa(X) is correctly specified

2. ĥa(X) is correctly specified

First consider the case where êa(X) is correctly specified, that is e∗a(X) = Pr[A = a | X], but

we do not assume that the limit h∗a(X) is equal to E [L (Y, g (X∗)) | X, A = a]). Recall, as
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shown previously ψ = E
[

I(A=a)
Pr(A=a|X)

L(Y, µβ̂(X∗))
]

ψ̂DR
P→ E

[
h∗a(X) +

I(A = a)
e∗a(X)

(L (Y, µ (X∗))− h∗a(X))

]
= E

[
h∗a(X)− I(A = a)

e∗a(X)
h∗a(X)

]
+ ψ

= E
[

E
[

h∗a(X)− I(A = a)
e∗a(X)

h∗a(X) | X
]]

+ ψ

= E
[

h∗a(X)− 1
e∗a(X)

h∗a(X)E [I(A = a) | X]

]
+ ψ

= E
[

h∗a(X)− 1
e∗a(X)

h∗a(X)Pr [A = a | X]

]
+ ψ

= E [h∗a(X)− h∗a(X)] + ψ

= ψ.

Next consider the case when ĥa(X) is correctly specified, that is

h∗a(X) = E [L (Y, g (X∗)) | X, A = a]

and this time we do not make the assumptions that the limit e∗a(X) is equal to Pr[A = a | X].

Recall, as shown previously ψ = E
[

E
[

L(Y, µβ̂(X∗)) | X, A = a
]]

.

ψ̂DR
P→ E

[
h∗a(X) +

I(A = a)
e∗a(X)

(L (Y, µ (X∗))− h∗a(X))

]
= E [h∗a(X)] + E

[
I(A = a)

e∗a(X)
(L (Y, µ (X∗))− h∗a(X))

]
= ψ + E

[
I(A = a)

e∗a(X)
(L (Y, µ (X∗))− h∗a(X))

]
= ψ + E

[
E
[

I(A = a)
e∗a(X)

(L (Y, µ (X∗))− h∗a(X)) | X
]]

= ψ + E
[

I(A = a)
e∗a(X)

E [(L (Y, µ (X∗))− h∗a(X)) | X]

]
= ψ + E [E [(L (Y, µ (X∗))− h∗a(X)) | X, A = a]]

= ψ + E [E [L (Y, µ (X∗)) | X, A = a]− h∗a(X)]

= ψ + E [h∗a(X)− h∗a(X)]

= ψ.
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Asymptotic distribution

For a random variable W we define notation

Gn(W) =
√

n

(
1
n

n

∑
i=1

Wi − E[W]

)
.

and thus the asymptotic representation of ψ̂DR can be written

√
n
(
ψ̂DR − ψ

)
= Gn(H(êa(X), ĥa(X)))− Gn (H (e∗a(X), h∗a(X)))

+ Gn (H (e∗a(X), h∗a(X)))

+
√

n(E[H(êa(X), ĥa(X))]− ψ)

where we add and subtract the term Gn (H (e∗a(X), h∗a(X))) and add another zero term in

+
√

n(E[H(êa(X), ĥa(X))]− ψ). For the first term, Assumption D1 implies

Gn(H(êa(X), ĥa(X)))− Gn (H (e∗a(X), h∗a(X))) = oP(1)

Let

Re =
√

n(E[H(êa(X), ĥa(X))]− ψ)

now we have

√
n
(
ψ̂DR − ψ

)
=

√
n

(
1
n

n

∑
i=1

(H (e∗a(Xi), h∗a(Xi))− E [H (e∗a(X), h∗a(X))])

)
+ Re + oP(1)

Let’s try to calculate the upper bound of Re. First, note

n−1/2Re = E
[

ĥa(X)
]

︸ ︷︷ ︸
R1

+E
[

I(A = a)
êa(X)

[
L (Y, µ (X∗))− ĥa(X)

]]
︸ ︷︷ ︸

R2

−ψ.
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We rewrite term R2 as:

R2 = E
[

I(A = a)
êa(X)

{
L (Y, µ (X∗))− ĥa(X)

}]
= E

[
E
[

I(A = a)
êa(X)

{
L (Y, µ (X∗))− ĥa(X)

}
| X
]]

= E
[

1
êa(X)

E
[

I(A = a)
Pr[A = a | X]

Pr[A = a | X]
{

L (Y, µ (X∗))− ĥa(X)
}
| X
]]

= E
[

1
êa(X)

E
[
Pr[A = a | X]

{
L (Y, µ (X∗))− ĥa(X)

}
| X, A = a

]]
= E

[
1

êa(X)
Pr[A = a | X]

{
E [L (Y, µ (X∗)) | X, A = a]− ĥa(X)

}]
Combining the above gives

n−1/2Re = E
[

ĥa(X)
]
+ E

[
I(A = a)

e′a(X)

[
L (Y, µ (X∗))− h′a(X)

]]
− ψ

= E
[

ĥa(X)
]
+ E

[
1

êa(X)
Pr[A = a | X]

{
E [L (Y, µ (X∗)) | X, A = a]− ĥa(X)

}]
− E

[
E
[

L(Y, µβ̂(X∗)) | X, A = a
]]

= E
[{

E [L (Y, µ (X∗)) | X, A = a]− ĥa(X)
}
×
{

1
êa(X)

Pr[A = a | X]− 1
}]

Using the Cauchy-Schwartz inequality we get.

Re ≤
√

n
(

E
[{

E [L (Y, µ (X∗)) | X, A = a]− ĥa(X)
}2
])1/2

×
(

E

[{
1

êa(X)
Pr[A = a | X]− 1

}2
])1/2

≤
√

nOP

(∥∥∥E [L (Y, µ (X∗)) | X, A = a]− ĥa(X)
∥∥∥2

2
×
∥∥∥êa(X)− Pr[A = a | X]

∥∥∥2

2

)
If both models êa(X) and ĥa(X) are correctly specified and converge at a combined rate

faster than
√

n, then Re = oP(1) and

√
n
(
ψ̂DR − ψ

)
=

√
n

(
1
n

n

∑
i=1

H (Pr [A = a | Xi] , E [L (Y, g (X∗)) | A = a, Xi])

−E [H (Pr[A = a | X], E [L (Y, g (X∗)) | A = a, X])]) + oP(1)
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By the central limit theorem,

√
n

(
1
n

n

∑
i=1

H (e∗a(Xi), h∗a(Xi))− E [H (e∗a(Xi), h∗a(Xi))]

)
d−→ N (0, Var [H (e∗a(X), h∗a(X))])

completing the proof.

C.4 Risk calibration curve

Another common metric of the performance of risk prediction models is model calibration,

that is are the risk estimates produced by the model reliable in the sense that for 100 patients

who receive a risk prediction of 17% does the outcome really occur for roughly 17 of them

over the follow up period. This can be nonparametrically evalutated by estimating the

so-called “calibration” curve, i.e. the observed risk as a function of the predicted risk. For

counterfactual predictions the relevant calibration curve though is the counterfactual risk

that would be observed under intervetion A = a as a function of the predicted risk, or

ψβ̂ = E[I(Ya = 1) | µβ̂(X∗)]. (C.9)

C.4.1 Identification

Here we show that the counterfactual calibration curve is identified by the observed data

functionals

ψβ̂ = E[E{I(Y = 1) | X, A = a, µβ̂(X∗), Dtest = 1} | µβ̂(X∗), Dtest = 1] (C.10)

and

ψβ̂ = E

[
I(A = a)

Pr(A = a | X, µβ̂(X∗), Dtest = 1)
I(Y = 1) | µβ̂(X∗), Dtest = 1

]
(C.11)

in the test set.
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Proof. For the first representation we have

ψβ̂ = E[I(Ya = 1) | µβ̂(X∗)]

= E[I(Ya = 1) | µβ̂(X∗), Dtest = 1]

= E[E{I(Ya = 1) | X, µβ̂(X∗), Dtest = 1} | µβ̂(X∗), Dtest = 1]

= E[E{I(Ya = 1) | X, A = a, µβ̂(X∗), Dtest = 1} | µβ̂(X∗), Dtest = 1]

= E[E{I(Y = 1) | X, A = a, µβ̂(X∗), Dtest = 1} | µβ̂(X∗), Dtest = 1]

where the first line follows from the definition of ψβ̂, the second from random sampling of the

test set, the third from the law of iterated expectations, the fourth from the exchangeability

condition, and the fifth from the consistency condition. Recall that X∗ is a subset of X. For

the second representation, we show that it is equivalent to the first

ψβ̂ = E[E{I(Y = 1) | X, A = a, µβ̂(X∗), Dtest = 1} | µβ̂(X∗), Dtest = 1]

= E

[
E

{
I(A = a)

Pr(A = a | X, µβ̂(X∗), Dtest = 1)
I(Y = 1) | X, µβ̂(X∗), Dtest = 1

}
| µβ̂(X∗), Dtest = 1

]

= E

[
I(A = a)

Pr(A = a | X, µβ̂(X∗), Dtest = 1)
E
{

I(Y = 1) | X, µβ̂(X∗), Dtest = 1
}
| µβ̂(X∗), Dtest = 1

]

= E

[
I(A = a)

Pr(A = a | X, µβ̂(X∗), Dtest = 1)
I(Y = 1) | µβ̂(X∗), Dtest = 1

]

where the second line follows from the definition of conditional expectation, the third

removes the constant fraction outside expectation, and the last reverses the law of iterated

expectations.

C.4.2 Estimation

Unlike previous sections, estimation of the full risk calibration curve using sample analogs of

the identified expressions C.10 and C.11 is generally infeasible because they are conditional

on a continuous risk score. Instead analysts typically perform either kernel or binned

estimation of the calibration curve functional. In the case of the counterfactual risk calibration

curve under a hypothetical intervention, the expression above suggest modifying these
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approaches either through the use of inverse probability weights or an outcome model.

C.5 Area under ROC curve

A final common metric for the performance of a risk prediction model µβ(X∗) is the

area under the receiver operating characteristic (ROC) curve, often referred to as simply

the area under the curve (AUC). The AUC can be interpreted as the probability that a

randomly sampled observation with the outcome has a higher predicted value than a

randomly sampled observation without the outcome. In that sense, it is a measure of the

discriminative ability of the model, i.e. the ability to distinguish between cases and noncases.

For counterfactual predictions the relevant AUC though is the counterfactual AUC that

would be observed under intervetion A = a, or

ψβ̂ = E[I
(

µβ(X∗
i ) > µβ(X∗

j )
)
| Ya

i = 1, Ya
j = 0]. (C.12)

C.5.1 Identification

Here we show that the counterfactual AUC is identified by the observed data functionals in

the test set

ψβ̂ =
E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

ha(Xi, Xj)
]

E
[
ha(Xi, Xj)

] (C.13)

and

ψβ̂ =

E

[
I
(

µ
β̂
(X∗

i )>µ
β̂
(X∗

j ),Yi=1,Yj=0,Ai=a,Aj=a
)

ea(Xi ,Xj)

]

E
[

I(Yi=1,Yj=0,Ai=a,Aj=a)
ea(Xi ,Xj)

] (C.14)

where the subscripts i and j denote a random pair of observations from the test set. We also

define

ha(Xi, Xj) = Pr [Yi = 1 | Xi, Ai = a, Dtest,i = 1]Pr
[
Yj = 0 | Xj, Aj = a, Dtest,j = 1

]
and

ea(Xi, Xj) = Pr [Ai = a | Xi, Dtest,i = 1]Pr
[
Aj = a | Xj, Dtest,j = 1

]
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for a pair of covariate vectors Xi and Xj.

To identify the AUC, we require a modified set of identification conditions, namely:

1. Exchangeability. Ya ⊥⊥ A | X

2. Consistency. Ya = Y if A = a

3. Positivity. (i) Pr(A = a|X = x) > 0 for all x that have positive density in f (X, A = a),

(ii) E
[
Pr[Y = 1|Xi, A = a]Pr[Y = 0|Xj, A = a]

]
> 0, where i is a random observation

that has the outcome and j is random observation without the outcome.

Proof. For the first representation we have

ψβ̂ = E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)
| Ya

i = 1, Ya
j = 0

]
=

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j ), Ya
i = 1, Ya

j = 0
)]

Pr
[
Ya

i = 1, Ya
j = 0

]
=

E
[
E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j ), Ya
i = 1, Ya

j = 0
)
| Xi, Xj

]]
E
[
Pr
[
Ya

i = 1, Ya
j = 0 | Xi, Xj

]]
=

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr
[
Ya

i = 1, Ya
j = 0 | Xi, Xj

]]
E
[
Pr
[
Ya

i = 1, Ya
j = 0 | Xi, Xj

]]
=

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr
[
Ya

i = 1, Ya
j = 0 | Xi, Xj, Ai = a, Aj = a

]]
E
[
Pr
[
Ya

i = 1, Ya
j = 0 | Ai = a, Aj = a, Xi, Xj

]]
=

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr
[
Ya

i = 1 | Xi, Ai = a
]

Pr
[
Ya

j = 0 | Xj, Aj = a
]]

E
[
Pr
[
Ya

i = 1 | Xi, Ai = a
]

Pr
[
Ya

j = 0 | Xj, Aj = a
]]

=
E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr [Yi = 1 | Xi, Ai = a]Pr
[
Yj = 0 | Xj, Aj = a

]]
E
[
Pr [Yi = 1 | Xi, Ai = a]Pr

[
Yj = 0 | Xj, Aj = a

]]
=

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr [Yi = 1 | Xi, Ai = a]Pr
[
Yj = 0 | Xj, Aj = a

]]
E
[
Pr [Yi = 1 | Xi, Ai = a]Pr

[
Yj = 0 | Xj, Aj = a

]]
=

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

ha(Xi, Xj)
]

E
[
ha(Xi, Xj)

]
where the first line follows from the definition of ψβ̂, the second from the definition
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of conditional probability, the third from the law of iterated expectations, the fourth from

the definition of conditional expectation, the fifth from the exchangeability condition, the

sixth from independence of potential outcomes, the seventh from the consistency condition,

the eighth from random sampling of the test set, and the ninth applies the definition of

ha(Xi, Xj). Recall that X∗ is a subset of X. For the second representation, we will show that

it is equivalent to the first. Starting from line five above

ψβ̂ =
E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr
[
Ya

i = 1, Ya
j = 0 | Xi, Xj, Ai = a, Aj = a

]]
E
[
Pr
[
Ya

i = 1, Ya
j = 0 | Ai = a, Aj = a, Xi, Xj

]]
=

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr
[
Yi = 1, Yj = 0 | Xi, Xj, Ai = a, Aj = a

]]
E
[
Pr
[
Yi = 1, Yj = 0 | Ai = a, Aj = a, Xi, Xj

]]
=

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr[Yi=1,Yj=0,Ai=a,Aj=a|Xi ,Xj]
Pr[Ai=a,Aj=a|Xi ,Xj]

]
E
[

Pr[Yi=1,Yj=0,Ai=a,Aj=a|Xi ,Xj]
Pr[Ai=a,Aj=a|Xi ,Xj]

]

=

E
[

E
[

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j )
)

Pr[Yi=1,Yj=0,Ai=a,Aj=a|Xi ,Xj]
Pr[Ai=a,Aj=a|Xi ,Xj]

| Xi, Xj

]]
E
[

E
[

Pr[Yi=1,Yj=0,Ai=a,Aj=a|Xi ,Xj]
Pr[Ai=a,Aj=a|Xi ,Xj]

| Xi, Xj

]]

=

E

[
I
(

µ
β̂
(X∗

i )>µ
β̂
(X∗

j )
)

Pr[Ai=a|Xi ]Pr[Aj=a|Xj]
Pr
[
Yi = 1, Yj = 0, Ai = a, Aj = a | Xi, Xj

]]

E
[

Pr[Yi=1,Yj=0,Ai=a,Aj=a|Xi ,Xj]
Pr[Ai=a|Xi ]Pr[Aj=a|Xj]

]

=

E

[
I
(

µ
β̂
(X∗

i )>µ
β̂
(X∗

j ),Yi=1,Yj=0,Ai=a,Aj=a
)

Pr[Ai=a|Xi ]Pr[Aj=a|Xj]

]

E
[

I(Yi=1,Yj=0,Ai=a,Aj=a)
Pr[Ai=a|Xi ]Pr[Aj=a|Xj]

]

=

E

[
I
(

µ
β̂
(X∗

i )>µ
β̂
(X∗

j ),Yi=1,Yj=0,Ai=a,Aj=a
)

ea(Xi ,Xj)

]

E
[

I(Yi=1,Yj=0,Ai=a,Aj=a)
ea(Xi ,Xj)

]
where the second line follows from consistency, the third from the definition of con-

ditional probability, the fourth from iterated expectations, the fifth removes the constant

fraction outside expectation, the sixth reverses the law of iterated expectations and the last

145



applies random sampling of the test set and the definition of ea(Xi, Xj).

C.5.2 Plug-in estimation

Using sample analogs for the identified expressions C.13 and C.14, we obtain two plug-in

estimators for the counterfactual AUC

ψ̂OM =
∑n

i ̸=j ĥa(Xi, Xj)I(µβ̂(X∗
i ) > µβ̂(X∗

j ), Dtest,i = 1, Dtest,j = 1)

∑n
i ̸=j ĥa(Xi, Xj)I(Dtest,i = 1, Dtest,j = 1)

and

ψ̂IPW =

n

∑
i ̸=j

I
(

µβ̂(X∗
i ) > µβ̂(X∗

j ), Yi = 1, Yj = 0, Ai = a, Aj = a, Dtest,i = 1, Dtest,j = 1
)

êa(Xi, Xj)

n

∑
i ̸=j

I
(
Yi = 1, Yj = 0, Ai = a, Aj = a, Dtest,i = 1, Dtest,j = 1

)
êa(Xi, Xj)

where ĥa(Xi, Xj) is an estimator for Pr[Yi = 1|Xi, Ai = a, Dtest,i = 1]Pr[Yj = 0|Xj, Aj =

a, Dtest,j = 1] and êa(Xi, Xj) is an estimator for Pr[Ai = a|Xi, Dtest,i = 1]Pr[Aj = a|Xj, Dtest,j =

1]. Here, we call the first plug-in estimator the outcome model estimator ψ̂OM and the

second the inverse probability weighted estimator ψ̂IPW .

C.6 Additional application details

The Multi-Ethnic Study on Atherosclerosis (MESA) study is a population-based sample

of 6,814 men and women aged 45 to 84 drawn from six communities (Baltimore; Chicago;

Forsyth County, North Carolina; Los Angeles; New York; and St. Paul, Minnesota) in the

United States between 2000 and 2002. The sampling procedure, design, and methods of the

study have been described previously [68]. Study teams conducted five examination visits

between 2000 and 2011 in 18 to 24 month intervals focused on the prevalence, correlates, and

progression of subclinical cardiovascular disease. These examinations included assessments

of lipid-lowering (primarily statins) and other medication use as well as cardiovascular risk

factors such as systolic blood pressure, serum cholesterol, cigarette smoking, height, weight,
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and diabetes.

Our goal was to emulate a single-arm trial corresponding to the AHA guidelines on

initiation of statin therapy for primary prevention of cardiovascular disease in the MESA

cohort and use the emulated trial to develop a prediction model for the treatment-naive

risk. The AHA guidelines stipulate that patients aged 40 to 75 with serum LDL cholesterol

levels between 70 mg/dL and 190 mg/dL and no history of cardiovascular disease should

initiate statins if their risk exceeds 7.5%. Therefore, we considered MESA participants

who completed the baseline examination, had no recent history of statin use, no history

of cardiovascular disease, and who met the criteria described in the guidelines (excluding

the risk threshold) as eligible to participate in the trial. The primary endpoint was time to

atherosclerotic cardiovascular disease (ASCVD), defined as nonfatal myocardial infarction,

coronary heart disease death, or ischemic stroke.

Follow up began at the second examination cycle to enable a “wash out” period for statin

use and to ensure adequate pre-treatment covariates to control confouding. We constructed

a sequence of nested trials starting at each examination cycle from exam 2 through exam

5 and pooled the results from all 4 trials into a single analysis and used a robust variance

estimator to account for correlation among duplicated participants. In each nested trial,

we used the corresponding questionnaire to determine eligibility as well as statin initiators

versus non-initiators. Because the exact timing of statin initiation was not known with

precision, in each trial, we estimated the start of follow up for initiators and non-initators by

drawing a random month between their current and previous examinations. We explored

alternative definitions of the start of follow up in sensitivity analyses in the appendix. To

mimic the targeted single-arm trial we limited to non-initiators for development of the

prediction models.

C.6.1 Propensity score models

In the emulated single arm trial, statin initiation can be viewed as “non-adherence” which

can be adjusted for by inverse probability weighting, therefore we censored participants
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when they initiated statins. To calculate the weights, we estimated two logistic regres-

sion models: one for the probability of remaining untreated given past covariate history

(denominator model) and one for probability of remaining untreated given the selected

baseline predictors (numerator model). In the denominator model we included the following

covariates:

• Demographic factors - Age, gender, marital status, education, race/ethnicity, employ-

ment, health insurance status, depression, perceived discrimination, emotional support,

anger and anxiety scales, and neighborhood score.

• Risk factors - Systolic and diastolic blood pressure, serum cholesterol levels (LDL,

HDL, Triglycerides), hypertension, diabetes, waist circumference, smoking, alcohol

consumption, exercise, family history of CVD, calcium score, hypertrophy on ECG,

CRP, IL-6, number of pregnancies, oral contraceptive use, age of menopause.

• Medication use - Anti-hypertensive use, insulin use, daily aspirin use, anti-depressant

use, vasodilator use, anti-arryhtmic use.

Time-varying demographic factors and risk factors were lagged such that values from the

previous examination cycle were used.
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