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Abstract 

 

We present evidence that unnecessarily complex disclosure can result from strategic 
incentives to shroud information. In our lab experiment, senders are required to report their 
private information truthfully, but can choose how complex to make their reports. We find 
that senders use complex disclosure over half the time. This obfuscation is profitable 
because receivers make systematic mistakes in assessing complex reports. Regression and 
structural analysis suggest that these mistakes could be driven by receivers who are naive 
about the strategic use of complexity or overconfident about their ability to process 
complex information. 
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Commission or any individual Commissioner. Martin would like to thank both the Paris School of 
Economics and the Camargo Foundation for their hospitality during the writing of this paper. Early stages 
of this project were supported by the French National Research Agency, through the program 
Investissements d'Avenir, ANR-10--LABX_93-01. We would like to thank Patrick Rooney, Byron 
Perpetua, and Philip Marx for excellent assistance. All rights reserved. All errors are ours. 
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1. Introduction 

 

Firms are often required to disclose contract terms and other relevant information 

to consumers. For example, credit card companies are required to disclose interest rates. 

Tech companies are required to disclose privacy policies. And public firms are required 

to disclose financial performance. Ben-Shahar and Schneider (2014) and Lowenstein et 

al. (2014) provide a long list of hard-to-understand disclosures and have argued that 

mandated disclosure has failed as public policy as a consequence. Financial experts even 

blame the complexity of financial products for the 2008 financial crisis, although the 

risks embedded in these products were supposedly disclosed to a ratings agency.2 

Some of these disclosures are complex by necessity – simply because firms need 

to provide very detailed information. However, because firms have the ability to 

manipulate the complexity of their reports, some of these disclosures may be far more 

complex than they need to be. For example, credit card companies can present payment 

schedules, penalties, and fees clearly or bury potentially important details in the fine 

print.3 Privacy policies can be written in easy to understand language or shrouded in 

pages of complex legalese. When public firms make financial disclosures, they can 

summarize them in several paragraphs or run them as long as 257 pages.4 

The extent to which firms can exploit consumers by increasing complexity depends 

crucially on how consumers respond when they observe complex information. If consumers are 

sufficiently skeptical about firms that use complex disclosures and account for this in their 

decision-making process, then firms that offer better terms or higher-quality products will want 

to present this information as clearly and simply as possible to prevent themselves from being 

mistaken for worse firms. As a result, we would expect only the worst firms to use complex 

disclosures, which is similar to the “unraveling” results in voluntary disclosure (Viscusi 1978; 

                                                
2 https://www.ft.com/content/24f73610-c91e-11dc-9807-000077b07658 accessed on September 26, 2017. 
3 The Truth in Lending Act of 1968 (TILA) requires lenders to disclose consumer credit terms and cost in a 
standardized way. The Real Estate Settlement Procedures Act of 1974 (RESPA) requires lenders and others 
involved in mortgage lending to provide borrowers with pertinent and timely disclosures regarding the 
nature and costs of a real estate settlement process. In 2015, the US Consumer Finance Protection Bureau 
consolidated the disclosure requirements under TILA and RESPA, resulting in the Loan Estimate Form and 
the Closing Statement Form, which standardize the content and format of disclosure in mortgage lending.  
4 The SEC does not impose a limit on the length of a filing, and the average 10-K has grown from roughly 
30,000 words in 2000 to 42,000 words in 2013, with GE’s 2014 10-K stretching to 103,484 words and 257 
pages. Source: https://www.wsj.com/articles/the-109-894-word-annual-report-1433203762.  
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Grossman and Hart 1980; Grossman 1981; Milgrom 1981). However, systematic mistakes by 

consumers when facing complex reports can give rise to strategic incentives to complexify, 

motivating companies to choose complexity over simplicity in their disclosures.  

In reality, it is difficult to determine if consumers are sufficiently skeptical about 

firms that use complex disclosures and account for this in their decision-making process, 

because it is hard to discern whether disclosures are complex by necessity or the outcome 

of firms strategically choosing to make information unnecessarily complex. To overcome 

this difficulty, we design a laboratory experiment to study the strategic use of complexity 

in a controlled setting. In our experiment, complexity arises only from its strategic use, 

the conflicting interests of senders and receivers are clear, the amount and over-use of 

complexity are quantifiable, and the beliefs of agents are easily elicited. 

There are two roles in our experiment: a sender (e.g., the firm) and a receiver 

(e.g., the consumer). Subjects are randomly paired in each round, one randomly assigned 

to be the sender and the other to be the receiver.5 In each round, the sender observes a 

new state (which is an integer drawn uniformly from 1 to 10) and chooses how complex 

to make their report of the state. Based on the sender’s report, the receiver then makes a 

guess of the state.  

We impose a strong and clear conflict of interest: the sender would like receivers 

to guess that the true state is as high as possible, and the receiver would like to guess as 

accurately as possible. In our main sessions, we debrief both players at the end of each 

round about the true state, the sender’s choice of complexity, and the receiver’s guess in 

that round. This way, subjects have many opportunities to learn the strategic forces in the 

game and the consequences of their actions.6 

When a sender’s report is simple, the state is presented as a single integer. When 

their report is complex, the state is presented as several computer-generated numbers (up 

to 20) that add up to the state. While this is just one of many ways to operationalize 

complexity, it has the advantage that individuals have experience with the task and may 

hold well-formed beliefs about their ability to internalize complexity of this form. In 

                                                
5 Roles were randomly assigned so that subjects could experience both roles, which allowed subjects to be 
well informed about the actions and payoffs available in both roles. 
6 As a robustness check, we also ran sessions without feedback. In addition, we ran a robustness check 
where we limit the number of complexity levels available to senders. See Section A.4 of the appendix. 
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addition, this task allows us to easily measure the extent of complexity and the size of the 

sender and receiver mistakes. 

Although senders can make their reports complex, they cannot misrepresent the 

underlying state, as the computer-generated numbers will always add up to the state. 

Thus, the theoretical predictions for behavior in our experiment are stark. If complexity 

generates sufficient uncertainty about the state, it is easy to show using the unraveling 

arguments mentioned previously that the unique sequential equilibrium is full use of 

simple reports for all states above the worst, even though there is a conflict of interest 

between senders and receivers in our experimental game. 

Instead, defining “low complexity” as messages with 5 or fewer numbers to sum, 

senders use low complexity less than 50% of the time, even if we look just at the second 

half of rounds. When not using low complexity, senders mostly use high complexity 

(defined as messages with 15 or more numbers to sum), and they do so in a systematic 

way.7 Over rounds, senders gravitate towards two extremes: using low complexity for 

high states (secret numbers of 8 and up) and using high complexity for low states (secret 

numbers of 3 or less). When the state is neither high nor low, senders use high 

complexity approximately 33% of the time, even in the second half of rounds.  

Why is complex disclosure so prevalent? One possibility is that senders use 

complex disclosure more than they should. However, we find that using high complexity 

to hide both low and middle states is profitable for senders because receivers guess higher 

than the actual secret number in both low and middle states, and this persists into the 

second half of rounds.8 Because sender behavior is largely consistent with these strategic 

incentives, the average losses of senders are small and decrease over rounds.9 

So why do receivers systematically guess higher than the actual secret number 

when disclosures are complex? The driving force of complexity in disclosure is that it 

adds noise to messages because receivers are unable to fully internalize complex 

information. Because of this noise, receivers face an involved decision-making process: 

                                                
7 Senders use middle complexity at a similar rate across states, so the only variation across states is the 
frequency that low and high complexity are used. 
8 We define the “optimal” action for senders as the one that has the highest expected payoff, and we 
measure losses in terms of expected payoff. 
9 The primary sources of losses are choosing high complexity at high states and choosing low complexity at 
low states. These mistakes, along with their possible sources, are examined in Section 4.2. 
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they must infer why complexity was used and how much noise complexity added to the 

message, and then adjust their guesses accordingly. 

There are several ways that this process can be distorted. For example, a receiver 

who is naive about the strategic use of complexity will not adequately adjust their guesses 

for the bad news communicated by complexity, which will lead them to systematically 

guess above the actual secret number. In fact, naivete is the leading assumption that 

justifies the strategic use of complexity in theoretical models (for example, see Gabaix 

and Laibson 2006; Spiegler 2006; Carlin 2009; and Armstrong and Vickers 2012), and it 

has been found to impact other forms of disclosure (Cai and Wang 2006; Jin, Luca, and 

Martin forthcoming). 

However, naivete is not the only reason why receivers might not adequately 

adjust their guesses for the bad news communicated by complexity. A receiver who is 

overconfident about their ability to understand complex disclosures will overly trust their 

reading of a complex report when figuring out what action to take. In our experiment, 

overconfidence about the ability to distill complex information can lead receivers to 

ignore the possibility their reading of a complex report is wrong and that the secret 

number is in fact much lower, which is likely to be the case when reports are complex. 

For example, if a receiver quickly adds up the numbers in a complex report to 7, they 

should be wary about guessing 7 because secret numbers that high are very unlikely when 

the message is complex. However, if they are overconfident about their math ability, they 

will be less worried about how unlikely the secret number is to be 7 when the report is 

complex. Thus, overconfidence in their ability to digest complex information can lead 

receivers to underweight the fact that the information being complex is bad news – even 

when they hold correct strategic beliefs about complex messages. 

To study the impact of naivete and overconfidence on receiver guesses, we elicit 

beliefs from subjects about the strategic implications of complexity and about their math 

ability. 12.6% of subjects appear naive about complexity because they guess that the 

average secret number was higher than it actually was when reports were complex. 

33.8% appear overconfident about their math ability because they guess that they 

performed better on a math test than they actually did. Moreover, when receivers are 
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either more naive about complexity or more overconfident about their math ability, they 

systematically over-guess by a larger amount. 

We expand on these results with a structural analysis. Because the impact of 

naivete and overconfidence on receiver guesses is indirect and distorted by boundary 

effects, it is hard to disentangle the extent to which receiver mistakes can be attributed to 

naivete and overconfidence. To investigate, we use a partial-equilibrium structural model 

in which receivers observe a level of complexity, apply their strategic beliefs about the 

link between complexity and states, receive a noisy signal of the state based on the 

complexity level (due to math errors), update their beliefs about the state, and then make 

a guess. Importantly, we estimate math errors out-of-sample using a math test in which 

subjects face high complexity without any strategic considerations.  

As a baseline, we close the model by assuming that strategic beliefs are correct 

and belief updating is perfect, and this version of the model fails to predict the over-

guessing we observe at middle states and the extent of under-guessing we observe at high 

states. If we assume instead that 12.6% of receivers are “Level-1” naive (believe that 

each state is equally likely when reports are complex), we are better able to predict 

receiver guesses, but this assumption does not generate enough naivete to produce over-

guessing of middle secret numbers. However, adding overconfidence about math ability 

at the levels we observe in a math test generates even more accurate predictions of 

receiver guesses and does produce over-guessing of middle secret numbers. This 

structural analysis demonstrates that a simple behavioral model with naivete and 

overconfidence can largely explain the choices we observe in our experiment. 

Evidence that strategic disclosure can be impacted by naivete is consistent with 

results from analogous voluntary disclosure experiments in which senders can either 

disclose or not disclose their information. However, we find two main differences 

between non-disclosure and complex disclosure. First, complexity persists and is 

effective even with repeated feedback, unlike non-disclosure. Second, we find evidence 

that complex disclosure is impacted by an additional bias: overconfidence about ability. 
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This factor is unique to complex disclosure, where noise in messages arises from limits in 

ability, not external randomization devices.10 

To our knowledge, this is the first lab experiment to examine the strategic use of 

complexity for a simple sender-receiver framework in which preferences are known. It 

provides evidence from a controlled environment that complex disclosure can result from 

strategic incentives to shroud information. In addition, our results suggest that strategic 

naivete and overconfidence about the ability to internalize complexity might be important 

drivers of these incentives. Naivete has been proposed in the theoretical literature as 

reason for the strategic use of complexity, but to the best of our knowledge, 

overconfidence about ability has not been previously proposed as an explanation for 

complex disclosure.11 Also, our structural estimates based on naivete and overconfidence 

add to a growing literature that imposes model structure to help understand the relative 

importance of different behavioral biases (DellaVigna 2018). 

The mechanisms we identify in our experiment may most directly help to shed 

light on such as insurance, credit card, and investment choices, where disclosure 

frequently is complex and involves math calculations. This relates to a growing body of 

field evidence demonstrating that many consumers make systematic mistakes when 

making such calculations. For example, Bhargava, Loewenstein and Sydnor (2017) 

examine the health plan choices of 23,894 employees at a U.S. firm, based on a large 

menu of options that differed only in financial cost-sharing and premium. They find that 

the majority of employees chose dominated plans, which resulted in excess spending that 

is equivalent to 24% of chosen plan premiums. Similarly, consumers that responded to a 

lender's inferior solicitation of preapproved credit card offers (Agarwal et a. 2010), and 

credit card issuers provide offers with back-loaded and hidden features, upfront rewards, 

visual distractions, and fine print at the end of the offer letter (Ru and Schoar 2016). 

Systematic mistakes are also found in consumer choice of mortgage loans (Agarwal et al. 

2017) and pension funds (Duarte and Hastings 2012). While the calculations made in 

                                                
10 Overconfidence about ability is less relevant when noise is added mechanically, such as when messages 
are randomly selecting from an interval (as in Cai and Wang 2006). 
11 Grubb (2015) presents evidence of how other forms of overconfidence interact with complex disclosures, 
such as overconfidence about the precision of estimates, overconfidence about self-control, and 
overconfidence about attention to fulfilling contract terms. 
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these settings are far more challenging than the addition task faced by our subjects, this 

might make overconfidence more of a factor, as absolute overconfidence has been found 

to increase with task difficulty (see Moore and Healy 2008). More broadly, our results 

speak to a phenomenon that occurs in a variety of disclosure contexts. People are 

routinely given complex information to digest. Our results suggest there may be a 

strategic component to the level of complexity, as well as systematic mistakes in the 

inferences made based on those complex disclosures.  

The rest of the paper is organized as follows. Section 2 reviews three related 

literatures and articulates our contribution to each. Section 3 presents our experimental 

design. Section 4 discusses our experimental results, looking both at overall behavior and 

dynamic patterns using summary statistics, regression analysis, and structural estimation. 

Section 5 concludes with potential policy implications.  

 

2. Literature Review 

 

Our paper draws on and contributes to three literatures: the literature on voluntary 

and mandatory disclosure, the literature on obfuscation and behavioral biases, and the 

experimental literature. 

 

2.1 Voluntary and Mandatory Disclosure 

 

In virtually every transaction imaginable, companies must decide what 

information to disclose. In practice, voluntary disclosure is observed in many industries, 

but is far from complete.12 As summarized in Dranove and Jin (2010), this 

incompleteness can be explained by external factors such as disclosure cost and consumer 

knowledge before disclosure or by a seller’s strategic incentives.13  

                                                
12 See Mathios (2000), Jin (2005), Bollinger et al. (2011), Bederson et al. (2018), Anderson et al. (2015), 
Fung et al. (2007), and Luca and Smith (2015) for specific examples.  
13 For instance, see Jovanovic (1981) for the impact of disclosure cost on disclosure decisions, see 
Matthews and Postlewaite (1985) on the incentive to not knowing true quality, see Fishman and Hagerty 
(2003) for the impact of having some buyers not understand disclosures, see Feltovich et al. (2002) on 
relating disclosure to counter-signaling, see Board (2009) on the incentive to use disclosure for 
differentiation, see Grubb (2011) on the incentive to hide due to dynamic concerns, and see Marinovic and 
Varas (2016) on disclosure decisions in light of litigation risk. 
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Even if the disclosure itself is mandatory, firms can often choose the content or 

format of their disclosures. This leads to a mix of voluntary and mandated elements in 

reporting. For instance, policies that mandate disclosure on a limited number of 

dimensions may encourage firms to redirect resources to the mandated dimensions but 

shirk on other dimensions (Lu 2012). Even on the mandated dimensions, firms may game 

the definition of the mandated statistics (Dranove et al. 2003; Jacob and Levitt 2003) or 

shroud it in a way that obfuscates important details (Brown et al. 2010).  

Because we focus tightly on the choice of simple or complex disclosure, we 

exclude many other external factors that could complicate a firm’s choice of simplicity in 

a mandatory disclosure setting, such as sender uncertainty, legal concerns, and disclosure 

costs. In doing so, we simplify the strategic interaction between sender and receiver, 

which helps us to isolate how actions are driven by information and beliefs. 

 

2.2 Obfuscation and Behavioral Biases 

 

The empirical literature has documented several examples of obfuscation. Brown, 

et al. (2010) show that shipping and handling cost is often shrouded on e-commerce 

platforms. Sullivan (2017) shows that some hotels keep mandatory resort fees separate 

from room rate, and some online travel platforms conduct the price search by room rate 

only and do not disclose resort fees until consumers reach the hotel-specific page before 

payment. Obfuscation can also appear in a more sophisticated way. Ellison and Ellison 

(2009) document a loss-leader strategy by Internet retailers. In that strategy, the retailer 

sets a low price for a low-quality product on a price comparison site, and then persuades 

consumers to buy higher-quality products at a greater markup after consumers visit the 

retailer’s website. Célérier and Vallée (2017) find that banks offer retail investment 

products in ways that are consistent with strategic obfuscation. For instance, more 

complex products are more expensive and are more harmful for consumers. 

While these studies largely focus on the seller’s choice of obfuscation, other 

empirical studies document the behavior of information receivers. Chetty et al. (2009) 

study two price regimes that include or exclude tax in the list price (tax rate is well 

known). They find that people are much less responsive to tax in the second regime 
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because taxes are more complicated to compute. Blake et al. (2017) study an online ticket 

platform that switched from transparent pricing to hiding transaction fees until payment. 

They find that consumers are more likely to buy more tickets and pay higher price if 

transaction fees are “back-end.” Pope (2009) and Luca and Smith (2013) show that the 

salience of quality disclosure determines the extent to which customers respond. In a 

variety of settings, people are found inattentive to relevant details even after disclosure 

occurs (Armstrong and Chen 2010; DellaVigna and Pollet 2005; DellaVigna and Pollet 

2009; Lacetera et al. 2012; Englmaier et al. 2017). In a similar spirit, Hanna, 

Mullainathan, and Schwartzstein (2014) show that often consumers only attend to certain 

once-overlooked information when information is presented in a summary form.  

Our lab experiment complements this field work by jointly studying the decisions 

of senders and receivers in an environment where we control both incentives and 

information and remove non-behavioral reasons for complex disclosure. By measuring 

sender and receiver mistakes at the same time, we can accurately determine departures 

from equilibrium and shed light on the extent to which our subjects behave optimally in 

response to their opponents’ actions.  

In addition, because we measure subjects’ beliefs and study the extent and nature 

of their belief biases, our work speaks to a growing literature that models the relationship 

between firm obfuscation and consumer naivete. For example, Ellison (2005) shows that 

add-on pricing can be rationalized if one adds a subpopulation of irrational consumers. 

Gabaix and Laibson (2006) develop a model in which firms can shroud dimensions of 

product information when some consumers are myopic or unaware. Heidhues et al. 

(2016) further give out the conditions under which a shrouding equilibrium arises when 

naive consumers ignore add-on prices until at least one firm unshrouds (reveals) the 

additional price. Spiegler (2006) assumes consumers are only capable of evaluating one 

of many dimensions of the product, which motivates firms to obfuscate by making the 

product more attractive on some dimensions but less attractive on others. Similarly, 

Armstrong and Vickers (2012) model bank overdraft fees in a market where some 

consumers are sophisticated, and some consumers are naive, and they show that 

competition may end up subsidizing the sophisticated at the expense of the naive. Bianchi 

and Jehiel (2015) capture complexity choice in financial disclosures by allowing firms to 
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add noise in the signals that disclosure provides, and in their model, investors make 

mistakes with noisy signals because they over-extrapolate from the limited number of 

signals that they receive. Carlin (2009) presents a model in which firms use complex 

pricing when enough consumers are myopic. Hirshleifer and Teoh (2003) consider the 

impact of naivete on financial disclosures, where receivers can be naive about non-

disclosed information and inattentive to disclosed information. These results build on a 

strong tradition in modeling naivete in behavioral economics, including the theories of 

Cursed Equilibrium (Eyster and Rabin 2005), Analogy-Based Expectation Equilibrium 

(Jehiel 2005), Level-k reasoning (Crawford and Iriberri 2007), and coarse thinking 

(Mullainathan et al. 2008). 

Theoretically, receiver naivete is not a necessary condition for senders to choose 

obfuscation. Firms may still engage in obfuscation even if all information receivers are 

rational. In a model where consumers must spend time to search for price, Ellison and 

Wolitzky (2012) show that firms have incentive to increase consumer’s search cost 

through obfuscation. In doing so, obfuscation increases the search cost of consumers, 

raises equilibrium price, and benefits all firms even if some firms do not use obfuscation 

themselves. In a different setting, Perez-Richet and Prady (2012) consider obfuscation to 

a third-party certifier (say bond rating agencies), whose job is to digest and certify the 

disclosed information. They find that even good types may add complexity to disclosed 

information because this could motivate the certifier to lower its validation threshold. de 

Clippel and Rozen (2020) consider a sender whose desired strategy is only implemented 

with an exogenous probability (the “precision level of communication”) and a receiver 

who must exert costly effort to learn about the state when messages are obfuscated. This 

combination of forces generates enough uncertainty about obfuscated messages to 

completely stop unraveling in undominated equilibria. The testable conditions for this 

equilibrium are the testable conditions for a receiver who is rationally inattentive given 

the strategically correct prior beliefs about the state when messages are obfuscated. 

 

2.3 Lab Experiments 
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Our experimental design is related to the cheap talk experiments of Cai and Wang 

(2006) and the voluntary disclosure experiments of Jin et al. (2018).14 For instance, we 

also frame states as “secret numbers” and use a similar payoff structure. The key 

difference in our experimental design is that senders must truthfully reveal their type and 

can make their reports complex. Hence, our experiment examines complex disclosure, 

rather than cheap talk or voluntary disclosure. This difference is meaningful: cheap talk 

and complex disclosure have opposite theoretical predictions when there is a strong 

conflict of interest between senders and receivers, and complexity introduces a new type 

of internally-driven noise about the state (based on limited ability) that is not present in 

cheap talk or voluntary disclosure. 

While our experiment focuses on mandatory disclosure rather than voluntary 

disclosure, the choice of simplicity is voluntary and subject to the same unraveling logic. 

Though unraveling has been confirmed by multiple disclosure experiments, Jin et al. 

(2018) show that immediate and repeated feedback is crucial for subjects to converge to 

the predictions of unraveling. Our results suggest that in a setting different from the 

classical game of voluntary disclosure, even immediate and repeated feedback is not 

enough to salvage the unraveling prediction. 

This paper also joins a growing number of experiments that study the impact of 

complexity on strategic interactions. For example, Sitzia and Zizzo (2011) implement a 

lab experiment in which sellers set the price of products of exogenous complexity, where 

complex products are compound lotteries. Sellers in their experiment do not offer higher 

prices when complexity is higher, but buyers appear to buy a higher quantity of complex 

products. Kalaycı and Potters (2011) implement a lab experiment where sellers determine 

both the price and complexity of products of exogenous quality. In their experiment, 

products are arithmetic strings, quality is the value of that string, and complexity is 

measured by the length of the string. They find that buyers make more mistakes and that 

prices are higher when products are more complex. Their experiment differs from ours in 

that buyers face strong time pressure and are given no information about the objectives 

                                                
14 Montero and Sheth (2019) extend this voluntary disclosure design to consider the impact of consultation 
among receivers and real-world framing, and Sheth (2019) extends this design to consider the impact of 
competition on voluntary disclosure. 
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and incentives of sellers, so it is difficult to know what buyers believe about why sellers 

present products in a complex way. Martin (2015) conducts a lab experiment in which 

sellers set prices of products of exogenous quality, where like Kalaycı and Potters (2011), 

products are arithmetic strings, quality is the value of that string, and complexity is 

measured by the length of the string. He finds that behavior is largely in line with the 

equilibrium of a model where buyers are rationally inattentive to quality. Gu and Wenzel 

(2015) present a lab experiment where competing sellers choose whether to “obfuscate” 

or not, which mechanically changes the degree of naivete in computer buyers, and study 

how often sellers choose to obfuscation under different policy interventions. More 

recently, de Clippel and Rozen (2020) implement a lab experiment where senders can 

obfuscate by requiring receivers to count the number of blue and red balls in a display 

(the state is given by the larger number of balls). They also find that a majority of senders 

strategically obfuscate, but this is an equilibrium response in their game, as the desired 

strategies of senders are only implemented with some probability. 

Our work is also related to lab experiments that study vagueness and ambiguity as 

a way to shroud information. For instance, Serra-Garcia et al. (2011) allow cheap-talk 

communication to take the form of vague messages (reporting a subset of states). They 

find that intermediate senders sometimes use vague messages, which receivers do not 

make correct inferences about. Agranov and Schotter (2012) study the use of both vague 

(natural language) and ambiguous (interval) messages and find that an announcer in 

coordination games might want to use such messages.  

Relative to this literature, we consider complexity as another way to shroud 

information, under the constraint that the reported information must convey the true state 

no matter whether it is simple or complex. In this way, it relates to other disclosure 

experiments were senders are mandated to disclose truthfully but have access to vague 

messages (reporting a subset of states that contains the true state) which are more 

complex than precise messages (Deversi, Ispano, and Schwardmann 2019; Li and 

Schipper 2019). In Li and Schipper (2019), lack of sophistication in disclosure is 

modelled with finite levels of reasoning using iterated admissibility, which produces the 

result that the lowest type sends the vaguest (and hence most complex) possible message 

in the hope a naive receiver will guess a higher type. 
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Finally, our work relates to a large experimental literature on overconfidence, 

which is one of the best documented behavioral biases in the lab (see Moore and Healy 

2008 for both comprehensive evidence and a review). There is mounting evidence from 

lab experiments that ego-utility is an important driver of overconfidence about ability and 

can lead to asymmetric updating in beliefs after receiving feedback about performance 

(Eil and Rao 2011; Mobius, Niederle, Niehaus, and Rosenblat 2011).  

 

 

3. Experimental Design 

 

In this section, we present the game of complex disclosure that we implement in 

the lab. In order to isolate the forces of interest, the game we use takes a simple form. It is 

based on the sender-receiver framework used to study cheap talk by Cai and Wang 

(2006) and voluntary disclosure by Jin et al. (2018). We extend this framework to require 

senders to truthfully disclose the state and allow them to choose the complexity of their 

messages. After presenting our game, then we give other details about the experimental 

design. 

 

3.1 The Complex Disclosure Game 

 

In each round, subjects were paired together, and in each pairing, one subject was 

randomly assigned to be the sender and the other to be the receiver (with equal 

likelihood). To reduce framing effects, the sender was referred to as the “A Player”, and 

the receiver was referred to as the “B Player”. 

In each round and for each pair, the computer drew a whole number from 1 to 10, 

called the “secret” number. Each of these numbers was equally likely to be drawn, and 

both senders and receivers were made aware of this probability distribution. 

Each sender was shown the secret number for their pairing and then made their 

decision about report complexity while the receivers waited. In our main sessions, the 

sender chose a “report length”, which was a whole number c between 1 and 20. The 

computer program then randomly selected c integers between -10 and 10 until those 
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numbers added up to the true state b. Both senders and receivers were told how these 

numbers were generated. 

After all senders made their decisions, the receivers’ screens became active. If a 

sender decided on a report of length c, the receiver they were paired with was shown this 

message: “The number I received is”, followed by a table of c integers ranging from -10 

to 10 that added up to the secret number. The instructions explicitly stated that the sender 

only chooses the report length c and that the table of random numbers is generated by the 

computer. In the appendix, we present the full instructions and an example of a report 

with maximum length (c=20). 

Below the area for the sender’s message, receivers were asked to make a guess a 

of the secret number b, and this guess could be any integer between 1 and 10. The 

receiver had 60 seconds to view the sender’s report and make a guess. If nothing was 

guessed after that time, a random guess is entered for the receiver. In our main sessions, 

less than 4% of receivers hit this time limit. 

Receiver payoffs, denominated in “Experimental Currency Units” (ECU), were , 

where b is the secret number and a is the receiver’s guess.15 These payoffs decrease 

monotonically as the guess moves further from the secret number. The sender payoffs in 

each round were . These payoffs are independent of the secret number and increase 

monotonically with receiver guesses because guesses cannot be higher than 10. These 

payoffs are similar to the quadratic specification found in Crawford and Sobel (1982) 

when there is a large bias towards higher actions. Because we use just a small number of 

states and actions, the payoffs could be shown in a table, so that subjects did not need to 

know or interpret these functional forms. 

With these payoff functions, there was a clear misalignment of interests between 

senders and receivers. Receiver payoffs were higher when their guesses were closer to the 

secret number, and sender payoffs were higher when the receiver made higher guesses. 

                                                
15 We allowed subjects accrue ECU in all rounds because payoffs could vary substantially between roles 
and realizations of the state, and we wanted performance to play a larger role than luck in final payments. 
Cai and Wang (2006) use similar payoff functions and also paid subjects every round. However, this 
approach introduces the possibility of wealth and portfolio effects. To ameliorate such effects, subjects 
were not told the cumulative payoffs they had earned so far in the experiment. 
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Subjects were told about these two features of sender and receiver payoffs in the 

instructions. 

 

3.2 Experimental Sessions 

 

Our sessions were conducted at the Computer Lab for Experimental Research 

(CLER) facility at the Harvard Business School (HBS). In this laboratory, subjects are 

separated with dividers, and each subject was provided with a personal computer 

terminal. Subjects do not have to be Harvard University students, so we restricted 

subjects to be no older than 25 years old in order for the subject pool to be more 

comparable with existing studies that recruit undergraduate students. The software used 

to run the experiments was the z-Tree software package (Fischbacher 2007). 

Each session consisted of 30 rounds of the disclosure game. In each round, 

subjects were randomly matched into pairs. Each subject could be matched with any 

other subject in the session and was equally likely to be paired with any given subject. To 

reduce reputational effects, subjects were matched anonymously and were told that it was 

very unlikely they would be paired with the same subject in consecutive rounds. For a 

session size of 14, the actual likelihood of being paired with the same subject in 

consecutive rounds is 7.7%.  

The purpose of having subjects play both roles is to ensure that both sides have a 

good sense for the incentives and actions available to the other side. This design feature 

might serve to increase strategic sophistication, as prior voluntary disclosure research 

(e.g. Jin et al. 2018) that has found evidence that playing both roles appears to increase 

the extent of learning. Thus, if roles had been fixed instead, we might have observed even 

more evidence of naivete in receivers. However, we do not see much change in behavior 

over rounds in our experiment, so repeated experience in other role does not seem to have 

much of an effect on behavior.  

At the end of each session, subjects were privately paid in cash a show up fee of 

$5 plus all additional earnings they accumulate over the course of the session. ECU were 

converted to U.S. dollars at a rate of 150 to 1 (rounded up to the nearest dollar). While it 

is possible for subjects to end up with a negative balance of ECU, because subjects are 
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paid for every round, this outcome is extremely unlikely and never came close to 

occurring in the sessions we ran. However, because subjects are paid for every round, 

there is the potential for intentional variation in play (a “portfolio” strategy), but we find 

little evidence of such behavior.  

 

3.3 Feedback, Beliefs, Math Test, and Demographics 

 

Our main sessions provide round-by-round feedback. Subjects were told four 

pieces of information after each round: 1) the actual secret number; 2) the report length 

chosen by the sender; 3) the receiver’s guess of the secret number, and; 4) their own 

payoff. After all subjects pressed the “OK” button on the screen containing this feedback, 

the next round began. To reduce social considerations, subjects in the feedback treatment 

were not told the payoff for the other player in their pairing, though it could be deduced 

using the payoff table. In addition, between rounds subjects only received feedback about 

their pairing, not all pairings in the session.  

Once all rounds are completed, subjects were asked questions about their beliefs 

of how other subjects played in their session. First, subjects were asked to guess the 

average report length that senders chose for each secret number. Second, subjects were 

asked to guess the average secret number when the sender chose complexity levels 

between 1 and 5, between 6 and 10, between 11 and 15, and between 16 and 20. The 

purpose of these questions was to assess whether subject beliefs about sender strategies 

influenced their decisions as receivers. These guesses were not incentivized, which 

introduces the possibility of additional noise. However, we find that even with this 

additional noise, elicited beliefs are fairly accurate for most subjects. 

In some sessions, subjects were asked to complete a four-question math test after 

answering the two belief questions. For each question in this test, subjects were asked to 

add up 20 numbers, and were paid $4 if a randomly selected question was correctly 

answered. Subjects were told that the numbers would sum up to an integer between 1 and 

10, that all integers were equally likely, and that the 20 numbers would be generated in 

the same fashion as in the disclosure game. After completing the math test, subjects 

answered two additional belief questions. First, they were asked to guess the number of 
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questions on the math test (from 0 to 4) that they thought they answered correctly. 

Second, they were asked to guess the average number of questions they thought others 

answered correctly.16 These belief questions were also not incentivized. 

At the end of the experiment, subjects were asked to complete a questionnaire that 

includes questions about demographic details. Specifically, subjects are asked for their 

gender, if they are a native English speaker, their year in school, and if they have a friend 

participating in that session. 

 

3.4 Robustness Sessions 

 

For robustness, we adopted two alternative treatments. The first alternative 

replaces round-by-round feedback with “no feedback,” where subjects were given no 

information after completing each round. After all receivers had made their decisions, 

subjects proceeded to a screen that required them to click “OK” to start the next round. 

The no-feedback treatment is designed to contrast with the feedback treatment, so that we 

can determine whether round-by-round feedback is crucial in driving convergence 

towards unraveling as in Jin, Luca, and Martin (2018). The second alternative treatment 

also limits sender choice of report length to the two extremes (c is only 1 or 20) rather 

than the full range from 1 to 20. The reason for this alternative treatment is to determine 

whether play is substantially different if the “strategic complexity” of the game is 

reduced for both senders and receivers. The results of these robustness sessions are 

provided in Section A.4 of the appendix. 

 

4 Experimental Results 

 

In this section, we first report the results from our main sessions and then explore 

the possible reasons behind sender and receiver mistakes. For receivers, we estimate a 

structural model to predict choices both with and without behavioral biases. 

                                                
16 The exact wording of the questions was “For yourself, what do you think was the number of rounds 
(between 0 and 4) answered correctly?” and “For all participants, what do you think was the average 
number of rounds (between 0 and 4) answered correctly?”	
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4.1 Results from the Main Sessions 

 

Table 1 summarizes the characteristics for the subjects in our 29 main sessions. In 

total, we have 294 subjects, all of whom experience both roles (sender and receiver) and 

receive round-by-round feedback for 30 rounds. Roughly 41% of the subjects are male, 

72% are undergraduate students, 85% are native English speakers, and 14% report that 

they have a friend in the same session.17 These demographic distributions are similar to 

the ones reported by Jin, Luca, and Martin (2018), who also conducted experiments in the 

CLER lab. 

 

4.1.1 Summary of Behavior and Mistakes 

 

 Table 2A summarizes sender choice of complexity by secret number. In contrast 

to the unraveling prediction, the average choice of complexity is 9.728 and increases 

almost monotonically as the secret number gets smaller.18 For the two smallest secret 

numbers (1 and 2), a majority of senders choose the maximum complexity (report length 

c=20) and over 72% choose high complexity (c≥15). For the two highest secret numbers 

(9 and 10), a majority of senders choose the simplest report (c=1) and over 72% choose 

low complexity (c≤5). 

 Figure 1A depicts the distribution of complexity choices for each secret number, 

where the size of the bubble represents the number of senders choosing a specific 

complexity level conditional on a specific secret number. Most senders concentrate on 

high complexity when the secret number is below 5, and switch to low complexity when 

the secret number is above 5. If the secret number is exactly 5, sender choices are 

dispersed across all levels of complexity. These patterns continue in the second half of 

the rounds, as shown in Figure 1B.  

                                                
17 One subject did not report any demographics, and three subjects skipped the question about whether they 
were native English speakers. Despite these missing values, we include all subjects in the analysis because 
we can account for these missing values in our subsequent regression analysis.  
18 In a regression of complexity choice onto secret number with individual fixed effects and robust standard 
errors, the coefficient is negative (-1.496) and statistically significant (p<0.001). 
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Figure 1A. Frequency and average sender choice of complexity by secret number with 

95% confidence intervals (main sessions)  

 
Figure 1B. Frequency and average sender choice of complexity by secret number in the 

second half of rounds with 95% confidence intervals (main sessions)  

 
 

 Turning to receivers, Table 2B shows that the median receiver guess is correct for 

every secret number, but the average guess is significantly different from the secret 
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number for every secret number except for 6 and 7 (using a two-sided t-test and a 

significance level of 5%). On average, the bias in receiver mistakes reveals much greater 

over-guessing for low secret numbers (1.183 for secret numbers of 1 and 0.936 for 2) 

than under-guessing for high secret numbers (-0.367 for 9 and -0.403 for 10). 

To further explore receiver behavior, we define the size of receiver mistakes as 

the absolute distance between the receiver guess and the secret number. As shown in 

Table 2B, the average receiver mistake size is the highest for the lowest secret number 

(c=1) and decreases almost monotonically with secret number.19 This is consistent with 

the fact that senders present simpler reports for higher secret numbers, which reduces the 

potential for math errors, shortens the response time for receivers, and lowers the 

probability of receivers not making a decision within the 60 second time limit. For the 

less than 4% of receivers that are over the time limit, the computer generates a random 

guess, which can lead to large mistakes. Excluding these observations, receiver mistakes 

remain large for the smallest secret numbers (0.946 for secret numbers of 1 and 0.777 for 

2) as compared to the mistake sizes for large secret numbers (between 0.370 and 0.379 

for secret numbers between 6 and 10). In fact, mistake sizes are significantly different 

between secret numbers of 1 and 10 using a two-sided Wilcoxon rank-sum test (p-

value<0.001). 

 Because receivers observe the complexity of sender reports, Table 3 tabulates 

how receiver guesses and mistakes vary by the complexity level of sender reports, as well 

as the secret numbers behind these reports. On average, we observe a small amount of 

under-guessing for complexity up to a length of 4. For complexity between 5 and 12, the 

number of observations is smaller, and the average guess fluctuates between over-guess 

and under-guess. Once complexity is over 12, we observe consistent over-guessing that 

peaks at the highest level of complexity (0.655 for length 20). Interestingly, the size of 

receiver mistakes is less monotonic, but is clearly much higher for high complexity than 

for low and medium complexity.20 These results are robust to excluding rounds where 

receivers did not make their decision within the time limit. Without those rounds, the 

                                                
19 In a regression of mistake size onto secret number with individual fixed effects and robust standard 
errors, the coefficient is negative (-0.085) and statistically significant (p<0.001).	
20 In a regression of mistake size onto complexity with individual fixed effects and robust standard errors, 
the coefficient is positive (0.054) and statistically significant (p<0.001). 
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magnitude of receiver mistakes is slightly lower for the two highest complexity levels 

(0.783 versus 0.748 for length 19, and 1.284 versus 1.008 for length 20). 

Absent behavioral factors, one would imagine that receiver mistakes should be 

zero for the simplest reports because such report reveals the secret number exactly. In 

contrast, the data shows an average mistake of 0.243 for length 1 and 0.257 for length 2, 

which are significantly different from 0 using a two-sided t-test.  

To show the joint impact of secret numbers and complexity, Table 4 cross-

tabulates secret numbers by low (≤5), medium (6-14), and high (≥15) levels of 

complexity. When the secret number is presented simply, receivers tend to have largest 

mistakes (0.6 on average) for the lowest secret number (1). This is consistent with social 

preferences because a simple report of a low states is helpful for receivers but harmful for 

senders, so some receivers may be willing to reciprocate to “honest” senders by 

sacrificing their own payoff to reward this behavior. However, it may also reflect 

confusion of about the game. These possibilities are discussed and analyzed further in 

Section 4.3. 

 

4.1.2 Payoff Losses 

 

So far, we have documented that sender choices of complexity deviate from the 

unraveling prediction and that receiver guesses deviate from the true state. But do these 

deviations lead to payoff losses? 

To address this possibility, we measure how far a subject is from taking the 

payoff-maximizing action in each decision problem, which provides a rough sense for the 

size and consequences of the “mistakes” they are making.21 To do this, we construct the 

average opponent strategy from our data, determine the expected payoffs from taking 

each possible action, and then calculate how far the expected payoff for the taken action 

is from the highest expected payoff.22 For senders, the possible actions are grouped as 

                                                
21 This does not tell us if receiver mistakes are optimal given the noise generated by complexity. The 
question of whether receivers are acting optimally will be addressed later in the analysis. 
22 Because the minimum possible payoff can be negative, we normalize payoffs by subtracting the 
minimum possible payoff (for the realized state) to the payoffs from taking any action in that state. 
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low (1-5), medium (6-14), and high (15-20) complexity.23 For receivers, the possible 

actions are limited to the guesses available to them, which are integers between 1 and 10.  

All of our calculations take an ex-ante perspective, so when determining the 

highest expected payoff for receivers, we assume that all states are equally likely to 

happen and determine the average sender behavior separately for each state. In addition, 

we pool all rounds when determining average sender and receiver behavior, which is 

equivalent to assuming that a subject is equally likely to face an opponent from any 

round.24  

  Table 5 reports the monetary losses that result from actions taken in our main 

sessions. On average, senders are 15.3% away from the highest expected payoff if they 

take the empirical distribution of receiver guesses for each complexity group as given. 

This percentage differs substantially across secret numbers: for the highest secret number 

(10), sender choice (mostly low complexity) is close to optimal (3.8% loss); but for the 

lowest secret number, sender choice (mostly high complexity) is still 51.6% away from 

the highest payoff. This is driven mostly by the failure to always use high complexity 

when facing a secret number of 1. 

We also calculate expected payoffs relative to the payoff that senders would get in 

the unraveling equilibrium. Because the unraveling equilibrium predicts different receiver 

behavior that we observe, sender payoffs in equilibrium could be higher or lower than the 

sender payoff observed in our data. It turns out that sender choice of complexity results in 

a 71.4% expected gain for secret numbers of 2 and a 3.9% expected loss for secret 

numbers of 10, relative to the unraveling equilibrium. We cannot do the same exercise for 

a secret number 1 because the normalized equilibrium payoff is 0. 

 Table 5 also reports the percentage off from the highest expected payoff that 

receivers could have achieved if they guessed based just on the observed complexity 

level (given the empirical distribution of sender types for that complexity level). This 

                                                
23 We grouped these actions because some complexity levels are rarely chosen by senders for some secret 
numbers, thus we could have a non-reliable density in the empirical distribution of sender choice of 
complexity conditional on these secret numbers. Our results are robust to small changes in the boundaries 
of these groups, such as having “low” just be lengths of 1 and “high” be lengths of 20. 
24 These assumptions may not hold in a dynamic environment that features learning. We will present 
evidence of learning in Section 4.1.3 and control for these dynamic effects in the regression analyses 
presented in Section 4.1.4. 
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deviation is 13.8% for low complexity, 16% for medium complexity, and 16.7% for high 

complexity. On average, receiver payoffs are 30 to 33% worse than the payoff that 

receivers would get in an unraveling equilibrium, because receivers would know every 

state perfectly in this equilibrium. Note that the departure from highest expected payoffs 

is not readily comparable between senders and receivers, because their payoffs differ in 

both scale and range. 

 In short, there are non-trivial sender mistakes and receiver mistakes, even when 

we measure them in the payoff space. We test the robustness of these results to dynamic 

effects in Sections 4.1.3 and 4.1.4 and explore the reasons behind these mistakes in 

Sections 4.2 and 4.3. 

  

4.1.3 Evidence of Learning 

 

To provide detail on sender complexity use over rounds, the first panel of Table 6 

also presents how sender payoffs depart from the highest expected payoff over rounds 

(taking the empirical distribution of receiver behavior as given and fixed over rounds). 

Overall, we see a gradual improvement from the first 10 rounds (15.9% departure) to the 

last 10 rounds of the game (14.2%).  

Breaking this down by secret number, the biggest improvement comes from the 

lowest secret number (1), where the departure from the highest payoff drops from 55.1% 

in the first 10 rounds to 51.5% and 48.4% in the second and third blocks of 10 rounds. 

Strikingly, this improvement is accompanied by senders increasing their choice of 

complexity for this secret number. In comparison, at the highest secret number (10) 

senders get closer to the highest payoff (from 5.3% departure in the first 10 rounds to 

3.1% in the last 10 rounds) while decreasing their use of complexity (from 5.829 to 

2.512). The increase in complexity use for low secret numbers and the decrease in 

complexity use for high secret numbers can be seen by comparing Figures 1A and 1B. 

For other secret numbers above 5, we also see senders decrease their use of 

complexity over the experiment. However, for secret numbers at or below 5, senders 

continue to use substantial amounts of complex disclosure throughout the experiment, as 

reflected in an average complexity choice above 10 in the last block of rounds.  
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Table 6 provides evidence of learning on the receiver side. Throughout the game, 

the average receiver mistake drops for all three groups of complexity, but the biggest 

drop occurs for high complexity. Departure from the highest payoff improves as well, 

while the magnitude of improvement tends to be much larger for medium and high 

complexity (from ~18% to ~13%) than for low complexity (from 15.3% to 13.7%). 

 

4.1.4 Regression Results 

 

Table 7A presents the results of our regressions based on sender behavior, and 

Table 7B presents those based on receiver behavior. The motivation for these regressions 

is to replicate our results while controlling for round-by-round changes in sender and 

receiver behavior, which we reported in the previous section. 

For senders, the dependent variables are sender choice of complexity and the 

payoff departure from the highest expected payoff. In the first and third columns of Table 

7A, we include subject demographics and session fixed effects. Taking a secret number 

of 1 as the default, Table 7A shows that senders choose significantly less complexity and 

depart less from the highest payoff when their secret number increases. This is consistent 

with our results without subject, session, or round controls. 

To capture sender learning, we include the round number (1-30) and the 

interaction with whether the secret number is in the medium (4-6) or high range (7-10). 

These coefficients suggest that senders learn to increase complexity for low states (1-3) 

but decrease complexity for medium and high states. We also include a dummy for the 

first five rounds, in case the initial learning about the game creates a level effect in choice 

of complexity. There is little evidence for a difference when controlling for other factors. 

Columns (2) and (4) include sender fixed effects, which absorb individual 

demographics. Results for most coefficients are similar to what we have without 

individual fixed effects, suggesting that sender choice and learning are not driven by 

unobserved individual characteristics. For example, this suggests that complexity use is 

not higher for lower secret numbers just because senders who are more likely to use 

secret numbers (e.g., unkind senders who enjoy annoying receivers) were by chance 

assigned lower secret numbers. 
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  Turning to receivers, Table 7B attempts to understand the absolute size of 

receiver mistakes and receiver’s payoff losses when controlling for time trends. Because 

we want to study the mistakes that receivers actively made, we focus our analysis on the 

96% of receiver guesses that are made before the time limit. Since receivers observe the 

sender’s choice of complexity, we include a separate dummy for each complexity level. 

We control for the same subject-level variables as in the sender regression, but we also 

include the receiver’s response time. 

Compared with the default complexity (1), Table 7B shows that receiver mistakes 

drop significantly for some low complexity levels but increase significantly for some 

levels of high complexity. This pattern is similar with and without subject fixed effects. 

Results on payoff losses are less consistent, but once we control for subject fixed effects, 

payoff losses increase significantly between the default complexity and some high 

complexity levels. Receivers do appear to lower their guess for high complexity over 

time (after we control for subject fixed effects). As a result, they depart less from the 

highest expected payoff with high complexity. 

 

4.2 Reasons Behind Sender Mistakes 

 

 From a policy perspective, sender mistakes often capture less interest than 

receiver mistakes, partly because senders tend to be firms in most field applications, and 

firms have more resources to overcome their mistakes. However, because subjects play 

both roles in our experiment, we can hope to learn something about the sources of 

receiver mistakes by looking at the sources of sender mistakes. 

The largest sender losses come from two types of mistakes: using high complexity 

when the state is high and using low complexity when the state is low. In our main 

sessions, the former decreases from 11.4% of high-state decisions in the first half of 

rounds to 7.8% in the second, and the latter occurs in 16.0% of low-state decisions in 

both the first and second half of rounds. 
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Both types of sender mistakes could be driven by incorrect beliefs about receiver 

actions, random errors, or confusion about game form.25 These factors could be 

ameliorated with experience and feedback, so we might expect their impact to lessen over 

rounds. However, only the incidence rate of the first mistake – choosing a high 

complexity level in a high state – decreases over rounds. Evidence that these mistakes 

might be driven by errors or confusion can be found by comparing the choices a subject 

makes as a sender and a receiver: there is a positive correlation (0.1344) between the 

likelihood of a subject choosing a high complexity level in high states as a sender and 

incorrectly guessing by more than one integer with a simple report when a receiver.  

Both types of sender mistakes could also be driven by social preferences. Spite 

could drive senders to use high complexity when it is not justified in their own payoff, 

and social norms could drive senders to use low complexity when it is not justified by 

payoffs. We find some evidence that choosing low complexity in a low state is driven by 

social preferences by once again comparing the choices a subject makes when they are a 

sender versus a receiver. If some subjects think that the socially correct action is to 

disclose simply for even low states, then they might act in this way and reward senders 

who do the same. In fact, there is a positive correlation (0.2666) between the likelihood 

of a subject choosing a low complexity level in low states as a sender and over-guessing 

the state by one integer with a simple report as a receiver.  

 Because subjects play in both roles, we will include these two possible reasons for 

sender mistakes – confusion and social preferences – into our baseline model of receiver 

guesses. However, we find that neither appears to be a major driver of receiver mistakes. 

 

4.3 Reasons Behind Receiver Mistakes  

 

 In this section, we study the reasons for the mistakes that receivers make when the 

secret number is presented in a complex way. Along the way, we also explore the reasons 

behind the mistakes made with simple reports, but our primary focus is on complex 

reports because the vast majority of receiver mistakes occur when the secret number is 

                                                
25	Martin and Munoz-Rodriguez (2019) find evidence of inattention to game form in experiments that use 
the BDM mechanism.	
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disclosed with high complexity, and it is these mistakes that justify the complexity that is 

observed in our experiment. As a consequence, in the subsequent analyses we only use 

receiver guesses from rounds where senders chose high complexity and where receivers 

made a guess before the time limit. 

We start by modeling receiver mistakes using Logit choice (as in the Quantal 

Response Equilibrium approach of McKelvey and Palfrey 1995), which assumes that 

receivers have Logit demand for each action based on the expected payoffs to taking each 

action given the empirical distribution of opponent actions. This approach has a free 

parameter often interpreted as the sensitivity of errors to expected payoffs, which we 

estimate using maximum likelihood. As can be seen in Table 9, the predictions based on 

this estimated parameter produce an average likelihood of -1.733 and do a reasonably 

good job at predicting the rates of over-guessing and under-guessing in the experiment. In 

particular, it is able to capture over-guessing for middle secret numbers.  

However, while Logit choice is successful at explaining receiver mistakes, it does 

not indicate why receivers are making these particular mistakes. The two primary forces 

we consider for receiver over-guessing of complexity reports are naivete and 

overconfidence about ability, but we also consider several other possibilities, such as pure 

boundary effects, social preferences, confusion, and risk preferences.26 To help identify 

naivete and overconfidence, we elicited subject beliefs about the strategic implications of 

complex disclosure and their performance in a short math test. 

   

4.3.1 Beliefs about Senders and Math Ability 

 

As mentioned previously, after all 30 rounds of the game were completed, we 

asked subjects to report what they think the secret number was on average in their session 

when the report complexity was 1-5, 6-10, 11-15, and 16-20.27 We refer to a subject’s 

guess of the average secret number when the report complexity was 16-20 as their 

                                                
26 Other possible explanations are considered in Section A.5 of the appendix. 
27 This belief question uses a different grouping of complexity levels due to a lack of perfect foresight about 
the clustering of sender actions. Throughout the rest of the paper, we group complexity into low (1-5), 
medium (6-14) and high (15-20) levels because the empirical distribution of sender choice has much higher 
density at the two ends (1 and 20) and there is clear bunching at 1, 5, 10, 15 and 20. This difference does 
not affect our analysis, as we report the summary statistics of stated beliefs separately from other variables. 
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“complex guess”, and we classify subjects as being “naive” if their complex guess is 

higher than the actual average secret number when complexity was 16-20 in their session. 

Across all 294 subjects, 12.6% are classified as naive. When naive, the average amount 

of naivete is 3.491, which is 98.9% above the actual average secret number in their 

session.28 Out of the 160 subjects who also completed the math test, 9.4% are classified 

as naive. 

The average answers are presented, along with the actual average secret number 

for each complexity level, in Figure 2 and in the top panel of Table 8. Given that just 

12.6% of subjects are classified as naive, it is unsurprising that the average complex 

guess (2.510) is lower than both the actual average secret number for such reports (3.626) 

and the average guess in the game for such reports (4.191). 

 

Figure 2: Average secret number and stated beliefs of average secret number by 

complexity of 1-5, 6-10, 11-15, or 16-20 with 95% confidence intervals (main sessions) 

 
 

Of course, it is always possible that many more subjects are naive and that the 

reported beliefs of subjects are not the beliefs used by subjects to play the game (a 

                                                
28 This is calculated as the difference between complex guess and the actual average divided by the actual 
average (when the complex guess is higher than the actual average). 
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possibility raised by Costa-Gomes and Weizsäcker 2008). Also, because we elicit beliefs 

at the end of the experiment, it could be that subjects are overweighting their experience 

in the final rounds. However, we observe similar rates of over-guessing in the final 10 

rounds, which suggests that the reasons behind receiver mistakes persist into the final 

rounds. 

We also asked subjects to guess the average sender choice of complexity for each 

secret number, and the average responses are provided in Figure 3. Assuming receivers 

use these stated beliefs as their prior beliefs at the beginning of each round and only use 

the observed complexity level (not the content of each report) to determine the value of 

the secret number, we can infer what they should have guessed via Bayes’ Rule. As 

shown in bottom panel of Table 8, this value (referred to as the “inferred guess”) is on 

average 2.546 for high complexity (c≥15), which is also lower than the average actual 

guess in the game for such reports (4.222). 

 

Figure 3: Average sender choice of complexity and stated beliefs of average sender 

choice of complexity by secret number with 95% confidence intervals (main sessions) 

 
 

After these strategic beliefs were elicited, 160 subjects were asked to complete a 

math test that consisted of four questions. Each question required them to sum 20 
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numbers in a table similar to the most complex table in our game, and these questions 

were incentivized for correct answers. As shown in Figure 4, 54 subjects got all four 

questions correct (33.75%), 48 get one wrong (30%), 27 get two wrong (16.88%), and the 

remaining get either three wrong (10.62%) or all wrong (8.75%).  

 

Figure 4: Math test performance and stated beliefs of math test performance

 
 

For the 160 subjects that completed the math test, we classify 33.8% as 

overconfident because they think they answered more questions correctly than they 

actually did. When overconfident, the average amount of overconfidence is 1.53. For the 

overconfident subjects who answered at least one correctly, this is 76.43% over their 

actual math test performance on average.29 

Out of all subjects who completed the math test, 41.88% believe they got all four 

questions correct and 72.5% believe they got three or four correct (also shown in Figure 

4). Both of these rates are higher than the actual fraction of subjects who got this many 

correct (33.75% and 63.75% respectively). When asked to predict the average number of 

                                                
29 This is calculated as the difference between their guess of number answered correctly and the actual 
number they answered correctly divided by the actual number they answered correctly (when their guess of 
number answered correctly is larger than the actual number answered correctly). 
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questions that other subjects answered correctly, the average prediction was 2.694, which 

is close to actual average (also 2.694). 

 

4.3.2 Regressions of Receiver Mistakes on Beliefs 

 

Based on regressions of receiver mistakes onto the extent of naivete and 

overconfidence (presented in Table 10), we find evidence that when receivers are more 

naive about complexity and when they are more overconfident about their math 

performance, receivers over-guess by a larger amount. The relationship between these 

measures and the size of mistakes is also statistically significant, negative, and of a 

similar magnitude. 

These regressions strongly suggest that both overconfidence and naivete are 

related to receiver mistakes. However, they do not tell us how much of receiver mistakes 

are explained by these forces, in part because it does not account for boundary effects. To 

get a more precise answer, we develop and estimate a structural model. 

  

4.3.3 Structural Model 

 

Because receivers face an involved decision problem, we investigate the sources 

of receiver mistakes using a partial equilibrium structural model of receiver decision-

making when reports are complex. We use a partial equilibrium model instead of a full 

equilibrium model because senders are largely best responding to receiver behavior. 

Thus, if we can find a partial equilibrium model that explains receiver behavior, then the 

behavior in our experiment can be explained using a full equilibrium model with rational 

senders and possibly irrational (overconfident or naive) receivers.  

In our estimations of this model, we pool all receiver guesses for complexity 

levels above 15 to prove sufficient power for our analysis, but our results are robust to 

just looking at complexity choices of 20. In addition, we estimate parameters by pooling 

the choices of all receivers. This is necessary because we have insufficient power to study 

each individual in isolation. As a consequence, we treat the parameter estimates for this 

model as coming from a representative agent. 
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In the model, we assume that a receiver facing a complex message (c≥15) has prior 

beliefs about the likelihood of each secret number b given by F (the distribution of sender 

types using this type of complexity). The receiver then observes a noisy signal of the secret 

number, which can be interpreted as either an error in summing the numbers or partial 

attention to the grid of numbers.30 We assume that this noise signal is generated by adding 

to the secret number an error term e drawn from the distribution G (for this complexity 

level), so that 

! = # + %, 'ℎ%)%	%~, 

We assume that the distribution of additive errors G has support over the integers {-9,-

8,…,0,…,8,9}. To increase power, we assume this distribution is symmetric, so the 

distribution has just 10 parameters to estimate.31 

Based on the signal x and their prior beliefs F, the receiver forms posterior beliefs 

- and takes an action a (makes the guess) that maximizes their expected utility subject to 

some probability of making strategic errors. This decision rule is given by the following 

optimization problem: 

./!0∈23 -(#|!)78(/, #)
9∈:

 

'ℎ%)%	-(#|!) = ;(#),(! − #)
∑ ;(#>),(! − #>)9>∈:

 

We also assume that strategic confusion results in a receiver sometimes guessing 

in a uniform random way. In the Level-k model, this is often designated as the “Level-0” 

behavior. Because we are using a representative agent model, this is as if some fraction of 

agents are Level-0 agents. Formally, this means for some fraction of choices, the receiver 

chooses every action  with equal probability. 

As a robustness check, we assume that the receiver sometimes uses social 

preferences that take the form proposed by Fehr and Schmidt (1999). Note that only one 

parameter of this model (advantageous inequality b) will have bite. For these choices, the 

decision rule is instead given by the following optimization problem: 

                                                
30 We consider the possibility of the receiver choosing to get a signal in Section A.6 of the appendix. 
31 The assumption of symmetry appears to be justified by the data, as we see largely symmetric errors in a 
math test where there is high complexity but no strategic considerations (see Figure A1 in the appendix). 
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./!0∈23 -(#|!)[78(/, #) − b(78(/, #) − 7@(/, #))]
9∈:

 

As an additional robustness check, we assume that utility takes the CRRA form, 

which means that we allow a free parameter a. In this check, we assume that the utility of 

the receiver is instead given by: 

78(/, #)BCa
1 − a

 

We also consider two possible behavioral factors: naivete and overconfidence. 

We add naivete to our model by assuming that with some probability receivers think that 

all states are equally likely. In the Level-k approach, this often constitutes Level-1 

beliefs: that opponents are guessing randomly. Formally, this means that -(#|!) = B
|2|. 

We add overconfidence to our model by assuming that with some probability receivers 

think that noise is actually draw from the distribution G’ when is actually drawn from G. 

  

4.3.4 Estimating Math Errors  

 

We assume that math error determines the precision of the signal x, and therefore 

affects the receiver’s posterior beliefs about the secret number. We could impose strong 

assumptions on the distribution of math errors and try to identify it using receiver 

decisions in the game, but we choose instead to estimate it out-of-sample for cleaner 

identification. In particular, we estimate the distribution of math errors non-

parametrically, using the math errors found in the math test completed after playing the 

game. The questions in this test have a similar level of complexity as a report with high 

complexity, but there should be minimal strategic or social considerations when 

answering these questions, and the payoff function is such that the receiver should report 

their modal belief of the secret number, regardless of their risk preferences.  

By assuming that receivers guess their signal, we can identify from guesses and 

secret numbers the frequency with which each signal is realized. To estimate G in this 

way, we used the math test answers for the 160 subjects who completed the math test.32 

                                                
32 Because we do not observe guesses when subjects hit the time limit, we exclude these decisions from the 
estimation. 
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The resulting estimate places a large mass (72.5%) on no noise (e=0), and the average 

parameter is 4.8 percentage points from the corresponding parameter in a distribution that 

places all weight on no noise. Our estimate of G is presented visually in Figure A1 in the 

appendix. 

 

4.3.5 Estimating Strategic Confusion and Social Preferences 

 

We estimate the degree of strategic confusion and the social preferences of the 

subjects jointly, using the guesses of receivers when the message has been reported in a 

low complexity (c≤5). Again, we deliberately use out-of-sample estimation, in order to 

shy away from confounding factors such as math error. In doing so, we assume that there 

are minimal interactions between complexity and strategic confusion or social 

preferences. In practice, it is likely that social considerations when messages are complex 

are different from when messages are simple, as receivers may feel some positive 

reciprocity when simple reports are made.  

The parameters of this model were estimated using the Nelder–Mead method, and 

the standard errors were computed using 1,000 bootstrapping samples. The estimates 

were a 7.4% probability of uniform random choice (with a standard error of 0.007), a 

2.3% probability of using social preferences (with a standard error of 0.005), and a 0.658 

advantageous inequality parameter (with a standard error of 0.194). 

 

4.3.6 Baseline Predictions 

 

In our baseline model receivers hold correct prior beliefs over the distribution of 

states given a complex report (equal to the empirical frequency in the main sessions); 

make math errors in accordance with the estimated distribution G; understand that their 

errors come from this distribution, update their beliefs according to Bayes’ rule; and then 

maximize risk-neutral expected utility given their posterior beliefs, but with the estimated 

probability of strategic confusion (random guessing). Importantly, all of the parameters in 

this model are estimated out-of-sample. 
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Even with correct beliefs, this model predicts over-guessing and under-guessing 

of the extremes because the boundary pushes math errors and strategic errors into the 

middle of distribution, which then pushes guesses into the middle of the distribution. 

However, it does not do so symmetrically. Because senders are much more likely to have 

low secret numbers when they use complexity, receivers should take this into account 

when they guess, given their uncertainty about the state. 

This asymmetry is reflected in the predictions from the model, which are provided 

in Table 9 along with the predictions given by several variants of this model. For 100,000 

simulated draws from the distribution of noise parameters, it predicts over-guessing of 

0.712 for low states, -0.181 for middle states, and -1.662 for high states (with an overall 

average log-likelihood of -1.553). The actual rates of over-guessing were 0.772, 0.096, 

and -0.891. Because of the strong impact of prior beliefs, the baseline model failed to 

capture over-guessing for middle states and over-estimated the degree of under-guessing 

at high states. 

A natural robustness check is adding social preferences to the model. Specifically, 

we add the rate and degree of social preferences estimated out-of-sample, though this is 

likely to be an overestimate of the actual social preferences for senders who use complex 

disclosures. For 100,000 simulations, the amended model predicts over-guessing of 0.792 

for low states, -0.130 for middle states, and -1.640 for high states. While the model 

comes closer to predicting the actual rates of over-guessing, the improvements in 

predicting these rates are small, and the model still fails to capture over-guessing for 

middle states. In addition, the overall average log-likelihood of -1.547 is only a bit better 

for the amended model. 

Because receivers face uncertainty about secret number, another natural 

robustness check is adding risk aversion to the model. To estimate this parameter, we 

conduct a search over a grid of 1,000 values between 0 and 1 using again 100,000 

simulations, and the standard errors were computed using 1,000 bootstrapping samples. 

The parameter that maximizes log-likelihood is set-identified, and the lower bound is 

0.010 and the upper bound is 0.135.33 As Table 9 shows, adding risk aversion to the 

                                                
33 The risk aversion parameter is set identified because changes in the parameter value lead to 
discontinuous changes in the choice probabilities. 
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baseline model does not noticeability improve the overall average log-likelihood or the 

predictions of over-guessing. 

 

4.3.7 Behavioral Factors: Naivete and Overconfidence 

 

In our model, naivete is represented in our model as having Level-1 beliefs: 

believing that all states are equally likely when messages are complex (e.g., that 

complexity conveys no bad news at all). Receivers with these beliefs would guess that the 

average secret number was 5.5, which is higher than it actually was, so they would be 

classified as naive. As reported previously, we classified 12.6% of receivers in our 

experiment as naive because they guessed that the average secret number was higher than 

it actually was when messages were complex. We do not know what these receivers 

believe about the probability of each state when messages were complex, so for 

simplicity, we assume that all hold Level-1 beliefs. With the assumption that 12.6% of 

receivers are “Level-1” naive, the model fits the data better than the baseline model, but 

this assumption does not change receiver decisions enough to produce over-guessing at 

middle states. Based on simulations of 100,000 decisions, the overall average log-

likelihood increases from -1.552 to -1.519. The amended model (still with no free 

parameters) now predicts over-guessing of 0.733 for low states, -0.146 for middle states, 

and -1.554 for high states, where the actual rates of over-guessing were 0.772, 0.096, and 

-0.891. 

To determine the degree of overconfidence to add to our model, we compare 

beliefs about performance on the math test to actual performance on the math test. As 

reported previously, while 72.5% think performed well, only 63.8% actually performed 

well. Using this estimate, we amend the baseline model to assume that receivers think 

they have a 72.5% chance of performing well at math test. In other words, the 

representative agent believes that there is a 72.5% chance that the error came from G’, 

which is estimated non-parametrically from the math test using the answers of subjects 

who actually performed well at the math test. This distribution is shown in Figure A2 in 

the appendix. 
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For the model with overconfidence, the predictions for over-guessing are 0.749 

for low states, 0.018 for middle states, and -0.904 for high states, where the actual rates 

of over-guessing were 0.772, 0.096, and -0.891. Thus, the model with overconfidence is 

able to capture over-guessing for middle states that the baseline model does not capture. 

For example, the baseline model predicts under-guessing when the secret number is 5 

because the distribution of states is heavily skewed towards lower secret numbers, which 

fully rational receiver would take into account when guessing. However, the model with 

overconfidence predicts over-guessing when the secret number is 5 because 

overconfident receivers largely ignore the heavy skew towards lower secret numbers 

when guessing. 

Based on simulations of 100,000 decisions, the average log-likelihood of the 

baseline model when overconfidence is added rises from -1.552 to -1.272, which is even 

higher than the log-likelihood of -1.5194 from the model that includes a portion of Level-

1 receivers. We also run a model that includes both Level-1 naivete and overconfidence, 

and the overall average log-likelihood changes by only a little. In fact, it falls slightly to -

1.274. For this combined model, the predictions of over-guessing are 0.761 for low states, 

0.027 for middle states, and -0.890 for high states, where the actual rates of over-guessing 

were 0.772, 0.096, and -0.891. 

We also consider an alternative method for estimating overconfidence, which is 

inspired by the approach for determining distortions of Bayes’ rule used in Grether 

(1980) and Holt and Smith (2009). Our approach, which has a free parameter, is to 

assume that when updating beliefs, the probability that a signal is observed in a certain 

state is raised to the power of the parameter. When this parameter is equal to 1, the 

receiver updates Bayes’ rule in the standard fashion. When this parameter is greater than 

1, if a signal is more likely in a state (such as the probability of receiving a signal of 7 

when the true state is 7), then more weight is given to the state given this signal (such as 

the probability the true state is 7 given a signal of 7). To estimate this parameter, we 

conducted a search over a grid of 1,000 values between 1 and 30 using 100,000 

simulations, and the standard errors were computed using 1,000 bootstrapping samples. 

The parameter value that maximizes log-likelihood is also set-identified, but the lower 

bound is 16.760, which is far from the Bayesian value of 1.  
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This approach also does a good job at explaining receiver guesses. The overall 

average log-likelihood is -1.261, which is a bit better than the log-likelihood of -1.272 

from the initial model with overconfidence (though this new model does not have free 

parameter). The predictions for over-guessing are 0.776 for low states, 0.050 for middle 

states, and -0.800 for high states, where the actual rates of over-guessing were 0.772, 

0.096, and -0.891. 

 

4.3.9 Overconfidence and Beliefs 

 

To investigate whether mistakes due to overconfidence can persist even if 

subjects have correct strategic beliefs, we ran an additional math test using where the 

likelihood of each answer was skewed exactly as in the experiment. After completing the 

standard math test, in which each answer was equally likely, 70 subjects faced an 

additional math test in which the likelihood of each answer followed the empirical 

distribution of states for complex reports from that session. Subjects were told the 

distribution, but not that it was taken from the experiment. 

For these 70 subjects, the average bias in mistakes for complex reports during the 

experiment was 1.33 for secret numbers of 1 (n=84) and 1.27 for secret numbers of 2 

(n=88). In the additional math test, in which subjects faced the same distribution of states 

but were told the distribution, the corresponding averages were 0.95 (n=64) and 0.82 

(n=62). While admittedly underpowered, a two-tailed t-test does not provide a difference 

between the average bias at either secret number (p-values of 0.3224 and 0.2631). Thus, 

we do not have evidence that mistakes would change much in the face of correct beliefs 

about the underlying distribution. 

 

5. Conclusion and Policy Implications 

 

Our results highlight the incentives for firms to strategically complexify 

information disclosed to consumers, potentially harming consumers and undermining the 

effectiveness of disclosure. In our experiment, senders use complex disclosure frequently. 



	 40 

Most of this obfuscation is profitable because receivers make systematic mistakes in 

assessing complex reports. 

The patterns we observe have policy implications as well. For example, many 

obfuscation theories assume naivete in (a fraction of) consumers, hence consumer 

education that reduces naivete should alleviate the seller’s incentives to obfuscate. But 

sophistication does not save them from obfuscation if they are overconfident about their 

ability to comprehend complex reports. Policy tools that target overconfidence can be 

different from education efforts that target consumer naivete.  

Given this, our results suggest that overconfidence might be worth exploring in 

follow-up lab experiments, field studies on complex disclosure, and theoretical models of 

complex disclosure. In particular, it would be important to establish for which types of 

complexity such an effect might exist. For example, whether overconfidence also impacts 

settings with linguistic complexity or vague messages. If this previously over-looked 

force is found to matter in those settings also, it might be worth addressing in regulatory 

policy on complex disclosure, as it has a distinct set of policy implications. For example, 

overconfidence could produce asymmetry in belief updating, which would make 

feedback less effective at reducing receiver mistakes, as we observe in our experiment. 

 The link between overconfidence and complex disclosure could be strengthened in 

a number of ways. For instance, an involved math test could be used to measure both math 

errors and overconfidence precisely at an individual level, which could make it possible to 

generate structural estimates at an individual level. Natural variation in math errors and 

overconfidence across subjects would then produce a strong test of model fitness. 

Additional belief elicitation could also be used to enhance reduced-form and structural 

estimates. For example, beliefs could be elicited about distribution of mistake sizes (e.g., 

how often off by one, two, etc.) or the subjective probability of number correct (e.g., how 

likely it is they got 4 correct) to provide a more nuanced sense of overconfidence. The link 

between overconfidence in the math task and disclosure game could also be more tightly 

linked by asking receivers about their performance in the disclosure game (e.g., how many 

guesses were correct in the game). However, there is evidence that overconfident 

individuals can distort their memories of past performance (Huffman, Raymond, and 

Shvets, 2018).  
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Additionally, it might be possible to produce exogenous variation in 

overconfidence and to examine its impact on the extent of complex disclosure. Examples 

from the literature include varying the type of future tasks faced (Schwardmann and Van 

der Weele, 2019), by adding noise into the feedback provided (Fischer and Sliwka, 2018), 

varying task difficulty (Moore and Healy, 2007), and having overconfident subjects select 

into the task (Camerer and Lovallo 1999). Also, subjects could be offered, at a cost, access 

to a calculator that quickly and automatically sums the messages. Overconfident subjects 

are likely to undervalue such a calculator. 

Our results also suggest that a mandate on simplicity can be as important as a 

mandate on truthful disclosure. More generally, this highlights the potential for regulation 

aimed at encouraging disclosure to be both simple and salient. The subsequent 

policymaking challenge becomes identifying which simple and salient disclosures provide 

the highest welfare (Hershfield and Roese 2015; Caplin and Martin 2020). Another policy 

implication is seen in sender behavior. Surprisingly, round-by-round feedback does not 

reduce obfuscation. If anything, learning encourages senders to understand receiver 

mistakes in low states and exploit it via obfuscation.  

A final policy implication is related to disclosure in general. Our results suggest 

that the unraveling prediction is fragile. Although immediate and repeated feedback can 

steer voluntary disclosure towards the predictions of unraveling, it fails once we change 

the setting a little away from simple, voluntary disclosure. How to harvest the benefits of 

the incentives produced by unraveling remains a challenge in the real world. 
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Table 1. Summary of subject characteristics (main sessions) 

Variable N Mean Std. dev. 
Number of subjects in the session 294 10.680 2.554 
Feedback provided (dummy) 294 1.000 0.000 
Male (dummy) 293 0.410 0.493 
Undergraduate (dummy) 293 0.720 0.450 
Native English speaker (dummy) 290 0.852 0.356 
Friend in the session (dummy) 293 0.143 0.351 

Note: Observation is per subject. Value is missing if demographic information not 
provided by the subject. 

 

Table 2A. Summary of sender choices of complexity by secret number (main sessions) 

  Sender choice of complexity High complexity 
(length≥15) 

Low complexity 
(length≤5)    

Secret 
number N Mean Median Std. 

dev. Mean Mean 
   

1 449 15.626 20 6.619 0.728 0.145    
2 444 15.782 20 6.157 0.721 0.115    
3 464 13.983 17 6.837 0.616 0.19    
4 422 11.969 13 7.218 0.486 0.275    
5 433 10.607 10 7.13 0.390 0.344    
6 453 8.243 6 6.914 0.254 0.455    
7 424 6.748 4 6.664 0.198 0.583    
8 427 5.286 2 6.288 0.141 0.71    
9 447 4.879 1 6.197 0.128 0.729    

10 447 3.832 1 5.622 0.094 0.796    
   Total  4410 9.728 9 7.86 0.378 0.432    
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Table 2B: Summary of receiver guesses by secret number (main sessions) 

  

Receiver guess 
Receiver 

mistake bias 
(guess-truth) 

Receiver 
mistake size 

(|guess-truth|) 

% of receiver 
decisions 

hitting time 
limit 

Conditional on receiver decision 
before time limit 

  
Receiver 

mistake bias 
(guess-truth) 

 Receiver 
mistake size 

(|guess-truth|) 
Secret 
number N Mean Median Std. 

dev.  Mean Mean Mean Mean Mean 

1 449 2.183 1 2.326 1.183 1.183 5.57% 0.946 0.946 
2 444 2.923 2 2.209 0.936 1.045 8.11% 0.659 0.777 
3 464 3.399 3 1.462 0.399 0.601 5.39% 0.328 0.492 
4 422 4.232 4 1.458 0.232 0.611 3.08% 0.191 0.538 
5 433 5.169 5 1.378 0.169 0.566 3.23% 0.146 0.489 
6 453 6.031 6 1.167 0.031 0.446 3.97% 0.051 0.377 
7 424 6.887 7 1.234 -0.113 0.424 2.12% -0.067 0.376 
8 427 7.724 8 1.289 -0.276 0.407 1.17% -0.237 0.37 
9 447 8.633 9 1.377 -0.367 0.438 2.01% -0.311 0.379 

10 447 9.597 10 1.574 -0.403 0.403 0.67% -0.372 0.372 
   Total  4410 5.663 6 2.885 0.182 0.614 3.56% 0.128 0.509 
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Table 3. Summary of receiver guess by sender choice of complexity (main sessions) 

  
 

All receiver decisions  
Mean values 

Conditional on receiver decision 
before time limit 

Mean values 

Complexity N Secret 
number 

Receiver 
guess 

Receiver 
mistake bias  
(guess-truth) 

Receiver 
mistake size 

(|guess-truth|) 

% hitting 
time limit 

Response 
time if before 

time limit 

Receiver  
mistake bias  
(guess-truth) 

Receiver 
mistake size 

(|guess-truth|) 
1 1259 7.504 7.466 -0.038 0.243 0.40% 9.15 -0.038 0.236 
2 214 6.967 6.925 -0.042 0.257 0.00% 8.95 -0.042 0.257 
3 140 6.429 6.407 -0.021 0.15 0.00% 13.21 -0.021 0.150 
4 104 5.962 5.885 -0.077 0.135 0.00% 13.35 -0.077 0.135 
5 190 5.600 5.684 0.084 0.179 0.00% 18.15 0.084 0.179 
6 91 5.527 5.582 0.055 0.231 1.10% 18.85 0.089 0.200 
7 89 5.685 5.629 -0.056 0.146 1.12% 21.5 -0.023 0.114 
8 117 5.325 5.299 -0.026 0.402 0.85% 23.67 -0.052 0.379 
9 74 4.932 5.068 0.135 0.405 0.00% 25.45 0.135 0.405 
10 263 5.54 5.388 -0.152 0.479 1.90% 28.77 -0.143 0.438 
11 42 5.500 5.476 -0.024 0.595 2.38% 34.25 0.049 0.537 
12 69 4.87 4.783 -0.087 0.841 1.45% 35.54 0.000 0.765 
13 54 4.778 5.222 0.444 0.778 0.00% 35.56 0.444 0.778 
14 39 4.974 5.513 0.538 0.795 2.56% 37.08 0.632 0.737 
15 190 4.384 4.463 0.079 0.753 3.16% 36.55 0.071 0.712 
16 71 3.592 4.000 0.408 0.662 7.04% 37.21 0.273 0.424 
17 90 4.467 4.789 0.322 1.033 5.56% 40.32 0.306 0.847 
18 96 4.292 4.573 0.281 1.01 9.38% 42.45 0.195 0.839 
19 115 4.07 4.296 0.226 0.783 6.96% 40.33 0.243 0.748 
20 1103 3.455 4.11 0.655 1.284 9.79% 42.76 0.477 1.008 

   Total  4410 5.482 5.664 0.182 0.614 3.56% 24.93 0.128 0.509 
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Table 4. Summary of receiver mistake size by secret number and sender choice of complexity (main sessions) 

  All receiver decisions 
Conditional on receiver decision  

before time limit 
 Mean values of receiver mistake size  

(|guess-truth|) 
Mean values of receiver mistake size 

(|guess-truth|) 

Secret 
number 

Low 
complexity 

(1-5) 

Medium 
complexity 

(6-14) 

High 
complexity 

(15-20) 

Low 
complexity 

(1-5) 

Medium 
complexity 

(6-14) 

High 
complexity 

(15-20) 
1 0.6 0.386 1.437 0.6 0.386 1.126 
2 0.216 0.795 1.234 0.216 0.795 0.873 
3 0.273 0.144 0.846 0.273 0.124 0.691 
4 0.198 0.376 0.961 0.198 0.35 0.839 
5 0.181 0.426 1 0.162 0.372 0.88 
6 0.204 0.432 0.896 0.19 0.392 0.74 
7 0.142 0.366 1.321 0.138 0.33 1.18 
8 0.228 0.672 0.033 0.228 0.548 0.93 
9 0.23 0.641 1.404 0.222 0.603 1.098 
10 0.239 0.776 1.357 0.239 0.776 1.077 

   Total  0.225 0.469 1.133 0.221 0.434 0.91 
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Table 5: Departure from highest expected payoff (main sessions)  

Panel A: Senders 

Secret number 

Fraction of payoff loss from highest 
expected payoff given empirical 

distribution of opponent behavior 
Fraction of payoff loss from payoff in 

the unraveling equilibrium 
1 0.516 .* 
2 0.320 -0.714 
3 0.152 -0.160 
4 0.110 -0.043 
5 0.103 -0.016 
6 0.073 0.006 
7 0.077 0.028 
8 0.078 0.039 
9 0.059 0.041 
10 0.038 0.039 

Total 0.153 -0.088 
Panel B: Receivers 

Complexity 

Fraction of payoff loss from highest 
expected payoff given empirical 

distribution of opponent behavior 
Fraction of payoff loss from payoff in 

the unraveling equilibrium 
Low (1-5) 0.138 0.299 

Medium (6-14) 0.160 0.330 
High (15-20) 0.167 0.311 

Total 0.153 0.308 
* In the unraveling equilibrium, senders with a secret number of 1 earn the minimum possible payoff. After normalizing this 
payoff to 0, it is not possible to calculate the fraction of payoff loss from zero. 
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Table 6: Summary of dynamics (main sessions) 

Panel A Sender choice of complexity 

Fraction of sender payoff 
loss from highest 
expected payoff  

 Mean Mean 

Secret number 
Round 
1-10 

Round 
11-20 

Round 
21-30 

Round 
1-10 

Round 
11-20 

Round 
21-30 

1 14.454 16.461 16.032 0.551 0.515 0.484 
2 15.357 15.993 15.958 0.311 0.322 0.326 
3 13.264 15.026 13.693 0.159 0.146 0.150 
4 12.673 12.679 10.467 0.107 0.125 0.097 
5 11.669 9.878 10.13 0.105 0.105 0.098 
6 9.526 7.646 7.545 0.068 0.084 0.066 
7 9.475 5.719 5.036 0.091 0.079 0.061 
8 6.764 5.218 3.693 0.086 0.081 0.064 
9 6.326 5.455 3.093 0.058 0.068 0.050 
10 5.829 3.5 2.512 0.053 0.031 0.031 

Total 10.624 9.786 8.774 0.159 0.156 0.142 

Panel B 
Receiver mistake size 

 (|guess-truth|) 
Conditional on before 

time limit 
 Mean Mean 

Complexity 
Round 
1-10 

Round 
11-20 

Round 
21-30 

Round 
1-10 

Round 
11-20 

Round 
21-30 

Low (1-5) 0.254 0.206 0.222 0.247 0.202 0.219 
Medium (6-14) 0.472 0.518 0.410 0.442 0.476 0.375 
High (15-20) 1.274 1.099 1.004 1.015 0.947 0.751 

Total 0.719 0.604 0.520 0.585 0.526 0.418 

Panel C 
Fraction of receiver payoff loss 
from highest expected payoff 

Conditional on before 
time limit 

 Mean Mean 

Complexity 
Round 
1-10 

Round 
11-20 

Round 
21-30 

Round 
1-10 

Round 
11-20 

Round 
21-30 

Low (1-5) 0.153 0.126 0.137 0.153 0.126 0.137 
Medium (6-14) 0.182 0.148 0.138 0.181 0.148 0.136 
High (15-20) 0.189 0.161 0.147 0.183 0.155 0.130 

Total 0.174 0.143 0.141 0.171 0.141 0.135 
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Table 7A: Regressions of sender behavior (main sessions) 

 
  Dependent Variable Dependent Variable 

 Complexity 
Payoff departure from the 

highest 
          
Secret number=2 0.147 -0.252 -0.197*** -0.199*** 

 (0.423) (0.418) (0.0609) (0.0625) 
Secret number=3 -1.467*** -1.297** -0.361*** -0.360*** 

 (0.476) (0.559) (0.0714) (0.0736) 
Secret number=4 -1.630** -1.894** -0.418*** -0.421*** 

 (0.749) (0.711) (0.0551) (0.0567) 
Secret number=5 -2.884*** -3.358*** -0.426*** -0.429*** 

 (0.689) (0.610) (0.0533) (0.0545) 
Secret number=6 -5.226*** -5.405*** -0.452*** -0.454*** 

 (0.753) (0.633) (0.0504) (0.0512) 
Secret number=7 -5.485*** -5.742*** -0.433*** -0.436*** 

 (1.019) (0.994) (0.0501) (0.0512) 
Secret number=8 -7.134*** -7.393*** -0.438*** -0.435*** 

 (0.886) (0.858) (0.0533) (0.0543) 
Secret number=9 -7.363*** -7.614*** -0.453*** -0.453*** 

 (0.952) (0.937) (0.0487) (0.0496) 
Secret number=10 -8.386*** -8.278*** -0.476*** -0.479*** 

 (0.842) (0.928) (0.0519) (0.0529) 
First 5 rounds -0.298 -0.387 0.00783 0.00683 

 (0.297) (0.267) (0.0116) (0.0116) 
Round 0.0427* 0.0409 -0.000657 -0.000601 

 (0.0241) (0.0249) (0.00117) (0.00114) 
Round * (4<=secret 
number <=6) -0.139*** -0.130*** 0.000730 0.000685 

 (0.0262) (0.0212) (0.00117) (0.00109) 
Round * (7<=secret 
number <=10) -0.216*** -0.219*** -0.000183 -0.000298 

 (0.0281) (0.0301) (0.00118) (0.00114) 
Individual demographics Yes No Yes No 
Individual fixed effects No Yes No Yes 
Observations 4,410 4,410 4,399 4,399 
R-squared 0.350 0.529 0.381 0.438 
In parentheses are robust standard errors clustered by session. *** p<0.01, ** p<0.05, * 
p<0.1. In Session 34, receivers' actual play is such that the highest payoff for draw=1 is 0 
after our normalization, so we cannot calculate fraction of payoff departure from 0. That is 
why columns (3) and (4) have 11 less observations. Regressions without individual fixed 
effects include dummies indicating whether demographics are missing and session fixed 
effects. Sample includes all sessions with complete demographic information. 
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Table 7B: Regressions of receiver behavior (main sessions) 
 
  Dependent variable Dependent variable 

 
Receiver mistake size  

(|guess-truth|) 
Payoff departure from the 
highest expected payoff 

          
Sender choice of complexity = 2 -0.0191 0.0228 -0.0229* -0.0126 

 (0.0590) (0.0627) (0.0121) (0.0125) 
Sender choice of complexity = 3 -0.162* -0.0517 -0.0177 -0.0151 

 (0.0849) (0.0651) (0.0152) (0.0169) 
Sender choice of complexity = 4 -0.199** -0.130 0.000650 0.00884 

 (0.0860) (0.0784) (0.0206) (0.0212) 
Sender choice of complexity = 5 -0.185** -0.169** 0.0168 0.0213 

 (0.0777) (0.0793) (0.0160) (0.0172) 
Sender choice of complexity = 6 -0.143 -0.111 0.00231 0.00419 

 (0.116) (0.0862) (0.0216) (0.0193) 
Sender choice of complexity = 7 -0.286** -0.0927 0.00188 0.0110 

 (0.109) (0.113) (0.0201) (0.0231) 
Sender choice of complexity = 8 -0.0171 -0.0480 0.0127 0.0147 

 (0.126) (0.123) (0.0192) (0.0209) 
Sender choice of complexity = 9 -0.0755 -0.143 0.0483* 0.0440 

 (0.141) (0.149) (0.0258) (0.0294) 
Sender choice of complexity = 10 0.00256 0.000952 0.0343* 0.0442** 

 (0.109) (0.0981) (0.0178) (0.0198) 
Sender choice of complexity = 11 0.0232 -0.0690 -0.0156 -0.00468 

 (0.238) (0.260) (0.0295) (0.0288) 
Sender choice of complexity = 12 0.334 0.344 0.0118 0.0214 

 (0.199) (0.209) (0.0204) (0.0256) 
Sender choice of complexity = 13 0.319 0.451 0.0559** 0.0608* 

 (0.271) (0.278) (0.0259) (0.0303) 
Sender choice of complexity = 14 0.319 0.379 0.0776** 0.0870** 

 (0.315) (0.308) (0.0305) (0.0359) 
Sender choice of complexity = 15 0.341* 0.475** 0.0212 0.0386* 

 (0.193) (0.226) (0.0186) (0.0221) 
Sender choice of complexity = 16 0.0371 0.115 -0.0173 0.00332 

 (0.194) (0.209) (0.0254) (0.0270) 
Sender choice of complexity = 17 0.391 0.570** 0.0679** 0.0755* 

 (0.240) (0.257) (0.0324) (0.0379) 
Sender choice of complexity = 18 0.373 0.408* 0.0187 0.0145 

 (0.239) (0.238) (0.0338) (0.0358) 
Sender choice of complexity = 19 0.317 0.274 0.0253 0.0438 

 (0.258) (0.250) (0.0314) (0.0332) 
Sender choice of complexity = 20 0.587*** 0.605*** 0.0197 0.0315 

 (0.181) (0.197) (0.0188) (0.0226) 
First 5 rounds -0.0342 -0.0710 0.0127 0.0118 

 (0.0614) (0.0615) (0.0106) (0.0109) 
Round -0.00335 -0.00115 -0.000374 -0.000328 

 (0.00349) (0.00291) (0.000527) (0.000534) 
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Round * Medium complexity (6-14) -0.00372 -0.00748 -0.00138* -0.00145* 
 (0.00628) (0.00463) (0.000752) (0.000766) 

Round * High complexity (15-20) -0.00705 -0.0149*** -0.00151* -0.00198** 
 (0.00480) (0.00459) (0.000789) (0.000859) 

Response time (in seconds) 0.00824* 0.0114*** 0.000482* 0.000397 
 (0.00411) (0.00376) (0.000281) (0.000333) 

Individual demographics Yes No Yes No 
Individual fixed effects No Yes No Yes 
Observations 4,253 4,253 4,253 4,253 
R-squared 0.094 0.279 0.040 0.127 
All regressions are conditional on receivers making a guess within the 60 second time limit. In 
parentheses are robust standard errors clustered by session. *** p<0.01, **p<0.05, *p<0.1. 
Regressions without individual fixed effects include dummies indicating whether demographics 
are missing and session fixed effects.  
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Table 8: Summary of receiver guess and stated beliefs (main sessions) 

Panel A: Complex guess (stated belief of average secret number for a given complexity) 

	 All received decisions Conditional on before time limit 

Complexity 

Secret 
number 

Receiver 
guess 

Complex 
guess 

Secret 
number 

Receiver 
guess 

Complex 
guess 

Mean Mean Mean Mean Mean Mean 
1-5 7.091 7.064 7.813 7.091 7.064 7.823 
6-10 5.448 5.396 5.756 5.447 5.404 5.756 

11-15 4.701 4.835 3.867 4.655 4.818 3.848 
16-20 3.626 4.191 2.51 3.636 4.055 2.471 

Panel B: Inferred guess (secret number inferred from stated beliefs of sender choices) 

 All receiver decisions Conditional on before time limit 

Complexity 

Secret 
number 

Receiver 
guess 

Inferred 
guess 

Secret 
number 

Receiver 
guess 

Inferred 
guess 

Mean Mean Mean Mean Mean Mean 
Low (1-5) 7.091 7.064 7.845 7.091 7.064 7.849 

Medium (6-14) 5.338 5.344 4.893 5.326 5.354 4.891 
High (15-20) 3.712 4.222 2.546 3.72 4.097 2.526 

Note: Out of all receiver decisions, 6.8% have a missing value for inferred guess because those subjects indicate that senders will never choose some 
complexity level. 
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Table 9: Summary of structural estimation of receiver guesses of high complexity reports before time limit (main sessions) 

Variable Actual Logit Baseline 
Social 

Preferences 
Risk 

Aversion Naivete 
Over- 

confidence 

Over- 
Confidence 
+ Naivete 

Over-
weighting 

Mean log-likelihood  -1.733 -1.553 -1.547 -1.553 -1.519 -1.272 -1.274 -1.261 
Total log-likelihood  -2641 -2366 -2357 -2366 -2316 -1939 -1941 -1921 
Parameter (lower)  0.047   0.010    16.760 

Std. error  0.066   0.206    0.347 
Parameter (upper)     0.135    23.076 

Std. error     0.196    1.500 

Secret number 
 Receiver bias (guess-truth) 

Mean values 
1-3 0.772 0.707 0.712 0.792 0.712 0.733 0.749 0.761 0.776 
4-7 0.096 0.038 -0.181 -0.130 -0.181 -0.146 0.018 0.027 0.050 

8-10 -0.891 -0.641 -1.662 -1.640 -1.662 -1.554 -0.904 -0.890 -0.800 
Average distance   0.125 0.369 0.332 0.369 0.315 0.038 0.027 0.142 

Secret number 
 Receiver bias (guess-truth) 

Mean values 
1 1.126 1.100 0.983 1.069 0.983 1.005 1.001 1.018 1.034 
2 0.711 0.632 0.706 0.790 0.706 0.726 0.735 0.744 0.742 
3 0.431 0.335 0.407 0.476 0.407 0.428 0.475 0.485 0.517 
4 0.249 0.154 0.193 0.258 0.193 0.214 0.271 0.281 0.289 
5 0.222 0.044 -0.082 -0.033 -0.082 -0.059 0.033 0.039 0.068 
6 0.040 -0.044 -0.287 -0.255 -0.287 -0.262 -0.141 -0.133 -0.103 
7 -0.462 -0.154 -1.172 -1.128 -1.172 -1.067 -0.432 -0.421 -0.385 
8 -0.684 -0.335 -1.368 -1.341 -1.368 -1.264 -0.636 -0.625 -0.548 
9 -0.980 -0.632 -1.725 -1.699 -1.725 -1.614 -0.926 -0.911 -0.840 

10 -1.077 -1.100 -2.009 -1.999 -2.009 -1.898 -1.268 -1.250 -1.115 
Average distance   0.159 0.393 0.370 0.393 0.340 0.091 0.093 0.936 



	

Table 10: Regressions of receiver over-guessing in complex rounds if completed math test 
(main sessions) 

 
  Dependent variable:  Dependent variable: 

  
Receiver mistake  

(guess-truth) 
Receiver mistake size  

(|guess-truth|) 
          
Sender choice of complexity = 
15 -0.274* -0.233 -0.0920 -0.0559 

 (0.143) (0.178) (0.175) (0.221) 
Sender choice of complexity = 
16 0.223 0.243 -0.212 -0.0716 

 (0.248) (0.325) (0.268) (0.376) 
Sender choice of complexity = 
17 -0.473* -0.481 -0.113 -0.155 

 (0.266) (0.365) (0.112) (0.128) 
Sender choice of complexity = 
18 -0.297 -0.647** -0.294 -0.338 

 (0.233) (0.298) (0.193) (0.288) 
Sender choice of complexity = 
19 -0.558 -0.356 -0.239 -0.121 

 (0.320) (0.399) (0.295) (0.382) 
First 5 rounds -0.313 -0.211 -0.283 -0.247 

 (0.184) (0.187) (0.173) (0.205) 
Round -0.00277 -0.00125 -0.0149* -0.0207** 

 (0.00711) (0.00909) (0.00722) (0.00898) 
Size of naivete (complex 
guest-actual average if >0) 

0.245**  0.233  
(0.0829)  (0.139)  

Size of overconfidence (guess 
correct - actual correct if >0) 

0.236**  0.295*  
(0.108)  (0.144)  

Individual demographics Yes No Yes No 
Individual fixed effects No Yes No Yes 
Observations 813 813 813 813 
R-squared 0.085 0.270 0.085 0.359 
All regressions are conditional on receivers making a guess within the 60 second time 
limit. In parentheses are robust standard errors clustered by session. *** p<0.01, ** 
p<0.05, * p<0.1. Regressions without individual fixed effects include dummies 
indicating whether demographics are missing and session fixed effects. 

 


