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OVERVIEW 

Critical illnesses contribute to the maximum morbidity and mortality of hospitalized 

patients. Critical illness often results in the loss of metabolic homeostasis, characterized 

by the severe disruption of various metabolic processes, including energy production 

and utilization. Despite significant advancements in care for critically ill patients (1,2), 

approximately 500000 patients (one in five) die in the ICU each year in the USA (3). 

Metabolomics can provide a comprehensive technique for understanding an organism's 

phenotype as metabolites indicate cellular and gene activity.  

Manuscript 1: Regardless of the patient's diabetes status, hyperglycemia has been 

associated with poor clinical outcomes in critically ill patients. Acute hyperglycemia 

impairs innate immunity, despite proinflammatory changes (4). Early metabolomic 

studies in critical illness showed illness severity and predicted outcomes. However, no 

existent study has defined the metabolic response to hyperglycemia in the critically ill. 

We hypothesize that hyperglycemia is associated with metabolism differences related to 

innate immunity in critically ill patients. 

Manuscript 2: Critically ill patients often have chronic medical conditions affecting the 

severity of the acute illness, treatment, and outcomes. Plasma metabolomics studies in 

critical illness show a consistent alteration of metabolism linked to acute illness severity 

and outcome prediction. But the importance of energy utilization pathways among 

critically ill patients with comorbidities is unknown. Therefore, we hypothesized that a 

higher chronic disease burden, as assessed by the updated Charlson Comorbidity 

Index (uCCI), is associated with differential energy utilization pathways in critically ill 

adult patients. 
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ABSTRACT 

Background: In critically ill patients, hyperglycemia is common. Plasma metabolite 

profiles in critically ill patients allow for a point-in-time picture of the metabolic response 

to cell stressors. However, the role of the metabolic response to hyperglycemia in the 

critically ill is still unknown. 

Objective: To study the association between serum glucose and plasma metabolites 

over the first week of critical illness.  

Methods: We performed a post-hoc metabolomics analysis of the double-blind, 

placebo-controlled VITdAL-ICU trial. We analyzed 983 metabolites from a total of 1124 

plasma samples from 391 subjects at randomization (day 0), day 3, and 7. Glucose 

level above and below 150 mg/dl was assigned as the referent as a cut-off value to 

trigger intervention for hyperglycaemia. The relationships between metabolites and 

glucose levels were assessed via Student’s t-test, orthogonal partial least square-

discriminant analysis, and linear mixed-effects models. For repeated measures, data 

(day 0, 3, and 7), the association between individual metabolites (outcome) over time, 

and glucose levels from baseline day 0 to day 3 were determined by correcting for age, 

sex, baseline 25(OH)D, Simplified Acute Physiology Score (SAPS) II, admission 

diagnosis category, history of diabetes and plasma day (as the random-intercept). 

Results: The mean (SD) glucose level at day 0 was 150.3 (51.4) mg/dL. The overall 

180-day mortality of the 391 subjects of the analytic cohort was 36.6%. In the mixed-

effects modeling, 88 metabolites were found to have significant positive associations 

with higher glucose levels, where 5 branched-chain amino acids (BCAAs 
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) metabolites, 12 diacylglycerols (DAG), and 19 glycerophospholipids, specifically 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI), 

and Triacylglycerols (TAGs) were highlighted.  

Conclusion: In critically ill hyperglycemic patients, energy utilization is altered, 

indicating a metabolic shift involving mitochondria and the endoplasmic reticulum 

specifically. 

Word count: 283 

Keywords: critical illness, hyperglycemia, metabolomics, branched-chain amino acid 

(BCAA), diacylglycerols (DAG), Triacylglycerols (TAGs) 

List of non-standard abbreviations: VITdAL-ICU trial- Correction of Vitamin D 

Deficiency in Critically Ill Patients trial; OPLS-DA- Orthogonal partial least square-

discriminant analysis; CV- ANOVA- Cross-validation analysis of variance; SAPS-

Simplified Acute Physiology Score 
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INTRODUCTION 

Hyperglycemia is common in critically ill patients and is associated with increased 

morbidity and mortality (1). Up to 50% of critically ill patients develop hyperglycemia 

within 48 hours of ICU admission (2). Hyperglycemia develops via increased 

gluconeogenesis, accelerated glycogenolysis, and impaired glucose utilization by 

peripheral tissues during critical illness (3). In critically ill patients, metabolic stress 

causes glycogen breakdown, catecholamine and adrenocorticotrophic hormone 

synthesis, glucagon synthesis, and insulin resistance in the pro-inflammatory phase, all 

contributing to hyperglycemia (4). Critically ill patients with blood glucose>180 mg/dl in 

the presence of acute illness without previously diagnosed diabetes have significantly 

higher mortality compared to patients with previously confirmed diabetes or 

normoglycemia (5). 

 

Hyperglycemia in critical illness results from hepatic gluconeogenesis and glycogen 

breakdown due to catecholamine release and direct sympathetic stimulation, 

respectively (6, 7). Glucose metabolism is influenced directly by cytokines and indirectly 

via classical glucoregulatory hormone stimulation (8). Hyperglycemia is promoted by 

inhibiting insulin release in a concentration-dependent manner by TNF, IFNα, GM-CSF, 

and IL-6 (9-11). In addition, insulin is reported to blunt inflammatory responses in 

experimental endotoxemia in animal models (12, 13). 
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Metabolites drive biological processes such as energy generation and storage, signal 

transduction, and apoptosis. In addition, metabolites are sensitive to cell stress and 

respond quickly to measurable changes in the blood (14). Metabolomics identifies and 

quantifies metabolites, metabolic substrates, and cellular products in biofluids, cells, and 

tissues (15). 

 

Metabolomic studies performed early in critical illness reflect illness severity and predict 

outcomes (16-18). However, no existent study has defined the metabolic response to 

hyperglycemia in the critically ill. Therefore, we studied the association between serum 

glucose and plasma metabolites over the first week of critical illness. We hypothesized 

that hyperglycemia is associated with metabolism differences related to innate immunity 

in critically ill patients. We performed a post-hoc metabolomics cohort study of plasma 

samples from the single center VITdAL-ICU trial, which included 492 critically ill adults 

with 25-hydroxyvitamin D [25(OH)D] levels ≤ 20 ng/mL randomized to high-dose oral 

vitamin D3 or placebo (19). We measured the abundance of 983 metabolites from 1124 

plasma samples over three-time points (days 0, 3, and 7) in 391 VITdAL-ICU trial 

subjects (19). We determined the association of increased serum glucose on changes 

in individual metabolites and metabolic pathways over the first seven days following trial 

enrollment. 
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METHODS 

During the VITdAL-ICU trial, plasma was collected from 428 subjects (19, 20). Subjects 

without serum glucose measured at day 0 or 25(OH)D measured at day 0 or day 3 were 

excluded (Supplementary Figure 1). In addition, we performed a post-hoc metabolomics 

cohort study on 391 VITdAL-ICU trial subjects. The VITdAL-ICU trial was a double-

blind, placebo-controlled, single-center trial conducted in 5 medical and surgical 

intensive care units in southeast Austria. This study enrolled critically ill adult patients 

with 25(OH)D 20 ng/mL or lower expected to stay ≥ 48 hrs in ICU. The post-hoc study 

research protocol was approved by the Partners Human Research Committee 

Institutional Review Board at the Brigham and Women’s Hospital. All research followed 

the Declaration of Helsinki (Protocol # 2015P002766).  

 

The exposure of interest was serum glucose measured at trial day 0 before intervention. 

Serum glucose was measured at the same time as day 0 plasma sample was collected 

for metabolomics. Day 0 serum glucose was studied as continuous, in quartiles, and a 

binary variable categorized above and below day 0 glucose 150 mg/dl (21-23). Clinical 

trial data utilized included age, sex, race, admission diagnosis category, baseline 

25(OH)D, absolute change in 25(OH)D level at day 3 relative to day 0, and the 

Simplified Acute Physiology Score (SAPS) II (24) at day 0. In addition, serum 25(OH)D 

levels were measured by chemiluminescence immunoassay. Admission diagnosis 

category was determined at ICU admission by trial investigators as Neurosurgery, 

Cardiac surgery, Cardiovascular, Gastrointestinal/liver, Hematologic/Oncology/ 
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Metabolic, Neurologic, Other non-operative, Other operatives, Renal, Respiratory, 

Sepsis/infectious, Thoracic Surgery, Transplantation, Trauma, and Vascular Surgery. 

 

A total of 1124 plasma samples were collected between May 2010 and March 2012 

from VITdAL-ICU trial subjects at days 0, 3, and 7. Fractionated plasma was aliquoted, 

stored at -80°C, thawed once, and analyzed in 2017 using four ultra-high-performance 

liquid chromatography/tandem accurate mass spectrometry methods by Metabolon, Inc 

(NC, USA) (19). The impact of long-term −80 °C storage for years is almost negligible 

(25). We analyzed 983 known metabolites per plasma sample. The study sample size 

was determined via MetaboAnalyst 4.0 with a false discovery rate (FDR) corrected 

alpha of 0.05 using equations for single time point metabolomics data with binary 

groups categorized above and below day 0 glucose 150 mg/dl (21-23). To achieve 80% 

power, our study requires a sample of 140 subjects above and 140 subjects below 

glucose 150 mg/dl (22). Analysis of repeated plasma metabolomics data is known to 

increase study power (26) substantially. 

 

STATISTICAL ANALYSIS 

All data were analyzed in a complete case analysis fashion. For univariate analysis of 

day 0 data, a Student’s t-test was performed to determine if significant metabolite 

abundance differences exist by glucose level (above and below 150 mg/dL) using 

MetaboAnalyst 4.0 (23). A false discovery rate (FDR) adjusted p-value (q-value) of 0.05 

was used to identify significant differences (27). 
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Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) was used 

to test whether all 983 measured metabolites as a whole can discriminate between 

patients with day 0 glucose above and below 150 mg/dL. OPLS-DA was performed to 

relate the X data to the Y response (28, 29). In our study, X was the metabolite at day 0, 

and Y was the exposure as a binary serum day 0 glucose above and below 150 mg/dL. 

We assessed the OPLS-DA model quality via the variation of X explained by the model 

(R2X(cum)), the goodness-of-fit represented by the percentage of the variation of Y 

explained by the model (R2), and the predictive performance (Q2). Permutation testing 

validated the OPLS-DA model (30, 31). The percentage of the variation of the dataset 

predicted by the model (Permuted Q2) was assessed using a cross-validation test (32, 

33). Sevenfold cross-validation analysis of variance (CV-ANOVA) was utilized to 

determine the OPLS-DA model significance (31). Additionally, response permutation 

testing was performed to validate the OPLS-DA model (30, 31). 

 

Serum glucose levels were divided into quartiles (Q0-Q3) for survival studies. Survival 

Analysis between day 0 glucose quartile was determined by the Kaplan-Meier survival 

curve and the log-rank test (34, 35). For single time point data, correlations between 

serum glucose level (continuous exposure) at day 0 and individual metabolite 

abundance (outcome) were determined utilizing linear regression models correcting for 

age, sex, SAPS II, admission diagnosis category, and 25(OH)D at day 0. A q-value of 

0.05 was used for all significant associations (27). For repeated measures data in 391 

subjects, the association between serum glucose (continuous exposure) and 
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abundance of individual metabolites (outcome) at day 0, 3, and 7 were determined 

utilizing mixed effects linear regression adjusted for age, sex, SAPS II, admission 

diagnosis category, sample day, 25(OH)D at day 0, and change in 25(OH)D from day 0-

3 with an individual subject-specific random-intercept. We performed an additional 

mixed effects regression with the additional adjustment of a diabetes diagnosis. All 

linear regression models were analyzed using STATA 16.1MP (College Station, TX). 

 

RESULTS 

Baseline characteristics of the analytic cohort (N = 391) were balanced between 

subjects grouped by glucose level for age, sex, SAPS II, sepsis, intubation, ICU type, 

day 0 creatinine means, and 180-day mortality. Differences existed with respect to 

diabetic status, day 0 serum glucose, and triglycerides (Table 1). The overall 180-day 

mortality of the 391 subject analytic cohort was 36.6%. Log-rank test for equality of 

survivor functions found no significant difference when glucose levels were categorized 

into quartiles (Figure 1). Differences between patients excluded for the absence of 

serum glucose (N=37) compared to the analytic cohort were limited to C-reactive protein 

(Supplemental Table 1). 

 

T-test results showed significant differences exist for 15 individual metabolites (q-value 

threshold of 0.05) in subjects with glucose ≥150 mg/dl compared to those with glucose < 

150 mg/dl (Table 2). Highlights included significant decreases in 7 acyl choline 

metabolites. Regarding differences in metabolomic profiles of subjects with glucose < 
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150 mg/dl or glucose ≥150 mg/dl at day 0, though the multivariable OPLS-DA models 

had poor predictability (Q2<0.3), the stability and robustness of the OPLS-DA model 

was shown by the permutation test (Q2 intercept of -0.358) with a negative permutation 

Q2 intercept indicating model validity. The cross-validation procedure showed that the 

groups with glucose < 150 mg/dl or glucose ≥150 mg/dl at day 0 were significantly 

separated (CV-ANOVA P-value <0.001) (Table 3). 

 

In the linear regression analysis, there were significant associations at day 0 between 

the abundance of 154 individual metabolites (q-value<0.05) and increased day 0 

glucose (continuous) following adjustment for age, sex, baseline 25(OH)D, SAPS II, 

admission diagnosis category and baseline 25(OH)D. Metabolites associated with 

increased glucose at day 0 included elevated diacylglycerol species and BCAA 

metabolites, as well as plasma glucose, lactate, and alanine and decreased acyl choline 

species (Table 4). 

 

In mixed effects modeling of 1124 total day 0, 3, and 7 plasma samples from the 

analytic cohort (N=391), 84 metabolites had significantly positive (q-value<0.05) 

associations with serum glucose dominated by increases in diacylglycerol species, 

BCAA metabolites, as well as glycerophospholipid species (phosphatidylcholine, 

phosphatidylethanolamine, and phosphatidylinositol) and including plasma glucose, 

alanine, and lactate, (Table 5). Conversely, four metabolites had significant negative 

associations with serum glucose, highlighted by decreases in acyl choline. Similar 
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significant metabolite patterns were observed in mixed effects models with additional 

adjustments for diabetes diagnosis (Data not shown). 

 

DISCUSSION 

Our large post-hoc metabolomics study evaluated temporal changes in the metabolome 

in the setting of elevated serum glucose. Clinical trial data is an efficient approach to 

assessing glucose-specific responses, resulting in novel findings. First, we demonstrate 

differences in the metabolome of individual patients with elevated glucose ≥150 mg/dl 

compared to those with glucose < 150 mg/dl. Second, using OPLS-DA in our day 0 

data, we demonstrate that the metabolome of individual patients with elevated glucose 

≥150 mg/dl is significantly different compared to those with glucose < 150 mg/dl. Third, 

with linear and mixed effects regression, we show that increasing glucose is associated 

with differential metabolite patterns at day 0 and over time early in critical illness. 

Importantly, these patterns manifest as robust increases and decrease in groups of 

metabolites along the same sub-pathways. These analyses demonstrate evidence of 

glucose-specific metabolism changes in early critical illness. 

 

Our observations of increases in lactate, alanine, and branched-chain amino acids 

(BCAAs) with elevated serum day 0 glucose are in line with the classical understanding 

of the metabolic consequences of hyperglycemia. The liver is central to maintaining 

blood glucose supply for obligate glucose utilizers (e.g., red blood cells & central 

nervous system) (36). With fasting, the liver produces glucose via the breakdown of 
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glycogen and gluconeogenesis with increased substrate delivery of lactate, glycerol, 

and branched-chain amino acids (BCAAs) via the bloodstream (37). Further, glucose is 

produced in the liver via the alanine cycle derived from muscle proteins (38). During 

physiological stress, lactate and alanine are the primary substrates for gluconeogenesis 

in the liver (39). 

 

We find lipid metabolites, including diacylglycerols (DAG) and glycerophospholipids, 

specifically phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, 

are increased in patients with hyperglycemia. During critical illness, endogenous lipids 

are metabolically active (40, 41). Metabolism of excess lipids to toxic lipids leads to 

mitochondrial dysfunction and apoptosis (42). DAGs are crucial for structural function 

and signal transduction and are thus tightly regulated (43). Elevations of DAG are 

essential for the production and activation of signaling molecules, including cytokines 

and inflammatory mediators (44, 45). In addition, DAG modulates immune function 

concerning immunological synapse function and respiratory burst (46, 47). DAG is the 

substrate for Diacylglycerol kinase α (DGKα), an immune checkpoint to the innate 

immune system (48). DAG synthesis is shown to be increased with chronic 

hyperglycemia via the reduction of dihydroxyacetone phosphate to glycerol-3-phosphate 

but has not been demonstrated in elevated glucose in the critical illness population (49). 

Changes in DAG with increasing glucose may be related to altered innate immune 

function. 
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Glycerophospholipids are glycerol-based phospholipids with phosphate groups modified 

with choline (phosphatidylcholine), ethanolamine (phosphatidylethanolamine), or inositol 

(phosphatidylinositol). Glycerophospholipids are the most abundant in mammalian cell 

membranes and are required for cell survival (50). Glycerophospholipids are essential 

for regulating insulin secretion in pancreatic cells, mediating insulin activity on skeletal 

muscle and adipocytes, modulation glucose uptake linked genes, and function of 

mitochondria as well as energy metabolism (51). Phosphatidylcholine is the major 

phospholipid found in the blood as a component of lipoproteins (50). 

Phosphatidylethanolamines are required for autophagy and ferroptosis and enhance 

oxidative phosphorylation (45, 52-56). Our results underscore the importance of insulin 

signaling and energy metabolism via glycerophospholipid production in increased 

circulating glucose.  

 

Our present study approach has multiple strengths. First, repeated measures of plasma 

samples in individual patients lower intra-patient variability and increase the statistical 

power of our study (18, 57-59). We used linear mixed–effect models, which are 

extremely useful for metabolomic data measured at multiple time points and multiple 

clinical variables early in critical illness as they remove confounding variables with a 

fixed effect (age, SAPS II, etc.) and also those with a random effect (plasma sampling 

day) (60, 61). Importantly, by adjusting for the absolute change in 25(OH)D level at day 

0,3 and 7, we mitigate the effect of the trial intervention on the observed metabolomic 

changes associated with hyperglycemia, which allow for the study of the entire trial 

cohort, increasing the sample size and study power (62, 63). Finally, we used the false 
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discovery rate adjusted p-value (q-value) threshold of 0.05 to determine all significant 

differences (27). 

Potential limitations exist in our study. First, our cohort may not be generalizable to all 

critically ill patients as the subjects were recruited from a single large academic medical 

center. Though our data was generated from a randomized trial, we could not exclude 

the effect of unknown confounders despite multivariable adjustment because of 

nonrandomized comparisons of metabolite abundance. Despite adjustment for 

biological sex, the results may be driven by unmeasured confounders related to 

differences between men and women (64). Additionally, we cannot study racial 

disparities in metabolomics as the subjects studied were all White (65). Subject data is 

absent for HbA1C, parenteral nutrition, dextrose use, and dose and duration of 

medications that can contribute to elevated glucose. Although significant differences in 

plasma metabolites with documented biological and functional significance were 

identified, it may not be clear what a change in metabolite abundance means clinically. 

Lastly, as our study is post-hoc, our inferences require external validation and should be 

considered hypothesis-generating. 

 

CONCLUSIONS  

Our data suggest that in critically ill hyperglycemic patients, a classical response is 

present with increased lactate, alanine, and branched-chain amino acids (BCAAs) 

metabolites but also increases in diacylglycerol and glycerophospholipids species. 

Further understanding of how alterations in metabolite response to elevated glucose 
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regulate immunity, insulin signaling, and energy metabolism could provide novel 

therapies for the dysregulation of metabolic homeostasis in critical illness.  

Figure Legends 

Figure 1. Kaplan–Meier Estimates of Survival. Kaplan–Meier estimates overall 

survival by serum glucose quartiles at day 0 (N=391). The log-rank test revealed a 

significant difference in survival between the quartiles (P=0.5). 

Figure 2. OPLS-DA score Plot. t1: The predicted principal components-score value of 

main components and the difference between day 0 Glucose <150 mg/dL and day 0 

Glucose ≥150 mg/dL, t01: Orthogonal principal component-score value of orthogonal 

components and difference in the observation group. Blue circles represent the 

metabolome of individual subjects at day 0 with day 0 Glucose <150 mg/dL; Green 

circles represent the metabolome of individual subjects at day 0 with day 0 Glucose 

≥150 mg/dL. 
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Table 1. Analytic cohort characteristics by Day 0 glucose levels 

Baseline Characteristics Total 
Day 0 

Glucose 
<150 

mg/dL 

Day 0 
Glucose 

≥150 
mg/dL 

P-value 

No. 391 236 155  

Age Mean (SD) 64.2 (14.8) 63.4 (15.9) 65.4 (13.1) 0.19* 

Female No. (%) 138 (35) 75 (54) 63 (46) 0.07 

Non-White No. (%) 0 (0) 0 (0) 0 (0)  

Diabetes History No. (%) 96 (25) 45 (19) 41 (33) 0.002 

SAPS II Mean (SD) 33.0 (15.6) 33.5 (16.5) 32.1 (14.2) 0.37* 

Sepsis No. (%) 28 (7) 17 (7) 11 (7) 0.97 

Intubation No. (%) 261 (67) 165 (70) 96 (62) 0.10 

ICU    0.61 

Anesthesia ICU No. (%) 73 (19) 50 (21) 23 (14)  

Cardiac Surgery ICU No. (%) 116 (30) 66 (28) 50 (32)  

Surgical ICU No. (%) 22 (6) 13 (6) 9 (6)  

Medical ICU No. (%) 81 (21) 48 (20) 33 (21)  

Neurological ICU No. (%) 99 (25) 59 (25) 40 (26)  

Day 0 Glucose Mean (SD) 150.3 
(51.4) 

120.1 
(19.1) 

196.1 
(51.4) <0.001* 

Day 0 Creatinine Mean (SD) 1.41 (1.00) 1.37 (0.99) 1.47 (1.02) 0.31* 

Triglycerides Mean (SD) 143.2 
(95.3) 

134.0 
(84.1) 

157.3 
(109.2) 0.019* 

Day 0 C-reactive protein Mean 
(SD) 

121.8 
(87.0) 

115.9 
(79.7) 

130.9 
(96.6) 0.096* 

180-day mortality No. (%) 143 (36.6) 91 (38.6) 52 (33.5) 0.31 

Footnote: Data presented as No. (%) unless otherwise indicated. P-values determined by 
chi-square unless designated by (*), then P-value determined by ANOVA  
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Table 2. Crude Metabolite abundance differences in patients with day 0 glucose 
above and below 150 mg/dL 

Metabolite Pathway t statistic P-value q-value 
3-hydroxybutyrate BCAA Metabolism 4.9772 9.71E-07 1.06E-04 
1,2,3-benzenetriol sulfate Chemical 3.4741 5.70E-04 3.72E-02 
prolyl glycine Dipeptide 3.8174 1.57E-04 1.28E-02 

Dihomo-linolenoyl-choline Fatty Acid Metabolism (Acyl 
Choline) -6.0226 3.98E-09 1.37E-06 

Linoleoylcholine Fatty Acid Metabolism (Acyl 
Choline) -5.9612 5.62E-09 1.37E-06 

Palmitoylcholine Fatty Acid Metabolism (Acyl 
Choline) -5.9927 4.71E-09 1.37E-06 

Arachidonoylcholine Fatty Acid Metabolism (Acyl 
Choline) -5.8881 8.45E-09 1.54E-06 

Oleoylcholine Fatty Acid Metabolism (Acyl 
Choline) -5.8685 9.42E-09 1.54E-06 

Docosahexaenoylcholine Fatty Acid Metabolism (Acyl 
Choline) -5.0262 7.65E-07 9.35E-05 

Stearoylcholine Fatty Acid Metabolism (Acyl 
Choline) -4.9509 1.10E-06 1.08E-04 

Fructose Fructose Metabolism 5.421 1.04E-07 1.46E-05 
Glucose Glycolysis Metabolism 7.5351 3.46E-13 3.38E-10 
1-palmitoyl-GPI (16:0) Lysophospholipid -3.7792 1.82E-04 1.37E-02 
Dihomolinolenate (20:3n3 or 
3n6) 

Polyunsaturated Fatty Acids (n3 
and n6) -3.5046 5.11E-04 3.57E-02 

4-hydroxyphenylpyruvate Tyrosine Metabolism 3.834 1.47E-04 1.28E-02 
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Table 3.  Day 0 OPLS-DA model goodness of fit, predictive ability, and model 
significance 

 

  

 OPLS-DA Permutation (n = 200) CV-ANOVA 

Classification Model R2X R2Y Q2 R2 intercept 
(x-axis, y-axis) 

Q2 intercept 
(x-axis, y-axis) P-Value 

Glucose<150 VS ≥ 150 
mg/dl 0.237 1.00 0.242 0.00, 0.448 0.00, -0.358 <0.001 
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Table 4. Metabolites significantly Increased with Increasing Glucose over day 0 

Biochemical Beta FDR q-value Super Pathway Sub Pathway 

glucose 0.004825 3.46E-55 Carbohydrate 
Glycolysis, Gluconeogenesis, and 

Pyruvate 

lactate 0.001377 9.40E-04 Carbohydrate 
Glycolysis, Gluconeogenesis, and 

Pyruvate 

alanine 0.001422 1.64E-03 Amino Acid Alanine and Aspartate Metabolism 

3hydroxybutyratee 0.003078 6.34E-08 Amino Acid BCAA Metabolism 

propionylglycine (C3) 0.00207 1.88E-03 Lipid BCAA Metabolism 

valine 0.001471 1.87E-04 Amino Acid BCAA Metabolism 

3-hydroxy-2-ethyl propionate 0.001425 1.21E-02 Amino Acid BCAA Metabolism 

N-acetylleucine 0.001371 4.49E-02 Amino Acid BCAA Metabolism 

isoleucine 0.00127 2.68E-03 Amino Acid BCAA Metabolism 

leucine 0.001238 2.86E-03 Amino Acid BCAA Metabolism 

3-methyl-2-oxobutyrate 0.00109 1.92E-02 Amino Acid BCAA Metabolism 

4-methyl-2oxo pentanoate 0.001077 4.66E-02 Amino Acid BCAA Metabolism 

3-methyl-2-oxovalerate 0.001061 4.06E-02 Amino Acid BCAA Metabolism 

palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2]* 0.002064 1.88E-03 Lipid Diacylglycerol 

diacylglycerol (14:0/18:1, 16:0/16:1) [2]* 0.001972 7.45E-03 Lipid Diacylglycerol 

diacylglycerol (14:0/18:1, 16:0/16:1) [1]* 0.001868 1.20E-02 Lipid Diacylglycerol 

palmitoyl-palmitoyl-glycerol (16:0/16:0) [2]* 0.001863 1.33E-02 Lipid Diacylglycerol 

stearoyl-arachidonoyl-glycerol (18:0/20:4) [2]* 0.001695 1.69E-02 Lipid Diacylglycerol 

diacylglycerol (16:1/18:2 [2], 16:0/18:3 [1])* 0.001648 1.52E-02 Lipid Diacylglycerol 

palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]* 0.001646 4.31E-03 Lipid Diacylglycerol 

linoleoyl-linolenoyl-glycerol (18:2/18:3) [2]* 0.001645 2.08E-02 Lipid Diacylglycerol 

palmitoyl-oleoyl-glycerol (16:0/18:1) [2]* 0.00162 8.13E-03 Lipid Diacylglycerol 

linoleoyl-arachidonoyl-glycerol (18:2/20:4) [2]* 0.001607 1.61E-02 Lipid Diacylglycerol 

oleoyl-oleoyl-glycerol (18:1/18:1) [2]* 0.001566 9.16E-03 Lipid Diacylglycerol 

palmitoyl-linoleoyl-glycerol (16:0/18:2) [1]* 0.001546 1.55E-02 Lipid Diacylglycerol 
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oleoyl-linoleoyl-glycerol (18:1/18:2) [2] 0.00153 8.13E-03 Lipid Diacylglycerol 

oleoyl-arachidonoyl-glycerol (18:1/20:4) [2]* 0.001527 1.54E-02 Lipid Diacylglycerol 

palmitoyl-oleoyl-glycerol (16:0/18:1) [1]* 0.001482 1.61E-02 Lipid Diacylglycerol 

oleoyl-oleoyl-glycerol (18:1/18:1)  [1]* 0.001454 1.31E-02 Lipid Diacylglycerol 

oleoyl-linoleoyl-glycerol (18:1/18:2) [1] 0.001312 2.60E-02 Lipid Diacylglycerol 

1-myristoyl-2-arachidonoyl-GPC (14:0/20:4)* 0.00249 8.17E-06 Lipid Phosphatidylcholine 

1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)* 0.002145 4.15E-03 Lipid Phosphatidylcholine 

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 0.002014 3.43E-05 Lipid Phosphatidylcholine 

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) 0.00168 3.11E-08 Lipid Phosphatidylcholine 

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)* 0.001578 1.78E-03 Lipid Phosphatidylcholine 

1-stearoyl-2-oleoyl-GPC (18:0/18:1) 0.001544 1.18E-04 Lipid Phosphatidylcholine 

1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) 0.001478 1.98E-05 Lipid Phosphatidylcholine 

1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) 0.001405 4.74E-05 Lipid Phosphatidylcholine 

1-palmitoleoyl-2-linolenoyl-GPC (16:1/18:3)* 0.001383 4.48E-02 Lipid Phosphatidylcholine 

1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) 0.001371 1.20E-04 Lipid Phosphatidylcholine 

1,2-dipalmitoyl-GPC (16:0/16:0) 0.001251 1.87E-03 Lipid Phosphatidylcholine 

1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) 0.001239 3.95E-03 Lipid Phosphatidylcholine 

1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) 0.001079 9.75E-04 Lipid Phosphatidylcholine 

1-palmitoyl-2-stearoyl-GPC (16:0/18:0) 0.001042 8.43E-03 Lipid Phosphatidylcholine 

1,2-dipalmitoyl-GPE (16:0/16:0)* 0.002935 6.61E-07 Lipid Phosphatidylethanolamine 

1-stearoyl-2-oleoyl-GPE (18:0/18:1) 0.002254 5.09E-05 Lipid Phosphatidylethanolamine 

1-palmitoyl-2-oleoyl-GPE (16:0/18:1) 0.002207 3.43E-05 Lipid Phosphatidylethanolamine 

1-palmitoyl-2-stearoyl-GPE (16:0/18:0)* 0.00181 2.08E-03 Lipid Phosphatidylethanolamine 

1-stearoyl-2-linoleoyl-GPE (18:0/18:2)* 0.001424 9.70E-03 Lipid Phosphatidylethanolamine 

1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) 0.001317 8.82E-03 Lipid Phosphatidylethanolamine 

1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) 0.001908 2.13E-05 Lipid Phosphatidylinositol 

1-palmitoyl-2-oleoyl-GPI (16:0/18:1)* 0.001853 1.88E-03 Lipid Phosphatidylinositol 

1-stearoyl-2-oleoyl-GPI (18:0/18:1)* 0.001809 5.23E-03 Lipid Phosphatidylinositol 
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1-stearoyl-2-linoleoyl-GPI (18:0/18:2) 0.001668 1.04E-03 Lipid Phosphatidylinositol 

1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4)* 0.001394 1.43E-02 Lipid Phosphatidylinositol 

Note: Significant results were presented following individual mixed effects modeling of 
each of the 983 individual metabolites measured at day 0. All estimates were adjusted for 
age, sex, SAPS II, admission diagnosis, and 25(OH)D at randomization. A multiple test-
corrected thresholds of q < 0.05 was used to identify all significant associations. GPC is 
Glycerophosphorylcholine; GPE is glycerophosphoethanolamine. Positive β coefficient 
values indicate higher metabolite abundance with increasing day 0 serum glucose. 
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Table 5. Metabolites significantly Increased with Increasing Glucose over days 0, 3 
and 7 

Biochemical Beta FDR q-value Super Pathway Sub Pathway 

Glucose 0.002397374 3.38E-42 Carbohydrate Glycolysis, Gluconeogenesis, and 
Pyruvate 

Alanine 0.000847026 2.45E-02 Amino Acid Alanine and Aspartate Metabolism 

Lactate 0.000769368 4.32E-02 Carbohydrate Glycolysis, Gluconeogenesis, and 
Pyruvate 

3-hydroxybutyrate 0.001861057 1.01E-05 Amino Acid BCAA Metabolism 

propionylglycine (C3) 0.00137764 1.01E-02 Lipid BCAA Metabolism 

Valine 0.000834214 8.86E-03 Amino Acid BCAA Metabolism 

Leucine 0.00083406 1.05E-02 Amino Acid BCAA Metabolism 

Isoleucine 0.000643604 4.32E-02 Amino Acid BCAA Metabolism 

palmitoyl-arachidonoyl-glycerol (16:0/20:4) 
[2]* 0.001896931 3.08E-04 Lipid Diacylglycerol 

palmitoyl-arachidonoyl-glycerol (16:0/20:4) 
[1]* 0.001696208 3.31E-03 Lipid Diacylglycerol 

oleoyl-arachidonoyl-glycerol (18:1/20:4) [2]* 0.001533007 3.31E-03 Lipid Diacylglycerol 

palmitoyl-palmitoyl-glycerol (16:0/16:0) [2]* 0.00150837 1.43E-02 Lipid Diacylglycerol 

linoleoyl-arachidonoyl-glycerol (18:2/20:4) 
[2]* 0.001435998 7.85E-03 Lipid Diacylglycerol 

diacylglycerol (14:0/18:1, 16:0/16:1) [2]* 0.001410765 1.73E-02 Lipid Diacylglycerol 

diacylglycerol (14:0/18:1, 16:0/16:1) [1]* 0.00138089 1.83E-02 Lipid Diacylglycerol 

palmitoyl-oleoyl-glycerol (16:0/18:1) [2]* 0.001286221 1.09E-02 Lipid Diacylglycerol 

oleoyl-arachidonoyl-glycerol (18:1/20:4) [1]* 0.001258482 1.50E-02 Lipid Diacylglycerol 

palmitoyl-oleoyl-glycerol (16:0/18:1) [1]* 0.00120317 1.81E-02 Lipid Diacylglycerol 

oleoyl-oleoyl-glycerol (18:1/18:1) [2]* 0.001048803 4.32E-02 Lipid Diacylglycerol 

1-myristoyl-2-arachidonoyl-GPC 
(14:0/20:4)* 0.002022287 2.35E-05 Lipid Phosphatidylcholine 

1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)* 0.001471315 9.67E-03 Lipid Phosphatidylcholine 

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 0.001435581 2.99E-03 Lipid Phosphatidylcholine 
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1-palmitoyl-2-palmitoleoyl-GPC 
(16:0/16:1)* 0.001171801 2.11E-02 Lipid Phosphatidylcholine 

1-palmitoyl-2-oleoyl-GPC (16:0/18:1) 0.001158139 1.49E-05 Lipid Phosphatidylcholine 

1-stearoyl-2-oleoyl-GPC (18:0/18:1) 0.001149058 1.76E-03 Lipid Phosphatidylcholine 

1-palmitoyl-2-docosahexaenoyl-GPC 
(16:0/22:6) 0.000982429 5.59E-03 Lipid Phosphatidylcholine 

1-stearoyl-2-docosahexaenoyl-GPC 
(18:0/22:6) 0.000952075 2.78E-02 Lipid Phosphatidylcholine 

1-palmitoyl-2-arachidonoyl-GPC 
(16:0/20:4n6) 0.000925918 5.35E-03 Lipid Phosphatidylcholine 

1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) 0.000863441 9.55E-03 Lipid Phosphatidylcholine 

1,2-dipalmitoyl-GPE (16:0/16:0)* 0.00193856 2.35E-05 Lipid Phosphatidylethanolamine 

1-palmitoyl-2-oleoyl-GPE (16:0/18:1) 0.001598293 2.99E-03 Lipid Phosphatidylethanolamine 

1-stearoyl-2-oleoyl-GPE (18:0/18:1) 0.001584726 6.96E-03 Lipid Phosphatidylethanolamine 

1-palmitoyl-2-stearoyl-GPE (16:0/18:0)* 0.001370249 1.01E-02 Lipid Phosphatidylethanolamine 

1-palmitoyl-2-oleoyl-GPI (16:0/18:1)* 0.001499492 2.99E-03 Lipid Phosphatidylinositol 

1-stearoyl-2-oleoyl-GPI (18:0/18:1)* 0.001458036 1.01E-02 Lipid Phosphatidylinositol 

1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) 0.001138683 3.48E-03 Lipid Phosphatidylinositol 

1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4)* 0.001129459 1.15E-02 Lipid Phosphatidylinositol 

1-stearoyl-2-linoleoyl-GPI (18:0/18:2) 0.001053291 1.96E-02 Lipid Phosphatidylinositol 

Note: Significant results were presented following individual mixed effects modeling of 
each of the 983 individual metabolites measured at days 0,3, and 7. All estimates were 
age, sex, SAPS II, admission diagnosis, 25(OH)D at randomization, absolute change in 
25(OH)D level at day 3, plasma day, and individual patient (as the random-intercept). A 
multiple test-corrected thresholds of q < 0.05 was used to identify all significant 
associations. GPC is Glycerophosphorylcholine; GPE is glycerophosphoethanolamine. 
Positive β coefficient values indicate higher metabolite abundance with increasing day 0 
serum glucose. 
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Figure 1. Survival analysis for day 0 glucose quartiles (Q0-Q3). 

  
Log-rank test for equality of survivor functions P = 0.50

64-116                                 117-141
142-169                               171-453Glucose Day 0

Su
rv

iv
al

 

Log-rank test for equality of survivor functions P = 0.50 



32 
 

Figure 2. Day 0 OPLS-DA 
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SUPPLEMENTARY METHODS 

VITdAL-ICU Cohort Details: The VITdAL-ICU trial randomized 475 critically ill adult 

subjects with 25(OH)D < 20 ng/mL to vitamin D3 or placebo given orally or via 

nasogastric tube once at a dose of 540,000 IU followed by 90,000 IU monthly (1). The 

trial was conducted at the University Hospital Graz in Southeast Austria in 5 Medical 

and Surgical Intensive Care Units. Patients were randomized 1:1 with a randomization 

block size of 8 stratified via ICU type and sex. The primary study outcome was the 

length of hospital stay. Secondary outcomes included 28-day mortality, hospital 

mortality, 6-month mortality, length of ICU stay, and 25-hydroxyvitamin D (25(OH)D) 

levels at day 0, 3, and 7. Blood samples were collected on days 0 (pre-randomization), 

3, and 7. Plasma was fractionated, aliquoted, and stored at -70°C. Four hundred fifty-

three trial subjects had frozen plasma available for analysis. The VITdAL-ICU trial was 

approved by the institutional ethical committee of the Medical University of Graz and the 

Austrian Agency for Health and Food Safety. Following Austrian and European Union 

requirements and the principles of the Declaration of Helsinki, (2) at VITdAL-ICU trial 

enrollment, written informed consent was obtained, if possible, directly from the patient 

or a legal surrogate (1). Consent included permission for plasma specimens to be saved 

for future research studies. The post-hoc study research protocol was approved by the 

Mass General Brigham Human Research Committee Institutional Review Board at the 

Brigham and Women’s Hospital (Protocol# 2015P002766). 

 

Clinical trial data utilized included age, sex, admission diagnosis category, baseline 

25(OH)D, intervention status (placebo vs. high dose vitamin D3), absolute change in 
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25(OH)D level at day 3 relative to day 0, and the Simplified Acute Physiology Score 

(SAPS) II (3) at day 0. In addition, 25(OH)D levels were measured in the VITdAL-ICU 

cohort by chemiluminescence immunoassay (1). Admission diagnosis category was 

determined at ICU admission by trial investigators as Neurosurgery, Cardiac surgery, 

Cardiovascular, Gastrointestinal/liver, Hematologic/Oncology/ Metabolic, Neurologic, 

Other non-operative, Other operatives, Renal, Respiratory, Sepsis/infectious, Thoracic 

Surgery, Transplantation, Trauma, and Vascular Surgery. 

 

Sample Preparation: Blood samples were drawn and transferred into EDTA-coated 

blood collection tubes within 24 hours from study inclusion and processed within 4 

hours after venipuncture. Subsequently, plasma was fractionated, aliquoted, and stored 

at -80°C [4]. For the VITdAL-ICU subject, 150 μl plasma aliquots were shipped 

separately on dry ice to Metabolon, Inc at different times. Following receipt, the frozen 

plasma samples were immediately stored at -80oC. Other investigators note metabolites 

to be stable for at least two freeze-thaw cycles(5). To generate metabolomic data for the 

VITdAL-ICU cohort, a total of 1215 VITdAL-ICU trial plasma samples from 428 subjects 

on day 0, 413 subjects on day 3, and 374 subjects on day seven were prepared and 

analyzed in 2017(1,6,7).  

 

Plasma sample preparation was performed with the automated MicroLab STAR® Liquid 

Handling system (Hamilton Company, NV, USA). Before extraction, samples were 

fortified with quality control (QC) recovery standards. To remove protein, dissociate 

small molecules bound to protein or trapped in the precipitated protein matrix, and 
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recover chemically diverse metabolites, proteins were precipitated with methanol via 

2 minutes of robust shaking (GenoGrinder 2000 SPEX SamplePrep, NJ, USA) and 

subsequent centrifugation. The resulting extract was divided into five fractions: two for 

analysis by two separate reverse phases (RP)/ UPLC-MS/MS methods with positive ion 

mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative 

ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and 

one sample was reserved for backup. Samples were placed on a TurboVap® (Zymark, 

MA, USA) to remove the organic solvent and stored overnight under nitrogen before 

preparation for analysis. 

 

Quality Assurance (QA) and Quality Control (QC):  Several types of controls were 

utilized with the plasma samples analysis allowing for instrument performance 

monitoring and aided chromatographic alignment: a pooled matrix sample generated by 

taking a small volume of each experimental sample served as a technical replicate 

throughout the data set (8); extracted water samples served as process blanks (9); and 

a cocktail of QC standards that were carefully chosen not to interfere with the 

measurement of endogenous compounds were spiked into every analyzed sample(10). 

Instrument variability was determined by calculating the median relative standard 

deviation (RSD) for the standards added to each sample before injection into the mass 

spectrometers(11). Overall process variability was determined by calculating the median 

RSD for all endogenous metabolites (i.e., non-instrument standards) in 100% of the 

pooled matrix samples. Experimental samples were randomized across the platform, 

with QC samples spaced evenly among the injections. 
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Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy 

(UPLC-MS/MS):  All methods utilized a Waters ACQUITY ultra-performance liquid 

chromatography (UPLC) (Waters, MA, USA) and for untargeted lipidomic analysis a 

Thermo Scientific Q Exactive™ high resolution/accurate mass spectrometer interfaced 

with a heated electrospray ionization (HESI-II) source and Orbitrap™ mass analyzer 

operated at 35,000 mass resolution (ThermoFisher Scientific, MA, USA) (12). The 

sample extract was dried and then reconstituted in solvents compatible with each of the 

four methods. Each reconstitution solvent contained a series of standards at fixed 

concentrations to ensure injection and chromatographic consistency. One aliquot was 

analyzed using acidic positive ion conditions, chromatographically optimized for more 

hydrophilic compounds. In this method, the extract was gradient eluted from a C18 

column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, 

containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another 

aliquot was also analyzed using acidic positive ion conditions; however, it was 

chromatographically optimized for more hydrophobic compounds(13,14). In this method, 

the extract was gradient eluted from the same C18 column using methanol, acetonitrile, 

water, 0.05% PFPA, and 0.01% FA and was operated at an overall higher organic 

content. Another aliquot was analyzed using basic negative ion optimized conditions 

using a separate dedicated C18 column. However, the basic extracts were gradient 

eluted from the column using methanol and water, with 6.5mM Ammonium Bicarbonate 

at pH 8. The fourth aliquot was analyzed via negative ionization following elution from a 

HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a gradient 



37 
 

consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS 

analysis alternated between MS and data-dependent MSn scans using dynamic 

exclusion(15). The scan range for both ionization modes was 70–1000 m/z (16). 

 

Data Extraction and Compound Identification:  Raw data was extracted, peak-

identified, and QC processed using Metabolon’s hardware and software. Compounds 

were identified compared to library entries of purified standards or recurrent unknown 

entities. Metabolon maintains a library based on authenticated standards that contain 

the retention time/index (RI), the mass-to-charge ratio (m/z), and chromatographic data 

(including MS/MS spectral data) on all molecules present in the library. Furthermore, 

biochemical identifications are based on three criteria: retention index within a narrow RI 

window of the proposed identification, accurate mass match to the library +/- 10 ppm, 

and the MS/MS forward and reverse scores between the experimental data and 

authentic standards (17). The MS/MS scores are based on comparing the ions present 

in the experimental spectrum to those in the library spectrum. While there may be 

similarities between these molecules based on one of these factors, all three data points 

can be used to distinguish and differentiate biochemicals(18). More than 3300 

commercially available purified standard compounds have been acquired and registered 

into the Metabolon Laboratory Information Management System (LIMS) system for 

analysis on all platforms to determine their analytical characteristics. The identification 

level reported in our tables follows the criteria described by Sumner et al. (19). Level 1 

is a validated identification that confirms a structure with a minimum of two independent 

and orthogonal data from a pure reference standard under identical analytical 
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conditions. Predictive or externally acquired structure evidence when a reference 

standard does not exist (i.e., MS/MS data exhibiting diagnostic fragments or neutral 

losses consistent with a specific structure) is a putative identification (Level 2) (20). 

Compounds labeled with “*” have identification Level 2. If no label is applied, the 

identification Level is 1. Compounds labeled with “( )” or “[ ]” indicate a structural isomer 

of another compound in the spectral library; for example, a steroid that may be sulfated 

at one of several positions that are indistinguishable by the mass spectrometry data or a 

diacylglycerol for which more than one stereospecific molecule exists. For the 

Acylcarnitine sub pathway: a capital C is followed by the number of carbons within the 

fatty acyl group attached to the carnitine. A colon followed by a number is one or more 

unsaturated carbons in the acylcarnitine ester (i.e., C10:1 is a monounsaturated C10 

acylcarnitine). DC following the carbon number is a dicarboxylic acylcarnitine. 

Acylcarnitines are classified by the number of carbon atoms in the acyl group chain: 

short-chain acylcarnitines C2 to C7; medium-chain acylcarnitines C8 to C14; long-chain 

acylcarnitines C16 – C26 (21). A summary of all 983 metabolites identified is present in 

Supplementary Data 2. 

 

Curation: Various curation procedures were carried out to ensure a high-quality data 

set was available for statistical analysis and interpretation. The QC and curation 

processes were designed to ensure accurate and consistent identification of true 

chemical entities and to remove those representing system artifacts, mis-assignments, 

and background noise. Metabolon data analysts use proprietary visualization and 

interpretation software to confirm the consistency of peak identification among the 
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various samples. Library matches for each compound were checked for each sample 

and corrected if necessary. 

 

Metabolite Quantification and Data Normalization:  Peaks were quantified using total 

spectral area (area under the curve) (21-23). Metabolite quantitation or abundance is 

defined as the total ion count for the given mass-to-charge ratio (m/z) assigned to the 

particular metabolite(24). Specifically, metabolite quantitation is determined using 

extracted ion chromatograms by focusing the narrow mass window on the theoretical 

m/z value of the individual metabolite of interest and eliminating overlapping isobaric 

signals with the maintenance of mass accuracy during the acquisition(25-29). In 

addition, a data normalization step was performed to correct variation resulting from 

instrument inter-day tuning differences. Each compound was corrected in run-day 

blocks by registering the medians to equal one (1.00) and normalizing each data point 

proportionately. 

 

 

Statistical Analysis: Determination of the changes in relative concentrations of 

metabolites was first suggested as a strategy to define the metabolome in 1998 (30). 

We analyzed 983 known metabolites per plasma sample. Metabolomic profiling 

identified 983 metabolites. Metabolomic data underwent a cube root transformation 

followed by Pareto scaling to generate data on the same scale and followed an 

approximately normal distribution(31,32).  
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The study sample size was determined via MetaboAnalyst 4.0 with a false discovery 

rate (FDR) corrected alpha of 0.05 using equations for single time point metabolomics 

data with binary groups categorized above and below day 0 glucose 150 mg/dl as ≥ 150 

mg/dL (33-35). Glucose level above and below 150 mg/dl was assigned as the referent 

as a cut-off value to trigger intervention for hyperglycaemia as recommended by the 

Society of Critical Care Medicine (33). To achieve 80% power, our study requires a 

sample of 140 subjects above and 140 subjects below glucose 150 mg/dl (34). Analysis 

of repeated plasma metabolomics data is known to increase study power (36) 

substantially. 

For univariate analysis of day 0 data, a Student’s t-test was performed to determine if 

significant metabolite abundance differences exist by glucose level (above and below 

150 mg/dL) using MetaboAnalyst 4.0 (35). A false discovery rate (FDR) adjusted p-

value (q-value) of 0.05 was used to identify significant differences (37). Orthogonal 

Projections to Latent Structures Discriminant Analysis (OPLS-DA ) was used to test 

whether all 983 measured metabolites as a whole can discriminate between patients 

with day 0 glucose above and below 150 mg/dL. OPLS-DA was performed to relate the 

X data to the Y response (38,39). In our study, X was the metabolite at day 0, and Y 

was the exposure as a binary serum day 0 glucose above and below 150 mg/dL. We 

assessed the OPLS-DA model quality via the variation of X explained by the model 

(R2X(cum)), the goodness-of-fit represented by the percentage of the variation of Y 

explained by the model (R2), and the predictive performance (Q2). Permutation testing 

was performed to validate the OPLS-DA model (40,41). The percentage of the variation 

of the dataset predicted by the model (Permuted Q2) was assessed using a cross-
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validation test (42,43). Sevenfold cross-validation analysis of variance (CV-ANOVA) 

was utilized to determine the OPLS-DA model significance (41). Additionally, response 

permutation testing was performed to validate the OPLS-DA model (40,41). 

 

Serum glucose levels were divided into quartiles (Q0-Q3) for survival studies. The 

survival analysis between the day 0 glucose quartile was determined by the Kaplan-

Meier survival curve and the log-rank test (44,45). For single time point data, 

correlations between serum glucose level (continuous exposure) at day 0 and individual 

metabolite abundance (outcome) were determined utilizing linear regression models 

correcting for age, sex, SAPS II, admission diagnosis category, and 25(OH)D at day 0. 

A q-value of 0.05 was used for all significant associations (37). For repeated measures 

data in 391 subjects, the association between serum glucose (continuous exposure) 

and abundance of individual metabolites (outcome) at day 0, 3, and 7 were determined 

utilizing mixed effects linear regression adjusted for age, sex, SAPS II, admission 

diagnosis category, sample day, 25(OH)D at day 0, and change in 25(OH)D from day 0-

3 with an individual subject-specific random-intercept. In addition, we performed an 

additional mixed effects regression with the additional adjustment of a diabetes 

diagnosis. All linear regression models were analyzed using STATA 16.1MP (College 

Station, TX).  
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Supplemental Table 1. Characteristics of Subjects excluded for lack of serum Glucose 

on day 0 

Baseline Characteristics 
Day 0 Serum 

Glucose 
absent 

Day 0 
Serum 

Glucose 
Present 

Total P-value 

No. 37 391 428  

Age Mean (SD) 63.4 (15.7) 64.2 (14.8) 64.2 (14.9) 0.75* 

Female No. (%) 13 (35.14) 138 (35.29) 151 (35.28) 0.99 

Non-White No. (%) 0 (0) 0 (0) 0 (0)  

Diabetes History No. (%) 5 (13.51) 96 (24.55) 101 (23.6) 0.13 

SAPS II Mean (SD) 37.7 (12.3) 33 (15.6) 33.4 (15.4) 0.073* 

Sepsis No. (%) 3 (8.11) 28 (7.16) 31 (7.24) 0.83 

Intubation No. (%) 18 (48.64) 261 (66.75) 279 (65.19) 0.45 

ICU    0.48 

Anesthesia ICU No. (%) 10 (27.03) 73 (18.67) 81 (19.24)  

Cardiac Surgery ICU No. (%) 8 (21.62) 116 (29.67) 123 (29.22)  

Medical ICU No. (%) 10 (27.03) 81 (20.72) 89 (21.14)  

Neurological ICU No. (%) 8 (21.62) 99 (25.32) 106 (25.18)  

Surgical ICU No. (%) 1 (2.70) 22 (5.63) 22 (5.23)  

Day 0 Creatinine Mean (SD) 1.3 (0.9) 1.4 (1.0) 1.4 (1.0) 0.54* 

Triglycerides Mean (SD) 158.5 (115.2) 143.2 (95.3) 144.3 (96.8) 0.40* 

Day 0 C-reactive protein Mean (SD) 158.6 (113.0) 121.8 (87.0) 124.9 (89.8) 0.02* 

180-day mortality No. (%) 12 (32.43) 143 (36.57) 155 (36.21) 0.62 
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Supplemental Figure 1. Consort flow diagram 

Manuscript # 1 
 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enrolled in VITdAL-ICU trial (N=475) 

Study cohort at day 0 (N=453) 

 

 

Study cohort at day 3 (N=428) 

Patients excluded (N=22) 
Frozen plasma was not 

available for metabolomics 
analysis 

Patients excluded (N=25)  

25(OH)D absent at day 3 

Patients excluded (N=37)  

Baseline serum glucose was not 
available 

Final study cohort (N=391) 



44 
 

SUPPLEMENTARY METHODS REFERENCES CITED 

1. Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, Urbanic 

Purkart T, Waltensdorfer A, Munch A, Warnkross H, et al.: Effect of high-dose vitamin 

D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the 

VITdAL-ICU randomized clinical trial. JAMA 2014, 312(15):1520-1530. 

2. World Medical A: World Medical Association Declaration of Helsinki: ethical 

principles for medical research involving human subjects. JAMA 2013, 310(20):2191-

2194. 

3. Le Gall JR, Lemeshow S, Saulnier F: A new Simplified Acute Physiology Score 

(SAPS II) based on a European/North American multicenter study. JAMA 1993, 

270(24):2957-2963. 

4. Dolinay T, Kim YS, Howrylak J, Hunninghake GM, An CH, Fredenburgh L, 

Massaro AF, Rogers A, Gazourian L, Nakahira K et al.: Inflammasome-regulated 

cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med 2012, 

185(11):1225-1234. 

5. Breier M, Wahl S, Prehn C, Fugmann M, Ferrari U, Weise M, Banning F, Seissler 

J, Grallert H, Adamski J, et al.: Targeted metabolomics identifies reliable and stable 

metabolites in human serum and plasma samples. PLoS One 2014, 9(2):e89728. 

6. Chary S, Amrein K, Lasky-Su J, Dobnig H, Christopher KB: The Sex-specific 

Metabolic Response to Critical Illness: a post-hoc metabolomics study of the VITdAL-

ICU trial. Scientific Reports 2021, 11:3951. 

7. Amrein K, Lasky-Su JA, Dobnig H, Christopher KB: Metabolomic basis for 

response to high dose vitamin D in critical illness. Clinical nutrition 2020. 



45 
 

8. Wehrens R, Hageman JA, van Eeuwijk F, Kooke R, Flood PJ, Wijnker E, 

Keurentjes JJ, Lommen A, van Eekelen HD, Hall RD et al.: Improved batch correction in 

untargeted MS-based metabolomics. Metabolomics 2016, 12:88. 

9. Trezzi JP, Jager C, Galozzi S, Barkovits K, Marcus K, Mollenhauer B, Hiller K: 

Metabolic profiling of body fluids and multivariate data analysis. MethodsX 2017, 4:95-

103. 

10. Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB: 

Metabolomics applied to diabetes research: moving from information to knowledge. 

Diabetes 2009, 58(11):2429-2443. 

11. Parsons HM, Ekman DR, Collette TW, Viant MR: Spectral relative standard 

deviation: a practical benchmark in metabolomics. Analyst 2009, 134(3):478-485. 

12. Narvaez-Rivas M, Zhang Q: Comprehensive untargeted lipidomic analysis using 

core-shell C30 particle column and high field orbitrap mass spectrometer. J Chromatogr 

A 2016, 1440:123-134. 

13. Michopoulos F, Lai L, Gika H, Theodoridis G, Wilson I: UPLC-MS-based analysis 

of human plasma for metabonomics using solvent precipitation or solid phase 

extraction. J Proteome Res 2009, 8(4):2114-2121. 

14. Want EJ, Smith CA, Qin C, Van Horne KC, Siuzdak G: Phospholipid capture 

combined with non-linear chromatographic correction for improved serum metabolite 

profiling. Metabolomics 2006, 2:145-154. 

15. Oresic M, Vidal-Puig A, Hanninen V: Metabolomic approaches to phenotype 

characterization and applications to complex diseases. Expert Rev Mol Diagn 2006, 

6(4):575-585. 



46 
 

16. Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM: Absolute Quantification 

of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell 2016, 

166(5):1324-1337 e1311. 

17. Hufsky F, Scheubert K, Bocker S: Computational mass spectrometry for small-

molecule fragmentation. TrAC Trends Anal Chem 2014, 53:41–48. 

18. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, 

Brown M, Knowles JD, Halsall A, Haselden JN, et al.: Procedures for large-scale 

metabolic profiling of serum and plasma using gas chromatography and liquid 

chromatography coupled to mass spectrometry. Nat Protoc 2011, 6(7):1060-1083. 

19. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, 

Fiehn O, Goodacre R, Griffin JL, et al.: Proposed minimum reporting standards for 

chemical analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). 

Metabolomics 2007, 3(3):211-221. 

20. Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA: Untargeted 

Metabolomics Strategies-Challenges and Emerging Directions. J Am Soc Mass 

Spectrom 2016, 27(12):1897-1905. 

21. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM: Targeted profiling: 

quantitative analysis of 1H NMR metabolomics data. Anal Chem 2006, 78(13):4430-

4442. 

22. Wishart DS: Quantitative metabolomics using NMR. TrAC Trends Anal Chem 

2008, 27:228–237. 

23. Zhou B, Xiao JF, Tuli L, Ressom HW: LC-MS-based metabolomics. Mol Biosyst 

2012, 8(2):470-481. 



47 
 

24. Parisi LR, Li N, Atilla-Gokcumen GE: Very Long Chain Fatty Acids Are 

Functionally Involved in Necroptosis. Cell Chem Biol 2017, 24(12):1445-1454 e1448. 

25. Junot C, Madalinski G, Tabet JC, Ezan E: Fourier transform mass spectrometry 

for metabolome analysis. Analyst 2010, 135(9):2203-2219. 

26. Kamleh A, Barrett MP, Wildridge D, Burchmore RJ, Scheltema RA, Watson DG: 

Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with 

hydrophilic interaction chromatography: a method with wide applicability to analysis of 

biomolecules. Rapid Commun Mass Spectrom 2008, 22(12):1912-1918. 

27. Kamleh MA, Hobani Y, Dow JA, Watson DG: Metabolomic profiling of Drosophila 

using liquid chromatography Fourier transform mass spectrometry. FEBS Lett 2008, 

582(19):2916-2922. 

28. Koulman A, Woffendin G, Narayana VK, Welchman H, Crone C, Volmer DA: 

High-resolution extracted ion chromatography, a new tool for metabolomics and 

lipidomics using a second-generation orbitrap mass spectrometer. Rapid Commun 

Mass Spectrom 2009, 23(10):1411-1418. 

29. Xiao JF, Zhou B, Ressom HW: Metabolite identification and quantitation in LC-

MS/MS-based metabolomics. Trends Analyt Chem 2012, 32:1-14. 

30. Oliver SG, Winson MK, Kell DB, Baganz F: Systematic functional analysis of the 

yeast genome. Trends Biotechnol 1998, 16(9):373-378. 

31. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ: 

Centering, scaling, and transformations: improving the biological information content of 

metabolomics data. BMC Genomics 2006, 7:142. 



48 
 

32. Struja T, Eckart A, Kutz A, Huber A, Neyer P, Kraenzlin M, Mueller B, Meier C, 

Bernasconi L, Schuetz P: Metabolomics for Prediction of Relapse in Graves' Disease: 

Observational Pilot Study. Front Endocrinol (Lausanne) 2018, 9:623. 

33. Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, et al. 

Guidelines for the use of an insulin infusion for the management of hyperglycemia in 

critically ill patients. Crit Care Med. 2012;40(12):3251-76. 

34. van Iterson M, t Hoen PA, Pedotti P, Hooiveld GJ, den Dunnen JT, van Ommen 

GJ, et al. Relative power and sample size analysis on gene expression profiling data. 

BMC Genomics. 2009;10:439. 

35. Chong J, Xia J. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, 

Interpretation, and Integration with Other Omics Data. Methods Mol Biol. 2020;2104:337-

60. 

36. FitzMaurice GM, Laird NM, Ware JH. Applied longitudinal analysis. Hoboken, New 

Jersey: Wiley; 2011. 

37. Benjamini Y, Hochberg Y. Controlling for false discovery rate: a practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 

(Methodological). 1995;57:289–300. 

38. Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS 

discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. 

Journal of Chemometrics. 2006;20(8-10):341–51. 

39. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J 

Chemometrics. 2002;16:119–28. 



49 
 

40. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, et al. 

Assessment of PLSDA cross validation. Metabolomics 2008;4(1):81–9. 

41. Eriksson L, Trygg J, Wold S. CV-ANOVA for significance testing of PLS and OPLS 

models. Journal of Chemometrics. 2008;22(11-12):594-600. 

41. Eastment H, Krzanowski W. Crossvalidatory choice of the number of components 

from a principal component analysis. Technometrics. 1982;24:73-7. 

43. Martens H, Naes T. Multivariate Calibration. Chichester: John Wiley and Sons; 

1989. 504 p. 

44. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J AM 

Stat Assn. 1958;53:457-81. 

45. Mantel N. Evaluation of survival data and two new rank order statistics arising in 
its consideration. Cancer Chemother Rep. 1966;50(3):163-70.  



50 
 

REFERENCES 

 

1. Alhatemi G, Aldiwani H, Alhatemi R, Hussein M, Mahdai S, Seyoum B. Glycemic 
control in the critically ill: Less is more. Cleve Clin J Med. 2022;89(4):191-9. 

2. Plummer MP, Bellomo R, Cousins CE, Annink CE, Sundararajan K, Reddi BA, et 
al. Dysglycaemia in the critically ill and the interaction of chronic and acute glycaemia 
with mortality. Intensive Care Med. 2014;40(7):973-80. 

3. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult 
patients with diabetes. Diabetes care. 2009;32(7):1335-43. 

4. Bar-Or D, Rael LT, Madayag RM, Banton KL, Tanner A, 2nd, Acuna DL, et al. 
Stress Hyperglycemia in Critically Ill Patients: Insight Into Possible Molecular Pathways. 
Front Med (Lausanne). 2019;6:54. 

5. Godinjak A, Iglica A, Burekovic A, Jusufovic S, Ajanovic A, Tancica I, et al. 
Hyperglycemia in Critically Ill Patients: Management and Prognosis. Med Arch. 
2015;69(3):157-60. 

6. Barton RN. Neuroendocrine mobilization of body fuels after injury. Br Med Bull. 
1985;41(3):218-25. 

7. Frayn KN, Little RA, Maycock PF, Stoner HB. The relationship of plasma 
catecholamines to acute metabolic and hormonal responses to injury in man. Circ 
Shock. 1985;16(3):229-40. 

8. Memon RA, Feingold KR, Grunfeld C. Cytokines and intermediary metabolism. 
In: Remick DG, Friedland JS, editors. Cytokines in Health and Disease. 2nd ed. New 
York: Marcel Dekker; 1997. p. 381-99. 

9. Sakurai Y, Zhang XJ, Wolfe RR. TNF directly stimulates glucose uptake and 
leucine oxidation, inhibiting FFA flux in conscious dogs. Am J Physiol. 1996;270(5 Pt 1): 
E 864-72. 

10. Mehta VK, Hao W, Brooks-Worrell BM, Palmer JP. Low-dose interleukin 1 and 
tumor necrosis factor individually stimulate insulin release but in combination cause 
suppression. Eur J Endocrinol. 1994;130(2):208-14. 

11. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. 
Inflammatory cytokine concentrations are acutely increased by hyperglycemia in 
humans: role of oxidative stress. Circulation. 2002;106(16):2067-72. 

12. Jeschke MG, Klein D, Bolder U, Einspanier R. Insulin attenuates the systemic 
inflammatory response in endotoxemic rats. Endocrinology. 2004;145(9):4084-93. 

13. Brix-Christensen V, Andersen SK, Andersen R, Mengel A, Dyhr T, Andersen NT, 
et al. Acute hyperinsulinemia restrains endotoxin-induced systemic inflammatory 



51 
 

response: an experimental study in a porcine model. Anesthesiology. 2004;100(4):861-
70. 

14. Sigurdsson MI, Kobayashi H, Amrein K, Nakahira K, Rogers AJ, Pinilla-Vera M, 
et al. Circulating N-formylmethionine and metabolic shift in critical illness: a multicohort 
metabolomics study. Crit Care. 2022;26(1):321. 

15. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and 
towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451-9. 

16. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickman SW, Rice BJ, Wang C, et 
al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci 
Transl Med. 2013;5(195):195ra95. 

17. Langley RJ, Tipper JL, Bruse S, Baron RM, Tsalik EL, Huntley J, et al. Integrative 
"omic" analysis of experimental bacteremia identifies a metabolic signature that 
distinguishes human sepsis from systemic inflammatory response syndromes. Am J 
Respir Crit Care Med. 2014;190(4):445-55. 

18. Kobayashi H, Amrein K, Lasky-Su JA, Christopher KB. Procalcitonin 
metabolomics in the critically ill reveal relationships between inflammation intensity and 
energy utilization pathways. Sci Rep. 2021;11(1):23194. 

19. Amrein K, Schnedl C, Holl A, Riedl R, Christopher KB, Pachler C, et al. Effect of 
high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D 
deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520-30. 

20. Amrein K, Lasky-Su JA, Dobnig H, Christopher KB. Metabolomic basis for 
response to high dose vitamin D in critical illness. Clinical nutrition. 2021;40(4):2053-60. 

21. Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, et al. 
Guidelines for the use of an insulin infusion for the management of hyperglycemia in 
critically ill patients. Crit Care Med. 2012;40(12):3251-76. 

22. van Iterson M, t Hoen PA, Pedotti P, Hooiveld GJ, den Dunnen JT, van Ommen 
GJ, et al. Relative power and sample size analysis on gene expression profiling data. 
BMC Genomics. 2009;10:439. 

23. Chong J, Xia J. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, 
Interpretation, and Integration with Other Omics Data. Methods Mol Biol. 
2020;2104:337-60. 

24. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score 
(SAPS II) based on a European/North American multicenter study. JAMA. 
1993;270(24):2957-63. 

25. Pinto J, Domingues MR, Galhano E, Pita C, Almeida Mdo C, Carreira IM, et al. 
Human plasma stability during handling and storage: impact on NMR metabolomics. 
Analyst. 2014;139(5):1168-77. 



52 
 

26. FitzMaurice GM, Laird NM, Ware JH. Applied longitudinal analysis. Hoboken, 
New Jersey: Wiley; 2011. 

27. Benjamini Y, Hochberg Y. Controlling for false discovery rate: a practical and 
powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 
(Methodological). 1995;57:289–300. 

28. Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS 
discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. 
Journal of Chemometrics. 2006;20(8-10):341–51. 

29. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J 
Chemometrics. 2002;16:119–28. 

30. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, et al. 
Assessment of PLSDA cross validation. Metabolomics 2008;4(1):81–9. 

31. Eriksson L, Trygg J, Wold S. CV-ANOVA for significance testing of PLS and 
OPLS models. Journal of Chemometrics. 2008;22(11-12):594-600. 

32. Eastment H, Krzanowski W. Crossvalidatory choice of the number of 
components from a principal component analysis. Technometrics. 1982;24:73-7. 

33. Martens H, Naes T. Multivariate Calibration. Chichester: John Wiley and Sons; 
1989. 504 p. 

34. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J 
AM Stat Assn. 1958;53:457-81. 

35. Mantel N. Evaluation of survival data and two new rank order statistics arising in 
its consideration. Cancer Chemother Rep. 1966;50(3):163-70. 

36. Cahill GF, Jr. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1-22. 

37. Benedict FG. A Study of Prolonged Fasting. Washington, DC, USA: Carnegie 
Institute of Washington; 1915. 

38. Felig P. Amino acid metabolism in man. Annual review of biochemistry. 
1975;44:933-55. 

39. Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best 
Pract Res Clin Endocrinol Metab. 2001;15(4):533-51. 

40. Green P, Theilla M, Singer P. Lipid metabolism in critical illness. Curr Opin Clin 
Nutr Metab Care. 2016;19(2):111-5. 

41. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, et 
al. Effects of infection and inflammation on lipid and lipoprotein metabolism: 
mechanisms and consequences to the host. J Lipid Res. 2004;45(7):1169-96. 



53 
 

42. Van Wyngene L, Vandewalle J, Libert C. Reprogramming of basic metabolic 
pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med. 2018;10(8). 

43. Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol--
stereochemistry, metabolism, and signaling. Cellular and molecular life sciences: 
CMLS. 2015;72(20):3931-52. 

44. Wattenberg BW, Raben DM. Diacylglycerol kinases put the brakes on immune 
function. Sci STKE. 2007;2007(398):pe43. 

45. Wang YF, Lee GL, Huang YH, Kuo CC. sn-1,2-diacylglycerols protect against 
lethal endotoxemia by controlling systemic inflammation. Immunobiology. 
2016;221(11):1309-18. 

46. Chauveau A, Le Floc'h A, Bantilan NS, Koretzky GA, Huse M. Diacylglycerol 
kinase alpha establishes T cell polarity by shaping diacylglycerol accumulation at the 
immunological synapse. Sci Signal. 2014;7(340):ra82. 

47. Tsuchiya R, Tanaka T, Hozumi Y, Nakano T, Okada M, Topham MK, et al. 
Downregulation of diacylglycerol kinase zeta enhances activation of cytokine-induced 
NF-kappaB signaling pathway. Biochim Biophys Acta. 2015;1853(2):361-9. 

48. Noessner E. DGK-alpha: A Checkpoint in Cancer-Mediated Immuno-Inhibition 
and Target for Immunotherapy. Front Cell Dev Biol. 2017;5:16. 

49. Xia P, Inoguchi T, Kern TS, Engerman RL, Oates PJ, King GL. Characterization 
of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway 
in diabetes and hypergalactosemia. Diabetes. 1994;43(9):1122-9. 

50. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The 
critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health 
and disease. Biochim Biophys Acta Biomembr. 2017;1859(9 Pt B):1558-72. 

51. Chang W, Hatch GM, Wang Y, Yu F, Wang M. The relationship between 
phospholipids and insulin resistance: From clinical to experimental studies. J Cell Mol 
Med. 2019;23(2):702-10. 

52. Shinzawa-Itoh K, Aoyama H, Muramoto K, Terada H, Kurauchi T, Tadehara Y, et 
al. Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c 
oxidase. EMBO J. 2007;26(6):1713-25. 

53. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A 
ubiquitin-like system mediates protein lipidation. Nature. 2000;408(6811):488-92. 

54. Patel D, Witt SN. Ethanolamine and Phosphatidylethanolamine: Partners in 
Health and Disease. Oxid Med Cell Longev. 2017;2017:4829180. 

55. Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation. Trends Cell 
Biol. 2016;26(3):165-76. 



54 
 

56. D'Herde K, Krysko DV. Ferroptosis: Oxidized PEs trigger death. Nat Chem Biol. 
2017;13(1):4-5. 

57. Vickers AJ. How many repeated measures in repeated measures designs? 
Statistical issues for comparative trials. BMC Med Res Methodol. 2003;3:22. 

58. Frison L, Pocock SJ. Repeated measures in clinical trials: analysis using mean 
summary statistics and its implications for design. Stat Med. 1992;11(13):1685-704. 

59. Fang H, Brooks GP, Rizzo ML, Espy KA, Barcikowski RS. A Monte Carlo Power 
Analysis of Traditional Repeated Measures and Hierarchical Multivariate Linear Models 
in Longitudinal Data Analysis. J Mod Appl Stat Methods. 2008;7(1). 

60. Mei Y, Kim BS, Tsui K. Linear mixed effects models for feature selection in high 
dimensional NMR spectra. Exprt Syst Applic. 2009;36:4703–8. 

61. Ernest B, Gooding JR, Campagna SR, Saxton AM, Voy BH. MetabR: an R script 
for linear model analysis of quantitative metabolomic data. BMC Res Notes. 
2012;5:596. 

62. Kelly RS, Croteau-Chonka DC, Dahlin A, Mirzakhani H, Wu AC, Wan ES, et al. 
Integration of metabolomic and transcriptomic networks in pregnant women reveals 
biological pathways and predictive signatures associated with preeclampsia. 
Metabolomics. 2017;13(1). 

63. Lee-Sarwar K, Kelly RS, Lasky-Su J, Kachroo P, Zeiger RS, O'Connor GT, et al. 
Dietary and Plasma Polyunsaturated Fatty Acids Are Inversely Associated with Asthma 
and Atopy in Early Childhood. J Allergy Clin Immunol Pract. 2019;7(2):529-38 e8. 

64. Chary S, Amrein K, Mahmoud SH, Lasky-Su JA, Christopher KB. Sex-Specific 
Catabolic Metabolism Alterations in the Critically Ill following High Dose Vitamin D. 
Metabolites. 2022;12(3). 

65. Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E, et al. Molecular 
phenotyping of a UK population: defining the human serum metabolome. Metabolomics. 
2015;11(1):9-26. 

 

 

 

 

 

 

 



55 
 

MANUSCRIPT 2 

 

Chronic Diseases and Metabolic Homeostasis Derangement in Critical 

Illness: A Post-hoc Metabolomics cohort study 

Authors: Sigma Hossain, MBBS, MSc, MSc, MPhil, MPH1,4, Karin Amrein, MD, MSc2, 

Jessica A. Lasky-Su, ScD3, Kenneth B. Christopher, MD, SM3,4 

Affiliations: 

1. Harvard Medical School, Boston, USA 

5. Division of Endocrinology and Diabetology, Medical University of Graz, Graz, 

Austria 

6. Jessica A. Lasky-Su, ScD, Channing Division of Network Medicine, Brigham and 

Women’s Hospital, USA 

7.  Division of Renal Medicine, Channing Division of Network Medicine, Brigham 

and Women’s Hospital, USA 

Corresponding Author:   Kenneth B. Christopher, MD, SM, Division of Renal 

Medicine, Channing Division of Network Medicine, Brigham, and Women’s Hospital, 75 

Francis Street, Boston, MA 02115 USA. E-mail: kbchristopher@bwh.harvard.edu Tel: 

617-272-0535 

Acknowledgment: This manuscript is dedicated to the memory of our dear friend and 

colleague Nathan Edward Hellman, MD, Ph.D. 

Author’s contributions: Conceptualization: S.H., K.A., J.L-S., K.C.; Methodology: 

S.H., K.A., J.L-S., K.C.; Software: J.L-S., K.C.; Formal analysis: S.H., K.C.; 



56 
 

Investigation: K.A., K.C.: Resources: K.A., J.L-S., K.C.; Data Curation: S.H., K.A., J.L-

S., K.C.; Writing-Original Draft: S.H., K.A., J.L-S., K.C.; Writing- Review & Editing: S.H., 

K.A., J.L-S., K.C.; Data Visualization: S.H., J.L-S., K.C; Supervision: J.L-S., K.C; Project 

Administration & Funding acquisition: K.A.& K.C. 

Financial/non-financial disclosures: Dr. Amrein reports receiving lecture fees from 

Fresenius Kabi. Drs. Hossain, Lasky-Su, and Christopher report no financial or other 

relationships that might lead to a conflict of interest 

Funding: This work was supported by the National Institutes of Health [R01 

GM115774]. The European Society supported the VITdAL-ICU trial for Clinical Nutrition 

and Metabolism (ESPEN), a research grant including the provision of study medication 

from Fresenius Kabi (Germany), and the Austrian National Bank (Jubiläumsfonds, 

Project Nr. 14143). 

Running Head: Chronic Diseases and Metabolic Homeostasis Derangement in Critical 

Illness  

Total word count: 2665 

  

  



57 
 

ABSTRACT 

Background: Critical illness frequently results in loss of metabolic homeostasis 

characterized by a significant disturbance of many metabolic processes. The co-existing 

chronic medical conditions can impact the severity of the acute illness, the types and 

amount of treatment given, and the outcomes in the intensive care unit. 

Objective: To find out the association between chronic comorbidities and plasma 

metabolites over the first week of critical illness using the updated Charlson Comorbidity 

Index (uCCI) 

Methods: This was a post-hoc metabolomics cohort study of blood samples from the 

VITdAL-ICU trial where subjects received a high dose of vitamin D3 or a placebo. 

Exposure was measured in uCCI. A total of 983 metabolites from 1209 plasma samples 

of 421 patients were analyzed. Mixed-effects modeling was used to study metabolite 

changes over time relative to uCCI < or ≥ 4 adjusted for age, sex, SAPS II score, sepsis, 

intubation, and ICU type. 

Results: There was a significantly worse survival with uCCI≥ 4 (log-rank P<0.001). 

Significant crude differences existed in day 0 plasma samples in 430 individual 

metabolites in subjects with uCCI<4 or uCCI≥ 4 group. In the repeated measure 

metabolomics data, significant metabolomics difference was observed with increasing 

uCCI where several metabolites significantly increased, e.g., Branched-chain amino 

acids (BCAA), Short-chain acylcarnitines, purine nucleotides {1-methyladenosine (m1A), 

N2, N2-dimethylguanosine (m22G)} and pentose phosphate pathway activation. In 

contrast, several metabolites were significantly decreased, e.g., Sphingomyelin.  
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Conclusion: In critically ill patients, chronic disease is associated with differential 

utilization of energy pathways.  

Word counts: 244 

Keywords: Critical illness, Chronic Diseases, updated Charlson Comorbidity Index 

(uCCI) 

List of non-standard abbreviations: VITdAL-ICU trial- Correction of Vitamin D 

Deficiency in Critically Ill Patients trial; OPLS-DA- Orthogonal partial least square-

discriminant analysis; CV- ANOVA- Cross-validation analysis of variance, SAPS- 

Simplified Acute Physiology Scores 
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INTRODUCTION  

In the critically ill, it is unclear which underlying factors contribute to the heterogeneity in 

response to acute illness, which may relate to differences in genetic susceptibility, 

chronic comorbidity, or treatment response (1). Critically ill patients frequently have 

coexisting chronic medical diseases, which can affect the severity of the acute illness, 

the types and amount of treatment provided, and influence adverse outcomes (2). 

Critical illness outcomes are likely driven by the severity of organ dysfunction, 

comorbidity, and multimorbidity (2, 3). In addition, critical illness frequently results in the 

loss of metabolic homeostasis, marked by the severe disruption of numerous metabolic 

processes, including energy production and utilization (4, 5). 

 

Metabolomics encompasses the systematic identification and quantification of all 

metabolic products of a biological system at a specific point in time (6). Metabolomics 

can offer a comprehensive strategy for comprehending an organism's phenotype 

because metabolites serve as endpoints of gene expression and cell activity (7). 

Analyzing the blood metabolome generates a highly coordinated profile of metabolic 

homeostasis (8). Critical illness frequently results in the loss of metabolic homeostasis, 

which is marked by the severe disruption of numerous metabolic processes (4).  

 

The Charlson comorbidity index (CCI) is a frequently used tool that classifies or weights 

comorbid illnesses to predict mortality. Recently, Quan et al. updated the conditions and 

weights included in the CCI, simplifying the score to 12 comorbidities and validating an 
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updated CCI (uCCI) to predict 1-year mortality after hospital discharge (9). The uCCI is 

a more refined, parsimonious prognostic mortality score than the CCI and has been 

used in critical illness studies on Staphylococcus aureus bacteremia and burn injury (10, 

11). 

 

Plasma metabolomics studies in critical illness show a consistent alteration of 

metabolism linked to acute illness severity and outcome prediction (12). But the 

importance of energy utilization pathways among critically ill patients with comorbidities 

is unknown. Therefore, we performed a post-hoc metabolomics cohort study of 1209 

plasma samples collected over 7 days from 421 subjects enrolled in the VITdAL-ICU 

trial with uCCI determined (13). We hypothesized that a higher chronic disease burden, 

as assessed by uCCI, is associated with differential energy utilization pathways in 

critically ill adult patients. Therefore, we investigated the uCCI among the VITdAL-ICU 

trial subjects to determine the association between chronic comorbidities and 983 

individual plasma metabolite abundance over the first week of critical illness.  

 

METHODS 

We performed a post-hoc metabolomics cohort study of plasma samples from the 

VITdAL-ICU trial (NCT01130181), a placebo-controlled, double-blind, single-center trial 

conducted in 5 medical and surgical intensive care units in southeast Austria (13). This 

trial included 492 critically ill adult subjects with 25(OH)D < 20 ng/mL randomly 

allocated to placebo or vitamin D3 once at a dose of 540,000 IU followed by 90,000 IU 
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monthly. The Medical University of Graz and the Austrian Agency for Health and Food 

Safety approved the trial. At VITdAL-ICU trial enrollment, written informed consent was 

obtained following Austrian and European Union requirements and the principles of the 

Declaration of Helsinki (14). Consent included permission for plasma specimens to be 

saved for future research studies. The post-hoc study research protocol was approved 

by the Mass General Brigham Human Research Committee Institutional Review Board 

at the Brigham and Women's Hospital (Protocol # 2015P002766). 

 

Frozen plasma from 453 trial participants before randomization was available for 

metabolomics analysis. Twenty-five patients who did not have multiple plasma time 

points available for analysis were excluded. An additional 7 subjects who did not have 

data for uCCI determination were excluded, leaving an analytic cohort of 421 subjects 

(Supplemental Figure 1). Clinical trial data included age, biological sex, Simplified Acute 

Physiology Score (SAPS) II, admission diagnosis category, baseline serum 25(OH)D 

levels, and uCCI. Admission diagnosis category was determined at ICU admission by 

trial investigators as Neurosurgery, Cardiac surgery, Cardiovascular, 

Gastrointestinal/liver, Hematologic/Oncology/ Metabolic, Neurologic, Other non-

operative, Other operatives, Renal, Respiratory, Sepsis/infectious, Thoracic Surgery, 

Transplantation, Trauma, and Vascular Surgery. 

 

Blood samples were collected between May 2010 and March 2012 from VITdAL-ICU 

trial subjects on days 0, 3, and 7. Fractionated plasma was aliquoted, stored at -80°C, 
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thawed once, and analyzed in 2017 using four ultra-high-performance liquid 

chromatography/tandem accurate mass spectrometry methods by Metabolon, Inc (NC, 

USA) (13). A total of 983 metabolites from 1209 plasma samples of 421 patients were 

analyzed. Individual metabolite raw area count data was normalized, cube root 

transformed, and Pareto scaled to produce abundance data on the same scale and with 

an approximately normal distribution (15, 16). 

 

The exposure of interest was the Updated Charlson Comorbidity Index (uCCI) 

dichotomized as uCCI < or ≥ 4 based on prior work by others (10). The primary outcome 

was individual metabolite relative abundance determined by liquid chromatography 

coupled mass spectrometry. Metabolite abundance is defined as the total ion count for 

the given mass-to-charge ratio (m/z) assigned to the particular metabolite (17). The 

secondary outcome was all-cause 180-day mortality determined by hospital records and 

telephone follow-up. Distributions of and differences in crude survival between uCCI 

groups were determined via the Kaplan-Meier survival curve and the log-rank test, 

respectively (18, 19). 

 

The study sample size was determined via MetaboAnalyst with a false discovery rate 

(FDR) corrected alpha of 0.05 using equations for single time point metabolomics data 

with binary uCCI groups (20, 21).  To achieve 80% power, our study requires a sample 

of 150 subjects in each group (20). In addition, analysis of repeated plasma 

metabolomics data is known to increase study power (22) substantially. 
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All data were analyzed in a complete case analysis fashion. For univariate analysis of 

day 0 data, Student's t-test was used to identify metabolites that are associated with a 

dichotomized uCCI (uCCI < or ≥ 4) applying a false discovery rate adjusted p-value (q-

value) threshold of 0.05 using MetaboAnalyst (21, 23). Data from day 0 were also 

analyzed using orthogonal partial least squares discriminant analysis (OPLS-DA), a 

supervised method for determining the significance of classification discrimination 

(SIMCA 15.0 Umetrics, Umea, Sweden) (24). OPLS-DA is a statistical modeling tool 

that provides insights into metabolite differences between subjects grouped by uCCI 

(25). Permutation testing was performed for model validation (26, 27). A seven-fold 

cross-validation analysis of variance (CV-ANOVA) was utilized to determine model 

significance (27).  

 

For day 0 data in 421 subjects, correlations between uCCI groups (exposure) and 

individual metabolite abundance (outcome) were determined utilizing linear regression 

models corrected for age, sex, baseline 25(OH)D, SAPS II, and admission diagnosis 

category. For repeated measures data in 421 subjects, the association between uCCI 

groups (exposure) and relative abundance of individual metabolites (outcome) at day 0, 

3, and 7 were determined utilizing mixed effects linear regression adjusted for age, sex, 

SAPS II, admission diagnosis category, sample day, 25(OH)D at day 0, and change in 

25(OH)D from day 0-3 with an individual subject-specific random-intercept. All linear 

regression and mixed-effects models were analyzed using STATA 16.1MP (28). A 

Benjamini–Hochberg procedure false discovery rate q-value threshold of 0.05 was used 

to identify all significant associations (23). 
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RESULTS 

Baseline characteristics of the analytic cohort were not significantly different between 

subjects grouped by uCCI for biological sex, SAPS II score, sepsis, intubation, and ICU 

type. Patients in the uCCI<4 groups were significantly younger than patients in uCCI≥ 4 

groups. Significant differences existed with respect to age, uCCI, and ICU type (Table 

1, Supplementary Table S1). The overall 180-day mortality of the 421-subject analytic 

cohort was 36.8%. The 180-day mortality among patients with uCCI<4 was 26.8% and 

47.8% in the uCCI≥4 groups (χ2(1) = 19.8; P < 0.001). There was significantly worse 

survival with uCCI≥ 4 (log-rank P<0.001, Figure 1).  

 

Single time point data 

In t-test analyses, significant metabolite differences exist between the uCCI groups 

(Table 2). In day 0 plasma samples (N=421), significant differences exist in 430 

individual metabolites (q-value threshold of 0.05), including increases in branched-chain 

amino acids, short-chain acylcarnitines, modified nucleosides (1-methyladenosine, N2, 

N2-dimethylguanosine) and pentose phosphate pathway metabolites and decrease in 

sphingomyelins between the uCCI groups. 

 

Concerning subject metabolomic profiles at day 0, though the multivariable OPLS-DA 

models had poor predictability (Q2<0.3), the permutation test confirmed the stability and 

robustness of the model with negative permutation Q2 y-axis intercepts (-0.458) 

indicating model validity (Table 3) (26, 27, 29). Furthermore, the cross-validation 
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procedure showed that the uCCI groups at day 0 were significantly separated (CV-

ANOVA p value < 0.001). Figure 2 illustrates the separation of circulating metabolomes 

from individual patients at day 0 with uCCI<4 or uCCI≥ 4.  

 

In the linear regression analysis, there were significant associations at day 0 between 

the abundance of 297 individual metabolites (q-value<0.05) and uCCI≥4 following 

adjustment for age, sex, baseline 25(OH)D, SAPS II, admission diagnosis category, and 

baseline 25(OH)D. Metabolites associated with increased uCCI≥4 at day 0 included 

elevated modified nucleosides (1-methyladenosine (m1A), N2, N2-dimethylguanosine 

(m22G)), BCAA metabolites, short-chain acylcarnitines, metabolites of the pentose 

phosphate pathway and decreased sphingomyelin species (Table 4). 

 

Multiple time point data 

In mixed effects modeling of 1209 total day 0, 3, and 7 plasma samples from the 

analytic cohort (N=421), 230 metabolites had significantly positive (q-value<0.05) 

associations with uCCI≥4 dominated by increases in modified nucleosides (m1A, 

m22G), BCAA metabolites, short-chain acylcarnitines and metabolites of the pentose 

phosphate pathway (Highlighted in Table 2, Full data in Supplemental Data A). Thirty-

one metabolites had significant negative associations with uCCI≥4, primarily by 

sphingomyelin decreases (Table 5).  Similar metabolite patterns were observed in 

mixed effects models with additional adjustment for creatinine at day 0 (Data not 

shown). 
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DISCUSSION   

The present study aimed to determine the association between chronic comorbidities 

and plasma metabolites over the first week of critical illness using the updated Charlson 

comorbidity index (uCCI). Significant differences in metabolomics profiles were 

observed with an elevated uCCI≥4 with substantial increases in branched-chain amino 

acids (BCAAs), short-chain acylcarnitines, modified nucleosides, and pentose 

phosphate pathway metabolites. In contrast, several sphingomyelin species are 

decreased in subjects with uCCI≥4. This study highlighted the alteration of 

metabolomics during critical illness in patients with comorbidities. 

 

Critical illness releases free fatty acids (FAA) and branched-chain amino acids (BCAAs) 

metabolites into circulation due to the catabolism of adipose and muscle tissue. BCAAs, 

fatty acids, and the intermediate metabolites produced during their catabolism play a 

crucial role as metabolic substrates in numerous physiological processes, including 

inflammation, energy metabolism, and mitochondrial biogenesis. During the 

mitochondrial fatty acid β-oxidation impairment associated with critical illness, the liver 

catabolizes BCAAs to high-energy compounds reflecting a metabolic switch (5, 30). 

Short-chain acylcarnitines are considered the most abundant acylcarnitines in the body, 

accounting for nearly 80% or more of total acylcarnitines in plasma (31). In the critically 

ill, increased circulating plasma short-chain acylcarnitines (C2-C7) indicates 

compromised mitochondrial fatty acid β-oxidation and reflects a decrease in 
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mitochondrial energy production indicative of a metabolic shift (32). Further, the 

observed elevated C3- and C5-acylcarnitines are known to be derived from BCAA 

metabolites (33).  

 

Our study also found a significantly increased modified nucleoside abundance (m1A, 

m22G) with increased comorbidities. Circulating modified nucleosides reflect whole-

body RNA turnover and may indicate cell stress (34-36). Circulating levels of m1A are 

shown to be increased in response to experimental models of oxidative stress (37). 

Further, strong associations between m22G and all-cause mortality exist in adults with 

diabetes (38). Critically ill patients with comorbidities may be more susceptible to 

cellular damage due to oxidative stress, which may account for our observed increases 

in modified nucleosides with uCCI ≥4. 

 

We observed a significant increase in the pentose phosphate pathway metabolites with 

uCCI ≥4. The pentose phosphate pathway is essential for redox balance because it 

produces NADPH via an oxidative branch and nucleic acid via a non-oxidative branch 

(39). In critical illness, the pentose phosphate pathway acts as a “metabolic redox 

sensor” upregulated during oxidative stress (40, 41). Transcriptomic profiling of whole 

blood in critically ill patients revealed increased activity in the oxidative branch of the 

pentose phosphate pathway, indicating a metabolic shift away from mitochondrial beta-

oxidation (42). The observed increases of purine nucleotides, short-chain acylcarnitines, 
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BCAA catabolic metabolites, and pentose phosphate pathway metabolites with more 

significant comorbidities are thus indicative of a metabolic shift.  

Sphingomyelins are essential for plasma membrane function and act as signaling 

mediators of inflammation and cellular stress. Sphingomyelin synthases play crucial 

roles in biological functions such as cell migration, apoptosis, autophagy, and cell 

survival/proliferation, as well as in human diseases such as cancer and cardiovascular 

disease (43). Hydrolyzation of sphingomyelins to ceremide is activated by oxidative 

stress, TNF-α, IL-1β, and Fas ligand (44). Thus, it is most likely that our observation of 

low plasma sphingomyelin species in critically ill patients with uCCI≥4 is related to 

inflammation and may contribute to disruption in homeostasis. 

 

Our study approach has several strengths. First, using many plasma samples at 

multiple time points early in critical illness allows for a dynamic view of critical illness 

metabolomics related to chronic disease. Second, repeated measures in individual 

patients decrease intra-patient variability, thus increasing statistical power (45-48). 

Third, our adjustment for the absolute change in 25(OH)D level at day 3 mitigates the 

effect of vitamin D intervention on the observed metabolomic changes, allowing for the 

study of the entire analytic cohort (49, 50). Finally, linear mixed models are extremely 

useful for metabolomic data measured at multiple time points as they remove 

confounding variables with a fixed effect (e.g., age, sex, SAPS II) and those with a 

random effect (e.g., patient) (51, 52). For multiple testing correction, a false discovery 

rate adjusted p-value (q-value) threshold of 0.05 was used to identify all significant 

differences (23).  
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We do acknowledge potential limitations to our approach. First, our cohort population 

was White from a single large academic medical center which may limit generalizability 

to all critically ill. Though our data was generated from a randomized trial, we could not 

exclude the effect of unknown confounders despite multivariable adjustment because of 

nonrandomized comparisons of metabolite abundance. Despite adjustment for 

biological sex, the results may be driven by unmeasured confounders related to 

differences between men and women (53). Additionally, we cannot study racial 

disparities in metabolomics as the subjects studied were all White (54). Lastly, as our 

study is post-hoc, our inferences require external validation and should be considered 

hypothesis-generating. 

 

CONCLUSIONS 

With increased chronic disease determined by the uCCI, there was a noticeable shift in 

the metabolome: some metabolites significantly increased, such as BCAA, short-chain 

acylcarnitines, purine nucleotides, and pentose phosphate pathway activity, while 

sphingomyelin species significantly decreased. Single biomarkers cannot accurately 

measure the complexity of critical illnesses. Integrating metabolomics and disease 

severity may create a more nuanced understanding of the dysregulation of metabolic 

homeostasis in critical illness. 
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FIGURE LEGENDS 

Figure 1. Kaplan–Meier Estimates of Survival. Kaplan–Meier estimates of overall 

survival by uCCI (N=421). The log-rank test revealed a significant difference in survival 

between the uCCI groups (P=0.001). The blue line indicates uCCI <4 groups and the 

red line indicates uCCI ≥ 4 group 

Figure 2. OPLS-DA score Plot. t1: The predicted principal components-score value of 

main components and the difference between uCCI <4 and uCCI ≥ 4, t01: Orthogonal 

principal component-score value of orthogonal components and difference in the 

observation group. Green circles represent the metabolome of individual subjects with 

uCCI <4; Blue circles represent the metabolome of individual subjects with uCCI ≥ 4. 
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Table 1. Cohort Characteristics ( N= 421) 

Baseline Characteristics Total uCCI < 4 uCCI ≥ 4 P-value 

No. 421 220 201  

Age Mean (SD) 64.2 (15.0) 61.6 (16.9) 67.1 (12.0) <0.001 

Female Sex No. (%) 149 (38) 84 (32) 65 (44) 0.21 

Non-White No. (%) 0 (0) 0 (0) 0 (0)  

Updated uCCI Mean (SD) 3.5 (3.2) 1.0 (1.1) 6.4 (2.2) <0.001 

SAPS II Mean (SD) 33.3 (15.4) 32.6 (15.6) 34.1 (15.1) 0.34 

Sepsis No. (%) 31 (7) 11 (5) 20 (10) 0.052 

Intubation No. (%) 279 (66) 142 (65) 137 (68) 0.43 

ICU    0.01 

  Anesthesia ICU No. (%) 81 (19) 46 (21) 35 (17)  

  Cardiac Surgery ICU No. 
(%) 123 (29) 61 (28) 62 (31)  

  Surgical ICU No. (%) 22 (5) 8 (4) 14 (7)  

  Medical ICU No. (%) 89 (21) 37 (17) 52 (26)  

Neurological ICU No. (%) 106 (25) 68 (31) 38 (19)  

180 days mortality No.(%) 154(36.8) 59(26.8) 96(47.8) <0.001 
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Table 2. Crude Metabolite abundance differences in patients with uCCI ≥ 4 relative 
to those with uCCI < 4 

Biochemical t-stat FDR Super Pathway Sub Pathway 

2-hydroxy-3-methylvalerate 2.518 0.030672 Amino Acid BCAA Metabolism 
beta-hydroxyisovalerate 2.8186 0.014226 Amino Acid BCAA Metabolism 
3-hydroxy-2-ethyl propionate 2.8269 0.013948 Amino Acid BCAA Metabolism 

methylmalonate (MMA) 3.225 0.0044971 Lipid BCAA Metabolism 

isobutyrylglycine (C4) 3.7096 0.00097396 Amino Acid BCAA Metabolism 

ethyl malonate 4.2395 0.00014457 Amino Acid BCAA Metabolism 

N-acetylleucine 4.2773 0.00012702 Amino Acid BCAA Metabolism 

N-acetyl isoleucine 4.4542 6.39E-05 Amino Acid BCAA Metabolism 

isovalerylglycine 4.6619 2.87E-05 Amino Acid BCAA Metabolism 

2,3-dihydroxy-2-methyl butyrate 4.6638 2.86E-05 Amino Acid BCAA Metabolism 

methylsuccinate 4.9404 9.14E-06 Amino Acid BCAA Metabolism 
N-acetylvaline 5.824 2.08E-07 Amino Acid BCAA Metabolism 
3-methylglutaconate 6.5476 4.94E-09 Amino Acid BCAA Metabolism 

ribitol 7.2621 1.44E-10 Carbohydrate Pentose Metabolism 

arabonate/xylonate 7.1013 2.79E-10 Carbohydrate Pentose Metabolism 
ribonate (ribonolactone) 6.8874 8.53E-10 Carbohydrate Pentose Metabolism 
arabinose 6.5698 4.57E-09 Carbohydrate Pentose Metabolism 
arabitol/xylitol 5.6484 4.38E-07 Carbohydrate Pentose Metabolism 
ribulonate/xylulonate* 4.8912 1.12E-05 Carbohydrate Pentose Metabolism 
sedoheptulose 3.7636 0.00080492 Carbohydrate Pentose Metabolism 
xylose 3.1001 0.0065082 Carbohydrate Pentose Metabolism 
N1-methyl inosine 7.8725 9.81E-12 Nucleotide Purine Metabolism 
N2,N2-dimethyl guanosine 7.7673 1.08E-11 Nucleotide Purine Metabolism 
acetylcarnitine (C2) 4.0756 0.00026043 Lipid Short-chain Acylcarnitine 
malonylcarnitine (C3-DC) 5.5339 7.22E-07 Lipid Short-chain Acylcarnitine 
3-hydroxybutyrylcarnitine (C3-DC) 4.6832 2.69E-05 Lipid Short-chain Acylcarnitine 
propionylcarnitine (C3) 3.803 0.00070265 Lipid Short-chain Acylcarnitine 
2-methylmalonylcarnitine (C4-DC) 5.5442 6.93E-07 Lipid Short-chain Acylcarnitine 
succinylcarnitine (C4-DC) 5.5041 7.98E-07 Energy Short-chain Acylcarnitine 
adipoylcarnitine (C6-DC) 5.3061 1.90E-06 Lipid Short-chain Acylcarnitine 
iso butyryl carnitine (C4) 3.3828 0.0027975 Amino Acid Short-chain Acylcarnitine 
butyryl carnitine (C4) 2.9159 0.01103 Lipid Short-chain Acylcarnitine 
tiglyl carnitine (C5) 4.8572 1.27E-05 Amino Acid Short-chain Acylcarnitine 
glutaroylcarnitine (C5) 4.466 6.13E-05 Amino Acid Short-chain Acylcarnitine 
2-methylbutyroylcarnitine (C5) 4.4577 6.33E-05 Amino Acid Short-chain Acylcarnitine 
isovalerylcarnitine (C5) 3.8499 0.00059247 Amino Acid Short-chain Acylcarnitine 
3-methylglutarylcarnitine (C6-DC) 5.328 1.71E-06 Amino Acid Short-chain Acylcarnitine 
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hexanoylcarnitine (C6) 4.6706 2.80E-05 Lipid Short-chain Acylcarnitine 
3-methyladipoylcarnitine (C7-DC) 6.5651 4.57E-09 Lipid Short-chain Acylcarnitine 
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Table 3. Day 0 OPLS-DA model goodness of fit, predictive ability, and model 
significance 

 
 

  

 OPLS-DA Permutation (n = 200) CV-ANOVA 

Classification Model R2X R2Y Q2 R2 intercept 
(x-axis, y-axis) 

Q2 intercept 
(x-axis, y-axis) P-Value 

uCCI<4 VS uCCI≥ 4 0.327 1.00 0.0664 0.00, 0.578 0.00, -0.458 0.0048 
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Table 4. Day 0 Metabolites significantly different in patients with uCCI ≥ 4 relative 
to those with uCCI < 4 

Biochemical Beta FDR q-
value Super Pathway Sub Pathway 

3-methylglutaconate 0.309899002 3.68E-07 Amino Acid BCAA Metabolism 

isovalerylglycine 0.265608773 2.56E-04 Amino Acid BCAA Metabolism 

methyl succinate 0.233539737 2.46E-04 Amino Acid BCAA Metabolism 

2,3-dihydroxy-2-methyl-butyrate 0.197240281 1.99E-03 Amino Acid BCAA Metabolism 

N-acetylvaline 0.19164627 1.85E-05 Amino Acid BCAA Metabolism 

N-acetylleucine 0.188387175 1.20E-03 Amino Acid BCAA Metabolism 

isobutyrylglycine (C4) 0.188226058 3.34E-03 Amino Acid BCAA Metabolism 

ethyl malonate 0.161097954 2.41E-03 Amino Acid BCAA Metabolism 

N-acetyl isoleucine 0.150129787 2.04E-03 Amino Acid BCAA Metabolism 

2-hydroxy-3-methyl valerate 0.121274513 4.60E-02 Amino Acid BCAA Metabolism 

arabonate/xylonate 0.288515977 6.82E-08 Carbohydrate Pentose Metabolism 

arabinose 0.264196066 7.02E-07 Carbohydrate Pentose Metabolism 

ribonate (ribonolactone) 0.257535202 6.82E-08 Carbohydrate Pentose Metabolism 

arabitol/xylitol 0.243105598 6.36E-06 Carbohydrate Pentose Metabolism 

ribitol 0.220936931 5.29E-08 Carbohydrate Pentose Metabolism 

ribulonate/xylulonate* 0.189391287 1.29E-04 Carbohydrate Pentose Metabolism 

sedoheptulose 0.169216073 5.49E-03 Carbohydrate Pentose Metabolism 

xylose 0.133324007 3.11E-02 Carbohydrate Pentose Metabolism 

1-methyladenosine 0.188939397 1.12E-07 Nucleotide Purine Metabolism 

N2,N2-dimethyl guanosine 0.347048167 8.03E-09 Nucleotide Purine Metabolism 

acetylcarnitine (C2) 0.135251838 7.09E-03 Lipid Short-chain Acylcarnitine 

3-hydroxybutyrylcarnitine (C3-DC) 0.196803698 1.82E-03 Lipid Short-chain Acylcarnitine 

propionylcarnitine (C3) 0.135427832 1.12E-02 Lipid Short-chain Acylcarnitine 

2-methyl malonyl carnitine (C4-DC) 0.251603829 4.97E-05 Lipid Short-chain Acylcarnitine 

succinyl carnitine (C4-DC) 0.206695918 3.09E-05 Energy Short-chain Acylcarnitine 
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iso butyryl carnitine (C4) 0.141274024 3.66E-02 Amino Acid Short-chain Acylcarnitine 

butyryl carnitine (C4) 0.120558359 4.66E-02 Lipid Short-chain Acylcarnitine 

tiglyl carnitine (C5) 0.183521191 6.62E-04 Amino Acid Short-chain Acylcarnitine 

2-methylbutyroylcarnitine (C5) 0.17164447 2.73E-03 Amino Acid Short-chain Acylcarnitine 

glutaroylcarnitine (C5) 0.156371259 3.24E-03 Amino Acid Short-chain Acylcarnitine 

isovalerylcarnitine (C5) 0.152330922 6.64E-03 Amino Acid Short-chain Acylcarnitine 

adipoylcarnitine (C6-DC) 0.280492143 4.70E-05 Lipid Short-chain Acylcarnitine 

3-methylglutarylcarnitine (C6-DC) 0.257171457 1.27E-04 Amino Acid Short-chain Acylcarnitine 

hexanoylcarnitine (C6) 0.181692502 1.07E-03 Lipid Short-chain Acylcarnitine 

3-methyladipoylcarnitine (C7-DC) 0.301407197 1.23E-06 Lipid Short-chain Acylcarnitine 

sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) -
0.109698615 1.16E-02 Lipid Sphingomyelins 

sphingomyelin (d17:1/14:0, d16:1/15:0)* -
0.111207788 4.85E-02 Lipid Sphingomyelins 

stearoyl sphingomyelin (d18:1/18:0) -
0.111970659 5.71E-03 Lipid Sphingomyelins 

sphingomyelin (d18:2/18:1)* -
0.114468561 5.84E-03 Lipid Sphingomyelins 

sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)* -
0.115396291 2.76E-03 Lipid Sphingomyelins 

sphingomyelin (d18:1/18:1, d18:2/18:0) -
0.129650535 1.23E-03 Lipid Sphingomyelins 

sphingomyelin (d18:2/21:0, d16:2/23:0)* -
0.131742914 6.44E-03 Lipid Sphingomyelins 

behenoyl sphingomyelin (d18:1/22:0)* -
0.138759323 8.97E-04 Lipid Sphingomyelins 

sphingomyelin (d18:1/20:1, d18:2/20:0)* -
0.145687451 3.46E-04 Lipid Sphingomyelins 

sphingomyelin (d18:1/20:0, d16:1/22:0)* -
0.150367073 2.19E-04 Lipid Sphingomyelins 

sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)* -
0.153721161 2.70E-03 Lipid Sphingomyelins 

lignoceroyl sphingomyelin (d18:1/24:0) -
0.161244194 7.13E-04 Lipid Sphingomyelins 
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sphingomyelin (d18:1/19:0, d19:1/18:0)* -0.16597711 5.00E-04 Lipid Sphingomyelins 

sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, 
d19:1/24:0)* 

-
0.178605056 3.83E-04 Lipid Sphingomyelins 

sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0)* -
0.202948571 1.54E-04 Lipid Sphingomyelins 

tricosanoyl sphingomyelin (d18:1/23:0)* -
0.211631143 2.62E-05 Lipid Sphingomyelins 

Note: Significant results were presented following individual mixed effects modeling of 
each of the 983 individual metabolites measured at day 0. All estimates were adjusted for 
age, sex, SAPS II, admission diagnosis, and 25(OH)D at randomization. A multiple test-
corrected thresholds of q < 0.05 was used to identify all significant associations. Positive 
β coefficient values indicate higher metabolite abundance with increasing day 0 serum 
glucose. 
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Table 5. Metabolites significantly different in patients with uCCI ≥ 4 relative to those 
with uCCI < 4 over day 0, 3 and 7 

Biochemical Beta FDR q-
value Super Pathway Sub Pathway 

3-methylglutaconate 0.299294578 6.35E-08 Amino Acid BCAA Metabolism 

isovalerylglycine 0.253345563 2.09E-05 Amino Acid BCAA Metabolism 

methyl succinate 0.237096199 5.63E-07 Amino Acid BCAA Metabolism 

2,3-dihydroxy-2-methyl butyrate 0.225136632 8.32E-06 Amino Acid BCAA Metabolism 

N-acetylvaline 0.190340239 8.68E-08 Amino Acid BCAA Metabolism 

isobutyrylglycine (C4) 0.185299368 4.04E-04 Amino Acid BCAA Metabolism 

N-acetylleucine 0.177033429 4.75E-06 Amino Acid BCAA Metabolism 

N-acetyl isoleucine 0.169580161 1.57E-06 Amino Acid BCAA Metabolism 

ethyl malonate 0.163570783 4.43E-04 Amino Acid BCAA Metabolism 

methylmalonate (MMA) 0.12701982 1.20E-02 Lipid BCAA Metabolism 

beta-hydroxy isovalerate 0.1051646 1.67E-02 Amino Acid BCAA Metabolism 

2-hydroxy-3-methyl valerate 0.100864754 2.40E-02 Amino Acid BCAA Metabolism 

3-hydroxy-2-ethyl propionate 0.090782797 2.23E-02 Amino Acid BCAA Metabolism 

arabonate/xylonate 0.29100864 7.50E-10 Carbohydrate Pentose Metabolism 

ribitol 0.24933947 3.05E-10 Carbohydrate Pentose Metabolism 

arabitol/xylitol 0.24399945 1.06E-07 Carbohydrate Pentose Metabolism 

ribonate (ribonolactone) 0.242901624 1.40E-09 Carbohydrate Pentose Metabolism 

ribulonate/xylulonate* 0.199004805 6.84E-06 Carbohydrate Pentose Metabolism 

arabinose 0.195101787 2.43E-07 Carbohydrate Pentose Metabolism 

xylose 0.142342029 1.27E-04 Carbohydrate Pentose Metabolism 

sedoheptulose 0.134110627 6.38E-03 Carbohydrate Pentose Metabolism 

N2,N2-dimethyl guanosine 0.338920912 2.02E-09 Nucleotide Purine Metabolism 

1-methyladenosine 0.171469181 1.40E-08 Nucleotide Purine Metabolism 

acetylcarnitine (C2) 0.139843652 1.15E-03 Lipid Short-chain Acylcarnitine 

malonyl carnitine (C3-DC) 0.201698192 5.21E-06 Lipid Short-chain Acylcarnitine 
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3-hydroxybutyrylcarnitine (C3-DC) 0.191185584 3.13E-04 Lipid Short-chain Acylcarnitine 

propionylcarnitine (C3) 0.139516903 4.57E-03 Lipid Short-chain Acylcarnitine 

2-methyl malonyl carnitine (C4-DC) 0.312976363 4.55E-08 Lipid Short-chain Acylcarnitine 

succinyl carnitine (C4-DC) 0.210904338 4.02E-06 Energy Short-chain Acylcarnitine 

iso butyryl carnitine (C4) 0.18255846 2.14E-03 Amino Acid Short-chain Acylcarnitine 

butyryl carnitine (C4) 0.132588051 1.74E-02 Lipid Short-chain Acylcarnitine 

tiglyl carnitine (C5) 0.215073761 2.36E-05 Amino Acid Short-chain Acylcarnitine 

glutaroylcarnitine (C5) 0.186774719 1.50E-04 Amino Acid Short-chain Acylcarnitine 

2-methylbutyroylcarnitine (C5) 0.177754615 1.05E-03 Amino Acid Short-chain Acylcarnitine 

isovalerylcarnitine (C5) 0.137011526 7.71E-03 Amino Acid Short-chain Acylcarnitine 

3-methylglutarylcarnitine (C6-DC) 0.280232266 8.38E-06 Amino Acid Short-chain Acylcarnitine 

adipoylcarnitine (C6-DC) 0.262247993 8.25E-06 Lipid Short-chain Acylcarnitine 

hexanoylcarnitine (C6) 0.177983823 4.57E-04 Lipid Short-chain Acylcarnitine 

3-methyladipoylcarnitine (C7-DC) 0.32397815 1.09E-08 Lipid Short-chain Acylcarnitine 

sphingomyelin (d18:2/24:2)* -0.078102737 4.50E-02 Lipid Sphingomyelins 

sphingomyelin (d18:1/22:1, d18:2/22:0, 
d16:1/24:1)* -0.096197859 2.24E-03 Lipid Sphingomyelins 

sphingomyelin (d18:1/17:0, d17:1/18:0, 
d19:1/16:0) -0.101738087 4.15E-03 Lipid Sphingomyelins 

sphingomyelin (d18:2/18:1)* -0.103544478 3.50E-03 Lipid Sphingomyelins 

behenoyl sphingomyelin (d18:1/22:0)* -0.111076338 3.17E-04 Lipid Sphingomyelins 

lignoceroyl sphingomyelin (d18:1/24:0) -0.114023601 1.70E-03 Lipid Sphingomyelins 

stearoyl sphingomyelin (d18:1/18:0) -0.11647932 8.27E-04 Lipid Sphingomyelins 

sphingomyelin (d18:2/21:0, d16:2/23:0)* -0.118326289 3.70E-03 Lipid Sphingomyelins 

sphingomyelin (d18:2/23:0, d18:1/23:1, 
d17:1/24:1)* -0.12087178 3.19E-03 Lipid Sphingomyelins 

sphingomyelin (d18:1/20:0, d16:1/22:0)* -0.122978034 1.75E-04 Lipid Sphingomyelins 

sphingomyelin (d18:1/18:1, d18:2/18:0) -0.137596005 5.91E-05 Lipid Sphingomyelins 

sphingomyelin (d18:1/20:1, d18:2/20:0)* -0.139095079 9.72E-05 Lipid Sphingomyelins 
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sphingomyelin (d18:1/25:0, d19:0/24:1, 
d20:1/23:0, d19:1/24:0)* -0.140129631 1.04E-03 Lipid Sphingomyelins 

sphingomyelin (d18:1/19:0, d19:1/18:0)* -0.146092668 2.85E-04 Lipid Sphingomyelins 

sphingomyelin (d18:1/21:0, d17:1/22:0, 
d16:1/23:0)* -0.158814217 3.36E-04 Lipid Sphingomyelins 

tricosanoyl sphingomyelin (d18:1/23:0)* -0.160802384 3.04E-05 Lipid Sphingomyelins 

Note: Significant results were presented following individual mixed effects modeling of 
each of the 983 individual metabolites measured at day 0, 3, and 7. All estimates were 
adjusted for age, sex, SAPS II, admission diagnosis, 25(OH)D at randomization, absolute 
change in 25(OH)D level at day 3, plasma day, and individual patient (as the random-
intercept). A multiple test-corrected thresholds of q < 0.05 was used to identify all 
significant associations. Positive β coefficient values indicate higher metabolite 
abundance with uCCI ≥ 4 relative to those with uCCI < 4. 
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Figure 1: Survival analysis for uCCI groups 
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Figure 2. Day 0 OPLS-DA 
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Supplementary Table S1. Cohort Comorbidities 

  

Comorbidity uCCI<4 uCCI≥4 Total 

Congestive heart failure No. (%) 66 (30.00) 100 (49.75) 166 (39.43) 

Dementia No. (%) 2 (0.91) 5 (2.49) 7 (1.66) 

Chronic pulmonary disease No. (%) 21 (9.55) 49 (24.38) 70 (16.63) 

Rheumatic disease No. (%) 6 (2.73) 6 (2.99) 12 (2.85) 

Mild liver disease No. (%) 0 (0) 51 (25.37) 51 (12.11) 

Diabetes with chronic complication No. (%) 27 (12.27) 52 (25.87) 79 (18.76) 

Hemiplegia or paraplegia No. (%) 1 (0.45) 5 (2.49) 6 (1.43) 

Renal disease No. (%) 0 (0) 116 (57.71) 116 (27.55) 

Any malignancy without metastasis No. (%) 8 (3.64) 38 (1.89) 46 (10.92) 

Moderate or severe liver disease No. (%) 0 (0) 26 (12.94) 26 (6.18) 

Metastatic solid tumor No. (%) 0 (0) 2 (1.00) 2 (0.48) 

AIDS No. (%) 0 (0) 0 (0) 0 (0) 
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Supplemental Figure 1. Consort flow diagram 

Manuscript # 2  
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SUMMARY OF MANUSCRIPT 1 AND MANUSCRIPT 2 CONCLUSIONS 

This work depicted two critical-care VITdAL-ICU metabolomics studies. Two ICU 

studies found different plasma metabolomics responses to hyperglycemia and chronic 

comorbidities (ICUs). 

In Manuscript 1, Based on longitudinal metabolomics data and mixed-effect linear 

regression analysis, we found 84 metabolites had significantly positive (q-value <0.05) 

associations with serum glucose, dominated by increases in diacylglycerol (DAG) 

species, branched-chain amino acids (BCAAs), and glycerophospholipid species 

(phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol) and 

including plasma glucose, alanine, and lactate. These metabolic profile alterations 

indicate that energy utilization is altered in critically ill hyperglycemic patients, explicitly 

indicating a metabolic shift involving mitochondria and the endoplasmic reticulum. 

 

In Manuscript 2, we found 430 metabolites strongly associated with uCCI<4 or uCCI>4. 

In repeated measure metabolomics data, several metabolites increased with increasing 

uCCI, including BCAA, short-chain acylcarnitines, purine nucleotides (1-

methyladenosine (m1A), N2, N2-dimethyl guanosine (m22G), and pentose phosphate 

pathway activation. In contrast, others decreased, such as Sphingomyelin. Alteration of 

these metabolic pathways associated with comorbidities indicates chronic diseases are 

related to differential utilization of energy pathways among critically ill patients. 
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OVERALL DISCUSSION AND PERSPECTIVES 

Our present study approach has multiple strengths. First, repeated plasma sample 

measurements in individual patients increase our study's statistical power. We used 

linear mixed–effect models to remove confounding variables with a fixed effect (age, 

SAPS II, etc.) and a random effect (plasma sampling day). Importantly, by adjusting for 

the absolute change in 25(OH)D level at day 0, 3, and 7, we mitigate the effect of the 

trial intervention on the observed metabolomic changes associated with hyperglycemia. 

 

Potential limitations exist in our study. First, since the subjects were recruited from a 

single large academic medical center, our cohort may not be generalizable to all 

critically ill patients. Second, despite the multivariable adjustment, we could not exclude 

the effect of unknown confounders due to nonrandomized metabolite abundance 

comparisons. Third, subject data is absent for HbA1C, parenteral nutrition, dextrose 

use, and dose and duration of medications that can contribute to elevated glucose. 

Lastly, as our study is post-hoc, our inferences require external validation and should be 

considered hypothesis-generating. 

 

Critical illnesses have many clinical risk parameters and pathophysiological factors that 

no single biomarker can capture. Metabolomics platforms and technology can support 

clinical decisions and patient-centered care in routine clinical practice. It will explain 

complex disease pathophysiology and advance precision medicine. 

  


