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High-Resolution Data on Mobility, the Built Environment, and Physical Activity:  

Embedding smartphone GPS and consumer wearables within a cohort study to improve 

environmental epidemiology 

ABSTRACT 

The ubiquitous nature of smartphones and wearable devices create novel opportunities for 

epidemiological exposure assessment and measurement error correction within the context of the 

built and natural environments. Since the foundations of the field, environmental epidemiologists 

have sought to establish methods to quantify and characterize environmental exposures, and to 

determine appropriate spatial and temporal scale. This dissertation set out to address the 

following gaps in the literature: 1) quantification of exposure differences between residential and 

mobility-based greenness; 2) explore momentary associations between greenness and physical 

activity through smartphone and wearable device data collection; 3) examine associations of  

walkability and physical activity at the minute level using GPS data; and 4) understand 

nondifferential misclassification of walkability exposure and implications for regression 

calibration on the association between residential walkability and physical activity. 

The first study (Chapter 2), addressing research gap 1, found residential-based distance buffer 

estimates of greenness are higher and more variable than mobility-based metrics. These findings 

contribute to discussions surrounding the choice of an optimal spatial scale for personal 

greenness exposure assessment.  

The second study (Chapter 3) sought to undertake the second research gap of momentary 

associations by utilizing objective physical activity data at fine temporal and spatial scales to 
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present novel estimates of the association between mobility-based greenness and step count. 

Contrary to our hypotheses, higher greenness exposure was associated non-linearly with lower 

mean steps per minute after adjusting for confounders. We observed statistically significant 

effect modification by Census region and season. 

The third study (Chapter 4) targeted research gap 3 and took a similar approach to the previous 

chapter. We utilized comprehensive mobility data at fine temporal and spatial scales to present 

novel estimates on the real time association between walkability and physical activity. We found 

higher walkability exposure was associated with overall higher mean steps per minute. 

Associations were non-linear in nature. These findings contribute to discussions surrounding 

adapting the built environment to increase physical activity, resulting in the potential for 

improved health outcomes downstream. 

Lastly, the fourth study (Chapter 5) set out to assess the impact of measurement error found in 

residential-based walkability measures. We used mobility-based estimates to correct error-prone 

residence based estimates and then used these error corrected exposures to correct associations 

between walkability and self-reported physical activity for the error due to the use of residence-

based exposures. This chapter highlights residential-based estimates of walkability slightly 

underestimate associations between walkability and physical activity. These findings highlight 

the impact of exposure misclassification on epidemiological studies of the built environment and 

physical activity. GPS data present a feasible solution to correct residential environmental 

exposures moving forward.  

 

This dissertation contributes to the literature at the intersection of epidemiology, environmental 



G . E .  W i l t  |  vi 

  

health, and geography on human movement, the built environment, and physical activity. We 

build off an established U.S.-based nationwide prospective cohort through an internal mobile 

health (mHealth) substudy with momentary GPS and wearable data for exposure and outcome 

and in-depth information on individual and area-level covariates. By combining approaches from 

the fields of epidemiology and geography this mHealth dissertation explores improved exposure 

assessment using GPS, real-time mechanisms of association utilizing GPS data and integrating 

error corrections into large preexisting cohorts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



G . E .  W i l t  |  vii 

  

 

TABLE OF CONTENTS 

TITLE PAGE ................................................................................................................................ ii 

COPYRIGHT ............................................................................................................................... iii 

ABSTRACT .................................................................................................................................. vi 

TABLE OF CONTENTS ........................................................................................................... vii 

LIST OF TABLES ....................................................................................................................... ix 

LIST OF FIGURES .......................................................................................................................x 

DEDICATION............................................................................................................................ xiv 

ACKNOWLEDGMENTS ...........................................................................................................xv 

CHAPTER 1: Introduction ...........................................................................................................1 

CHAPTER 2: Exposure Differences Between Residential and Smartphone Mobility-Based 

Greenness in a US Cohort of Nurses ..........................................................................................12 

Abstract ......................................................................................................................................12 

Introduction ................................................................................................................................14 

Methods ......................................................................................................................................15 

Results ........................................................................................................................................20 

Discussion ..................................................................................................................................23 

CHAPTER 3: Minute Level Smartphone Derived Exposure to Greenness and Consumer 

Wearable Derived Physical Activity in a US Cohort of Women .............................................35 

Abstract ......................................................................................................................................35 

Introduction ................................................................................................................................36 

Methods ......................................................................................................................................38 

Results ........................................................................................................................................44 

Discussion ..................................................................................................................................46 

CHAPTER 4: Minute Level Smartphone Derived Exposure to Neighborhood Walkability 

and Consumer Wearable Derived Physical Activity in a US Cohort of Women ...................58 

Abstract ......................................................................................................................................58 

Introduction ................................................................................................................................59 

Methods ......................................................................................................................................61 

Results ........................................................................................................................................66 

Discussion ..................................................................................................................................68 

CHAPTER 5: Measurement Error Correction Using Smartphone Mobility Derived 

Association Between Walkability and Physical Activity in a US Cohort of Nurses ..............79 

Abstract ......................................................................................................................................79 



G . E .  W i l t  |  viii 

  

Introduction ................................................................................................................................81 

Methods ......................................................................................................................................82 

Results ........................................................................................................................................87 

Discussion ......................................................................................................................................89 

CHAPTER 6: Conclusion..........................................................................................................100 

LIST OF SUPPLEMENTAL INFORMATION .....................................................................107 

Supplemental Information from Chapter 2 ..............................................................................112 

LIST OF SUPPLEMENTAL TABLES ...................................................................................108 

Supplemental Tables from Chapter 2 .......................................................................................114 

Supplemental Tables from Chapter 3 .......................................................................................115 

Supplemental Tables from Chapter 4 .......................................................................................116 

Supplemental Tables from Chapter 5 .........................................................................................88 

LIST OF SUPPLEMENTAL FIGURES .................................................................................109 

Supplemental Figures from Chapter 2 .....................................................................................117 

Supplemental Figures from Chapter 3 .....................................................................................121 

Supplemental Tables from Chapter 4 .......................................................................................124 

Supplemental Tables from Chapter 5 .......................................................................................130 

REFERENCES ...........................................................................................................................132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



G . E .  W i l t  |  ix 

  

 

LIST OF TABLES 

 

Table 2.1. Characteristics of Nurses’ Health Study 3 (N = 49,693) and the Mobile Health 

Substudy including recruited population and observations (N = 500, n = 701,696), primary 

analytic dataset population and observations (N = 337, n = 639,364), and secondary analytic 

dataset population and observations (N = 208, n = 498,521) ........................................................27 

 
Table 2.2. Distribution of Normalized Difference Vegetation Index (NDVI) by residential and 

mobility-based measures and generalized linear models depicting association between residential 

and GPS mobility-based greenness exposures using NDVI ..........................................................28 

 
Table 3.1. Characteristics of the 2018-2020 Nurses’ Health Study 3 mHealth Substudy including 

the primary analytic dataset population and observations (N = 337, n = 639,364), and secondary 

analytic dataset population and observations (N = 208, n = 498,521) ...........................................49 

 
Table 3.2. Participant greenness and physical activity distributions across seasons in the 2018-

2020 Nurses’ Health Study 3 mHealth Substudy primary analytic dataset (N=327) ....................50 

 
Table 4.1. Characteristics of the 2018-2020 Nurses’ Health Study 3 mHealth Substudy including 

the primary analytic dataset population and observations using participants with minimum 3 days 

of 8 hours of observations (N = 337, n = 639,364), and secondary analytic dataset population and 

observations using participants with minimum 10 days of 12 hours of observations (N = 208, n = 

498,521) .........................................................................................................................................71 

 
Table 4.2. Participant walkability and physical activity distributions across seasons in 2018-2020 

Nurses’ Health Study 3 mHealth Substudy primary analytic dataset (N=337) .............................72 

 
Table 5.1. Characteristics of Nurses’ Health Study 3 (N = 49,693) and the mHealth Substudy 

population and observations (N = 337, n = 639,364) ....................................................................93 

 
Table 5.2. Uncorrected generalized linear models depicting association between residential 

walkability and weekly physical activity minutes and regression calibration GPS mobility 

corrected generalized linear models depicting association between residential walkability and 

weekly physical activity minutes. GPS locations were used to calculate mobility-based 

walkability estimates for corrected exposure. Associations expressed in difference in minutes of 

weekly physical activity by 1 SD change in walkability z-score (SD 2.64). Adjusted models 

controlled for individual participant measures of age (years, continuous), socioeconomic status 

defined as: education level (advanced degree, binary), and marital status (binary), and area-level 

measures of neighborhood socioeconomic status (z-score, quartiles), greenness (normalized 

difference vegetation index (NDVI), continuous), mean yearly temperature (Celsius, quartiles), 

and total yearly precipitation (dichotomized to <0.01mm, 0.01mm) ..........................................94 



G . E .  W i l t  |  x 

  

 

LIST OF FIGURES 

Figure 2.1. Study participant flow diagram for Nurses’ Health Study 3  mHealth Substudy and 

restriction criteria for primary analytic dataset and secondary analytic dataset for cohort 

population (N) and GPS mobility observations (n). ......................................................................29 

 

Figure 2.2. NHS3 mHealth Substudy participants residential locations across the contiguous 

United States, 2018 ........................................................................................................................30 

 

Figure 2.3. Four panel exposure map comparison of a) residential buffers, b) all GPS mobility 

data, c) non-work GPS mobility data and d) active transport (walk to run velocity) GPS mobility 

data metrics of exposure (note: not actual participant data) ..........................................................31 

 
Figure 2.4. Yearly Normalized Difference Vegetation Index (NDVI) histogram distributions for 

270m and 1230m residential measures and averaged 30m mobility exposure measures ..............32 

 

Figure 2.5. Figure 2.4: Bland Altman plots comparing mobility and residential Normalized 

Difference Vegetation Index measures. A) 270 m residential NDVI vs. GPS mobility-based 

NDVI, b) 1230 m residential NDVI vs. GPS mobility-based NDVI, c) 270 m residential NDVI 

vs. 1230m residential NDVI. Purple band indicates 95% confidence level with red and green 

bands as lower and upper limit of agreement confidence bands. ..................................................33 

 
Figure 2.6. Generalized linear models depicting association between residential (270 and 1230 

m buffers) and GPS mobility-based greenness exposures using Normalized Difference 

Vegetation Index (NDVI). .............................................................................................................34 

 
Figure 3.1. Study participant flow diagram for Nurses’ Health Study 3  mHealth Substudy and 

restriction criteria for primary analytic dataset and secondary analytic dataset for cohort 

population (N) and GPS mobility observations (n). ......................................................................51 

 
Figure 3.2. NHS3 and mHealth Substudy participants residential locations across the contiguous 

United States, 2010-present  ..........................................................................................................52 

 
Figure 3.3. Three panel exposure map: a) GPS mobility data and selective daily mobility bias, b) 

workplace omitted GPS mobility data and c) active GPS mobility (walk to run velocities) metrics 

of exposure (note: not actual participant data) ...............................................................................53 

 
Figure 3.4. Nonlinear associations netween Normalized Difference Vegetation Index (NDVI) 

and steps per minute, controlling for age (years; continuous), socioeconomic status defined as: 

education level (masters in nursing or higher; binary), and marital status (never [never 

married]]/ever [married, widowed, divorced]; binary), and area-level measures of neighborhood 

socioeconomic status (z-score; quartiles), walkability (z-scores; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), season and Census 



G . E .  W i l t  |  xi 

  

region, *Average steps per minute across each ten-minute collection period. NDVI values below 

0 represent water, ~0 represent rocks and bare soil including concrete, and values ~0.6-0.8 

represent temperate and tropical forests ........................................................................................54 

 

Figure 3.5. Nonlinear associations between Normalized Difference Vegetation Index (NDVI) 

and steps per minute stratifying on season, controlling for age (years; continuous), 

socioeconomic status defined as: education level (masters in nursing or higher; binary), and 

marital status (never [never married]]/ever [married, widowed, divorced]; binary), and area-level 

measures of neighborhood socioeconomic status (z-score; quartiles), walkability (z-scores; 

quartiles), mean daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), 

and Census region, *Average steps per minute across each ten-minute collection period. NDVI 

values below 0 represent water, ~0 represent rocks and bare soil including concrete, and values 

~0.6-0.8 represent temperate and tropical forests ..........................................................................55 

 
Figure 3.6. Nonlinear associations netween Normalized Difference Vegetation Index (NDVI) 

and steps per minute stratifying on Census region, controlling for age (years; continuous), 

socioeconomic status defined as: education level (masters in nursing or higher; binary), and 

marital status (never [never married]]/ever [married, widowed, divorced]; binary), and area-level 

measures of neighborhood socioeconomic status (z-score; quartiles), walkability (z-scores; 

quartiles), mean daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), 

and season. *Average steps per minute across each ten-minute collection period. NDVI values 

below 0 represent water, ~0 represent rocks and bare soil including concrete, and values ~0.6-0.8 

represent temperate and tropical forests ........................................................................................56 

 
Figure 3.7. Nonlinear associations netween Normalized Difference Vegetation Index (NDVI) 

and steps per minute restricted to active transportation GPS mobility (walk to run velocities) 

dataset, controlling for age (years; continuous), socioeconomic status defined as: education level 

(masters in nursing or higher; binary), and marital status (never [never married]]/ever [married, 

widowed, divorced]; binary), and area-level measures of neighborhood socioeconomic status (z-

score; quartiles), walkability (z-scores; quartiles), mean daily temperature (Celsius; quartiles), 

daily precipitation (millimeters; binary), season and Census region, *Average steps per minute 

across each ten-minute collection period. NDVI values below 0 represent water, ~0 represent 

rocks and bare soil including concrete, and values ~0.6-0.8 represent temperate and tropical 

forests .............................................................................................................................................57 

 
Figure 4.1. Study participant flow diagram for Nurses’ Health Study 3  mHealth Substudy and 

restriction criteria for primary analytic dataset and secondary analytic dataset for cohort 

population (N) and GPS mobility observations (n). ......................................................................73 

 
Figure 4.2. NHS3 and mHealth Substudy participants residential locations across the contiguous 

United States ..................................................................................................................................74 

 
Figure 4.3. Figure 2. A) GEOID 25025120400 (Boston, MA) and B) GEOID  13089020900 

(Atlanta, GA). Population density is A) 6,517 people/km and B) 1465 people/km. Business 



G . E .  W i l t  |  xii 

  

density is A) 376 businesses/km and B) 108 business/km. Intersection density is A) 239 

intersections/km and B)104 intersections/km. Walkability z-scores are 5 and 0.8 respectively ...75 

 
Figure 4.4. Three panel walkability exposure map: a) GPS mobility data and selective daily 

mobility bias, b) workplace omitted GPS mobility and c) active GPS mobility (walk to run 

velocity) metrics of exposure. *This figure does not represent participant data. Data was obtained 

via the authors personal data collection .........................................................................................76 

 
Figure 4.5. Nonlinear associations between walkability and steps per minute, controlling for age 

(years; continuous), socioeconomic status defined as: education level (masters in nursing or 

higher; binary), and marital status (never [never married]]/ever [married, widowed, divorced]; 

binary), and area-level measures of neighborhood socioeconomic status (z-score; quartiles), 

greenness (NDVI; quartiles), mean daily temperature (Celsius; quartiles), daily precipitation 

(millimeters; binary), season and Census region. *Average steps per minute across each ten-

minute collection period. ...............................................................................................................77 

 
Figure 4.6. Nonlinear associations between walkability and steps per minute restricted to active 

transportation GPS mobility (walk to run velocities) dataset, controlling for age (years; 

continuous), socioeconomic status defined as: education level (masters in nursing or higher; 

binary), and marital status (never [never married]]/ever [married, widowed, divorced]; binary), 

and area-level measures of neighborhood socioeconomic status (z-score; quartiles), greenness 

(NDVI; quartiles), mean daily temperature (Celsius; quartiles), daily precipitation (millimeters; 

binary), season and Census region. *Average steps per minute across each ten-minute collection 

period .............................................................................................................................................78 

 

Figure 5.1. NHS3 and mHealth Substudy participants residential locations across the contiguous 

United States ..................................................................................................................................95 

 

Figure 5.2. Study participant flow diagram for Nurses’ Health Study 3 (N= 49,693), 

questionnaire cycle 2 (33,253) and the NHS3  mHealth Substudy (N=500) and restriction criteria 

for validation dataset (N=337) .......................................................................................................96 

 

Figure 5.3. Distrubtion of walkability Z-Scores for two measures of census tract walkability: 

residential and mobillity-based. The vertical black dotted line represents the mean of all 

walkability Z-scores .......................................................................................................................97 

 

Figure 5.4. Bland Altman plots comparing mobility and residential walkability z-score 

measures. Purple band indicates 95% confidence level with red and green bands as lower and 

upper limit of agreement confidence bands ...................................................................................98 

 

Figure 5.5. Uncorrected generalized linear models depicting association between residential 

walkability and weekly physical activity minutes and GPS mobility regression calibration 

corrected generalized linear models depicting association between residential walkability and 

weekly physical activity minutes. GPS locations were used to calculate mobility-based 

walkability estimates for corrected exposure. Associations expressed in difference in minutes of 

weekly self- reported physical activity by 1 SD change in walkability z-score (SD 2.64). 



G . E .  W i l t  |  xiii 

  

Adjusted models controlled for individual participant measures of age (years, continuous), 

socioeconomic status defined as: education level (advanced degree, binary), and marital status 

(binary), and area-level measures of neighborhood socioeconomic status (z-score, quartiles), 

greenness (normalized difference vegetation index (NDVI), continuous), mean yearly 

temperature (Celsius, quartiles), and total yearly precipitation (dichotomized to <0.01mm, 

0.01mm). ......................................................................................................................................99 

 

  



G . E .  W i l t  |  xiv 

  

DEDICATION 

 

“My wound is geography. It is also my anchorage, my port of call.” 
- Pat Conroy, Prince of Tides 

 

Sasha, Ranger, and Sam – thank you for always anchoring me on this journey when I felt lost 



G . E .  W i l t  |  xv 

  

ACKNOWLEDGMENTS 

I am so thankful to so many who have supported me on this journey. My advisor, Dr. Peter 

James and the rest of my dissertation and oral examination committee: Drs. Francine Laden, 

Brett Coull, Steve Gortmaker, and Jaime Hart-thank you for helping me grow as a researcher and 

supporting me along the way.  

To my colleagues at the Centers for Disease Control and Prevention and United HealthCare 

Community and State: thank you. My time at CDC shaped me into the researcher I am and 

United you provided a space where I felt so valued for who I was. I am endlessly appreciative. 

Most notably for Andrew Dent, Brian Lewis, Barry Flannagan, Elaine Hallisey, Erica Adams, 

Rehn LeSuer, Lillie Molavi, Phoebe Chastain, Saad Soroya, and Braya Hicks. 

SPACEE lab was an incredible resource for me, I especially want to shout out Dr. Hari Iyer who 

has provided me with invaluable mentorship during this program. 

All my wonderful PHS PhD cohort mates. Especially Unnati Mehta, Caro Park, Keya Joshi, Kat 

Sadikova, Ella Douglas-Durham, Chih-Fu Wei, Melissa Fiffer, William Borchert, and Futu 

Chen. I have learned so much from you and your friendship.  

I am so thankful to my JP dog walking ladies: Becca Manning, Genevieve Spears, and Ella 

Douglas-Durham (a crucial cross-over). And their dogs: Molly, Moose, and Finn. You have all 

brought me so much laughter and support during this time.  

To my SPACEE girls – Drs. Charlie Roscoe and Unnati Mehta and soon to be Dr. Cindy Hu. 

You three have been my mentors, friends, confidants, and greatest supporters these past few 

years. May everyone be so lucky to experience people like you in their lives. 

Mom and Dad – thank you for everything.  

Sarah, you are the greatest cousin in the world, thank you for always shining.  

To my best friend and sister Ingrid, thank you for always knowing what to say and always being 

my favorite person to spend the day with. You made this last year in Boston the best.  

Sasha and Ranger, I think the only thing that made this PhD bearable was you two.  

 Sam – we did it, time for our next great adventure. May it involve much less school and zoom 

and lots of time with the dogs outside.  

 

 

 

 

 

 



G . E .  W i l t  |  1 

  

Chapter 1.  

Introduction 

Background and Gap Statement 

Built and natural environments, which encompass objective and subjective features of the 

physical environment, exert influence on health behaviors and outcomes. The field of 

environmental epidemiology has sought to establish associations between these environmental 

exposures and numerous downstream factors like cancers, cardiovascular disease (CVD), and 

all-cause mortality. This research is almost exclusively rooted in the built and natural 

environments around one’s residential address. Thus, environmental exposures are contextual— 

a factor of the economic, social and physical environments (Klepeis et al., 2001), defined 

through a geography, from administrative units like Census tracts to a radius around a point of 

interest (likely a residence) called a buffer, rather than the actual personal exposure, suggesting a 

potentially poor proxy exposure.  This link between place, environment, and health is not new.  

In 1854, the father of spatial epidemiology, John Snow linked a contaminated water 

pump on Broad Street to the cholera outbreak, accounting for place and time to attribute 

exposure. As the field of place, environment, and health developed into environmental 

epidemiology, contextual exposures remained at the forefront. In 1993, researchers at Harvard 

linked higher air pollution levels to higher mortality rates across six cities in the United States 

(Dockery et al., 1993). Air pollution monitors within city limits aided scientists in linking the 

environmental exposure to individuals living in that geographic context (Dockery et al., 1993; 

Laden et al., 2006). While the Six Cities Study advanced environmental epidemiology in many 

regards, (e.g. the use of a large representative cohorts and exposure data that was linked to the 

individual) in a sense we are always attempting to find our way back to the Broad Street pump. 
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Not visualized in the infamous map, John Snow determined which households visited the 

specific water source, linking exposure to the outcome of cholera. In the twenty-first century, 

environmental epidemiologists  still grappled with methods that allow us this insight. We 

recognize that individuals spend large amounts of time outside of their residential address. 

Global Positioning System (GPS) data offers a solution. With the advancements of digital health 

technologies (wearable technology and smartphones), GPS data has become more ubiquitous. 

This has resulted in improvements in contextual environmental exposures, as we can more 

accurately measure one’s true exposure as they move through time and space. Additionally, in 

recent years, studies of protective environmental exposures have emerged as ways to promote 

health behaviors and prevent adverse health effects including cancers, CVD, and all-cause 

mortality that have been linked to other harmful environmental exposures like air pollution, 

chemicals, and metals. Two key potentially protective contextual exposures in environmental 

epidemiology are measures of greenness and walkability. 

Greenness is characterized by land covered in vegetation including trees, grass and 

shrubs. We commonly measure greenness using the normalized difference vegetation index 

(NDVI). NDVI ranges from -1 to 1 with higher numbers indicating more green vegetation. 

NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, and 

values ~0.6-0.8 represent temperate and tropical forests. Reviews of greenness and health 

literature suggest numerous health benefits, including improved mental health, sleep, cognitive 

function, brain activity, blood pressure and a reduction in all-cause mortality (Dadvand et al., 

2014; Fong et al., 2018; James, Kioumourtzoglou, et al., 2017; James et al., 2015; Rojas-Rueda 

et al., 2019). Greenness is associated with improved mental health and cognitive function 

through the pathway of social cohesion and stress reduction (Hartig, 2008). The stress reduction 
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theory posits how time in nature influences feelings or emotions through parasympathetic 

nervous system activation which to reduces stress and autonomic arousal because of our innate 

connection to the natural world (Ulrich et al., 1991). Regulation and filtration of noise, heat and 

humidity and air pollution are additional pathways. Physical activity has been explored as a 

potential pathway to health benefits including lower risk of chronic disease, improved mental 

health, lower blood pressure and a reduction in all- cause mortality ((Office of the Surgeon 

General (US), 1996; Office of the Surgeon General (US), 2010; Roscoe et al., 2022). The 

hypothesized association between greenness and physical activity acts by providing accessible 

recreation space (Nieuwenhuijsen et al., 2017; Roscoe et al., 2022). A 2021 review by Jimenez et 

al. found the bulk of research on the association to be cross-sectional in nature using NDVI as 

the exposure and self-reported physical activity data. Klompmaker et al. found that higher 

quartiles of residential greenness were associated with increased odds of self-reported outdoor 

physical activity. Almanza et al. found that greenness was associated with higher odds of 

moderate to vigorous physical activity, when comparing those in the 90th and 10th percentiles of 

greenness. They used GPS and accelerometry data for 208 children in California (Almanza et al., 

2012).  Conversely, Garrett et al. identified inverse associations between greenness and walking 

physical activity (Garrett et al., 2020). Additionally, In a review of youth health outcomes related 

to exercising in green spaces, a meta-analysis of fourteen studies across the globe indicated little 

evidence that exercise in green spaces is more beneficial than physical activity conducted in 

other locations (Mnich et al., 2019). In a 2016 paper on greenness and all-cause mortality, James 

et al. highlight that physical activity was not a strong mediator between the exposure and 

outcome (James et al., 2016).Despite mixed findings, researchers hypothesize physical activity 

could be a driving mediator in the pathway between greenness and long-term health outcomes. 
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Higher physical activity is associated with improved health outcomes including reduced levels of 

depression, anxiety, obesity, cardiovascular disease and mortality in addition to improved birth 

outcomes (Ambrey, 2016; Chong et al., 2019; Coutts et al., 2013; Cusack et al., 2017; Dai, 2011; 

Fong et al., 2018; Grigsby-Toussaint et al., 2011; James et al., 2015, 2016; Jimenez et al., 2020; 

Jones et al., 2009; Lachowycz & Jones, 2011; Maas et al., 2008; Zhang et al., 2018). Much of the 

greenness and physical activity literature utilizes residential exposure and self-report physical 

activity survey data. Further investigating the pathway between greenness and physical activity 

utilizing improved GPS exposure and objective wearable device outcome data allows researchers 

to ask questions including: “do measures of residential and GPS greenness differ?” and “do 

individuals partake in higher levels of physical activity in greener areas?”. In environmental 

epidemiology we aim to minimize error by more accurately measuring exposures and outcomes. 

Moreover, we aim to understand if greenness and walkable environments cause people to be 

more active.  In the simplest sense, causality requires temporality. The exposure of interest must 

proceed the outcome. Methods exist in epidemiologic literature to get at the casual nature of 

associations. However, causality also requires researchers to investigate the pathways that we 

intuit these associations follow. To answer the questions: “do measures of residential and GPS 

greenness differ?” and “do individuals partake in higher levels of physical activity in greener 

areas?” we require high quality GPS and wearable device information. These investigations 

using GPS data shed light on potential error in exposure measures and mechanisms hypothesized 

in studies observing protective effects of greenness and numerous behavioral and health 

outcomes in the literature. 

The exposure of walkability typically measures an area’s population, business, and street 

intersection density. Despite being an individual behavior, physical activity occurs in the context 
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of the built and social environments. These environments exert influence on decision making 

(National Academies of Sciences et al., 2019). In a 2018 review, Karmeniemi et al. highlights 

that areas with more features of a built environment (such as housing density, public transit, and 

population density) were associated with higher levels of physical activity. This was due to 

higher amenity accessibility and transportation patterns (Kärmeniemi et al., 2018). Several 

papers have linked access to public transportation to higher physical activity (Giles-Corti et al., 

2016; M. Smith et al., 2017). Public transportation provides a crucial opportunity for physical 

activity as walking often occurs at either end of transit routes. While numerous activities provide 

an opportunity to meet physical activity guidelines, the Surgeon General’s 2015 call to action to 

increase physical activity, walking was reported as the most common form (Office of the 

Surgeon General (US), 2015). Research, has found robust associations between walkability and  

social cohesion, and physical activity (Carr et al., 2010; Frank et al., 2008; Humpel et al., 2002; 

James, Kioumourtzoglou, et al., 2017; Marquet et al., 2020; McCormack et al., 2017; Orstad et 

al., 2018; Roscoe et al., 2022; Rundle et al., 2016; Saelens et al., 2003) at both the residential and 

GPS spatial scale.  GPS walkability exposures have been associated with self-reported and 

objective physical activity previously in the literature (James, Hart, et al., 2017; Marquet et al., 

2020, 2022a; Orstad et al., 2018; Roscoe et al., 2022; Rundle et al., 2016). Additional studies 

have shown positive associations between residential-based walkability exposure and self-

reported physical activity (Carr et al., 2010; Frank et al., 2008; Humpel et al., 2002; Saelens et 

al., 2003). Like with greenness above, by utilizing GPS measures of walkability we have the 

opportunity to investigate associations between walkability and physical activity. Additionally, 

we can quantify the error between GPS-based and residential-based measures of exposure. If this 

error is substantial, techniques like measurement correction will adjust previous estimates of the 
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association between the residential exposure measure and the outcome and provide a more 

accurate estimate. GPS data can help researchers understand where and how physical activity is 

occurring within these built and natural environments. From here we can design improved 

interventions and implement urban planning and design policy to promote features of the 

environment that promote healthy behaviors like physical activity.  

As mentioned above, limitations in both greenness and walkability research remain in 

exposure assessment and pathway investigation. Improvements to these measures using GPS 

data that have improved spatio-temporal resolution are essential for determining true extent of 

exposure. Similar to the Broad Street pump, individuals may be exposed to environments outside 

their residential locations. From here we can better explore potential pathway hypotheses. Digital 

health, utilizing GPS and wearable technology pose a solution for improvements to exposure and 

outcome assessment (Hystad et al., 2022; James et al., 2022). These rich data can address the 

uncertainty of the true spatial and temporal scale exerting the contextual influences, which is 

known as the uncertain geographic context problem (Kwan, 2012a, 2012b, 2019; Park & Kwan, 

2017). Previously the literature has relied on aggregation and arbitrary spatial scale to derive an 

exposure to assess associations. However, GPS data captures the true exposure experienced 

across a specific timescale of interest. The uncertain geographic context problem highlights how 

the spatial delineation of an exposure or outcome can alter the association observed. For 

example, examining greenness exposure by aggregating data to a 1200m buffered distance 

around a residence, approximating walkable distance, is a frequently used metrics of greenness 

exposure, yet may not provide an accurate reflection of the true exposure experienced in one’s 

typical human movement patterns (Brokamp et al., 2016; Kwan, 2019). This typical human 

movement pattern, which we aim to measure, is often referred to as one’s activity space. Activity 
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space isa term used to describe the set of locations with which a person has direct contact during 

day-to-day activities (Perchoux et al., 2016). 

This dissertation addresses the gap in the current literature that relies mainly on 

residential measures of greenness and walkability contextual exposures. We aimed to do this by 

assessing how GPS (mobility) measures and residential measures differ, uncovering potential 

mechanisms through physical activity to long term health outcomes using minute level GPS and 

accelerometry data and addressing measurement error in residential exposures by correcting with 

GPS mobility exposures in a full prospective cohort. Our fine scale mobility exposure estimates 

are derived from a pilot mobile health (mHealth) substudy utilizing smartphone and wearable 

devices to obtain GPS and objective physical activity data at a 10-minute temporal resolution.  

 We set out to address the following challenges and literature gaps concerning the 

uncertain geographic context problem though the utilization of fine scale mHealth data in four 

distinct aims: 1) quantifying exposure differences between residential and mobility-based 

greenness; 2 & 3) addressing the uncertain geographic context problem though exploration of 

associations between greenness, walkability respectively and physical using smartphone GPS 

data and physical activity data from consumer wearables gathered every 10 minutes; and 4) 

understanding nondifferential misclassification of residential walkability exposure and 

implications for regression calibration on the association between residential walkability and 

physical activity using GPS mobility-based walkability exposure measures. 

Gap 1. Estimate an improved mobility-based measure of greenness exposure 

Despite growing research interest into the relationship between greenness and human health, 

measures of greenness exposure continue to be poorly measured in epidemiological studies. We 



G . E .  W i l t  |  8 

  

explore differences in greenness measures using both traditional residence-based estimates and 

novel mobility-based estimates. Limited research exists on the concordance between these 

exposure measures. Though, this dissertation we aim to provide guidance on best practices for 

utilizing greenness exposure as a contextual factor.  

Due to innovative mobile technologies integrated into the NHS3   mHealth substudy (n=337) 

of the NHS3 cohort, we measured the greenness individuals are exposed to on a routine basis as 

they move throughout the day. Aim 1 improves measures of greenness based on exposure 

derived from GPS data.  

Gap 2. Examine minute-level associations of greenness exposure, walkability and physical 

activity and the impact of geographic bias on findings 

 

A common critique in contextual exposure research is the inability to elucidate the 

mechanism that links  exposure to outcome. Leveraging momentary data from the NHS3 

mHealth substudy enables us to investigate potential high resolution pathways.  Mobility-based 

exposure data and wearable accelerometry devices provide fine scale objective spatiotemporal 

data and allow us to examine the relationship of mobility-based greenness and walkability 

exposure and mean step count at the 10-minute level using intra-individual repeated measures 

data (Middelweerd et al., 2017; Prince et al., 2008; Slaght et al., 2017). This minute level data 

provided the additional opportunity to address the impact of geographic biases that result from 

the uncertain geographic context problem and daily selective mobility bias (Chaix et al., 2011) 

through sensitivity analyses limiting the spatial extent of human movement outside their primary 

activity space (Perchoux et al., 2013), restricting on workplace and examining active 

transportation (human propelled movement with walk to run velocities) data only. 

Gap 3. Identify and correct for walkability exposure misclassification in large cohorts 
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Residential addresses do not capture true exposure that individuals are exposed to in their 

daily lives. The uncertain geographic context problem, which we have introduced above, 

theoretically leads to measurement error of environmental exposures (Kim & Kwan, 2018; 

Kwan, 2012a). Nondifferential measurement error is ubiquitous in these studies, yet little is done 

to address this bias, unlike attempts to adjust for confounding (Spiegelman, 2010). Here we 

investigated the association between exposure to walkability and self-reported physical activity. 

Utilizing the principles of transportability- the ability to take insights from one population and 

apply it to another, we quantify measurement error in residential measures of walkability 

exposure by applying regression calibration to the full study using mobility-based exposure from 

the NHS3 mHealth substudy (n=337, with smartphone GPS data). We apply mobility-based 

walkability as the improved exposure estimate to calculate new effect estimates and 95% 

confidence intervals in the full cohort. Examining the difference in effect estimates will add to 

the discourse on the uncertain geographic context problem and provide an example of how 

associations of walkability exposure and physical activity are affected by differences in corrected 

exposure estimates.  

In chapters 2 through 5 we explore the following research questions and evaluate if our findings 

align with our a priori hypotheses outlined below: 

Chapter 2. Quantify differences in greenness exposure comparing activity space estimates 

and traditional residence-based estimates in the NHS3 mHealth Substudy.  

Hypothesis: Normalized Difference Vegetation Index (NDVI) calculated from the residential 

address-based buffer will be significantly different from the mobility-based NDVI.   

Chapter 3.  Quantify associations of GPS mobility-based greenness exposure with minute 

level wearable accelerometry data among participants in NHS3 mHealth Substudy  
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Hypothesis: Higher fine scale mobility-based greenness exposure will be associated with higher 

mean step count per ten minutes after adjustment for a priori confounders.  

Chapter 4.  Quantify associations of GPS mobility-based  walkability exposure with minute 

level wearable accelerometry data among participants in the NHS3 mHealth Substudy  

Hypothesis: Higher mean fine scale activity space greenness exposure will be associated with 

higher mean step count per ten minutes after adjustment for a priori confounders.  

Chapter 5. Transport the NHS3 mHealth Substudy mobility-based walkability exposure 

measurement corrections to determine the association of greenness exposure with physical 

activity in the full NHS3 cohort.  

Hypothesis: Higher mean yearly residence-based walkability exposure will be associated with 

higher self-reported physical activity controlling for a priori confounders. The estimated 

association will be corrected for the measurement error correction coefficient that was 

calculated using mean yearly mobility walkability exposure. The mobility-based walkability 

exposure estimate will provide higher estimates than the residential-based estimate. 

Conclusion 

The strength of this dissertation lies in the integration of digital health technology with 

preexisting prospective cohorts. This unique cohort allows us to target several gaps existing in 

environmental health research. Smartphone-based GPS enables the collection of improved 

exposure assessment and provides the opportunity to correct residential estimates. With intra-

individual repeated measures GPS data we address geographic biases and examine potential 

temporal relationships of greenness and walkability exposures and physical activity. Finally, we 

tackle measurement error utilizing GPS mobility-based estimates from the NHS3 mHealth 

substudy to correct residential estimates in the full cohort for the association between walkability 
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and physical activity. Overall, in the following chapters we examined how mobility-based 

exposure estimates of greenness and walkability alter our exposure/outcome associations and 

impact downstream interventions and population health findings. 
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Abstract 

Background:  Studies of greenness and health often assess exposure using residential circular 

distance buffers, which do not capture exposure occurring outside of the pre-defined residential 

environment.  

Objectives: We compare greenness measures obtained from traditional residential-based buffers 

and novel smartphone mobility-based estimates. 

Methods: We used data from the US-based Nurses’ Health Study 3 mHealth study, which 

followed 337 participants for four 7-day sampling periods across a year. We used Landsat-

derived Normalized Difference Vegetation Index (NDVI) data (30 m x 30 m resolution) for both 

residential (annual average and seasonal circular buffers of 270m and 1230m) and mobility-

based greenness. We calculated mobility-based greenness exposure as seasonal NDVI values at 

GPS points captured every 10 minutes during the 7-day sampling periods and averaged across 
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the seasonal sampling periods. We compared measures using descriptive statistics, Bland Altman 

tests, and Generalized Linear Models. 

Results: Mean annual NDVI values from residential-based buffers (270m=0.40, SD =0.12; 

1230m=0.39, SD=0.12) were higher than those obtained using annual mobility-based NDVI 

(mean = 0.32, SD=0.11). The Bland Altman agreement bias was 7.8% (95% CI: 6.7%, 8.9%) and 

7.3% (95% CI: 6.3%, 8.4%) using the 270 m and 1230 m residential distance buffer, 

respectively, compared to mobility-based NDVI. Spearman’s rank correlations comparing the 

mobility-based and residential-based NDVI were 0.59 and 0.57 for the 270m and 1230m buffer, 

respectively. The two residential distance buffers had a Spearman’s rank correlation of 0.90. 

Each 10% increase in both 270m and 1230m residential-based NDVI, was associated with 6.0% 

increase in mobility-based NDVI (270m 95% CI: 5.3%, 7.1%; 1230m 95% CI: 5.1%, 6.9%).  

Discussion: Residential-based distance buffer estimates of greenness are higher and more 

variable than mobility-based metrics. These findings contribute to discussions surrounding the 

choice of an optimal spatial scale for personal greenness exposure assessment.  
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Introduction 

A growing body of evidence supports numerous health benefits of greenness exposure. Findings 

from prospective cohorts have shown that higher greenness is associated with better mental 

health outcomes, improved sleep patterns and cognitive function, lower blood pressure and lower 

all-cause mortality (Fong et al., 2018; James et al., 2015, 2016; Jimenez et al., 2021; Kaplan, 

1995).  Measuring greenness, however,  presents a unique and difficult problem as a contextual 

environmental exposure that varies by place and time (Jimenez et al., 2021; Klepeis et al., 2001; 

Markevych et al., 2017; Spiegelman, 2010). In epidemiologic studies, greenness is most often 

measured quantitatively by calculating the mean satellite-derived Normalized Difference 

Vegetation Index (NDVI) within circular buffers around residential address history (James et al., 

2015; Labib, Lindley, et al., 2020; Maas et al., 2008). These circular buffers ranging from 100 m 

to over 1000 m represent the environment directly surrounding one’s residence or accessible 

within a short walk (James et al., 2016; Villanueva et al., 2014). These  measures may fail to 

capture the exposure of interest, specifically the totality of greenness exposure that one 

encounters throughout an etiologically relevant time period (Fong et al., 2018; James et al., 2015; 

Labib, Huck, et al., 2020; Labib, Lindley, et al., 2020).  

The discrepancy between measured exposures and the true spatial and temporal boundaries of 

the exposure exerting the contextual influences, like greenness, is known as the uncertain 

geographic context problem (Kwan, 2012a, 2012b, 2019; Park & Kwan, 2017). Kwan 

demonstrates that the spatial delineation of a contextual exposure, rather than the exposure itself, 

can influence the association observed (Kwan, 2012a). Thus, commonly used greenness 

exposures may not provide an accurate reflection of the true exposure by each individual, 

potentially biassing the results (Kwan, 2012b).  
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GPS data record typical human movement patterns, mobility, or activity space (Brokamp et al., 

2016; Kwan, 2019), a term used to describe the set of locations with which a person has direct 

contact during day-to-day activities (Perchoux et al., 2016). The widespread use of mobile phone 

and wearable GPS technology allows researchers to evaluate contextual exposures using 

mobility measurements and examine associations using a metric of mobility-based greenness 

exposure (Almanza et al., 2012; Halonen et al., 2020; Marquet et al., 2022a).  

The lack of precise activity space data, that can be used to address the uncertain geographic 

context problem, is a remaining gap in the greenness exposure literature. To address this, our 

study used fine scale space-time GPS data to improve exposure metrics of greenness. Using 

mobile technologies integrated into the mHealth substudy (n=337) of the Nurses’ Health Study 3 

(NHS3) cohort, we measured mobility-based greenness. In this paper, we compare the agreement 

between residential distance buffer and mobility-based measures of greenness.  

Methods 

Population 

Nurses’ Health Study 3 (NHS3) 

NHS3 is an ongoing open-enrollment prospective cohort of nurses and nursing students living in 

the United States or Canada that began in 2010. Study eligibility required participants to be a 

registered nurse, licensed practical/vocational nurse, or nursing student and to be born on or after 

January 1, 1965. At the time of selection for the mHealth substudy there were 49,693 

participants. Upon entry, participants complete web-based questionnaires on lifestyle and 

medical characteristics and update their residential address every six months. The response rate 

for participants who have completed two or more questionnaires is above 80% (Chavarro et al., 
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2016; Gaskins, Rich-Edwards, Lawson, et al., 2015; Gaskins, Rich-Edwards, Missmer, et al., 

2015; Mooney & Garber, 2019). 

NHS3 mHealth Substudy 

The NHS3 Mobile Health (mHealth) Substudy enrolled 500 NHS3 participants (Figure 2.1). The 

substudy began enrollment in March 2018 and data collection was completed in February 2020 

with participants from 42 of the 48 contiguous states (Figure 2.2). To be eligible for the 

substudy, participants had to be aged 21 or older on March 12, 2018 and demonstrate adherence 

to questionnaire completion by providing information on height, weight, physical activity, and 

sleep in prior questionnaires. Participants with a doctor-diagnosed sleep disorder were not 

eligible because the study aimed to prospectively examine impacts of various lifestyle risk 

factors on sleep disturbance and FitBits have reduced accuracy in these populations.  

The mHealth participants downloaded a custom smartphone application on their personal 

smartphones and wore a consumer-wearable fitness tracker (Fitbit™) for seven-day sampling 

periods every three months for a year from enrollment to capture seasonal variability in 

behaviors and exposures. Consistent with other mobility studies (Marquet et al., 2022a), we 

conducted a seven-day protocol to capture behaviors and exposures in a time frame that should 

include work and nonwork days, despite nurses’ potential for shift work and nontraditional work 

schedules. We acquired GPS location data at ~10-minute intervals for each day throughout the 

sampling period if the mobile phone application was engaged. Further details of the substudy 

data collection methodology is detailed in (Fore et al., 2020).  

We developed eligibility criteria for inclusion in our analyses. In the primary analyses, we 

included participants who provided at least eight hours of GPS data on three unique days over 
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the entire study enrollment. Additionally, using Fitbit-derived sleep data, we omitted daily main 

sleep periods from the dataset as our primary interest was mobility-based greenness (Figure 2.1). 

Exposure 

We utilized the Normalized Difference Vegetation Index (NDVI) as a measure for greenness 

exposure. NDVI measures the reflection in the near-infrared (NIR) spectrum minus the reflection 

in the red range of the spectrum divided by those measures added together, identifying the 

amount of vegetation corresponding to the minimal difference between the NIR and red 

reflectance bands. This index ranges from -1 to 1 with higher numbers indicating more 

photosynthesizing vegetation. NDVI values below 0 represent water, near 0 represent rocks and 

bare soil including concrete and values near 0.6-0.8 represent temperate and tropical forests 

(Klompmaker et al., 2018).  NDVI was rescaled so all values below 0 were recoded to 0. This 

practice is implemented so all non-green areas are valued identically (James, Kioumourtzoglou, 

et al., 2017; James et al., 2016; James, Hart, et al., 2017). 

NDVI raster imagery for the residential and mobility greenness exposure metrics were available 

through the Google Earth Engine (GEE) platform (Gorelick et al., 2017) and processed using 

Earth Engine Landsat-specific processing methods for Landsat Tier 1 Raw Scene collection for 

Landsat 8. For mobility measures of greenness exposure, we linked each GPS point to the 30m x 

30m NDVI raster grid cell that corresponded with its spatial temporal location.  

For this analysis, we used NDVI to measure two distinct exposures to greenness. First, as 

previously used in greenness research, we calculated focal statistics for residential greenness 

exposure by proxy of 9 seasonal satellite images of NDVI around the home at both 270m, to 

approximate visible site distance, and 1230m, to approximate walking distance from residence, 

buffers (Figure 2.3), (Supplemental Information 2.1). Second, we used information retrieved 
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from the smartphone application to calculate the mobility greenness exposure measure as the 

average greenness exposure of an individual from 30m NDVI values linked to each GPS point 

across the study period (Figure 2.3b). Due to the wealth of spatio-temporal geocoded GPS 

mobility data, we estimated exposure measures as yearly averages of greenness as well as by 

season (Fall, Winter, Spring Summer).  

Covariates 

Potential effect modifiers were identified a priori. These included individual participant measures 

of age (years, continuous), socioeconomic status defined as: education level (advanced degree, 

binary), and marital status (binary), and area-level measures of neighborhood socioeconomic 

status (z-score, quartiles), walkability (z-score, quartiles), season (quartiles) and region (census 

regions). We describe the variables in depth below.  

Time invariant variables (age, education level and marital status) were obtained from the full 

NHS3 cohort study dataset in module 1 predating enrollment in the substudy. Age was reported 

as a continuous variable. We dichotomized education level to obtaining an advanced degree or 

not. Marriage was dichotomized into never married and ever married.  

We measured Neighborhood Socioeconomic Status (SES) using a composite score of 7 Census 

tract level variables representing domains that have been previously associated with health 

outcomes including education, employment, housing, wealth, racial composition, and population 

composition (DeVille et al. 2022, in review). Variables were taken from the 2010 U.S. Census 

and each variable was z-standardized. We summed the z-scores for each component variable to 

create a neighborhood SES score. Higher scores indicate higher neighborhood SES. We joined 

these data based on residential address.  
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We defined neighborhood walkability as a composite score of intersection density calculated 

from 2019 Tiger/Line shapefiles of all roads with interstates removed (Bureau, 2020), population 

density from 2019 ACS population data (Explore Census Data, 2020) and 2018 business density 

data from Infogroup US Historical Business Data (Infogroup, 2020). Variables were z-

standardized for each tract in the 2010 U.S. Census. We summed the z-scores for each 

component variable to create a neighborhood walkability index. Higher scores indicate more 

walkable areas. We joined these data based on residential address location (Supplemental 

Information 2.2).  

Statistical Methods 

We examined differences in residential and mobility-based NDVI measures using two residential 

greenness measures around the home (270m and 1230m) and a mobility-based greenness 

measure. 

We compared these metrics (illustrated in Figure 2a,b) using histograms that showed the 

distribution of each exposure, paired t-tests to determine if there was a mean difference in the 

exposures, Spearman’s rank correlation that measured the rank order correlation between 

exposures, and ANOVA tests that compared mean values across all greenness exposures.  We 

report and compare variability across exposure measures as it relates to epidemiological power. 

We measured agreement between the measures using Bland Altman agreement tests and plots, a 

framework that evaluates bias between the mean differences in measures and estimates an 

agreement interval, within which 95% of the differences of the second measure compared to the 

first measure fall. Lastly, we regressed each residential greenness exposure on each mobility 

greenness exposure using generalized linear models to explore the shape of the relationship 

between the measures (i.e., explore nonlinearity and assess whether agreement was stronger 
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within certain NDVI ranges) using penalized splines. We assessed the appropriateness of the 

linearity assumption for the relationship between residential and mobility-based measures using 

log-likelihood tests and Bayesian Inclusion Criteria (BIC).  

Sensitivity Analyses 

We performed analyses examining the agreement between the mobility-based measure and each 

residential-based measure of greenness exposure stratified by numerous characteristics including 

age group, residential neighborhood SES, weekday vs. weekend, geographic census regions, and 

walkability (Supplemental Information 2.2).  

We performed the above agreement analyses and regressions stratified across characteristics 

including season, geographic region, walkability, and neighborhood SES. We also performed a 

sensitivity analysis in a restricted analytical cohort limited to participants who provided at least 

12 hours of GPS data daily on five unique days in two distinct sample periods (Figure 2.1). To 

determine if individual’s NDVI exposure and degree of agreement differ by work vs. non-work 

time, we conducted analyses omitting time at work (Figure 2.3c). Time at work was determined 

by geocoding (transforming a text-based address into a GPS location) workplace addresses at the 

time of study and restricting GPS points to locations outside of a 160-meter buffer (0.1 mile) of 

the workplace. The size of this buffer was based on likely hospital dimensions (Insights from a 

Healthcare Architect’s Journal, 2019). We also performed sensitivity analyses restricting to 

walk-only data defined as mobility datapoints with velocities that fell between walking and 

running (0.8 to 4 m/s) (Cruciani et al., 2018), (Figure 2.3d).  
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Results  

Residential and Mobility-based Greenness in Primary Analytical Cohort 

We observed transportability between the full cohort and mHealth substudy (Table 1). The 

distribution of NDVI varied across residential and mobility-based greenness measures, with 

residential-based measures having on average slightly higher NDVI values than any of the 

mobility-based metrics (Supplemental Figures S2.1, S2.2). We measured a mean NDVI of 0.40 

(SD = 0.12) for the 270m residential buffer and 0.39 (SD = 0.12) for the 1230m residential 

buffer. We measured a mean NDVI of 0.32 (SD = 0.11) for 30m mobility averaged NDVI. 

Annual average mean NDVI values per participant were lowest when calculated using the 

walking-only mobility dataset (0.28, SD= 0.09). (Table 2.2, Figure 2.4). Spearman’s rank 

correlations between measures of greenness exposure showed highest correlation between the 

two residential greenness exposures (r=0.90) and lowest correlation between mobility and 

residential-based greenness exposure (r=0.59 and 0.57 for 270m and 1230m buffers, 

respectively).  

Tests for agreement using Bland Altman methods (a method to plot the different values of two 

measurements against the mean for each subject and constructing limits of agreement) (Figure 

2.5) indicated statistically significant non agreement between mobility and residential measures 

of greenness. The agreement bias between the mobility-based comprising of all mobility data and 

residential-based greenness measures was 7.8% (95% CI: 6.7%, 8.9%) using the 270m 

residential measure and 7.3% (95% CI: 6.3%, 8.4%) using the 1230m residential measure 

(Supplemental Table S2.1).  
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Results of linear regression suggest that the mobility-based greenness measures were inversely 

related to both residential-based greenness measures. For both a 10% increase in 270m and 

1230m residential-based NDVI, all-mobility NDVI was associated with 6.0% increase in 

mobility-based NDVI (270m 95% CI: 5.3%, 7.1%; 1230m 95% CI: 5.1%, 6.9%; Table 2.2, 

Figure 2.6). 

Sensitivity Analyses 

The agreement bias between the workplace-omitted mobility-based greenness measure and 

residential-based greenness measures was 6.9% (95% CI: 5.5%, 8.4%) using the 270m 

residential measure and 6.6% (95% CI: 5.1%, 8.1%) using the 1230m residential measure. 

Finally, the bias for walking only mobility-based greenness was 11.5% (95% CI: 10.5%, 12.5%) 

using the 270m residential measure and 11.0% (95% CI: 9.9%, 12.0%) using the 1230m 

residential-based measure. In contrast, there was no evidence of significant agreement bias 

between the two residential-based greenness measures (0.5%, 95% CI -1.0%, 1.0%), 

(Supplemental Table S2.1).  

For each 10% increase in 270m residential NDVI, workplace-omitted mobility-based NDVI 

increased by 7.3% (95% CI: 6.0%, 8.5%) and for each 10% increase in 1230m residential-based 

NDVI, workplace-omitted mobility-based NDVI increased by 6.8% (95% CI: 5.5%, 8.2%). 

Finally, for each 10% increase in 270m residential-based NDVI, walking only mobility-based 

NDVI increased by 7.8 (95% CI: 6.6%, 8.9%) and for each 10% increase in 1230m residential-

based NDVI, walking only mobility-based NDVI increased by 7.7% (95% CI: 6.5%, 8.9%) 

(Table 2.2, Figure 2.6).  



G . E .  W i l t  |  23 

  

Findings regarding the agreement between residential and mobility-based greenness measures 

were consistent when the analyses were repeated in the restricted analytical cohort comprised of 

208 participants who provided at least 12 hours of GPS data daily on five unique days in two 

distinct sample periods (Figure 2.1). Like results in the primary analytical cohort, residential-

based NDVI measures of greenness were higher in magnitude than the mobility-based measures 

of greenness (Supplemental Table S2.1). These agreement bias measures were similar to those 

observed in the primary analytical cohort.  

In analyses of the primary analytical cohort stratified by season of the year, agreement bias was 

lower between mobility-based greenness and 270m residential-based greenness during winter 

(4.3%, 95% CI 3.1%, 5.6%), while it was higher during summer (12.0%, 95% CI: 10.5%, 

13.4%). These findings are consistent with changes in NDVI across season, with winter months 

typically having the lowest NDVI values reported and summer months recording the highest 

values of NDVI, potentially due to smaller activity spaces in colder months and lower deciduous 

vegetation cover resulting in less variation in winter months.  

Most notably, there appeared to be differences in the degree of agreement bias present in 

analyses stratified by walkability of the neighborhood. In low-walkable neighborhoods, the bias 

in agreement for yearly mobility-based greenness was 9.0% (95% CI 7.7, 10.3) for the 270m 

residential-based NDVI and 8.3% (95% CI: 7.0, 9.7) for the 1230m residential-based NDVI. In 

high walkability neighborhoods, evidence for bias in agreement between all mobility-based 

NDVI and residential-based NDVI was 5.1% (95% CI: 3.0, 7.2) for the 270m residential NDVI 

and 5.2% (95% CI: 3.1, 7.2) for the 1230m residential-based NDVI. In analyses stratified by 

median age (<35 years vs. > 35 years) and NSES (binary on median) there were no significant 

differences across strata. 
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Discussion 

Researchers investigating health impacts of greenspace focus heavily on residential-based NDVI 

as a metric of greenness exposure (Fong et al., 2018; James et al., 2015; Jimenez et al., 2021). In 

our study levels of exposure to greenness were higher using residential estimates compared to 

mobility-based estimates based on GPS data, indicating a bias. We observed bias between 

mobility-based and yearly averages of 270m and 1230m residential buffer measures of 

greenness, respectively. Bias was greater in Spring and Summer compared to Fall and Winter. 

We found some evidence that level of neighborhood walkability modified the extent of the 

agreement bias between mobility and residential-based greenness measures as the bias was about 

10% lower between the mobility measure and each residential based measure in high compared 

to low walkability neighborhoods.  Walkability and greenness are strongly negatively correlated 

and participants living in highly walkable areas may both live and spend time in those walkable 

areas, whereas those residing in less walkable areas may travel to walkable areas for work and 

leisure. 

Greenness exposure estimated by residential-based NDVI is potentially higher than mobility-

based estimates due to greening of private property. Locations where populations gather like city 

centers and business districts tend to contain less vegetation (Nardone et al., 2021; Y. Zhang et 

al., 2017). These findings suggest that to increase population wide exposure to greenness, we 

must start with greening of population centers. Walkability and greenness are inversely 

correlated, suggesting that areas that are suitable for active transportation do not have high 

vegetation, thus we discovered active transport mobility had lower mean NDVI than the all-

mobility metric and relative rankings differed, suggesting a potential source of bias in analyses 

of residential-based NDVI (James, Hart, et al., 2017).   



G . E .  W i l t  |  25 

  

There are limitations to this study. Not all participants contributed the same amount of person 

time, leading to better accuracy for individuals who provided more data and poorer accuracy for 

participants who provided less. However, our results regarding the comparison of mobility and 

residential based greenness measures were similar in a sensitivity analysis limited to participants 

who met strict inclusion criteria for wear time. While our study population is representative of 

the overall NHS3 population, participants were predominantly middle to high SES white females 

(Bao et al., 2016; Fore et al., 2020). Our study inclusion criteria of ownership of an iPhone likely 

contributed to overrepresentation of white individuals as it has been previously reported that 

iPhone ownership is more prevalent in white vs. other racial/ethnic groups where android phone 

ownership is more common. (Smith, 2020.). Thus, our findings may not be generalizable to 

individuals of other racial/ethnic groups and men if these demographics are related to mobility 

patterns.  

Strengths of our study include a relatively large nationwide sample with rich covariate data. Our 

sampling method provided high spatial and temporal resolution time activity data with up to 28 

days per person spaced out over a year for seasonal variability. We utilized high resolution 

spatial data on greenness, which we temporally matched to GPS data. Our time intensive 

longitudinal dataset provided the ability to omit sleep data, examine travel mode, and omit work 

addresses. Lastly, we incorporated multiple residential-based exposure buffers in our 

comparisons so in the future we can assess associations with health and behavioral outcomes to 

evaluate prediction.  

While this study highlights differences in exposure measures of greenness, the methodology and 

principles we used also have application to other contextual built and natural environmental 

exposures such as neighborhood walkability, air pollution, and noise. Improving measures of 
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these contextual exposures though mobility data is an important next step for environmental 

epidemiology.  

Implications  

By studying how estimates of greenness differ across measures, we gain important context on 

what existing measures are capturing, how to interpret these measures and correct them. 

Exposure to greenness during periods of active transportation (walking or running) was lower 

than greenness exposure measured via all mobility data. Use of residential-based measures 

resulted in higher values of greenness exposure. Thus, interventions promoting greening of 

active transportation pathways and other highly walkable areas in communities should be 

prioritized as areas of high walkability are frequently used public areas and the interaction of 

greenness and physical activity may reduce harms of urban walkability (noise and air pollution 

foremost), while promoting health benefits of active transport. As we look to green our cities, the 

answer may not lie solely in maintaining parkland but connecting neighborhoods and areas via 

green corridors.  
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Table 2.1. Characteristics of Nurses’ Health Study 3 (N = 49,693) and the mHealth Substudy 

including recruited population and observations (N = 500, n = 701,696), primary analytic dataset 

population and observations (N = 337, n = 639,364), and secondary analytic dataset population 

and observations (N = 208, n = 498,521) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable     
NHS3 Cohort 

(N=49,693) 
mHealth Population 

(N=337)  

  Categories N 
% or Mean 

(SD) 
N 

% or Mean 

(SD) 

 Age Continuous, years 49,516 36.33 (7.29) 330 36.01 (7.3) 

 Race White 43,026 88.2 317 94.1 

  Black 1,797 3.7 8 1.8 

  Asian  1,529 3.1 2 0.1 

  Mixed Race 1,058 2.2 4 1.2 

  Other 1,385 2.8 6 1.8 

Ethnicity Hispanic  2,538 5.2 14 4.2 

 Married Yes 27,852 57.1 207 61.4 

  No 20,943 42.9 130 38.6 

 Advanced Degree Yes 41,027 84.1 249 73.9 

  No 7,768 15.9 88 26.1 

 Employment Yes 40,808 93.0 319 96.6 

  No 3,084 7.0 11 3.4 

Seasonality  Fall -- -- 167,871 26.3 

 Winter -- -- 127,860 19.9 

 Spring -- -- 136,117 21.3 

 Summer -- -- 207,496 32.4 
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Figure 2.1: Study participant flow diagram for Nurses’ Health Study 3 mHealth Substudy and 

restriction criteria for primary analytic dataset and secondary analytic dataset for cohort 

population (N) and GPS mobility observations (n).  
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Figure 2.2. NHS3 mHealth Substudy participants residential locations across the contiguous 

United States, 2018  
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Figure 2.3: Four panel exposure map comparison of a) residential buffers, b) all GPS mobility 

data, c) non-work GPS mobility data and d) active transport (walk to run velocities) GPS 

mobility data (note: not actual participant data) 
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Figure 2.4: Yearly Normalized Difference Vegetation Index (NDVI) histogram distributions for 

270m and 1230m residential measures and averaged 30m mobility exposure measures  
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Figure 2.6 Generalized Linear Models Depicting Association Between Residential (270 and 

1230m buffers) and GPS Mobility Based Greenness Exposures Using NDVI 
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Abstract 

Background: Inconsistent results have been found in the literature on associations of greenness, 

or vegetation quantity, and physical activity. However, few studies have assessed associations 

between mobility-based greenness and physical activity from mobile health data from 

smartphone and wearable devices with fine spatial and temporal resolution.  

Methods: We assessed mobility-based greenness exposure and wearable accelerometer data from 

participants in the US-based prospective Nurses’ Health Study 3 cohort Mobile Health (mHealth) 

Substudy (2018-2020). We recruited 500 female participants with instructions to wear devices 

over four 7-day sampling periods equally spaced throughout the year. After restriction criteria 

there were 337 participants (mean age 36 years) with n=639,364 unique observations. 

Normalized Difference Vegetation Index (NDVI) data were derived from 30 m x 30 m Landsat-8 

imagery and spatially joined to GPS points recorded every 10 minutes. Fitbit proprietary 

algorithms provided physical activity summarized as mean number of steps per minute, which 
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we averaged during the 10-minute period following a GPS-based greenness exposure 

assessment. We utilized Generalized Additive Mixed Models to examine associations (every 10 

minutes) between greenness and physical activity adjusting for neighborhood and individual 

socioeconomic status, Census region, season, neighborhood walkability, daily mean temperature 

and precipitation. We assessed effect modification through stratification and interaction models 

and conducted sensitivity analyses.    

Results: Mean 10-minute step count averaged 7.0 steps (SD 14.9) and greenness (NDVI) 

averaged 0.3 (SD 0.2). Contrary to our hypotheses, higher greenness exposure was associated 

non-linearly with lower mean steps per minute after adjusting for confounders. We observed 

statistically significant effect modification by Census region and season.  

Discussion: We utilized objective physical activity data at fine temporal and spatial scales to 

present novel estimates of the association between mobility-based greenness and step count. We 

found higher levels of greenness were inversely associated with steps per minute.     

Introduction 

The explosion of research on nature and health in environmental epidemiology led to numerous 

studies investigating the association between exposure to greenness, or vegetation quantity, and 

physical activity, as well as chronic disease outcomes (Fong et al., 2018; James et al., 2015, 

2016; Jimenez et al., 2021; Kaplan, 1995). Green environments have been hypothesized to be 

associated with higher levels of physical activity and to provide additional benefits compared to 

physical activity in non-green environments due to increased opportunities for physical activity 

and psychological restoration (Almanza et al., 2012; Coombes et al., 2010; Dewulf et al., 2016; 

Hillsdon et al., 2006; Kajosaari & Pasanen, 2021; Markevych et al., 2017; Mnich et al., 2019; 

Wheeler et al., 2010). However, previous studies examining the association of greenness with 
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physical activity have reported inconsistent results (Klompmaker et al., 2018; Roscoe et al., 

2022). Also, most of these studies used residential-based measures of exposure and self-reported 

measures of physical activity, making it difficult to infer true associations due to potential for 

measurement error (James et al., 2015; Jimenez et al., 2021). 

Greenness exposure is often quantified by measuring surrounding residential greenness via 

satellite-derived greenness (Normalized Difference Vegetation Index) or greenspaces such as 

parks and gardens within a specific distance of the residential address (Fong et al., 2018; James 

et al., 2015; Jimenez et al., 2021). Residential exposures do not quantify exposure occurring 

outside of these selected distances, nor do they capture how much time an individual spends in 

nature, and residence-based analyses cannot be used to explore if individuals obtain their 

physical activity in green environments. Additionally, the appropriate scale of residential 

exposures is challenging to discern. Researchers remain uncertain of the true spatial and 

temporal boundaries exerting contextual influences (James 2014). This potential source of bias is 

known as the Uncertain Geographic Context Problem, which remains a critical limitation of prior 

research studies (Chaix et al., 2012, 2013; Kwan, 2012a, 2012b, 2019; Park & Kwan, 2017) 

evaluating greenness as an exposure. Due to the contextual nature of environmental exposures, 

there is not a set spatial boundary of influence. Measures of activity space (Brokamp et al., 2016; 

Kwan, 2019) – a term used to describe the set of locations with which a person has direct contact 

during day-to-day activities (Perchoux et al., 2016) – present a solution to the Uncertain 

Geographic Context Problem. A growing number of studies have collected objective measures of 

mobility-based greenness exposure and physical activity (Almanza et al., 2012; James, Hart, et 

al., 2017; Marquet et al., 2020, 2022a). Widespread use of mobile phone and wearable global 

positioning systems (GPS) technology (Markevych et al., 2017) have allowed researchers to 
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evaluate contextual exposures using mobility-based measurements to quantify mobility-based 

greenness.  

Using data collected from the Nurses’ Health Study 3 (NHS3) Mobile Health (mHealth) 

Substudy participants, the aim of this intra-individual and repeated measures GPS study was to 

quantify associations of 10-minute level mobility-based greenness exposure with aggregated 10-

minute level physical activity captured by a wearable device. Our aim was to determine 

associations between greenness exposure and physical activity using this rich source of objective 

data. We hypothesized that higher mobility-based greenness exposure was associated with higher 

mean steps-per-minute averaged over a 10-minute period, after adjustment for potential 

confounders.  

Methods 

Population 

Nurses’ Health Study 3 (NHS3) 

NHS3 began in 2010 and is an ongoing open-enrollment prospective cohort of nurses and 

nursing students living in the US or Canada. Participants are required to be a registered nurse, 

licensed practical/vocational nurse, or nursing student and to be born on or after January 1, 1965 

for eligibility into the study. At the time of selection for the mHealth Substudy there were 49,693 

participants enrolled in NHS3. Once enrolled, participants provide updated residential history 

and complete web-based questionnaires on lifestyle and medical characteristics every six 

months. For participants who have completed two or more questionnaires, the response rate is 

above 80% (Chavarro et al., 2016; Gaskins, Rich-Edwards, Lawson, et al., 2015; Gaskins, Rich-

Edwards, Missmer, et al., 2015; Mooney & Garber, 2019). 
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NHS3 Mobile Health (mHealth) Substudy 

The NHS3 mHealth Substudy began enrollment in March 2018 and data collection was 

completed in February 2020 with 500 enrolled participants (Figure 3.1) residing in 42 of the 48 

contiguous states during the data collection period (Figure 3.2). The mHealth Substudy required 

participants to be aged 21 or older on March 12, 2018 and demonstrate adherence to 

questionnaire completion by providing information on height, weight, physical activity, and 

sleep in prior NHS3 questionnaires for enrollment. As the study aimed to prospectively examine 

impacts of various lifestyle risk factors on sleep disturbance and Fitbit wearables have reduced 

accuracy in these populations, participants with a doctor-diagnosed sleep disorder were not 

eligible.  

Fore et al. provide a detailed description of data collection methodology (Fore et al., 2020). In 

brief, mHealth participants wore a consumer-wearable fitness tracker (Fitbit™ Charge HR, 

Fitbit™ Charge 2 and Fitbit™ Charge 3) and downloaded a custom smartphone application on 

their personal smartphones for seven-day sampling periods every three months for a year from 

enrollment. This allowed us to capture seasonal variability in behaviors and exposures. 

Consistent with other mobility studies (Marquet et al., 2022b), we conducted a 7-day protocol. 

This time frame should capture behaviors and exposures across work and nonwork days. A 

mobile phone application acquired GPS location data at ~10-minute intervals throughout the 7-

day sampling period. We omitted daily main sleep periods from the dataset under the assumption 

that physical activity does not occur during sleep periods using Fitbit™-derived sleep data. We 

included participants who provided at least eight hours of GPS data on at least three unique days 

in primary analyses (Figure 3.1, Figure 3.3).  
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Exposure  

We used the Normalized Difference Vegetation Index (NDVI) as a measure of vegetation 

exposure, which was linked to GPS data to create a mobility-based greenness exposure. The 

NDVI is the most widely used satellite-derived indicator of the quantity of photosynthesizing 

vegetation and has been previously used as a marker for exposure to greenness in 

epidemiological studies (Fong et al., 2018; James et al., 2015). NDVI ranges from -1 to 1 with 

higher numbers indicating more green vegetation. NDVI values below 0 represent water, ~0 

represent rocks and bare soil including concrete, and values ~0.6-0.8 represent temperate and 

tropical forests (Klompmaker et al., 2018). NDVI was rescaled so all values below zero were 

recoded to zero, so that all non-green areas were valued identically (James, Kioumourtzoglou, et 

al., 2017; James et al., 2016; James, Hart, et al., 2017).We used Google Earth Engine Landsat 

specific processing methods to produce seasonal, cloud-free, Landsat 8 raster images (Appendix 

A). We used Google Earth Engine Landsat specific processing methods to produce seasonal, 

cloud-free, Landsat 8 raster images (Supplemental Information 2.1). We linked these seasonal 30 

m x 30 m NDVI raster images to season-matched GPS mobility data.  

Outcome  

We used accelerometry data from Fitbit™ wearable devices (Fore et al., 2020) to summarize 

physical activity in mean steps-per-minute, which we averaged for 10-minute interval after each 

GPS-greenness location. Mean steps-per-minute is preferable to raw step counts, as averages 

fluctuate less with fine scale missingness in GPS data (Armstrong et al., 2019; 

Yuenyongchaiwat, 2016).  
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Covariates  

We identified potential confounders a priori. These included individual participant measures of 

age (years; continuous), socioeconomic status defined as: education level (masters in nursing or 

higher; binary), and marital status (never [never married]]/ever [married, widowed, divorced]; 

binary). Area-level measures included neighborhood socioeconomic status (z-score; quartiles), 

walkability (z-score; quartiles), mean daily temperature (Celsius; quartiles), daily precipitation 

(millimeters; binary), season and Census region (Northeast, Midwest, South, West).  

We obtained age, education level and marital status from the full NHS3 cohort study dataset 

from participants initial questionnaire return (Module 1). Module 1 predated enrollment in the 

Substudy.  

We used a composite score of 7 census tract level variables from the 2010 Census to estimate 

neighborhood Socioeconomic Status (nSES). Variables represented domains that have been 

previously associated with health outcomes, including education, employment, housing, wealth, 

racial composition, and population density (DeVille, n.d.). Z-scores were summed for each 

variable to create a nSES score. Higher scores indicated higher nSES (i.e. less socioeconomic 

deprivation). We joined quartiles of nSES score using the location of each 10-minute GPS point 

to create a mobility-based nSES. 

We defined neighborhood walkability, a measure of population and business density, for each 

Census tract in the US as a composite 3-item score. This included z-scored intersection density 

calculated from 2019 Tiger/Line shapefiles of all roads with interstates removed (Bureau, 2020), 

population density, from 2019 ACS population data (Explore Census Data, 2020), and business 

density, from 2018 Infogroup US Historical Business Data (Infogroup, 2020). We summed the z-

scores for each component variable (3-items) to create a neighborhood walkability index. Higher 
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scores indicated more walkable areas. We joined quartiles of walkability score using the location 

of each 10-minute GPS point to create a mobility-based walkability. 

We obtained daily mean temperature and precipitation data at 800m spatial resolution for the 

study period (2018-2020) from Parameter-elevation Regression on Independent Slopes Model 

(PRISM) (Luzio et al., 2008). PRISM variables were joined on date and paired GPS coordinates 

of each 10-minute repeated measure for mobility-based measures of temperature and 

precipitation. We classified daily mean temperature into quartiles and dichotomized precipitation 

to any precipitation/no precipitation. 

We defined the Census region of each GPS point as one of 4 census regions (Northeast, 

Midwest, South, West), and derived season (Spring (March-May), Summer (June-August) Fall 

(September-November), Winter (December-Febuary)) from the date (month) associated with 

each GPS point.   

Statistical Methods  

Due to the intensive longitudinal nature of the dataset, we explored the possibility of nonlinear 

associations between mobility-based greenness exposure and physical activity using Generalized 

Additive Mixed Models (GAMM). We accounted for repeated measures within the same 

participant using a random intercept for participant. We fit NDVI using natural cubic splines 

with three knots using the mgcv package in R 4.1 to account for possible non-linearity. We 

adjusted models for the a priori selected confounders listed above. We specified an 

autoregressive correlation structure due to the repeated-measure, longitudinal nature of the data.  

Effect Measure Modification 

We assessed the presence of effect measure modification through models stratified on quartiles 

of walkability and nSES, median age (<35 years vs.  35 years), race (white vs. non-white 
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participants), median temperature (<15.11C vs.  15.11C), precipitation (<0.01mm, >=0.01mm), 

weekday vs. weekend, region (Northeast, Midwest, South, West) and season (Spring, Summer, 

Fall, Winter). To test the potential statistical significance (p<0.05) of effect modification we 

included multiplicative interaction terms. 

Sensitivity Analyses 

To address epidemiologic and geographic biases, we conducted four sensitivity analyses to test 

the robustness of our analyses. Figure 3.3 provides a visual representation of the smartphone 

mobility data from participants used in this analysis and how we restricted these data for the 

sensitivity analyses described in detail below. 

The first sensitivity analysis was designed to minimize selective daily mobility bias (Figure 3.3a) 

(Plue et al., 2020). In mobility studies with intensive longitudinal data, this bias functions as a 

confounder. The phenomenon, where it is difficult to discern whether an individual is passively 

exposed to a space or actively seeks it, is referred to as a ‘selective (daily) mobility bias’. As 

researchers’ understanding of this bias is relatively new, it is understudied. To assess the impact 

of selective daily mobility bias, we restricted activity space to GPS locations within a standard 

deviation ellipse — subject-specific standard deviation of the x-coordinates and y-coordinates 

from the mean center of that subject’s points, to eliminate locations outside of an individual’s 

normal range.  

We focused our second sensitivity analysis on associations during time outside of work 

(Figure3.3b). We omitted time at work by geocoding workplace addresses at the time of study 

and restricting GPS location data to locations outside of a 160-meter radial buffer (0.1 mile). The 

size of this buffer was derived from hospital dimensions (the typical workplace of our study 
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participants) as the majority of hospital sizes are thought to fall within this buffer size (Insights 

from a Healthcare Architect’s Journal, 2019).   

In our third analysis, we omitted datapoints that may include sedentary behaviors or driving 

(Figure 3.3c). We used timestamps in addition to GPS locations to estimate velocity, and 

restricted analyses to velocities that fell between walking and running (0.8 to 4 m/s) to obtain 

datapoints of active transport or recreating (Cruciani et al., 2018).  

Lastly, we restricted our cohort to 208 participants who provided at least 12 hours of GPS 

location data daily on 5 unique days in two distinct sample periods (restricted analytical dataset) 

(Figure 3.1). This stringent criterion maximizes the amount of data per individual across time, to 

support the primary analysis findings with a robust intra-individual sample. 

Results   

Descriptive  

Participants in the primary analytical cohort of the NHS3 mHealth Substudy resided in 42 out of 

48 states across the contiguous US (Figure 3.2). After selecting participants who provided at 

least 8 hours of GPS data daily on 3 unique days and omitting main sleep periods, the primary 

analytic cohort included 337 participants with 639,364 observations (Figure 3.1). Each 

participant had on average 96.2 observations per day (SD 44.1) or approximately 16 hours per 

day and a total of 1,878 observations (SD 847.2) or approximately 313 hours during the 1-year 

study period (Table 3.1). Averaged across seasons, greenness exposure was 0.31 (SD 0.2) and 

participants took 7.0 (SD 14.9) steps per minute (Table 3.2). On average, we observed small 

variations by season for both the exposure and outcome with the spring months having the 

highest mean greenness exposure and highest average step count per minute (Table 3.2). 

Participants residing in the South had the smallest annual change in NDVI (Table 3.2). Similar 
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seasonal variations were observed among the restricted dataset of 208 participants with 498,521 

observations who provided at least 12 hours of GPS data daily on 5 unique days in two distinct 

sample periods (Supplemental Table 3.1).  

Generalized Additive Mixed Models  

We observed a statistically significant non-linear association between mobility NDVI and mean 

steps per minute (Figure 3.4). There were three distinct relationships with inflection points at 0.2 

and 0.6 NDVI. Between NDVI values of 0 to 0.20, higher values of NDVI were very weakly 

associated with greater mean steps per minute (0.8 step more per 0.1 difference in NDVI). In 

contrast, between NDVI values of 0.2 to 0.6, higher values of NDVI were associated with fewer 

mean steps per minutes 1.0 fewer mean steps per minute per 0.1 difference in NDVI). Lastly at 

NDVI values above 0.6, higher values of NDVI were weakly associated with increased mean 

steps per minute with 0.5 step more per 0.1 increase in NDVI.  

Stratified Analyses 

We observed no evidence of effect modification by median age, race, neighborhood SES, 

neighborhood walkability, mean daily temperature and daily precipitation presence. 

Statistically significant effect modification by both season and region were observed. Seasonal 

stratified analyses revealed inverse associations in the Fall, Spring and Summer with no 

association in the Winter (Figure 3.5). Regional differences were observed across the strata, with 

the Northeast and Southern regions following the pattern of the main analysis (Figure 3.6).  An 

inverse association was observed in participants residing in the Midwest and no association was 

observed in the West until NDVI was greater than 0.6, whereupon increasing values of NDVI 

were inversely associated with steps per minute (Figure 3.6).  

Sensitivity Analyses  
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In sensitivity analyses attempting to restrict bias due to selective mobility, non-work location and 

restriction of cohort to those with more data, we did not identify any statistically significant 

differences from the primary analysis (Supplemental Figures 3.1, 3.2, 3.3). When we restricted 

our analyses to active transportation velocities that fell within walking and running (Figure 3.3c) 

as a transportation mode, we observed no association between NDVI value and steps per minute 

(Figure 3.7). 

Discussion  

Overall, we found a small negative association of 10-minute level mobility-based greenness with 

objectively measured mean step count per minute across the most frequent NDVI exposure range 

(0.2 up to 0.60). Our results expanded upon previous work on the association between greenness 

and physical activity at the residential level. Klompmaker et al. saw a positive relationship 

between residential NDVI and self-reported physical activity (Klompmaker et al., 2018)  in a 

Dutch national health surveys, and Marquet et al. observed a positive association looking at 

weekly activity spaces and step counts  among working adults in the US (Marquet et al., 2022b). 

However, our findings were the 10-minute scale and attempted to assess the momentary 

association between greenness and physical activity, whereas previous studies examined 

greenness exposure over a longer timescale. Our results were consistent with those of Persson et 

al. (2019), in which individuals moving to greener environments had a decrease in their physical 

activity. Furthermore, when we restricted our analysis to walking or running physical activity 

data only, we did not observe an association between smartphone mobility-based greenness and 

steps-per-minute. This suggests that green environments may be associated with sedentary 

behavior but when an individual conducts physical activity, their speed does not alter across 

levels of NDVI. This finding supports conclusions by James et al. (James, Hart, et al., 2017) who 
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suggest walkability rather than greenness as a predominant driver of accelerometry based 

physical activity (Baobeid et al., 2021).   

We observed evidence of effect modification across region and season. Regional differences 

drove associations with mild nonlinear positive associations between increases in NDVI and 

mean steps-per-minute observed in lowest and highest levels of NDVI in the South, and 

consistent negative associations observed in the Midwest. The South has the smallest seasonal 

change in NDVI, suggesting the positive association could be due to maintaining a green 

environment throughout the year.  

Our results driven by fine-scale spatial and temporal data suggest that more research is needed to 

understand physical activity as a mechanism underlying how exposure to greenness is associated 

with improved health outcomes across various spatial and temporal scales, due to inconsistent 

results in the literature.  

Our study has limitations. First, NHS3 is a cohort of predominantly upper-middle class white 

women nurses and as such these findings may have limited generalizability outside this 

population. Diverse cohorts should assess effect modification across race/ethnicity and SES to 

further confirm our findings. Secondly, step count as a proxy for physical activity remains 

another limitation, as it does not capture physical activity from weight-lifting, cycling, 

gardening, or swimming. However, most of the US and NHS3 participants record walking as the 

primary source of physical activity (CDC, 2013).  

Our study also had a number of strengths. First, we were able to utilize a time-variant mobility 

greenness measure at 30m resolution, which enabled us to identify the quantitative value of 

greenness at a precise moment better addressing the exposure of interest. The intensive 

longitudinal spatial and temporal data allowed us to quantify momentary greenness exposure and 
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physical activity at the minute-level and conduct several analyses examining seasonal trends and 

potential confounders or effect modifiers of the association. Second, utilizing an objective 

physical activity metric instead of self-reported physical activity reduced the likelihood of recall 

bias in our study compared to studies that used self-reported measures of physical activity. 

Lastly, as the mHealth Substudy was nested within the larger NHS3 cohort, we obtained high 

quality data from participants and covariate data prior to collection of exposure or outcome, 

reducing the likelihood of misclassification.    

As environmental data becomes easier to access in mass quantities, it is essential that we 

prioritize real time exposure data. Environmental epidemiology too often ignores consequences 

of the uncertain geographic context problem and defining the extent of the exposure in question 

(Hooper et al., 2013; Kwan, 2012a; Spiegelman, 2010). By linking fine scale spatial and 

temporal greenness and physical activity data, we attempt to address critical gaps in the literature 

and look holistically at contextual environmental exposures beyond the residential environment. 

In conclusion, we did not observe higher levels of physical activity in greener locations in this 

intensive longitudinal spatial temporal analysis. Rather, the association was nonlinear in nature 

and across most frequent exposure distributions, greener locations were observed to be 

associated with fewer steps-per-minute.  
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Table 3.1. Characteristics of the 2018-2020 Nurses’ Health Study 3 mHealth Substudy including 

the primary analytic dataset population and observations (N = 337, n = 639,364), and secondary 

analytic dataset population and observations (N = 208, n = 498,521) 
Variable  Primary Analytic 

Dataset Population 

(n=337) 

Secondary Analytic 

Dataset Population 

(n=208) 

 % (N)/ Mean (SD) % (N)/ Mean (SD) 

Age   

Continuous  36.0 (7.3) 26.0 (7.0) 

Race   

White 94.1% (317) 92.3% (192) 

Black 1.8% (8) 2.9% (6) 

Asian  0.1% (2) 1.0% (2) 

Mixed Race 1.2% (4) 1.0% (2) 

Other 1.8% (6) 2.9% (6) 

Ethnicity    

Hispanic  4.2% (14) 3.9% (8) 

Married   

Yes 61.4% (207) 61.1% (207) 

No 38.6% (130) 38.9 (81) 

Advanced Degree   

Yes 73.9% (249) 75.0% (156) 

No 26.1% (88) 25.0% (52) 

Employment    

Yes 96.7% (319) 97.6% (203) 

No  3.3% (11) 2.4% (5) 

 Primary Analytic 

Dataset Mobility 

Observations 

(n=639,364) 

Secondary Analytic 

Dataset Mobility 

Observations 

(n=498,521) 

Walkability   

Mean -0.02 (2.5) -0.1 (2.4) 

Neighborhood SES   

Mean 1.6, (3.3) 1.7 (3.3) 

Temperature   

Mean 15.1 (10.0) 15.0 (10.0) 

Precipitation    

Mean 3.4 (9.0) 3.3 (8.9) 

Greenness    

Mean 0.3 (0.2) 0.3 (0.2) 

Seasonality    

Fall 26.3% (167,871) 27.0% (134,660) 

Winter 19.9% (127,860) 20.8% (103,797) 

Spring  21.3% (136,117) 21.1% (105,248) 

Summer 32.4% (207,496) 31.1% (154,816) 
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Table 3.2. Participant Greenness and Physical Activity Distributions Across Seasons in the 2018-

2020 Nurses’ Health Study 3 mHealth Substudy primary analytic dataset (N=327) 

 
  N Steps/Min Mean 

(SD) 

Steps/Min 

Min, Max 

Greenness Mean 

(SD) 

Greenness Min Max 

Total Participants 337 7.04 (14.93) 0.00, 263.78 0.31 (0.21) 0.00, 0.84 

Fall 277 6.76 (14.62) 0.00, 181.00 0.27 (0.20) 0.00, 0.82 

Winter 252 6.60 (14.25) 0.00, 183.13 0.21 (0.15) 0.00, 0.73 

Spring 202 7.43 (15.44) 0.00, 219.00 0.37 (0.20) 0.00, 0.84 

Summer 283 7.27 (15.19) 0.00, 263.78 0.37 (0.21) 0.00, 0.84 
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Figure 3.1. Study participant flow diagram for the Nurses’ Health Study 3 mHealth Substudy and 

restriction criteria for primary analytic dataset and secondary analytic dataset for cohort 

population (N) and GPS mobility observations (n). 
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Figure 3.2. The Nurses’ Health Study 3 mHealth Substudy participants residential locations 

across the contiguous US, 2018.  
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Figure 3.4. Associationsa between NDVIb and average steps per minute across a 10-minute 

period 

 
a Controlling for age (years; continuous), socioeconomic status defined as: education level 

(masters in nursing or higher; binary), and marital status (never [never married]]/ever [married, 

widowed, divorced]; binary), and area-level measures of neighborhood socioeconomic status (z-

score; quartiles), walkability (z-scores; quartiles), mean daily temperature (Celsius; quartiles), 

daily precipitation (millimeters; binary), season and Census region in the 2018-2020 Nurses’ 

Health Study mHealth Substudy.  
b NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, and 

values ~0.6-0.8 represent temperate and tropical forests.  
* Average steps per minute across each ten-minute collection period.  
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Figure 3.5. Associationsa between NDVIb and and average steps per minute across a 10-minute 

period stratfiying on season 

 
 
a Controlling for age (years; continuous), socioeconomic status defined as: education level 

(masters in nursing or higher; binary), and marital status (never [never married]]/ever [married, 

widowed, divorced]; binary), and area-level measures of neighborhood socioeconomic status (z-

score; quartiles), walkability (z-scores; quartiles), mean daily temperature (Celsius; quartiles), 

daily precipitation (millimeters; binary), and Census region in the 2018-2020 Nurses’ Health 

Study mHealth Substudy. 
b NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, and 

values ~0.6-0.8 represent temperate and tropical forests 
*Average steps per minute across each ten-minute collection period.  
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Figure 3.6. Associationsa between NDVIb and and average steps per minute across a 10-minute 

period stratifying on region 

 
a Controlling for age (years; continuous), socioeconomic status defined as: education level 

(masters in nursing or higher; binary), and marital status (never [never married]]/ever [married, 

widowed, divorced]; binary), and area-level measures of neighborhood socioeconomic status (z-

score; quartiles), walkability (z-scores; quartiles), mean daily temperature (Celsius; quartiles), 

daily precipitation (millimeters; binary), and season in the 2018-2020 Nurses’ Health Study 

mHealth Substudy. 
b NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, and 

values ~0.6-0.8 represent temperate and tropical forests 
*Average steps per minute across each ten-minute collection period.  
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Figure 3.7. Associationsa between NDVIb and and average steps per minute across a 10-minute 

period, restricting on active transportation (walk to run velocity) GPS mobillity data  

 

 
a Controlling for age (years; continuous), socioeconomic status defined as: education level 

(masters in nursing or higher; binary), and marital status (never [never married]]/ever [married, 

widowed, divorced]; binary), and area-level measures of neighborhood socioeconomic status (z-

score; quartiles), walkability (z-scores; quartiles), mean daily temperature (Celsius; quartiles), 

daily precipitation (millimeters; binary), season, and Census Region in the 2018-2020 Nurses’ 

Health Study mHealth Substudy. 
b NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, and 

values ~0.6-0.8 represent temperate and tropical forests 
*Average steps per minute across each ten-minute collection period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



G . E .  W i l t  |  58 

  

Chapter 4: Minute Level Smartphone Derived Exposure to Walkability and Consumer 

Wearable Derived Physical Activity in a US Cohort of Women 

Target Journal:  

Target First Draft Date:  

Grete E. Wilt1, Charlotte Roscoe1,2,3, Cindy R. Hu1, Brent A. Coull1,4, Jaime E. Hart1,2, Steven 

Gortmaker5, Francine Laden1,2, Peter James1,6  

1. Department of Environmental Health, Harvard T.H. Chan School of Public Health, 

Boston, Massachusetts, United States 

2. Channing Division of Network Medicine, Department of Medicine, Brigham and 

Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States 

3. Division of Population Sciences, Dana Farber Cancer Institute, Boston, Massachusetts, 

United States 

4. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 

Massachusetts, United States 

5. Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public 

Health, Boston, Massachusetts, United States 

6. Department of Population Medicine, Harvard Medical School and Harvard Pilgrim 

Health Care Institute, Boston, Massachusetts, United States 

 

Introduction: Walkable environments, referring to the density of people and businesses, have 

been linked to increased physical activity and improved chronic health outcomes. However, most 

studies measure exposure based on residential address alone, instead of considering exposures at 

all locations where people spend time.  

Methods: We quantified associations of minute level GPS-based walkability exposure with 

accelerometry-measured activity among participants in Nurses’ Health Study 3 Mobile Health 

(mHealth) Substudy from 2018-2020 in the US. The mHealth Substudy consisted of 337 

participants who undertook 7-day sampling periods four equidistant times across a year, to 

capture potential seasonal variability. The walkability index was calculated from summed z-

score of intersection density, business density and population density at the Census tract level 

and was linked to GPS points every 10 minutes. Fitbit accelerometry data summarized physical 
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activity in mean steps per minute for each 10-minute period. Generalized Additive Mixed 

Models with penalized splines were utilized to explore associations. We adjusted for 

socioeconomic status, weather, greenness, and individual factors as a priori confounders.  

Results: Across the sample the mean walkability z-score was 0.2 (SD 3.1) with individuals 

taking on average 7.0 steps per minute (SD 14.9). As the majority of walkability scores fell 

between -1.7 to 7.0, we focused primarily on this relationship. Between walkability values of -

1.7 to 7.0, a 1-point increase in walkability score was associated with an increase of 1.9 (95% CI; 

1.0, 2.8) steps per minute. 

Discussion: We utilized comprehensive mobility data at fine temporal and spatial scales to 

present novel estimates on the real time association between walkability and physical activity. 

These findings contribute to discussions surrounding adapting the built environment to improve 

human health. 

Introduction  

 

The majority of adults report walking as their primary form of physical activity (CDC, 2013; 

Ussery, 2017). Physical activity has numerous health benefits including longer lifespans, and 

reductions in heart disease, stroke, type 2 diabetes, depression, and specific cancers including 

colon and breast cancers (James, Hart, et al., 2017). Despite this, in 2017 only 54% of adults in 

the US met the guideline of 150 minutes of moderate aerobic physical activity per week. (CDC, 

2019). The definition of moderate activity includes brisk walks, water aerobics, and bike rides on 

flat ground (CDC, 2022). Emerging research indicates physical activity patterns are associated 

with factors of the built and social environments. Features of the built environment such as 

building density, population density, and well-connected streets increase efficiency of reaching 
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destinations and may create opportunities for physical activity (Carr et al., 2010; Frank et al., 

2008; Humpel et al., 2002; Saelens et al., 2003). Environments friendly to physical activity are 

associated with higher physical activity levels among residents (Carr et al., 2010; Frank et al., 

2008; Humpel et al., 2002; Saelens et al., 2003). However, associations have predominantly been 

observed in observational or cross sectional studies with static residence-based measures of 

exposure and self-reported physical activity (James, Hart, et al., 2017; Marquet et al., 2020; 

McCormack et al., 2017; Orstad et al., 2018; Roscoe et al., 2022). Other studies explored 

walkability and associations with objective physical activity (James, Hart, et al., 2017; Rundle et 

al., 2016) highlighting the need to expand mobility-based built environment research. Studies are 

consistent in reporting positive associations between walkability and physical activity.  

 Traditional residential exposures of walkability have failed to consider typical human movement 

patterns or activity space; (Brokamp et al., 2016; Kwan, 2019) a term used to describe the set of 

locations with which a person has direct contact during day-to-day activities (Chaix et al., 2012, 

2013; Kwan, 2012a, 2012b, 2019; Park & Kwan, 2017; Perchoux et al., 2016). To assess if an 

individual’s physical activity increases in more walkable areas we used smartphone and wearable 

technology similar to those used in studies by James and Rundle (James, Hart, et al., 2017; 

Rundle et al., 2016).  

The aim of this study was to quantify associations of daily smartphone GPS mobility-based 

walkability exposure with minute level wearable accelerometry data among participants in the 

Nurses’ Health Study 3 (NHS3) mobile Health (mHealth) Substudy. We hypothesized that 

higher 10-minute smartphone mobility-based walkability exposure would be associated with 

higher 10-minute level mean steps, even after consideration of potential confounders including 

individual and neighborhood-level socioeconomic status, greenness, seasonality, and region.  
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Methods 

Population 

Nurses’ Health Study 3 (NHS3) 

NHS3 is an ongoing open-enrollment prospective cohort of nurses and nursing students living in 

the US or Canada that began in 2010. Study eligibility required participants to be a registered 

nurse, licensed practical/vocational nurse, or nursing student and to be born on or after January 1, 

1965. At the time of selection for the Mobile Health mHealth Substudy there were 49,693 

participants enrolled in NHS3. Participants complete web-based questionnaires on lifestyle and 

medical characteristics and update their residential address every six months. The response rate 

for participants who have completed two or more questionnaires is above 80% (Chavarro et al., 

2016; Gaskins, Rich-Edwards, Lawson, et al., 2015; Gaskins, Rich-Edwards, Missmer, et al., 

2015; Mooney & Garber, 2019). 

NHS3 mHealth Substudy 

The NHS3 (mHealth) Substudy enrolled 500 NHS3 participants (Figure 4.1). The substudy 

began enrollment in March 2018 and data collection was completed in February 2020 with 

participants residing in 42 of the 48 contiguous states during the data collection period (Figure 

4.2). To be eligible for the mHealth Substudy, participants had to be aged 21 or older on March 

12, 2018 and demonstrate adherence to questionnaire completion by providing information on 

height, weight, physical activity, and sleep in prior NHS3 questionnaires. Participants with a 

doctor-diagnosed sleep disorder were not eligible because the study aimed to prospectively 

examine impacts of various lifestyle risk factors on sleep disturbance and Fitbit wearables have 

reduced accuracy in these populations (Fore et al., 2020).  
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Data collection methodology is described in detail elsewhere (Fore et al., 2020). In brief, 

mHealth participants downloaded a custom smartphone application on their personal 

smartphones and wore a consumer-wearable fitness tracker (Fitbit™ Charge HR, Fitbit™ Charge 

2 or Fitbit™ Charge 3) for seven-day sampling periods every three months for a year from 

enrollment. Consistent with other mobility studies (Marquet et al., 2022b), we conducted a 7-day 

protocol to capture behaviors and exposures in a time frame that should include work and 

nonwork days. We acquired GPS location data at ~10-minute intervals throughout the 7-day 

sampling period through a mobile phone application. We developed eligibility criteria for 

inclusion in our analyses. In the primary analyses, we included participants who provided at least 

eight hours of GPS data on three unique days over the entire study enrollment. Additionally, 

using Fitbit™-derived sleep data, we omitted daily main sleep periods from the dataset under the 

assumption that physical activity does not occur during sleep periods, and restricted to 

participants who provided at least 8 hours of GPS data daily, during time they were awake, 

across 3 unique days of the total study period (Figure 4.1).  

Exposure  

We defined neighborhood walkability as a composite score of intersection density calculated 

from 2019 Tiger/Line shapefiles of all roads with interstates removed (Bureau, 2020), population 

density from 2019 ACS population data (Explore Census Data, 2020) and 2018 business density 

data from Infogroup US Historical Business Data (Infogroup, 2020). Variables were z-

standardized at the tract for the entire 2010 U.S. Census. We summed the z-scores for each 

component variable to create a neighborhood walkability index. Higher scores indicate more 

walkable areas—referring to density of people, streets, and business activity (Figure 4.3). As 



G . E .  W i l t  |  63 

  

such parks are considered not very walkable. We joined these data based on date and location of 

each 10-minute aggregated measure for a mobility-based value of neighborhood walkability data.  

Outcome  

Accelerometry data from Fitbit wearable devices (Fore et al., 2020) were used to summarize 

physical activity in mean steps per minute for the approximate 10-minute interval after each pair 

of GPS coordinates. This metric is valid (Diaz et al., 2016) and preferable to raw step counts 

because averages will not fluctuate if fine scale missingness occurs and has been used as a 

measure of physical activity in previous studies (Armstrong et al., 2019; Yuenyongchaiwat, 

2016).  

Covariates  

Potential confounders were identified a priori. These included individual participant measures of 

age (years; continuous), socioeconomic status defined as: education level (masters in nursing or 

higher; binary), and marital status (never [never married]]/ever [married, widowed, divorced]; 

binary) obtained from the initial questionnaire administered to the full NHS3 cohort.  Area-level 

measures of neighborhood socioeconomic status (z-score; quartiles), greenness (NDVI; 

quartiles), mean daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), 

season and Census region were obtained during the course of the Substudy.  

We measured neighborhood Socioeconomic Status (nSES) using a composite score of 7 Census 

tract level variables representing domains that have been previously associated with health 

outcomes, including education, employment, housing, wealth, racial composition, and population 

density (DeVille, n.d.). Variables were carried forward from the prior U.S. Census (2010) and 

each variable was z-standardized. We summed the z-scores for each variable to create a nSES 

score. Higher scores indicated higher nSES (i.e. less socioeconomic deprivation). We joined 
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quartiles of nSES score using the location of each 10-minute GPS point to create a mobility-

based nSES score at the same temporal resolution as the greenness exposure assessment. 

We utilized the Normalized Difference Vegetation Index (NDVI) at a 30m spatial resolution as a 

proxy measure for greenness exposure, spatially joined to the GPS locations. NDVI measures the 

reflection in the near infrared (NIR) spectrum minus the reflection in the red range of the 

spectrum divided by those measures added together, identifying the amount of vegetation 

corresponding to the minimal difference between the NIR and red reflectance bands. This index 

ranges from -1 to 1 with higher numbers indicating more green vegetation. NDVI values below 0 

represent water, near 0 represent rocks and bare soil including concrete and values near 0.6-0.8 

represent temperate and tropical forests (Klompmaker et al., 2018). We joined these data based 

on date and location of each 10-minute repeated measure for a mobility-based value of greenness 

expressed as quartiles for analysis purposes.  

We obtained daily mean temperature and precipitation data at 800m spatial resolution for the 

study period (2018-2020) from Parameter-elevation Regression on Independent Slopes Model 

(PRISM) (Luzio et al., 2008). We joined PRISM variables by date and GPS coordinates to create 

mobility-based measures of temperature and precipitation. We classified daily mean temperature 

into quartiles and dichotomized precipitation to any precipitation/no precipitation. 

We defined the Census region of each GPS point as one of 4 census regions (Northeast, 

Midwest, South, West), and derived season (Spring, Summer Fall, Winter) from the date (month) 

of each GPS point.   

Statistical Methods  

We explored nonlinearity and accounted for repeated measures through Generalized Additive 

Mixed Models (GAMM). Natural cubic splines were fit with three knots using the mgcv package 
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in R 4.1 to account for non-linearity. We adjusted models for the a priori confounders listed 

above. We specified an autoregressive correlation structure due to the longitudinal nature of the 

data (Table 4.1). 

Effect Measure Modification  

We assessed the presence of effect measure modification through models stratified on quartiles 

of neighborhood SES and NDVI, median age (<35 years vs. >= 35 years), race (white vs. non-

white participants), median temperature (<15.11C vs. >= 15.11C), precipitation (<0.01mm, 

>=0.01mm), region (Northeast, Midwest, South, West) and season (Fall, Winter, Spring, 

Summer).  We examined p for interaction and determined significance at p<0.05. 

Sensitivity Analyses 

We conducted four sensitivity analyses to test the robustness of our analyses to potential sources 

of bias. Figure 4.4 provides a visual representation of the fine scale smartphone mobility data 

from participants used in this analysis and how we restricted these data for further sensitivity 

analyses described in detail below. 

The first sensitivity analysis was designed to minimize selective daily mobility bias (Figure 4.4a) 

(Plue et al., 2020). This bias may function as a confounder in mobility studies with intensive 

longitudinal data. This phenomenon, in which it is difficult to discern whether an individual is 

passively exposed to a space or actively seeks it, is referred to as a ‘selective (daily) mobility 

bias’. Researchers’ understanding of this bias is relatively new, and as a result it is understudied. 

To assess the impact of this bias on our results, we restricted activity space to GPS locations 

within a standard deviation ellipse — subject-specific standard deviation of the x-coordinates 

and y-coordinates from the mean center of that subject’s points, to eliminate locations outside of 

an individual’s normal range.  
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The second sensitivity analysis focused on associations during leisure time (Figure 4.4b). We 

omitted time at work by geocoding workplace addresses at the time of study and restricting GPS 

location data to locations outside of a 160-meter radial buffer (0.1 mile). The size of this buffer 

was derived from hospital dimension (the typical workplace of our study participants) as the 

majority of hospital sizes are thought to fall within this buffer size (Insights from a Healthcare 

Architect’s Journal, 2019).   

We omitted datapoints that may include sedentary behaviors or driving for the third sensitivity 

analysis (Figure 4.4c). We used timestamps in addition to a GPS location to estimate velocity 

between each mobility datapoint, and restricted analyses to velocities that fell between walking 

and running (0.8 to 4 m/s) to obtain datapoints of active transport or recreating (Cruciani et al., 

2018).  

Lastly, we performed a sensitivity analysis which restricted our cohort to 208 participants with at 

least 12 hours of GPS location data daily on 5 unique days in two distinct sample periods 

(restricted analytical dataset) (Figure 4.1) as Zenk et al. suggest stringent cut points to gain 

clarity on full activity space profile (Zenk et al., 2018). This stringent criterion maximizes the 

amount of data per individual, to support the primary analysis findings with a robust intra-

individual sample. 

 

Results  

Descriptive 

Participants in the primary analytical cohort resided in 42 out of 48 states across the contiguous 

US (Figure 4.2). After selecting participants who provided at least 8 hours of GPS data daily on 

3 unique days and omitting main sleep periods, the primary analytic cohort included 337 
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participants with 639,364 observations (Figure 4.1). On average, each participant had 96.7 

observations per day (SD 44.5) and a total of 1878 observations (SD 847.2) during the 1-year 

study period. 

Averaged across study periods, mobility-based neighborhood walkability exposure was 0.2 (SD 

3.1) and participants took on average 7.0 steps per minute (SD 14.9). We observed small 

variations for both exposure and outcome across seasons. The highest average step count per 

minute occurred in the spring (Table 2.2). Similar seasonal variations were observed among the 

208 participants with 498,521 observations who provided at least 12 hours of GPS data daily on 

5 unique days in two distinct sample periods (Figure 4.1, Supplemental Table 4.1). 

Generalized Additive Mixed Models  

We observed a statistically significant non-linear association between 10-minute level 

smartphone mobility-based walkability and aggregated 10-minute mean steps per minute (Figure 

4.5). There were 3 distinct relationships with inflection points of walkability z-scores at 7 and 28. 

As the majority of walkability scores fell between -1.7 to 7.0, we focused primarily on this 

relationship. Between walkability values of -1.7 to 7.0, a 1-point increase in walkability score 

was associated with an increase of 1.9 (95% CI; 1.0, 2.8) steps per minute.  

Stratified Analyses 

Statistically significant effect modification by nSES, region and season were observed, using a 

p<0.05 for interaction (supplemental figures 4.1 - 4.3.). We observed strongest associations 

between walkability and steps-per-minute in the lowest nSES quartile: between walkability 

values of -1.7 to 7.0, a 1-point increase in walkability score was associated with an increase of 

32.2 (95% CI; 5.8, 58.7) steps-per-minute in the lowest nSES group. Patterns in the Midwest and 
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Southern regions followed those in the main analysis.  In the Northeast, however, there was an 

inverse association of walkability with step counts.   

Lastly, step counts were positively associated with walkability in the winter, spring, and summer, 

but there was no association in the fall.  We observed no evidence of effect modification by age, 

NDVI, median temperature or precipitation (Supplemental Figures S4.1, S4.2, S4.3).   

Sensitivity analyses 

When we restricted our analyses to velocities that fell within walking and running (Figure 4.4c) 

as a transportation mode, we observed no association between walkability z-score and steps per 

minute (Figure 4.6). Additional sensitivity analyses are explored in the supplement 

(Supplemental Figures S4.4, S4.5, S4.6). 

Discussion  

We observed a statistically significant non-linear association between mobility-based walkability 

and mean steps per minute. Much of the walkability exposure data are clustered around a score 

of 0-1 where we see a strong positive association between smartphone GPS based exposure to 

neighborhood walkability and objectively measured physical activity. Stratified analyses further 

confirmed these findings and suggested that these associations were strongest in areas with the 

lowest neighborhood socioeconomic status.  These associations differed greatly by region with 

the Midwest and South mimicking the main findings. An inverse relationship observed in the 

West region, with higher walkability being associated with fewer steps per minute. Sensitivity 

analyses to understand non-work walkability and physical activity associations and the effects of 

selective daily mobility bias further confirmed an overall positive association between 

walkability and steps-per-minute. When restricting data to walk only datapoints, we observed a 

null association. This suggests while inactivity may take place more frequently in low 
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walkability areas, when active, steps per minute do not differ across increasing walkability 

scores. This can be interpreted as more movement occurs in higher walkable areas but an 

increase of steps per minute does not occur after a participant is already in motion, regardless of 

location i.e. they do not walk faster or run in the most walkable areas. 

These findings suggest that this population of female, predominately white nurses and nursing 

students record more steps-per-minute in more walkable areas. Our results are based on fine 

scale spatial and temporal data suggest that walkable areas encourage movement. The 

association between walkability and physical activity may be an important pathway toward 

improved health outcomes, as physical activity is often cited as a likely mediator for numerous 

proposed health benefits in relation to exposure to the built environment that are downstream.   

Our study has limitations.  First, NHS3 is a cohort of predominantly upper-middle class white 

women nurses and as such these findings may have limited generalizability outside this 

population. Despite non-traditional work schedules, we anticipated the majority of nurses would 

have some work-free days in a 7-day period; however, weekly self-report of work-time would 

provide greater insights into their routine. Diverse cohorts should assess effect modification 

across race and SES to further confirm these findings of minute level associations between 

greenness and physical activity. Second, step count as a proxy for physical activity does not 

capture physical activity from weight-lifting, cycling, gardening, or swimming. However, most 

of the US and NHS3 participants record walking as the primary source of physical activity 

(CDC, 2013).  

Our study also has a number of strengths. First, we were able to utilize a time-specific exposure 

measure that captured walkability experienced in the moment of the outcome. This enabled us to 

identify the quantitative value of walkability at a precise moment, thus better addressing the 
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exposure of interest. The intensive longitudinal spatial and temporal data allowed us to quantify 

momentary walkability exposure and physical activity at the minute-level and conduct several 

analyses examining seasonal trends and potential confounders or effect modifiers of the 

association. Second, utilizing an objective physical activity metric instead of self-reported 

physical activity reduced the likelihood of recall bias in our study. Third, we obtained high 

quality data from participants and had covariate data prior to exposure or outcome due to the 

nested design of the mHealth Substudy within the larger NHS3 study, reducing the likelihood of 

misclassification.    

As built environmental data becomes easier to access in mass quantities, it is essential that we 

prioritize fine scale exposure collection. Environmental epidemiology too often ignores 

consequences of the uncertain geographic context problem, defined as the error from contextual 

environmental exposures existing without a set spatial boundary of influence, nd hence defining 

the extent of the exposure in question (Kwan, 2012a; Spiegelman, 2010). By linking fine-scale 

spatial and temporal greenness data to momentary physical activity information, we attempt to 

answer critical gaps in the research and look holistically at contextual environmental exposures 

beyond the residential environment. In conclusion, we observed increases in physical activity as 

mobility-based walkability measures increase.  Further research on the joint effect of built 

environmental factors such as noise, air pollution, and light at night in tandem with walkable 

locations should be investigated as a potential promoter of physical activity. 
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Tables and Figures  

Table 4.1. Characteristics of the 2018-2020 Nurses’ Health Study 3 mHealth Substudy including 

the primary analytic dataset population and observations using participants with minimum 3 days 

of 8 hours of observations (N = 337, n = 639,364), and secondary analytic dataset population and 

observations using participants with minimum 10 days of 12 hours of observations (N = 208, n = 

498,521) 
Variable  Primary Analytic 

Dataset Population 

(n=337) 

Secondary Analytic 

Dataset Population 

(n=208) 

 % (N)/ Mean (SD) % (N)/ Mean (SD) 

Age   

Continuous  36.0 (7.3) 26.0 (7.0) 

Race   

White 94.1% (317) 92.3% (192) 

Black 1.8% (8) 2.9% (6) 

Asian  0.1% (2) 1.0% (2) 

Mixed Race 1.2% (4) 1.0% (2) 

Other 1.8% (6) 2.9% (6) 

Ethnicity    

Hispanic  4.2% (14) 3.9% (8) 

Married   

Yes 61.4% (207) 61.1% (207) 

No 38.6% (130) 38.9 (81) 

Advanced Degree   

Yes 73.9% (249) 75.0% (156) 

No 26.1% (88) 25.0% (52) 

Employment    

Yes 96.7% (319) 97.6% (203) 

No  3.3% (11) 2.4% (5) 

 Primary Analytic 

Dataset Mobility 

Observations 

(n=639,364) 

Secondary Analytic 

Dataset Mobility 

Observations 

(n=498,521) 

Walkability   

Mean -0.02 (2.5) -0.1 (2.4) 

Neighborhood SES   

Mean 1.6, (3.3) 1.7 (3.3) 

Temperature   

Mean 15.1 (10.0) 15.0 (10.0) 

Precipitation    

Mean 3.4 (9.0) 3.3 (8.9) 

Greenness    

Mean 0.3 (0.2) 0.3 (0.2) 

Seasonality    

Fall 26.3% (167,871) 27.0% (134,660) 

Winter 19.9% (127,860) 20.8% (103,797) 

Spring  21.3% (136,117) 21.1% (105,248) 

Summer 32.4% (207,496) 31.1% (154,816) 
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Table 4.2. Participant walkability and physical activity distributions across seasons in 2018-2020 

Nurses’ Health Study 3 mHealth Substudy primary analytic dataset (N=337) 

  

  N 
Steps/Min Steps/Min Walkability Mean 

(SD) 

Walkability Min 

Max Mean (SD) Min, Max 

Total Participants  337 7.04 (14.93) 0.00, 263.78 0.24 (3.07) -1.66, 52.85 

Fall 281 6.76 (14.62) 0.00, 181.00 0.24 (3.02) -1.66, 52.85 

Winter 255 6.60 (14.25) 0.00, 183.13 0.24 (3.24) -1.66, 52.85 

Spring 205 7.43 (15.44) 0.00, 219.00 0.28 (2.79) -1.66, 33.27 

Summer 289 7.27 (15.19) 0.00, 263.78 0.25 (3.18) -1.66, 44.60 
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Figure 4.1: Study Participant flow diagram for the nurses’ Health Study 3 mHealth Substudy and 

restriction criteria for primary analytic dataset and secondary analytic dataset for cohort 

population (N) and GPS mobility observations (n).  
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Figure 4.2. The Nurses’ Health Study 3 mHealth Substudy participants residential locations 

across the contiguous US in 2018 
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Figure 4.3. A) Boston, MA and B) Atlanta, GA. Population density is A) 6,517 people/km and B) 

1465 people/km. Business density is A) 376 businesses/km and B) 108 business/km. Intersection 

density is A) 239 intersections/km and B)104 intersections/km. Walkability z-scores are 5 and 

0.8 respectively.  
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Figure 4.5. Nonlinear associations between walkability Z-Score and average steps per minute 

across a 10-minute period controlling for age (years; continuous), socioeconomic status defined 

as: education level (masters in nursing or higher; binary), and marital status (never [never 

married]]/ever [married, widowed, divorced]; binary), and area-level measures of neighborhood 

socioeconomic status (z-score; quartiles), greenness (NDVI; quartiles), mean daily temperature 

(Celsius; quartiles), daily precipitation (millimeters; binary), season and Census region in the 

2018-2020 Nurses’ Health Study mHealth Substudy.  
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Figure 4.6. Associations between walkability and steps per minute restricted to active 

transportation (walk to run velocities) GPS mobility data, controlling for age (years; continuous), 

socioeconomic status defined as: education level (masters in nursing or higher; binary), and 

marital status (never [never married]]/ever [married, widowed, divorced]; binary), and area-level 

measures of neighborhood socioeconomic status (z-score; quartiles), greenness (NDVI; 

quartiles), mean daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), 

season and Census region in the 2018-2020 Nurses’ Health Study mHealth Substudy.  
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Abstract  

Background: Walkability exposures, often defined as population density, business density, and 

street connectivity that create opportunities for walking, often rely on residential-based measures 

that ignore exposure away from home, potentially leading to exposure misclassification.  

Aim: We aimed to use smartphone GPS mobility-based walkability estimates from a validation 

study to correct for possible measurement error in associations between residence-based 

walkability exposure and self-reported physical activity in a US-based cohort.  

 

Methods: We developed a Census tract-level walkability score utilizing 2010 US Census tracts 

and summing z-scores of 2018 TIGER/Line intersection density; 2018 Infogroup business 

density; and 2015-2019 5-year American Community Survey population density estimates. Our 

validation population was a subset of Nurses’ Health Study 3 (NHS3) (n=337) who provided 

smartphone GPS data every 10-minutes across four 7-day sampling periods. Each GPS location 

was spatially joined with census tract walkability data and averaged across all sampling periods 
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to create our ‘gold standard’ walkability exposure. In the full NHS3 cohort (n=23,983), we 

spatially joined residential addresses to census tract walkability as our error-prone measure. 

Physical activity was derived from questionnaires in the full NHS3. We used standard regression 

calibration for linear models to produce error-corrected estimates and 95% confidence intervals 

for associations of walkability with physical activity in the full NHS3, adjusting for confounders.   

 

Results: Participants (n=28,650) reported on average 273.2 minutes of walking, jogging, and 

running per week (SD = 257.0). In the subsample, participants had a mean residential-based 

walkability exposure of 0.0 (SD=2.6), and a mean mobility-based walkability exposure of 0.3 

(SD=2.4). Each 1-unit SD difference in uncorrected residential-based walkability z-score was 

associated with 15.0-minute difference in time spent walking, jogging, and running per week 

(95% CI; 11.7, 18.4), whereas each 1-unit SD difference in measurement error-corrected 

residential-based walkability was associated with a 23.6-minute difference in time spent walking, 

jogging, and running per week (95% CI: 17.3, 29.8).  

 

Conclusions: Our study indicates that residential-based estimates of walkability slightly 

underestimate associations between walkability and physical activity. Findings highlight the 

impact of exposure misclassification on epidemiological studies of the built environment and 

physical activity.  
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Introduction 

Features of the built environment, including building density, population density and well-

connected streets, have been associated with physical activity (Carr et al., 2010; Frank et al., 

2008; Humpel et al., 2002; Saelens et al., 2003). These built environment features—commonly 

referred to as “walkability”—may affect the efficiency of reaching destinations and create 

opportunities for routine physical activity(National Academies of Sciences et al., 2019). The 

majority of studies on built environment exposures and physical activity focus on the residential 

address to define exposure (McCormack et al., 2017; Orstad et al., 2018; Roscoe et al., 2022), 

yet research suggests that individuals may spend less than 50% of their awake time at home 

(Zenk et al., 2019). Therefore, residence-based estimates of exposure likely contain substantial 

measurement error (Bhopal, 2016; Blair et al., 2007; Hart et al., 2015a; Kwan, 2012a, 2012b; 

Salvo et al., 2019; Suzuki et al., 2017; Zhao et al., 2018) In recent years, researchers have 

suggested using global positioning systems (GPS) data to generate activity spaces, a term used to 

describe the set of locations with which a person has direct contact during day-to-day activities 

(Perchoux et al. 2016), to identify environmental exposures beyond the home.  

In this study we addressed the impact of measurement error due to the use of residence-based 

exposures on the relationship between the built environment and physical activity. We aimed to 

quantify associations of prospective residential-based walkability exposure with self-reported 

physical activity among participants in the Nurses’ Health Study 3 (NHS3) cohort, while 

correcting for measurement error using data on mobility-based walkability exposure from a 

substudy of NHS3 participants (Fore et al., 2020). We hypothesized that greater error-corrected 

walkability exposure would be associated with higher self-reported physical activity minutes per 

week, even after consideration of potential confounders and error-correction would lead to 
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stronger effect estimates. This study targets several gaps existing in environmental health 

research by accounting for high spatio-temporal resolution mobility-based exposure measures to 

correct for residential-based measures in associations with physical activity.  

Methods 

Population 

Nurses’ Health Study 3 (NHS3) 

NHS3 is an ongoing open-enrollment prospective cohort of nurses and nursing students living in 

the US or Canada that began in 2010. Study eligibility requires participants to be a registered 

nurse, licensed practical/vocational nurse, or nursing student, and to be born on or after January 

1, 1965. As of substudy collection (detailed below), N=34,477 participants had joined the cohort 

and completed the second questionnaire. Participants complete web-based questionnaires on 

lifestyle and medical characteristics on an individualized timeline and update their residential 

address every six months. (Chavarro et al., 2016; Gaskins, Rich-Edwards, Lawson, et al., 2015; 

Gaskins, Rich-Edwards, Missmer, et al., 2015; Mooney & Garber, 2019).  

NHS3 mHealth Substudy 

The NHS3 mobile Health (mHealth) Substudy was a pilot study that enrolled a subset of NHS3 

participants (n = 500) (Figure 5.1, Table 5.1). We have previously published details of the 

substudy in Fore et al. (2020).  Substudy began enrollment in March 2018. We completed data 

collection in February 2020.  Participants had to be 21 years old, and have completed questions 

on height and weight, physical activity, and sleep on questionnaires prior to enrollment. 

Furthermore, participants were required to own an iPhone and live in the contiguous US  to meet 

all requirements of substudy eligibility.  
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Once enrolled, participants downloaded a custom smartphone application on their personal 

smartphones and wore a consumer-wearable fitness tracker (Fitbit™) for seven-day sampling 

periods every three months for a year to capture seasonal variability in behaviors. We conducted 

a seven-day protocol to capture behaviors and exposures in a time frame that should include 

work and nonwork days, consistent with other mobility studies (James, Hart, et al., 2017; 

Marquet et al., 2020; Zenk et al., 2018),. We acquired smartphone location services GPS data at 

approximately 10-minute intervals for each day throughout the sampling period.  

Figure 1 details the dataset’s restriction criteria. There were 34,477 participants enrolled in the 

full NHS3 cohort through the second questionnaire. Of these individuals, 86.3% filled out the 

module 2 physical activity questionnaire (N=29,674). Every enrollee of mHealth validation 

cohort (N=337) had the physical activity portion of questionnaire 2 completed (Figure 5.1).  

Walkability Exposure  

We defined neighborhood walkability at the census tract level using the composite z-score of 

three variables: intersection density, population density, and business density. Three-way 

intersections were calculated from  2019 Tiger/Line shapefiles of all roads with interstates 

removed (Bureau, 2020). First road networks by county were merged into a national dataset. 

Next, using ESRI ArcPro coincident endpoints of lines were merged using the unsplit lines tool. 

Finally, on the unsplit lines feature, the ESRI ArcPro intersect tool was run to identify three-way 

intersections. From here we exported a shapefile for further analysis and calculated density using 

the area of the census tracts as a denominator. Population density was calculated from 2015-2019 

ACS population data estimates (Explore Census Data, 2020) and business density was derived 

from 2018 Infogroup US Historical Business Data (Infogroup, 2020). Variables were z-

standardized at 2010 US Census tract geographies. We summed the z-scores for each component 
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variable to create a neighborhood walkability index. Higher scores indicate more walkable tracts 

(Figure 4.3).  

GPS Mobility-Based Walkability  

A common correction for measurement error uses data on both a gold standard or proxy gold 

standard and standard exposure and a measure assumed to have more error in the same 

population, or validation data. We used data from subjects in the NHS3 substudy (N=337) who 

provided smartphone GPS data every 10 minutes for at least 8 hours across at least three of the 

four 7-day sampling periods that captured seasonal variability (n=639,364 observations) as our 

validation subset. We spatially joined the GPS mobility data to the Census tract-level walkability 

index. Then we calculated the average walkability of an individual from walkability values based 

on their GPS locations across all study periods to create our ‘gold standard’ walkability exposure 

metric. 

Residential-based Walkability  

For the full NHS3 cohort, we used geocoded NHS3 residential addresses at the time of the 

physical activity questionnaire (Questionnaire 2) and linked the Census tract-level walkability 

index to the residential address as our error-prone measure of walkability exposure.  For the 

validation study, walkability at the residential address at the time of substudy enrollment was 

also appended. 

Outcome  

The primary outcome was self-reported physical activity derived from validated physical activity 

questionnaires asked in NHS3 study Questionnaire 2. Questionnaire-based outcomes of physical 

activity included all active transport physical activity (walk, jog, and run combined) and 

secondary outcomes of walking only, low intensity physical activity only, vigorous physical 
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activity only, moderate to vigorous physical activity, and jogging/running only. Response 

options were none; 0-0.5 hour/week; 1-2 hours/week; 3-4hours/week; 5-6 hours/week; 7-10 

hours/week; and ≥11 hours/week. Using the mean time in the ranges above we calculated typical 

minutes per week spent participating in the following activities: all active transport physical 

activity (walk, jog, and run combined), walking only, low intensity physical activity only, 

vigorous physical activity only, moderate to vigorous physical activity, and jogging/running 

only. Following protocol from other NHS physical activity studies if at least one survey question 

from the physical activity questionnaire was filled out, we set remaining blank answers to zero 

(Bao et al., 2016).  

Statistical Methods 

We compared demographic factors and geographic location between the full NHS3 cohort and 

mHealth substudy to ensure transportability. We compared residential and GPS mobility-based 

estimates of walkability among the mHealth substudy participants using histograms that assessed 

the distribution of each exposure measurement, and Spearman’s rank correlation to quantify the 

rank order correlation. We assessed disagreement between the two exposure measures in the 

substudy using Bland Altman agreement tests and plots, a simple method that evaluates bias 

between the mean differences in measures and estimates an agreement interval, within which 

95% of the differences of the second measure compared to the first measure fall.  

We used linear models to determine the association of residential-based measure of walkability 

with average minutes spent walking and running per week and calculated beta estimates and 95% 

confidence intervals. Utilizing the data from the mHealth substudy, we conducted standard 

regression calibration methods from Spiegelman et al. (Spiegelman, 2010; Thurston et al., 2005). 

We produced corrected estimates and 95% confidence intervals for associations of walkability 
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with physical activity in the full NHS3, adjusting for confounders. To perform these analyses, we 

deployed the mecor package in R 4.04.  

Confounders 

Potential confounders identified a priori include individual participant measures of age (years, 

continuous), socioeconomic status defined as: education level (advanced degree, binary), and 

marital status (binary), and area-level measures of neighborhood socioeconomic status (z-score, 

quartiles), greenness (normalized difference vegetation index (NDVI), continuous), mean yearly 

temperature (Celsius, quartiles), and total yearly precipitation (dichotomized to <0.01mm, 

0.01mm). We describe the confounders in detail below.  

We obtain spatially invariant confounders (age, education level and marital status) from NHS3 

baseline questionnaire predating enrollment in the substudy.    

We evaluate Neighborhood Socioeconomic Status (nSES) with a composite score of seven 

Census tract level variables representing domains that have been previously associated with 

health outcomes including education, employment, housing, wealth, racial composition, and 

population composition. (DeVille et al. 2022). Variables were taken from the 2010 U.S. Census 

and were z-standardized and summed to create a nSES score linked to residential address at start 

of Questionnaire 2. Higher scores indicate higher nSES.   

We develop focal statistics to measure annual NDVI at 270m residential buffers, which proxies 

visible distance (James et al., 2016).  NDVI measures the reflection in the near infrared (NIR) 

spectrum minus the reflection in the red range of the spectrum divided by those measures added 

together, identifying the amount of vegetation corresponding to the minimal difference between 

the NIR and red reflectance bands. This index ranges from -1 to 1 with higher numbers 

indicating more green vegetation. NDVI values below 0 represent water, near 0 represent rocks 
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and bare soil including concrete, and values near 0.6-0.8 represent temperate and tropical forests 

(Klompmaker et al., 2018). We link mean and maximum annual NDVI for the Questionnaire 2 

completion year to the geocoded residential address of the participant.  

We obtain monthly and annual mean temperature and total yearly precipitation data for study 

period (2010-present) at 800m spatial resolution from PRISM and spatial temporally join these 

data to the residential address points and year for Questionnaire 2 in NHS3.  

Sensitivity analyses  

We investigate associations with several secondary outcomes: walking only, low intensity 

physical activity only, vigorous physical activity only, moderate and vigorous physical activity, 

and jogging/running only.  

Results  

As of April 2022 (the time of the last NHS3 data extraction), 34,477 NHS3 participants had 

completed Questionnaire 2 and 86.2% percent of these participants filled out at least one 

physical activity question. After restriction criteria (Figure 5.1), there were 28,650 participants 

with physical activity data in NHS3 Questionnaire 2.  Additionally, we observed no notable 

differences between demographic characteristics (age, and individual and neighborhood 

socioeconomic status) or geographic distribution in the full NHS3 cohort and mHealth substudy 

(Table 5.1, Figure 5.1). The substudy was slightly more white and more likely to be married than 

the full cohort. Overall, this speaks to the general transportability of the mHealth validation 

substudy to the broader cohort. Geographic transportability was observed, with the substudy 

providing participants from 42 out of 48 contiguous states (Figure 5.2) 
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Agreement between Residential-Based and Mobility-Based Walkability Exposure Measures in 

Substudy 

In the substudy, residential-based walkability z-scores were lower than mobility-based measures 

(Figure 5.3). We measured a mean z-score of 0.0 (SD 2.6) for residential-based walkability and a 

mean z-score of 0.4(SD 2.4) for mobility-based walkability. The IQR for residential-based 

walkability was 1.8 and the IQR for mobility-based walkability was 1.5 (Table 5.2).   

Tests for Bland Altman agreement indicated disagreement between residential-based and 

mobility-based measures of walkability. The Bland Altman agreement bias between the mHealth 

substudy participant’s residential walkability and mobility averaged walkability was -0.2 (95% 

CI: -0.4, 0.1), meaning that the mean of participants’ residential-based measures of walkability 

were lower by a z-score value of 0.2 compared to their mean mobility-based measure of 

walkability (Figure 5.4). 

For analyses in the full NHS3 cohort (Figure 5.5), unadjusted models showed that each 1 SD 

increase (all SD scaled using residential walkability z-score SD 2.6) in uncorrected residential-

based walkability z-score was associated with 19.4-minute difference (95% CI: 16.8, 22.1) in 

time spent preforming all physical activity (walking, running, and jogging). After accounting for 

individual participant measures of age, socioeconomic status, education level, and marital status, 

and residential measures of neighborhood socioeconomic status, greenness, mean yearly 

temperature, and total yearly precipitation, the association was modestly attenuated; each 1 SD 

difference in uncorrected residential walkability z-score was associated with 15.0-minute 

difference (95% CI; 11.7, 18.4) in time spent walking and running per week. In measurement 

error-corrected adjusted models each 1 SD difference in walkability z-score was associated with 

23.6-minute difference (95% CI: 17.3, 29.8) in time spent walking and running per week. 
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Associations with other outcomes were similar, except for analyses of vigorous physical activity. 

In fully adjusted uncorrected estimates, each 1 SD difference in walkability z-score was 

associated with 1.9 fewer minutes in time spent conducting vigorous physical activity per week 

(-3., -0.7), while the corrected estimate was -3.0 (-4.9, -1.0) minutes. Across all outcomes, the 

error corrected estimates were corrected away from the null than uncorrected estimates (Figure 

5.5, Supplemental Table 5.2).  

Discussion  

Our results suggest that traditional residential-based estimates of walkability exposure are 

slightly lower than mobility-based estimates of exposure, and that residential exposures may 

underestimate the magnitude of the true association between neighborhood walkability and 

physical activity. In addition, we observed that findings were consistent across all outcomes 

except vigorous physical activity only. We would not expect walkability to impact vigorous 

physical activity (Giles-Corti et al., 2016; National Academies of Sciences et al., 2019). This 

conclusion supports previous findings in the mHealth substudy highlighting that identified 

walkable areas are associated with movement, but no relationship was found between walkable 

environments and higher velocity physical activity. Additionally in a 2021 review on walkability 

and its relations with health, Boabeid et al. (Baobeid et al., 2021) highlight walking as the 

primary form of active transportation as opposed to more vigorous physical activity like running. 

These findings are some of the first to highlight exposure misclassification in epidemiological 

studies of the built environment with physical activity and how that misclassification impacts 

effect estimates. Previous work on measurement error in environmental epidemiology has 

focused heavily on air pollution (Feng et al., 2023; Hart et al., 2015b; Wei et al., 2022), and 
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specifically fine particulate matter (PM2.5). Similar to our findings, this work has suggested that 

effect estimates increase slightly after error correction.  

Physical activity, while an individual behavior occurs in the context of the built and social 

environments that influence an individual’s decisions about physical activity (National 

Academies of Sciences et al., 2019). In Karmeniemi et al.’s 2018 review features of the built 

environment were found to be associated with higher levels of physical activity due to amenity 

accessibility and transportation patterns (Kärmeniemi et al., 2018). Access to transportation 

provides a crucial opportunity for physical activity as walking often occurs at either end (Giles-

Corti et al., 2016; M. Smith et al., 2017). Similarly the Surgeon General’s call to action to 

increase physical activity reported walking at the most common form of physical activity in the 

US (Office of the Surgeon General (US), 2015). Our results support these findings, suggesting 

the association with walkability and physical activity is strongest for active transport physical 

activity patterns like walking. No studies to our knowledge utilize GPS measures of walkability 

to correct residential estimates of walkability exposure in the association with physical activity. 

GPS walkability exposures have been associated with self-reported and objective physical 

activity previously in the literature (James, Hart, et al., 2017; Marquet et al., 2020, 2022a; Orstad 

et al., 2018; Roscoe et al., 2022; Rundle et al., 2016). Similar to our study, studies have shown 

positive associations between residential-based walkability exposure and self-reported physical 

activity (Carr et al., 2010; Frank et al., 2008; Humpel et al., 2002; Saelens et al., 2003). Lastly, in 

a validation study in Seattle, Washington housing density and transportation density were found 

as key built environmental drivers of the association between walkability and objective physical 

activity (Mooney et al., 2020). As outlined above there is robust evidence on the association 

between walkability and physical activity examining the exposure at both residential and 
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mobility. Our study builds on this previous literature to compare estimates using both residential 

and mobility walkability exposures to explore the potential for bias in residential estimates.  

This study has some limitations. NHS3 is a cohort of predominantly upper-middle class, white, 

female nurses and as such these findings may have limited generalizability outside this 

population. Diverse cohorts should assess effect modification across race and SES to further 

confirm these findings. There is some concern about the transportability between NHS3 and the 

mHealth substudy, however all our internal checks confirmed transportability principals were 

generally met as the full NHS3 cohort and mHealth substudy had similar demographic 

distributions though the substudy was slightly more white and likely to be married. The physical 

activity outcome depends on self-report status for the entire year in question and as such there 

may be recall bias, though this is expected to be non-differential with respect to the exposure. 

Next, the census tract scale of walkability additionally opens concerns for non-differential 

exposure error, however we anticipate this error to be minor as Census tracts are relatively small 

and homogenous with respect to the built environment. Future studies could develop a sub-tract 

walkability index to omit this potential for error. 

This study does, however, have some substantial strengths. First, we were able to use a 

walkability measure utilizing three robust datasets to quantify walkability across the contiguous 

United States. Due to the fine activity space data of the validation dataset, we obtained an 

estimation of yearly time-weighted mobility-based exposure to compare to residential estimates. 

Lastly validating walkability measures using the same internal population lends a key strength of 

transportability to the validation study.    

Our findings highlight the importance of considering measurement error with respect to the built 

environment and physical activity. Residence-based exposure to walkability may underestimate 
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the true association with physical activity. In multivariable models, even non-differential 

measurement error can be biased away from the null. Here we saw a difference in the effect 

estimate when correcting the exposure of interest across key outcome definitions, including all 

physical activity and walk only physical activity. We must validate our physical activity 

questionnaires compared to gold standard activity data to ensure reduction of measurement error 

in the outcome as well. Other exposures and outcomes (sleep, heart rate, temperature etc.) could 

be used within a similar framework. With the advances of mobile health technology, 

measurement error in environmental epidemiology studies can be corrected for-accounting for 

exposure ascertainment outside of the home environment.  
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Table 1. Characteristics of women in the Nurses’ Health Study 3 (NHS3, N = 49,693) cohort and 

the Mobile Health (mHealth) Substudy population (N = 337) 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Variable     
NHS3 Cohort 

(N=49,693) 
mHealth Population 

(N=337)  

  Categories N 
% or Mean 

(SD) 
N 

% or Mean 

(SD) 

Age      

  Continuous, years 49,516 36.33 (7.29) 330 36.01 (7.3) 

Race      

  White 43,026 88.2 317 94.1 

  Black 1,797 3.7 8 1.8 

  Asian  1,529 3.1 2 0.1 

  Mixed Race 1,058 2.2 4 1.2 

  Other 1,385 2.8 6 1.8 

       

Ethnicity Hispanic  2,538 5.2 14 4.2 

Married      

  Yes 27,852 57.1 207 61.4 

  No 20,943 42.9 130 38.6 

Advanced Degree       

  Yes 41,027 84.1 249 73.9 

  No 7,768 15.9 88 26.1 

Employment      

  Yes 40,808 93.0 319 96.6 

  No 3,084 7.0 11 3.4 
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Table 2. Uncorrected Generalized Linear Models Depicting Association Between Residential 

Walkability and Weekly Physical Activity Minutes and Regression Calibration GPS Mobility 

Corrected Generalized Linear Models Depicting Association Between Residential Walkability 

and Weekly Physical Activity Minutes. GPS locations were used to calculate mobility-based 

walkability estimates for corrected exposure. Associations expressed in difference in minutes of 

weekly physical activity by 1 SD change in walkability z-score (SD 2.64). Adjusted models 

controlled for individual participant measures of age (years, continuous), socioeconomic status 

defined as: education level (advanced degree, binary), and marital status (binary), and area-level 

measures of neighborhood socioeconomic status (z-score, quartiles), greenness (normalized 

difference vegetation index (NDVI), continuous), mean yearly temperature (Celsius, quartiles), 

and total yearly precipitation (dichotomized to <0.01mm, 0.01mm).  
Exposure Measure  Uncorrected Mobility Corrected 

Model Beta 95% CI Beta 95% CI 

All Physical Activity 
Unadjusted 19.43 16.79, 22.07 30.54 25.11, 36.01 

Adjusted 15.02 11.67, 18.35 23.55 17.27, 29.81 

Walk Only 
Unadjusted 11.14 9.27, 13.04 17.53 13.94, 21.12 

Adjusted 10.67 8.26, 13.07 16.74 12.25, 21.23 

Low Intensity 
Unadjusted 5.76 4.88, 6.63 9.06 7.34, 10.77 

Adjusted 4.22 3.12, 5.33 6.63 4.65, 8.61 

Vigorous 
Unadjusted -3.78 -4.73, -2.82 -5.94 -7.60, -4.30 

Adjusted -1.90 -3.12, -0.69 -2.96 -4.94, -1.03 

Moderate and Vigorous 
Unadjusted 3.54 1.45, 5.62 5.57 2.22, 8.92 

Adjusted 1.58 -1.08, 4.25 2.48 -1.74, 6.68 
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Figure 5.1 Sutdy participant flow diagram for Nurses’ Health Study 3 and the mHealth Substudy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



G . E .  W i l t  |  96 

  

Figure 5.2. Nurses Health Study 3 (N=49,693)  and mHealth Substudy (N=337) participants 

residential locations across the contiguous United States, 2010-present  
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Figure 5.3. Distribution of walkability Z-Scores for two measures of Census tract walkability: 

residential and mobillity-based for the Nurses’ Health Study 3 mHealth Substudy (N=337). The 

vertical black dotted line represents the mean of all walkability Z-scores.  
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Figure 5.4. Bland Altman plots comparing mobility and residential walkability z-score measures. 

Purple band indicates 95% confidence level with red and green bands as lower and upper limit of 

agreement confidence bands for the Nurses’ Health Study 3 mHealth Substudy (N=337).  
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Figure 5.5 Uncorrected generalized linear models depicting association between residential 

walkability and weekly physical activity minutes and regression calibration GPS mobility 

corrected generalized linear models depicting association between residential walkability and 

weekly physical activity minutes for walk only, vigorous, moderate, and vigorous, low intensity, 

and all physical activity. GPS locations were used to calculate mobility-based walkability 

estimates for corrected exposure. Associations expressed in difference in minutes of weekly 

physical activity by 1 SD change in walkability z-score (SD 2.64). Adjusted models controlled 

for individual participant measures of age (years, continuous), socioeconomic status defined as: 

education level (advanced degree, binary), and marital status (binary), and area-level measures of 

neighborhood socioeconomic status (z-score, quartiles), greenness (normalized difference 

vegetation index (NDVI), continuous), mean yearly temperature (Celsius, quartiles), and total 

yearly precipitation (dichotomized to <0.01mm, 0.01mm). 
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Chapter 6.  

Conclusion  

Residential addresses as a proxy for exposure estimates and subjective and self-reported outcome 

data are ubiquitous in the literature surrounding greenness, walkability, and physical activity. To 

examine hypothesized mechanisms between greenness, walkability, and physical activity we 

require GPS mobility exposure and objective outcome data sources. This dissertation contributes 

to outstanding research gaps in the field, including enhanced understanding of: 1) the 

concordance between residential and mobility-based estimates of greenness; 2) the momentary 

associations of greenness and walkability with objective physical activity; and 3) the role of 

improved mobility estimates on measurement error correction in the association between 

walkability exposure and self-reported physical activity.  

All studies (Chapter 2-5) bring the strength of highly resolved spatiotemporal data nested within 

a large nationwide prospective cohort (NHS3) (Fore et al., 2020). The first study (Chapter 2) 

utilized detailed residential and GPS information to compare greenness exposure measures based 

on residential address and GPS coordinates to quantify shortcomings of previous studies using 

solely residential address data to elucidate the exposure of interest. Given the availability of GPS 

data sampled over the course of a year we were able to compare regional, seasonal, and built 

environmental patterns between the two greenness measures. Differences were identified 

between mean annual residential-based NDVI and mean annual mobility-based NDVI values. 

Differences persisted when examining associations in datasets that 1) included GPS points only 

outside of the workplace location, 2) included GPS points with velocities that fell within human 

propelled movement (walk to run speed), and 3) included GPS points of individuals who 

provided at least 12 hours of daily data for 10 days in two sampling periods. Largest differences 
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between mean annual residential-based NDVI and mean annual mobility-based NDVI values 

were observed in summer months and in low walkability census tracts.  

Detecting differences in mobility-based and residential based NDVI confirms our hypotheses 

that one’s home location exposure is not representative of one’s throughout the day. Our findings 

suggest that regression calibration approaches similar to our fourth study (Chapter 5) should be 

used wherever possible to correct exposure outcome associations.  

In the second study (Chapter 3), the dissertation examined associations between mobility-based 

NDVI and mean steps measured approximately every ten minutes. We identified a non-linear 

inverse association between GPS-based NDVI every 10 minutes and mean step count in the 

following 10 minutes after adjusting for a priori individual and area-level confounders. This 

association held consistent through sensitivity analyses with restricted datasets on 1) wear time, 

2) selective daily mobility bias, and 3) workplace location. A sensitivity analysis on active 

transportation data showed a null result. We observed effect modification by region and season 

with non-linear positive associations found in the south and the strongest effect estimates of an 

inverse association found in spring and summer months.  

The third study of the dissertation (Chapter 4) examined associations between mobility-based 

walkability and mean objectively measured steps measured approximately every ten minutes. We 

identified a non-linear positive association between GPS-based walkability every 10 minutes and 

mean step count in the subsequent 10 minutes after adjusting for a priori individual and area-

level confounders. This association held consistent through sensitivity analyses with restricted 

datasets on 1) wear time, 2) selective daily mobility bias, and 3) workplace location. A 

sensitivity analysis on active transportation data showed a null result. We observed effect 
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modification by neighborhood SES, region and season with strongest non-linear positive 

associations found in lowest quartiles of neighborhood SES, spring months and the Midwest. 

In the second and third studies we focus mainly on assessing instantaneous pathways of 

association. We attempted to address if being located in a greener or more walkable environment 

was followed by a period of higher physical activity. Our studies take preliminary steps to 

address exposure outcome pathways between contextual built and natural exposures and physical 

activity, a frequent mediator of downstream health outcomes. Future studies can employ more 

rigorous designs and analysis to test causal hypotheses. These studies should investigate the 

mechanism at alternate temporal scales (e.g. daily exposure and daily outcome, weekly exposure 

and weekly outcome) and lags (previous day exposure, present day outcome) to understand the 

full implications of the complex spatial and temporal patterns of these exposure outcome 

associations.  

Lastly, the fourth and final study of the dissertation (Chapter 5), applied measurement error 

correction to assess the association between residence-based walkability and physical activity 

corrected for mobility-based walkability. We identified a positive association between residential 

walkability exposure and self-reported weekly minutes of physical activity controlling for 

individual and area-level a priori confounders. After applying measurement correction measures 

on the exposure utilizing mobility-based measures of walkability we observed a stronger positive 

association between the exposure and outcome than in non-corrected models. A positive 

association was observed for all physical activity outcome measures except vigorous physical 

activity, where a null association was identified. These approaches should be replicated for 

additional exposures (temperature, precipitation, nSES) and outcomes including measurement 

correction using objectively measured physical activity.  
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In closing, it is crucial that environmental epidemiologists carefully consider the spatiotemporal 

scale of contextual exposures and align these estimates with outcomes of interest. Our first study 

highlighted that the reliance on residential exposure estimates may overestimate an individual’s 

true greenness exposure. The second and third studies illustrated potential momentary contextual 

environmental drivers of physical activity. In the second study, we failed to reject our null 

hypothesis and found that higher greenness is not associated with higher steps per minute. In the 

third study we rejected our null hypothesis and found a positive association between higher 

walkability and higher steps per minute. This suggested a complex and nuanced relationship 

between built and natural environments and physical activity. Walkable environments were 

associated with higher physical activity, whereas green environments were associated with lower 

physical activity and it did not appear that there were interactions between the two exposures.  

Findings from the second and third studies highlighted the potential improved health effects of 

walkable areas. Although we did not find evidence for interaction between greenness and 

walkability on the outcome of physical activity, the evidence for benefits of green spaces on 

social cohesion and mental restoration suggest the potential implications of greening already 

walkable environments. While several cumulative exposures studies exist (James, Hart, et al., 

2017; Marquet et al., 2022a; Roscoe et al., 2022), intervention studies are needed to continue to 

explore these hypotheses and examine the potential joint effects on multiple outcomes as well.  

Lastly, our fourth study shows the implications of utilizing GPS mobility-based exposure 

measures to correct estimates derived from large prospective cohorts. Integrating mobility-based 

estimates into regression calibration is underutilized for measurement correction regarding 

contextual exposures. Our findings highlight the importance of investing in digital health 

technology to address bias in environmental epidemiology. In the fifth chapter wee outline 
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approaches future researchers can implement utilizing GPS data and regression calibration to 

address measurement error for environmental exposures.  

This dissertation grapples with the emergence of mHealth data for environmental epidemiology 

and the historical use of prospective cohorts to identify interactions of place, the environment, 

and human health. The work illustrated here is only a fraction of what is possible with integrated 

GPS and wearable device data for health outcomes research. The future is already here. 

Integrated ecological momentary assessment (EMA) surveys in large prospective cohorts allow 

for researchers to study perceptions, attitudes, and behaviors associated with momentary 

environmental exposures. The Nurses’ Health Studies are currently utilizing the Beiwe platform 

to roll out EMAs across the cohorts. The plethora of GPS and object data require undertaking 

validation studies to understand wear time and study duration requirements.  

The creation of improved contextual environmental exposures such as those using Google Street 

View are necessary. These metrics will provide specific information on the ground elements of 

natural and built environments (e.g. trees or sidewalks). While NDVI can quantify one’s 

surrounding greenness, it cannot provide information on how this green space is perceived by 

those who interact with it. Efforts to develop a measure of perceived green space at a national 

scale are underway. This would allow researchers to estimate how green space is actually viewed 

by individuals. This is an important distinction because while green spaces may be present 

within a community, issues of public vs. private lands, access, safety, traffic patterns and climate 

may drastically alter how green spaces are perceived. There is evidence to suggest that 

understanding differences in green space perception  can lead to divergent health outcomes. 

Similar arguments can be made for the exposure of walkability. Sidewalk availability and 

quality, public transportation, lighting, and safety are all factors of the built environment that 
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must be integrated into future iterations of walkability measures. In this dissertation we aimed to 

provide a comparison of the ubiquitous contextual exposures of greenness and walkability at the 

momentary and residential spatial scales. Recognizing the crucial differences we observed, the 

next iteration must include elevating the exposure measures themselves.  

While this dissertation paves the way for future research, many conclusions can be drawn from 

the findings themselves. Evidence from this dissertation and the work of numerous scholars from 

the fields of geography, public health, urban planning, and design highlight tangible conclusions 

that must be drawn from the literature. Greenness and walkability exposures are inversely related 

in space and promote unique health behaviors. The identification of an inverse association 

between greenness and physical activity in chapter 3 does not seem to suggest that individuals 

choose to actively avoid physical activity in higher greenness. Roscoe et al. suggest this inverse 

relationship may be due to what drives the positive association in the walkability and physicality 

activity relationship: population, building, and intersection density (Roscoe et al., 2022). Thus, 

the critical inverse relationship between greenness and walkability suggests where interventions 

and policies will be most beneficial. Policies and ordinances that tackle promotion of housing 

density, mixed use development, and deemphasize motor-vehicle based travel may create the 

conditions for higher physical activity. Greening these spaces may not necessarily lead to 

increased physical activity but may lead  to notable other health benefits for communities in 

terms of mental health or other outcomes. In 2020 Minneapolis, MN became the first major U.S. 

city to implement a ban on single-family zoning across the city. Prior to this, single family 

zoning accounted for ¾ of urban land in Minneapolis (Influential Minneapolis Policy Shift Links 

Affordability, Equity, 2020.). Implications of this policy change are far ranging from racial and 

financial equity creating more opportunities for first time home buyers to improved health 
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outcomes as population density is a key component of walkability. After the 2021 Boston 

mayoral elections, the chief of streets outlined a vision for the city stretching beyond car-centric 

transportation. These policies include free fare transportation, creation of “low-stress” bicycle 

routes, and promoting and expanding green corridors like the Emerald Necklace and southwest 

corridor bicycle and walking path designed by Fredrick Law Olmsted that connects the city 

(Boston’s New Chief of Streets to Steer City beyond Car-Centric Transportation, 2021.). These 

policies have the opportunity to incentivize and drive behavior change related to physical activity 

and numerous other health behaviors including social interaction and cohesion.  
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SUPPLEMENTAL INFORMATION  

Supplemental Information 2.1. NDVI derivation from Google Earth Engine.  

NDVI raster imagery for the residential and mobility greenness exposure metrics were available 

through the Google Earth Engine (GEE) platform (Gorelick et al., 2017) and processed using 

Earth Engine Landsat-specific processing methods for Landsat Tier 1 Raw Scene collection for 

Landsat 8. We used the LandsatSimpleComposite algorithm to compute a Landsat Top of 

Atmosphere (TOA) composite from 30m raw scenes, assigned a cloud score to each pixel using 

the SimpleLandsatCloudScore algorithm, and selected only the least-cloudy scenes in regions 

where more than one input scene was available on a seasonal scale. By selecting the best 

imagery for each season, we minimize missing data due to cloud cover or other environmental 

interference. We then applied the “NormalizedDifference” algorithm to compute the normalized 

difference between the near-infrared and red bands to calculate the Normalized Difference 

Vegetative Index (NDVI=(NIR-RED/(NIR+RED)) at a 30m spatial resolution. To estimate 270m 

and 1230m buffers around residential addresses, we applied the Earth Engine 

“reduceNeighborhood” algorithm to create two textures at varying spatial resolutions, with each 

30x30m pixel representing the mean of 270m or 1230m neighborhood radius around that pixel in 

the input image from the 30m NDVI composite. 
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Supplemental Information 2.2. Stratified Variables.  

Age was obtained from the full NHS3 cohort study dataset from participants initial questionnaire 

return (Module 1), which predated enrollment in the Substudy.  

We measured neighborhood Socioeconomic Status (nSES) using a composite score of 7 Census 

tract level variables representing domains that have been previously associated with health 

outcomes, including education, employment, housing, wealth, racial composition, and population 

density (DeVille et al. 2022, in review). Variables were carried forward from the prior U.S. 

Census (2010) and each variable was z-standardized. We summed the z-scores for each 

component variable to create a nSES score. Higher scores indicated higher nSES (i.e. less 

socioeconomic deprivation). We joined quartiles of nSES score using the location of each 10-

minute GPS point to create a mobility-based nSES score at the same temporal resolution as the 

mobility-based greenness exposure assessment. 

We defined neighborhood walkability as a composite 3-item score of intersection density, 

calculated from 2019 Tiger/Line shapefiles of all roads with interstates removed (Bureau, 2020), 

population density, from 2019 ACS population data (Explore Census Data, 2020), and business 

density, from 2018 Infogroup US Historical Business Data (Infogroup, 2020). Variables were z-

standardized for each Census tract. We summed the z-scores for each component variable (3-

items) to create a neighborhood walkability index. Higher scores indicated more walkable areas.  

We joined quartiles of walkability score using the location of each 10-minute GPS point to create 

a mobility-based walkability score at the same temporal resolution as the mobility-based 

greenness exposure assessment 
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SUPPLEMENTAL TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



G . E .  W i l t  |  115 

  

Table S3.1. Participant Greenness and Physical Activity Distributions Across Seasons for Secondary Analytic 

Cohort (N=208) 

 N 
Steps/Min Mean 

(SD) 

Steps/Min 

Min, Max 

Greenness Mean 

(SD) 
Greenness Min Max 

Total Participants 208 7.04 (14.98) 0.00,  263.78 0.31 (0.21) 0.00, 0.84 

Fall 192 6.79 (14.67) 0.00, 181.00 0.27 (0.20) 0.00, 0.82 

Winter 175 6.60 (14.26) 0.00, 183.13 0.21 (0.15) 0.00, 0.73 

Spring 144 7.42 (15.25) 0.00, 219.00 0.37 (0.20) 0.00, 0.84 

Summer 196 7.26 (15.25) 0.00, 263.78 0.38 (0.21) 0.00, 0.84 
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Table S4.1. Participant Walkability and Physical Activity Distributions Across Seasons for Secondary Analytic 

Cohort (n=208) 

 

 N 
Steps/Min Mean 

(SD) 

Steps/Min 

Min, Max 

Walkability Mean 

(SD) 

Walkability Min 

Max 

Total Participants 208 7.04 (14.98) 0.00,  263.78 0.18 (2.89) -1.66, 52.84 

Fall 192 6.79 (14.67) 0.00, 181.00 0.15 (2.85) -1.66, 52.84 

Winter 175 6.60 (14.26) 0.00, 183.13 0.24  (3.32) -1.66, 52.84 

Spring 144 7.42 (15.25) 0.00, 219.00 0.21 (2.65) -1.66, 33.27 

Summer 196 7.26 (15.25) 0.00, 263.78 0.15 (2.76) -1.66, 44.60 
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SUPPLEMENTAL FIGURES  

Figure S2.1 Yearly Normalized Difference Vegetation Index (NDVI) histogram distributions for 

270m and 1230m residential measures and averaged 30m GPS mobility exposure measures in 

primary restriction criteria 
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Figure S2.2 Yearly Normalized Difference Vegetation Index histogram distributions for 270m 

and 1230m residential measures and averaged 30m mobility exposure measures in secondary 

restriction criteria 
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Figure S2.3 Bland Altman plots comparing mobility and residential Normalized Difference 

Vegetation Index (NDVI) measures. Purple band indicates 95% confidence level with red and 

green bands as lower and upper limit of agreement confidence bands in the secondary analytics 

dataset (N=208) 
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Figure S2.4 Generalized linear models depicting association between residential (270 and 1230 

m buffers) and GPS mobility-based greenness exposures using NDVI in the secondary analytic 

dataset  
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Figure S3.1. Nonlinear associations between Normalized Difference Vegitation Index (NDVI) 

and average steps per minute across a 10-minute period, restricting to selective daily mobility 

bias geographies, controlling for age (years; continuous), socioeconomic status defined as: 

education level (masters in nursing or higher; binary), and marital status (never [never 

married]]/ever [married, widowed, divorced]; binary), walkability (z-scores; quartiles), mean 

daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), NSES (z-scores, 

quartiles) season and Census region.  
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Figure S3.2. Nonlinear associations between Normalized Difference Vegitation Index (NDVI) 

and average steps per minute across a 10-minute period, restricting to workplace omitted 

geographies, controlling for age (years; continuous), socioeconomic status defined as: education 

level (masters in nursing or higher; binary), and marital status (never [never married]]/ever 

[married, widowed, divorced]; binary), walkability (z-scores; quartiles), mean daily temperature 

(Celsius; quartiles), daily precipitation (millimeters; binary), NSES (z-scores, quartiles) season 

and Census region.  
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Figure S3.3. Nonlinear Nonlinear associations between Normalized Difference Vegitation Index 

(NDVI) and average steps per minute across a 10-minute period, restricting on the secondary 

analyic dataset, controlling for age (years; continuous), socioeconomic status defined as: 

education level (masters in nursing or higher; binary), and marital status (never [never 

married]]/ever [married, widowed, divorced]; binary), walkability (z-scores; quartiles), mean 

daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), NSES (z-scores, 

quartiles) season and Census region.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



G . E .  W i l t  |  124 

  

Figure S4.1. Nonlinear Associations Between Walkability Z-Score and Average Steps per 

Minute Across a 10-minute Period Controlling for age (years; continuous), socioeconomic status 

defined as: education level (masters in nursing or higher; binary), and marital status (never 

[never married]]/ever [married, widowed, divorced]; binary), and greenness (NDVI; quartiles), 

mean daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), season and 

Census region. Stratified on NSES Quartiles  
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Figure S4.2. Nonlinear Associations Between Walkability Z-Score and Average Steps per 

Minute Across a 10-minute Period Controlling for age (years; continuous), socioeconomic status 

defined as: education level (masters in nursing or higher; binary), and marital status (never 

[never married]]/ever [married, widowed, divorced]; binary), and area-level measures of 

neighborhood socioeconomic status (z-score; quartiles), greenness (NDVI; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), and season. Stratified 

on census region. 
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Figure S4.3. Nonlinear Associations Between Walkability Z-Score and Average Steps per 

Minute Across a 10-minute Period Controlling for age (years; continuous), socioeconomic status 

defined as: education level (masters in nursing or higher; binary), and marital status (never 

[never married]]/ever [married, widowed, divorced]; binary), and area-level measures of 

neighborhood socioeconomic status (z-score; quartiles), greenness (NDVI; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), and Census region. 

Minute Stratified on Season 
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Figure S4.4. Nonlinear Associations Between Walkability and Steps per Minute Restricted to 

Selective Daily Mobility Bias Geographies, controlling for age (years; continuous), 

socioeconomic status defined as: education level (masters in nursing or higher; binary), and 

marital status (never [never married]]/ever [married, widowed, divorced]; binary), and area-level 

measures of neighborhood socioeconomic status (z-score; quartiles), greenness (NDVI; 

quartiles), mean daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), 

season and Census region. *Average steps per minute across each ten-minute collection period 
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Figure S4.5. Nonlinear Associations Between Walkability and Steps per Minute Restricted to 

Workplace Omited Geographies, controlling for age (years; continuous), socioeconomic status 

defined as: education level (masters in nursing or higher; binary), and marital status (never 

[never married]]/ever [married, widowed, divorced]; binary), and area-level measures of 

neighborhood socioeconomic status (z-score; quartiles), greenness (NDVI; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), season and Census 

region. *Average steps per minute across each ten-minute collection period 
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Figure S4.6. Nonlinear Associations Between Walkability and Steps per Minute Restricted to 

the Secondary Analyic Dataset, controlling for age (years; continuous), socioeconomic status 

defined as: education level (masters in nursing or higher; binary), and marital status (never 

[never married]]/ever [married, widowed, divorced]; binary), and area-level measures of 

neighborhood socioeconomic status (z-score; quartiles), greenness (NDVI; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), season and Census 

region. *Average steps per minute across each ten-minute collection period 
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Figure S5.1. Histogram distributions for Residential Measures and Averaged Mobility Exposure 

Measures of Walkability Z-Score in Secondary Restriction Criteria Dataset (N=208) 
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Figure S5.2. Bland Altman Plots Comparing Mobility and Residential Walkability Z-Score 

Measures. Purple band indicates 95% confidence level with red and green bands as lower and 

upper limit of agreement confidence bands 
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