
On Causal Inference in Real World Settings

Citation
Han, Larry. 2023. On Causal Inference in Real World Settings. Doctoral dissertation, Harvard 
University Graduate School of Arts and Sciences.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37375748

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37375748
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=On%20Causal%20Inference%20in%20Real%20World%20Settings&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=6b7b0666178970a029784ff1c69602dd&department
https://dash.harvard.edu/pages/accessibility




 



OnCausal Inference in Real World Settings

a dissertation presented
by

LarryHan
to

The Department of Biostatistics

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Biostatistics

Harvard University
Cambridge, Massachusetts

May 2023



©2023 – LarryHan
all rights reserved.



Dissertation advisors: Professors Tianxi Cai and Lorenzo Trippa Larry Han

OnCausal Inference in Real World Settings

Abstract

In the present dissertation, we consider three classical and yet modern topics in causal inference

– surrogate markers, multi-source federated learning, and sensitivity analysis. In each case, present-

day obstacles in real world settings make estimation and inference of causal estimands a challenging

endeavor.

In Chapter 1, we tackle the problem of how to identify and validate surrogate markers using real-

world data (RWD). There is a need to develop statistical methods to evaluate the proportion of treat-

ment effect (PTE) explained by surrogates in RWD, which have become increasingly common. To

address this knowledge gap, we propose inverse probability weighted (IPW) and doubly robust (DR)

estimators of an optimal transformation of the surrogate and the corresponding PTE measure. We

demonstrate that the proposed estimators are consistent and asymptotically normal, and the DR esti-

mator is consistent when either the propensity score model or outcome regression model is correctly

specified. In twoRWD settings, we show that ourmethod can identify and validate surrogatemarkers

for inflammatory bowel disease (IBD).

Chapter 2 is focused on federated learning of causal effects in multi-source settings. We develop a

Federated Adaptive Causal Estimation (FACE) framework to incorporate heterogeneous data from

multiple sites to provide treatment effect estimation and inference for a flexibly specified target popu-

lation of interest. To safely incorporate source sites and avoid negative transfer, we introduce an adap-

tive weighting procedure via a penalized regression, which achieves both consistency and optimal effi-

ciency. Our strategy is communication-efficient and privacy-preserving, allowing participating sites to
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only share summary statistics oncewith other sites. We conduct both theoretical and numerical evalu-

ations of FACE, and apply it to conduct a comparative effectiveness study of BNT162b2 (Pfizer) and

mRNA-1273 (Moderna) vaccines on COVID-19 outcomes in U.S. veterans using electronic health

records from five VA regional sites.

In Chapter 3, we develop a novel framework to conduct sensitivity analysis at the design stage of

complex clinical trials. Sensitivity analyses are useful to assess the dependence of important design op-

erating characteristics with respect to various unknown parameters. Two crucial components of sen-

sitivity analyses are (i) the choice of a set of plausible simulation scenarios and (ii) the list of operating

characteristics of interest. We propose a robust approach to choose the set of scenarios for inclusion

in design sensitivity analyses. We maximize a utility criterion that formalizes whether a specific set

of sensitivity scenarios is adequate to summarize how the operating characteristics of the trial design

vary across all plausible values of the unknown parameters. Then, we use optimization techniques

to select the best set of simulation scenarios (according to the criteria specified by the investigator)

to exemplify the operating characteristics of the trial design. We illustrate our proposal in three trial

designs of increasing complexity.
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0
Introduction

In the United States, the passage of the 21st Century Cures Act in 2016mandated the use of data gen-

erated from the routine operation of healthcare to inform decisions made by regulators, providers,

and patients13. Evidence generated from such real world data (RWD), termed real world evidence

(RWE), has gained tremendous attention from the biomedical community108,61. To date, RWE has

been used to support decision-making related to the primary approval of new medications through

the formationof external controls; support supplemental indications andpediatric approvals; support
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adaptive or accelerated approvals; and assess drug safety9,95,107. As evidence of the US Food andDrug

Administration’s (FDA) commitment to using RWE, the Sentinel Initiative was launched in 2008

as a national system of insurance claims databases used to assess the safety and performance of med-

ical products. Despite the growing use of postmarket RWD to evaluate medical product safety, the

use of RWD from electronic health records (EHRs), pragmatic randomized controlled trials (RCTs),

and other healthcare database analyses to support effectiveness and approval decisions is still nascent.

Indeed, while the FDA, European Medicines Agency, and other regulatory agencies have a strong fa-

miliarity and comfort in designing, implementing, and translating results from RCTs into policies

and guidelines, this trust is understandably attenuated with RWD studies38,40,105. The present dis-

sertation aims to narrow this trust gap by providing a suite of novel statistical methods and easily

implementable tools, to accurately, robustly, and efficiently assess treatment effects using RWD, and

more transparently communicate strategies for using RWD stemming from EHRs and RCTs. The

methods proposed in this research are broadly applicable in different disease domains and expand the

current capabilities and use scenarios of RWD.

In Chapter 1, we explore the question of how to identify and validate valid surrogate markers us-

ing real-world data (RWD). In comparative effectiveness research (CER), leveraging short-term surro-

gates to infer treatment effects on long-term outcomes can guide policymakers evaluating new treat-

ments. Numerous statistical procedures for identifying surrogates have been proposed for RCTs, but

no methods currently exist to evaluate the proportion of treatment effect (PTE) explained by surro-

gates in RWD, which have become increasingly common. To address this knowledge gap, we propose

inverse probability weighted (IPW) and doubly robust (DR) estimators of an optimal transformation

of the surrogate and the corresponding PTE measure. We demonstrate that the proposed estima-

tors are consistent and asymptotically normal, and the DR estimator is consistent when either the

propensity score model or outcome regression model is correctly specified. Our proposed estimators

are evaluated through extensive simulation studies. In two RWD settings, we show that our method

2



can identify and validate surrogate markers for inflammatory bowel disease (IBD).

Chapter 2 is dedicated to federated learning of causal effects. Federated learning of causal esti-

mands may greatly improve estimation efficiency by leveraging data from multiple study sites, but

robustness to heterogeneity and model mis-specifications is vital for ensuring validity. We develop a

Federated Adaptive Causal Estimation (FACE) framework to incorporate heterogeneous data from

multiple sites to provide treatment effect estimation and inference for a flexibly specified target popu-

lation of interest. FACE accounts for site-level heterogeneity in the distribution of covariates through

density ratio weighting. To safely incorporate source sites and avoid negative transfer, we introduce

an adaptive weighting procedure via a penalized regression, which achieves both consistency and opti-

mal efficiency. Our strategy is communication-efficient and privacy-preserving, allowing participating

sites to only share summary statistics once with other sites. We conduct both theoretical and numer-

ical evaluations of FACE, and apply it to conduct a comparative effectiveness study of BNT162b2

(Pfizer) andmRNA-1273 (Moderna) vaccines onCOVID-19 outcomes in U.S. veterans using EHRs

from five VA regional sites. We show that compared to traditional methods, FACE meaningfully in-

creases the precision of treatment effect estimates, with reductions in standard errors ranging from

26% to 67%.

In Chapter 3, we focus on how to conduct rigorous sensitivity analysis at the design stage of com-

plex clinical trials. The use of simulation-based sensitivity analyses is fundamental to evaluating and

comparing candidate designs for future clinical trials. In this context, sensitivity analyses are espe-

cially useful to assess the dependence of important design operating characteristics with respect to

various unknown parameters. Typical examples of operating characteristics include the likelihood of

detecting treatment effects and the average study duration, which depend on parameters that are un-

known until after the onset of the clinical study, such as the distributions of the primary outcomes

and patient profiles. Two crucial components of sensitivity analyses are (i) the choice of a set of plau-

sible simulation scenarios and (ii) the list of operating characteristics of interest. We propose a new

3



approach to choosing the set of scenarios for inclusion in design sensitivity analyses. We maximize a

utility criterion that formalizes whether a specific set of sensitivity scenarios is adequate to summarize

how the operating characteristics of the trial design vary across all plausible values of the unknown

parameters. Then, we use optimization techniques to select the best set of simulation scenarios to ex-

emplify the operating characteristics of the trial design. We illustrate our proposal in three trial designs

of increasing complexity.
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1
Identifying Surrogate Markers in

Comparative Effectiveness Research

1.1 Introduction

We are motivated by the need to develop statistical methods for evaluating surrogate markers in com-

parative effectiveness research (CER). A surrogate marker is an outcome measure that can be used

5



as a substitute for a primary outcome, such that changes caused by a therapy on a surrogate marker

are expected to reflect changes in the primary outcome36. The use of valid surrogate markers to infer

treatment effects on long term outcomes has the potential to reduce cost and expedite the approval

of new therapies22,128,16,24. We aim to use real world data (RWD), such as electronic health records

(EHRs), clinical registries, and cross-trial data, to identify and validate surrogates when comparing

treatments.

In particular, we assess biologic therapies for inflammatory bowel disease (IBD)103, where poten-

tial surrogate markers such as the likelihood of nonresponse score or the non-invasive partial Mayo

score can be measured earlier and more cheaply than the primary outcome of clinical response2,70.

While multiple treatments for IBD have shown efficacy in placebo-controlled trials115, there is inter-

est in identifying and validating surrogate markers of the treatment effect between biologic therapies.

However, there have been few head-to-head comparisons of biologic therapies, and surrogate mark-

ers have not been validated for studying the treatment effect on different outcomes of interest. One

of the first such head-to-head trials, a phase 3b trial of vedolizumab vs. adalimumab, showed that

vedolizumabwas superior with respect to achieving clinical remission104. However, randomized clin-

ical trials (RCTs) of this type are typically prohibitively costly due to the large sample size that is needed

to detect presumably small treatment effects11. The lack of direct comparisons for different therapies

has resulted in the choice of treatment being influenced by factors often unrelated to treatment per-

formance2. More generally, novel treatments frequently show great promise in placebo-controlled

trials but head-to-head comparisons in RCTs are often missing. Pharmaceutical companies have his-

torically avoided head-to-head trials for fear of losing market share from unfavorable results and have

instead favored placebo-controlled trials for a greater chance of declaring superiority34.

In addition to requiring long-term follow-up of patients to observe a sufficient number of events

to detect treatment effects, RCTs are also often limited to narrowly defined patient populations with

results that are not always generalizable to broader populations of interest. These shortcomings are es-
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pecially pronounced in urgent health crises when potential treatments must be assessed rapidly. Cou-

pled with the explosive growth in observational healthcare data80,48,25, there is growing interest in

using RWD generated from observational studies to evaluate surrogate markers43.

In settings where it is costly or infeasible to observe outcomes directly, machine-learning model

predictions can be used as surrogates89. For example, International Classification of Diseases (ICD)

codes in EHR data have been used as surrogate outcomes to predict postoperative hospital mortal-

ity129. However, directly using these surrogate outcomes may be problematic due to bias or differ-

ences in variability compared to the true outcomes, and subsequent analyses based on these surrogate

outcomes can result in poor post-prediction inference122. It is important to determine the strength of

the surrogate outcome for the true outcome, both to inform decisions about whether to use these sur-

rogates in future studies and because many statistical methods require the surrogate to be strong88,91.

Since Prentice (1989)90 originally proposed a definition and operational criteria for identifying

valid surrogate markers, many statistical methods have been developed to make inference about the

proportion of treatment effect (PTE) explained by a surrogate inRCT settings39,73,126,88,91,124. Freed-

man (1992)39 proposed a parametric model-based estimate assuming two outcome regression mod-

els (including and excluding the surrogate), which rarely hold simultaneously73. Wang (2002)126

proposed alternative measures of PTE that examined what the treatment effect would have been if

the surrogate had the same distribution across treatment groups. Parast (2016)88 proposed a fully

nonparametric estimation procedure for the PTE defined in Wang (2002)126. More recently, Wang

(2020)124 proposed an alternativenon-parametricPTEestimatorby identifying a single optimal trans-

formation of the surrogate to predict the outcome with weaker assumptions than those required by

Parast (2016)88. However, all of these existing PTE estimators are derived for data fromRCTs and are

therefore not directly applicable to RWD where treatment assignment Amay depend on confound-

ing factors X. Price (2018)91 proposed finding optimal functions of a surrogate separately for each

treatment group under the constraint that the Prentice criterion is satisfied90. However, their opti-
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mal surrogate is guaranteed to attain perfect surrogacy even when the original surrogate is not a valid

surrogate, and their focus is not on evaluating surrogacy123.

In this paper, we aim to address the gap in identifying and validating surrogatemarkers usingRWD

by proposing novel inverse probability weighted (IPW) and doubly robust (DR) estimators for an

optimal transformation function and corresponding PTE estimators. We propose flexible semi-non-

parametric models for the relationship between outcome Y and surrogate S given baseline covariates

X and a propensity score (PS) model for A givenX. We also propose perturbation resampling meth-

ods for variance and confidence interval estimation. We establish the asymptotic properties of the

proposed estimators, including double robustness of the proposed estimator in that it is consistent

when either the PS model or the outcome regression (OR) model is correctly specified. Our simula-

tion studies demonstrate that the proposed estimators and inference procedures performwell in finite

samples. We illustrate the utility of our method to identify and validate surrogate markers for IBD in

two different types of RWD analyses.

1.2 Methods

1.2.1 Setting, Notation, and Identification

LetY be the primary outcome and S be the surrogatemarker, both ofwhichmay be discrete or contin-

uous. Throughout, the notation takes S to be continuous, but all derivations and theoretical results

remain valid if S is discrete by replacing density functions with probability mass functions. We de-

note {Y(a), S(a)} as the respective potential primary outcome and surrogate marker under treatment

A = a, where A = 1 and A = 0 denote the treatment and the control group, respectively. With

RWD, only Yi = AiY
(1)
i + (1 − Ai)Y

(0)
i and Si = AiS

(1)
i + (1 − Ai)S

(0)
i can be observed for an

individual i, and the treatment assignment Ai may depend on baseline confounding factors Xi. For
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identifiability, we require the standard causal assumptions101,60

πa(x) ≡ P(A = a | X = x) ∈ (0, 1) (1.1)

(
Y(1),Y(0), S(1), S(0)

)
⊥ A | X (1.2)

Assumption (1.1) states that within all covariate levels, patients may receive either treatment so that

the PS is bounded away from 0 and 1. Assumption (1.2) implies that X includes all confounders

that can affect the primary outcome and treatment simultaneously, or the surrogate and treatment

simultaneously. In other words, we assume that observed covariatesX contain all confounders of the

effects of treatment A on surrogate S and primary outcome Y, such that treatment A is as good as

randomized within levels of covariatesX. This “no unmeasured confounding” assumption has been

made previously, for example, by Agniel (2020)1. We assume that the RWD for analysis consist of n

independent and identically distributed random variables {Di = (Yi, Si,Ai,XT
i )

T, i = 1, ..., n}.

1.2.2 Target Parameter and Leveraging Surrogates

The average treatment effect (ATE) on Y is defined as

Δ = μ1 − μ0, where μa = E(Y(a)) =
∫

E(Y | A = a,X)dF(X),

and F(x) = P(X ≤ x). Note that to obtain the mean potential outcome μa, we must integrate the

conditional outcomemodel over the density of the covariatesX. Without loss of generality, we assume

that the ATE is non-negative, i.e., Δ ≥ 0. To approximate Δ based on the treatment effect on S, we

define a transformation function gopt(·) such that the treatment effect on the transformed surrogate,

Δgopt = E[gopt(S(1))−gopt(S(0))], can be used to predict the treatment effect on the primary outcome,
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Δ = E[Y(1)−Y(0)]. Rather than using S directly, the optimal transformation of the surrogate gopt(S)

aims to recover the difference in the primary outcomes between patients in the two treatment groups.

More formally, the optimality of gopt is with respect to minimizing the mean squared error

L(gopt) = E
[(

Y(1) − Y(0)
)
−
{
gopt

(
S(1)
)
− gopt

(
S(0)
)}]2

. (1.3)

Alternative loss functions can and have been considered. For example, Price (2018)91 proposed an

alternative approach that identifies treatment-specific transformations of the surrogate. Following

Wang (2020)124, in Appendix 1, we show that under a working independence assumption that

(Y(1), S(1)) ⊥ (Y(0), S(0)), (1.4)

gopt takes the form

gopt(s) = m(s) + λP0(s),

where

m(s) = m1(s)P1(s) +m0(s)P0(s), ma(s) = E(Y(a) | S(a) = s),

Pa(s) = fa(s)(f0(s) + f1(s))−1, fa(s) = dFa(s)/ds,

λ =

∫
{m0(s)−m1(s)}P1(s)dF0(s)∫

P0(s)dF0(s)
=

μ0 −
∫
m(s)dF0(s)∫

P0(s)dF0(s)
,

and Fa(s) = P(S(a) ≤ s).

Note that the optimal transformation gopt is invariant to treatmentA and covariatesX, whose role

is made clear in the estimation of the conditional mean functionsma(s) and densities fa(s) in Section

3. The optimal transformation gopt can be interpreted as the conditional mean function, m(s) that

is shifted by a scaled posterior probability function of A = 0 | S, where λ determines the degree

of the shift. For example, when there is no treatment effect on the conditional expectation of Y | S
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such that m0(s) = m1(s), then λ = 0 and gopt reduces to m(s). Practically, the shape of gopt can

provide useful information about the effect of S on Y. In particular, existing methods88,126 require

that the relationship between Y and S be monotone, which can often be violated. Our proposed

estimation strategy evaluates the PTE explained for gopt(S) rather than S, highlighting the robustness

of our method.

Remark 1. Since only one of (Y(1), S(1)) and (Y(0), S(0)) can be observed for an individual and the

correlation structure is not identifiable, we minimize the MSE-type loss (1.3) under the working inde-

pendence assumption (1.4). A similar assumption was considered by Robins and Richardson (2010)97,

who showed that it would hold under a minimal sufficient causal model in the sufficient causal frame-

work. Although restrictive and unlikely to hold in practice, it is used to help derive gopt and is not needed

to interpret the proposed PTEmeasure or for valid inference. In our simulation studies, we show that gopt

and PTE estimates are robust against violations of (1.4).

By employing the transformation gopt such that the treatment effect onY is optimally approximated

by the treatment effect on gopt(S), we can naturally quantify the PTE as the ratio of treatment effect

on gopt(S) vs Y, i.e.,

PTEgopt ≡ Δgopt/Δ.

Given the form of the PTE, as in Wang (2020)124, it holds that PTEgopt ∈ [0, 1] provided that

(A1) S1(u) ≥ S0(u) for all u,

(A2) M1(u) ≥M0(u) for all u in the common support of gopt(S(1)) and gopt(S(0)),

where Sa(u) = P{gopt(S(a)) ≥ u} andMa(u) = E(Y(a) | gopt(S(a)) = u), for a = 0, 1 (Appendix

2). Assumptions (A1) and (A2) are weaker than those required in previous literature, which has re-

quired monotonicity, m1(s) > m0(s) for all s and the same surrogate support for S(1) and S(0) 88 to
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ensure that the PTE is between 0 and 1.

Remark 2. In Appendix 2, we show that Δ ≥ Δgopt ≥ 0, so that Δ = 0 implies that Δgopt = 0

as well. Thus, our proposed PTE measure avoids the surrogate paradox, since it is never the case that the

treatment effect on the surrogate is positive (Δgopt > 0) but the treatment effect on the primary outcome is

negative (Δ < 0), regardless of the correlation between the surrogate andprimary outcome120. It isworth

noting that Price (2018)91 avoid the surrogate paradox without making these assumptions by defining

an optimal transformation of the surrogate under the Prentice definition constraint90. However, Agniel

(2020)1 recently demonstrated that the resolution of Price (2018)91 can be too strong, i.e., the surrogate

paradox is resolved for all surrogates, even those that are completely unrelated to the outcome, and the

power to detect treatment effects can actually increase as the surrogate weakens.

1.3 Estimation Procedures

Given the above framework, our goal in this section is to construct inverse probabilityweighted (IPW)

anddoubly robust (DR) estimators for gopt andPTEgopt usingRWD.Estimation of gopt(s) andPTEgopt

using RWD is more challenging than using RCT data because we cannot directly estimate m(s), λ,

andPa(s)due to confounding. Wepropose an IPWestimator and aDRestimator for gopt andPTEgopt

accounting for the effects ofX onA, Y and S. We first present the simpler IPW estimator and then the

DR estimator. For both estimators, we fit a parametric model for the PS model π1(X), denoted by

π1(X; α), where α is a finite dimensional parameter that can be estimated as the standard maximum

likelihood estimator, α̂. A simple example is a logistic regression model π1(X; α) = G{αTΦ(X)},

where G(x) = ex/(1 + ex) and Φ(X) is a vector of basis functions of X to account for potential

non-linear effects.

12



1.3.1 IPW Estimation

To construct an IPWestimator for gopt, we first obtain IPWkernel smoothed estimators forma(s) and

fa(s) respectively as

m̂a(s) =
∑n

i=1 Kh(Si − s)Yiω̂ai∑n
i=1 Kh(Si − s)ω̂ai

and f̂a(s) =
∑n

i=1 Kh(Si − s)ω̂ai∑n
i=1 ω̂ai

,

where ω̂ai = I(Ai = a)/πa(Xi, α̂), Kh(·) = h−1K(·/h), K(·) is a symmetric density function and

bandwidth h = O(n−ν) with ν ∈ (1/4, 1/2). Throughout, when S is discrete, kernel estimators

Kh(Si − s) can be replaced with the indicator I(Si = s). Thenm(·),Pa(·) and λmay be estimated as

m̂(s) =
1∑

a=0
m̂a(s)P̂a(s), P̂a(s) =

f̂a(s)
f̂1(s) + f̂0(s)

, λ̂ =

∫
(m̂0(s)− m̂1(s))P̂1(s)̂f0(s)ds∫

P̂0(s)̂f0(s)ds
,

respectively. Subsequently, we construct plug-in estimators for gopt(s), Δgopt , Δ and PTEgopt as

ĝopt(s) = m̂(s) + λ̂P̂0(s),

Δ̂ĝopt = μ̂1,̂gopt − μ̂0,̂gopt ,

Δ̂ = μ̂1 − μ̂0,

and

P̂TEĝopt =
Δ̂ĝopt

Δ̂
,

where μ̂a,gopt =
∑n

i=1 gopt(Si)ω̂ai∑n
i=1 ω̂ai

and μ̂a =
∑n

i=1 Yiω̂ai∑n
i=1 ω̂ai.

We show in Appendix 3 of the Supplementary Materials that when π1(x; α) is correctly specified,

P̂TEĝopt is consistent for PTEgopt . We also show that
√
n(P̂TEĝopt−PTEgopt) converges in distribution

to a normal distribution with mean 0 and variance σ2, where the form of σ2 is derived in Appendix 3.
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1.3.2 Doubly Robust Estimation

When the PS model is misspecified, the IPW estimator is likely to be biased. To achieve improved

robustness and efficiency gains, we propose DR estimators for gopt and PTEgopt . Following Robins

(1994)98, for any counterfactual random variable U(a), a DR estimator for its mean E(U(a)) can be

constructed as n−1∑n
i=1
{
ω̂aiUi − (ω̂ai − 1)φ̂a(Xi)

}
, where φ̂a(Xi) is an estimator for E(U(a)

i |

Xi) derived under a specifiedmodel. This estimator is DR in the sense that it is consistent forE(U(a))

when either the PS model for πa(X) or the outcome regression (OR) model for E(U(a)
i | Xi) is

correctly specified. Deriving a DR estimator for PTEgopt is more challenging since gopt(S) involves

conditional mean functions of Y(a) | S(a) and density functions of S(a) for a = 0, 1.

To construct aDR estimator for gopt(s) = m(s)+λP0(s), we propose the followingDRestimators

forma(s) and fa(s) respectively,

m̂a,DR(s) =
M̂a,DR(s)
f̂a,DR(s)

, (1.5a)

M̂a,DR(s) = n−1
n∑
i=1

{
Kh(Si − s)Yiω̂ai − (ω̂ai − 1)ψ̂†

a,m(s;Xi)ψ̂
†

a,f(s;Xi)
}
, (1.5b)

f̂a,DR(s) = n−1
n∑
i=1

{
Kh(Si − s)ω̂ai − (ω̂ai − 1)ψ̂a,f(s;Xi)

}
, (1.5c)

where ψ̂a,m(x) and ψ̂a,f(s; x) are the respective estimators for

ψa,m(s; x) = E(Y(a)i | S
(a)
i = s,Xi = x) = E(Yi | Ai = a, Si = s,Xi = x) and

ψa,f(s; x) =
∂P(S(a)i ≤ s | Xi = x)

∂s
.

In Appendix 4 of the Supplementary Materials, we show that m̂a,DR(s) and f̂a,DR(s) are consistent for

ma(s) and fa(s) if either supx |π̂a(x)−πa(x)| → 0 in probability or supx,s{|ψ̂a,m(s; x)−ψa,m(s; x)|+
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|ψ̂a,f(s; x)− ψa,f(s; x)|} → 0 in probability. In other words, double robustness of the optimal trans-

formation gopt can be achieved by either correctly specifying the PS model or correctly specifying the

conditional outcome model and the conditional surrogate model.

Since the true form of the models S | A,X and Y | A, S,X are not known in RWD settings, simple

parametric models are likely to produce biased estimates, with the degree of bias depending on the

extent to which the models are misspecified. Alternatively, nonparametric estimators can be used.

However, due to the curse of dimensionality, the convergence rates may be slow with less smooth-

ness and more covariates. Therefore, to balance model flexibility and model interpretability, and to

minimize assumptions on the dependency structure between S and Y, we construct flexible estima-

tors ψ̂a,m(s; x) and ψ̂a,f(s; x) through semi-non-parametric models for Y(a) | S(a),X and S(a) | X.

We are able to handle multiple confounders by implementing a two-step estimator that first reduces

potentially high-dimensionalX intoXTγ̂a, where γ̂a are the estimated covariate effects, through a gen-

eralized regression model (GRM) and then estimates the conditional density of S | XTγ̂a using the

method of Hall (2004)44. Specifically, we fit a GRM for Si | Ai = a,Xi:

Si = Da �Ha(XT
i γa, εia) with P(εai ≤ e | Xi) = Fa(e), (1.6)

where the composite function Da � Ha assumes that Da(·) is an increasing function and Ha(·, ·)

is a strictly increasing function of each of its arguments, and the unknown covariate effects γa =

(γa1, ..., γap)
T are constrained to the unit sphere Ω : {γ : ‖γ‖2 = 1} for identifiability45. With the

given γa under GRM and the no-unmeasured-confounders assumption, ψa,f(s; x) can be estimated

non-parametrically via kernel smoothing. To estimate γa, we propose an adapted maximum rank

correlation (MRC) estimator γ̂a = argmaxγ∈Ω
{∑

i̸=j,Ai=Aj=a I(XT
i γ > XT

j γ)I(Si > Sj)
}
, which

Sherman (1993)109 showed to be consistent and asymptotically normal for γa. Subsequently, we es-
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timate ψa,f(s, x) as

ψ̂a,f(s; x) =
∑n

i=1 Kζ(γ̂aXi − γ̂Tax)Kh(Si − s)∑n
i=1 Kζ(γ̂aXi − γ̂Tax)

. (1.7)

To estimate ψa,m(s; x), we fit a varying-coefficient generalized linear model (VGLM):

E(Yi | Ai = a, Si = s,Xi) = M{βa(Si)
TX⃗i}, (1.8)

whereM(·) is a known smooth link function, x⃗ = (1, xT)T for any vector x and βa(s) is an unknown

p+ 1 dimensional unspecified smooth coefficient functions47. Wemay estimate βa(s) as β̂a(s), the so-

lution to the estimating equation Ûa(β; s) = n−1∑n
i=1 I(Ai = a)Kh(Si−s)X⃗i

{
Yi −M(βTX⃗i)

}
=

0.Then we estimate ψa,m(s; x) as

ψ̂a,m(s, x) = M{β̂a(s)
Tx⃗}. (1.9)

These estimators (1.7) and (1.9) can then be plugged into (1.5b) and (1.5c) to construct f̂a,DR(s)

and m̂a,DR(s) as in (1.5a).

Basedon m̂a,DR(s) and f̂a,DR(s), weobtain aDRestimator for gopt(s) as: ĝDR(s) = m̂DR(s)+λ̂DRP̂0,DR(s),

where m̂DR(s) =
∑1

a=0 m̂a,DR(s)P̂a,DR(s),

λ̂DR =
∫ {m̂0,DR(s)−m̂1,DR(s)}P̂1,DR(s)̂f0,DR(s)ds∫

P̂0,DR(s)̂f0,DR(s)ds
, and P̂a,DR(s) =

f̂a,DR(s)
f̂0,DR(s)+̂f1,DR(s)

, for a = 0, 1. We can now

construct a DR plug-in estimator for Δgopt as Δ̂ĝ,DR = μ̂1,̂g,DR
− μ̂0,̂g,DR

,where

μ̂a,̂g,DR
= n−1

n∑
i=1

{
gopt(Si)ω̂ai − (ω̂ai − 1)̂ζa,gopt(Xi)

}
,

and ζ̂a,gopt(x) =
∫
gopt(s)ψ̂a,f(s, x)ds is an estimator for ζa,gopt(x) = E{gopt(S(a)i ) | Xi = x} derived

under the GRM. The plug-in estimator for Δgopt is DR in the sense that it is consistent when either

the PS model or conditional surrogate model is correctly specified.
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Similarly, we obtain Δ̂DR = μ̂1,DR
− μ̂0,DR

to estimate Δ, where

μ̂a,DR
= n−1

n∑
i=1

{
Yiω̂ai − (ω̂ai − 1)̂ζa(Xi)

}
,

where ζ̂a(x) =
∫
ψ̂a,m(s; x)ψ̂a,f(s; x)ds is an estimator for ζa(x) = E(Y(a)i | Xi = x). The plug-in

estimator for Δ is DR in the sense that it is consistent when either the PS model or the conditional

outcome model is correctly specified.

Finally, we estimate PTEgopt as P̂TEĝ,DR = Δ̂ĝ,DR/Δ̂DR. Following similar arguments as given inAp-

pendix 4, it is not difficult to show that Δ̂ĝ,DR, Δ̂DR and P̂TEĝ,DR are DR estimators for Δgopt , Δ, and

PTEgopt , respectively. The steps needed to construct the DR estimator are summarized in Algorithm

1.

Algorithm 1: Estimation procedure for constructing DR estimators.

1. Estimate the conditional density, S | A,X, by fitting a GRM as in (1.6), obtain the MRC

estimator, and calculate ψ̂a,f(s; x) via kernel smoothing as in (1.7).

2. Estimate the conditional mean, E(Y | A, S,X), by fitting a VCGLM as in (1.8) and solve the

corresponding estimating equation for ψ̂a,m(s, x) as in (1.9).

3. Calculate the plug-in estimates ĝDR(s), Δ̂ĝ,DR, Δ̂DR, and P̂TEĝ,DR.

1.4 Perturbation Resampling

In practice, we can estimate σ2 empirically by estimating the influence functions or via perturba-

tion resampling similar to those employed in Wang (2020)124. Given the complexity of the doubly
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robust estimator, we propose to estimate the variability and construct confidence intervals of our

proposed estimators using a perturbation-resampling approach63,117. For resampling, we generate

{V[b] = (V[b]
1 , ...,V[b]

n )
T, b = 1, ...,B}, which are n× B independent and identically distributed non-

negative random variables from a known distribution with unit mean and unit variance, such as the

unit exponential distribution. For each set of V = (V1, ...,Vn)
T, we let V̄i = Vi/(n−1∑n

i=1 Vi)

and perturb each observation i by V̄ . In Appendix 5, we provide the detailed perturbation resam-

pling procedure for both the IPW andDR estimators. Operationally, we generate a large number, say

B = 500, realizations forV and then obtain B realizations of the perturbed statistics of interest. Stan-

dard error estimates and confidence intervals can then be constructed based on empirical quantiles of

these realizations.

1.5 Simulation Studies

We conduct simulation studies to evaluate the finite sample performance of our proposed estimators

compared to several existing methods. Namely, we compare our IPW and DR estimators to the fol-

lowing estimators:

1. the PTE estimator of Freedman (1992)39, denoted P̂TEF,naive;

2. the PTE estimator given in Parast (2016)88, denoted P̂TEP; and

3. the PTE estimator of Wang (2020)124, denoted P̂TEW.

Note that all of the above estimators assume that treatment is randomly assigned and do not take into

account baseline covariates X in their models. We let n = 400 and n = 1000 and choose K(·) as a

Gaussian kernel. We set the bandwidth h = hoptn−c0 , c0 = 0.11 where hopt = 1.06n−1/5 to satisfy

the undersmoothing assumption106. We compute the true population parameters via Monte Carlo,

under the counterfactual models used to generate the data, with N = 100, 000 averaged over 100
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replications. All results are summarized based on 500 simulated datasets for each configuration, and

B = 500 resampling replications were used for variance and interval estimation.

We consider two general settings. In Setting I, the surrogate is moderately strong and both as-

sumptions (A1) and (A2) hold so that the surrogate paradox is avoided. In Setting II, the surrogate

is weak and the working independence assumption (1.4) is violated. The relationship between S and

E(Y | S = s) are visualized in the Supplementary Materials.

Specifically, in Setting I,we generate a 3-dimensional baseline covariate vectorXi = (Xi1,Xi2,Xi3)
T

as Xi1 ∼ N (0, 0.04), Xi2 ∼ Gamma(2, 2) and Xi3 ∼ Uniform(−1, 1), and

S(0)i = γT0[1]X⃗i + εi, S(1)i = γT1[1]X⃗i + εi,

Y(0)i = 0.5S(0)i + βT0[1]X⃗i+X1iX2i+X2iX3i+ ei, Y(1)i = 0.3S(1)i + βT1[1]X⃗i+X1iX2i+X2iX3i+ ei,

where εi ∼ N (0, 1), ei ∼ N (0, 0.04), γ0[1] = (0, 0.5, 1,−0.5)T, γ1[1] = (0, 1, 0.5, 2)T, β0[1] =

(0, 0.2,−0.3,−0.5)T, and β1[1] = (0, 1,−0.5, 0.2)T.

We generate Ai | Xi from the PS model

P(Ai = 1 | Xi) = expit{−0.8Xi1 + 0.7Xi2 − log(Xi3) + 0.6Xi1Xi3},

so that 58% receive treatmentA = 1. Under this setting, Δgopt = 0.29 and Δ = 0.54 so that the true

potential outcomes PTE is 0.539, i.e., S is a moderately strong surrogate for Y. We consider scenarios

in which we correctly specify both the PS and OR models, misspecify the PS model by omitting the

interaction termX1X3, misspecify theORmodel by omitting the variableX2 and all interaction terms

including X2, and misspecify both models.

In Setting II, we consider a relatively weak surrogate and generate data such that the effect of S

on Y is also non-linear. We generate baseline covariates Xi = (Xi1,Xi2,Xi3)
T from Xi1 ∼ N (0, 1),
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Xi2 ∼ Gamma(2, 2), and Xi3 ∼ Uniform(0, 5). GivenXi, we generate

S(0)i = γT0[2]X⃗i + ε, S(1)i = γT1[2]X⃗i + εi,

Y(0)i = 100+ β0[2](S
(0)
i )TXi + ei, Y(1)i = 50+ β1[2](S

(1)
i )TXi + ei,

where εi ∼ N (0, 4) and ei ∼ N (0, 1) and we let γ0[2] = (100, 1, 5, 0)T, γ1[2] = (100, 2, 4, 0)T,

β0[2](s) = (s,−2 log(s), 25)T, and β1[2](s) = (s,−3 log(s),−14)T.

We generate Ai | Xi from the same PS model as in setting 1, but because of the different covariate

distributions, here 50% receive treatmentA = 1. Under this data generatingmechanism, Δgopt = 5.7

and Δ = 26.7, resulting in PTEgopt = 0.214. We consider scenarios in which we correctly specify

both the PS and OR models, misspecify the PS model by omitting the log(X3) term, misspecify the

ORmodel by omitting X2, and misspecify both models.

We first summarize the results for Setting I. In Figure 1.1, we plot the empirical biases, the empirical

standard error (ESE) compared to the average of the estimated standard error (ASE), and empirical

coverage probabilities of the 95% pointwise confidence intervals (CIs) for gopt(·) based on the DR

estimator ĝDR(·) estimated with sample size n = 1000 under four specification scenarios. When at

least one of the twomodels is correctly specified, the point estimates for gopt(·) present negligible bias,

the ASEs are close to the ESEs, probabilities of the 95% CIs are close to their nominal level. When

bothmodels are misspecified, bias is observed in the tails, the ASE somewhat underestimates the ESE,

and the coverage probabilities of the 95% confidence intervals are somewhat below the nominal level.

Results for n = 400 bear similar patterns and can be found in the Supplementary Materials.

In Table 1, we summarize results for PTE estimation obtained via the proposed method and other

existing methods. When at least one of the PS and OR models are correctly specified, our proposed

DR estimator displays negligible bias and nominal coverage. The IPW estimator P̂TEĝ has substan-

tial bias when the PSmodel is misspecified and theDR estimator also presents bias when bothmodels
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Figure 1.1: Empirical bias, empirical standard error (ESE) versus the average of the estimated standard error (ASE), and
coverage probabilities of the 95% confidence intervals for ĝopt(s) when n = 1000 and (Row 1) both models are
correctly specified, (Row 2) PS model is misspecified, (Row 3) OR model is misspecified, (Row 4) both models are mis‐
specified.
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are incorrect, as expected. In addition, the IPW estimator is less efficient compared to the DR esti-

mator when the PS model is correctly specified. The estimator from Wang (2020)124, P̂TEW shows

considerable bias and below nominal coverage, and P̂TEF,naive and P̂TEP show substantial bias.

Table 1.1: Bias for PTE estimators whose target parameter is PTEgopt = 0.539, Empirical Standard Error (ESE), Aver‐
age of the Estimated Standard Errors (ASE) and Empirical Coverage Probabilities of the 95% CIs of Estimators under
Different Model Scenarios for Setting I.

Size Estimator Scenario Bias ESE ASE Coverage
n = 400 P̂TEF,naive NoX -0.159 0.114 - -

P̂TEP NoX -0.223 0.101 - -
P̂TEW NoX -0.105 0.110 0.110 0.729
P̂TEĝ PS Correct 0.006 0.087 0.088 0.930

PSMisspecified -0.059 0.107 0.109 0.916
P̂TEĝ,DR Both Correct 0.003 0.079 0.079 0.940

PSMisspecified -0.005 0.074 0.079 0.954
ORMisspecified -0.007 0.084 0.082 0.940
BothMisspecified -0.091 0.119 0.115 0.779

n = 1000 P̂TEF,naive NoX -0.151 0.064 - -
P̂TEP NoX -0.204 0.061 - -
P̂TEW NoX -0.103 0.181 0.174 0.803
P̂TEĝ PS Correct -0.006 0.052 0.053 0.950

PSMisspecified -0.087 0.069 0.072 0.768
P̂TEĝ,DR Both Correct -0.006 0.051 0.050 0.944

PSMisspecified -0.003 0.050 0.050 0.956
ORMisspecified 0.001 0.050 0.052 0.948
BothMisspecified -0.107 0.074 0.072 0.635

Table 2 shows that under Setting II, P̂TEĝ is consistent when the PS model is correctly specified

and P̂TEĝ,DR is consistent when either the PS model or OR model is correctly specified. However,

other literature estimators, P̂TEF,naive, and P̂TEP all estimate the true PTE as being close to 0. This is

likely due to the non-monotone relationship between Y and S in this setting, and the fact that these

estimators use S directly rather than gopt(S) in estimating the treatment effect.
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Table 1.2: Bias for PTE estimators whose target parameter is PTEgopt = 0.214, Empirical Standard Error (ESE), Aver‐
age of the Estimated Standard Errors (ASE), and Empirical Coverage Probabilities of the 95% CIs of Estimators under
Different Model Scenarios for Setting II.

Size Estimator Scenario Bias ESE ASE Coverage
n = 400 P̂TEF,naive NoX -0.166 0.031 - -

P̂TEP NoX -0.179 0.044 - -
P̂TEW NoX -0.015 0.042 0.041 0.980
P̂TEĝ PS Correct 0.006 0.050 0.048 0.936

PSMisspecified 0.024 0.053 0.052 0.894
P̂TEĝ,DR Both Correct 0.002 0.048 0.049 0.946

PSMisspecified 0.000 0.047 0.046 0.952
ORMisspecified 0.005 0.048 0.046 0.940
BothMisspecified -0.017 0.058 0.060 0.845

n = 1000 P̂TEF,naive NoX -0.210 0.005 - -
P̂TEP NoX -0.230 0.104 - -
P̂TEW NoX -0.011 0.032 0.030 0.970
P̂TEĝ PS Correct -0.004 0.030 0.030 0.948

PSMisspecified 0.020 0.030 0.031 0.914
P̂TEĝ,DR Both Correct 0.005 0.028 0.029 0.942

PSMisspecified 0.004 0.029 0.029 0.946
ORMisspecified 0.007 0.029 0.028 0.940
BothMisspecified -0.024 0.051 0.045 0.853

1.6 RealWorld Data Applications

In this section, we use our proposed estimators to examine the comparative effectiveness of biologic

therapies, and we validate two surrogate markers in two different RWD settings of interest. In the

first application, we validate an algorithm-derived score for the likelihood of nonresponse based on

narrative text data in an EHR setting. In the second application, we validate a non-invasive partial

Mayo score in a cross-trial comparison. In both data applications, the number of covariates are limited

such that there may be unmeasured residual confounding for the relationship between treatment A

and the surrogate S and primary outcome Y. However, we proceed with the analyses to illustrate our
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method and to show that using the PTE estimator ofWang (2020)124 that does not adjust for baseline

confounders can result in qualitatively different conclusions on the strength of surrogates. In both

data applications, race/ethnicity was defined as a self-disclosed, mutually exclusive categorical variable

of non-Hispanic white, non-Hispanic black, non-Hispanic Asian, Hispanic, or other. However, due

to the predominance of non-Hispanic white (≈ 90%), we used a binary race/ethnicity variable of

non-Hispanic white or not. Race/ethnicity was used as a confounder since the propensity of receiving

treatment can be influenced by race/ethnicity. For example, it has been documented that racial bias in

pain perception can result in differential pain treatment recommendations53.

1.6.1 Application I: EHRData

Our data consisted of 1451 IBDpatient records fromMassGeneral Brigham for patients who initiated

adalimumab (1060) or infliximab (391) betweenDecember 1998 and June 2010. We excluded 211 pa-

tients who did not have surrogate outcomes S or whoweremissing data on 6 commonly used baseline

confounders: age, sex, race/ethnicity, prior hospitalizations, prior anti-TNF status, and Charlson co-

morobidity score3. Our complete case analysis consisted of 1240 patients (971 on adalimumab and

269 on infliximab). It appears that the treatment groups are somewhat imbalanced (Table 3), with

patients receiving adalimumab tending to be slightly older (mean age: 35.8 vs 34.3), less likely to be

male (0.42 vs 0.48), more likely to be white (0.93 vs 0.83), have a lower Charlson score 2.49 vs 2.87),

more likely to have had a prior hospitalization (0.49 vs 0.44), and prior anti-TNF (0.29 vs 0.12).

We applied our proposed estimators to examine the surrogacy of a likelihood of nonresponse score

at 6 months for the number of narrative mentions of abdominal pain at 1 year, which is an important

outcome of interest. The likelihood of nonresponse score is an algorithm-derived score that weights

textual information such as the number of narrative mentions for diarrhea and fatigue2. The likeli-

hood of nonresponse score has been shown to differentiate symptomatic nonresponse from response

and was correlated with higher IBD-surgery and hospitalization rates2.
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Table 1.3: Baseline characteristics (mean (SD)) of 1240 IBD patients from MGB who initiaited adalimumab or infliximab.

Infliximab Adalimumab
n0 = 971 n1 = 269

Age 34.3 (16.6) 35.8 (14.0)
Sex

Male 0.48 (0.50) 0.42 (0.50)
Race/Ethnicity

White 0.83 (0.49) 0.93 (0.29)
Charlson Score 2.87 (3.22) 2.49 (2.75)
Prior Hospitalization 0.44 (0.50) 0.49 (0.50)
Prior anti-TNF Status 0.12 (0.32) 0.29 (0.45)

The estimated gopt(·) along with point-wise CIs based on the IPW (red) andDR (black) estimators

are similar. The estimated transformation function appears to be non-linear, with a positive trend be-

tween s and ĝopt(s), as shown in Figure 1.2. TheDR estimate for the treatment effect is Δ̂ = 39.9 (i.e.,

patients initiating adalimumab had a greater expected number of narrative mentions of abdominal

pain at 1 year) and the corresponding treatment effect on the transformed surrogate Δgopt is estimated

as Δ̂ĝ,DR = 28.5, resulting in a PTE estimate of 0.72 with a 95% CI of (0.52, 0.92), suggesting that

the likelihood of nonresponse score at 6months is a strong surrogate for abdominal pain at 1 year. Our

finding that patients initiating adalimumab had a greater number of narrativementions of abdominal

pain at 1 year compared to patients initiating infliximab is consistentwith previous literature2. The re-

sults for the IPWPTE estimate are similar with a PTE estimate of 0.72 and a slightly wider 95%CI of

(0.51, 0.93). However,Wang (2020) assumes that treatment is randomized and thus under-estimates

both the treatment effect on the optimal transformation Δgopt and the treatment effect Δ, but more

severely under-estimatesΔgopt , resulting in a deflated estimate of thePTE=Δgopt/Δ. Indeed, theWang

(2020) method estimates Δ to be 17.5 and Δgopt to be 7.0, giving a biased PTE estimate of 0.41 with

a 95%CI of (0.14, 0.67), suggesting a weak-to-moderate surrogate rather than a strong surrogate.
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Figure 1.2: Estimated gopt(s) based on IPW (red) and DR (black) estimators and pointwise 95% confidence intervals for
the likelihood of nonresponse score at 6 months (surrogate) in an EHR comparison of adalimumab and infliximab for
1240 IBD patients

1.6.2 Application II: Cross-trial Treatments

Previous research has shown that a cheap and non-invasive partialMayo scoremay be a good surrogate

for the expensive and invasive full Mayo score70,23,2. The partial Mayo score is a composite score that

can be measured within weeks after receiving therapy and ranges in value from 0 to 9. It is based on a

patient’s self-assessed stool frequency (0-3), rectal bleeding (0-3), and a physician’s global assessment

(0-3). The full Mayo score ranges from 0 to 12 and requires an invasive endoscopy score evaluating

mucosal appearance and is typically collected much later in the trial.
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To illustrate the utility of our methods, we examine the surrogacy of the partial Mayo score at

week 6 on the primary outcome of the full Mayo score at week 54 among patients with moderate-

to-severe ulcerative colitis (UC).We compare head-to-head trials of two biologic therapies, infliximab

and golimumab118. Treatment randomization is broken by combining data from treatment arms

only in two separate trials with similar inclusion criteria, one comparing infliximab against a placebo

(NCT00036439) and another comparing golimumab against a placebo (NCT00488631). To adjust

for confounding bias, we consider baseline covariatesX including patient age, sex, race/ethnicity, and

a health status score ranging from 0 to 100. Data were obtained from the Yale University Open Data

Access (YODA) database99. It appears that the treatment groups are somewhat imbalanced (Table

4), with patients receiving infliximab tending to be slightly older (mean age: 41.4 vs 39.9 years), more

likely to be male (0.61 vs 0.57), white (0.95 vs 0.88), and have a higher health status score (57.8 vs

55.1), indicating more severe disease.

Table 1.4: Baseline characteristics (mean (SD)) of 381 moderate‐to‐severe UC patients who initiaited infliximab or goli‐
mumab.

Golimumab Infliximab
n0 = 216 n1 = 165

Age 39.9 (13.2) 41.4 (13.7)
Sex

Male 0.57 (0.50) 0.61 (0.49)
Race/Ethnicity

White 0.88 (0.32) 0.95 (0.22)
Health Score 55.1 (20.3) 57.8 (20.9)

The ranges of S and Y in the two treatment groups are {1, 2, ..., 9} and {1, 2, ..., 12} respectively,

and the distributions are provided in Figure 1.3.

The analysis focused on the 381 patients who had complete information on the partial Mayo score

at week 6, the full Mayo score at week 54, and baseline covariates, with 216 patients in the golimumab

group and 165 in the infliximab group. We applied the proposed methods to examine gopt(·) of the
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Figure 1.3: (Left) Histogram of the partial Mayo score at week 6 (surrogate) in the two treatment groups; (Right) His‐
togram of the full Mayo score at week 54 (primary outcome) in the two treatment groups

surrogate for predicting the treatment response as quantified by the full Mayo score. The estimated

gopt(·) along with point-wise CIs based on the IPW (red) and DR (black) estimators are similar. The

estimated transformation function appears to be slightly non-linear, with a clear positive trend be-

tween s and ĝopt(s), as shown in Figure 1.4.

The DR estimator for the treatment effect is estimated as Δ̂ = 1.19 in favor of golimumab and

the corresponding treatment effect on the optimally transformed outcome Δgopt is estimated to be

Δ̂ĝ,DR = 1.09. This results in a DR PTE estimate of 0.89 with a 95% CI of (0.45, 1.33), suggesting

that thepartialMayo score atweek6 is a strong surrogate for the fullMayo score atweek54. The results

for the IPW PTE estimate are similar at 0.90 with a slightly wider 95%CI of (0.43, 1.37). However,

Wang (2020) again under-estimates both the treatment effect on the optimal transformationΔgopt and

the treatment effect Δ, but more severely under-estimates Δgopt , resulting in a deflated estimate of the

PTE = Δgopt/Δ. Wang (2020) estimates Δ to be 0.24 and Δgopt to be 0.09, resulting in a biased PTE

estimate of 0.39 with a 95% CI of (−0.04, 0.83), suggesting a weak-to-moderate surrogate rather
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Figure 1.4: Estimated gopt(s) based on IPW (red) and DR (black) estimators and pointwise 95% confidence intervals for
the partial Mayo score at week 6 (surrogate) in a cross‐trial comparison of infliximab and golimumab for 361 UC patients

than a strong surrogate.

1.7 Discussion

Despite the growth of RWD, robust and flexible statistical methods to identify and validate surrogate

markers in such data settings are lacking. There is great interest in leveraging RWD, including EHRs,

registry data, and cross-trial data, to inform the design of shorter and cheaper clinical trials through

the use of valid surrogate markers. Motivated by the need for statistical methods in CER for surro-

gate marker evaluation, we propose novel IPW and DR estimators for the optimal transformation

function and the corresponding PTE explained by a surrogate in RWD settings. In two separate ap-
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plications, we validate two surrogate markers for outcomes of interest in IBD. Using EHR data from

Mass General Brigham, we validate an algorithm-derived likelihood of nonresponse score at 6months

as a surrogate for the number of narrative mentions of abdominal pain at 1 year. In a second example,

we validate a partial Mayo score at week 6, which does not require an invasive endoscopy procedure,

as a strong surrogate for the full Mayo score at week 54 in a cross-trial study, supplementing evidence

from previous placebo-controlled trials70,23,2. These findings may be particularly useful in informing

future cross-trial designs for biological therapies.

One important question is howone shoulduse the estimatedPTE to identify or validate a proposed

surrogatemarker. In practice, the primary use of the PTE estimate is to determinewhether a proposed

surrogate is of ‘high quality’, in the sense that it can explain a large proportion of the treatment effect

on the primary outcome of interest. While there are no official criteria on what constitutes a high-

quality surrogate, previous work has proposed calling a surrogate “high quality” if the lower bound

of the 95% CI of the PTE estimate is above 0.50 (Lin, 1997). If a proposed surrogate meets this

criterion or some similar threshold, then future studies can use the surrogate to make inferences on

the treatment effect on the primary outcome. For example, when the primary outcome is not available

or may be costly to obtain, then the treatment effect on the transformed surrogate Δg may be used

instead to test for the treatment effect on the primary outcome Δ. Finally, a validated surrogate can be

useful in the design of future studies, where sample size and power calculations can be based on the

treatment effect on the transformed surrogate Δg.

Our approach has some limitations. First, our proposed plug-in estimators for PTE use the same

data to estimate both gopt and PTE given g, which may result in overfitting bias. However, in simu-

lation studies, the bias appears small compared to the standard error, even with modest sample sizes.

For small sample sizes, cross-validation can be used, in which separate data is used to estimate gopt and

PTE given g. Second, we fit our PSmodels using logistic regression with specified basis functions, but

alternative approaches like gradient boosting, super learner, and othermachine learning classifiers can
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be used. Third, our approach is tailored for a single surrogate. Future extensions of our method can

be developed to incorporate multiple surrogates, for example, through a surrogate index approach6,8.

Another interesting question is the relative efficiency gain of the DR estimator compared to the IPW

estimator when the level of covariate overlap varies. In observational studies, the unconfoundedness

assumption is more plausible when one adjusts for a richer set of covariates102, the intuition being

that including these covariates decreases the likelihood of unmeasured confounding. However, this

can present an issue for covariate overlap, because if these covariates can nearly perfectly predict treat-

ment assignment, then propensity scores will not be bounded away from zero and one33. Papers in

the semiparametric estimation literature have shown that the convergence rate of estimators depends

on the level of covariate overlap66,54, and it would be interesting to examine this effect on efficiency

in our setting.
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SupplementaryMaterials

The supplementary materials contain six appendices. Appendix A.1 provides a derivation of the op-

timal transformation function. Appendix A.2 provides a derivation of the bounded PTE measure

and avoidance of the surrogate paradox when assumptions (A1) and (A2) are satisfied. Appendix A.3

provides a proof for consistency and asymptotic normality of P̂TEĝ. Appendix A.4 proves that our

proposedDRestimators are consistentwhen either the PSmodel or theORmodels are correctly spec-

ified. Appendix A.5 provides details on perturbation resampling. Appendix A.6 provides additional

figures.
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2
Federated Adaptive Causal Estimation

(FACE) of Target Treatment Effects

2.1 Introduction

Multi-center, federated causal inference is of great interest, particularly when studying novel treat-

ments, rare diseases, or in times of urgent health crises. For example, the COVID-19 pandemic has
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highlighted the need for novel approaches to efficiently and safely evaluate the effectiveness of novel

therapies and vaccines, leveraging data frommultiple healthcare systems to ensure the generalizability

of findings. Over the past few years, many research networks and data consortia have been built to

facilitate multi-site studies and have been actively contributing to COVID-19 studies, including the

Observational Health Data Sciences and Informatics (OHDSI) consortium56 and the Consortium

for Clinical Characterization of COVID-19 by EHR15.

Analyzing data collected from multiple healthcare systems, however, is highly challenging for sev-

eral reasons. Various sources of heterogeneity exist in terms of (i) differences in the underlying popu-

lation of each dataset and (ii) policy level variations of treatment assignment. Since treatment effects

may differ across different patient populations, it would be of interest to infer the average treatment

effect (ATE) for specific target populations. However, the presence of heterogeneity and potential

modelmis-specification poses great difficulty to ensure valid estimates for the target average treatment

effect (TATE). Furthermore, patient-level data typically cannot be shared across healthcare centers,

which brings additional practical challenges. To overcome these challenges, we propose a Federated

Adaptive Causal Estimation (FACE) framework that aims to incorporate heterogeneous data from

multiple sites tomake inference about theTATE,while accounting for heterogeneity and data-sharing

constraints.

Most existing literature on federated learning has focused on regression and classification mod-

els19,71,18,68,72,125,30. Limited federated learningmethods currently exist tomake causal inferencewith

multiple heterogeneous studies. Recently,130 proposed federated inverse probability weighted (IPW)

estimation of the ATE specifically for an entire study population. Although130 provided multiple

methods for point estimation and variance estimation, the choice of the proper method depends on

prior knowledge about model homogeneity and specification, which are difficult to verify in practice.

No empirical study in130 was provided to test the robustness of the approach to the covariate shift as-

sumption. In addition, their methods cannot be used to estimate the ATE of a target population that
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differs from the full study population.121 proposed a Bayesian approach that models potential out-

comes as random functions distributed by Gaussian processes. Their focus is also on the population

ATE rather than any particular target population, and their approach requires specifying parameters

and hyperparameters of Gaussian processes andmodeling between-site covariate correlations through

kernel functions, which can be numerically intensive. Compared to these approaches, our approach

estimates the TATE in a particular target population and accounts for the heterogeneity across pop-

ulations without requiring prior information on the source data distribution or the validity of model

specifications. Our approach further safeguards against incorporating source datasets that may intro-

duce bias to the estimation of the TATE, known as negative transfer87,127.

Another related strand of literature concerns the generalizability and transportability of random-

ized clinical trials to EHR studies. For example, Stuart et al. 113,112,111 assessed the generalizability of

results from randomized trials to target populations of interest.26,29, and65 all focused on extending

inferences about treatments from a randomized trial to a new target population by using different

weighting schemes. For a comprehensive review of statistical methods for generalizability and trans-

portability, see Degtiar & Rose 27 . However, to date, no literature in generalizability and transporta-

bility has sought to leverage observational data from a potentially large number of source sites in a

data-adaptive manner to obtain unbiased, efficient, and robust estimation of target treatment effects.

The major contributions of FACE can be summarized as follows. First, FACE allows for flexibility

in the specification of the target population. For example, the target population in a research network

can be defined as the underlying population of a given healthcare center, or multiple healthcare cen-

ters that share certain properties (e.g., geographic location), or the overall population combining all

sites. This flexibility provides stakeholders and policymakers at different levels with information on

their respective target populations. Second, using a semiparametric density ratio weighting approach,

FACE allows the distribution of covariates to be heterogeneous across sites. Third, FACE protects

against negative transfer through an adaptive integration strategy which anchors on the target data
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and computes data-adaptiveweights for source sites. In doing so, FACE can achieve optimal efficiency

while maintaining consistency, and it is robust to the distribution of data and potential model mis-

specifications in the source sites. Moreover, FACE is a communication-efficient federated algorithm

that allows each participating site to keep their data stored locally and only share summary statistics

once with other sites.

The remainder of the paper is organized as follows. In Section 2.2, we introduce the problem set-

ting, notation, and assumptions required for identification of the TATE. In Section 2.3, we describe

the proposed FACE framework for estimating the TATE. We introduce the in-site estimators based

on the target population and source populations separately in Sections 2.3.1 and 2.3.2 and present

the adaptive and distributed integration in Section 2.3.3. In Section 2.4, we provide the theoretical

guarantees of FACE, including double robustness, asymptotic normality, and relative efficiency. In

Section 2.5, we conduct extensive simulations for various numbers of sites, data generating mecha-

nisms, and show robustness to mis-specification of different models. In Section 2.6, we apply FACE

to conduct a comparative effectiveness study of COVID-19 vaccines using the EHRs from five fed-

erated Veterans Affairs (VA) sites. We conclude in Section 2.7 with key takeaways and directions for

future research.

2.2 Setting andNotation

For the i-th observation, we denote the outcome as Yi ∈ R, the p-dimensional baseline covariate

vector as Xi = (Xi1, ...,Xip)
⊤ ∈ X ⊂ Rp, and the indicator for binary treatment as Ai ∈ {0, 1}.

There are J ≥ 1 target sites and another K ≥ 0 source sites. Let T ⊆ [J + K] indicate sites that

are in the target population and S ⊂ [J + K] indicate sites that are in the source population, where

[K] = {1, ...,K} for any integer K. Under the federated learning setting, a total of N observations

are stored at J+ K study sites, where the k-th site has sample size nk, andN =
∑J+K

k=1 nk. Let Ri be a
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site indicator such that Ri = k indicates the i-th patient in the k-th site. Indexing the site by a single

integerRi, we assume that each observationmay only belong to one site. We summarize the observed

data at each site k asDk = {(Yi,X
⊤
i ,Ai,Ri)

⊤,Ri = k}, and consider a federated data setting where

each site has access to its own patient-level data but can share only summary statistics with other sites.

We denote the index set for each site as Ik = {i : Ri = k}. The data included in the target sites are

denoted by DT . For simplicity of notation, we use (Y,X,A,R) without subscripts to state general

assumptions and conclusions.

Under the potential outcomes framework81,100, we denote Y(a) as the potential outcome of pa-

tients under treatment A = a, a = 0, 1. Our goal is to estimate the TATE for a specified target

population T ,

ΔT = μ(1)T − μ(0)T , μ(a)T = E(Y(a) | R ∈ T ), (2.1)

where the expectation is taken over the distribution in the target population. The target population

can be specified at multiple levels (e.g., single site, multiple sites, all sites) corresponding to different

targets of real world interest. This distinction between target and source sites also distinguishes our

setting from that of130, in which the target population always contains all participating sites.

To identify the TATE, we make the following standard assumptions60,49 throughout the paper:

Assumption 1 For a positive constant ε > 0, a ∈ {0, 1}, and x ∈ X ,

(a) Consistency: Y = Y(A).

(b) Overlapping of treatment arms: P(A = a | X = x,R = k) ∈ (ε, 1− ε), k ∈ [J+ K].

(c) Overlapping of site populations: P(R = k | X = x) > ε, k ∈ [J+ K].

(d) Ignorability:
(
Y(1),Y(0)

)
⊥⊥ (A,R) | X for R ∈ {T ,S∗} for some S∗ ⊆ S .
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Remark 1 Assumption 1(d) implies that the underlying true treatment response pattern is shared across

target sites and an unspecified subset of source sites S∗ ⊆ S so that the treatment effect estimates from

T and S∗ can be safely combined to estimate the TATE. Our adaptive selection and aggregation step

in FACE, as detailed in Section 2.3.3, is designed to incorporate these source sites S∗ for precision gain

while preventing negative transfer from other source sites S \ S∗. Assumption 1(d) may be violated, for

example, when the target and source populations differ along unobserved features, such that controlling

for observed confounders is insufficient.83 consider such a setting. They assume that the distribution of po-

tential outcomes across target and source populations are the same conditioning on observed confounders

X and unmeasured effect modifiersU and derive bounds for the TATE by assuming a sensitivity model

that directly implies a bound on the unobserved distribution shift ratio. Since violations of the transporta-

bility assumption are in general untestable, many works have also proposed sensitivity analysis for how

much violation of the assumption can result in transportability bias4,82.

We denote the specified models for the site-specific propensity score (PS) and outcome regression

(OR) as:

PS : P(A = a | R = k,X) = πk(a,X; αk), (2.2)

OR : E(Y | R = k,A = a,X) = m(a,X; βa,k). (2.3)

For the target sites, we require E(Y(a) | R = k,X) to be shared but do not require αk to be the same

across T . Under possible model mis-specifications, we allow either (i) the outcomemodels in (2.3) to

be correctly specifiedwith βa,k = βa, or (ii) the PSmodels in (2.2) to be correctly specified, for k ∈ T .

Since the distribution of the covariates X can be heterogeneous across sites, we characterize the

difference in covariate distributions between a target site kt ∈ T and a source site ks ∈ S through a

density ratio

ωkt,ks(x) =
f(X | R = kt)
f(X | R = ks)

=
P(R = kt | X = x)P(R = ks)
P(R = ks | X = x)P(R = kt)

.
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We choose flexible semiparametric models for the density ratio

ωkt,ks(X; γkt,ks) = exp{γTkt,ksψ(X)}, (2.4)

where ψ : Rp 7→ Rq is a vector-valued basis function with an intercept term. One may specify a

range of basis functions to capture potential non-linearity in the density ratio model to improve the

robustness of the estimation for ωkt,ks(x).

Remark 2 The exponential tilt density ratio model (2.4) is widely used to account for heterogeneity

between two distributions92,93,32. By including higher-order terms of x in ψ(x), higher-order differences

such as variance and skewness can be captured. We propose in Section 2.3 a communication-efficient

approach to estimate γkt,ks in covariate distributions between a target site and source site without sharing

individual-level data. In the simulation study and real-data example, we have selected the exponential

tilt model with ψ(x) = x, which recovers the whole class of natural exponential family distributions,

including the normal distribution with mean shift, Bernoulli distribution for binary covariates, etc.

2.3 Method

In this section, we detail the FACEmethod. We start with an overview of its main workflow, where a

schematic illustration can be found in Figure S1 of the SupplementaryMaterials. In step 1, each target

site calculates summary statistics of its covariate distribution, ψ̄k = n−1
k
∑

i∈Ik ψ(Xi) for k ∈ T , a

key quantity for estimating the density ratio model to balance covariate distributions, and broadcasts

them to all source sites, alongwith its ORparameters {β̂a,k, a = 0, 1}. Each target site also constructs

a doubly robust estimator7 for its site-specific ATE, obtains additional summary statistics needed for

the adaptive aggregation, and shares themwith the leading analysis center (AC) (see Section 2.3.1). In

Step 2, each source site uses the summary statistics of the target site (ψ̄k from k ∈ T ) to fit its density
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ratiomodel and construct an augmentation term δ̂T ,k for k ∈ S for the TATE. Each source site shares

the augmentation term, togetherwith additional summary statistics needed for the aggregation, to the

AC (see Section 2.3.2). In Step 3, the AC performs the aggregation with estimators and parameters

from Steps 1 and 2 to obtain the final FACE estimator, Δ̂T ,FACE (see Section 2.3.3). Overall, each site

is only required to share information one time with other sites.

We detail each step of FACE in Sections 2.3.1-2.3.3 with generic models. Each site will need to

fit both the OR models and the PS model using its own local data. Standard regression models such

as logistic regression and generalized linear models can be used. Non-linear basis functions can be

included to incorporate non-linear effects. For k ∈ [J+K], we denote the estimated PS as πk(a,X; α̂k)

and the predicted outcome for treatmenta asm(a,X; β̂a), where α̂k and β̂a canbe achieved via classical

estimation methods such as maximum likelihood estimation or estimating equations. An example

with logistic regression models is given in Section 2.3.5.

2.3.1 Step 1: Estimation Using Target Data

The initial doubly robust TATE estimator is obtained from the site-specific ATE of the target sites.

Within target sites, we compute the doubly robust TATE7, Δ̂T ,k = M̂k + δ̂T ,k, where

M̂k = n−1
k

∑
i∈Ik

{
m(1,Xi; β̂1,k)−m(0,Xi; β̂0,k)

}
for k ∈ T

is the ORmodel based estimate of the TATE, and

δ̂T ,k = n−1
k

∑
i∈Ik

(−1)1−Ai

πk(Ai,X; α̂k)
{Yi −m(Ai,Xi; β̂Ai,k)} for k ∈ T , (2.5)

is the augmentation term that guards against mis-specification of the OR model. In addition, we

calculate summary statistics for the k ∈ T target site covariate distribution, ψ̄k = n−1
k
∑

i∈Ik ψ(Xi).
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The AC can construct the initial TATE estimate,

Δ̂T ,T = N−1
T

∑
k∈T

nkΔ̂T ,k,

with summary data from target sites, {Δ̂T ,k, nk : k ∈ T }. The consistency of Δ̂T ,T is ensured when

either the PS or OR is consistently estimated for each k ∈ T .

Remark 3 Here, we estimate βa in each target site k ∈ T as β̂a,k. Alternatively, one could estimate βa

jointly at the cost of one additional round of communication between target sites. A jointly estimated βa

could benefit from efficiency gain under certain model specification conditions. Previous literature have

developed distributedmethods for aggregating estimates of βa
19,57,31. In practice, one should balance the

advantage of potential efficiency gain with the cost of an additional cross-site communication.

To facilitate optimal aggregation, we also share the estimators for the variance-covariance of scaled

estimators,√nk(M̂k, δ̂T ,k, ψ̄k, β̂1,k, β̂0,k), which we denote as Σ̂k for the target sites k ∈ T . Variance

estimation Σ̂k for k ∈ T can be conducted through classical influence functions or bootstrapping

within site. The exact role of the matrix in the aggregation will be unveiled after introducing the

optimal combination weights in (2.8), which is the centerpiece of the adaptive aggregation step.

2.3.2 Step 2: Estimation Using Source Data

To safely use source data to assist in estimating ΔT , we further account for the covariate shifts between

the source sites and the target sites by tilting the source sites to the target population through the den-

sity ratios ωkt,ks(X; γkt,ks). If individual-level data could be shared, estimating γ̂kt,ks could be achieved

by constructing a pseudo-likelihood function as in92. However, such an estimator cannot be directly

obtained in a federated data setting. Instead, we propose a simple estimating equation approach that

can be calculated in each source site ks ∈ S using its data, along with summary statistics ψ̄kt obtained
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from the target sites kt ∈ T . Specifically, we estimate γkt,ks as

γ̂kt,ks : solution to n−1
ks

∑
i∈Iks

ωkt,ks
(
ψ(Xi); γkt,ks

)
ψ(Xi) = ψ̄kt . (2.6)

Remark 4 Our approach is related to recent work that adjusts for observed differences in covariate dis-

tributions between a target population and the population that actually receives treatments50,114.50 con-

struct minimax linear weights that achieve approximate sample balance as in (6) uniformly over an

absolutely convex classM. They show that whenM is selected appropriately, the solution to (6) converges

in empirical mean square to the functional’s Riesz representer, i.e., the unique square-integrable func-

tion that satisfies the corresponding population balance condition for all square-integrable functions51.

Relatedly,114 propose regularized calibrated estimators in the high-dimensional setting under minimal

sparsity assumptions.

For each source site, we construct a site augmentation term similar to the augmentation term in

(2.5) for the target sites but with an additional density ratio weight

δ̂T ,ks = n−1
ks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
(−1)1−Ai

πk(Ai,Xi; α̂k)
{Yi −m(Ai,Xi; β̂Ai,kt)} for ks ∈ S.

We use the OR estimates from target sites β̂Ai,kt to ensure robustness when the OR is mis-specified.

See Remark 5 for details.

Then, the site-specific augmentation terms δ̂T ,ks are shared back to the AC, together with (i) σ̂2ks ,

an estimate for the scaled conditional variance nksVar
(
δ̂T ,ks | DT

)
, and (ii) d̂kt,ks , an estimate for the

partial derivatives of δ̂T ,ks with respect to ψ̄kt , β̂1,kt , and β̂0,kt . The role of d̂kt,ks in the aggregation will

be explained in (2.8). Both σ̂2ks and d̂kt,ks can be constructed from classical influence functions. Alter-

natively, σ̂2ks can be estimated by bootstrapping within site and d̂kt,ks can be estimated by numerical

derivatives.
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Remark 5 Combining the source site augmentation term δ̂T ,ks with the initial TATE OR estimator

from the target sites M̂T , we obtain the ks ∈ S source site estimators Δ̂T ,ks = M̂T + δ̂T ,ks as

Δ̂T ,ks = N−1
T

∑
kt∈T

nkt

(
n−1
kt

∑
i∈Ikt

{m(1,Xi; β̂1,kt)−m(0,Xi; β̂0,kt)}

+ n−1
ks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
(−1)1−Ai

πks(Ai,Xi; α̂ks)
{Yi −m(Ai,Xi; β̂Ai,kt)}

)
.

When the underlying OR model in the ks ∈ S source site is the same as in the target population, the

estimator Δ̂T ,ks is doubly robust in the following sense: either (i) the OR model is consistent for all

k ∈ {T , ks}, or (ii) the PS and density ratio models are consistent for the source site. Shifts in covariate

distributions may induce heterogeneity in OR estimates across sites under mis-specified ORmodels, even

if the conditional distribution Y | A,X is shared. To achieve robustness toward mis-specified OR, it is

important to use the same β̂a,kt for M̂T and δ̂T ,ks so that we may rely on the correct PS and density ratio

models for consistency according to the alternative representation

N−1
T

∑
kt∈T

nkt

{
n−1
ks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
(−1)1−Ai

πks(Ai,Xi; α̂ks)
Yi

+ n−1
kt

∑
i∈Ikt

m(1,Xi; β̂1,kt)− n−1
ks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
Ai

πks(1,Xi; α̂ks)
m(1,Xi; β̂1,kt)

− n−1
kt

∑
i∈Ikt

m(0,Xi; β̂0,kt) + n−1
ks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
1− Ai

πks(0,Xi; α̂ks)
m(0,Xi; β̂0,kt)

}
.

To protect against negative transfer from source sites with biased TATE estimators, we combine infor-

mation from each source site with the target sites through our adaptive aggregation step in Section 2.3.3.
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2.3.3 Step 3: Adaptive Aggregation

In the final step, we obtain our FACE estimator by adaptively aggregating the initial TATE estimator

Δ̂T ,T and the source site estimators Δ̂T ,ks . Denote δ̂T ,T = N−1
T
∑

k∈T nkδ̂T ,k. The AC can estimate

ΔT by taking a linear combination of the initial TATE estimator Δ̂T ,T and the source site estima-

tors Δ̂T ,ks , where the weights are estimated to make an optimal bias-variance tradeoff. Indeed, the

proposed FACE estimator is an “anchor and augmentation” estimator”

Δ̂T ,FACE = Δ̂T ,T +
∑
ks∈S

ηks{Δ̂T ,ks − Δ̂T ,T } = Δ̂T ,T +
∑
ks∈S

ηks {̂δT ,ks − δ̂T ,T },

which anchors on the initial TATE estimator Δ̂T ,T and is augmented with source site estimators

Δ̂T ,ks , with the weights {ηks , ks ∈ S} to be estimated in a data-adaptive fashion to filter out po-

tentially biased source site estimators. The second expression of Δ̂T ,FACE in (2.3.3) shows how the

parameters from Steps 1 and 2 are used in the construction of the FACE estimator.

Moreover, the aggregation of the remaining unbiased source site augmentation terms should also

minimize the estimation variance. Under the federated learning setting, the key to evaluate the vari-

ance of (2.3.3) is to decompose it into contributions from separate sites so that they can be estimated

within each site. For any subset of S , S ′ ⊆ S , we consider the following decomposition

Var

Δ̂T ,T +
∑
ks∈S′

ηks(Δ̂T ,ks − Δ̂T ,T )


≈
∑
ks∈S′

η2ksVar
(
δ̂T ,ks | DT

)

+
∑
kt∈T

Var


 nkt
NT

,
nkt − nkt

∑
ks∈S′ ηks

NT
,
∑
ks∈S′

ηksd
T
kt,ks

 (M̂T , δ̂kt , ψ̄
T

kt , β̂
T

1,kt , β̂
T

0,kt)
T

 , (2.7)

where dkt,ks is the limit for d̂kt,ks , which is the partial derivative of δ̂T ,ks with respect to the broadcast
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estimators ψ̄kt , β̂1,kt and β̂0,kt . Wedecouple the dependence of the source site augmentation terms δ̂T ,ks

on the target sites by subtracting thefirst order approximationof thedependence
(
ψ̄T

kt , β̂
T

1,kt , β̂
T

0,kt

)
dkt,ks .

The resulting δ̂T ,ks − dT
kt,ks ψ̄kt is asymptotically independent of the target sites.

Since including information from source sites S \ S∗ may lead to biases, we adopt an adaptive

combination strategy similar to the one given in20 for combining data from a randomized trial and

an observation study. Here, we overcome the additional challenge of data sharing constraints, and we

propose the following adaptive L1 penalized optimal aggregation

η̂ = argmin
η∈RK

N

∑
ks∈S

η2ks
σ̂2ks
nks

+
∑
kt∈T

ĥkt(η)
T Σ̂kt
nkt

ĥkt(η)

+ λ
∑
ks∈S
|ηks |

(
δ̂T ,ks − δ̂T ,T

)2
, (2.8)

where

ĥkt(η) =

 nkt
NT

,
nkt − nkt

∑
ks∈S∗ ηks

NT
,
∑
ks∈S

ηks d̂
T
kt,ks

T

,

with Σ̂kt estimated from Step 1 and σ̂2ks and d̂kt,ks estimated from Step 2. The multiplicativeN factor

is required to stabilize the loss. Choosing λ � Nν with ν ∈ (0, 1/2), we achieve the following oracle

property for selection and aggregation: (i) biased source site augmentation terms have zero weights

with high probability; (ii) regularization on theweights for unbiased source site augmentation terms is

asymptotically negligible (� N−1/2). Analogous to the phenomenon inmeta-analysis, the estimation

uncertainty of η̂ has no asymptotic effect on the aggregated estimator.

Using the variance estimator (stabilized by “N” factor likewise)

V̂ = N

∑
ks∈S

η̂ks
σ̂2ks
nks

+
∑
kt∈T

ĥkt(η̂)
T Σ̂kt
nkt

ĥkt(η̂)

 (2.9)

and the 1−α/2 quantile for the standard normal distributionZα/2, we construct the (1−α)× 100%
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confidence interval

Ĉα =
[
Δ̂T ,FACE −

√
V̂/NZα/2, Δ̂T ,FACE +

√
V̂/NZα/2

]
. (2.10)

The full FACE workflow is summarized in Algorithm 1.

Algorithm 1: FACE under generic model specifications
Data: J target sites kt ∈ T ,K source sites ks ∈ S , and a Leading AC

1 for Target kt ∈ T do
2 Estimate αkt , βa,kt to calculate the initial TATE Δ̂T ,kt its augmentation δ̂T ,kt and

the variance estimator Σ̂kt and transfer to the leading AC. Calculate ψ̄kt and
broadcast to source sites along with β̂a,kt .

3 end
4 for Source sites ks ∈ S do
5 Estimate γkt,ks and αks to calculate the site-specific augmentation δ̂T ,ks and

transfer to the leading AC. Calculate σ̂2ks , d̂kt,ks and transfer to the leading AC.
6 end
7 for Leading AC do
8 Estimate η by solving the penalized regression in (2.8). Construct the final

global estimator as Δ̂T ,FACE by (2.3.3). Calculate the global estimator variance
by (2.9) and construct 95% CI.

9 end
Result: Global TATE estimate, Δ̂T ,FACE and 95%CI

Remark 6 Our aggregation procedure is communication-efficient and privacy-protected, whereas ag-

gregation procedures given in the current literature such as those in20 require sharing individual-level

influence functions. Equation (2.8) is constructed using summary statistics, which provides a federated

learning solution when individual-level data sharing is forbidden.
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2.3.4 Tuning Parameters

To choose an optimal tuning parameter λ, we propose a sample splitting approach that does not

require sharing individual-level data. In each site, the data is first split into training and validation

datasets, keeping the same proportion within each site. In the training datasets, Algorithm 1 is im-

plemented to obtain the summary statistics (Σ̂kt , d̂ks , σ̂
2
ks , δ̂T ,ks , and δ̂T ,T ) needed for Equation (2.8).

The AC selects a grid of λ values and calculates η̂(λ) by solving the penalized regression in (2.8). The

upper and lower bounds on the grid of λ values can be left unrestricted; in practice, we have found

that searching between 0.01 to 100 to be sufficiently large to provide good finite sample performance.

In parallel, the validation datasets are used to obtain summary statistics denoted by (Σ̃kt , d̃ktks , σ̃2ks , δ̃T ,ks

and δ̃T ,T ). These summary statistics are calculated using the validation datasets and plugging in the

parameters estimated from the corresponding training datasets. The AC sets the value of the optimal

tuning parameter, λopt, to be the value corresponding to the η̂ that minimizes Q(η̂) in the validation

datasets, defined as

Q(η̂) = NV

∑
ks∈S

η̂2ks
σ̃2ks
nVks

+
∑
kt∈T

h̃kt(η̂)
T Σ̃kt
nVkt

h̃kt(η̂)

 ,

whereNV, nVks , and n
V
kt are the sample sizes for validation data from all sites, source site ks, and target

site kt, respectively.

2.3.5 FACEUnder Logistic RegressionModels

As an example, we illustrate FACE under logistic regression models with Y being binary, J + K = 5

total sites and T = {1} as the target site. For notational ease, let X be the vector of covariates with

an intercept term. We fit logistic regression models with link g(x) = 1/(1 + e−x) and loss ℓ(y, x) =

log(1+ ex)− yx for all PS and ORmodels. For simplicity, we let ψ(X) = X.
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In Step 1, we calculate themean covariate vector in the target site kt = 1 as ψ̄T = 1
n1
∑

i∈I1 Xi and

transfer it to sites 2 through 5. Then, we estimate the models for kt = 1

α̂1 = argmin
α∈Rp+1

1
n1

∑
i∈I1

ℓ(Ai, αTXi), β̂a,1 = argmin
β∈Rp+1

1
n1

∑
i∈I1

I(Ai = a)ℓ(Yi, αTXi).

Using the estimated models, we obtain the initial estimator and its augmentation term

M̂T =
1
n1

∑
i∈I1

{
g
(
β̂
T

1,1Xi

)
− g
(
β̂
T

0,1Xi

)}
,

δ̂T ,T =
1
n1

∑
i∈I1

[
Ai

g (α̂T
1Xi)

{
Yi − g

(
β̂
T

1,1Xi

)}
− 1− Ai

g (−α̂T
1Xi)

{
Yi − g

(
β̂
T

0,1Xi

)}]

and Δ̂T ,T = M̂T + δ̂T ,T . The variance covariance matrix estimator Σ̂1 can be calculated as Σ̂1 =

n−1
1
∑

i∈I1 ÛiÛT
i through the estimated influence functions, where Ûi = (̂ζi, ξ̂i, ψ(Xi)

T, υ̂1,i, υ̂0,i)T,

and the exact form of ξ̂i,1, ζ̂i and υ̂a,i are given in the Supplement B.3.4.

In Step 2, we estimate the models for ks = 2, . . . , 5

α̂ks = argmin
α∈Rp+1

n−1
kt

∑
i∈Iks

ℓ(Ai, αTXi), γ̂ks = argmin
γ∈Rp+1

n−1
kt

∑
i∈Iks

exp(γTXi)− γTψ̄T .

Using the estimated models, we obtain the site-specific augmentations

δ̂T ,ks = n−1
ks

∑
i∈Iks

eγ̂
T
ksXi

[
Ai

g
(
α̂T
ksXi
) {Yi − g

(
β̂
T

1,1Xi

)}
− 1− Ai

g
(
−α̂T

ksXi
) {Yi − g

(
β̂
T

0,1Xi

)}]
.
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along with the partial derivative of δ̂T ,ks with respect to ψ̄T , d̂ks = (d̂T
ks,ψ, d̂

T
ks,β1

, d̂T
ks,β0

)T, as

d̂ks,ψ =−

n−1
kt

∑
i∈Iks

eγ̂
T
ksXiXiXT

i


−1

n−1
kt

∑
i∈Iks

eγ̂
T
ksXi (−1)1−Ai

g
(
α̂T
ksXi
) {Yi − g

(
β̂
T

Ai,ksXi

)}
Xi,

d̂ks,βa = (−1)an−1
kt

∑
i∈Iks

eγ̂
T
ksXi I(Ai = a)

g
{
(−1)1−aα̂T

ksXi
}g′ (β̂TAi,ksXi

)
Xi.

The variance estimator σ̂2ks can be calculated as σ̂
2
ks = n−1

kt
∑

i∈Iks
ξ̂
2
i,ks through the estimated influence

function, where the form of ξ̂i,ks is given in the Supplement B.3.4.

In Step 3, we use Σ̂1, d̂ks , σ̂
2
ks , δ̂T ,ks and δ̂T ,T to solve the adaptive selection and aggregation (2.8),

which leads to Δ̂T ,FACE and the confidence interval Ĉα.

2.4 Theoretical Guarantees

In this section, we provide the theoretical results for the FACE estimator. We start with a high-level

theory for a generic choice of models in Section 2.4.1. Then, we discuss the efficiency gain from lever-

aging source sites in Section 2.4.2. We give in Section B.2 a detailed set of conditions corresponding to

the realization of Section 2.3.5. In our asymptotic theory, N is allowed to grow but the distribution

for (Y,XT,A,R)T and J+ K are fixed.

2.4.1 Theory for General FACE

To compress notation, we combine the broadcast parameters and their asymptotic limits as

θ̂kt =
(
ψ̄T

kt , β̂
T

1,kt , β̂
T

0,kt

)T

, θ̄kt =
(
E{ψ(X)T | R = kt}, β̄

T

1,kt , β̄
T

0,kt

)T

. (2.11)

Regularity conditions are detailed in the following
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Assumption 2 For absolute constants M, ε > 0,

(a) (Regularity of estimators) The estimators M̂T , δ̂T ,kt , β̂a,kt and δ̂T ,ks admit the following asymp-

totically linear representations

√
NT (M̂T − M̄T ,T ) =

1√
NT

∑
kt∈T

∑
i∈Ikt

ζi + op(1),

√
NT (̂δT ,T − δ̄T ,T ) =

1√
NT

∑
kt∈T

∑
i∈Ikt

ξi,T + op(1),

√nks (̂δT ,ks − δ̄T ,ks) =
1
√nks

∑
i∈Iks

ξi,ks +
√nks

∑
kt∈T

d̄T
kt,ks

(
θ̂kt − θ̄kt

)
+ op(1),

√nkt
(
β̂a,kt − β̄a,kt

)
=

1
√nkt

∑
i∈Ikt

υi,a + op(1).

with bounded asymptotic limits M̄T ,T , δ̄T ,T , δ̄T ,ks , d̄kt,ks and iid mean zero random variables

ζi, ξi,T , ξi,ks .

(b) (Compact support) The covariatesX and their functions ψ(X) in the density ratio are in compact

setsX ∈ [−M,M]p and ψ(X) ∈ [−M,M]q almost surely.

(c) (Stable variance) The variance of ξi,ks is in the set [ε,M]. The variance-covariance matrix

Σkt = Var
{(

ζi, ξi,T , ψ(Xi)
T, υTi,1, υTi,0

)T | R = kt
}

has eigenvalues all in [ε,M] for some positive constant ε andM.

(d) (Regularity of auxiliary estimators) The estimators Σ̂kt , σ̂
2
ks , d̂ks are

√
N-consistent

∑
kt∈T

∥∥∥Σ̂kt − Σkt

∥∥∥+∑
ks∈S

{∣∣σ̂2ks − Var(ξi,ks | Ri = ks)
∣∣+ ∥∥∥d̂ks − d̄ks

∥∥∥} = Op

(
N−1/2

)
.
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(e) (Root-N rate consistency) For each target site kt ∈ T , at least one of the two models is correctly

specified:

-i the PS model is consistently estimated:

sup
a=0,1

sup
∥x∥∞≤M

∑
kt∈T
|P(A = a | X = x,R = kt)− πk(a, x; α̂kt)| = Op

(
N−1/2

)
.

-ii the ORmodel is consistently estimated:

sup
a=0,1

sup
∥x∥∞≤M

∑
kt∈T

∣∣∣E(Y | A = a,X = x,R = kt)−mkt(a, x; β̂a,kt)
∣∣∣ = Op

(
N−1/2

)
.

Assumptions 2(a) and 2(e) are the typical regularity conditions under classical parametric models.

They can be verified in two steps: 1) asymptotic normality of model estimators119 and 2) local expan-

sion of the estimators. Assumption 2(c) regulates the scale of variability of the data, which leads to a

stable variance for Δ̂T ,FACE. Assumption 2(e) ensures identification of the true TATE by anchoring

on Δ̂T ,T
7. Note that in the setting ofmultiple target sites, Assumption 2(e) allows for each target site

to have different correct model specifications for either the ORmodel or the PS model.

We now state the theory for the general FACE estimation.

Theorem 1 Under Assumptions 1 and 2, the FACE estimator is consistent and asymptotically normal

with consistent variance estimation V̂ ,

√
N/V̂

(
Δ̂T ,FACE − ΔT

)
⇝ N (0, 1).

We use⇝ for convergence in distribution.

Theorem 1 implies that (2.10) provides asymptotically honest coverage.
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Corollary 1 Under Assumptions 1 and 2, the coverage rate of the confidence interval (2.10) approaches

the nominal level asymptotically

lim
N→∞

P
(
ΔT ∈ Ĉα

)
= 1− α

A key step in the proof of Theorem 1 is the analysis of the L1 penalized adaptive selection and

aggregation (2.8). We are able to establish the oracle property35, i.e., the data-driven selection and

aggregation through (2.8) is asymptotically equivalent to the process with a priori selection and op-

timal aggregation. The problem is different from the typical penalized regression, so we develop a

new proof strategy. We first analyze the optimal combination with oracle selection, in which the bi-

ased augmentations are excluded. For unbiased augmentations, Δ̂T ,ks − Δ̂T ,T = Op
(
N−1/2), so the

penalty term is asymptotically negligible, i.e., λ(Δ̂T ,ks− Δ̂T ,T )
2 = op

(
N−1/2)when λ is chosen such

that λ � Nν with ν ∈ (0, 1/2). Thus, the estimated combination converges to the asymptotic limit

at the regularN−1/2 rate. Finally, we show that the estimated combination with oracle selection also

solves the original problem with high probability.

Remark 7 For consistency of Δ̂T ,FACE, we require that the PS or ORmodel is correct for the target sites

but allow the models for the source sites and density ratio to be mis-specified. To meaningfully leverage

information from source sites for the TATE, we would expect that many ks ∈ S among the source sites (i)

satisfy the ignorability condition 1(d) and (ii) either theORmodelm(a) is correct, or both the PS πks and

the density ratio ωkt,ks models are correct. For source sites satisfying the conditions above, their site-specific

augmentations are unbiased and thus contribute to the efficiency improvement of Δ̂T ,FACE.

2.4.2 Relative Efficiency

Notice that we recover the initial TATE estimator Δ̂T ,T from (2.3.3) if η̂ = 0. Since we are min-

imizing the post-aggregation variance, the optimal solution must be no worse than any alternative
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solutions. If there exists informative source sites in S ′, as defined in Assumption 3, improvement in

the efficiency of FACE compared to the target only estimator is guaranteed.

Assumption 3 For a nonempty set S ′ ⊆ S , one of the following holds

(a) (i) Correct OR: the ORmodel is consistently estimated:

sup
a=0,1

sup
∥x∥∞≤M

∑
kt∈T

∣∣∣E(Y | A = a,X = x,R = kt)−mkt(a, x; β̂a,kt)
∣∣∣ = Op

(
N−1/2

)
;

(ii) Consistent weighting: the PS and density ratio models are consistently estimated:

sup
a=0,1

sup
∥x∥∞≤M

∑
ks∈S′

|P(A = a | X = x,R = ks)− πks(a, x; α̂ks)|

+
∑
kt∈T

∑
ks∈S′

∣∣∣∣P(R = kt | X = x)P(R = ks)
P(R = ks | X = x)P(R = kt)

− ωkt,ks(x; γ̂kt,ks)
∣∣∣∣ = Op

(
N−1/2

)
.

(b) Informative source: Let ϑ = (ψ(X)T, υT1 , υT0)
T be the combined influence function for broadcast

estimators. For all ks ∈ S ′∣∣∣∣∣∣Cov
 ζ+ ξT
P(R ∈ T )

,− ξT
P(R ∈ T )

+
∑
kt∈T

I(R = kt)
P(R = kt)

(ψ(X)T, υT1 , υT0) d̄kt,ks | R ∈ T

∣∣∣∣∣∣ ≥ ε.

The two model consistency conditions in Assumption 3(a) ensure the consistency of the doubly ro-

bust estimator Δ̂T ,ks . Assumption 3(b) characterizes the informativeness of a source site ks such that

the updated direction
(
δ̂T ,ks − δ̂T ,T

)
is correlated with the initial Δ̂T ,T . The covariance in the con-

dition is likely to be negative with the opposite sign of ξT .

Proposition 1 Under the conditions ofTheorem1, the asymptotic variance of Δ̂T ,FACE is no larger than

that of Δ̂T ,T . Moreover, if Assumption 3 holds, the asymptotic variance of Δ̂T ,FACE is strictly smaller

than that of Δ̂T ,T .
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Proposition 1 offers a guarantee on the relative efficiency in general settings. As the exact efficiency

gainmay take different forms under general settings, we showcase the efficiency gainwith a clear inter-

pretation under a simple ideal setting. When models are correctly specified, we have an explicit form

for the oracle optimal combination η̄ and the improvement in estimation efficiency for the TATE.

Assumption 4 The PS, OR, and density ratio models are consistently estimated at
√
N rate:

sup
a=0,1

sup
∥x∥∞≤M

K∑
k=1

|P(A = a | X = x,R = k)− πk(a, x; α̂k)|

+
∑
kt∈T

∣∣∣E(Y | A = a,X = x,R = kt)−mkt(a, x; β̂a,kt)
∣∣∣

+
∑
kt∈T

∑
ks∈S

∣∣∣∣P(R = kt | X = x)P(R = ks)
P(R = ks | X = x)P(R = kt)

− ωkt,ks(x; γ̂kt,ks)
∣∣∣∣ = Op

(
N−1/2

)
.

Proposition 2 Suppose T = {1} and S = {2}. Denote

V2m = Var
{
(−1)1−Am(A,X; β̄a)− ΔT | R = 1

}
,

V2T = Var
[

(−1)1−A

π(A,X; ᾱ1)
{
Y−m(A,X; β̄a)

}
| R = 1

]
,

V2S = Var
[
ω1,2(X; γ̄1,2)

(−1)1−A

π(A,X; ᾱ2)
{
Y−m(A,X; β̄a)

}
| R = 2

]
. (2.12)

Under Assumptions 1-4, the optimal combination asymptotically approaches

η̄ =
nSV2T

nSV2T + nT V2S
.

The efficiency of FACE relative to the initial TATE estimator is

1+
V4T

V2mV2T + nT
(
V2m + V2T

)
V2S/nS

.
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Resulting from independence under the ideal setting, the weights {1 − η̄, η̄} coincide with the in-

verse variance weights for {̂δT ,1, δ̂T ,2}. According to Proposition 2, the relative efficiency of FACE is

monotone increasing in nS/V2S . When nS increases, the relative efficiency approaches 1 + V2T /V2m.

In that case, the asymptotic variance of FACE approachesV2m/P(R ∈ T ), the asymptotic variance of

M̂T . Under the ideal setting, the two components in the initial TATE estimator, outcome regression

M̂T and augmentation δ̂T ,T , are independent. The FACE estimator includes the source site data to

improve the augmentation component, leading to a reduction in its asymptotic variance.

2.5 Simulation Studies

We study the finite sample performance of the FACE estimator and make comparisons with an es-

timator that leverages target data only and a sample-size adjusted estimator that does not adaptively

weight different sites. In the simulation studies, we take the target population to be a single site. We

examine the empirical bias, empirical standard error (ESE), average of the estimated standard error

(ASE), and coverage probability (CP) of the 95%CI over 1, 000 simulations. We vary the number of

source sites K ∈ {5, 10, 50}, the true OR, PS, and density ratio models, and the number of source

sites with correctly specified models.

2.5.1 Data Generation

Toallow for heterogeneity in the covariate distributionbetween sites, the covariates in each siteXkp are

generated from a skewed normal distribution, Xkp ∼ SN (x; κkp, φ2
kp, νkp), where k = 1, ..., J + K

indexes the sites and p = 1, ..., 10 indexes the ten covariates, κkp is the location parameter, φkp is

the scale parameter, and νkp is the skewness parameter. For all sites, we let κk· ∈ (0.10, 0.15) and

φk· = (1, ..., 1). For the target site, we set νk· = 0. For the source sites, we let νk· ∈ {−0.25, 0.25}.

Under these settings, the exponential tilt model provides a good approximation quality for projecting
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the source site covariate distribution to the target site. We fix the sample size in the target site and

source sites to be nkt = nks = 200.

The true potential outcomes are generated as

Yk(a) = [(Xk − μ1)
T, (X◦2

k )T](βT1a, β
T

2a)
T + 3I(a = 1) + εk, εk ∼ N (0, 1), a = 0, 1,

where X◦2
k denotes Xk squared element-wise, β11 = (0.4, .., 1.2), and β10 = (0.4, .., 1.2) with

equally-spaced increments for a length 10.

The true PS model is generated as

Ak | X = x ∼ Bernoulli(πk), πk = expit(Xkα1k + X◦2
k α2k),

where for the target site, α11 = (0.4, ...,−0.4), with equally-spaced decrements for a length 10 and

α21 = 0. For the source sites, α1k = (0.5, ...,−0.5), with equally-spaced decrements for a length 10

and α2k = 0 . For all sites, we fit linear regression models for the OR and logistic regression models

for the PS, where we only include the linear terms of the covariatesXk.

2.5.2 Simulation Settings

Since the specified OR and PS models do not include the quadratic terms, we consider a correct OR

by setting β21 = β20 = 0; a correct PS by setting α2k = 0; a mis-specified OR by setting β21 =

(0.2, .., 0.4) and a mis-specified PS by setting α2k = (0.12, ...,−0.12).

We consider the following settings. In Setting 1, we examine the scenario where both the OR and

PS models are correctly specified for all sites. In Setting 2, we mis-specify the OR while keeping the

PS correctly specified for all sites. In Setting 3, we mis-specify the PS and correctly specify the OR for

all sites. In Setting 4, the OR and PS models are mis-specified for half of the source sites. To examine
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the effect of increasing the number of mis-specified source sites, in Setting 5, the OR and PS models

are mis-specified in all of the source sites.

In each setting, we choose the tuning parameter λ by the distributed cross validation procedure

described in Section 2.3.4 from {0, 10−4, 10−3, 10−2, 0.1, 0.25, 0.5, 1, 2, 5, 10}, where we split the

simulated datasets in each site into two equally sized training and validation datasets.

2.5.3 Simulation Results

In Table 2.1, we summarize the bias, ESE, ASE, and CP of the 95% CI of a target-only estimator

(Target), a sample-size weighted estimator (SS), and FACE over 1, 000 simulations across Settings 1-5.

The results show that FACE performs well in all settings, with minimal bias, substantially reduced

variance compared to the Target estimator, and nominal coverage. The SS estimator performs well in

Settings 1-3 where each source site estimator is consistent, but performs poorly in Settings 4-5 when

some or all of the source sites are biased for the TATE. On the other hand, FACE is able to data-

adaptively drop source sites that display large bias. Even in Setting 5, when the OR and PS models

are mis-specified in all of the source sites, FACE displays only minimal bias even when K = 50 and

close to nominal coverage. Given that the sample size in each site is nkt = nks = 200, K = 50 is a

relatively large number of sites. Our theory requiresK to be fixed, so bias can be introduced when K

is large since the difference between the estimated and optimal weights grows withK. However, such

bias reduces if we increase the sample size, which has been validated in an additional simulation with

sample size increasing to 400.

Further, as displayed in Figure 2.1, FACE shows decreasing variance as the number of source sitesK

increases, showing the potential benefit of leveraging additional source sites. The precision gain holds

across different model mis-specification scenarios (Settings 1-4).
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Table 2.1: Bias, Empirical Standard Error (ESE), Average of the Estimated Standard Error (ASE), and Coverage Probability
(CP) of the 95% CI of estimators over 1, 000 simulations in four model specification settings.

Number of Source Sites
K = 5 K = 10 K = 50

Bias ESE ASE CP Bias ESE ASE CP Bias ESE ASE CP
Setting 1
Target -0.01 0.79 0.79 0.95 0.00 0.78 0.79 0.96 -0.02 0.77 0.79 0.95
SS 0.05 0.54 0.55 0.95 0.01 0.40 0.40 0.95 0.01 0.29 0.29 0.95
FACE 0.01 0.56 0.54 0.95 0.05 0.50 0.48 0.96 0.05 0.45 0.44 0.96

Setting 2
Target -0.02 0.79 0.80 0.96 0.02 0.82 0.81 0.95 0.00 0.80 0.81 0.96
SS -0.05 0.55 0.56 0.95 0.01 0.40 0.40 0.95 0.01 0.29 0.30 0.95
FACE 0.01 0.58 0.58 0.96 0.06 0.51 0.49 0.96 0.06 0.46 0.44 0.95

Setting 3
Target -0.04 0.78 0.78 0.94 -0.03 0.78 0.79 0.95 -0.03 0.80 0.79 0.95
SS -0.08 0.58 0.58 0.95 -0.02 0.42 0.42 0.96 -0.02 0.31 0.31 0.94
FACE 0.00 0.56 0.56 0.95 0.01 0.50 0.50 0.96 0.02 0.46 0.44 0.95

Setting 4
Target -0.04 0.79 0.81 0.95 0.00 0.81 0.81 0.96 0.01 0.81 0.81 0.96
SS 0.76 0.22 0.22 0.15 0.85 0.15 0.14 0.07 0.87 0.11 0.11 0.00
FACE 0.01 0.60 0.59 0.96 0.05 0.52 0.51 0.96 0.06 0.48 0.45 0.96

Setting 5
Target -0.03 0.79 0.80 0.95 0.01 0.80 0.80 0.95 -0.01 0.81 0.81 0.96
SS 0.82 0.37 0.36 0.18 0.94 0.24 0.24 0.05 0.98 0.18 0.19 0.01
FACE 0.05 0.72 0.73 0.94 0.06 0.65 0.65 0.92 0.09 0.59 0.57 0.91
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Figure 2.1: Simulated FACE estimates of the TATE across 1,000 simulations in Settings 1‐4 withK = 0, 5, 10, 50.
K = 0 corresponds to the Target only estimator. Blue dots (lines) are means (95% CIs). The dotted black line is the true
TATE of 3.
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2.6 Comparative Effectiveness of COVID-19 Vaccines

To illustrate FACE,we study the comparative effectiveness ofBNT162b2 (Pfizer) versusmRNA-1273

(Moderna) for the prevention of COVID-19 outcomes in five VA sites. It is of interest to understand

the real world effectiveness of these vaccines, but head-to-head comparisons have been rare. A recent

emulated target trial using the EHRs of US veterans showed that the 24-week risk of COVID-19 out-

comes was low for patients who received either vaccine, but lower for veterans assigned to Moderna

compared to Pfizer28. Utilizing FACE, we examine the TATE in a federated data setting where the

target population of interest is one of five sites (North Atlantic, Southwest,Midwest, Continental, or

Pacific) in the VA healthcare system. Our problem is more challenging than that of28 or74 due to the

federated data setting and the different target populations of interest that we are able to study.

Inclusion criteria included veteran status, at least 18 years of age by January 1, 2021, no previously

documented COVID-19 infection, no previous COVID-19 vaccination, and documented two-dose

COVID-19 vaccination with either Pfizer or Moderna between January 1 and March 24, 2021. For

each eligible veteran, follow-upbeganon theday that the seconddose of vaccinewas received (baseline)

and ended on the day of death, 120 or 180 days after baseline, or the end of the study time period

(September 24, 2021). The outcomes of interest were documented SARS-CoV-2 infection either 120

or 180 days after baseline and death with COVID-19 infection either 120 or 180 days after baseline.

Among the 608, 359 eligible veterans, 293, 137 (48.2%) received Pfizer and 315, 222 (51.8%) re-

ceivedModerna. Baseline characteristics among the two groups were similar within site. Across sites,

there was heterogeneity in race (a larger proportion of Asians in the Pacific), and ethnicity (a larger

Hispanic population in the Southwest and Pacific). Baseline characteristics in each of the five sites

is summarized in Supplementary Tables 1 and 2. All models were adjusted for age, sex, race, eth-

nicity, residence, and important comorbidities: chronic lung disease (including asthma, bronchitis,

and chronic obstructive pulmonary disease), cardiovascular disease (including acute myocardial in-
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farction, cardiomyopathy, coronary heart disease, heart failure, and peripheral vascular disease), hy-

pertension, type 2 diabetes, chronic kidney disease, autoimmune diseases (including HIV infection,

rheumatoid arthritis, etc.), and obesity (defined as body mass index of 30 or greater).

The raw event rates for documented COVID-19 infection within 180 days of receiving the second

dose for Pfizer (Moderna) in the five sites were 2.81% (1.93%) in theNorth Atlantic, 3.58% (3.23%) in

the Southwest, 2.25% (2.08%) in the Midwest, 2.97% (2.36%) in the Continental, and 2.80% (1.43%)

in the Pacific. The raw event rates for death with COVID-19 infection within 180 days of receiving

the second dose for Pfizer (Moderna) were 0.37% (0.06%) in theNorth Atlantic, 0.36% (0.23%) in the

Southwest, 0.18% (0.21%) in the Midwest, 0.21% (0.26%) in the Continental, and 0.11% (0.09%) in

the Pacific.

Figure 2.2 shows the TATE estimates for the four outcomes of interest: (a) 120-day COVID-19

infection, (b) 180-day COVID-19 infection, (c) 120-day death with COVID-19 infection, and (d)

180-day death with COVID-19 infection. For each outcome, the target population is taken to be one

of the five sites. Three estimators are compared along with their 95% confidence interval: (i) a dou-

bly robust estimator that only uses target site data (Target Only), (ii) a sample-size weighted estimator

that leverages each site where ηk is taken to be nk/N (SS), k = 1, ..., 5, and (iii) the FACE estimator.

Our results indicate that the FACE estimator tracks the TargetOnly estimatormore closely compared

to the SS estimator. Compared to the Target Only estimator, the FACE estimator has substantially

tighter confidence intervals, resulting in qualitatively different conclusions in certain cases, e.g., 180-

day COVID-19 infection in the Continental site, 120-day death with COVID-19 infection in the

Southwest site, and 180-day death with COVID-19 infection in the Midwest, North Atlantic, and

Southwest sites. Using FACE, our results show that veterans who received Moderna had an approxi-

mately 1% lower rate of 180-dayCOVID-19 infection compared toPfizer, and this difference appeared

consistent across sites.

61



(a) TATE for COVID‐19 infection (120 days) (b) TATE for COVID‐19 infection (180 days)

(c) TATE for COVID‐19 death (120 days) (d) TATE for COVID‐19 death (180 days)

Figure 2.2: TATE estimates for the comparative effectiveness of Moderna vs. Pfizer vaccines for four outcomes.
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Figure 2.3 visualizes the efficiency gain in using FACE compared to the Target Only estimator. For

each of the four outcomes of interest, FACE meaningfully reduces the standard error of the TATE

estimate for each target site, with the percentage reduction ranging from 25.5% to 67.1%.

(a) COVID‐19 infection (120 days) (b) COVID‐19 infection (180 days)

(c) COVID‐19 death (120 days) (d) COVID‐19 death (180 days)

Figure 2.3: Gain in efficiency for TATE estimate using FACE vs Target Only estimator. For each site, the percent reduc‐
tion in SE is calculated for each of the four outcomes.

2.7 Discussion

In this paper, we have developed FACE to leverage heterogeneous data from multiple study sites to

more precisely estimate treatment effects for a target population of interest. FACE accounts for het-
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erogeneity in the distribution of covariates through a density ratio weighting approach and protects

against distributional heterogeneity and model mis-specification of the source sites through an adap-

tive integration strategy. It improves upon the precision of the target-population only estimator by

leveraging source population information without inducing bias. FACE is privacy-preserving and

communication-efficient, requiring only one round communication of aggregated summary statis-

tics between sites. In addition to providing theoretical double robustness and efficiency guarantees,

FACE does not rely on prior knowledge of model stability or correct model specification, which is

a substantial improvement on current federated methods for causal inference130. We also obtained

promising results from a real world analysis of COVID-19 outcomes for veterans assigned to either

Pfizer or Moderna vaccines among five federated VA sites.

FACE can easily be generalized to the setting where some sites have RCT data. In such a setting,

one could define the target population as the set of trial participants. When the RCT data is treated

as the anchoring site, the target site PS model is known, so the target site estimator for the TATE is

consistent, and the global adaptive estimator is likely to be more reliable. Our FACE framework can

thus be viewed as a contribution to recent work on using observational studies to reduce the variance

associated with treatment effect estimates from experimental studies5. For greater generalizability,

participants forwhom there is only observational data can be taken to be the target population. FACE

can also be adapted to target different causal parameters of interest, such as the average treatment effect

of the treated (ATT).

Future work may consider focusing on developing methods for estimands defined by subpopu-

lations of interest. For example, the conditional average treatment effect (CATE) is an important

estimand of real world interest, particularly for understanding benefits and dangers of treatments for

underrepresented groups and fairness research.
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SupplementaryMaterials

The Supplementary Materials are divided into four sections. In Section B.1, we illustrate the work-

flow of FACE to construct a global estimator in a federated data setting. In Section B.2, we provide

a mild set of sufficient conditions for the necessary regularity conditions to hold in the special case

with logistic regression models for the nuisance functions. In Section B.3, we provide proofs for the

theoretical results in Section 4 of the main paper. In Section B.4, we provide supplementary tables

corresponding to the real data analysis.
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3
Robust and Optimal Sensitivity Analyses

(ROSA) of Clinical Trial Designs

3.1 Introduction

Clinical trial designs are becoming increasingly complex to meet the multifaceted needs and goals of

precisionmedicine. Examples of complex designs include adaptive seamless phase i/ii designs for eval-
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uating, early in the treatment development process, the dosing, safety, and activity of new drugs52.

Also, adaptive randomized trials with frequent interim looks at the data can evaluate one or more

therapies simultaneously while attempting tominimize trial duration and resources116,12. Additional

examples of complex designs have been implemented in biomarker-stratified trials to evaluate the ef-

ficacy of a therapy and possible variations of treatment effects across patient subgroups78.

When planning a new trial, it is necessary to predict and evaluate several operating characteristics.

Relevant operating characteristics can include the likelihood of selecting an effective dose with low

toxicity in a phase i/ii study, the probability of detecting treatment effects in a randomized study, the

expected trial duration, costs, and other metrics to evaluate designs that often enroll patients from

different subgroups. Multiple operating characteristics typically need to be examined jointly in order

to evaluate the relevant trade-offs achieved by candidate designs, such as balancing the accuracy in

estimating treatment effects and the expected study duration.

The obvious challenge for evaluating a candidate design is that the vector of operating characteris-

tics of the study design is not known and it is difficult to estimate before the onset of the trial. Indeed,

the operating characteristics are usually a function of a vector of unknown parameters that identify

the distribution of all relevant variables to be captured during the trial. For example, unknown pa-

rameters can include the enrollment and drop-out rates, the magnitude of treatment effects, and the

prevalence of predictive biomarkers in the trial population. Uncertainty on these parameters makes it

non-trivial to evaluate whether a candidate design is appropriate for implementing the new study.

Sensitivity analyses are commonly used to account for uncertainty on unknown parameters and

operating characteristics when evaluating a candidate design. They typically proceed in three steps.

First, a set of plausible scenarios, i.e., specific values of the vector of unknown parameters, is selected.

Next, the corresponding operating characteristics are computed using trial simulations or analytic

results. Finally, based on the computed operating characteristics and their variations across the set of

scenarios, the investigators evaluate whether the candidate design is appropriate to achieve the aims of
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the study. Throughout the manuscript, we use the terms sensitivity analysis or simulation report to

indicate a set of scenarios and the associated operating characteristics which are computed to illustrate

how the operating characteristics vary across plausible values of unknown parameters.

Producing a simulation report to effectively evaluate a study design has been recommended as one

of the key supporting documents for interacting with the FDA76,37. However, it can be difficult to

select the set of unknown parameters, especially if the dimension of the vector of unknown parame-

ters is moderate to high (say≥ 5). For the investigators, it might be unclear if the selected scenarios

are adequate to illustrate the variations of the operating characteristics across potential values of the

unknown parameters. Similarly, for regulators, there may be skepticism as to whether the selected

scenarios are chosen to highlight positive aspects of the trial design without pointing at its limitations

and negative aspects96. Another subtle challenge is the choice of the number of scenarios. Indeed, a

large number of scenarios (say 100) may simplify the task of representing how the operating charac-

teristics vary across potential values of the unknown parameters, but a simulation report that contains

too many scenarios makes it difficult to interpret and communicate the included results.

We propose amethod to choose an optimal set of scenarios for a simulation report that will provide

relevant operating characteristics. This decision is based on a utility criterion, which formalizes the

ability of any set of scenarios to represent the map between the unknown parameters and the operat-

ing characteristics. In some cases, we will consider a restriction of the unknown parameter space to

focus only on regions of higher uncertainty or plausible values of the unknown parameters. The util-

ity criterion assigns high (low) utility to a set of scenarios if the table of potential unknown parameters

and operating characteristics is an accurate (inaccurate) summary of how the design’s operating char-

acteristics vary across the considered parameter space. We call the set of scenarios that maximizes the

utility criterion the Representative and Optimal Sensitivity Analysis (ROSA) scenarios. To select the

ROSA scenarios, we introduce a computational procedure that leverages (i) flexible regression meth-

ods like neural networks (NNs)41 and (ii) optimization algorithms like simulated annealing10. Our
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approach is applicable to any trial design, regardless of the number of unknown parameters and the

number of operating characteristics.

To illustrate the method, we conduct sensitivity analyses for three trial designs. The first is a two-

arm randomized design that aims to test and estimate the effects of an experimental treatment com-

pared to the standard of care (SOC). The second is a multi-stage randomized trial that leverages an

auxiliary/intermediate/surrogate outcome S measured shortly after randomization for interim deci-

sions and a primary outcomeYwith a longer ascertainment time84. The third is a biomarker-adaptive

enrichment design similar to the design of the TAPPAS trial78, a randomized phase iii trial comparing

TRC105 and pazopanib versus pazopanib alone in patients with advanced angiosarcoma62,64. In the

first design, we consider a single unknownparameter and a single operating characteristic, whereas the

latter two designs consider multiple unknown parameters and multiple operating characteristics.

3.2 Selecting Sensitivity Scenarios

3.2.1 Notation and problem set-up

We introduce our procedure to select K sensitivity scenarios θ1, ..., θK ∈ Θ, where Θ is the set of

potential values of the unknown parameters θ. We assume that Θ is a bounded subset of Rd and

use the notation || · ||2 to indicate the Euclidean norm onRd. We will restrict Θ to a subset Θ′ when

there is sufficient prior information from completed studies or clinical experience. We identify ROSA

scenarios θ∗1 , ..., θ∗K as the scenarios that maximize a utility criterion U

θ∗1 , ..., θ∗K = argmaxθ1,...,θK U(θ1, ..., θK), (3.1)

where

U(θ1, ..., θK) = −max
θ′∈Θ

{
min

k=1,...,K
D[f(θ′), f(θk)]

}
. (3.2)
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We can symmetrically define the corresponding loss functionL = −U by inverting the sign in equa-

tion (3.2). Here,D[f(θ′), f(θk)] is ametric between theoperating characteristics f(θ′) = (f1(θ′), . . . fR(θ′))

and f(θk) = (f1(θk, ) . . . , fR(θk)). We will consider metrics of the form

D[f(θ′), f (θk)] =
R∑
r=1

wr||fr(θ′)− fr(θk)||2,

wherew1, . . . ,wR are non-negative weights that sum to one. The weights can be user-specified to cal-

ibrate the relative importance of different operating characteristics. Setting the weights to 1/R results

in equal weighting for each operating characteristic.

We can nowprovide an explicit interpretation of the utility functionU in equation (3.2). Consider

a set of scenarios {θ1, ..., θK} – the order of the entries is not relevant – and an arbitrary scenario θ′

in Θ. For 1 ≤ k ≤ K, the metric D[f(θ′), f(θk)] is a summary of the differences between the oper-

ating characteristics at θ′ and the same operating characteristics when we consider the k-th scenario

θk. Therefore, mink=1,...,KD[f(θ′), f(θk)] can be viewed as an approximation error between f(θ′) and

a similar vector of operating characteristics selected among our K options f(θ1), ..., f(θK). Expres-

sion (3.2) identifies through the maximization operator the worst-case (with highest approximation

error) that we can obtain by varying θ′ in Θ. Wemaximize the utility function U and use θ∗1 , ..., θ∗K to

indicate the ROSA scenarios. Alternative utility criteria and loss functions are described later in the

manuscript.

3.2.2 An example with a geometric interpretation

Toprovide a geometric interpretationof the utility criterionU , we illustrate howone set ofK scenarios

can be preferable to a different set ofK scenarios (Figure 3.1). Specifically, suppose we aim to design a

single-arm trialwith an interimanalysis that allows for early-stopping for futility. The goal of the trial is

to compare the response rate of an experimental drug θ1with that of the SOC θ0 at the endof the study.
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However, because study patients only receive the experimental drug, the response rate under the SOC

θ0 is estimated (̂θ0) before the onset of the study, for example using data from a previous trial. At the

interim analysis, the trial may stop for futility if the preliminary evidence of positive treatment effects

Δinterim is insufficient to continue the study. During the final analysis, the null hypothesisH0 : θ1 ≤

θ̂0 (the experimental therapy is not superior to the historical control) is tested against the alternative

hypothesisH1 : θ1 > θ̂0 (the experimental therapy is superior to the historical control). In this design,

θ = (θ0, θ1) are the unknown parameters, and Θ = [0, 1]2. Suppose that there are two operating

characteristics of interest: (i) f1, the probability of a truepositive resultwhen the experimental drughas

beneficial effects compared to the SOC (f1 is equal to zero if the treatment effects are null or negative)

and (ii) f2, the expected sample size.

The left panel of Figure 3.1 is a representation of Θ. We are interested in the two operating charac-

teristics of the single-arm design. Two sets ofK = 6 scenarios are proposed. The first set of scenarios

{θ11, ..., θ16} (blue points) is chosen by varying both unknown parameters at the same time, while the

second set {θ21 , ..., θ26} (red points) is chosen by varying only θ0 while fixing the value of θ1. The two

sets of scenarios, the corresponding operating characteristics, and associated loss L = −U are rep-

resented in the right panel of Figure 3.1. The first set of scenarios (blue points) is preferred over the

second set (red points) because it ismore representative of the variation of the operating characteristics

over Θ. Geometrically, the loss L(θ11, ..., θ16) associated with the blue points is identical to the mini-

mum radius of the circles with centers f(θ11), ..., f(θ16) (see Figure 3.1) necessary to cover the operating

characteristics surface f(Θ).

3.2.3 Estimating the operating characteristics

We describe an algorithm to numerically approximate the operating characteristics f(θ) for every θ ∈

Θ. This is necessary to solve the optimization problem in equation (3.2). Indeed, in most cases the

function f(θ) cannot be computed in closed form.
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Figure 3.1: Geometric representation of an arbitrary scenario θ′ and two proposed sets of scenarios. (Left) Parameter
spaceΘ = [0, 1]2 with arbitrary scenario θ′ (orange triangle) and two sets of proposed scenarios {θ11, ..., θ

1
6} (blue

points) and {θ21 , ..., θ
2
6} (red points). (Right) Operating characteristic surface f(Θ) with the corresponding operating

characteristics for θ′ and the two proposed sets of scenarios. The radius of the dotted circles (with blue points as cen‐
ters) is the value of the lossL associated with the blue points. ROSA scenarios minimize the lossL, which in turn is
equal to the radius of the dotted circles that cover the operating characteristic surface f(Θ).

We briefly outline our four-step procedure. In the first step, we choose a large number J (say J =

1000) of training scenarios θt1, ..., θtJ. In the second step, we use Monte Carlo simulations to obtain

estimates f̄(θt1), ..., f̄(θtJ) of f(θt1), ..., f(θtJ). In the third step, we train a flexible regression model – we

use NNs in our implementation – based on the data points (θt1, f̄(θt1)), ..., (θtJ, f̄(θtJ)). The output of

this step is a regression function f̂(θ) that is easy to compute at any θ ∈ Θ and that approximates

f(θ). In the fourth step, we validate the regression model based on J′ (say J′ = 200) independent

simulations (θv1, f̄(θv1)), ..., (θvJ′ , f̄(θ
v
J′)). Steps 1-3 of this procedure are summarized in Algorithm 1.

Step 4 is described in Algorithm 2.

In more detail, in step 1, to select the training scenarios θt1, ..., θtJ, we randomly select J scenarios

in Θ using Latin hypercube sampling (LHS)77. LHS generates J scenarios by first partitioning the d

unknown parameter dimensions into J non-overlapping intervals and selecting one value from each

interval at random. The J values obtained for the first unknownparameter θ1 are randomly pairedwith

the J values obtained for the second θ2, and so on, for all d unknown parameters to form J d-tuples,

which constitute the training scenarios θt1, ..., θtJ. In practice, users may ascribe greater weight to dif-
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ferent partitions of the grid, and extensions of standard LHS can accommodate these implementation

choices17.

In step 2, we estimate the operating characteristics of the trial design. For simplicity, we consider

operating characteristics defined as expected values (e.g., bias, power, duration of the trial, etc.), but

the algorithm can be easily modified to consider other operating characteristics. Specifically, we as-

sume that f(θ) = Eθ[ϕ(Z, θ)] for some function ϕ, where the random vector Z represents the data

generated during the trial – including the collection of treatment assignment indicators and realized

patient outcomes – under scenario θ. For example, ϕ can be the indicator that captures if a null hy-

pothesis of interest has been correctly rejected at the end of the study, or the duration of the simulated

trial. In practice, to estimate f(θ), we proceed as follows. First, for each of the training scenarios θtj ,

1 ≤ j ≤ J, we simulateM (sayM = 200) clinical trials following the trial design. We then use theM

scenario-specific simulated trials to compute the estimate

f̄(θtj) = M−1
M∑

m=1
ϕ(Zj,m, θtj), 1 ≤ j ≤ J,

where Zj,m is themth trial dataset simulated under the jth training scenario θtj .

In step 3, we have only two inputs, the scenarios θtj and the estimates f̄(θtj), 1 ≤ j ≤ J, to fit a func-

tion f̂(θ). For example, one could useNNs, splines14, or Gaussian processes94. We useNN regression

functions in our applications because these are easy to compute using widely available software and

have been demonstrated to have good empirical performance69,55,41.

In step 4 (Algorithm 2), we investigate the differences between f̂ and f. Specifically, we first select at

random J′ validation scenarios θv1, ..., θvJ′ independently with respect to previous computations (step

1-3) and simulateM′ trials (sayM′ = 500) for each θvj′ , 1 ≤ j′ ≤ J′. Based on the results of the simu-
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Algorithm 2: Obtaining a function f̂ that approximates the operating character-
istic function f
1 Input: Trial design, Parameter space Θ, J,M
2 Step 1: Select J scenarios θt1, ..., θ

t
J ∈ Θ

3 Step 2: for j = 1 to J do
4 SimulateM trials
5 Obtain approximate operating characteristics f̄(θtj) = M−1∑M

m=1 ϕ(Zj,m, θtj),
where ϕ is a function of Zj,m, themth trial dataset simulated under the jth
scenario, and the corresponding parameter θj

6 end
7 Step 3: Obtain an approximation of the operating characteristics f̂ by training a

regression algorithm, for example a NNmodel, and using the data points
(θtj, f̄(θ

t
j)), 1 ≤ j ≤ J

8 Output: Function f̂(θ)

lated trials, for each j′, we then computeMonteCarlo estimates f̄(θvj′) = M′−1∑M′
m′=1 ϕ(Zj′,m′ , θvj′)of

the operating characteristics f(θvj′). For several important operating characteristics (e.g., average sam-

ple size, expected duration, power, type 1 error), the estimator f̄(θvj′) = M′−1∑M′
m′=1 ϕ(Zj′,m′ , θvj′) is

unbiased. Finally, we compare the estimates f̄(θvj′) and the independent estimates f̂(θvj′). We use sum-

mary statistics and graphs to evaluate the differences f̂(θvj′)− f̄(θvj′). If the approximation f̂(θvj′) is not

adequate, we can use a different regression methodology, increase the number (M,M′) of trials, or

increase the number J of training scenarios in Algorithm 1.

3.2.4 Approximating the loss function

After computing f̂ (Algorithm 1) and validating its accuracy (Algorithm 2), we use it to approximate

the loss function L(θ1, ..., θK). To proceed, we choose a diffuse and finite subset of the parameter
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Algorithm 3:Validating the approximation of the operating characteristics f̂

1 Input: Approximation of the operating characteristics f̂, Trial design, J′
2 Randomly select J′ scenarios θv1, ..., θ

v
J′ ∈ Θ independently from previous

computations (Algorithm 1)
3 for j′ = 1 to J′ do
4 SimulateM′ trials Zj′,m′

5 Compute f̄(θvj′) = M′−1∑M′

m′=1 ϕ(Zj′,m′ , θvj′)
6 Compute f̂(θvj′)
7 end
8 Output: Set of differences f̂(θvj′)− f̄(θvj′) and scatterplots to jointly visualize the

operating characteristic estimates f̄(θvj′) and the independent estimates f̂(θvj′),
1 ≤ j′ ≤ J′. Compute summaries of the differences (e.g., median, range, or other
descriptive statistics).

9 Interpretation: Differences between f̄(θvj′) and the independent estimates f̂(θvj′),
1 ≤ j′ ≤ J′, consistently close to zero provide evidence that f̂ is an accurate
approximation of f

spaceΘF ⊂ Θ. For exampleΘF can include 100,000 randompoints from a distributionwith support

Θ. When ΘF contains a large number of random points that are distributed over Θ, under minimal

assumptions (e.g., compact Θ and operating characteristics with bounded range),

L(θ1, ..., θK) = max
θ∈Θ

{
min

k=1,...,K
D[f(θ), f(θk)]

}
≈ max

θ′∈ΘF

{
min

k=1,...,K
D[̂f(θ′), f̂(θk)]

}
= L̂(θ1, ..., θK).

To summarize, we can approximate the loss functionL(θ1, ..., θK) over the entire parameter space Θ

by L̂(θ1, ..., θK) using a diffuse and finite subset ΘF.
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3.2.5 Optimization by simulated annealing

We now aim to approximately minimize the loss function L̂. To illustrate the need for approximate

solutions, consider the setting of a single unknown parameter (d = 1), a finite Θ, and an easy-to-

compute loss function L. Even in this simple setting, identifying θ∗1 , ..., θ∗K ∈ Θ can be challenging.

For example, to select K = 10 representative scenarios θ∗1 , ..., θ∗K from 1000 points {θj; 1 ≤ j ≤

1000} = Θ, the loss function L̂ would need to be calculated for 2.63 × 1023 different possible sets

{θ1, ..., θK}. In what follows, we describe the use of simulated annealing (Algorithm 3), a simple

strategy to reduce the outlined computational burden, regardless if Θ is finite or not67,10,110.

The simulated annealing algorithm proceeds as follows. First, initial scenarios θ11, ..., θ1K are pro-

posed, for example by sampling θ11, ..., θ1K from a probability distribution with support Θ. Then,

iteratively for 1 ≤ i ≤ I, the current scenarios θi1, ..., θiK are perturbed by adding to them Gaussian

noise variables zi1, ..., ziK, thus obtaining new proposed scenarios θ′1, ..., θ′K (this step is represented by

the “Perturb” operator in Algorithm 3). At each iteration, the proposed scenarios θ′1, ..., θ′K can either

be accepted (i.e., [θi+1
1 , ..., θi+1

K ] ← [θ′1, ..., θ′K]) or rejected (i.e., [θ
i+1
1 , ..., θi+1

K ] ← [θi1, ..., θiK]). The

acceptance or rejection of the proposed scenarios is stochastic, with probability ρi (defined below),

which is a function of L̂(θ′1, ..., θ′K) and L̂(θi1, ..., θiK).

The acceptance probability ρi is equal to 1 when L̂(θ′1, ..., θ′K) < L̂(θi1, ..., θiK). That is, if the

proposed scenarios decrease the current loss value, then the proposed scenarios are accepted. If instead

L̂(θ′1, ..., θ′K) ≥ L̂(θi1, ..., θiK), then ρi is

ρi = exp

(
L̂(θi1, ..., θiK)− L̂(θ′1, ..., θ′K)

Ti

)
,

where Ti, 0 ≤ i ≤ I, is a decreasing sequence of positive real numbers often called the “cooling

schedule” of the algorithm. A common cooling schedule isTi = T0 · ri−1, whereT0 is a constant and
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r ∈ (0, 1) is a multiplicative contraction, but other forms are possible110. In our applications, we use

a piecewise-constant cooling schedule58.

After simulating the outlinedMarkov Chain for a fixed number I of iterations, the final set of sce-

narios {θI+1
1 , ..., θI+1

K } approximately minimizes the loss function L̂10. In our ROSA implementa-

tion, we use multiple independent replicates of Algorithm 3, with different initial scenarios θ11, ..., θ1K,

to investigate convergence of the Markov chain. Intuitively, if the independent chains converge, then

the corresponding loss values of the approximate optima L̂(θI+1
1 , ..., θI+1

K ) should be nearly identical.

Algorithm 4: Pseudocode for simulated annealing to obtain ROSA scenarios
1 Initialize the values of θ11, ..., θ

1
K, e.g., by sampling from a distribution over Θ

2 Best proposal← θ11, ..., θ
1
K

3 for i = 1 to I do
4 New proposal θ′1, ..., θ

′
K ← Perturb(θi1, ..., θ

i
K)

5 if L̂(θ′1, ..., θ′K) ≤ L̂(θi1, ..., θiK) then
6 Define θi+1

j = θ′j for every j = 1, . . . ,K ;
7 else
8 Compute the acceptance probability

ρi = exp
(
[L̂(θi1, ..., θiK)− L̂(θ′1, ..., θ′K)]/Ti

)
9 SampleUi ∼ Uniform(0, 1)

10 IfUi ≤ ρi, define θ
i+1
j = θ′j for every j = 1, . . . ,K;

11 Otherwise θi+1
j = θij for every j = 1, . . . ,K.

12 end
13 Output: θI+1

1 , ..., θI+1
K , L̂(θI+1

1 , ..., θI+1
K )

3.3 Applications: Sensitivity Analyses of Three Trial Designs

We illustrate the ROSA approach by performing sensitivity analyses for three designs of different

complexity levels. In each example, we describe the design of the trial, the unknown parameters,
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and the operating characteristics of interest. By illustrating the ROSA methodology in three trial

designs, we show its flexibility with potential applications to evaluate nearly any clinical trial design.

Indeed, ROSA only requires the possibility of simulating the trials under potential unknown param-

eters θ ∈ Θ = Rd and the definition of the operating characteristics of interest.

3.3.1 Application 1: Two-arm RCT

In the first example, we will only consider a single unknown parameter (i.e., θ ∈ R) and a single op-

erating characteristic f(θ) that can be computed analytically. In this case, the optimal set of scenarios

{θ∗1 , ..., θ∗K} can be computed exactly, without resorting to approximation methods. This simple and

stylized setting is useful to highlight the similarity of the approximations and selected scenarios com-

puted by ROSA with their exact counterparts.

Trial design

We consider the design of a two-arm randomized trial (1:1 randomization ratio) with a sample of

n = 30 patients. For each i = 1, . . . , n, we let Ai = 0 or 1 if the i-th study patient is assigned to the

control or experimental arm. The outcomes of the n study patients are Y1, . . . ,Yn, which we assume

to be independent andnormally distributed. IfAi = a thenYi hasmeanμa = 100+15a and standard

deviation σ equal to 30. In the analysis of the study, a z-statistic will be used to test the null hypothesis

H0 : μ1 − μ0 ≤ 0 against the alternativeH1 : μ1 − μ0 > 0 at 5% significance level.

Aim of the sensitivity analysis

The goal of the sensitivity analysis is to assesses the variation of the probability of rejectingH0, a func-

tion f(θ) of the unknown treatment effect θ = μ1 − μ0 ∈ Θ = R. For example, if we knew that

θ = 13.5, then f(θ) = 0.80, but in general θ is an unknown value. Suppose we aim to identifyK = 3
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scenarios θ∗1 , θ∗2, θ∗3 that maximize the utility U , i.e.,

θ∗1 , θ∗2, θ∗3 = argmaxθ1,θ2,θ3∈Θ U(θ1, θ2, θ3), (3.3)

where U(θ1, θ2, θ3) = −maxθ′∈Θ mink=1,2,3 |f(θ′)− f(θk)|.

In this trial, we have a single unknown parameter (Θ = R), and the operating characteristic of

interest is monotone, continuous, invertible, and ranges from 0 to 1. Therefore, it is straightforward

to see that the optimal scenarios θ∗1 , θ∗2, θ∗3 correspond to the operating characteristic values that evenly

divide the interval (0, 1). To be precise, {f(θ∗1 ), f(θ∗2), f(θ∗3)} = {1/6, 3/6, 5/6}; these are the three

values of a regular grid on the interval (0, 1). Figure 3.2A illustrates the optimal set of scenarios when

K = {3, 5, 10}. Since f(θ) can be calculated exactly, the optimal scenarios θ∗1 , θ∗2, θ∗3 can be obtained

by computing the inverse function f−1 at the values 1/6, 3/6, and 5/6. Specifically,

{θ∗1 , θ∗2, θ∗3} =
{σ(zf(θ∗1 ) + z1−α/2)√

n
,
σ(zf(θ∗2 ) + z1−α/2)√

n
,
σ(zf(θ∗3 ) + z1−α/2)√

n

}
,

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution. The corresponding optimal

scenarios are illustrated as red asterisks in Figure 3.2B.

Implementing and benchmarking ROSA

The exact computation of the optimal set of scenarios provides a solid benchmark for an initial eval-

uation of ROSA (Algorthms 1-3). We can compare the exact solution with the results from ROSA,

which has the advantage of being applicable to other designs and operating characteristics that are not

available in closed form.

We implement our ROSA approach to identify K = 3 scenarios. We randomly select J = 1000

scenarios θt1, ..., θt1000 with independent samples from the Uniform(−5, 25) distribution. Note that
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f(−5) ≈ 0 and f(25) ≈ 1. For each θtj , 1 ≤ j ≤ 1000, we simulate M = 200 trials to compute

the estimate f̄(θtj) = 200−1∑200
m=1 ϕ(Zj,m, θtj), where ϕ(Zj,m, θtj) ∈ {0, 1} either accepts or rejects

the H0 : θtj ≤ 0 for trial m and scenario j. Then, we compute a smooth function f̂(θ) using the

independent estimates f̄(θj) and a NN with 3 hidden layers (8, 64, and 64 neurons respectively) and

ReLU activation functions. Finally, to select three sensitivity scenarios, we use a simulated annealing

algorithm based on an initial parameterization T1 = 1000, temperature reduction factor r = 0.8,

and final parameterization Tmin = 0.1 (c.f. Algorithm 3). We repeat these three steps (selection of

scenarios, use of the NN, and optimization with simulated annealing) 20 times, each time initializ-

ing θ1, θ2, θ3 with independent random draws from the Uniform(−5, 25) distribution. The results

of the exact approach (red asterisks) compared with ROSA (blue points) are shown in Figure 3.2B.

The scenarios θ∗1 , θ∗2, θ∗3 selected by simulated annealing (blue dots) are close to the exact solution (red

asterisks).

Choice of numberK of scenarios

In practice, the decision regarding the number K of scenarios to report is left to the analyst. This

choice can be supported by a graph like Figure 3.2C, which allows the investigator to determine the

minimum number K of scenarios needed to guarantee a loss L(θ∗1 , ..., θ∗K) no larger than a targeted

threshold. For example, to guarantee a loss no larger than 0.050 in this example, we need to select at

least 10 scenarios for the simulation report.

We ranROSAwithK = 2, 3, 4, 5, 6, 7, 8, 9, 10, 20,or 30, and compared the lossL in the resulting

set of scenarios with that of the exact solution. The difference in the loss L of the exact and approxi-

mate optima was less than 1% across allK values that we considered (Figure 3.2C). Table 3.1 indicates

that the computation time of the simulated annealing algorithm scales well as K increases and that,

as expected, the loss L decreases as K increases. All analyses were run on a Windows laptop with an

Intel(R) Core(TM) i7-7700HQ 2.80 GHz processor, 16GB RAM, and 6MB of cache memory.
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Figure 3.2: Sensitivity analysis of a RCT (operating characteristic: probability of rejectingH0). Panel A: Exact solutions
whenK = {3, 5, 10}. Panel B: Comparison ofK = 3 scenarios selected through exact calculation (red asterisks) and
by 20 ROSA implementations with different initial proposals (blue points). Panel C: Graphical tool to choose the number
K of sensitivity scenarios.
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NumberK of Scenarios Time (seconds) ROSA LossL Min. LossL Rel. Diff.
5 8.8 0.101 0.100 1.0%
6 8.8 0.084 0.083 0.7%
7 9.1 0.072 0.071 0.8%
8 9.2 0.062 0.0625 0.7%
9 9.1 0.056 0.056 0.6%
10 9.1 0.050 0.050 0.2%
20 10.1 0.025 0.025 0.5%
30 10.2 0.017 0.0167 0.8%

Table 3.1: ROSA computation time, ROSA lossL, minimum (exact) lossL, and relative difference in loss of ROSA sce‐
narios compared to the exact solutions.

3.3.2 Application 2: Interim decisions based on auxiliary outcomes

In the second example, we consider sensitivity analyses with multiple unknown parameters and two

operating characteristics. We illustrate the use of our computational procedures, including the op-

erating characteristics approximation procedure (Algorithm 1), the validation procedure (Algorithm

2), and the simulated annealing optimization procedure (Algorithm 3). We investigate whether it is

appropriate to fix the value of some of the unknown parameters across all sensitivity scenarios. Iden-

tical values for a subset of the unknown parameters can simplify the interpretation of the sensitivity

analysis but can also introduce severe limitations in faithfully representing how the operating charac-

teristics vary across plausible values of the unknown parameters.

Trial design

We consider a two-arm, two-stage randomized trial with a binary primary outcome Y and a binary

auxiliary outcome S84. The primary outcomeY is availableTYmonths after randomization, while the

auxiliary outcome S is available afterTS < TY months. For example, in glioblastoma trials, 12-month

progression-free survival (PFS) and 24-month overall survival (OS) have been used as auxiliary and

primary outcomes, respectively46. The approach that we illustrate is applicable for any value of TY
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and TS < TY.

We let Na be the planned number of patients for arms a = 0, 1 (i.e., control and experimental

arms) and indicate with pa the response probability P(Y = 1 | A = a). Similarly, let na be the

planned number of patients assigned to arm a before the interim analysis, and qa indicate the response

probability P(S = 1 | A = a). The difference Δ = p1 − p0 is the treatment effect on Y. The primary

aim of the trial is to test H0 : Δ ≤ 0 versus H1 : Δ > 0, at level α. The final analysis of the study

involves only theprimary outcomeY, and the trialwill use a standardZ-test,ZY =
p̂1−p̂0√

p̄(1−p̄)(N−1
1 +N−1

0 )
,

where p̂a is the estimate of pa and p̄ is a weighted average of p̂1 and p̂0.

An interim analysis is conducted after the auxiliary outcomes S become available for na patients for

arms a = 0 and 1 (i.e., TS months after the enrollment of na patients on arms a = 0 and 1), with

early-stopping for futility or continuation based on a summary of the auxiliary outcomes S. In several

clinical settings, the treatment effect on S tends to be more pronounced than the treatment effect on

Y. The interim analysis is based on the summary ZS =
q̂1−q̂0√

q̄(1−q̄)(n−1
1 +n−1

0 )
, where q̂a is the estimate

of qa and q̄ is a weighted average of q̂1 and q̂0. We replicate the design of84, which calculates at the

interim analysis the conditional power (CP) using the auxiliary outcome S to determine whether to

stop the trial for futility or not. Specifically, the CP is calculated based on ZS and the information

fraction tS =
N−1

1 +N−1
0

n−1
1 +n−1

0
as

CP(tS) = 1− Φ

(
z1−α − ZSt

1/2
S√

1− tS

)
,

where z1−α is the 1− α quantile of the standard normal distribution and Φ(·) is the cumulative distri-

bution function of the standard normal distribution. Here, we set the cut-off point to be 0.5 so that

the trial continues when CP(ts) ≥ 0.5.
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Aim of the sensitivity analysis

The complexity of the simulation report increases with K (the number of scenarios), d (the number

of entries of the unknown parameters θ), and R (the number of operating characteristics f(θ)). Here

the full set of unknown parameters Θ ⊂ R7 include the enrollment rate e ∈ (0,∞), the response

rates pa ∈ (0, 1) for Y in A = a, the response rates qa ∈ (0, 1) for S in A = a, and the correlation

between Y and S in A = a, ρa ∈ (−1, 1).

Controlling the complexity of the simulation report is important to ensure high interpretability

of the report, which will be discussed by several stakeholders. There are a few potential strategies to

reduce the complexity of the simulation report. First, it is often possible to consider only a subset of

the parameter space Θ′ ⊂ Θ based on prior knowledge of plausible values of the unknown parame-

ters. For example, previous clinical studies can indicate a plausible range for the enrollment rate e, the

response rates p0 under the SOC, and other parameters that are expected to have minimal variations

across trials. In addition, we can also consider fixingmultiple entries of theK vectors θ1, ..., θK to some

reference values. In this case the space from which we select scenarios θ1, ..., θK is further reduced to

Θ′
re ⊂ Θ′. For example, if the operating characteristics have low sensitivity with respect to the corre-

lation parameters ρa or the enrollment rate e of the study, then we can fix these unknown parameters

to common values (i.e., estimates) across allK scenarios.

ROSA allows us to evaluate whether it is appropriate to assign the same value to one or more un-

known parameters (e.g., ρ0 and ρ1) across all K scenarios. In other words, we evaluate a simulation

report with all scenarios in a restricted subset Θ′
re ⊂ Θ′. A simulation report with scenarios in Θ′

re

can potentially be easier to interpret compared to a report in which all d entries of θ vary across sce-

narios by reducing the number of dimensions d of the unknown parameters and pointing to themost

relevant unknown parameters when discussing the variations of the operating characteristics across

Θ′. We can select scenarios from the restriction Θ′
re ⊂ Θ′ only if the capability of the simulation
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report of representing the operating characteristics variations across Θ′ is preserved. Our case study

investigates this aspect. The operating characteristics of interest in our case study are the probability

of rejecting the null hypothesis of no treatment effect on Y at the end of the study and the average

sample size.

Implementing and benchmarking ROSA

Using our ROSA procedure, we randomly select J = 1000 training scenarios using LHS and conduct

M = 500 Monte Carlo simulations for each of the J training scenarios to obtain estimates of the

operating characteristics across Θ′. Here Θ′ is a product space with the enrollment rate e ∈ (0.2, 1),

the response rates pa ∈ (0.2, 0.4) for Y in A = a, the response rates qa ∈ (0.2, 0.4) for S in A = a,

and the correlation between Y and S in A = a, ρa ∈ (0, 0.6). For Θ′
re, we fix the enrollment rate

e = 0.5 and the response rates p0 = q0 = 0.3 in the control groups.

We use a NN to obtain an interpolation of the operating characteristics. As described in Algo-

rithm 4, to evaluate if the estimates of the operating characteristics are accurate, we compare them to

independent Monte Carlo estimates of size M = 100,000 on a set of J′ = 200 uniformly-distributed

validation points spanning the plausible parameter space Θ′. The coefficient of determination R2 in

this comparison is 0.96, suggesting that the NN accurately estimates the operating characteristics.

We compare two simulation reports, and our goal is to provide stakeholders the simplified version

if it accurately describes the operating characteristics. The first one includes scenarios from Θ′ ⊂ R7

restricted by prior knowledge from completed studies and clinical experience and the second includes

scenarios fromΘ′
re ⊂ Θ′ further restricted by fixing the value of some entries of θ as described above.

We use simulated annealing to identify two sets of scenarios in Θ′
re and Θ′, respectively. In both cases

we minimize the same loss function L defined over K-tuples of Θ′ points. We also calculate the loss

L associated with these two optimal sets of scenarios fromΘ′ and Θ′
re. In Figure 3.3, we illustrate the

difference in loss L between these two optimal sets; as expected, the loss L decreases as K increases.
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Weobserve in Figure 3.3 that for any value ofK, the lossL associated with the optimal set of scenarios

restricted to Θ′
re is larger compared to the optimal scenarios in Θ′. However, the difference is modest,

and the gain in interpretability of a sensitivity analysis report with fewer unknown parameters may be

worth the slightly larger loss. For example, if an investigator requires the loss to be under a threshold

of L = 0.2, then it is sufficient to consider K = 10 scenarios, regardless of whether we consider

scenarios selected from Θ′ or Θ′
re.

Figure 3.3: Clinical trial design with an interim analysis and an auxiliary endpoint. A graphical representation to choose
the number of sensitivity scenariosK ∈ {2, 5, 10, 15}. We compare optimal sets of scenarios selected fromΘ′ ⊂ R7

and from the lower‐dimensional restrictionΘ′
re ⊂ Θ′.
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3.3.3 Application 3: Biomarker-driven adaptive enrichment

In the third example, wediscuss sensitivity analyses dedicated to an adaptive trialwith sub-populations

defined by biomarkers, considering multiple unknown parameters and multiple operating character-

istics of interest. As a motivating example, in several oncology trials, a major decision is whether to

restrict patient enrollment to a targeted subgroup of patients (e.g., biomarker-positive subgroup) or

to enroll a broader patient population. Enrolling only a biomarker-positive subgroup may deny a

substantial number of patients access to an effective therapy, whereas enrolling a larger population

may compromise the power to detect positive treatment effects. Several trial designs discussed in the

literature attempt to address the outlined problem through interim looks at the data.

Trial design

We consider an adaptive two-stage enrichment trial design with one-to-one randomization62,64,78.

The design is applicable in the settingwhere a biomarker-positive subgroupof patients is hypothesized

to benefitmore from the experimental treatment than the rest of the study population. The design in-

cludes a single interimanalysis, and it uses progression-free survival (PFS) for interimdecision-making,

while overall survival (OS) is the endpoint for the final analysis, which occurs when a pre-specified

number of events is reached. The interim analysis uses the estimated PFS hazard ratio (HR) to cap-

ture potential early signals of treatment effects. In the implementation of62, which we replicate, the

HR is estimated for both the overall population (θ̂HR) and the biomarker-positive subgroup (θ̂
+

HR).

An interimdecision determineswhich group is enrolled and tested during the second stage of the trial:

A – Promising results in the biomarker-positive population. If the HR estimate θ̂
+

HR <

0.6 but θ̂HR ≥ 0.8, then the trial will continue enrolling only biomarker-positive patients and the

final analysis will testH+
0 . HereH+

0 is the null hypothesis of no differences in OS between treatment

and control groups in the biomarker-positive population. Thenull hypothesis is rejected ifω1Φ−1(1−
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p+1 ) + ω2Φ−1(1 − p+2 ) < 1.96, where p+1 (p+2 ) is a log-rank p-value computed using only OS data

from patients randomized during the first (second) stage of the trial. The weights (ω1, ω2) and the

standard normal cumulative distribution function Φ are used to summarize evidence of treatment

effects from the two stages of the trial. We refer to62 for details on the choice of (ω1, ω2) and other

aspects of the final analysis.

B – Promising results in the overall population only. If θ̂
+

HR ≥ 0.6 but θ̂HR < 0.8, then

the trial will continue enrolling all patients and the final analysis will only testHO
0 , the null hypothesis

of no differences in OS in the overall population. In this case the null hypothesis is tested using stage-

specific OS log-rank p-values (pO1 , pO2 ) and combining evidence from the two stages of the trial.

C – Unpromising results. If θ̂
+

HR ≥ 0.6 and θ̂HR ≥ 0.8, then the trial stops early for futility.

D–Promising early results for both populations. Lastly, if the estimatedHRin thebiomarker-

positive subgroup θ̂
+

HR < 0.6 and the overall population θ̂HR < 0.8, then the trial will continue

enrolling all patients and testing efficacy both in the overall population and in the biomarker-positive

subgroup.

Thepotential conclusion at thefinal analysis are (i) to recommend thenew treatment forbiomarker-

positivepatients, (ii) recommend thenew treatment forbothbiomarker-positive andbiomarker-negative

patients, or (iii) not recommend the experimental treatment for future patients.

Aims of the sensitivity analysis

We focus on the following three operating characteristics: (i) f1, the probability of enrolling only

biomarker-positive patients in the second stage, (ii) f2, the probability of enrolling both biomarker-

positive andbiomarker-negative patients in the second stage, and (iii) f3, the probability of no evidence

of positive treatment effects, which is equal to the probability of not rejecting the null hypotheses.

We choose plausible intervals for the unknown parameters based on prior literature. Specifically,

the recruitment rate θ1 ∈ (0.5, 1) per week, the prevalence of the biomarker-positive subgroup θ2 ∈
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(0.15, 0.25), the PFSHRcomparing the treatment and control groups in the biomarker-positive sub-

group θ3 ∈ (0.5, 1.2), the PFS HR comparing treatment and control in the biomarker-negative

subgroup θ4 ∈ (0.6, 1.2), the OS HR comparing treatment and control in the biomarker-positive

subgroup θ5 ∈ (0.7, 1.2), the OS HR comparing treatment and control groups in the biomarker-

negative subgroup θ6 ∈ (0.8, 1.2), the correlation between OS and PFS in the biomarker-positive

subgroup θ7 ∈ (0.3, 0.6), and the correlation between OS and PFS in the biomarker-negative sub-

group θ8 ∈ (0.2, 0.7). Marginal exponential distributions using a mixture representation were used

for simulating correlated OS and PFS times79. More flexible models such as the Weibull distribution

can be considered.

Implementing and benchmarking ROSA

For the outlined two-stage trial with biomarker populations, our ROSA pipeline can be used to com-

putemultiple simulation reports, varying both the list of operating characteristics f and the definition

of Θ′. For example, one can fix theOSHRs in the biomarker-positive and negative populations to fo-

cus on the design sensitivity to other parameters, such as the PFSHRs. Similarly, the set of unknown

parameters Θ′ can be restricted to θ values with positive effects only for the biomarker-positive popu-

lation. Importantly, one set of training simulations can be re-utilized to compute multiple sensitivity

tables where the definitions of f and Θ′ vary.

We examine the difference in the marginal losses

Lr(θ1, ..., θK) = max
θ∈Θ

{
min

k=1,...,K
||fr(θ)− fr(θk)||2

}
, 1 ≤ r ≤ R, (3.4)

when the set of scenarios are chosen by optimizing different loss functions. For example, let Sr be the

set of scenarios that minimize the marginal lossLr in (3.4). Similarly, let S be the set of scenarios that

minimize the joint loss L = −U in (3.2). Then it is intuitive that Lr(Sr) ≤ Lr(S), 1 ≤ r ≤ R.
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In different words, the marginal losses Lr tend to be smaller when the set of scenarios is chosen to

minimize Lr compared to a set of scenarios that minimizes L with the aim of representing multiple

operating characteristics. If the discrepancy Lr(Sr) − Lr(S), 1 ≤ r ≤ R, is relatively small for all R

total operating characteristics, then this indicates that it is reasonable to select a single set of scenarios

S to illustrate how the R operating characteristics vary jointly across Θ. We describe the difference

between themarginal lossesLr, r = 1, 2, 3, when scenarios θ1, . . . , θK in Θ′ are chosen by optimizing

Lr in (3.4) – optimum: Sr = θ∗1,r, ..., θ∗K,r –or by optimizingL as in (3.2) – optimum: S = θ∗1 , ..., θ∗K.

Recall that S is computed with the goal of illustrating how multiple operating characteristics vary

across Θ′ while Sr optimizes the representation of a single operating characteristic fr. The weights in

(3.2) are w1 = w2 = w3 = 1/3. In Figure 3.4 panel 1, we plot L1(S1) in red and L1(S) in blue.

Similarly, in panel 2 we compareL2(S2) andL2(S), and in panel 3 we compareL3(S3) andL3(S).

Our results indicate that for all three operating characteristics, Lr(S) > Lr(Sr), r = 1, 2, 3; as

expected, there is an increase of the marginal lossesLr when the set of scenarios is selected to illustrate

jointly the variations of multiple operating characteristics across Θ′. However, this difference is small

(< 10%) for allK ∈ {2, 5, 10, 15}. Furthermore, for eachK ∈ {2, 5, 10, 15}, the relative difference

is similar across the three operating characteristics f1, f2, f3 (Figure 3.4). This result supports the use

of identical weights and of a single sensitivity table, with the same set of scenariosS to illustrate jointly

all three operating characteristics.

3.4 Discussion

The evaluation of complex designs such as dose-finding studies59, factorial trials42, and response-

adaptive trials86 focuses on multiple operating characteristics, such as the level of toxicities, the prob-

ability of selecting the correct treatment arm, or frequentist operating characteristics, including power

and false positive probabilities. During the design stage of a complex clinical trial, simulation reports
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Figure 3.4: Marginal lossesLr, r = 1, 2, 3 of different sets of scenarios Sr (red) and S (blue).

are typically produced to discuss sample size, interim analyses, and other major decisions with various

stakeholders. The simulation report consists of one or a few tables dedicated to showcasing howmajor

operating characteristics f(θ) vary across potential values of unknown parameters in Θ. Inmost cases,

the analyst focuses on subsets of plausible parameters Θ′ ⊂ Θ, for example, values concordant with

previous studies, or subsets of potential θ values of particular interest because of positive and clinically

relevant treatment effects.

Simulations are fundamental in the design of complex trials since operating characteristics can

rarely be obtained analytically and are crucial in the assessment of study designs for regulators, phar-

maceutical companies and other stakeholders37. However, a limited number of scenarios or poorly

chosen scenarios could be inadequate to highlight variations of the operating characteristics across

plausible unknownparameters and can result in sub-optimal decisions. We proposeROSA as a useful

tool that can support investigators at this design stage when selecting which and howmany scenarios

to include in these simulation reports.

We focus on choosing an informative number K of scenarios θ1, ..., θK among the plausible un-
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known parameters to summarize the variations of key operating characteristics. Our approach min-

imizes an explicit loss function and uses established techniques for functional approximation (NNs)

and numerical optimization (simulated annealing). We showcase our approach in three trials. Impor-

tantly, our approach is general and can be applied to nearly any clinical trial design. It only requires

simulations to mimic the clinical trial under hypothetical scenarios.

Although our approach is general, we focused on loss functions L of a specific form (3.2). It

is possible to consider different loss functions. For example, one could consider the loss function

L̃(θ1, ..., θK) = Eθ′∼g(·)
{
mink=1,...,KD[f(θ′), f(θk)]

}
,where g(·) is a probability distribution on Θ

(e.g., a posterior distribution obtained from previous data). The distribution g could be used to in-

corporate prior information about the unknown parameters in the selection of sensitivity scenarios.

Moreover, the metric D : Θ2 → R can be extended to capture both differences between operating

characteristics at plausible values θ, θ′ ∈ Θ and other aspects, such as the difference between expected

values of the outcomes Y at θ and θ′.

One major challenge in the presentation of simulation reports is the need for simplicity and in-

terpretability of the results. To this end, we considered fixing one or more unknown parameters to

identical values across the K scenarios, which may be reasonable when there is a priori knowledge of

certain unknown parameters. There are other ways to simplify a simulation report, such as removing

operating characteristics that do not vary across plausible unknown parameters, or reporting only the

range of the operating characteristics across Θ instead of presenting the operating characteristics for

each representative scenario. Further, instead ofmaximizing the utility for a givennumber of scenarios

and operating characteristics, future work can consider a penalty for using too many scenariosK.

Variations of theROSA approachmay also consider optimization algorithms other than simulated

annealing and regression methods alternative to NN for approximating the operating characteristics

across Θ.

92



Acknowledgements

The authors thank Cyrus Mehta and Christina Howe for helpful conversations and feedback that

greatly enhanced the paper. Larry Han was supported by the Clinical Orthopedic andMusculoskele-

tal Education andTraining (COMET) Program,NIAMS grant T32AR055885. LorenzoTrippawas

supported by NIH grant R01LM013352.

SupplementaryMaterial

The supplementary material includes a table of notation used in the paper.

93



4
Conclusion

In the present dissertation, we have considered how to make causal inferences in the presence of real

world constraints, such as confoundingbias, heterogeneity in data distributions, treatment guidelines,

and coding practices, as well as privacy constraints that preclude the sharing of patient-level data. In

this section, we will summarize the key contributions of this dissertation and detail some of the ongo-

ing research that extends the current work.
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4.1 SurrogateMarkers and Semi-Supervised Learning

Surrogate markers are outcome measures that can be used as a substitute for a primary outcome.

Changes caused by a therapy on a surrogate marker are expected to reflect changes in the primary

outcome. The use of valid surrogate markers to infer treatment effects on long-term outcomes has

the potential to reduce cost, expedite the approval of new therapies, and potentially reduce the inva-

siveness of procedures for patients. While there is rich literature on quantifying the effectiveness of

a single surrogate marker in an RCT, there is a need for methods development to properly leverage

RWD and to consider multiple surrogate markers when they are available.

In Chapter 1, we develop a method to use RWD (e.g., EHR and cross-trial data) to identify and

validate surrogates in comparative effectiveness studies. We propose inverse probability weighted and

doubly robust estimators for an optimal transformation function of the surrogate and the propor-

tion of treatment effect explained (PTE) measure. We show that our proposed PTE measure avoids

the surrogate paradox since it is never the case that the treatment effect on the surrogate is positive

but the treatment effect on the primary outcome is negative, regardless of the correlation between

the surrogate and primary outcome. We establish the consistency, asymptotic normality, and robust-

ness of the proposed estimators. In two different data applications, we validate two surrogate markers

for outcomes of interest in inflammatory bowel disease. These findings may be particularly useful in

informing future cross-trial designs for biologic therapies. When there is a single surrogate, one can

make inference about the optimal transformation function and the PTEmeasure nonparametrically,

but this is not possible with multiple surrogates due to the curse of dimensionality. In a related re-

search project, we develop a robust calibratedmodel fusion approach to allow for the incorporation of

multiple surrogate markers. Our approach identifies an optimal combination of multiple surrogates

without strictly relying on parametric assumptionswhile borrowingmodeling strategies to avoid fully

nonparametric estimation. In an analysis using data from theDiabetes Prevention Program study, we
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show that it is beneficial to use three surrogates jointly to infer the treatment effect on the primary

outcome, compared to any single surrogate individually. In another piece of work, we examine sur-

rogacy from a principal stratification framework. Existing approaches cannot identify the ATE in all

principal strata, defined on the joint potential values of the intermediate variables. For example, un-

der non-compliance, existing methods for instrumental variable estimation and principal scores can

identify the ATE in at most three of the four principal strata. We propose a new principal resampling

technique for unbiased estimation of theATE and proportions of each stratumwithout requiring the

deterministic monotonicity assumption.

Estimating the time-specific risk of disease onset is difficult due to the presence of censoring and

because survival outcomes are imperfectly measured in patient EHRs. Convenient surrogates of dis-

ease onset based on ICD-10 codes often exhibit temporal biases of the true event time and can result

in power loss and invalid inference on treatment effects. In extensions toChapter 1, we are developing

semi-supervised estimation procedure for theATE at a time point t, where there exists a small subset of

patients for whom gold-standard outcome labels are available and a large subset of patients for whom

silver-standard EHR-derived surrogates are available. We develop doubly robust survival curve esti-

mators that are consistent if either the outcome model is correctly specified or the outcome labeling

model is correctly specified. Further, we aim to propose a more efficient estimator that can leverage

the rich information from EHR surrogates to maximize imputation precision in the unlabeled set.

This method can be used to examine, for example, the ability of the influenza vaccine to decrease the

time to heart failure in a cardiovascular patient population.

4.2 Federated and Transfer Learning

The growth of large research networks has facilitated multi-center collaborative research, which is

particularly important when studying novel treatments, rare diseases, or in times of urgent health
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crises. Integrative analysis of data from multiple sources is an important strategy for making more

precise, timely, and generalizable decisions. Multi-source analyses can overcome potential biases from

a single healthcare system and improve power due to the increased sample size. However, integrative

analysis is highly challenging due to heterogeneity in covariate distributions, treatment guidelines, and

underlying models across sources, as well as data privacy since individual patient data (IPD) typically

cannot be shared.

I have been fortunate to collaborate with investigators in several distributed research networks,

including the Consortium for Clinical Characterization of COVID-19 by EHR (4CE) and the U.S.

Department ofVeteransAffairs. Working closelywith clinicians andpolicymakers at these centersmo-

tivated me to study the problem of how to estimate treatment effects in federated data settings. The

development of the Federated Adaptive Causal Estimation (FACE) framework allows investigators to

incorporate heterogeneous data from multiple sites to provide treatment effect estimation and infer-

ence for a flexibly specified target population of interest. To safely incorporate source sites and avoid

negative transfer, we introduce an adaptive weighting procedure via a penalized regression of the in-

fluence functions, which achieves both consistency and optimal efficiency. FACE is communication-

efficient andprivacy-preserving, allowing participating sites to share summary statistics only oncewith

other sites. In a comparative effectiveness study of vaccines on COVID-19 outcomes in U.S. veterans

using EHRs from five VA sites, we show that FACE substantially increases the precision of treatment

effect estimates, with reductions in standard errors ranging from 26% to 67%. In ongoing research,

we extend the FACE framework to propose a multiply robust estimator of the target average treat-

ment effect (TATE) to allow researchers at different sites to propose multiple candidate outcome and

treatment models due to different local conditions such as treatment guidelines, hospital resources,

or patient populations. In a separate follow-up paper, we shift our focus to the small sample problem

and focus on how to better estimate treatment effects for underrepresented populations. We develop

a federated transfer learning approach to leverage information from different populations and differ-
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ent sites. Theoretical and simulation studies show that our proposedmethod is superior to using data

from the underrepresented population alone, robust to model misspecifications, and efficient under

relatively mild assumptions. In another extension, we focus on the setting where it is not clear a priori

which subgroups are of primary interest; rather, the goal is to identify subgroups who would benefit

most from a new treatment, which is important in resource-constrained settings (e.g. COVID-19 vac-

cines early in the pandemic). To this end, we develop a doubly robust federated causal tree approach

to estimate heterogeneous treatment effects. Finally, in a related paper, we develop a causal framework

for hospital quality measurement to properly adjust for differences in patient case mixes, identify rele-

vant peer hospitals, and use only summary-level data when IPD cannot be shared. Our strategy allows

us to make hospital comparisons on treatment-specific outcomes and permits flexibility in the speci-

fication of the target population.

The typicalmulti-source transfer learning problem leverages data frommultiple source sites to help

make predictions or causal inference for a target population of interest. Due to the challenge of ob-

taining accurate labels, there are often very few outcome labels. In ongoing research, we focus on the

even more challenging setting where we do not observe any data on the target population, yet we aim

to leverage multiple source populations to learn about the target population. This type of problem

is encountered frequently in the real world. For example, in genomics, data is often separated into

batches but heterogeneity across batches can lead to undesirable variation in the data. The goal in this

setting is to identify batches that show low levels of concordance with the majority of the batches and

adjust for such differences in downstream analyses. We aim to (i) provide the identification condition

for extracting information from many source populations to make inference for an unseen and pos-

sibly heterogeneous target population, (ii) develop a general sampling algorithm for overcoming the

post-selection problem with current methods, and (iii) implement the method for high-dimensional

and low-dimensional prediction and causal inference with multiple data sources. We also aim to con-

tinue work on federated survival analysis with high dimensional and heterogeneous data, as well as to
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develop federated and transfer learning approaches for conformal inference under covariate shift.

4.3 Sensitivity Analysis

To compare candidate designs for future clinical trials, simulation-based sensitivity analyses are often

conducted. In this context, sensitivity analyses are used to assess the dependence of important design

operating characteristics (OCs) with respect to various unknown parameters (UPs). In Chapter 3,

we proposed a newRepresentative andOptimal Sensitivity Analysis (ROSA) approach to choose the

set of scenarios (and its size) for inclusion in design sensitivity analyses. Our approach balances the

need for simplicity and interpretability of OCs computed across several scenarios with the need to

faithfully summarize how the OCs vary. We are developing the ROSA strategy into a practical tool

for investigators, whomight otherwise be unclear if scenarioswhich are selected adhoc are adequate to

illustrate the variations of theOCs across potential values of theUPs. Similarly, for regulators, this tool

can be used to resolve any skepticism as towhether scenarios are chosen to highlight positive aspects of

the trial design without pointing at its limitations. We are also interested in extending this framework

to observational studies. In observational studies, multiple sources of biasmust be accounted for (e.g.,

selection bias, measurement error, unmeasured confounding, etc.). Existing research has primarily

considered single sources of bias, although recent work has shown that it is possible to bound the total

composite bias due to multiple sources. We plan to develop more informative sensitivity measures,

which can be especially useful when bias bounds are wide.
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Proofs and Supplemental Materials for

Identifying Surrogate Markers in

Comparative Effectiveness Research

Overview of SupplementaryMaterials

The supplementary materials contain six appendices. Appendix A.1 provides a derivation of the op-

timal transformation function. Appendix A.2 provides a derivation of the bounded PTE measure

and avoidance of the surrogate paradox when assumptions (A1) and (A2) are satisfied. Appendix A.3

provides a proof for consistency and asymptotic normality of P̂TEĝ. Appendix A.4 proves that our

proposedDRestimators are consistentwhen either the PSmodel or theORmodels are correctly spec-

ified. Appendix A.5 provides details on perturbation resampling. Appendix A.6 provides additional

figures.

A.1 Derivation of Optimal Transformation

Without loss of generality, assume that S is continuous with conditional densities Ḟa(s), given binary

treatmentA = a, a = 0, 1, with respect to the Lebesgue measure. The derivation is similar when S is

discrete. Let g̃opt (S) = gopt (S)−m(S), where

m(s) = m1(s)P1(s) +m0(s)P0(s),
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where ma(s) = E(Y(a)|S(a) = s) and Pa(s) = fa(s)(f0(s) + f1(s))−1, fa(s) = dFa(s)/ds. Since

gopt(S) = m(S) + g̃opt(S),

E
[{

Y− gopt(S)
}2]

= E
[{

Y−m(S)− g̃opt(S)
}2]

= E
[
(Y−m(S))2

]
−2E[(Y−m(S))]̃gopt(S)+E[̃g2(S)].

Thus the problem is equivalent to finding a function g̃opt(·) that solves the constrained optimization:

min
g̃

E
[
g̃2(S)

]
given E[̃g(S)|A = 0] = c

where c := E[Y−m(S)|A = 0].

Our optimization problem is thus

min
g̃

∫
g̃2(s) {f0(s) + f1(s)} ds given

∫
g̃(s)dF0(s) = c

which is equivalent to

min
g̃
L(g̃) given G(g̃) = c

where we used the functional notation

L(g̃) =
∫

g̃2(s) {f0(s) + f1(s)} ds, and G(g̃) =
∫

g̃(s)dF0(s).

Taking theFrechet derivatives of the functionals, wehave that for allmeasurableh such that
∫
h2(s){f0(s)+

f1(s)}ds <∞,

d
dg̃

[L(g̃)− λG(g̃)](h) =
∫

g̃opt(s)h(s) {f0(s) + f1(s)} ds− λ
∫

h(s)dF0(s) = 0.
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Setting h = δ(s), this implies that g̃opt(s) = λP0(s) for all s.Hence, by the constraint, we have

λ =
c∫

P0(s)dF0(s)
=

μ0 −
∫
m(s)dF0(s)∫

P0(s)dF0(s)
.

We can simplify the expression for λ by first noting:

μ0 = E(Y|A = 0) = E(Y(0))

=

∫
yf(y|A = 0)dy

=

∫ ∫
yf(y|A = 0, s)f(s|A = 0)dyds

=

∫
m0(s)f(s|A = 0)ds

=

∫
m0(s)dF0(s),

where the second-to-last equality follows becausem0(s) = E(Y|S = s,A = 0), and the last equality

follows because f(s|A = 0) = dF0(s)/ds. Thus,

μ0 −
∫

m(s)dF0(s) =
∫

m0(s)dF0(s)−
∫
[m0(s)P0(s) +m1(s)P1(s)]dF0(s)

=

∫
[m0(s)(1− P0(s))−m1(s)P1(s)]dF0(s)

=

∫
[m0(s)−m1(s)]P1(s)dF0(s).

Hence,

λ =

∫
[m0(s)−m1(s)]P1(s)dF0(s)∫

P0(s)dF0(s)
.

Finally, the optimal function gopt(·) can be expressed as

gopt(s) = m(s) + λP0(s).
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A.2 Bounded PTE and Avoidance of Surrogate Paradox

To ensure that PTE ∈ [0, 1] and to avoid the surrogate paradox situation, we show that the only

assumptions required are that

(A1) S1(u) ≥ S0(u) for all u,

(A2) M1(u) ≥M0(u) for all u in the common support of gopt(S(1)) and gopt(S(0)),

where Sa(u) = P{gopt(S(a)) ≥ u} andMa(u) = E(Y(a) | gopt(S(a)) = u), for a = 0, 1.

By definition,

Δ = E(Y(1))− E(Y(0)) =
∫

M1(u)dF1(u)−
∫

M0(u)dF0(u).

Recall that gopt(s) = m(s) + λP0(s), and

Δgopt(S) = E(gopt(S(1))− gopt(S(0))) =
∫

gopt(s){Ḟ1(s)− Ḟ0(s)}ds,

wherem(s) = m1(s)P1(s) +m0(s)P0(s), λ =
μ0−

∫
m(s)dF0(s)∫

P0(s)dF0(s)
, andPa(s) = Ḟa(s)

Ḟ0(s)+Ḟ1(s)
.

We can thus rewrite Δgopt(S) as,
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Δgopt(S) =

∫
gopt(s)

{
Ḟ1(s)− Ḟ0(s)

}
ds

=

∫
m1(s)P1(s)

{
Ḟ1(s)− Ḟ0(s)

}
ds+

∫
m0(s)P0(s)

{
Ḟ1(s)− Ḟ0(s)

}
ds

+

∫
P0(s)

{
Ḟ1(s)− Ḟ0(s)

}
ds∫

P0(s)dF0(s)

∫
{−m1(s) +m0(s)}P1(s)dF0(s)

=

∫
m1(s)

[
Ḟ1(s)− P0(s)Ḟ1(s)− P1(s)Ḟ0(s)

∫
P0(s)Ḟ1(s)ds∫
P0(s)dF0(s)

]
ds

−
∫

m0(s)

[
Ḟ0(s)− P0(s)Ḟ1(s)− P1(s)Ḟ0(s)

∫
P0(s)Ḟ1(s)ds∫
P0(s)dF0(s)

]
ds

:=

∫
m1(s){dF1(s)− dFnew(s)} −

∫
m0(s){dF0(s)− dFnew(s)}

whereFnew(s) =
∫ s
−∞ P0(v)dF1(v)∫

P0(v)dF0(v)
.Note thatFnew(·) is a subdistribution sinceFnew(∞) =

∫∞
−∞ P0(v)dF1(v)∫

P0(v)dF0(v)
≤∫∞

−∞ P0(v)dF0(v)∫
P0(v)dF0(v)

= 1.

We thus have that

Δgopt =

∫
M1(u){dF1(u)− dFnew(u)} −

∫
M0(u){dF0(u)− dFnew(u)}

Examining the difference between Δ and Δgopt , we see that

Δ − Δgopt =

∫
{M1(u)−M0(u)}Ḟnew(u)du,

where Fa(u) = 1− Sa(u), Ḟnew(u) =
∫ u
−∞ P0(v)dF1(v)∫

P0(v)dF0(v)
, Pa(v) = Ḟa(v)

Ḟ0(v)+Ḟ1(v)
, and Ḟa(u) = dFa(u)

du .
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From an integration by parts, we see that

Δgopt(S) =

∫
udF1(u)−

∫
udF0(u) =

∫
{S1(u)− S0(u)}du.

By assumption (A1), we conclude that Δgopt(S) ≥ 0. Further, since Ḟnew(u) ≥ 0, then the differ-

ence Δ − Δgopt(S) ≥ 0 under assumption (A2). It follows that

PTE =
Δgopt(S)

Δ
∈ [0, 1]

under assumptions (A1) and (A2).

Furthermore, we have guaranteed that Δgopt(S) = 0 when Δ = 0, i.e. if there is no treatment effect

on the primary outcome, we will not observe a treatment effect on the optimal transformation of the

surrogate.

A.3 Consistency and Asymptotic Normality of P̂TEĝ

We assume that all components of (Y, S,A,X) are sub-gaussian, the true conditional mean function

ψ†
a,m(s; x) = E(Y(a) | S(a) = s,X = x) and the true conditional density of S(a) | X = x, ψ†

a,f(s; x),

are continuously differentiable. We also assume that S(a) has a compact support and that h = O(n−ν)

with ν ∈ (1/4, 1/2). In this section, we show that when the propensity score model is correctly

specified, the proposed IPW kernel smoothed estimators ĝ(s) and P̂TEĝ are consistent for gopt(s) and

PTEgopt , respectively. We will also show that
√
n(P̂TEĝ − PTEgopt) converges in distribution to a

normal distribution with mean zero and variance σ2, which we will derive.

To this end, we first show that m̂a(s) and f̂a(s) are consistent forma(s) and fa(s), respectively. With-

out loss of generality, we prove the consistency of m̂a(s) ≡ m̂a(s; α̂) for ma(s) = E(Y(a) | S(a) =
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s) = E{ψ†
a,m(s;X)}, where m̂a(s; α) =

n−1 ∑n
i=1 Kh(Si−s)YiI(Ai=a)/πa(Xi;α)

n−1 ∑n
i=1 Kh(Si−s)I(Ai=a)/πa(Xi;α) .

First, under the correct specification of the PS model, α̂ → α0 in probability, where α0 is the true

parameter value. Hence

max
i
|ω̂ai − ωai| ≤ sup

x
|πa(x; α̂)−1 − πa(x; α0)−1| → 0

in probability, where ωai = I(Ai = a)/πa(Xi; α0). It then follows from standard theory for non-

parametric kernel estimators75,85 and Taylor series expansions that

sup
s
|m̂a(s; α̂)−ma(s)| ≤ sup

s
|m̂a(s; α0)−ma(s)|+ sup

s,α:∥α−α0∥≤c
‖m̂′

a(s; α)‖2‖α̂ − α0‖2

= Op{(nh)−
1
2
√
log n+ h2 + n−

1
2 } = op(1),

where m̂′
a(s; α) = ∂m̂a(s; α)/∂α and c is any small constant. Similarly, we have

sup
s
|̂fa(s)− fa(s)| = Op{(nh)−

1
2
√
log n+ h2 + n−

1
2 } = op(1).

When h = O(n−ν) with ν ∈ (1/4, 1/2), it is not difficult to show that λ̂ − λ = Op(n−
1
2 + h2) =

Op(n−
1
2 ). It follows that

sup
s
|̂g(s)− g(s)| = Op{(nh)−

1
2
√
log n+ h2 + n−

1
2 } = op(1).

Similarly, we may show that

|Δ̂ĝ − Δgopt | = Δ̂ĝ − Δ̂gopt + Δ̂gopt − Δgopt =

∫
{ĝ(s)− gopt(s)}dD̂(s) + Op(n−

1
2 ),

where D̂(s) = n−1∑n
i=1(ω̂1i − ω̂0i)I(Si ≤ s). It follows from the uniform convergence of ĝ(s) →
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gopt(s) and D̂(s) → D(s) = P(S(1) ≤ s) − P(S(0) ≤ s) that Δ̂ĝ − Δgopt → 0 in probability. This,

together with the consistency of Δ̂ for Δ, implies the consistency of P̂TEĝ for PTEgopt .

We next establish the asymptotic normality of
√
n(P̂TEĝ − PTEgopt). First, note that

f̂a(s)− fa(s) = n−1
n∑
i=1

[
ωai {Kh (Si − s)− fa(s)}+ f′a(s)U α,i

]
+ op((nh)−1/2),

m̂a(s)−ma(s) = n−1
n∑
i=1

[
ωaiKh (Si − s)Uma,i(s) +m′

a(s)U α,i
]
+ op((nh)−1/2),

wherem′
a(s; α) = ∂ma(s; α)/∂α, f′a(s; α) = ∂fa(s; α)/∂α, Uma,i(s) = fa(s)−1{Y(a)i −ma(s)},

ma(s; α) =
E
{
ψ†
a,m(s;Xi)ψ†

a,f(s;Xi)
π(Xi;α0)
π(Xi;α)

}
fa(s; α)

, fa(s; α) = E
{
ψ†
a,f(s;Xi)

π(Xi; α0)
π(Xi; α)

}
,

and α̂ − α0 = n−1∑n
i=1U α,i + op(n−

1
2 ) following standard likelihood theory. It follows that

P̂0(s)− P0(s) =
f̂0(s)f1(s)− f̂1(s)f0(s)
{f1(s) + f0(s)}2

+ op((nh)−1/2)

=
P1(s)P0(s)(̂f0(s)− f0(s))

f0(s)
− P1(s)P0(s)(̂f1(s)− f1(s))

f1(s)
+ op((nh)−1/2)

= P1(s)P0(s)n−1
n∑
i=1

[
ω0i
{
Kh(Si − s)f0(s)−1 − 1

}
− ω1i

{
Kh(Si − s)f1(s)−1 − 1

}
+ UT

α,i

{
f′0(s)
f0(s)

− f′1(s)
f1(s)

}]
+ op((nh)−1/2)

= n−1
n∑
i=1

[
Kh(Si − s)GP0,i(s) + (ω1i − ω0i)P1(s)P0(s) + UT

α,iBP0(s)
]
+ op((nh)−1/2)

= n−1
n∑
i=1
UP0,i + op((nh)−1/2),

whereUP0,i(s) = Kh(Si− s)GP0,i(s)+(ω1i−ω0i)P1(s)P0(s)+UT
α,iBP0(s),GP0,i(s) = {ω0i/f0(s)−
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ω1i/f1(s)}P1(s)P0(s),BP0(s) = {f′0(s)/f0(s)− f′1(s)/f1(s)}P1(s)P0(s).

Similarly, we have P̂1(s)− P1(s) = −(P̂0(s)− P0(s)) = −n−1∑n
i=1 UP0,i(s) + op(n−

1
2 ).

Now

m̂(s)−m(s) = {m̂1(s)−m1(s)}P1(s) + m̂1(s){P̂1(s)− P1(s)}

+ {m̂0(s)−m0(s)}P0(s) + m̂0(s){P̂0(s)− P0(s)}

= n−1
n∑
i=1
Um,i(s) + op((nh)−1/2),

where

Um,i(s) =
1∑

a=0

{
ωaiKh(Si − s)Uma,i(s) +m′

a(s)U α,i
}
Pa(s) + {m0(s)−m1(s)}UP0,i(s)

= Kh(Si − s)Gm,i(s) + UT
α,iBm(s) + (ω1i − ω0i)Am(s),

where

Gm,i(s) =
1∑

a=0
ωaiUma,i(s)Pa(s) + GP0,i(s){m0(s)−m1(s)},

Bm(s) =
1∑

a=0
m′

a(s)Pa(s) +BP0(s){m0(s)−m1(s)},

and

Am(s) = P1(s)P0(s){m0(s)−m1(s)}.

Together with arguments given in Appendix B of Parast et al. 88 , the fact that h = op(n−1/4), and

a Taylor series expansion for approximating
∫
Kh(Si − s)H(s)ds for any given smooth function H,
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where we denote μH0
:=
∫
H(s)dF0(s), we have the following expansion:

∫
m̂(s)̂f0(s)ds− μm0 =

∫
{m̂(s)−m(s)}f0(s)ds

+

∫
m(s)

{̂
f0(s)− f0(s)

}
ds+ op(n−

1
2 )

= n−1
n∑
i=1

[ ∫
Kh(Si − s) {Gm,i(s)f0(s) + ω0im(s)} ds

+ (ω1i − ω0i)
∫
Am(s)f0(s)ds

− ω0i
∫

m(s)f0(s)ds+ UT
α,i

∫ {
m(s)f′0(s) +Bm(s)f0(s)

}
ds
]
+ op(n−1/2)

= n−1
n∑
i=1

[
Gm,i(Si)f0(Si) + ω0im(Si)

+ (ω1i − ω0i)
∫
Am(s)f0(s)ds− ω0i

∫
m(s)f0(s)ds

+ UT
α,i

∫ {
m(s)f′0(s) +Bm(s)f0(s)

}
ds
]
+ op(n−1/2).

Similarly, we have

∫
P̂0(s)̂f0(s)ds− μP00 =

∫ {
P̂0(s)− P0(s)

}
f0(s)ds

+

∫
P0(s)

{̂
f0(s)− f0(s)

}
ds+ op(n−1/2)

= n−1
n∑
i=1

[ ∫
Kh(Si − s){GP0,i(s)f0(s) + ω0iP0(s)}ds

+ (ω1i − ω0i)
∫
P1(s)P0(s)f0(s)ds− ω0i

∫
P0(s)f0(s)ds

+ UT
α,i

∫ {
P0(s)f′0(s) +BP0(s)f0(s)

}
ds
]
+ op(n−1/2)

= n−1
n∑
i=1

[
GP0,i(Si)f0(Si) + ω0iP0(Si) + (ω1i − ω0i)

∫
P1(s)P0(s)f0(s)ds

− ω0i
∫
P0(s)f0(s)ds+ UT

α,i

∫ {
P0(s)f′0(s) +BP0(s)f0(s)

}
ds
]
+ op(n−1/2).
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Since λ =
μ0 − μm0
μP00

and λ̂ =
μ̂0 − μ̂m0
μ̂P00

, it follows from above that

λ̂ − λ = n−1
n∑
i=1
Uλ,i + op(n−

1
2 ),

where

λ̂ − λ = μ−1
P00
(
μ̂0 − μ0

)
− μ−1

P00λ
{∫
P̂0(s)dF̂0(s)− μP00

}
− μ−1

P00

{∫
m̂(s)dF̂0(s)− μm0

}
+ op(n−1/2)

= μ−1
P00n

−1
n∑
i=1

w0i
(
Yi − μ0

)
− μ−1

P00λn
−1

n∑
i=1

{
GP0,i(Si)f0(Si) + ω0iP0(Si)

+ (ω1i − ω0i)
∫
P1(s)P0(s)f0(s)ds− ω0i

∫
P0(s)f0(s)ds

}
+ μ−1

P00λn
−1

n∑
i=1

UT
α,i

∫ {
P0(s)f′0(s) +BP0(s)f0(s)

}
ds

− μ−1
P00n

−1
n∑
i=1

{
Gm,i(Si)f0(Si) + ω0im(Si)

+ (ω1i − ω0i)
∫
Am(s)f0(s)ds− ω0i

∫
m(s)f0(s)ds

}
+ μ−1

P00n
−1

n∑
i=1

UT
α,i

∫ {
m(s)f′0(s)ds+Bm(s)f0(s)

}
ds+ op(n−1/2)

= n−1
n∑
i=1
Uλ(Di) + op(n−1/2).
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Gathering the above expansions, we may obtain the form of ĝ(s)− gopt(s) as

ĝ(s)− gopt(s) = m̂(s)−m(s) + (λ̂ − λ)P0(s) + λ
{
P̂0(s)− P0(s)

}
+ op((nh)−1/2)

= n−1
n∑
i=1

[
Kh(Si − s)Gm,i(s) + UT

α,iBm(s) + (ω1i − ω0i)Am(s) + P0(s)Uλ(Di)

+ λ{Kh(Si − s)GP0,i(s) + (ω1i − ω0i)P1(s)P0(s) + UT
α,iBP0(s)}

]
+ op((nh)−1/2)

= n−1
n∑
i=1
UG(s;Di) + op((nh)−1/2),

where

UG(s;Di) = Kh(Si − s){Gm,i(s) + λGP0,i(s)}+ UT
α,i{Bm(s) + λBP0(s)}

+ (ω1i − ω0i){Am(s) + λP1(s)P0(s)}+ P0(s)Uλ(Di).

To derive the asymptotic distribution for P̂TE, observe that

P̂TE− PTE

=

∫ {
ĝ(s)− gopt(s)

}
d
{
F̂1(s)− F̂0(s)

}
+

∫
gopt(s)d

{
F̂1(s)− F̂0(s)

}
− PTE

=
1
Δ
n−1

n∑
i=1

[
(Gm,i(Si) + λGP0,i(Si))(f1(Si)− f0(Si)) + (ω1i − ω0i)gopt(Si)

+

∫
gopt(s){f′1(s)− f′0(s)}U α,ids− PTE+

∫ {
UT

α,i{Bm(s) + λBP0(s)}

+ (ω1i − ω0i){Am(s) + λP1(s)P0(s)}+ P0(s)Uλ(Di)

}
(f1(s)− f0(s))ds

]
− PTE

Δ
n−1

n∑
i=1

[ω1i(Yi − μ1)− ω0i(Yi − μ0)] + op(n−1/2)

= n−1
n∑
i=1
UPTE(Di) + op(n−1/2),
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where

UPTE(Di)

=
1
Δ

[
(Gm,i(Si) + λGP0,i(Si))(f1(Si)− f0(Si)) + (ω1i − ω0i)gopt(Si)

+

∫
gopt(s){f′1(s)− f′0(s)}U α,ids− PTE+

∫ {
UT

α,i{Bm(s) + λBP0(s)}

+ (ω1i − ω0i){Am(s) + λP1(s)P0(s)}+ P0(s)Uλ(Di)

}
(f1(s)− f0(s))ds

]
− PTE

Δ
[ω1i(Yi − μ1)− ω0i(Yi − μ0)].

Therefore, by the central limit theorem,
√
n
(
P̂TE− PTE

)
converges in distribution to a normal

with mean zero and variance σ2 = E
{
UPTE (Di)

2
}
.

A.4 Double Robustness

In this section, we prove that our proposed DR estimators are consistent when either the PS model

or the OR models are correctly specified. Recall that we proposed the DR estimators forma(s) and

fa(s) as

m̂a,DR(s) =
M̂a,DR(s)
f̂a,DR(s)

,

M̂a,DR(s) = n−1
n∑
i=1

{
Kh(Si − s)Yiω̂ai − (ω̂ai − 1)ψ̂†

a,m(s;Xi)ψ̂
†

a,f(s;Xi)
}
,

f̂a,DR(s) = n−1
n∑
i=1

{
Kh(Si − s)ω̂ai − (ω̂ai − 1)ψ̂a,f(s;Xi)

}
,

where h = O(n−ν) with ν ∈ (1/4, 1/2), ψ̂a,m(s; x) and ψ̂a,f(s; x) are estimators for the conditional

mean ψ†
a,m(s; x) and the conditional density ψ

†
a,f(s; x), respectively.

Wenow show that the estimators are consistent if either supx |πa(x; α̂)−πa(x)| → 0 inprobability
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or supx,s{|ψ̂a,m(s; x) − ψ†
a,m(s; x)| + |ψ̂a,f(s; x) − ψ†

a,f(s; x)|} → 0 in probability. Let ᾱ, ψ̄a,m(s; x),

ψ̄a,f(s; x) denote the respective limits of α̂, ψ̂a,m(s; x) and ψ̂a,f(s; x) under possible mis-specification of

their respectivemodels, π̄a(x) = πa(x; ᾱ), and ω̄ai = I(Ai = a)/π̄a(Xi). Regardless of the adequacy

of themodels, by the central limit theorem and convergence of kernel smoothed estimators85, we have

that

α̂ − ᾱ = Op(n−
1
2 )

and

sup
s,x
|ψ̂a,f(s; x)− ψ̄a,f(s; x)|+ sup

s,x
|ψ̂a,m(s; x)− ψ̄a,m(s; x)| = op(1).

When the PS model is correctly specified, sups |m̂a(s) − ma(s)| + sups |̂fa(s) − fa(s)| → 0 in

probability as shown in Appendix 3. In addition, the augmentation terms

n−1
n∑
i=1

(ω̂ai − 1)ψ̂a,m(s;Xi) = n−1
n∑
i=1

(ωai − 1)ψ̄a,m(s;Xi) + Op(‖α̂ − α0‖2)

and

n−1
n∑
i=1

(ω̂ai − 1)ψ̂a,f(s;Xi) = n−1
n∑
i=1

(ωai − 1)ψ̄a,f(s;Xi) + Op(‖α̂ − α0‖2)

also converge to 0 in probability, regardless of the adequacy of the ORmodels. Therefore, under the

correct specification of the PS model,

sup
s
|m̂a,DR(s)−ma(s)|+ sup

s
|̂fa,DR(s)− fa(s)| → 0

in probability.

We next establish the consistency of the DR estimators when the PS model may be mis-specified
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but the ORmodels are correctly specified. First consider f̂a,DR(s), which can be written as

f̂a,DR(s) = n−1
n∑
i=1

[
{Kh(Si − s)− ψ†

a,f(s;Xi)}ω̂ai − (ω̂ai − 1){ψ̂a,f(s;Xi)− ψ†
a,f(s;Xi)}+ ψ†

a,f(s;Xi)

]

= n−1
n∑
i=1

[
{Kh(Si − s)− ψ†

a,f(s;Xi)}ω̂ai − (ω̂ai − 1){ψ̂a,f(s;Xi)− ψ†
a,f(s;Xi)}

]
+ fa(s) + Op(n−

1
2 )

= n−1
n∑
i=1

εa,DR(s;Di) + fa(s)− n−1
n∑
i=1

(ω̄ai − 1){ψ̂a,f(s;Xi)− ψ†
a,f(s;Xi)}+ Op(n−

1
2 ),

where εa,f(s;Di) = {Kh(Si − s)− ψ†
a,f(s;Xi)}ω̄ai.

It follows from uniform convergence of kernel smoothed estimators85 that

sup
s
|n−1

n∑
i=1

εa,DR(s;Di)− E{εa,DR(s;Di)}| = op(1)

and

E{εa,DR(s;Di)} = E
[
ω̄ai
{∫

Kh(S− s)ψ†
a,f(S;Xi)dS− ψ†

a,f(s;Xi)

}]
= O(h2).

This together with sups,x |ψ̂a,f(s; x)− ψ†
a,f(s; x)| = op(1) implies that sups |̂fa,DR(s)− fa(s)| = op(1).

We have a similar consistency result for M̂a,DR(s), where

M̂a,DR(s) = n−1
n∑
i=1

{
Kh(Si − s)Yiω̄ai − (ω̄ai − 1)ψ†

a,m(s;Xi)ψ†
a,f(s;Xi)

}
+ op(1)

= n−1
n∑
i=1

[
εa,m(s;Di) +

{
Kh(Si − s)ψ†

a,m(s;Xi)− ψ†
a,m(s;Xi)ψ†

a,f(s;Xi)
}
ω̄ai
]

+ma(s) + op(1),

and εa,m(s;Di) = Kh(Si − s){Yi − ψ†
a,m(s;Xi)}ω̄ai.
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Following the convergence of f̂a,DR(s) → fa(s), M̂a,DR(s) → ma(s)fa(s), ψ̂a,m(s; x) → ψ†
a,m(s; x)

and ω̂ai → ω̄ai, we arrive at the consistency of m̂a,DR(s) to ma(s) when the PS model may be mis-

specified but the ORmodels are correctly specified.

Thus, we get the double robustness properties for f̂a,DR(s) and m̂a,DR(s).

Since all remaining estimators relevant to ĝDR(s) are plug-in estimators that are derived based on

m̂a,DR(s) and f̂a,DR(s), we can conclude the double robustness of ĝDR(s) for gopt(s).

Finally, the PTE will be DR by standard arguments for the conditional mean estimators98, where

we construct a plug-in estimator for Δgopt as Δ̂ĝ,DR = μ̂1,̂g,DR
− μ̂0,̂g,DR

,where

μ̂a,g,DR = n−1
a
∑
i:Ai=a

{
g(Si)
π̂a(Xi)

− I(Ai = a)− π̂a(Xi)

π̂a(Xi)
ζ̂a,g(Xi)

}
,

where ζ̂a,g(x) is an estimator for ζa,g(x) = E(g(S(a)i ) | Xi = x) = E(g(Si) | Ai = a,Xi = x), and

na =
∑n

i=1 I(Ai = a), a = 0, 1. Similarly, we define Δ̂DR = μ̂1,DR
− μ̂0,DR

, where

μ̂a,DR
= n−1

a
∑
i:Ai=a

{
Yi

π̂a(Xi)
− I(Ai = a)− π̂a(Xi)

π̂a(Xi)
ζ̂a(Xi)

}
,

where ζ̂a(x) is an estimator for ζa(x) = E(Y(a)i | Xi = x) = E(Yi | Ai = a,Xi = x).

A.5 Perturbation Resampling

In this section, we provide the detailed inference procedure for both the IPW and DR estimators

based on perturbation resampling. Recall that we generate {V[b] = (V[b]
1 , ...,V[b]

n )
T, b = 1, ...,B},

which aren×B independent and identically distributed non-negative randomvariables from a known

distributionwith unitmean and unit variance, such as the unit exponential distribution. For the IPW
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estimators, for each set ofV = (V1, ...,Vn)
T, we let V̄i = Vi/(n−1∑n

i=1 Vi),

m̂∗
a(s) =

∑n
i=1 Kh(Si − s)YiV̄iω̂∗ai∑n
i=1 Kh(Si − s)V̄iω̂∗ai

, f̂∗a(s) =
∑n

i=1 Kh(Si − s)V̄iω̂∗ai∑n
i=1 V̄iω̂

∗
ai

, ω̂∗ai =
I(Ai = a)
π(Xi, α̂∗)

,

where α̂∗ is obtained by fitting a weighted logistic regression Ai ∼ G{αTΦ(Xi)} with weights {V̄i}.

The perturbed counterparts of m̂(·), P̂a(·) and λ̂ are obtained as

m̂∗(s) =
1∑

a=0
m̂∗

a(s)P̂∗
a (s), P̂∗

a (s) =
f̂∗a(s)

f̂∗1 (s) + f̂∗0(s)
, λ̂

∗
=

∫
{m̂∗

0(s)− m̂∗
1 (s)}P̂∗

1 (s)̂f∗0(s)ds∫
P̂∗
0 (s)̂f∗0(s)ds

,

respectively. Subsequently, we construct the perturbed counterparts of ĝ(s), Δ̂gopt , Δ̂ and P̂TE as

ĝ∗(s) = m̂∗(s) + λ̂
∗
P̂∗
0 (s) Δ̂

∗
ĝ∗ = μ̂∗1,̂g∗ − μ̂∗0,̂g∗ , Δ̂

∗
= μ̂∗1 − μ̂∗0, and P̂TE

∗
ĝ∗ =

Δ̂∗
ĝ∗

Δ̂∗ , where

μ̂∗a,g =
∑n

i=1 g(Si)V̄iω̂∗ai∑n
i=1 V̄iω̂∗ai

and μ̂∗a =
∑n

i=1 YiV̄iω̂∗ai∑n
i=1 V̄iω̂∗ai

.

For the DR estimators, for each set ofV, we let

m̂∗
a,DR(s) =

M̂∗
a,DR(s)

f̂∗a,DR(s)
, M̂∗

a,DR(s) = n−1
n∑
i=1
V̄i
{
Kh(Si − s)Yiω̂∗ai − (ω̂∗ai − 1)ψ̂∗a,m(s;Xi)ψ̂

∗
a,f(s;Xi)

}
,

f̂∗a,DR(s) =n−1
n∑
i=1
V̄i
{
Kh(Si − s)ω̂∗ai − (ω̂∗ai − 1)ψ̂∗a,f(Xi)

}
,

where

ψ̂∗a,f(s, x) =
∑n

i=1 V̄iKζ(XT
i γ̂

∗
a − xTγ̂∗a)Kh(Si − s)∑n

i=1 V̄iKζ(γ̂∗aXi − xTγ̂∗a)
, ψ̂∗a,m(s, x) = M{β̂

∗
a(s)

Tx⃗},

γ̂∗a = argmaxγ∈Ω{
∑

i̸=j,Ai=Aj=a V̄iV̄jI(XT
i γ > XT

j γ)I(Si > Sj)} and β̂
∗
a(s) is the solution to

Û∗
a(β; s) ≡ n−1

n∑
i=1
V̄iI(Ai = a)Kh(Si − s)X⃗i

{
Yi −M(βTX⃗i)

}
= 0.
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We construct the perturbed counterparts of ĝDR(s), Δ̂DR, Δ̂ĝ,DR, and P̂TEĝ,DR respectively as:

ĝ∗DR(s) = m̂∗
DR(s) + λ̂

∗
DRP̂∗

0,DR(s), Δ̂
∗
DR = μ̂∗1,DR

− μ̂∗0,DR
, Δ̂

∗
ĝ∗DR,DR = μ̂∗1,̂g∗DR,DR

− μ̂∗0,̂g∗DR,DR
,

and P̂TE
∗
ĝ∗DR,DR = Δ̂

∗
ĝ∗DR,DR/Δ̂

∗
DR, where m̂∗

DR(s) =
∑1

a=0 m̂∗
a,DR(s)P̂∗

a,DR(s),

λ̂
∗
DR =

∫ {
m̂∗

0,DR(s)− m̂∗
1,DR(s)

}
P̂∗

1,DR(s)̂f∗0,DR(s)ds∫
P̂∗

0,DR(s)̂f∗0,DR(s)ds
, P̂∗

a,DR(s) =
f̂∗a,DR(s)

f̂∗0,DR(s) + f̂∗1,DR(s)
,

μ̂∗a,̂g∗DR,DR
= n−1

n∑
i=1
V̄i
{
ĝ∗DR(Si)ω̂

∗
ai − (ω̂∗ai − 1)̂ζ

∗
a,̂g∗DR

(Xi)
}
, ζ̂

∗
a,g(x) =

∫
g(s)ψ̂∗a,f(s, x)ds,

μ̂∗a,DR
= n−1

n∑
i=1
V̄i
{
Yiω̂∗ai − (ω̂∗ai − 1)̂ζ

∗
a(Xi)

}
, ζ̂

∗
a(x) =

∫
ψ̂∗a,m(s; x)ψ̂

∗
a,f(s; x)ds.

As described in the main text, we typically generate a large number, say B = 500, realizations for

V and then obtain B realizations of the perturbed statistics of interest. Standard error estimates and

confidence intervals can then be constructed based on empirical quantiles of these realizations.

A.6 Additional Figures

The additional figures referenced in the paper are provided at the end of the SupplementaryMaterials.
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Figure A.1: Relationship between S and E(Y | S = s) in setting I (left) and setting II (right)

Figure A.2: Empirical bias, empirical standard error (ESE) versus average of the estimated standard error (ASE), and
coverage probabilities of the 95% confidence intervals for ĝopt(s) when n = 400 and (A) both models are correctly
specified, (B) PS model is misspecified, (C) OR model is misspecified, (D) both models are misspecified. Note the larger
range in the y‐axis for setting (D) due to the increased bias and undercoverage when both models are misspecified.
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Proofs and Supplemental Materials for

Federated Adaptive Causal Estimation

(FACE) of Target Treatment Effects

Overview of SupplementaryMaterials

The SupplementaryMaterials are divided into four sections. In Section A, we illustrate the workflow

of FACE to construct a global estimator in a federated data setting. In Section B, we provide amild set

of sufficient conditions for the necessary regularity conditions to hold in the special case with logistic

regression models for the nuisance functions. In Section C, we provide proofs for the theoretical

results in Section 4 of the main paper. In Section D, we provide supplementary tables corresponding

to the real data analysis.

B.1 FACEWorkflow

B.2 Special Case: Logistic RegressionModels

For the special case with logistic regression models given in Section 2.3.5, we denote the asymptotic

parameters as

ᾱk = argmin
α∈Rp

E{ℓ(A, αTX) | R = k},
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Figure S1: Workflow of FACE to construct a global estimator in a federated data setting

β̄a,k = argmin
α∈Rp

E{ℓ(Y, αTX) | A = a,R = k},

γ̄ks = argmin
γ∈Rq

E{exp(γTX)− γTE(X | R ∈ T ) | R = ks}.

We give a mild set of sufficient conditions for Assumption 2.

Assumption 5 For absolute constants M, ε > 0,

(a) (Design) ‖X‖∞ ≤Malmost surely, and all eigenvalues of E(XXT) are in [ε,M].

(b) (Overlap) For all k = 1, . . . , J+ K, a = 0, 1 and i ∈ Ik, g(ᾱT
kXi), g′(β̄

T

a,kXi) and exp{γ̄TksXi}

are in [ε, 1− ε] almost surely.
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(c) (Double robustness) For each target site kt ∈ T , at least one of the twomodels is correctly specified:

-i the PS model is correct: P(A = 1 | X,R = kt) = g(ᾱT
ktX);

-ii the ORmodel is correct: E(Y | X,A = a,R = kt) = g(β̄Ta,ktX).

After verifying that Assumptions 1 and 5 imply the generic Assumption 2, we can apply Theorem 1

in that realization.

Corollary 2 Under the setting of Section 2.3.5 and Assumptions 1 and 5, the FACE estimator is consis-

tent and asymptotically normal with consistent variance estimation V̂ ,

√
N/V̂

(
Δ̂T ,FACE − ΔT

)
⇝ N (0, 1).

B.3 Proofs

In this section, we provide proofs for the theoretical statements in themain text. In Sections B.3.1 and

B.3.2, we declare and prove the key preliminary results. We then use these results to prove Theorem

1 and Corollary 1 in Section B.3.3, Corollary 2 in Section B.3.4, Proposition 1 in Section B.3.5 and

Proposition 2 in Section B.3.6

B.3.1 Double Robustness of Δ̂T ,T and Δ̂T ,ks

We first establish the consistency and asymptotic normality of the initial TATE estimator Δ̂T ,T and

source site TATE estimator Δ̂T ,ks .

Lemma 1 Under Assumptions 1, 2(a)-2(c) and 2(e),

√
NT

(
Δ̂T ,T − ΔT

)
⇝ N (0, σ2T ,T )
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with asymptotic variance

σ2T ,T = Var (ζ+ ξT | R ∈ T ) .

Proof [Proof of Lemma 1]

From the influence function representation in Assumption 2(a)

Δ̂T ,T − Δ̄T ,T =
1

NT

∑
kt∈T

∑
i∈Ikt

ζi + ξi,T + op
(
N−1/2

)
,

where Δ̄T ,T is the asymptotic limit, and the stable variance in Assumption 2(c)

Var (ζ+ ξT | R ∈ T ) ∈ [2ε, 2M],

we have the asymptotic normality of Δ̂T ,T

√
NT

(
Δ̂T ,T − Δ̄T ,T

)
⇝ N (0, σ2T ,T ).

Under the typical Assumptions 1(a), 1(b), 1(d) and 2(e), the doubly robust estimator Δ̂T ,T converges

to the TATE ΔT
7. Thus, we must have Δ̄T ,T = ΔT .

Lemma 2 Under Assumptions 1 and 2(a)-2(c),

√nks
(
Δ̂T ,ks − Δ̄T ,ks

)
⇝ N (0, σ2T ,ks)
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with Δ̄T ,ks = ΔT − δ̄T ,T + δ̄T ,ks and

σ2T ,ks = Var
(
ξks | R = ks

)
+ nks

∑
kt∈T

n−1
kt Var

{
(ψ(X)T, υT1 , υT0) d̄kt,ks | R = kt

}
.

Additionally under Assumption 3(a), Δ̄T ,ks = ΔT for ks ∈ S ′.

Proof [Proof of Lemma 2] From the influence function representation in Assumption 2(a)

Δ̂T ,ks − Δ̄T ,ks =
∑
kt∈T

1
nkt

∑
i∈Ikt

{
nkt
NT

ζi +
(
ψ(Xi)

T − E{ψ(X) | R = kt}T, υTi,1, υTi,0
)
d̄kt,ks

}

+
1
nks

∑
i∈Iks

ξi,ks + op
(
N−1/2

)

and the stable variance in Assumption 2(c) Var
(
ξi,ks | R = ks

)
∈ [ε,M] and

Var
{

nkt
NT

ζi +
(
ψ(Xi)

T, υTi,1, υTi,0
)
d̄kt,ks | R = kt

}
≤M

{
P(R = kt)2 + ‖d̄kt,ks‖22

}
,

we have the asymptotic normality of Δ̂T ,ks

√
NT

(
Δ̂T ,ks − Δ̄T ,ks

)
⇝ N (0, σ2T ,ks).

Similar to Δ̂T ,T , the source site estimator Δ̂T ,ks is also doubly robust under Assumptions 1 and

3(a).

When the OR model is consistently estimated under Assumption 3(a)(i) (same as Assumption

2(e)-ii) but the density ratio model and PS model may be mis-specified, we have through classical

asymptotic analysis

Δ̂T ,T =
∑
kt∈T

nkt
NT

[
1
nkt

∑
i∈Ikt

{
m(1,Xi; β̂1,kt)−m(0,Xi; β̂1,kt)

}
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+
1
nks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
(−1)1−Ai

πks(Ai,Xi; α̂ks)
{Yi −m(Ai,Xi; β̂Ai,kt)}

]

= Op

(
N−1/2

)
+
∑
kt∈T

P(R = kt)
P(R ∈ T )

E{Y(1) − Y(0) | Xi,R = kt}︸ ︷︷ ︸
= ΔT

+
∑
kt∈T

P(R = kt)
P(R ∈ T )

E
[
ωkt,ks(X; γ̄kt,ks)

(−1)1−A

πks(A,X; ᾱks)
{Y− E(Y | A,X)} | R = ks

]
︸ ︷︷ ︸

= 0

= Op

(
N−1/2

)
+ ΔT .

In the derivation, we utilized Assumption 1(d) to establish the “= 0” by the identity

E(Y | A,X) = E(Y | A,X,R = ks).

Denote

ω∗kt,ks(X) =
P(R = kt | X = x)P(R = ks)
P(R = ks | X = x)P(R = kt)

,

which produces the identity

E{ω∗kt,ks(X)f(X) | R = ks} = E{f(X) | R = kt}.

When the PS and density ratio models are consistently estimated under Assumption 3(a)(ii) but the

ORmodel may be mis-specified, we have through classical asymptotic analysis

Δ̂T ,T

=
∑
kt∈T

nkt
NT

[
1
nks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
{

Ai

πks(1,Xi; α̂ks)
− 1− Ai

πks(0,Xi; α̂ks)

}
Yi
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+
1
nkt

∑
i∈Ikt

m(1,Xi; β̂1,kt)−
1
nks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
Ai

πks(1,Xi; α̂ks)
m(1,Xi; β̂1,kt)

− 1
nkt

∑
i∈Ikt

m(0,Xi; β̂1,kt) +
1
nks

∑
i∈Iks

ωkt,ks(Xi; γ̂kt,ks)
1− Ai

πks(0,Xi; α̂ks)
m(0,Xi; β̂0,kt)

]

= Op

(
N−1/2

)
+
∑
kt∈T

P(R = kt)
P(R ∈ T )

(
E
{
ω∗kt,ks(X)

A
P(A = 1 | X,R = kt)

Y | R = kt
}

− E
{
ω∗kt,ks(X)

1− A
P(A = 0 | X,R = kt)

Y | R = kt
}

+ E{m(1,X; β̄1,kt)−m(0,X; β̄0,kt) | R = kt}

− E[ω∗kt,ks(X){m(1,X; β̄1,kt)−m(0,X; β̄0,kt)} | R = ks]

)

=
∑
kt∈T

P(R = kt)
P(R ∈ T )

E
{
ω∗kt,ks(X)E(Y

(1) | X) | R = kt
}
− E

{
ω∗kt,ks(X)E(Y

(0) | X) | R = kt
}

+ Op

(
N−1/2

)
= ΔT + Op

(
N−1/2

)
.

Therefore in either case Δ̄T ,ks = ΔT .

B.3.2 Optimal Aggregation

We next consider the aggregation of the initial Δ̂T ,T and the source site Δ̂T ,ks . Denote

L̂(η) = N

∑
ks∈S

η2ks
σ̂2ks
nks

+
∑
kt∈T

ĥkt(η)
T Σ̂kt
nkt

ĥkt(η)

 . (1)

We define the oracle selection space for η as

S∗ = {ks ∈ S : Δ̄T ,ks = ΔT }, RS∗
= {η ∈ RK : ηj = 0, ∀j 6= S∗}, (2)
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and the asymptotic loss function

L∗(η) =
∑
ks∈S∗

η2ksVar(ξks | R = ks)/P(R = ks) +
∑
kt∈T

h∗kt(η)
TΣkth

∗
kt(η)/P(R = kt),

h∗kt(η) =

P(R = kt | R ∈ T ),P(R = kt | R ∈ T )

1−
∑
ks∈S∗

ηks

 ,
∑
ks∈S

ηks d̄
T
kt,ks

T

. (3)

Any combination η ∈ RS∗ results in a consistent aggregated estimator for the TATE. The asymptot-

ically optimal combination is

η̄ = argmin
η∈RS∗

L∗(η). (4)

In Lemma 3, we establish the asymptotic distribution of the aggregated estimator with fixed η ∈ RS∗ .

In Lemma 4, we show that the estimator η̂ recovers the optimal η̄. In Lemma 5, we show that the

uncertainty from η̂ is negligible in estimating ΔT as Δ̂T ,FACE.

Lemma 3 Let Δ̂(η) = Δ̂T ,T +
∑

ks∈S′ ηks
(
Δ̂T ,ks − Δ̂T ,T

)
be the aggregationwith η ∈ RS′ . Under

Assumptions 1 and 2, we have

√
N
{
Δ̂(η)− ΔT

}
⇝ N (0,L∗(η)) .

Proof [Proof of Lemma 3] By Lemma 1, the initial estimator Δ̂T ,T is consistent for ΔT . According

to the definition of S∗ (2), Δ̂T ,ks is consistent for ΔT for ks ∈ S∗. Thus, the weighted average Δ̂(η)

must also be consistent for ΔT .

Next, we establish the asymptotic normality of Δ̂(η). FromAssumption 2(a), wehave the influence

function for Δ̂(η)

Δ̂(η)− ΔT
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= op
(
N−1/2

)
+

1−
∑
ks∈S∗

ηks

 1
NT

∑
kt∈T

∑
i∈Ikt

(ζi + ξi,T )

+
∑
ks∈S∗

ηks
∑
kt∈T

1
nkt

∑
i∈Ikt

{
nkt
NT

ζi +
(
ψ(Xi)

T − E{ψ(X) | R = kt}T, υTi,1, υTi,0
)
d̄kt,ks

}

+
∑
ks∈S∗

ηks
1
nks

∑
i∈Iks

ξi,ks

= op
(
N−1/2

)
+

1
N
∑
ks∈S∗

∑
i∈Iks

ηksξi,ks
P(R = ks)

+
1
N
∑
kt∈T

∑
i∈Ikt

{
ζi +

(
1−

∑
ks∈S∗ ηks

)
ξi,T

P(R ∈ T )

+

(
ψ(Xi)

T − E{ψ(X) | R = kt}, υTi,1, υTi,0
)
d̄kt,ks

P(R = kt)

}
.

We defined L∗(η) to be precisely the variance of the influence function. To see this, we will show

that L∗(η) is the variance of
(
1−

∑
k∈S ηk

)
Δ̂T ,T +

∑
k∈S ηkΔ̂T ,k and use the influence function

representation from Assumption 2(a). Denote ηT = 1 −
∑

ks∈S ηks and define the asymptotic ap-

proximation of the aggregation under Assumption 2(a)

W(η) =
ηT√
N

∑
kt∈T

∑
i∈Ikt

N
NT

(
ζi + ξi,T

)
+
∑
ks∈S

ηks√
N

{∑
kt∈T

N
nkt

∑
i∈Ikt

{
nkt
NT

ζi +
(
ψ(Xi)

T − E{ψ(X) | R = kt}T, υTi,1, υTi,0
)
d̄kt,ks

}

+
N
nks

∑
i∈Iks

ξi,ks

}

= ηT
√
N(Δ̂T ,T − M̄T ,T − δ̄T ,T ) +

∑
ks∈S

ηks
√
N(Δ̂T ,ks − M̄T ,T − δ̄T ,ks) + op(1).

where we have merged by site and individual indices to obtain the last line. By this alternative repre-

sentation ofW(η), it is clear that its variance equals L∗(η). Under Assumption 1(c) and 2(c), L∗(η)
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is stable
L∗(η)

‖η‖22 +
∑

kt∈T ‖h
∗
kt(η)‖

2
2
∈ [ε,M].

Further, under Asssumptions 1(c) and 2(a), we have

ε ≤ ‖h∗kt(η)‖
2
2 ≤ 2+ ‖η‖1

(
1+max

ks∈S
‖d̄kt,ks‖2

)
<∞.

Hence for any bounded η, L∗(η) is finite and nonzero, so we have

√
N
{
Δ̂(η)− ΔT

}
⇝ N (0,L∗(η)) .

Lemma 4 Under Assumptions 1 and 2, we have

lim
N→∞

P(η̂ ∈ RS∗
) = 1, ‖η̂− η̄‖ = Op

(
N−1/2

)
.

Proof [Proof of Lemma 4]We define η̃ as the estimator under oracle selection

η̃ = argmin
η∈RS∗

N

∑
ks∈S

η2ks
σ̂2ks
nks

+
∑
kt∈T

ĥkt(η)
T Σ̂kt
nkt

ĥkt(η)

+ λ
∑
ks∈S
|ηks |

(
δ̂T ,ks − δ̂T ,T

)2
. (5)

We first show that ‖η̃− η̄‖ = Op
(
N−1/2). Then, we verify that η̃ satisfies the optimality condition,

i.e., η̃ = η̂, with high probability. Note that L̂(η) and L∗(η) are both quadratic functions of η, which

can be expressed as

L(η) = η⊤Ĥη+ ĝ⊤η+ ĉ, L∗(η) = η⊤Hη+ g⊤η+ c
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Using Assumptions 2(d) and the Chebyshev inequality under Assumptions 2(a) and 2(c), it is clear

that Ĥ, ĝ, and ĉ are
√
N-consistent. Thus, L(η) − L∗(η) � (1 + ‖η‖2)/

√
N, since H, g and c are

bounded under Assumptions 2(a) and 2(c).

Under Assumptions 1(c) and 2(d), we have the uniform approximation of the loss in a compact

neighborhood of η̄ of S

sup
∥η−η̄∥≤M

|L̂(η)− L∗(η)| = Op

(
N−1/2

)
. (6)

By Lemmata 1 and 2, we have for ks ∈ S∗

δ̂T ,T − δ̂T ,ks = Δ̂T ,T − Δ̂T ,ks = Op

(
N−1/2

)
.

With λ ≲ N1/2, the penalty is small in the compact neighborhood of η̄

sup
∥η−η̄∥≤M

λ
∑
ks∈S
|ηks |

(
δ̂T ,ks − δ̂T ,T

)2
= Op

(
N−1/2

)
. (7)

Combining (6) and (7), we have the approximation of the penalized loss

sup
∥η−η̄∥≤M

∣∣∣∣∣∣L̂(η) + λ
∑
ks∈S
|ηks |

(
δ̂T ,ks − δ̂T ,T

)2
− L∗(η)

∣∣∣∣∣∣ = Op

(
N−1/2

)
.

Following the convexity of L∗(η) from Assumption 2(c), we have

‖η̃− η̄‖ = Op

(
N−1/2

)
.

131



The optimality condition of the original problem (2.3.3) is

∂

∂ηks
L̂ = −sign(ηks)λ

(
δ̂T ,ks − δ̂T ,T

)2
, ηks 6= 0;

∣∣∣∣∣ ∂

∂ηks
L̂

∣∣∣∣∣ ≤ λ
(
δ̂T ,ks − δ̂T ,T

)2
, ηks = 0.

For j ∈ S∗, the conditions are shared with (5), so η̃must satisfy them. To establish the optimality of

η̃ for (2.3.3), it suffices to show

∣∣∣∣∣ ∂

∂ηks
L̂

∣∣∣∣∣ ≤ λ
(
δ̂T ,ks − δ̂T ,T

)2
, ks ∈ S \ S∗. (8)

By the definition of S∗, we have for biased sites

δ̄T ,ks − δ̄T ,T = Δ̄T ,ks − Δ̄T ,T 6= 0.

By Lemmata 1 and 2, we have for ks ∈ S \ S∗

δ̂T ,ks − δ̂T ,T = Δ̄T ,ks − Δ̄T ,T + Op

(
N−1/2

)

bounded away from zero. With λ→∞, the penalty for biased sites diverges for ks ∈ S \ S∗

λ
(
δ̂T ,ks − δ̂T ,T

)2
→∞. (9)

Under Assumptions 1(c), 2(c) and 2(d), the derivative is tight

∂

∂ηks
L̂ =

∂

∂ηks
L∗ + Op

(
N−1/2

)
= Op(1). (10)

Combining (9) and (10), wemust have (8) with high probability. This implies that η̂ satisfies precisely

the optimality condition with high probability. Therefore, we must have η̂ = η̃ according to the
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convexity of the problem with high probability.

Lemma 5 Under Assumptions 1 and 2,

√
N
{
Δ̂(η̄)− Δ̂T ,FACE

}
= op(1).

Proof [Proof of Lemma 5] We decompose the difference into informative source sites ks ∈ S∗ and

biased source sites ks ∈ S \ S∗

√
N
{
Δ̂(η̄)− Δ̂T ,FACE

}
=
∑
ks∈S∗

(η̄ks − η̂ks)
√
N
(
Δ̂T ,ks − Δ̂T ,T

)
+

∑
ks∈S\S∗

(η̄ks − η̂ks)
√
N
(
Δ̂T ,ks − Δ̂T ,T

)
.

By the definition of S∗ (2) and the conclusions of Lemmata 1 and 2, we have the tightness of terms

for ks ∈ S∗
√
N
(
Δ̂T ,ks − Δ̂T ,T

)
= Op

(
N−1/2

)
.

Applying the conclusion of Lemma 4, we have for ks ∈ S∗

(η̄ks − η̂ks)
√
N
(
Δ̂T ,ks − Δ̂T ,T

)
= Op

(
N−1) = op(1)

and for ks ∈ S \ S∗

(η̄ks − η̂ks)
√
N
(
Δ̂T ,ks − Δ̂T ,T

)
= 0
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with large probability. Therefore, we have obtained

√
N
{
Δ̂(η̄)− Δ̂T ,FACE

}
= op(1).

B.3.3 Proof of Theorem 1 and Corollary 1

Applying Lemmata 3 and 5, we have the asymptotic normality of Δ̂T ,FACE,

√
N
(
Δ̂T ,FACE − ΔT

)
⇝ N (0,L∗(η̄)) .

Using the consistency of η̂ for η̄ and locally uniform convergence of L̂ for L∗ (see (1)-(4) for the defi-

nitions), we have the consistency of the variance estimator

V̂ = L̂(η̂) = L∗(η̄) + Op

(
N−1/2

)
.

By the continuous mapping theorem, we have

√
N/V̂

(
Δ̂T ,FACE − ΔT

)
⇝ N (0, 1) .

The coverage probability in Corollary 1 immediately follows.

B.3.4 Proof of Corollary 2

In the main text, we noted that the variance covariance matrix for the target site, Σ̂1 can be calculated

as as Σ̂1 =
1
n2T

∑
i∈I1 ÛiÛT

i through the estimated influence functions, where Ûi = (̂ζi, ξ̂i, ψ(Xi)
T)T.
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Here, we provide the exact form for ξ̂i,1 and ζ̂i.

υ̂i,1 =

{
1
nT

∑
i∈I1

g′
(
α̂T
1Xj
)
XjXT

j

}−1

Xi {Ai − g (α̂T
1Xi)} ,

υ̂i,0 =

 1
nT

∑
j∈I1

(1− Aj)g′
(
β̂
T

0,1Xj

)
XjXT

j


−1

Xi(1− Ai)
{
Yi − g

(
β̂
T

0,1Xi

)}
,

ξ̂i,1 =
Ai

g(α̂T
1Xi)
{Yi − g(β̂

T

1,iXi)} −
1− Ai

g(−α̂T
1Xi)
{Yi − g(β̂

T

0,iXi)}

−

 1
nT

∑
j∈I1

e−(−1)Aj α̂T1 Xj
{
Yj − g

(
β̂
T

Aj,1Xj

)}
XT

j

{ 1
nT

∑
i∈I1

g′
(
α̂T
1Xj
)
XjXT

j

}−1

Xi {Ai − g (α̂T
1Xi)}

−

 1
nT

∑
j∈I1

Aj

g
(
α̂T
1Xj
)g′ (β̂T1,1Xj

)
XT

j

 υ̂i,1

+

 1
nT

∑
j∈I1

1− Aj

g
(
−α̂T

1Xj
)g′ (β̂T0,1Xj

)
XT

j

 υ̂i,0,

ζ̂i = g
(
β̂
T

1,1Xi

)
− g
(
β̂
T

0,1Xi

)
+

 1
nT

∑
j∈I1

g′
(
β̂
T

1,1Xj

)
XT

j

 υ̂i,1

−

 1
nT

∑
j∈I1

g′
(
β̂
T

0,1Xj

)
XT

j

 υ̂i,0,

Ûi = (̂ζi, ξ̂i, ψ(Xi)
T, υ̂Ti,1, υ̂Ti,0)T.

For source sites, the variance estimator σ̂2k can be calculated as σ̂
2
k =

1
nk

∑
i∈Ik ξ̂

2
i,k, where ξ̂i,k is

ξ̂i,k = eγ̂
T
k Xi

[
Ai

g(α̂T
kXi)
{Yi − g(β̂

T

1,iXi)} −
1− Ai

g(−α̂T
kXi)
{Yi − g(β̂

T

0,iXi)}
]

−

 1
nk

∑
j∈Ik

e
(
γ̂k−(−1)Aj α̂k

)T
Xj
{
Yj − g

(
β̂
T

Aj,kXj

)}
XT

j

 1
nk

∑
i∈Ik

g′
(
α̂T
kXj
)
XjXT

j


−1
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Xi {Ai − g (α̂T
kXi)}

+ d̂T
k,ψ

(
eγ̂

T
k XiXi − ψ̄T

)
.

As Assumption 2 is satisfied, the FACE estimator is consistent and asymptotically normal with

consistent variance estimation V̂ ,

√
N/V̂

(
Δ̂T ,FACE − ΔT

)
⇝ N (0, 1).

B.3.5 Proof of Proposition 1

Since the initial estimator Δ̂T ,T corresponds to Δ̂(0), the asymptotic variance of
√
N(Δ̂T ,T −

ΔT ) can be expressed as L∗(0) by Lemma 3. By Lemmata 3 and 5, the asymptotic variance of
√
N(Δ̂T ,FACE−ΔT ) isL∗(η̄). By the definition of η̄ as theminimum, wemust haveL∗(η̄) ≤ L∗(0).

Thus, we have shown the non-inferiority of Δ̂T ,FACE.

To show that L∗(η̄) is strictly smaller than L∗(0), it suffices to find another η̌, an upper bound for

L∗(η̄) by the definition of η̄, such that

L∗(η̄) ≤ L∗(η̌) < L∗(0). (11)

Without loss of generality, we consider the simplified problem with one source site k∗ ∈ S ′,

Δ̌(η) = Δ̂T ,T + η
(
Δ̂T ,k∗ − Δ̂T ,T

)
.

UnderAssumption 3(a), theTATE estimator of the site Δ̂T ,k∗ is consistent for ΔT and asymptotically

normal by Lemma 2. Thus, Δ̌(η) is also consistent for ΔT and asymptotically normal with any η. The
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optimal η is given by the projection

η∗ =
NCov

(
Δ̂T ,T , Δ̂T ,k∗ − Δ̂T ,T

)
NVar

(
Δ̂T ,k∗ − Δ̂T ,T

) .

We can construct η̌ to be η∗ for site-k∗ and zero elsewhere such that Δ̂(η̌) = Δ̌(η∗). As long as

Cov
(
Δ̂T ,T , Δ̂T ,k∗ − Δ̂T ,T

)
6= 0, the resulting estimator is different from the initial estimator η̌ 6=

0⇒ Δ̂(η̌) 6= Δ̂T ,T . Under Assumption 1(c) and 2(a), the asymptotic covariance between
√
NΔ̂T ,T

and
√
N
(
Δ̂T ,k∗ − Δ̂T ,T

)
takes the form

Cov

 ζ+ ξT
P(R ∈ T )

,− ξT
P(R ∈ T )

+
∑
kt∈T

I(R = kt)
P(R = kt)

(ψ(X)T, υT1 , υT0) d̄kt,k∗ | R ∈ T

 .

which is bounded away from zero by Assumption 3(b). Thus, we have found the suitable η̌ that sep-

arates the asymptotic variance of Δ̂T ,FACE and Δ̂T ,T through (11).

B.3.6 Proof of Proposition 2

Under the ideal setting ofAssumption 4, the influence functions of the doubly robust Δ̂T ,T and Δ̂T ,2

admit much simpler forms98 as a result of Neyman Orthogonality21,

Δ̂T ,T − ΔT = op
(
N−1/2

)
+

1
nT

∑
i∈I1

[
m(1,Xi; β̄1)−m(0,Xi; β̄0)− ΔT

+
Ai{Yi −m(1,Xi; β̄1)}

π(1,Xi; ᾱ1)
−

(1− Ai){Yi −m(0,Xi; β̄0)}
π(0,Xi; ᾱ1)

]

Δ̂T ,2 − ΔT = op
(
N−1/2

)
+

1
nT

∑
i∈I1

[
m(1,Xi; β̄1)−m(0,Xi; β̄0)− ΔT

]
+

1
nS

∑
i∈I2

ω1,2(Xi; γ̄1,2)

[
Ai{Yi −m(1,Xi; β̄1)}

π(1,Xi; ᾱ2)
−

(1− Ai){Yi −m(0,Xi; β̄0)}
π(0,Xi; ᾱ2)

]
.
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The asymptotic variance of the aggregation
√
N
{
(1− η)Δ̂T ,T + ηΔ̂T ,2 − ΔT

}
takes the form

L∗(η) =
N
nT
V2m +

N
nT

(1− η)2V2T + η2
N
nS
V2S .

Minimizing the quadratic function of η give the optimal solution

η̄ =
nSV2T

nSV2T + nT V2S
.

We obtain the relative efficiency through

L∗(0)
L∗(η̄)

=
V2m/nT + V2T /nT

V2m/nT + V2T V2S/(nT V2S + nSV2T )
= 1+

V4T
V2mV2T + nT

(
V2m + V2T

)
V2S/nS

.
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Table B.1: Baseline characteristics of veterans in each of five VA sites

Site

1 2 3 4 5
North Atlantic Southwest Midwest Continental Pacific
(n1 = 143, 076) (n2 = 128, 792) (n3 = 123, 228) (n4 = 93, 822) (n5 = 119, 441)

Age (years)
18-49 12,264 (8.6%) 10,064 (7.8%) 9,753 (7.9%) 9,807 (10.5%) 12,936 (10.8%)
50-59 16,862 (11.8%) 16,906 (13.1%) 13,299 (10.8%) 13,146 (14.0%) 13,348 (11.2%)
60-69 35,709 (25.0%) 35,092 (27.2%) 29,943 (24.3%) 24,670 (26.3%) 27,906 (23.4%)
70-79 59,765 (41.8%) 50,839 (39.5%) 54,588 (44.3%) 36,230 (38.6%) 49,522 (41.5%)
80 or older 18,476 (12.9%) 15,891 (12.3%) 15,645 (12.7%) 9,969 (10.6%) 15,729 (13.2%)

Sex
Female 11,752 (8.2%) 11,821 (9.2%) 8,829 (7.2%) 9,314 (9.9%) 9,897 (8.3%)
Male 131,324 (91.8%) 116,971 (90.8%) 114,399 (92.8%) 84,508 (90.1%) 109,544 (91.7%)

Race
Asian 745 (0.5%) 391 (0.3%) 388 (0.3%) 535 (0.6%) 5,062 (4.2%)
Black 38,146 (26.7%) 34,064 (26.4%) 20,720 (16.8%) 24,182 (25.8%) 15,016 (12.6%)
White 96,890 (67.7%) 86,404 (67.1%) 94,769 (76.9%) 61,471 (65.5%) 82,750 (69.3%)
Other 7,295 (5.1%) 7,933 (6.2%) 7,351 (6.0%) 7,634 (8.1%) 16,613 (13.9%)

Ethnicity
Hispanic 5,862 (4.1%) 16,768 (13.0%) 2,661 (2.2%) 9,127 (9.7%) 13,938 (11.7%)
Not Hispanic 137,214 (95.9%) 112,024 (87.0%) 120,567 (97.8%) 84,695 (90.3%) 105,503 (88.3%)

Urbanicity
Rural 31,216 (21.8%) 25,223 (19.6%) 36,551 (29.7%) 21,932 (23.4%) 20,133 (16.9%)
Urban 111,860 (78.2%) 103,569 (80.4%) 86,677 (70.3%) 71,890 (76.6%) 99,308 (83.1%)

Comorbidities
CLD* 43,186 (30.2%) 39,267 (30.5%) 41,912 (34.0%) 27,124 (28.9%) 30,780 (25.8%)
CVD** 40,565 (28.4%) 36,167 (28.1%) 38,512 (31.3%) 25,097 (26.7%) 28,999 (24.3%)
Hypertension 104,775 (73.2%) 97,584 (75.8%) 92,355 (74.9%) 68,454 (73.0%) 79,986 (67.0%)
T2D 56,641 (39.6%) 52,356 (40.7%) 49,660 (40.3%) 38,585 (41.1%) 42,170 (35.3%)
CKD 25,631 (17.9%) 24,029 (18.7%) 25,261 (20.5%) 17,396 (18.5%) 20,169 (16.9%)
Autoimmune† 49,135 (34.3%) 46,313 (36.0%) 45,952 (37.3%) 30,392 (32.4%) 38,870 (32.5%)
Obesity‡ 39,626 (27.7%) 37,438 (29.1%) 36,465 (29.6%) 26,526 (28.3%) 31,330 (26.2%)

* Chronic lung diseases (CLD) included asthma, bronchitis, and chronic obstructive pulmonary disease.
** Cardiovascular disease (CVD) included acutemyocardial infarction, cardiomyopathy, coronary heart disease,
heart failure, and peripheral vascular disease.
† Autoimmune diseases included HIV infection, rheumatoid arthritis, etc. The full list of ICD-10 codes are
given in the Supplement.
‡Obesity was defined as a body-mass index of 30 or greater.

140



Table B.2: Baseline characteristics for veterans in each of the five sites in each vaccine group

Site 1: North Atlantic Site 2: Southwest Site 3: Midwest Site 4: Continental Site 5: Pacific

Pfizer Moderna Pfizer Moderna Pfizer Moderna Pfizer Moderna Pfizer Moderna
(n = 69, 903) (n = 73, 173) (n = 60, 492) (n = 68, 300) (n = 57, 853) (n = 65, 375) (n = 47, 391) (n = 46, 431) (n = 57, 498) (n = 61, 943)

Age (years)
18-49 6,920 (9.9%) 5,344 (7.3%) 5,381 (8.9%) 4,683 (6.9%) 5,082 (8.8%) 4,671 (7.1%) 5,449 (11.5%) 4,358 (9.4%) 7,070 (12.3%) 5,866 (9.5%)
50-59 9,180 (13.1%) 7,682 (10.5%) 8,407 (13.9%) 8,499 (12.4%) 6,131 (10.6%) 7,168 (11.0%) 7,207 (15.2%) 5,939 (12.8%) 6,968 (12.1%) 6,380 (10.3%)
60-69 18,442 (26.4%) 17,267 (23.6%) 16,371 (27.1%) 18,721 (27.4%) 13,716 (23.7%) 16,227 (24.8%) 12,513 (26.4%) 12,157 (26.2%) 13,427 (23.4%) 14,479 (23.4%)
70-79 27,601 (39.5%) 32,164 (44.0%) 23,196 (38.3%) 27,643 (40.5%) 25,967 (44.9%) 28,621 (43.8%) 17,919 (37.8%) 18,311 (39.4%) 22,990 (40.0%) 26,532 (42.8%)
80 or older 7,760 (11.1%) 10,716 (14.6%) 7,137 (11.8%) 8,754 (12.8%) 6,957 (12.0%) 8,688 (13.3%) 4,303 (9.1%) 5,666 (12.2%) 7,043 (12.2%) 8,686 (14.0%)

Sex
Female 6,379 (9.1%) 5,373 (7.3%) 6,120 (10.1%) 5,701 (8.3%) 4,193 (7.2%) 4,636 (7.1%) 5,155 (10.9%) 4,159 (9.0%) 5,154 (9.0%) 4,743 (7.7%)
Male 63,524 (90.9%) 67,800 (92.7%) 54,372 (89.9%) 62,599 (91.7%) 53,660 (92.8%) 60,739 (92.9%) 42,236 (89.1%) 42,272 (91.0%) 52,344 (91.0%) 57,200 (92.3%)

Race
Asian 479 (0.7%) 266 (0.4%) 224 (0.4%) 167 (0.2%) 196 (0.3%) 192 (0.3%) 323 (0.7%) 212 (0.5%) 2,270 (3.9%) 2,792 (4.5%)
Black 23,632 (33.8%) 14,514 (19.8%) 16,304 (27.0%) 17,760 (26.0%) 11,511 (19.9%) 9,209 (14.1%) 14,866 (31.4%) 9,316 (20.1%) 8,172 (14.2%) 6,844 (11.0%)
White 42,228 (60.4%) 54,662 (74.7%) 40,040 (66.2%) 46,364 (67.9%) 42,516 (73.5%) 52,253 (79.9%) 28,221 (59.5%) 33,250 (71.6%) 39,163 (68.1%) 43,587 (70.4%)
Other 3,564 (5.1%) 3,731 (5.1%) 3,924 (6.5%) 4,009 (5.9%) 3,630 (6.3%) 3,721 (5.7%) 3,981 (8.4%) 3,653 (7.9%) 7,893 (13.7%) 8,720 (14.1%)

Ethnicity
Hispanic 2,929 (4.2%) 2,933 (4.0%) 5,951 (9.8%) 10,817 (15.8%) 1,531 (2.6%) 1,130 (1.7%) 5,062 (10.7%) 4,065 (8.8%) 6,615 (11.5%) 7,323 (11.8%)
Not Hispanic 66,974 (95.8%) 70,240 (96.0%) 54,541 (90.2%) 57,483 (84.2%) 56,322 (97.4%) 64,245 (98.3%) 42,329 (89.3%) 42,366 (91.2%) 50,883 (88.5%) 54,620 (88.2%)

Urbanicity
Rural 11,546 (16.5%) 19,670 (26.9%) 11,701 (19.3%) 13,522 (19.8%) 12,442 (21.5%) 24,109 (36.9%) 8,598 (18.1%) 13,334 (28.7%) 8,538 (14.8%) 11,595 (18.7%)
Urban 58,357 (83.5%) 53,503 (73.1%) 48,791 (80.7%) 54,778 (80.2%) 45,411 (78.5%) 41,266 (63.1%) 38,793 (81.9%) 33,097 (71.3%) 48,960 (85.2%) 50,348 (81.3%)

Comorbidities
CLD 19,423 (27.8%) 23,763 (32.5%) 18,356 (30.3%) 20,911 (30.6%) 18,253 (31.6%) 23,659 (36.2%) 13,031 (27.5%) 14,093 (30.4%) 14,598 (25.4%) 16,182 (26.1%)
CVD 18,573 (26.6%) 21,992 (30.1%) 16,902 (27.9%) 19,265 (28.2%) 17,335 (30.0%) 21,177 (32.4%) 12,546 (26.5%) 12,551 (27.0%) 13,742 (23.9%) 15,257 (24.6%)
Hypertension 49,985 (71.5%) 54,790 (74.9%) 45,094 (74.5%) 52,490 (76.9%) 42,622 (73.7%) 49,733 (76.1%) 34,362 (72.5%) 34,092 (73.4%) 37,453 (65.1%) 42,533 (68.7%)
T2D 26,872 (38.4%) 29,769 (40.7%) 23,884 (39.5%) 28,472 (41.7%) 22,770 (39.4%) 26,890 (41.1%) 19,549 (41.3%) 19,036 (41.0%) 19,841 (34.5%) 22,329 (36.0%)
CKD 12,241 (17.5%) 13,390 (18.3%) 11,287 (18.7%) 12,742 (18.7%) 11,197 (19.4%) 14,064 (21.5%) 8,665 (18.3%) 8,731 (18.8%) 9,542 (16.6%) 10,627 (17.2%)
Autoimmune 22,431 (32.1%) 26,704 (36.5%) 21,898 (36.2%) 24,415 (35.7%) 21,260 (36.7%) 24,692 (37.8%) 14,912 (31.5%) 15,480 (33.3%) 18,228 (31.7%) 20,642 (33.3%)
Obesity 18,799 (26.9%) 20,827 (28.5%) 18,406 (30.4%) 19,032 (27.9%) 16,731 (28.9%) 19,734 (30.2%) 13,168 (27.8%) 13,358 (28.8%) 15,190 (26.4%) 16,140 (26.1%)
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Overview of SupplementaryMaterials

The supplementary material includes a table of notation used in the paper.

C.1 Notation
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Table C.1: Notation used in ROSA

Notation Description
Θ ≜ Unknown parameter space inRd

Θ′ ≜ Restricted unknown parameter subspace by prior knowledge inRd

Θ′
re ≜ Restricted unknown parameter subspace by prior knowledge

and fixing certain dimensions inRd

ΘF ≜ Diffuse and finite unknown parameter subspace inRd

θ = (θ1, ..., θd) ≜ d-dimensional vector of unknown parameters
θt = (θt1, ..., θtd) ≜ d-dimensional training vector of unknown parameters
θv = (θv1, ..., θvd) ≜ d-dimensional validation vector of unknown parameters
{θ1, ..., θK} ≜ A set ofK sensitivity scenarios

S = {θ∗1 , ..., θ∗K} ≜ The ROSA set ofK sensitivity scenarios optimizing lossL
Sr = {θ∗1,r, ..., θ∗K,r} ≜ The ROSA set ofK sensitivity scenarios optimizing marginal lossLr

f(θ) ≜ R-vector of operating characteristics for unknown parameters θ
f̂(θ) ≜ Estimated R-vector of operating characteristics for unknown param-

eters θ
f̄(θ) ≜ Average acrossM simulations of theR-vector of operating character-

istics for unknown parameters θ
ϕ(Zj,m, θj) ≜ Generic function to capture if a null hypothesis has been rejected,

where Zj,m is themth trial under the jth scenario, θj
L(θ1, ..., θK) ≜ Loss function
U(θ1, ..., θK) ≜ Utility criterion

w1, ...,wr ≜ Fixed non-negative weights for operating characteristics f1, ..., fR
ω1, ω2 ≜ Weights for stage 1 and 2 p-values
D[·, ·] ≜ Pre-specified distance metric

zi1, ..., ziK ≜ Gaussian noise in iteration i of simulated annealing
ρi ≜ Acceptance probability in iteration i of simulated annealing

T0,T1, ...,TI ≜ Decreasing sequence of positive numbers (cooling schedule of simu-
lated annealing)

r ≜ Multiplicative reduction factor for simulated annealing in (0, 1)
Ui ≜ Random variable distributed Uniform(0,1) for simulated annealing
e ≜ Enrollment rate in (0,∞)

Na ≜ Planned number of patients on arm a = 0, 1 at the final analysis
na ≜ Planned number of patients on arm a = 0, 1 at the interim analysis
S ≜ Binary auxiliary outcome
Y ≜ Primary outcome
pa ≜ Response probability P(Y = 1 | A = a)

Δ = p1 − p0 ≜ Treatment effect on Y
qa ≜ Response probability P(S = 1 | A = a)
ρa ≜ Correlation between Y and S in A = a
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