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Abstract

The field of artificial intelligence (AI) has garnered increasing attention in
the realms of public health and conservation due to its potential to charac-
terize complex dynamics and facilitate difficult decision-making. My research
focuses on developing AI solutions, utilizing machine learning and optimiza-
tion techniques, to provide actionable decisions for deployment and create
positive social impact. This endeavor necessitates the integration of new al-
gorithmic and learning paradigms, combining machine learning techniques to
extract knowledge from data and optimization techniques to leverage domain
knowledge and scale up to larger problem sizes. In this thesis, I present method-
ological and theoretical contributions in the integration of optimization
into machine learning problems, including supervised learning, online learn-
ing, and multi-agent systems, with the aim of improving learning performance
and scalability by harnessing the knowledge encoded in optimization tasks. No-
tably, this thesis introduces the first decision-focused learning to integrate se-
quential problems into the learning pipeline to provide feedback from decision-
making processes and significantly reduce computation costs, thus enabling
applications in large-scale public health problems. The proposed algorithm
has been successfully applied in a field study and deployment in a maternal and
child health program, marking the first successful implementation of decision-
focused learning in the real world. Currently, the proposed algorithm is used
by over 100,000 beneficiaries in India to enhance engagementwith health infor-
mation and translate algorithmic contributions into tangible social impact.
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1
Introduction

We are confrontedwith numerous global challenges, particularly in the ar-

eas of public health and environmental sustainability, which disproportion-

ately affect the most vulnerable populations. For instance, maternal health

and maternal mortality during pregnancy239,62, recognized as one of the United

Nations’ sustainability goals in health, poses a significant threat to under-

resourced communities in the United States157,139,67 and the Global South266,239,7.
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Similarly, illegal poaching and illegal wildlife trade have had severe conse-

quences onwildlife population and biodiversity364,343,28,16,314. As the poaching

and smuggling crisis continues to devastate populations of endangered animals,

the implementation of protections for these species becomes of utmost impor-

tance83,220,74,63.

In order to address the magnitude of large-scale societal challenges, sci-

entists have invested a significant amount of effort in finding actionable so-

lutions to act on the problems of interest. For instance, in the field of mater-

nal health, interventions such as iron and folic acid supplements have been

shown to reduce the risk of premature birth277,8 and the likelihood of having

a child with spina bifida138,104,22. In the realm of conservation, patrolling ef-

forts in national parks serve as a deterrent against poaching and smuggling

activities99,221,336,253. All of these works showcase the power of intervention and

public policy on public health and conservation.

The aforementioned success in customized intervention and public policy mo-

tivates scientists to study how to scale up the impact using AI. We have seen

howAI has been used in various industrial and societal applications to sug-

gest actionable decisions and maximize desired performance. For example, AI

has been used in digital marketing to decide how to allocate limited advertise-

ment resources to maximize revenue under constraints and uncertainty188,86,61.

AI has also been used in urban planning and smart cities to optimize traffic de-

sign and urban development decisions under resource constraints and regula-

tions352,344,76. These AI applications leverage machine learning to quantify un-

certainty and characterize knowledge based on available data, and formulate

optimization and decision-making processes based on domain experts’ knowledge
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to suggest actionable decisions.

However, in public health and environmental sustainability, collecting data

is expensive and time-consuming, leading to the issue of limited data in machine

learning that is difficult to learn a meaningful model and extract useful knowl-

edge. Furthermore, decision making in public health and environmental sustain-

ability can be entangled by constraints and multiple self-interested agents in-

volved, posing an additional question on how to properly formulate optimiza-

tion problems to find optimal decisions using knowledge learned frommachine

learning. The combined challenges of limited data, complex decision-making

processes, and the involvement of multiple agents hinder the integration of

AI components for designing data-driven decision-making solutions in public

health and environmental sustainability. Therefore, the main research ques-

tion of this thesis is:

How to design AI solutions using machine learning and optimization

in public health and environmental sustainability?

In my thesis, I delve into the study of machine learning algorithms to quan-

tify uncertainty and knowledge based on limited data using machine learning

and design scalable algorithms to translate knowledge obtained from data

into actionable decisions using optimization. I aim to design effective machine

learning and optimization algorithms to address the challenges posed by un-

certainty and resource constraints in tackling large-scale societal issues. As

shown in Figure 1.1, The public health and environmental sustainability prob-

lems studied in this thesis include:

• Maternal health: I study improving access and engagement to maternal

3



health information through learning mothers’ engagement behavior and

allocating limited healthworkers to provide further assistance. My al-

gorithm on integrating machine learning and optimization led to a real-

world deployment to the mobile maternal health program in India used

by more than 100,000 mothers with a 30%more improvement on the engage-

ment to health information.

• Wildlife conservation: I study predicting poaching risk of different lo-

cations in national parks based on terrain features and historical poach-

ing data to determine how to assign limited park rangers and patrol re-

sources with patrol route recommendations. I also study collaboration

between park rangers and patrol posts by designing mechanism to incen-

tivize collaborationwithout communication.

• Epidemiology and tuberculosis adherence: I study the problem of learn-

ing adherence behavior to tuberculosis medication based on historical

data and scheduling healthworkers to call or physically visit patients

to encourage adherence.

1.1 Problem Statement

To holistically answer the research question in public health and environmen-

tal sustainability, as illustrated in Figure 1.2, I study the data-to-deployment

pipeline to develop data-driven decision-making AI solutions. The pipeline in-

volves several key steps. Firstly, data relevant to the targeted problem is uti-

lized to train machine learning algorithms, enabling the construction of an
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(a)Maternal and child health using
AI to predict engagement to health
information and schedule health
workers to provide assistance. Photo
taken by Kai Wang during the field
trip in Mumbai, India.

(b)Wildlife conservation using AI
to predict poaching risk in national
parks and optimize patrol routes to
maximize patrol performance. Photo
taken by Lily Xu during her field trip
in Cambodia.
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(c) Epidemiology using AI to forecast
adherence and disease transmission
parameters in agent‐based modeling
and compartment models, and
solving optimization to recommend
intervention strategies.

Figure 1.1: I study maternal health, wildlife conservation, and epidemiology by designing machine learning and optimiza‐
tion solutions in the data‐to‐deployment pipeline.

accurate model to characterize the problem of interest. Secondly, leveraging

the constructed model and considering limited intervention resources, the re-

source allocation problem is formulated as an optimization challenge, aimed at

optimizing the intervention performance and decision quality. Finally, in col-

laborationwith domain experts and organizations, the suggested intervention

decision is thoroughly examined and, upon validation, deployed in the field with

multiple parties involved to create social impact.

This data-to-deployment pipeline is widely applicable across various indus-

trial and societal domains. For example, it can be employed in maternal health

programs to analyze historical data on mothers’ engagement behavior and de-

termine appropriate interventions211,10,174. It can also be utilized in wildlife

conservation programs to predict and allocate patrol resources for areas at

risk of illegal poaching activities349,253. In epidemiology modeling, the pipeline

can be used to fit disease models with parameters and optimize intervention de-

sign153,118. Additionally, it can aid in solving routing problems by fitting traffic

5



Optimization
Machine 
LearningData Deployment

Figure 1.2: The data‐to‐deployment pipeline that is commonly used in AI, data science, and societal challenges.

predictive models and finding optimal routes317,229, as well as in designing adver-

tisement and recommendation systems that learn user preferences and provide

suitable recommendations275,261.

1.2 Challenges

Designing algorithms and individual components for the data-to-deployment

pipeline poses a number of technical challenges. I summarize a list of topics stud-

ied in this thesis below:

• Learning in the presence of optimization: In the realm of public health

and environmental conservation, machine learning and optimization play

vital roles in transforming data into actionable decisions for implementa-

tion. However, traditional supervised learning techniques primarily rely

on comparing predictions with ground truth labels to define accuracy

metrics or loss functions. In contrast, optimization and decision-making

processes prioritize the quality of proposed decisions than accuracy met-

rics. This discrepancy in objectives between machine learning and opti-

mization introduces a potential gap in the data-to-deployment pipeline.

This objective mismatch issue is pervasive in various AI and data science

challenges that involve the joint utilization of machine learning and op-
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timization to convert data into actionable decisions.

• Data exploration and exploitation: In addition to machine learning and

optimization, there is often an opportunity to collect new data during

the deployment of new decisions. This access to fresh data enables explo-

ration of decisions and features that may not be adequately represented

in the training data. However, it is also essential to strike a balance be-

tween exploration and exploitation, as we strive to ensure that the se-

lected decisions result in good overall performance, rather than being

purely exploratory. This tradeoff between exploration and exploitation

arises in the data-to-decision pipeline, involving various optimization and

decision-making processes. Our objective is to comprehensively under-

stand how to design online learning algorithms that effectively incor-

porate both the machine learning and optimization components.

• Optimization in multi-agent systems: In real-world societal challenges,

decision-making processes frequently entail the involvement of multiple

self-interested agents. It is crucial to thoroughly investigate the inter-

actions among these agents and the optimization problems that arise in

multi-agent systems. In particular, the development of scalable solutions

to effectively address optimization challenges in multi-agent systems is a

key area of focus.

The main objective of this thesis is to comprehensively investigate the impact

of optimization on various components within the data-to-decision pipeline, and

to develop scalable algorithms that seamlessly integrate optimizationwith

machine learning and data collection processes. While individual artificial
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Figure 1.3: I collaborated with ARMMAN to deploy my decision‐focused learning algorithm that integrates machine learn‐
ing and optimization to the mobile health program with ARMMAN, and the algorithm is used by more than 100,000
people in India with a 30% more improvement in health information engagement. During the field study, I visited the
ARMMAN office (left) and the region where ARMMAN operates the maternal mobile health program to serve under‐
resourced communities in Mumbai, India (middle). I followed the health workers to physically visit the families enrolled
in the health program (right). The health workers talked to mothers and provided preventive care information and assis‐
tance to increase access to health information and reduce maternal and child mortality/morbidity.

intelligence components in the data-to-deployment pipeline have been thor-

oughly researched in diverse applications, the holistic integration of these

components has received relatively less attention. By incorporating optimiza-

tion into machine learning, data collection, and multi-agent systems, domain-

specific solutions can be designed to effectively handle diverse constraints and

knowledge in different application domains, such as public health and environ-

mental sustainability. This thesis addresses the potential challenges and es-

sential components involved in creating data-driven decision-making solutions

for deployment in these fields. From a technical standpoint, the integration of

optimization poses new challenges in effectively and efficiently blending opti-

mization techniques with machine learning, data collection, and multi-agent

systems. This thesis establishes the algorithmic foundations for machine learn-

ing and other AI techniques in the presence of various optimization problems
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and decision-making processes. As a whole, this thesis summarizes the pivotal

role of optimization in the data-to-deployment pipeline and showcases its appli-

cations in public health and environmental sustainability.

1.3 Thesis Outline

This thesis is divided into three parts, which corresponds to three different

gaps in the data-to-deployment pipeline in Figure 1.4.

• Part I (learning in the presence of optimization) studies the integration

of machine learning and optimization problems to produce actionable and

quality-aware solutions in public health andwildlife conservation.

• Part II (optimization in online learning) studies using optimization to

design online learning algorithms to simultaneously collect data and

ensure better theoretical guarantees in public health challenges.

• Part III (optimization in multi-agent systems) studies decision making in

multi-agent systems via Stackelberg games to design scalable and approxi-

mate solutions for wildlife conservation.

The chapters in this thesis are based on materials in the publications321,323,320,324,327,311,322,325,319,326.

Each chapter includes a relatedwork section to summarize the prior work on

the related topics. Figure 1.4 and below summarize the contributions of chap-

ters covered in each part.
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Collecting data 
is expensive

Part I
ML accuracy ≠

optimization metrics

Part III
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Figure 1.4: The figure summarizes the gaps in the data‐to‐deployment pipeline. Part I discusses the objective mismatch
gap between machine learning and optimization. Part II discusses the challenge of using optimization to design data
collection algorithms to improve online learning performance. Part III discusses the scalability challenges of optimization
in multi‐agent systems and how to design scalable approximate algorithms.

1.3.1 Part I: Learning in the Face of Optimization

Effective data-driven decision making requires alignment of machine learning

and optimization in the data-to-decision pipeline, but unfortunately most use

cases consider the two steps separately. For example, in my collaboration on the

maternal health challenge with an Indian non-government organization ARM-

MAN, we first predict the behavior of expecting and newmothers from histori-

cal data, and then optimize limited number of service calls from ARMMAN’s call

center to boost engagementwith their health information program. However,

machine learning and optimization operate separately, and their objectives are

often misaligned: machine learning seeks to maximize predictive accuracy, while

optimization seeks to optimize decision quality. Improved predictive accuracy

does not necessarily result in better decision quality, producing a mismatch, as

we truly care about producing the best decisions possible. My research focuses

on fixing this misalignment of objectives by integrating machine learning and

optimization problems via decision-focused learning (DFL) as shown in Figure 1.5.

Specifically, (i)Chapter 2 andChapter 3 generalize decision-focused learning
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Figure 1.5: Decision‐focused learning uses the decision quality of the optimization problem to train the machine learn‐
ing model.

to sequential decision problems, followed by a field study result summarized in

Chapter 4, and (ii)Chapter 5 andChapter 6 highlight and alleviate the scala-

bility issue in decision-focused learning.

Decision-focused learning in sequential decision problems

Many public health problems involve sequential decision making to maximize

long-term performance. However, the existing decision-focused learning algo-

rithms only work for non-sequential optimization problems with explicit opti-

mality conditions.

Chapter 2 delves into the implicit optimality conditions in sequential deci-

sion problems, treating them as implicit fixed-point equations. This leads to a

novel technique for differentiating through optimal solutions of sequential

decision problems using the implicit function theorem and the policy gradient

theorem from reinforcement learning literature, establishing the differentia-

bility of sequential problems and decision-focused learning in such scenarios.

Chapter 3 focuses on restless multi-armed bandits (RMABs), a specific cat-
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egory of sequential decision problems used to model the effect of sequential

treatments in public health. Integrating RMABs into the learning tasks for

decision-focused learning in public health is challenging due to the inherent

computational complexity of solving RMABs optimally. However, this chap-

ter resolves this computational issue by using an approximate index-based so-

lution that can be solved in polynomial time. Furthermore, this chapter demon-

strates the differentiability of the index-based solution, successfully enabling

decision-focused learning in RMAB problems.

Field study in maternal and child health

Chapter 4 covers the real-world field study result of decision-focused learn-

ing in the maternal and child health challenge formulated as a restless multi-

armed bandit problem. I have collaboratedwith ARMMAN to study the mater-

nal health challenge and boost engagementwith their mobile health informa-

tion program by optimizing service calls. We conducted a field study to compare

the proposed decision-focused learning algorithmwith other non-decision-

focused learning algorithms on a cohort of 9000 beneficiaries registered be-

tween April 2022 to June 2022. Our decision-focused learning algorithm signifi-

cantly outperforms the non-decision-focused learning algorithm. This result

has led to the first real-world deployment of decision-focused learningwith

ARMMAN; with estimated 100,000 beneficiaries in under-resourced communities

benefiting from using decision-focused learning in boosting engagementwith

ARMMAN’s health program.
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Scalability of decision-focused learning

Decision-focused learningwas previously proposed to train predictive models

that maximize decision quality in downstream optimization tasks. However,

integrating optimization into the learning process requires repeatedly solv-

ing and backpropagating through the optimization problem at every gradient

step, which can quickly become computationally intractable as the problem size

grows even in the non-sequential setting.

Chapter 5 proposes subsampling decision variables of optimization problems

to reduce the dimensionality of the optimization problem in decision-focused

learning, with an approximation guarantee on gradient estimate.

Chapter 6 presents a method that uses a lower-dimensional surrogate prob-

lem constructed from the original problemwith a closed-form expression to

reduce the dimensionality and the optimization cost.

All of these methods effectively reduce the computation cost of decision-

focused learning, enabling real-world applications by achieving cubic reduc-

tion in computation overhead.

1.3.2 Part II: Optimization in Online Learning

Data collection plays a crucial role in the performance of wildlife conser-

vation and public health efforts. In my research, I investigate various types

of multi-armed bandit (MAB) problems, where the learner repeatedly queries

to learn and optimize the rewards from interactions. Specifically, I focus on

stochasticMABs and restlessMABs, which are motivated by the domains of

wildlife conservation and public health, respectively.
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Chapter 7 investigates a stochasticMAB problemwith a fixed budget, where

multiple arms are pulled to receive feedback at each time step. Unlike standard

combinatorialMABs, in this scenario, we observe additive feedback from each

arm, which contributes to the final reward metric. For example, in wildlife con-

servation, we observe rewards from each patrol location, or in public health,

we observe the tuberculosis treatment effect in individual districts of a large

state. I demonstrate that the additive decomposed feedback helps reduce un-

certainty in Gaussian process regression and enables faster convergence. This

leads to the development of an online algorithm called decomposed-GP-UCB for

stochasticMAB problems with continuous pulling actions.

Chapter 8 studies restless multi-armed bandits (RMABs) as an extension of

MABs to understand the impact of sequential decisions in public health. I pro-

pose an online algorithm that leverages the temporal dependency in RMABs to

learn the unknown transition dynamics, such as treatment effects and long-

term health impacts. The algorithm yields a frequentist regret bound ofO(
√
T logT),

which generalizes the state-of-the-art Bayesian regret bound to a broader

range of RMAB problems.

Chapter 9 extends the concept of decomposed feedback inMAB problems to

non-additive decomposed feedback in online combinatorial optimization prob-

lems. I propose an online algorithm that uses a predictive model to achieve a

sublinear regret guarantee in online combinatorial optimization problems. The

result highlights the benefits of utilizing decomposed feedback in online combi-

natorial optimization, a generalized version ofMAB problems, to improve regret

bounds.
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1.3.3 Part III: Optimization inMulti-agent Systems

Real-world challenges often involve multiple roles with different interests

and require sequential decision making. For instance, in wildlife conservation,

patrollers in national parks must choose a patrol strategy to protect endan-

geredwildlife, while poachers respond to the patrol plan to launch attacks on

animals. Part III focuses on using Stackelberg games to understand sequential

decision making in multi-agent systems and design scalable algorithms for effi-

cient computation of near-optimal equilibria.

Chapter 10 studies Stackelberg games with multiple followers, each having

their own interests. I propose a technique to differentiate through the equi-

librium reached by multiple followers, estimating the gradient of the leader’s

payoff obtained from the equilibrium. This method results in the first gradient-

based algorithm for solving Stackelberg games with multiple followers, which

outperforms the standard bilevel formulation for solving Stackelberg games.

Chapter 11 focuses on Stackelberg games with different response models for

the followers, and develops algorithms for defending against attackers with

varying behaviors. I propose equilibrium refinement algorithms for Stackelberg

games with arbitrary resource constraints, which identifies robust solutions

against potential uncertainty in the response behavior of followers. This al-

gorithm can be applied to applications such as scheduling security resources to

protect vulnerable targets.
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Part I

Decision-focused Learning: Learning in

the Face of Optimization
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2
Decision-focused Learning in

Sequential Decision Problems

2.1 Introduction

Predict-then-optimize91,33 is a framework for solving optimization problems

with unknown parameters. Given such a problem, we first train a predictive
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model to predict the missing parameters from problem features. Our objective

is to maximize the resulting decision quality when the optimization problem is

subsequently solvedwith the predicted parameters274,237. Recent work on the

decision-focused learning approach80,338 embeds the optimization problem12,3,32

into the training pipeline and trains the predictive model end-to-end to optimize

the final decision quality. Comparedwith a more traditional “two-stage” ap-

proachwhich maximizes the predictive accuracy of the model (rather than the

final decision quality), the decision-focused learning approach can achieve a

higher solution quality and generalize better to unseen tasks.

This paper studies the predict-then-optimize framework in sequential deci-

sion problems, formulated asMarkov decision processes (MDPs), with unknown

parameters. In particular, at training time, we are given trajectories and en-

vironment features from “trainingMDPs.” Our goal is to learn a predictive

model which maps from environment features to missing parameters based on

these trajectories that generalizes to unseen testMDPs that have features, but

not trajectories. The resulting “predicted” training and testMDPs are solved

using deep reinforcement learning (RL) algorithms, yielding policies that are

then evaluated by offline off-policy evaluation (OPE) as shown in Figure 2.1. This

fully offline setting is motivated by real-world applications such as wildlife

conservation and tuberculosis treatmentwhere no simulator is available. How-

ever, such domains offer past ranger patrol trajectories and environmental

features of individual locations from conservation parks for generalization

to other unpatrolled areas. These settings differ from those considered in

transfer-RL234,299,187,276 and meta-RL318,82,100,363,330 because we generalize across

differentMDPs by explicitly predicting the mapping function from features
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to missingMDPs parameters, while transfer/meta RL achieve generalization by

learning hidden representation of differentMDPs implicitly with trajectories.

The main contribution of this paper is to extend the decision-focused learn-

ing approach toMDPswith unknown parameters, embedding theMDP problems

in the predictive model training pipeline. To perform this embedding, we study

two common types of optimality conditions inMDPs: a Bellman-based approach

where mean-squared Bellman error is minimized, and a policy gradient-based ap-

proachwhere the expected cumulative reward is maximized. We convert these

optimality conditions into their corresponding Karush–Kuhn–Tucker (KKT)

conditions, where we can backpropagate through the embedding by differenti-

ating through the KKT conditions. However, existing techniques from decision-

focused learning and differentiating through KKT conditions do not directly

apply as the size of the KKT conditions of sequential decision problems grow

linearly in the number of states and actions, which are often combinatorial or

continuous and thus become intractable.

We identify and resolve two computational challenges in applying decision-

focused learning toMDPs, that come up in both optimality conditions: (i) the

large state and action spaces involved in the optimization reformulation make

differentiating through the optimality conditions intractable and (ii) the high-

dimensional policy space inMDPs, as parameterized by a neural network, makes

differentiating through a policy expensive. To resolve the first challenge, we

propose to sample an estimate of the first-order and second-order derivatives

to approximate the optimality and KKT conditions. We prove such a sampling

approach is unbiased for both types of optimality conditions. Thus, we can dif-

ferentiate through the approximate KKT conditions formed by sample-based
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derivatives. Nonetheless, the second challenge still applies—the sampled KKT

conditions are expensive to differentiate through due to the dimensionality of

the policy space when model-free deep RL methods are used. Therefore, we pro-

pose to use a low-rank approximation to further approximate the sample-based

second-order derivatives. This low-rank approximation reduces both the compu-

tation cost and the memory usage of differentiating through KKT conditions.

We empirically test our decision-focused algorithms on three settings: a

grid worldwith unknown rewards, and snare-finding and Tuberculosis treat-

ment problems where transition probabilities are unknown. Decision-focused

learning achieves better OPE performance in unseen testMDPs than two-stage

approach, and our low-rank approximations significantly scale-up decision-

focused learning.

2.2 RelatedWork

Differentiable optimization Amos et al.11 propose using a quadratic program

as a differentiable layer and embedding it into deep learning pipeline, and Agrawal

et al.3 extend their work to convex programs. Decision-focused learning80,338

focuses on the predict-then-optimize91,33 framework by embedding an optimiza-

tion layer into training pipeline, where the optimization layers can be convex80,

linear338,206, and non-convex247,324. Unfortunately, these techniques are of lim-

ited utility for sequential decision problems because their formulations grow

linearly in the number of states and actions and thus differentiating through

them quickly becomes infeasible. Amos et al.12 avoid this issue by studying model-

predictive control but limited to quadratic-form actions, reducing the dimen-
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sionality. Karkus et al.165 differentiate through an algorithm by unrolling and

relaxing all the strict operators by soft operators. Futoma et al.111 deal with

large optimality conditions by differentiating through the last step of the

value-iteration algorithm only. Instead, our approach does not rely on anyMDP

solver structure. We combine sampling and a low-rank approximation to form

an unbiased estimate of the optimality conditions to differentiate through, and

show that the approach of Futoma et al.111 is included in ours as a special case.

Predict-then-optimize and offline reinforcement learning The idea of plan-

ning under a predictedMDP arises in model-based RL as certainty equivalence183.

It has been extended to offline settings167,355, who learn a pessimisticMDP before

solving for the policy. Our setting differs because of the presence of features

and train-test split—our testMDPs are completely freshwithout any trajec-

tories. Our setting also resembles meta RL (e.g.,318,82,100,363,330) and transfer RL

(e.g.,234,299,187,276.) Meta RL focuses on training a “meta policy” for a distribution

of tasks (MDPs), leveraging trajectories for each. Transfer RLworks by extract-

ing transferable knowledge from sourceMDPs to targetMDPs using trajec-

tories. In contrast to these two paradigms, ours explicitly trains a predictive

model (which maps problem features to missingMDP parameters) to generalize

knowledge learned from the training set to the testing set using problem fea-

tures, not trajectories.

2.3 Problem Statement

In this paper, we consider learning a predictive model to infer the missing pa-

rameters in a sequential decision-making task (formulated asMDPs) using the
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Predictive model
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RL solver
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"
	 𝐽# 𝜋

Evaluation
𝐸𝑣𝑎𝑙𝒯 𝜋∗ 𝜃𝜋∗ 𝜃
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MDP parameter
𝜃 = 𝑚! 𝑥

Feature vector
𝑥 (to be learned)

Optimal policy 

Trajectories 𝒯 = 𝑠,𝑎, 𝑟
(available in the training MDP problems only) Offline off-policy evaluationPredictive loss

Backpropagation (decision-focused)

Backpropagation 
(two-stage)

Figure 2.1: We consider learning a predictive model to map from features to unknown MDP parameters and obtaining
a policy by solving the predicted MDP with RL. Two‐stage learning learns the predictive model by minimizing a predic‐
tive loss function, whereas decision‐focused learning is trained end‐to‐end to maximize the final off‐policy evaluation
performance.

predict-then-optimize framework. EachMDP is defined by a tuple (S, sss0,A,T,R)

with an initial state sss0, a possibly infinite state space S and possibly infinite ac-

tion spaceA. We assume some parameters are missing in eachMDP, which could be

any portion of the transition function T and the reward functionR. We denote

the missing parameters vector by θ∗. Additionally, we assume there are problem

features x associatedwith eachMDP, where (θ∗, x) is correlated and drawn from

the same unknown, but fixed, distribution*.

We are given a set of trainingMDPs and a set of testMDPs, eachwith miss-

ing parameters θ∗ and features x. Each trainingMDP is accompanied by a set of

trajectories T performed by a behavior policy πbeh, consisting of a sequence

of states, actions and rewards. In the testMDPs, trajectories from the behav-

ior policy are hidden at test time. These testingMDPs are considered fresh in-

stances thatwe have to generate a policy without using any trajectories. Thus,

at training time, we learn a predictive modelmw to map from features to missing

*Examples of the missing parameters θ∗ include the poaching risk of different locations in wildlife conser-
vation and the transition probability of patients’ healthiness in healthcare problems, where the corresponding
problem features are terrain features of different locations and the characteristics of different patients that are
correlated to the missing parameters, respectively. These correlated features allow us to predict the missing
parameters even if we do not have any trajectories of the MDP.
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parameters; at test time, we apply the same model to make predictions and plan

accordingly without using trajectories.

Formally, our goal is to learn a predictive modelmw to predict the missing pa-

rameters θ = mw(x). The predicted parameters are used to solve the testMDPs,

yielding the policy π∗(mw(x)). Lastly, we use an offline evaluation metric to

measure the performance of the new policy. The evaluation metric is known as

offline off-policy evaluation (OPE)257,303 and counterfactual inference in se-

quential experiments85,68 to evaluate the treatment effect of a new policy. The

framework of the entire process is illustrated in Figure 2.1.

Offline off-policy evaluation We evaluate a policy π in a fully offline setting

with trajectories T = {τi}, τi = (si1, ai1, ri1, · · · , sih, aih, rih) generated from theMDP

using behavior policy πbeh. We use an OPE metric used by Futoma et al.111 —we

evaluate a policy π and trajectories T as:

EvalT (π) := VCWPDIS(π)− λESS√
ESS(π)

(2.1)

whereVCWPDIS(π) :=
h∑

t=1
γt

∑
i
ritρit(π)∑

i
ρit(π)

and ESS(π) :=
h∑

t=1

(
∑
i
ρit)

2∑
i
ρ2it

, and ρit(π) is the ratio

of the proposed policy and the behavior policy likelihoods up to time t: ρit(π) :=
t∏

t′=1

π(ait′ |sit′ )
πbeh(ait′ |sit′ )

.

Optimization formulation Given a set of training features and trajectories

Dtrain denoted by {(xi, Ti)}i∈Itrain , our goal is to learn a predictive modelmw to
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optimize the training performance:

max
w

E
(x,T )∈Dtrain

[EvalT (π∗(mw(x)))] (2.2)

The testing performance is evaluated on the unseen test setDtest = {(xi, Ti)}i∈Itest

with trajectories hidden from training, and only used for evaluation: E
(x,T )∈Dtest

[EvalT (π∗(mw(x)))].

2.4 Two-stage Learning

To learn the predictive modelmw from trajectories, the standard approach is to

minimize an expected predictive loss, which is defined by comparing the predic-

tion θ = mw(x)with the trajectories T :

min
w

E
(x,T )∼Dtrain

L(θ, T ) where L(θ, T ) = E
τ∼T

ℓθ(τ), θ = mw(x) (2.3)

For example, when the rewards are missing, the loss could be the squared error

between the predicted rewards and the actual rewards we see in the trajecto-

ries for each individual step. When the transition probabilities are missing, the

loss could be defined as the negative log-likelihood of seeing the trajectories

in the training set.

In the first stage, to train the predictive model, we run gradient descent to

minimize the loss function defined in Equation (2.3) and make prediction on the

model parameter θ = mw(x) of each problem. In the second stage, we solve each

MDP problemwith the predicted parameter θ using an RL algorithm to gener-

ate the optimal policy π∗(θ). However, predictive loss and the final evaluation

metric are commonly misaligned especially in deep learning problems with imbal-
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anced data142,185,155,51. This motivates us to learn the predictive model end-to-end

and therefore avoid the misalignment.

2.5 Decision-focused Learning in Sequential Decision Problems

In this section, we present our main contribution, decision-focused learning

in sequential decision problems, as illustrated in Figure 2.1. Decision-focused

learning integrates anMDP problem into the training pipeline to directly opti-

mize the final performance. Instead of relying on a predictive loss to train the

predictive modelmw, we can directly optimize the objective in Equation (2.2) by

running end-to-end gradient descent to update the predictive modelmw:

d Eval(π∗)
dw

=
d Eval(π∗)

dπ∗
dπ∗

dθ
dθ
dw

(2.4)

We assume the policy π∗(θ) is either stochastic and smoothwith respect to the

change in the parameter θ, which is common in settings with continuous state

or action spaces, or that an appropriate regularization term127,128 is used to im-

prove the smoothness of the policy. More discussions about the smoothness can

be found in Appendix A.2.1.

This gradient computation requires us to back-propagate from the final eval-

uation through theMDP layer to the predictive modelmw thatwewant to up-

date. The major challenge in Equation (2.4) is to compute dπ∗
dθ , which involves dif-

ferentiating through anMDP layer solved by an RL algorithm. In the following

section, we first discuss two different optimality conditions inMDPs, which are

later used to convert into KKT conditions and differentiate through to com-

pute dπ∗
dθ . We then discuss two computational challenges associatedwith the
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derivative computation.

2.5.1 Optimality Conditions inMDPs

When the predicted model parameter θ = mw(x) is given, theMDP can be solved

by any RL algorithm to get an optimal policy π∗. Here we discuss two common op-

timality conditions inMDPs, differing by the use of policy gradient or Bellman

equation:

Definition 1 (Policy gradient-based optimality condition). Defining Jθ(π) to be the expected cumula-

tive reward under policy π, the optimality condition of the optimal policy π∗ is:

π∗ = argmax
π

Jθ(π) where Jθ(π) := E
τ∼π,θ

Gθ(τ) (2.5)

where Gθ(τ) is the discounted value of trajectory τ given parameter θ, and the expectation is taken over

the trajectories following the optimal policy and transition probability (as part of θ).

Definition 2 (Bellman-based optimality condition). Defining Jθ(π) to be the mean-squared Bellman

error† under policy π, the optimality condition of the optimal policy π∗ (valuation function) is:

π∗ = argmin
π

Jθ(π) where Jθ(π) := E
τ∼π,θ

1
2
δ2θ(τ, π) (2.6)

where δθ(τ, π) =
∑

(s,a,s′)∈τ
Qπ(s, a) − Rθ(s, a) − γ E

a′∼π
Qπ(s′, a′) is the total Bellman error of a tra-

jectory τ, and each individual term δθ(τ, π) can depend on the parameter θ because the Bellman error

depends on the immediate reward Rθ, which can be a part of theMDP parameter θ. The expectation

in Equation (2.6) is taken over all the trajectories generated from policy π and transition probability

(as part of θ).
†We use the same notation J to denote both the expected cumulative reward and the expected Bellman

error to simplify the later analysis of decision-focused learning.
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2.5.2 Backpropagating ThroughOptimality and KKTConditions

To compute the derivative of the optimal policy π∗(θ) in anMDPwith respect

to theMDP parameter θ, we differentiate through the KKT conditions of the

corresponding optimality conditions:

Definition 3 (KKTConditions). Given objective Jθ(π) in anMDP problem, since the policy parame-

ters are unconstrained, the necessary KKT conditions can be written as: ∇πJθ(π∗) = 0.

In particular, computing the total derivative of KKT conditions gives:

0 =
d
dθ
∇πJθ(π∗) =

∂

∂θ
∇πJθ(π∗) +

∂

∂π
∇πJθ(π∗)

dπ∗

dθ
= ∇2

θπJθ(π
∗) +∇2

πJθ(π∗)
dπ∗

dθ

=⇒ dπ∗

dθ
= −(∇2

πJθ(π∗))−1∇2
θπJθ(π

∗) (2.7)

We can use Equation (2.7) to replace the term dπ∗
dθ in Equation (2.4) to compute

the full gradient to back-propagate from the final evaluation to the predictive

model parameterized by w:

d Eval(π∗)
dw

= −d Eval(π∗)
dπ∗

(∇2
πJθ(π∗))−1∇2

θπJθ(π
∗)

dθ
dw

(2.8)

2.5.3 Computational Challenges in Backward Pass

Unfortunately, althoughwe canwrite down and differentiate through the

KKT conditions analytically, we cannot explicitly compute the second-order

derivatives∇2
πJθ(π∗) and∇2

θπJθ(π
∗) in Equation (2.8) due to the following two

challenges:
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Large state and action spaces involved in optimality conditions The objectives

Jθ(π∗) in Definition 1 andDefinition 2 involve an expectation over all possible

trajectories, which is essentially an integral and is intractable when either the

state or action space is continuous. This prevents us from explicitly verifying

optimality andwriting down the two derivatives∇2
πJθ(π∗) and∇2

θπJθ(π
∗).

High-dimensional policy space parameterized by neural networks InMDPs

solved by model-free deep RL algorithms, the policy space π ∈ Π is often pa-

rameterized by a neural network, which has a significantly larger number of

variables than standard optimization problems. This large dimensionality makes

the second-order derivative∇2
πJθ(π∗) ∈ Rdim(π)×dim(π) intractable to compute,

store, or invert.

2.6 Sampling Unbiased Derivative Estimates

In both policy gradient–based and Bellman–based optimality conditions, the ob-

jective is implicitly given by an expectation over all possible trajectories, which

could be infinitely large when either state or action space is continuous. This

same issue arises when expressing such anMDP as a linear program— there are

infinitely many constraints, making it intractable to differentiate through.

Inspired by the policy gradient theorem, althoughwe cannot compute the ex-

act gradient of the objective, we can sample a set of trajectories τ = {s1, a1, r1, . . . , sh, ah, rh}

from policy π and model parameter θwith finite time horizon h. Denoting pθ(τ, π)

to be the likelihood of seeing trajectory τ, we can compute an unbiased deriva-

tive estimate for both optimality conditions:
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Theorem 1 (Policy gradient-based unbiased derivative estimate). We follow the notation of Defini-

tion 1 and defineΦθ(τ, π) =
h∑

i=1

h∑
j=i

γjRθ(sj, aj) log π(ai|si). We have:

∇πJθ(π) = E
τ∼π,θ

[∇πΦθ(τ, π)] =⇒
∇2

πJθ(π) = E
τ∼π,θ

[
∇πΦθ · ∇π log p⊤θ +∇2

πΦθ

]
∇2

θπJθ(π) = E
τ∼π,θ

[
∇πΦθ · ∇θ log p⊤θ +∇2

θπΦθ

] (2.9)

Theorem 2 (Bellman-based unbiased derivative estimate). We follow the notation in Definition 2 to

define Jθ(π) = 1
2 E
τ∼π,θ

[
δ2θ(τ, π)

]
. We have:

∇πJθ(π) = E
τ∼π,θ

[
δ∇πδ+

1
2
δ2∇π log pθ

]
=⇒ ∇2

πJθ(π) = E
τ∼π,θ

[
∇πδ∇πδ⊤ + O(δ)

]
∇2

θπJθ(π) = E
τ∼π,θ

[
∇πδ∇θδ⊤ +

(
∇πδ∇θ log p⊤θ +∇π log pθ∇θδ⊤ +∇2

θπδ
)
δ+ O(δ2)

]
(2.10)

For the latter, we apply the fact that at the near-optimal policy, the Bellman

error is close to 0 and thus each individual component δ(τ, π) is small to simplify

the analysis. Refer to the appendix for the full derivations of Equations (2.9)

and (2.10).

Equations (2.9) and (2.10) provide a sampling approach to compute the second-

order derivatives, avoiding computing an expectation over the large trajec-

tory space. We can use the optimal policy derived in the forward pass and the

predicted parameters θ to run multiple simulations to collect a set of trajecto-

ries. These trajectories from predicted parameters can be used to compute each

individual derivative in Equations (2.9) and (2.10).
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2.7 ResolvingHigh-dimensional Derivatives by Low-rank Approximation

Section 2.6 provides sampling approaches to compute an unbiased estimate of

second-order derivatives. However, since the dimensionality of the policy space

dim(π) is often large, we cannot explicitly expand and invert∇2
πJθ(π∗) to com-

pute∇2
πJθ(π∗)−1∇2

θπJθ(π
∗), which is an inevitable step toward computing the full

gradient of decision-focused learning in Equation (2.8). In this section, we dis-

cuss various ways to approximate∇2
πJθ(π∗) and howwe use low-rank approxima-

tion andWoodbury matrix identity340 to efficiently invert the sampledHessian

without expanding the matrices. Let n := dim(π) and k � n to be the number of

trajectories we sample to compute the derivatives.

2.7.1 Full Hessian Computation

In Equations (2.9) and (2.10), we can apply auto-differentiation tools to compute

all individual derivatives in the expectation. However, this works only when

the dimensionality of the policy space π ∈ Π is small because the full expressions

in Equations (2.9) and (2.10) involve computing second-order derivatives , e.g.,

∇2
πΦθ in Equation (2.10), which is still challenging to compute and store when

the matrix size n×n is large. The computation cost isO(n2k)+O(nω) dominated by

computing all theHessian matrices and the matrix inversionwith 2 ≤ ω ≤ 2.373

the complexity order of matrix inversion.

2.7.2 ApproximatingHessian by Constant IdentityMatrix

One naive way to approximate theHessian∇2
πJθ(π∗) is to simply use a constant

identity matrix cI. We choose c < 0 for the policy gradient–based optimality
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in Definition 1 because the optimization problem is a maximization problem and

thus is locally concave at the optimal solution, whose Hessian is negative semi-

definite. Similarly, we choose c > 0 for the Bellman–based optimality in Defini-

tion 2. This approach is fast, easily invertible. Moreover, in the Bellman version,

Equation (2.8) is equivalent to the idea of differentiating through the final gra-

dient of Bellman error as proposed by Futoma et al.111‡. However, this approach

ignores the information provided by theHessian term, which can often lead to

instability as we later show in the experiments. In this case, the computation

complexity is dominated by computing∇2
θπJθ(π

∗), which requiresO(nk).

2.7.3 Low-rankHessian Approximation and Application ofWoodburyMatrix

Identity

A compromise between the full Hessian and using a constant matrix is approx-

imating the second-order derivative terms in Equations (2.9) and (2.10) by con-

stant identity matrices, while computing the first-order derivative terms with

auto-differentiation. Specifically, given a set of k sampled trajectories {τ1, τ2, · · · , τk},

Equations (2.9) and (2.10) can be written and approximated in the following form:

∇2
πJθ(π) ≈

1
k

k∑
i=1

(
uiv⊤i +Hi

)
≈ 1

k

k∑
i=1

(
uiv⊤i + cI

)
= UV⊤ + cI (2.11)

whereU = [u1, u2, · · · , uk]/
√
k ∈ Rn×k,V = [v1, v2, · · · , vk]/

√
k ∈ Rn×k and ui, vi ∈ Rn

correspond to the first-order derivatives in Equations (2.9) and (2.10), andHi

‡The gradient of Bellman error can be written as∇πJθ(π∗)where the policy π is the parameters of the
value function approximator and J is defined as the expected Bellman error. The derivative of the final gradi-
ent can be written as∇w(∇πJθ(π∗)) = ∇2

θπJθ(π∗)
dθ
dw by chain rule, which matches the last three terms in

Equation 2.8 when the Hessian is approximated by an identity matrix.
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corresponds to the remaining terms that involve second-order derivatives. We

use a constant identity matrix to approximateHi, while explicitly computing the

remaining parts to increase accuracy.

However, we still cannot explicitly expandUV⊤ ∈ Rn×n since the dimension-

ality is too large. Therefore, we applyWoodbury matrix identity340 to invert

Equation (2.11):

(∇2
πJθ(π))−1 ≈ (UV⊤ + cI)−1 =

1
c
I− 1

c
U(cI− V⊤U)−1V⊤ (2.12)

whereV⊤U ∈ Rk×k can be efficiently computedwith much smaller k � n. When

we compute the full gradient for decision-focused learning in Equation (2.8), we

can then apply matrix-vector multiplicationwithout expanding the full high-

dimensional matrix, which results in a computation cost ofO(nk + kω) that is

much smaller than the full computation costO(n2k+ nω).

The full algorithm for decision-focused learning inMDPs is illustrated in

Algorithm 1§.

2.8 ExampleMDP Problems withMissing Parameters

Gridworldwith unknown cliffs We consider a Gridworld environmentwith a

set of training and testMDPs. EachMDP is a 5×5 grid with a start state located

at the bottom left corner and a safe state with reward drawn fromN (5, 1) lo-

cated at the top right corner. Each intermediate state has a reward associated

with it, where most of them give the agent a reward drawn fromN (0, 1) but 20%

§The implementation of Algorithm 1 can be found in https://github.com/guaguakai/
decision-focused-RL
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Algorithm 1:Decision-focused Learning for MDP Problems withMissing Parame-
ters

1 Parameter: Training setDtrain = {(xi, Ti)}i∈Itrain , learning rate α, regularization
λ = 0.1

2 Initialization: Initialize predictive modelmw : X → Θ parameterized by w
3 for epoch∈ {1, 2, . . . }, each training instance (x, T ) ∈ Dtrain do
4 Forward: Make prediction θ = mw(x). Compute two-stage lossL(θ, T ). Run

model-free RL to get an optimal policy π∗(θ) onMDP problem using
parameter θ.

5 Backward: Sample a set of trajectories under θ, π∗ to compute
∇2

πJθ(π∗),∇2
θπJθ(π∗)

6 Gradient step: Set Δw = d EvalT (π∗)
dw − λ dL(θ,T )

dw by Equation (2.8) with
predictive lossL as regularization. Run gradient ascent to update model:
w← w+ αΔw

7 Return: Predictive modelmw.

of the them are cliffs and giveN (−10, 1) penalty to the agent. The agent has no

prior information about the reward of each grid cell (i.e., the reward functions

of theMDPs are unknown), but has a feature vector per grid cell correlated to

the reward, and a set of historical trajectories from the trainingMDPs. The

agent learns a predictive model to map from the features of a grid cell to its

missing reward information, and the resultingMDP is used to plan. Since the

state and action spaces are both finite, we use tabular value-iteration295 to

solve theMDPs.

Partially observable snare-finding problems with missing transition function

We consider a set of synthetic conservation parks, eachwith 20 sites, that are vul-

nerable to poaching activities. Each site in a conservation park starts from a

safe state and has an unknown associated probability that a poacher places a

snare at each time step. Motivated by349, we assume a ranger who can visit one
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site per time step and observes whether a snare is present. If a snare is present,

the ranger removes it and receives reward 1. Otherwise, the ranger receives re-

ward of−1. The snare can stay in the site if the ranger does not remove it, which

makes the snare-finding problem a sequential problem rather than a multi-armed

bandit problem. As the ranger receives no information about the sites that they

do not visit, theMDP belief state is the ranger’s belief aboutwhether a snare is

present. The ranger uses the features of each site and historical trajectories

to learn a predictive model of the missing transition probability of a snare be-

ing placed. Since the belief state is continuous and the action space is discrete,

given a predictive model of the missing transition probability, the agent uses

double deep Q-learning (DDQN)309 to solve the predictedMDPs.

Partially observable patient treatment problems with missing transition proba-

bility We consider a version of the Tuberculosis Adherence Problem explored

in210. Given that the treatment for tuberculosis requires patients to take medi-

cations for an extended period of time, one way to improve patient adherence is

Directly Observed Therapy, in which a healthcare worker routinely checks in

on the patient to ensure that they are taking their medications. In our problem,

we consider 5 synthetic patients who have to take medication for 30 days. Each day,

a healthcare worker chooses one patient to intervene on. They observe whether

that patient is adhering or not, and improve the patient’s likelihood of adher-

ing on that day, where we use the number of adherent patients as the reward

to the healthcare worker. Whether a patient actually adheres or not is deter-

mined by a transition matrix that is randomly drawn from a fixed distribution

inspired by170. The aim of the prediction stage is to use the features associated
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Table 2.1: OPE performances of different methods on the test MDPs averaged over 30 independent runs. Decision‐
focused learning methods consistently outperform two‐stage approach, with some exception using identity matrix
based Hessian approximation which may lead to high gradient variance.

Gridworld Snare Tuberculosis

Trajectories Random Near-optimal Random Near-optimal Random Near-optimal

TS −12.0± 1.3 4.2± 0.8 0.8± 0.3 3.7± 0.3 35.8± 1.5 38.7± 1.6
PG-Id −11.7± 1.2 5.7± 0.8 −0.1± 0.3 3.6± 0.3 38.4± 1.5 40.7± 1.7
Bellman-Id −9.6± 1.4 4.6± 0.7 0.7± 0.4 3.6± 0.3 39.1± 1.7 40.8± 1.7
PG-W −11.2± 1.2 5.5± 0.8 1.2± 0.4 4.8± 0.3 38.4± 1.5 40.8± 1.7
Bellman-W −11.3± 1.4 4.8± 0.8 1.5± 0.4 4.3± 0.3 38.6± 1.6 41.1± 1.7

with each patient, e.g., patient characteristics, to predict the missing transi-

tion matrices. The aim of the RL stage is then to create an intervention strat-

egy for the healthcare worker such that the sum of patient adherence over the

30-day period is maximised. Due to partial observability, we convert the problem

to its continuous belief state equivalence and solve it using DDQN.

Please refer to Appendix A.3 for more details about problem setup in all three

domains.

2.9 Experimental Results andDiscussion

In our experiments, we compare two-stage learning (TS) with different versions

of decision-focused learning (DF) using two different optimality conditions,

policy gradient (PG) and Bellman equation-based (Bellman), and two differentHes-

sian approximations (Identity,Woodbury) defined in Section 2.7. Computing the full

Hessian (as in Section 2.7.1) is computationally intractable. Across all three ex-

amples, we use 7 trainingMDPs, 1 validationMDP, and 2 testMDPs, eachwith 100

trajectories. The predictive model is trained on the trainingMDP trajectories

for 100 epochs. Performance is evaluated under the Off-Policy Evaluation (OPE)
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metric of Equation (2.1) with respect to the withheld test trajectories. In the

following, we will discuss how DF variants work comparedwith TS methods,

and explorewhy some methods are better. We use two different trajectories, ran-

dom and near-optimal, in the trainingMDP to model different imbalanced informa-

tion given to train the predictive model. The results are shown in Table 2.1.

Decision-focused learningwith theWoodbury matrix identity outperforms

two-stage learning Table 2.1 summarizes the average OPE performance on the

testMDPs. We can see that in all of the three problem settings, the best perfor-

mances are all achieved by decision-focused learning. However, whenHessian

approximation is not sufficiently accurate, decision-focused learning can some-

times perform evenworse than two-stage (e.g., PG-Id and Bellman-Id in the snare

problem). In contrast, decision-focused methods using a more accurate low-rank

approximation andWoodbury matrix identity (i.e., PG-W and Bellman-W), as dis-

cussed in Section 2.7.3, dominate two-stage performance in the testMDPs across

all settings.

Low predictive loss does not imply a winning policy In Figures 2.2(a), 2.3(a), we

plot the predictive loss curve in the trainingMDPs over different training

epochs of Gridworld and snare problems. In particular, two-stage approach is

trained to minimize such loss, but fails towin in Table 2.1. Indeed, low predictive

loss on the trainingMDPs does not always imply a high off-policy evaluation

on the trainingMDPs in Figure 2.2(b) due to the misalignment of predictive accu-

racy and decision quality, which is consistent with other studies in mismatch of

predictive loss and evaluation metric142,185,155,51.
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Figure 2.2: Learning curves of Gridworld problem with near‐optimal trajectories. Two‐stage minimizes the predictive
loss in Figure 2.2(a), but this does not lead to good training performance in Figure 2.2(b). Figure 2.3(c) shows the back‐
propagation runtime per gradient step per instance of three Hessian approximations, which becomes intractable when
trained for multiple instances and multiple epochs.
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Figure 2.3: Learning curves of snare finding problems with random trajectories. Two‐stage achieves both low predictive
loss in Figure 2.3(a) and high training OPE in Figure 2.3(b), but the test performance is poor in Table 2.1. Figure 2.3(c)
plots the backpropagation runtime per gradient step per instance.

Comparison between differentHessian approximations In Table 2.1, we notice

that more inaccurate Hessian approximation (identity) does not always lead

to poorer performance. We hypothesize that this is due to the non-convex off-

policy evaluation objective thatwe are optimizing, where higher variance might

sometimes help escape local optimummore easily. The identity approximation

is more unstable across different tasks and different trajectories given. In Ta-

ble 2.1, the performance of Bellman-Identity and PG-Identity sometimes lead to

wins over two stage and sometimes losses.
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Comparison between policy gradient and Bellman-based decision-focused learn-

ing We observe that the Bellman-based decision-focused approach consis-

tently outperforms the policy gradient-based approachwhen the trajectories

are random, while the policy gradient-based decision-focused approach mostly

achieves better performance when near-optimal trajectories are present. We

hypothesize that this is due to the different objectives considered by differ-

ent optimality conditions. The Bellman error aims to accurately cover all the

value functions, whichworks better on random trajectories; the policy gradi-

ent aims to maximize the expected cumulative reward along the optimal policy

only, whichworks better with near-optimal trajectories that have better cov-

erage in the optimal regions.

Computation cost Lastly, Figures 2.2(c) and 2.3(c) show the backpropagation

runtime of the policy-gradient based optimality condition per gradient step per

training instance across differentHessian approximations and different prob-

lem sizes in the gridworld and snare finding problems. To train the model, we

run 100 epochs for everyMDP in the training set, which immediately makes the

full Hessian computation intractable as it would take more than a day to com-

plete.

Analytically, let n be the dimensionality of the policy space and k � n be the

number of sampled trajectories used to approximate the derivatives. As shown in

Section 2.7, the computation cost of full HessianO(n2 + nω) is quadratic in n and

strictly dominates all the others. In contrast, the costs of the identity matrix

approximationO(nk) and theWoodbury approximationO(nk + kω) are both linear

in n. TheWoodbury method offers an option to get a more accurate Hessian at
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low additional cost.

2.10 Conclusion

This paper considers learning a predictive model to address the missing param-

eters in sequential decision problems. We successfully extend decision-focused

learning from optimization problems toMDP problems solved by deep reinforce-

ment learning algorithms, where we apply sampling and low-rank approximation

toHessian matrix computation to address the associated computational chal-

lenges. All our results suggest that decision-focused learning can outperform

two-stage approach by directly optimizing the final evaluation metric. The idea

of considering sequential decision problems as differentiable layers also sug-

gests a different way to solve online reinforcement learning problems, which

we reserve as a future direction.
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3
Decision-Focused Learning in

RestlessMulti-Armed Bandits

3.1 Introduction

Restless multi-armed bandits (RMABs)334,300 are composed of a set of heteroge-

neous arms and a planner who can pull multiple arms under budget constraint
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at each time step to collect rewards. Different from the classic stochastic

multi-armed bandits121,54, the state of each arm in an RMAB can change even

when the arm is not pulled, where each arm follows aMarkovian process to

transition between different states with transition probabilities dependent

on arms and the pulling decision. Rewards are associatedwith different arm

states, where the planner’s goal is to plan a sequential pulling policy to max-

imize the total reward received from all arms. RMABs are commonly used to

model sequential scheduling problems where limited resources must be strate-

gically assigned to different tasks sequentially to maximize performance. Ex-

amples include machine maintenance122, cognitive radio sensing problem31, and

healthcare211.

In this paper, we study offline RMAB problems with unknown transition dy-

namics but with given arm features. The goal is to learn a mapping from arm

features to transition dynamics, which can be used to infer the dynamics of

unseen RMAB problems to plan accordingly. Prior works211,294 often learn the

transition dynamics from the historical pulling data bymaximizing the predic-

tive accuracy. However, RMAB performance is evaluated by its solution qual-

ity derived from the predicted transition dynamics, which leads to a mismatch

in the training objective and the evaluation objective. Previously, decision-

focused learning338 has been proposed to directly optimize the solution quality

rather than predictive accuracy, by integrating the one-shot optimization prob-

lem80,247 or sequential problems321,111 as a differentiable layer in the training

pipeline. Unfortunately, while decision-focused learning can successfully opti-

mize the evaluation objective, it is computationally extremely expensive due to

the presence of the optimization problems in the training process. Specifically,
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for RMAB problems, the computation cost of decision-focused learning arises

from the complexity of the sequential problems formulated asMarkov decision

processes (MDPs), which limits the applicability to RMAB problems due to the

PSPACE hardness of finding the optimal solution244.

Our main contribution is a novel and scalable approach for decision-focused

learning in RMAB problems usingWhittle index policy, a commonly used approx-

imate solution in RMABs. Our three key contributions are (i) we establish the

differentiability ofWhittle index policy to support decision-focused learn-

ing to directly optimize the RMAB solution quality; (ii) we show that our ap-

proach of differentiating throughWhittle index policy improves the scala-

bility of decision-focused learning in RMAB; (iii) we apply our algorithm to an

anonymized maternal and child health RMAB dataset previously collected by

ARMMAN20 to evaluate the performance of our algorithm in simulation.

We establish the differentiability ofWhittle index by showing thatWhittle

index can be expressed as a solution to a full-rank linear system reduced from

Bellman equations with transition dynamics as entries, which allows us to com-

pute the derivative ofWhittle index with respect to transition dynamics. On

the other hand, to executeWhittle index policy, the standard selection pro-

cess of choosing arms with top-kWhittle indices to pull is non-differentiable.

We relax this non-differentiable process by using a differentiable soft top-k se-

lection to establish differentiability. Our differentiableWhittle index policy

enables decision-focused learning in RMAB problems to backpropagate from fi-

nal policy performance to the predictive model. We significantly improve the

scalability of decision-focused learning, where the computation cost of our al-

gorithmO(NMω+1) scales linearly in the number of armsN and polynomially in

42



the number of statesMwith ω ≈ 2.373, while previous work scales exponentially

O(MωN). This significant reduction in computation cost is crucial for extending

decision-focused learning to RMAB problems with large number of arms.

In our experiments, we apply decision-focused learning to RMAB problems to

optimize importance sampling-based evaluation on synthetic datasets as well

as an anonymized RMAB dataset about a maternal and child health program

previously collected by20 – these datasets are the basis of comparing different

methods in simulation. We compare decision-focused learningwith the two-

stage method that trains to minimize the predictive loss. The two-stage method

achieves the best predictive loss but significantly degraded solution quality.

In contrast, decision-focused learning reaches a slightly worse predictive loss

but with a much better importance sampling-based solution quality evaluation

and the improvement generalizes to the simulation-based evaluation that is

built from the data. Lastly, the scalability improvement is the crux of apply-

ing decision-focused learning to real-world RMAB problems: our algorithm can

run decision-focused learning on the maternal and child health dataset with

hundreds of arms, whereas state of the art is a 100-fold slower evenwith 20 arms

and grows exponentially worse.

3.2 RelatedWork

Restless multi-armed bandits with given transition dynamics This line of re-

search primarily focuses on solving RMAB problems to get a sequential pol-

icy. The complexity of solving RMAB problems optimally is known to be PSPACE

hard244. One approximate solution is proposed byWhittle 337 , where they use La-
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grangian relaxation to decompose arms and compute the associatedWhittle in-

dices to define a policy. Specifically, the indexability condition6,328 guarantees

thisWhittle index policy to be asymptotically optimal334. In practice, Whittle

index policy usually provides a near-optimal solution to RMAB problems.

Restless multi-armed bandits with missing transition dynamics When the tran-

sition dynamics are unknown in RMAB problems but an interactive environment

is available, prior works300,203,241,78 consider this as an online learning problem

that aims to maximize the expected reward. However, these approaches become

infeasible when interactingwith the environment is expensive, e.g., healthcare

problems211. In this work, we consider the offline RMAB problem, and each arm

comes with an arm feature that is correlated to the transition dynamics and

can be learned from the past data.

Decision-focused learning The predict-then-optimize framework91 is composed

of a predictive problem that makes predictions on the parameters of the later

optimization problem, and an optimization problem that uses the predicted pa-

rameters to come up with a solution, where the overall objective is the solution

quality of the proposed solution. Standard two-stage learning method solves

the predictive and optimization problems separately, leading to a mismatch of

the predictive loss and the evaluation metric142,185,155. In contrast, decision-

focused learning338,207,89 learns the predictive model to directly optimize the

solution quality by integrating the optimization problem as a differentiable

layer11,3 in the training pipeline. Our offline RMAB problem is a predict-then-

optimize problem, where we first (offline) learn a mapping from arm features to
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transition dynamics from the historical data211,294, and the RMAB problem is

solved using the predicted transition dynamics accordingly. Prior work211 is

limited to using two-stage learning to solve the offline RMAB problems. While

decision-focused learning in sequential problems were primarily studied in the

context ofMDPs321,111 they comewith an expensive computation cost that imme-

diately becomes infeasible in large RMAB problems.

3.3 RestlessMulti-armed Bandit

An instance of the restless multi-armed bandit (RMAB) problem is composed of a

set ofN arms, each is modeled as an independentMarkov decision process (MDP).

The i-th arm in a RMAB problem is defined by a tuple (S,A,Ri,Pi). S andA are the

identical state and action spaces across all arms. Ri,Pi : S × A × S → R are the

reward and transition functions associated to arm i. We consider finite state

space with |S| = M fully observable states and action setA = {0, 1} correspond-

ing to not pulling or pulling the arm, respectively. For each arm i, the reward is

denoted byRi(si, ai, s′i) = R(si), i.e., the rewardR(si) only depends on the current

state si, whereR : S → R is a vector of sizeM. Given the state si and action ai,

Pi(si, ai) = [Pi(si, ai, s′i)]s′i∈S defines the probability distribution of transitioning to

all possible next states s′i ∈ S .

In a RMAB problem, at each time step t ∈ [T], the learner observes ssst = [st,i]i∈[N] ∈

SN, the states of all arms. The learner then chooses action aaat = [at,i]i∈[N] ∈ AN de-

noting the pulling actions of all arms, which has to satisfy a budget constraint∑
i∈[N]

at,i ≤ K, i.e., the learner can pull at mostK arms at each time step. Once the

action is chosen, arms receive action aaat and transitions under Pwith rewards
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rrrt = [rt,i]i∈[N] accordingly. We denote a full trajectory by τ = (sss1, aaa1, rrr1, · · · , sssT, aaaT, rrrT).

The total reward is defined by the summation of the discounted reward across T

time steps andN arms, i.e.,
T∑
t=1

γt−1 ∑
i∈[N]

rt,i, where 0 < γ ≤ 1 is the discount factor.

A policy is denoted by π, where π(aaa | sss) is the probability of choosing action aaa

given state sss. Additionally, we define π(ai = 1 | sss) to be the marginal probability

of pulling arm i given state sss, where π(sss) = [π(ai = 1 | sss)]i∈[N] is a vector of arm

pulling probabilities. Specifically, we use π∗ to denote the optimal policy that

optimizes the cumulative reward, while πsolver to denote a near-optimal policy

solver.

3.4 Problem Statement

This paper studies the RMAB problemwhere we do not know the transition prob-

abilities P = {Pi}i∈[N] in advance. Instead, we are given a set of features xxx =

{xi ∈ X}i∈[N], each corresponding to one arm. The goal is to learn a mapping

mw : X → P , parameterized by weights w, to make predictions on the transition

probabilities P = mw(xxx) := {mw(xi)}i∈[N]. The predicted transition probabilities

are later used to solve the RMAB problem to derive a policy π = πsolver(mw(xxx)).

The performance of the modelm is evaluated by the performance of the proposed

policy π.

3.4.1 Training and Testing Datasets

To learn the mappingmw, we are given a set of RMAB instances as training exam-

plesDtrain = {(xxx, T )}, where each instance is composed of a RMAB problemwith

feature xxx that is correlated to the unknown transition probabilities P, and a set
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of realized trajectories T = {τ(j)}j∈J generated from a given behavior policy πbeh

that determined how to pull arms in the past. The testing setDtest is defined

similarly but hidden at training time.

3.4.2 EvaluationMetrics

Predictive loss To measure the correctness of transition probabilities P =

{Pi}i∈[N], we define the predictive loss as the average negative log-likelihood of

seeing the given trajectories T , i.e.,L(P, T ) := − log Pr(T | P) = − E
τ∼T

∑
t∈[T]

log P(ssst, aaat, ssst+1).

Therefore, we can define the predictive loss of a modelmw on datasetD by:

E
(xxx,T )∼D

L(mw(xxx), T ) (3.1)

Policy evaluation On the other hand, given transition probabilities P, we

can solve the RMAB problem to derive a policy πsolver(P). We can use the his-

torical trajectories T to evaluate how good the policy performs, denoted by

Eval(πsolver(P), T ). Given datasetD, we can evaluate the predictive modelmw on

datasetD by:

E
(xxx,T )∼D

Eval(πsolver(mw(xxx)), T ) (3.2)

Two common types of policy evaluation are importance sampling-based off-policy

policy evaluation and simulation-based evaluation, whichwill be discussed in

Section 3.6.
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Figure 3.1: This flowchart visualizes different methods of learning the predictive model. Two‐stage learning directly
compares the predicted transition probabilities with the given data to define a predictive loss to run gradient descent.
Decision‐focused learning instead goes through a policy solver using Whittle index policy to estimate the final evalua‐
tion and run gradient ascent.

3.4.3 LearningMethods

Two-stage learning To learn the predictive modelmw, we can minimize Equa-

tion 3.1 by computing gradient dL(mw(xxx),T )
dw to run gradient descent. However, this

training objective (Equation 3.1) differs from the evaluation objective (Equa-

tion 3.2), which often leads to suboptimal performance.

Decision-focused learning In contrast, we can directly run gradient ascent

to maximize Equation 3.2 by computing the gradient dEval(πsolver(mw(xxx)),T )
dw . However,

in order to compute the gradient, we need to differentiate through the policy

solver πsolver and the corresponding optimal solution. Unfortunately, find-

ing the optimal policy in RMABs is expensive and the policy is high-dimensional.

Both of these challenges prevent us from computing the gradient to achieve

decision-focused learning.

3.5 Decision-focused Learning in RestlessMulti-armed Bandits

In this paper, instead of grapplingwith the optimal policy, we consider theWhit-

tle index policy337 – the dominant solution paradigm used to solve the RMAB

problem. Whittle index policy is easier to compute and has been shown to per-
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formwell in practice. In this sectionwe establish that it is also possible to

backpropagate through theWhittle index policy. This differentiability ofWhit-

tle index policy allows us to run decision-focused learning to directly maximize

the performance in the RMAB problem.

3.5.1 Whittle Index andWhittle Index Policy

Informally, theWhittle index of an arm captures the added value derived from

pulling that arm. The key idea is to determine theWhittle indices of all arms

and to pull the arms with the highest values of the index.

To evaluate the value of pulling an arm i, we consider the notion of ‘passive

subsidy’, which is a hypothetical exogenous compensation β rewarded for not

pulling the arm (i.e. for choosing action a = 0). Whittle index is defined as the

smallest subsidy necessary to make pulling as rewarding as not pulling, assum-

ing indexability204:

Definition 4 (Whittle index). Given state u ∈ S , we define theWhittle index associated to state u by:

Wi(u) := inf
β
{Qβ

i (u; a = 0) = Qβ
i (u; a = 1)} (3.3)

where the value functions are defined by the following Bellman equations, augmented with subsidy β

for action a = 0.

Vβ
i (s) = max

a
Qβ
i (s; a) (3.4)

Qβ
i (s; a) = β111a=0 + R(s) + γ

∑
s′

θi(s, a, s′)V
β
i (s

′) (3.5)

Given theWhittle indices of all arms and all statesW = [Wi(u)]i∈[N],u∈S , the
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Whittle index policy is denoted by πwhittle : SN −→ [0, 1]N, which takes the states

of all arms as input to compute theirWhittle indices and output the probabili-

ties of pulling arms. This policy repeats for every time step to pull arms based on

the index values.

3.5.2 Decision-focused Learning UsingWhittle Index Policy

Instead of using the optimal policy π∗ to run decision-focused learningwith ex-

pensive computation cost, we useWhittle index policy πwhittle to determine how

to pull arms as an approximate solution. In this case, in order to run decision-

focused learning, we need to compute the derivative of the evaluation metric by

chain rule:

dEval(πwhittle, T )
dw

=
dEval(πwhittle, T )

dπwhittle
dπwhittle

dW
dW
dP

dP
dw

(3.6)

whereW is theWhittle indices of all states under the predicted transition

probabilities P. The policy πwhittle is theWhittle index policy induced byW. The

flowchart is illustrated in Figure 3.1.

The term dEval(πwhittle,T )
dπwhittle can be computed via policy gradient theorem296, and

the term dP
dw can be computed using auto-differentiation. However, there are

still two challenges remaining: (i) how to differentiate throughWhittle index

policy to get dπwhittle

dW (ii) how to differentiate throughWhittle index computa-

tion to derive dW
dP .

3.5.3 Differentiability ofWhittle Index Policy

A common choice ofWhittle index policy is defined by:

50



Definition 5 (Strict Whittle index policy).

πstrictW (sss) = 111top-k([Wi(si)]i∈[N]) ∈ {0, 1}
N (3.7)

which selects arms with the top-kWhittle indices to pull.

However, the strict top-k operation in the strictWhittle index policy is non-

differentiable, which prevents us from computing a meaningful estimate of

dπwhittle

dW in Equation 3.6. We circumvent this issue by relaxing the top-k selection

to a soft-top-k selection346, which can be expressed as an optimal transport prob-

lemwith regularization, making it differentiable. We apply soft-top-k to define

a new differentiable softWhittle index policy:

Definition 6 (Soft Whittle index policy).

πsoftW (sss) = soft-top-k([Wj(si)]i∈[N]) ∈ [0, 1]N (3.8)

Using the softWhittle index policy, the policy becomes differentiable andwe

can compute dπwhittle

dW .

3.5.4 Differentiability ofWhittle Index

The second challenge is the differentiability ofWhittle index. Whittle indices

are often computed using value iteration and binary search258,210 or mixed inte-

ger linear program. However, these operations are not differentiable andwe

cannot compute the derivative dW
dP in Equation 3.6 directly.
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Figure 3.2: We establish the differentiability of Whittle index policy using a soft top‐k selection to construct a soft Whit‐
tle index policy, and the differentiability of Whittle index by expressing Whittle index as a solution to a linear system in
Equation 3.11.

Main idea After computing theWhittle indices and the value functions of

each arm i, the key idea is to construct linear equations that link theWhittle

index with the transition matrix Pi. Specifically, we achieve this by resolving

themax operator in Equation 3.4 of Definition 4 by determining the optimal ac-

tions a from the pre-computed value functions. Plugging back in Equation 3.5

and manipulating as shown below yields linear equations in theWhittle index

Wi(u) and transition matrix Pi, which can be expressed as a full-rank linear sys-

tem in Pi, with theWhittle index as a solution. This makes theWhittle index dif-

ferentiable in Pi.

Selecting Bellman equation Let u and arm i be the target state and target arm

to compute theWhittle index. Assumewe have precomputed theWhittle index

β = Wi(u) for state u and the corresponding value functions [Vβ
i (s)]s∈S for all

states under the same passive subsidy β = Wi(u). Equation 3.5 can be combined

with Equation 3.4 to get:

Vβ
i (s) ≥


β+ R(s) + γ

∑
s′∈S

θi(s, a = 0, s′)Vβ
i (s′)

R(s) + γ
∑
s′∈S

θi(s, a = 1, s′)Vβ
i (s′)

(3.9)
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wherem = Wi(u).

For each s ∈ S, at least one of the equalities in Equation 3.9 holds because one

of the actions must be optimal and match the state value functionVβ
i (s). We can

identify which equality holds by simply plugging in values of precomputed value

functions [Vβ
i (s)]s∈S . Furthermore, for the target state u, both equalities must

hold because by the definition ofWhittle index, the passive subsidy β = Wi(u)

makes both actions equally optimal, i.e. in Equation 3.3,Vβ
i (u) = Qβ

i (u, a = 0) =

Qβ
i (u, a = 1) for β = Wi(u).

Thus Equation 3.9 can be written in matrix form:

VVVβ
i

VVVβ
i

 ≥
111M γPPPi(S, a = 0,S)

000M γPPPi(S, a = 1,S)


 β

VVVβ
i

+

RRR(S)
RRR(S)

 (3.10)

whereVVVβ
i := [Vβ

i (s)]s∈S ,RRR(S) = [R(s)]s∈S , and PPPi(S, a,S) := [Pi(s, a, s′)]s,s′∈S ∈ RM×M.

By the aforementioned discussion, we know that there are at leastM + 1

equalities in Equation 3.10 while there are also onlyM + 1 variables (m ∈ R and

VVVβ
i ∈ RM). Therefore, we rearrange Equation 3.10 and pick only the rowswhere

equalities hold to get:

A

111M γPPPi(S, a = 0,S)− IM

000M γPPPi(S, a = 1,S)− IM


 β

VVVβ
i

 = A

−RRR(S)
−RRR(S)

 (3.11)

where we use a binary matrix A ∈ {0, 1}(M+1)×2M with a single 1 per row to extract

the equality. For example, we can set Aij = 1 if the j-th row in Equation 3.10 corre-

sponds to the equality in Equation 3.9 with the i-th state in the state space S for

i ∈ [M], and the last row A(M+1),j = 1 to mark the additional equality matched
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by theWhittle index definition (see Appendix B.8 for more details). Matrix A picks

M+ 1 equalities out from Equation 3.10 to form Equation 3.11.

Equation 3.11 is a full-rank linear systemwith β = Wi(u) as a solution. This

expressesWi(u) as an implicit function of PPP, allowing for computation of dWi(u)
dPPP

via autodifferentiation, thus achieving differentiability of theWhittle index.

We repeat this process for every arm i ∈ [N] and every state u. Figure 3.2 sum-

marizes the differentiableWhittle index policy and the algorithm is shown in

Algorithm 2.

3.5.5 Computation Cost and Backpropagation

It is well studied thatWhittle index policy can be computed more efficiently

than solving the RMAB problem as a largeMDP problem. Here, we show that

the use ofWhittle index policy also demonstrates a large speed up in terms of

backpropagating the gradient in decision-focused learning.

In order to use Equation 3.11 to compute the gradient ofWhittle indices, we

need to invert the left-hand-side of Equation 3.11 with dimensionalityM + 1,

which takesO(Mω)where ω ≈ 2.3739 is the best knownmatrix inversion con-

stant. Therefore, the overall computation of allN arms andM states isO(NMω+1)

per gradient step.

In contrast, the standard decision-focused learning differentiates through

the optimal policy using the full Bellman equationwithO(MN) variables, where

inverting the large Bellman equation requiresO(MωN) cost per gradient step.

Thus, our algorithm significantly reduces the computation cost to a linear de-

pendency on the number of armsN. This significantly improves the scalability of

decision-focused learning.
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3.5.6 Extension to Partially Observable RMAB

For partially observable RMAB problem, we focus on a subclass of RMAB prob-

lem known as collapsing bandits210. In collapsing bandits, belief states219 are

used to represent the posterior belief of the unobservable states. Specifically,

for each arm i, we use bi ∈ B = Δ(S) ⊂ [0, 1]M to denote the posterior belief

of an arm, where each entry bi(si) denotes the probability that the true state is

si ∈ S . When arm i is pulled, the current true state si ∼ bi is revealed and drawn

from the posterior belief with expected reward b⊤i R, where we can define the

transition probability on the belief states. This process reduces partially ob-

servable states to fully observable belief states with in totalMT states since

the maximal horizon is T. Therefore, we can use the same technique to differen-

tiate throughWhittle indices of partially observable states.

3.6 Policy EvaluationMetrics

In this paper, we use two different variants of evaluation metric: importance

sampling-based evaluation296 and simulation-based (model-based) evaluation.

Importance sampling-based Evaluation We adopt ConsistentWeighted Per-

Decision Importance Sampling (CWPDIS)304 as our importance sampling-based

evaluation. Given target policy π and a trajectory τ = {s1, a1, r1, · · · , sT, aT, rT}

executed by the behavior policy πbeh, the importance samplingweight is defined
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Algorithm 2:Decision-focused Learning in RMAB
1 Input: training setDtrain, learning rate r, modelmw
2 for epoch= 1, 2, · · · and (x, T ) ∈ Dtrain do
3 Predict P = mw(x) and computeWhittle indicesW(P).
4 Let πwhittle = πsoft

W and compute Eval(πwhittle, T ).
5 Update w = w+ rdEval(π

whittle,T )
dπwhittle

dπwhittle
dW

dW
dP

dP
dw , where

dW
dP is computed from

Equation 3.11.
6 Return: predictive modelmw

by ρti =
t∏

t′=1

π(at′,i|st′ )
πbeh(at′,i|st′ )

. We evaluate the policy π by:

EvalIS(π, T ) =
∑

t∈[T],i∈[N]

γt−1Eτ∼T
[
rt,iρti(τ)

]
Eτ∼T

[
ρti(τ)

] (3.12)

Importance sampling-based evaluations are often unbiased butwith a larger

variance due to the unstable importance samplingweights. CWPDIS normalizes

the importance samplingweights to achieve a consistent estimate.

Simulation-based Evaluation An alternative way is to use the given trajecto-

ries to construct an empirical transition probability P̄ to build a simulator and

evaluate the target policy π. The variance of simulation-based evaluation is

small, but it may require additional assumptions on the missing transitionwhen

the empirical transition P̄ is not fully reconstructed.

3.7 Experiments

We compare two-stage learning (TS) with our decision-focused learning (DF-

Whittle) that optimizes importance sampling-based evaluation directly. We con-
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Figure 3.3: Comparison of predictive loss, importance sampling‐based evaluation, and simulation‐based evaluation
on all synthetic domains and the real ARMMAN dataset. For the evaluation metrics, we plot the improvement against
the no‐action baseline that does not pull any arm. Although two‐stage method achieves the smallest predictive loss,
decision‐focused learning consistently outperforms two‐stage method in both solution quality evaluation metrics across
all domains.

sider three different evaluation metrics including predictive loss, importance

sampling evaluation, and simulation-based evaluation to evaluate all learn-

ing methods. We perform experiments on three synthetic datasets including

2-state fully observable, 5-state fully observable, and 2-state partially observ-

able RMAB problems. We also perform experiments on a real dataset on maternal

and child health problem modelled as a 2-state fully observable RMAB problem

with real features and historical trajectories. For each dataset, we use 70%,
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10%, 20% of the RMAB problems as the training, validation, and testing sets, re-

spectively. All experiments are averaged over 50 independent runs.

Synthetic datasets We consider RMAB problems composed ofN = 100 arms,M

states, budgetK = 20, and time horizon T = 10 with a discount rate of γ = 0.99.

The reward function is given byR = [ i−1
M−1 ]i∈[M], while the transition probabili-

ties are generated uniformly at random butwith a constraint that pulling the

arm (a = 1) is strictly better than not pulling the arm (a = 0) to ensure the bene-

fit of pulling. To generate the arm features, we feed the transition probability

of each arm to a randomly initialized neural network to generate fixed-length

correlated features with size 16 per arm. The historical trajectories T with

|T | = 10 are produced by running a random behavior policy πbeh. The goal is to

predict transition probabilities from the arm features and the training trajec-

tories.

Real dataset TheMaternal and ChildHealthcareMobile Health program

operated by ARMMAN 20 aims to improve dissemination of health information

to pregnantwomen and mothers with an aim to reduce maternal, neonatal and

child mortality and morbidity. ARMMAN serves expectant/newmothers in dis-

advantaged communities withmedian daily family income of $3.22 per day which

is seen to be below theworld bank poverty line342. The program is composed of

multiple enrolled beneficiaries and a planner who schedules service calls to im-

prove the overall engagement of beneficiaries; engagement is measured in terms

of total number of automated voice (health related) messages that the benefi-

ciary engagedwith. More precisely, this problem is modelled as aM = 2-state
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fully observable RMAB problemwhere each beneficiary’s behavior is governed

by anMDPwith two states - Engaging andNon-Engaging state; engagement is de-

termined by whether the beneficiary listens to an automated voice message (av-

erage length 115 seconds) for more than 30 seconds. The planner’s task is to rec-

ommend a subset of beneficiaries every week to receive service calls from health

workers to further improve their engagement behavior. We do not know the

transition dynamics, but we are given beneficiaries’ socio-demographic features

to predict transition dynamics.

We use a subset of data from the large-scale anonymized quality improvement

study performed by ARMMAN for T = 7 weeks, obtained fromMate et al. 211 , with

beneficiary consent. In the study, a cohort of beneficiaries received Round-

Robin policy, scheduling service calls in a fixed order, with a single trajectory

|T | = 1 per beneficiary that documents the calling decisions and the engagement

behavior in the past. We randomly split the cohort into 8 training groups, 1 val-

idation group, and 3 testing groups eachwithN = 639 beneficiaries andK = 18

budget formulated as an RMAB problem. The demographic features of beneficia-

ries are used to infer the missing transition dynamics.

Data usage All the datasets are anonymized. The experiments are secondary

analysis using different evaluation metrics with approval from the ARMMAN

ethics board. There is no actual deployment of the proposed algorithm at AR-

MMAN. For more details about the dataset, consent of data collection, please

refer to Appendix B.2 and B.3.
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Figure 3.5: We compare the computation cost of our decision‐focused learning with other baselines and the theoretical
complexityO(NMω+1) with varying number of armsN.

3.8 Experimental Results

Performance improvement and justification of objective mismatch In Figure 3.3,

we show the performance of random policy, two-stage, and decision-focused

learning (DF-Whittle) on three evaluation metrics - predictive loss, importance

sampling-based evaluation and simulation-based evaluation for all domains. For

the evaluation metrics, we plot the improvement against the no-action baseline

that does not pull any arms throughout the entire RMAB problem. We observe

that two-stage learning consistently converges to a smaller predictive loss,

while DF-Whittle outperforms two-stage on all solution quality evaluation

metrics significantly (p-value< 0.05) by alleviating the objective mismatch is-
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sue. This result also provides evidence of aforementioned objective mismatch,

where the advantage of two-stage in the predictive loss does not translate to

solution quality.

Significance in maternal and child care domain In the ARMMANdata in Fig-

ure 3.3, we assume limited resources thatwe can only select 18 out of 638 benefi-

ciaries to make service call per week. Both random and two-stage method lead

to around 15 more (IS-based evaluation) listening to automated voice messages

among all beneficiaries throughout the 7-week program by 18 × 7 = 126 service

calls, when compared to not scheduling any service call; this low improvement

also reflects the hardness of maximizing the effectiveness of service calls. In

contrast, decision-focused learning achieves an increase of beneficiaries lis-

tening to 50 more voice messages overall; DF-whittle achieves a much higher

increase by strategically assigning the limited service calls using the right

objective in the learning method. The improvement is statistically significant

(p-value< 0.05).

In the testing set, we examine the difference between those selected for ser-

vice call in two-stage andDF-Whittle. We observe that there are some inter-

esting differences. For example, DF-Whittle chooses to do service calls to ex-

pectant mothers earlier in gestational age (22% vs 37%), and to a lower propor-

tion of those who have already given birth (2.8% vs 13%) compared to two-stage.

In terms of the income level, there is no statistic significance between two-

stage andDFL (p-value = 0.20 see Appendix B.2). In particular, 94% of the mothers

selected by both methods are below the poverty line342.
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Impact of Limited Data Figure 3.4 shows the improvement between decision-

focused learning and two-stage methodwith varying number of trajectories

given to evaluate the impact of limited data. We notice that a larger improve-

ment between decision-focused and two-stage learning is observedwhen fewer

trajectories are available. We hypothesize that less samples implies larger pre-

dictive error and more discrepancy between the loss metric and the evaluation

metric.

Computation cost comparison Figure 3.5(a), compares the computation cost per

gradient step of ourWhittle index-based decision-focused learning and other

baselines in decision-focused learning321,111 by changingN (the number of arms)

inM = 2-state RMAB problem. The other baselines fail to runwithN = 30 arms

and do not scale to larger problems like maternal and child care with more

than 600 people enrolled, while our approach is 100x faster than the baselines

as shown in Figure 3.5(a) andwith a linear dependency on the number of armsN.

In Figure 3.5(b), we compare the empirical computation cost of our algorithm

with the theoretical computation complexityO(NMω+1) inN arms andM states

RMAB problems. The empirical computation cost matches with the linear trend

inN. Our computation cost significantly improves the computation costO(MωN)

of previous work as discussed in Section 3.5.5.

3.9 Conclusion

This paper presents the first decision-focused learning in RMAB problems that

is scalable for large real-world datasets. We establish the differentiability of

Whittle index policy in RMAB by providing newmethod to differentiate through
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Whittle index and using soft-top-k to relax the arm selection process. Our al-

gorithm significantly improves the performance and scalability of decision-

focused learning, and is scalable to real-world RMAB problem sizes.
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4
Decision-focused Learning in

Maternal and ChildHealth*

4.1 Introduction

Non-profits often leverage the extensive cell phone coverage to feasibly reach

underserved communities for information dissemination programs. In particu-
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lar, NGOsworking in the mobile health space can deliver timely and targeted

health information via text or voice messages250,166. Unfortunately, such pro-

grams suffer from a dwindling engagement over time, with large number of ben-

eficiaries dropping out from the program. NGOs can make use of healthwork-

ers to personally reach out to beneficiaries through service calls, encourage

their participation and address complaints. However, healthworkers’ avail-

ability and time are scarce resources; only a limited number of beneficiaries can

be given a service call every week. It is thus crucial to optimize which beneficia-

ries receive these personal service calls. We pose this as optimization problem of

constrained sequential resource allocation solved using RestlessMulti-Armed

Bandits (RMAB). Each beneficiary is modelled as an arm following aMarkov Deci-

sion Process and the action of whether to place a service call or not results in

state change. TheWhittle index heuristic337 is the dominant approach for solv-

ing RMABs. However, for computingWhittle Indices, transition dynamics of

each armmust be known. While many previous works make the assumption that

transition dynamics parameters are already known, in the real world, these pa-

rameters must be inferred. When arm features are correlatedwith transition

dynamics, historical data on arm pulls is leveraged to learn a mapping from arm

features to transition dynamics211,294. The learnt mapping function is then used

to predict the unknown parameters for new arms and solve the subsequent opti-

mization problem.

This approach thus falls under the Predict-then-Optimize90,87,89 framework,

where an optimization problem is to be solved but the parameters defining the
*For completion of the decision-focused learning part, this chapter presents the field study result of the

method proposed in Chapter 3. The work was collaborated with and primarily led by Shresth Verma.
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Figure 4.1: Beneficiary receiving preventive health information

optimization problem are unknown. This is a two-stage approach: The first stage

is to learn a predictive model which maps from some environment features to

the parameters. Subsequently, in the second stage, the optimization problem for-

mulated using the predicted parameters is solved. However, there is a key short-

coming in this two-stage framework. While the mapping function maximizes

for the predictive accuracy of parameters, we are interested in the solution

quality of the optimization problem parameterized by the predicted parameters.

Decision-Focused Learning (DFL)80,338,207,323 is proposed to address this mismatch

between the training objective and the evaluation objective by embedding the

optimization problemwithin the training pipeline. However, until now, Decision

Focused Learning has only been studied through simulated experiments.

In this paper, we present the first work showcasing the real-world impact

of DFL for RMABs through a large scale field study. For conducting the field

study, we collaborate with ARMMAN, anNGO in India working in mobile health

space for maternal and child health awareness (Figure 4.1). In prior works, a

RMABmodel using the previously mentioned two-stage learning approach has

been used for optimizing live service call scheduling in the field211. We com-

pare this two-stage approachwith a DFL approach in optimizing service calls.
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Engagement is a key metric that captures beneficiaries’ participation in the mo-

bile program. Our results show that allocating healthworker resources using

a DFL policy reduces drop in engagement by 31% as compared to the no-service

call baseline. On the other hand, the benefit from TS policy is not statistically

significant. We also show that live service calls made by health care workers

using DFL policy have higher effectiveness than TS policy resulting in better

short-term as well as long-term outcomes in listenership behaviour.

Furthermore, we perform detailed post-hoc analysis of the real-world study

and back the observations using simulated experiments to explain howDFL is

making decisions andwhy those decisions result in a better performance. Our

novel contributions are as follows:

• We show results from the first large-scale field study of Decision Focused

Learning being applied to maternal and child health domain.

• We show that by optimizing for decision quality rather than predictive

accuracy, DFL results in statistically significant improvement in final de-

cision quality measured through engagement metric in the mobile health

program.

• We provide an interpretation of howDFL strategically learns to distin-

guish between arms that benefit most from interventions, resulting in

improved parameter predictions compared to the TS model.

Our positive results thus pave the way for future works applying Decision

Focused Learning in real world agent-modelling tasks as well as optimization

problems with unknown underlying problem parameters. We shall release the

code for experiments upon acceptance.
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4.2 RelatedWork

The optimization problem of constrained sequential resource allocation can

be solved using RestlessMulti-Armed Bandits (RMAB). RMABs have been used in

real world applications such as anti-poaching patrol planning258, healthcare

interventions211,210, and machine repair and maintenance123. The complexity of

optimally solving RMAB problems is known to be PSPACE hard244. Whittle Index

approach337 is an approximate solution to RMAB problemwhich is aymptotically

optimal under the indexability condition 334,6,328. However, for computing the

Whittle Index, transitions dynamics must be known. Under unknown system dy-

namics,211,294 leverage the predict-then-optimize framework for learning a pre-

dictive model of transition dynamics from features using historical data.

The predict-then-optimization91 framework (or two-stage learning) solves

for an optimization problemwith unknown parameters by learning a predictive

model of parameters from environment features and subsequently solving the

optimization problem. However, this two-stage process separates out the predic-

tion and optimization problems, thereby causing a mismatch between the predic-

tive loss that is minimized and the evaluation metric that is desired to be max-

imized142,185,155. Decision Focused Learning338,207,89, solves this problem by embed-

ding optimization problem as a differentiable layer in a deep learning pipeline.

Most previous DFL80,247,89,207 approaches solve one-shot optimization problems

such as stochastic programming and security games in an end-to-end manner. Re-

cently,321,111 propose an extension of Decision Focused Learning for sequential

decision making problems. Decision Focused Learning has been applied in directly

optimizing game utilities in Network Security Games320 and Stackelberg Secu-
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rity Games248.323 further extend the Decision Focused learning methodology

for RestlessMulti Armed Bandit problems for generalized N-stateMDP as well

as a belief stateMDP to optimze for decision quality. However, none of these

works, either in the single shot setting or the sequential decision making set-

tings, have ever been tested in the real world in the field; and hence were unable

to thoroughly analyze comparative advantages of decision focused learning

over baseline approaches with real world data.

4.3 Mobile Health Adherence

4.3.1 Mobile Health Program

ARMMAN is a non-governmental organization in India focused on reducing ma-

ternal and neonatal mortality among underpriviledged communities. The NGO

operates a mobile health service that disseminates preventive health informa-

tion to expectant or newmothers (beneficiaries) on a weekly basis via automated

voice messages. A large fraction (∼ 90%) of mothers in the program are below

theWorld Bank international poverty line342 and the program has so far served

over a million mothers. However, despite the success of the program, beneficia-

ries’ engagementwith the voice calls dwindles over time with 22% of beneficia-

ries dropping out of the programwithin just 3 months of enrolment. Live Service

calls made by healthworkers can encourage beneficiaires’ participation. How-

ever, the healthworkers’ availability is limited and thus, only a fixed number of

live service calls can be made every week. This constraint necessitates a smart

scheduling strategy of which beneficiaries to reach out every week to best uti-

lize healthworkers’ efforts.
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4.3.2 RestlessMulti-Armed Bandits

We consider the RestlessMulti-Armed Bandit model withN independent arms

each characterized by a 2-actionMarkov Decision Process (MDP) Figure 4.2. Each

MDP is defined using the tuple {S,A,R,P}where S refers to the state space,A

is the action space, which in our case is discrete and binary,A ∈ {0, 1}. R is the

reward function such thatR : S × A × S 7→ R. P is the transition function,

such thatP(s, a, s′), (s, s′) ∈ S, a ∈ A represents the probability of transitioning

from state s to s′ under action a. The policy function π : S 7→ A is defined as the

mapping from states to action.

Figure 4.2: The beneficiary transitions from a current state s to a next state s′ under action α, with probability
P(s, α, s′).

In our problem setup, we consider a 2-state 2-actionMDP problem. Based on

our discussions with the NGO, states are defined using the engagement met-

ric. If a beneficiary listens to at least 1 call for more than 30 seconds in a week,

they are said to be in Engaging state (s = 1). Otherwise, the beneficiary is in Non-
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Engaging state (s = 0). The timestep of theMDP is chosen to be a period of 1 week.

The actions correspond towhether to deliver (active) or not deliver (passive)

live service call to a beneficiary. Additionally, the NGO can only deliverK live

service calls in a week. The reward function at any given timestep is defined to

be same as the current stateR(s, a) = s. The planner’s goal is then to maximize

expected long term reward (engagement). Starting from a state s0, this is defined

using the value functionV as :

V(s0) = Est+1∼P

[ ∞∑
t=0

γtR(st, π(st), st+1|π, s0)

]
(4.1)

where γ is the discount factor for rewards.

TheWhittle Index for every arm is defined using the ‘passive subsidy’. The pas-

sive subsidy is the additional reward accrued by an armwhen the passive action

is chosen. The whittle index is then defined as the passive subsidy such that ex-

pected future value is identical for both the passive and active actions. For-

mally, the whittle indexWIi for an arm i in state s can be defined as:

Wi(s) = inf
m
{Vm

i (s; a = 0) = Vm
i (s; a = 1)} (4.2)

whereVm
i is subsidized value function under passive subsidym.

Intuitively, theWhittle index measures the value of pulling an arm condi-

tioned on the observed state. Therefore, at every timestep, theWhittle Index

Policy ranks all arms by their current state whittle index. The top-K arms with

the highest whittle indices are chosen for active action to maximize the total

pulling performance.
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4.3.3 Missing Transition Probabilities in RMAB

Mostworks using RMABs make the assumption thatMDP parameters are known

beforehand. However, in practice, we may not have access to beneficiaries’ tran-

sition probabilities to define the RMABmodel. In our problem, the mobile health

program receives new sets of beneficiaries without information about their

transition behavior. This prevents us from applying techniques in RMAB to prop-

erly schedule service calls.

Learning challenge The solutionwe adopt here is to learn a mapping from the

beneficiaries’ demographic features and prior interactionwith the program to

forecast the transition probabilities. Similar to Predict-then-Optimize frame-

work90 we learn a predictive model and then determine the live service call

schedule using the RMABmodel.

Dataset We use the historical beneficiaries’ listenership behaviour between

January 2022 toMay 2022 as the training dataset. Specifically, we have access to

state trajectories of 19944 (N) beneficiaries over a period of 5 weeks (T), along

with the action chosen for every beneficiary at every timestep. Note that pas-

sive actions make up majority of the historical data with only 3% of transitions

happening under an active action. In addition to the trajectories, we have socio-

demographic features for every beneficiary obtained at registration time. These

features cover information such as age, gestational age, income, education, par-

ity, gravidity, language of automated call, and registration channel.
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4.4 Comparison of LearningMethods

In this section, we summarize the Two-Stage and the Decision-Focused learning

approaches for obtaining the transition probability parameters of beneficiaries.

Crucially, the TS approach maximizes for the predictive accuracy while the DFL

approaches maximizes the decision objective.

4.4.1 Two-stage Learning

In211, TS model is shown to cut∼ 28% engagement drops as compared to a Round-

Robin baseline. In ourwork, we consider outperforming the TS baseline to show

applicability of DFL model. Thus we follow similar setup of the TS model as de-

scribed in211. A mapping function f is learnt that predicts the Transition Proba-

bilities given the socio-demographic features xi for the ith arm. Predicted Transi-

tion Probabilities for arm Pi can then be obtained as Pi = f(xi), i ∈ [N]. Since our

problem domain consists of two states and two actions, we have to predict four

transition probabilities. We model the mapping function as a neural network

fw parameterized by the weights w. fw is designed using two fully connected lay-

ers followed by four outputs and finally logistic function is applied to obtain

probabilities. fw is learnt by minimizing the negative log-liklihood of observed

trajectories T under the predicted transition probabilities fw(x). The loss func-

tionL is thus given by

L(fw(x), T ) = E
i∈[N]
−log(T i|fw(xi)) (4.3)

73



Theweights w of the neural network fw are optimized by backpropogating the

gradient dL(fw(x),T )
dw .

4.4.2 Decision-focused Learning

We replicate the Decision Focused learning pipeline from323 where instead of

optimizing for predictive accuracy, the final decision outcome is optimized. Off-

Policy Policy Evaluation (OPE) is used to quantify the decision outcome. It mea-

sures the reward obtained from a learnt policy given the past trajectories from

a different policy. The DFL architecture uses the same predictive model fw as TS,

described in the previous section. However, once Transition Probabilities are

predicted as P = fw(x), we computeWhittle Indices using a differentiable func-

tionW. The whittle indicesWI = W(P) parameterize a differentiable policy

whichwe denote as πWI. Finally, the differentiable evaluation objective is for-

mulated using OPE of learnt policy under the observed trajectories T which

is represented asOPE(πWI, T ). The weights of the predictive model are learnt

by maximizing the final objective and backpropogating through the complete

pipeline. The gradient is thus given by d OPE(πWI,T )
dw .

In Decision Focused Learning, we calculate this gradient by using the chain

rule:

d OPE(πWI, T )
dw

=
d OPE(πWI, T )

dπWI
dπWI

dWI
dWI
dP

dP
dw

(4.4)

We refer the reader to the appendix for more details on DFL pipeline.
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4.5 Field Study

We collaboratedwith the NGOon the maternal and child health problem and

conducted a service quality improvement field study to compare the perfor-

mance of different learning approaches. All experiments reported in this paper

are approved by an ethics review board at the NGO.

Hypothesis and research question: The main goal in this paper is to under-

stand the performance of decision-focused learning in real-world problems.

Decision-focused learning has shown better performance in many applications

but only in simulation. There is no deployment or real-world evidences of whether

decision-focused learning actually outperforms other learning methods in

practice.

Control methods In earlier work211, the two-stage approachwas shown to

outperform a benchmark of Round Robin Policy. The work also provides sta-

tistical significance results, illustrating the superiority of two-stage RMAB

policy over non-AI baseline. Therefore outperforming the two-stage approach is

important to show the utility of decision-focused learning. In our field study,

we compare the following live service call scheduling strategies: (1) Current

Standard of care (CSOC), where no live service calls are delivered to the ben-

eficiaries, (ii) Two-stage (TS) approachwhere beneficiaries are chosen for live

service calls according to theWhittle Index Policy learnt using Two-Stage

learning, and (iii) Decision-Focused Learning (DFL) approachwhere beneficiaries

are chosen for live service calls according to theWhittle Index Policy learnt

using Decision Focused learning. We use the performance of the CSOC group
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to anchor the performance of other AI-based methods. The performance of the

CSOC group also measures the baseline engagement rate that the mobile health

program receives without any intervention. Therefore, we focus on the improve-

ment of AI-based methods against the CSOCmethod.

Eligibility criterion and randomization We consider the group of beneficia-

ries registered between the months of April 2022 to June 2022. Further, we filter

out beneficiaries who have not listened to even a single automated voice call

in the time period of 30 days before the study begins. This filtering is done to

remove beneficiaries from the cohortwho have long term connectivity issues

such as phone number out of service or misentry of phone number at enrolment.

Lastly, we randomly sample 9000 beneficiaries out of these eligible candidates to

form our study cohort. We split these set of beneficiaries into three groups of

3000 beneficiares each - (i) CSOC group, (ii) TS group, and (iii) DFL group. We make

sure that the distribution of socio-demographic features and start-state are

the same across the three groups.

Experiment design Beneficiaries become eligible for live service calls 2 months

post their enrolment into the program. Within the TS andDFL groups, we choose

K = 300 beneficiaries for live service call every week based onNGO’s constraints.

These live service calls are sent outweekly for a period of 6 weeks. We continue

to monitor the cohort for 4 more weeks even after the study ends to measure

the sustained effect of live service calls. It should be noted that, automated

voice messages are sent to all groups throughout this period and only the deliv-

ery of live service calls by healthworkers changes across the three groups.
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4.6 Experiment Results

In this section, we showcase the results from the field study. We also define

multiple evaluation metrics and demonstrate how the different policies fare

against each other.
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Figure 4.3: Weekly Cumulative Engagement Drop Prevented for the DFL and TS groups. Live service calls are only
delivered for the first 6 weeks, after which, all three groups are only passively observed. The DFL group prevents more
Cumulative Engagement Drops as compared to the TS group

4.6.1 Weekly and Cumulative Engagement

We first present the results from our study using the EngagementMetrics pro-

posed byMate et al. 211. Engagement at time t for the ith beneficiary, represented

by Ei(t), is defined as 1 if the beneficiary listens to at least one automated call in

a week for more than 30 seconds and 0 otherwise. Since the engagement of bene-

ficiaries dwindles over time, we can measure the drop in engagement relative to

the engagement at start. The engagement drop and the cumulative engagement

drop are defined as

Eidrop(t) := Ei(0)− Ei(t); Eicumu_drop(t) :=
ζ=t∑
ζ=0

Eidrop(ζ) . (4.5)

77



The cumulative engagement drop prevented over the CSOC group is simply the

difference in cumulative engagement drop of the policy and the CSOC group.

Figure 4.3 shows the cumulative engagement drops prevented over CSOC group

for DFL and TS policies. We see that DFL prevented more drops across all weeks

and by the end of study, DFL group has 560more engagement drops prevented

over the CSOC group as compared to TS group which only prevents 181 engage-

ment drops. Given a total of 1765 cumulative engagement drops in the CSOC

group, DFL group has 31% fewer cumulative engagement drops as compared to

CSOC group while TS only results in 10% reduction in cumulative engagement

drops.

4.6.2 Statistical Significance

We also establish statistical significance † of DFL’s benefit using regression

analysis18. We fit a linear regression model to predict the output variable Eicumu_drop

by giving beneficiary features xi as an input vector of length J alongwith and an

indicator variable Ti denotingwhether a beneficiary belongs to DFL (Ti = 1) or

CSOC (Ti = 0) group. The regression model can thus be represented as

Yi = k+ βTi +

J∑
j=1

γjxi,j + εi (4.6)

where β is the regression coefficient of the indicator variable Ti measuring the

effect of treatment, γj is the regression coefficient of the j-th input feature, k

is the constant term of regression and εi is the error. Yi is the target variable

that is fitted using the regression model and is same as Eicumu_drop. The regression

†See Appendix for erratum
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coefficient for T is found to be 0.19 with p-value of 0.024. On the other hand,

similar comparison between TS (Ti = 1) vs CSOC (Ti = 0) yields a regression co-

efficient of 0.06 for Twith p-value of 0.48. Thus, belonging to the DFL group re-

sulted in significantly positive impact on cumulative engagement drops while

for TS, no such statistical significance could be established.

Table 4.1: Statistical significance for service call impact tested using a linear regression model

DFL vs CSOC TS vs CSOC
% reduction in cumula-
tive engagement drops

31% 10%

p-value 0.024 0.48
Coefficient β 0.19 0.06

4.6.3 Performance on ListenershipMetrics

While the whittle index policy maximimizes the reward, which is defined using

the engagement metric, we also measure if the policy improved other metrics

characterizing listenership. Thus, we define metrics quantifying listenership

behaviour of a beneficiary within a time window of 14 days before and after re-

ceiving a service call.

Definitions

1. MeanDuration: The mean duration of calls listened towithin the time

window.

2. No. of Engagements: The numbers of calls engagedwith (30+ seconds lis-

tened) within the time window.
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3. Engagements to Scheduled (E/S) Ratio: The ratio of numbers of calls en-

gagedwith to numbers of calls scheduledwithin the time window.

Results We calculate the change in these metrics between the time window be-

fore and after a live service call. Table 4.2 reports the mean change in these met-

rics across the three experimental groups. We observe that across all the met-

rics,DFL group has a significantly higher change in listenership behaviour

through live service calls as compared to the TS group. For instance, we can

interpret the value of 17.054 inMeanDuration metric for DFL as active actions

in DFL group resulting in beneficiaries listening to on average 17 seconds more

of an automated call. This is in contrast to TS group, where live service calls

only resulted in beneficiaries listening to 6 seconds more of an automated call.

Note that the average duration of an automated message is 60 seconds. Thus a

17 seconds improvement in listenership corresponds to an average 28% increase

in message content listened to among those treatedwith live service calls. Us-

ing t-test for comparison of means, we find that for each of the proposed met-

rics, mean change is statistically higher for DFL group as compared to TS group

with p-value< 0.05.

Table 4.2: Performance of the DFL and TS policies across multiple listenership metrics. DFL policy shows a higher
change in listenership behaviour from a service call as compared to the TS policy.

Policy Change in Mean Duration Change in No. of Engagements Change in E/S
DFL 17.054 0.094 0.20
TS 6.764 0.009 0.07
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Table 4.3: Multiple Error and Rank metrics evaluated for DFL and TS policies. While TS group shows a lower overall
error in predicting transition probabilities, DFL group has lower predictive error in Top‐K arms and a higher rank correla‐
tion with the optimal ranking.

Rank Metrics Transition Probability Error Metrics
Policy Precision @ K Spearman’s Correlation MAE All MAE Top-K Mean NLL All Mean NLL Top-K
DFL 0.41 0.30 0.31 0.35 0.79 0.62
TS 0.22 0.179 0.25 0.37 0.42 0.69

4.7 Understanding Decision-focused Learning

4.7.1 Learnings fromRealWorld Experiment

The Decision Focused Learning method consists of an end-to-end pipeline start-

ing from features to predicted Transition Probabilities to computedwhittle

index and finally the decision of whether a beneficiary is in top-K list chosen

for live service call. In this section, we interpret the DFL’s strategy in contrast

with the Two-Stage policy by performing post-hoc analysis across all these

steps.

As a first step for this analysis, we compute the ground truth transition prob-

abilities using the observed trajectories of beneficiaries during the time period

of field study. Once Ground Truth Transition Probabilities are estimated, we

subsequently compute the Ground TruthWhittle Index and Ground Truth top-

K ranks.

Top-K Rank Lists We consider the ordered list of beneficiaries according to

predictedwhittle index in the Two-Stage andDFL experiment groups. Addition-

ally, True Top-K rank list is also computed using the ground truthwhittle in-

dex. To measure the agreement between the two lists, we use the following met-

rics:
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1. Precision @ K: This metric counts the proportion of relevant beneficiaries

in the top-K positions of the policy rank list and is widely used in classi-

fication356,255 and ranking problems298. The precision @ K in our problem is

given by:

Precision @ K =
|Policy Top-K list ∩ True Top-K list|

K

2. Spearman’s Rank Correlation: This metric calculates the rank correla-

tion between the PredictedWhittle Index and Ground TruthWhittle In-

dex of Policy’s Top-K ranked beneficiaries.

In Table 4.3, we show the different rank metrics for the two comparison groups.

In all the weeks, we find that the DFL group has a higher agreement with the

True Top-K ranks as compared to the Two-Stage experiment group.

Whittle Indices For beneficiaries belonging to each of the experimental group,

we have the corresponding computedWhittle Index from predicted Transition

Probabilities. We call it the PredictedWhittle Index (note that these values

are not directly predicted by the Neural Network models). Figure 4.4 shows the

distribution of PredictedWhittle Index for DFL and TS experiment groups in

Blue. We also mark the beneficiaries who are chosen for Active actionwithin

each experimental group in orange.

A striking observation is thatwithin the DFL group, the whittle indices

have a bimodal distribution as opposed to a unimodal distribution for Two-

Stage group. This suggests that in DFL, the model is trying to learn a decision

boundary between the beneficiaries to deliver active and passive action. This
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Figure 4.4: Predicted Whittle index distribution and beneficiaries intervened for TS and DFL groups across all weeks.
The DFL group has a bimodal distribution of predicted whittle index as compared to unimodal distribution in the TS
group. Note that the right peak in DFL is not fully covered due to beneficiaries changing states over the course of study.

contrasts with the Two-Stage model where objective is solely to learn accurate

transition probabilities.

Predicted Transition Probabilities Given the ground truth and predicted

transition probabilities for bothDFL and TS policies, we compute for the whole

population (i) theMeanNegative Log Likelihood (NLL) of observed trajectories

under predicted transition probabilities and (ii) the prediction error usingMean

Absolute Error (MAE). In Table 4.3, we show that DFL has both higherMAE and

higherMeanNLL as compared to TS. Thus DFL model is poorer in predicting the

transition probabilities. However, if we compute these metrics for just the true

top-K beneficiaries (MAE Top-K andMeanNLL Top-K), we find that DFL has lower

MAE as well asMeanNLL than TS. This suggests that theDFL focuses on cor-

rectly predicting the transition probabilities for beneficiaries who will

actually be picked, in contrast to the TS, which optimizes for predictive per-

formance for the whole population. It must be noted, that the predictive per-

formance of TS is impacted due to limited historical data around active actions

(limited service calls made by the NGO).
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4.7.2 Short-term and Long-term Impact of Live Service Calls

In Figure 4.5, we plot mean reward accrued by beneficiaries in the next step after

an active action for both Two-Stage andDFL group. This quantifies the short

term impact of a live service call. In both the NE and E state, we observe that

DFL leads to higher reward.
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Figure 4.5: Mean reward accrued by beneficiaries in short term (1‐step lookahead reward) and long term (4‐steps and
6‐steps lookahead rewards) after given an active action, DFL group has higher reward in both the short‐term and the
long term as compared to the TS group.

While short-term impact is only applicable for one timestep ahead, theWhit-

tle Index policy optimizes for long-term rewards. In Figure 4.5, we also plot the

reward obtained in 4 weeks and 6 weeks following the live service call. We show

this for both TS andDFL group. Again, we see that DFL’s live service calls are

more effective than TS policy even in the long term.

4.7.3 Who Benefits fromDFL

In order to determine which beneficiaries benefited the most from the DFL pol-

icy, we first obtain the ratio of calls engagedwith over total scheduled calls
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(E/S) for every beneficiary over the whole duration of study. Subsequently, we

rank the beneficiaries based on the E/S ratio and compute average E/S ratio for

different percentiles. We calculate these numbers for all three policies. In Fig-

ure 4.6, we plot the lift in E/S ratio over CSOC for different percentiles. While

DFL shows a positive lift in listenership over CSOC across all percentiles, the

maximum lift is achieved in the lowest percentiles. This shows that those with

low listenership are the ones benefiting most from the DFL policy.
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Figure 4.6: Lift in E/S ratio over CSOC for different percentiles. The highest lift in E/S ratio is in the lowest percentile
suggesting that beneficiaries with poor listenership of automated voice messages benefited the most from live service
calls.

4.7.4 Learnings from Simulated Experiments

In this section, we conduct simulated experiments to improve our understanding

of the DFL model and verify the observations made from the real world exper-

iment. Specifically, we consider an RMAB systemwith 100 arms simulating ben-

eficiaries enrolled in the NGO’s program. TheMDP parameters of each arm are

randomly initialized. Additionally, we obtain a feature vector corresponding

to every arm such that the features are correlatedwith theMDP parameters.
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Lastly, we simulated multiple trajectories for the whole system and store that

as offline dataset for our experiments. All experimental results are reported by

averaging over five seed values.

The Effect of Training Data Size While Decision Focused Learning optimizes

for the decision objective, a TS model that perfectly predicts the optimization

problem parameters should also achieve the optimal decision objective. How-

ever, in the real world, predictive models do make errors. These errors can be

dependent on the quantity of training data that is available to the learning

model.

We thus formulate the hypothesis that the gain fromDFL model should be

higher in limited data scenario. As size of training data grows, DFL and TS should

converge to similar decision objective. To test this hypothesis, we run a sim-

ulated experimentwith varying number of trajectories per arm. Figure 4.8(a)

shows lift in Off-Policy Policy Evaluation fromDFL over TS with increasing

training data size. We observe that the highest lift is with smallest training

data size and as we increase availability of training data, lift diminishes.

Shift inWhittle Index Distribution over Training Epochs As DFL learns to

optimize the decision objective directly, we hypothesise that it should learn a

model which effectively separates the top ranked and bottom rankedwhittle

index arms. On the other hand, since TS optimizes for predictive accuracy, it has

no incentive to learn an optimal ranking of the arms by whittle index. To verify

this hypothesis, we plot the predictedwhittle index distributions of true top-K

and bottom-K arms. In Figure 4.7, we visualize how these distributions change
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Figure 4.7: Predicted whittle index distribution for optimal top and bottom arms, across the training epochs. DFL policy
learns whittle indices such that the true top ranked and bottom ranked arms are segregated. TS policy fails to learn
whittle indices following this strategy.

over the training epochs, giving a glimpse into the learning process of the two

models. We observe that both the TS andDFL model start with no prior infor-

mation of the true top-K and bottom-K arms. However, over the training epochs,

DFL learns whittle indices such that it separate the two groups. The Two-Stage

model fails to learn such segregation in predictedwhittle index distribution.

The Effect of Budget-K The budget constraint in the RMAB problem defines

the number of arms chosen for active action every week. In a two-stage model,

the learning step outputs the transition probabilities irrespective of the bud-

get value K. However, in Decision Focused Learning, the mapping model which

outputs the transition probabilities maximizes for the decision objective that

relies on the value of K. To simulate the effect of mismatch in K, we train DFL

model with changing K at train time (K_train), while keeping the K fixed at the

time of evaluation (K_eval). Specifically, we note the OPE at evaluation time with

K = 20 for different training scenarios withK ∈ [2, 4, 10, 16, 20, 30, 40, 60, 80] as

shown in Figure 4.8(b). We observe that the performance at evaluation time only
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drops slightly (by upto 6%) in both the cases of train time budget being greater

or lesser than the evaluation time budget. The sensitivity of the DFL’s perfor-

mance to the value ofK_train supports the hypothesis that DFL learns a decision

boundary optimized for the exact number of beneficiaries chosen for active ac-

tion. Further, keepingK_eval = K_train can help maximize the performance of DFL.
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(a) Improvement in evaluation OPE of DFL over TS with
changing number of trajectories per arm.
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(b) Percentage drop in evaluation OPE with budget as 20
(K_eval) relative to maximum Eval OPE, across changing
budget at train time (K_train).

Figure 4.8: Off‐policy policy evaluation (OPE) of decision‐focused learning and two‐stage learning with varying number
of trajectories and budget at train time.

4.8 Conclusion

Several applications at AAMAS first require learning a predictive model of

agents’ parameters and then optimizing based on result of such learning. This

paper presents key results on importance of Decision Focused Learning to such

applications. We conduct the first large-scale field study of Decision Focused

learning through an RMAB problem in maternal and child health domain. We

conclude that learning theMDP parameters of the RMAB problem throughDe-

cision Focused Learning results in higher participation of beneficiaries in the

program (Figure 4.3). DFL’s strategic selection of actions also results in more
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effective live service calls as demonstrated in Table 4.2. From the analysis show-

cased in previous sections, we attribute the success of DFL to the following:

(i) The predictedwhittle index distribution fromDFL policy is bimodal in con-

trast to a unimodal distribution in TS (see Figure 4.4) indicating that DFL model

learns a decision boundary to highly rank beneficiaries that would benefit sig-

nificantly more from receiving the service call than the rest of the population.

(ii) DFL is more alignedwith the optimal policy as shown by a higher rank corre-

lationwith the True Top-K Beneficiaries as compared to TS (Table 4.3). (iii) While

TS results in a lower predictive error for the population as a whole, DFL by op-

timizing for decision quality results in improved transition probability predic-

tion for the top-K beneficiaries (Table 4.3).

4.9 Ethics and data usage

Acknowledging the responsibility associatedwith real-world AI systems for un-

deserved communities, we have closely coordinatedwith interdisciplinary team

of ARMMAN’s field staff, social work researchers, public health researchers

and ethical experts through all major steps of model iteration, development

and experimentation. Particularly, prior to all experiments, approval was ob-

tained from ethics review board at both ARMMAN andGoogle.

Consent andData Usage

The consent for participating in the program is received from beneficiaries. All

the data collected through the program is owned by the NGO and only the

NGO is allowed to share data. This dataset will never be used by Google for any
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commercial purposes. We only use anonymized data and no personally identifi-

able information (PII) is made available to the AI models. The data exchange and

use was thus regulated through clearly defined exchange protocols including

anonymization, read-access only to researchers, restricted use of the data for

research purposes only, and approval by ARMMAN’s ethics review committee.

Universal Accessibility of Health Information

Our service call scheduling model focuses on improving quality of service calls

and does not alter, for any beneficiary, the accessibility of health information.

All participants will receive the sameweekly health information by automated

message regardless of whether they are scheduled to receive service calls or

not. The service call program does notwithhold any information from the

participants nor conduct any experimentation on the health information. The

health information is always available to all participants, and participants can

always request service calls via a free missed call service.
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5
Decision-focused Learning in

Network Intervention

5.1 Introduction

Many real-world security problems present the challenge of how to allocate

limited resources to large number of important targets, including infrastruc-
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ture112, transportation systems240, urban crime357, andweb security308. Stackel-

berg security games (SSGs) are frequently used to study the interaction between

defender and attacker and optimally allocate the security resources accord-

ingly. Network security games (NSGs)332,101,272, a natural extension of SSGs, de-

scribe a strategic adversarial interaction between an attacker and a defender

on a graph. The attacker’s goal is to take a path from a starting location to

a target without being caught by the defender. The defender declares (i.e., at-

tacker surveils) a mixed strategy of how she will deploy her security resources

to the edges of the network. NSGs are relevant in many real-world settings

such as wildlife conservation95,213, infrastructure protection147, and nuclear

material smuggling243,225.

One key challenge in applyingNSGs in the real world is learning an adver-

sary’s behavior from historical data. Past works21,227,1 in security games have

shown that constructing bounded rationality adversary models from data

greatly improves performance of deployed models because attackers often be-

have quite differently from how rational models would suggest. A particular

motivation for this paper is wildlife smuggling98,267,361, a natural NSG domain

where large amounts of historical attack data is available in the form of past

seizures.

Almost all previous work on security games approaches the problem of adver-

sary modeling by first building a full adversary model that aims to predict the

adversary behavior as accurately as possible2,75,95,236. In early work, the judg-

ments of human experts were used to estimate the adversary’s preferences297.

Later, in domains where historical attack datawas available, machine learn-

ing was used to construct models instead (starting from Letchford et al.190).
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In NSGs, building an adversary model to maximize accuracy has several key lim-

itations. First, the model is selectedwithout any consideration of the impact

of errors downstream. Prediction errors on paths that are frequently taken

by the adversary have a large impact on defender utility, but are weighted the

same as errors on paths that are rarely taken. Secondly, standard adversary

models require human feature engineering to apply toNSGs due to a great va-

riety of paths from the attacker’s starting location to each potential tar-

get105,350,125,126. Once the adversary model is determined, the following defender

utility maximization problem can be solved by any optimization techniques, in-

cluding bilevel optimization213, branch and cut102, and double oracle147.

Our approach represents a fundamental shift: we take an end-to-end, game-

focused approach, focusing on learning a model that yields a high defender

utility. More specifically, we take the downstream defender utility maximiza-

toin problem into accountwhile learning the adversary model. To that end, we

use a graph convolutional neural network architecture to learn the adver-

sary’s behavior, which allows us to overcome both of the issues of prior work.

First, assumingwe can differentiate through the defender’s optimization prob-

lem, we can train the entire model end-to-end because the predictive model is

differentiable, i.e., to take the optimization problem into accountwhile train-

ing. Second, the graph convolutional network automatically extracts features

from the graph, meaning that hand engineering is not necessary. Nevertheless,

several challenges must be overcome to implement this approach: principally,

poor scalability of naive end-to-end training and non-convexity of the game-

focused objective.

A summary of our contributions is as follows: first, we construct a graph
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convolution-based adversary model forNSGs. This model is fully differentiable,

does not require manual selection of path features, and transmits target value

information over the network. Second, we develop a randomized block update

scheme for differentiating through optimization problems, whose computation

time is usually more than quadratic in terms of the number of variables due to

the computation of Hessian matrix and matrix inversion. Such computational

issue is especially influential for optimization problems with a huge number of

variables, which is commonly seen in NSGs as every edge corresponds to one in-

dividual decision variable. In these cases, randomized block update can largely

reduce the time complexity. We further provide an approximation guarantee rel-

ative to the complete derivatives, andwe show empirically that our approach

greatly improves scalability. We also show that through judicious use of the

standard predictive loss as regularization, we can escape local minima in the

end-to-end loss function.

5.2 RelatedWork

There is a rich literature on learning adversary behavior models in Stackelberg

security games (SSGs) (starting from Letchford et al.190), but learning in NSGs

has received much less attention. While SSGs generalize NSGs, the scalability

concerns are quite different because reducingNSGs to SSGs may create exponen-

tially many targets—one for each path to the target in the NSG. Thus, apply-

ing standard attacker bounded rationality models, such as quantal response

(QR)214,222 and subjective utility quantal response (SUQR)236 is nontrivial. Yang

et al.350 and Ford et al.105 reducedNSGs to SSGs by considering each individual
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path as an attacker pure strategy. Their approach scales poorly, creating ex-

ponentially many paths in many networks. It also relies on hand-crafting path

features that capture adversary behavior well. Other authors have developed

models that useMarkovian dynamics to model the attacker. Gutfraind et al.125

and Abbasi et al.2 assume the attacker does not receive any information beyond

the neighboring nodes—attackers do not make any decisions that are more long

term than a single timestep. Gutfraind et al.126 takes the opposite approach: at-

tackers follow a path that minimizes some cost (such as the risk of being caught)

with randomness in the individual decisions. This adds some global informa-

tion, but requires the model designer to specify the choice of cost function in

advance.

Past work in adversary modeling in SSGs has viewed the problem of construct-

ing an adversary model and solving the defender’s optimization as completely

separate problems and does not consider the impact of errors in the defender

model on the quality of the optimization outcome, with a few exceptions. Sinha

et al.285 andHaghtalab et al.129 relate the predictive accuracy of the learned

model to the defender’s expected utility. In the case of Haghtalab et al., this

view motivates the use of a non-standard loss function to achieve better util-

ity. However, even these papers take a fundamentally two-stage approach: the

model is trained independently of any information about the game itself, such

as the defender’s utilities. Perrault et al.248 takes a game-focused approach to

SSGs, but the issues that arise in NSGs are different and require a greater focus

on scalability.

A major challenge in ourwork is differentiating through the nonconvex de-

fender optimization problem. Recentwork has developed general approaches
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for differentiating convex problems4. Perrault et al.248 present an approach

for a limited class of nonconvex problems. Our setting is challenging in two

ways. First, we have a decision variable for each edge in the network and these

approaches scale poorly (more than quadratically) in the number of variables.

Second, our setting is more severely nonconvex than that of Perrault et al.

5.3 Background

Stackelberg Security Games A Stackelberg security game (SSG)354,297 is a two-

player sequential game. The defender aims to protect a set of targets Twith

limited budget bwhich can only protect up to b targets. Each target t ∈ T is as-

sociatedwith a defender penaltyUd(t) ≤ 0 and an attacker rewardUa(t) ≥ 0

when the target is successfully attacked. For simplicity, we assume there is no

reward and penalty when the attacker is caught or fails to reach the target.

Once the defender commits to her mixed strategy, the attacker can conduct

surveillance to observe the defender’s mixed strategy and choose one target to

attack accordingly. We denote the defender’s mixed strategy by z ∈ R|T|, where

0 ≤ zt ≤ 1 denotes the marginal probability that target t is protected. The bud-

get constraint can be written as 1⊤z ≤ b. On the attacker side, we use θ(z, x) to

represent the attacker’s behavior, where θt(z, x) (or θt if there is no ambiguity) is

the probability of attacking target t, and x is the available features revealed to

both the defender and the attacker, e.g., the attacker payoff valueUa(t) ∀t ∈ T

can be considered as a feature. Notice that θ is a function of the defender strat-

egy z and the feature x, which implies that the attacker can be reactive to the

defender strategy and select the target based on the underlying feature. We
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canwrite the defender’s utility function as:

DefU(z; θ) =
∑
t∈T

θt(z, x)Ud(t)(1− zt). (5.1)

This includes the case where the attacker is fully rational, where θt(z, x) = 1 if

t = argmax
t′∈T

(1− zt′)Ua(t′) else 0.

Bounded Rationality in SSGs Quantal response (QR)214 models the attacker’s

behavior by setting the probability that each target is attacked to be propor-

tional to the exponential of its payoff scaled by a constant. Subjective utility

quantal response (SUQR)236, which fits data better thanQR in practice, sets the

probability proportional to the exponential of a subjective utility or an attrac-

tiveness function of the attacker:

θt(z, x) ∝ exp(−ωzt + Φ(t, x)), (5.2)

where ω > 0 is a constant representing the attacker’s risk aversion and Φ(t, x)

denotes the subjective utility of target t given feature x.

Network Security Games Network security games (NSGs)101,232 are SSGs played

on a graph structure. Given an undirected (or directed) graphG = (V,E), the

defender allocates a limited number of checkpoints along edges in E, while the

attacker tries to find a path from a source to a target without being caught.

We divide the set of all verticesV into targets T = {t1, t2, ..., t|T|} and non-targets

S = {s1, s2, ..., s|S|} (or potential sources). At each time, the attacker appears in one

potential source s ∈ S drawn from a given prior distribution π ∈ R|S|. From the
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defender’s perspective, the defender strategy ze ∀e ∈ E is the marginal probabil-

ity of covering edge e. Similarly, the defender has a limited number of resources

b to protect the targets.

We use α = {v1, v2, ..., v|α|} to denote a pathwhich starts from a source v1 ∈ S and

ends with a target v|α| ∈ T. We useA to denote the set of all possible paths from

any source to any target, which could be exponentially many or infinitely many

when the graph contains any cycle. Similar to SSGs, letUd(t) be the defender’s

payoff when the target t is attacked successfully andUd
caught be the defender’s

payoff when the attacker is caught. LetUd = {Ud(t1), ...,Ud(t|T|),Ud
caught} ∈ R|T|+1

denote the defender’s payoff vector. In addition, we assume each node v ∈ V has

a node feature vector xv ∈ RD consisting of characteristics of node v, e.g., the

attacker payoff of the current nodeUa(v) if v ∈ T. We use x ∈ R|V|×D to denote

all the node features in graphG.

Bounded Rationality in NSGs In this paper, we assume the attacker to be bound-

edly rational, where the attacker’s behavior is characterized by a function

θ(z, x), where θα(z, x) represents the probability of choosing path α under cover-

age z and feature x. Given the coverage z, we can compute the defender expected

utility:

DefU(z; θ) =
∑
α∈A

θα(z, x)Ud(α)
∏
e∈α

(1− ze), (5.3)

whereUd(α) = Ud(t) is the defender utility when the attacker successfully

passes through α to attack its target t.

The difference between Equation 5.1 and 5.3 is that there are multiple layers

98



of protection along the path α. Therefore the probability of successfully at-

tacking a target is the product of all the success probabilities of crossing each

edge e in the path. The defender’s optimization problem is generally hard. For ex-

ample, if the function θ(z, x) is given by full rationality restricted to only poly-

nomial many pathsA, the defender optimization problem is NP-hard147. Further-

more, the set of all possible pathsA could be exponentially large or infinitely

manywhen there is any cycle.

Graph Convolutional Networks There has been much recent attention paid

to graph convolutional networks (GCNs)223,172,130. Given a graph, the convolu-

tional layers in GCNs can transmit information through message passing, which

allows information to propagate to distant nodes and be aggregated in a non-

linear fashion. GCNs are much more expressive than hand-crafted features. In

this paper, we apply GCNs, parameterized by w, to map each node v ∈ V and the en-

tire node features xwith graph structure to a scalar Φ(v, x;w), which represents

the extent that the attacker is “pulled” toward that node. The message passing

in GCNs is similar to the information gathering conducted by the adversary,

where a rough understanding of faraway targets is available to the adversary.

5.4 AdversaryModel

Our attacker model is Markovian—the probability of using a path α can be de-

composed into the product of transition probabilities:

θα(z, x) =
∏
e∈α

θe(z, x). (5.4)
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Figure 5.1: The convolutional layers of GCNs can propagate and aggregate information in a non‐linear fashion. In NSGs,
such message passing ability corresponds to the attacker’s ability of conducting surveillance to neighbor nodes.

Motivated by the SUQRmodel, we propose a local SUQRmodel, which assumes the

probability that the attacker moves from u to v using edge e = (u, v) is propor-

tional to exp(−ωzu→v − ηyv + Φ(v, x;w)) ∀v ∈ Nout(u). Φ(v, x;w) represents the

subjective utility or attractiveness of node v parameterized by w, which can be

learned by GCN. The variable yv, with aweight η ≥ 0, represents the downstream

future risk or coverage perceived by the attacker at node v. In other words, the

attacker tends to move toward the target with higher attractiveness Φ(v, x;w),

but avoids using the edge e = (u, v) ∈ Ewith higher coverage zu→v and avoids

moving towards nodes vwith higher future risk yv.

Given a defender coverage strategy, there are many heuristic ways to obtain a

measure of future risk. For example, we can follow the aboveMarkovian behav-

ior without the effect of the future risk, where the probability of being caught

can be analytically computed efficiently. Another heuristic is the shortest dis-

tance to any target, as suggested by Gutfraind et al.126. The only restriction

put on the choice of the future risk is differentiability.
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We can compute the transition probability from u to any v ∈ Nout(u) as:

θu→v(z, x;w) =
exp(−ωzu→v − ηyv + Φ(v, x;w))∑

v′∈Nout(u)
exp(−ωzu→v′ − ηyv′ + Φ(v′, x;w)

. (5.5)

Unlike previous boundedly rational models350,105, we do not need to enumerate

all the feasible paths, which could be exponentially large. Unlike the nonre-

activeMarkovian model125, our model is reactive to the defender’s strategy.

Unlike Gutfraind et al.126, we are not limited to noisily following a shortest

path.

In local SUQR, the path structure is automatically encoded in the reactive

Markovian behavior. Since the edge coverage effect is involved in the transi-

tion probability, the probability of taking a path is also exponentially propor-

tional to the total coverage along the path, which is also included in other

bounded rational models350,105. The flexibility and the generalizability of the

attractiveness function allow us to apply any graph learning algorithms to

extract the adversary behavior. Compared to previous hyperparameters tuning

models, our model is more expressive and can adapt to a broader range of adver-

sary behavior.

5.5 Problem Statement

For each instance, a directed graphG = (V,E)with node features x is presented

to both the defender and the attacker. The attacker has a hidden rationality

function θ∗, which is a function of node features x and the defender coverage

z. The defender first chooses a coverage {ze}e∈E under the budget constraint
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1⊤z ≤ b. The attacker observes z and then behaves based on his own rationality

function θ∗. We assume that the defender has access to historical play between

the defender and the attacker, which can be used to form an estimate of the ad-

versary behavior. The goal of the defender is to maximize the received expected

reward.

5.6 Two-stage Learning forNetwork Security Games

The main comparison of the remainder of the paper is between our GCN-based

adversary model implemented as two-stage vs. our game-focused methods. Thus,

we briefly describe the two-stage approach thatwe consider.

PredictiveModel A two-stage approach fits the GCN-based attractiveness

function Φ(v, x) for all v ∈ V to minimize the difference between predicted be-

havior θ given by Equation 5.5 and the corresponding true attacker behavior θ∗.

Given the attacker behavior θ∗ and a prediction θ, we can define the loss by ei-

ther matrix norm or the KL-divergence of the path distribution inferred by two

behaviors under previous coverage z and features x. These losses are generally

infeasible to compute since there are infinite many possible paths. In practice,

however, we often have paths sampled from the true behavior θ∗ we can use to

approximately compute the KL-divergence between two behaviors. Given the

choice of loss functionL, we can train a model θ by minimizing the average loss:

E(z,x,θ∗)∈DL(θ∗, θ; z, x) (5.6)
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PrescriptiveModel Given a graphG, node features x, and predicted attacker

behavior q, the defender’s goal is to choose an optimal coverage z∗ satisfied the

budget constraint to maximize her own objective value.

When the defender strategy z is chosen, the attacker follows his ownMarko-

vian behavior θ(z, x). But due to the allocated coverage, the attacker will be

caughtwith probability ze when he passes through edge e. This can be cast as an

absorbingMarkov chain, where the probability of crossing an edge e is θe(z, x)(1−

ze), and the rest of the probability the attacker will be caught and turned into

a dummy caught state vcaught. We also assume that once the attacker reaches ei-

ther any terminal or caught state vcaught, the attacker cannot go back to any

other states, i.e., these are absorbing states. Therefore, given a coverage z, we

can model the attacker’s behavior as an absorbingMarkov chain. We can analyt-

ically compute the corresponding defender utility. To alignwith the standard

minimization formulation, we denote the negative defender utility by f(z, θ). For

ease of notation, we omit the presence of node features. The optimization prob-

lem is given by:

min
z

f(z, θ) (5.7)

s.t. 1⊤z ≤ b, 0 ≤ ze ≤ 1 ∀e ∈ E

Unfortunately, the function f is neither convex nor submodular when the at-

tacker is reactive. The standard approach is to apply constrained black-box

optimization solvers to solve the problem, e.g., Sequential Least SQuares Pro-

gramming (SLSQP)177,44.
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5.7 Naive Game-Focused Learning forNetwork Security Games
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(a) Two‐stage method
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Figure 5.2: Two‐stage method trains the behavior model by minimizing the predictive loss, while the game‐focused
method trains the behavior model by optimizing the final decision quality.

In general, a good predictive model does not necessarily imply a high defender

utility in the second stage. Sometimes a slightly inaccurate prediction might

lead to a better final decision. This happens frequently especially when the

predictive model cannot perfectly represent the ground truth. For example, in

our case, the model relies on theMarkovian assumption and SUQR assumption in

Equation 5.5, which might not be able to fully recover the underlying attacker

behavior.

Game-focused learning, instead, can directly optimize the final solution qual-

ity by back-propagating from the final solution quality all-the-way back to the

predictive model. Game-focused learning has been proven to be able to outper-
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form a standard two-stage learning approach248, finding a shortcut to better

final solution quality. However, the major issue of back-propagation is the

non-differentiable optimization layer in the prescriptive state. Amos et al.11

provides a method to differentiate through the optimization layer when the

optimization program is convex; Perrault et al.248 instead used quadratic func-

tion as a surrogate to deal with the case when the optimization program is non-

convex.

More specifically, the idea of tackling non-convex function in Perrault et

al.248 is to approximate the non-convex function by a quadratic function around

a local minimum zopt using Taylor expansion, which can be written as:

f(z, θ) ≈ f(zopt, θ) + (Δz)T
∂f
∂z

+
1
2
(Δz)T

∂2f
∂z2

(Δz) (5.8)

where Δz = z − zopt. They use this approximate quadratic program (QP) as a sur-

rogate of the non-convex optimization problem, where the optimal solution z∗

of QP matches the local optimum zopt computed before. This allows us to dif-

ferentiate through aQP and compute the gradient of optimal solution z∗ with

respect to the linear coefficient p = ∂f
∂z |z=zopt .

df(z∗, θ∗)
dw

=
df(z∗, θ∗)

dz∗
dz∗

dp
dp
dw

(5.9)

where p =
∂f
∂z |z=zopt is a function of θwith dp

dw =
dp
dθ

dθ
dΦ

dΦ
dw can be decomposed and

computed. Equation 5.9 gives us the gradient of the final solution quality with

respect to the model parameter w, which allows us to directly run stochastic

gradient descent end-to-end. We apply this approach to our domain. The algo-
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Algorithm 3:Naive Game-focused Learning248

1 Input: Training dataD, initialized GCN(·, ·;w) : V× x→ R
2 while until converge do
3 for (G, θ∗, x) ∈D do
4 Compute prediction θ in Eq. 5.5 by Φ = GCN(V, ξ;w)
5 Find optimum zopt of Optimization 5.7
6 Q =

∂2f(z,θ)
∂z2 |z=zopt , p = ∂f(z,θ)

∂z |z=zopt − Qz∗

7 Re-solve QP: z∗ = argmin
z feasible

1
2z

⊤Qz+ z⊤p

8 Update w by gradient df(z∗,θ∗)
dz∗

dz∗
dp

dp
dw

9 Return: trained model GCN(·, ·;w)

rithm is sketched in Algorithm 3 and Figure 5.2(b).

Issues of Game-focused Learning Although game-focused learning ideally can

achieve better final performance compared to two-stage learning, in this sec-

tion, we point out twomain issues that arise when this game-focused learning is

applied toNSGs: scalability and non-convexity.

• Scalability: In the forward and backward paths of solving QP (Equation 5.8),

we need to solve and be able to back-propagate through the QP, which involves

the computation of matrix inverse. Taking matrix inverse grows between quadratic

and cubically as the size of the decision variable z grows. Moreover, in order to

compute the Taylor expansion 5.8, we need to compute theHessian ∂2f
∂z2 explicitly,

which is usually the major bottleneck of the computation cost when the target

function f is complex.

•Non-convexity: In the non-convex setting, the objective function f(z, θ) can

be non-convex in both z and θ. The gradient-based approaches rely on updat-

ing model parameters w and thus θ to improve the solution quality. However,
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since the f is non-convex in θ, it could create non-convex searching space for

gradient-based approaches, which could easily get stuck in local optimum or

saddle points. Two-stage methods escape this problem because their loss func-

tionL(θ, θ∗) in Equation 5.6 is convex, which gradient-based approaches can more

easily handle.

5.8 ImprovingNaive Game-focused Learning

In this section, we provide a scalable randomized block update approach to

resolve the scalability issue, which also suggests a block game-focused algo-

rithm as a scalable version of game-focused learning approach. To resolve the

non-convexity issue, we apply the intermediate loss as a regularization, which

helps game-focused methods escape local minimums. We further provide theoret-

ical guarantees to link the randomized block update to the naive game-focused

learning approach.

5.8.1 Block Game-focused Learning

Instead of using the entire Taylor expansion (Equation 5.8) to approximate the

objective function locally, we can use a partial Taylor expansionwith respect

to a subset of variables to approximate it:

f(z, θ) ≈ f(z∗, θ) + (ΔzC)T
∂f
∂zC

+
1
2
(ΔzC)T

∂2f
∂z2C

(ΔzC), (5.10)

where C ⊂ {1, 2, ..., |E|} is a subset of indices and zC is the corresponding trun-

cation over indices C of the entire variables z. Equation 5.10 is equivalent to

freezing the variables outside of C and applying Taylor expansion to the rest
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Algorithm 4: Block Game-focused Learning
1 Input: Training dataD, initialized GCN(·, ·;w) : V× x→ R, block size k
2 while until converge do
3 for (G, θ∗, x) ∈D do
4 Compute prediction θ in Eq. 5.5 by Φ = GCN(V, ξ;w)
5 Find optimal solution zopt of Optimization 5.7
6 Sample C ⊂ {1, 2, ..., |E|}with |C| = k
7 QCC =

∂2f(z,θ)
∂z2C
|z=zopt , pC =

∂f(z,θ)
∂zC
|z=zopt − QCCz∗C

8 Re-solve quadratic program: z∗C = argmin
zC feasible

1
2z

⊤
CQCCzC + z⊤C pC

9 Update w by gradient df(z∗,θ∗)
dz∗C

dz∗C
dpC

dpC
dw

10 Return: trained model GCN(·, ·;w)

of them. In this formulation, we only need to compute theHessian with respect

to zC. When the size of C is significantly smaller than the original variable size

|E|, it can save the computational time of Hessian quadratically. Furthermore,

while back-propagating through the KKT conditions, the QP formulation of

Equation 5.10 results in a smaller size of quadratic term, which can reduce the

computation of matrix inverse. The block-wise chain rule can be written as:

df(z∗, θ∗)
dw

≈ df(z∗, θ∗)
dz∗C

dz∗C
dpC

dpC
dw

(5.11)

where p =
∂f
∂zC |z=zopt ,

dpC
dw =

dpC
dθ

dθ
dΦ

dΦ
dw . When the block size is smaller, the approxi-

mation can be more inaccurate. But wewill show in the later section that the

block gradient is an approximation to the entire gradient.

All the above reasons suggest a randomized block update algorithm, which is

described in Algorithm 4*. The algorithm randomly samples a block of variables

*The implementation of Algorithm 3 and Algorithm 4 can be found in https://github.com/
guaguakai/scalable-game-focused-learning
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to compute Hessian and back-propagate accordingly. In comparison, Algorithm 3

requires to compute the entire Hessian matrixQ =
∂2f(z,θ)
∂z2 |z=zopt , which is usually

very expensive. Instead, Algorithm 4 only requires the computation of a block

HessianQCC =
∂2f(z,θ)
∂z2C
|z=zopt , which can save at least quadratic amount of Hessian

computation depending on the block size. It can also reduce the running time of

the following quadratic program due to reducing the number of variables.

5.8.2 Block Selection

In Algorithm 4, the idea of block game-focused learning is to restrict the focus

to a subset of variables and to update accordingly. The choice of the sampled

block could affect the convergence rate. Here we propose three block selec-

tion approaches: i) random approach selects block uniformly at random; ii) cov-

erage-based approach randomly selects indices with probability proportional to

z∗, which guarantees that there is space for the variables in the block to real-

locate coverage; iii) derivative-based approach selects indices with probability

proportional to the magnitude of the derivatives df(z∗,θ)
dz∗i

, which is the weight put

on the chain rule.

5.8.3 Regularization

Another issue associatedwith the naive game-focused learning method is the

non-convex objective function, where gradient-based approaches can encounter

issues of local optimums and saddle points. Instead, the two-stage approach op-

timizes the intermediate loss, which is generally convex in the prediction space.

Therefore, we propose to add aweighted two-stage loss as a regularization to
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smoothify the final objective value. As the training epochs increase, the weight

put on the two-stage loss drops exponentially with a decay rate 0.95, pulling the

learning back to game-focused methods. This regularization technique helps re-

solve the non-convexity issue of naive game-focused method, which can achieve

better performance afterward.

5.8.4 Approximation Guarantees

In this section, we will show that both Algorithm 3 and 4 have 0 gradient when

the prediction perfectly matches to the ground truth, showing that both al-

gorithms are stable at the global optimum. Later on, we will show that Algo-

rithm 4 is an approximate version of Algorithm 3. This shows that our block

game-focused approach can not only achieve scalability due to the reduction

in Hessian andQP computation, but it is also alignedwith the standard naive

game-focused approachwith theoretical guarantees.

Theorem 3. When the intermediate prediction matches the ground truth, i.e., θ(·, ·;w∗) = θ∗, we

have df(z∗,θ∗)
dw |w=w∗ = 0 for both Algorithm 3 and Algorithm 4 with any block C.

This theorem implies that if the predictive model is rich enough and able to

reach the ground truth, then the gradient computed in both algorithms is

equal to 0 at the ground truth. So if we can avoid getting stuck by local opti-

mum, then both algorithms will be able to learn the ground truth. This is also

true for the two-stage learningwhen the loss is defined as any convex norms.

Theorem 4. The quadratic programs in Algorithm 3 and Algorithm 4 share the same primal solu-

tions on the block C. They also share the same dual solution on the non-degenerate constraints contain-

ing at least one variable in the block.
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When restricting to variables inside the block, there are some degenerate

constraints containing only variables outside of the block, which are always

satisfied in the block QP. Thus, there is no restriction put on the dual variable

corresponding to these degenerative constraints, whichwe have no control on

them. But in this theorem, we prove that the dual solution to the other valid

constraints will match to the dual solution given by the QP in Algorithm 3.

Theorem 5. Given the primal solution z∗ and the dual solution λ∗ of the quadratic program in Al-

gorithm 3 with linear constraints G, h,A, b, the Hessian Q =
∂2f
∂z , linear coefficient p =

∂f
∂z , and

the sampled indices C ⊂ {1, 2, ..., |E|}, the gradient dz∗C
dpC ∈ R|C|×|C| computed in Algorithm 4 is an

approximation to the block component of the gradient dz∗
dp ∈ R|E|×|E| computed in Algorithm 3. More

specifically,

∥∥∥∥(dz∗

dp

)
CC
−

dz∗C
dpC

∥∥∥∥ ≤ Δ + ΔC

μmin(Q)
max(λ∗, 1)

∥∥K−1
CC
∥∥∥∥∥∥(dz∗

dp

)
CC

∥∥∥∥ (5.12)

where Δ =
∥∥G⊤G+ A⊤A

∥∥ ,ΔC =
∥∥∥Q⊤

CCQCC

∥∥∥, and μmin(Q) is the smallest eigenvalue of positive

definite matrix Q. KCC is the KTTmatrix given by the quadratic program in Algorithm 4.

The Δ in the numerator is a constant that only depends on the constraint ma-

trices. The other term ΔC depends on the choice of block C, which measures the

magnitude of the off-diagonal elements of theHessian matrixQ. This is usually

a small termwhen theHessianQ is diagonally dominant. Another interesting

finding is that this bound depends on the convexity of theHessianQ. When the

Hessian is more convex, then the smallest eigenvalue ofQ is also larger, giving

a stronger bound in Theorem 5. The last termK−1
CC measures the stability of the

KKTmatrixKCC. We can get a good bound if the KKTmatrixKCC is far from sin-

gular. Greif et al.124 provides various bounds on the eigenvalues of the KKTma-
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trix. However, in general, poor constraints can still lead to a KKTmatrix close

to singular. It also indicates that a good choice of C can imply a more stable

KKTmatrix, leading to a better estimate in Theorem 5.

Theorem 5 also implies an alternative explanation to Algorithm 4, where the

gradient in Algorithm 4 is an approximation to the partial gradient with indices

C in Algorithm 3:

df(z∗, θ∗)
dz∗C

(
dz∗

dp

)
CC

dpC
dw
≈ df(z∗, θ∗)

dz∗C

dz∗C
dpC

dpC
dw

(5.13)

which implies that Algorithm 4 can be thought as an approximate block-wise

gradient descent of Algorithm 3, which relates to the literature of block coor-

dinate gradient descent305,246.

5.9 Experiments

In this section, we compare two-stage (TS), naive game-focused (naive-GF) men-

tioned in Section 5.7, block game-focused (block-GF), and regularized block game-

focused (reg-block-GF)methods on synthetic data to show that our block game-

focused and regularized block game-focused methods can achieve better perfor-

mance especially in larger instances. These twomethods are also able to scale

up to large instances, where the naive game-focused method cannot. Lastly, we

study the convergence and scalability of the block game-focused and regular-

ized block game-focused methods with different block sizes and block sampling

methods. This allows us to choose the right block size to balance between solu-

tion quality and scalability.
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5.9.1 Synthetic Data Generation

Graph and features:

we first randomly generate a graphGwith various node sizes, 5 random sources

with uniform initial distribution π, and 5 random targets with defender penal-

tiesUd(t) for all t ∈ T drawn from [−10,−5] uniformly at random. We focus

on stochastic block model137 and geometric graphs333, which can respectively

model community structures and physical road networks†. For each node in the

graph, we draw an attractiveness value, depending on the shortest distance to

the targets plus a uniform noise, as the attacker’s unbiased preference. We also

randomly generate the past coverage z subject to budget constraints. To gener-

ate the node features x, we feed the private attractiveness values to a randomly

initialized GCN, where the GCNwill output a fixed size vector per node as our

node features x. A different level of Gaussian noise was added to the features to

model the noise in the real-world scenario.

Attacker behavior:

we choose ω = 4 as the risk aversion parameter suggested by Perrault et al.248

and Abbasi et al.1, and set η = 0 to ignore the future risk factor for the sake of

simplicity. For each instance with given attractiveness and the defender cover-

age, we simulate 100 attacks by initializing the attacker at one of the sources

and following the localized SUQR behavior described in Section 5.4 until the

†For stochastic block model, we separate nodes into communities with 10 nodes in each community,
then connect nodes within the same community with probability 0.4 and nodes not in the same community
with probability 0.1. For geometric graph, we randomly places nodes in a unit square and connects nodes
with distance smaller than 0.2.
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attacker reaches to one of the targets. These sampled paths Λ are used to re-

construct aMarkovian behavior: θ∗u→v(z, x) := |{e=(u,v),e∈α,α∈Λ}|
|{e=(u,w),e∈α,α∈Λ,w∈N(u)}|

301, which is

then used as our ground truth to evaluate the solution quality‡. Each instance

is composed of the graphG, past coverage z, node features x, the attacker behav-

ior θ∗, and the sampled paths Λ (only used in two-stage method).

Training, validating, and testing:

we generate 50 instances (G, θ∗, z∗, x) as our entire dataset, which are randomly

separated into training, validating, testing set with size 35, 5, 10. The model is

trained on the training set for 100 epochs, where the best model is chosen from

the 100 epochs with the highest score in the validation set. In the following

experiments, to achieve statistical significance, for every method and differ-

ent setup, we ran 50 independent trials and recorded the average results on the

testing set.

5.9.2 Solution Quality

In this section, we compare the solution quality of all methods on stochastic

block models and geometric graphs. We generate a set of random graphs with

features as described in Section 5.9.1, where Gaussian noise with std. of 0.2 is

added to the features to model noisy real-world data. We set b = 2. As our goal

is efficient approaches for adversary models in large-scale NSGs, the focus of
‡The reason of using sampled paths instead of the actual generated attractiveness values as our ground

truth is to align with the real-world data, where it is almost impossible to have access to the underlying at-
tacker preference or Markovian behavior; instead, we generally have access to the paths or edges where illegal
activities have been found, which can be used as sampled paths or edges and used to reconstruct the Marko-
vian behavior as we did here.

114



this paper is then on experimentingwith many different settings (graph sizes and

types), techniques (different variations of game-focused learning), noise, and

other variables in building an adversary model. In addition, since we care more

about howmuch defender utility that various learning approaches can improve,

we focus on the counterfactual regret, which is defined as the gap between the

defender utility of our solution and the true optimumwhen the ground truth

is given in advance. Smaller regret implies that the solution is closer to the ac-

tual optimum.

In Figure 5.3(a) and 5.3(b), we can see that our regularized block game-focused

method outperforms two-stage method (note that all of the improvements in

the average regret reported by the reg-block-GF method over the two-stage

method are statistically significant with p < 0.05). When the instance gets

larger, the difference between two approaches also gets larger, showcasing

the limit of the standard two-stage behavior learning approach. In Figure 5.4(a)

and 5.4(b), we compare the solution quality of different game-focused meth-

ods. Due to the computational issue, the naive game-focused method can only

scale up to graphs with 40 nodes. The block game-focused method can scale up to

larger instances but it sacrifices some solution quality compared to the naive

game-focused approach. Finally, the regularized block game-focused method

can achieve both scalability and solution quality by using the block update and

regularization term.

5.9.3 The Impact of Noise

Figure 5.5(a) and 5.5(b) compare the performances under different level of noise,

where a noise with std. of r is added to the normalized features. We can see that

115



0.5

0.55

0.6

0.65

0.7

30 40 50 60 70 80

Co
un

te
rf

ac
tu

al
 re

gr
et

# nodes

TS reg-block-GF

(a) Stochastic block model

0.2

0.3

0.4

0.5

0.6

30 40 50 60 70 80

Co
un

te
rf

ac
tu

al
 re

gr
et

# nodes

TS reg-block-GF

(b) Geometric graphs

Figure 5.3: Solution quality comparison between two‐stage and regularized block game‐focused method. The difference
in solution quality gets larger when the graph size increases.
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Figure 5.4: Solution quality comparison between game‐focused methods. Randomized block update can improve scala‐
bility while the regularization can improve the solution quality.

the more noise implies larger regret and poorer performance. But we can also

notice that the gap between regularized block game-focused method and the

two-stage method gets larger when more noise is introduced. This is probably

due to the mismatch between the low intermediate loss and the good final solu-

tion quality when the feature is noisy. This also explains why regularized block

game-focused method can outperform two-stage in Figure 5.3 when the features

are noisy.
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Figure 5.5: The figures show the effect of noise to all the methods, where regularized block game‐focused method is
more resilient to noise in the features.
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Figure 5.6: Naive game‐focused method can only scale up to 40 nodes. Instead, block game‐focused and regularized
block game‐focused can solve larger instances with 80 nodes.

5.9.4 Scalability

Figure 5.6(a) and 5.6(b) show the scalability of all game-focused methods. We

limit the training time to be up to 48 hours. Any programs last more than that

were cut and the corresponding results were recorded. Naive game-focused

method can only handle graphs with up to 40 nodes and it scales extremely poorly.

Our proposed methods, block game-focused and regularized block game-focused

with a block size#nodes/2, can scale to much larger instances.
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Figure 5.7: Figure (a) and (b) show the convergence rate of different block sizes. Figure (c) shows the running time of
backward path for different block sizes, which grows significantly more than linear. Figure (d) shows the effect of differ‐
ent block sampling methods. All methods converge with slightly different speed, where coverage‐based sampling is the
best and it is also what we use in other experiments.

5.9.5 Block Size Selection

To study the effect of block size, we select various block sizes proportional

to the total number of variables and run the block game-focused learning and

regularized block game-focused methods to compare the convergence. In Fig-

ure 5.7(a), we can see that for the block-game-focused method, the convergence

and the final performance are better when the block size is larger. Figure 5.7(b)

shows the convergence of regularized block game-focused methodwith differ-

ent block sizes. In this case, a larger block size still helps, but the difference is
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relatively tiny.

Figure 5.7(c) shows the running time of the forward (lines 4-5) and backward

path (lines 6-9 in Algorithm 4) for the block game-focused methodwith various

block sizes, where forward path solves prescriptive stage with black-box opti-

mization and the backward path requires computing theHessian and solving

the quadratic program to back-propagate. In practice, we would like to select a

block size such that the running time of forward and backward paths are of the

same order to balance between the convergence and scalability, which explains

the reason thatwe eventually choose block size= #nodes/2 for all other ex-

periments. Lastly, Figure 5.7(d) compares different block selections mentioned

in Section 5.8.2, where convergence speed differs but mostly lead to the same

point. Coverage-based selection converges the most quickly, and thus we use

it throughout the other experiments.

5.10 Conclusions

In this paper, we introduce a fundamentally different behavior learning ap-

proach, game-focused learning, to network security games, placing the down-

stream defender utility maximization problem into the loop of behavior learn-

ing. We propose a novel local SUQRmodel as our adversary model, where GCNs

can be applied to automatically handle the information propagation in the

graph. We further identify two existing issues of game-focused learning method:

scalability and non-convexity, which are addressed by our block game-focused

and by regularizing respectively. Block game-focused method can largely re-

duce the computational cost while maintaining the focus on the final solution

119



quality as naive game-focused learning does. We also provide theoretical guar-

antees on the block game-focused method. In the experimental section, we run

extensive experiments to verify the reduction on the training time and show

an improvement in terms of solution quality. The block game-focused method

reduces the training time, but sacrifices a little solution quality, while regu-

larized block game-focused can achieve both speed and performance.
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Automatically Learning

Surrogates for Decision-focused

Learning

6.1 Introduction

Uncertainty is a common feature of many real-world decision-making problems

because critical data may not be available when a decision must be made. Here

is a set of representative examples: recommender systems with missing user-item

ratings144, portfolio optimizationwhere future performance is uncertain208,

and strategic decision-making in the face of an adversary with uncertain objec-

tives164. Often, the decision-maker has access to features that provide informa-

tion about the values of interest. In these settings, a predict-then-optimize90

approach naturally arises, where we learn a model that maps from the features

to a value for each parameter and optimize using this point estimate360. In prin-

ciple, any predictive modeling approach and any optimization approach can be

applied, but using a generic loss function to train the model may result in poor

decision performance. For example, a typical ratings prediction approach in rec-

ommendation system may equally weight errors across different items, but in

the recommendation task, misclassifying a trendy item can result in more rev-
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enue loss than misclassifying an ordinary item. We may insteadwant to train

our model using a “task-based” or “decision-focused” loss, approximating the de-

cision quality induced by the predictive model, which can be done by embedding

the optimization problem as a layer in the training pipeline. This end-to-end ap-

proach improves performance on a variety of tasks 42,338,80.

Unfortunately, this end-to-end approach suffers from poor scalability be-

cause the optimization problem must be solved and differentiated through on

every training iteration. Furthermore, the output of the optimization layer may

not be smooth, sometimes leading to instabilities in training and consequently

poor solution quality. We address these shortcomings that arise in the end-

to-end approach due to the presence of a complex optimization layer by replac-

ing it with a simpler surrogate problem. The surrogate problem is learned from

the data by automatically finding a reparameterization of the feasible space in

terms of meta-variables, each of which is a linear combination of the original

decision variables. The new surrogate problem is generally cheaper to solve due

to the smaller number of meta-variables, but it can be lossy—the optimal solu-

tion to the surrogate problem may not match the optimal solution to the orig-

inal. Since we can differentiate through the surrogate layer, we can optimize

the choice of surrogate together with predictive model training to minimize

this loss. The dimensionality reduction offered by a compact surrogate simulta-

neously reduces training times, helps avoid overfitting, and sometimes smooths

away bad local minima in the training landscape.

In short, we make several contributions. First, we propose a linear reparam-

eterization scheme for general optimization layers. Second, we provide theo-

retical analysis of this framework along several dimensions: (i) we show that
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desirable properties of the optimization problem (convexity, submodularity) are

retained under reparameterization; (ii) we precisely characterize the tractabil-

ity of the end-to-end loss function induced by the reparameterized layer, show-

ing that it satisfies a form of coordinate-wise quasiconvexity; and (iii) we pro-

vide sample complexity bounds for learning a model which minimizes this loss.

Finally, we demonstrate empirically on a set of three diverse domains that our

approach offers significant advantages in both training time and decision qual-

ity compared previous approaches to embedding optimization in learning.

6.2 Relatedwork

Surrogate models106,260,186 are a classic technique in optimization, particularly

for black-box problems. Previous work has explored linear reparameterizations

to map between low and high fidelity models of a physical system36,265,14 (e.g., for

aerospace design problems). However, both the motivation and underlying tech-

niques differ crucially from ourwork: previous work has focused on designing

surrogates by hand in a domain-specific sense, while we leverage differentiation

through the optimization problem to automatically produce a surrogate that

maximizes overall decision quality.

Ourwork is closest to the recent literature on differentiable optimization.

Amos et al.11 and Agrawal et al.3 introduced differentiable quadratic program-

ming and convex programming layers, respectively, by differentiating through

the KKT conditions of the optimization problem. Donti et al.80 andWilder et

al.338 apply this technique to achieve end-to-end learning in convex and discrete

combinatorial programming, respectively. Perrault et al.249 applied the tech-
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nique to game theory with a non-convex problem, where a sampling approachwas

proposed byWang et al.320 to improve the scalability of the backward pass. All

the above methods share scalability and non-smoothness issues: each training

iteration requires solving the entire optimization problem and differentiating

through the resulting KKT conditions, which requiresO(n3) time in the num-

ber of decision variables and may create a non-smooth objective. Our surrogate

approach aims to rectify both of these issues.

6.3 Problem Statement

We consider an optimization problem of the form: min
z feasible

f(z, θtrue). The objective

function depends on a parameter θtrue ∈ Θ. If θtrue were known, we assume that

we could solve the optimization problem using standard methods. We consider

the case that parameter θtrue is unknown and must be inferred from the given

available features x. We assume that x and θtrue are correlated and drawn from

a joint distributionD, and our data consists of samples fromD. Our task is to

select the optimal decision z∗(x), function of the available feature, to optimize

the expected objective value:

min
z∗ feasible

E(x,θtrue)∼D[f (z∗(x), θtrue)] (6.1)

In this paper, we focus on a predict-then-optimize90,87 framework, which pro-

ceeds by learning a modelmw(·), mapping from the features x to the missing pa-

rameter θtrue. When feature x is given, we first infer θ = mw(x) and then solve the
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resulting optimization problem to get the optimal solution z∗:

min
z

f(z, θ), s.t. h(z) ≤ 0, Az = b (6.2)

This reduces the decision-making problemwith unknown parameters to a predic-

tive modeling problem: how to learn a modelmw(·) that leads to the best perfor-

mance.

A standard approach to solve the predict-then-optimize problem is two-stage

learning, which trains the predictive model without knowledge of the decision-

making task (Figure 6.1). The predictive model minimizes the mismatch between

the predicted parameters and the ground truth: E(x,θtrue)∈D ℓ(mw(x), θtrue), with

any loss metric ℓ. Such a two-stage approach is efficient in terms of training the

model, but it may lead to poor performance when a standard loss function is

used. Performance can be improved if the loss function is carefully chosen to

suit the task88, but doing so is challenging for an arbitrary optimization prob-

lem.

Gradient-based end-to-end learning approaches in domains with optimization

layers involved, e.g., decision-focused learning338,80, directly minimize Equa-

tion 6.1 as the training objective, which requires back-propagating through the

optimization layer in Equation 6.2. This end-to-end approach is able to achieve

better solution quality compared to two-stage learning, in principle. However,

because the decision-focused approach has to repeatedly solve the optimization

program and back-propagate through it, scalability becomes a serious issue. Ad-

ditionally, the complex optimization layer can also jeopardize the smoothness

of objective value, which is detrimental for training parameters of a neural
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Figure 6.1: Two‐stage learning back‐propagates from the loss to the model, ignoring the latter effect of the optimization
layer.
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Figure 6.2: End‐to‐end decision‐focused learning back‐propagates from the solution quality through the optimization
layer to the model we aim to learn.

network-based predictive model with gradient-based methods.

6.4 Surrogate Learning

The main idea of the surrogate approach is to replace Equation 6.2 with a care-

fully selected surrogate problem. To simplify Equation 6.2, we can linearly repa-

rameterize z = Py, where y ∈ Rm withm� n and P ∈ Rn×m,

min
y

gP(y, θ) := f(Py, θ) s.t. h(Py) ≤ 0, APy = b (6.3)

Since this reparameterization preserves all the equality and inequality con-

straints in Equation 6.2, we can easily transform a feasible low-dimensional

solution y∗ back to a feasible high-dimensional solutionwith z∗ = Py∗. The

low-dimensional surrogate is generally easier to solve, but lossy, because we

restrict the feasible region to a hyperplane spanned by P. If we were to use a

random reparameterization, the solutionwe recover from the surrogate prob-

lem could be far from the actual optimum in the original optimization problem,
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which could significantly degrade the solution quality.

This is whywe need to learn the surrogate and its reparameterization ma-

trix. Because we can differentiate through the surrogate optimization layer,

we can estimate the impact of the reparameterization matrix on the final solu-

tion quality. This allows us to run gradient descent to learn the reparameter-

ization matrix P. The process is shown in Figure 6.3. Notice that the surrogate

problem also takes the prediction θ of the predictive model as input. This implies

that we can jointly learn the predictive model and the reparameterization ma-

trix by solely solving the cheaper surrogate problem.
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Figure 6.3: Surrogate decision‐focused learning reparameterizes Equation 6.2 by z = Py to get a surrogate model in
Equation 6.3. Then, forward and backward passes go through the surrogate model with a lower dimensional input y to
compute the optimal solution and train the model.

Differentiable optimization In order to differentiate through the optimiza-

tion layer as shown in Figure 6.2, we can compute the derivative of the solution

quality, evaluated on the optimal solution z∗ and true parameter θtrue, with re-

spect to the model’s weights w by applying the chain rule:

df(z∗, θtrue)
dw

=
df(z∗, θtrue)

dz∗
dz∗

dθ
dθ
dw

where dz∗
dθ can be obtained by differentiating through KKT conditions of the

optimization problem.
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Similarly, in Figure 6.3, we can apply the same technique to obtain the deriva-

tives with respect to the weights w and reparameterization matrix P:

df(z∗, θtrue)
dw

=
df(z∗, θtrue)

dz∗
dz∗

dy∗
dy∗

dθ
dθ
dw

,
df(z∗, θtrue)

dP
=

df(z∗, θtrue)
dz∗

dz∗

dy∗
dy∗

dP

where y∗ is the optimal solution of the surrogate problem, z∗ = Py∗, and dy∗
dw ,

dy∗
dP

can be computed by differentiating through the KKT conditions of the surro-

gate optimization problem.

6.5 Analysis of Linear Reparameterization

The following sections address three major theoretical aspects: (i) complexity

of solving the surrogate problem, (ii) learning the reparameterization, and (iii)

learning the predictive model.

6.5.1 Convexity andDR-Submodularity of the Reparameterized Problem

In this section, we assume the predictive model and the linear reparameteri-

zation are fixed. We prove below that convexity and continuous diminishing-

return (DR) submodularity46 of the original function f is preserved after apply-

ing the reparameterization. This implies that the new surrogate problem can be

efficiently solved by gradient descent or by Frank-Wolfe47,145,108 with an approxi-

mation guarantee.

Proposition 1. If f is convex, then gP(y, θ) := f(Py, θ) is convex.

Proposition 2. If f is DR-submodular and P ≥ 0, then gP(y, θ) := f(Py, θ) is DR-submodular.
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6.5.2 Convexity of Reparameterization Learning

In this section, we assume the predictive modelm is fixed. Wewant to analyze

the convergence of learning the surrogate and its linear reparameterization

P. Let us denote the optimal value of the optimization problem in the form of

Equation 6.3 to be OPT(θ,P) := min
y feasible

gP(y, θ) ∈ R. It would be ideal if OPT(θ,P)

is convex in P so that gradient descent would be guaranteed to recover the op-

timal reparameterization. Unfortunately, this is not true in general, despite

the fact thatwe use a linear reparameterization: OPT(θ,P) is not even globally

quasiconvex in P.

Proposition 3. OPT(θ,P) := min
y feasible

gP(y, θ) is not globally quasiconvex in P.

Fortunately, we can guarantee the partial quasiconvexity of OPT(θ,P) in the

following theorem:

Theorem 6. If f(·, θ) is quasiconvex, then OPT(θ,P) := min
y feasible

gP(y, θ) is quasiconvex in Pi, the i-th

column of matrix P, for any 1 ≤ i ≤ m, where P = [P1,P2, . . . ,Pm].

This indicates that the problem of optimizing each meta-variable given the

values of the others is tractable, providing at least some reason to think that

the training landscape for the reparameterization is amenable to gradient de-

scent. This theoretical motivation is complemented by our experiments, which

show successful trainingwith standard first-order methods.
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6.5.3 Sample Complexity of Learning PredictiveModel in Surrogate Prob-

lem

In this section, we fix the linear reparameterization and analyze the sample com-

plexity of learning the predictive model to achieve small decision-focused loss

in the objective value. We analyze a special case where our objective function f

is a linear function and the feasible region S is compact, convex, and polyhedron.

Given the hypothesis class of our modelm ∈ H, we can use results from Bal-

ghiti et al.87 to bound the Rademacher complexity and the generalization bound

of the solution quality obtained from the surrogate problem. For any hypoth-

esis class with a finite Natarajan dimension, the surrogate problem preserves

the linearity of the objective function. Thus learning in the linear surrogate

problem also preserves the convergence of the generalization bound, and thus

the convergence of the solution quality. In the case of a linear hypothesis class

H = Hlin, we can derive a closed-form bound. The Rademacher complexity de-

pends on the dimensionality of the surrogate problem and the diameter of the

feasible region, which can be shrunk by using a low-dimensional surrogate:

Theorem 7. LetHlin be the hypothesis class of all linear function mappings from x ∈ X ⊂ Rp to

θ ∈ Θ ∈ Rn, and let P ∈ Rn×m be a linear reparameterization used to construct the surrogate. The

expected Rademacher complexity over t i.i.d. random samples drawn fromD can be bounded by:

Radt(Hlin) ≤ 2mC
√

2p log(2mt ‖P+‖ ρ2(S))
t

+ O(
1
t
) (6.4)

where C := supθ(maxzf(z, θ) − minzf(z, θ)) is the gap between the optimal solution quality and the

worst solution quality, ρ2(S) is the diameter of the set S, and P+ is the pseudoinverse.
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Equation 6.4 gives a bound on the Rademacher complexity, an upper bound on

the generalization errorwith t samples given. Although a lower dimensional

surrogate leads to less representational power (i.e., lower decision quality),

it also leads to better generalizability. This implies that we have to choose an

appropriate reparameterization size to balance representational power and gen-

eralizability.

6.6 Experiments

We conduct experiments on three different domains where decision-focused

learning has been applied: (i) adversarial behavior learning in network secu-

rity games with a non-convex objective320, (ii) movie recommendationwith a

submodular objective338, and (iii) portfolio optimization problemwith a con-

vex quadratic objective97. Throughout all the experiments, we compare the per-

formance and the scalability of the surrogate learning (surrogate), two-stage

(TS), and decision-focused (DF) learning approaches. Performance is measured in

terms of regret, which is defined as the difference between the achieved solu-

tion quality and the solution quality if the unobserved parameters θ∗ were ob-

served directly—smaller is better. To compare scalability, we show the training

time per epoch and inference time. The inference time corresponds to the time

required to compute a decision for all instances in the testing set after train-

ing is finished. A short inference time may have intrinsic value, e.g., allowing the

application to be run in edge computing settings. All methods are trained using

gradient descent with optimizer Adam171 with learning rate 0.01 and repeated

over 30 independent runs to get the average. Each model is trained for at most
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100 epochs with early stopping256 criteria when 3 consecutive non-improving

epochs occur on the validation set. The reparameterization size is set to be 10%

of the problem size throughout all three examples*.

6.6.1 Adversarial Behavior Learning and Interdiction Games

Given a network structureG = (V,E), a NSG (network security game) 332,101,272

models the interaction between the defender, who places checkpoints on a lim-

ited number of edges in the graph, and an attacker who attempts to travel from

a source to any of a set of target nodes in order to maximize the expected re-

ward. The NSG is an extension of Stackelberg security games284,163, meaning that

the defender commits to a mixed strategy first, after which the attacker chooses

the path (having observed the defender’s mixed strategy but not the sampled

pure strategy). In practice, the attacker is not perfectly rational. Instead, the

defender can attempt to predict the attacker’s boundedly rational choice of

path by using the known features of the nodes en route (e.g., accessibility or

safety of hops) together with previous examples of paths chosen by the attacker.

Once the parameters θ of the attacker behavioral model are given, finding

the optimal defender’s strategy reduces to an optimization problemmax f(z, θ)

where ze is the probability of covering edge e ∈ E and f gives the defender’s ex-

pected utility for playing mixed strategy zwhen the attacker’s response is de-

termined by θ. The defender must also satisfy the budget constraint
∑
e∈E

ze ≤ k

where k = 3 is the total defender resources. We use a GCN (graph convolu-

tional network)223,172,130 to represent the predictive model of the attacker. We

*The implementation of this chapter can be found in the following link: https://github.com/
guaguakai/surrogate-optimization-learning
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assume the attacker follows reactiveMarkovian behavior320,126, meaning that

the attacker follows a randomwalk through the graph, where the probability

of transitioning across a given edge (u, v) is a function of the defender’s strat-

egy z and an unknown parameter θv representing the ”attractiveness” of node v.

The walk stops when the attacker either is intercepted by crossing an edge cov-

ered by the defender or reaches a target. The defender’s utility is−u(t) if the

attacker reaches target t and 0 otherwise, and f takes an expectation over both

the random placement of the defender’s checkpoints (determined by z) and the at-

tacker’s randomwalk (determined by z and θ). Our goal is to learn a GCNwhich

takes node features as input and outputs the attractiveness over nodes θ.

Experimental setup: We generate random geometric graphs of varying sizes

with radius 0.2 in a unit square. We select 5 nodes uniformly at random as tar-

gets with payoffs u(t) ∼ Unif(5, 10) and 5 nodes as sources where the attacker

chooses uniformly at random from. The ground truth attractiveness value

θv of node v ∈ V is proportional to the proximity to the closest target plus

a random perturbation sampled as Unif(−1, 1)which models idiosyncrasies in

the attacker’s preferences. The node features x are generated as x = GCN(θ) +

0.2N (0, 1), where GCN is a randomly initialized GCNwith four convolutional

layers and three fully connected layers. This generates random features with

correlations between xv (the features of node v) and both θv and the features of

nearby nodes. Such correlation is expected for real networks where neighbor-

ing locations are likely to be similar. The defender’s predictive model (distinct

from the generative model) uses two convolutional and two fully connected

layers, modeling a scenario where the true generative process is more complex
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than the learned model. We generate 35 random (x, θ) pairs for the training set,

5 for validation, and 10 for testing. Since decision-focused (DF) learning fails to

scale up to larger instances, we additionally compare to a block-variable sam-

pling approach specialized toNSG320 (block), which can speed up the backward

pass by back-propagating through randomly sampled variables.

6.6.2 Movie Recommendation and Broadcasting Problem

In this domain, a broadcasting company chooses kmovies out of a set of n avail-

able to acquire and show to their customers C. k reflects a budget constraint.

Each user watches their favorite Tmovies, with a linear valuation for the movies

they watch. This is a variant of the classic facility location problem; similar

domains have been used to benchmark submodular optimization algorithms193,81.

In our case, the additional complication is that the user’s preferences are un-

known. Instead, the company uses user’s past behavior to predict θij ∈ [0, 1], the

preference score of user j for movie i.

The companywould like to maximize the overall satisfaction of users with-

out exceeding the budget constraint k = 10. The variable z = {zi}i∈{1,2,...,n} repre-

sents the decision of whether to acquire movie i or not. Once the preferences θij

are given, the companywants to maximize the objective function:

f(z) :=
∑
j∈C

user j’s satisfaction =
∑
j∈C

max
sj∈{0,1}n

s.t.
∑

i sij=T

∑
i∈{1,2,...,n}

zisijθij (6.5)

where sj denotes the user j’s selection over movies.
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Experimental setup: We use neural collaborative filtering135 to learn the user

preferences. Commonly used in recommendation systems, the idea is to learn an

embedding for each movie and user. The ratings are computed by feeding the

concatenated user’s and movie’s embeddings to a neural networkwith fully

connected layers. We useMovieLens131 as our dataset. TheMovieLens dataset

includes 25M ratings over 62,000 movies by 162,000 users. We first randomly se-

lect nmovies as our broadcasting candidates. We additionally select 200 movies

and use the users’ ratings on the movies as the users’ features. Thenwe split

the users into disjoint groups of size 100 and each group serves as an instance of

broadcasting task, where wewant to choose k = 10 from the n candidate movies

to recommend to the group members. Each user chooses T = 3 movies. 70% of the

user groups are used for training, 10% for validation, and 20% for testing.

6.6.3 StockMarket Portfolio Optimization

Portfolio optimization can be treated as an optimization problemwith missing

parameters254, where the return and the covariance between stocks in the next

time step are not known in advance. We learn a model that takes features for

each security and outputs the predicted future return. We adopt the classic

Markowitz208,217 problem setup, where investors are risk-averse andwish to max-

imize a weighted sum of the immediate net profit and the risk penalty. The in-

vestor chooses a vector z ≥ 0 with
∑

zi = 1, where zi represents the fraction

of money invested in security i. The investor aims to maximize the penalized im-

mediate return f(z) := p⊤z − λz⊤Qz, where p is the immediate net return of all

securities andQ ∈ Rn×n is a positive semidefinite matrix representing the covari-

ance between the returns of different securities. A high covariance implies two
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Figure 6.4: Experimental results in network security games with a non‐convex optimization problem.
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Figure 6.5: Experimental results in movie recommendation with a submodular objective. Surrogate achieves much better
performance by smoothing the training landscape.
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Figure 6.6: Experimental results in portfolio optimization with a convex optimization problem. Surrogate performs
comparably, but achieves a 7‐fold speedup in training and inference.
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securities are highly correlated and thus it is more risky to invest in both. We

set the risk aversion constant to be λ = 2.

Experimental setup: We use historical daily price and volume data from 2004 to

2017 downloaded from the QuandlWIKI dataset259. We evaluate on the SP500, a

collection of the 505 largest companies representing the American market. Our

goal is to generate daily portfolios of stocks from a given set of candidates.

Ground truth returns are computed from the time series of prices, while the

ground truth covariance of two securities at a given time step is set to be the

cosine similarity of their returns in the next 10 time steps. We take the previ-

ous prices and rolling averages at a given time step as features to predict the

returns for the next time step. We learn the immediate return p via a neural net-

workwith two fully connected layers with 100 nodes each. To predict the co-

variance matrixQ, we learn an 32-dimensional embedding for each security, and

the predicted covariance between two securities is the cosine similarity of their

embeddings. We chronologically split the dataset into training, validation, and

test sets with 70%, 10%, and 20% of the data respectively.

6.7 Discussion of Experimental Results

Performance: Figures 6.4(a), 6.5(a), and 6.6(a) compare the regret of our surro-

gate approach to the other approaches. In the non-convex (Figure 6.4(a)) and sub-

modular (Figure 6.5(a)) settings, we see a larger improvement in solution quality

relative to decision-focused learning. This is due to the huge number of local

minima and plateaus in these two settings where two-stage and decision-focused

approaches can get stuck. For example, when an incorrect prediction is given
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(a) A NSG instance with 50 nodes, 2 targets (orange stars), and 3 sources (purple triangles).

(b) 100 candidate movies shown as circles with their average ratings and standard deviations as two axes.

Figure 6.7: These plots visualize how the surrogate captures the underlying problem structure. Both domains use a
reparameterization with 3 meta‐variables, each shown in red, blue, and green. The color indicates the most significant
meta‐variable governing the edge or circle, while the color intensity and size represent the weights put on it. The left
figure in both domains shows the initial reparameterization, while the right figure shows the reparameterization after 20
epochs of training.
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in the movie recommendation domain, some recommended movies could have no

users watching them, resulting in a sparse gradient due to non-smoothness in-

duced by themax in the objective function. The surrogate approach can instead

spread the sparse gradient by binding variables with meta-variables, alleviating

gradient sparsity. We see relatively less performance improvement (compared to

decision-focused) when the optimization problem is strongly convex and hence

smoother (Figure 6.6(a)), though the surrogate approach still achieves similar

performance to the decision-focused approach.

Scalability: When the objective function is non-convex (Figure 6.4(b), 6.4(c)),

our surrogate approach yields substantially faster training than standard

decision-focused learning approaches (DF and block). The boost is due to the di-

mensionality reduction of the surrogate optimization problem, which can lead

to speedups in solving the surrogate problem and back-propagating through the

KKT conditions. While the two-stage approach avoids solving the optimization

problem in the training phase (trading off solution quality), at test time, it still

has to solve the expensive optimization problem, resulting a similarly expensive

inference runtime in Figure 6.4(c).

When the objective function is submodular (Figure 6.5(b), 6.5(c)), the blackbox

optimization solver313 we use in all experiments converges very quickly for the

decision-focused method, resulting in training times comparable to our surro-

gate approach. However, Figure 6.5(a) shows that the decision-focused approach

converges to a solutionwith very poor quality, indicating that rapid conver-

gence may be a symptom of the uninformative local minima that the decision-

focused method becomes trapped in.
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Lastly, when the optimization problem is a quadratic program (Figure 6.6(b), 6.6(c)),

solving the optimization problem can take cubic time, resulting in around a cu-

bic speedup from the dimensionality reduction offered by our surrogate. Conse-

quently, we see 7-fold faster training and inference times.

Visualization: We visualize the reparameterization for the NSG and movie rec-

ommendation domains in Figure 6.7. The initial reparameterization is shown in

Figure 6.7(a) and 6.7(b). Initially, the weights put on the meta-variables are ran-

domly chosen and no significant problem structure—no edge or circle colors—

can be seen. After 20 epochs of training, in Figure 6.7(a), the surrogate starts

putting emphasis on some important cuts between the sources and the targets,

and in Figure 6.7(b), the surrogate is focused on distinguishing between differ-

ent top-rated movies with some variance in opinions to specialize the recom-

mendation task. Interestingly, in Figure 6.7(b), the surrogate puts less weight

on movies with high average rating but low standard deviation because these

movies are very likely undersampled andwe do not have enough people watching

them in our training data. Overall, adaptively adjusting the surrogate model

allows us to extract the underlying structure of the optimization problem us-

ing fewmeta-variables. These visualizations also help us understand how fo-

cuses are shifted between different decision variables.

6.8 Conclusion

In this paper, we focus on the shortcomings of scalability and solution qual-

ity that arise in end-to-end decision-focused learning due to the introduction

of the differentiable optimization layer. We address these two shortcomings
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by learning a compact surrogate, with a learnable linear reparameterization

matrix, to substitute for the expensive optimization layer. This surrogate can

be jointly trainedwith the predictive model by back-propagating through the

surrogate layer. Theoretically, we analyze the complexity of the induced sur-

rogate problem and the complexity of learning the surrogate and the predictive

model. Empirically, we show this surrogate learning approach leads to improve-

ment in scalability and solution quality in three domains: a non-convex adver-

sarial modeling problem, a submodular recommendation problem, and a convex

portfolio optimization problem.
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Part II

Optimization in Online Learning
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7
Improving GP-UCB Algorithm by

Harnessing Decomposed Feedback

7.1 Introduction

Many challenging sequential decision making problems involve interventions in

complex physical or social systems, where the system dynamics must be learned
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over time. For instance, a challenge commonly faced by policymakers is to con-

trol disease outbreaks316, but the true process by which disease spreads in the

population is not known in advance. We study such problems from the perspec-

tive of online learning, where a decision maker aims to optimize an unknown

expensive objective function53. At each step, the decision maker commits to an

action and receives the objective value for that action. For instance, a policy-

maker may implement a disease control policy273,226 for a given time period and

observe the number of subsequent infections. This information allows the deci-

sion maker to update their knowledge of the unknown function. The goal is to

obtain low cumulative regret, which measures the difference in objective value

between the actions thatwere taken and the true (unknown) optimum.

This problem has beenwell-studied in optimization and machine learning.

When a parametric form is not available for the objective (as is often the case

with complex systems that are difficult to model analytically), a common ap-

proach uses a Gaussian process (GP) as a nonparametric prior over smooth func-

tions. This Bayesian approach allows the decision maker to form a posterior

distribution over the unknown function’s values. Consequently, the GP-UCB al-

gorithm, which iteratively selects the point with the highest upper confidence

bound according to the posterior, achieves a no-regret guarantee292.

While GP-UCB and similar techniques73,331 have seen a great deal of interest

in the purely black-box setting, many physical or social systems naturally admit

an intermediate level of feedback. This is because the system is composed of mul-

tiple interacting components, each of which can be measured individually. For

instance, disease spread in a population is a product of the interactions between

individuals in different demographic groups or locations341, and policymakers
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often have access to estimates of the prevalence of infected individuals within

each subgroup79,339. The true objective (total infections) is the sum of infections

across the subgroups. Similarly, climate systems involve the interactions of

many different variables (heat, wind, humidity, etc.) which can be sensed indi-

vidually then combined in a nonlinear fashion to produce outputs of interest

(e.g., an individual’s risk of heat stroke)293. Prior work has studied the benefits

of using additive models161. However, they only examine the special case where

the target function decomposes into a sum of lower-dimensional functions. Mo-

tivated by applications such as flu prevention, we consider the more general

settingwhere the subcomponents are full-dimensional and may be composed non-

linearly to produce the target. This general perspective is necessary to capture

common policy settings which may involve intermediate observables from simu-

lation or domain knowledge.

However, to our knowledge, no prior work studies the challenge of integrat-

ing such decomposed feedback in online decision making. Our first contribution

is to remedy this gap by proposing a decomposed GP-UCB algorithm (D-GPUCB).

D-GPUCB uses a separate GP to model each individual measurable quantity and

then combines the estimates to produce a posterior over the final objective. Our

second contribution is a theoretical no-regret guarantee for D-GPUCB, ensur-

ing that its decisions are asymptotically optimal. Third, we prove that the pos-

terior variance at each step must be less than the posterior variance of directly

using a GP to model the final objective. This formally demonstrates that more

detailed modeling reduces predictive uncertainty. Finally, we conduct experi-

ments in two domains using real-world data: flu prevention and heat sensing. In

each case, D-GPUCB achieves substantially lower cumulative regret than previ-
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ous approaches.

7.2 Preliminaries

7.2.1 Noisy Black-box Optimization

Given an unknown black-box function f : X → RwhereX ⊂ Rn, a learner is able

to select an input xxx ∈ X and access the function to see the outcome f(xxx) – this

encompasses one evaluation. Gaussian process regression264 is a non-parametric

method to learn the target function using Bayesian methods156,288. It assumes

that the target function is an outcome of a Gaussian process with given kernel

k(xxx, xxx′) (covariance function). Gaussian process regression is commonly used and

only requires an assumption on the function smoothness. Moreover, Gaussian

process regression can handle observation error. It allows the observation at

point xxxt to be noisy: yt = f(xxxt) + εt, where εt ∼ N(0, σ2I).

7.2.2 Decomposition

In this paper, we consider a modification to the Gaussian process regression pro-

cess. Suppose we have some prior knowledge of the unknown reward function f(xxx)

such thatwe canwrite the unknown function as a combination of known and

unknown subfunctions:

Definition 7 (Linear Decomposition).

f(xxx) =
J∑

j=1
gj(xxx)fj(xxx) (7.1)

where fj, gj : Rn → R.
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Here gj(xxx) are known, deterministic functions, but fj(xxx) are unknown functions

that generate noisy observations. For example, in the flu prevention case, the

total infected population can be written as the summation of the infected pop-

ulation at each age79. Given treatment policy xxx, we can use fj(xxx) to represent

the unknown infected population at age group jwith its known, deterministic

weighted function gj(xxx) = 1. Therefore, the total infected population f(xxx) can be

simply expressed as
J∑

j=1
fj(xxx).

Interestingly, any deterministic linear composition of outcomes of Gaussian

processes is still an outcome of Gaussian process. That means if all of the fj are

generated fromGaussian processes, then the entire function f can also be writ-

ten as an outcome of another Gaussian process.

Next, we generalize this definition to the non-linear case, whichwe call a

general decomposition:

Definition 8 (General Decomposition).

f(xxx) = g(f1(xxx), f2(xxx), ..., fJ(xxx)) (7.2)

The function g can be any deterministic function (e.g. polynomial, neural net-

work). Unfortunately, a non-linear composition of Gaussian processes may not

be a Gaussian process, so we cannot guarantee function f to be an outcome of

a Gaussian process. Wewill cover the result of linear decomposition first and

then generalize it to the cases with general decomposition.
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7.2.3 Gaussian Process Regression

AlthoughGaussian process regression does not require rigid parametric assump-

tions, a certain degree of smoothness is still needed to ensure its guarantee of

no-regret. We can model f as a sample from a GP: a collection of random vari-

ables, one for each xxx ∈ X . A GP(μ(xxx), k(xxx, xxx′)) is specified by its mean function

μ(x) = E[f(xxx)] and covariance function k(xxx, xxx′) = E[(f(xxx) − μ(xxx))(f(xxx′) − μ(xxx′))]. For

GPs not conditioned on any prior, we assume that μ(xxx) ≡ 0. We further assume

bounded variance k(xxx, xxx) ≤ 1. This covariance function encodes the smoothness

condition of the target function f drawn from the GP.

For a noisy sample yyyT = [y1, ..., yT]⊤ at points AT = {xxxt}t∈[T], yt = f(xxxt) + εt ∀t ∈

[T]with εt ∼ N(0, σ2(xxxt))Gaussian noise with variance σ2(xxxt), the posterior over

f is still a Gaussian process with posterior mean μT(xxx), covariance kT(xxx, xxx
′) and

variance σ2T(xxx):

μT(xxx) = kkkT(xxx)⊤KKK−1
T kkkT(xxx′), (7.3)

kT(xxx, xxx′) = k(xxx, xxx′)− kkkT(xxx)⊤KKK−1
T kkk(xxx′), (7.4)

σ2T(xxx) = kT(xxx, xxx′) (7.5)

where kkkT(xxx) = [k(xxx1, xxx), ..., k(xxxT, xxx)]⊤, andKKKT is the positive definite kernel matrix

[k(xxx, xxx′)]xxx,xxx′∈AT + diag([σ2(xxxt)]t∈[T]).

Algorithm 5:GPRegression
1 Input: kernel k(xxx, xxx′), noise function σ(xxx), and previous samples {(xxxt, yt)}t∈[T]
2 Return: kT(xxx, xxx′), μT(xxx), σ

2
T(xxx)
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7.2.4 Bandit Problemwith Decomposed Feedback

Considering the output value of the target function as the learner’s reward

(penalty), the goal is to learn the unknown underlying function fwhile opti-

mizing the cumulative reward. This is usually known as an online learning or

multi-arm bandit problem24. In this paper, given the knowledge of determinis-

tic decomposition function g (Definition 7 or Definition 8), in each round t, the

learner chooses an input xxxt ∈ X and observes the value of each unknown decom-

posed function fj perturbed by a noise: yj,t = fj(xxxt) + εj,t, εj,t ∼ N(0, σ2j ) ∀j ∈ [J]. At the

same time, the learner receives the composed reward from this input xxxt, which is

yt = g(y1,t, y2,t, ..., yJ,t) = f(xxxt) + εt where εt is an aggregated noise. The goal is to

maximize the sum of noise-free rewards
T∑
t=1

f(xxxt), which is equivalent to minimizing

the cumulative regretRT =
T∑
t=1

rt =
T∑
t=1

f(xxx∗) − f(xxxt), where xxx∗ = argmaxxxx∈X f(xxx) and

individual regret rt = f(xxx∗)− f(xxxt).

This decomposed feedback is related to the semi-bandit setting, where a deci-

sion is chosen from a combinatorial set and feedback is received about individ-

ual elements of the decision233,233. Ourwork is similar in thatwe consider an in-

termediate feedback model which gives the decision maker access to decomposed

feedback about the underlying function. However, in our setting a single point

is chosen from a continuous set, rather than multiple items from a discrete one.

Additional feedback is received about components of the objective function,

not the items chosen. Hence, the technical challenges are quite different.
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7.3 Problem Statement and Background

Using the flu prevention as an example, a policymaker will implement a yearly

disease control policy and observe the number of subsequent infections. A pol-

icy is an input xxxt ∈ Rn, where each entry xt,i denotes the extent to vaccinate the

infected people in age group i. For example, if the government spends more effort

xt,i in group i, then the people in this group will be more likely to get a flu shot.

Given the decomposition assumption and samples (previous policies) at points

xxxt ∀t ∈ [T], including all the function values f(xxxt) (total infected population) and

decomposed function values fj(xxxt) (infected population in group j), the learner

attempts to learn the function fwhile simultaneously minimizing regret. There-

fore, we have twomain challenges: (i) how best to approximate the reward func-

tion using the decomposed feedback and decomposition (non-parametric approx-

imation), and (ii) how to use this estimation to most effectively reduce the aver-

age regret (bandit problem).

7.3.1 Regression: Non-parametric Approximation

Our first aim is to fully utilize the decomposed problem structure to get a bet-

ter approximation of f(x). The goal is to learn the underlying disease pattern

faster by using the decomposed problem structure. Given the linear decomposi-

tion assumption that f(xxx) =
J∑

j=1
gj(xxx)fj(xxx) and noisy samples at points {xxxt}t∈[T], the

learner can observe the outcome of each decomposed function fj(xxxt) at each sam-

ple point xxxt ∀t ∈ [T]. Our goal is to provide a Bayesian update to the unknown

functionwhich fully utilizes the learner’s knowledge of the decomposition.
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7.3.2 Bandit Problem: Minimizing Regret

In the flu example, each annual flu-awareness campaign is constrained by a bud-

get, andwe assume policymaker does not know the underlying disease spread

pattern. At the beginning of each year, the policymaker chooses a new campaign

policy based on the previous years’ results and observes the outcome of this new

policy. The goal is to minimize the cumulative regret (all additional infections

in prior years) while learning the underlying unknown function (disease pat-

tern).

Wewill show how a decomposed GP regression, with a GP-UCB algorithm, can

be used to address these challenges.

7.4 Decomposed Gaussian Process Regression

First, we propose a decomposed GP regression (Algorithm 6). The idea behind de-

composed GP regression is as follows: given the linear decomposition assump-

tion (Definition 7), run Gaussian process regression for each fj(xxx) individually,

and get the aggregated approximation by f(xxx) =
J∑

j=1
gj(xxx)fj(xxx) (illustrated in Figure

7.1).

Assumingwe have T previous samples with input xxx1, xxx2, ..., xxxT and the noisy out-

come of each individual function yyyj,t = fj(xxxt) + εj,t ∀j ∈ [J], t ∈ [T], where εj,t ∼

N(0, σ2j ), the outcome of the target function f(x) can be computed as yt =
J∑

j=1
gj(xxxt)yj,t.

Further assume the function fj(xxx) is an outcome ofGP(0, kj) ∀j. Therefore the en-

tire function f is also an outcome ofGP(0, k)where k(xxx, xxx′) =
J∑

j=1
gj(xxx)kj(xxx, xxx′)gj(xxx′).

We are going to compare twoways to approximate the function f(xxx) using ex-

isting samples. (i) Directly use Algorithm 5with the composed kernel k(xxx, xxx′) and
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Figure 7.1: Illustration of decomposed GP regression (Algorithm 6) and comparison with GP regression (Algorithm 5).
Decomposed GP regression shows a smaller average variance (0.878 v.s. 0.943) and a closer estimation to f.

noisy samples {(xxxt, yt)}t∈[T] – the typical GP regression process. (ii) For each j ∈ [J],

first run Algorithm 5with kernel kj(xxx, xxx′) and noisy samples {(xxxt, yj,t)}t∈[T]. Then

compose the outcomes with the deterministic weighted function gj(xxx) to get f(xxx).

This is shown in Algorithm 6.

In order to analytically compare Gaussian process regression (Algorithm 5)

and decomposed Gaussian process regression (Algorithm 6), we are going to com-

pute the variance (uncertainty) returned by both algorithms. Wewill show that

the latter variance is smaller than the former. Proofs are in the Appendix for

brevity.
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Algorithm 6:Decomposed GP Regression
1 Input: kernel functions kj(xxx, xxx′) to each fj(xxx) and previous samples

(xxxt, yj,t) ∀j ∈ [J], t ∈ [T]
2 for j = 1, 2..., J do
3 Let μj,T(xxx), kj,T(xxx, xxx

′), σ2j,T(xxx) be the output of GP regression with kj(xxx, xxx′) and
(xxxt, yj,t).

4 Return: kT(xxx, xxx′) =
J∑

j=1
g2j (xxx)kj,T(xxx, xxx′)g2j (xxx′), μT(xxx) =

J∑
j=1

gj(xxx)μj,T(xxx),

σ2T(xxx) = kT(xxx, xxx)

Proposition 4. The variance returned by Algorithm 5 is

σ2T,entire(xxx) = k(xxx, xxx)−
∑
i,j

zzz⊤i (
∑
l

DDDlKKKl,TDDDl)
−1zzzj (7.6)

where DDDj = diag([gj(xxx1), ..., gj(xxxT)]) and zzzi = DDDikkkj,T(xxx)gj(xxx) ∈ RT.

Proposition 5. The variance returned by Algorithm 6 is

σ2T,decomp(xxx) = k(xxx, xxx)−
∑
l

zzz⊤l (DDDlKKKl,TDDDl)
−1zzzl (7.7)

In order that our approach has lower variance, we first recall the matrix-

fractional function and its convex property.

Lemma 1. Matrix-fractional function h(XXX, yyy) = yyy⊤XXX−1yyy is defined and also convex on domf =

{(XXX, yyy) ∈ ST
+ × RT}.

Nowwe are ready to compare the variance provided by Proposition 4 and Propo-

sition 5.
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Theorem 8. The variance provided by decomposed Gaussian process regression (Algorithm 6) is less

than or equal to the variance provided by Gaussian process regression (Algorithm 5), which implies the

uncertainty by using decomposed Gaussian process regression is smaller.

Proof sketch. In order to compare the variance given by Proposition 4 and Proposition 5, we calcu-

late the difference of Equation 7.6 and Equation 7.7. Their difference can be rearranged as a Jensen

inequality with the form of Matrix-fractional function (Lemma 1), which turns out to be convex.

By Jensen inequality, their difference is non-negative, which implies the variance given by decom-

posed GP regression is no greater than the variance given by GP regression.

Theorem 8 implies that decomposed GP regression provides a posterior with

smaller variance, which could be considered the uncertainty of the approxima-

tion. In fact, the posterior belief after the GP regression is still a Gaussian pro-

cess, which implies the underlying target function is characterized by a joint

Gaussian distribution, where a smaller variance directly implies a more concen-

trated Gaussian distribution, leading to less uncertainty and smaller root-

mean-squared error. Intuitively, this is due to Algorithm 6 adopts the decom-

position knowledge but Algorithm 5 does not. This contribution for handling

decomposition in the GP regression context is very general and can be applied

to many problems. Wewill show some applications of this idea in the following

sections, focusing first on how a linear and generalized decompositions can be

used to augment the GP-UCB algorithm for multi-armed bandit problems.

7.5 Decomposed GP-UCB Algorithm

The goal of a traditional bandit problem is to optimize the objective function

f(xxx) by minimizing the regret. However, in our bandit problemwith decomposed
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feedback, the learner is able to access samples of individual functions fj(xxx). We

first consider a linear decomposition f(xxx) =
J∑

j=1
gj(xxx)fj(xxx).

Srinivas et al. proposed the GP-UCB algorithm for classic bandit problems and

proved that it is a no-regret algorithm that can efficiently achieve the global

optimal objective value. A natural question arises: canwe apply our decomposed

GP regression (Algorithm 6) and also achieve the no-regret property? This leads

to our second contribution: the decomposed GP-UCB algorithm, which uses de-

composed GP regressionwhen decomposed feedback is accessible. This algorithm

can incorporate the decomposed feedback (the outcomes of decomposed func-

tion fj), achieve a better approximation at each iterationwhile maintaining the

no-regret property, and converge to a globally optimal value.

Algorithm 7:Decomposed GP-UCB
1 Input: Input spaceX ; GP priors μj,0, σj,0, kj ∀j ∈ [J]
2 for t = 1,2,... do
3 Compute all mean μj,t−1 and variance σ

2
j,t−1∀j

4 μt−1(xxx) =
J∑

j=1
gj(xxx)μj,t−1(xxx)

5 σ2t−1(xxx) =
J∑

j=1
g2j (xxx)σ2j,t−1

6 Choose xxxt = argmaxxxx∈X μt−1(xxx) +
√
βtσt−1(xxx)

7 Sample yj,t = fj(xxxt) ∀j ∈ [J]
8 Perform Bayesian update to obtain μj,t, σj,t ∀j ∈ [J]

Theorem 9. Let δ ∈ (0, 1) and βt = 2 log(|X |t2π2/6δ). Running decomposed GP-UCB (Algorithm

7) for a composed sample f(xxx) =
∑
j=1

gj(xxx)fj(xxx) with bounded variance kj(xxx, xxx) ≤ 1 and each fj ∼

GP(0, kj(xxx, xxx′)), we obtain a regret bound ofO(
√
T log |X |

∑J
j=1 B2j γj,T) with high probability,
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where Bj = max
xxx∈X
|gj(xxx)|. Precisely,

Pr
{
RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T ∀T ≥ 1

}
≥ 1− δ (7.8)

where C1 = 8/ log(1+ σ−2) with noise variance σ2.

We present Algorithm 7, which replaces the Gaussian process regression in GP-

UCBwith our decomposed Gaussian process regression (Algorithm 6). According

to Theorem 8, our algorithm takes advantage of decomposed feedback and pro-

vides a more accurate and less uncertain approximation at each iteration. We

also provide a regret bound in Theorem 9, which guarantees no-regret property

to Algorithm 7.

According to the linear decomposition and the additive and multiplicative

properties of kernels, the entire underlying function is still an outcome of

GPwith a composed kernel k(xxx, xxx′) =
J∑

j=1
gj(xxx)kj(xxx, xxx′)gj(xxx′), which implies that GP-

UCB algorithm can achieve a similar regret bound by normalizing the kernel

k(xxx, xxx′) ≤
J∑

j=1
B2j = B2. The regret bound of GP-UCB can be given by:

Pr{RT ≤
√
C1TβTB2γentire,T ∀T ≥ 1} ≥ 1− δ (7.9)

where γenitre,T is the upper bound on the information gain I(yT; fT) of the com-

posed kernel k(xxx, xxx′).

But due to Theorem 8, D-GPUCB can achieve a lower variance and more accu-

rate approximation at each iteration, leading to a smaller regret in the bandit

setting, whichwill be shown to empirically perform better in the experiments.
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7.5.1 No-Regret Property and Benefits of D-GPUCB

Previously, in order to guarantee a sublinear regret bound to GP-UCB, we re-

quire an analytical, sublinear bound γentire,T on the information gain.292 pro-

vided several elegant upper bounds on the information gain of various kernels.

However, in practice, it is hard to give an upper bound to a composed kernel

k(xxx, xxx′) and apply the regret bound (Inequality 7.9) provided by GP-UCB in the de-

composed context.

Instead, D-GPUCB and the following generalized D-GPUCB provide a clearer

expression to the regret bound, where their bounds (Theorem 9, 10) only relate

to upper bounds γj,T of the information gain of each kernel kj(xxx, xxx′). This resolves

the problem of computing an upper bound of a composed kernel. We can use the

various sublinear upper bounds of different kernels, which have beenwidely

studied in prior literature292.

7.5.2 Generalized Decomposed GP-UCB Algorithm

We now consider the general decomposition (Definition 8): f(xxx) = g(f1(xxx), f2(xxx), ..., fJ(xxx)).

To achieve the no-regret property, we further require the function g to have

bounded partial derivatives |∇jg(xxx)| ≤ Bj ∀j ∈ [J]. This corresponds to the linear

decomposition case, where |∇jg| = |gj(xxx)| ≤ Bj.

Since, a non-linear composition of Gaussian processes is no longer a Gaus-

sian process, the standard GP-UCB algorithm does not have any guarantees for

this setting. However, we show that our approach, which leverages the special

structure of the problem, still enjoys a no-regret guarantee:
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Algorithm 8:Generalized Decomposed GP-UCB
1 Input: Input spaceX ; GP priors μj,0, σj,0, kj ∀j ∈ [J]
2 for t = 1,2,... do
3 Compute the aggregated mean and variance bound:
4 μt−1(xxx) = g(μ1,t−1(xxx), ..., μJ,t−1(xxx))

5 σ2t−1(xxx) = J
J∑

j=1
B2
j σ2j,t−1(xxx)

6 Choose xxxt = argmaxxxx∈X μt−1(xxx) +
√
βtσt−1(xxx)

7 Sample yj,t = fj(xxxt) ∀j ∈ [J]
8 Perform Bayesian update to obtain μj,t, σj,t ∀j ∈ [J]

Theorem 10. By running generalized decomposed GP-UCB with βt = 2 log(|X |Jt2π2/6δ) for a

composed sample f(xxx) = g(f1(xxx), ..., fJ(xxx)) of GPs with bounded variance kj(xxx, xxx) ≤ 1 and each

fj ∼ GP(0, kj(xxx, xxx′)). we obtain a regret bound ofO(
√

T log |X |
∑J

j=1 B2j γj,T) with high probability,

where Bj = max
xxx∈X
|∇jg(xxx)|. Precisely,

Pr
{
RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T ∀T ≥ 1

}
≥ 1− δ (7.10)

where C1 = 8/ log(1+ σ−2) with noise variance σ2.

The intuition is that so long as each individual function is drawn from a

Gaussian process, we can still performGaussian process regression on each func-

tion individually to get an estimate of each decomposed component. Based on

these estimates, we compute the corresponding estimate to the final objective

value by combining the decomposed components with the function g. Since the

gradient of function g is bounded, we can propagate the uncertainty of each in-

dividual approximation to the final objective function, which allows us to get a

bound on the total uncertainty. Consequently, we can prove a high-probability
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bound between our algorithm’s posterior distribution and the target function,

which enables us to bound the cumulative regret by a similar technique as Theo-

rem 9.

The major difference for general decomposition is that the usual GP-UCB al-

gorithm no longer works here. The underlying unknown function may not be an

outcome of Gaussian process. Therefore the GP-UCB algorithm does not have

any guarantees for either convergence or the no-regret property. In contrast,

D-GPUCB algorithm still works in this general case if the learner is able to at-

tain the decomposed feedback.

Our result greatly enlarges the feasible functional space where GP-UCB

can be applied. We have shown that the generalized D-GPUCB preserves the no-

regret property evenwhen the underlying function is a composition of Gaus-

sian processes. Given the knowledge of decomposition and decomposed feedback,

based on Theorem 10, the functional space that generalized D-GPUCB algorithm

can guarantee no-regret is closed under arbitrary bounded-gradient function

composition. This leads to a very general functional space, showcasing the con-

tribution of our algorithm.

7.5.3 Continuous Sample Space

All the above theorems are for discrete sample spacesX . However, most real-

world scenarios have a continuous space. Srinivas et al. used the discretization

technique to reduce the compact and convex continuous sample space to a dis-

crete case by using a larger exploration constant:

βt = 2 log(2t2π2/(3δ)) + 2d log(t2dbr
√
log(4da/δ))
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while assuming Pr{supxxx∈X |∂f/∂xxxi| > L} ≤ ae−(L/b)2 . (In the general decomposition

case, βt = 2 log(2Jt2π2/(3δ)) + 2d log(t2dbr
√

log(4da/δ))). All of our proofs directly

follow using the same technique. Therefore the no-regret property and regret

bound also hold in continuous sample spaces.

7.6 Experiments

In this section, we run several experiments to compare decomposed Gaussian pro-

cess regression (Algorithm 6), D-GPUCB (Algorithm 7), and generalized D-GPUCB

(Algorithm 8). We also test on both discrete sample space and continuous sample

space. All of our examples show a promising convergence rate and also improve-

ment against the GP-UCB algorithm, again demonstrating that more detailed

modeling reduces the predictive uncertainty.

7.6.1 Decomposed Gaussian Process Regression

For the decomposed Gaussian process regression, we compare the average stan-

dard deviation (uncertainty) provided by GP regression (Algorithm 5) and decom-

posed GP regression (Algorithm 6) over varying number of samples and number of

decomposed functions. We use the following three common types of stationary

kernel264:

• The Square Exponential kernel is k(xxx, xxx′) = exp(−(2l2)−1 ‖xxx− xxx′‖2), l is a

length-scale hyper parameter.

• TheMatérn kernel is given by k(xxx, xxx′) = (21−ν/Γ(ν))rνBν(r), r = (
√
2ν/l) ‖xxx− xxx′‖,

where ν controls the smoothness of sample functions and Bν is a modified

Bessel function.
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• The Rational Quadratic kernel is k(xxx, xxx′) = (1 + ‖xxx− xxx′‖2 /(2αl2))−α. It can

be seen as a scale mixture of square exponential kernels with different

length-scales.

For each kernel category, we first draw J kernels with random hyper-parameters.

We then generate a random sample function fj from each corresponding kernel kj

as the target function, combinedwith the simplest linear decomposition (Defi-

nition 7) with gj(xxx) ≡ 1∀j. For each setting and each T ≤ 50, we randomly draw

T samples as the previous samples and perform both GP regression and decom-

posed GP regression. We record the average improvement in terms of root-mean-

squared error (RMSE) against the underlying target function over 100 indepen-

dent runs for each setting. We also run experiments on flu domain with square

exponential kernel based on real data and SIR model79, which is illustrated in

Figure 7.2(d).

Empirically, our method reduces the RMSE in the model’s predictions by 10-

15% compared to standard GP regression (without decomposed feedback). This

trend holds across kernels, and includes both synthetic data and the flu do-

main (which uses a real dataset). Such an improvement in predictive accuracy is

significant in many real-world domains. For instance, CDC-reported 95% con-

fidence intervals for vaccination-averted flu illnesses for 2015 range from

3.5M-7M and averted medical visits from 1.7M-3.5M. Reducing average error by

10% corresponds to estimates which are tighter by hundreds of thousands of

patients, a significant amount in policy terms. These results confirm our theo-

retical analysis in showing that incorporating decomposed feedback results in

more accurate estimation of the unknown function.
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(c) Rational quadratic kernel
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Figure 7.2: Average improvement (with trend line) using decomposed GP regression and GP regression, in RMSE
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7.6.2 Comparison between GP-UCB andD-GPUCB
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Figure 7.3: Comparison of cumulative regret: D‐GPUCB, GP‐UCB, and various heuristics on synthetic (a, b) and real data
(c, d)

We nowmove the online setting, to test whether greater predictive accu-

racy results in improved decision making. We compare our D-GPUCB algorithm

and generalized D-GPUCBwith GP-UCB, as well as common heuristics such as Ex-

pected Improvement (EI)218 andMost Probable Improvement (MPI)184. For all the

experiments, we run 30 trials on all algorithms to find the average regret.

Synthetic Data (Linear Decompositionwith Discrete Sample Space):

For synthetic data, we randomly draw J = 10 square exponential kernels with

different hyper-parameters and then sample random functions from these ker-
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Figure 7.4: Comparison of average regret: D‐GPUCB, GP‐UCB, and various heuristics on synthetic (a, b) and real data (c,
d)

nels to compose the entire target function. The sample noise is set to be 10−4.

The sample spaceX = [0, 1] is uniformly discretized into 1000 points. We follow

the recommendation in292 to scale down βt by a factor 5 for both GP-UCB andD-

GPUCB algorithm. We run each algorithm for 100 iterations with δ = 0.05 for 30

trials (different kernels and target functions each trial), where the cumulative

regrets are shown in Figure 7.3(a), 7.3(b), and average regret in Figure 7.4(a), 7.4(b).

Flu Prevention (Linear Decompositionwith Continuous Sample Space):

We consider a flu age-stratified SIR model79 as our target function. The pop-

ulation is stratified into several age groups: young (0-19), adult (20-49), middle
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aged (50-64), senior (65-69), elder (70+). The SIR model allows the contact matrix

and susceptibility of each age group to vary. Our input here is the vaccination

rate xxx ∈ [0, 1]5 with respect to each age group. Given a vaccination rate xxx, the SIR

model returns the average sick days per person f(xxx)within one year. The model

can also return the contribution to the average sick days from each age group

j, whichwe denote as fj(xxx). Therefore we have f(xxx) =
5∑
j=1

fj(xxx), a linear decompo-

sition. The goal is to find the optimal vaccination policy which minimizes the

average sick days subject to budget constraints. Since we do not know the co-

variance kernel functions in advance, we randomly draw 1000 samples and fit a

mixture of square exponential kernel andMatérn kernel by tuning the hyper-

parameters. We run all algorithms and compare their cumulative regret in Fig-

ure 7.3(c) and average regret in Figure 7.4(c).

Perceived Temperature (General Decompositionwith Discrete Sample Space):

The perceived temperature is a combination of actual temperature, humidity,

andwind speed. When the actual temperature is high, higher humidity reduces

the body’s ability to cool itself, resulting a higher perceived temperature; when

the actual temperature is low, the air motion accelerates the rate of heat trans-

fer from a human body to the surrounding atmosphere, leading to a lower per-

ceived temperature. All of these are nonlinear function compositions. We use

the weather data collected from 2906 sensors in United States provided by Open-

WeatherMap. Given an input location xxx ∈ X , we can access to the actual tem-

perature f1(xxx), humidity f2(xxx), andwind speed f3(xxx). In each test, we randomly draw

one third of the entire data to learn the covariance kernel functions. Thenwe

run generalized D-GPUCB and all the other algorithms on the remaining sen-
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sors to find the locationwith highest perceived temperature. The result is av-

eraged over 30 different tests and is also shown in Figure 7.3(d) and Figure 7.4(d).

Discussion:

In the bandit settingwith decomposed feedback, Figure 7.3 shows a 10% − 20%

improvement in cumulative regret for both synthetic (Figure 7.3(a), 7.3(b)) and

real data (Figure 7.3(c), 7.3(d)). As in the regression setting, such improvements

are highly significant in policy terms; a 10% reduction in sickness due to flu cor-

responds to hundreds of thousands of infections averted per year. The bene-

fit to incorporating decomposed feedback is particularly large in the general

decomposition case (Figure 7.3(d)), where a single GP is a poor fit to the nonlin-

early composed function. Figure 7.4 shows the average regret of each algorithm

(as opposed to the cumulative regret). Our algorithm’s average regret tends

to zero. This allows us to empirically confirm the no-regret guarantee for D-

GPUCB in both the linear and general decomposition settings. As with the cumu-

lative regret, D-GPUCB uniformly outperforms the baselines.

7.7 Conclusions

We propose algorithms for nonparametric regression and online learningwhich

exploit the decomposed feedback common in real world sequential decision

problems. In the regression setting, we prove that incorporating decomposed

feedback improves predictive accuracy (Theorem 8). In the online learning set-

ting, we introduce the D-GPUCB algorithms (Algorithm 7 and Algorithm 8) and

prove corresponding no-regret guarantees. We conduct experiments in both
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real and synthetic domains to investigate the performance of decomposed GP re-

gression, D-GPUCB, and generalized D-GPUCB. All show significant improvement

against GP-UCB and other methods that do not consider decomposed feedback,

demonstrating the benefit that decision makers can realize by exploiting such

information.
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Online Learning for Restless

Bandits*

8.1 Introduction

Restless multi-armed bandits (RMABs)337 generalize multi-armed bandits by in-

troducing states for each arm. RMABs are commonly used to model sequential

scheduling problems with limited resources such as in clinical health312, online

advertising216, and energy-efficient scheduling50. As with stochastic combi-

natorial bandits66, the RMAB learner must repeatedly pullK out ofN arms at

each timestep. Unlike stochastic bandits, the reward distribution of each arm

in an RMAB depends on that arm’s state, which transitions based on aMarkov

decision process (MDP) depending onwhether the arm is pulled. These problems

are called “restless” as arms may change state regardless of whether they are

pulled. The reward at each timestep is the sum of rewards across all arms, in-

cluding arms not acted upon.

Evenwhen the transition dynamics are given, planning an optimal policy for

RMABs is PSPACE-hard244 due to the state-dependent reward and combinatorial

action space. To compute an approximate planning solution to RMABs, theWhit-

tle index policy 337 defines a “Whittle index” for each arm as an estimate of the
*This work is a joint work with Lily Xu with equal contributions.
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future value if acted upon, then acts on the arms with theK largest indices. The

Whittle index policy is shown to be asymptotically optimal334 and is commonly

adopted as a scalable solution to RMAB problems140,160.

However, in many real-world applications of RMABs, transition dynamics are

often unknown in advance. The learner must strategically query arms to learn

the underlying transition probabilities while simultaneously achieving high

reward. Accordingly, in this paper we focus on the challenge of online learning

in RMABswith unknown transitions. We focus on theWhittle index policy due

to its scalability and consider a fixed-length episodic RMAB setting.

Main contributions We presentUCWhittle, an upper confidence bound (UCB)

algorithm that uses theWhittle index policy to achieve the first sublinear fre-

quentist regret guarantee for RMABs. Our algorithmmaintains confidence

bounds for every transition probability across all arms based on prior observa-

tions. Using these bounds, we define a bilinear program to solve for optimistic

transition probabilities— the transition probabilities that yield the highest

future reward. These optimistic transition probabilities enable us to compute

an optimisticWhittle index for each arm to inform aWhittle index policy. Our

UCWhittle algorithm leverages the structure of RMABs and theWhittle index

solution to decompose the policy across individual arms, greatly reducing the

computational cost of finding an optimistic solution compared to other UCB-

based solutions25,148.

Theoretically, we analyze the frequentist regret of UCWhittle. The fre-

quentist regret is the worst-case regret incurred from unknown transition

dynamics; in contrast, the Bayesian regret is the regret averaged over all possi-
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ble transitions from a prior distribution. In this paper, we define regret in terms

of the relaxed Lagrangian of the RMAB—tomake the objective tractable—

which upper bounds the primal RMAB problem. We show that UCWhittle achieves

sublinear frequentist regretO(H
√
T logT)where T is the number of episodes of

interactionwith the RMAB instance andH is a sufficiently large per-episode

time horizon. Our result extends the analysis of Bayesian regret in RMABs159

to frequentist regret by removing the need to assume a prior distribution. Fi-

nally, we evaluate UCWhittle against other online RMAB approaches on real

maternal and child healthcare data211 and two synthetic settings, showing

that UCWhittle achieves lower frequentist regret empirically as well.

8.2 RelatedWork

Offline planning for RMABs When the transition dynamics are given, an RMAB

is an optimization problem in a sequential setting. Computing the optimal policy

in RMABs is PSPACE-hard244 due to the state-dependent reward distribution and

combinatorial action space. TheWhittle index policy337 approximately solves

the planning problem by estimating the value of each arm state. The indexability

condition6,328 guarantees asymptotic optimality334 of theWhittle index policy

with an infinite time horizon. Nakhleh et al. 231 use deep reinforcement learning

to estimateWhittle indices for episodic finite-horizon RMABs, which requires

the environment to be differentiable and transitions known.

Online learning for RMABs When the transition dynamics are unknown, an

RMAB becomes an online learning problem in which the learner must simul-

taneously learn the transition probabilities (exploration) and execute high-

172



reward actions (exploitation), with the objective of minimizing regret with

respect to a chosen benchmark. Dai et al. 78 achieve a regret bound ofO(logT)

benchmarked against an optimal policy from a finite number of potential poli-

cies. Xiong et al. 347 use a Lagrangian relaxation and index-based algorithm, but

require access to an offline simulator to generate samples for any given state–

action pair. Tekin & Liu 300 define a weaker benchmark of the best single-action

policy— the optimal policy that continues to play the same arm— and use a

UCB-based algorithm to achieveO(logT) frequentist regret.

Recent works introduce oracle-based policies for the non-combinatorial

setting in which the learner pulls a single arm in each round, receiving bandit

feedback and observing only the state of the pulled arm. Jung & Tewari 159 use

a Thompson sampling–based algorithmwhich achieves a Bayesian regret bound

O(
√
T logT) under a given prior distribution. Wang et al. 329 use separate explo-

ration and exploitation phases to achieve frequentist regretO(T2/3). These

works assume some policy oracle is given, thus benchmark regret with the policy

given by the oracle with knowledge of the true transitions. In contrast to the

meta-algorithms they propose,we design an optimal approach custom-tailored

to one specific oracle— based on theWhittle index policy—which enables us

to achieve a tighter frequentist regret bound of O(H
√
T logT)with a constant

horizonH.

Online reinforcement learning RMABs are a special case ofMarkov decision

processes (MDPs) with combinatorial state and action spaces. Q-learning al-

gorithms are popular for solving largeMDPs and have been applied to stan-

dard binary-action RMABs27,110,48 and extended to the multi-action setting169.
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However, these works do not provide regret guarantees. Significant work has

explored online learning for stochastic multi-armed bandits233,143,107,30,348, but

these do not allow arms to change state.

Some papers study online reinforcement learning by using the optimal pol-

icy as the benchmark to bound regret inMDPs25,148 and RMABs242. These works

use UCB-based algorithms (UCRL andUCRL2) to obtain a regret ofO(
√
T logT).

However, evaluating regret with respect to the optimal policy requires comput-

ing the optimal solution to the RMAB problem, which is intractable due to the

combinatorial space and action spaces. To overcome this difficulty, we restrict

the benchmark for computing regret to the class ofWhittle index threshold

policies, and leverage the weak decomposability of theWhittle index threshold

policy to establish a new regret bound.

Frequentist versus Bayesian regret The regret definition thatwe consider

is frequentist regret, measuringworst-case regret under unknown transition

probabilities. The other regret notion is Bayesian regret: the expected regret

over a prior distribution over possible transition functions. Bayesian regret,

such as from Thompson sampling–based methods, relies on a prior and does not

provide worst-case guarantees159,158.

8.3 Restless Bandits andWhittle Index Policy

An instance of a restless multi-armed bandit problem is composed of a set ofN

arms. Each arm i ∈ [N] is modeled as an independentMarkov decision process

(MDP) defined by a tuple (S,A,R,Pi). The state space S , action spaceA, and re-

ward functionR : S × A → R are shared across arms; the transition probability
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Pi : S ×A× S → [0, 1]may be unique per arm i.

We denote the state of the RMAB instance at timestep h ∈ N by sssh ∈ SN, where

sh,i denotes the state of arm i ∈ [N]. We assume the state is fully observable. The

initial state is given by sss1 = sssinit ∈ SN. The action (a set of “arm pulls”) at time h is

denoted by a binary vector aaah ∈ AN = {0, 1}N and is constrained by budgetK such

that
∑
i∈[N]

ah,i ≤ K.

After taking action ah,i on arm i, the state sh,i transitions to the next state sh+1,i

with transition probability Pi(sh,i, ah,i, sh+1,i) ∈ [0, 1]. We denote the set of all tran-

sition probabilities by PPP = [Pi]i∈[N]. The learner receives rewardR(sh,i, ah,i) from

each arm i (including those not acted upon) at every timestep h; we assume the

reward functionR is known.

The learner’s actions are described by a deterministic policy π : SN → AN

which maps a given state sss ∈ SN to an action aaa ∈ AN. The learner’s goal is to

optimize the total discounted reward, with discount factor γ ∈ (0, 1):

max
π

E
(sss,aaa)∼(PPP,π)

∑
h∈N

γh−1
∑
i∈[N]

R(sh,i, ah,i)

s.t.
∑
i∈[N]

(π(sss))i ≤ K ∀sss ∈ SN (8.1)

where sss ∼ PPP indicates sh,i ∼ Pi(· | sh−1,i, πi(sssh−1)) and aaa ∼ π indicates ai ∼ πi(sss).

8.3.1 Lagrangian Relaxation

Equation 8.1 is intractable to evaluate over all possible policies, thus a poor

candidate objective for evaluating online learning performance. Instead, we
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relax the constraints to use the Lagrangian as the evaluation metric:

UPPP,λ
π (sss1) := E

(sss,aaa)∼(PPP,π)

∑
h∈N

γh−1

(∑
i∈[N]

R(sh,i, ah,i)− λ
(∑

i∈[N]

(π(sssh))i − K
))

(8.2)

which also considers actions that exceed the budget constraint, subject to a

given penalty λ. The optimal value of Equation 8.2, whichwe denoteUPPP,λ
⋆ , is al-

ways an upper bound to Equation 8.1. Therefore, we solve Equation 8.2 for candi-

date penalty values λ and find the infimum λ⋆ = argminλ U
PPP,λ
⋆ afterward.

8.3.2 Whittle Index and Threshold Policy

Relaxing the budget constraint enables us to decompose the combinatorial pol-

icy into a set ofN independent policies for each arm. The decoupled policy yields

π(sss) = [πi(sssi)]i∈[N], where each arm policy πi : S → A specifies the action for arm i

at state si. The value function is then:

VPi,λ
πi (s1,i) := E

(s1,i,a1,i,s2,i,a2,i,...)∼(Pi,πi)

∑
h∈N

γh−1

(
R(sh,i, ah,i)− λ

(
πi(sh,i)− K

))
. (8.3)

Equation 8.3 can be interpreted as adding a penalty λ to the pulling action

a = 1, which motivates the definition ofWhittle index337 as the smallest penalty

for an arm such that pulling that arm is as good as not pulling it:

Definition 9. Given transition probabilities Pi and state si, theWhittle indexWi of arm i is defined

as:

Wi(Pi, si) = inf
mi
{mi : Qmi(si, 0) = Qmi(si, 1)} (8.4)
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where the Q-function Qmi(si, ai) and value-function Vmi(si) are the solutions to the Bellman equation

with penalty mi for pulling action ai = 1:

Qmi(s, a) = −mia+ R(s, a) + γ
∑
s′∈S

Pi(s, a, s′)Vmi(s′)

Vmi(s) = max
a∈A

Qmi(s, a) .

When theWhittle indexWi(Pi, si) for an arm is higher than the chosen global

penalty λ—that is,mi > λ—the optimal policy for Equation 8.3 is to pull that

arm, i.e., πi(si) = 1. We denote theWhittle indices of all arms and all states by

W(PPP) = [Wi(Pi, si)]i∈[N],si∈S ∈ RN×|S|.

Definition 10 (Whittle index threshold policy). Given a chosen global penalty λ and theWhittle

indicesW(PPP) computed from transitions PPP, the threshold policy is defined by:

πW(PPP),λ(sss) = [1Wi(Pi,si)≥λ]i∈[N] ∈ AN , (8.5)

which pulls all arms withWhittle indices larger than λ.

TheWhittle index threshold policy maximizes the relaxed Lagrangian in

Equation 8.2 under penalty λ, but may violate the budget constraints in Equa-

tion 8.1. In practice, we pull only the arms with the topKWhittle indices to re-

spect the strict budget constraint.

8.4 Problem Statement: Online Learning in RMABs

We consider the online settingwhere the true transition probabilities PPP⋆ are

unknown to the learner. The learner interacts with an RMAB instance across
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multiple episodes, and only requires observations for the firstH timesteps of

each episode to estimate transition probabilities.

At the beginning of each episode t ∈ [T], the learner starts the RMAB instance

(timestep h = 1) from sss1 = sssinit and selects a new policy π(t). We consider the fol-

lowing setting:

• Each episode has an infinite horizonwith discount factor γ.

• In each episode t, the learner proposes a policy π(t). The learner observes

the firstH timesteps†, but receives the infinite discounted rewardUPPP,λ
π(t)(sss1)

to account for the long-term effect of π(t).

• We assume theMDP associatedwith each arm is ergodic. That is, starting

from the given initial state, we assumeH is large enough such that afterH

timesteps, there is at least ε > 0 probability of reaching any state sss ∈ S .

To evaluate the performance of our policy π(t), we compute regret against a

full-information benchmark: theWhittle index threshold policy πW(PPP⋆),λ with

knowledge of the true transitions PPP⋆. This offline benchmark measures the ad-

vantage gained from knowing the true transitions PPP⋆.

Definition 11 (Frequentist regret of the Lagrangian objective). Given a penalty λ and the true

transitions PPP⋆, we define the regret of the policy π(t) in episode t relative to the optimal policy π⋆ =

πW(PPP⋆),λ:

Reg(t)λ := UPPP⋆,λ
π⋆ (sss1)− UPPP⋆,λ

π(t) (sss1) ,

Regλ(T) :=
∑
t∈[T]

Reg(t)λ . (8.6)

†In practice, infinite time horizon means a large horizon that is much larger thanH.
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However, the relaxed Lagrangian in Equation 8.2 with a randomly chosen

penalty λ may not be a good proxy to the primal RMAB problem in Equation 8.1.

Therefore, we define the Lagrangian using the optimal Lagrangian multiplier λ⋆

as the tightest upper bound of Equation 8.1.

Definition 12 (Frequentist regret of the optimal Lagrangian objective). Given PPP⋆, we denote the

optimal penalty by λ⋆ = argminλ U
PPP⋆,λ
π⋆ (sss1). The regret of the optimal Lagrangian objective is

defined by:

Reg(t)λ⋆ := UPPP⋆,λ⋆
π⋆ (sss1)− UPPP⋆,λ⋆

π(t) (sss1) ,

Regλ⋆(T) :=
∑
t∈[T]

Reg(t)λ⋆ . (8.7)

The expected regret is approximated using the regret from the relaxed La-

grangian in Equation 8.2 as defined in Definition 11 andDefinition 12.

8.5 UCWhittle: OptimisticWhittle Index Threshold Policy

A key challenge to UCB-based online learning in RMABs is that the estimated

transitions impact estimates of future reward, so optimistic estimates of tran-

sition probabilities do not correspond to optimistic estimates of reward. We

introduce a method, UCWhittle, to compute optimisticWhittle indices that ac-

count for highest future value.

8.5.1 Confidence Bounds of Transition Probabilities

To compute confidence bounds for every unknown transition probability in the

RMAB instance, we maintain countsN(t)
i (s, a, s′) for every state, action, and next
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state transition observed by episode t.

Given a chosen small constant δ > 0, we estimate each transition probability

Pi(s, a, s′)with the empirical mean

P̂(t)i (s, a, s′) :=
N(t)

i (s, a, s′)
N(t)

i (s, a)
(8.8)

and confidence radius

d(t)i (s, a) :=

√√√√2|S| log(2|S||A|N t4
δ )

max{1,N(t)
i (s, a)}

(8.9)

whereN(t)
i (s, a) :=

∑
s′∈S

N(t)
i (s, a, s′). With these confidence bounds, the ball BBB of

possible values for transition probabilities PPP is

BBB(t) =
{
PPP |
∥∥∥Pi(s, a, ·)− P̂(t)i (s, a, ·)

∥∥∥
1
≤ d(t)i (s, a) ∀i, s, a

}
.

8.5.2 Optimistic Transitions andWhittle Indices

To translate confidence bounds in transition probabilities to the actual re-

ward, we define an optimization problem (PV) to find for each arm i the opti-

mistic transition probability P†i , the value within the confidence bound that

yields the highest future value from the starting state si:

max
V,Q,Pi∈BBB(t)i

V(si) s.t. V(s) = max
a∈A

Q(s, a) (PV)

Q(s, a) = −λa+ R(s, a) + γ
∑
s′∈S

Pi(s, a, s′)V(s′)

We prove Equation (PV) to be optimal in Section 8.6.
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Algorithm 9:UCWhittle
1 Input: N arms, budgetK, episode horizonH.
2 Initialization: countsN(t)

i (s, a, s′) = 0 for all s, a, s′. Randomly initialize
penalty λ(1).

3 for episode t ∈ {1, 2, . . .} do
4 Reset h = 1 and sss = sssinit ; // Reset RMAB instance

5 P†
i = PV(si,N(t)

i , λ(t)) for all i ∈ [N] ; // Compute an optimistic transition
for each arm

6 Wi = ComputeWI(P†
i , si) for all i ∈ [N] ; // Compute Whittle indices

using Def. 9

7 Execute π(t) forH steps by pulling arms with the topKWhittle indices.
8 Observe transitions (sss, aaa, sss′)
9 Update countsN(t)

i , empirical means P̂PP
(t)
, and confidence regions BBB(t)

10 Set λ(t+1) to be theK-th highest Whittle index. ; // Update penalty

We use the optimistic transition P†i to compute the corresponding optimistic

Whittle index W†
i = W(P†i , si). TheWhittle index threshold policy π†i = πW†

i ,λ

achieves the same value function derived from the transition P†i , which maxi-

mizes Equation (PV). Aggregating all the arms together, optimistic policy π†

with optimistic transitions PPP† maximizes the future value of the current state sss.

8.5.3 UCWhittle Algorithm

After computing optimistic transitions and the corresponding optimisticWhit-

tle indices (Pm), we execute the optimisticWhittle index threshold policy. The

full algorithm is outlined in Algorithm 9, and implementation details— includ-

ing novel techniques for speeding up the computation of theWhittle index—

are given in Appendix F.5.1.
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8.5.4 Alternative Formulation forWhittle Index Upper Bound

Equation (PV) provides optimistic transition probabilities but requires sepa-

rately solving for optimisticWhittle indices afterwards. Computing aWhittle

index involves binary search, solving value iteration at every step, so is quite

computationally expensive. We thus formulate a heuristic which solves for

the highestWhittle index directly (instead of highest future value) at the current

state sh,i:

max
mi,V,Q,Pi,∈BBB(t)i

mi (Pm)

s.t. V(s) = max
a∈A

Q(s, a), Q(s, a = 0) = Q(s, a = 1)

Q(s, a) = −mia+ R(s, a) + γ
∑
s′∈S

Pi(s, a, s′)V(s′)

Solving Equation (Pm) directly yields the maximalWhittle index estimate

within the confidence bound. We thus save computation cost while maintain-

ing a valid upper bound to the optimisticWhittle index from Equation (PV). The

theoretical analysis does not hold for (Pm), but empirically, we show that this

heuristic achieves comparable performance with significantly lower computa-

tion.

8.6 Regret Analysis

We analyze the regret of our UCWhittle algorithm to provide the first fre-

quentist regret analysis for RMABs. In this section, we use the Lagrangian ob-

jective as a proxy to the reward received from the proposed policy. Section 8.6.1

182



first assumes an arbitrary penalty λ is given to define the regret (Definition 11).

Section 8.6.2 generalizes by defining the regret of the optimal Lagrangian objec-

tive based on the unknown optimal penalty λ⋆ (Definition 12). Section 8.6.3 pro-

vides an update rule for updating the penalty λ(t) after each episode. Full proofs

are given in Appendix F.4.

0 10 20 30 40

4
6
8

(b) WideMargin

UCW-value (PV) UCW-penalty (Pm) ExtremeWhittle WIQL random

0 10 20 30 40
5
10
15

(a) ARMMAN

R
eg
re
t

0 10 20 30 40
5
10
15

(c) ThinMargin

Figure 8.1: Cumulative discounted regret (lower is better) in each episode (x‐axis) incurred by our UCWhittle approaches
compared to baselines across the three domains withN = 8 arms, budget B = 3, episode lengthH = 20, and
T = 40 episodes.

8.6.1 Regret Boundwith Known Penalty

By the Chernoff bound, we know thatwith high probability the true transition

PPP⋆ lies within BBB(t):

Proposition 6. Given δ > 0 and t ≥ 1, we have: Pr
(
PPP⋆ ∈ BBB(t)

)
≥ 1− δ

t4 .

This bound can be used to bound the regret incurred, evenwhen the confi-

dence bound fails. In the following theorem, we bound the regret in the case

where the confidence bound holds andwhen the penalty λ is given.

Theorem 11 (Regret decomposition). Given the penalty λ and PPP⋆ ∈ BBB(t) for all t, we have:

Regλ(T) =
∑
t∈[T]

UPPP⋆,λ
π⋆ (sss1)− UPPP⋆,λ

π(t) (sss1) ≤
∑
t∈[T]

UPPP(t),λ
π(t) (sss1)− UPPP⋆,λ

π(t) (sss1) . (8.10)
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Proof. By optimality of Equation (PV) to enable (P(t)i , π(t)i ) = arg max
Pi∈B(t)i ,πi

VPi,λ
πi (s1,i) and the

assumption that the true transition lies within the confidence region P⋆i ∈ B(t)i , we show that:

UPPP⋆,λ
π⋆ (sss1) =

∑
i∈[N]

VP⋆i ,λ
π⋆i

(s1,i) ≤
∑
i∈[N]

VP(t)i ,λ
π(t)i

(s1,i) = UPPP(t),λ
π(t) (sss1) .

Theorem 11 enables us to bound our regret by the difference between two fu-

ture values under the same policy π(t).

Definition 13 (Bellman operator). Define the Bellman operator as:

T Pi
πi V(s) = E

a∼πi

[
−λa+ R(s, a) + γ

∑
s′∈S

Pi(s, a, s′)V(s′)

]

Using Theorem 11 and the Bellman operator, we can further decompose the

regret as:

Theorem 12 (Per-episode regret decomposition in the fully observable setting). For an arm i, fix

P(t)i , P⋆i , λ, and the initial state s1,i. We have:

VP(t)i ,λ
π(t)i

(s1,i)− VP⋆i ,λ
π(t)i

(s1,i) = E
P⋆i ,π

(t)
i

[ ∞∑
h=1

γh−1
(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
VP(t)i ,λ
π(t)i

(sh,i)

]
. (8.11)

Theorem 12 further decomposes the regret in Equation 8.10 into individual

differences in Bellman operators. The next theorem bounds the differences in

Bellman operators by differences in transition probabilities.

Theorem 13. Assume the penalty term λ(t) = λ is given and the RMAB instance is ε-ergodicity after

H timesteps. Then with probability 1− δ, the cumulative regret in T episodes is:

Regλ(t) ≤ O
(
1
ε
|S||A|

1
2NH

√
T logT

)
. (8.12)
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Proof sketch. We focus on bounding the regret when the confidence bounds hold. By Theorem 11

and Theorem 12, we estimate the right-hand side of Equation 8.11 to bound the total regret by the

L1-difference in the transition probability:

∞∑
h=1

γh−1
(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
VP(t)i

π(t)i
(sh,i) ≤

∞∑
h=1

γh−1
∥∥∥P(t)i (sh,i, ah,i, ·)− P⋆i (sh,i, ah,i, ·)

∥∥∥
1
Vmax.

(8.13)

We bound the regret outside of the horizonH by the ergodic assumption of the MDPs. For the

regret inside the horizonH, we use the confidence radius to bound the L1-norm of transition prob-

ability differences and count the number of observations for each state–action pair to express the

regret as a sequence of random variables, whose sum can be bounded by Lemma 7 to conclude the

proof.

When the penalty term λ is given, Theorem 13 bounds the frequentist regret

with a constant term depending on the ergodicity ε of the underlying true

MDPs.

8.6.2 Regret Boundwith UnknownOptimal Penalty

The analysis in Theorem 11 assumes a fixed and given penalty λ. Now, we gener-

alize to regret defined in terms of the optimal but unknown penalty λ⋆ (Defini-

tion 12). We show that updating penalty λ(t) in Algorithm 9 achieves the same re-

gret boundwithout requiring knowledge of the true transitions PPP⋆ or optimal

penalty λ⋆:

Theorem 14 (Regret bound with optimal penalty). Assume the penalty λ(t) in Algorithm 9 is up-

dated by a saddle point (λ(t),PPP(t), π(t)) = argminλ maxPPP,π UPPP,λ
π (sss1) subject to constraints in Equa-
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tion (PV). The cumulative regret of the optimal Lagrangian objective is bounded with probability

1− δ:

Regλ⋆(t) ≤ O
(
1
ε
|S||A|

1
2NH

√
T logT

)
. (8.14)

Proof sketch. The main challenge of an unknown penalty term λ⋆ is that the optimality of the cho-

sen transition PPP(t) and policy π(t) does not hold in Theorem 11 due to the misalignment of the

penalty λ(t) used in solving Equation (PV) and the penalty λ⋆ used in the regret.

Surprisingly, the optimality of (λ(t),PPP(t), π(t)) = argminλ maxPPP,π UPPP,λ
π (sss1) and λ⋆ = inf

λ
UPPP⋆,λ
π⋆ (sss1)

is sufficient to show Theorem 11 by:

UPPP⋆,λ⋆
π⋆ ≤︸ ︷︷ ︸

λ⋆ minimizesUPPP⋆,λ
π⋆

UPPP⋆,λ(t)
π⋆ ≤ UPPP(t),λ(t)

π(t)︸ ︷︷ ︸
PPP(t), π(t) maximizesUPPP,λ(t)

π

≤ UPPP(t),λ⋆

π(t)︸ ︷︷ ︸
λ(t) minimizesUPPP(t),λ

π(t)

=⇒ Reg(t)λ⋆ = UPPP⋆,λ⋆
π⋆ − UPPP⋆,λ⋆

π(t) ≤ UPPP(t),λ⋆

π(t) − UPPP⋆,λ⋆

π(t) . (8.15)

where we omit the dependency on sss1.

After taking summation over t ∈ [T], Equation 8.15 leads to the same result as Theorem 11

without requiring knowledge of the optimal penalty λ⋆. The rest of the proof follows the same

argument in Theorem 12 and Theorem 13 with the same regret bound.

8.6.3 Penalty Update Rule

Theorem 14 suggests that the penalty term λ(t) should be defined by solving a

minimax problem (λ(t),PPP(t), π(t)) = argminλ maxPPP,π UPPP,λ
π (sss1). However, the bilinear

objective ofPV —where the transition probability and value function vari-

ables are being multiplied together— is difficult to solve in a minimax problem.
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A heuristic solution is to solve the maximization problem using the previous

penalty λ(t−1) to determine PPP(t) and π(t) (Equation (PV)). We update λ(t) based on

the current policy, set equal to theKth largestWhittle index pulled at time t

to minimize the Lagrangian. This update rule mimics the minimax update rule re-

quired by Theorem 14.
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Figure 8.2: Varying budget ratioK/N, withN = 15 arms, on the ARMMAN domain. Our UCWhittle approaches
perform stronger than baselines, particularly in the challenging low‐budget scenarios.
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Figure 8.3: Changing episode lengthH on the ARMMAN domain. We run each setting for 1,200 total timesteps. UCW‐
penalty performs best with longer horizons. At shorter horizons, UCW‐value converges in fewer timesteps, but more
episodes are necessary: around episode t = 100 with a horizonH = 5 compared to episode t = 16 with horizon
H = 50.

8.7 Experiments

We show that UCWhittle achieves consistently low regret across three do-

mains, including one generated from real-world data on maternal health. Addi-

tional details about the dataset and data usage are in Appendix B.3, and details
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about implementation (including novel techniques to speed up computation) and

experiments are in Appendix F.5.‡

8.7.1 Preliminaries

Domains We consider three binary-action, binary-state settings. Across all

domains, the binary states are good or bad, with reward 1 and 0 respectively. We

impose two assumptions: that acting is always beneficial (more likely to tran-

sition to the good state), and that it is always better to start from the good

state (more likely to stay in good state).

ARMMAN is a non-profit based in India that disseminates health information

to pregnantwomen and mothers to reduce maternal mortality. Twice a week,

ARMMAN sends automated voice messages to enrolled mothers relaying criti-

cal preventative health information. To improve listenership, the organization

provides service calls to a subset of mothers; the challenge is selectingwhich

subset to call to maximize engagement. We use real, anonymized data of the en-

gagement behavior of 7,656 mothers from a previous RMAB field study211. We

construct instances of RMAB problemwith transition probabilities randomly

sampled from the real dataset.

WideMargin We randomly generate transition probabilities with high

variance, while respecting the constraints specified above.

ThinMargin For a more challenging setting, we consider a synthetic do-

main with probabilities of transitioning to the good state constrained to the

interval [0.2, 0.4] to test the ability of each approach to discern smaller differ-

ences in transition probabilities.
‡Code available at https://github.com/lily-x/online-rmab
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Algorithms We evaluate both variants of UCWhittle (Algorithm 9) intro-

duced in this paper. UCWhittle-value uses the value-maximizing bilinear pro-

gram (PV) whileUCWhittle-penalty uses the penalty-maximizing bilinear pro-

gram (Pm).

In this paper, we focus on frequentist regret, thus we exclude the Bayesian

regret baselines, e.g., Thompson sampling159, because their regret bounds are

averaged over a prior. We consider the following three regret baselines: Ex-

tremeWhittle is similar to the the approach byWang et al. 328 : estimateWhittle

indices from the extreme points of the unknown transition probabilities, us-

ing UCBs of active transition probabilities and lower confidence bounds (LCB)

for passive transition probabilities to estimate the gap between the value of

acting versus not acting. We then solve aWhittle index policy using these esti-

mates. WIQL48 uses Q-learning to learn the value function of each arm at each

state by interactingwith the RMAB instance. Random takes a random action

at each step, serving as a baseline for expected rewardwithout using any strate-

gic learning algorithm. Lastly, we evaluate an optimal policy which computes a

Whittle index policy with access to the true transition probabilities.

Experiment setup We evaluate the performance of each algorithm across T

episodes of lengthH. The per-episode reward is the cumulative discounted re-

wardwith discount rate γ = 0.9. We then compute regret by subtracting the re-

ward earned by each algorithm from the reward of the optimal policy. Results

are averaged over 30 random seeds and smoothed using exponential smoothing

with aweight of 0.9. We ensure consistency by enforcing, across all algorithms,

identical populations (transition probabilities for each arm) and initial state
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for each episode.

8.7.2 Results

The performance results across all three domains are shown in Figure 8.1. Our

UCWhittle algorithm using the value-maximizing bilinear program (UCW-value)

achieves consistently strong performance and generally converges by 600 timesteps

(across varying episode lengths). In Figures 8.2 and 8.3 we evaluate performance

while varying the budgetK and episode lengthH, as the regret of UCWhittle

(Theorem 13) has dependency on both the budget as a ratio of total number of

arms (K/N) and episode lengthH. We see that UCW-value performs comparatively

stronger than the baselines in the challenging low-budget settings, in which

each arm pull has greater impact.

Our heuristic approachUCW-penalty —the penalty-maximizing bilinear pro-

gramwe present in Equation (Pm) — shows strong performance. UCW-penalty

performs even better than UCW-value in some settings, particularly in the ARM-

MANdomain withN = 15 arms (Figure 8.2). Notably in Table 8.1 we see this heuris-

tic approach performs dramatically faster than UCW-value— a 6.1× speedup.

Therefore while are able to establish regret guarantees only for UCW-value,

we also propose UCW-penalty as a strong candidate for its strong performance

and quick execution.

In Figures 8.2 and 8.3 we see ExtremeWhittle has poor performance particu-

larly in the early episodes, consistently achieving higher regret than the ran-

dom policy. Additionally,WIQL is slow to converge, performing similarly to the

random baseline across the time horizons thatwe consider.
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Method Time (s)

UCWhittle-value 1090.92
UCWhittle-penalty 177.57
ExtremeWhittle 109.44
WIQL 3.39
random 1.32

Table 8.1: Average runtime of the different approaches across 500 timesteps withN = 30 arms and budget B = 6

8.8 Conclusion

We propose the first online learning algorithm for RMABs based on theWhittle

index policy, using an upper confidence bound–approach to learn transition dy-

namics. We formulate a bilinear program to compute optimisticWhittle indices

from the confidence bounds of transition dynamics, enabling online learning

using an optimisticWhittle index threshold policy. Theoretically, our work

pushes the boundary of existing frequentist regret bounds in RMABswhile en-

abling scalability using theWhittle index threshold policy to decompose the

solution approach.
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SmoothedOnline Combinatorial

Optimization Using Imperfect

Predictions*

9.1 Introduction

We consider the smoothed online combinatorial optimization problem, which is an exten-

sion of online convex optimization132,279,362,133 and smoothed online convex opti-

mization197,198. In the smoothed online combinatorial optimization problem, an

online learner is repeatedly optimizing a cost functionwith unknown changing

parameter. In every time step, the learner chooses a feasible decision from a com-

binatorial feasible region before observing the parameter of the cost function.

After the learner chooses the decision, the learner receives (i) the cost func-

tion parameter and the associated cost (ii) an additional known switching cost

function dependent on the chosen decision and the previous decision. The goal

of the learner is to minimize the cumulative cost in T time steps, including cost

produced by the cost function and the switching cost.

Smoothed online combinatorial optimization is commonly seen in applications

with online combinatorial decisions and switching penalty, including ride shar-

*This work was done during an internship at Adobe Research.
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ing with combinatorial driver-customer assignment149, distributed streaming

systemwith bipartite data-to-server assignment117,302, and A-B testing in adver-

tisement45. All these examples incur a potential switching cost when the deci-

sions are changed, e.g., reassigning drivers or data to different locations or

servers is costly, and changing advertisement campaign requires additional hu-

man resources. The challenge of online combinatorial decision-making and the

presence of hidden switching cost motivate the study of smoothed online combi-

natorial optimization.

In this paper, we study the smoothed online combinatorial optimizationwhere

an imperfect predictive model is available. We assume that the predictive model

can forecast the future cost parameters with uncertainties, and the uncertain-

ties can evolve over time. We measure the performance of online algorithms by

dynamic regret, which assumes a dynamic offline benchmark, i.e., the optimal per-

formance when the cost function parameters are given a priori and the sequen-

tial decisions are allowed to change. The same use of predictions and dynamic

regret are also studied in receding horizon control212,60 in smoothed online

convex optimization under different assumptions on the predictions64,29,65,194,195.

In our case, the challenges of bounding dynamic regret inherit from smoothed

online convex optimization, while the additional combinatorial structure fur-

ther complicates the analysis.

Main Contribution

Our main contribution is an online algorithm that plans ahead using the imper-

fect predictions within a dynamic planningwindow determined based on the pre-

dictive uncertainty of the predictive model. We summarize our contributions as
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follows:

• Given imperfect predictions with uncertainties, we show that planning

based on predictions within a finite time horizon leads to a regret bound

that is a function of the total predictive uncertainty with an additional

potential switching cost. This bound quantifies one source of regret

corresponding to the imperfectness of the predictions, while the other

source comes from the additional switching cost (Theorem 15).

• Our regret bound in finite time horizon suggests using a dynamic planning

window to optimally balance two sources of regret coming from predic-

tive uncertainty and the switching cost, respectively. Iteratively select-

ing a dynamic planningwindow to plan ahead leads to a regret bound in

infinite time horizon (Theorem 16).

• Specifically, when the uncertainties converge to 0 when more data is

collected, we show that the cumulative regret is always sublinear (The-

orem 17), which guarantees the no-regretness of Algorithm 10. We also

quantify the dependency of the cumulative regret on the convergence

rate of the uncertainty in some special cases (Corollary 1).

• Lastly, we show a lower bound on the total regret for any randomized

online algorithmwhen predictive uncertainty is present. The order of

the lower bound matches to the order of the upper bound in some special

cases, which guarantees the tightness of our online algorithm and the

corresponding regret bounds (Corollary 2).

Lastly, given predictions and dynamic planningwindows, the smoothed on-

195



line combinatorial optimization problem reduces to an offline combinatorial

problem. We use an iterative algorithm to find an approximate solution to the

offline problem efficiently, which largely reduces the computation cost com-

pared to solving the large combinatorial problem using mixed-integer linear

program.

Empirically, we evaluate our algorithm on the online distributed streaming

problem motivated from Apache Kafka with synthetic traffic. We compare our

algorithm using predictions and dynamic planningwindowswith various base-

lines. Our algorithm using predictions outperforms baselines without using

predictions. Our experiments show an improvement of choosing the right dy-

namic planningwindows against algorithms using fixed planningwindow, which

demonstrates the importance of balancing uncertainty and the switching cost.

The use of iterative algorithm also largely reduces the computation cost while

keeping a comparable performance, leading to an effective scalable online algo-

rithm that can be applied to real-world problems.

9.2 RelatedWork

Online convex optimization Online convex optimization119,132,279,362 assumes the

objective function is convex and no switching cost. In online convex optimiza-

tion, static regret is most commonly used, which assumes a static benchmarkwith

full information but the decisions over the entire time steps have to be static.

Various variants of online gradient descents362,133,134,291,103 were proposedwith

bounds on the static regret. However, the gradient-based approaches and the

regret bounds do not directly generalize to the combinatorial setting due to
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the discreteness of the feasible region.

Smoothed online convex optimizationwith predictions Smoothed online con-

vex optimization generalizes online convex optimization by assuming a switch-

ing cost that defines the cost of moving from the previous decision to the cur-

rent one.17 showed that smoothed online convex optimization can achieve the

same static regret bound using the algorithms in online convex optimization

without switching cost. In terms of dynamic regret, receding horizon con-

trol212 was proposed to leverage the predictions of future time step to make

decision. Perfect198,197 and imperfect64,65,194,195 predictions are used to bound the

performance of receding horizon control with fixed planningwindow size. Sep-

arately, chasing convex bodies278,57,56,109 shares the same challenge of smoothed

online convex optimization but focuses on the competitive ratio.

Nonetheless, the analyses in the convex objectives and feasible regions do not

apply to the combinatorial setting. The planningwindow in receding horizon

control is also restricted to be fixed across different time steps.

Online combinatorial optimization and metrical task system Online combi-

natorial optimization assumes a discrete feasible region that the learner can

choose from before seeing the cost function. Existing results23,175 focus on bound-

ing dynamic regret in the case of linear objectives without switching cost. On

the other hand, metrical task system assumes n discrete states that the learner

can choose after seeing the cost function, and there is a metrical switching cost

associated to every switch. Existing results focus on bounding competitive ra-

tio, where the competitive ratio is lower bounded by Ω( log n
log log n)

37,38 and upper
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bounded byO(log2 n)55. In contrast, dynamic regret is a stronger additive guaran-

tee and is more challenging to analyze.

Ourwork shows that analyzing dynamic regret in an arbitrary smoothed on-

line combinatorial optimization problem becomes tractable when an imperfect

predictive model is given.

9.3 Problem Statement

An instance of smoothed online combinatorial optimization is composed of a

cost function f : Z × Θ → R≥0 where z ∈ Z denotes all the feasible decisions

that can be taken and θ ∈ Θ denotes all the possible unknown parameters of the

cost function, and a metric d : Z × Z → R≥0 that is used to measure the distance

of different decisions. At each time step t, the learner receives a feature xt ∈

X that is correlated to the unknown parameters in the future. Based on the

given feature xt, the learner can predict the future parameters and choose a

feasible decision zt ∈ Z without seeing the future parameter θt. The parameter θt

is revealed after the decision is executed and the learner receives an objective

cost f(zt, θt)with a switching cost d(zt−1, zt)which measures the movement of the

decisions made by time step t and t− 1. The total cost of an online algorithm ALG

up to time T is the summation of both the objective cost and the switching cost

across all time steps:

costT(ALG) =
T∑
t=1

f(zt, θt) + d(zt, zt−1).

Wewant to compare to the offline benchmark OPT in time T that knows all
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the parameters in advance, which minimizes the total cost defined below:

costT(OPT) = min
zt∈Z ∀t

T∑
t=1

f(zt, θt) + d(zt, zt−1)

Definition 14. An online algorithmALG has a dynamic regret ρ(T) if we have:

RegT := costT(ALG)− costT(OPT) ≤ ρ(T) ∀T.

The goal of the learner is to design an online algorithmwith a small dynamic

regret bound ρ(T).

9.3.1 Example: Online Distributed Streaming Systems

One application of smoothed online combinatorial optimization problems is the

online load balancing problem in the distributed streaming system known as

Apache Kafka117,302. The system is composed of k topics of streaming data andm

servers as shown in Figure 9.1. At each time step t, the system maintains a bipar-

tite assignment zt between k topics andm servers so that the servers can process

the streaming data in real time. Specifically, each topic must be assigned to ex-

actly one server. We use zt ∈ Zt ⊆ {0, 1}k×m with zt,i,j = 1 to denote assigning

the topic i to server j at time t. The learner can use the parameters in the prior

H time steps as the feature xt that is correlated to the unknown future parame-

ters. After the assignment is chosen, a new traffic vector θt ∈ Rk arrives with

each entry representing the number of incoming messages associated to the

topic. Figure 9.1 illustrates how the data-to-server assignmentworks. A com-

monly used server imbalance cost is defined as makespan f(zt, θt) =
∥∥z⊤t θt∥∥∞, the
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Figure 9.1: Apache Kafka maintains a bipartite assignment zt between k topics andm servers to prepare for processing
the streaming data. The streaming traffic θt comes later and gets routed to the corresponding servers. A server imbal‐
ance cost f(zt, θt) and a switching cost d(zt, zt−1) due to assignment change are received.

largest load across all servers.

Paper structure We first discuss how planning based on predictions works and

how to bound the associated dynamic regret using predictive uncertainty. Sec-

ond, we discuss two different sources of regret, predictive uncertainty and the

number of planningwindows used. We propose to use a dynamic planningwindow

to balance the tradeoff with a regret bound derived. Third, we propose an iter-

ative algorithm to solve an offline problem by decoupling the temporal depen-

dency caused by switching cost. Lastly, an application in distributed streaming

system and Apache Kafka is discussed and used in our experiments.

9.4 Planning Using Predictions

Motivated by the use of predictions in smoothed online convex optimization65,194,19,

this section studies the connection of predictions and predictive uncertainties

to the dynamic regret. To conduct the regret analysis below, we require the
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(a) The learner has access to the
historical parameters {θs ∈ Rk}s<t.
We plot each entry of the parameter
prior to time t as a time series to
visualize the trend.
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(b) The learner predicts the future
parameters with uncertainty. Each
entry of the parameter corresponds to
a time series prediction problem.
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(c) Given the predictions, we choose
a dynamic planning window such
that the total uncertainty within the
window is of the same order of the
switching cost.
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(d) Given the predictions and the planning window, the planning problem reduces to an offline combinatorial problem.
We can use any combinatorial solver to find a solution to the offline problem. The solution is executed in the planning
window.

Figure 9.2: This flowchart summarizes how predictions are used to derive planning decisions. Fig. 9.2(a) shows the his‐
torical data prior to time t as multiple time series. Fig. 9.2(b) visualizes the predictions and uncertainty intervals learned
from the historical parameters. Fig. 9.2(c) demonstrates how to determine the dynamic planning window. Fig. 9.2(d)
solves an offline problem and executes accordingly.

following assumptions to hold:

Assumption 1. The cost function f(z, θ) is Lipschitz in θ ∈ Θ with Lipschitz constant L, i.e., ‖∂f(z,θ)∂θ ‖ ≤

L for all z ∈ Z and θ ∈ Θ.

Assumption 2. The switching cost is upper bounded in the feasible regionZ by B = supz,z′∈Z d(z, z′).

Assumption 1 quantifies the change of the cost functionwith respect to the

parameter. Assumption 2 quantifies the upper bound of switching cost.

9.4.1 Predictions with Uncertainty

Assumption 3. We assume there is a predictive model that is trained based on the revealed parame-

ters prior to time t. At time t, the predictive model takes the feature xt and produces a sequence of pre-
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dicted future parameters {θ(t)s }s∈N,s≥t with uncertainty {ε
(t)
s }s∈N,s≥t, where the distance between the

prediction θ(t)s and the true parameter θs at time s is bounded by ‖θs − θ(t)s ‖ ≤ ε
(t)
s .

We also assume that the predictive uncertainty ε(t)s increases in s due to the

difficulty of predicting further future parameters, while the predictive uncer-

tainty decreases in t due to more training data available to train the predictive

model.

9.4.2 Planning in Fixed TimeHorizon

We first analyze the regret in fixed time horizonwhenwe use the predictions

to plan accordingly. More precisely, at time t, given the previous decision zt−1

at time t − 1 and the prediction {θ(t)s }s∈N,s≥t of the future time steps, the learner

selects a planningwindow S ∈ N to plan for the next S time steps by solving a

minimization problem:

{zs}s∈{t,t+1,··· ,t+S−1} = argmin
zs∈Z ∀s

t+S−1∑
s=t

f(zs, θ(t)s ) + d(zs, zs−1). (9.1)

Solving the above finite time horizon optimization problem suggests a solu-

tion {zs}s∈{t,t+1,··· ,t+S−1} in the next S time steps to execute starting from time t.

This process is summarized in Fig. 9.2.

However, since the predictions are not perfect, the suggested solution might

not be the true optimal solutionwhen the true cost function parameters are

present. To compare with the true offline optimal solution using the true cost

function parameters, we express the offline solution by:

{z′s}s∈{t,t+1,··· ,t+S−1} = argmin
zs∈Zs ∀s

t+S−1∑
s=t

f(zs, θs) + d(zs, zs−1). (9.2)
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The only difference between Equation (9.1) and Equation (9.2) is that Equa-

tion (9.2) has full access to the future cost parameters, while Equation (9.1) uses

the predictions instead. We can define the difference by the following regret:

Regt+S−1
t (zt−1) =

(t+S−1∑
s=t

f(zs, θs) + d(zs, zs−1)

)
−

(t+S−1∑
s=t

f(z′s, θs) + d(z′s, z′s−1)

)
. (9.3)

We have the following bound on the regret:

Theorem 15. Under Assumption 1, the regret from time step t to t + S − 1 in Equation 9.3 is upper

bounded by: Regt+S−1
t (zt−1) ≤ 2L

t+S−1∑
s=t

ε
(t)
s . where L is the Lipschitz constant in Assumption 1.

Theorem 15 links the dynamic regret with the total predictive uncertainty

in finite time horizon. Notice that the switching cost terms in Equation (9.3)

are misaligned. Therefore, the proof requires not only the Lipschitzness of the

objective function f but also the optimality conditions of both the offline and

online planning problems to bound the total cumulative regret.

9.4.3 Infinite TimeHorizon andDynamic PlanningWindow

In the inifinite time horizon problem, the main idea is to reduce the problem to

multiple finite time horizon problems with different planningwindow sizes.

Recall that the predictive uncertainty often increases whenwe try to pre-

dict the parameters in the far future, i.e., ε(t)s is increasing in s. Since the regret in

Theorem 15 directly relates to the predictive uncertainty in the planningwin-

dow, it suggests keeping the planningwindow small to reduce the regret.

On the other hand, Theorem 15 assumes an identical initial decision zt−1 in

the online problem (Equation (9.1)) and offline problem (Equation (9.2)). In the
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Algorithm 10:Dynamic Future Planning
1 Input: Total time steps T. Maximal switching cost B. A predictive model that can

produce predictions {θ(t)t+s}s∈N at time t.
2 Initialization t = 1, # of planning windows I = 0.
3 while t ≤ T do
4 Get predictions {θ(t)s }s∈N,s≥t and predictive uncertainty {ε(t)s }s∈N,s≥t from the

model.
5 Find the largest S s.t. 2L

t+S−1∑
s=t

ε(t)s ≤ B.

6 Solve the optimization problem in Equation (9.1) with starting time t and
planning window S to get {zs}s∈{t,t+1,··· ,t+S−1}.

7 Execute zs and receive θs with cost f(zs, θs) + d(zs, zs−1) at time
s ∈ {t, · · · , t+ S− 1}.

8 Set t = t+ S, I = I+ 1.

infinite time horizon case, two algorithms may start from different initial de-

cisions, which may create an additional regret upper bounded by the maximum

switching cost B due to the misalignment of the initial decision. This observa-

tion suggests using larger planningwindows to avoid changing between differ-

ent planningwindows.

Therefore, we propose to balance two sources of regret by choosing the largest

planningwindow S such that:

2L
t+S−1∑
s=t

ε(t)s ≤ B (9.4)

The choice of the dynamic planningwindow can ensure that the total exces-

sive predictive uncertainty is upper bounded by cost B, while we also plan as far

as possible to reduce the number of planningwindows incurred during switch-

ing between different finite time horizons. The algorithm is described in Algo-
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rithm 10.

Theorem 16. Given Lipschitzness L in Assumption 1 and the maximal switching cost B in Assump-

tion 2, in T time steps, Algorithm 10 achieves cumulative regret upper bounded by 2BI, where I is the

total number of planning windows used in Algorithm 10.

Proof sketch. The regret of our algorithm comes from two parts: (i) regret from the discrepancy of

the initial decision zt−1 and the initial decision of the offline optimal z∗t−1 at time t, the start of every

planning window, and (ii) the incorrect predictions used in the optimization, which is bounded by

Theorem 15.

The regret in part (i) is bounded by d(zt−1, z∗t−1) ≤ B for every planning window because it

would take at most the maximal switching cost B to align different initial decisions before we can

compare. Thus the total regret in part (i) is bounded by BI, where I is the number of planning win-

dows executed in Algorithm 10.

The regret in part (ii) is bounded by Theorem 15 and the choice of the dynamic planning win-

dow in Equation (9.4). We have Regt+S−1
t (z∗t−1) ≤ 2L

t+Si−1∑
s=t

ε
(t)
s ≤ B for the i-th window. We

can take summation over all planning windows to bound the total regret in part (ii) by:
I∑

i=1
B = BI.

where combining two bounds concludes the proof.

Theorem 16 links the excessive dynamic regret to I, the number of planning

windows that Algorithm 10 uses. The next step is to bound the number of plan-

ningwindows I by the total time steps T. In Theorem 17, we first show that the

cumulative regret is always sublinear in Twhen the predictive uncertainty con-

verges to 0 when more data is collected.

Theorem 17. Under Assumption 1 and 2, if ε(t)t+s−1 = o(1) in t for all s ∈ N, i.e., ε(t)t+s−1 → 0 when

t→∞, then the cumulative regret of Algorithm 10 is sublinear in T.
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Proof. When the predictive uncertainty ε(t)s → 0 when t → ∞, the window size St that satisfies

2L
t+Si−1∑
s=t

ε
(t)
s ≤ B at time t converges to∞when t → ∞. This suggests that the number of

windows I required in total number of time steps T is strictly smaller than Θ(T), i.e., I = o(T). By

Theorem 16, the cumulative regret is upper bounded by 2BI = o(T), which is sublinear in T.

Theorem 17 guarantees that the cumulative regret of Algorithm 10 in The-

orem 16 is sublinear when the uncertainty converges to 0. This establishes the

no-regretness of Algorithm 10 in dynamic regret, which is only known to be pos-

sible in the smoothed online convex optimization but not known in the smoothed

online combinatorial optimization.

In some special cases of the predictive uncertainty, we can further provide a

more precise bound on the cumulative regret in the following corollary.

Corollary 1. If the uncertainty satisfies ε(t)t+s−1 = O( satb ), ∀s, t ∈ N with a, b ∈ R≥0, we have:

RegT ≤



O(T1− b
a+1 ) if b < a+ 1

O(logT) if b = a+ 1

O(log logT) if b > a+ 1

.

Corollary 1 is proved by providing a more concrete bound on the number of

planningwindows I in Theorem 16. Corollary 1 also quantifies the dependency

of the cumulative regret on the convergence rate of predictive uncertainty.

When b > 0, the cumulative regret is always sublinear, which matches our result

in Theorem 17.
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9.4.4 Lower Bound on The Cumulative Regret

In this section, we provide a lower bound on the expected cumulative regret,

showing that no randomized algorithm can achieve an expected cumulative re-

gret lower than a term similar to the upper bound.

Corollary 2. Given ε(t)t+s−1 = Ω( s
a

tb ) for all t, s ∈ N with 0 ≤ b, there exist instances such that for any

randomized algorithm, the expected regret is at least:

E[RegT] ≥



Ω(T1−b) if b < 1

Ω(logT) if b = 1

Ω(1) if b > 1

.

The lower bound suggests that there is no online learning algorithm that

can achieve a cumulative regret that is smaller than the regret in Corollary 2.

Specifically, we can see that the lower bound matches to the upper bound up to

a logarithm factorwhen a = 0, which guarantees the tightness of our upper

bound in Corollary 1 and Theorem 16 in the case of a = 0.

9.4.5 Extension to Probabilistic Bounds

In this paper, we primarily focus on the deterministic uncertainty bounds of the

predictive model. The same analyses in Section 9.4 also generalize to probabilis-

tic bounds of the predictive model that holdwith high probability, e.g., with

probability 1 − δi for each prediction in the i-th planningwindowwith size Si.

This kind of probabilistic bounds is commonly seen in the literature of prob-

ably approximately correct (PAC) learning, where the predictive error bound
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can be bounded by the number of training samples used in fitting the underlying

hypothesis class. In this case, the regret analysis in Theorem 15 needs to addi-

tionally consider the event when the uncertainty bounds do not hold, which

leads to an additional regret termwith orderO(Siδi) in Theorem 15, leading to a

linear term
I∑

i=1
Siδi in Theorem 16.

Fortunately, we can also select a decreasing failure probability δi in the later

planningwindowswhen more samples are collected. As long as we can guaran-

tee that the choice of uncertainty bound ε
(t)
s and the failure probability δi at

time t converge to 0 when more samples are collected, we can obtain a similar re-

sult as Theorem 17 showing the cumulative regret bound is sublinear in T. This

generalizes our results of deterministic bounds to probabilistic bounds.

9.5 Experiment Setup

In our experiment, we use the distributed streaming system problems with syn-

thetic data to compare our algorithmwith other baselines.

Cost function and switching cost In the distributed streaming system, the

learner maintains a bipartite assignment zzzt ∈ Zt ⊆ {0, 1}k×m between k topics

andm servers at time step t to process the streaming data, where zzzt,i,j = 1 denotes

that topic i is assigned to server j at time t to process the incoming traffic. Once

the decision zzzt is chosen at time t, a traffic vector θt ∈ Θ ⊆ Rk is revealed.

Given traffic θt and the chosen assignment zt, we define the cost function by

f(zt, θt) = ‖z⊤t θt‖∞ as the resulting server imbalance cost, which is also known as

makespan, i.e., the maximal number of messages a server needs to process across

all servers. Minimizing makespan is a well-studied strongly NP-complete prob-
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lem116 with various approximation algorithms136,191. Additionally, we define the

switching cost by d(z, yyy) := 111⊤k |z−yyy|uuu, where |z−yyy| ∈ Rk×m
≥0 represents the number of

switches of each pair of topic and server, and each entry of uuu ∈ Rm denotes the

unit switching cost associated to the corresponding server, which is randomly

drawn from a uniform distributionU[0, 2].

Data generation We assume that there are k = 10 topics to be assigned tom = 3

servers. We generate k time series, where each represents the trend of incoming

traffic {θt,i}t∈[T] of topic i ∈ [k] as the cost function parameter. Each time se-

ries is generated by a composition of sine waves, an autoregressive process, and

a Gaussian process to model the seasonality, trend, and the random process. We

use sine waves with periods of 24 and 2with amplitudes drawn fromU[1, 2] and

U[0.5, 1] to model the daily and hourly changes. We use an autoregressive pro-

cess AR(1) that takes the weighted sum of 0.9 of the previous signal and a 0.1 of

a white noise to generate the next signal. Lastly, we use a rational quadratic

kernel as the Gaussian process kernel.

Predictive model At time step t, to predict the incoming traffic θs ∈ Θ ⊆ Rk

for all s ≥ t, we collect all the historical data {θs′}s′<t prior to time t and apply

Gaussian process regression using the same rational quadratic kernel on the

historical data to generate predictions {θ(t)s }s≥t of the future time steps. We use

the standard deviation learned fromGaussian process regression as the uncer-

tainty {ε(t)s }s≥t.

Experimental setup For each instance of the load balancing problem, we as-

sume 50 historical data have been collected a priori to stabilize Gaussian pro-
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Figure 9.3: We compare the performance of our approaches with various baselines without using predictions. The first
takeaway is that methods using predictions largely outperform the methods without using predictions in Fig. 9.3(a). Sec‐
ondly, choosing the right planning window can achieve a better imbalance cost in Fig. 9.3(b) with a small increase in the
amount of switching cost in Fig. 9.3(c). All the algorithms are compared with an offline benchmark with full information.
The shaded area refers to the region within first standard deviation.

cess regression. We run different online algorithms for another 100 time steps

with hidden incoming traffic to measure the performance of online algorithms.

For each setup, we run 10 independent trials with different random seeds to es-

timate the average performance. All the results are plottedwith average value

and the corresponding standard deviation.

9.6 Experimental Results

We compare with our algorithmwith baselines in the literature of online con-

vex optimization:

• The static approach uses the initial assignment and never adjusts dynami-

cally.

• The Online Gradient Descent (OGD) updates the assignment by running

gradient descent on the cost function received previously and project

back to the discrete feasible region.

210



0

10

20

30

40

50

1 2 3 4 5 6 7Cu
m

ul
at

iv
e 

re
gr

et

Planning window size

iterative MIP

(a) Cumulative regret of methods using different planning
window sizes and different optimization approaches.

0

20

40

60

80

100

1 2 3 4 5 6 7 8O
pt

im
iza

tio
n 

tim
e 

(s
ec

)

Planning window size

iterative MIP

(b) Average running time per optimization of different
optimization methods with different planning window
sizes.

Figure 9.4: Comparison of different methods of solving Equation (9.1) and different planning window sizes.

• The Follow-The-Leader (FTL) aggregates all the cost functions received in

the past and finds the optimal decision that optimizes the historical cost

functions with switching cost.

• The Follow-The-Previous (FTP) optimizes the cost function in the last time

step.

• The short-term algorithm and the long-term algorithm both use predictions

butwith deterministic planningwindow sizes 1 and 10, respectively.

• The dynamic algorithm refers to our algorithm using a dynamic planning

window determined by the predictive uncertainty.

All the algorithms compare with an offline benchmarkwith full informa-

tion. Since the offline problem is NP-hard to solve, we split the offline problem

into chunks of size 5 and solve each of them optimally using mixed integer pro-

gram to get the offline performance.
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Effect of predictions In Fig. 9.3, we compare the performance of baselines (static,

OGD, FTL, FTP) with approaches using predictions with different planningwin-

dow sizes (short-term, long-term, dynamic). We first notice that OGD and FTL

performworse than FTP, which simply follows the previous cost function to

update solution. Due to the smoothness of the cost function parameters, opti-

mizing over the previous cost function can be a strong baseline.

Secondly, the methods using predictions further improve the solution qual-

ity. Using predictions can help leverage the seasonality and trend information,

and leave the uncertainty to the planning part. On the other hand, the OGD

and the FTL algorithms are designed to deal with the case without predictable

pattern and switching cost. The different purposes of algorithm design make

our algorithmmore applicable to our problem.

Lastly, in Fig. 9.3(a), we can see that the dynamic algorithm achieves the small-

est cumulative regret compared to the short-term algorithm and the long-

term algorithm using planningwindowwith size 1 and 10, respectively. Fig. 9.3(b)

and Fig. 9.3(c) further compare different performance metrics. We can see that

our approach of choosing proper planningwindow can achieve much smaller

server imbalance performance while requiring slightly more switching cost

only. Methods considering less future effect (FTL, FTP, short-term) can be reluc-

tant to switch and underestimate the benefit of switching, which results in a

smaller switching cost but larger imbalance cost. In contrast, the long-term

algorithm using larger planningwindow instead can be harmed by the increas-

ing predictive uncertainty, which leads to incorrect planning decision due to

the uncertainty. This result justifies the benefit of predictions and the right

planningwindow to balance between uncertainty and the switching cost.
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Effect of planningwindow size In Fig. 9.4(a), we compare the performance of

different choices of planningwindow size and different ways of solving the of-

fline problem in Equation (9.1). First, if we use mixed integer program (MIP), we

can see a clear improvement by using a larger planningwindow and a slightly de-

graded performance after window size exceeds 3. This empirical result matches

to our analysis of shorter and longer planningwindows, where the dynamic

planningwindow suggests a planningwindowwith size around 3. We also com-

pare with an iterative algorithm (Algorithm 16 in Appendix G.6) that is used to

approximately solve the NP-hard offline problem in Equation (9.1). The effect

of planningwindow size is less significant due to the suboptimality of the itera-

tive algorithm. But we can still see a similar benefit while using an appropriate

planningwindow size.

Fig. 9.4(b) compares the runtime of solving Equation (9.1) using different ap-

proaches and planningwindow sizes. Runtime of solving the optimization prob-

lem is important because decisions have to be made in real time. We can see that

MIP requires an exponentially increasing runtime because the combinatorial

structure and the linearly increasing number of binary variables when the win-

dow size grows. On the other hand, the iterative algorithm solves the problem

approximately and more efficiently. In short, theMIP algorithm achieves the

best performance butwith an expensive computation, while the iterative algo-

rithm scales better butwith a loss in the solution quality.
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9.7 Conclusion

This paper studies the smoothed online combinatorial optimization problem

with switching cost. We show thatwhen predictions with uncertainty are

available, we can bound the dynamic regret by the convergence of the predictive

uncertainty, which links the bound on dynamic regret to the predictability of

the incoming cost function parameters. Our analysis suggests using a dynamic

planningwindow dependent on the sequence of predictive uncertainties. Our

dynamic planningwindow can optimize the regret, where we empirically show

in our experiments that using a predictive model and an appropriate planning

window can further improve the performance.
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Part III

Optimization in Multi-agent Systems
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10
End-to-End Gradient Descent for

Stackelberg Games

10.1 Introduction

Stackelberg games are commonly adopted in many real-world applications, in-

cluding security150,114, wildlife conservation94, and commercial decisions made
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by firms228,26,358. Moreover, many realistic settings involve a single leader with

multiple self-interested followers such as wildlife conservation efforts with

a central coordinator and a team of defenders115,114; resource management in

energy26 with suppliers, aggregators, and end users; or security problems with a

central insurer and a set of vulnerable agents228,154. Solving Stackelberg games

with multiple followers is challenging in general39,70. Previous work often re-

formulates the followers’ best response as stationary and complementarity

constraints in the leader’s optimization280,40,39,70,59, casting the entire Stackel-

berg problem as a single optimization problem. This reformulation approach has

achieved significant success in problems with linear or quadratic objectives,

assuming a unique equilibrium or a specific equilibrium concept, e.g., follow-

ers’ optimistic or pessimistic choice of equilibrium 141,40,39. The reformulation

approach thoroughly exploits the structure of objectives and equilibrium to

conquer the computation challenge. However, when these conditions are not

met, reformulation approach may get trapped in low-quality solutions.

In this paper, we propose an end-to-end gradient descent approach to solve

multi-follower Stackelberg games. Specifically, we run gradient descent by

back-propagating through a sampledNash equilibrium reached by followers to

update the leader’s strategy. Our approach overcomes weaknesses of reformu-

lation approaches as (i) we decouple the leader’s optimization problem from the

followers’, casting it as a learning problem to be solved by end-to-end gradient

descent through the followers’ equilibrium; and (ii) back-propagating through

a sampledNash equilibrium enables us toworkwith arbitrary equilibrium selec-

tion procedures and multiple equilibria.

In short, we make several contributions. First, we provide a procedure for dif-
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ferentiating through aNash equilibrium assuming uniqueness (later we relax

the assumption). Because each follower must simultaneously best respond to ev-

ery other follower, the Karush–Kuhn–Tucker (KKT) conditions182 for each fol-

lower must be simultaneously satisfied. We can thus differentiate through the

system of KKT conditions and apply the implicit function theorem to obtain the

gradient. Second, we relax the uniqueness assumption and extend our approach

to an arbitrary, potentially stochastic, equilibrium selection oracle. We first

show that given a stochastic equilibrium selection procedure, using optimistic

or pessimistic assumptions to solve Stackelberg games with stochastic equilib-

ria can yield payoff to the leader that is arbitrarily worse than optimal. To

address the issue of multiple equilibria and stochastic equilibria, we formally

characterize stochastic equilibria with a concept we call equilibrium flow,

defined by a partial differential equation. The equilibrium flow ensures the

stochastic gradient computed from the sampledNash equilibrium is unbiased,

allowing us to run stochastic gradient descent to differentiate through the

stochastic equilibrium. We also discuss how to compute the equilibrium flow

either from KKT conditions under certain sufficient conditions or by solving

the partial differential equation. This paper is the first to guarantee that the

gradient computed from an arbitrary stochastic equilibrium sampled frommul-

tiple equilibria is a differentiable, unbiased sample. Third, to address the chal-

lenge that the feasibility of the leader’s strategy may depend on the equilibrium

reached by the followers (e.g., when a subsidy paid to the followers is condi-

tional on their actions as in270,224), we use an augmented Lagrangian method to

convert the constrained optimization problem into an unconstrained one. The

Lagrangian method combinedwith our unbiased Nash equilibrium gradient es-
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timate enables us to run stochastic gradient descent to optimize the leader’s

payoff while also satisfying the equilibrium-dependent constraints.

We conduct experiments to evaluate our approach in three different multi-

follower Stackelberg games: normal-form games with a leader offering sub-

sidies to followers, Stackelberg security games with a planner coordinating

multiple defenders, and cyber insurance games with an insurer and multiple cus-

tomers. Across all three examples, the leader’s strategy space is constrained

by a budget constraint that depends on the equilibrium reached by the follow-

ers. Our gradient-based method provides a significantly higher payoff to the

leader evaluated at equilibrium, compared to existing approaches which fail

to optimize the leader’s utility and often produce large constraint violations.

These results, combinedwith our theoretical contributions, demonstrate the

strength of our end-to-end gradient descent algorithm in solving Stackelberg

games with multiple followers.

10.2 RelatedWork

Stackelberg models with multiple followers Multi-follower Stackelberg

problems have received a lot of attention in domains with a hierarchical leader-

follower structure230,358,202,289,286. For example, mechanism and auction design

can be formulated as a Stackelberg gamewhere the mechanism design is the

leader and all the participating agents are the followers120,162,359,345. The leader

can also leverage machine learning, data, and predictions to design strategy

to play against the followers5,35,34 and optimize the leader’s payoff. However,

although single-follower normal-form Stackelberg games can be solved in
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polynomial time176,49, the problem becomes NP-hardwhen multiple followers

are present, evenwhen the equilibrium is assumed to be either optimistic or pes-

simistic40,70. Existing approaches40,26 primarily leverage the leader-follower

structure in a bilevel optimization formulation69, which can be solved by re-

formulating the followers’ best response into non-convex stationary and com-

plementarity constraints in the leader’s optimization problem287. Various op-

timization techniques, including branch-and-bound70 and mixed-integer pro-

grams40, are adopted to solve the reformulated problems. However, these re-

formulation approaches highly rely onwell-behaved problem structure, which

may encounter large mixed integer non-linear programs when the followers

have non-quadratic objectives. Additionally, these approaches mostly assume

uniqueness of equilibrium or a specific equilibrium concept, e.g., optimistic or

pessimistic, which may not be feasible115. Previous work on the stochastic equi-

librium drawn frommultiple equilibria in Stackelberg problems199 mainly fo-

cuses on the existence of an optimal solution, while ourwork focuses on ac-

tually solving the Stackelberg problems to identify the best action for the

leader.

In contrast, our approach solves the Stackelberg problem by differentiat-

ing through the equilibrium reached by followers to run gradient descent in

the leader’s problem. Our approach also applies to any stochastic equilibrium

drawn frommultiple equilibria by establishing the unbiasedness of the gradient

computed from a sampled equilibrium using a partial differential equation.

Differentiable optimization When there is only a single follower optimiz-

ing his utility function, differentiating through aNash equilibrium reduces
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to the framework of differentiable optimization251,11,3,32. When there are two

followers with conflicting objectives (zero-sum), differentiating through a

Nash equilibrium reduces to a differentiable minimax formulation200,201. Lastly,

when there are multiple followers, Li et al. 192 follow the sensitivity analysis

and variational inequalities (VIs) literature215,306,77,245 to express a unique Nash

equilibrium as a fixed-point to the projection operator in VIs to differentiate

through the equilibrium. Li et al. 196 further extend the same approach to struc-

tured hierarchical games. Nonetheless, these approaches rely on the uniqueness

of Nash equilibrium. In contrast, our approach generalizes to multiple equilib-

ria.

10.3 Stackelberg GamesWith a Single Leader andMultiple Followers

In this paper, we consider a Stackelberg game composed of one leader and n fol-

lowers. The leader first chooses a strategy π ∈ Πthat she announces, then

the followers observe the leader’s strategy and respond accordingly. When

the leader’s strategy π is determined, the followers form an n-player simultane-

ous gamewith n followers, where the i-th follower minimizes his own objective

function fi(zi, z−i, π), which depends on his own action zi ∈ Zi, other followers’

actions z−i ∈ Z−i, and the leader’s strategy π ∈ Π. We assume that each strat-

egy space is characterized by linear constraints: Zi = {zi | Aizi = bi,Gizi ≤ hi}.

We also assume perfect information—all the followers know other followers’

utility functions and strategy spaces.
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10.3.1 Nash Equilibria

We call zzz∗ = {z∗1 , z∗2, . . . , z∗n} aNash equilibrium if no follower has an incentive to

deviate from their current strategy, where we assume each followerminimizes*

his objective:

∀i : fi(z∗i , z∗−i, π) ≤ fi(zi, z∗−i, π) ∀zi ∈ Zi. (10.1)

As shown in Figure 10.1, when the leader’s strategy π is chosen and passed to an

n-player game composed of all followers, we assume the followers converge to a

Nash equilibrium zzz∗.

In the first section, we assume there is a unique Nash equilibrium returned by

an oracle zzz∗ = O(π). We later generalize to the case where there are multiple

equilibria with a stochastic equilibrium selection oracle which randomly out-

puts an equilibrium zzz ∼ O(π) drawn from a distributionwith probability density

function p(·, π) : Z → R≥0.

10.3.2 Leader’s Optimization Problem

When the leader chooses a strategy π and all the followers reach an equilib-

rium zzz∗, the leader receives a payoff f(zzz∗, π) and a constraint value g(zzz∗, π). The

goal of the Stackelberg leader is to choose an optimal π to maximize her utility

while satisfying the constraint.

Definition 15 (Stackelberg problems with multiple followers and unique Nash equilibrium). The

leader chooses a strategy π to maximize her utility function f subject to constraints g evaluated at the

*We use minimization formulation to align with the convention in convex optimization. In our experi-
ments, examples of maximization problems are used, but the same approach applies.
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Figure 10.1: Given leader’s strategy π, followers respond to the leader’s strategy and reach a Nash equilibrium zzz∗. The
leader’s payoff and the constraint depend on both the leader’s strategy π and the equilibrium zzz∗.

unique equilibrium zzz∗ induced by an equilibrium oracleO, i.e.,:

max
π

f(zzz∗, π) s.t. zzz∗ = O(π), g(zzz∗, π) ≤ 0. (10.2)

This problem is hard because the objective f(zzz∗, π) depends on the Nash equi-

librium zzz∗ reached by the followers. Moreover, notice that the feasibility con-

straint g(zzz∗, π) also depends on the equilibrium, which creates a complicated

feasible region for the leader’s strategy π.

10.3.3 Gradient Descent Approach

To solve the leader’s optimization problem, we propose to run gradient descent

to optimize the leader’s objective. This requires us to compute the following

gradient:

df(zzz∗, π)
dπ

= fπ(zzz∗, π) + fzzz(zzz∗, π) ·
dzzz∗

dπ
. (10.3)

The terms fπ, fzzz above are easy to compute since the payoff function f is explic-

itly given. The main challenge is to compute dzzz∗
dπ because it requires estimating

how theNash equilibrium zzz∗ reached by followers responds to any change in the
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leader’s strategy π.

10.4 Gradient of Unique Nash Equilibrium

In this section, we assume a unique Nash equilibrium reached by followers. Mo-

tivated by the technique proposed by Amos & Kolter 11, we show how to differ-

entiate through multiple KKT conditions to derive the derivative of a Nash

equilibrium.

10.4.1 Differentiating Through KKTConditions

Given the leader’s strategy π, we express the KKT conditions of follower iwith

dual variables λ∗i and ν∗i by:
∇zifi(z∗i , z∗−i, π) + G⊤

i λ
∗
i + A⊤

i ν∗i = 0

Diag(λ∗i )(Giz∗i − hi) = 0

Aiz∗i = bi.

(10.4)

Wewant to estimate the impact of π on the resultingNash equilibrium zzz∗. Sup-

posing the objective functions fi ∈ C2 are twice-differentiable, we can compute

the total derivative of the the KKT system in Equation 10.4 written in matrix

form:


∇2

zizifi ∇2
z−izifi G⊤

i A⊤
i

Diag(λ∗i )Gi 0 Diag(Giz∗i − hi) 0

Ai 0 0 0





dz∗i

dz∗−i

dλ∗i

dν∗i


=


−∇2

πzifidπ − dG⊤
i λ

∗
i − dA⊤

i ν∗i

−Diag(λ∗i )(dGiz∗i − dhi)

dbi − dAiz∗i

 .
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(d) Leader payoffs

Figure 10.2: Payoff matrices from Theorem 18 where the leader has 3 strategies. Follower payoffs for each strategy
in (a)–(c) where both followers receive the same payoff; leader payoffs in (d).

Since we assume the constraint matrices are constant, dGi, dhi, dAi, dbi can be

ignored. We concatenate the linear system for every follower i and move dπ to

the denominator:


∇zzzF G⊤ A⊤

Diag(λ∗)G Diag(Gzzz∗ − h) 0

A 0 0




dzzz∗
dπ

dλ∗
dπ

dν∗
dπ

 =


−∇πF

0

0

 (10.5)

where F = [(∇z1f1)⊤, . . . , (∇znfn)⊤]⊤ is a column vector, andG = Diag(G1,G2, . . . ,Gn),A =

Diag(A1,A2, . . . ,An) are the diagonalized placement of a list of matrices. In par-

ticular, the KKTmatrix on the left-hand side of Equation 10.5 matches the sensi-

tivity analysis of Nash equilibria using variational inequalities92,77.

Proposition 7. When the Nash equilibrium is unique and the KKTmatrix in Equation 10.5 is

invertible, the implicit function theorem holds and dzzz∗
dπ can be uniquely determined by Equation 10.5.

Proposition 7 ensures the sufficient conditions for applying Equation 10.5 to

compute dzzz∗
dπ . Under these sufficient conditions, we can compute Equation 10.3

using Equation 10.5.
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10.5 Gradient of Stochastic Equilibrium

In the previous section, we showed how to compute the gradient of a Nash equi-

libriumwhen the equilibrium is unique. However, this can be restrictive because

Stackelberg games with multiple followers often have multiple equilibria that

the followers can stochastically reach one. For example, both selfish routing

games in the traffic setting271 and security games with multiple defenders115

can have multiple equilibria that are reached in multiple independent runs.

In this section, we first demonstrate the importance of stochastic equilib-

rium by showing that optimizing over optimistic or pessimistic equilibrium could

lead to arbitrarily bad leader’s payoff under the stochastic setting. Second, we

generalize our gradient computation to the case with multiple equilibria, al-

lowing the equilibrium oracleO to stochastically return a sample equilibrium

from a distribution of multiple equilibria. Lastly, we discuss how to compute

the gradient of different types of equilibria and its limitation.

10.5.1 Importance of Stochastic Equilibrium

When the equilibrium oracle is stochastic, our Stackelberg problem becomes a

stochastic optimization problem:

Definition 16 (Stackelberg problems with multiple followers and stochastic Nash equilibria). The

leader chooses a strategy π to optimize her expected utility and satisfy the constraints in expectation

under a given stochastic equilibrium oracleO:

max
π

E
zzz∗∼O(π)

f(zzz∗, π) s.t. E
zzz∗∼O(π)

g(zzz∗, π) ≤ 0. (10.6)
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In particular, we show that if we ignore the stochasticity of equilibria by

simply assuming optimistic or pessimistic equilibria, the leader’s expected payoff

can be arbitrarily worse than the optimal one.

Theorem 18. Assuming the followers stochastically reach a Nash equilibrium drawn from a distri-

bution over all equilibria, solving a Stackelberg game under the assumptions of optimistic or pessimistic

equilibrium can give the leader expected payoff that is arbitrarily worse than the optimal one.

Proof. We consider a Stackelberg game with one leader and two followers (row and column player)

with no constraint. The leader can choose 3 different strategies, each corresponding to a payoff ma-

trix in Figure 10.2(a)–10.2(c), where both followers receive the same payoff in the entry when they

choose the corresponding row and column. In each payoff matrix, there are three pure Nash equi-

libria; we assume the followers reach any of them uniformly at random. After the followers reach a

Nash equilibrium, the leader receives the corresponding entry in the payoff matrix in Figure 10.2(d).

Under the optimistic assumption, the leader would choose strategy 1, expecting followers to

break the tie in favor of the leader, yielding payoff C. Instead, the three followers select a Nash equi-

libria uniformly at random, yielding expected payoff C+0−C
3 = 0. Under the pessimistic assump-

tion, the leader chooses strategy 2, anticipating and receiving an expected payoff of zero. Under the

correct stochastic assumption, she chooses strategy 3 with expected payoff C−ε+C−ε−ε
3 = 2

3C−ε�

0, which can be arbitrarily higher than the optimistic or pessimistic payoff when C→∞.

Theorem 18 justifies whywe need towork on stochastic equilibriumwhen the

equilibrium is drawn stochastically in Definition 16. In the following section,

we show how to apply gradient descent to optimize the leader’s payoff by differ-

entiating through followers’ equilibria with a stochastic oracle.
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10.5.2 Equilibrium Flow andUnbiased Gradient Estimate

Our goal is to compute the gradient of the objective in Equation 10.6: d
dπ Ezzz∗∼O(π) f(zzz∗, π).

However, since the distribution of the oracleO(π) can also depend on π, we can-

not easily exchange the gradient operator into the expectation.

To address the dependency of the oracleO(π) on π, we use p(zzz, π) to represent

the probability density function of the oracle zzz ∼ O(π) for every π. We want to

study how the oracle distribution changes as the leader’s strategy π changes,

whichwe denote by equilibrium flow as defined by the following partial differen-

tial equation:

Definition 17 (Equilibrium Flow). We call v(zzz, π) the equilibrium flow of the oracleO with proba-

bility density function p(zzz, π) if v(zzz, π) satisfies the following equation:

∂

∂π
p(zzz, π) = −∇zzz · (p(zzz, π)v(zzz, π)). (10.7)

This differential equation is similar to many differential equations of vari-

ous conservation laws, where v(zzz, π) serves as a velocity term to characterize

the movement of equilibria. In the following theorem, we use the equilibrium

flow v(zzz, π) to address the dependency ofO(π) on π.

Theorem 19. If v(zzz∗, π) is the equilibrium flow of the stochastic equilibrium oracleO(π), we have:

d
dπ E

zzz∗∼O(π)
f(zzz∗, π) = E

zzz∗∼O(π)
[fπ(zzz∗, π) + fzzz(zzz∗, π) · v(zzz∗, π)] . (10.8)
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Proof sketch. To compute the derivative on the left-hand side, we can expand the expectation by:

d
dπ E

zzz∗∼O(π)
f(zzz∗, π) =

d
dπ

∫
f(zzz, π)p(zzz, π)dzzz

=

∫
p(zzz, π)

∂

∂π
f(zzz, π) + f(zzz, π)

∂

∂π
p(zzz, π)dzzz

= E
zzz∗∼O(π)

fπ(zzz∗, π) +
∫

f(zzz, π)
∂

∂π
p(zzz, π)dzzz. (10.9)

We substitute the term ∂
∂πp = −∇zzz · (p · v) by the definition of equilibrium flow, and apply inte-

gration by parts and Stokes’ theorem† to the right-hand side of Equation 10.9 to get Equation 10.8.

More details can be found in the appendix.

Theorem 19 extends the derivative of Nash equilibrium to the case of stochas-

tic equilibrium randomly drawn frommultiple equilibria. Specifically, Equa-

tion 10.9 offers an efficient unbiased gradient estimate by sampling an equi-

librium from the stochastic oracle to compute the right-hand side of Equa-

tion 10.9. Theorem 19 also matches to Equation 10.3, where the role of equilib-

rium flow v(zzz∗, π) coincides with the role of dzzz∗
dπ in Equation 10.3.

10.5.3 How toDetermine Equilibrium Flow

The only remaining question is how to determine the equilibrium flow. Given

the leader’s strategy π, there are two types of equilibria: (i) isolated equilibria

and (ii) non-isolated equilibria. We first show that the solution to Equation 10.5

matches the equilibrium flow for every equilibrium in case (i) when the probabil-

ity of sampling the equilibrium is locally fixed.

†The analysis of integration by parts and Stokes’ theorem applies to both Riemann and Lebesgue inte-
gral. Lebesgue integral is needed when the set of equilibria forms a measure-zero set.
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Theorem 20. Given the leader’s strategy π and a sampled equilibrium zzz, if (1) the KKTmatrix at

(zzz, π) is invertible and (2) the equilibrium zzz is sampled with a fixed probability locally, the solution to

Equation 10.5 is a homogeneous solution to Equation 10.7 and matches the equilibrium flow v(π, zzz)

locally.

Theorem 20 ensures thatwhen the sampled equilibrium behaves like a unique

equilibrium locally, the solution to Equation 10.5 matches the equilibrium flow

of the sampled equilibrium. In particular, Theorem 20 does not require all equi-

libria are isolated; it works as long as the sampled equilibrium satisfies the suf-

ficient conditions. In contrast, the study in multiple equilibria requires global

isolation for the analysis towork. Together with Theorem 19, we can use the

solution to Equation 10.5 as an unbiased equilibrium gradient estimate and run

stochastic gradient descent accordingly.

Lastly, when the sufficient conditions in Theorem 20 are not satisfied, e.g.,

the KKTmatrix becomes singular for any non-isolated equilibrium, the solution

to Equation 10.5 does not match the equilibrium flow v(zzz, π). In this case, to com-

pute the equilibrium flow correctly, we rely on solving the partial differential

equation in Equation 10.7. If the probability density function p(zzz, π) is explicitly

given, we can directly solve Equation 10.7 to derive the equilibrium flow. If the

probability density function p(zzz, π) is not given, we can use the empirical equilib-

rium distribution p′(zzz, π) constructed from the historical equilibrium samples of

the oracle instead.

In practice, we hypothesize that even if the equilibria are not isolated and

the corresponding KKTmatrices are singular, solving degenerated version

of Equation 10.5 still serves as a good approximation to the equilibrium flow.

Therefore, we still use the solution to Equation 10.5 as an approximate of the
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equilibrium flow in the following sections and algorithms.

10.6 Gradient-Based Algorithm and Augmented LagrangianMethod

To solve both the optimization problems in Definition 15 andDefinition 16, we

implement our algorithmwith (i) stochastic gradient descent with unbiased

gradient access, and (ii) augmented Lagrangian method to handle the equilibrium-

dependent constraints. We use the relaxation algorithm307 as our equilibrium

oracleO. The relaxation algorithm is a classic equilibrium finding algorithm

that iteratively updates agents’ strategies by best responding to other agents’

strategies until convergence with guarantees179.

Since the leader’s strategy π is constrained by the followers’ response, we

adopt an augmented Lagrangian method43 to convert the constrained prob-

lem to an unconstrained one with a Lagrangian objective. We introduce a slack

variable sss ≥ 000 to convert inequality constraints into equality constraints

Ezzz∗∼O(π) g(zzz∗, π) + sss = 000. Thus, the penalized Lagrangian can be written as:

L(π, sss; λ) = − E
zzz∗∼O(π)

f(zzz∗, π) + λ⊤( E
zzz∗∼O(π)

g(zzz∗, π) + sss) +
μ
2

∥∥∥∥∥ E
zzz∗∼O(π)

g(zzz∗, π) + sss

∥∥∥∥∥
2

.

(10.10)

We run gradient descent on the minimization problem of the penalized Lagrangian

L(π, sss; λ) and update the Lagrangian multipliers λ every fixed number of itera-

tions, as described in Algorithm 11. The stochastic Stackelberg problemwith

multiple followers can be solved by running stochastic gradient descent with

augmented Lagrangian methods, where Theorem 19 ensures the unbiasedness of

the stochastic gradient estimate under the conditions in Theorem 20.
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Algorithm 11:Augmented LagrangianMethod
1 Initialization: π = πinit, learning rate γ, multipliers λ = λ0, slack variable

sss ≥ 000,K = 100
2 for iteration in {1, 2, . . . } do
3 Define the objective to be LagrangianL(π, sss; λ) defined in Equation 10.10
4 Compute a sampled gradient ofL by sampling zzz∗ ∼ O(π). Compute dzzz∗

dπ by
Equation 10.5

5 Update π = π − γ(∂L
∂π + ∂L

∂zzz∗
dzzz∗
dπ ), sss = max{sss− γ ∂L

∂sss , 000}
6 if iteration is a multiple of K then
7 Update λ = λ − μ(g(zzz∗, π) + sss)

8 Return: leader’s strategy π

10.7 Example Applications

We briefly describe three different Stackelberg games with one leader and mul-

tiple self-interested followers. Specifically, normal-form games with risk penalty

has a unique Nash equilibrium, while other examples can have multiple.

10.7.1 Coordination in Normal-FormGames

A normal-form game (NFG) is composed of n follower players eachwith a payoff

matrixUi ∈ Rm1×···×mn for all i ∈ [n], where the i-th player hasmi available pure

strategies. The set of all feasible mixed strategies of player i is zi ∈ Zi = {z ∈

[0, 1]mi | 111⊤z = 1}. On the other hand, the leader can offer non-negative subsidies

πi ∈ Rm1×···×mn
≥0 to each player i to reward specific combinations of pure strate-

gies. The subsidy scheme is used to control the payoff matrix and incentivize the

players to change their strategies.

Once the subsidy scheme π is determined, each player i chooses a strategy zi

and receives the expected payoffUi(zzz) and subsidy πi(zzz), subtracting a penalty
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termH(zi) =
∑

j zij log zij, the Gibbs entropy of the chosen strategy zzzi to repre-

sent the risk aversion of player i. Since the followers’ objectives are concave,

the risk aversion model yields a unique Nash equilibrium, which is known to be

quantal response equilibrium (QRE)214,200. Lastly, the leader’s payoff is given by

the social welfare across all players, which is the summation of the expected

payoffs without subsidies:
∑
i∈[n]

Ui(zzz). The subsidy scheme is subject to a budget

constraint B on the total subsidy paid to all players.

10.7.2 Security Games withMultiple Defenders

Stackelberg security games (SSGs) model a defender protecting a set of targets

T from being attacked. We consider a scenario with a leader coordinator and n

non-cooperative follower defenders each patrolling a subset Ti ⊆ T of the tar-

gets115. Each defender i can determine the patrol effort spent on protecting the

designated targets. We use 0 ≤ zi,t ≤ 1 to denote the effort spent on target t ∈ Ti

and the total effort is upper bounded by bi. Defender i only receives a penalty

Ui,t < 0 when target t ∈ Ti in her protected region is attacked but unprotected

by all defenders, and 0 otherwise.

Because the defenders are independent, the patrol strategies zzz can overlap,

leading to a multiplicative unprotected probability
∏
i
(1 − zi,t) of target t. Given

the unprotected probabilities, attacks occur under a distribution ppp ∈ R|T|,

where the distribution ppp is a function of the unprotected probabilities defined

by a quantal response model. To encourage collaboration, the leader coordi-

nator can selectively provide reimbursement πi,t ≥ 0 to alleviate defender i’s

loss when target t is attacked but unprotected, which encourages the defender

to focus on protecting specific regions, reducingwasted effort on overlapping
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patrols. The leader’s goal is to protect all targets, where the leader’s objec-

tive is the total return across over all targets
∑
t∈T

Utpt
∏
i
(1 − zi,t). Lastly, the

reimbursement scheme π must satisfy a budget constraint B on the total paid

reimbursement.

10.7.3 Cyber Insurance GamesWithMultiple Customers

We adopt the cyber insurance model proposed by Naghizadeh et al.228 and John-

son et al.154 to study how agents in an interconnected cyber security network

make decisions, where agents’ decisions jointly affect each other’s risk. There

are n agents (followers) facing malicious cyberattacks. Each agent i can deploy

an effort of protection zi ∈ R≥0 to his computer system, where investing in pro-

tection incurs a linear cost cizi. Given the efforts zzz spent by all the agents, the

joint protection of agent i is
n∑
j=1

wijzj with an interconnected effect parameter-

ized by weightsW = {wij}i,j∈[n]. The probability of being attacked is modeled by

σ(−
n∑
j=1

wijzj + Li), where σ is the sigmoid function and Li refers to the value of

agent i.

The Stackelberg leader is an external insurer who can customize insurance

plans to influence agents’ protection decisions. The leader can set an insurance

plan π = {Ii, ρi}i∈[n] to agent i, where ρi is the premium paid by agent i to receive

compensation Ii when attacked. Under the insurance plans and the intercon-

nected effect, agents selfishly determine their effort spent on the protection

zzz to maximize their payoff. On the other hand, the leader’s objective is the to-

tal premium subtracting the compensation paid, while the constraints on the

feasible insurance plans are the individual rationality of each customer, i.e.,

the compensation and premium must incentivize agents to purchase the insur-
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Figure 10.3: We plot the solution quality of the Stackelberg problems with multiple followers. In all three domains, our
gradient‐based method achieves significantly higher objective than all other approaches. In NFGs and SSGs, the base‐
lines cannot meaningfully improve upon the default strategy of the leader’s initialization due to the high dimensionality
of the parameter π; in cyber insurance games, SLSQP and reformulation both make some progress but still mostly with
lower utility.
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Figure 10.4: We plot the average budget constraint violation. Our gradient‐based approach maintains low violation
across all settings. SLSQP produces no violation in the first two domains because it fails to provide any meaningful
improvement against the leader’s initialization. Other baselines violate constraints more despite less performance im‐
provement.

ance plan by making the payoff with insurance noworse than the payoff with-

out. These constraints restrict the premium and compensation offered by the

insurer.

10.8 Experiments andDiscussion

We compare our gradient-based Algorithm 11 (gradient) against various baselines

in the three settings described above. In each experiment, we execute 30 indepen-

dent runs (100 runs for SSGs) under different randomly generated instances. We

run Algorithm 11 with learning rate γ = 0.01 for 5,000 gradient steps and update
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the Lagrange multipliers everyK = 100 iterations. Our gradient-based method

completes in about an hour across all settings—refer to the appendix for more

details.

Baselines We compare against several baselines that can solve the stochas-

tic Stackelberg problemwith multiple followers with equilibrium-dependent

objective and constraints. In particular, given the non-convexity of agents’ ob-

jective functions, SSGs and cyber insurance games can have multiple, stochastic

equilibria. Our first baseline is the leader’s initial strategy π0, which is a naive

all-zero strategy in all three settings. Blackbox optimization baselines include

sequential least squares programming (SLSQP)178 and the trust-regionmethod72,

where the equilibrium encoded in the optimization problem is treated as a black-

box that needs to be repeatedly queried. Reformulation-based algorithm 40,26 is

the state-of-the-art method to solve Stackelberg games with multiple follow-

ers. This approach reformulates the followers’ equilibrium conditions into

non-linear complementary constraints as a mathematical programwith equilib-

rium constraints205, then solves the problem using branch-and-bound and mixed

integer non-linear programming (we use a commercial solver, Knitro238). The

reformulation-based approach cannot handle arbitrary stochastic equilibria

but can handle optimistic or pessimistic equilibria. We implement the optimistic

version of the reformulation as our baseline, which could potentially suffer

from a performance drop as exemplified in Theorem 18.
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10.8.1 Solution Quality

In Figure 10.3(a) and 10.3(b), we plot the leader’s objective (y-axis) versus various

budgets for the paid subsidy (x-axis). Figure 10.3(c), shows the total revenue to

the insurer (y-axis) versus the risk aversion of agents (x-axis). Denoting the num-

ber of agents by n and the number of actions per agent bym, we have n = 3, 5, 10

andm = 10, 50, 1 in NFGs, SSGs, and cyber insurance games, respectively.

Our optimization baselines perform poorly in Figure 10.3(a) and 10.3(b) due to

the high dimensionality of the environment parameter π in NFGs (dim(π) = nmn)

and SSGs (dim(π) = nm), respectively. In Figure 10.3(c), the dimensionality of cy-

ber insurance games (dim(π) = 2n) is smaller, where we can see that SLSQP and

reformulation-based approaches start making some progress, but still less than

our gradient-based approach. The main reason that blackbox methods do not

work is due to the expensive computation of numerical gradient estimates. On

the other hand, reformulation method fails to handle the mixed-integer non-

linear programming problem reformulated from followers’ best response and

the constraints within a day.

10.8.2 Constraint Violation

In Figure 10.4, we provide the average constraint violation across different

settings. Blackbox optimization algorithms either become stuck at the initial

point due to the inexact numerical gradient estimate or create large constraint

violations due to the complexity of equilibrium-dependent constraints. The

reformulation approach also creates large constraint violations due to the

difficulty of handling large number of non-convex followers’ constraints un-
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der high-dimensional leader’s strategy. In comparison, our method can handle

equilibrium-dependent constraints by using an augmented Lagrangian method

with an ability to tighten the budget constraint violation under a tolerance

as shown. Although Figure 10.4 only plots the budget constraint violation, in

our algorithm, we enforce that the equilibrium oracle runs until the equilib-

rium constraint violation is within a small tolerance 10−6, whereas other algo-

rithms sometimes fail to satisfy such equilibrium constraints.

10.9 Conclusion

In this paper, we present a gradient-based approach to solve Stackelberg games

with multiple followers by differentiating through followers’ equilibrium to

update the leader’s strategy. Our approach generalizes to stochastic gradient

descent when the equilibrium reached by followers is stochastically chosen

frommultiple equilibria. We establish the unbiasedness of the stochastic gradi-

ent by the equilibrium flow derived from a partial differential equation. To our

knowledge, this work is the first to establish the unbiasedness of gradient com-

puted from stochastic sample of multiple equilibria. Empirically, we implement

our gradient-based algorithm on three different examples, where our method

outperforms existing optimization and reformulation baselines.
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Equilibrium Refinement in Security

Games with Arbitrary Scheduling

Constraints

11.1 Introduction

Stackelberg Security Games (SSG) have been successfuly applied in a variety of

domains to optimize the use of limited security resources against a strategic ad-

versary, with examples such as ARMOR for airport security252, IRIS for security

of flights146, ports281 and border58,173 patrolling, traffic enforcement269,268, and

transit network310. In SSG, the defender (security agencies) protects targets us-

ing limited security resources, but allocation of resources to targets must obey

many scheduling constraints. For example, some resources may be prohibited

from being assigned to certain targets or may be able to cover several targets

at the same time. After conducting surveillance of the defender strategy, the

strategic attacker (terrorists/criminals) may respondwith an optimal attack.

The standard solution concept adopted by SSG is the Strong Stackelberg Equi-

librium (SSE)189,315. Significant research in SSG has focused on providing efficient

algorithms to compute SSE under various constraints146,282. Recently, signifi-

cant research efforts have focused on devising strategies that performwell
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even under uncertainty in the adversary behavior. For example,351,236 investigate

adversary bounded rationality,151 considers execution uncertainty, and353 fo-

cuses on observational uncertainty. In most of these frameworks, the defender

either pays a price or slightly sacrifices her first priority target to ensure ro-

bustness against unpredictability in the adversary’s behavior. However, equilib-

rium refinement is an attractive alternative to provide robustness at no cost

by choosing, among all SSEs, the one that performs best in all possible events

although it has not received as much attention in the security game literature.

In most real-world applications, security resources must be allocated in the

presence of scheduling constraints. This is the case for example of the Federal

AirMarshal Service146, cyber security283,235, network security168,272, and more

generally in domains where security resources exhibit protection externali-

ties113,84. Yet, existing algorithms for equilibrium refinement in security games

do not apply in the presence of such constraints. The presence of scheduling

constraints complicates the problem of equilibrium refinement significantly,

since multiple equilibria are the norm for security games with schedules, and

even finding an arbitrary SSE176 is already a challenging task and prevents the

adoption of existing techniques15 in our problem. To the best of our knowl-

edge, the only paper to investigate the problem of equilibrium refinement un-

der scheduling constraints is93, wherein a heuristic algorithm is proposed to

conduct equilibrium refinement in the spatio-temporal domain. While the paper

provides a significant step in our research direction, it only addresses a special

case of scheduling constraints. In fact, we are not aware of any algorithm that

can cater for arbitrary scheduling constraints in security games to provide an

optimal refined equilibrium.
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In this paper, we focus on the equilibrium refinement on Security Problems

with ARbitrary Schedules (SPARS)146 , where we assign each resource to cover

one schedule and each schedule can cover multiple targets. We follow the same

dominance criteria mentioned in15 and introduce a counterexample showing

that in the presence of scheduling constraints, their method fails to return a

non-dominated equilibrium. We propose a newmethod to analyze the topology

of the attacker’s best response. This analysis provides us with key insights into

the structure of multiple equilibria. Leveraging these insights, we introduce

a new iterative (resp. recursive) algorithm that successfully returns the non-

dominated solution of zero-sum (resp. general-sum) SPARS. We show that in the

worst case, our iterative algorithm only necessitatesO(n3) calls to an LP or-

acle, where n corresponds to the number of targets and an LP oracle could be

either a linear program solver or a column generation method used to approxi-

mate the optimal solution. For the general-sum games, our recursive algorithm

successfully provides the optimal solutionwithO(n3) oracle calls for each sub-

problem.

Our experimental results demonstrate significant improvement on the ro-

bustness of our computed solution over existing approaches which also serves

to showcase the benefit of equilibrium refinement on SPARS. Moreover, our com-

putations show the average number of oracle calls isO(n2) in both zero-sum and

general-sum cases, illustrating practical scalability of our approach.
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11.2 Security Games with Arbitrary Schedules

In this work, we consider SPARS146. This is a two-player Stackelberg game played

between an attacker and a defender. The attacker’s pure strategy space is the

set of targets T that could be attacked, T = {t1, . . . , tn}. The attacker’s corre-

sponding mixed strategy a = 〈ai〉ni=1 is a vectorwhere ai represents the probabil-

ity of attacking ti. To protect targets, the defender has at her disposal a col-

lection of resources indexed by r ∈ R, where the setR collects all resources.

Each resource r can be assigned to a schedule s ⊆ T that covers multiple targets.

Associatedwith each resource r is the set of all possible schedules Sr ⊆ P(T) to

which it can be assigned. For notational convenience, we assume that ∅ ∈ Sr so

that a resource that is assigned to ∅ is effectively unused.

The defender’s pure strategy space J is the set of all joint schedules that as-

sign each resource to exactly one schedule. Thus,

J = {j ⊆ T : j = ∪r∈Rsr, sr ∈ Sr}

and target t ∈ T is covered by the joint schedule j ∈ J if and only if t ∈ j. For any

joint schedule, a target can be covered by more than one schedule, and a target

is considered covered (or protected) whenever the total number of resources

allocated to a schedule that covers the target equals or exceeds one (1).

Associatedwith each joint schedule j ∈ J is a vectorPj = 〈Pjt〉 ∈ {0, 1}n, where

Pjt indicates whether target t is covered in joint schedule j, i.e., Pjt = I(t ∈ j).

The defender’s mixed strategy x specifies the probabilities of playing each j ∈ J,

where xj ≥ 0,
∑

j∈J xj = 1. Let c = 〈ct〉nt=1 be the vector of coverage probabilities
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corresponding to x, where ct =
∑

j∈J Pjtxj, is the marginal probability of covering t

andwe canwrite c = P⊤x.

The payoffs of players are decided by the target chosen by the attacker and

whether the target is protected by the defender. The defender’s payoff for an

uncovered attack on target t is denoted byUu
d(t) and for a covered attackUc

d(t).

Similarly,Uu
a(t) andUc

a(t) are the attacker’s payoffs for the uncovered and cov-

ered cases, respectively. A widely adopted assumption in security games is that

Uc
d(t) > Uu

d(t) andUu
a(t) > Uc

a(t). In other words, covering an attack is benefi-

cial for the defender, while hurts the attacker. Given a strategy profile 〈x,a〉,

c = P⊤x, the expected utilities for both players are denoted as follows:

Ud(c,a)=
∑

t∈T
atUd(c, t),whereUd(c, t)= ctUc

d(t)+(1− ct)Uu
d(t)

Ua(c,a)=
∑

t∈T
atUa(c, t),whereUa(c, t)= ctUc

a(t)+(1− ct)Uu
a(t)

We adopt a Stackelberg model in which the defender acts first and the at-

tacker chooses a strategy after observing the defender’s mixed strategy. Stack-

elberg games are common in security domains where attackers can surveil the

defender strategy. The standard solution concept is SSE189,315, in which the

leader selects an optimal mixed strategy based on the assumption that the fol-

lowerwill choose an optimal response, breaking ties in favor of the leader.

There always exists an optimal pure-strategy response for the attacker, so we

restrict our attention to this set in this paper.
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11.3 Refinement of Strong Stackelberg Equilibrium in Security Games

Awell-known property of SSE is that all SSEs give the same expected payoff for

the leader (defender)52,189. The refinement of SSEs in security games is first dis-

cussed in15. They indicate that multiple equilibria exist frequently (especially

when there are resources, scheduling constraints) and in many of these solu-

tions, a portion of the resources are not efficiently used since they can be aban-

donedwithout affecting the expected utility. We follow the same dominance

criteria in15. The defender assumes there is an infinitesimal probability that the

attacker will deviate from his first choice to his second or other preferable

targets due to some unexpected events. But, evenwhen the attacker is forced

to deviate, he still behaves intelligently by choosing the next-best alternative

rather than acting randomly. Therefore, the defender will still need to effi-

ciently arrange the remaining resources to achieve her highest defender utili-

ties, sequentially, on the secondary targets.

Based on this model, our equilibrium concept can be written as following:

Given an SSE 〈x,a〉 and its coverage vector c, an ordering over targets is defined

such that target t(1) is the target thatwill be attacked by the unconstrained

attacker, and t(i) is the target thatwill be attacked by the constrained at-

tacker who cannot attack targets t(1), ..., t(i − 1). Utility vector v = 〈vi〉ni=1

represents the defender’s utilities where vi is the defender’s utility if target

t(i) is attacked, i.e., vi = ct(i)Uc
d(t(i)) + (1 − ct(i))Uu

d(t(i)). They define a dominance

relation between SSEs based on the utility vectors (if there is no ambiguity, we

will consistently use coverage vector c to refer the defender’s strategy x).

Definition 18. Given two SSEs 〈c,a〉, 〈c′,a′〉 and their utility vectors v and v′. We say that SSE
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〈c,a〉 dominates SSE 〈c′,a′〉 if there exists i such that i) vi > v′i and ii) vj = v′j for all j such that 1 ≤

j < i.

There is an iterative algorithm15 which can find the non-dominated SSE in the

security games without scheduling constraints. In those cases, the multiple

SSEs only exist when the best response target of the attacker is fully covered.

In the security games with scheduling constraints, multiple SSEs are more com-

monwhich motivates further needs for refinement. Unfortunately, in the pres-

ence of scheduling constraints, the method in15 may return a dominated SSE, as

illustrated by the following example.

Example 1 (Dominated SSEs in zero-sum SPARS games). Consider a zero-sum game with one re-

source R = {r1}, three targets T = {t1, t2, t3}, three schedules S1 = {s1, s2, s3}:

s1 = {t1, t3}, s2 = {t2}, s3 = {t3}

and with the following payoffs: Uc
a(t) = Uc

d(t) = 0 ∀ t ∈ T

Uu
d(t1) = −3,U

u
d(t2) = −3,U

u
d(t3) = −6, Uu

a(t) = −Uu
d(t) ∀t ∈ T

There are infinite SSE solutions. One possible SSE could be x1 = 〈 13 ,
1
3 ,

1
3〉 with the corresponding cov-

erage vector c1 = 〈 13 ,
1
3 ,

2
3 〉. The unsorted defender’s utility vector is given by d

1 = 〈−2,−2,−2〉 for

targets t1, t2, t3. Accordingly, the sorted utility vector is given by v1 = 〈−2,−2,−2〉. In this case, v1

and d1 are the same because the attacker feels indifferent between all of the targets. Applying the iter-

ative algorithm from15, given the arbitrary SSE x1, first we fix the coverage of one target among those

with the highest attacker expected utility (in this case {t1, t2, t3}). We assume the algorithm chooses

target t1 with c1 = 1
3 fixed and solves it iteratively, which returns the same strategy x1. However, the
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strategy x1 is dominated by strategy x2 = 〈23 ,
1
3 , 0〉 with coverage c

2 = 〈23 ,
1
3 ,

2
3 〉 providing a bet-

ter defender’s utility vector d2 = 〈−1,−2,−2〉 and v2 = 〈−2,−2,−1〉 sorted by the attacker’s

preference. Both x1,x2 provide the highest defender’s utility d∗ = −2.

Example 1 shows that a non-dominated solution can perform significantly

better than an arbitrary chosen SSE. In this case, if the attacker deviates from

his best response (target t2, t3) to the third preferable target (target t1), the de-

fender’s utility will be−2 and−1 for strategies x1 and x2, respectively, yielding

a 50% difference between refined and arbitrary SSE. *

11.4 Zero-sumGames

In this paper, we start with zero-sum games where the attacker is completely

opposite to the defender. We define the idea of minimal attack set, prove its

uniqueness, and show the SSE with minimal attack set is better than all the

other SSEs. We also show that the minimal attack set can be computed by a poly-

nomial number of calls to an oracle that solves linear programs. Accordingly,

we propose an algorithmwhich iteratively solves the minimal attack set of re-

stricted instance and fixes the coverage on the minimal attack set. We prove

that our algorithm requires at mostO(n3) oracle calls and returns a non-dominated

SSE.
*One intuitive heuristic algorithm of refinement, in the presence of constraints, is to eliminate those

inefficient schedules93. E.g., in the context of Example 1, schedule s1 = {t1} is dominated by s3 = {t1, t3}.
However, in the experiment part, we will show that the heuristic method provides only a little improvement
in the zero-sum games and it does not work in the general-sum games.
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11.4.1 Uniqueness ofMinimal Attack Set of SSE

Definition 19. Given a feasible SSE coverage vector c, theAttack Set Γ(c) := argmaxt∈T Ua(c, t)

is the best response of the attacker.

Definition 20. LetΨ := {T′ ⊆ T | ∃ SSE 〈c,a〉 : Γ(c) = T′} be the set of all possible attack sets of

SSEs.

In zero-sum games, the less optimal choices of the attacker (attack set) imply

the less targets that he can achieve his highest utility. Thus, for the defender,

the SSE with a smaller attack set is always better than the SSE with a larger

attack set.

Definition 21. AMinimal Attack Set is a set M ∈ Ψ such that any proper subset V ofM is not an

element ofΨ, i.e., V 6∈ Ψ for all V ⊂M.

Example 2. Consider a zero-sum game with one resource R = {r1}, T = {t1, t2, t3, t4, t5, t6}, and

four schedules S1 = {s1, s2, s3, s4}:

s1 = {t1, t2, t3}, s2 = {t2, t3, t4}, s3 = {t3, t4, t5}, s4 = {t6}

with the following payoffs: Uc
d(t) = 0 ∀ t ∈ T

Uu
d(t1) = −4,U

u
d(t2) = −4,U

u
d(t3) = −12

Uu
d(t4) = −4,U

u
d(t5) = −2,U

u
d(t6) = −4

There are infinite possible SSE solutions. For example, one possible SSE is x1 = 〈 14 ,
1
4 ,

1
4 ,

1
4〉 with cover-

age c1 = 〈 14 ,
1
2 ,

3
4 ,

1
2 ,

1
4 ,

1
4〉 which gives the defender’s utility vector d

1 = 〈−3,−2,−3,−2,−1.5,−3〉
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with d∗=−3. In this case, the best response of the attacker is Γ(c1)= {t1, t3, t6}. The following mixed

strategies also apply.

x2 = 〈 1
2
,
1
6
,
1
12
,
1
4
〉, c2 = 〈 1

2
,
2
3
,
3
4
,
1
4
,
1
12
,
1
4
〉

d2 = 〈−2,−4
3
,−3,−3,−11

6
,−3〉, Γ(c2) = {t3, t4, t6}

x3 = 〈3
8
,
5
24

,
1
6
,
1
4
〉, c3 = 〈3

8
,
7
12
,
3
4
,
3
8
,
1
6
,
1
4
〉

d3 = 〈−2.5,−5
3
,−3,−2.5,−5

3
,−3〉, Γ(c3) = {t3, t6}

x4 = 〈 1
4
, 0,

1
2
,
1
4
〉, c4 = 〈 1

4
,
1
4
,
3
4
,
1
2
,
1
2
,
1
4
〉

d4 = 〈−3,−3,−3,−2,−1,−3〉, Γ(c4) = {t1, t2, t3, t6}

Clearly, all the above strategies are SSE solutions. But the strategy x3 dominates all the others since

the defender’s utility on the third-preferable target of the attacker is−2.5, which is higher than all the

others’ utility−3. Actually, x3 is the non-dominated strategy.

If we explore all of the possible SSEs in Example 2, we will find that the above attack sets are exactly

all the possible attack sets:

Ψ = {{t3, t6}, {t1, t3, t6}, {t3, t4, t6}, {t1, t2, t3, t6}}

Therefore, the only minimal attack set is Γ(c3) = {t3, t6}.

Theorem 21 (Intersection Property in Zero-sumGames). For any two attack sets T1,T2 ∈ Ψ, we

have T1 ∩ T2 6=∅ and T1 ∩ T2∈Ψ.

Proof. Given T1 = Γ(c),T2 = Γ(c′), there are two cases:

(1) Γ(c) ∩ Γ(c′) 6= ∅. Consider another strategy c∗ = αc + (1 − α)c′ with α ∈ (0, 1). Since

c∗ = αc + (1 − α)c′ = αP⊤x + (1 − α)P⊤x′ = P⊤(αx + (1 − α)x′), c∗ is a feasible coverage
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vector of strategy x∗. It is easy to verify that Γ(c∗) = Γ(c) ∩ Γ(c′) as follows:

Ua(c, t)


= v if t ∈ Γ(c)

< v otherwise
Ua(c

′, t)


= v if t ∈ Γ(c′)

< v otherwise

Ua(c
∗, t) = αUa(c, t) + (1− α)Ua(c

′, t)


= v if t ∈ Γ(c) ∩ Γ(c′)

< v otherwise

where v is the expected attacker’s utility. Thus, we obtain an SSE strategy c∗ with a smaller attack set

Γ(c) ∩ Γ(c′).

(2) Γ(c) ∩ Γ(c′) = ∅. Similarly, we consider the feasible strategy c∗ = αc + (1 − α)c′ with

α ∈ (0, 1). It is easy to verify thatUa(c
∗, t) < v for any t ∈ T. In other words,Ud(c

∗, t) > −v

where−v is the highest expected utility of defender in SSE. This contradicts the optimality of SSE.

That means this case will never happen.

Consider the SSE strategy x3 in Example 2. It can be written as the combination

of SSE strategies x1,x2 by x3 = 1
2 · x

1 + 1
2 · x

2. As Theorem 21 states, the attack set

Γ(c3) = Γ(c1) ∩ Γ(c2).

Theorem 22. The minimal attack set M exists and is unique. Moreover, for each T′ ∈ Ψ, M ⊆ T′.

Proof. (1) Existence: Clearly,M =
⋂

T′∈Ψ T′ 6= ∅ is a minimal attack set. (2) Uniqueness: If there

are two different minimal attack sets, then by Theorem 21, their intersection will be non-empty and

is a smaller attack set, which is a contradiction.

In Example 2, the minimal attack set is exactly Γ(c3) = {t3, t6}which is the at-

tack set of the non-dominated solution x3.
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11.4.2 An Iterative Algorithm

In zero-sum games, an SSE with a smaller attack set is better (for the defender)

than an SSE with a larger attack set. This motivates us to find the minimal at-

tack set. Moreover, the minimal attack set is included in every attack set, which

implies that we can fix the common coverage on the minimal attack set and solve

the remaining subproblem. For this aim, we define the restricted SPARS.

Definition 22. Given a SPARS instance g, we denote by gc,T′ the restricted game with respect to cover-

age vector c and T′ ⊂ T. The restricted SPARS instance gc,T′ is the same as SPARS instance g except

the following rules:

(R1) The attacker is forbidden to attack targets in T′.

(R2) The defender’s coverage on t ∈ T′ is fixed to be ct.

(R3) The defender must cover targets t∈T\T′ enough such that the attacker utility on these targets is at

mostmint′∈T′ Ua(c, t′).

The SSE in a restricted game follows the same definition as in the original

SPARS. Rule (R1) guarantees that the attacker will only focus on targets T\T′.

Rule (R2) guarantees that solving the restricted SPARSwill not alter the exist-

ing coverage on T′ which is already known. Rule (R3) requires the defender to

cover targets t ∈ T\T′ enough such that the targets in T\T′ are not more prefer-

able for the attacker than those in T′. In addition, we define the restricted attack

set by Γ(c′,T′) = argmaxt∈T\T′ Ua(c
′, t), where c′ is a feasible solution to gc,T′ . Note

that the restricted attack set is the attack set for the restricted instance gc,T′ ,

thus they share the same properties of attack sets. Accordingly, we can define

theminimal restricted attack set for the restricted instance.
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Algorithm 12: Iterative Algorithm for Zero-sumGames
1 Parameter: SPARS instance g, T′ ← ∅, c← 0
2 while |T′| < |T| do
3 c← a restricted SSE strategy in the instance gc,T′

4 M← the minimal restricted attack set of instance gc,T′

5 T′ ← T′ ∪M
6 Return: non-dominated SSE strategy c

Algorithm 12 depicts the procedure of equilibrium refinement in zero-sum

games. We compute an arbitrary SSE strategy, fix the coverage on the minimal

restricted attack set (we will discuss how to find the minimal attack set in Sec-

tion 11.4.3), and iteratively solve the remaining restricted subproblem. The fol-

lowing theorems guarantee the correctness of Algorithm 12.

Proposition 8. Given a restricted SPARS instance gc,T′ , its minimal restricted attack set M, and

an SSE c∗ of gc,T′ , we have the following statement: the strategy c′ is a feasible defender coverage of

gc∗,T′∪M (satisfies Rules (R2), (R3)) if and only if c′ is an SSE of gc∗,T′ , which provides a mapping

between two different restricted instances.

Proof. (⇐) Since both c′ and c∗ are SSE strategies andM is the minimal restricted attack set of

gc,T′ , both c′ and c∗ share the same value on T′ ∪M, which satisfies the Rule (R2) of gc∗,T′∪M.

Since c′ is an SSE of gc,T′ , the attacker’s utility on t ∈ T′ with SSE strategy c′ must be greater

than all the others t 6∈ T′. By the definition of minimal restricted attack setM, the best response

of the attacker, it implies that target t ∈ Mmust have the highest attacker’s utility among T\T′.

Therefore, the attacker utility on t ∈ T′ ∪M is no less than the others’ utilities, which satisfies Rule

(R3) of gc∗,T′∪M.

(⇒)Assume that c′ is a solution of gc∗,T′∪M. By the definition of restricted instance gc∗,T′∪M,

the coverage c′ on targets in T′ ∪ M has been fixed to be the same as c∗, and Rule (R3) forces all

252



the other targets outside of T′ ∪M to have a smaller attacker’s utility. It implies that the strategy c′

achieves the highest attacker’s utility on minimal attack setM in the restricted instance gc,T′ , thus

an SSE in the restricted instance gc,T′ .

Theorem 23. The output of Algorithm12 is a non-dominated SSE.

Proof. Denote the sequences of minimal restricted attack sets and updated coverage in Algorithm

12 asM1, ...,Mk and c1, ..., ck, respectively (W.L.O.G letM0 = ∅, c0 = 0). According to Algo-

rithm 12, ci is an SSE,Mi is the minimal attack set of gci−1,M1∪...∪Mi−1 .

By Proposition 8, ∀i ∈ {1, 2, ..., k}we have: given a restricted instance gck−i,M1∪M2∪...∪Mk−i , its

minimal restricted attack setMk−i+1 and its SSE ck−i+1, the strategy c′ is a feasible coverage of the

instance gck−i+1,M1∪M2∪...∪Mk−i∪Mk−i+1 if and only if c′ is an SSE of the instance gck−i+1,M1∪M2∪...∪Mk−i .

According to the above argument, ∀i ∈ {1, 2, ..., k}we have: ck is the non-dominated solu-

tion of gck−i+1,M1∪M2∪...∪Mk−i+1⇔ ck is the non-dominated SSE of gck−i+1,M1∪M2∪...∪Mk−i⇔ ck

is the non-dominated SSE of gck−i,M1∪M2∪...∪Mk−i (since ck−i and ck−i+1 share the same coverage

onM1 ∪M2 ∪ . . . ∪Mk−i)⇔ ck is the non-dominated solution of gck−i,M1∪M2∪...∪Mk−i (non-

dominated solution must be an SSE). When i = 1, ck is the only solution (thus non-dominated) so-

lution of gck,M1∪M2∪...∪Mk (sinceM1∪M2∪. . .∪Mk = T). By induction, ck is the non-dominated

solution of gck−i,M1∪M2∪...∪Mk−i . By letting i = k, the statement is exactly our conclusion: ck is the

non-dominated solution of g.

11.4.3 Computing theMinimal Attack Set

In the previous section, we showed that a non-dominated SSE strategy can be ob-

tained by iteratively computing SSE strategies of restricted SPARS instances and

their corresponding minimal restricted attack sets. We now propose a method
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for finding the unique minimal attack set.

max
c,x

Ud(c, t) (11.1a)

s.t. Ua(c, t) ≥ Ua(c, t′) ∀t′ 6= t (11.1b)

P⊤x = c (11.1c)∑
j∈J

xj = 1. (11.1d)

First, multiple LPs method71 is commonly used to compute an SSE to security

games. Each LP (11.1) corresponds to one target t and maximizes the defender’s ex-

pected utility on this target under the restriction that t is in the best response

for the attacker.

Definition 23. Given target t, let Nt be the smallest tight constraint set with Nt := {t′ ∈ T |

∀SSE strategies c with t ∈ Γ(c),Ua(c, t) = Ua(c, t′),Ud(c, t) = Ud(c, t′)}.

Given target t and its LP (11.1), we are interested in which constraints are nec-

essary and always active for all optimal solutions (SSEs), which is the smallest

tight constraint setNt. Our main idea is to slightly alter the constraint of tar-

get t′ in LP (11.1) to

Ua(c, t) ≥ Ua(c, t′) + ε

where ε is a small positive number (e.g., constant times of numerical error). If the

modified version of the linear program still provides the same maximum objec-

tive value (up to numerical error), then the constraint with respect to t′ is not

active, which means t′ 6∈ Nt. If it provides a smaller objective value or the lin-

ear program is infeasible, that means the constraint with respect to t′ is always

active, which implies t′ ∈ Nt.
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The procedure of Algorithm 13 is to find out the smallest tight constraint

setNt under the restriction that t is the best response of attacker. EveryNt can

be solved by at most nmodified linear programs. Wewill show that the inter-

section of all the smallest tight constraint sets is exactly the minimal attack

set.

Algorithm 13:Algorithm for FindingMinimal Attack Set
1 Parameter: SPARS instance gc,T′

2 solve an SSE c∗ using the multiple linear programmethod and record the primal,
dual solution of each LP

3 for t ∈ Γ(c∗) do
4 given the dual solution d′ and primal solution c′ of LP (11.1)
5 Nt ← At ← {t′ | d′t′ 6= 0} ∪ {t},Bt ← Γ(c′)\At
6 for t′ ∈ Bt do
7 solve modified LP (11.1) with one more constraintUa(c, t)≥Ua(c, t′)+ε
8 if the objective value changes then
9 Nt ← Nt ∪ {t′}

10 Return: minimal restricted attack set
⋂

t∈Γ(c∗)
Nt, coverage c∗

Proposition 9. Given the dual solution d′ of LP (11.1), the set {t′|d′
t′ 6= 0} is contained in the

smallest tight constraint set Nt.

Proposition 10. Given a primal solution c′ of LP (11.1), every target t 6∈ Γ(c′) is not contained in

the smallest tight constraint set.

Proposition 9 and 10 help eliminate unnecessary enumerations in Algorithm

13. In the average case, there are only a constant number of targets in Bt (in Al-

gorithm 13) needed to be enumerated But in the worst case, we still need to run

through at most n targets. The following theorems guarantee correctness of

Algorithm 13.
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Proposition 11. Given target t, Nt =
⋂

T′∈Ψ:t∈T′ T′. Moreover, given arbitrary SSE coverage c′,⋂
t∈Γ(c′)Nt =

⋂
T′∈Ψ T′, which is the minimal attack set M.

Proof. First, for each SSE solution c, the targets in Γ(c)\{t} are exactly the targets which make the

constraints (11.1b) tight. Thus, the smallest tight constraints are the same as the intersection of at-

tack sets containing t as the best response for the attacker, which impliesNt =
⋂

T′∈Ψ:t∈T′ Γ(c).

Second, since Γ(c′) contains at least one target t in the minimal attack set, the minimal attack setM

must appear in one of the T′ ∈ Ψ, t ∈ T′, which implies
⋂

t∈Γ(c′)Nt =
⋂

t∈Γ(c′)
⋂

T′∈Ψ:t∈T′ Γ(c) =

M =
⋂

T′∈Ψ Γ(c).

Theorem 24. Algorithm 13 correctly returns the minimal restricted attack set of gc,T′ .

We can employ Algorithm 13 in Algorithm 12 to find the minimal attack set.

This provides our iterative algorithm for finding a non-dominated SSE strategy

in zero-sum games. In order to find every smallest constraint setNt, we need to

enumerate all target pairs (t, t′). Therefore, the number of oracle calls of each

iteration isO(n2), where oracles are used to solve variants of LP (11.1). There are

at most n iterations, thus the overall runtime isO(n3) oracle calls.

Theorem 25. Algorithm 12 correctly solves the non-dominated SSE in O(n3) oracle calls.

11.5 General-sumGames

In this section, we discuss the refinement of SSEs in general-sum games. The method

is similar to the zero-sum case, but one of the crucial difficulties is that there

is no longer a direct relation between the defender and attacker utilities. Sev-

eral useful properties of zero-sum games do not hold either. For example, in the

general setting the intersection of two attack sets may not be an attack set,
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leading to non-uniqueness of the minimal attack set. This implies a significant

growth of time complexity.

11.5.1 Non-Uniqueness ofMinimal Attack Set

In Section 11.4, Theorem 21 tells us that in zero-sum games the intersection of

two attack sets is still an attack set. The following example shows that it is

not necessarily true in general-sum games.

Example 3. Consider a game with one resource R = {r1}, five targets T = {t1, t2, t3, t4, t5}, and

three schedules S1 = {s1, s2, s3}:

s1 = {t1, t2}, s2 = {t3, t4}, s3 = {t3, t4, t5}

We have the following payoffs:

t1 : Uc
d(t1) = 10,Uu

d(t1) = −10,U
u
a(t1) = 10,Uc

a(t1) = −10

t2 : Uc
d(t2) = 0, Uu

d(t2) = −5, Uu
a(t2) = 5, Uc

a(t2) = −5

t3 : Uc
d(t3) = 6, Uu

d(t3) = −4, Uu
a(t3) = 3, Uc

a(t3) = −7

t4 : Uc
d(t4) = 3, Uu

d(t4) = −2, Uu
a(t4) = 4, Uc

a(t4) = −8.5

t5 : Uc
d(t5) = 4, Uu

d(t5) = −1, Uu
a(t5) = 0, Uc

a(t5) = −5

Since the schedule s2 is completely contained in the schedule s3, the intuition tells us choosing s3 will

always be better than choosing s2. However, this is wrong in this case. In order to show that, we list some

SSE solutions with unsorted attacker utility f , unsorted defender utility d, and defender utility v
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Figure 11.1: The attack sets in Example 3

sorted in attacking order:

x1 = 〈0.5, 0.1, 0.4〉, f 1 = 〈0, 0,−2,−2.25,−2〉

d1 = 〈0,−2.5, 1, 0.5, 1〉, v1 = 〈0,−2.5, 1, 1, 0.5〉

x2 = 〈0.6, 0, 0.4〉, f2 = 〈−2,−1,−1,−1,−2〉

d2 = 〈2,−2, 0, 0, 1〉, v2 = 〈0, 0,−2, 2, 1〉

x3 = 〈0.6, 0.2, 0.2〉, f 3 = 〈−2,−1,−1,−1,−1〉

d3 = 〈2,−2, 0, 0, 0〉, v3 = 〈0, 0, 0,−2, 2〉

Γ(c1) = {t1, t2}, Γ(c2) = {t2, t3, t4}, Γ(c3) = {t2, t3, t4, t5}

It can be verified that these are all the possible attack sets. We have that v3 dominates v2 and v1,

which implies partially using inefficient schedule s2 will result in better performance. Figure 11.1(a)

illustrates all the attack sets in Example 3, which shows that the minimal attack set is not unique in

general-sum games.
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11.5.2 Best Attack Set

We introduce the notion of best attack set. Similar to Section 11.4, we iteratively

fix the coverage on the minimal best attack set: those targets the attacker will

actually attack, up to breaking ties.

Definition 24. Given an SSE coverage vector c, the Best Attack Set Γb(c) is the set of targets in the

best response of the attacker which also achieves the highest defender utility.

In Example 3, as shown in Figure 11.1(b), the best attack sets are respectively

Γb(c1) = {t1}, Γb(c2) = {t3, t4}, Γb(c3) = {t3, t4, t5}.

Definition 25. LetΨb = {T′ ⊆ T | ∃ SSE 〈c,a〉 : T′ = Γb(c)} be the set of all possible best attack

sets of SSEs.

Theorem 26 (Intersection Property in General-sum Games). For any two attack sets Γ(c), Γ(c′) ∈

Ψ (Definition 20), if Γb(c) ∩ Γb(c′) 6= ∅, we have Γ(c) ∩ Γ(c′) ∈ Ψ, Γb(c) ∩ Γb(c′) ∈ Ψb.

Proof. Given two sets Γ(c), Γ(c′) ∈ Ψ, their corresponding SSEs 〈c,a〉 and 〈c′,a′〉with Γb(c) ∩

Γb(c′) 6= ∅, we follow a similar proof idea as in Theorem 21. Consider another strategy c∗ =

αc + (1 − α)c′ with α ∈ (0, 1). c∗ is a feasible coverage vector with strategy x∗ = αx + (1 −

α)x′. Moreover, they share some common targets in their best attack sets and thus the same highest

attacker’s utilities va and the highest defender’s utility vd. It is easy to verify that Γ(c∗) = Γ(c) ∩

Γ(c′), Γb(c∗) = Γb(c) ∩ Γb(c′) as follows:

Ua(c, t)


= va if t ∈ Γ(c)

< va otherwise
Ua(c

′, t)


= va if t ∈ Γ(c′)

< va otherwise
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Ua(c
∗, t) = αUa(c, t) + (1− α)Ua(c

′, t)


= va if t ∈ Γ(c) ∩ Γ(c′)

< va otherwise
(11.2)

Ud(c, t)


= vd if t ∈ Γb(c)

< vd if t ∈ Γ(c)\Γb(c)
Ud(c

′, t)


= vd if t ∈ Γb(c′)

< vd if t ∈ Γ(c′)\Γb(c′)

Ud(c
∗, t) = αUd(c, t) + (1− α)Ud(c

′, t)

⇒ Ud(c
∗, t)


= vd if t ∈ Γb(c) ∩ Γb(c′)

< vd if t ∈ (Γ(c) ∩ Γ(c′))\(Γb(c) ∩ Γb(c′))
(11.3)

Equation (11.2) guarantees the attack set of strategy c∗ is Γ(c) ∩ Γ(c′). Equation (11.3) guar-

antees that among the attack set Γ(c) ∩ Γ(c′), strategy c achieves the highest defender’s utility on

target t if and only if the target t ∈ Γb(c) ∩ Γb(c′)which is non-empty. Thus, the best attack set of

strategy c∗ is Γb(c∗) = Γb(c) ∩ Γb(c′).

Theorem 26 implies that the intersection of attack sets is still an attack set

if the intersection of their best attack sets is non-empty. But if the intersection

of their best attack sets is empty, the combining strategy c∗ is no longer an SSE,

and thus the intersection of attack sets may not be an attack set. Based on The-

orem 26, we can define the minimal best attack set:

Definition 26. AMinimal Best Attack Set is a best attack set M ∈ Ψb such that any proper subset

V ⊂M is not an element ofΨb, that is V 6∈ Ψb for all V ⊂M ∩ V}.

Proposition 12. Given any SSE strategy c, its attack set Γ(c)must contain one of the minimal best

attack sets.
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11.5.3 A Recursive Algorithm

Based on the above theorems and paralleling Algorithm 12, Algorithm 14 iter-

ates through all minimal best attack setsM and finds the non-dominated SSE in

each restricted instances gc,T′∪M. After enumerating all the possible solutions,

it returns the best one. The following results guarantee correctness of Algo-

rithm 14.

Algorithm 14:RefinedSSE(g)
1 FunctionRefinedRestrictedSSE(g, c,T′)
2 Parameter: restricted SPARS instance gc,T′ , cList← []

3 for each minimal best attack set M of gc,T′ do
4 c∗ ← an SSE of instance gc,T′∪M

5 c′ ←RefinedRestrictedSSE(g, c∗,T′ ∪M)
6 add c′ into cList
7 return non-dominated coverage vector among cList
8 returnRefinedRestrictedSSE(g, c = 0,T′ = ∅)

Proposition 13. AssumeM is a minimal restricted best attack set of gc,T′ and c∗ is an SSE strategy

of gc,T′ containingM in the attack set. Then, strategy c′ is an SSE of gc,T′ containingM if and only if

c′ is a solution of gc∗,T′∪M.

Theorem 27. The output of Algorithm 14 is a non-dominated SSE.

Proofs are similar to those of Proposition 8 and Theorem 23.

11.5.4 ComputingMinimal Best Attack Sets

Similar to Section 11.4, we next propose an efficient method to find all the mini-

mal best attack sets. Following the notations in Section 11.4.3, it can be shown
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that in general-sum games, solving the modified LPs (11.1) with respect to tar-

get twill yield the smallest tight constraint setNt. The following proposition

gives an alternative expression ofNt (the proof is similar to that of Theorem 11):

Proposition 14. Nt =
⋂

T′∈Ψb:t∈T′ T′

The setNt provides the information between targets: if target t is included

in the best attack set T′, then all the targets inNt must be included in the best

attack set T′ too. We can then focus on those targets which could be in the best

attack set.

Definition 27. Let Q be the set of targets which achieve the best defender utility in some SSE strategies.

The setQ is equivalent to the set of targets t for which LP (11.1) provides the

highest defender utility and that can be derived while solving the n linear pro-

grams. We construct a directed graphG = (V,E) to represent the relations

between these targets. LetV = Q be the set of all targets which could achieve

the highest defender’s utility. Let E =
⋃

t∈Q{(t, s)|s ∈ Nt, s ∈ Q, s 6= t}where (t, s) is

the directed edge from t to s.

Example 4 (Continued from Example 3). With the help of Figure 11.1(b), we can visualize the sets

{Nt|t ∈ Q} (Q = {t1, t3, t4, t5}):

Nt1 = {t1, t2},Nt3 = {t3, t4},Nt4 = {t3, t4},Nt5 = {t3, t4, t5}.

We can draw a corresponding graph (Figure 11.2(a)) according to these sets. Figure 11.2(b) depicts all

of the minimal best attack sets. Notice that the definition of edges implies the inclusion relationship:

e = (t, s) ∈ E if and only if t ∈ Q, and any attack set including target t must also include target s.
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Figure 11.2: The minimal best attack sets in the Example 3

Proposition 15. Directed relations are transitive in graph G = (V,E), i.e., if (t, u) and (u, v) ∈ E,

then (t, v) ∈ E.

The transitive rule has an intuitive meaning: if a best attack set is such that

if t is included, so must u; and if u is included, so must v; then if it includes t, it

must also include v.

Lemma 2. M is a minimal best attack set if and only if M is a maximal clique without outgoing edge

directed fromM to any other target in Q\M.

Proof. (⇒) ∀t ∈ M, by Theorem 14,Nt =
⋂

T′∈Ψb:t∈T′ T′. Notice that the minimal best attack set

M satisfiesM ∈ Ψb, t ∈M, thusNt ⊆M. Moreover, by Theorem 26,Nt is the intersection of best

attack sets, which implies thatNt is a best attack set. But we haveNt ⊆ M andM is a minimal best

attack set. By the definition of the minimal best attack set, the only possibility isNt = M ∀ t ∈ M,

which implies thatM is a maximal clique without outgoing edges. (⇐) SupposeM is a maximal

clique without any outgoing edge. ThenNt = M ∀ t ∈ M. SinceNt is the intersection of best

attack sets,M = Nt is also a best attack set. Moreover, if a best attack setV includes any vertex

t ∈M,Vmust includeNt = M (sinceNt =
⋂

T′∈Ψb:t∈T′ T′,V satisfiesV ∈ Ψb : t ∈ V). Next, we
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derive a contradiction. Suppose there is a proper subsetV ⊂Mwhich is also a best attack set. Then,

there exists t ∈ V ∩M. By the above argument, we haveM = Nt ⊆ V, which contradicts that

V ⊂M. We conclude thatM is a minimal best attack set.

Although the maximal clique problem is generically NP-hard, fortunately,

the transitive law in Proposition 15 reduces the maximal clique problem to a

variant of the tournament problemG = (V,E)with time complexityO(|V|+ |E|) =

O(n2). In Algorithm 15, we leverage the transitive law to propose a randomwalk

method that successfully discovers all the minimal best attack sets inO(n2).

Algorithm 15: Find All the Minimal Best Attack Sets
1 Transitive graphG = (V,E),Mlist← [],V′ ← V,E′ ← E
2 whileV′ 6= ∅ do
3 Start random walk inG′ = (V′,E′) and record all the nodes we walked through

until we encounter a duplicate node or we cannot move anymore. Let v be the
last node.

4 Nv ← N(v) ∪ {v}whereN(v) is the neighborhood of v
5 if Nv is a maximal clique without outgoing edges then
6 addNv intoMlist
7 V′ ← nodes inV′ that have not been passed by
8 E′ ← edges in Ewith both endpoints∈ V′

9 returnMlist

Theorem 28. Each subproblem in Algorithm 14 correctly returns the non-dominated solution in

O(n3) oracle calls.

Both the worst-case runtime of Algorithm 15 and the computation of all the

sets {Nt|t ∈ Q} areO(n2) oracle calls. Therefore, the worst-case runtime of solv-

ing each subproblem in the recursive algorithm is stillO(n3) oracle calls, same
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Figure 11.3: Performance of equilibrium refinement in zero‐sum Stackelberg security games.

as the zero-sum cases. The number of subproblems depends on the number of min-

imal best attack sets. In Example 3, there are twominimal best attack sets: {t1}

and {t3, t4}, so we need to compute the non-dominated solutions for both cases

and choose the best one. The overall runtime depends on the number of subprob-

lems that need to be solved. Fortunately, while iteratively solving the subprob-

lems, rule (R3) enables us to foresee the defender’s utilities on the first few tar-

gets, thus prune out a large number of subproblems, which reduces the overall

runtime significantly relative to the worst-case (reduce from exponential to
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Figure 11.4: Performance of equilibrium refinement in general‐sum Stackelberg security games.

polynomial many oracle calls in practice).

11.6 Experimental Results

We run experiments to evaluate the solution quality and scalability of the re-

fined SSE on SPARS. All LPs are solved by CPLEX (version 12.7.1) on a machine with

an Intel core i5-7200U CPU and 11.6GB memory. Our experiments use 100 sampled

game instances with 2 defender resources, varying the number of targets, and
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randomly generated payoffs. In zero-sum cases, payoffsUu
a(t) = −Uu

d(t),U
c
d(t) =

−Uc
a(t) are uniformly distributed in the set {0, 1, . . . , 10}. In general-sum cases,

we are motivated by ARMOR252 and adopt the following payoff setting: Uu
a(t) =

−Uu
d(t) uniformly distributed in the set {0, 1, . . . , 10} (completely opposite on suc-

cessful attack),Uc
d(t) = 0 (zero reward for successful protect), andUc

a(t) uni-

formly distributed in {0, 1, . . . , bUu
a(t)/2c}. Each instance also encompassesO(n)

randomly generated scheduling constraints with each schedule covering 2 to 5

targets depending on the number of targets. We employ CPLEX as our oracle to

obtain exact solutions to linear programs. We compare the solution quality of

our refined SSE to the SSEs given by themultiple LPsmethod71, heuristicmethod93,

and greedy iterativemethod15†.

Since the defender utilities on the first preferable target are identical for

all SSEs, we display the residual expected utility for the remaining targets. Sup-

pose the attacker deviates from his target to the secondary target with prob-

ability e. Further assume that the attacker does not attack the first prefer-

able target, then the attacker will attack the second preferable target with

probability 1 − e, third preferable target with e(1 − e) and so on. Given the util-

ity vector v sorted by the attacking order, the residual value is expressible as∑
2≤i≤n(1− e)ei−2vi.

Figures 11.3(a), 11.3(b), 11.4(a), 11.4(b) illustrate the residual expected utilities

in zero and general-sum games with n = 10 and 20, respectively. Without spend-

ing additional resources, our refined solution outperforms the other SSE solu-
†The heuristicmethod starts from an arbitrary SSE and goes through all of the pure strategies. If there

is a strictly better pure strategy than the pure strategy in the current mixed strategy, then move the weight to
the better one. The greedy iterativemethod adopts the idea of the iterative algorithm15 but without finding
minimal attack sets. It iteratively fixes the coverage of an arbitrary target in the attack set (best attack set).
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tions, improving the defender utility by 10 − 40%. Figures 11.3(c), 11.3(d), 11.4(c),

11.4(d) depict the defender utilities in attacking order. The figures show that

(i) the refined SSE and other SSEs provide the same defender utility on the first

preferable target; (ii)While the heuristic and multiple LPs methods are a lot

faster than ours (Figures 11.5(a), 11.5(b)), they perform significantly worse since

they do not refine the solution; (iii)The refined SSE gives a much higher defender

utility on the following few targets (second and third preferable) by sacrific-

ing those less preferable targets, which are even more unlikely to be attacked

than the first few targets.

Figure 11.5(a) (resp. 11.5(b)) compares the runtime (resp. number of oracle calls)

of our algorithm relative to other algorithms in zero-sum (ZS) and general-sum

(GS) cases. The results show (i) the runtime of both zero and general-sum cases

is of the same order as the runtime of the greedy iterative algorithm, which

requiresO(n2) oracle calls. Thus, the empirical number of oracle calls is signifi-

cantly lower than ourworst-case estimate ofO(n3). This is due to the fact that

in random settings, the cardinality ofQ (Definition 27) is small (usually under

4), resulting in a small number of enumerations ofNt, t ∈ Q; (ii)Our algorithm

for zero-sum games is almost two times faster than the greedy iterative algo-

rithm because fixing the minimal attack set can significantly reduce the number

of iterations, which speeds up our algorithm and also boosts solution quality;

(iii) Figure 11.5(a) also shows that the runtime of our optimal algorithm is close

to the runtime of the greedy iterative one. Contrary to the greedy iterative

approach, our algorithm guarantees optimality and provides a significant im-

provement in defender utility and robustness, see Figures 11.3(c), 11.3(d), 11.4(c),

and 11.4(d) at low computational cost, which provides a more robust solution
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Figure 11.5: Computation cost of equilibrium refinement with varying problem sizes.

with further spending only little more runtime.

11.7 Conclusion

In summary, we show that the refinement is critical in Security Problems with

ARbitrary Schedule (SPARS) domain and existing algorithms may lead to subop-

timal performance. We provide theoretical analyses by defining minimal attack

set and dominance relationship to design algorithms that computes the non-

dominated Strong Stackelberg Equilibrium (SSE) with scalable computation cost

in both zero-sum and general-sum games.
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12
Conclusion

This thesis presents a set of algorithmic, methodological, and theoretical con-

tributions in the data-to-deployment pipeline to integrate optimization and ma-

chine learning problems in public health and conservation. On the technical

level, the thesis presents techniques for integrating knowledge from optimiza-

tion and different decision-making processes to strengthen machine learning

performance, including supervised learning, online learning, and multi-agent
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systems in the face of uncertainty andwith limited data.

Part I discusses the integration of optimization in supervised learning to

train machine learning models in the presence of optimization. Chapter 2 and

Chapter 3 study the integration of sequential problems as a differentiable layer

into machine learning to enable the first decision-focused learning in sequen-

tial problems with approximate solutions to reduce computation costs. These

twoworks set the foundation for applying decision-focused learning to pub-

lic health and the deployment to the maternal and child health program as

shown in Chapter 4. Lastly, Chapter 5 and Chapter 6 study the integration of

non-sequential optimization into machine learning by proposing sampling and

surrogate algorithms to reduce computation costs.

Part II focuses on using optimization to design online learning algorithms

to collect data and strengthen theoretical guarantees. Chapter 7 studies us-

ing optimization to handle additive and independent feedback in multi-armed

bandits with continuous action space. Chapter 8 studies using optimization to

handle additive but weekly dependent feedback in restless multi-armed bandits.

Chapter 9 studies using optimization to leverage non-additive and dependent

feedback in online combinatorial optimization problems. All these three works

use optimization to design online algorithms with improved theoretical guar-

antees and empirical results.

Part III focuses on designing scalable and approximate solutions to solve op-

timization in multi-agent systems using Stackelberg games. Chapter 10 extends

the idea from decision-focused learning to multi-agent systems and proposes

the first gradient-based algorithm to find the best equilibrium of Stackelberg

games with multiple followers. Chapter 11 proposes efficient algorithms to
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solve the equilibrium refinement problem in Stackelberg security games with

arbitrary constraints. These works focus on complexity and the design of scal-

able algorithms in finding equilibria in multi-agent systems.

From a practical perspective, this thesis introduces howAI algorithms and

theory can be applied to public health and conservation challenges. On the pub-

lic health front, the thesis covers maternal health, tuberculosis, and epidemi-

ology using the data-to-deployment pipeline. Specifically, the maternal health

application includes a real-world field study and deployment to a mobile health

programwhere the proposed decision-focused learning algorithm is currently

used by more than 100,000 people to improve engagementwith health informa-

tion. On the conservation front, the thesis covers optimizing patrol strategies

in wildlife conservation, determining mechanisms to incentivize collaboration

between multiple patrol teams, and interrupting illegal wildlife trade in a phys-

ical network. These examples demonstrate the use of machine learning, opti-

mization, and multi-agent systems to design AI solutions in public health and

conservation.

From the perspective of using AI to create social impact, the thesis emphasizes

the importance of engagingwith stakeholders and organizations that possess

a deep understanding of societal challenges in order to consolidate optimiza-

tion and decision-making processes to design suitable AI solutions. On one hand,

these optimization formulations provide valuable domain knowledge to en-

hance machine learning approaches. The optimization problems formulated in

collaborationwith domain experts reveal the constraints and knowledge per-

tinent to the societal challenges, which are critical for effectively character-

izing societal issues and quantifying uncertainty, especially in scenarios where
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data is limited. On the other hand, involving stakeholders in the design of AI so-

lutions and the data-to-deployment pipeline helps ensure the AI solutions meet

the need of the stakeholders to ultimately convert algorithmic contributions

to deployment. By incorporating stakeholders’ input, the designed AI solutions

can better reflect the constraints and requirements faced in societal chal-

lenges, making them more suitable for deployment. For instance, the collabora-

tive workwith ARMMAN in Chapter 2 and Chapter 3 to define maternal health

decision-making processes was instrumental in the successful deployment of

the solutions, largely benefiting from the involvement of the organization and

domain experts. In summary, the thesis establishes the algorithmic and theoret-

ical foundation for integrating optimization obtained from stakeholders into

machine learning to effectively leverage knowledge from decision-making pro-

cesses in a computationally efficient manner.

Future vision

A significant amount of work remains to be done in developing AI solutions for

public health and conservation. Althoughwe have seen the empirical and theo-

retical success of decision-focused learning in both simulation and real-world

deployment, the computational cost of decision-focused learning algorithms

has become a critical concern. The involvement of optimization problems in

the learning pipeline makes the training process much more expensive and non-

smooth, hindering gradient-based approaches fromworking efficiently. Addi-

tionally, our current understanding of the differentiability of different opti-

mization and decision-making processes is also limited to continuous mathemat-
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ical optimization and sequential decision problems modeled asMarkov decision

processes. Many societal challenges involve decision-making processes that are

more complex than our algorithmic frontier, which limits the applicability of

decision-focused learning. Therefore, the scalability and the applicability to

other decision-making processes remain challenging for integrating optimiza-

tion into machine learning algorithms.

Furthermore, our current understanding of the knowledge embedded in opti-

mization and decision-making processes remains limited. This limitation signifi-

cantly impacts the explainability and robustness of decision-focused learning,

which becomes increasingly important as the methodology of decision-focused

learning matures and gets adopted more frequently. It is unclear whether in-

tegrating optimization into machine learning is the ultimate solution for in-

corporating knowledge from optimization and decision-making processes. His-

torically, machine learning algorithms use regularization terms to indirectly

incorporate domain knowledge and insights into machine learning objectives.

In contrast, decision-focused learning algorithms integrate optimization and

decision-making processes into the learning pipeline to directly incorporate

domain knowledge to define machine learning objectives, but in a cost of compu-

tation cost and non-smoothness that can impact learning performance, explain-

ability, and robustness. Further investigation into the connection between reg-

ularization and the integration of optimization is needed, and consideration of

the truthworhiness is also important in integrating optimization and machine

learning.

Lastly, on a broader level, the journey of AI for social impact has only just

begun. This thesis lays the foundation for integrating optimization, machine
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learning, multi-agent systems, and stakeholders’ involvement to design AI so-

lutions for deployment. However, there are much more AI techniques andwell-

established areas that need to be studied and integrated into the research of

AI for social impact. As interdisciplinary research continues to flourish, we

gain a deeper understanding of how different AI techniques and domain knowl-

edge intersect and interact. With more research on AI for social impact and the

application of AI in various fields and societal challenges, AI and computer sci-

ence gradually define their unique position and responsibility in workingwith

domain experts, non-governmental organizations, and governments. These ef-

forts will serve as the nourishment that fosters algorithmic contributions to

social impact and propels AI to thrive in our societies.
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A
Appendix to Chapter 2

A.1 Missing Proofs in Chapter 2

Theorem 1 (Policy gradient-based unbiased derivative estimate). We follow the notation of Defini-

tion 1 and defineΦθ(τ, π) =
h∑

i=1

h∑
j=i

γjRθ(sj, aj) log π(ai|si). We have:

∇πJθ(π) = E
τ∼π,θ

[∇πΦθ(τ, π)] =⇒
∇2

πJθ(π) = E
τ∼π,θ

[
∇πΦθ · ∇π log p⊤θ +∇2

πΦθ

]
∇2

θπJθ(π) = E
τ∼π,θ

[
∇πΦθ · ∇θ log p⊤θ +∇2

θπΦθ

] (2.9)

First part of the proof (policy gradient theorem). The first part of the proof follows the policy gradi-
ent theorem. We begin with definitions.

Let τ = {s1, a1, s2, a2, · · · , sh, ah} be a trajectory sampled according to policy π andMDP
parameter θ. Define τj = {s1, a1, · · · , sj, aj} to be a partial trajectory up to time step j for any j ∈

[h]. DefineGθ(τ) =
h∑
j=1

γjRθ(sj, aj) to be the discounted value of trajectory τ. Let pθ(τ, π) be the

probability of seeing trajectory τ under parameter θ and policy π. GivenMDP parameter θ, we can
compute the expected cumulative reward of policy π by:

Jθ(π) = E
τ∼π,θ

Gθ(τ)
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= E
τ∼π,θ

h∑
j=1

γjRθ(sj, aj)

=

h∑
j=1

E
τ∼pθ(τ,π)

γiRθ(sj, aj) (A.1)

=

h∑
j=1

E
τj∼pθ(τj,π)

γjRθ(sj, aj) (A.2)

=

h∑
j=1

∫
τj

γjRθ(sj, aj)pθ(τj, π)dτj

Equation A.1 to Equation A.2 uses the fact that we only need to sample up to time step j in order to
compute γjRθ(sj, aj). Everything beyond time step j does not affect the expectation up to time step j.
We can compute the policy gradient by:

∇πJθ(π) = ∇π

h∑
j=1

∫
τj

γjRθ(sj, aj)pθ(τj, π)dτj

=
h∑
j=1

∫
τj

γjRθ(sj, aj)∇πpθ(τj, π)dτj (A.3)

=

h∑
j=1

∫
τj

γjRθ(sj, aj)pθ(τj, π)∇π log pθ(τj, π)dτj (A.4)

where Equation A.3 is because only the probability term is dependent on policy π, and Equation A.4
is by∇πpθ = pθ∇π log pθ.

We can nowmerge the integral back to an expectation over trajectory τj by merging the probabil-
ity term pθ and the integral:

∇πJθ(π) =
h∑
j=1

E
τj∼pθ(τj,π)

[
γjRθ(sj, aj)∇π log pθ(τj, π)

]
=

h∑
j=1

E
τ∼pθ(τ,π)

[
γjRθ(sj, aj)∇π log pθ(τj, π)

]

= E
τ∼pθ(τ,π)

 h∑
j=1

γjRθ(sj, aj)∇π log pθ(τj, π)


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= E
τ∼pθ(τ,π)

 h∑
j=1

γjRθ(sj, aj)∇π

 j∑
i=1

log π(ai | si) +
j∑

i=1
log pθ(si, ai, si+1)

 (A.5)

= E
τ∼pθ(τ,π)

 h∑
j=1

γjRθ(sj, aj)
j∑

i=1
∇π log π(ai | si)


= E

τ∼pθ(τ,π)

 h∑
j=1

j∑
i=1

γjRθ(sj, aj)∇π log π(ai | si)


= E

τ∼pθ(τ,π)

 h∑
i=1

h∑
j=i

γjRθ(sj, aj)∇π log π(ai | si)


= E

τ∼pθ(τ,π)
[∇πΦθ(τ, π)] (A.6)

where Equation A.5 is by expanding the probability of seeing trajectory τj when parameter θ and
policy π are used, where the probability decomposes into the first term action probability π(ai | si),
and the second term transition probability pθ(si, ai, si+1), which is independent of policy π and
thus disappears. The last equation in Equation A.6 connects back to the definition of Φ as defined
in the statement of Theorem 1. Φ is easy to compute and easy to differentiate through. We can
therefore sample a set of trajectories {τ} to compute the corresponding Φ and its derivative to get
the unbiased policy gradient estimate.

Second part of the proof (second-order derivatives). Given the policy gradient theorem as we recall in
the above derivation, we have:

∇πJθ(π) = E
τ∼pθ(τ,π)

[∇πΦθ(τ, π)] (A.7)

We can compute the derivative of Equation A.7 by:

∇2
πJθ(π) = ∇π∇πJθ(π)

= ∇π E
τ∼pθ(τ,π)

[∇πΦθ(τ, π)]

= ∇π

∫
τ
∇πΦθ(τ, π)pθ(τ, π)dτ

=

∫
τ

[
∇πΦθ(τ, π)∇πpθ(τ, π)⊤ +∇2

πΦθ(τ, π)pθ(τ, π)
]
dτ (A.8)

=

∫
τ

[
∇πΦθ(τ, π)∇π log pθ(τ, π)⊤ +∇2

πΦθ(τ, π)
]
pθ(τ, π)dτ

= E
τ∼pθ(τ,π)

[
∇πΦθ(τ, π)∇π log pθ(τ, π)⊤ +∇2

πΦθ(τ, π)
]

(A.9)
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where Equation A.8 passes gradient inside the integral and applies chain rule. Equation A.9 provides
an unbiased estimate of the second-order derivative∇2

πJθ(π).
Similarly, we can compute:

∇2
θπJθ(π) = ∇θ∇πJθ(π)

= ∇θ E
τ∼pθ(τ,π)

[∇πΦθ(τ, π)]

= ∇θ

∫
τ
∇πΦθ(τ, π)pθ(τ, π)dτ

=

∫
τ

[
∇πΦθ(τ, π)∇θpθ(τ, π)⊤ +∇2

θπΦθ(τ, π)pθ(τ, π)
]
dτ

=

∫
τ

[
∇πΦθ(τ, π)∇θ log pθ(τ, π)⊤ +∇2

θπΦθ(τ, π)
]
pθ(τ, π)dτ

= E
τ∼pθ(τ,π)

[
∇πΦθ(τ, π)∇θ log pθ(τ, π)⊤ +∇2

θπΦθ(τ, π)
]

(A.10)

Equation A.9 and Equation A.10 both serve as unbiased estimates of the corresponding second-
order derivatives. We can sample a set of trajectories to compute both of them and get an unbiased
estimate of the second-order derivatives. This concludes the proof of Theorem 1.

Theorem 2 (Bellman-based unbiased derivative estimate). We follow the notation in Definition 2 to
define Jθ(π) = 1

2 E
τ∼π,θ

[
δ2θ(τ, π)

]
. We have:

∇πJθ(π) = E
τ∼π,θ

[
δ∇πδ+

1
2
δ2∇π log pθ

]
=⇒ ∇2

πJθ(π) = E
τ∼π,θ

[
∇πδ∇πδ⊤ + O(δ)

]
∇2

θπJθ(π) = E
τ∼π,θ

[
∇πδ∇θδ⊤ +

(
∇πδ∇θ log p⊤θ +∇π log pθ∇θδ⊤ +∇2

θπδ
)
δ+ O(δ2)

]
(2.10)

First part of the proof (first-order derivative). By the definition of Jθ(π) = 1
2 E
τ∼π,θ

[
δ2(τ, π)

]
, we can

compute its first-order derivative by:

∇πJθ(π) = ∇π
1
2 E

τ∼π,θ

[
δ2θ(τ, π)

]
= ∇π

1
2

∫
τ
δ2θ(τ, π)pθ(τ, π)dτ

=

∫
τ

[
pθ(τ, π)δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇πpθ(τ, π)

]
dτ

=

∫
τ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
pθ(τ, π)dτ
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= E
τ∼π,θ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
(A.11)

Second part of the proof (second-order derivative). Given Equation A.11, we can further compute the
second-order derivatives by:

∇2
πJθ(π) = ∇π∇πJθ(π)

= ∇π E
τ∼π,θ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
= ∇π

∫
τ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
pθ(τ, π)dτ

=

∫
τ

(
∇πδ∇πδ⊤ + δ∇2

πδ+ δ∇ log pθ∇πδ⊤ +
1
2
δ2∇2 log pθ

)
pθ

+

(
δ∇πδ(τ, π) +

1
2
δ2∇π log pθ

)
pθ∇ log p⊤θ dτ

= E
τ∼π,θ

[
∇πδ∇πδ⊤ + δ∇2

πδ+ δ∇ log pθ∇πδ⊤ + δ∇πδ(τ, π)∇ log p⊤θ + O(δ2)
]

= E
τ∼π,θ

[
∇πδ∇πδ⊤ + O(δ)

]
Similarly, we have:

∇2
θπJθ(π) = ∇θ∇πJθ(π)

= ∇θ E
τ∼π,θ

[
δθ(τ, π)∇πδθ(τ, π) +

1
2
δ2θ(τ, π)∇π log pθ(τ, π)

]
= ∇θ

∫
τ

[
δθ∇πδθ +

1
2
δ2θ∇π log pθ

]
pθdτ

=

∫
τ

(
∇πδ∇θδ⊤ + δ∇2

θπδ+ δ∇π log pθ∇θδ⊤ +
1
2
δ2∇2

θπ log pθ
)
pθ

+

(
δ∇πδ+

1
2
δ2∇π log pθ

)
pθ∇θ log p⊤θ dτ

= E
τ∼π,θ

[
∇πδ∇θδ⊤ + δ∇2

θπδ+ δ∇π log pθ∇θδ⊤ + δ∇πδ∇θ log p⊤θ + O(δ2)
]

= E
τ∼π,θ

[
∇πδ∇θδ⊤ +

(
∇2

θπδ+∇π log pθ∇θδ⊤ +∇πδ∇θ log p⊤θ
)
δ+ O(δ2)

]
(A.12)

which concludes the proof.

313



A.2 Additional Discussions of Decision-focused Learning

In this section, we provide additional discussions of applying decision-focused
learning toMDPs problems.

A.2.1 Smoothness of the Optimal Policy Derived FromReinforcement Learn-
ing Solver

In Equation 2.8, we compute the gradient of the final evaluation metric with
respect to the predictive model by applying chain rule. This implicitly requires
each individual component in the chain rule to be well-defined. Specifically, the
mapping from theMDP parameters to the optimal policy needs to be smooth so
thatwe can compute a meaningful derivative of the policy with respect to the
MDP parameters. However, this smoothness requirement is only required in the
training time to make the gradient computation available. Once the training
is finished, there is no restriction on the policy and the corresponding solver.
This smoothness requirement does not restrict the kind of problems thatwe can
solve. We just need to find a solver that can give a smooth policy to ensure the
differentiability at training time, e.g., soft actor critic and soft Q learning.

Specifically, the assumption on smooth policy is similar to the idea of soft Q-
learning127 and soft actor-critic128 proposed by Haarnoja et al. Soft Q-learning
relaxes the Bellman equation to a soft Bellman equation to make the policy
smoother, while soft actor-critic adds an entropy term as regularization to
make the optimal policy smoother. These relaxed policy not only can make the
training smoother as stated in the above papers, but also can allow back-propagation
through the optimal policy to the inputMDP parameters in our paper. These ben-
efits are all due to the smoothness of the optimal policy. Similar issues arise in
decision-focused learning in discrete optimization, withWilder et al.338 propos-
ing to relaxing the optimal solution by adding a regularization term, which
serves as the same purpose as we relax our optimal policy in the sequential deci-
sion problem setting.

A.2.2 Unbiased Second-order Derivative Estimates

Aswe discuss in Section 2.7, correctly approximating the second-order deriva-
tives is the crux of our algorithm. Incorrect approximation may lead to in-
correct gradient direction, which can further lead to divergence. Since the
second-order derivative formulation as stated in Theorem 1 and Theorem 2 are
both unbiased derivative estimate. However, their accuracy depends on how
many samples we use to approximate the derivatives. In our experiments, we use
100 sampled trajectories to approximate the second-order derivatives across
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three domains. The number of samples required to get a sufficiently accurate
derivative estimate may depend on the problem size. Larger problems may require
more samples to get a good derivative estimate, but more samples also implies
more computation cost required to run the back-propagation.

In practice, we find that normalization effect of theHessian term as dis-
cussed in Section 2.7 is very important to reduce the variance caused by the in-
correct derivative estimate. Additionally, we also notice that adding a small
additional predictive loss term to run back-propagation can stabilize the train-
ing process because the predictive loss does not suffer from sampling variance.
This is whywe add aweighted predictive loss to the back-propagation in Algo-
rithm 1.

A.2.3 Impact of Optimality in the Forward Pass

In order to differentiate through the KKT conditions, we need the policy π∗ re-
turn by the reinforcement learning solver to be optimal in Figure 2.1. However,
sub-optimal solution is often reached by the reinforcement learning solver and
the optimality can impact the gradient computed from differentiating through
the KKT conditions.

In this section, we analyze the impact of a sub-optimal policy produced by the
reinforcement learning solver. When the problem is smooth, or more precisely
when the function Jθ(π) is smooth around the optimal policy π∗, we can bound
the gradients∇2

πJθ(π′) and∇πJθ(π′) computed in Equation 2.8 using a sub-optimal
policy π′ by the gradients computed using the optimal policy π∗. Specifically, if
the Hessian∇2

πJθ(π∗) is sufficiently far from singular, the difference between
two gradients computed from sub-optimal and optimal policy using Equation 2.8
can be written as:∣∣∣∣d Eval(π′)dπ

(∇2
πJθ(π′))−1∇2

θπJθ(π
′)
dθ
dw
− d Eval(π∗)

dπ
(∇2

πJθ(π∗))−1∇2
θπJθ(π

∗)
dθ
dw

∣∣∣∣
which can be further bounded by applying telescoping sum to decompose the dif-
ference into linear combination of the difference in each individual gradient
term. This suggests thatwhen the smoothness condition of the above deriva-
tives is met, we can bound the error incurred by sub-optimal policy.

A.3 Experimental Setup

In this section, we describe howwe randomly generate theMDP problems and
the corresponding missing parameters.
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Feature generation Across all three domains, once the missing parameters are
generated, we feed eachMDP parameter into a randomly initialized neural net-
workwith two intermediate layers eachwith 64 neurons, and an output dimen-
sion size 16 to generate a feature vector of size 16 for the correspondingMDP
parameter. For example, in the gridworld example, each grid cell comes with a
missing reward. So the feature corresponding to this grid cell and the missing
reward is generated by feeding the missing reward into a randomly initialized
neural network to generate a feature vector of size 16 for this particular grid
cell. We repeat the same process for all the parameters in theMDP problem, e.g.,
all the grid cells in the gridworld problem. The randomly initiated neural net-
work uses ReLU layers as nonlinearity followed by a linear layer in the end. The
generated features are normalized to mean 0 and variance 1, andwe add Gaus-
sian noiseN (0, 1) to the features, with a signal noise ratio is 1 : 3, to model that
the original missing parameters may not be perfectly recovered from the noisy
features. The predictive model we use to map from generated noisy features to
the missing parameters is a single layer neural networkwith 16 neurons.

Training parameters Across all three examples, we consider the discounted
settingwhere the discount factor is γ = 0.95. The learning rate is set to be α =
0.01. The number of demonstrated trajectories is set to be 100 in both the random
and near-optimal settings.

Reinforcement learning solvers In order to train the optimal policy, in the
gridworld example, we use tabular value-iteration algorithm to learn the Q
value of each state action pair. In the snare finding and the TB problems, since
the state space is continuous, we apply DDQN262,309 to train the Q function and
the corresponding policy, where we use a neural networkwith two intermedi-
ate layers eachwith 64 neurons to represent the function approximators of the
Q values. There is one exception in the runtime plot of the snare finding prob-
lem in Figure 2.3(c), where the full Hessian computation is infeasible when a two
layer neural network is used. Thus we use an one layer neural networkwith 64
neurons only to test the runtime of differentHessian approximations.

A.3.1 Gridworld ExampleWithMissing Rewards

Problem setup We consider a 5 × 5 Gridworld environmentwith unknown re-
wards as ourMDP problems with unknown parameters. The bottom left cor-
ner is the starting point and the top right corner is a safe state with a high re-
ward drawn from a normal distributionN (5, 1). The agent canwalk between
grid cells by going north, south, east, west, or deciding to stay in the current
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grid cells. So the number of available actions is 5, while the number of available
states is 5× 5 = 25.

The agent collects rewardwhen the agent steps on each individual grid cell.
There is 20% chance that each intermediate grid cell is a cliff that gives a high
penalty drawn from another normal distributionN (−10, 1). All the other 80%
of grid cells give rewards drawn fromN (0, 1). The goal of the agent is to col-
lect as much reward as possible. We consider a fixed time horizon case with 20
steps, which is sufficient for the agent to go from bottom left to the top right
corner.

Training details Within each individual training step for eachMDP prob-
lemwith missing parameters, we first predict the rewards using the predictive
model, and then solve the resulting problem using tabular value-iteration. We
run in total 10000 iterations to learn the Q values, which are later used to con-
struct the optimal policy. To relax the optimal policy given by the RL solver,
we relax the Bellman equation used to run value-iteration by relaxing all the
argmax and max operators in the Bellman equation to softmaxwith temperature
0.1, i.e., we use SOFTMAX(0.1 · Q-values) to replace all the argmax over Q val-
ues. The choice of the tempreratue 0.1 is to make sure that the optimal policy is
smooth enough but the relaxation does not impact the optimal policy too much
as well.

Random and near-optimal trajectories generation To generate the random
trajectories, we have the agent randomly select actions between all actions.
To generate the near-optimal trajectories, we replace the softmaxwith tem-
perature 0.1 by softmaxwith temperature 1 and train an RL agent using ground
truth reward values by 50000 value-iterations to get a near-optimal policy. We
then use the trained near-optimal policy to generate 100 independent trajecto-
ries as our near-optimal demonstrated trajectories.

A.3.2 Snare Finding ProblemWithMissing Transition Probability

Problem setup In the snare finding problem, we consider a set of 20 sites that
are vulnerable to poaching activity. We randomly select 20% of the sites as
high-risk locations where the probability of having a poacher coming and plac-
ing a snare is randomly drawn from a normal distributionN (0.8, 0.1), while the
remaining 80% of low-risk sites with probabilityN (0.1, 0.05) having a poacher
coming to place a snare. These transition probabilities are not known to the
ranger, and the ranger has to rely on features of each individual site to predict
the corresponding missing transition probability.
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We assume the maximum number of snare is 1 per location, meaning that if there
is a snare and it has not been removed by the ranger, then the poacher will not
place an additional snare there until the snare is removed. The ranger only ob-
serves a snare when it is removed. Thus theMDP problemwith given parameters
is partially observable, where the state maintained by the ranger is the belief
of whether a site contains a snare or not, which is a fractional value between 0
and 1 for each site.

The available actions for the ranger are to select a site from 20 sites to visit.
If there is a snare in the location, the ranger successfully removes the snare
and gets reward 1 with probability 0.9, and otherwise the snare remains there
with a reward−1. If there is no snare in the visited site, the ranger gets reward
−1. Thus the number of actions to the ranger is 20, while the state space is con-
tinuous since the ranger uses continuous belief as the state.

Training details To solve the optimal policy from the predicted parameters,
we runDDQNwith 1000 iterations to collect random experience and 10000 it-
erations to train the model. We use a replay buffer to store all the past experi-
ence that the agent executed before. To soften the optimal policy, we also use a
relaxed Bellman equation as stated in Section A.3.2. Because the cumulative re-
ward and the corresponding Q values in this domain is relatively smaller than
the Gridworld domain, we replace all the argmax and max operators by softmax
with a larger temperature 1 to reflect the relatively smaller reward values.

Random and near-optimal trajectories generation Similar to Section A.3.1, we
generate the random trajectories by having the agent choose action from all
available actions uniformly at random. To generate the near-optimal trajecto-
ries, we replace all the softmaxwith temperature 1 by softmaxwith temperature
5, andwe use the ground truth transition probabilities to train the RL agent
by DDQNusing 50000 iterations to generate a near-optimal policy. The near-
optimal trajectories are then generated by running the trained near-optimal
policy for 100 independent runs.

A.3.3 TuberculosisWithMissing Transition Probability

Problem setup There are a total of 5 patients who need to take their medica-
tion at each time-step for 30 time-steps. For each patient, there are 2 states –
non-adhering (0), and adhering (1). The patients are assumed to start from a non-
adhering state. Then, in subsequent time-steps, the patients’ states evolve based
on their current state andwhether they were intervened on by a healthcare
worker according to a transition matrix.
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The raw transition probabilities for different patients are taken from170.*
However, these raw probabilities do not record a patient’s responsiveness to an
intervention. To incorporate the effect of intervening, we sample numbers from
U(0, 0.4), and (a) add them to the probability of adheringwhen intervened on, and
(b) subtract them from the probability of adheringwhen not. Finally, we clip the
probabilities to the range of [0.05, 0.95] and re-normalize. We use the raw tran-
sition probabilities and the randomly generated intervention effect to model
the behavior of our synthetic patients and generate all the training trajecto-
ries accordingly. The entire transition matrix for each patient is then fed as an
input to the feature generation network to generate features for that patient.
In this example, we assume the transition matrices to be missing parameters, and
try to learn a predictive model to recover the transition matrices from the gen-
erated features using either two-stage or various decision-focused learning
methods as discussed in the main paper.

Given the synthetic patients, we consider a healthcare worker who has to
choose one patient at every time-step to intervene on. However, the healthcare
worker can only observe the ‘true state’ of a patient when she intervenes on
them. At every other time, she has a ‘belief’ of the patient’s state that is con-
structed from the most recent observation and the predicted transition proba-
bilities. Therefore, the healthcare worker has to learn a policy that maps from
these belief states to the action of whom to intervene on, such that the sum of
adherences of all patients is maximised over time. The healthcare worker gets a
reward of 1 for an adhering patient and 0 for a non-adhering one. Like Problem
A.3.2, this problem has a continuous state space (because of the belief states) and
discrete action space.

Training details Same as Section A.3.2.

Random and near-optimal trajectories generation Similar to Section A.3.2, we
generate the random trajectories by having the agent choose action from all
available actions uniformly at random. To generate the near-optimal trajecto-
ries, we replace all the softmaxwith temperature 5 by softmaxwith temperature
20,† andwe use the ground truth transition probabilities to train the RL agent

*The raw transition probabilities taken from170 are only used to generate synthetic patients.
†The reason that we use a relatively larger temperature is because the range of the cumulative reward

in TB domain is smaller than the previous two domains. In TB domain, the patients could change from
non-adhering back to adhering even if there is no intervention, while in contrast, a snare placed in a certain
location will not be removed until the ranger visits the place. In other words, the improvement that inter-
vention can introduce is relatively limited compared to the snare finding domain. Thus even though the
cumulative reward in TB domain is larger than the previous two domains, the range is smaller and thus we
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Figure A.1: Learning curves of for the TB problem with random trajectories.

by DDQNusing 100, 000 iterations to generate a near-optimal policy. The near-
optimal trajectories are then generated by running the trained near-optimal
policy for 100 independent runs.

A.4 Additional Experiment Results

Tuberculosis Adherence The results for this problem can be found in Table
2.1, and the training curves can be found in Figure A.1. While the standard er-
rors associatedwith the results seem very large, this is in large part because
of the way in whichwe report them. To keep it consistent with other problems,
we average the absolute OPE scores for each method across multiple problem
instances. However, in the TB case, each problem instance can be very different
because the patients in each of these instances are sampled from the transition
probabilities previously studied in170 that have diverse patient behaviour. As a
result, the baseline OPE values vary widely across different problem instances,
causing a larger variation in Figure A.1(b) and contributing as the major source
of standard deviation.

Computation cost of Bellman equation-based decision-focused methods We
additionally compare the runtime of the operation of backpropagation per gra-
dient step of Bellman equation-based decision-focused learning using different
Hessian approximations. This is the runtime required to compute the gradient
in the backward pass. We can see that the runtime of methods using identity and
Woodbury methods are much smaller than the runtime of full Hessian approxi-

need a larger temperature.
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(b) Backpropagation runtime per gradient step of
Bellman equation‐based decision‐focused learning
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Figure A.2: We compare the backpropagation runtime of decision‐focused learning methods using bellman optimality
with different Hessian approximations. We can see that the runtime of both identity and Woodbury methods largely
outperform the runtime of full Hessian computation, demonstrating the importance of the Hessian approximation. Ad‐
ditionally, the runtime of Woodbury method using low‐rank approximation is similar to the runtime of identity method.
Woodbury method provides a more accurate approximation with a similar runtime.

mation. This matches to our analysis in Section 2.7 and the experimental results
in Figure 2.2(c) and Figure 2.3(c).

Choice of regularizer λ in Algorithm 1 and ablation study We ran an abla-
tion study by varying the regularization constant λ in Algorithm 1 using the
snare-finding problem. The experimental result is shown in Figure A.3. The role
of regularization in Algorithm 1 is to help resolve the non-convexity issue of
the off-policy evaluation (OPE) objective. Decision-focused learning methods
can easily get trapped by various local minima due to the non-convexity of the
OPE metric. Adding a small two-stage loss can improve the convexity of the opti-
mizing objective and thus help improve the performance as well. We can see that
adding small amount of regularization can usually help improve the overall
performance in both cases with random and near-optimal trajectories. How-
ever, adding too much regularization in Algorithm 1 can push decision-focused
learning toward two-stage approach, which can degrade the performance some-
times. The right amount of regularization is critical to balance between the
issue of convexity and the optimizing objective.

A.5 Computing Infrastructure

All experiments except were run on a computing cluster, where each node is con-
figuredwith 2 Intel Xeon Cascade Lake CPUs, 184 GB of RAM, and 70 GB of local
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Figure A.3: Ablation study of different regularization λ in Algorithm 1 on the snare‐finding problem using different
decision‐focused learning methods.

scratch space. Within each experiment, we did not implement parallelization
nor use GPU, so each experimentwas purely run on a single CPU core.
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B
Appendix to Chapter 3

B.1 Hyperparameter Setting and Computation Infrastructure

We run bothDecision Focused Learning and Two-Stage Learning for 50 epochs in
2-state and 5-state synthetic domain problems, 30 epochs in ARMMANdomain and
18 epochs in 2-state partially observable setting. The learning rate r is kept at
0.01 and γ = 0.59 is used in all experiments. All the experiments are performed on
an Intel Xeon CPUwith 64 cores and 128 GB memory.

Neural Network Structure

The predictive modelmw we use to predict the transition probability is a neural
networkwith an intermediate layer of size 64 with ReLU activation function,
and an output layer of size of the transition probability followed by a soft-
max layer to match probability distribution. Dropout layers are added to avoid
overfitting. The same neural network structure is applied to all domains and
all training methods.

In the synthetic datasets, given the generated transition probabilities, we
feed the transition probability of each arm into a randomly initialized neural
networkwith two intermediate layers eachwith 64 neurons, and an output di-
mension size 16 to generate a feature vector of size 16. The randomly initiated
neural network uses ReLU layers as nonlinearity followed by a linear layer in
the end.
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B.2 Real ARMMANDataset

The large-scale quality improvement study conducted by ARMMAN 20 contains
7668 beneficiries in the Round Robin Group. Over a duration of 7 weeks, 20% of
the beneficiaries receive at least one active action (LIVE service call). We ran-
domly split the 7668 beneficiaries into 12 groups while preserving the proportion
of beneficiaries who received at least one active action. There are 43 features
available for every beneficiary which describe characteristics such as age, in-
come, education level, call slot preference, language preference, phone owner-
ship etc.

B.2.1 Protected and Sensitive Features

ARMMAN’s mobile voice call program has long beenworkingwith socially dis-
advantaged populations. ARMMANdoes not collect or include constitution-
ally protected and particularly sensitive categories such as caste and religion.
Despite such categories not being available, in pursuit of ensuring fairness, we
workedwith public health and field experts to ensure indicators such as educa-
tion, and income levels that signify markers of socio-economic marginalization
were measured and evaluated for fairness testing.

B.2.2 Feature List

We provide the full list of 43 features used for predicting transition probabil-
ity:

• Enroll gestation age, age (split into 5 categories), income (8 categories),
education level (7 categories), language (5 categories), phone ownership
(3 categories), call slot preference (5 categories), enrollment channel (3
categories), stage of pregnancy, days since first call, gravidity, parity,
stillbirths, live births

B.2.3 Feature Evaluation

In our simulation, we further analyze the demographic features of participants
who are selected to schedule service calls by either two-stage learning method
and decision-focused learning method. The following tables show the average
value of each individual feature over the selected participants with scheduled
service calls under the two-stage or decision-focused learning method. The p-
value of the continuous features is analyzed using t-test for difference in mean;
the p-value of the categorical values is analyzed using chi-square test for dif-
ferent proportions.
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Feature Two-stage Decision-focused learning p-value
age (year) 25.57 24.9 0.06
gestation age (week) 24.28 17.21 0.00

Table B.1: Feature analysis of continuous features. This table summarizes the average feature values of the beneficiaries
selected to schedule service calls by different learning methods. The p‐value of the continuous features is analyzed
using t‐test for difference in mean.

Feature Two-stage DFL p-value
income (rupee, averaged over multiple categories) 10560.0 11190.0 0.20
education (categorical) 3.32 3.16 0.21
stage of pregnancy 0.13 0.03 0.00
language
language (hindi) 0.53 0.6 0.04
language (marathi) 0.45 0.4 0.08
phone ownership
phone ownership (women) 0.86 0.82 0.04
phone ownership (husband) 0.12 0.16 0.03
phone ownership (family) 0.02 0.02 1.00
enrollment channel
channel type (community) 0.7 0.47 0.00
channel type (hospital) 0.3 0.53 0.00

Table B.2: Feature analysis of categorical features. This table summarizes the average feature values of the beneficiaries
selected to schedule service calls by different learning methods. The p‐value of the categorical values is analyzed using
chi‐square test for different proportions.

In Table B.1 and Table B.2, we can see that there is no statistical significance
(p-value> 0.05) between the average feature values of income and education,
meaning that there is no obvious difference in these feature values between
the population selected by two different methods. We see statistical signifi-
cance in some other features, e.g., gestation age, stage of maternal event, lan-
guage, phone ownership, and channel type, which may be further analyzed to
understand the benefit of decision-focused learning, but they do not appear to
directly bear upon socio-economic marginalization; these features are more re-
lated to the health status of the beneficiaries.

325



B.3 Consent for Data Collection and Analysis

In this section, we provide information about consent related to data collec-
tion, analyzing data, data usage and sharing.

B.3.1 Secondary Analysis and Data Usage

This study falls into the category of secondary analysis of the aforementioned
dataset. We use the previously collected engagement trajectories of differ-
ent beneficiaries participating in the service call program to train the predic-
tive model and evaluate the performance. The evaluation of the proposed al-
gorithm is evaluated via different off-policy policy evaluations, including an
importance sampling-based method and a simulation-based method discussed in
Section 3.6. This paper does not involve deployment of the proposed algorithm
or any other baselines to the service call program.As noted earlier, the experi-
ments are secondary analysis using different evaluation metrics with approval
from the ARMMAN ethics board.

B.3.2 Consent for Data Collection and Sharing

The consent for collecting data is obtained from each of the participants of
the service call program. The data collection process is carefully explained to
the participants to seek their consent before collecting the data. The data is
anonymized before sharingwith us to ensure anonymity. Data exchange and use
was regulated through clearly defined exchange protocols including anonymiza-
tion, read-access only to researchers, restricted use of the data for research
purposes only, and approval by ARMMAN’s ethics review committee.

B.3.3 Universal Accessibility of Health Information

To allay further concerns: this simulation study focuses on improving quality
of service calls. Even in the intended future application, all participants will
receive the sameweekly health information by automated message regardless
of whether they are scheduled to receive service calls or not. The service call
program does notwithhold any information from the participants nor conduct
any experimentation on the health information. The health information is al-
ways available to all participants, and participants can always request service
calls via a free missed call service. In the intended future application our al-
gorithmmay only help schedule *additional* service calls to help beneficiaries
who are likely to drop out of the program.
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B.4 Societal Impacts and Limitations

B.4.1 Societal Impacts

The improvement shown in the real dataset directly reflects the number of
engagements improved by our algorithm under different evaluation metrics.
On the other hand, because of the use of demographic features to predict the
engagement behavior, we must carefully compare the models learned by stan-
dard two-stage approach and our decision-focused learning to further examine
whether there is any bias or discrimination concern.

Specifically, the data is collected by ARMMAN, an India non-government or-
ganization, to help mothers during their pregnancy. The ARMMANdataset we
use in the paper does not contain information related to race, religion, caste
or other sensitive features; this information is not available to the machine
learning algorithm. Furthermore, examination by ARMMAN staff of the moth-
ers selected for service calls by our algorithm did not reveal any specific bias
related to these features. In particular, the program run by ARMMAN targets
mothers in economically disadvantaged communities; the majority of the partic-
ipants (94%) are below the international poverty line determined by TheWorld
Bank342. To compare the models learned by two-stage andDF-Whittle approach,
we further examine the difference between those mothers who are selected for
service call in two-stage andDF-Whittle, respectively. We observe that there
are some interesting differences. For example, DF-Whittle chooses to do ser-
vice calls to expectant mothers earlier in gestational age (22% vs 37%), and to a
lower proportion of those who have already given birth (2.8% vs 13%) compared
to two-stage, but in terms of the income level, 94% of the mothers selected by
both methods are below the poverty line. This suggests that our approach is not
biased based on income level, especially when the entire population is coming
from economically disadvantaged communities. Our model can identify other
features of mothers who are actually in need of service calls.

B.4.2 Limitations

Impact of limited data and the strength of decision-focused learning As shown
in Section 3.8 and Figure 3.4, we notice a smaller improvement between decision-
focused learning and two-stage approachwhen there is sufficient data avail-
able in the training set. This is because the data is sufficient enough to train a
predictive model with small predictive loss, which implies that the predicted
transition probabilities and the true transition probabilities are also close
enoughwith similarWhittle indices andWhittle index policy. In this case with
sufficient data, there is less discrepancy between predictive loss and the eval-
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uation metrics, which suggests less improvement led by fixing the discrepancy
using decision-focused learning. Compared to two-stage approach, decision-
focused learning is still more expensive to run. Therefore, when data is suf-
ficient, two-stage may be sufficient to achieve comparable performance while
maintaining a low training cost.

On the other hand, we notice a larger improvement between decision-focused
learning and two-stage approachwhen data is limited. When data is limited, pre-
dictive loss is less representative with a larger mismatch compared to the eval-
uation metrics. Therefore, fixing the objective mismatch issue using decision-
focused learning becomes more prominent. Therefore, decision-focused learn-
ing may be adopted in the limited data case to significantly improve the perfor-
mance.

Computation cost As we have shown in Section 3.5.5, our approach improves
the computation cost of decision-focused learning fromO(MωN) toO(NMω+1),
whereN is the number of arms andM is the number of states. This computation
cost is linear in the number of armsN, allowing us to scale up to large real-
world deployment of RMAB applications with larger number of arms involved
in the problem. Nonetheless, the extension in terms of the number of statesM
is not cheap. The computation cost still grows between cubic and biquadratic
as shown in Figure B.1. This is particularly significant whenworking on par-
tially observable RMAB problems, where the partially observable problems are
reduced to fully observable problems with larger number of states. There is
room for improving the computation cost in terms of the number of states to
make decision-focused learning more scalable to real-world applications.

B.5 Computation Cost Analysis of Decision-focused Learning

Wehave shown the computation cost of backpropagating throughWhittle in-
dices in Section 3.5.5. This section covers the remaining computation cost associ-
ated to other components, including the computation cost ofWhittle indices in
the forward pass, and the computation cost of constructing softWhittle index
policy using soft-top-k operator.

B.5.1 SolvingWhittle Index (Forward Pass)

In this section, we discuss the cost of computingWhittle index in the forward
pass. In the work by Qian et al. 258 , they propose to use value iteration and bi-
nary search to solve the Bellman equationwithM states. Therefore, every
value iteration requires updating the current value functions ofM states by
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considering all the possibleM2 transitions between states, which results in a
computation cost ofO(M2) per value iteration. The value iteration is run for
a constant number of iterations, and the binary search is run forO(log 1

ε) iter-
ations to get a precision of order ε. In total, the computation cost is of order
O(M2 log 1

ε) = O(M2)where we simply use a fixed precision to ignore the depen-
dency on ε.

On the other hand, there is a faster way to compute the value function by
solving linear programwithM variables directly. The Bellman equation can
be expressed as a linear programwhere all theM variables are the value func-
tions. The best known complexity of solving a linear programwithM variables
isO(M2+ 1

18 ) by Jiang et al. 152 . Notice that this complexity is slightly larger than
the one in value iteration because (i) value iteration does not guarantee con-
vergence in a constant iterations (ii) the constant associated to the number of
value iterations is large.

In total, we need to compute theWhittle index ofN arms and forM possible
states in S . The total complexity of value iteration and linear program are
O(NM3)with a large constant andO(NM3+ 1

18 ), respectively. In any cases, the
cost of computing allWhittle indices in the forward pass is still smaller than
O(NM1+ω), the cost of backpropagating through all theWhittle indices in the
backward pass. Therefore, the backward pass is the bottleneck of the entire pro-
cess.

B.5.2 Soft-top-k Operators

In Section B.5.1 and Section 3.5.5, we analyze the cost of computing and backprop-
agating throughWhittle indices of all states and all arms. In this section,
we discuss the cost of computing the softWhittle index policy from the given
Whittle indices using soft-top-k operators.

Soft-top-k operators Xie et al. 346 reduces top-k selection problem to an opti-
mal transport problem that transports a uniform distribution across all input
elements with sizeN to a distributionwhere the elements with the highest-k
values are assigned probability 1 and all the others are assigned 0.

This optimal transport problemwithN elements can be efficiently solved by
using Bregman projections41 with complexityO(LN), where L is the number of
iterations used to run Bregman projections. In the backward pass, Xie et al. 346
shows that the technique of differentiating through the fixed point equa-
tion32,11 also applies, but the naive implementation requires computation cost
O(N2). Therefore, Xie et al. 346 provides a faster computation approach by lever-
aging the associate rule in matrix multiplication to lower the backward com-
plexity toO(N).
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Figure B.1: Computation cost comparison of decision‐focused learning in restless multi‐armed bandits to the theoretical
guarantee with varying number of statesM.

In summary, a single soft-top-k operator requiresO(LN) to compute the result
in the forward pass, andO(N) to compute the derivative in the backward pass.
In our case, we need to apply one soft-top-k operator for every time step in T and
for every trajectory in T . Therefore, the total computation cost of comput-
ing a softWhittle index policy and the associated importance sampling-based
evaluation metric is bounded byO(LNT|T |), which is linear in the number of arms
N, but still significantly smaller thanO(NMω+1), the cost of backpropagating
through allWhittle indices as shown in Section 3.5.5. Therefore, we just need to
concern the computation cost ofWhittle indices in decision-focused learning.

B.5.3 Computation Cost Dependency on the Number of States

Figure B.1 compares the computation cost of our algorithm, DF-Whittle, and
the theoretical computation costO(NMω+1. We vary the number of statesM in
Figure B.1 andwe can see that the computation cost of our algorithmmatches
the theoretical guarantee on the computation cost. In contrast to the prior
workwith computation costO(MωN), our algorithm significantly improves the
computation cost of running decision-focused learning on RMAB problems.

B.6 Importance Sampling-based Evaluations for ARMMANDataset with Sin-
gle Trajectory

Unlike the synthetic datasets thatwe can produce multiple trajectories of an
RMAB problem, in the real problem of service call scheduling problem operated
by ARMMAN, there is only one trajectory available to us for every RMAB prob-
lem. Due to the specialty of the maternal and child health domain, it is unlikely
to have the exactly same set of the pregnant mothers participating in the ser-
vice call scheduling program at different times and under the same engagement
behavior.

Given this restriction, we must evaluate the performance of a newly proposed
policy using the only available trajectory. Unfortunately, the standard CW-
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PDIS in Equation 3.12 does notwork because the CWPDIS estimator is canceled
outwhen there is only one trajectory:

EvalIS(π, T ) =
∑

t∈[T],i∈[N]

γt−1Eτ∼T
[
rt,iρti(τ)

]
Eτ∼T

[
ρti(τ)

] =
∑

t∈[T],i∈[N]

γt−1 rt,iρti(τ)
ρti(τ)

=
∑

t∈[T],i∈[N]

γt−1rt,i

(B.1)

which is fixed regardless what target policy π is used and the associated impor-
tance samplingweights π(at,i|st)

πbeh(at,i|st) and ρti =
t∏

t′=1

π(at′,i|st′ )
πbeh(at′,i|st′ )

. This implies that we

cannot use CWPDIS to evaluate the target policy when there is only one tra-
jectory.

Accordingly, we use the following variant to evaluate the performance:

EvalIS(π, T ) =
∑

i∈[N],t∈[T]

γt−1 rt,iρ′ti(τ)
E

t′∈[T]

[
ρ′t′i(τ)

] (B.2)

where the new importance samplingweights are defined by ρ′t,i(τ) =
π(at,i|st)

πbeh(at,i|st) ,
which is not multiplicative compared to the original ones.

The main motivation of this new evaluation metric is to segment the given
trajectory into a set of length-1 trajectories. We can apply CWPDIS to the newly
generated length-1 trajectories to compute a meaningful estimate because we
have more than one trajectory now. The OPE formulationwith segmentation
is under the assumption thatwe can decompose the total reward into the con-
tribution of multiple segments using the idea of trajectory segmentation180,263.
This assumption holds when all segments start with the same state distribu-
tion. In our ARMMANdataset, the data is composed of trajectories of the par-
ticipants who have enrolled in the system a fewweeks ago, which have (almost)
reached a stationary distribution. Therefore, the state distribution under the
behavior policy, which is a uniform random policy, does not change over time.
Our assumption of identical distribution is satisfied andwe can decompose the
trajectories into smaller segments to perform evaluation. Empirically, we no-
ticed that this temporal decomposition helps define a meaningful importance
sampling-based evaluationwith the consistency benefit brought by CWPDIS.

B.7 Additional Experimental Results

We provide the learning curves of fully observable 2-state RMAB, fully observ-
able 5-state RMAB, partially observable 2-state RMAB, and the real ARMMAN
fully observable 2-state RMAB problems in Figure B.2, Figure B.3, Figure B.4, and
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Figure B.5, respectively. Across all domains, two-stage method consistently con-
verges to a lower predictive loss faster than decision-focused learning in Fig-
ure B.2(a), Figure B.3(a), Figure B.4(a), and Figure B.5(a). However, the learned model
does not produce a policy with good performance in the importance sampling-
based evaluation metric in Figure B.2(b), Figure B.3(b), Figure B.4(b), and Figure B.5(b),
and similarly in the simulation-based evaluation metric in Figure B.2(c), Fig-
ure B.3(c), Figure B.4(c), and Figure B.5(c).
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Figure B.2: Comparison between two‐stage and decision‐focused in the synthetic fully observable 2‐state RMAB prob‐
lems.
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Figure B.3: Comparison between two‐stage and decision‐focused learning for fully observable 5‐state RMAB problems.

B.8 Solving for andDifferentiating Through theWhittle Index Computa-
tion

To solve for theWhittle index for some state u ∈ S, you have to solve the fol-
lowing set of equations:

V(u) = R(s) + βu + γ
∑
s′∈S

P(s, 0, s′) · V(s′)
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(c) Testing simulation‐based evaluation

Figure B.4: Comparison between two‐stage and decision‐focused learning for 2‐state partially observable RMAB prob‐
lems.
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Figure B.5: Comparison between two‐stage and decision‐focused learning in the real ARMMAN service call scheduling
problem. The pulling action in the real dataset is much sparser, leading to a larger mismatch between predictive loss and
evaluation metrics. Two‐stage overfits to the predictive loss drastically with no improvement in evaluation metrics. In
contrast, decision‐focused learning can directly optimize the evaluation metric to avoid the objective mismatch issue.

V(u) = R(s) + γ
∑
s′∈S

P(s, 1, s′) · V(s′) (B.3)

V(s) = max
a∈{0,1}

[R(s) + (1− a)βu + γ
∑
s′∈S

P(s, a, s′) · V(s′)], ∀s ∈ S − u (B.4)

Here:

S is the set of all states

R(s) is the reward for being in state s

P(s, a, s′) is the probability of transitioning to state s′ when you begin in state s
and take action a

V(s) is the expected value of being in state s

βs is the whittle index for state s
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Oneway to interpret these equations is to view them as the BellmanOptimal-
ity Equations associatedwith a modifiedMDP in which the reward function is
changed toR′

u(s, a) = R(s) + (1 − a)βu, i.e., you are given a ‘subsidy’ for not act-
ing (Equation B.4). Then, to find the whittle index for state u, you have to find
the minimum subsidy forwhich the value of not acting exceeds the value of act-
ing337. At this transition point, the value of not acting is equal to the value of
acting in that state (Equation B.3), leading to the set of equations above.

Now, this set of equations is typically hard to solve because of themax terms
in Equation B.4. Specifically, knowingwhether argmaxa = 0 or argmaxa = 1 for
some state s is equivalent to knowingwhat the optimal policy is for this modi-
fiedMDP; such equations are typically solved using Value Iteration or varia-
tions thereof. However, this problem is slightly more complicated than a stan-
dardMDP because one also has to determine the value of βs. The way that this
problem is traditionally solved in the literature is the following:

1. One guesses a value for the subsidy βs.
2. Given this guess, one solves the BellmanOptimality Equations associated

with the modifiedMDP.
3. Then, one checks the resultant policy. If it is more valuable to act than to

not act in state s, the value of the guess for the subsidy is increased. Else, it
is decreased.

4. Go to Step 2 and repeat until convergence.
Given the monotonicity and the ability to bound the values of the whittle in-
dex, Step 3 above is typically solved using binary search. However, evenwith Bi-
nary Search, this process is quite time-consuming.

In this paper, we provide a much faster solution method for our application of
interest. We leverage the small size of our state space to search over the space
of policies rather than over the correct value of βs. Concretely, because S =
{0, 1} and A = {0, 1}, the whittle index equations for state s = 0 above boil down
to:

V(0) = R(0) + βs0 + γ
∑

s′∈{0,1}

P(0, 0, s′) · V(s′)

V(0) = R(0) + γ
∑

s′∈{0,1}

P(0, 1, s′) · V(s′)

V(1) = max
a∈{0,1}

[R(1) + (1− a)βs0 + γ
∑

s′∈{0,1}

P(1, a, s′) · V(s′)] (B.5)

These are 3 equations in 3 unknowns (V(0),V(1), βs0 ). The only hiccup here is that
Equation B.5 has amax term and so this set of equations can not be solved as
normal linear equations would be. However, we can ‘unroll’ Equation B.5 into 2
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different equations:

V(1) = R(1) + βs0 + γ
∑

s′∈{0,1}

P(1, 0, s′) · V(s′), or (B.6)

V(1) = R(1) + γ
∑

s′∈{0,1}

P(1, 1, s′) · V(s′) (B.7)

Each of these corresponds to evaluating the value function associatedwith
the partial policies s = 1 → a = 0 and s = 1 → a = 1. Then to get the opti-
mal policy, we can just evaluate both of the policies and choose the better of
the two policies, i.e., the policy with the higher expected valueV(1). In practice,
we pre-compute theWhittle index and value function using the binary search
and value iteration approach studied by Qian et al. 258 . Therefore, to deter-
mine which equation is satisfied, we just use the pre-computed value functions
to evaluate the expected future return of different actions, and use the one
with higher value to form a set of linear equations.

This gives us a set of linear equations whereWhittle index is a solution. We
can therefore derive a closed-form expression of theWhittle index as a func-
tion of the transition probabilities, which is differentiable. This completes the
differentiability ofWhittle index. This technique is equivalent to saying that
the policy does not change if we infinitesimally change the input probabilities.

B.8.1 Worked Example

s = 0
R(0) = 0

s = 1
R(1) = 1

0.2, 0.8

0.8, 0.2

0.5, 0.5

0.5, 0.5

Figure B.6: An MDP with the probabilities associated with the passive action a = 0 in green and active action a = 1 in
red.

Let us consider the concrete example in Figure B.6 with γ = 0.5. To calculate
the whittle index for state s = 0, we have to solve the following set of linear
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equations:

V(0) = 0+ βs0 + 0.5 · [0.8V(0) + 0.2V(1)] V(0) = 0+ βs0 + 0.5 · [0.8V(0) + 0.2V(1)]

V(0) = 0+ 0.5 · [0.2V(0) + 0.8V(1)] V(0) = 0+ 0.5 · [0.2V(0) + 0.8V(1)]
V(1)= 1+ βs0 + 0.5 · [0.5V(0) + 0.5V(1)] V(1)= 1+ 0.5 · [0.5V(0) + 0.5V(1)]

V(0)≈ 0.65,V(1) ≈ 1.45, βs0≈ 0.25 V(0)≈ 0.52,V(1) ≈ 1.18, βs0≈ 0.20

Here the left set of equations corresponds to taking action a = 0 in state s = 1
and the right corresponds to taking the action a = 1. As we can see in the above
calculation, given subsidy βs0 , it is better to choose the passive action (a=0) on
the left to obtain a higher expected future valueV(1). On the other hand, this
can also be verified by precomputing theWhittle index and the value function.
Therefore, we know that the passive action in Equation B.7 leads to a higher
value, where the equality holds. Thus we can express theWhittle index as a so-
lution to the following set of linear equations:

V(0) = R(0) + βs0 + γ
∑

s′∈{0,1}

P(0, 0, s′) · V(s′)

V(0) = R(0) + γ
∑

s′∈{0,1}

P(0, 1, s′) · V(s′)

V(1) = R(1) + βs0 + γ
∑

s′∈{0,1}

P(1, 0, s′) · V(s′)

By solving this set of linear equation, we can express theWhittle index βs0
as a function of the transition probabilities. Therefore, we can apply auto-
differentiation to compute the derivative

dβs0
dP .
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C
Appendix to Chapter 5

C.1 Computation of Defender Utility

Given coverage z, if we sort the vertices out by intermediate states then absorb-
ing states, then the transition matrix induced by behavior θ(z, x) can be written

as: P =

[
Q R
0 I

]
, where I is an identity matrix representing once the attacker

reaches any absorbing states, he would never transit to other states. Q,R are
both functions of z and x.

The absorbing probability can be computed by B = (I−Q)−1R ∈ R|S|×(|T|+1), where
the entry Bij indicates the probability that the attacker initiates from state i
and ends up being in absorbing state j. Since we also know the distribution π ∈
R|S| that the attacker will appear and the defender utilityUd ∈ R|T|+1 including
the reward of catching the attacker, the defender utility can be given by π⊤BUd,
where the function f is defined by the negative defender utility:

f(z, θ) = −π⊤BUd = −π⊤(I− Q(z, θ))−1R(z, θ)Ud (C.1)

which is still a function of z and θ. We can also compute the derivatives of this
function f. But since the computation of f involves matrix inversion, the compu-
tation of derivatives will also involve matrix inversions and multiplications,
which can be very expensive especially for higher order derivatives.
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C.2 The Choices of Loss Function

Given two transition matricesM,M′ ∈ R|V|×|V|, we can alignwith the any stan-
dard definition of matrix norm:

L(M,M′) =
∥∥M−M′∥∥ (C.2)

Another choice of loss function definition is to compute the KL-divergence
or cross entropy of the path distribution inferred by these two transition ma-
trices. Since there are absorbing states, the path can eventually terminate when
it reaches to any of the absorbing state. However, there could be loop in the
graph, which might incur infinitely many possible paths, making the path dis-
tribution infinitely dimensional. Another issue is that we do not have a close
form of the path distribution, which can prevent us from computing the KL-
divergence between two implicit distributions.

In our domain, we usually have samples from the ground truthMarkov chain,
which can be used as an empirical path distribution. By considering those sam-
ples as the empirical distribution Λ, we can compute the KL-divergence between
Λ and the predictedMarkov chainM:

L(Λ,M) =
∑
α

prob(α ∈ Λ) log
prob(α ∈ Λ)
prob(α ∈M)

(C.3)

which can be efficiently computed since Λ is finite and all the probability can
be analytically computed. This serves as an alternative for us to compute the
KL-divergence between the ground truth and our prediction.

C.3 Differentiable Quadratic Program

Given a quadratic program:

min
z

1
2
zTQz+ pTz (C.4)

s.t. Gz ≤ h
Az = b

According to80,11, we can compute the derivative of the optimal solution z∗ with
respect to each parameters in the quadratic program, e.g.,Q, p,G, h,A, b. In our
case, we only consider the derivative with respect to p, whereG, h,A, b are con-
stants andwe ignore the derivative of theHessianQ since its derivative is of
third order.
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After solving the quadratic program, we can get the solution z∗ with dual
variables λ∗, ν∗ respectively for the inequality constraints and equality con-
straints. All the variables z∗, λ∗, ν∗ are all functions of prediction θ. In80,11, they
proposed that if wewrite the KKT conditions:

Qz∗ + p+ A⊤ν∗ + G⊤λ∗ = 0
Az∗ − b = 0

D(λ∗)(Gz∗ − h) = 0

whereD(λ∗) is the diagonal matrix with λ∗ on the diagonal. We can consider the
total derivative of the above equations, which yields:

dQz∗ + Qdz∗ + dp+ dA⊤ν∗ + A⊤dν∗ + dG⊤λ∗ + G⊤dλ∗ = 0
dAz∗ + Adz∗ − db = 0

D(Gz∗ − h)dλ∗ +D(λ∗)(dGz∗ + Gdz∗ − dh) = 0

Since here we assumeQ,G, h,A, b are all constants, so we can ignore the deriva-
tives of there terms and get:

Qdz∗ + dp+ A⊤dν∗ + G⊤dλ∗ = 0
Adz∗ = 0

D(Gz∗ − h)dλ∗ +D(λ∗)Gdz∗ = 0

which can be further turned into matrix form: Q G⊤ A⊤

D(λ∗)G D(Gz∗ − h) 0
A 0 0

dz∗dλ∗

dν∗

 =

−dp0
0


⇔

 Q G⊤ A⊤

D(λ∗)G D(Gz∗ − h) 0
A 0 0




dz∗
dp
dλ∗
dp
dν∗
dp

 =

−I0
0

 (C.5)

⇔


dz∗
dp
dλ∗
dp
dν∗
dp

 =

 Q G⊤ A⊤

D(λ∗)G D(Gz∗ − h) 0
A 0 0

−1 −I0
0


This allows us to compute the gradients dz∗

dp by solving the corresponging linear
equation.
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We can also combine the chain rule df
dp =

df
dz∗

dz∗
dp by:

df
dp

=


dz∗
dp
dλ∗
dp
dν∗
dp


⊤  df

dz∗
0
0

 =

−I0
0

⊤ Q D(λ∗)G⊤ A⊤

G D(Gz∗ − h) 0
A 0 0

−1  df
dz∗
0
0


Or equivalently, definedzdλ

dν

 =

Q D(λ∗)G⊤ A⊤

G D(Gz∗ − h) 0
A 0 0

−1 − df
dz∗
0
0

 (C.6)

then df
dp = dz, which is the derivative of the objective function fwith respect to

the linear coefficient p of the quadratic program.

C.4 Proof of Theorem 3

Theorem 3. When the intermediate prediction matches the ground truth, i.e., θ(·, ·;w∗) = θ∗, we
have df(z∗,θ∗)

dw |w=w∗ = 0 for both Algorithm 3 and Algorithm 4 with any block C.

Proof. We first prove for the Algorithm 3 case. Our goal is to prove that this df
dp |θ=θ∗ = dz is exactly

0 at θ∗, meaning there is no gradient at the true optimal prediction θ∗.
To prove this, we directly show that dz = 0, dλ = 1{λ∗ ̸=0}, dν = ν∗ is a solution. When the KKT

matrix in Equation C.5 is non-singular, this implies that dz = 0 is the unique solution. When the
KKTmatrix is singular, dz = 0 is a subgradient. Furthermore, if we follow the implementation in80,
they remove the dependent rows of the KKTmatrix C.5 such that the matrix is non-singular, which
again implies that dz = 0 is the unique solution. To verify this, we can compute:Q G⊤D(λ∗) A⊤

G D(Gz∗ − h) 0
A 0 0

 0
1{λ∗ ̸=0}

ν∗


=

G⊤D(λ∗)1{λ∗ ̸=0} + A⊤ν∗
D(Gz∗ − h)1{λ∗ ̸=0}

0

 =

G⊤λ∗ + A⊤ν∗
0
0


Notice that the KKT condition of the quadratic program implies:

Qz∗ + p+ A⊤ν∗ + G⊤λ∗ = 0

⇔ Qz∗ +
∂f
∂z
|z=z∗,θ=θ∗ − Qz∗ + A⊤ν∗ + G⊤λ∗ = 0
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⇔ ∂f
∂z
|z=z∗,θ=θ∗ + A⊤ν∗ + G⊤λ∗ = 0

Q G⊤D(λ∗) A⊤

G D(Gz∗ − h) 0
A 0 0

 0
1{λ∗ ̸=0}

ν∗


=

G⊤λ∗ + A⊤ν∗
0
0

 =

− df
dz∗
0
0


This verifies that dz = 0, dλ = 1{λ∗ ̸=0}, dν = ν∗ is a solution of Equation C.6. This concludes the
proof of Algorithm 3.

To prove for Algorithm 4, we consider the following equation:

dzCdλ
dν

 =

QC D(λ∗)G⊤
C A⊤

C
GC D(GCz∗C − hC) 0
AC 0 0

−1
−

df
dz∗C
0
0

 (C.7)

whereG =
[
GC GC

]
,A =

[
AC AC

]
thatGC,AC correspond to the coefficients of indices C.

hC = h− GCz
∗
C corresponds to the modified linear inequalities without the effect of terms zC.

We can also verify that df
dpC |θ=θ∗ = dzC = 0 is a solution in Equation C.7. By setting dzC =

0, dλ = 1{λ∗ ̸=0}, dν = ν∗, we can find that this also satisfies the Equation C.7.
All of these imply that df

dpC |θ=θ∗ = 0 (or at least a feasible subderivative). By applying Equa-

tion 5.9 of Algorithm 3 or Equation 5.11 of Algorithm 4, we can get df(z∗,θ∗)
dθ |θ=θ∗ = 0 where θ∗ is

the optimal model parameter that gives the correct prediction θ∗.

C.5 Proof of Theorem 4

Theorem 4. The quadratic programs in Algorithm 3 and Algorithm 4 share the same primal solu-
tions on the block C. They also share the same dual solution on the non-degenerate constraints contain-
ing at least one variable in the block.

Proof. Since both algorithms are derived from Taylor expansion around a local optimum, the Hes-
sian is always positive definite. Therefore, the solution given by the quadratic program is exactly the
same as the local optimum previously computed, which is shared for both algorithms. So both of
them share the same primal solutions at indices C.
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For the dual solutions, we can write down the quadratic programs C.4 for Algorithm 3 by:

min
z

1
2
z⊤Qz+ p⊤z (C.8)

s.t. Gz ≤ h
Az = b

withQ =
∂2f
∂z2 |z=z∗ , p =

∂f
∂z |z=z∗ − Qz∗. The KKT stationary condition can be given by:

Qz∗ + p+ G⊤λ∗ + A⊤ν∗ = 0

⇔ Qz∗ +
∂f
∂z
|z=z∗ − Qz∗ + G⊤λ∗ + A⊤ν∗ = 0

⇔ ∂f
∂z
|z=z∗ + G⊤λ∗ + A⊤ν∗ = 0 (C.9)

Similarly for Algorithm 4 in the case there is no degenerative constraint, we have:

min
zC

1
2
z⊤CQCCzC + p⊤C zC (C.10)

s.t. GCzC ≤ hC = h− GCzC
ACzC = bC = b− ACzC

whereQCC =
∂2f
∂z2C
|z=z∗ , pC =

∂f
∂zC |z=z∗ − QCCz∗C, and constraintsG =

[
GC GC

]
,A =

[
AC AC

]
.

The KKT stationary condition can be given by:

QCCz∗C + pC + G⊤
C λ

∗ + A⊤
C ν∗ = 0

⇔ QCCz∗C +
∂f
∂zC
|z=z∗ − QCCz∗C + G⊤

C λ
∗ + A⊤

C ν∗ = 0

⇔ ∂f
∂zC
|z=z∗ + G⊤

C λ
∗ + A⊤

C ν∗ = 0 (C.11)

Comparing Equation C.9 and Equation C.11, we can find that Equation C.11 is just a subset
of Equation C.9, or more specifically the equations at indices C. Similarly, they also share the same
primal, dual feasibility conditions, and complementary slackness conditions. Therefore, the dual
solutions of the KKT conditions of quadratic program C.8 is also a solution of the KKT conditions
of C.10.

When there are degenerative constraints, for example, some rowsR of the constraintsGC are
degenerative and thus be all 0 after truncating by block C, i.e.,GR,C = 0. In this case,G⊤

C λ
∗ =

G⊤
R,Cλ

∗
R + G⊤

R,Cλ
∗
R = G⊤

R,Cλ
∗
R, where there is no constraint posted on λ

∗
R, which can be arbitrary

here. Similarly, some rows L of equality constraints AC might also be degenerative, i.e., AL,C = 0.
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But if we only consider the non-degenerative constraintsGR,C and AL,C, we can re-write the KKT
stationary conditions in Equation C.11 by:

∂f
∂zC
|z=z∗ + G⊤

C λ
∗ + A⊤

C ν∗ = 0

⇔ ∂f
∂zC
|z=z∗ + G⊤

R,Cλ
∗ + A⊤

L,Cν∗ = 0 (C.12)

In this case, the entire KKT condition with non-degenerative dual variables is non-singular, which
imposes a unique solution to the dual variables. But we have shown that the dual solution of Equa-
tion C.9 is also a solution to Equation C.11, which is again a solution to Equation C.12. By unique-
ness, this solution of Equation C.12is also a solution of Equation C.11 on the non-degenerative
constraintsGR,C,AL,C, thus a solution to the Equation C.9, which concludes the proof.

C.6 Proof of Theorem 5

Theorem 5. Given the primal solution z∗ and the dual solution λ∗ of the quadratic program in Al-
gorithm 3 with linear constraints G, h,A, b, the Hessian Q =

∂2f
∂z , linear coefficient p =

∂f
∂z , and

the sampled indices C ⊂ {1, 2, ..., |E|}, the gradient dz∗C
dpC ∈ R|C|×|C| computed in Algorithm 4 is an

approximation to the block component of the gradient dz∗
dp ∈ R|E|×|E| computed in Algorithm 3. More

specifically, ∥∥∥∥(dz∗

dp

)
CC
−

dz∗C
dpC

∥∥∥∥ ≤ Δ + ΔC

μmin(Q)
max(λ∗, 1)

∥∥K−1
CC
∥∥∥∥∥∥(dz∗

dp

)
CC

∥∥∥∥ (5.12)

where Δ =
∥∥G⊤G+ A⊤A

∥∥ ,ΔC =
∥∥∥Q⊤

CCQCC

∥∥∥, and μmin(Q) is the smallest eigenvalue of positive
definite matrix Q. KCC is the KTTmatrix given by the quadratic program in Algorithm 4.

Proof. DenoteK =

 Q G⊤ A⊤

D(λ∗)G D(Gz∗ − h) 0
A 0 0

 to be the KKTmatrix C.5 of the quadratic

program C.8 given by Algorithm 3. We can also denoteKCC =

 QCC G⊤
C A⊤

C
D(λ∗)GC D(GCz∗C − hC) 0

AC 0 0


to be the KKTmatrix of the quadratic program C.10 given by Algorithm 4. Notice thatKCC is in
fact a block ofK since they share the same primal and dual solution. According to Equation C.5, we
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can write down the gradient dz∗
dp and dz∗C

dpC respectively in Algorithm 3 and Algorithm 4 by:

dz∗

dp
=

I0
0

⊤

K−1

−I0
0

 ,
dz∗C
dpC

=

I0
0

⊤

K−1
CC

−I0
0


If we use block form to represent the KKTmatrixK, we can get:

K =

[
K1 K2
K3 K4

]
where we can apply the block matrix inversion technique and get:

K−1 =

[
K−1
1 + K−1

1 K2(K4 − K3K−1
1 K2)

−1K3K−1
1 −K−1

1 K2(K4 − K3K−1
1 K2)

−1

−(K4 − K3K−1
1 K2)

−1K3K−1
1 (K4 − K3K−1

1 K2)
−1

]
(C.13)

whereK1 needs to be invertible here.

SetK1 = QCC,K2 =
[
QCC G⊤

C A⊤
C

]
,K3 =

 QCC
D(λ∗)GC

AC

 ,K4 = KCC, whereK1 = QCC is

positive definite therefore also invertible. We can see thatK1 ∈ R|C|×|C| and the sizes ofK2,K3,K4
depend on the size of the block C and the size of the constraintsGC,AC, which can probably help
visualize the size of the block matrix.

If we truncate the gradient dz∗
dp to its C block, it is equivalent to remove the C part fromK−1,

which gives us:

(
dz∗

dp

)
CC

=

I0
0

⊤ (
K−1)

CC

−I0
0

 =

I0
0

⊤

(K4 − K3K−1
1 K2)

−1

−I0
0


Therefore, the difference between (dz∗dp )CC and

dz∗C
dpC can be bounded by:

(
dz∗

dp

)
CC
−

dz∗C
dpC

=

I0
0

⊤

(K4 − K3K−1
1 K2)

−1

−I0
0

−
I0
0

⊤

K−1
CC

−I0
0


=

I0
0

⊤

((K4 − K3K−1
1 K2)

−1 − K−1
CC)

−I0
0


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=

I0
0

⊤

(K4 − K3K−1
1 K2)

−1(I− (K4 − K3K−1
1 K2)K−1

CC)

−I0
0


=

I0
0

⊤

(K4 − K3K−1
1 K2)

−1(K3K−1
1 K2K−1

CC)

−I0
0

 (C.14)

where the last equality comes from the choiceK4 = KCC, thus the identity matrix is canceled out.
We can then bound the matrix norm ofK3K−1

1 K2K−1
CC by:∥∥K3K−1

1 K2K−1
CC
∥∥ ≤ ‖K3K2‖

∥∥∥Q−1
CC

∥∥∥∥∥K−1
CC
∥∥

≤
max(λ∗, 1)

∥∥K⊤
2 K2

∥∥
μmin(QCC)

∥∥K−1
CC
∥∥

≤ Δ + ΔC

μmin(QCC)
max(λ∗, 1)

∥∥K−1
CC
∥∥

≤ Δ + ΔC

μmin(Q)
max(λ∗, 1)

∥∥K−1
CC
∥∥ (C.15)

where the second inequality is from the fact thatK3 is a matrix multiplication ofK⊤
2 and a diagonal

matrix with 1 and λ∗ on the diagonal. The matrix norm can be bounded by the matrix norm of
the diagonal matrix, thusmax(λ∗, 1), and the remaining matrix multiplicationK⊤

2 K2. The third
inequality is due to the singular value

∥∥K⊤
2 K2

∥∥ =
∥∥K2K⊤

2
∥∥ =

∥∥∥QCCQCC + G⊤
CGC + A⊤

CAC

∥∥∥ ≤∥∥QCCQCC + G⊤G+ A⊤A
∥∥ ≤ Δ + ΔC, where the middle inequality is due to the fact that all these

individual terms are positive semi-definite, so adding new postive semi-definite terms such that they
becomeG⊤G,A⊤A only increases the norm value.

Taking matrix norm to Inequality C.14 and using Inequality C.15 to substitute
∥∥K3K−1

1 K2K−1
CC
∥∥,

we can get:

∥∥∥∥(dz∗

dp

)
CC
−

dz∗C
dpC

∥∥∥∥ ≤ Δ + ΔC

μmin(Q)
∥∥K−1

CC
∥∥∥∥∥∥∥∥
I0
0

 (K4 − K3K−1
1 K2)

−1

−I0
0

∥∥∥∥∥∥
=

Δ + ΔC

μmin(Q)
∥∥K−1

CC
∥∥∥∥∥∥(dz∗

dp

)
CC

∥∥∥∥ (C.16)

which concludes the proof.
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C.6.1 Discussion of Singularity of KKTMatrix

One biggest concern is whether the KKTmatricesK andKCC are singular. If the
chosenKCC is singular, then the bound provided in Theorem 5 becomes useless.

As discussed in the appendix of80, in Equation C.5, due to KKT condition, at
least one of λ∗i and (Gz∗ − h)i is 0. Also as they discussed, when both of them are
0, the whole i-th row inD(λ∗)G andGz∗ − h is all 0. We can either impose new con-
straint or just remove the row to make the matrix non-singular.

If λ∗i = 0 with (Gz∗ − h)i > 0, then in the i-th row, there is only the term
(Gz∗ − h)i being nonzero. Thus we can solve the equation in the i-th row by set-
ting (dλ

∗

dp )i = 0 and remove the row and the variable (dλ
∗

dp )i from the linear equa-
tion. Therefore, the linear equation and the matrix can be simplified by: Q G⊤

I A⊤

D(λ∗I )GI D(Gz∗ − h)I 0
A 0 0




dz∗
dp
dλ∗I
dp
dν∗
dp

 =

−I0
0


where I = {i : λ∗i 6= 0}. But notice that (Gz∗ − h)i = 0 due to the KKT conditions
and the assumption of I. So we can simply write: Q G⊤

I A⊤

D(λ∗I )GI 0 0
A 0 0




dz∗
dp
dλ∗I
dp
dν∗
dp

 =

−I0
0

 (C.17)

Notice thatwe can assume
[
D(λ∗)GI

AI

]
to have a full row rank now. Equivalently,

we can also assume
[
G⊤
I A⊤

I
]
to have a full column rank.

C.6.2 Singularity of Block KKTMatrix

Given a simplified version of the non-singular full KKTmatrix in Equation C.17,
we canwrite down the block KKTmatrix as: QCC G⊤

I,C A⊤
C

D(λ∗I )GI,C 0 0
AC 0 0




dz∗C
dpC
dλ∗I
dpC
dν∗
dpC

 =

−I0
0

 (C.18)

whereGI =
[
GI,C GI,C

]
,AI =

[
AI,C AI,C

]
. In order to make the block KKTmatrix

non-singular, we need to select C such that
[
GC
AC

]
remains full row rank. In this
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case, the block KKTmatrix will remain non-singular and thus invertible.
In practice, we cannot access to the dual varialbe λ∗ before solving the QP

and choosing the block C. But we can compute the slack variablesGzopt − h since
zopt is given. We need to make sure to makeGI,C nonzero for I = {i : λ∗i 6= 0} ⊂ {i :
(Gzopt − h)i = 0}, or equivalently the indices of tight constraints.

Some choices of block Cmight make Equation C.18 singular but still solvable.

That is due to some dependent rows in
[
GI,C
AC

]
, which admit to each others since

the right hand side is all 0. This allows us to remove the redundant constraints
and re-solve the linear equation by applying matrix inversion. But in this case,
the block KKTmatrix will not contain all the constraints, which leaves some
constraints out of the block. Algorithm 4 still works but theK1 in the proof of
Theorem 5 is not justQCC but contains some additional terms from constraints
excluded by the block quadratic program. The boundwill also vary since we
need to estimate the eigenvalue ofK1, which depends on the added constraints
and does not have a simple form here.
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D
Appendix to Chapter 6

D.1 Preservation of Convexity and Submodularity

Proposition 1. If f is convex, then gP(y, θ) := f(Py, θ) is convex.
Proof. The convexity can be simply verified by computing the second-order derivative:

d2g
dy2

=
d2f(Py, θ)

dy2
= P⊤

d2f
dz2

P � 0

where the last inequality comes from the convexity of f, i.e., d
2f

dz2 � 0.

Proposition 2. If f is DR-submodular and P ≥ 0, then gP(y, θ) := f(Py, θ) is DR-submodular.
Proof. Assume f has the property of diminishing return submodularity (DR-submodular)46. Ac-
cording to definition of continuous DR-submodularity, we have:

∇2
zi,zjf(z, θ) ≤ 0 ∀i, j ∈ [n], y

After applying the reparameterization, we can write:

gP(y, θ) = f(z, θ)

and the second-order derivative:

∇2
ygP(y, θ) = P⊤∇2

z fP(z, θ)P ≤ 0
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Since all the entries of P are non-negative and all the entries of∇2
z fP(z, θ) are non-positive by DR-

submodularity, the product∇2
ygP(y, θ) also has all the entries being non-positive, which satisfies the

definition of DR-submodularity.

D.2 Quasiconvexity in ReparameterizationMatrix

Proposition 3. OPT(θ,P) := min
y feasible

gP(y, θ) is not globally quasiconvex in P.

Proof. Without loss of generality, let us ignore the effect of θ and write gP(y) = f(Pz). In this
proof, we will construct a strongly convex function fwhere the induced optimal value function
OPT(P) := miny gP(y) is not quasiconvex.

Consider z = [z1, z2, z3]⊤ ∈ R3. Define f(z) =

∥∥∥∥∥∥z−
1
1
1

∥∥∥∥∥∥
2

≥ 0 for all z ∈ R3. Define P =1 0
1 0
0 2

 and P′ =

0 1
0 1
2 0

. Apparently, z∗ =

1
1
1

 = P
(

1
0.5

)
and z∗ =

1
1
1

 = P′
(
0.5
1

)
are both achievable. So the optimal values OPT(P) = OPT(P′) = 0. But the combination P′′ =

1
2P+ 1

2P
′ =

0.5 0.5
0.5 0.5
1 1

 cannot, which results in an optimal valueOPT(P′′) = miny gP′′(y) =>

0 since

1
1
1

 6∈ span(P′′). This implies OPT( 12P + 1
2P

′) = OPT(P′′) > 0 = 1
2OPT(P) +

1
2OPT(P′). Thus OPT(P) is not globally convex in the feasible domain.

Theorem 6. If f(·, θ) is quasiconvex, then OPT(θ,P) := min
y feasible

gP(y, θ) is quasiconvex in Pi, the i-th

column of matrix P, for any 1 ≤ i ≤ m, where P = [P1,P2, . . . ,Pm].

Proof. Let us assume P = [p1, p2, ..., pm] and P′ = [p′1, p′2, ..., p′m], where pi = p′i ∀i 6= 1 with
only the first column different. In the optimization problem parameterized by P, there is an optimal

solution z =
m∑
i=1

piyi, yi ≥ 0 ∀i. Similarly, there is an optimal solution z′ =
m∑
i=1

p′iy′i, y′i ≥ 0 ∀i

for the optimization problem parameterized by P′. Denote h(P) := OPT(θ,P). We know that
f(z) = h(P), f(z′) = h(P′). Denote P′′ = cP + (1 − c)P′ = [p′′1 , p′′2 , ..., p′′m] to be a convex
combination of P and P′. Clearly, p′′1 = cp1 + (1 − c)p′1 and p′′i = pi = p′i ∀i 6= 1. Then we can
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construct a solution

z′′ =
1

c
y1 +

1−c
y′1

(
c
y1
z+

1− c
y′1

z′)

=
1

c
y1 +

1−c
y′1

(
c
y1

m∑
i=1

piyi +
1− c
y′1

m∑
i=1

p′iy′i)

=
1

c
y1 +

1−c
y′1

(cp1 + (1− c)p′1) +
1

c
y1 +

1−c
y′1

m∑
i=2

pi(
yi
y1

+
y′i
y′1
)

∈ Span(P′′)

Thus, z′′ is a feasible solution in the optimization problem parameterized by P′′. By the convexity of
f, we also know that

h(cP+ (1− c)P′) = h(P′′) ≤ f(z′′)

= f(
1

c
y1 +

1−c
y′1

(
c
y1
z+

1− c
y′1

z′))

≤ max(f(z), f(z′))
= max(h(P), h(P′))

When one of y1, y′1 is 0, without loss of generality we assume y1 = 0. Then we can construct a
solution z′′ = zwhich is still feasible in the optimization problem parameterized by P′′ = cP+ (1−
c)P′. Then we have the following:

h(P′′) ≤ f(z′′) = f(z) = h(P) ≤ max(h(P), h(P′))

which concludes the proof.

D.3 Sample Complexity of Learning PredictiveModel in Surrogate Problem

Theorem 7. LetHlin be the hypothesis class of all linear function mappings from x ∈ X ⊂ Rp to
θ ∈ Θ ∈ Rn, and let P ∈ Rn×m be a linear reparameterization used to construct the surrogate. The
expected Rademacher complexity over t i.i.d. random samples drawn fromD can be bounded by:

Radt(Hlin) ≤ 2mC
√

2p log(2mt ‖P+‖ ρ2(S))
t

+ O(
1
t
) (6.4)

where C := supθ(maxzf(z, θ) − minzf(z, θ)) is the gap between the optimal solution quality and the
worst solution quality, ρ2(S) is the diameter of the set S, and P+ is the pseudoinverse.

The proof of Theorem 7 relies on the results given by Balghiti et al.87. Bal-
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ghiti et al. analyzed the sample complexity of predict-then-optimize framework
when the optimization problem is a constrained linear optimization problem.

The sample complexity depends on the hypothesis classH, mapping from the
feature spaceX to the parameter space Θ. z∗S(θ) = argminz∈S f(z, θ) characterizes
the optimal solutionwith given parameter θ ∈ Θ and feasible region S. This can
be obtained by solving any linear program solver with given parameters θ. The
optimization gap with given parameter P is defined as ωS(θ) := maxz∈S f(z, θ) −
minz∈S f(z, θ), and ωS(Θ) := supθ∈Θ ωS(θ) is defined as the upper bound on optimiza-
tion gap of all the possible parameter θ ∈ Θ. z∗(H) := {x → z∗(Φ(x))|Φ ∈ H}
is the set of all function mappings from features x to the predictive parameters
θ = Φ(x) and then to the optimal solution z∗(θ).

Definition 28 (Natarajan dimension). Suppose that S is a polyhedron andS is the set of its extreme
points. LetF ∈ SX be a hypothesis space of function mappings fromX toS, and let A ⊂ X to be
given. We say thatF shatters A if there exists g1, g2 ∈ F such that

• g1(x) 6= g2(x) ∀x ∈ A.

• For all B ⊂ A, there exists g ∈ F such that (i) for all x ∈ B, g(x) = g1(x) and (ii) for all
x ∈ A\B, g(x) = g2(x).

The Natarajan dimension ofF , denoted by dN(F), is the maximum cardinality of a set N-shattered
byF .

We first state their results below:

Theorem 29 (Balghiti et al.87 Theorem 2). Suppose that S is a polyhedron andS is the set of its
extreme points. LetH be a family of functions mapping from featuresX to parametersΘ ∈ Rn with
decision variable z ∈ Rn and objective function f(z, θ) = θ⊤z. Then we have that

Radt(H) ≤ ω∗S(Θ)

√
2dN(z∗(H)) log(t|S|2)

t
. (D.1)

where Radt denotes the Radamacher complexity averaging over all the possible realization of t i.i.d.
samples drawn from distributionD.

The following corollary provided by Balghiti et al.87 introduces a bound on
Natarajan dimension of linear hypothesis classH, mapping fromX ∈ Rp to Θ ∈
Rn:

Corollary 3 (Balghiti et al.87 Corollary 1). Suppose that S is a polyhedron andS is the set of its ex-
treme points. LetHlin be the hypothesis class of all linear functions, i.e.,Hlin = {x → Bx|B ∈ Rn×p}.
Then we have

dN(z∗(Hlin)) ≤ np (D.2)
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Also |S| can be estimated by constructing an ε-covering of the feasible region
by open balls with radius ε. Let Ŝε be the centers of all these open balls. We can
choose ε = 1

t and the number of open balls required to cover S can be estimated
by

|Ŝε| ≤
(
2tρ2(S)

√
n
)n (D.3)

Combining Equation D.1, D.2, and D.3, the Radamacher complexity can be bounded
by:

Corollary 4 (Balghiti et al.87 Corollary 2).

Radt(Hlin) ≤ 2nωS(Θ)

√
2p log(2ntρ2(S))

t
+ O(

1
t
) (D.4)

Nowwe are ready to prove Theorem 7:

Proof of Theorem 7. Now let us consider our case. We have a linear mapping from features x ∈
X ⊂ Rp to the parameters θ = Bx ∈ Θ ∈ Rn with B ∈ Rn×p. The objective function is formed by

gP(y, θ) = f(Py, θ) = θ⊤Py = (P⊤θ)⊤y = (P⊤Bx)⊤y (D.5)

This is equivalent to have a linear mapping from x ∈ X ⊂ Rp to θ′ = P⊤Bxwhere P⊤B ∈ Rm×p,
and the objective function is just gP(y, θ′) = θ′⊤y. This yields a similar bound but with a smaller
dimensionm� n as in Equation D.6:

Radt(Hlin) ≤ 2mωS(Θ)

√
2p log(2mtρ2(S′))

t
+ O(

1
t
) (D.6)

where ωS(Θ) is unchanged because the optimality gap is not changed by the reparameterization.
The only thing changed except for the substitution ofm is that the feasible region S′ is now defined
in a lower-dimensional space under reparameterization P. But since ∀y ∈ S′, we have Py ∈ S too. So
the diameter of the new feasible region can also be bounded by:

ρ(S′) = maxy,y′∈S′
∥∥y− y′

∥∥
= maxy,y′∈S′

∥∥P+P(y− y′)
∥∥

= maxy,y′∈S′
∥∥P+(Py− Py′)

∥∥
≤ maxz,z′∈S′

∥∥P+(z− z′)
∥∥

≤
∥∥P+∥∥maxz,z′∈S′

∥∥z− z′
∥∥

=
∥∥P+∥∥ ρ(S)
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where P+ ∈ Rm×n is the pseudoinverse of the reparameterization matrix Pwith P+P = I ∈
Rm×m (assuming the matrix does not collapse). Substituting the term ρ(S′) in Equation D.6, we
can get the bound on the Radamacher complexity in Equation 6.4, which concludes the proof of
Theorem 7.

D.4 Non-linear Reparameterization

The main reason thatwe use a linear reparameterization is to maintain the con-
vexity of the inequality constraints and the linearity of the equality constraints.
Instead, if we apply a convex reparameterization z = P(y), e.g., an input convex
neural network13, then the inequality constraints will remain convex but the
equality constraints will no longer be affine anymore. So such convex reparam-
eterization can be useful when there is no equality constraint. Lastly, we can
still apply non-convex reparameterization but it can create non-convex inequal-
ity and equality constraints, which can be challenging to solve. All of these
imply that the choice of reparameterization should depend on the type of opti-
mization problem to make sure we do not lose the scalability while solving the
surrogate problem.

D.5 Computing Infrastructure

All experiments were run on the computing cluster, where each node config-
uredwith 2 Intel Xeon Cascade Lake CPUs, 184 GB of RAM, and 70 GB of local
scratch space. Within each experiment, we did not implement parallelization.
So each experimentwas purely run on a single CPU core. The main bottleneck of
the computation is on solving the optimization problem, where we use Scipy313

blackbox optimization solver using SLSQP method. NoGPUwas used to train the
neural network and throughout the experiments.
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E
Appendix to Chapter 7

E.1 Proofs of Proposition 4

and Proposition 5

Proposition 4. The variance returned by Algorithm 5 is

σ2T,entire(xxx) = k(xxx, xxx)−
∑
i,j

zzz⊤i (
∑
l

DDDlKKKl,TDDDl)
−1zzzj (7.6)

where DDDj = diag([gj(xxx1), ..., gj(xxxT)]) and zzzi = DDDikkkj,T(xxx)gj(xxx) ∈ RT.

Proof of Proposition 4. According to Equation (7.4), the posterior covariance kT,entire(xxx, xxx′) in Algo-
rithm 5 can be written as:

kT,entire(xxx, xxx′) = k(xxx, xxx′)− kkkT(xxx)⊤KKKT
−1kkkT(xxx) (E.1)

By the decomposition assumption (Equation (7.1)), we have k(xxx, xxx′) =
J∑

j=1
gj(xxx)kj(xxx, xxx′)gj(xxx′).

Moreover,

kkkT(xxx) = [k(xxx1, xxx), ..., k(xxxT, xxx)]⊤

=

J∑
j=1

[gj(xxx1)kj(xxx1, xxx)gj(xxx), ..., gj(xxxT)kj(xxxT, xxx)gj(xxx)]⊤
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=

J∑
j=1

DDDjkkkj,T(xxx)gj(xxx) (E.2)

where kkkj,T(xxx) = [kj(xxx1, xxx), ..., kj(xxxT, xxx)]⊤.
The variance function σ2T(xxx) is just the value of covariance function with xxx′ = xxx. Therefore,

combining Equation (E.1) and (E.2), the variance can be written as:

σ2T,entire(xxx) = kT,entire(xxx, xxx)

= k(xxx, xxx)− kkkT(xxx)⊤KKK−1
T kkkT(xxx)

= k(xxx, xxx)−
∑
i,j

gi(xxx)kkki,T(xxx)⊤DDD⊤
i KKK

−1
T DDDjkkkj,T(xxx)gj(xxx)

= k(xxx, xxx)−
∑
i,j

zzz⊤i KKK
−1
T zzzj (E.3)

= k(xxx, xxx)−
∑
i,j

zzz⊤i (
∑
l

DDDlKKKl,TDDDl)
−1zzzj (E.4)

with zzzi = DDDikkkj,Tgj(xxx) ∈ Rn and equation (E.3) to (E.4) is coming from:

KKKT = [k(xxx, xxx′)]xxx,xxx′∈AT + diag([σ2(xxxt)]t∈[T]) (E.5)

=

J∑
j=1

[gj(xxx)kj(xxx, xxx′)gj(xxx′)]xxx,xxx′∈AT

+ diag([g2j (xxxt)σ2j (xxxt)]t∈[T]) (E.6)

=
∑
j
DDDj([kj(xxx, xxx′)]xxx,xxx′∈AT + diag([σ2j (xxxt)]t∈[T]))DDDj

=
∑
j
DDDjKKKj,TDDDj

where the first kernel term from Equation (E.5) to (E.6) is derived by from definition. And in the
latter term, from the decomposition assumption (7.1), the noise variance σ2(xxx) of the target func-
tion f at point xxx is the cumulative variance of the noise variance σ2j (xxx) of each individual function fj,
i.e.

σ2(xxx) =
J∑

j=1
g2j (xxx)σ2j (xxx) ∀xxx ∈ X , j ∈ [J]

which explains the derivation from Equation E.5 to E.6.
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Proposition 5. The variance returned by Algorithm 6 is

σ2T,decomp(xxx) = k(xxx, xxx)−
∑
l

zzz⊤l (DDDlKKKl,TDDDl)
−1zzzl (7.7)

Proof of Proposition 5. In Algorithm 6, it runs GP regression to each function fj(xxx) respectively. We
can compute the corresponding posterior covariance function kj,T by:

kj,T(xxx, xxx′) = kj(xxx, xxx′)− kkkj,T(xxx)⊤KKK−1
j,Tkkkj,T(xxx)

By Algorithm 6, the synthetic covariance of the target function f(xxx) is:

kT,decomp(xxx, xxx′) =
J∑

j=1
gj(xxx)kj,T(xxx, xxx′)gj(xxx′)

σ2T,decomp(xxx) = kT,decomp(xxx, xxx)

=

J∑
j=1

gj(xxx)kj,T(xxx, xxx)gj(xxx)

=

J∑
j=1

gj(xxx)kj(xxx, xxx)gj(xxx)−
J∑

j=1
gj(xxx)kkkj,T(xxx)⊤KKK−1

j,Tkkkj,T(xxx)gj(xxx)

= k(xxx, xxx)−
∑
j
zzz⊤j DDD

−1
j KKK−1

j,TDDD
−1
j zzzj

= k(xxx, xxx)−
∑
j
zzz⊤j (DDDjKKKj,TDDDj)

−1zzzj

E.2 Proof of Theorem 8

Theorem 8. The variance provided by decomposed Gaussian process regression (Algorithm 6) is less
than or equal to the variance provided by Gaussian process regression (Algorithm 5), which implies the
uncertainty by using decomposed Gaussian process regression is smaller.

Proof. If we write BBBl = DDDlKKKl,TDDDl, BBB is positive definite since it is the multiplication of positive def-
inite matrixKKKl,T and twoDDDl identical diagonal matrices. Using Proposition 4 and 5, the difference
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between Equation (7.6) and (7.7) can be written as:

σ2T,entire(xxx)− σ2T,decomp(xxx)

=
∑
l

zzz⊤l (DDDlKKKl,TDDDl)
−1zzzl −

∑
i,j

zzz⊤i (
∑
l

DDDlKKKl,TDDDl)
−1zzzj

=
∑
l

zzz⊤l BBB
−1
l zzzl −

∑
i,j

zzz⊤i (
∑
l

BBBl)−1zzzj

=
∑
l

zzz⊤l BBB
−1
l zzzl − J(

∑
i
zzzi

J
)⊤(

∑
l BBBl
J

)−1(

∑
i
zzzi

J
)

=
∑
l

h(BBBl, zzzl)− Jh(B̄BB, z̄zz) ≥ 0

where B̄BB =

∑
i
BBBi

J and z̄zz =
∑
i
zzzi

J are the average value. The last inequality comes from Jensen inequal-
ity and Lemma 1, which says the matrix-fractional function h is convex.

E.3 Proof of Theorem 9

In order to prove this, we follow the similar techniques as GPUCB292, which is
illustrated as follows:

Lemma 3 (Modified version of Lemma 5.1 from Srinivas et al.). Given f(xxx) =
J∑

j=1
gj(xxx)fj(xxx) (Def-

inition 7), deterministic known functions gj and unknown fj ∼ GP(0, kj(xxx, xxx′)), pick δ ∈ (0, 1)
and set βt = 2 log(|X |πt/δ), where

∑
t≥1

π−1
t = 1, πt > 0. Then, the μt−1(xxx), σt−1(xxx) returned by

Algorithm 7 satisfy:

|f(xxx)− μt−1(xxx)| ≤ β1/2t σt−1(xxx) ∀xxx ∈ X , t ≥ 1

with probability 1− δ.

Proof. Fix t ≥ 1 and xxx ∈ X , Conditioned on sampled points {xxx1, ..., xxxt−1} and sampled values
{y1,j, ..., yt−1,j∀j ∈ [J]}, the Bayesian property of decomposed GP regression (Algorithm 6) implies
that the function value at point xxx forms a Gaussian distribution with mean μt−1(xxx) and variance
σ2t−1(xxx), i.e. f(xxx) ∼ N(μt−1(xxx), σ

2
t−1(xxx)). Now, if r ∼ N(0, 1), then

Pr{r > c} = e−c2/2(2π)−1/2
∫

e−(r−c)2/2−c(r−c)dr ≤ e−c2/2Pr{r > 0} = (1/2)e−c2/2 (E.7)
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for c > 0, since e−c(r−c) ≤ 1 for r ≥ c. Therefore, Pr{|f(xxx) − μt−1(xxx)| > β1/2t σt−1(xxx)} ≤ e−β1/2t ,
using r = (f(xxx)− μt−1(xxx))/σt−1(xxx) and c = β1/2t . Then apply the union bound to all xxx ∈ X :

|f(xxx)− μt−1(xxx)| ≤ β1/2t σt−1(xxx) ∀xxx ∈ X

holds with probability≥ 1− |X |e−β1/2t . Choosing |X |e−β1/2t = δ/πt and using the union bound for
t ∈ N, the statement holds. For example, we can use πt = π2t2/6.

The proof is almost the same as Theorem 5.1 in Srinivas et al. 292 except the
Bayesian property of decomposed Gaussian process, where the Bayesian property
of decomposed Gaussian process can be gotten from the Bayesian property of
each individual function fj and the linear combination of Gaussian distributions
is still a Gaussian distribution, which implies the posterior belief after perform-
ing decomposed GP regression at a given point xxx still form a Gaussian distribu-
tionwith composed mean and variance.

Lemma 4 (Modified version of Lemma 5.2 from Srinivas et al. 292). Fix t ≥ 1. If |f(xxx)− μt−1(xxx)| ≤
β1/2t σt−1(xxx) for all xxx ∈ X , then the regret rt is bounded by 2β1/2t σt−1(xxxt), where xxxt is the t-th choice of
Algorithm 7.

Proof. By definition of xxxt: μt−1(xxxt) + β1/2t σt−1(xxxt) ≥ μt−1(xxx
∗) + β1/2t σt−1(xxx∗) ≥ f(xxx∗). Therefore,

rt = f(xxx∗)− f(xxxt) ≤ β1/2t σt−1(xxxt) + μt−1(xxxt)− f(xxxt) ≤ 2β1/2t σt−1(xxxt)

Lemma 5 (Modified version of Lemma 5.3 from Srinivas et al. 292). The information gain for the
points selected can be expressed in terms of the predictive variances. If fffj,T = {fj(xxxt)}t∈[T] ∈ RT and
yyyj,T = {yj,t}t∈[T] ∈ RT:

I(yyyj,T : fffj,T) =
1
2

T∑
t=1

log(1+ σ−2σ2j,t−1(xxxt))

where fj(xxxt), yj,t, σ2j,t−1 follow the definition and derivation in Algorithm 7.

Proof. Directly follow by replacing all the f, y, σ by fj, yj, σj in the proof of Theorem 5.3 from Srini-
vas et al. 292.

Theorem 9. Let δ ∈ (0, 1) and βt = 2 log(|X |t2π2/6δ). Running decomposed GP-UCB (Algorithm
7) for a composed sample f(xxx) =

∑
j=1

gj(xxx)fj(xxx) with bounded variance kj(xxx, xxx) ≤ 1 and each fj ∼
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GP(0, kj(xxx, xxx′)), we obtain a regret bound ofO(
√
T log |X |

∑J
j=1 B2j γj,T) with high probability,

where Bj = max
xxx∈X
|gj(xxx)|. Precisely,

Pr
{
RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T ∀T ≥ 1

}
≥ 1− δ (7.8)

where C1 = 8/ log(1+ σ−2) with noise variance σ2.

Proof. According to Lemma 5, we can take advantage of the individual information gain of each
fj(xxx), which is

Ij(yj,T; fj) =
1
2

T∑
t=1

log(1+ σ−2σ2j,t−1(xxxt))

γj,T = max Ij(yj,T; fj)

Besides, we can also bound the total regret by the individual information gains as following:

J∑
j=1

B2j Ij(yj,T; fj) =
1
2

J∑
j=1

B2j
T∑
t=1

log(1+ σ−2σ2j,t−1(xxxt))

≥ 1
2

J∑
j=1

B2j
T∑
t=1

C−1
2 σ−2σ2j,t−1(xxxt)

≥ 1
2
C−1
2 σ−2

J∑
j=1

T∑
t=1

g2j (xxxt)σ2j,t−1(xxxt)

≥ 1
2
C−1
2 σ−2

T∑
t=1

r2t
4βt

≥ C−1
2 σ−2

8βT

T∑
t=1

r2t

where C2 = σ−2/ log(1 + σ−2) ≥ 1, s2 ≤ C2 log(1 + s2) for s ∈ [0, σ−2] and σ−2σ2j,t−1(xxxt) ≤
σ−2kj(xxxt, xxxt) ≤ σ−2. Let C1 = 8σ2C2 = 8/ log(1+ σ−2). Applying Cauchy inequality gives us:

C1βTT
J∑

j=1
B2j Ij(yj,T; fj) ≥ (

T∑
t=1

rt)2 = R2
T
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which implies a similar upper bound

RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T

E.4 Proof of Theorem 10

All the proofs in Theorem 9 apply except Lemma 3. Since the decomposition here
is non-linear, therefore the composition of outcomes of Gaussian processes is no
longer an outcome of Gaussian process, which prohibits us to have a nice Gaus-
sian process property: function value f(xxx) does not form a Gaussian distribution.
Due to the non-linearity, the distribution gets distorted, losing its original
formwith Gaussian distribution. Fortunately, if the partial derivatives of func-
tion g : RJ → R (Definition 8) are bounded, thenwe can still perform a similar
estimation and bound the distribution by a larger Gaussian distribution, which
enables us to have a similar result.

Lemma 6 (General Version with Definition 8 and Algorithm 8). Given f(xxx) = g(f1(xxx), ..., fJ(xxx))
(Definition 8), deterministic known functions g and unknown fj ∼ GP(0, kj(xxx, xxx′)), pick δ ∈ (0, 1)
and set βt = 2 log(|X |Jπt/δ), where

∑
t≥1

π−1
t = 1, πt > 0. Further assume the function g has bounded

partial derivatives Bj = max
xxx∈X
|∇jg(xxx)| ∀j ∈ [J]. Then, the μt−1(xxx), σt−1(xxx) returned by Algorithm 8

satisfy:

|f(xxx)− μt−1(xxx)| ≤ β1/2t σt−1(xxx)∀xxx ∈ X , t ≥ 1

with probability 1− δ.

Proof. The main problem here is the posterior distribution of f(xxx) is not a Gaussian distribution.
But fortunately, the posterior distribution of each fj(xxx) is still a Gaussian distribution with mean
μj,t−1(xxx) and variance σ

2
j,t−1(xxx) for any given xxx ∈ X . Then,

|f(xxx)− μt−1(xxx)| = |g(f1(xxx), ..., fJ(xxx))− g(μ1,t−1(xxx), ..., μJ,t−1(xxx))|

≤
J∑

j=1
Bj|fj(xxx)− μj,t−1(xxx)| (E.8)
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Applying the same argument in Lemma 3 to function fj:

Pr{|fj(xxx)− μj,t−1(xxx)| > β1/2t σj,t−1(xxx)} ≤ e−β1/2t

Then applying the union bound on j ∈ [J], we get

|f(xxx)− μt−1(xxx)| ≤
J∑

j=1
Bj|fj(xxx)− μj,t−1(xxx)|

≤
J∑

j=1
Bjβ1/2t σj,t−1(xxx)

≤ β1/2t

√√√√J(
J∑

j=1
B2j σ2j,t−1(xxx))

= β1/2t σt−1(xxx)

with probability 1− Je−β1/2t , where the last inequality is from Cauchy’s inequality. Then apply union
bound again to all xxx ∈ X , the above inequality yields:

|f(xxx)− μt−1(xxx)| ≤ β1/2t σt−1(xxx) ∀xxx ∈ X

with probability 1− |X |Je−β1/2t . Choosing |X |Je−β1/2t = δ/πt and using the union bound for t ∈ N,
the statement holds, i.e. βt = 2 log(|X |Jπt/δ). Specifically, if we choose πt = π2t2/6, then it
implies βt = 2 log(|X |Jt2π2/6δ).

Theorem 10. By running generalized decomposed GP-UCB with βt = 2 log(|X |Jt2π2/6δ) for a
composed sample f(xxx) = g(f1(xxx), ..., fJ(xxx)) of GPs with bounded variance kj(xxx, xxx) ≤ 1 and each
fj ∼ GP(0, kj(xxx, xxx′)). we obtain a regret bound ofO(

√
T log |X |

∑J
j=1 B2j γj,T) with high probability,

where Bj = max
xxx∈X
|∇jg(xxx)|. Precisely,

Pr
{
RT ≤

√√√√C1TβT
J∑

j=1
B2j γj,T ∀T ≥ 1

}
≥ 1− δ (7.10)

where C1 = 8/ log(1+ σ−2) with noise variance σ2.

Proof. Directly follow by the same proofs of Theorem 9 with Lemma 4, Lemma 5, and Lemma
6.
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Remark 1. In inequality (E.8), if we write Zj = |fj(xxx)−μj,t−1(xxx)|, where fj(xxx)−μj,t−1(xxx) is sampled
from a normal distribution with 0mean and σ2j,t−1(xxx) (due to Gaussian process property). Then this
Zj is a random variable drawn from a half-normal distribution with parameter σj(xxx) (no longer the
variance here).

The summation of half-normal distributions can still be computed and bounded by a similar in-
equality like inequality (E.7). This can provide a constant ratio of improvement to the βt exploration
parameter, thus the regret bound as well. However it does not change the order of regret and sample
complexity. Therefore we are not going to cover this here.
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F
Appendix to Chapter 8

F.1 Notation of Chapter 8

All the notations used in the problem statement, restless multi-armed bandits,
and regret analysis are shown in Table F.1 and Table F.2.

Problem instantiation

Symbol Definition

K Budget in each timestep
N Number of arms. Each arm indexed by i ∈ [N]
t Episode
T Number of episodes
h Timestep within a single episode
H Horizon length for a single episode
γ Discount factor, with γ ∈ (0, 1)

Table F.1: List of common notations in the online restless multi‐armed bandit problem

363



Restless bandit notation

Symbol Definition

PPP Set of transition probabilities across all arms, with Pi as transitions for a
single arm

PPP⋆ True transition probabilities
S Set of finitely many possible states with |S| = M possible states
sssh State of the RMAB instance at timestep h, with sssh ∈ SN and initial state

sssinit
sh,i State of arm i ∈ [N] at timestep h
A Set of possible actions. We consider {0, 1}
aaah Action at time h, with aaah ∈ AN

ah,i Action taken on arm i at timestep h
R Given reward function as a function of the state and actionR : S × A →

R.
π(t) Learner’s policy in episode t, where π(t) : SN → AN

π⋆ The optimal policy that maximizes the total future reward.
Pm The optimization problem defined to maximize the optimistic Whittle

index value.
PV The optimization problem defined to maximize the optimistic future value.
Qmi(s, a) Q-value in Bellman equation. The Q-value is defined as the future value

associated to the current state and action.
R(sh,i, ah,i) Reward from arm i at timestep hwith action ah,i
UPPP,λ

π (sss1) Lagrangian relaxation of learner’s objective, with optimal valueUPPP,λ
⋆

VPi,λ
πi (s1,i) Value for being in state si

λ Global penalty for taking action a = 1
βi Whittle index penalty for arm i
Wi(Pi, si) Whittle index of arm iwith transitions Pi and state si
D Dataset of historical transitions

Table F.2: List of common notations in the online restless multi‐armed bandit regret analysis

F.2 Societal Impacts

Restless bandits have been increasingly applied to socially impactful problems
including healthcare and energy distribution. In these settings, we would likely
not know the transition dynamics in advance, particularly if we are working
with a new patient population (for healthcare) or new residential community
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(for energy). Even past work on streaming bandits209 which allow for newmoth-
ers to enroll over time assume that the transition probabilities are fully known
in advance, which is not realistic. Our UCWhittle approach enabling online
learning for RMABs has the potential to greatly broaden the applicability of
RMABs for social impact, particularly as our theoretical results guarantee
limited regret.

F.3 Limitations

One challenge with our UCWhittle approach is that online learning often
converges slower than offline learning that reuses all the data to train for
many epochs. In order to accommodate new data coming in, online learning ap-
proaches often take a single update when each new data arrives. In contrast,
offline learning can iterate through the same data for many times, which al-
lows offline learning approaches to fit the data repeatedly. Therefore, online
learning approaches often require more data to reach the same performance as
offline learning approaches.

However, this slower learning behavior also allows online learning approaches
to be less biased to the existing dataset. Online learning approaches are incen-
tivized to explore and update data that is less queried previously, which also en-
courages exploring underrepresented groups. This property encourages the ex-
ploration process and reduce bias to the learned model. This is particularly im-
portantwhen there are features involved in the learning process. Online learn-
ing approaches are able to explore unseen features more, while offline learning
approaches often rely on extrapolation and are unable to handle unseen fea-
tures. Ourwork further extends research in online learning in RMABs, which
also helps explore more possibility to accommodate new data and new features
that are unseen in the existing dataset.

F.4 Full Proofs

F.4.1 Confidence Bound

Proposition 6. Given δ > 0 and t ≥ 1, we have: Pr
(
PPP⋆ ∈ BBB(t)

)
≥ 1− δ

t4 .

Proof. Generally, the L1-deviation of the true distribution and the empirical distribution overm
distinct events from n samples is bounded according to335 by:

Pr(‖p̂− p‖1 ≥ ε) ≤ (2m − 2) exp(−
nε2
2 ) (F.1)
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This result can be applied to our case to compare P(t)i (s, a, ·) ∈ R|S| with P⋆(s, a, ·) ∈ R|S| for every
state s and action a. We have:

Pr
(∥∥∥P(t)i (s, a, ·)− P⋆(s, a, ·)

∥∥∥
1
≥ ε
)
≤
(
2|S| − 2

)
exp

(
− nε2

2

)
(F.2)

By choosing ε =
√

2
n log

(
2|S||S||A|N t4

δ

)
≤
√

2|S|
n log

(
2|S||A|N t4

δ

)
, we have:

Pr

(∥∥∥P(t)i (s, a, ·)− P⋆(s, a, ·)
∥∥∥
1
≥

√
2|S|
n

log

(
2|S||A|Nt4

δ

))
≤ 2|S| exp− log

(
2|S||S||A|N t4

δ

)

=
δ

|S||A|Nt4
(F.3)

Set n = max{1,N(t)
i (s, a)} for each pair of (s, a). Taking union bound over all states s ∈ S , actions

a ∈ A, and arms i ∈ [N] yields:

Pr
(
PPP⋆ 6∈ BBB(t)

)
≤ δ

t4
=⇒ Pr

(
PPP⋆ ∈ BBB(t)

)
≥ 1− δ

t4
(F.4)

F.4.2 Regret Decomposition

Theorem 12 (Per-episode regret decomposition in the fully observable setting). For an arm i, fix
P(t)i , P⋆i , λ, and the initial state s1,i. We have:

VP(t)i ,λ
π(t)i

(s1,i)− VP⋆i ,λ
π(t)i

(s1,i) = E
P⋆i ,π

(t)
i

[ ∞∑
h=1

γh−1
(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
VP(t)i ,λ
π(t)i

(sh,i)

]
. (8.11)

Proof. Since the value function is a fixed point to the corresponding Bellman operator, we have:

VP(t)i

π(t)i
(s1,i)− VP⋆i

π(t)i
(s1,i) =

(
T P(t)i

π(t)i
VP(t)i

π(t)i
− T P⋆i

π(t)i
VP⋆i
π(t)i

)
(s1,i)

=

(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
VP(t)i

π(t)i
(s1,i) + T

P⋆i
π(t)i

(
VP(t)i

π(t)i
− VP⋆i

π(t)i

)
(s1,i) (F.5)

where the second term in Equation (F.5) can be further expanded by the Bellman operator:

T P⋆i
π(t)i

(VP(t)i

π(t)i
− VP⋆i

π(t)i
)(s1,i) = Ea∼π(t)i

[
γ
∑
s′∈S

P⋆i (s1,i, a, s′)(V
P(t)i

π(t)i
(s′)− VP⋆i

π(t)i
(s′))

]
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= γEs2,i∼P⋆i ,π
(t)
i

[
VP(t)i

π(t)i
(s2,i)− VP⋆i

π(t)i
(s2,i)

]
(F.6)

We can repeatedly apply the decomposition process in Equation (F.5) to the value function differ-
ence in Equation (F.6) to get Equation (8.11), which concludes the proof.

F.4.3 Regret Boundwith Given Penalty

Theorem 13. Assume the penalty term λ(t) = λ is given and the RMAB instance is ε-ergodicity after
H timesteps. Then with probability 1− δ, the cumulative regret in T episodes is:

Regλ(t) ≤ O
(
1
ε
|S||A|

1
2NH

√
T logT

)
. (8.12)

Proof. We can write

Reg(T) =
T∑
t=1

Reg(t) =
T∑
t=1

(
Reg(t)1PPP⋆ ̸∈BBB(t) + Reg(t)1PPP⋆∈BBB(t)

)
=

T∑
t=1

Reg(t)1PPP⋆ ̸∈BBB(t) +
T∑
t=1

Reg(t)1PPP⋆∈BBB(t) (F.7)

We will analyze both terms separately and combine them together in the end.

Regret when the confidence bounds do not hold

T∑
t=1

Reg(t)1PPP⋆ ̸∈BBB(t) =

√
T∑

t=1
Reg(t)1PPP⋆ ̸∈BBB(t) +

T∑
t=

√
T+1

Reg(t)1PPP⋆ ̸∈BBB(t)

≤NRmax

1− γ
√
T+

T∑
t=

√
T+1

Reg(t)1PPP⋆ ̸∈BBB(t) (F.8)

where we use the trivial upper bound of the individual regret Reg(t) ≤ NRmax
1−γ for all t, whereRmax is

the maximal reward per time step.
Notice that the second term vanishes with probability:

Pr
({

PPP⋆ ∈ BBB(t) ∀
√
T ≤ t ≤ T

})
≥ 1−

∑
√
T≤t≤T

Pr
({

PPP⋆ ∈ BBB(t)
})

≥ 1−
∑

√
T≤t≤T

δ
t4
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≥ 1−
∑

√
T≤t≤T

3δ
t4

≥ 1−
∫ ∞

√
T

3δ
t4
dt

= 1− δ
T3/2 (F.9)

Therefore, the regret outside of confidence bounds is upper bounded byO(
√
T)with probability at

least 1− δ
T3/2 . We can apply union bound to all possible T ∈ N, which holds with high probability:

1−
∞∑
T=1

δ
T3/2 = 1− O(δ) . (F.10)

Regret when the confidence bounds hold Notice that(
T P(t)i

π(t)i
− T P⋆i

π(t)i

)
V(s)

= E
a∼π(t)i

[(
R(s, a) +

∑
s′∈S

P(t)i (s, a, s′)V(s′)

)
−

(
R(s, a) +

∑
s′∈S

P⋆i (s, a, s′)

)
V(s′)

]

= E
a∼π(t)i

[∑
s′∈S

(P(t)i (s, a, s′)− P⋆i (s, a, s′))V(s′)

]

When the confidence bound holds PPP⋆ ∈ BBB(t), we can bound the regret at round l by:

Reg(t) =UPPP(t)
π(t)(sss1)− UPPP⋆

π(t)(sss1)

=

N∑
i=1

VP(t)i

π(t)i
(s1,i)− VP⋆i

π(t)i
(s1,i)

=
N∑
i=1

EP⋆i ,π
(t)
i

[ ∞∑
h=1

γh−1(T P(t)i

π(t)i
− T P⋆i

π(t)i
)VP(t)i

π(t)i
(sh,i)

]

=
N∑
i=1

EP⋆i ,π
(t)
i

∞∑
h=1

∑
s′∈S

γh−1(P(t)i (sh,i, ah,i, s′)− P⋆i (sh,i, ah,i, s′))V
P(t)i

π(t)i
(s′)

≤
N∑
i=1

EP⋆i ,π
(t)
i

∞∑
h=1

γh−1
∥∥∥P(t)i (sh,i, ah,i, ·)− P⋆i (sh,i, ah,i, ·)

∥∥∥
1
Vmax

≤ 2
N∑
i=1

EP⋆i ,π(t)

∞∑
h=1

γh−1d(t)i (sh,i, ah,i)Vmax (F.11)
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Next, we split the term into regret withinH horizon and the regret outside ofH horizon. By
applying Theorem 30 with the assumption (Assumption 4) of theH-step ergodicity ε of MDP
associated to arm i, we can bound the regret outside ofH horizon by the regret atH time step:

EP⋆i ,π(t)

∞∑
h=H+1

γh−1d(t)i (sh,i, ah,i)Vmax

=

∞∑∑∑
h=H+1

γh−1Esh,i,ah,i∼P⋆i ,π
(t)
i

[
d(t)i (sh,i, ah,i)Vmax

]
≤

∞∑∑∑
h=H+1

γh−1 1
ε
EsH,i,aH,i∼P⋆i ,π

(t)
i

[
d(t)i (sh,i, ah,i)Vmax

]
=

γH

ε(1− γ)
EsH,i,aH,i∼P⋆i ,π

(t)
i

[
d(t)i (sh,i, ah,i)Vmax

]
(F.12)

Now, we can further bound the contribution of arm i in Equation F.11 by substituting the regret
afterH steps by Equation F.12 to get:

EP⋆i ,π
(t)
i

∞∑
h=1

γh−1d(t)i (sh,i, ah,i)Vmax

≤EP⋆i ,π
(t)
i

( H∑
h=1

γh−1d(t)i (sh,i, ah,i) +
γH

δ(1− γ)
d(t)i (sH,i, aH,i)

)
Vmax

≤
(
1+

γH

ε(1− γ)

)
EP⋆i ,π

(t)
i

( H∑
h=1

d(t)i (sh,i, ah,i)Vmax

)

=

(
1+

γH

ε(1− γ)

)√
2|S| log(2|A|Nt)VmaxEP⋆i ,π

(t)
i

 H∑
h=1

1√
max{1,N(t)

i (s, a)}


≤
(
1+

γH

ε(1− γ)

)√
2|S| log(2|A|NT)VmaxEP⋆i ,π

(t)
i

 ∑
s∈S,a∈A

v(t)i (s, a)√
max{1,N(t)

i (s, a)}

 (F.13)

where v(t)i (s, a) is a random variable denoting the number of visitations to the pair (s, a) at arm i
that the policy π(t)i visits withinH steps under the transition probability P⋆i .

Recall that
l−1∑
j=1

v(j)i (s, a) = N(t)
i (s, a). We also know that 0 ≤ v(j)i (s, a) ≤ H. Applying Lemma 7,
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we have:

T∑
t=1

v(t)i (s, a)√
max{1,N(t)

i (s, a)}
≤
(√

H+ 1+ 1
)√

N(t)
i (s, a) (F.14)

Taking summation over all the (s, a) pairs and applying Jensen inequality give us:(√
H+ 1+ 1

) ∑
s∈S,a∈A

√
N(t)

i (s, a)

≤
(√

H+ 1+ 1
)
|S||A|

√√√√√ ∑
s∈S,a∈A

N(t)
i (s, a)

|S||A|

=
(√

H+ 1+ 1
)√
|S||A|TH (F.15)

where
∑

s∈S,a∈A
N(t)

i (s, a) = TH is the total number of state-action pairs visited in T rounds.

Lastly, using the trivial upper boundVmax ≤ Rmax
1−γ , we can take summation over the regret from

all T rounds. This give us:

T∑
t=1

Reg(t)1PPP⋆∈BBB(t) (F.16)

≤
N∑
i=1

2
(
1+

γH

ε(1− γ)

)√
2|S| log(2|A|NT)Vmax

(√
H+ 1+ 1

)√
|S||A|TH

≤O
(
1
ε
|S||A|

1
2NH

√
T logT

)
(F.17)

Combining everything together In the first part, we show that
T∑
t=1

Reg(t)1PPP⋆ ̸∈BBB(t) is upper

bounded byO(
√
T) for all T ∈ Nwith probability 1 − O(δ). In the second part, we show that

T∑
t=1

Reg(t)1PPP⋆∈BBB(t) = O(|S||A|
1
2N
√
T logT). Therefore, we can conclude that the total regret

Reg(T) is upper bounded byO(|S||A|
1
2N
√
T logT) for all T ∈ Nwith probability 1− O(δ).

F.4.4 Supplementary Lemma and Theorem

Assumption 4 (Ergodic Markov chain). We denote uP
⋆
i ,πi

h to be the state distribution ofMarkov
chain induced by theMDP with transition probability P⋆i and policy πi after h time steps. We assume
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uP
⋆
i ,πi

h (s) > ε > 0 for all entry s ∈ S , all arm i ∈ [N], h ≥ H, and all policy πi. In other words, the
state distribution after H steps is universally lower-bounded by ε > 0, which we say that theMDP is
H-step ε-ergodic.

Assumption 4 can be achieved when both theMDP is ergodic and the horizonH
is large enough.

Theorem 30 (Regret outside ofH steps). When theMarkov chain induced by transition P⋆i and
policy π is H-step ε ergodic, we have:

Esh,i,ah,i∼P⋆i ,πf(sh,i, ah,i) ≤
1
ε
EsH,i,aH,i∼P⋆i ,πf(sH,i, aH,i) (F.18)

for all non-negative function f and h ≥ H.

Proof.

Esh,i,ah,i∼P⋆i ,πf(sh,i, ah,i) =
∑

s∼S,a∼A

Pr(πi(s) = a)uh(s)f(s, a)

≤
∑

s∼S,a∼A

Pr(πi(s) = a)f(s, a)

≤
∑

s∼S,a∼A

Pr(πi(s) = a)
uH(s)
ε

f(s, a)

=
1
ε

∑
s∼S,a∼A

Pr(πi(s) = a)uH(s)f(s, a)

=
1
ε
EsH,i,aH,i∼P⋆i ,πf(sH,i, aH,i) (F.19)

Lemma 7. For any sequence of numbers z1, · · · , zT with 0 ≤ zj ≤ H and Zt = max{1,
t∑

j=1
zj}, we

have:

T∑
t=1

zt√
Zt−1

≤
(√

H+ 1+ 1
)√

ZT

(F.20)
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Proof. Proof by induction. Assume that Equation F.20 holds for T− 1. We have:

T−1∑
t=1

zt√
Zt−1

≤
(√

H+ 1+ 1
)√

ZT−1

(F.21)

Adding an additional term zT√
ZT−1

, we get:

T−1∑
t=1

zt√
Zt−1

+
zT√
ZT−1

≤
(√

H+ 1+ 1
)√

ZT−1 +
zT√
ZT−1

=

√(√
H+ 1+ 1

)2
ZT−1 + 2

(√
H+ 1+ 1

)
zT +

z2T
ZT−1

≤
√(√

H+ 1+ 1
)2

ZT−1 + 2
(√

H+ 1+ 1
)
zT +HzT

≤
√(√

H+ 1+ 1
)2

ZT−1 +
(√

H+ 1+ 1
)2

zT

≤
(√

H+ 1+ 1
)√

ZT−1 + zT

=
(√

H+ 1+ 1
)√

ZT (F.22)

which implies the Equation F.20 also holds for T.
The initial case with T = 1 holds trivially. Therefore, by induction, we conclude the proof.

F.4.5 Regret Boundwith UnknownOptimal Penalty

Theorem 14 (Regret bound with optimal penalty). Assume the penalty λ(t) in Algorithm 9 is up-
dated by a saddle point (λ(t),PPP(t), π(t)) = argminλ maxPPP,π UPPP,λ

π (sss1) subject to constraints in Equa-
tion (PV). The cumulative regret of the optimal Lagrangian objective is bounded with probability
1− δ:

Regλ⋆(t) ≤ O
(
1
ε
|S||A|

1
2NH

√
T logT

)
. (8.14)

Proof. The main challenge of an unknown penalty term λ⋆ is that the optimality of the chosen
transition PPP(t) and policy π(t) does not hold in Theorem 11 due to the misalignment of the penalty
λ(t) used in solving the optimization in Equation (PV) and the penalty λ⋆ used in computing the
regret.

The optimality of λ(t) (minimizingUPPP,λ
π ) and the optimality of PPP(t), π(t) (maximizingUPPP,λ

π ) are
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given by:

λ(t),PPP(t), π(t) = argmin
λ

max
PPP,π

UPPP,λ
π

which give us, respectively:

UPPP(t),λ(t)

π(t) ≤ UPPP(t),λ⋆

π(t) , UPPP⋆,λ(t)
π⋆ ≤ UPPP(t),λ(t)

π(t) (F.23)

Similarly, the optimality of λ⋆ can be written as:

λ⋆ = argmin
λ

UPPP⋆,λ
π⋆

which gives us

UPPP⋆,λ⋆
π⋆ ≤ UPPP⋆,λ(t)

π⋆ (F.24)

Combining Inequality F.23 and Inequality F.24, we can bound:

UPPP⋆,λ⋆
π⋆ ≤ UPPP⋆,λ(t)

π⋆ ≤ UPPP(t),λ(t)

π(t) ≤ UPPP(t),λ⋆

π(t)

This implies that:

Reg(t)λ⋆ = UPPP⋆,λ⋆
π⋆ − UPPP⋆,λ⋆

π(t) ≤ UPPP(t),λ⋆

π(t) − UPPP⋆,λ⋆

π(t) (F.25)

which is exactly the same result as shown in Equation 8.10. The rest of the proof follows the same
argument of Theorem 12 and Theorem 13, which concludes the proof.

F.4.6 Choice of Horizon and Ergodicity Constant ε

For a givenMarkov chain, we needH to be sufficiently large to ensure the prob-
ability of visiting any state afterH steps is at least a positive constant ε > 0.
The choice ofH depends on theMDP; we elaborate below how to selectH and ε.

We follow a similar analysis ofMarkov chain convergence fromChapter 10
in290 by defining:

ω2 = max
π∈Π

σ2(Pπ)

where σ2(P) is the magnitude of the second largest eigenvalue of the random
walk matrix Pπ induced by the policy π. In practice, ω2 can be upper bounded by 1
if theMDP satisfies some properties, e.g., laziness of theMarkov chain induced
from theMDP (Chapter 10.2 in290).

373



Let v be the corresponding stationary distribution of the randomwalk ma-
trix Pπ with the policy π that maximizes the second largest eigenvalue. We know
that v is strictly positive by ergodicity. When σ2 < 1, we canwrite r = mini vi > 0
and choose ε = 1

2r > 0.
Let w be an arbitrary initial distribution. By applying Theorem 10.4.1 from290

(the directed graph version), for every t > H = logω2(
1
2r

3/2) = logω2(
√
2ε3/2), we

have:

|v− Ptπw|1 ≤
√

1
mini vi

ωt2 ≤
r
2

which implies that the minimum value of Ptπw and the minimum value of v, i.e., r,
differ by at most r

2 . This implies that the minimum value of Ptπw is at least r
2 = ε

for any initial distribution w. This choice of ε andH satisfies our requirement
mentioned in Appendix F.4.4.

F.5 Experiment Details

F.5.1 Whittle Index Implementation Speedups

We introduce a number of implementation-level improvements to speed up the
computation ofWhittle indices. To our knowledge these approaches are novel
forWhittle index computation.

Early termination The key insight is that theWhittle index threshold policy
will pull the arms with theK largestWhittle indices. As we computeWhittle in-
dices for each of theN arms, after we have computed the firstKWhittle indices,
any future arm selectedwould have to haveWhittle index at least as high as
theK-th largest seen so far in order to be pulled. Let us notate theK-th largest
value seen so far as top-k.

Whittle indices are computed using a binary search procedure258, which at
each iteration tracks the upper bound λ and lower bound λ of the index. Once
the upper bound falls below that of the minimum value of theK largest indices
so far λ < top-k, thenwe can terminate the binary search procedure as we are
guaranteed thatwewould not act on that arm anyways. We implement the
tracking of theK largest indices so far with a priority queue.

Similarly, we implement early termination to solve the bilinear programs (PV)
and (Pm) as callbacks in the Gurobi solver, in whichwe check the value of the
current objective bound.
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Memoization We memoize everyWhittle index result computed throughout
execution to track the index resulting from each pair of probabilities Pi and
current state si as we perform calculations for each arm i. We implement this
memoizer as a dictionary where the key is a tuple (Pi, si)with Pi recorded to four
decimal places.

To implement the bilinear programs (PV) and (Pm), we similarly memoize using
the lower confidence bound (LCB) and upper confidence bound (UCB) that com-
prise the space BBB(t)i .

F.5.2 Synthetic Data

The synthetic datasets are created by generating transition probabilities Pis,a,s′
sampled uniformly at random from the interval [0, 1] for each arm i, starting
state s, action a, and next state s′. Specifically we select transition probabilities
for the probability of transitioning to a good state Pis,a,s′=1, then set Pis,a,s′=0 =

1− Pis,a,s′=1.
To ensure the validity constraints that acting is always helpful and starting

in the good state is always helpful, we apply the following: for all arms i ∈ [N]:

• Acting is always helpful: If this requirement is violatedwith Pis,a=1,1 <
Pis,a=0,1, then Pis,a=0,1 = Pis,a=1,1 × ηwhere η is uniform noise sampled between
[0, 1].

• Starting from good state is always helpful: If this requirement is violated
with Pis=1,a,1 < Pis=0,a,1, then Pis=0,a,1 = Pis=1,a,1 × ηwhere η is uniform noise
sampled between [0, 1].

The thinmargin dataset is created by mirroring the procedure described
above but then constraining the probability of transitioning to a good state
Pis,a,s′=1 to the interval [0.2, 0.4]. Thus the probabilities of transitioning to the
bad state Pis,a,s′=0 are all between [0.6, 0.8].

F.5.3 Acting in Low-Budget Settings

The potential impact of effectively allocating one resource is greater in low-
budget settings. As one example, the ARMMAN setting from our experiments
helps distribute a small number of healthcare workers across a group of preg-
nantwomen for preventative health care. We study real data from ARMMAN
to show that the performance gap between approaches is wider in low-budget
settings.

Using one actual instance from ARMMAN, we consider distributing health-
care workers across mothers (arms). Using the true transition probabilities, we
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calculate the (sorted) Whittle indices of an optimal policy as: 0.42, 0.39, 0.28, 0.23,
0.19, 0.11, 0.07, 0.

In the table below, we first show the expected reward of the optimal action
and a random action (baseline) as we increase budget in the ARMMAN problem.
We then calculate the difference in reward between the optimal action and ran-
dom action for each budget level, normalized per worker. It is clear that the po-
tential impact over the baseline of effectively allocating one worker is greater
in low budget settings.

Reward Reward gap per worker

K Optimal Random (Opt− Random)/K

1 0.42 0.211 0.209
2 0.81 0.423 0.194
3 1.09 0.634 0.152
4 1.32 0.845 0.119
5 1.51 1.056 0.091
6 1.62 1.268 0.059
7 1.69 1.479 0.030
8 1.69 1.690 0.000

Table F.3: Average reward contribution from each health worker in the online learning restless multi‐armed bandit prob‐
lem analysis.

F.5.4 Computation Infrastructure

All results are averaged over 30 random seeds. Experiments were executed on a
cluster running CentOSwith Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.1 GHzwith 8GB
of RAMusing Python 3.9.12. The bilinear program solved using Gurobi optimizer
9.5.1.
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G
Appendix to Chapter 9

G.1 Computation Infrastructure

All the experiments were run on instances with 8 CPUs using 2nd generation In-
tel Xeon Platinum 8000 series processor (Skylake-SP or Cascade Lake) with a sus-
tained all core Turbo CPU clock speed of up to 3.6 GHz. All algorithms do not
require GPU to run. The implementationwill be made available when accepted.

G.2 Societal Impact

The idea of smoothed online combinatorial optimization is not restricted to
distributed streaming systems. Anythingwith a switching cost can be bene-
fited from the study of smoothed online combinatorial optimization, includ-
ing public policy with a switching cost96, medication andwireless scheduling
problems181, where both of these can impact the process of policy making and
scheduling algorithms. Including the distributed streaming system problem,
these are all applications of smoothed online combinatorial optimization that
can lead to change of the current algorithm design in our daily life with im-
pact to the society.
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G.3 Proofs of Theorem 15 and Theorem 16

Theorem 15. Under Assumption 1, the regret from time step t to t + S − 1 in Equation 9.3 is upper

bounded by: Regt+S−1
t (zt−1) ≤ 2L

t+S−1∑
s=t

ε
(t)
s . where L is the Lipschitz constant in Assumption 1.

Proof. For simplicity of the proof, we define function g(x, y, z) as follows:

g(x, y, z) := f(x, y) + d(x, z)

which includes both the cost from the cost function f and the switching cost d.
Let {z′s}s∈{t,t+1,··· ,t+S−1} be the optimal solutions when the full information of the cost function

parameters {θs}s∈{t,t+1,··· ,t+S−1} is given. Let {zs}s∈{t,t+1,··· ,t+S−1} be the optimal solutions using
the predicted parameters {θ(t)s }s∈{t,t+1,··· ,t+S−1}. Without loss of generality, we let z′t−1 = zt−1 to be
the same initial decision at the time step t− 1. We have:

Regt+S−1
t (zt−1)

=

(t+S−1∑
s=t

g(zs, θs, zs−1)− g(z′s, θs, z′s−1)

)

=

(t+S−1∑
s=t

g(zs, θs, zs−1)− g(zs, θ(t)s , zs−1)

)
+

(t+S−1∑
s=t

g(zs, θ(t)s , zs−1)− g(z′s, θ(t)s , z′s−1)

)

+

(t+S−1∑
s=t

g(z′s, θ(t)s , z′s−1)− g(z′s, θs, z′s−1)

)
(G.1)

≤
t+S−1∑
s=t

L
∥∥∥θs − θ(t)s

∥∥∥+ 0+
t+S−1∑
s=t

L
∥∥∥θ(t)s − θs

∥∥∥
=2L

t+S−1∑
s=t

∥∥∥θs − θ(t)s
∥∥∥

≤2L
t+S−1∑
s=t

ε(t)s

The first term in Equation (G.1) can be bounded by (similar the third term):

g(zs, θs, zs−1)− g(zs, θ(t)s , zs−1) = f(zs, θs, zs−1) + d(zs, zs−1)− f(zs, θ(t)s , zs−1)− d(zs, zs−1)

= f(zs, θs, zs−1)− f(zs, θ(t)s , zs−1) ≤ L
∥∥∥θs − θ(t)s

∥∥∥
The second term in Equation (G.1) is non-positive because the optimality of the sequence {zs}s∈{t,t+1,··· ,t+S−1}
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when using the predictions as the parameters, i.e.,

t+S−1∑
s=t

g(zs, θ(t)s , zs−1) ≤
t+S−1∑
s=t

g(z∗s , θ(t)s , z∗s−1)

Theorem 16. Given Lipschitzness L in Assumption 1 and the maximal switching cost B in Assump-
tion 2, in T time steps, Algorithm 10 achieves cumulative regret upper bounded by 2BI, where I is the
total number of planning windows used in Algorithm 10.

Proof. In the offline setting, given all the traffic up to time T, we can solve the optimization problem
in Equation (9.1) to get the optimal solution z∗. We use cost(z∗, θ) to denote the optimal offline
cost.

On the other hand, we assume that Algorithm 10 runs with I restarts and each restart runs Si
time steps using the predictions to plan ahead for each i ∈ [I]. Let Ti =

∑i−1
j=1 Sj + 1 be the start

time of the i-th planning window. We can split the decisions into chunks— {zTi+s}s∈{0,1,··· ,Si−1}
for each i ∈ [I] that correspond to the decisions obtained in the i-th planning window.

Now we would like to compare the cost of the offline optimal solution {z∗t }t∈[T] with the online
solution {zt}t∈[T] within the i-th chunk {Ti,Ti+1, · · · ,Ti+Si−1}. Since the initial point z∗Ti−1 of
the offline optimal solution and the initial point zTi−1 of the online solution are different, we cannot
directly apply the result in Theorem 15 to bound the regret.

To resolve the misalignment, we additionally define {z′t}t∈{Ti,Ti+1,··· ,Ti+Si−1} to be a new offline
optimal solution starting from Ti till Ti + Si − 1 with z′Ti−1 = zTi−1 being the initial point. z′t
serves as an intermediate to link z∗t and zt. Compare to this new offline solution with the same initial
decision, the corresponding regret becomes:

RegTi+Si−1
Ti

= RegTi+Si−1
Ti

(zTi−1) :=

Ti+Si−1∑
t=Ti

(f(zt, θt) + d(zt, zt−1))−
Ti+Si−1∑
t=Ti

(
f(z′t, θt) + d(z′t, z′t−1)

)
(G.2)

Therefore, we can write:

Ti+Si−1∑
t=Ti

(f(zt, θt) + d(zt, zt−1)) (G.3)

= RegTi+Si−1
Ti

+

Ti+Si−1∑
t=Ti

(
f(z′t, θt) + d(z′t, z′t−1)

)
(G.4)

≤ RegTi+Si−1
Ti

+ f(z∗Ti , θTi) + d(z∗Ti , zTi−1) +

Ti+Si−1∑
t=Ti+1

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
(G.5)
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≤ RegTi+Si−1
Ti

+ B+ f(z∗Ti , θTi) + d(z∗Ti , z
∗
Ti−1) +

Ti+Si−1∑
t=Ti+1

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
(G.6)

= RegTi+Si−1
Ti

+ B+

Ti+Si−1∑
t=Ti

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
(G.7)

First, from Equation (G.3) to Equation (G.4) is by the definition of RegTi+Si−1
Ti

in Equation (G.2).
Second, Equation (G.4) to Equation (G.5) is due to the optimality of z′t:

{z′t}t∈{Ti,Ti+1,··· ,Ti+Si−1} = argmin
y

Ti+Si−1∑
t=Ti

(f(yt, θt) + d(yt, yt−1)) , where yTi−1 = zTi−1

Therefore, plugging in the original optimal solution z∗ results in a larger cost in Equation (G.5).
Lastly, Equation (G.5) and Equation (G.6) only differ by the initial point at time step Ti, where

Equation (G.5) uses zTi−1 and Equation (G.6) uses z∗Ti−1. Thus the difference is bounded by the
maximal switching cost B.

We can reorganize the inequality in Equation (G.7) to get:

Ti+Si−1∑
t=Ti

(f(zt, θt) + d(zt, zt−1))−
Ti+Si−1∑
t=Ti

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
≤ RegTi+Si−1

Ti
(zTi−1) + B

≤ 2L
Ti+Si−1∑
s=Ti

ε(t)s + B

= 2B

where the last inequality is by the choice of the dynamic planning window Si such that 2L
∑Ti+Si−1

s=Ti
ε
(t)
s ≤

B. Lastly, we can take summation over all the i ∈ [I] to get:

RegT =

T∑
t=1

(f(zt, θt) + d(zt, zt−1))−
T∑
t=1

(
f(z∗t , θt) + d(z∗t , z∗t−1)

)
=

I∑
i=1

(Ti+Si−1∑
t=Ti

(f(zt, θt) + d(zt, zt−1))−
Ti+Si−1∑
t=Ti

(
f(z∗t , θt) + d(z∗t , z∗t−1)

))

≤
I∑

i=1
2B

= 2BI
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G.4 Proof of Corollary 1

Corollary 1. If the uncertainty satisfies ε(t)t+s−1 = O( satb ), ∀s, t ∈ N with a, b ∈ R≥0, we have:

RegT ≤


O(T1− b

a+1 ) if b < a+ 1
O(logT) if b = a+ 1
O(log logT) if b > a+ 1

.

To prove Corollary 1, we need the following lemmas:

Lemma 8. Given any fixed 0 ≤ α and the following recursive formula:

T1 = 1
Ti+1 ≥ Ti + A · Tα

i , ∀i ≥ 1.

We can show:

Ti ≥


c · iβ if α < 1
(A+ 1)i−1 if α = 1
(A+ 1)α(i−2) if α > 1

where β = 1
1−α if α < 1. The constant c ∈ R≥0 satisfies c ≤ ( e

β

A )
1−α = eAα−1 and c ≤ 1.

We prove three different cases separately.

• Case 1 (α < 1) (this is deferred to the end).

• Case 2 (α = 1).

• Case 3 (α > 1).

Proof of Case 2. The recursive formula reduces to Ti+1 ≥ (A+ 1)Ti, where we can easily show that
Ti ≥ (A+ 1)i−1.

Proof of Case 3. The recursive formula can be written as Ti+1 ≥ Tα
i and T2 ≥ A + 1. Thus we can

simply unroll the recursion to get

Ti ≥ Tα
i−1 ≥ Tα2

i−2 ≥ · · · ≥ Tα(i−2)

2 = (A+ 1)α
(i−2)
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Proof of Case 1. We prove by induction.
Base case: Since c ≤ 1, the base case is automatically satisfied by 1 = T1 ≥ c = c · 1β.
Inductive step: By induction, assume Ti ≥ c · iβ. By our choice of c, we can see that Acα−1 ≥ eβ,

which implies:

Acα−1iαβ ≥ eβ · iαβ = eβ · iβ−1 (G.8)

where the second step follows from αβ = β− 1.
Therefore, we can lower bound Ti+1 by:

Ti+1 ≥ Ti + ATα
i

≥ (c · iβ) + A(c · iβ)α by Ti ≥ ciβ

= c · (iβ + Acα−1iαβ)

≥ c · (iβ + eβiβ−1) by Equation (G.8)

≥ c · (i+ 1)β, by Lemma 9

where we can apply Lemma 9 because β = 1
1−α ≥ 1 for all α ∈ [0, 1).

Lemma 9.

xk + ekxk−1 ≥ (x+ 1)k ∀x ≥ 1, k ≥ 1 (G.9)

Proof. Define a function g(x, k) = xk + ekxk−1 − (x + 1)k. We can check that g(x, 1) = x + e −
(x + 1) > 0. Next, we show that g(x, k) is an increasing function in kwhen x ≥ 1. Notice that the
derivative dg

dk can be written as:

dg
dk
|x,k= log x · xk + ekxk−1 + log x · ekxk−1 − log(x+ 1) · (x+ 1)k

= log x · xk + ekxk−1 + log x · ekxk−1 − log x · (x+ 1)k − log(
1+ x
x

) · (x+ 1)k

= log x · (xk + ekxk−1 − (x+ 1)k) + ekxk−1 − log(1+
1
x
) · (x+ 1)k

≥ log x · g(x, k) +
(
ekxk−1 − 1

x
· (x+ 1)k

)
(G.10)

where the last inequality is due to log(1+ 1
x) ≤

1
x .

The second term in Equation (G.10) can be written as:

ekxk−1 − 1
x
· (x+ 1)k =

1
x

(
(ex)k − (x+ 1)k

)
> 0 (G.11)

which is always satisfied because ex > x+ 1 ∀x ≥ 1.
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Therefore, Equation (G.10) and Equation (G.11) together guarantee that if the value g(x, k) ≥ 0,
then its derivative is positive dg

dk |x,k> 0 because every term in Equation (G.10) is positive. So now
we have g(x, 1) > 0 and the derivative dg

dk |x,k> 0 if g(x, k) ≥ 0.
Lastly, we just need to ensure that the function is always non-negative. Given fixed x, defineU =

{k > 1 | g(x, k) < 0}. We will prove by contradiction by assumingU is non-empty. Given thatU is
not empty, we can choose u = inf{k : k ∈ U}. By the continuity of function g, g(x, u) ≤ 0. Since
g(x, 1) > 0 and the continuity of g, we can find g(x, 1 + ε) > 0 for all ε ∈ B(0, r) in a small open
ball. Thus u ≥ 1+ ε > 1. Now by the mean value theorem applied on g(x, 1) > 0 and g(x, u) ≤ 0,
we can find a value v ∈ (1, u) such that g(x, v) = g(x,u)−g(x,1)

u−1 < 0. However, we have proven that
if g(x, k) ≥ 0 then we know dg

dk |x,k> 0. Since we have g(x, v) < 0, this implies g(x, v) < 0 as well
with v ∈ (1, u) and thus v ∈ U, which contradicts to the definition of u, i.e., the infimum of the set
U. Thus the assumption thatU is non-empty is incorrect. We conclude thatU is empty. Thus for
any given x, we have g(x, k) ≥ 0 for all k, which implies the original inequality.

Nowwe are ready to prove Corollary 1.

Proof of Corollary 1. First, let Si denote the size of the i-th planning window in Algorithm 10 for
each i ∈ [I]. Let Ti =

∑i−1
j=1 Sj + 1 denote the start time of the i-th planning part.

In the i-th iteration of Algorithm 10 starting at time Ti, Si is chosen such that Si is the largest

integer* satisfying 2L
Ti+Si−1∑
s=Ti

ε
(Ti)
s ≤ B. This implies 2L

Ti+Si∑
s=Ti

ε
(Ti)
s > B and we can estimate Si by:

B < 2L
Si+1∑
s=1

ε
(Ti)
Ti+s−1 ≤ 2LD

Si+1∑
s=1

sa

Tb
i
≤ 2LD

a+ 1
(Si + 2)a+1

Tb
i

for some constantD > 0. This suggests:

(
a+ 1
2D

)
1

a+1 (
B
L
)

1
a+1T

b
a+1
i ≤ Si + 2 ≤ 3Si, AT

b
a+1
i ≤ Si

where A = 1
3(

a+1
2D )

1
a+1 (BL)

1
a+1 = Θ((BL)

1
a+1 ) is a constant dependent on the maximal switching cost

B and the Lipschitzness L.
Therefore, we have

T1 = 1, Ti+1 = Ti + Si ≥ Ti + AT
b

a+1
i

*We need B ≥ ε
(Ti)
Ti

to ensure that we can at least choose Si ≥ 1. In the extreme case where B < ε
(Ti)
Ti

, it
implies that the uncertainty is too large while the switching cost is relatively small. Thus it is ideal to re-plan
every time step because switching is cheap. The analysis of balancing switching cost and future planning does
not apply.
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where Lemma 8 can be applied to get:

Ti ≥


ci

a+1
a+1−b if b < a+ 1

(A+ 1)i−1 if b = a+ 1

(A+ 1)
b

a+1
(i−2)

if b > a+ 1

with the choice of the constant c = min(1, eA
a+1−b
a+1 ). Lastly, since TI ≤ T, we can bound the total

iteration I by:

T ≥ TI ≥


cI

a+1
a−b+1 if b < a+ 1

(A+ 1)I−1 if b = a+ 1

(A+ 1)
b

a+1
(I−2)

if b > a+ 1

which gives:

I ≤


(Tc )

a−b+1
a+1

logA+1 T+ 1
logA+1 log b

a+1
T+ 2

=


O(T1− b

a+1 ) if b < a+ 1
O(logT) if b = a+ 1
O(log logT) if b > a+ 1

By applying Theorem 16 and substituting the total number of iterations I by the above inequal-
ity, we get:

RegT ≤ Θ(BI) =


O(T1− b

a+1 ) if b < a+ 1
O(logT) if b = a+ 1
O(log logT) if b > a+ 1

G.5 Proof of Corollary 2

Corollary 2. Given ε(t)t+s−1 = Ω( s
a

tb ) for all t, s ∈ N with 0 ≤ b, there exist instances such that for any
randomized algorithm, the expected regret is at least:

E[RegT] ≥


Ω(T1−b) if b < 1
Ω(logT) if b = 1
Ω(1) if b > 1

.
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Proof. Let ε(t)s = 1
tb = O( satb ) for all t, s ∈ Nwith 1

tb < 1
2 . We construct a sequence of one-

dimensional incoming traffic θt =

{
1
2 +

1
tb

1
2 −

1
tb

and a one-dimensional feasible setZ = {0, 1}. The

prediction given by the predictive model is θ(t)s = 1
2 for all t, s ∈ N, whose predictive error satisfies

the bound
∥∥∥θs − θ(t)s

∥∥∥ ≤ 1
tb = ε

(t)
s . Assume that the cost function is defined by f(z, θ) = L ‖z− θ‖

and there is no switching cost d(z, y) = 0.
Under this construction, if all the incoming traffics are given in advance, the optimal cost within

T time steps is:

L
T∑
i=1

(
1
2
− 1

tb

)
=

LT
2
− L

T∑
i=1

t−b ≤


LT
2 −

1
1−bT

1−b if b < 1
LT
2 − logT if b = 1
LT
2 − Θ(1) if b > 1

where we can just choose zt = 1 if θt is closer to 1 and 0 otherwise.
On the other hand, if the incoming traffics are not given in advance, any decision made at time

step t produces cost L( 12 + 1
tb )with probability

1
2 and cost L(

1
2 −

1
tb )with probability

1
2 , which

gives expected cost L
2 and a cumulative cost LT

2 . Therefore, the expected cumulative regret is at least
Θ(T1−b) if b < 1
Θ(logT) if b = 1
Θ(1) if b > 1

.

G.6 Iterative Algorithm for Offline Problemwith Switching Cost

Given imperfect predictions and the planningwindows, we can reduce the online
problem to an offline problem. This section focuses on solving the following
offline combinatorial optimization problemwith switching cost.

min
zt∈Z

S∑
t=1

f(zt, θt) + d(zt, zt−1). (G.12)

Solving Equation (G.12) is challenging because the combinatorial structure
of the decision zt ∈ Zt and the additional temporal dependency caused by the
switching cost d(zt, zt−1).
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Algorithm 16: Iterative algorithm for offline problems
1 Initialization: Let J = 10 and zt = z0 for all t ∈ [S].
2 for j ∈ [J] do
3 for t ∈ [S] do
4 Let c = 0.5 if j < J otherwise c = 1.
5 Solve Equation (G.13) with zt−1, zt+1, c to update zt.

Decomposition and Iterative Algorithm

If we fix the assignments zt−1, zt+1, finding the optimal solution at time step t re-
duces to the following problemwith c = 1:

zt = argmin
z∈Zt

f(z, θt) + c(d(z, zt−1) + d(z, zt+1)). (G.13)

Compared to Equation (G.12), Equation (G.13) avoids the temporal dependency
across multiple time steps and largely reduces the number of binary variables. In
practice, solving Equation (G.13) is more tractable than solving Equation (G.12).

This observation motivates the idea of iteratively fixing the neighbor deci-
sions zt−1, zt+1 and updating the decision at time step t for all t ∈ [S]. We use zt = z0
to initialize all decisions. Thenwe can iteratively solve Equation (G.13) with
different t to update the decision zt. This method decouples the temporal de-
pendency and reduces the problem to a standard combinatorial optimization
of function fwith additional regularization terms. We can use mixed integer
linear program or any other approximation algorithms to solve Equation (G.13).

Moreover, we can notice that any improvement made by solving Equation (G.13)
with c = 1 provides the same improvement to Equation (G.12). This suggests that
the optimal decision of Equation (G.12) is a fixed point of Equation (G.13) when
c = 1.

Theorem 31. The optimal sequence {z∗t }t∈[S] of Equation (G.12) is a fixed point of Equation (G.13)
with c = 1.

Proof. Suppose that {z∗s }s∈[S] optimizes Equation (G.12). For any t ∈ [S], if we can find z′t gets a
positive improvement in Equation (G.13) with c = 1:

0 < δ =
(
f(z∗t , θt) + d(z∗t , z∗t−1 + d(z∗t , z∗t+1)

)
−
(
f(z′t, θt) + d(z′t, z∗t−1) + d(z′t, z∗t+1)

)
Then the new sequence {z∗1 , · · · , z∗t−1, z′t, z∗t+1, · · · , z∗S} gets the same improvement with:

cost({z∗s }s∈[S])− cost({z∗1 , · · · , z∗t−1, z′t, z∗t+1, · · · , z∗S}) = δ > 0 (G.14)
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where cost({z∗1 , · · · , z∗t−1, z′t, z∗t+1, · · · , z∗S}) is strictly smaller than the optimal value cost({z∗s }s∈[S]),
which violates the optimality assumption of {z∗s }s∈[S]. This implies that we cannot find z′t that gives
a strictly smaller objective in Equation (G.13), which also implies that z∗t is a fixed point to Equa-
tion (G.13) with c = 1 using z∗t−1 and z∗t+1 as the neighbor decisions.

Theorem 31 ensures that the iterative process in Equation G.13 stops updat-
ing at the optimal solution. However, in practice, there could be multiple fixed
points and suboptimal points due to the combinatorial structure. This can be
problematic because the iterative process in Equation G.13 can stop at many dif-
ferent suboptimal solutionwithout further improving the solution quality. To
avoid getting stuck by suboptimal solutions, we use a smaller scaling constant
c = 0.5 to relax the iterative update, and use c = 1 in the final step to strengthen
the solution. The iterative algorithm is described in Algorithm 16, which can be
used to replace Line 6 in Algorithm 10.
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H
Appendix to Chapter 10

H.1 Implementation Details

We implement a differentiable PyTorch module to compute a sample of the fol-
lowers’ equilibria. The module takes the leader’s strategy as input and outputs
a Nash equilibrium computed in the forward pass using the relaxation algo-
rithm. We use a random initialization to run the relaxation algorithm, which
can reach to different equilibria depending on different initialization. Given
the sampled equilibrium zzz∗ computed in the forward pass, the backward pass is
implemented by PyTorch autograd to compute all the second-order derivatives
to express Equation 10.5. The backward pass solves the linear system in Equa-
tion 10.5 analytically to derive dzzz∗

dπ as an approximate of the equilibrium flow.
This PyTorch module is used in all three examples in our experiment. The im-

plementation is flexible as we just need to adjust the followers’ objectives and
constraints, the relaxation algorithm and the gradient computation all di-
rectly apply.

H.2 Proofs of Theorem 19 and Theorem 20

Theorem 19. If v(zzz∗, π) is the equilibrium flow of the stochastic equilibrium oracleO(π), we have:

d
dπ E

zzz∗∼O(π)
f(zzz∗, π) = E

zzz∗∼O(π)
[fπ(zzz∗, π) + fzzz(zzz∗, π) · v(zzz∗, π)] . (10.8)

388



Proof. To compute the derivative on the left-hand side, we have to first expand the expectation
because the equilibrium distribution is dependent on the environment parameter π:

d
dπ E

zzz∼O(π)
f(zzz, π) =

d
dπ

∫
zzz∈Z

f(zzz, π)p(zzz, π)dzzz

=

∫
zzz∈Z

(
p(zzz, π)

∂

∂π
f(zzz, π) + f(zzz, π)

∂

∂π
p(zzz, π)

)
dzzz

= E
zzz∼O(π)

fπ(zzz, π) +
∫
zzz∈Z

f(zzz, π)
∂

∂π
p(zzz, π)dzzz (H.1)

We further define Φ(zzz, π) = p(zzz, π)v(zzz, π). By the equilibrium flow definition in Equa-
tion 10.7, we have

∂

∂π
p(zzz, π) = −∇zzz · Φ(zzz, π)

Therefore, the later term in Equation H.1 can be computed by integration by parts and Stokes’
theorem: ∫

zzz∈Z
f(zzz, π)

∂

∂π
p(zzz, π)dzzz

=−
∫
z∈Z

f(zzz, π)∇zzz · Φ(zzz, π)dzzz

=−
∫
z∈Z
∇zzz · (f(zzz, π)Φ(zzz, π))dzzz+

∫
zzz∈Z

fzzz(zzz, π)Φ(zzz, π)dzzz

=−
∮
∂Z

f(zzz, π)Φ(zzz, π)dS+
∫
zzz∈Z

fzzz(zzz, π)Φ(zzz, π)dzzz

Therefore, we have

d
dπ E

zzz∼O(π)
f(zzz, π) = E

zzz∼O(π)
fπ(zzz, π) +

∫
zzz∈Z

f(zzz, π)
∂

∂π
p(zzz, π)dzzz

= E
zzz∼O(π)

fπ(zzz, π)−
∮
∂Z

f(zzz, π)Φ(zzz, π)dS+
∫
zzz∈Z

fzzz(zzz, π)Φ(zzz, π)dzzz

= E
zzz∼O(π)

fπ(zzz, π)−
∮
∂Z

f(zzz, π)p(zzz, π)v(zzz, π)dS+
∫
zzz∈Z

fzzz(zzz, π)p(zzz, π)v(zzz, π)dzzz

= E
zzz∼O(π)

[fπ(zzz, π) + fzzz(zzz, π)v(zzz, π)]

where the term
∮
∂Z f(zzz, π)p(zzz, π)v(zzz, π)dS = 0 because p(zzz, π) = 0 at the boundary ∂Z . This

concludes the proof of Theorem 19.
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Notice that in the proof of Theorem 19, we only use integration by parts and
Stokes’ theorem, where both of them apply to Riemann integral and Lebesgue
integral. Thus, the proof of Theorem 19 alsoworks for any measure zero jumps in
the probability density function.

Theorem 20. Given the leader’s strategy π and a sampled equilibrium zzz, if (1) the KKTmatrix at
(zzz, π) is invertible and (2) the equilibrium zzz is sampled with a fixed probability locally, the solution to
Equation 10.5 is a homogeneous solution to Equation 10.7 and matches the equilibrium flow v(π, zzz)
locally.

Proof. Since the KKT conditions hold for all equilibria, the given π and zzzmust satisfyKKT(zzz, π) =
0. The KKTmatrix in Equation 10.5 is given by ∂KKT

∂zzz , the Jacobian matrix of the functionKKT(zzz, π)
with respect to zzz. If the KKTmatrix is invertible, by implicit function theorem, there exists an open
setU containing π such that there exists a unique continuously differentiable function h : U → Z
such that h(π) = zzz andKKT(h(π′), π′) = 0 for all π′ ∈ U. Moreover, the analysis in Equa-
tion 10.5 applies, where dh(π)

dπ = dzzz
dπ matches the solution of Equation 10.5.

Lastly, the condition that the equilibrium zzz is sampled with a fixed probability density c locally
implies the corresponding probability density function must satisfy p(z′, π′) = c1KKT(z′,π′)=0 =
c1zzz′=h(π′) for all π′ ∈ U in an open set locally*.

Now we can verify whether p(zzz′, π′) and v(zzz′, π′) = dh(π′)
dπ (independent of zzz′) satisfy the partial

differential equation of equilibrium flow as defined in Definition 17. We first compute the left-hand
side of Equation 10.7 by:

∂

∂π
p(zzz′, π′) =

∂

∂π
c1zzz′=h(π′) = cδzzz′=h(π′)

dh(π′)
dπ

(H.2)

where Equation H.2 is derived by fixing zzz′, the derivative of a jump function 1zzz′=h(π′) is a Dirac
delta function located at zzz′ = h(π′)multiplied by a Jacobian term dh(π′)

dπ .
We can also compute the right-hand side of Equation 10.7 by:

∇z · (p(zzz′, π′)v(zzz′, π′)) =v(zzz′, π′)
∂

∂zzz
p(zzz′, π′) + p(zzz′, π′)

∂

∂zzz
v(zzz′, π′) (H.3)

=
dh(π′)
dπ

∂

∂zzz
c111zzz′=h(π′)

=cδzzz′=h(π′)
dh(π′)
dπ

(H.4)

where the second term in Equation H.3 is 0 because we define v(zzz′, π′) = dh(π′)
dπ , which is indepen-

dent of zzz′. Equation H.4 is derived by fixing π′, the derivative of a jump function is a Dirac delta
function located at zzz′ = π′.

*We can choose the smaller subsetU such that both the implicit function theorem and the locally fixed
probability c both hold.
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(a) Normal‐form games with n = 3
followers and variedm strategies per
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(b) Stackelberg security games with
n = 5 followers and variedm
strategies per follower.
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(c) Cyber insurance games withm =
1 dimensional investment decision and
varied n.

Figure H.1: We compare the computation cost of equilibrium computation (forward) and the gradient access (backward)
per iteration. Backward pass is cheaper than forward pass in all three domains. Gradient‐based method runs a forward
pass and a backward pass per iteration, while gradient‐free method requires many forward passes to perform one step
of local search.

The above calculation shows that Equation H.2 is identical to Equation H.4, which implies the
left-hand side and the right-hand side of Equation 10.7 are equal. Therefore, we conclude that the
choice of v(zzz′, π′) = dzzz′

dπ = dh(π′)
dπ is a homogeneous solution to differential equation in Equa-

tion 10.7 locally in π′ ∈ U. By the definition of the equilibrium flow, v(zzz′, π′) = dzzz′
dπ is a solution

to the equilibrium flow because we can subtract the homogeneous solution and define a new partial
differential equation without regionU to compute the solution outside ofU.

H.3 Limitation of Theorem 19 and Theorem 20

Although Theorem 19 always holds, the main challenge preventing us from di-
rectly applying Theorem 19 is that we do not know the equilibrium flow in ad-
vance. Given the probability density function of the equilibrium oracle, we can
compute the equilibrium flow by solving the partial differential equation in
Equation 10.7. However, the probability density function is generally not given.

Theorem 20 tells us that the derivative computed in Equation 10.5 is exactly
the equilibrium flow defined by the partial differential equationwhen the sam-
pled equilibrium admits to an invertible KKTmatrix and is locally sampledwith
a fixed probability. That is to say, when these conditions hold, we can treat the
equilibrium sampled from a distribution over multiple equilibria as a unique
equilibrium to differentiate through as discussed in the section of unique Nash
equilibrium. These conditions are also satisfied when the sampled equilibrium is
locally stable without any discontinuous jump, generalizing the differentiabil-
ity of unique Nash equilibrium and globally isolatedNash equilibria to the case
with only conditions on the sampledNash equilibrium.
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H.4 Dimensionality and Computation Cost

H.4.1 Dimensionality of Control Parameters

We discuss the solution quality attained and computation costs required by dif-
ferent optimization methods. To understand the results, it is useful to compare
the role and dimensionality of the environment parameter π in each setting.

• Normal-form games: parameter π corresponds to the non-negative sub-
sidies provided to each follower for each entry of its payoff matrix. We
have dim(π) = n

n∏
i=1

mi = nmn, where for simplicity we setmi = m for all i.

• Stackelberg security games: parameter π refers to the non-negative sub-
sidies provided to each follower at each available target. Because each
follower i can only cover targets Ti ⊆ T, we have dim(π) =

n∑
i=1
|Ti| = nm,

where we set |Ti| = m for all i.

• Cyber insurance games: each insurance plan is composed of a premium and a
coverage amount. Therefore in total, dim(π) = 2n, the smallest out of the
three tasks.

H.4.2 Computation Cost

In Figure H.1, we compare the computation cost per iteration of equilibrium-
finding oracle (forward) and the gradient oracle (backward). Due to the hard-
ness of the Nash equilibrium-finding problem, no equilibrium oracle is likely to
have polynomial-time complexity in the forward pass (computing an equilibrium).
We instead focus more on the computation cost of the backward pass (differenti-
ating through an equilibrium).

As we can see in Equation 10.5, the complexity of gradient computation is dom-
inated by inverting the KKTmatrix with size L = O(nm) and the dimensionality
of environment parameter π since the matrix dzzz∗

dπ is of size L × dim(π). Therefore,
the complexity of the backward pass is bounded above byO(Lα) + O(L2 dim(π)) =
O(nαmα) + O(n2m2 dim(π))with α = 2.373.

• In Figure H.1(a), the complexity is given byO(n2m2 dim(π)) = O(n3mn+2) =
O(m5)where we set n = 3 with variedm, number of actions per follower,
shown in the x-axis.

• In Figure H.1(b), the complexity isO(n2m2 dim(π)) = O(m3)with n = 5 and
variedm, number of actions per follower, shown in the x-axis.
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• In Figure H.1(c), the complexity isO(n2m2 dim(π)) = O(n3)withm = 1 and
varied number of followers n shown in the x-axis. The runtime of the for-
ward pass increases drastically, while the runtime of the backward pass
remains polynomial.

In all three examples, the gradient computation (backward) has polynomial com-
plexity and is faster than the equilibrium finding oracle (forward). Numerical
gradient estimation in gradient-free methods requires repeatedly accessing the
forward pass, which can be even more expensive than our gradient computation.

H.5 Optimization Reformulation of the Stackelberg Problems withMulti-
ple Followers

In this section, we describe how to reformulate the leader’s optimization prob-
lemwith multiple followers involved into an single-level optimization problem
with stationary and complementarity constraints. Notice that this reformu-
lation requires the assumption that all followers break ties in favor of the
leader, while our gradient-based method can deal with arbitrary oracle access
not limited to any tie-breaking rules.

H.5.1 Normal-FormGames with Risk Penalty

In this example, the followers’ objectives are defined by:

fi(zzz, π) = Ui(zzz) + πi(zzz)−H(zi)/λ, (H.5)

whereUi is the given payoff matrix and πi is the subsidy provided by the leader. H
is the Gibbs entropy denoting the risk aversion penalty.

The leader’s objective and the constraint are respectively defined by:

f(zzz, π) =
∑
i∈[n]

Ui(zzz)

g(zzz, π) =

∑
i∈[n]

πi(zzz)

− B ≤ 0.
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Bilevel optimization formulation we canwrite the followers’ best response
into the leader’s optimization problem:

max
π

f(zzz) =
∑
i∈[n]

Ui(zzz) = U(zzz)

s.t. zi ∈ [0, 1]mi , 111⊤zi = 1 ∀i ∈ [n]
zi = argmax

z∈Zi
fi(zi, z−i, π) ∀i ∈ [n]

π(zzz) ≤ B

where fi is defined in EquationH.5. By converting the inner-level optimization
problem to its KKT conditions, we can rewrite the optimization problem as:

min
π,zzz,λ,μ,ν

− f(zzz) = −U(zzz)

s.t. zi, 111⊤zi = 1 ∀i ∈ [n]
λi, μi ∈ Rmi

≥0, νi ∈ R ∀i ∈ [n]

λi,jzi,j = 0 ∀i ∈ [n], j ∈ [mi]

μi,j(1− zi,j) = 0 ∀i ∈ [n], j ∈ [mi]

−∇zifi − λi + μi + νi111 = 0 ∀i ∈ [n]
π(zzz) ≤ B

We add dual variables λi, μi to the inequality constraints zi,j ≥ 0 and zi,j ≤ 1
respectively. We also add dual variables νi to the equality constraints 111⊤zi = 1.
We can explicitly write down the gradient:

∇zifi(zi, z−i, π) = (Ui + πi)(z−i)−
∑
j
(1+ log zij)/λ (H.6)

where λ here is a specific constant (different from the Lagrangian multipliers),
which is chosen to be 1 in our implementation.

H.5.2 Stackelberg Security GamesWithMultiple Defenders

The followers’ objectives are defined by:

fi(zzz, π) =
∑
t∈Ti

(Ui,t + πi,t)(1− yt)pt, (H.7)

whereUi,t is the loss received by defender iwhen target t is successfully at-
tacked, and πi,t is the corresponding reimbursement provided by the leader to
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remedy the loss. We define yt := 1−
∏
i
(1− zi,t) to denote the effective coverage of

target t, representing the probability that target t is protected under the over-
lapping protection patrol plan zzz. Given the effective coverage of all targets, we
assume the attacker attacks target twith probability pt = e−ωyt+at/(

∑
s∈T

e−ωys+as),

where at ∈ R is a known attractiveness value and ω ≥ 0 is a scaling constant.
The leader’s objective and constraint are respectively defined by:

f(zzz, π) =
∑
t∈T

Ut(1− yt)pt

g(zzz, π) =

(∑
i,t

πi,t(1− yt)pt

)
− B ≤ 0,

whereUt < 0 is the penalty for the leader when target t is attackedwithout any
coverage.

Bilevel optimization formulation Similarly, we can alsowrite down the bilevel
optimization formulation of the Stackelberg security games with multiple de-
fenders as:

max
π

f(zzz) =
∑
t∈T

Ut(1− yt)pt

s.t. zi,t ∈ [0, 1] ∀i ∈ [n], t ∈ Ti

yt, pt ∈ R ∀t ∈ T∑
t∈Ti

zi,t = bi ∀i ∈ [n]

yt = 1−
∏
i:t∈Ti

(1− zi,t) ∀t ∈ T

pt =
e−ωyt+at∑

s∈T
e−ωys+as ∀t ∈ T

zi = argmax
z∈Zi

fi(zi, z−i, π) ∀i ∈ [n]∑
i,t

(
πui,t(1− yt)pt + πci,tytpt

)
≤ B

where pt is the probability that attacker will attack target t under protect
scheme zzz and the resulting yyy. The function fi is defined in by:

fi(zzz, π) =
∑
t∈Ti

(Ui,t + πi,t)(1− yt)pt. (H.8)
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This bilevel optimization problem can be reformulated into a single level opti-
mization problem if we assume all the individual followers break ties (equilibria)
in favor of the leader, which is given by:

max
π,zzz,λ,μ,ν

∑
t∈T

Ut(1− yt)pt

s.t. zi,t ∈ [0, 1] ∀i ∈ [n], t ∈ Ti

yt, pt ∈ R ∀t ∈ T∑
t∈Ti

zi,t = bi ∀i ∈ [n]

yt = 1−
∏
i:t∈Ti

(1− zi,t) ∀t ∈ T

pt =
e−ωyt+at∑

s∈T
e−ωys+as ∀t ∈ T

λi,t, μi,t ∈ R≥0, νi ∈ R≥0 ∀i ∈ [n], t ∈ Ti

λi,tzi,t = 0 ∀i ∈ [n], t ∈ Ti

μi,t(1− zi,t) = 0 ∀i ∈ [n], t ∈ Ti

−∇zifi − λi + μi + νi111 = 0 ∀i ∈ [n]∑
i,t

(
πui,t(1− yt)pt + πci,tytpt

)
≤ B

Similarly, we add dual variables λi,t, μi,t, νi to constraints zi,t ≥ 0, zi,t ≤ 1, and∑
t∈Ti

zi,t = bi.

H.5.3 Cyber Insurance Games

The followers’ objectives are defined by:

fi(zzz, π) = −cizi − ρi − (Li − Ii)qi − γ|Li − Ii|
√
qi(1− qi), (H.9)

where ci is the unit cost of the protection zi and Li is the loss when the computer
is attacked. The insurance plan offered to agent i is defined as zi := (ρi, Ii), where
ρi is the fixed premium paid to enroll in the insurance plan and Ii is the compensa-
tion received when the computer is attacked.

We assume the computer is attackedwith a probability qi, where qi = σ(−
n∑
j=1

wijzj+

vLi)with σ being sigmoid function, a matrixW = {wij > 0}i,j∈[n] to represent the
interconnectedness between agents, v ≥ 0 to reflect the attacker’s preference
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over high-value targets, and lastly it depends on the loss Li incurred by agent i
when attacked. This attack probability is a smooth non-convex function, which
makes the reformulation approach hard and the non-convexity can lead to mul-
tiple equilibria reached by the followers.

The last term in EquationH.9 is the risk penalty to agent i. This term is the
standard deviation of the loss received by agent i. We assume the agent is risk
averse and thus penalized by a constant time of the standard deviation.

On the other hand, the leader’s objective is defined by:

f(zzz, π) =
n∑
i=1
−Iiqi + ρi

where the leader’s objective is simply the total revenue received by the insurer,
which includes the premium collected from all agents and the compensation
paid to all agents.

The constraints are the individual rationality of each agent, where the cus-
tomized insurance plan needs to incentivize the agent to purchase the insurance
plan. In other words, the compensation Ii and premium ρi must incentivize agents
to purchase the insurance plan by making the payoff with insurance noworse
than the payoff without.

gi(zzz, π) =
(
−cizi − Liqi − γLi

√
qi(1− qi)

)
− fi(zzz, π) ≤ 0.

Bilevel optimization reformulation The bilevel optimization formulation for
the cyber insurance domain with an external insurer is given by:

max
π

f(zzz) =
n∑
i=1
−Iiqi + ρi

s.t. zi ∈ [0,∞) ∀i ∈ [n]

qi = σ

− n∑
j=1

wijzj + vLi

 ∀i ∈ [n]

zi = argmax
z′i∈Zi

fi(z′i, z−i, π) ∀i ∈ [n]

− cizi − Liqi − γLi

√
qi(1− qi) ≤ fi(zzz, π) ∀i ∈ [n]

where fi(zzz, π) = −cizi − ρi − (Li − Ii)qi − γ ‖Li − Ii‖
√
qi(1− qi).

Reformulating this bilevel problem into a single level optimization problem,
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we have:

max
π,zzz,λ

f(zzz) =
n∑
i=1
−Iiqi + ρi

s.t. zi ∈ [0,∞), λi ∈ [0,∞) ∀i ∈ [n]

qi = σ

− n∑
j=1

wijzj + vLi

 ∀i ∈ [n]

ziλi = 0 ∀i ∈ [n]

− cizi − Liqi − γLi

√
qi(1− qi) ≤ fi(zzz, π) ∀i ∈ [n]

−∇zifi − λi = 0 ∀i ∈ [n]

with dual variables λi for the zi ≥ 0 constraint.

H.6 Experimental Setup

For reproducibility, we set the random seeds to be from 1 to 30 forNSGs and cy-
ber insurance games, and from 1 to 100 for SSGs.

H.6.1 Normal-FormGames

In NFGs, we randomly generate the payoff matrixUi ∈ Rm1×m2×···×mn of follower
iwith each entry of the payoff matrix randomly drawn from a uniform distribu-
tionU(0, 10). We assume there are n = 3 followers. Each follower has three pure
strategies to usemi = m = 3 for all i. The risk aversion penalty constant is set
to be λ = 1.

H.6.2 Stackelberg Security Games

In SSGs, we randomly generate the penaltyUi,t < 0 of each defender i associated
to each target t ∈ Ti ⊂ T from a uniform distributionUi,t ∼ U(−10, 0). The
leader’s penaltyUt < 0 is also generated from the same uniform distribution
Ut ∼ U(−10, 0). We assume there are n = 5 followers in total. There are |T| = 100
targets and each follower is able to protect |Ti| = m = 50 targets randomly
sampled from all targets. Each follower can spend at most bi = 10 effort on the
available targets. The attractiveness values at used to denote the attacker’s
preference is randomly generated from a normal distribution at ∈ N (0, 1)with 0
mean and standard deviation 1. The scaling constant is set to be ω = 5.
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H.6.3 Cyber Insurance Games

In cyber insurance games, for each follower i, we generate the unit protection
cost ci from a uniform distribution ci ∼ U(5, 10) , and the incurred loss Li from
a uniform distribution Li ∼ U(50, 100). We assume there are in total n = 10 fol-
lowers. Each follower can only determine their own investment and thusm = 1.
The entry of the correlation matrixW ∈ Rn×n is generated from uniform dis-
tributionsWi,j ∼ U(0, 1) if i 6= j, andWi,j ∼ U(1, 2) if i = j to reflect the higher
dependency on the self investments. We choose the risk aversion constant γ to
be γ = 0.01.

H.7 Computing Infrastructure

All experiments except VI experiments were run on a computing cluster, where
each node is configuredwith 2 Intel Xeon Cascade Lake CPUs, 184 GB of RAM,
and 70 GB of local scratch space. VI experiments require a Knitro license and
were run on a machine with i9-7940X CPU@ 3.10GHzwith 14 cores and 128 GB of
RAM.Within each experiment, we did not implement parallelization, so each ex-
perimentwas purely run on a single CPU core.
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