
Architecting High Performance Silicon Systems for
Accurate and Efficient On-Chip Deep Learning

Citation
Tambe, Thierry. 2023. Architecting High Performance Silicon Systems for Accurate and Efficient
On-Chip Deep Learning. Doctoral dissertation, Harvard University Graduate School of Arts and
Sciences.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37375806

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37375806
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Architecting%20High%20Performance%20Silicon%20Systems%20for%20Accurate%20and%20Efficient%20On-Chip%20Deep%20Learning&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=d6b5d8604d8dc731e379768af90dc01b&department
https://dash.harvard.edu/pages/accessibility

Architecting High Performance Silicon
Systems for Accurate and Efficient

On-Chip Deep Learning

a dissertation presented
by

Thierry Tambe
to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Electrical Engineering

Harvard University
Cambridge, Massachusetts

April 2023

©2023 – Thierry Tambe
all rights reserved.

Dissertation advisor: Gu-YeonWei and David Brooks Thierry Tambe

Architecting High Performance Silicon Systems for Accurate
and Efficient On-Chip Deep Learning

Abstract

The unabated pursuit of omniscient and omnipotent AI is levying hefty latency, memory, and en-

ergy taxes at all computing scales. At the same time, the twilight of Dennard scaling means tradi-

tional performance gains are no longer proportionally attained with reduction in transistor feature

size – compelling a global trend towards application-based hardware specialization.

Over the course of my PhD, I have built a heterogeneity of solutions co-optimized across the

algorithm, architecture, and silicon stack to generate breakthrough advances in arithmetic perfor-

mance, compute density and flexibility, and energy efficiency for on-chip machine learning (ML),

and natural language processing (NLP) in particular. My work aims to significantly increase the

application space of embeddedML computing, in both the inference and training regimes, by coa-

lescing innovative vectors spanning the algorithm, memory subsystem, hardware architecture, and

circuit layers, while tuning their designs and inter-dependencies to promote greater performance,

energy efficiency, and reliability within a silicon chip system.

In the algorithm front, this thesis discusses best paper award-winning work on a novel floating-

point based data type, AdaptivFloat, which enables resilient quantized AI computations; and is

particularly suitable for NLP networks with large parameter distribution. To evaluate AdaptivFloat

impact on a real system, this thesis describes a 16nm chip prototype that integrates FlexASR, a pro-

grammable hardware accelerator with AdaptivFloat-based processing elements, and specialized for

attention-based recurrent neural networks used in speech and machine translation AI workloads.

iii

Dissertation advisor: Gu-YeonWei and David Brooks Thierry Tambe

We further verify FlexASR fidelity to the front-end AI application via a formal hardware/software

compiler interface.

Towards the goal of lowering the prohibitive energy cost of inferencing large language models on

TinyML devices, this dissertation describes a principled algorithm-hardware co-design solution, val-

idated in a 12nm chip tapeout, that accelerates Transformer workloads by tailoring the accelerator’s

latency and energy expenditures according to the complexity of the input query it processes.

Finally, recognizing that the overwhelming majority of the data generated during the deep learn-

ing training process exhibits a very short-lived lifetime, this thesis proposes leveraging non-conventional

embedded dynamic RAMs (eDRAMs) as the main on-chip storage medium for ML training data –

which, along with a tightly-coupled offering of algorithmic alterations and custom hardware special-

ization, yields significant energy efficiency advantages over conventional SRAMs.

iv

Contents

Title Page i

Copyright ii

Abstract iii

Table of Contents vi

PreviousWork vii

Dedication ix

Acknowledgments x

1 Introduction 1
1.1 The Grand Challenge to Meet Tomorrow’s Needs for Information Processing . . 2
1.2 The Need for Application-to-Silicon Cross-Stack Co-Design 4
1.3 Thesis Contributions . 6
1.4 Thesis Roadmap . 10

2 Background and RelatedWork 12
2.1 Foundational Speech and NLPNeural Networks 13
2.2 Prominent Number Systems for Deep Learning 19
2.3 RelatedWork . 21

3 Enabling Adaptive and Energy-Efficient Quantized Computations 25
3.1 AdaptivFloat: an Adaptive Floating-Point Based Number System for Accurate and

Resilient DNN Inference . 27
3.2 Experimental Results . 29
3.3 Hardware Implementation . 34
3.4 Results and Implications . 35

v

3.5 Facilitating Data Type Exploration for Efficient Hardware Design 36
3.6 Takeaways . 38
3.7 Follow-on Research . 38

4 Accelerating Edge AI Attention-based Speech-to-Text RNNs 40
4.1 The SM6 SoC Architecture . 43
4.2 The FlexASRHardware Accelerator . 48
4.3 Post-SiliconMeasurement Results . 53
4.4 Verifying FlexASR via a Formal Hardware/Software Compiler Interface 59
4.5 Takeaways . 62

5 Lowering the Cost of Inferencing Large LanguageModels on Embed-
ded Devices 64
5.1 Entropy-based Early Exit . 66
5.2 Entropy-Controlled Voltage-Frequency Scaling 69
5.3 The EdgeBERT Sparse Transformer Processor 70
5.4 12nmChip Prototype and Post-SiliconMeasurement Results 74
5.5 Takeaways and Follow-on Research . 77

6 CAMEL: Co-Designing AIModels and eDRAMs for Efficient On-Chip
Learning 78
6.1 Using eDRAMs as the Main Storage Medium for On-Device Training 80
6.2 Computations in DNNTraining . 82
6.3 Reversible DNNArchitectures . 83
6.4 Proposing a 2D Block Floating-Point Datatype 87
6.5 The CAMELHardware Accelerator System with a Hybrid eDRAM-SRAMMem-

ory Subsystem . 88
6.6 Evaluation . 93
6.7 Conclusion and Future Work . 101

7 Conclusion 102
7.1 Future Research Directions . 103

References 122

vi

Previous work

Portions of this dissertation appear in the following works:

Thierry Tambe, En-Yu Yang, ZishenWan, Yuntian Deng, Vijay Janapa Reddi, Alexander Rush,
David Brooks, Gu-YeonWei. “Algorithm-Hardware Co-Design of Adaptive Floating-Point Encod-
ings for Resilient Deep Learning Inference”. ACM/IEEE Design Automation Conference (DAC
2020).

Thierry Tambe, En-Yu Yang, Glenn Ko, Yuji Chai, Coleman Hooper, Marco Donato, Paul What-
mough, Alexander Rush, David Brooks, Gu-YeonWei. “A 25mm2 SoC for IoT Devices with
18ms Noise-Robust Speech-To-Text Latency via Bayesian Speech Denoising and Attention-based
Sequence-to-Sequence DNN Speech Recognition in 16nm Finfet”. IEEE International Solid- State
Circuits Conference (ISSCC 2021).

Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang, Marco Donato, Vic-
tor Sanh, Paul Whatmough, Alexander Rush, David Brooks, Gu-YeonWei. “EdgeBERT: Sentence-
Level Energy Optimizations for Latency-Aware Multi-Task NLP Inference”. IEEE/ACM Interna-
tional Symposium onMicroarchitecture (MICRO 2021).

Thierry Tambe, En-Yu Yang, Glenn Ko, Yuji Chai, Coleman Hooper, Marco Donato, Paul What-
mough, Alexander Rush, David Brooks, Gu-YeonWei. “A 16-nm SoC for Noise-Robust Speech
and NLP Edge AI Inference with Bayesian Sound Source Separation and Attention-based DNNs”.
IEEE Journal of Solid-State Circuits (JSSC 2022).

AbdulrahmanMahmoud,Thierry Tambe, Tarek Aloui, David Brooks, Gu-YeonWei. “GoldenEye:
A Platform for Evaluating Emerging Numerical Data Formats in DNNAccelerators”. IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2022).

Cheng Tan,Thierry Tambe, Jeff Zhang, Bo Fang, Tong Geng, Gu-YeonWei, David Brooks, An-
tonino Tumeo, Ganesh Gopalakrishnan, Ang Li. “ASAP: Automatic Synthesis of Area-Efficient
and Precision-Aware CGRAs”. ACM International Conference on Supercomputing (ICS 2022).

vii

Bo-Yuan Huang, Steven Lyubomirsky, Yi Li, Mike He,Thierry Tambe, Gus Henry Smith, Akash
Gaonkar, Vishal Canumalla, Gu-YeonWei, Aarti Gupta, Zachary Tatlock, SharadMalik. “Special-
ized Accelerators and Compiler Flows: Replacing Accelerator APIs with a Formal Software/Hardware
Interface”. arXiv preprint arXiv:2203.00218 (2022).

Thierry Tambe, Jeff Zhang, Coleman Hooper, Tianyu Jia, Paul Whatmough, Jeff Zuckerman,
Maico Cassel, Erik Loscalzo, Davide Giri, Kenneth Shepard, Luca Carloni, Alexander Rush, David
Brooks, and Gu-YeonWei, “A 12nm 18.1TFLOPs/W Sparse Transformer Processor with Entropy-
based Early Exit, Mixed-Precision Predication and Fine-Grained Power Management”. IEEE Inter-
national Solid- State Circuits Conference (ISSCC 2023).

Sai Zhang*,Thierry Tambe*, Nestor Cuevas, Jeff Zhang, Gu-YeonWei, David Brooks. “CAMEL:
Co-desiging AIModels and Embedded DRAMs for Efficient On-Device Learning”. arXiv preprint
arXiv:2305.03148 (2023). *Authors contributed equally.

viii

Tomy dear parents: Clementine Tambe and Justin Tambe.

ix

Acknowledgments

This dissertation was only possible with the concerted effort of a lot of people supporting me over
the last five and half years. I am deeply grateful to all of them for their encouragement, advice, and
contributions throughout my PhD journey.

I would like to start by thanking my advisors and mentors. First,Gu-YeonWei andDavid Brooks.
Despite having more of an engineering bent after a relatively long spell in the industry, you took a
chance on me and sharpened me as a researcher, writer, and communicator. Notably, you put the
right pieces in place to allow me to do my best possible work. Thank you both for your prescient
guidance and mentorship. Sasha Rush, thank you for being a wonderful machine learning mentor.
I am very appreciative of the numerous conversations we had, discussing and elucidating NLP stuff,
as they informed a lot of key decisions during the design of our AI hardware processors. Brucek
Khailany, thank you for being an amazing collaborator on the DARPACRAFT program and for
allowing me to intern in your group at NVIDIA. Working with you, Rangha Venkatesan, Sophia
Shao, and Ben Keller, in the early stages in my PhD, catalyzed a lot of subsequent research explo-
rations, besides making me an avid HLS enthusiast. Paul Whatmough,Marco Donato,Glenn
Ko, and Sae Kyu Lee, I feel quite lucky for having worked closely with you throughout my PhD.
Your mentorship on so many aspects of chip development, as well as the lively discussions we had
entertaining the viability of different research and engineering ideas – have had a profound effect
on my research imprint. Many features of my work have built on the seeds you have sown. So, I owe
it to the four of you for providing a launchpad that allowed me to be productive during my time at
Harvard. Vijay Reddi,Demba Ba, andGage Hills, thank you for fielding me very thoughtful and
practical feedback during my PhD journey, which really helped me internalize and approach my
work with greater confidence, and resist instincts to sell myself short.

Glenn Holloway, it is quite difficult to gauge the extent of the impact you have had on my PhD
career. Whether it is fixing machine failures and tool issues, setting up many of the logistics sur-
rounding the chip development and testing infrastructure, answering my calls regardless of the time
in the day or night, you went above and beyond to make sure I had everything I needed to do my
best work – not to mention that I learned a great deal from witnessing your IT wizardry. Your tire-
less dedication to each of us in the lab has been remarkable. You are truly a hero to me.

I am thankful for having worked and hung out with a brilliant group of colleagues and collabo-
rators at Harvard. En-Yu (Daniel) Yang, your technical brilliance and the elegance through which
you approached problem-solving were amazing to behold. I could not have asked for a better col-

x

laborator on the inaugural FlexASR project. Coleman Hooper, your highly-motivated drive and
noble work ethics created breakthroughs on the EdgeBERT project. Thank you for being such a
strong collaborator. Lillian Pentecost, working with you and bringing the NVM angle to the Edge-
BERT project has been enriching. Your methodical approach to dissecting problems and motivating
proposed solutions has been inspiring. Udit Gupta, I owe my first immersion into the science of
cutting-edge research to you as being part of the MASR project gave me a plethora of learnings
that I carried forward in my subsequent PhD projects. Thank you for being an amazing and gen-
erous graduate student mentor. I also cherished the light moments and coffee break outings you,
Lillie, and I shared together when we were still stationed at Maxwell Dworkin. Siming Ma, thank
you for providing very helpful and actionable advice on several of my chip tapeouts. Your feedback
saved a lot of engineering efforts and helped us meet aggressive shuttle deadlines. Tianyu Jia, it has
been such a treat and privilege to collaborate with you on EdgeBERT and Epochs-1. Watching you
tackle big research and engineering problems with poise and humility has been quite inspiring. Jeff
Zhang, I am thankful for your eagerness to contribute time and efforts to some of our most chal-
lenging problems. Thank you for contributing to the CAMEL path-finding efforts and for pioneer-
ing the compiler frontend to EdgeBERT. Sai Qian Zhang, it has been a privilege and pleasure to
collaborate closely with you on the CAMEL project. It has been inspiring to see your research acu-
men elevate the refinement of this work in so many remarkable ways. Nestor Cuevas, thank you for
the strong work ethics and the highly-motivated drive you brought to the CAMEL project. I have
learned a great deal from watching you translate eDRAM research proposals into real and robust
implementations. Abdulrahman Mahmoud, working with you on GoldenEye has been truly grat-
ifying. Thank you also for being for a supportive ear whenever I needed it and sharing break times
with me over games of ping-pong.

Thank you to my amazing collaborators at Columbia University (Joseph Zuckerman,Maico
Cassel, Erik Loscalzo,Davide Giri,Kenneth Shepard, Luca Carloni) and IBM (Martin Cochet,
Karthik Swaminathan, Pradip Bose) with whom I shared an incredibly enriching and rewarding
experience bringing the DARPA Epochs-1 chip from an intimidating concept to a present reality.

Thank you to my brilliant collaborators at the SRC JUMPADA center from Princeton Univer-
sity (Bo-Yuan Huang, Yi Li,Akash Gaonkar,Aarti Gupta, Sharad Malik) and the University of
Washington (Steven Lyubomirsky,Mike He,Gus Smith,Vishal Canumalla, Zachary Tatlock)
with whom I shared a very productive and collaborative spirit in the daunting quest to close the
mapping gap between domain-specific languages and custom hardware accelerators.

Thank you Sandeep Garg for always being on standby and eager to debug and resolve, promptly,
any Catapult/HLS issues we encountered. Your leadership helped us achieve high quality silicon in
our various chip tapeouts.

I would also like to thank the Harvard Graduate Christian Community student group, which I
have been a member of during the course of my PhD, for providing a sense of community and social
support, especially during the zenith of the covid-19 pandemic.

Finally, I thank Harvard SEAS, the NVIDIA Graduate Fellowship Program, the SRC JUMP
ADA center, and DARPA for funding the research covered in this dissertation. The views, findings,
and/or conclusions expressed in this dissertation are those of the author and should not be inter-

xi

preted as representing the official views of any funding agency.

xii

1
Introduction

The semiconductor industry has benefited from years of productive returns by investing in the

promises of Moore’s Law. Coupled with frequency and voltage scaling, consistent and tangible

performance improvements were reaped across several generations of computing systems. How-

ever, as transistor miniaturization reached nanoscale dimensions, the combined effects of the larger

than expected oxide leakage current and junction overheating, and the fact that interconnects could

not proportionally track with the downsizing rate of FinFETs – ultimately increased the on-chip

1

power density and made it difficult to continue scaling down transistors without hitting the prover-

bial “Power Wall”. Dennard’s Law effectively ended. Faced with this acute challenge, the chip in-

dustry transitioned to multicore scaling in the desperate quest to keep delivering energy efficiency

gains. In theory, the idea of multi-core designs made sense. Silicon chips could continue packing

more and more transistors by increasing the number of parallelized cores, that would operate at a

lower clock frequency than a single core (to avoid thermal failures), but would generate higher ag-

gregate throughput per unit area. However, in practice, this solution led computer chips to hit a

“UtilizationWall” as many cores were forced to be either completely turned off or significantly un-

derclocked to provide an edge in power efficiency137. Therefore, while multicore processors effected

considerable progress in SoCs’ peak performance, they have not been an end-all solution to power

density challenges. The problem of dark silicon, along with Amdahl’s Law constraints, communica-

tion overheads among cores, core synchronization overheads, software and programming challenges,

have all contributed to the continued search for new strategies to improve computing performance

in the post-Dennard Scaling era.

It is imperative to address the wide-ranging implications stemming from the breakdown of Den-

nardian scaling considering that we may not be adequately prepared for the looming deluge of data

spurred by the surging democratization of AI and other emerging compute-intensive applications.

1.1 The Grand Challenge toMeet Tomorrow’s Needs for Information Pro-

cessing

Semiconductor technologies are facing a reckoning. The coming decades will see an exponential

increase in the amount of data that will need to be moved, stored, computed, and communicated

to the end user. Trends and projections from the world sensor data are illustrated in Figure 1.1119,

showing that by 2032, data production per sensor will reach an estimated 1027 bytes, far surpassing

2

Figure 1.1: The explosion of sensor data within the next decade will far exceed humans’ capacity to process and make
effective use of it. Source: Semiconductor Research Corporation 2020 Decadal Plan119.

1E+11

1E+12

1E+13

1E+14

1E+15

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

BERT-Base
 (2018)

T5-Base
(2019)

BERT-Large
(2019)

RoBERTa-Large
 (2019)

T5-Large
(2019)

GPT-3
 (2020)

GLaM
(2022)

Tr
ai

ni
ng

 G
FL

O
Ps

N
um

be
r o

f P
ar

am
s

(M
)

Params (M) Training Compute (GFLOPs)

Figure 1.2: Large language models have been scaling at an exponential rate in terms of memory footprint and training
compute over the last five years10.

3

humans’ ability to effectively digest and process it. This raises an urgent call to dramatically change

the current computing paradigm as Tomorrow’s needs for information processing, propelled by

emerging data-intensive applications such as deep learning, AR/VR, autonomous driving – are sim-

ply unachievable with the current state of semiconductor technologies. Even more concerning, the

unrelenting pursuit for greater linguistic understanding and representation is currently sparking a

worldwide AI arms race, driving natural language processing (NLP) models to extreme scales. The

amount of AI computations required to produce advanced generative models is doubling every six

months121, outpacing the steepest slope of Moore’s Law. Putting this scale into perspective, recent

large language models are now exceeding 1 trillion parameters (e.g., GLaM31, Switch Transform-

ers33), and requiring trillions of training FLOPs as shown in Figure 1.2.

As I see it, the most effective approach to optimize the growing cost of computing, in a sustain-

able manner, is to exploit the very same data currently driving the ongoing AI revolution. Solid-state

based solutions, alone, such as further CMOS shrinking, in-memory computing, or advanced pack-

aging techniques, in my view, can only provide temporary relief. However, the combination of these

sophisticated circuit and packaging advancements along with application-driven or data-driven mea-

sures could deliver a greater value proposition in terms of compute and energy efficiency.

1.2 TheNeed for Application-to-Silicon Cross-Stack Co-Design

The coming AI wave is motivating a gradual shift away from compute-centric processing and to-

wards data-centric processing by leveraging intrinsics in the underlying application in order to boost

performance and energy efficiency at all computing scales. Concurrently, privacy and security con-

cerns, as well as, stricter latency requirements are incentivizing a growing deployment of AI work-

loads to edge devices, targeting both inference and training.

Processing at the edge is challenging for several reasons.

4

1. The on-chip memory capacity is usually acutely insufficient to satisfy the storage needs of

the AI application. This then compels off-chip data movements to external memories, which

unfortunately are characterized by longer round-trip latencies and significantly higher energy

consumption (e.g., energy cost of accessing DRAM is more than 100× larger compared to

on-chip accesses53).

2. Relatedly, the limited amount of on-chip computing resources applies a restrictive cap on the

application space that can be deployed to cloudless edge devices. Tangibly, smaller AI models

with lower accuracy are often run on these low-capacity edge platforms, and the on-device

execution is typically focused on the inference scenario exclusively.

3. As CMOS scaling does not provide proportional gains in I/O and interconnect bandwidth,

on-chip data movements typically account for the majority of energy expenditures. An on-

chip memory hierarchy exploiting spatial and temporal locality can improve the SoC energy

efficiency by reducing latencies and increasing data access efficiency. However, we also need

to pay attention to accelerator-CPU data exchanges, which may become excessive in a naive

ASIC implementation. Several processing-in-memory or near-memory computing tech-

niques have been proposed36 to more aggressively address these “MemoryWall” challenges.

4. In order to acquire advantages in latency and energy, the computation is executed in very

specialized hardware, which complicates the development of the compiler ecosystem for

lowering the application code down to the edge device. Many application-specific hardwares

are designed with customized, non-traditional instruction set architectures (ISAs), requiring

dedicated software drivers that only the hardware designer understands. This, as a result,

inhibits community adoption of specialized AI hardware accelerators.

5. The field of deep learning is exhibiting very fast growth and maturity with newer AI mod-

5

AdaptivFloat
D2A

NLP
Vision

CAMEL

FlexASR
EdgeBERT

ISSCC’21
ISSCC’23

ALGORITHM

MEMORY

HARDWARE
ARCHITECTURE

SILICON

APPLICATION

Figure 1.3: My PhD research has developed novel algorithms, memory systems, specialized architectures, and silicon
chips, while tuning their designs and inter‐dependencies to promote greater performance, efficiency, and reliability.

els being released at an increasingly rapid pace. Therefore, designers must ensure that their

hardware does not become obsolete as the AI algorithm evolves. The challenge is to provide

an optimized balance between hardware reconfigurability and flexibility without sacrificing

performance and energy efficiency.

In light of the above-mentioned challenges, my PhD research has sought to drastically increase

the application space of embedded AI computing by coalescing a hierarchical heterogeneity of in-

novative vectors across the computation stack, from algorithms down to the silicon, in order to

accelerate the future of computing in the post-CMOS era. To that end, the next section outlines the

research contributions made during my PhD journey in order to address some of these issues.

1.3 Thesis Contributions

Over the course of my PhD, I have built cross-stack solutions and further tuned their inter-dependencies

in order to generate breakthrough advances in arithmetic performance, compute density, energy ef-

6

ficiency, as well as reliability (Figure 1.3). This cross-layer optimization, notably, involves several

co-designs to address specific challenges in edge AI computing. Specifically:

1. AdaptivFloatwhich is a co-design of the machine learning model and the number sys-

tem. Recognizing that parameters fromNLPmodels exhibit a much wider dynamic range

compared to those of CNNmodels, AdaptivFloat offers a floating-point based mathematical

formulation that is adaptive to the statistical distribution of DNN parameters while being

resilient to aggressive bitwidth compression.

2. FlexASRwhich is a co-design of the machine learning model and the SoC architecture

in order to reap, on-chip, the benefits of highly accurate and noise-resilient speech-to-text

AI models without incurring undue energy overheads. Prominently featured in a 16nm

25mm2 SoC is the FlexASR hardware accelerator for efficient computations of attention-

based RNNs, as well as, a Bayesian engine for on-chip real-time denoising.

3. EdgeBERTwhich, at the core, is a co-design of the machine learning model and the NLP

computation in order to drastically reduce the latency and energy overheads of Transformer-

based large language models via early exit, and per-sentence voltage frequency scaling. This

work is further validated in a 12nm chip prototype.

4. CAMELwhich is fundamentally a co-design of the machine learning model and the

memory subsystem for efficient on-device training. Identifying on-chip memory accesses as

a major energy efficiency bottleneck, we leverage embedded DRAMs (eDRAMs) instead of

SRAMs as the main on-chip storage medium for the majority of DNN training parameters,

which characteristically exhibit a transient profile.

Furthermore, I have had the great privilege to rigorously evaluate the above-mentioned co-designs

in 12nm and 16nm chip tapeouts in order to reveal the true value of the full-stack optimization. As

7

we are moving towards an era of personalized computing, these different co-designs offer several

learnings regarding the research rationale, and how one may approach a full system implementa-

tion with tangible performance and efficiency benefits. I summarize, at a very high-level, some key

takeaways below:

• Emerging AI models exhibit a parameter distribution spread that far exceeds the dynamic

range of commonly used fixed-point data types. Therefore, it has become imperative to pro-

vide a low precision numerical encoding solution that adaptively scales its representation

range to cater to the most important or most impactful regions in the deep learning tensor

(e.g., weights, activations, gradients). In AdaptivFloat, this is accomplished by introducing a

variable bias in the exponent field of the floating-point datatype.

• The proliferation of conversational AI interfaces is driving an exponential growth in the con-

sumer IoT and wearable market. As they are featured in devices with small form factors (e.g.,

AR/VR glasses), it is of paramount importance that they work seamlessly in polyphonic or

acoustically challenged environments. Rather than integrating a front-end noise cancelling

circuit or scaling up the size of the speech-to-text DNNmodel to achieve noise robustness,

which may be unoptimal considering the strict power budget of the IoT device, we demon-

strate a more energy-efficient compromise by executing on-chip Bayesian based denoising

prior to the attention-based automatic speech recognition (ASR) operation. The FlexASR

ML-SoC co-design is an example of how next-generation system-on-chips may be architected

leveraging recent advances in machine learning to obviate traditionally-adopted engineering

solutions that may now be unsuitable in emerging technical specifications.

• The idea of dynamic voltage frequency scaling (DVFS) was initially proposed in the early

1990s and it took many years until we saw its deployment on Intel CPUs in the early 2000s.

Fast forward 20 years, although DVFS has been the cornerstone to meeting application en-

8

ergy requirements, the problem of energy efficiency still exists, and in fact, has been made

worse by the unrelenting pursuit of omniscient and omnipotent AI driven by large language

models. In EdgeBERT, we identify the statistical metric of entropy as a springboard for fine-

grained sentence-level power optimization. This ML-computation co-design, in my view, is

a prelude to many future AI-aided smart power management schemes and circuits provid-

ing finer-grained control on energy and latency consumption in next-generation computing

platforms.

• The shift towards data-centric processing will accelerate the preeminence of specialized com-

puting, bringing forth more personalized experiences to everyday users. It will no longer

be sufficient for edge devices to execute inference workloads. On-chip DNN training will

soon become a first-order necessity to provide a more customized and intimate experience

to users as they interact with the device. However, AI training on resource-limited ASICs is

extremely difficult because of the intensive computing workload and the significant amount

of on-chip memory consumption and traffic exacted by the neural network. As part of a

ML-memory co-design, eDRAMs are utilized as the main storage carrier of DNN training

parameters, providing at least twice the memory density compared to SRAMs. Furthermore,

we leverage recent advances in reversible deep neural networks39, and co-design the DNN

architecture along with the hardware system, and the scheduler to significantly shorten the

data lifetime of parameters held in eDRAM– thereby avoiding periodic refresh. This co-

design demonstrates more than 2× saving on total DNN training energy consumption com-

pared to conventional baselines with external DRAMs, while achieving similar, and in some

instances, better performance in validation accuracy.

The above-mentioned contributions are discussed with greater details in this dissertation. As a

reference, the next section outlines the organization of the ensuing chapters.

9

1.4 Thesis Roadmap

(Chapter 2) Background and Related Work introduces the foundational speech and natural lan-

guage processing neural networks that have been the application focus for much of our algorithm-

hardware co-designs. This chapter further reviews prior related work on algorithmic techniques and

hardware architectures for efficient deep learning and NLP computations.

(Chapter 3) Enabling Resilient and Energy-Efficient Quantized Computations introduces a

floating-point based mathematical blueprint, dubbed AdaptivFloat, which enables highly-accurate

low-precision computations without compromising validation accuracy. Notably, in this work,

we propose adaptive tensor scaling via exponent bias shift at a DNN layer granularity, which con-

sistently produces higher inference accuracies compared to block floating-point, integer, IEEE-like

float and posit encodings at low bit precision (≤ 8-bit) across a diverse set of state-of-the-art DNNs.

(Chapter 4) FlexASR: Accelerating Edge AI Attention-Based Speech-to-Text RNNs describes

a 16nm SoC that executes a full speech-enhancing automatic speech recognition (ASR) pipeline

using prominent advancements in machine learning. The proposed pipeline pre-processes incoming

noise-corrupted speech using Arm A53 cores, then denoises the signal in a Markov Source Sepa-

ration Engine (MSSE) accelerator, and finally accelerates attention-based sequence-to-sequence

(seq2seq) ASR workloads in the FlexASR accelerator. Particular attention will be given to the

architecture of the FlexASR processor which enables the system to achieve a peak efficiency of

7.8TFLOPs/Wwith real-time throughput.

(Chapter 5) Lowering the Cost of Inferencing Large Language Models on Embedded De-

vices describes a principled latency-driven approach to accelerate Transformer-based workloads on

10

edge devices with minimal energy consumption thanks to entropy-controlled early exit and voltage-

frequency scaling. This work is further validated in a 12nm chip tapeout, demonstrating a 6× and

7× reduction in latency and energy, respectively, over the conventional inference using the popular

NLP BERTmodel.

(Chapter 6) Co-Designing AI Models and eDRAMs for Efficient On-Chip Learning intro-

duces our eDRAM-based fully-on-chip DNN training methodology. We enable the usage of eDRAM

as an energy-efficient and viable on-chip memory for DNN training via three techniques that collec-

tively lower the data lifetime of parameters held in eDRAM. At the hardware level, (1) a 2D Block

Floating-Point (BFP) data type reduces the amount of computations per unit area, wherein the

higher throughput translates to shorter data lifetime requirements and avoids retention failures. At

the algorithm level, (2) we reformulate the computation graph of the DNNmodel to significantly

shorten data lifetime and to relax storage requirements. (3) A scalable systolic array architecture

with a hybrid eDRAM-SRAMmemory subsystem is proposed to maximize the synergistic benefits

of the algorithms designed to avoid periodic eDRAM refresh.

11

2
Background and RelatedWork

The field of deep learning is evolving at a dizzying pace. There has been so much

progress over the last ten years that a comprehensive survey of these advancements is beyond the

scope of this dissertation. Instead, I will provide a background on the algorithms and solid-state so-

lutions pertaining to the subfield of NLP which has been the main application focus of my research

work. It is important to note that the insights drawn from the algorithmic and hardware approaches

12

targeted towards NLP, are widely applicable to the rest of the deep learning field. Before recounting

related work in Section 2.3, Section 2.1 first provides an overview of the neural networks which have

catalyzed advancements in neural speech and language processing. Then, Section 2.2 introduces the

main numerical data types used to encode deep learning parameters in specialized hardware.

2.1 Foundational Speech andNLPNeural Networks

Natural Language Processing (NLP) has a long history, dating back to the 1950s, during which rule-

based methods were initially used to build systems for various tasks such as language translation,

sentence analysis, and question answering. However, creating and managing rules quickly became

labor-intensive, especially as the number of rules grew169. In the 1990s, the rapid growth of the

internet brought about large amounts of open-source data that made it possible for statistical learn-

ing methods to work on such NLP tasks by identifying patterns and relationships between words

and phrases. This led to a marked improvement in NLP performance. However, these statistical

approaches struggled with complexities and subtleties of the human language such as nuances of

meaning, and context learning.

In the 2010s, deep learning approaches were introduced to speech and NLP tasks after demon-

strating success in object recognition. Supervised learning using deep neural networks (DNNs),

which are trained on large labeled datasets, rapidly outperformed statistical learning methods,

achieving significantly better accuracy. This breakthrough in speech and NLP performance be-

gan with recurrent neural networks (RNNs) which were designed to model sequential data and,

therefore, were well-suited for processing natural language. However, vanilla RNNs suffered from

the problem of vanishing and exploding gradients, which made it challenging to train datasets con-

taining long sequences.

To overcome this problem, researchers developed Gated Recurrent Unit (GRU) networks16, and

13

y1 y2 y3 yTo-1

h1 h2 h3 hTo-1 hTo

Softmax

Argmax

Decoder LSTM/GRU Stack

x1 x2 x3 xTi-1 xTi

yTo

Input Sequence

Output Sequence…

…

0

0
LSTM/GRU Layer 1ℎ!"! ℎ#"! ℎ$"! ℎ%&"!ℎ%&'!"!

Normalization

0

x4

ℎ("!

0 ℎ!"#ℎ$"# ℎ%&/#"*
0

Pooling

LSTM/GRU Layer n

……

Decoder

Encoder

Figure 2.1: Original GRU/LSTM‐based encoder‐decoder architectures did not perform well in context learning because
all the information from previous words was forced to be encoded inside a single context vector (highlighted in red in
this figure) in the final layer of the encoder stack.

Long Short-TermMemory (LSTM) networks52. GRUs and LSTMs have become a popular choice

for various neural speech and language representation problems, especially in speech-to-text (e.g.,

Deep Speech48,4), text-to-speech (e.g., Tacotron125, WaveNet146), and machine translation (e.g.,

Google NMT158, OpenNMT70) tasks. Given speech and NLP inference problems can be struc-

tured as sequence-to-sequence (seq2seq) processing, GRU and LSTM components were, at first,

integrated in encoder-decoder architectures16 as shown in Figure 2.1. The encoder stage contains

unidirectional or bidirectional Vanilla RNN, GRU, or LSTM layers sandwiched between normal-

ization and/or pooling layers. At each output time step, the decoder stage estimates the relevance

of each output timestep in an auto-regressive manner. However a major drawback of this topology

is that the final hidden states (highlighted in red in Figure 2.1) were forced to contain the informa-

tion of all the words in the source sentence, and then, should pass all this condensed information

onto the decoder stage for auto-regressive prediction. Not surprisingly, this resulted in poorer per-

14

y1 y2 y3 yTo-1

h1 h2 h3 hTo-1 hTo

Softmax

Argmax

Decoder LSTM/GRU Stack

Attention Context

Attention Scoring

x1 x2 x3 xTi-1 xTi

yTo

Input Sequence

Output Sequence…

…

…

0

0
LSTM/GRU Layer 1ℎ!"! ℎ#"! ℎ$"! ℎ%&"!ℎ%&'!"!

Normalization

0

x4

ℎ("!

0 ℎ!"#ℎ$"# ℎ%&/#"*
0

Pooling

LSTM/GRU Layer n

……

Attention-based
Decoder

Encoder

Attention Weights

Figure 2.2: High‐level architecture of an attention‐based encoder‐decoder neural network. For each output timestep,
the decoder stage evaluates the relevance of all tokens in the encoder sequence via the attention mechanism.

formance when inferencing longer input sequences, and struggling even more in scenarios where

different contexts were involved.

To address this problem, the attention mechanism8 was proposed, and it is still today the most

important ingredient of modern neural NLP.

2.1.1 The AttentionMechanism

The attention mechanism8 is a powerful technique that allows neural networks to emphasize the

most relevant tokens of information in the source sequence when making predictions. This is es-

pecially important in situations where the input sequence is very long or complex, and the model

needs to pay more attention to specific parts of the sequence that are most relevant for generating

the output. The attention mechanism is perhaps the single greatest catalyst for the exceptional per-

formance of modern NLP, and it has also been applied onto neural networks targeting computer

15

vision29,144 tasks.

Figure 2.2 shows a typical attention-based seq2seq network known as a listen-attend-spell (LAS)

model12 *. During each output time step, the decoder stage uses the attention mechanism to es-

timate the saliency weight of each output hidden state that emerges from the final encoder layer.

This process is known as “soft” attention, as the final encoder hidden state sequence serves as a

soft-addressable memory25 whose words are weighted to compute the context vector after passing

through the decoder LSTM/GRU stack. Assuming a greedy search, the most probable prediction is

obtained by taking the Argmax of the Softmax output probabilities. We note that this Softmax op-

eration is only beneficial for gradient approximation during training and can be effectively skipped

during the inference computation. Also, the decoder of the LAS model predicts the next output

time steps or tokens in an auto-regressive manner.

There are different types of attention mechanisms, but the most commonly used one is the dot-

product attention mechanism, also known as the multiplicative attention mechanism, and which

is notably adopted inside the popular Transformer architecture147. The dot-product attention is

computed as:

Attention(Q,K,V) = softmax(
QKT
√
dk

)V (2.1)

whereQ is the query (or encoder hidden state) vector being mapped to an output using a set of key-

value pairs, represented by the vectorsK andV, respectively.

The next section provides an overview of prominent NLP networks employing the dot attention

mechanism via the Transformer model, which has become the most widely used neural building

block for deep learning based NLPmodeling.

*Section 4 describes how these LAS models are efficiently computed in the FlexASR accelerator.

16

Attention
Head

Softmax

Key

Query

Value

…
…

Layer Norm.

GELU Layer Norm.

Feed-Forward
Network

Concat

128 x 64
Transpose

128 x 64
128 x 64

128 x 64

128 x 3072

128 x 768128 x 768

768 x 768

768 x 64

768 x 64

64 x 128

128 x 128

128 x 128

3072 × 768

768 x 64

768 × 3072

Attention Output
(128 × 768)

Input Ids
(128 × 768)

FFN Output
(128 × 768)

128 x 768

Activation OperationWeight

12x

Attention
Mask

Figure 2.3: Computations inside a Transformer encoder. Here, the input sequence is composed of 128 tokens. To sim‐
plify the computational diagram, the bias layers are not included.

2.1.2 Transformer-based NLPNetworks

The Transformer architecture147 has become the backbone of modern NLP and large language

models †. Its computation diagram is shown Figure 2.3. A transformer typically comprises twelve

parallel attention heads (often called the multi-head attention unit) whose outputs concatenate into

an attention vector that feeds into a large feed-forward network. Transformers are designed to pro-

cess entire sequences of words in parallel via the multi-head attention unit, wherein each attention

head focuses on different parts of the input sequence. This enables more accurate predictions.

Perhaps, the most consequential language models have been BERT-based models27,84,78,116,130

†Section 5 describes how Transformer-based language models are efficiently computed in the EdgeBERT
accelerator.

17

Bidirectional
Transformer Encoder

word1 word2 word3 word4 word5

A B

Unidirectional
Autoregressive

Transformer Decoder

<S> word1 word2 word3 word4

word1 word2 word3 word4 word5

BERT GPT

Figure 2.4: Illustration of architectural differences between BERT and GPT. BERT is trained to predict missing words
from both directions while GPT is trained to generate words from left‐to‐right.

and the GPT family of models110,111,11. The main difference between BERT and GPT lies in their

architecture (as shown in Figure 2.4) and fine-tuning objectives. It is a bidirectional model, meaning

it is trained to predict missing words from both directions of a given text. BERT is pre-trained using

a masked language modeling scheme whereby random words are masked and the model is trained

to predict the masked words based on the surrounding words in the text. On the other hand, GPT

is a unidirectional autoregressive model that is trained to generate text in a left-to-right manner.

Another difference between BERT and GPT is in their fine-tuning objectives. BERT is commonly

used for classification-based NLP tasks such as sentiment analysis, search, and text classification. It is

fine-tuned using task-specific labeled data, where the objective is to minimize the classification error.

In contrast, GPT is used for language generation tasks, such as text completion, summarization, and

machine translation. It is fine-tuned by continuing to train the model on a specific generative task to

produce high-quality and coherent output.

My research has uncovered that the performance of Transformer-based models is very sensitive

to the choice of the number system and its underlying dynamic range. The next section provides an

18

IEEE 754 FP32
0233031 22 071415 6

BFloat16
0101718 9

TensorFloat

0101415 9

IEEE 754 FP16
0267 1

E5M2 FP8

0367 2

E4M3 FP8

067

INT8
023

INT4

01

INT1 (Binary)

034

03

e=8, m=23 e=8, m=7 e=8, m=10

e=5, m=10 e=5, m=2 e=4, m=3

e=0, m=0e=0, m=3e=0, m=7

056

03

g=4, e=4, m=6

g=2, e=4, m=4

023

07

MSFP-12

g=16, e=8, m=3

Sign Field Exponent (e) Mantissa (m)Group Size (g)
Legend:

Fixed-Point
Formats

Floating-Point
Formats

Block Floating-Point
Formats

Figure 2.5: Number formats commonly used during deep learning inference and training. Figure is adapted from
FAST 163.

overview of the numerical data types commonly used in deep learning and NLP in particular.

2.2 ProminentNumber Systems for Deep Learning

Efficient computation in DNN training and inference largely depends on the number system used

during matrix multiplications. The choice of the number system along with its underlying bit preci-

sion, in large part, dictate the arithmetic density and the energy efficiency of a computing platform.

Figure 2.5 categorizes prominent data types used in deep learning into three groups: fixed point,

floating point, and block floating-point (BFP). Each format is labeled with the number of exponent

bits (e) and mantissa bits (m).

Fixed point formats do not have an exponent field, which simplifies the hardware but also limits

19

the dynamic range that can be represented. This format has been widely studied for DNN training

and inference9,21,22,42,56,57,170 The smallest fixed point format is a 1-bit binary representation which

is used in binarized neural networks, and does not have an exponent or mantissa bits.

On the other hand, floating-point formats offer wider dynamic range compared to fixed-point

types. IEEE-754 32-bit floating point (or FP32) has traditionally been the prevalent number format

due to its standardization and widespread usage in CPUs and GPUs. FP32 has an 8-bit exponent

field and a 23-bit mantissa field. A lower precision and standardized FP16 version has a 5-bit ex-

ponent field and a 10-bit mantissa field. The growing democratization of AI has encouraged the

research community to rethink the IEEE-754 floating-point number system, and has sought ways to

alter this standard in order to better favor deep learning computational efficiency59. Therefore, we

have seen custom floating-point formats emerged, such as Bfloat1641 and TensorFloat97, which have

been proposed by Google and NVIDIA, respectively. The semiconductor industry is also coalescing

towards an efficient slate of FP8 formats known as HFP8129, which uses E4M3 during inference (or

forward pass computations), and E5M2 during the backward pass computation as it has been found

to be more robust during gradient computations.

Block Floating Point (BFP) provides an efficient compromise between fixed and floating point

by using a single shared exponent to represent a tensor made of multiple scalars, which significantly

reduces its memory footprint. BFP has received recent traction in deep learning and accelerator

design due to its potential hardware performance optimization and the fact that it can encode num-

bers with a dynamic range as wide as standard floating-point. Prominent BFP formats include Flex-

Point73 which uses a 16-bit mantissa and a 5-bit shared exponent across an entire tensor. And, Mi-

crosoft notably proposed a BFP format, dubbedMSFP-1224, for DNN inference on their Project

Brainwave cloud computing platform34. MSFP-12 uses a 3-bit mantissa field and a 8-bit shared

exponent to represent a tensor of 16 scalars.

20

2.3 RelatedWork

In this section, we cover notable work on the algorithm and hardware architecture fronts that pro-

mote high computational and energy efficiency during the AI and NLP on-device execution.

2.3.1 Algorithms and Techniques for Efficient AI andNLP Computations

The most common deep learning optimization techniques are pruning and quantization. They

both aim to reduce the size and computational complexity of DNNs without or with modest accu-

racy degradation. Although these techniques were originally proposed to optimize convolutional

neural networks (CNNs), they have been proven to be effective in Transformers as well. Chapter 5

further identifies opportunities to boost NLP energy efficiency via entropy-controlled early exit and

latency-aware voltage-frequency scaling.

Pruning seeks to alleviate the computational complexity of DNNs by removing unimportant

weights and neurons in the network, making it sparse. This sparsity can then be exploited during the

hardware execution by avoiding or skipping the computation of the pruned parameters.

Various variations of pruning have been offered in the literature, first, withOptimal Brain Dam-

age79 which proposed in 1989 to prune network parameters based on their second derivatives,

whereas inMovement Pruning 117, the selection criteria is based on 1st-order gradient derivatives.

Molchanov et al.92 adopts a similar scheme via 1st-order Taylor expansion. These first-order prun-

ing techniques are especially effective during model finetuning or transfer learning. InDeep Com-

pression47, the pruning decision is based on the absolute value of the DNN parameter; it has been

typically applied during the inference deployment. Probabilistic pruning techniques112,107 have also

emerged, showing high performance and promise.

Although these above-mentioned pruning methods can achieve very high sparsity levels, their

main drawback is that they produce very irregular sparsity patterns that under-utilize the computing

21

hardware platform. To mitigate this problem, some hardware-friendly sparsity techniques have

been put forward such as structuredN:M pruning156,168, channel-wise171,160, and filter-wise50,87

pruning.

Quantization seeks to reduce the memory requirements of deep learning models by representing

the weights, activations, and gradients of the DNN using a smaller number of bits than their orig-

inal encoding representation. This enables the model to run with greater throughput and higher

energy efficiency, which is especially beneficial in embedded systems and edge devices. Quantization

can be applied during inference deployment (known as post-training quantization), and/or during

training (known as quantization-aware training). It also sometimes makes use of different bitwidths

during the AI computation (known as mixed-precision).

Some notable work on this front includes outlier-aware quantization techniques such as OLAc-

cel102 and OCS167. Moons et al.93 performs adaptive fixed-point quantization in the search for a

minimum energy network. Stripes62 employs bit-serial computing to enable configurable per-layer

adaptive precision. Several quantization techniques such as Khoram et al.66 aim to determine the

appropriate per-layer bitwidth. Term quantization164,76 operates on power-of-two terms to express

DNN parameter values. It dynamically selects a fixed number of largest terms based on their rela-

tive rankings against terms of other values in the group. While 8-bit integer quantization (INT8)91

has been already standardized in manyML computing platforms, some more aggressive techniques

such as binary20, ternary170, and quaternary weight quantization17 have been demonstrated during

DNN inference with modest accuracy degradation. Sometimes, quantization is skipped on the sen-

sitive first and last layers in order to escape steeper end-to-end accuracy loss. In contrast, in our work

AdaptivFloat which is discussed in Chapter 3, rather than physically changing the bitwidth to adapt

to a network dynamic range requirement, we seek to obtain the best numerical representation out of

a chosen bitwidth regimen by dynamically adapting, per-layer, the floating-point exponent range.

22

2.3.2 ProminentHardware Accelerators and System-on-Chips for AI andNLP

Over the last decade, there has been tremendous research efforts focused on improving the perfor-

mance and energy efficiency of AI hardware accelerators46,113,14,13,2,1,83,51,61,105,149,89,135,133,104,101,108,77,122,82,124,60.

As these accelerators get deployed at all computing scales, there has been additional interest in the re-

search community to automatically generate efficient designs150,148.

Some notable commercial AI accelerator architectures include NVIDIA server GPUs (e.g., V100,

A100, H100) which are optimized for parallel processing of large-scale data. They consist of multi-

ple streaming multiprocessors (SMs) that each contain several CUDA cores, which can execute mul-

tiple instructions concurrently98,99 Additionally, they utilize thread-level parallelism and memory-

level parallelism to optimize performance.

Systolic arrays75 have gained widespread usage in various commercial DNN accelerators due

to their efficiency and utilization performance in carrying out large-scale matrix multiplications.

Perhaps the most popular adaptation of a commercial accelerator based on the systolic architecture

is the Google TPU61, which utilizes a 256 × 256 systolic array in its matrix multiply unit (MMU).

Graphcore developed a highly parallel tiled-based architecture called IPU58,35 for accelerating

deep learning computations. Notably, their GC200MK2 IPU processor stands out for provisioning

one of the largest on-chip memory capacities for a commercial AI SoC, with up to 896MB of on-

chip SRAM per chip.

Specialized hardware for NLP.Although the bulk of DNN hardware research has been tar-

geted towards MLPs, CNNs, and RNNs, there have also been increased efforts to specialize the

hardware architecture for Transformer-based NLPmodels68,64,154, which pose distinct challenges

due to their network architectures and a computational cost that quadratically scales with the se-

quence length. Moreover, given large language models are currently driving a generative AI arms

race, we can expect to see on the horizon commercialized hardware solutions specifically optimized

23

for Transformers’ computation.

Notable work in this regard includes A3 44, which proposed a hardware architecture that reduces

the number of computations in attention mechanisms via approximate and iterative candidate

search. GOBO161 focuses on BERT quantization via 3-bit clustering on the majority of BERT

weights while storing the outlier weights and activations in full FP32 precision. Although this

scheme significantly reduces DRAM accesses, it requires a mixed-precision computational datap-

ath and a non-uniformmemory storage. OPTIMUS103 accelerates Transformers with compressed

sparse matrix multiplications and by skipping redundant decoding computations. SpAtten152 ac-

celerates Transformer-based models via progressive cascade token and attention head pruning. The

importance of each attention head is determined during the computation via a top-k ranking sys-

tem. DOTA109 is a software-hardware co-design to detect and omit weak connections in atten-

tion graphs in order to skip the corresponding computations and memory accesses. ELSA45 is a

specialized hardware accelerator that exploits opportunities for approximation and parallelism in

the self-attention operation to improve its performance and energy efficiency. It uses sign random

projection to estimate the angle between query and key vectors. Sanger85 proposes quantizing the

query and key values before calculating the attention score. By doing so, insignificant entries in the

attention score end up being zeroed out. LeOPArd81 performs a bit-serial computation scheme

during the query-key matrix multiplication in order to evaluate opportunities for early inference

termination.

Section 5 describes our algorithm-hardware approach to accelerating Transformers by leveraging

adaptive attention span, and entropy-controlled early exit and voltage-frequency scaling, which,

notably enables the processor to optimize its latency and energy consumption at a finer-grained

sentence-level granularity.

24

3
Enabling Adaptive and Energy-Efficient

Quantized Computations

Deep learning is inherently resilient to low precision bit representation. Given

this insight, AI hardware architects have been looking to achieve greater TOPS-per-Watt by increas-

ing the on-chip arithmetic density. Consequently, a plethora of quantization techniques have been

25

ResNet-50

-25 -15 -5-10-20 0 5 10 15 20 25

Inception-v3
DesNet-201

BERT
GPT

XLNet
XLM

CNN
Models

NLP
Models

DNN Weight Values

Transformer

Figure 3.1: Range of weights from popular CNN and NLP models. Weights in NLP models can be more than 10× larger
than the maximum absolute weight value of common CNNs.

proposed to reduce the storage overheads of DNN parameters by converting them from native 32-

bit floating-point types to significantly reduced bit widths. For example, quaternary17, ternary170,

and binary20 quantization techniques have been demonstrated. These fixed-point techniques are

often assessed on CNNs or on shallow models that exhibit a relatively narrow weight distribu-

tions. However, as illustrated in Figure 3.1, sequence transduction NLPmodels, such as the Trans-

former147, feature weights that are more than an order of magnitude larger than those in popular

CNNmodels such as ResNet-50. that use batch normalization. This is explained by the fact that

vision CNNmodels tend to adopt batch normalization during training which effectively produces

a weight normalization115 side effect, whereas layer normalization7 is characterized by invariance

properties that do not reparameterize the network.

Furthermore, parameter spreads in NLPmodels tend to follow a Gaussian distribution whose

center is widely skewed away from zero. For example, in GPT-1, the minimum and maximum values

26

are about -25 and 5, respectively, whereas the reverse spread is observed for XLM. Short of using

32-bit or 16-bit floating-point encodings, it is clear that a low precision number system (i.e.,≤ 8-bit)

needs the ability to self-adapt to arbitrary parametric distributions, in a way that is not detrimen-

tal to the application’s accuracy. In essence, a high-performance, low precision data type for deep

learning requires adaptive tensor scaling.

For this purpose, I proposed AdaptivFloat134.

3.1 AdaptivFloat: an Adaptive Floating-Point BasedNumber System for Ac-

curate and Resilient DNN Inference

In the pursuit of wider dynamic range and improved numerical accuracy, there has been surging in-

terest in floating-point based30,120,73, logarithmic59,80 and posit number systems43, which also form

the inspiration of this work. Using a floating-point template, AdaptivFloat improves on the afore-

mentioned techniques by dynamically maximizing its available dynamic range at a neural network

layer granularity.

The insight here is that DNN parameters of larger magnitude typically bear a disproportion-

ate impact on inference accuracies compared to parameters of smaller magnitude. In fact, popular

pruning strategies47 recommend eliminating small weights that are close to zero in order to sparsify

the neural network. Given this insight, AdaptivFloat formulates and introduces in its floating-point

exponent field, a variable bias, expbias, that is computed from the maximum absolute value in a given

DNN tensor as shown in Equation 3.1. This, in effect, dynamically shifts the range of exponent

values towards the maximum absolute value, enabling the latter to be represented as faithfully as

possible for a given bit width regime.

−1sign ∗mantissa ∗ 2exponent+expbias (3.1)

27

Algorithm 1:AdaptivFloat Quantization
Input: MatrixWfp, bitwidth n and number of exponent bits e
// Get Mantissa bits
m := n− e− 1
// Obtain sign and abs matrices
Wsign := sign(Wfp);Wabs := abs(Wfp)

// Determine expbias and range
Find normalized expmax formax(Wabs) such that

2expmax ≤ max(Wabs) < 2expmax+1

expbias := expmax − (2e − 1)
valuemin := 2expbias ∗ (1+ 2−m)
valuemax := 2expmax ∗ (2− 2−m)

// Handle unrepresentable values
Round value < valuemin inWabs to 0 or valuemin
Clamp value > valuemax inWabs to valuemax

// Quantize Wfp
Find normalizedWexp andWmant such that

Wabs = 2Wexp ∗Wmant, and 1 ≤ Wmant < 2
Wq := quantize and roundWmant by scale = 2−m

// Reconstruct output matrix
Wadptiv := Wsign ∗ 2Wexp ∗Wq
returnWadptiv

Algorithm 1 describes how expbias is computed offline in order to quantize and scale the input

tensor. First, the sign matrix,Wsign, and the matrix of absolute values,Wabs, are computed from

the full precision weight matrixWfp. Then, the algorithm finds the maximum absolute value from

Wabs to determine the expbias corresponding to a suitable range of representable datapoints for the

weight matrix for a given word and mantissa bit width regime. Prior to quantizingWabs, the values

smaller than the minimum representable normal value are rounded to zero or valuemin at a halfway

threshold. Then, values larger than the max value, valuemax, are clamped valuemax. The quantiza-

tion involves rewritingWabs into normalized exponent and mantissa form with an exponent matrix

28

-1.17 2.71 -1.60 0.43

-1.14 2.05 1.01 0.07

0.16 -0.03 -0.89 -0.87

-0.04 -0.39 0.64 -2.89

𝑊௙௣: full precision weight matrix

-1 3 -1.5 0.375

-1 2 1 0

0 -0 -1 -0.75

-0 -0.375 0.75 -3

Get quantized 𝑊௔ௗ௣௧௜௩ by
rounding to nearest datapoints

𝑒𝑥𝑝௕௜௔௦ = -2
abs(min) = 0.375
abs(max) = 3

+0 -0

+0.375 -0.375

+0.5 -0.5

+0.75 -0.75

+1 -1

+1.5 -1.5

+2 -2

+3 -3

Find 𝑒𝑥𝑝௕௜௔௦ to fit max absolute value of
𝑊௙௣ and get representable datapoints

max

datapoints

Figure 3.2: Illustration of an AdaptivFloat quantization (word width = 4, number of exponent bits = 2) from a full preci‐
sion weight matrix

Wexp and a mantissa matrixWmant. The mantissa matrix is quantized by the quantization scale

calculated by the number of mantissa bits. Figure 3.2 provides a graphical illustration of the Adap-

tivFloat quantization for a 4-bit word regime along with a 2-bit exponent field.

We note that AdaptivFloat breaks from IEEE-754 standard due to its unique clamping strategy

and the fact that there is no support for denormal numbers. This framework enables us to engineer

leaner hardware as discussed later in Section 3.3.

3.2 Experimental Results

We evaluate bit compression performance on three widely used DNNmodels of distinct neural

types that demonstrate a wide range of weight distributions. As shown in Table 3.1, they include:

(1) Transformer, which has had a significant impact on machine translation and question answer-

ing; (2) a 4-layer LSTM encoder, 1-layer LSTM decoder, attention-based sequence-to-sequence

(Seq2Seq) network frequently utilized in speech recognition; and (3) ResNet-50, a well-known im-

age classification CNN49. The Transformer and Seq2Seq networks were trained on the OpenNMT

platform70 using the WMT’17 English-to-German and LibriSpeech datasets, respectively. And,

ResNet-50 was trained on the Pytorch framework using the ImageNet dataset. The representation

29

Table 3.1: DNN models under evaluation

Model Application Dataset Structure Number of parameters Range of weights FP32 performance

Transformer Machine translation WMT’17 En-to-De Attention, FC layers 93M [-12.46 , 20.41] BLEU: 27.40
Seq2Seq RNNs Speech-to-text LibriSpeech 960h Attention, LSTM, FC layers 20M [-2.21 , 2.39] WER: 13.34
ResNet-50 Image classification ImageNet CNN, FC layers 25M [-0.78, 1.32] Top-1 Acc: 76.2

Figure 3.3: Root mean square of the quantization error w.r.t. FP32 at 4‐bit, 6‐bit and 8‐bit weight precision across the
layers of the Transformer, Seq2Seq and ResNet‐50 models. AdaptivFloat produces the lowest mean error compared to
the other number systems.

performance of AdaptivFloat is compared with numerical data types commonly employed for deep

learning computations, namely block floating-point (BFP), IEEE-like float, posit, and uniform (or

integer) representations.

We note here that AdaptivFloat, integer, and BFP formats are self-adaptive in the sense that their

dynamic ranges auto-adjust, layer-by-layer, based on a scale factor computed from the parametric

distribution in the tensor. For example, the integer format uses a floating-point scale factor com-

puted from the maximum value in the tensor in order to normalize its range. And, BFP utilizes a

30

Table 3.2: Impact of weight bit compression post‐training quantization / post‐quantization aware retraining

BLEU Score of Transformer (BLEU @ FP32=27.4) Word Error Rate of Seq2Seq (WER @ FP32=13.34) Top-1 Accuracy of ResNet-50 (Top-1 Acc. @ FP32=76.2)

#Bits Float BFP Uniform Posit AdaptivFloat Float BFP Uniform Posit AdaptivFloat Float BFP Uniform Posit AdaptivFloat

16 27.4 / 27.4 27.4 / 27.4 27.4 / 27.4 27.4 / 27.5 27.4 / 27.6 13.40 / 13.07 13.30 / 13.14 13.27 / 12.82 13.29 / 13.05 13.27 / 12.93 76.1 / 76.3 76.2 / 76.3 76.1 / 76.3 76.1 / 76.3 76.2 / 76.3
8 27.2 / 27.5 26.3 / 27.3 27.3 / 27.4 27.3 / 27.5 27.3 / 27.7 14.06 / 12.74 13.23 / 13.01 13.28 / 12.89 13.24 / 12.88 13.11 / 12.59 75.4 / 75.9 75.7 / 76.0 75.9 / 76.1 75.4 / 76.0 75.7 / 76.3
7 27.1 / 27.5 16.9 / 26.8 26.0 / 27.2 27.3 / 27.4 27.3 / 27.7 13.95 / 12.84 13.54 / 13.27 13.45 / 13.37 13.36 / 12.74 13.19 / 12.80 73.8 / 75.6 74.6 / 75.9 75.3 / 75.9 74.1 / 75.8 75.6 / 76.1
6 26.5 / 27.1 0.16 / 8.4 0.9 / 23.5 26.7 / 27.2 27.2 / 27.6 15.53 / 13.48 14.72 / 14.74 14.05 / 13.90 15.13 / 13.88 13.19 / 12.93 65.7 / 74.8 66.9 / 74.9 72.9 / 75.2 68.8 / 75.0 73.9 / 75.9
5 24.2 / 25.6 0.0 / 0.0 0.0 / 0.0 25.8 / 26.6 26.4 / 27.3 20.86 / 19.63 21.28 / 21.18 16.53 / 16.25 19.65 / 19.13 15.027 / 12.78 16.1 / 73.6 13.2 / 73.4 15.1 / 74.0 33.0 / 73.9 67.2 / 75.6
4 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 16.3 / 25.5 inf / inf 76.05 / 75.65 44.55 / 45.99 inf / inf 19.82 / 15.84 0.5 / 66.3 0.5 / 66.1 2.6 / 67.4 0.7 / 66.7 29.0 / 75.1

shared exponent which is also derived from the maximum value in the tensor or neural network

layer. Therefore, the concept of a scale factor for lateral shift of numerical distributions is repre-

sented by the exponent bias, expbias, in the case of AdaptivFloat, and it is the floating-point scaling

factor in the case of integer formats, and the shared exponent in the case of BFP data types. In this

evaluation, Float and Posit formats do not use scale factors.

Figure 3.3 show the distribution of the root mean squared (RMS) quantization error emanating

from the data types and computed across the different layers of the three models under evaluation.

We can observe that AdaptivFloat consistently produces lower average quantization error compared

to uniform, BFP, posit, or IEEE-like float encoding. Furthermore, among the self-adaptive data

types, the boxplots show that AdaptivFloat exhibits the narrowest error spread of all the evaluated

precisions.

Table 3.2 shows the accuracy of the data types under study as they are put to the test under vary-

ing weight bit precisions on the Transformer, sequence-to-sequence, and ResNet-50 models. The

inference results are tabulated during post-training quantization (PTQ) and after quantization-

aware training (QAT) from the plateaued FP32 baseline. The key observation we can distill is that

AdaptivFloat demonstrates much greater robustness at very low precision (≤ 6-bit) compared to

the other four data formats. Notably, at 4-bit encoding, AdaptivFloat can still deliver a respectable

BLEU score of 25.5 on the Transformer model following retraining. In contrast, the other four

number formats have a catastrophic effect due to insufficient dynamic range. Similar findings ap-

31

Table 3.3: Impact of both weight and activation quantization, measured after quantization‐aware retraining

BLEU Score of Transformer (BLEU @ FP32=27.4) Word Error Rate of Seq2Seq (WER @ FP32=13.34) Top-1 Accuracy of ResNet-50 (Top-1 Acc. @ FP32=76.2)

#Bits Float BFP Uniform Posit AdaptivFloat Float BFP Uniform Posit AdaptivFloat Float BFP Uniform Posit AdaptivFloat

W8/A8 27.4 27.4 10.1 26.9 27.5 12.77 12.86 12.86 12.96 12.59 75.7 75.7 75.9 75.8 76.0
W6/A6 25.9 0.0 5.7 25.7 27.1 14.58 14.68 14.04 14.50 12.79 73.5 73.4 74.1 73.6 75.0
W4/A4 0.0 0.0 0.0 0.0 0.3 inf 78.68 48.86 inf 21.94 63.3 63.0 64.3 63.0 72.4

ply to the seq2seq and ResNet-50 models, as AdaptivFloat demonstrates only a modest decrease

in performance after retraining with 4-bit and 5-bit weight precision. For instance, only a 1.2 Top-

1 accuracy drop is seen with a weight width of 4-bit. When the weights of the seq2seq model are

quantized to 4-bit, the non-adaptive data types (Float and Posit) are essentially unable to provide

expressible transcription. This suggests that, for robust performance at low precision, it is critical

to have a quantization scheme that can adjust its available dynamic range to encode the com-

pressed weights as accurately as possible. AdaptivFloat’s exceptional robustness at extremely low

precision allows for greater compute density in reconfigurable architectures with a comparatively

minor loss in computational accuracy.

Moreover, research has demonstrated that incorporating noise into weight values during gradi-

ent computations can provide a regularization benefit, leading to enhanced generalization perfor-

mance96. This improvement can be observed across all number formats, but is especially noticeable

in AdaptivFloat, which has been found to outperform FP32 in terms of BLEU score by as much as

+0.3, reduce word error rate by -0.75, and increase Top-1 accuracy by +0.1.

Tables 3.3 shows the inference performance from quantizing both weights and activations.

Wn/An signifies a quantization of n-bit weight and n-bit activation. Our findings demonstrate that

AdaptivFloat’s 8-bit performance is comparable to, if not better than, the baseline FP32 results

for all three DNNmodels. And even the degradation observed at 6-bit remains relatively minimal.

Interestingly, in the case of the seq2seq model, 6-bit AdaptivFloat weight and activation quantiza-

tion generates sufficient regularization to surpass the FP32 baseline. However, when we reduce the

32

*S-bit Scaling Factor

Truncation

Fractional Width

of Scaling Factor

*

Storage

>>

K lanes

n

AdaptivFloat

Weight expbias

+
AdaptivFloat

Activation expbias

>>

Storage

Integer-to-Float

K lanes

2*n + log2(H)

AdaptivFloat

Activation expbias

(a) (b)

2*n + log2(H) + S

2*n + log2(H) + S

n

n

W

2*(2n_exp -1) + 2*n_mant + log2(H)

2*(2n_exp -1) + 2*n_mant + log2(H)

n

n

n

Weight Buffer

n A

Input Buffer

nW

Weight Buffer

n A

Input Buffer

Activation Unit

Activation Unit

Truncation

σ

σ

Figure 3.4: (a) NVDLA‐like n‐bit Integer‐based PE 150, (b) Proposed n‐bit Hybrid Float‐Integer PE.

weight and activation precision to 4 bits, the performance degradation in AdaptivFloat is more sub-

stantial for the sequence models compared to ResNet-50. This is because many activations from the

attention mechanism start falling outside of the available dynamic range of the number format.

AdaptivFloat’s superior bit compression ability paves the way to efficient bit packing into resource-

constrained accelerators. In the next section, we describe how we translate the AdaptivFloat algo-

rithm in the design of a floating-point multiply-and-accumulate (MAC) datapath.

33

3.3 Hardware Implementation

Tomaximize the benefits of AdaptivFloat bit packing ability, we co-designed a Hybrid Float-Integer

(HFINT) Processing Element (PE), shown in Figure 3.4(b), that exploits AdaptivFloat logic in

its computational datapath and strikes an efficient balance between the high accuracy of floating-

point computations and the greater hardware density of fixed-point post-processing. We compare

the proposed HFINT PE architecture with a NVDLA-like PE, shown in Figure 3.4(a), that uses

monolithic integer arithmetic, which is commonly found in many commercial ML accelerators (e.g.,

TPU61, Ethos-U556).

In the HFINT PE, the vector MAC units perform floating-point multiplications between a n-bit

float weight vector and a n-bit float activation vector, and then accumulates the result in a fixed-

point format. The per-layer AdaptivFloat expbias values for weights and activations are stored in

4-bit registers, and are used to shift the exponent range of the accumulated partial sums during on-

chip inference. We note that while the AdaptivFloat expbias for the static weights are extracted post-

training, the expbias for the dynamic activations are informed from statistics during offline batch

inference on the test dataset. The accumulation precision is 2 ∗ (2nexp − 1) + 2 ∗ nmant + log2(H)

-bit in order to accumulate up toH values without overflow. The accumulated partial sums are then

clipped and truncated back to n-bit integer before being processed by the activation function. At

the end of the datapath, the integer activations are converted back to the AdaptivFloat format for

compact storage into the accelerator scratchpads.

In contrast, the INT PE (Figure 3.4(a)) utilizes a wider multiplier in the MAC unit to process a

pair of fixed-point operands. This datapath, notably, requires a post-accumulation multiplier for

adaptive scaling of the partial sums. In the next section, we provide energy, performance, and area

comparisons between the two PE topologies.

34

3.4 Results and Implications

We designed the INT and HFINT processing elements in SystemC while also leveraging synthesiz-

able components from theMatchLib library65. The Verilog RTL was autogeneratd by the Catapult

high-level synthesis tool with HLS constraints uniformly set with the goal to achieve maximum

throughput on the pipelined designs. The two designs employ the same evaluation methodology.

Energy, performance, and area results are reported on the post-HLS Verilog netlists by the Catapult

tool at 1GHz clock frequency using a commercial 16nm FinFET standard cell library. The simu-

lated workload consists of 100 LSTM time steps with 256 hidden units operating in a weight sta-

tionary dataflow. Within each PE, there is an input and bias buffer that ranges from 1KB to 4KB in

size, as well as a weight buffer whose size ranges from 256KB to 1MB, depending on the vector size

and operand bit width. Also, in this experimental evaluation, the number of exponent bits inside

the HFINTMAC is fixed to 3.

Figure 3.5 evaluates the effect of increasing throughput via the MAC vector size,K, which also

equals the number of parallel MAC lanes, meaning that a single PE throughput equalsK2109OPS.

The top row shows the energy efficiency in terms of joule per operation while the bottom row

shows performance per area in terms of TOPS per mm2.

We observe that larger vector sizes and operand bit widths benefit more the HFINT PE than the

INT PE in terms of energy efficiency. The smaller per-operation energy of the HFINT PE stems

from the fact that its vector MACs contain smaller mantissa multipliers and exponent adders that

consume less overall power than the full bitwidth multipliers used in the INT PEMACs. This ad-

vantage grows larger as the MAC vector size increases due to higher spatial reuse of the accumulated

partial sums. On the other hand, the INT PEs exhibit 1.04× to 1.21× higher performance per unit

area compared to the HFINT PEs due to its more compact and homogeneous logic.

Finally, we note that the two PE topologies achieve the same end-to-end compute time (or time-

35

1.31

2.28

3.90

1.26

2.10

3.42

1.11

1.59

2.25

1.02

1.39

1.86

0

1

2

3

4

4 8 16

P
e
rf

o
rm

a
n
c
e
 p

e
r
A

re
a
 (

T
O

P
S

/m
m

2
)

MAC Vector Size

127.00

59.75

30.36

123.12

56.39

27.77

227.61

105.80

52.21

205.27

98.38

46.88

0

50

100

150

200

250

P
e
r-

O
p
e
ra

ti
o
n
 E

n
e
rg

y
 (

fJ
/o

p
)

INT4/16/24 HFINT4/22 INT8/24/40 HFINT8/30

Figure 3.5: Per‐operation energy (Top) and throughput per unit area (Bottom) of the INT and HFINT PEs across MAC
vector sizes.

to-solution) due to incurring the same aggregate pipelining budget.

The next section discusses the integration of AdaptivFloat in a design-space-exploration (DSE)

framework which optimizes the search and the configuration of the data type for efficient accelera-

tor co-design.

3.5 Facilitating Data Type Exploration for EfficientHardware Design

The exploration of newer number formats in the context of deep learning (DL) and other emerging

applications is challenging, primarily since the majority of compute fabrics available today (namely,

36

Figure 3.6: GoldenEye’s utility within a co‐designed ML and hardware ecosystem.

CPUs and GPUs) supports a limited set of number formats. Consequently, programming interfaces

(e.g., CUDA, OpenCL) and DL frameworks (e.g., PyTorch, TensorFlow) are forced to optimize

along restrictive dimensions in the space of possible number formats. To address this challenge,

we proposed GoldenEye88, an open-source number format simulator that enables the selection

of configurable number systems as a first-order parameter when evaluating their impact on DNN

classification accuracy.

As illustrated in Figure 3.6, GoldenEye provides a platform for fast number system emulation

in software, allowing users to capture a model’s accuracy as a function of the underlying hardware

representation. The number formats that can be explored include floating-point and block floating-

point numerics, integer, radix-based fixed-point, and AdaptivFloat. Together, along with a heuristic

for domain search and bit width precision exploration, the tool can inform future accelerator de-

signs in the context of accuracy, reliability, and area, based on the numerical data formats explored.

My research work also developed a synthesizable library of multiply-and-accumulate (MAC)

units136 that allow the number format and its precision to be optimized during the precision-aware

design space exploration of coarse-grained reconfigurable accelerators (CGRAs).

37

3.6 Takeaways

AdaptivFloat is a co-design between the application and the number system that informs a gener-

alized floating-point based mathematical blueprint for adaptive and resilient DNN quantization.

It can be easily applied on neural models of various categories (CNN, RNN,MLP, Transformers),

layer depths and parameter statistics. AdaptivFloat formulates and introduces a configurable ex-

ponent bias, that is computed from the maximum absolute value in a given neural network layer.

This allows the range of representable values to be dynamically shifted in order to accurately encode

parameters of larger magnitude, as they bear a disproportionate impact on inference accuracy.

3.7 Follow-on Research

In this work, expbias is computed at a neural network layer granularity. For greater computational

accuracy at especially lower bit precision (≤ 6-bit), one may further decrease the space wherein

the scaling factor is computed. For example, per-vector scaled integer quantization23,64 has been

proposed whereby the scaling factor for the integer quantization is computed at a hardware vector

granularity. To reduce hardware overheads, the scaling factor may also be calculated within a coarser

or more structured search space, such as, at a neural network channel level. In Chapter 5, we dis-

cuss a 4-bit floating-point MAC for Transformer computations where expbias is computed within a

32-element hardware vector space.

Another natural extension of this work would be to compute the activations’ expbias dynamically

in the hardware, as opposed to offline. Given the weights are static during inference, it makes sense

to compute their scaling factor offline. However, for greater computation accuracy, it would be de-

sirable to dynamically calculate the scaling factor for the activations, which, unlike the weights, are

dynamic in nature. The challenge, here, is to compute this activation scaling factor in as few cycles

38

as possible in order to avoid undue latency overheads. This is not a trivial undertaking as finding

the maximum value in a tensor, which is required to compute expbias, may take multiple clock cy-

cles. A sampling method to dynamically generate expbias in the hardware datapath, may offer a more

comfortable and efficient compromise.

39

4
Accelerating Edge AI Attention-based

Speech-to-Text RNNs

How to architect a fully-on-chip noise-resistant automatic speech recognition

systemwithout oversizing the DNNmodel? In the tradeoff illustrated in Figure 4.1, we

can buy noise resistance and high inference accuracy by increasing the size and complexity of the

40

N
oise-Isolating

Stream
ing

ASR
 System

Speaker

N
oise

Text

Mics

Noisy
Speech

Lower
Accuracy

Higher
Accuracy

Small
DNN

Medium
DNN

Big
DNN

Figure 4.1: Tradeoff between speech‐to‐text DNN model size and system energy efficiency for a speech‐based conver‐
sational AI interface.

speech-to-text model *. However, this leads to a very energy-inefficient solution with excess end-

to-end latencies. Conversely, we can employ a smaller automatic speech recognition (ASR) DNN

which exacts a much lower energy cost. However, poor transcription accuracy is observed given the

leaner DNN is not as resilient against noise interference. We investigate how we may engineer the

best possible compromise in a cost effective performance, power, and area envelope; and preferably,

in a single monolithic system without integrating an analog noise-cancelling frontend chip94,118 of-

ten used in IoT and wearable devices. Furthermore, from our point of view, as speech-based conver-

sational AI interfaces are being applied to keyword spotting (KWS), ASR, natural language process-

ing (NLP), and text-to-speech (TTS) applications, it is of paramount importance that they provide

uncompromising performance for context learning in long sequences, and, that they work seam-

*In this thesis, the terms automatic speech recognition and speech-to-text are used interchangeably.

41

Dual-A53

Spectrogram
Generation

MSSE FlexASR

Sound Source
Separation

Speech-to-Text

x1
LSTMLSTM LSTM
x2 <end>

…

Normalization

Pooling

…

LSTMLSTM LSTM

y1<start>

…

………

yn

LSTM LSTMLSTM

LSTMLSTM LSTM…
… … …

…

y1 y2 <end>
α1 α2 αn

ENCODER DECODER

Softmax

Attention Context

…

Bayesian MRF Model Attention-based Sequence-to-Sequence DNN

Source
Text

Framing, Windowing & FFT

Always-ON
M0

On-Chip

Enhanced
Speech

Audio Detection and Power Management

Noise-Corrupted
Speech

AFE

N
oise-Isolating

Stream
ing

ASR
 System

Speaker

N
oise

Text

Mics

Noise-Isolating
Streaming

ASR System
Speaker

Noise

Text

x0

x3

x6

x1

x4

x7

x2

x5

x8

y0 y1 y2

y3 y4 y5

y6 y7 y8

!0,1 !1,2

!3,4 !4,5

!6,7 !7,8

!3,6 !4,7 !5,8

!2,5!1,4!0,3

ADC

Figure 4.2: Inference pipeline executed on the SM6 chip. Upon detecting audio, the M0 subsystem wakes up the ac‐
celerators and the A53 which produces spectrogram features that get denoised by the MSSE engine. Then, from the
enhanced speech, FlexASR accelerates attention‐based ASR workloads.

lessly in polyphonic environments. Furthermore, to provide the best possible user experience, it is

desirable to achieve real-time throughput. This means the per-frame end-to-end latency should be

lower than the frame length of the post-FFT spectrogram.

For this purpose, we present a co-design between the application and the system-on-chip (SoC)

architecture to create a more efficient and noise-resistant speech processing solution which lever-

ages some of the latest advances in deep learning and unsupervised machine learning. The proposed

25mm2 system-on-chip132,133, codenamed SM6 and developed in 16nm FinFET process, executes

end-to-end speech-enhancing attention-based ASR and NLP workloads as shown in Figure 4.2.

This hardware–software co-design framework demonstrates a tight coupling between special func-

tion accelerators and CPU processing. The SoC, notably, includes:

1. FlexASR, a highly reconfigurable NLP inference processor optimized for whole-model ac-

celeration of bidirectional attention-based sequence-to-sequence (seq2seq) recurrent neural

networks (RNNs). We further note that FlexASR processing elements support the Adap-

tivFloat mechanism in their multiply-and-accumulate datapaths.

42

2. MSSE, which stands for Markov random field Source Separation Engine, is a probabilistic

graphical model accelerator for unsupervised inference via Gibbs sampling. It is used for

real-time sound source separation in this work.

3. A dual-core Arm Cortex A53 CPU cluster, which provides on-demand single Instruc-

tion/multiple data (SIMD) fast fourier transform (FFT) and feature extraction processing.

The A53 cores also perform various application logic such as the expectation–maximization

(EM) algorithm, and 8-bit floating-point (FP8) quantization.

4. An always-ONM0 subsystem for audio detection and power management.

We will show that by implementing Bayesian denoising prior to the speech recognition operation

on the same chip, MSSE allows FlexASR to store a much smaller ASRmodel inside its scratchpad

memories, which obviates the very inefficient strategy of scaling up the DNNmodel in order to

achieve noise robustness. We note this is done without compromising the application accuracy.

4.1 The SM6 SoC Architecture

In this section, we provide greater details on the SM6 SoC architecture, as well as the hardware–

software co-design and verification methodology employed during the test chip implementation.

Figure 4.3 shows the overall SoC architecture comprising FlexASR, MSSE, an Arm Cortex-M0

microcontroller with a 128KB instruction SRAM, and a dual-core Arm Cortex-A53 CPU cluster

with 2MB L2$. (common in high performance embedded and mobile SoCs) connected together

via 32-bit AHB and 128-bit AXI buses. The two accelerators (FlexASR andMSSE) are equipped

with AXI-slave memory-mapped interfaces responding to AXI-master requests from the A53 and

M0 CPUs. FlexASR interrupt signal (IRQ) is received by the A53 Generic Interrupt Controller

(GIC) in order to facilitate the sequencing of instructions and computations between the A53 and

FlexASR.

43

DRAM

2x

Dual-Core Arm
Cortex-A53 CPU

FlexASR

UARTs

GPIOs
CoreSight
Debug

Wide-IO
Arm CoreLink NIC-400 128-bit

Off-Chip
Interfaces

Arm CoreLink NIC-400 128-bit

AHB 32-bit

Smoothness Cost
Data Cost

Block Memory

Gibbs
Sampler

Gibbs
Sampler

Gibbs
Sampler

Gibbs
Sampler

12x

Gibbs Samplers

MSSE

On-Chip
1MB SRAM

Arm A53
SIMD

64KB L1$

2MB L2$
GICAXI-M

Arm M0
128 KB

GB

Broadcasting Bus

AXI Splitter

PE1

AXI-S

PE2

AXI-S

PE3

AXI-S AXI-S IRQ

Arbitrated Crossbar

PE0
AXI-S

Label #0 Label #1

New Label Buffer

Figure 4.3: Block diagram of the SM6 SoC, highlighting main components.

A 1-MB SRAM buffer is provisioned at the top level in order to store the intermediate pre- and

post-processed data of the inference pipeline shown in Figure 4.2. The SoC is also equipped with

various off-chip interfaces required for DRAM access via field-programmable gate array (FPGA)

and for debug.

4.1.1 FlexASR

FlexASR is designed to support the key computational kernels and features seen in LAS seq2seq

networks (Fig. 2.2) as described in Table 4.1, while also allowing spatial and temporal configura-

tions. As illustrated in Fig. 4.3, FlexASR consists of four processing elements (PEs) and a multi-

44

Table 4.1: Computations accelerated in FlexASR

Neural Transformation Vanilla RNN GRU LSTM Linear
RNN Sequence Forward-Only Bidirectional

Pooling Mean Maximum
Normalization Layer Normalization
Attention AttentionMechanism8

function global buffer (GB) unit.

The communication between GB and PEs is performed via custom-built channel links. A cen-

tralized arbiter is used to referee the stream of PE partial results which will be aggregated by the GB.

Once the full activation has been collected, the GB will then broadcast it back to the PEs for the next

time step computation. Each PE and GB is interfaced with an AXI-Slave port. An interrupt (IRQ)

channel originating from the GB to the A53 cluster is implemented to indicate successful comple-

tion of the instructed task.

Section 4.2 further expands on the FlexASR architecture, detailing its PE, GB, and tiling mecha-

nisms.

4.1.2 MRF Sound Source Separation Engine

Over the last decade, there has been extensive research on the design of ML accelerators to solve

supervised learning problems. In contrast, unsupervised Bayesian models can be effective in solving

problems relying on unlabeled data expressing various degrees of information uncertainty71,72.

Unfortunately, Bayesian inference workloads do not efficiently scale on traditional CPUs and GPUs,

therefore requiring specialized hardware.

In this work, we accelerate Gibbs sampling operations onMarkov Random Fields (MRFs) for

the purpose of denoising noise-corrupted speech or enhancing a particular acoustic source in an

environment with multiple sound sources. The unsupervised Bayesian algorithm excels in a more

dynamic environment such as when sources are moving with respect to the microphones67, which

45

can potentially create problematic corner cases for supervised methods where it is necessary to cover

all scenarios with training data.

4.1.3 Dual-Core ArmCortex-A53

The inference of the speech enhancing pipeline (Fig. 4.2) effects numerous dynamic data exchanges

between the CPU and the accelerators. SM6 integrates two A53 CPU cores139, proven in high per-

formance embedded and mobile SoCs, for the following versatile purposes:

1. Feature extraction tasks. Framing, windowing, and 1024-pt FFT tasks, required to synthesize

the overlapping sequence of speech spectrograms, are vectorized using Ne10 SIMD instruc-

tions142.

2. Accelerator programming. The AXI-Master port of the A53 issues ISA instructions to Flex-

ASR andMSSE to configure the nature, shape, and size of their workloads.

3. Expectation-maximization (EM) algorithm which is a supplemental step of the Gibbs sam-

pling process during sound source separation114.

4. 8-bit floating-point (FP8) quantization. As FlexASR PEs work on FP8 operands, the 32-bit

fixed-point outputs fromMSSE need to be converted and scaled down to lower bit precision.

5. Label mask convolution. The A53 convolves the binary label mask fromMSSE with the

original spectrogram in order to extract the clean speech.

6. Other miscellaneous tasks which include IRQ handling and operation system support.

4.1.4 Design and VerificationMethodology

In order to develop the SoC in an agile manner while minimizing tapeout risks, we leveraged the

CHIPKIT SoC scaffold157, as well as, various ARM collaterals (e.g., A53 andM0 soft IPs, Arm

46

ML
frameworks

Weights

#include <nvhls_verify.h>
SC_MODULE(ASR_Accel) {
Testbench(sc_module name name)
…
}

Same?

Ground Truth
Yes

No

C++ testbench

HLS

RTL verification correct?
RTL PPA satisfactory?

APR

Yes

No

SW
Activations

HW Activations

Adaptive Floating-
Point Quantization

Weight Clustering

William Shakespeare was an English
poet, widely regarded as the greatest

writer in the English language.

Class datapath;
Class PE;
Class GB;
Class ASR_Accel;
…

FlexASR SystemC
Implementation

MatchLib
HLSLibs

Inputs

Pretrained
model

Looped inside
high-level synthesis

environment

Looped inside HLS environment

Figure 4.4: Algorithm‐hardware co‐design and verification methodology of the FlexASR accelerator.

Socrates for generating the NIC-400 interconnect), which allowed us to focus on the main differ-

entiating features of the SoC. One such differentiation is in the hardware-software codesign of the

FlexASR processor.

FlexASR was designed using object-oriented high-level synthesis (HLS) for fast SystemC-to-RTL

prototyping65. In order to evaluate the bit-level correctness of the hardware on a realistic speech-

to-text workload, we developed a design and verification flow, shown in Figure 4.4, which closes the

loop between the software modeling and the backend hardware implementation being abstracted

within the HLS environment. Considering the software ML framework (e.g., PyTorch, Tensor-

Flow) to be golden, the HLS environment allowed us to quickly make hardware tweaks and ECOs

47

until i) the hardware and software DNN activations returned matching numerical results, ii) the

Post-HLS verification is functionally correct, and iii) post-HLS PPA results are satisfactory. This

agility is made possible by the higher level of abstraction imposed by the HLS flow.

The SystemC source code description of FlexASR is now publicly available140.

4.2 The FlexASRHardware Accelerator

In this section, we provide details of the FlexASR architecture to accelerate LAS models illustrated

in Figure 2.2. We can categorize the seq2seq computations into two main parts: (1) RNN compu-

tations for each time step, which mainly involve matrix-vector multiplications (MVMs) with fixed

weights and dynamic activations, and (2) auxiliary operations like attention, normalization, and

pooling, which involve activations across time steps.

For the first case, four processing elements (PEs) with 16 lanes of vector MACs are provisioned

to efficiently parallelize MVMs. The idea of a weight stationary14 dataflow is adopted to divide

the workload of RNN computations and minimize the data movement of weights given the RNN

workload tends to be memory-bound. Therefore, each PE will initially store fractions of the weight

matrix in their respective weight buffer, and during computation, the global buffer and PEs ex-

change input and output activations. The second case is handled by the global buffer (GB) unit,

which houses the input and output activations and contains several specialized functional units to

handle across-time-step seq2seq computations such as normalization, pooling and attention.

A vector size of 16 is applied to every part of the FlexASR design. That is to say, the operations in

the PE or GB are always effected on 16-element vectors or involve multiplication between a 16x16

matrix and a 16-element vector. Larger vector sizes produce higher accelerator throughput at the

expense of reduced granularity for the RNN hidden state size. Therefore, the size of the RNN hid-

den state programmed in FlexASR is constrained to be a factor of 16 – although one may zero-pad a

48

(b) LSTM Model

!!! [00:15][00:15]
(c) Tiling and Weight Buffer Mapping

…!!! [00:15][16:31]

!!" [00:15][00:15]
!!" [00:15][16:31]

!!# [00:15][00:15]
!!# [00:15][16:31]

!!$ [00:15][00:15]
!!$ [00:15][16:31]

…
…

…
!!! [16:31][00:15]
!!! [16:31][16:31] …

Activation Unit Operations for LSTM
1. INPE R0
2. INPE R1
3. ADD R0 R1
4. SIGM R0 // R0 = !!
5. INPE R1
6. INPE R2
7. ADD R1 R2
8. TANH R1 // R1 = "!
9. MUL R0 R1 // R0 = !! ∗ "!
10. INPE R1

11. INPE R2
12. ADD R1 R2
13. SIGM R1 // R1 = $!
14. LOAD R2 // R2 = %!"#	
15. MUL R1 R2
16. ADD R0 R1 // R0 = %! 	
17. STORE R0 // Save cell state
18. TANH R0 // R0 = tanh	(%!)	
19. INPE R1
20. INPE R2
21. ADD R1 R2
22. SIGM R1 // R1 = -!
23. MUL R0 R1 // R0 = ℎ!
24. OUTGB R0 // Send ℎ! to GB

(d) Activation Unit Operations for LSTM

!!" 	= $""	%! + '""
(!" = $"#	%! + '"#
)!" = $"$	%! + '"$
o!" = $"%	%! + '"%

!!& 	= $&"ℎ!'(+ '&"
(!& = $&#ℎ!'(+ '&#
)!& = $&$ℎ!'(+ '&$
,!& = $&%ℎ!'(+ '&%

!! 	= - !"" + !!& 																	(! = tanh ("" + (!&
)! 	= -)"" +)!& 															,! = - ,"" + ,!&
2! =)! ∗ 2!'(+ !! ∗ (!				ℎ! = ,! ∗ tanh(2!)

PE Datapath (num_manager = 2)

ActUnit (μ-instructions)

(a) FlexASR PE

DP 0 DP 1 DP 15. . .

Weight Buffer (1MB)

. . .Bank 0 Bank 1 Bank 15

Bias

PE Configs
• input_size
• hidden_size
• output size
• num_mvm

Pre-act 0 Pre-act 1 Pre-act 15

ActUnit (Vectorized Activation and Element-wise Functions)ActUnit
μ-instructions

Accum 0 Accum 1 Accum 15

Input-act Vector (From GB)

NN Bias + FP Exponent Shift + Truncation

Activation Unit (ActUnit)

TANH SIGM EADD

EMUL RELU ONEX

Vector Regs
Cell State
Buffer 1KB

(20b FXP)
(8-bit FP)

LOAD/STORE

(20b FXP)

Pre-act Vector

Post-act Vector

OUTGB

Post-act Vector (To GB)

Input & Bias
Buffer
(4KB)

I[0]W[0]
Vector Size = 16

Datapath (DP)
FP Vector MAC

I[1]W[1] I[15]W[15]

Accum

mantexp

<<

✚
mantexp

<<

…
mantexp

<<

✚
✚

✚ ✚⨯ ⨯ ⨯

8b

8b (or 4b x2)

32b 32b 32b

20b 20b 20b

8b

8b4b
LUT

8b4b 8b4b

8b

cluster
mode LUT LUT

8b8b 8b

8b (or 4b x2) 8b (or 4b x2)

Figure 4.5: (a) FlexASR processing element (PE) highlighting its FP vector MAC and activation unit (ActUnit). For the (b)
LSTM example, we adopt (c) a custom interleaved tensor tiling in the weight buffer for (d) hazard‐free vector operations
in the ActUnit.

non-compliant tensor shape in software prior to acceleration with FlexASR. Our choice of tile size

is also influenced by the design of memory instances and the 128-bit AXI format. For example, a tile

of input/weight has 16 ∗ 8-bit = 128-bits, which motivates a memory bank design with a data width

of 128-bit per entry such that an AXI operation can access the full row in this memory bank.

4.2.1 Processing Element

The PE (Fig. 4.5(a)) is the computational workhorse of FlexASR during RNN, LSTM, GRU or

linear layer computations. It contains a 1MB 16-banks weight buffer and a 4KB input and bias

buffer for storing the MVM operands in 8-bit floating-point (FP8) precision. FlexASR FP8 format

is E4M3 (i.e. 1-bit sign, 4-bit exponent, and 3-bit mantissa) without support for denormals. This

FP8 format yielded the best accuracy outcomes after performing a search on the optimal exponent

bitwidth to satisfy the dynamic range requirements of LAS models. The PE also provides alterna-

tive support for weight clustering implemented using look-up tables (LUTs) mapping 4-bit weight

indexes to their 8-bit centers. This enables 2× storage compression in the PE weight buffer.

Each weight buffer bank has a read port that feeds into a floating-point vector MAC that provides

scalability along a vector dimension of 16 (similar to the PE architecture in 172).

Therefore, each PE instantiates 16 vector MACs in total (i.e., 256MACs/cycles), to perform

49

Table 4.2: Vector operations supported in the FlexASR Activation Unit

Command Description
ADDA2 A1 A2 = A2 + A1
MULA2 A1 A2 = A2 * A1
SIGMA2 A2 = Sigmoid (A2)
TANHA2 A2 = Tanh (A2)
RELUA2 A2 = ReLU (A2)
ONEXA2 A2 = 1 – A2
COPY A2 A1 A2 = A1
INPE A2 Get accumulation result from PECore into A2
STORE A2 Store cell state from A2 into ActUnit Buffer
LOADA2 Load cell state from ActUnit Buffer into register A2
OUTGBA2 Send A2 to Global Buffer

MVMs between a FP8 weight vector and a FP8 activation vector.

To boost the dynamic range and accuracy of quantized RNN computations, the 32-bit fixed-

point accumulated sum is dynamically shifted, at a per-layer granularity, by the AdaptivFloat ex-

ponential bias, expbias. As described in Chapter 3, the latter is extracted from the maximum abso-

lute value in the layer’s weight matrix and then stored in the FlexASAR PE registers. This allows

resilient and near-FP32 accuracy at FP8 precision on seq2seq models exhibiting wide parameter

distribution134. After layer-wise adaptive floating-point exponent shift, the partial sums are then

post-processed by the PE activation unit (ActUnit).

The ActUnit performs a sequence of vector operations (Table 4.2) to compute the necessary

activation functions (e.g., sigmoid, tanh, ReLU) and the element-wise addition and multiplication

of matrix-vector products coming out of the truncation unit. Fig. 4.5(c) shows the tiling convention

in the multi-bank weight buffer and the ensuing sequence of ActUnit commands required to fully

compute LSTM kernels without encountering logical hazards.

50

Data Controller

Normalization
! − # !
$%& !

∗ (+ *

Auxiliary
Buffer
(16KB)

Unified Activation Buffer (1MB)

. . . Bank 0 Bank 1 Bank 15

To PE
From PE

Global Buffers

Global Buffer Peripherals

Max Pool
Mean Pool

EAdd

Encoder States

Context
Vector

exp !! −.%! /
0 exp !! −.%! /"

#$%

Gate MAC for
null vectors

FSM state
MUX

Transpose

MUX

Softmax

FSM
state

Uni. Buffer Aux. Buffer

Attention Unit

Timestep Pooling

Unidirectional
Bidirectional

Non-RNN (FC)
Decoder Mode

8b

8b

32b

8b

DEMUX

MAC

Decoder States

8b32b

8b

8b8b

IRQ

Figure 4.6: Macro‐architecture of the FlexASR multi‐function GB unit.

4.2.2 Multi-function Global Buffer Unit

The FlexASR global buffer (GB) unit collects and unifies, across time steps, the partial RNN out-

put states that the PEs compute. Once the partial RNN outputs for a time step are fully aggregated,

the GB then broadcasts the complete activation back to each PE for the next time step computa-

tion. Moreover, the GB is augmented with auxiliary processing units that compute the attention

mechanism, mean and max pooling, and layer normalization, all of which are commonly invoked in

modern seq2seq NLP networks. We note that the normalization and the softmax operations used

during the attention calculation contain several serial operations (e.g., running average), therefore

DNN accelerators often offload these computations to a nearby CPU due to the lack of parallelism

opportunities. We propose to compute them within the confines of FlexASR in order to reduce

CPU-accelerator inter-layer activation exchanges, and thereby avoiding undue latencies during the

end-to-end inference of the seq2seq model.

51

Fig. 4.6 shows the macro-architecture of the FlexASRGB. A 1MB 16-banks unified buffer is used

to store the partial RNN hidden states computed by the PEs across time steps. This capacity is large

enough to fully store thousands of activation time steps at any given time, corresponding to more

than 200 words of speech, and allowing inference of large vocabulary applications requiring nuance

and context understanding, especially in long sequence transductions.

While the unified buffer has a single write port, each bank has its own independent read port. A

16KB auxiliary buffer is used to house the attention intermediate states and the learnable normaliza-

tion parameters. Load/store accesses to the 1MB and 16KB buffers are controlled by a GBmanager

which responds to requests from the PEs and the auxiliary processing modules. The latter is com-

posed of:

• The RNN Control Unitwhich orchestrates the sequencing of the configured RNN flow

mode (i.e., uni-directional, bidirectional, and seq2seq decoder mode) between the PEs and

GB units. For this purpose, the RNN control module uses the configured number of time

steps and the RNN hidden state size to track its job progress.

• The Attention Mechanism Unitwhich computes the soft attention mechanism8 for each

decoding time step. During this phase, encoder and decoder states are read from the GB

unified and auxiliary buffers, respectively, before MAC operations generate scores processed

by a SoftMax unit to produce the attention weights. To prevent numerical instability, the

SoftMax is computed by subtracting the max score in the numerator and denominator.

The attention context vector is then obtained by multiplying the attention weights with the

transposed encoder states. Algorithm 2 details the step-by-step vectorized computation of

the attention unit.

• The Layer Reduction Unitwhich can be configured to performmean or maximum pool-

ing on the RNN activations, as well as element-wise addition of the forward and backward

52

time steps during the bidirectional mode. Notably, Concat, sum, and averagemerge modes

used during bidirectional RNNs, are supported by striping forward and backward time-

steps across alternate banks in the GB unified activation buffer. For the sum or average merge

modes, the GB layer reduction module performs element-wise addition (EADD) or averag-

ing on concatenated activations.

• The Normalization Unitwhich computes layer normalization7 on the RNN activations in

order to speed up the training process. During the seq2seq inference, an hidden state activa-

tion is normalized as:

Xnorm =
X− E[X]√

Var[X]
∗ γ + β (4.1)

where γ and β are learnable parameters obtained after training and stored in the GB auxiliary

buffer. The normalization module first computes the mean, E[X], by running average over

the number of hidden states, then evaluates the variance, Var[X], as: E[X2] − E[X]2. This

process gets repeated for all the needed time steps.

Finally, we note here that the attention, pooling, and normalization datapaths vectorize their

computations with a vector size of 16 in order to accelerate sequential operations.

4.3 Post-SiliconMeasurement Results

An annotated photograph of the 25-mm2 SM6 die is shown in Fig. 4.7 (a). The SM6 die was imple-

mented in TSMC 16-nm FinFET technology, and flip-chip bonded into a 672-pin BGA package

(Fig. 4.7 (b)). In order to orchestrate various energy efficiency ranges, six clock domains capable

of outputting fine-grained frequencies, and five power domains with a 0.55-1.0V functional op-

eration range – are servicing the main compute clusters and other on-chip endpoints. An on-chip

DCO embedded in the M0 subsystem generates clocks with fine-grained frequencies to each clock

53

(a)

5mm

Dual-Core
A53 CPU

MSSE

FlexASR

PE0 PE1 GB PE2

PE3

5m
m

Arm
M0

1M
B SR

AM

Dual-A53 MSSE FlexASR

Workloads
FFT, Application

Logic
Markov Random

Field
Attention-based
seq2seq models

Data Type FP64 FxP32 FP8
Area 6.21mm2 1.31mm2 8.84mm2

SRAM 2.41MB 0.103MB 5.03MB
Voltage 0.55 - 1V 0.55 - 1V 0.55 - 1V

Frequency 354 – 775MHz 287 – 651MHz 130 – 573MHz

Power @
Fmax/0.8V

50.4mW 42.2mW 214mW

Power Eff. -
4.33 – 17.6

Gsamples/s/W
2.6 – 7.8

TFLOPS/W

Technology TSMC 16nm FFC

Die Area 25mm2

Total SRAM 9.8MB

Clock Domains 6

Power Domains 5

Supply Voltage 0.55 – 1V

Packaging Flip-chip BGA-672

(b)

(c)

Figure 4.7: (a) Annotated die photograph of the 25‐mm2 SM6 test chip, and summary of (b) the SoC, and (c) its main
compute clusters.

domain. A 5-V DC supply connects to the test chip PCB which then provides regulated supply

voltages to each power domain. The test chip PCB attaches to a Xilinx KCU105 board using the

FPGAmezzanine card (FMC) connectors. The role of the FPGA is to provide access to DRAM

memory where workload data are initially stored. A UART-to-USB signaling interface allows a host

laptop to communicate with the test chip.

Fig. 4.7 (c) lists the technical specifications of the main compute clusters. Notably, at 0.8-V nom-

inal voltage, the A53 cores, MSSE, and FlexASR dissipate 50.4 mW, 42.2 mW, and 214 mW, re-

spectively, at their maximum operating frequencies. With the compute clusters inactive, SM6 has a

standby power of∼4mW, as the M0 remains active to sense the GPIO pins for audio detection.

To compare SM6 against commodity edge platforms, we evaluated speech-to-text LAS models

and Gibbs sampling on an Nvidia TX2 mobile GPU, a Xilinx ZCU102 FPGA, and the integrated

dual-core A53 CPU. TX2 results were obtained from CUDA implementations on the GPUmod-

ule in order to reap the benefits of parallelization. The ASIC RTL of FlexASR andMSSE were pro-

grammed on the ZCU102 platform for evaluating FPGA performance. The Ne10142 and eigen141

54

753.94

23.05
11.42

1.054

362.00

10.00
4.71

0.521

293.00

8.54
4.07

0.426

27.20

1.76

0.19
0.045

7.26
1.65

0.401

7.55

0.47
0.20

0.049

530.00

2.471.39
0.648

0.336
716x
22x
11x

695x
19x
9x

688x
20x
10x

604x
39x
4x

18x
2x
4x

154x
10x
4x

1577x
7x
4x
2x

0.92

0.38

17.60
7.65 6.52

39.21 51.40

0.225

18.80 21.20

0.111

15.20 18.30

0.088

0.85
1.41

0.006

0.70

7.43

0.036

0.004

27.56
6.25

0.014
0.026

0.90
0.39

174x
78x
228x

169x
69x
190x

173x
74x
207x

241x
229x
146x

11x
20x
209x

1969x
134x
446x
2x

91x
83x
209x

1.88

0.36
1.34

Figure 4.8: Breakdown of latency (top row) and energy (bottom row) for individual seq2seq layers running on FlexASR
and Gibbs sampling running on MSSE, compared to running on different commercial platforms. Here, FlexASR, MSSE,
and the A53 cores are running at frequencies of 440MHz, 533MHz, and 715MHz, respectively, at 0.8V.

libraries were used to vectorize supporting ASR and Gibbs sampling kernels on the A53 SIMD

units. We conducted the following application-level measurements at room temperature using a

typical silicon.

4.3.1 Per-Layer Characterization

We begin by characterizing the processing times and energy dissipation of the main SM6 compute

clusters while running individual seq2seq layers and Gibbs sampling iterations (Fig. 4.8). We can

make the following observations:

(1) FlexASR provides significant speedup gains while accelerating seq2seq layers – with atten-

tion, LSTM and GRURNNs showing greater benefits. Notably, the 160-time steps bidirectional

LSTM (BILSTM) exhibits higher processing speedup over CPU, GPU, and FPGA compared to

the unidirectional LSTM scenario – due to FlexASR striping forward and backward activations in

alternate banks in its global buffer unit. In addition, even though the normalization and pooling

operations are very serial in nature, by specializing their datapaths within the confines of the accel-

erator and thereby avoiding accelerator-CPU activation exchanges – FlexASR still outperforms all

55

other platforms.

(2) MSSE achieves appreciable latency reductions over the commercial edge platforms – demon-

strating the need for specialized Gibbs sampling accelerated computing as the A53 cores, TX2 GPU,

and ZCU102 are 1577×, 7×, 4× slower thanMSSE, respectively. Moreover, as MSSE was opti-

mized for Bayesian inference with binary labels as opposed to the general purpose PGMA accelera-

tor71,72 (supporting up to 64 labels), Gibbs sampling runs twice as fast onMSSE.

(3) Both FlexASR andMSSE generates orders-of-magnitude smaller energy consumption com-

pared to the commercial edge devices. This is particularly striking during Gibbs sampling as the A53

cores, TX2 GPU, and ZCU102 produce 1969×, 134×, and 446× larger energy dissipation, respec-

tively, compared toMSSE. Furthermore, although the FPGA generally executes seq2seq kernels

faster than the dual-core A53 and TX2 GPU, its power consumption envelope is significant enough

to make it the least energy-efficient platform for several workloads (e.g., BILSTM, GRU, pooling).

Finally, we note that the RNN (BILSTM, LSTM, or GRU) and linear workloads, which are

computed in the FlexASR PEs, achieve near 100%MAC utilization. However, at the overall end-to-

end ASR workload level, PE utilization is about 71% given the PEs become idle during the computa-

tion of normalization, pooling, and attention which account for 19%, 6%, and 4%, respectively, of a

representative ASR workload †.

4.3.2 End-to-End Characterization

To demonstrate the accuracy and end-to-end performance benefits of the proposed speech-enhancing

pipeline, we compare our approach (Scenario D) with three other common inference scenarios

using the LibriSpeech dataset100 as shown in Fig. 4.9. Scenario A emulates a clean environment

wherein the speaker’s voice is the single audio source. Scenario B mixes the speaker’s voice with an-

other human voice source in a simulated room environment for a signal-to-noise ratio (SNR) of

†ASRmodel used in Scenario A, B, and D from Fig. 4.9.

56

18.4

78.4

36%

6%

1.891.89 2.24

15.6

58% 64%

34%

2%

1/6 ASR
model size

3x accuracy
improv.

~1%-pt
degradation

12.2 12.2

4.3x
7x

1.5x
1.2x

18.4

2.24

107

627

7728

402469481

32ms threshold
(frame length)

85%
1%
14%

40%
19%
6%
35%

71%
6%
4%
19%

85%
1%
14%

61%
3%
36%

61%
3%
36%

Figure 4.9: End‐to‐end measurement results for ASR inference with (A) clean input audio, (B) noisy input audio, (C) noisy
input audio using 6x larger ASR model, and (D) this work ‐ noisy input audio with Bayesian sound source separation
denoising. Word error rate (WER) performance (top left), end‐to‐end per‐frame latency (bottom left), energy (bottom
right), and cross‐platform comparisons (top right) are shown.

0.90 dB. Finally, Scenario C (Noisy+Big) adopts a much larger ASRmodel (22MB vs. 3.5 MB used

in Scenario A, B, and D) trained with a noise-corrupted LibriSpeech dataset in order to learn from

noisy inputs. TheNoisy+Bigmodel was gradually sized up, by increasing the hidden state dimen-

sion, until its WER is much closer to scenario A in noisy cases. The ASR LASmodel adopted in

Scenario A, B, and D consists of 4 four BILSTMRNN stacks in the encoder with 512 cells and a

256-cell unidirectional LSTMRNN in the decoder. The LAS model in Scenario D was scaled up

to 1024 cells in each of the four BILSTMRNN stack in the encoder and 1024 cells in its decoder

57

LSTMRNN unit. The following observations are made:

(1) By denoising incoming audio signals and preceding the speech-to-text inference, MSSE allows

FlexASR to compute significantly smaller-size (up to 6× smaller), iso-accurate ASRmodels trained

on widely-available single-source clean datasets (Fig. 4.9 top left) – obviating the very inefficient

strategy of scaling up the DNNmodel size (Scenario C) in order to achieve noise robustness. Fur-

thermore, the proposed ASR pipeline delivers 3× accuracy improvement over the unseparated noise

case (Scenario B) and is within 1% of the clean input baseline case (Scenario A). We note that in Sce-

nario D, MSSE executes 150 Gibbs sampling iterations, improving speech quality by up to 7.3dB

SDR.

(2) The proposed pipeline achieves 4.3× lower end-to-end per-frame latency (bottom left), and

7× energy improvement (bottom right) compared to the similarly-accurate case in Scenario C,

which requires significant off-chip data movements because the weights of the upsized ASRmodel

cannot fully fit in FlexASR PE scratchpads. Notably, SM6 achieves a latency per frame of 18.4-ms

while dissipating 2.24-mJ of energy during the end-to-end speech-enhancing ASR inference.

(3) Due to the use of RNNs, the inference computation is mainly memory-bound. Therefore, it

can be observed that the latency and energy costs of memory transfers in the bigger ASRmodel (i.e.,

Noisy+Big in Scenario C) are much higher compared to the leaner ASRmodel used in Scenario A,

B, and D. For example, memory transfers in Scenario C account for 36% of the end-to-end latency

vs. only 6% in our proposed pipeline whose RNNmodel is 6× smaller.

(4) Fig. 4.9 (top right) shows that despite substantial energy expenditures, the commercial edge

platforms fail to provide real-time performance as their per-frame latencies exceed the 32ms frame

length.

58

(a) (b)

Figure 4.10: Impact of voltage scaling on (a) accelerators’ power efficiency, and (b) end‐to‐end ASR latency and SoC
power envelope.

4.3.3 Voltage Scaling

To evaluate the functional efficiency range of the SoC, all the power domains are uniformly scaled

from 1.0-V down to 0.55-V while the various compute clusters (FlexASR, MSSE, dual-A53) are

clocked at their respective maximum frequencies. Fig. 4.10 (a) shows that voltage/frequency scaling

on FlexASR andMSSE produces efficiency ranges of 2.6-7.8 TFLOPs/W and 4.33-17.6 GSam-

ples/s/W, respectively. The per-frame, end-to-end latency varies from 45ms to 15ms as the SoC

voltage scales from 0.55-1.0V, while consuming 19-227mW on average (Fig. 4.10 (b)). At nominal

0.8-V, the average per-frame SoC power is 111 mW.

4.4 Verifying FlexASR via a FormalHardware/Software Compiler Interface

In order to fully exploit the benefits of hardware specialization, we must seamlessly lower the high-

level application code to these accelerators. And doing that, unfortunately, is not as easy as it sounds.

First, we must identify the various functions of the application code that are supported by these

accelerators and then ensure computation integrity after lowering the compilation code down to the

hardware device.

59

Figure 4.11: Prototype implementation of the D2A compilation flow, highlighting the proof‐based and simulation‐based
verification components.

While programming FlexASR can be easily done via AXI commands over memory-mapped

I/Os, compiling down to it, however, can be challenging because as most deep learning domain

specific languages (DSLs) are concerned with individual tensor operations, a single FlexASR instruc-

tion may, in fact, correspond a full neural network layer (e.g. LSTM, GRU, LayerNorm). So, this

requires the compiler to deal with the dramatic granularity mismatch between the high-level appli-

cation code and the low-level hardware details. Furthermore, what makes FlexASR compilation an

even trickier challenge, is that, computations are performed according to a custom numerical data

type: AdaptivFloat. So, all of the mechanics surrounding this custom number system, have to be

embedded somewhere inside the compiler.

The current common practice is to design a dedicated driver for each accelerator and a special-

ized compiler stack for each compiler framework. This requires significant amount of human labor

because engineering effort are needed for every device on every compiler framework.

Together with researchers from Princeton and the University of Washington, we propose to ad-

dress these mapping challenges with a compiler flow called D2A54 which uses Instruction-Level

Abstraction (ILA)55 as a formal software/hardware interface. As a demonstration of the D2A

methodology, we have implemented an end-to-end compiler pipeline for deep learning applications,

as shown in Figure 4.11, in order to enable flexible, portable, and verifiable compiler support for

60

Figure 4.12: Simulation‐based validation results of checking IR‐accelerator mappings. The average relative error (Avg.
Err.) and the standard deviation (Std. Dev.) of the errors are measured for simulation over 100 test inputs.

new hardware accelerators. The ILA is an ISA-like formal model. It generalizes the instruction no-

tion from the processor world and apply it to accelerators. Utilizing the automatically generated ac-

celerator software model from their ILAmodels, we are able to run fast end-to-end application-level

simulation to provide feedback on application deployment, which are valuable for both application

development and accelerator designs.

Figure 4.12 highlights the validation results when applying D2A to FlexASR, thereby checking

the IR-accelerator mappings for these non-trivial operations. We observe very close matching be-

tween the frontend DSL and the hardware numerical outputs – with deviations mainly caused by

the accumulation of the 8-bit AdaptivFloat quantization errors which are not factored in the front-

end TVM translation.

While this section described our approach to efficiently computing attention-based seq2seq

RNNs, which have been applied to speech-to-text and machine translation applications, the next

section lays out our algorithm-architecture-silicon co-design principle to lower the prohibitive cost

of inferencing Transformer-based models – which are now the most widely used neural ingredients

in modern NLP.

61

4.5 Takeaways

In this work, we demonstrated the usefulness of optimizing speech-to-text execution at the granu-

larity of a system whereby the underlying machine learning algorithms are carefully leveraged and

tweaked to promote higher overall energy efficiency. In particular, we showed that we can obviate

the need to utilize large ASR neural networks (along with the ensuing higher latency and energy)

by plugging in the right algorithmic ingredient in the front-end execution pipeline of a monolithic

system-on-chip – and doing so without compromising the end-to-end task accuracy. The latter is

boosted by the effectiveness of the unsupervised Gibbs sampling algorithm, the higher representa-

tion power of the AdaptivFloat number system, and the greater neural performance afforded by the

attention mechanism.

62

Algorithm 2:Computation Steps of the Attention unit.
Input: Encoder MatrixM, Decoder Vector v
Output: Attention Context Vector A
NT := encoder time steps in tiles
ND := decoder size in tiles
max = − inf
// 1stMVMult
for i = 0 to NT − 1 do

accum := 0
for j = 0 to ND − 1 do

W :=M[16i:16i+15][16j:16j+15]
v := v[16j:16j+15]
accum +=W ∗ v

store accum to auxiliary buffer
// Get maximum at the same time of 1st stage
if max < max(accum) then

max = max(accum)

// Denote output of 1stMVMult as X
X[16i:16i+15] = accum

// Softmax step 1: SRAM read on X
sumexp = 0
for i = 0 to NT − 1 do

sumexp+ = sum(exp(X[16i:16i+15] −max)
// Softmax step 2: SRAM read/write to get result X′

for i = 0 to NT − 1 do
X′
[16i:16i+15] = (X[16i:16i+15] −max)/sumexp

// 2ndMVMult
for i = 0 to ND − 1 do

accum := 0
for j = 0 to NT − 1 do

W :=MT
[16i:16i+15][16j:16j+15]

v := X′
[16j:16j+15]

accum +=W ∗ v
store accum to GB auxiliary buffer
// Context vector, A, is output of 2ndMVMult
A[16i:16i+15] = accum

63

5
Lowering the Cost of Inferencing Large

Language Models on Embedded Devices

How to harness the power of large language models on low capacity devices in

an energy-efficient manner? Large language models such as BERT are fueling the growth of

intelligent virtual assistants, which leverage natural language processing (NLP) to implement inter-

64

Figure 5.1: The unabated pursuit for omniscient and omnipotent AI is currently driving large language models (LLMs) to
extreme scales. Image source: Transformer models: an introduction and catalog3

active voice interfaces. At the same time, the incessant pursuit of greater linguistic representation is

currently driving NLPmodels to extreme scales – with recent large language models (LLMs) featur-

ing more than a trillion parameters as illustrated in Figure 5.1. Currently, these hefty NLPmodels

are offloaded to the cloud. However, it is desirable to deploy them on edge devices, where personal

data can be kept private and the round trip latency to the cloud is removed. The constraints on mo-

bile can be quite different to the datacenter scenario. Firstly, since we are dealing with user input, we

need to meet real time throughput requirements to prevent a noticeable lag to the user. Secondly,

energy consumption is a critical concern on edge/mobile devices.

Our work, EdgeBERT131,135, offers a principled latency-driven approach for deploying Trans-

former workloads onto edge devices with minimal energy consumption thanks to early exit predi-

cation and entropy-controlled voltage-frequency scaling (VFS). While the benefits of early exit can

be reaped on commodity GPUs, we unlock additional energy savings by co-designing the hardware

65

!"#$%& ∝ (*	+!!" 	,#$#%&'	

Latency-Aware
Voltage-Frequency Scaling

Early
Exit

Mixed-Precision
Datapath

Sparse
Execution

Figure 5.2: Summary of the energy reduction strategies adopted during Transformer NLP inference.

datapaths. In addition, as shown in Figure 5.2, sparse execution is performed during the mixed-

precision (FP4/FP8) computation in order to further reduce energy overheads.

These energy-lowering measures are controlled by a statistical metric called entropy, which can

be understood as a gauge of the classification confidence. In the next section, we explain how the

entropy is leveraged to eliminate undue NLP energy and latency costs.

5.1 Entropy-based Early Exit

The motivation behind early exit (EE) is to match linguistically complex sentences with larger (or

deeper) models and simple sentences with smaller (or shallower) models159. This is typically done

by adding a lightweight classifier at the output of the Transformer layer so that a given input can exit

inference earlier or later in the stack, depending on its structural and contextual complexity. The

classifier computes and compares the entropy of an output distribution with a preset “confidence”

threshold, ET, in order to assess whether the prediction should exit or continue inference in the next

Transformer encoder layer. The entropy metric quantifies the amount of uncertainty in the data.

Smaller entropy values at a Transformer layer output implies greater confidence in the correctness of

66

the classification result. The entropyH on sample x is estimated as:

H(x) = −
∑

p(x) log p(x) = ln(
n∑

k=1
exk)−

n∑
k=1

xkexk

n∑
k=1

exk
(5.1)

The early exit condition is met whenH(x)< ET. Therefore, the larger ET becomes, the earlier the

sample will exit (i.e. Ncycles becomes smaller) with potentially lower accuracy.

For this analysis, we consider the state-of-the-art BERT-basemodel which is comprised of twelve

serial computationally intensive transformer layers, each layer containing twelve parallel attention

heads whose outputs concatenate to drive a large feed-forward network27.

Let’s say we are executing a sentiment analysis task using BERT. As shown in Figure 5.3 (a), dur-

ing the conventional BERT inference, the computation goes through all 12 Transformer layers be-

fore classifying the output as either a positive or a negative sentiment. However, for an input query

(a) Conventional BERT Inference

(b) BERT Inference with Entropy-based Early Exit

Figure 5.3: Sentiment analysis execution with the BERT Transformer model during (a) the conventional and (b) entropy‐
based early exit inferences.

67

Figure 5.4: By setting an entropy threshold of 0.5, 80% of Transformer computations are saved while maintaining 95%
of the original BERT accuracy on the SST‐2 sentiment analysis benchmark.

as simple as ”Great weather today”, we can leverage the entropy function to terminate the inference

early, at the output of Transformer layer 3 instead of layer 12 as shown in Figure 5.3(b). Looking

across the entire sentiment analysis dataset (SST-2), we observe significant opportunities for com-

putation savings depending on the selected entropy threshold as shown in Figure 5.4. As tolerance

to the model accuracy loss is very much subjective, the entropy threshold can be used as a knob by

users when they consider this tradeoff space between accuracy and runtime savings.

We note that the application of the entropy-based early exit concept is not new in the case of

encoder-based sequence-to-sequence Transformers given it was originally applied to CNNs138. A

novelty in this work is the utilization of the entropy function for energy minimization via entropy-

controlled voltage and frequency scaling, which is discussed in greater in the next section.

68

Figure 5.5: Given an end‐to‐end latency target, we utilize the entropy value measured at the output of the 1st Trans‐
former layer to predict the number of additional Transformer layers the accelerator needs to compute. And, then based
on this information, the EdgeBERT accelerator opportunistically scales its supply voltage and clock frequency.

5.2 Entropy-Controlled Voltage-Frequency Scaling

Dynamic voltage frequency scaling (DVFS) is a widely used technique to dynamically scale down

the voltage and frequency for less computationally intensive workloads. In the past, DVFS has been

widely deployed in commercial CPUs143, and GPUs90. However, these schemes typically adjust the

voltage and frequency at a coarse granularity at workload-level. In contrast, in this work, we perform

fine-grained sentence-level voltage frequency scaling to reduce the energy consumption for NLP

inference while adhering to a prescribed latency target.

The inference of a sentence starts at nominal voltage and maximum frequency, and the entropy

value is calculated at the output of the first Transformer encoder layer. The entropy result is then

sent to a trained multi-layer perceptron classifier (early exit predictor) to predict which following

Transformer layer will mark the termination of the inference (e.g. early exit at layer 6). Based on the

predicted early exit layer, the voltage and frequency is scaled down to proper energy-optimal setting

for the rest of Transformer encoder layers (e.g. layer 2 to 6)while meeting the latency target for

each sentence. This scheme, which is illustrated in Fig. 5.5, produces a quadratic reduction in the

accelerator power consumption.

In the next section, we describe the EdgeBERT hardware accelerator system, which is a sparse

Transformer processor specialized to efficiently compute BERT-based Transformer networks along

with the entropy-based optimizations we have just discussed.

69

Mask SRAM
(32 KB)

Bit-mask Decoder 0

Data SRAM
(256 KB)

16 banks

. . . .

Sparse Decoder

Bit-mask Decoder 1

FP4 Datapaths FP8 Datapaths

MAC Unit

Accumulation Unit
Post-Processing

RELUFP Exponent Shift Bias Add Truncate

DataMask

Sparse
Encoder

Write<Mask,Data>
Controller

IRQ AXI-M AXI-S

To CPU To/From SoC NoC

Bit-mask Encoder
Elem-Wise

Add

Layer
Normalization

SoftMax

Early Exit
Assessment

Mixed-Precision
Predication

V/F Scaling

Entropy-Based
Computations

FP4/FP8 Select

Special Function Unit

Accelerator
Core

LDO PMOS
headers

VDD_CORE

VDD_TILE

VDD_TILE

VDD_CORE

BUF

LS

CSR

VDD_CORE

LDO Configs

Auxiliary Buffer (32KB)

V/F Scaling LUT
Attention Mask

LayerNorm Params

Mask SRAM
(32 KB)

Data SRAM
(256 KB)

16 banks

. . . .

Sparse Decoder

LDO Configs
DCO

CLK_CORE

Figure 5.6: Architecture of the EdgeBERT Sparse Transformer Processor (STP).

5.3 The EdgeBERT Sparse Transformer Processor

Figure 5.6 lays out the architecture of the EdgeBERT Sparse Transformer Processor (STP). The

main computation engine comprises a mixed-precisionMAC unit that selects between FP4 (E3M0)

vs. FP8 (E4M3) execution based on the entropy characteristics of the input sentence. The entropy

information further guides the power management scheme, which dynamically adjusts the accel-

erator’s local supply voltage via cell-based PMOS power headers of a free running LDO (i.e. feed-

forward LDOwith no feedback loop). Sixteen pre-characterized look-up table (LUT) entries, stored

in a 32KB auxiliary buffer of the special function unit (SFU), control the effective resistance of the

70

!"#()
&'()

()"!
<

	−

Gate until
accum. is done

*"..$

	×

!"#!$"..$

	+

	+ ÷

Gate until
Max is found 	−

V/F Scaling

+(")Final Entropy
Value

FP4/FP8 Precision
Selection

Early Exit
Evaluation

(Reformulated for numerical stability)

Figure 5.7: Hardware implementation of the entropy function whose value on the 1st layer Transformer output is used
to scale the accelerator’s supply voltage and clock frequency.

PMOS power headers. A configurable digitally-controlled oscillator (DCO) runs off of the local

supply voltage to ensure proper self-clocked operation. The SFU further contains specialized data-

paths to provide vectorized computations for various non-linear functions (i.e., softmax, layer nor-

malization), element-wise addition, as well as the entropy computation. The SFU’s auxiliary buffer

also stores normalization parameters and attention pruning metadata which specify the span of each

attention head. Notably, the STP entirely skips the computation of attention heads with null span,

further cutting inference latency and energy. A pair of bit-mask decoders and a bit-mask encoder

decompress and compress sparse matrices, respectively, before and after each matrix-matrix multipli-

cation, which enables compact storage of non-zero data along with their associated binary tags in the

256KB data SRAM and 32KBmask SRAM, respectively.

Figure 5.7 shows the algorithmic and hardware implementations of entropy-based early exit com-

putation. To avoid numerical instability during the calculation of exponents, we reformulate the

71

Ve
ct

or
 S

iz
e

Vector Size

× =N1 x M M x N2 N1 x N2

s1V0

…

…
…

…

…

…

s1V1

s1V2

s1T s2T

Per-vector
exponent biases

during FP4
computation

Per-tensor
exponent biases

during FP8
computation

Vector 2

Vector 1

Vector 0

Vector 2

Vector 1

Vector 0

s2V0 s2V1 s2V2

D1[0]D0[0]
Vector Size = 16

D1[1]D0[1]

Accum

mantexp

<<

✚
mantexp

<<

…
mantexp

<<

✚

✚ ✚⨯ ⨯ ⨯

D1[2]D0[2]
Vector Size = 32

Accum

<<

✚

✚

✚

1

exp

<<

✚ 1

exp

<<

✚ 1

exp
D1[0]D0[0] D1[1]D0[1] D1[2]D0[2]

FP4 DatapathFP8 Datapath

>>
32bInput0 FP expbias

+
32b

Adaptive Floating-
Point Exponent Shift

Offset
Input11 FP expbias

-6 60

!"#!|%|

1260

!"#!|%|

x16x16
32b 32b

✚

Native FP spread

Per-Vector
Exponent Biases

(4-bit Mode)

...

...

...

...SV0 SV1

ST
Per-Tensor

Exponent Bias
(8-bit Mode)

FP spread shifted to max
value in vector / tensor

Gate MACs for
Null Vectors

S1E4M3 Inputs S1E3M0 Inputs

FP4/FP8 sel

expbias registers

(a)

(b)

Figure 5.8: (a) Mixed‐precision FP8/FP4 processing element. The FP8 MAC has a vector size of 16 while the FP4 MAC
utilizes a vector size of 32, enabling the STP to double its throughput. (b) Post‐accumulation tensor scaling is performed
at a per‐vector, and per‐tensor granularity during FP4, and FP8 computations, respectively.

entropy algorithm by negatively scaling all elements in the early exit vector by the maximum score.

Figure 5.7 also plots the per-sentence correlation between the 1st layer’s computed entropy and the

achieved voltage and frequency scaling via the embedded VFS mechanism. We observe, here, fine-

grained, per-sentence power optimization based on the entropy characteristics of the input query.

72

5.3.1 Mixed-Precision FP4/FP8 Datapath

Figure 5.8 (a) shows the details of the mixed-precision (MP) floating-point MAC unit. In this work,

we consider two floating-point based number systems for high dynamic range computations (Fig-

ure 5.9). FP8 with a 4-bit exponent field and a 3-bit mantissa field, and FP4/LOG4 with a 3-bit ex-

ponent field and no mantissa. In this case, we essentially have a 4-bit logarithmic data type wherein

we additionally use the gamma variable to control the distance between values166. Doing tensor

S 3-bit Mant4-bit Exp

S 3-bit Exp

FP8
(E4M3)

FP4/LOG4
(E3M0) ! ∝ distance	between	values

Figure 5.9: Floating‐point number systems implemented in the STP mixed‐precision MAC.

multiplication in a logarithmic processing element is appealing in the sense that multipliers are not

needed. As illustrated in Figure 5.8 (a), the LOG4 datapath, at the core, simply needs adders and

shifters, enabling greater energy efficiency.

To ensure that we can accurately compute tensors with very large dynamic ranges, we add a bias

parameter in the exponent field of both data types to enable the STP to do post-accumulation ten-

sor scaling, similar to the AdaptivFloat concept discussed in Chapter 3. However, doing a naive im-

plementation of FP4 with per-tensor scaling leads to a steep loss in the model accuracy. To dampen

this accuracy degradation in the FP4 regime, we opt to do per-vector scaling. Similar to recent work

that leverages per-vector scale factors during INT4 quantization64, the STP uses per-vector expo-

nent biases during FP4 computations (Figure 5.8 (b)).

TheMP processing element comprises 16 lanes of FP8 vector datapaths with coarse-grained per-

tensor exponent bias scaling, each lane using a vector size of 16. And, 16 lanes of LOG4 datapaths

73

Figure 5.10: Annotated die photo highlighting the physical layout of the 12nm EdgeBERT STP.

with fine-grained per-vector exponent biases are provisioned with a vector size of 32, enabling the

STP to double its throughput. TheMP datapaths are gated for null input vectors in order to save

power. The selection between the FP4 and FP8 datapaths is controlled by the SFU entropy unit.

Therefore, depending on the entropy characteristics of the input query, the STP activates either

higher (FP8) or lower (FP4) precision computations.

5.4 12nmChip Prototype and Post-SiliconMeasurement Results

The proposed STP was fabricated using GlobalFoundries 12nm FinFET process as part of a larger

system. Figure 5.10 shows an annotated physical layout of the STP overlayed on a photograph of

the flip-chip packaged die. Decaps were carefully placed at the output of the feed-forward LDO to

ensure proper RC time constant compliance and adequate noise filtering.

74

Figure 5.11: V/F scaling performance of the STP.

Figure 5.11 plots the frequency vs. voltage operation of the 4.60mm2 STP and the resulting com-

putational efficiency presented in terms of TFLOPS/W. Functional operation is verified across a

0.62-to-1.0V supply voltage range with 77-to-717MHz clock frequency, while producing an energy

efficiency range of 3.0-8.24TFLOPS/W (FP8) and 6.61-18.1TFLOPS/W (FP4).

Figure 5.12 presents the post-silicon latency and energy results while executing the computations

of BERT-base on the sentiment analysis (SST-2) dataset. Co-designing the early exit (EE) algorithm

allows the accelerator to reduce latency and energy expenditures by 3.71×. Attention head prun-

ing (AP) further extends these savings by 1.5×. The addition of mixed-precision (MP) predication

enables the processor to achieve a minimum average inference latency of 682ms. Assuming an end-

to-end per-sentence latency constraint of 2 seconds, the STP can opportunistically derate its voltage

and frequency (VFS) to further reduce energy consumption, measured down to an average of 65mJ

per inference. The horizontal histograms in Figure 5.12 provide further details of the measured per-

sentence processing latency and energy results. Combining EE, AP, andMP allows the majority of

sentences to execute under 1 second, while VFS allows the accelerator to process most sentences un-

75

464

4184

125
88 77 65

1129
801 682

1155

3.71x 5.22x 6.13x 3.62x

3.71x 5.27x 6.03x 7.14x

Minimum
Energy!

Minimum
Latency!

VFS allows most
sentences to consume

less than 50mJ

EE+AP+MP
processes most

sentences in < 1sec

Figure 5.12: Measurement results for BERT inference on the SST‐2 dataset, highlighting the benefits of early exit (EE),
attention head pruning (AP), mixed‐precision (MP), and latency‐bounded V/F scaling (VFS).

der 50mJ/inf by relaxing the latency target to 2 seconds. In contrast, a conventional implementation

would consume 4 seconds of latency and 464mJ per inference.

Finally, we note that given the modularity of the STP hardware architecture, the latter can be

scaled to achieve stricter latency targets (e.g., < 100ms) by using a higher count of MAC vector sizes

and parallel lanes.

76

5.5 Takeaways and Follow-on Research

As newer Transformer-based pre-trained models continue to generate impressive breakthroughs in

language modeling, they characteristically exhibit complexities that levy hefty latency, memory, and

energy taxes all computing scales. The EdgeBERT algorithm-hardware co-design framework takes

a latency-driven approach to minimize Transformers’ energy consumption. Specifically, we adopt

first-layer early exit prediction in order to perform entropy-controlled voltage-frequency scaling, at a

sentence granularity, for minimal energy consumption while adhering to a prescribed target latency.

As Transformers are being extended to vision144,29 and speech86 applications, it would not be

too far-fetched to apply our proposed energy minimization methodology to these tasks as well. We

also note that the neural front-end of these Transformer-based networks often comes in the form

of embeddings, which can be reused and shared across different finetuned tasks. Given these em-

bedding parameters tend to have a one-time write cost, we can avoid the energy and latency costs of

reloading embedding vectors from off-chip memory for different tasks by storing them in embedded

non-volatile memories such as ReRAMs or PCMs.

A limitation of this work is that the entropy-based algorithms, so far, work only on encoder-based

Transformer architectures such as BERT. Future research will be investigating how to efficiently

extend early exit or entropy-based latency reduction capabilities on decoder-based Transformers

(such as GPT).

77

6
CAMEL: Co-Designing AIModels and

eDRAMs for Efficient On-Chip Learning

How to architect an on-deviceML training system using embedded dynamic mem-

ories? The looming deluge of data is expected to shift AI-related workloads to edge devices, and

those workloads will increasingly comprise training119. Edge processing has many appealing fea-

78

Inference
§ Weights are static
§ Activations are transient

Training
§ Weights are transient
§ Activations are transient
§ Gradients are transient

Fig. 1: Computation requirements during DNN inference and training, highlighting data transience
Figure 6.1: Computation requirements during DNN inference and training, highlighting data transience.

tures. It provides advantages in latency, energy efficiency, security, privacy, and autonomy. In par-

ticular, there is a growing demand for training DNNs locally within the edge device. For example,

Federated Learning (FL) requires on-device DNN training with local user data, which enables users

to adapt the DNNmodel to their personal data and continuously improve their accuracy based on

users’ preference.

However, training DNNs locally on edge compute platforms present several acute challenges.

Compared with the inference operation, DNN training requires extra computations to produce

activation gradients and weight gradients, making the computing workload far exceed the inference

scenario. Additionally, as also indicated in Figure 6.1, all the intermediate activations during the

forward pass need to be buffered in memory for gradient computations, resulting in a significant

memory footprint. The limited on-chip memory in edge AI chips often compels an overdependence

on costly (high energy and long latency) accesses to off-chip memories.

This problem often puts a constraint on the inference problem size, preventing the deployment

of large, state-of-the-art DNNs on mobile platforms. To address this challenge, there has been SoC

implementations using compute-in-memory SRAM cells128,153,32, and leveraging on-chip non-

volatile RRAMmacros106,155 – for the ultimate goal of reducing off-chip memory accesses. Non-

79

volatile memories (NVMs) such as RRAMs are appealing in the context of inference because they

can provide high-density, long-term storage of read-only weights parameters. However, during the

training regime, most of the data being used for computation are transient, i.e. their values are up-

dated frequently, as highlighted again in Figure 6.1. Therefore, NVMs may not be a viable solution

for edge training as the transitory nature of the data would be testing NVMwrite endurance con-

straints. Furthermore, due to the additional requirement of computing activation gradients, weight

gradients, as well as weight updates, the amount of transient data during training far exceeds (by

more than 3×) the volume of static or transient data during inference. Therefore, while the use of

SRAMs or compute-in-memory SRAMs may be fitting in the inference scenario, there may not be

enough on-chip SRAM capacity to store the large amount of transient data occurring during the

training regime.

Given there is a central need for data to be stored temporarily, we propose using embedded

DRAM (eDRAM) as the main on-chip storage medium of training data.

6.1 Using eDRAMs as theMain StorageMedium for On-Device Training

eDRAM, in many ways, would be a better fit for this problem. First, there is an opportunity to co-

design the DNN accelerator such that the transient data can be stored in eDRAM cells without or

with very few occurrences of refresh, which will improve the overall the system energy consump-

tion. Secondly, eDRAM already provides a tangible capacity improvement (at least 2× compared to

SRAMs38). Moreover, eDRAM also offers much lower leakage power than SRAM (around 3.5×

according to prior work18). The benefits of eDRAMmake it an attractive option for DNN com-

puting tasks145,15. And, there is an opportunity to further improve DRAM capacity by enabling

multiple-level storage which is not possible with SRAMs. This makes eDRAM practical for storing

the large volume of training data (activations, weights, and gradients).

80

Figure 6.2: eDRAM retention time failures versus refresh period for different write word line voltages (VWWL). Source:
R. Giterman et al. 38

Challenges: eDRAM data is stored as a charge on a capacitor that will leak over time, which re-

quires the eDRAM cells to be refreshed periodically for data intactness. Figure 6.2 shows the bit

failure percentages under different write word line voltages (VWWL) at a PVT corner of TT/0.6V/25c

in 16nm process. A retention time of 77us is measured to achieve a 99.9% bit yield.

It is, therefore, of great importance to inhibit prolonged data storage and reduce the eDRAM re-

fresh frequency. Unfortunately, the backward pass operation requires the activations in the early

layers to be stored for a much longer time than later layers (Figure 6.3). In particular, the input

activations of the first layer need to be buffered for the entire round trip iteration as they will be

absorbed during the two GEMMs of backward pass. Moreover, the weight update of the last layer

81

Loss

Forward Pass

Backward Pass

Longest storage
requirements

Figure 6.3: First and last layers in a deep neural network exact the longest storage durations during training, making
eDRAM adoption challenging.

needs to be held and consumed during the forward pass GEMM of the next iteration.

We address this challenge by proposing an algorithm-hardware co-design framework dubbed

CAMEL165, which leverages recent advances in reversible deep neural network40 and co-designs the

DNN architecture with the hardware system to significantly shorten eDRAM data lifetime during

ML training. Furthermore, a 2D Block Floating-Point (BFP) data type reduces the amount of com-

putation per unit area, wherein the higher throughput translates to short data lifetime requirements

and helps avoid eDRAM retention failures.

In the later sections, we provide greater details on these aforementioned solutions, which pro-

mote efficient ML training with refresh-free eDRAMs. We begin by first introducing the matrix

operations within the DNN training process.

6.2 Computations in DNNTraining

Each iteration of DNN training consists of a forward pass and a backward pass. During the for-

ward pass, the mini-batch will enter the DNN to compute the training loss. During the backward

pass, the gradients are calculated from the training loss, which will then be used to update the DNN

82

(a) Forward Pass
Compute output O

(b) Backward Pass
Compute activation gradients

= =B

H

W

C
C

H

W

N

BN

N

C N

H

W

B

C

H

W

B
N

C

BHW

C ATA

C

B
H

W

N

O=B
H

W

 (d) Backward Pass
Compute updated weights

= W’C

N

 WC

N

+WC

N

H

W

N

B B

H

W

C

=

C

N + =

C

N

C

N

(c) Backward Pass
Compute weight gradients

N

B
H

W

C

=B
H

W O A

N

B
H

W O WC

N

=WC

N

N

C

WT

 C
on

vo
lu

tio
n

 V
ie

w
 M

at
rix

 V
ie

w

Figure 6.4: The forward and backward pass steps for a single layer of DNN training represented in a convolution view
and a matrix view. The kernel size of the weight filters is assumed to be 1× 1 for illustration simplicity.

weights. Figure 6.4 describes the tensor operations and their equivalent matrix computations in-

volved during the forward and backward passes for a convolutional (CONV) layer. Specifically,

during the forward pass, the input activations (A) are convolved with the layer weights (W) to pro-

duce the outputO. ThenOwill pass through the batch normalization function and activation

function, the intermediate results will be used as the input for the later layers. The backward pass

computations involve two operations, given the output gradient∇O, it first convolves with the

DNNweightsW to generate the input gradient∇A. After that, the output gradient will convolve

with the input activation A to produce the weight gradient∇W. The weight gradient will multiply

with the learning rate η and sum with the original weightW in an elementwise fashion to produce

the updated weightsW′. Additional operations are required for other types of optimizers such as

Adam69.

6.3 Reversible DNNArchitectures

Reversible Residual Networks (RevNet)40 is a variant of the residual neural network (ResNet)49.

RevNet consists of multiple blocks that are reversible in the sense that the input activation of the

block can be computed using its output activation. Figure 6.5 shows the architecture of a reversible

block. F1 and F2 denote a series of DNN layers. For example, for CNN-based architectures, both F1

83

x2

y2

+

x1

+

y1

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

 (a) Architecture of
reversible block

(b) Equations during
the training process

Output

Reversible
Block

Reversible
Block

Linear

…

Input

F2

F1

Reversible
Block

Step 1: Recompute
the input x using y

y

x

Reversible
Block

Step 2: Compute gradients
and update weights

gout

gin

(c) Operations during
backward pass

Figure 6.5: Reversible DNN architecture and computations.

Reversible
Block

Weight
update

(a) Recompute
the input

y

x

Reversible
Block

gout

gin

Reversible
Block

gout

(b) Compute
input gradient

(c) Compute weight
gradient and update

x

Figure 6.6: Backward pass computation for reversible DNN.

and F2 consist of a CONV layer, a batch normalization layer and a ReLU layer. The reversible block

takes two input activation x1 and x2 and produces two output activations y1 and y2. Specifically, y1

and y2 can be computed as:

y2 = x2 + F1(x1) and y1 = x1 + F2(y2) (6.1)

To recompute x1 and x2 with y1 and y2, the following computation can be performed:

x1 = y1 − F2(y2) and x2 = y2 − F1(x1) (6.2)

The reversible architecture enables the backward pass computations to be performed without

84

+

+
+

F

y

Convert
Original DNN

F1

F2

xx

y
Reversible DNN

Figure 6.7: Converting a standard DNN into reversible DNN.

the need to store the input activations, as all the input activations x can be recomputed using the

output y. This further leads to remarkable memory savings and significant reduction on data life-

time. Figure 6.6 depicts the operations involved during the backward pass of a reversible DNN layer.

Given the output y, the input activations are first recomputed with equation 6.2 (Figure 6.6 (a)).

After that, the input gradient and weight gradient can be computed with the standard backward

pass operations (Figure 6.6 (b,c)).

Any DNN that adopts the residual architecture (e.g., ResNet or transformer) can be easily made

reversible. Figure 6.7 depicts an example of a two-layer DNNwith residual architecture, where F

represents a stack of layers within each residual block (e.g., CONV+BN+ReLU in ResNet), it can

be made reversible by plugging in a scaled version of F (i.e., F1, F2) into the architecture shown in

Figure 6.5. In the evaluation section, we demonstrate that the reversible DNN is capable to attain

accuracy comparable to that of the standard DNN for various types of F.

The reversibility feature eliminates the requirement for intermediate activation storage, enabling

significant reductions on memory footprint and data lifetime. However, the improved memory

performance comes at the price of growth on computing workload due to the recomputation.

Worse still, training a reversible DNN from scratch usually takes tens of thousands of iterations

to converge, which further exacerbates the latency and energy consumption. One way to solve this

problem is reducing the sizes of the DNN, but this will inevitably degrade the accuracy. Next, we

85

Input

Output

Softmax

Reversible
Block

Reversible
Block

po
ol

in
g

po
ol

in
g

x2

y

+

x1

+

F2

F1

Concatenate

+

x

y
Pretrained
DNN Block

Pretrained
DNN Block

B
ackbone D

N
N

B
ranch D

N
N

pooling

F3

Figure 6.8: The architecture of DuDNN, which consists of a two‐layer backbone DNN and a two‐layer branch DNN
that consists of reversible block shown in Figure 6.5. For illustration simplicity, we concatenate outputs by making
y = [y1, y2]. We assume the backbone DNN uses residual architecture in this example, but other architectures can also
be easily integrated.

describe a family of novel DNN architectures to mitigate this problem.

6.3.1 Duplex DNN for Fast On-Chip Learning

The proposed DNN architectures, termedDuplex DNN (DuDNN), is shown in Figure 6.8. It con-

sists of a Branch DNN (shown in light grey in Figure 6.8) and a Backbone DNN (shown in dark

grey in Figure 6.8). The branch DNN contains multiple reversible blocks shown in Figure 6.5,

the backbone DNN can be any DNN architecture (e.g., ResNet, Transformer). The backbone

DNN are pretrained offline using a large-scale training dataset (e.g., ImageNet). During the on-

device training stage, the backbone DNNwill transfer its knowledge about the current sample to

the branch DNN, the branch DNNwill take the transferred information and adjust its parameters

quickly to adapt the training samples.

Applying neural reversibility promotes recomputation instead of intermediate storage, therefore

lessening the acute constraint on satisfying eDRAM retention time during the on-chip training of

86

0.26 0.10

0.03 1.03

0.12 0.40

0.33 0.55

0.02 0.10

0.08 0.41

1.32 1.30

0.03 0.76

0.25 0.00

0.00 1.00

0.00 0.75

0.50 1.00

0.00 0.25

0.25 1.50

1.25 1.25

0.00 0.75

0.26 0.10

0.03 1.03

0.12 0.40

0.33 0.55

0.02 0.10

0.08 0.41

1.32 1.30

0.03 0.76

(a) Matrix Operands (b) Grouping the
FP numbers

(c) 2D BFP Conversion

0.25

1
0.00

0.00

1.00

0.00

0.5
0.75

0.50

1.00

1.25

1
1.25

0.00

0.75

0.00

0.25
0.25

0.25

1.50

(d) Resulting BFP Representation

1 0.5

1 0.25

Exponent
Mantissa

Figure 6.9: 2D BFP quantization on a 4× 4 matrix. Each group has a size of 2× 2.

very deep neural networks. In the next section, we describe a novel number system designed to boost

accelerator’s throughput and shorten data lifetime requirements.

6.4 Proposing a 2D Block Floating-Point Datatype

We apply BFP quantization technique on all the weights, activations, and gradients. During train-

ing, each matrix operand is first divided into multiple groups and then quantized with BFP repre-

sentation. Since the training operation involves the matrix computations under both original and

transposed formats (e.g.,W andWT, A and AT in Figure 6.4), the matrix operands need to be re-

quantized with BFP every time the new computation happens, as the transposition will break the

group configuration. For example, assume BFP is applied over the weight matrixWwith each BFP

group spanning across each column ofW. LetQ(W) denote theW in BFP format. Generating

Q(WT) requires re-quantization over theWT, as all the numbers within each column ofWT is no

longer within the same BFP group. These excessive re-quantization operations induce remarkable

implementation costs. To mitigate this overhead, we propose a two-dimensional BFP (2D BFP)

87

0.26 0.10

0.03 1.03

0.12 0.40

0.33 0.55

0.02 0.10

0.08 0.41

1.32 1.30

0.03 0.76

0.26 0.03

0.10 1.03

1.32 0.03

1.30 0.76

0.02 0.08

0.10 0.41

0.12 0.33

0.40 0.55

0.25 0.00

0.00 1.00

1.25 0.00

1.25 0.75

0.00 0.25

0.25 1.50

0.00 0.50

0.75 1.00

(a) Original format (b) Transposed format (c) Transposed format in BFP

1 0.5

1 0.25

Figure 6.10: (a) The original floating‐point matrix. (b) The transposed version of the matrix in (a). (c) The BFP representa‐
tion of (b), which can be derived easily by transposing the BFP matrix in Figure 6.9 (c).

quantization on the matrix operands. An example is shown in Figure 6.9 where a 4 × 4 floating-

point matrix (Figure 6.9 (a)) is divided into four 2 × 2 groups (Figure 6.9 (b)). After that, each

group is applied with BFP quantization (Figure 6.9 (c)), resulting in four groups of BFP numbers

(Figure 6.9 (d)). Using the 2D BFP representationQ(W) (Figure 6.9 (c)), we can easily derive the

BFP representationQ(WT) of its transposed formatWT (Figure 6.10 (c)) by directly transposing

Q(W) (i.e.,Q(WT) = Q(W)T), as indicated in Figure 6.10. In this work, we specifically adopt a

3 × 3 2D BFP format with a 4-bit shared exponent field, 5-bit mantissa and 1-bit sign for each of

the nine numbers in the BFP group. Therefore, our proposed 2D BFP format contains a total of 58

bits, resulting in an effective precision of 6.4 bits per number.

6.5 The CAMELHardware Accelerator Systemwith aHybrid eDRAM-SRAM

Memory Subsystem

To promote greater on-chip training performance and guarantee faithful eDRAM read/write trans-

actions, we design a reconfigurable hardware accelerator system illustrated in Figure 6.11. It consists

of a systolic array core and a hybrid eDRAM-SRAMmemory subsystem. In this section, we de-

scribe the accelerator in greater details, its operational dataflows, as well as, the eDRAM architecture

employed for the transient storage of activations and gradients produced during the on-chip train-

ing.

88

Input Setup / Output RetrievalMemory
Subsystem

…

…

Reconfigurable
6x6 Systolic Array

Accumulator

Special Function Unit

BFP Convertor

Ac
cu
m
ul
at
or

Sp
ec

ia
l F

un
ct

io
n

U
ni

t

BF
P

C
on

ve
rto

r

…

eD
R
AM

(a
ct

iv
at

io
ns

 &
 g

ra
di

en
ts

)
SR
AM

(w
ei

gh
ts

)

In
pu

t S
et

up
 /

O
ut

pu
t R

et
rie

va
l

Accelerator
Core

Figure 6.11: The CAMEL training accelerator system.

6.5.1 Systolic Array Core

The systolic array core consists of a 2D 6-by-6 bidirectional processing element (PE) array that re-

ceives staggered inputs from the I/O controller and then drains out the computed partial sums onto

a post-processing unit composed of the accumulator, special function, and BFP convertor units.

The accelerator benefits from the higher computational accuracy and efficiency of block floating-

point encapsulated inside the PE array and the greater hardware density of the fixed-point based

post-processing unit. The accumulator aggregates the partial sums into a register file with 64 entries.

The special function unit (SFU) computes, in a vectorized fashion, several mathematical and non-

linear functions such as ReLU, elementwise addition, subtraction, and multiplication, all of which

get invoked during the training passes. The fixed-point outputs of the SFU get converted back into

the 2D BFP datatype in order to be stored inside the memory subsystem.

The systolic array core can be reconfigured to operate in three operational workflows as illus-

trated in Figure 6.12 and described in162. During the forward and backward propagation for the

89

PE PE PE

PE PE PE

PE PE PE

(a) Forward Pass

In
pu

t /
 O

ut
pu

t e
D

R
A

M
)

Weight (SRAM)
Gradient (eDRAM)

Activation Unit

SFU

A
ct

iv
at

io
n

U
ni

t
S

FU
/B

FP
 C

on
ve

rto
r

PE PE PE

PE PE PE

PE PE PE

Weight (SRAM)
Gradient (EDRAM)

Weight Gradient Activation Accumulation
In

pu
t /

 O
ut

pu
t e

D
R

A
M

)

Activation Unit

SFU

A
ct

iv
at

io
n

U
ni

t PE PE PE

PE PE PE

PE PE PE

Weight (SRAM)
Gradient (eDRAM)

In
pu

t /
 O

ut
pu

t e
D

R
A

M
)

Activation Unit

SFU

A
ct

iv
at

io
n

U
ni

t

(b) Input gradient computation (c) Weight gradient computation

S
FU

/B
FP

 C
on

ve
rto

r

S
FU

/B
FP

 C
on

ve
rto

r

Figure 6.12: Accelerator workflows during the computation of the training passes described in Figure 6.4.

input gradient, the accelerator adopts a weight-stationary dataflow wherein the weights are first pre-

loaded from the weight SRAM into the PE weight register and then the inputs are streamed into

the array in a staggered cadence. During the forward propagation, activations are fed to the PE ar-

ray from left to right and the partial sums are accumulated from top to bottom (Figure 6.12 (a)). In

contrast, the backward propagation for the input gradient operates in the reverse direction, i.e., the

gradient data is streamed from top to bottom while the results are accumulated from left to right

(Figure 6.12 (b)). This ensures that matrix-matrix multiplications efficiently operate on the correct

dimensionality of the different input operands invoked during the forward and backward passes.

Furthermore, the systolic array is configured with an accumulation-stationary dataflow during the

backward propagation for the weight gradient. In this mode, the IO control unit feeds in the acti-

vations and gradients simultaneously into the array and the result accumulates inside the PE until

weight gradient tiles are fully computed. At this point, the PEs drain out the accumulated results

from left to right for post-processing and weight updating in the SFU, and then the updated weights

are stored in the weight SRAM (Figure 6.12 (c)).

90

BFP
Vector A

Training
mode

…

b0
b1

b57
b56

… AND

Gate
if null

m0

Exp

…

m8

m1

…

…

+

Transpose
AND

BFP
Vector B …

b0
b1

b57
b56

… AND
m0

Exp

…

m8

m1

…

Transpose
AND

Gate
if null

…

m8

Exp

m0

m1

…

Exp

m0

m8

m1

Output
Register+ <<

Figure 6.13: Architecture of the CAMEL processing element.

6.5.2 BFP PE Design

The architecture of the processing element (PE) of the systolic array is shown in Figure 6.13. The

PE receives two tensor operands in the 2D BFP format described in Section 6.4, and performs

multiply-and-accumulate (MAC) computations.

Depending on the training mode (i.e., forward or backward pass), the BFP vector gets transposed

in place. To promote greater energy efficiency, the PE is equipped with two gating checkpoints be-

fore the MAC hardware resources are utilized. First, in case all the 58 bits in one of the two BFP

operands are zero, the PE immediately skips to write zero onto the output register. Otherwise, an-

other check is performed on the mantissa bits whereby the mantissa multiplier is gated in case all the

mantissa bits in one of the two operands are zero. The BFPMAC executes a left-shift operation on

the product-sum of the mantissas by the sum of the exponents.

91

Single eDRAM Bit Cell

…

…

58 bits

Exponent Mantissa <0>

…

Mantissa <8>

…

…

10
24

 w
o

rd
s

…

(b) CAMEL Memory Layout(a) 3T eDRAM bit cell

M
1 M

2

M
3

RWL

VDD R
B

L

SN

WWL

W
B

L I
SUB

Figure 6.14: (a) Schematic view of a 3T eDRAM bit cell, highlighting the main charge/discharge path (ISUB) for the
storage node (SN). RWL – read word line, RBL – read bit line, WWL – write word line, and WBL – write bit line. (b) Block
floating point storage mapping within a 58× 1024 eDRAM array.

6.5.3 Hybrid eDRAM-SRAMMemory Subsystem

The memory subsystem collects and unifies, across channels and filters, the input/output activations

and gradients, as well as the master weights. Given the ultimate goal of the training regime is to learn

more accurate representations of the master weights, which potentially will be used in subsequent

inference tasks, the learned weights are then stored in a static medium (i.e., SRAMs). On the other

hand, the transient activation and gradient parameters, which represent the majority of the total

training data, are housed in eDRAMmemories. The hybrid SRAM-eDRAMmemory partitioning

provides the benefits of high density storage for the majority of training data and long-term stor-

age for the weights which constitute the final solution of the on-chip learning task. Twelve 32KB

eDRAM banks and six 8KB SRAM banks are integrated in the memory subsystem.

6.5.4 eDRAMDesign

Given there is a central need for the large volume of data to be stored temporarily, eDRAM presents

itself as an appealing storage medium for on-chip AI training. An eDRAM structure has the po-

92

tential to reduce the memory footprint by 2×with a lower access and leakage energy consumption,

compared to SRAM. The main memory design utilized for the CAMEL system evaluation is based

on learnings from previous literature38,95, which demonstrated full functionality of a 3T eDRAM,

even at newer transistor technologies such as FinFET. However, the main drawback of eDRAM is

its short retention time and additional energy consumption to refresh previously stored data.

As shown in Fig. 6.14 (a), the main leakage path for the storage node (SN) to charge/discharge is

ISUB, passing through the write transistor M1. Therefore, to maximize data lifetime, i.e., extend the

memory cell’s retention time, we employ well studied leakage mitigation techniques such as WWL

over- and under-drive. Along with co-designing our DNN training algorithm and the hardware to

support it, we completely eliminate the need for explicit eDRAM refresh. Fig. 6.14 (b) illustrates

the 3T eDRAM array layout for CAMEL. Here, we used memory banks of 58 bits and 1024 words

to better match the 2D BFP data shape of our DNN algorithm. We also depict the mapping of BFP

into the memory, where we store words comprising one 4-bit shared exponent along with nine 6-bit

signed mantissas.

6.6 Evaluation

In this section, we first evaluate the accuracy performance of the reversible DNN, dubbed DuDNN

over multiple DNN architectures and datasets. We then provide the hardware evaluation of the

CAMEL system.

6.6.1 Settings for Duplex Architecture Training

We evaluate the training performance (e.g., classification accuracy) of DuDNNwith multiple

DNNs over different datasets. We adopt different architectures for the backbone DNN, includ-

ing CNNs (ResNet-18, ResNet-34, ResNet-5049, VGG-16127) and vision transformer (ViT)28.

93

re
ve

rs
ib

le

irreversible

irr
ev

er
si

bl
e

irreversible

irreversible
irreversible

re
ve

rs
ib

le

(a) Duplex
DNN

(b) Fully
irreversible

(c) Chain
architecture

(d) Branch
only

(e) Backbone
only

irr
ev

er
si

bl
e

Figure 6.15: Baseline algorithms for accuracy evaluation. For each baseline architecture, its trainable part is highlighted
in green while the frozen part is highlighted in blue.

The backbone DNN is pre-trained offline with the CIFAR-10074 or ImageNet (ILSVRC 2012)26

datasets. The pre-trained backbone DNN is then used to guide the training of branch DNN over

CIFAR-1074 or Tiny-ImageNet63 datasets.

To evaluate the accuracy performance of the DuDNN, we develop some other baseline archi-

tectures that are shown in Figure 6.15. The fully irreversible (FI) architecture applies irreversible

architecture (e.g., residual architecture) over both backbone and branch DNNs. The purpose of

this baseline is to evaluate the impact of reversible architecture on validation accuracy. The Chain

architecture (CA) concatenates the reversible branch DNNwith the pre-trained backbone DNN.

During the training process, only the reversible component are learnable. The branch only (BrO)

architecture trains the branch DNN solely without the support from the backbone DNN, BrO

can be used to evaluate the impact of the backbone DNN on the convergence behavior of branch

DNN. Finally, the backbone only (BaO) architecture trains the backbone DNN from scratch.

6.6.2 Accuracy Evaluation onDifferent Baselines

Table 6.1 depicts the DNN test accuracies with different datasets. The names of DNNs indicate

the number of layers in branch DNN and backbone DNN. For example, Branch-4 + ResNet-18

denotes a four-layer branch DNNwith a ResNet-18 backbone. For BO, the branch DNN is trained

from scratch without the backbone. We can see that DuDNN achieves a significantly better accu-

94

Table 6.1: The training accuracies of each method on different DNN architectures.

Architectures DuDNN FI CA BrO BaO

CIFAR-10 Tiny-ImageNet CIFAR-10 Tiny-ImageNet CIFAR-10 Tiny-ImageNet CIFAR-10 Tiny-ImageNet CIFAR-10 Tiny-ImageNet
Branch-4 + ResNet-18 87.08% 71.07% 87.20% 71.56% 78.33% 66.30% 55.32% 47.33% 90.32% 90.02%
Branch-5 + ResNet-34 88.81% 74.14% 88.83% 74.88% 79.89% 69.74% 57.80% 49.65% 92.80% 91.98%
Branch-6 + ResNet-50 89.22% 75.88% 89.33% 75.91% 81.14% 70.60% 61.62% 53.09% 93.48% 92.49%
Branch-6 + VGG-16 89.15% 75.98% 89.13% 76.10% 80.98% 70.12% 61.62% 53.09% 92.62% 92.14%
Branch-6 + ViT-12 88.67% 73.56% 88.80% 73.85% 80.72% 68.83% 59.57% 52.36% 91.76% 91.85%

Datasets DuDNN FI CA
MRPC 0.822 0.83 0.787
WNLI 0.606 0.608 0.534
RTE 0.678 0.669 0.612
STS-B 0.879 0.889 0.768
QNLI 0.903 0.909 0.845
SST-2 0.919 0.921 0.868
QQP 0.911 0.911 0.870

Table 6.2: Training accuracies over text classification tasks.

racy than CA and BrO on both CIFAR-10 and Tiny-ImageNet datasets, which indicates that the

duplex architecture can greatly benefit the branch DNN learning process. DuDNN also achieves a

comparable accuracy as FR, which adopts an irreversible architecture in their branch DNN. How-

ever, compared with DuDNN, FI and BaO require a tremendous amount of storage to buffer the

intermediate activations and further incurs a large overall memory power and latency cost.

We also evaluate DuDNN over text classification tasks with the GLUE dataset151, which fur-

ther includes nine subtasks. We adopt the pretrained 12 layer BERTmodel as the backbone DNN,

and finetune a six-layer Branch DNN, where each reversible block in the branch DNN adopts an

attention-based architecture similar to BERT. All the DNNs are trained with 8 epochs. From the

results shown in Table 6.2, we observe that DuDNN outperforms CA and achieve a similar perfor-

mance and FI across all both datasets.

95

6.6.3 Hardware Settings of CAMEL System

In this section, we evaluate the hardware performance of the CAMEL system described in Sec-

tion 6.5. The CAMEL accelerator is designed in synthesizable SystemC and its verilog RTL is gen-

erated by the Catapult High-Level Synthesis (HLS) tool126. HLS directives are uniformly set with

the goal to maximize throughput on the pipelined design. During the HLS process, the SRAM and

eDRAM banks are mapped to bit-accurate verilog templates. The following evaluation results are

measured at 500MHz using a commercial 16nm process node.

The CAMEL system contains a 6 × 6 systolic array, where each systolic cell can perform a dot

product between two 3 × 3 BFP group within one cycle. All the intermediate activations and gradi-

ents are stored inside the eDRAM, while the weights are saved in the SRAM.

6.6.4 Retention Time Performance

Tomodel the behavior of eDRAM, we simulated a 58 bits× 1024 words 3T eDRAM array to ex-

tract retention time and energy consumption metrics. To generate an accurate retention time, we

ran 1000Monte Carlo on-die variation points at the typical process corner using VDD = 0.8V, and

at temperatures ranging from -30 to 100 . We measure retention time right after a write operation

and until the sense amplifier is still able to correctly read the stored value at 99% yield. In our reten-

tion time simulation, we consider a worst-case memory access activity of 0.5 by toggling write bit

line (See Figure 6.14) at the system operating frequency, in order to match the high memory access

activity of CAMEL.

Figure 6.16 shows that the worst-case retention time ranges from 3.4μs at 100 to 30μs at -30.

We adjust the size of the DuDNN such that the data lifetime is strictly less than the worst reten-

tion time (3.4μs). As an example, Figure 6.17 (a) shows the maximum data lifetime at each layer

of Branch DNN in Branch-6 + ResNet-50 during the training on Tiny-ImageNet. As an exam-

96

-30 0 25 60 100
Temperature [°C]

0

20

40

60
R

et
en

tio
n

T
im

e
[

s]
eDRAM Retention Time Across Temperature

Figure 6.16: 3T eDRAM retention time across temperature.

33.0%

Memory

12
.5

%

12.0%

Systolic array Accumulation unit
Special function unit

(a) Data lifetime distribution

36.9% 7.8
%

42.5% 38.9%

16.4%

0

M
ic

ro
se

co
nd

L1

1.22

L2 L3 L4 L5 L6

1

2

3

4

1.49
1.95

2.38

3.30 3.30

(b) Area and power Breakdown of CAMEL

A
re

a
br

ea
kd

ow
n

Po
w

er
 b

re
ak

do
w

n

Figure 6.17: (a) Maximum data lifetime at each layer of Branch‐6+ResNet‐50. (b) Area and power breakdown of CAMEL.

97

ple, Figure 6.17 (a) shows the maximum data lifetime at each layer of Branch DNN in Branch-6 +

ResNet-50 during the training on Tiny-ImageNet.

6.6.5 Area and Power Breakdown

Figures 6.17 (b) shows the area and power breakdown of the CAMEL system. Notice that the ma-

jority of the area is consumed by the memory subsystem and systolic array, which take 42.5% and

33.0%, followed by the special function unit (12.5%) and accumulator (12.0%). For the power con-

sumption, the memory subsystem still has the largest power consumption (38.9%), followed by the

systolic array (36.9%), accumulator (16.4%), special function unit (7.8%).

6.6.6 Training Performance of the CAMELHardware System

In this section, we evaluate the hardware performance of CAMEL system described in Section 6.5

by comparing against another DNN training system implemented without eDRAM.

We implement the DuDNNmodels that generate the accuracies on Tiny-ImageNet shown in

Table 6.1. All the intermediate activations and gradients of DuDNN can totally fit on the on-chip

eDRAM, which eliminates the off-chip memory traffic. We use Time-to-Accuracy (TTA)19 as the

evaluation metric to compare the different approaches. TTAmeasures the amount of total latency

required to train the DNNmodel until reaching a target validation accuracy. In addition, we also

measure the total amount of energy during this DNN training process, and name the resulting met-

ric Energy-to-Accuracy (ETA).

Figure 6.18 (a) shows the TTA of the baseline systems with different DNN architectures on

Tiny-ImageNet. We set the target accuracy to 70%. The training time is normalized by the per-

formance of DuDNN+CAMEL which achieves the smallest TTA. For some of the settings for

CA+CAMEL and all settings for BO+CAMEL, their accuracies can not reach the target 70% accu-

98

Systolic array
Memory

Accumulation unit
Special function unit

6

1N
or

m
al

iz
ed

 E
TA

B4+R18

1.532

2.85

1.61
2.51

4.07

2.723
4
5

1

4.31

B5+R34 B6+R50 B6+V16

6

1

N
or

m
al

iz
ed

 T
TA

B4+R18
1.192 1.991.61

2.51
3.11

2.72

Du
DN

N+
CA

M
EL

3
4
5

1

3.70

FI
+S
RA

M
-o
nl
y

B5+R34

B6+R50 B6+V16
6.04 6.207 6.20

6.04

(a) TTA Evaluation (b) ETA Evaluation

CA
+C
AM

EL
Du
DN

N+
CA

M
EL

CA
+C
AM

EL
Du
DN

N+
CA

M
EL

FI
+S
RA

M
-o
nl
y

CA
+C
AM

EL
Du
DN

N+
CA

M
EL

FI
+S
RA

M
-o
nl
y

CA
+C
AM

EL

Du
DN

N+
CA

M
EL

FI
+S
RA

M
-o
nl
y

CA
+C
AM

EL
Du
DN

N+
CA

M
EL

FI
+S
RA

M
-o
nl
y

CA
+C
AM

EL
Du
DN

N+
CA

M
EL

FI
+S
RA

M
-o
nl
y

CA
+C
AM

EL
Du
DN

N+
CA

M
EL

FI
+S
RA

M
-o
nl
y

CA
+C
AM

EL

FI
+S
RA

M
-o
nl
y

Figure 6.18: TTA and ETA evaluation over different DNN architectures on Tiny‐ImageNet. ”B”, ”R” and ”V” denote
Branch, ResNet and VGG, respectively.

racy, and therefore they are eliminated from the figure. We set the mini-batch size to 48 for all the

systems. The DuDNN+CAMEL achieves the optimal performance over other baseline systems.

Compared with DuDNN+CAMEL, FR+SRAM-only adopts the SRAM to store the activations

and gradients, therefore the memory subsystem consumes a larger chip area than CAMEL, result-

ing in a smaller systolic array and lower throughput. Despite that DuDNN training includes an

extra process to recompute the input, it still ends up with a 20% smaller TTA on average. Lastly,

CA+CAMEL and BO+CAMEL (not shown) incur much larger TTAs because of the inferior con-

vergence behavior of CA and BO, which further leads to a large number of iterations for reaching

the target accuracy.

Figure 6.18 (b) shows the ETA evaluation of the different approaches. We observe that DuDNN+CAMEL

achieves more than 2× lower ETA on average compared with the other approaches. This is partially

due to the fact that DuDNN+CAMEL obtains the smallest TTA among all the systems and further

leads to the smallest energy consumption. Additionally, the usage of eDRAMs in CAMEL also in-

duces a much lower memory dynamic power than SRAM-only systems, this can be easily observed

with the power breakdown shown in Figure 6.18 (b), where the majority of the energy consumption

99

0 1 2 3
Normalized Energy

50

60

70

80

A
cc

ur
ac

y

DuDNN+CAMEL
CA+CAMEL

FR+SRAM-only
BO+CAMEL

Figure 6.19: Accuracy versus energy.

in FR+SRAM-only is from the memory subsystem.

6.6.7 Accuracy Performance with Energy

Figure 6.19 shows the changes on accuracies with the energy consumption for the different ap-

proaches with Branch-6+ResNet-50 architecture on Tiny-ImageNet dataset. We see that DuDNN+CAMEL

converges with the least amount of energy.By comparison, FR+SRAM-only ends up with a slightly

higher accuracy than DuDNN+CAMEL at a price of much larger total energy consumption. Fi-

nally, CA+CAMEL and FO+CAMEL converge at much lower accuracy with much higher energy

consumption.

6.6.8 Impact on Systolic Array Size

Finally, we investigate the impact on the systolic array size on the data lifetime. Specifically, we in-

crease the systolic array size as well as the number of eDRAM and SRAM banks proportionally for

supporting the systolic array operation. Table 6.3 presents the average data lifetime during the train-

ing process of Branch-6+ResNet-50 on Tiny-ImageNet. We observe that the data lifetime decreases

100

Array size Data Lifetime
6× 6 1×
10× 10 0.90×
12× 12 0.37×

Table 6.3: Impact of systolic array size on data lifetime during the training of Branch‐6+ResNet‐50. The data lifetime are
normalized.

sub-linearly as the systolic array size grows. This is because a larger systolic array may also incur a

lower utilization rate for some layers of DuDNN, resulting in the same retention time as the small

systolic array.

6.7 Conclusion and FutureWork

In this work, we propose a novel DNN training system that uses eDRAM as the major storage

medium. To mitigate the expensive data refresh in eDRAM, we further propose a novel Duplex

DNN architecture that enables a significantly reduced data lifetime during the DNN training pro-

cess and further eliminates the needs for eDRAM refreshing. Finally, we propose an optimal com-

putation pattern for Duplex DNN training with minimized memory consumption and data life-

time. This full-stack optimization allows for a more than 2× savings on energy consumption for

training different DNN architectures. To our best knowledge, this is the first work that proposes a

model-scheduler-architecture stack for efficient on-chip training with refresh-free eDRAMs, which

opens up interesting future avenues in a promising direction of research. In particular, a 16nm chip

tapeout validating this cross-stack co-design will soon be demonstrated. These results motivate in-

vestigating ways to further improve eDRAM capacity via multi-level cell storage, not possible with

the conventional 6T SRAM architecture.

101

7
Conclusion

In this dissertation, we have proposed and discussed four co-designs to promote greater arithmetic

density, compute flexibility, and energy efficiency for on-chip deep learning, while prototyping and

validating these deep co-designs in silicon systems.

In Chapter 3, we presented AdaptivFloat which is a floating-point based mathematical blueprint

that uses a configurable exponent bias to enable highly-accurate, low-precision computations with-

out compromising validation accuracy.

102

In Chapter 4, we presented a 16nm SoC for noise-resistance on-device speech-to-text using a

reconfigurable hardware accelerator for efficient computations of attention-based RNNs, dubbed

FlexASR, as well as, a Bayesian engine for on-chip real-time denoising. In this work, we showed that

we can obviate the need to compute the inference of large ASR neural networks by plugging in the

right algorithmic ingredient in the front-end execution pipeline of a monolithic system-on-chip –

and doing so without compromising the end-to-end task accuracy.

In Chapter 5, we describes a principled algorithm-hardware co-design solution, validated in a

12nm chip tapeout, that accelerates Transformer workloads by tailoring the accelerator’s latency and

energy expenditures according to the complexity of the input query it processes. For this purpose,

we use the entropy function as a key metric informing fine-grained, per-sentence latency and power

optimizations.

In Chapter 6, we discussed an eDRAM-based fully-on-chip DNN training methodology, pro-

totyped in a 16nm chip tapeout. We showed that by using a combination of reversible neural net-

works, a custom 2D block floating-point data type, and a systolic-array -basedML training hardware

architecture, we can meet eDRAM retention time constraints and avoid refresh penalties.

7.1 Future ResearchDirections

The future of computing in the post-Moore era will be characterized by massive 2D and 3D system

integration aimed at solving some of the challenges in zetta-scale computing and beyond; notably

interconnect and I/O bandwidth, as well as memory capacity. At the same time, a shift away from

compute-centric and towards data-centric processing will accelerate the preeminence of specialized

computing, bringing forth more personalized experiences to everyday users. To realize sustainable

improvements in energy efficiency, newer algorithms, number formats, synthesized compilers, and

computing paradigms will need to be created to lessen power consumption costs that will scale with

103

increased compute density and scalability. On these lines, here are some follow-on research direc-

tions building from this dissertation:

1. Architectures for Emerging Numerics and Compute-Intensive Applications. As the de-

mand for greater arithmetic density and computational accuracy grows, number systems will

play an increasingly pivotal role in the design of next-generation computing platforms. On

one hand, to exact cohesion among programming software interfaces, some newly-created

and highly-adopted low-precision number formats (e.g., E4M3, E5M2) will require stan-

dardization as chartered by the IEEEWorking Group on Arithmetic Formats forMachine

Learning. On the other hand, I see vast opportunities to break from established standards by

sculpting numerics that generate stronger value-add to emerging compute-intensive appli-

cations. Building on my recent related work on numerics134,88,136, I envision the algorithm-

architecture co-design of novel number systems that provide greater amortization of the PPA

costs that scale with arithmetic density, and most importantly, without compromising on

computational accuracy.

2. Resilient Multi-level Embedded DRAMMemory Systems. Achieving high on-chip mem-

ory density is necessary to eliminate the significant inefficiencies stemming from off-chip

memory accesses. Building on my current eDRAM research and tapeout learnings, there

is an opportunity to further improve eDRAM capacity by enabling multi-level cell (MLC)

storage. This will make eDRAM practical for storing the large volume of training data gener-

ated by more sophisticated DNNs. However, the drawback of MLC storage is that the num-

ber of faults increases with the number of levels, and the refresh requirement also becomes

stricter. I see opportunities to develop customMLC eDRAM topologies, newer runtime

schedulers, and frameworks for eDRAM-based approximate computing, as well as, MLC

eDRAM-based chip tapeouts – all with the goal of achieving a high degree of algorithmic

104

resilience, storage and energy efficiency.

3. Cryogenic CMOS Circuits for Quantum Readout and Control. Amajor advantage of

cryogenic CMOS circuits is their ultra-low power consumption, which is crucial for main-

taining the low temperatures required for superconducting qubits to operate. When prop-

erly designed, they also offer high speed and high integration density, which would be essen-

tial for scaling up quantum systems to larger sizes. Recent work37 demonstrates the viability

of 2T-based gain-cell eDRAMs under cryogenic conditions, revealing significant advan-

tages in area (-73%), leakage power (-97%), retention power (-76%), and energy (-66%) when

compared to conventional 6T-SRAM. This is a promising line of device research that, in my

view, offers a lot more room for PPA improvement.

4. Smart Power Management. The problem of energy efficiency still exists, and in fact, has

been made worse by the unrelenting pursuit of omniscient and omnipotent AI. Building on

my past research on entropy-based early exit and DVFS135,131 for inferencing large language

models, I envision future AI-aided smart power management schemes and circuits providing

finer-grained control on power and latency consumption in next-generation computing plat-

forms. It is increasingly critical to integrate mixed-signal architectures and software drivers

that are tweaked to interface with the AI algorithm in order to promote high system energy

efficiency across all operational modes.

5. Scalable Silicon Systems. The waning effectiveness of transistor scaling is motivating an

industry-wide push towards modularity and heterogeneous integration. I had a front row

seat in the engineering of this trend having designed high-speed communication circuits cus-

tomized for the EmbeddedMulti-Die Interconnect Bridge (EMIB) in Intel’s first products

adopting this chip-to-chip packaging technology. We are now seeing newer solid-state so-

lutions aiming to democratize chip-to-chip scalability. In particular, UCIe123, and Bunch

105

of Wires5, which are open industry standard interconnects, offering high-bandwidth and

low-latency on-package connectivity between chiplets.

2D, 2.5D, or 3D chip making should not be an esoteric endeavour. Academia has a huge

role to play in lowering the entry barrier for designing high performance scalable systems in

a cost-effective and user-friendly manner. In fact, the recent global chip shortage has caused

significant micro- and macro- economic consequences, highlighting the urgent need to ex-

plore new research avenues that focus on reducing the overall design effort and cost across

the software-silicon stack.

106

References

[1] Akhlaghi, V., Yazdanbakhsh, A., Samadi, K., Gupta, R. K., & Esmaeilzadeh, H. (2018). Sna-
pea: Predictive early activation for reducing computation in deep convolutional neural net-
works. In Proceedings of the 45th Annual International Symposium on Computer Architecture
(pp. 662–673).

[2] Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N. E., &Moshovos, A. (2016).
Cnvlutin: Ineffectual-neuron-free deep neural network computing. In Proceedings of the
43rd International Symposium on Computer Architecture.

[3] Amatriain, X. (2023). Transformer models: an introduction
and catalog — 2023 edition. https://amatriain.net/blog/

transformer-models-an-introduction-and-catalog-2d1e9039f376/.

[4] Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper,
J., Catanzaro, B., Chen, J., Chrzanowski, M., Coates, A., Diamos, G. F., Elsen, E., Engel,
J., Fan, L. J., Fougner, C., Hannun, A. Y., Jun, B., Han, T. X., LeGresley, P., Li, X., Lin, L.,
Narang, S., Ng, A., Ozair, S., Prenger, R. J., Qian, S., Raiman, J., Satheesh, S., Seetapun, D.,
Sengupta, S., Sriram, A., Wang, C.-J., Wang, Y., Wang, Z., Xiao, B., Xie, Y., Yogatama, D.,
Zhan, J., & Zhu, Z. (2015). Deep speech 2 : End-to-end speech recognition in english and
mandarin. In International Conference onMachine Learning.

[5] Ardalan, S., Cirit, H., Farjad, R., Kuemerle, M., Poulton, K., Subramanian, S., & Vinnakota,
B. (2020). Bunch of wires: An open die-to-die interface. In 2020 IEEE Symposium on High-
Performance Interconnects (HOTI) (pp. 9–16).

[6] Arm (2020). Armmachine learning processor. https://developer.arm.com/ip-products/
processors/machine-learning/arm-ml-processor.

[7] Ba, J., Kiros, J. R., &Hinton, G. E. (2016). Layer normalization. ArXiv, abs/1607.06450.

[8] Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning
to align and translate. In 3rd International Conference on Learning Representations, ICLR
2015.

107

https://amatriain.net/blog/transformer-models-an-introduction-and-catalog-2d1e9039f376/
https://amatriain.net/blog/transformer-models-an-introduction-and-catalog-2d1e9039f376/
https://developer.arm.com/ip-products/processors/machine-learning/arm-ml-processor
https://developer.arm.com/ip-products/processors/machine-learning/arm-ml-processor

[9] Banner, R., Hubara, I., Hoffer, E., & Soudry, D. (2018). Scalable methods for 8-bit training
of neural networks. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems, NIPS’18 (pp. 5151–5159). Red Hook, NY, USA: Curran Associates
Inc.

[10] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al. (2020a). Language models are few-shot learners.
Advances in neural information processing systems, 33, 1877–1901.

[11] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T. J.,
Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever,
I., & Amodei, D. (2020b). Language models are few-shot learners. ArXiv, abs/2005.14165.

[12] Chan, W., Jaitly, N., Le, Q. V., & Vinyals, O. (2015). Listen, attend and spell. ArXiv,
abs/1508.01211.

[13] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2014a). Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings
of the 19th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14 (pp. 269–284). New York, NY, USA: ACM.

[14] Chen, Y., Emer, J., & Sze, V. (2016). Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks. In 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA) (pp. 367–379).

[15] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N., &
Temam, O. (2014b). Dadiannao: A machine-learning supercomputer. In Proceedings of
the 47th Annual IEEE/ACM International Symposium onMicroarchitecture (pp. 609–622).:
IEEE Computer Society.

[16] Cho, K., vanMerrienboer, B., Çaglar Gülçehre, Bahdanau, D., Bougares, F., Schwenk, H., &
Bengio, Y. (2014). Learning phrase representations using rnn encoder–decoder for statistical
machine translation. In Conference on EmpiricalMethods in Natural Language Processing.

[17] Choi, J., Venkataramani, S., Srinivasan, V. V., Gopalakrishnan, K., Wang, Z., & Chuang, P.
(2019). Accurate and efficient 2-bit quantized neural networks. Proceedings ofMachine
Learning and Systems, 1, 348–359.

[18] Chun, K. C., Jain, P., Lee, J. H., & Kim, C. H. (2011). A 3t gain cell embedded dram uti-
lizing preferential boosting for high density and low power on-die caches. IEEE Journal of
Solid-State Circuits, 46(6), 1495–1505.

108

[19] Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J., Nardi, L., Bailis, P., Olukotun,
K., Ré, C., & Zaharia, M. (2017). Dawnbench: An end-to-end deep learning benchmark and
competition. Training, 100(101), 102.

[20] Courbariaux, M. & Bengio, Y. (2016). Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR, abs/1602.02830.

[21] Courbariaux, M., Bengio, Y., & David, J.-P. (2014). Training deep neural networks with low
precision multiplications. arXiv: Learning.

[22] Courbariaux, M., Bengio, Y., & David, J.-P. (2015). Binaryconnect: Training deep neural
networks with binary weights during propagations. InNIPS.

[23] Dai, S., Venkatesan, R., Ren, H., Zimmer, B., Dally, W. J., & Khailany, B. (2021). Vs-quant:
Per-vector scaled quantization for accurate low-precision neural network inference. ArXiv,
abs/2102.04503.

[24] Darvish Rouhani, B., Lo, D., Zhao, R., Liu, M., Fowers, J., Ovtcharov, K., Vinograd-
sky, A., Massengill, S., Yang, L., Bittner, R., Forin, A., Zhu, H., Na, T., Patel, P., Che, S.,
Chand Koppaka, L., SONG, X., Som, S., Das, K., T, S., Reinhardt, S., Lanka, S., Chung, E.,
& Burger, D. (2020). Pushing the limits of narrow precision inferencing at cloud scale with
microsoft floating point. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, &H. Lin
(Eds.), Advances in Neural Information Processing Systems, volume 33 (pp. 10271–10281).:
Curran Associates, Inc.

[25] Dean, J., Patterson, D., & Young, C. (2018). A new golden age in computer architecture:
Empowering the machine-learning revolution. IEEEMicro, 38(2), 21–29.

[26] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on (pp. 248–255).: IEEE.

[27] Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR, abs/1810.04805.

[28] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020a). An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

[29] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020b).
An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv,
abs/2010.11929.

109

[30] Drumond, M. et al. (2018). End-to-end DNN training with block floating point arithmetic.
arXiv, abs/1804.01526.

[31] Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., Krikun, M., Zhou, Y., Yu,
A. W., Firat, O., Zoph, B., Fedus, L., Bosma, M., Zhou, Z., Wang, T., Wang, Y. E., Webster,
K., Pellat, M., Robinson, K., Meier-Hellstern, K. S., Duke, T., Dixon, L., Zhang, K., Le,
Q. V., Wu, Y., Chen, Z., & Cui, C. (2021). Glam: Efficient scaling of language models with
mixture-of-experts. In International Conference onMachine Learning.

[32] Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R., Sylvester, D., Blaauw, D., & Das,
R. (2018). Neural cache: Bit-serial in-cache acceleration of deep neural networks. In Proceed-
ings of the 45th Annual International Symposium on Computer Architecture, ISCA ’18 (pp.
383–396).: IEEE Press.

[33] Fedus, W., Zoph, B., & Shazeer, N. (2021). Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res, 23, 1–40.

[34] Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T., Liu, M., Lo, D., Alkalay, S.,
Haselman, M., Adams, L., Ghandi, M., Heil, S., Patel, P., Sapek, A., Weisz, G., Woods, L.,
Lanka, S., Reinhardt, S. K., Caulfield, A. M., Chung, E. S., & Burger, D. (2018). A config-
urable cloud-scale dnn processor for real-time ai. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA) (pp. 1–14).

[35] Freund, K. &Moorhead, P. (2020). The graphcore second generation ipu.

[36] Fujiki, D., Wang, X., Subramaniyan, A., & Das, R. (2021). In-/Near-Memory Computing.
Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers.

[37] Garzón, E., Greenblatt, Y., Harel, O., Lanuzza, M., & Teman, A. (2021). Gain-cell embed-
ded dram under cryogenic operation—a first study. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 29(7), 1319–1324.

[38] Giterman, R., Shalom, A., Burg, A., Fish, A., & Teman, A. (2020). A 1-mbit fully logic-
compatible 3t gain-cell embedded dram in 16-nm finfet. IEEE Solid-State Circuits Letters, 3,
110–113.

[39] Gomez, A. N., Ren, M., Urtasun, R., & Grosse, R. B. (2017a). The reversible residual net-
work: Backpropagation without storing activations. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Informa-
tion Processing Systems, volume 30: Curran Associates, Inc.

[40] Gomez, A. N., Ren, M., Urtasun, R., & Grosse, R. B. (2017b). The reversible residual net-
work: Backpropagation without storing activations. Advances in neural information process-
ing systems, 30.

110

[41] Google (2019). Bfloat16: The secret to high performance on cloud tpus. Accessed: 2023-03-
06.

[42] Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. (2015). Deep learning with
limited numerical precision. In Proceedings of the 32nd International Conference on In-
ternational Conference onMachine Learning - Volume 37, ICML’15 (pp. 1737–1746).:
JMLR.org.

[43] Gustafson, J. et al. (2017). Beating floating point at its own game: Posit arithmetic. Super-
computing Frontiers and Innovations.

[44] Ham, T. J., Jung, S. J., Kim, S., Oh, Y. H., Park, Y., Song, Y., Park, J., Lee, S.-H., Park, K.,
Lee, J., & Jeong, D.-K. (2020). A3: Accelerating attention mechanisms in neural networks
with approximation. 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), (pp. 328–341).

[45] Ham, T. J., Lee, Y., Seo, S. H., Kim, S., Choi, H., Jung, S. J., & Lee, J. W. (2021). Elsa:
Hardware-software co-design for efficient, lightweight self-attention mechanism in neural
networks. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA) (pp. 692–705).

[46] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., & Dally, W. J. (2016). Eie:
Efficient inference engine on compressed deep neural network. SIGARCH Comput. Archit.
News, 44(3).

[47] Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149.

[48] Hannun, A. Y., Case, C., Casper, J., Catanzaro, B., Diamos, G. F., Elsen, E., Prenger, R. J.,
Satheesh, S., Sengupta, S., Coates, A., & Ng, A. (2014). Deep speech: Scaling up end-to-end
speech recognition. ArXiv, abs/1412.5567.

[49] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 770–778).

[50] He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2018). Filter pruning via geometric median for
deep convolutional neural networks acceleration. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), (pp. 4335–4344).

[51] Hegde, K., Yu, J., Agrawal, R., Yan, M., Pellauer, M., & Fletcher, C. W. (2018). Ucnn: Ex-
ploiting computational reuse in deep neural networks via weight repetition. In Proceedings of
the 45th Annual International Symposium on Computer Architecture (pp. 674–687).

[52] Hochreiter, S. & Schmidhuber, J. (1997). Long short-termmemory. Neural Computation,
9(8), 1735–1780.

111

[53] Horowitz, M. (2014). Computing’s energy problem (and what we can do about it). In 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (pp.
10–14).

[54] Huang, B.-Y., Lyubomirsky, S., Li, Y., He, M., Tambe, T., Smith, G. H., Gaonkar, A., Canu-
malla, V., Wei, G., Gupta, A., Tatlock, Z., &Malik, S. (2022). Specialized accelerators and
compiler flows: Replacing accelerator apis with a formal software/hardware interface. ArXiv,
abs/2203.00218.

[55] Huang, B.-Y., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., &Malik, S. (2018).
Instruction-level abstraction (ila): A uniform specification for system-on-chip (soc) verifi-
cation. ACMTransactions on Design Automation of Electronic Systems, 24.

[56] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2017). Quantized
neural networks: Training neural networks with low precision weights and activations. J.
Mach. Learn. Res., 18(1), 6869–6898.

[57] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A. G., Adam, H., &
Kalenichenko, D. (2017). Quantization and training of neural networks for efficient integer-
arithmetic-only inference. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, (pp. 2704–2713).

[58] Jia, Z., Tillman, B., Maggioni, M., & Scarpazza, D. P. (2019). Dissecting the graphcore ipu
architecture via microbenchmarking.

[59] Johnson, J. (2018). Rethinking floating point for deep learning. CoRR, abs/1811.01721.

[60] Jouppi, N. P., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L., Patil, N., Subramanian, S.,
Swing, A., Towles, B., et al. (2023). Tpu v4: An optically reconfigurable supercomputer for
machine learning with hardware support for embeddings. arXiv preprint arXiv:2304.01433.

[61] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley, M.,
Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann,
R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A.,
Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J.,
Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M.,
Miller, K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M.,
Penukonda, N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov,
G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma,
H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E., & Yoon, D. H. (2017). In-
datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE 44th An-
nual International Symposium on Computer Architecture (ISCA) (pp. 1–12).

112

[62] Judd, P. et al. (2016). Stripes: Bit-serial deep neural network computing. InMICRO.

[63] Kaggle (2017). Tiny imagenet dataset. https://www.kaggle.com/c/tiny-imagenet.

[64] Keller, B., Venkatesan, R., Dai, S., Tell, S. G., Zimmer, B., Dally, W. J., Thomas Gray, C., &
Khailany, B. (2022). A 17–95.6 tops/w deep learning inference accelerator with per-vector
scaled 4-bit quantization for transformers in 5nm. In 2022 IEEE Symposium on VLSI Tech-
nology and Circuits (VLSI Technology and Circuits) (pp. 16–17).

[65] Khailany, B. et al. (2018). A modular digital vlsi flow for high-productivity soc design. In
DAC.

[66] Khoram, S. et al. (2018). Adaptive quantization of neural networks. In ICLR.

[67] Kim, M., Smaragdis, P., Ko, G. G., & Rutenbar, R. A. (2012). Stereophonic spectrogram
segmentation using markov random fields. In 2012 IEEE InternationalWorkshop onMa-
chine Learning for Signal Processing (pp. 1–6).

[68] Kim, S., Hooper, C., Wattanawong, T., Kang, M., Yan, R., Genç, H., Dinh, G., Huang, Q.,
Keutzer, K., Mahoney, M.W., Shao, Y. S., & Gholami, A. (2023). Full stack optimization of
transformer inference: a survey. ArXiv, abs/2302.14017.

[69] Kingma, D. P. & Ba, J. (2014). Adam: Amethod for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[70] Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A. (2017). OpenNMT: Open-source
toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstrations
(pp. 67–72). Vancouver, Canada: Association for Computational Linguistics.

[71] Ko, G. G., Chai, Y., Donato, M., Whatmough, P. N., Tambe, T., Rutenbar, R. A., Brooks,
D., &Wei, G.-Y. (2020a). A 3mm2 programmable bayesian inference accelerator for unsu-
pervised machine perception using parallel gibbs sampling in 16nm. In 2020 IEEE Sympo-
sium on VLSI Circuits (pp. 1–2).

[72] Ko, G. G., Chai, Y., Donato, M., Whatmough, P. N., Tambe, T., Rutenbar, R. A., Wei, G., &
Brooks, D. (2020b). A scalable bayesian inference accelerator for unsupervised learning. In
2020 IEEE Hot Chips 32 Symposium (HCS) (pp. 1–27).

[73] Köster, U., Webb, T. J., Wang, X., Nassar, M., Bansal, A. K., Constable, W., Elibol, O. H.,
Hall, S., Hornof, L., Khosrowshahi, A., Kloss, C., Pai, R. J., & Rao, N. (2017). Flexpoint:
An adaptive numerical format for efficient training of deep neural networks. InNIPS.

[74] Krizhevsky, A., Nair, V., &Hinton, G. (2014). The cifar-10 dataset.

[75] Kung, H. T. (1982). Why systolic architectures? Computer, 15(1), 37–46.

113

https://www.kaggle.com/c/tiny-imagenet

[76] Kung, H. T., McDanel, B., & Zhang, S. Q. (2020). Term quantization: Furthering quan-
tization at run time. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20: IEEE Press.

[77] Kwon, H., Samajdar, A., & Krishna, T. (2018). Maeri: Enabling flexible dataflowmapping
over dnn accelerators via reconfigurable interconnects. SIGPLANNot., 53(2), 461–475.

[78] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2020). Albert: A
lite bert for self-supervised learning of language representations. ArXiv, abs/1909.11942.

[79] LeCun, Y., Denker, J., & Solla, S. (1989). Optimal brain damage. In D. Touretzky (Ed.),
Advances in Neural Information Processing Systems, volume 2: Morgan-Kaufmann.

[80] Lee, E. H. et al. (2017). Lognet: Energy-efficient neural networks using logarithmic compu-
tation. In ICASSP.

[81] Li, Z., Ghodrati, S., Yazdanbakhsh, A., Esmaeilzadeh, H., & Kang, M. (2022). Accelerating
attention through gradient-based learned runtime pruning. Proceedings of the 49th Annual
International Symposium on Computer Architecture.

[82] Liu, D., Chen, T., Liu, S., Zhou, J., Zhou, S., Teman, O., Feng, X., Zhou, X., & Chen, Y.
(2015). Pudiannao: A polyvalent machine learning accelerator. SIGPLANNot., 50(4),
369–381.

[83] Liu, S., Du, Z., Tao, J., Han, D., Luo, T., Xie, Y., Chen, Y., & Chen, T. (2016). Cambricon:
An instruction set architecture for neural networks. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16 (pp. 393–405).

[84] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
& Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. ArXiv,
abs/1907.11692.

[85] Lu, L., Jin, Y., Bi, H., Luo, Z., Li, P., Wang, T., & Liang, Y. (2021). Sanger: A co-design
framework for enabling sparse attention using reconfigurable architecture. InMICRO-54:
54th Annual IEEE/ACM International Symposium onMicroarchitecture, MICRO ’21 (pp.
977–991). New York, NY, USA: Association for ComputingMachinery.

[86] Lu, L., Liu, C., Li, J., & Gong, Y. (2020). Exploring transformers for large-scale speech recog-
nition. In Interspeech.

[87] Luo, J.-H. &Wu, J. (2018). Autopruner: An end-to-end trainable filter pruning method for
efficient deep model inference. ArXiv, abs/1805.08941.

[88] Mahmoud, A., Tambe, T., Aloui, T., Brooks, D., &Wei, G.-Y. (2022). Goldeneye: A plat-
form for evaluating emerging numerical data formats in dnn accelerators. In 2022 52nd
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

114

[89] Mahmoud, M., Edo, I., Zadeh, A. H., Mohamed Awad, O., Pekhimenko, G., Albericio, J.,
&Moshovos, A. (2020). Tensordash: Exploiting sparsity to accelerate deep neural network
training. In 2020 53rd Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO) (pp. 781–795).

[90] Meinerzhagen, P. et al. (2018). 2.3 an energy-efficient graphics processor featuring fine-grain
dvfs with integrated voltage regulators, execution-unit turbo, and retentive sleep in 14nm
tri-gate cmos. In ISSCC.

[91] Migacz, S. (2017). 8-bit inference with tensorrt. InNVIDIA GPU Tech Conf.

[92] Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Pruning convolutional
neural networks for resource efficient transfer learning. ArXiv, abs/1611.06440.

[93] Moons, B., Goetschalckx, K., Van Berckelaer, N., & Verhelst, M. (2017). Minimum energy
quantized neural networks. In 2017 51st Asilomar Conference on Signals, Systems, and Com-
puters (pp. 1921–1925).

[94] Mujawar, M. & Vijaya Saradhi, D. (2022). Design of low-cost active noise cancelling (anc)
circuit using ki-cad. In H. S. Saini, R. K. Singh, M. Tariq Beg, R. Mulaveesala, &M. R.
Mahmood (Eds.), Innovations in Electronics and Communication Engineering (pp. 109–
116). Singapore: Springer Singapore.

[95] Narinx, J., Giterman, R., Bonetti, A., Frigerio, N., Aprile, C., Burg, A., & Leblebici, Y.
(2019). A 24 kb single-well mixed 3t gain-cell edram with body-bias in 28 nm fd-soi for
refresh-free dsp applications. In 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC)
(pp. 219–222).

[96] Noh, H. et al. (2017). Regularizing deep neural networks by noise: Its interpretation and
optimization. InNeurIPS.

[97] NVIDIA (2021). Accelerating ai training with nvidia tf32 tensor cores. Accessed: 2023-03-
06.

[98] NVIDIA (2022). Nvidia a100 80gb pcie gpu.

[99] NVIDIA (2022). Nvidia hopper architecture in-depth. Accessed: 2023-03-16.

[100] Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An asr corpus
based on public domain audio books. 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), (pp. 5206–5210).

[101] Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J.,
Keckler, S. W., & Dally, W. J. (2017). Scnn: An accelerator for compressed-sparse convo-
lutional neural networks. In Proceedings of the 44th Annual International Symposium on

115

Computer Architecture, ISCA ’17 (pp. 27–40). New York, NY, USA: Association for Com-
puting Machinery.

[102] Park, E. et al. (2018). Energy-efficient neural network accelerator based on outlier-aware
low-precision computation. In ISCA.

[103] Park, J., Yoon, H., Ahn, D., Choi, J., & Kim, J.-J. (2020). Optimus: Optimized matrix multi-
plication structure for transformer neural network accelerator. In I. Dhillon, D. Papailiopou-
los, & V. Sze (Eds.), Proceedings ofMachine Learning and Systems, volume 2 (pp. 363–378).

[104] Pentecost, L., Donato, M., Reagen, B., Gupta, U., Ma, S., Wei, G.-Y., & Brooks, D. (2019).
Maxnvm: Maximizing dnn storage density and inference efficiency with sparse encoding and
error mitigation. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
onMicroarchitecture, MICRO ’52 (pp. 769–781). New York, NY, USA: Association for
ComputingMachinery.

[105] Prabhakar, R., Zhang, Y., Koeplinger, D., Feldman, M., Zhao, T., Hadjis, S., Pedram, A.,
Kozyrakis, C., & Olukotun, K. (2017). Plasticine: A reconfigurable architecture for parallel
patterns. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architec-
ture (ISCA) (pp. 389–402).

[106] Prabhu, K., Gural, A., Khan, Z. F., Radway, R. M., Giordano, M., Koul, K., Doshi, R.,
Kustin, J. W., Liu, T., Lopes, G. B., Turbiner, V., Khwa, W.-S., Chih, Y.-D., Chang, M.-F.,
Lallement, G., Murmann, B., Mitra, S., & Raina, P. (2022). Chimera: A 0.92-tops, 2.2-
tops/w edge ai accelerator with 2-mbyte on-chip foundry resistive ram for efficient training
and inference. IEEE Journal of Solid-State Circuits, 57(4), 1013–1026.

[107] Qian, X.-Y. & Klabjan, D. (2021). A probabilistic approach to neural network pruning. In
International Conference onMachine Learning.

[108] Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S., Das, D., Kaul, B., & Krishna, T.
(2020). Sigma: A sparse and irregular gemm accelerator with flexible interconnects for dnn
training. In 2020 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA) (pp. 58–70).

[109] Qu, Z., Liu, L., Tu, F., Chen, Z., Ding, Y., & Xie, Y. (2022). Dota: Detect and omit weak
attentions for scalable transformer acceleration. ASPLOS ’22 (pp. 14–26). New York, NY,
USA: Association for ComputingMachinery.

[110] Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language
understanding by generative pre-training.

[111] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language
models are unsupervised multitask learners.

116

[112] Reagen, B., Gupta, U., Adolf, B., Mitzenmacher, M., Rush, A. M., Wei, G.-Y., & Brooks,
D. M. (2017). Weightless: Lossy weight encoding for deep neural network compression.
ArXiv, abs/1711.04686.

[113] Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee, H., Lee, S. K., Hernández-Lobato,
J. M., Wei, G.-Y., & Brooks, D. (2016). Minerva: Enabling low-power, highly-accurate deep
neural network accelerators. In Proceedings of the 43rd International Symposium on Com-
puter Architecture, ISCA ’16 (pp. 267–278). Piscataway, NJ, USA.

[114] Sahu, S. & Roberts, G. (1999). On convergence of the em algorithm and the gibbs sampler.
In Statistics and Computing.

[115] Salimans, T. & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. InNeurIPS.

[116] Sanh, V., Debut, L., Chaumond, J., &Wolf, T. (2019). Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108.

[117] Sanh, V., Wolf, T., & Rush, A. M. (2020). Movement pruning: Adaptive sparsity by fine-
tuning. ArXiv, abs/2005.07683.

[118] Schweber, B. (2018). Active noise cancellation. https://www.analogictips.com/

active-noise-cancellation-part-1-concept-and-principles-faq/.

[119] Semiconductor Research Corporation (2020). The decadal plan for semiconductors. Ac-
cessed: 2022-11-20.

[120] Settle, S. et al. (2018). Quantizing convolutional neural networks for low-power high-
throughput inference engines. ArXiv, abs/1805.07941.

[121] Sevilla, J., Heim, L., Ho, A. C., Besiroglu, T., Hobbhahn, M., & Villalobos, P. (2022). Com-
pute trends across three eras of machine learning. 2022 International Joint Conference on
Neural Networks (IJCNN).

[122] Shao, Y. S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., Keller, B., Kline-
felter, A., Pinckney, N., Raina, P., Tell, S. G., Zhang, Y., Dally, W. J., Emer, J., Gray, C. T.,
Khailany, B., & Keckler, S. W. (2019). Simba: Scaling deep-learning inference with multi-
chip-module-based architecture. In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium onMicroarchitecture, MICRO ’52 (pp. 14–27). New York, NY, USA:
Association for ComputingMachinery.

[123] Sharma, D. (2023). System on a package innovations with universal chiplet interconnect
express (ucie) interconnect. IEEEMicro, 43(02), 76–85.

117

https://www.analogictips.com/active-noise-cancellation-part-1-concept-and-principles-faq/
https://www.analogictips.com/active-noise-cancellation-part-1-concept-and-principles-faq/

[124] Sharma, H., Park, J., Mahajan, D., Amaro, E., Kim, J. K., Shao, C., Mishra, A., & Es-
maeilzadeh, H. (2016). From high-level deep neural models to fpgas. In 2016 49th Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO) (pp. 1–12).

[125] Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y., Wang,
Y., Skerry-Ryan, R. J., Saurous, R. A., Agiomyrgiannakis, Y., &Wu, Y. (2017). Natural tts
synthesis by conditioning wavenet on mel spectrogram predictions. 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), (pp. 4779–4783).

[126] Siemens EDA (accessed Nov 1, 2018). Catapult High-Level Synthesis.

[127] Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

[128] Su, J.-W., Si, X., Chou, Y.-C., Chang, T.-W., Huang, W.-H., Tu, Y.-N., Liu, R., Lu, P.-J.,
Liu, T.-W., Wang, J.-H., Zhang, Z., Jiang, H., Huang, S., Lo, C.-C., Liu, R.-S., Hsieh, C.-
C., Tang, K.-T., Sheu, S.-S., Li, S.-H., Lee, H.-Y., Chang, S.-C., Yu, S., & Chang, M.-F.
(2020). 15.2 a 28nm 64kb inference-training two-way transpose multibit 6t sram compute-
in-memory macro for ai edge chips. In 2020 IEEE International Solid- State Circuits Confer-
ence - (ISSCC) (pp. 240–242).

[129] Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V., Cui, X., Zhang,
W., & Gopalakrishnan, K. (2019). Hybrid 8-Bit Floating Point (HFP8) Training and Infer-
ence for Deep Neural Networks. Curran Associates Inc.: Red Hook, NY, USA.

[130] Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., & Zhou, D. (2020). Mobilebert: a compact
task-agnostic bert for resource-limited devices. In ACL.

[131] Tambe, T., Hooper, C., Pentecost, L., Jia, T., Yang, E.-Y., Donato, M., Sanh, V., What-
mough, P., Rush, A., Brooks, D., &Wei, G.-Y. (2021a). Edgebert: Sentence-level energy
optimizations for latency-aware multi-task nlp inference. In 54th Annual IEEE/ACM Inter-
national Symposium onMicroarchitecture (MICRO).

[132] Tambe, T., Yang, E.-Y., Ko, G. G., Chai, Y., Hooper, C., Donato, M., Whatmough, P.,
Rush, A., Brooks, D., &Wei, G.-Y. (2021b). A 25mm2 soc for iot devices with 18ms noise-
robust speech-to-text latency via bayesian speech denoising and attention-based sequence-to-
sequence dnn speech recognition in 16nm finfet. In 2021 IEEE International Solid- State
Circuits Conference (ISSCC).

[133] Tambe, T., Yang, E.-Y., Ko, G. G., Chai, Y., Hooper, C., Donato, M., Whatmough, P. N.,
Rush, A. M., Brooks, D., &Wei, G.-Y. (2023). A 16-nm soc for noise-robust speech and nlp
edge ai inference with bayesian sound source separation and attention-based dnns. IEEE
Journal of Solid-State Circuits, 58(2), 569–581.

118

[134] Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Janapa Reddi, V., Rush, A., Brooks, D., &Wei, G.-
Y. (2020). Algorithm-hardware co-design of adaptive floating-point encodings for resilient
deep learning inference. In 2020 57th ACM/IEEE Design Automation Conference (DAC).

[135] Tambe, T., Zhang, J., Hooper, C., Jia, T., Whatmough, P., Zuckerman, J., Cassel, M.,
Loscalzo, E., Giri, D., Shepard, K., Carloni, L., Rush, A., Brooks, D., &Wei, G.-Y. (2023).
A 12nm 18.1tflops/w sparse transformer processor with entropy-based early exit, mixed-
precision predication and fine-grained power management. In 2023 IEEE International
Solid- State Circuits Conference (ISSCC).

[136] Tan, C., Tambe, T., Zhang, J. J., Fang, B., Geng, T., Wei, G.-Y., Brooks, D., Tumeo, A.,
Gopalakrishnan, G., & Li, A. (2022). Asap: Automatic synthesis of area-efficient and
precision-aware cgras. In Proceedings of the 36th ACM International Conference on Super-
computing (ICS).

[137] Taylor, M. B. (2012). Is dark silicon useful? harnessing the four horsemen of the coming
dark silicon apocalypse. In Proceedings of the 49th Annual Design Automation Conference,
DAC ’12 New York, NY, USA: Association for ComputingMachinery.

[138] Teerapittayanon, S., McDanel, B., & Kung, H. T. (2016). Branchynet: Fast inference via
early exiting from deep neural networks. 2016 23rd International Conference on Pattern
Recognition (ICPR), (pp. 2464–2469).

[139] ArmDeveloper (2023). Cortex-a53. https://developer.arm.com/ip-products/

processors/cortex-a/cortex-a53.

[140] Harvard Architecture, Circuits, and Compilers (2023). Flexasr: A reconfigurable hardware
accelerator for attention-based seq-to-seq networks. https://github.com/harvard-acc/

FlexASR.

[141] Libeigen (2023). Eigen. https://gitlab.com/libeigen/eigen.

[142] Project Ne10 (2023). Ne10 library. https://projectne10.github.io/Ne10/.

[143] Toprak-Deniz, Z. et al. (2014). Distributed system of digitally controlled microregulators
enabling per-core dvfs for the power8 tmmicroprocessor. In ISSCC.

[144] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & J’egou, H. (2020). Training
data-efficient image transformers & distillation through attention. In International Confer-
ence onMachine Learning.

[145] Tu, F., Wu, W., Yin, S., Liu, L., &Wei, S. (2018). Rana: Towards efficient neural acceleration
with refresh-optimized embedded dram. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA) (pp. 340–352).: IEEE.

119

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://github.com/harvard-acc/FlexASR
https://github.com/harvard-acc/FlexASR
https://gitlab.com/libeigen/eigen
https://projectne10.github.io/Ne10/

[146] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbren-
ner, N., Senior, A. W., & Kavukcuoglu, K. (2016). Wavenet: A generative model for raw
audio. ArXiv, abs/1609.03499.

[147] Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2017). Attention is all you need. ArXiv, abs/1706.03762.

[148] Venkataramani, S., Ranjan, A., Banerjee, S., Das, D., Avancha, S., Jagannathan, A., Durg, A.,
Nagaraj, D., Kaul, B., Dubey, P., & Raghunathan, A. (2017). Scaledeep: A scalable compute
architecture for learning and evaluating deep networks. SIGARCH Comput. Archit. News.

[149] Venkataramani, S., Srinivasan, V., Wang, W., Sen, S., Zhang, J., Agrawal, A., Kar, M., Jain,
S., Mannari, A., Tran, H., Li, Y., Ogawa, E., Ishizaki, K., Inoue, H., Schaal, M., Serrano, M.,
Choi, J., Sun, X., Wang, N., Chen, C.-Y., Allain, A., Bonano, J., Cao, N., Casatuta, R., Co-
hen, M., Fleischer, B., Guillorn, M., Haynie, H., Jung, J., Kang, M., Kim, K.-h., Koswatta,
S., Lee, S., Lutz, M., Mueller, S., Oh, J., Ranjan, A., Ren, Z., Rider, S., Schelm, K., Scheuer-
mann, M., Silberman, J., Yang, J., Zalani, V., Zhang, X., Zhou, C., Ziegler, M., Shah, V.,
Ohara, M., Lu, P.-F., Curran, B., Shukla, S., Chang, L., & Gopalakrishnan, K. (2021). Rapid:
Ai accelerator for ultra-low precision training and inference. In Proceedings of the 48th An-
nual International Symposium on Computer Architecture, ISCA ’21 (pp. 153–166).: IEEE
Press.

[150] Venkatesan, R., Shao, Y. S., Wang, M., Clemons, J., Dai, S., Fojtik, M., Keller, B., Klinefelter,
A., Pinckney, N., Raina, P., Zhang, Y., Zimmer, B., Dally, W. J., Emer, J., Keckler, S. W., &
Khailany, B. (2019). Magnet: A modular accelerator generator for neural networks. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (pp. 1–8).

[151] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461.

[152] Wang, H., Zhang, Z., &Han, S. (2021). Spatten: Efficient sparse attention architecture with
cascade token and head pruning. 2021 IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[153] Wang, J., Wang, X., Eckert, C., Subramaniyan, A., Das, R., Blaauw, D., & Sylvester, D.
(2019). 14.2 a compute sram with bit-serial integer/floating-point operations for pro-
grammable in-memory vector acceleration. In 2019 IEEE International Solid- State Circuits
Conference - (ISSCC) (pp. 224–226).

[154] Wang, Y., Qin, Y., Deng, D., Wei, J., Zhou, Y., Fan, Y., Chen, T., Sun, H., Liu, L., Wei, S., &
Yin, S. (2023). An energy-efficient transformer processor exploiting dynamic weak relevances
in global attention. IEEE Journal of Solid-State Circuits, 58(1), 227–242.

120

[155] Wang, Z., Li, Z., Xu, L., Dong, Q., Su, C.-I., Chu, W.-T., Tsou, G., Chih, Y.-D., Chang, T.-
Y. J., Sylvester, D., Kim, H. S., & Blaauw, D. (2020). An all-weights-on-chip dnn accelerator
in 22nm ull featuring 24×1 mb erram. In 2020 IEEE Symposium on VLSI Circuits (pp. 1–2).

[156] Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. H. (2016). Learning structured sparsity in
deep neural networks. ArXiv, abs/1608.03665.

[157] Whatmough, P. N., Donato, M., Ko, G. G., Lee, S. K., Brooks, D., &Wei, G.-Y. (2020).
CHIPKIT: An Agile, Reusable Open-Source Framework for Rapid Test Chip Development.
IEEEMicro, 40(4), 32–40.

[158] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao,
Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L., Gouws,
S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C.,
Smith, J. R., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G. S., Hughes, M., & Dean, J.
(2016). Google’s neural machine translation system: Bridging the gap between human and
machine translation. ArXiv, abs/1609.08144.

[159] Xin, J., Tang, R., Lee, J., Yu, Y., & Lin, J. (2020). Deebert: Dynamic early exiting for acceler-
ating bert inference. ArXiv, abs/2004.12993.

[160] Ye, J., Lu, X., Lin, Z. L., &Wang, J. Z. (2018). Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. ArXiv, abs/1802.00124.

[161] Zadeh, A. H. &Moshovos, A. (2020). Gobo: Quantizing attention-based nlp models for
low latency and energy efficient inference. In 53rd IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[162] Zhang, S. Q., McDanel, B., & Kung, H. (2022a). Fast: Dnn training under variable precision
block floating point with stochastic rounding. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA) (pp. 846–860).: IEEE.

[163] Zhang, S. Q., McDanel, B., & Kung, H. T. (2022b). Fast: Dnn training under variable preci-
sion block floating point with stochastic rounding. In 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA) (pp. 846–860).: IEEE Computer Soci-
ety.

[164] Zhang, S. Q., McDanel, B., Kung, H. T., & Dong, X. (2021). Training for multi-resolution
inference using reusable quantization terms. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’21 (pp. 845–860). New York, NY, USA: Association for ComputingMachinery.

[165] Zhang, S. Q., Tambe, T., Cuevas, N., Wei, G.-Y., & Brooks, D. (2023). Camel: Co-designing
ai models and embedded drams for efficient on-device learning. arXiv, abs/2305.03148.

121

[166] Zhao, J., Dai, S., Venkatesan, R., Liu, M.-Y., Khailany, B., Dally, B., & Anandkumar, A.
(2021). Lns-madam: Low-precision training in logarithmic number system using multiplica-
tive weight update. IEEE Transactions on Computers, 71, 3179–3190.

[167] Zhao, R., Hu, Y., Dotzel, J., Sa, C. D., & Zhang, Z. (2019). Improving neural network quan-
tization without retraining using outlier channel splitting. ArXiv, abs/1901.09504.

[168] Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K., Sun, W., & Li, H. (2021). Learning n:
M fine-grained structured sparse neural networks from scratch. ArXiv, abs/2102.04010.

[169] Zhou, M., Duan, N., Liu, S., & Shum, H.-Y. (2020). Progress in neural nlp: Modeling,
learning, and reasoning. Engineering, 6(3), 275–290.

[170] Zhu, C., Han, S., Mao, H., & Dally, W. J. (2016). Trained ternary quantization. ArXiv,
abs/1612.01064.

[171] Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., & Zhu, J.-H. (2018).
Discrimination-aware channel pruning for deep neural networks. InNeural Information
Processing Systems.

[172] Zimmer, B., Venkatesan, R., Shao, Y. S., Clemons, J., Fojtik, M., Jiang, N., Keller, B., Kline-
felter, A., Pinckney, N., Raina, P., Tell, S. G., Zhang, Y., Dally, W. J., Emer, J. S., Gray, C. T.,
Keckler, S. W., & Khailany, B. (2020). A 0.32–128 tops, scalable multi-chip-module-based
deep neural network inference accelerator with ground-referenced signaling in 16 nm. IEEE
Journal of Solid-State Circuits, 55(4), 920–932.

122

	Tambe, Thierry DAC
	PhD_Thesis_Thierry_Tambe
	Title Page
	Copyright
	Abstract
	Table of Contents
	Previous Work
	Dedication
	Acknowledgments
	Introduction
	The Grand Challenge to Meet Tomorrow’s Needs for Information Processing
	The Need for Application-to-Silicon Cross-Stack Co-Design
	Thesis Contributions
	Thesis Roadmap

	Background and Related Work
	Foundational Speech and NLP Neural Networks
	Prominent Number Systems for Deep Learning
	Related Work

	Enabling Adaptive and Energy-Efficient Quantized Computations
	AdaptivFloat: an Adaptive Floating-Point Based Number System for Accurate and Resilient DNN Inference
	Experimental Results
	Hardware Implementation
	Results and Implications
	Facilitating Data Type Exploration for Efficient Hardware Design
	Takeaways
	Follow-on Research

	Accelerating Edge AI Attention-based Speech-to-Text RNNs
	The SM6 SoC Architecture
	The FlexASR Hardware Accelerator
	Post-Silicon Measurement Results
	Verifying FlexASR via a Formal Hardware/Software Compiler Interface
	Takeaways

	Lowering the Cost of Inferencing Large Language Models on Embedded Devices
	Entropy-based Early Exit
	Entropy-Controlled Voltage-Frequency Scaling
	The EdgeBERT Sparse Transformer Processor
	12nm Chip Prototype and Post-Silicon Measurement Results
	Takeaways and Follow-on Research

	CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Chip Learning
	Using eDRAMs as the Main Storage Medium for On-Device Training
	Computations in DNN Training
	Reversible DNN Architectures
	Proposing a 2D Block Floating-Point Datatype
	The CAMEL Hardware Accelerator System with a Hybrid eDRAM-SRAM Memory Subsystem
	Evaluation
	Conclusion and Future Work

	Conclusion
	Future Research Directions

	References

