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1 Introduction

Understanding investor beliefs, how these beliefs are formed, and the dynamics of these beliefs

is critical for explaining investment and saving behavior and may have profound macroeconomic

implications. For example, beliefs that diverge from rational expectations may affect the distribu-

tion of wealth across households or exacerbate credit cycles (Bordalo et al., 2018). Thus, a better

understanding of investor beliefs can inform macroeconomic policy and the regulation of financial

markets. A number of surveys have been designed to elicit beliefs about the future performance of

the stock market from households, investment professionals, and managers. While recent evidence

suggests that these surveys produce consistent and valuable information, surveys can be criticized

for being noisy and sensitive to interpretation (Greenwood and Shleifer, 2014; Giglio et al., 2019).

We propose an alternative method to recover investor beliefs about future returns based on ob-

served investment decisions. In contrast to other methodologies used to recover investor beliefs,

our methodology uses data on investment flows, rather than asset prices, which allows us to recover

the distribution of beliefs across investors.

Specifically, we develop a parsimonious model of demand for exchange-traded funds (ETFs)

that reflect the performance of the stock market. By revealed preference, estimation of the model

allows us to recover the underlying distribution of investor expectations of future returns. For

each ETF purchase, we recover the beliefs about future returns and risk aversion that rational-

izes the purchase given the fees and risk associated with the ETF. The key feature of our data for

identification is that investors choose investment options from a menu of several ETFs with differ-

ent risk/return profiles and fee structures. Identification in our setting is conceptually related to

Barseghyan et al. (2013), who show how beliefs and risk aversion can be separately identified in

the context of insurance choice.

This paper has two main empirical contributions. First, we use our framework to construct

a time series of stock market expectations. At each point in time, we recover the distribution of

expectations across investors. We find that heterogeneity in expectations is meaningful and varies

over time. Second, we examine how investor expectations are formed. We confirm prior findings

that average beliefs are extrapolative and violate full-information rational expectations. However,

our estimated distribution also suggests that a large fraction of investors are contrarian. In particu-

lar, periods with increased disagreement suggest the simultaneous presence of both contrarian and

extrapolative investors. These results indicate that understanding dispersion in beliefs is important,

and our framework allows us to study how this dispersion evolves over time.

To implement the approach, we apply a model of investor choice to observed market shares for

investments linked to the performance of the S&P 500. Our data on market shares comes from

monthly purchases of ETFs by retail (non-institutional) investors. ETFs are passive investment

funds designed to track another underlying asset. Collectively, ETFs linked to the S&P 500 aver-

age $240 billion in assets under management during our sample, and they provide varying levels
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of leverage for the same benchmark.1 The ETFs are designed to (a) track the return of the S&P

500, (b) provide leveraged return (2x or 3x return) of the S&P 500, or (c) provide inverse lever-

aged return (-3x, -2x, or -1x) of the S&P 500. Leveraged ETFs are popular investment products

among retail investors. Relative to all S&P 500 linked ETFs held by retail investors, leveraged ETFs

accounted for roughly one quarter of assets under management (AUM) and almost half of retail

trading volume during the financial crisis. In each month, we observe the fraction of investors

purchasing S&P 500 linked ETFs in each leverage category.

Studying leveraged index funds offers a clean setting for identifying investor expectations of

stock market returns. By choosing among different levels of leverage exposure to the same under-

lying asset, the investor reveals information about her expectations for the future performance of

the asset and her risk preferences. With higher leverage, an investor increases the expected mean

return, but also the risk associated with the investment. We model this decision and estimate the

model to recover a time-varying distribution of investor expectations of stock market returns that

rationalize aggregate choices.

Identification of the model works conceptually as follows. Consider an investor who elects

to purchase a 2x leveraged ETF, and for simplicity, assume the investor has no other wealth or

investments. Compared to a 1x ETF, the investor has doubled the expected return and taken on

twice the risk. Thus, the investor’s purchase indicates that the investor is either more optimistic

about the return of the stock market or more risk tolerant than an investor that chooses a 1x ETF.

Because the investor could have further increased the mean return and the risk by purchasing a 3x

ETF but chose not to, we have a second restriction on the investor’s expectation and risk aversion.

Full nonparametric identification can be achieved with empirical variation in fees or perceived risk,

as these inform the mean expectation and risk aversion, respectively.

Using maximum likelihood, we estimate a flexible, time-varying distribution of expectations

at a quarterly frequency over the period 2008-2018. Our framework allows us to quantify those

expectations in terms of the expected annualized return of the stock market. The results suggest

that accounting for belief heterogeneity across investors is of first-order importance, as in Meeuwis

et al. (2018) and Brunnermeier et al. (2014). For example, we find that, while the median investor

in December 2009 expected a market risk premium of 5 percent, roughly 10 percent of investors

expected the stock market to fall by more than 10 percent. To validate our results, we compare our

estimates to widely used surveys of investor expectations (e.g., the Shiller Index, Gallup, etc.) that

are commonly used in the literature (Greenwood and Shleifer, 2014; Nagel and Xu, 2019). Despite

the fact that these two approaches draw on different populations and are collected with different

methods, we find that our estimates are positively correlated with existing surveys.

Consistent with the survey data results, we interpret our revealed-preference estimates as in-

vestors’ beliefs about the expected future return of the stock market. However, this interpretation

has two important caveats. First, we do not observe investors’ portfolios; we only observe pur-
1Hortaçsu and Syverson (2004) develop and estimate a sequential search model to understand price dispersion within

the 1x leverage funds designed to track the S&P 500. We broaden the set of funds to include leveraged ETFs in order to
study the “first-stage” decision of which leverage category to invest in.
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chases of S&P 500 ETFs. If investors use leveraged S&P 500 ETFs to hedge other investments, our

estimated risk parameter would capture a mix of risk aversion and hedging demand. To address

this, we estimate an extension of our model where investors account for the risk of the ETF both

in terms of the variance of the ETF and the covariance of the ETF with the rest of the investors’

wealth (i.e., hedging demand). We find little evidence of hedging demand, and our estimated time

series of beliefs remain similar. Second, we are studying a subset of retail investors who choose

to invest in leveraged ETFs. Even though the market for leveraged ETFs is quite large,2 one may

be concerned that our estimated beliefs are not representative of a general population. As dis-

cussed above, we find that our estimates of investor expectations are highly correlated with survey

estimates, which suggests that ETF investors in our sample have similar expectations to broader

groups of market participants. We conclude that our parsimonious model generates reasonable

estimates of investor beliefs. Our methodology can be particularly useful when high-frequency

survey or micro data is unavailable. Further, survey expectations are often criticized for being po-

tentially unreliable, unrelated to the portfolio decisions of households, and not linked to marginal

investors (Cochrane, 2011). In contrast, our methodology extracts investor beliefs directly from

their investment decisions.

We use our estimates to examine how the distribution of investor expectations evolves over time.

Our estimates suggest that the mean, dispersion, and skewness of the belief distribution evolve in

response to past returns. Following a period of negative stock market performance, investor beliefs

become more pessimistic on average, more dispersed, and more negatively skewed. Though the

mean expectation is extrapolative, we observe an increase in the median belief following negative

returns, suggesting that a large share of investors display contrarian tendencies. Both extrapolative

and contrarian tendencies appear stronger in response to negative returns compared to positive

returns. These asymmetric responses lead to increased disagreement after stock market busts,

while periods of positive returns generate greater consensus.3 We also find that expectations are

persistent: one month of poor stock market performance impacts investor expectations up to two

years in the future. Lastly, we find evidence that average forecast errors are predictable, which

suggests that investor expectations violate full information rational expectations, consistent with

much of the existing literature.4

We also consider an extension of the model where we allow risk aversion, in addition to beliefs,

to vary over time. Consistent with Jensen (2018), our estimated risk aversion parameter is low

at the start of the financial crisis and increases over time in our sample. One caveat is that our

estimated risk aversion parameter captures variation in both risk aversion and risk perceptions,

both of which may be time-varying and cyclical.
2For example, the retail market share of leveraged S&P 500 ETFs was roughly the same as tracker (1x leverage) S&P

500 ETFs during the financial crisis (after adjusting for trading volume). We use “leveraged ETFs” to describe both ETFs
with positive leverage (2x, 3x) and inverse ETFs with negative leverage (-1x, -2x, -3x).

3Using data from the Survey of Professional Forecasters, Ilut and Schneider (2014) also find that forecast dispersion
is counter-cyclical.

4For example, see Bacchetta et al. (2009); Coibion and Gorodnichenko (2012, 2015); Amromin and Sharpe (2014);
Greenwood and Shleifer (2014); Gennaioli et al. (2016); Bordalo et al. (2019) among others.
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Next, we use our estimated distribution of investor beliefs to understand the relationship be-

tween investor beliefs and asset prices. Consistent with the previous literature, we find that the

average expected return across investors does not forecast future returns (Greenwood and Shleifer,

2014; Amromin and Sharpe, 2014). In contrast, we find evidence suggesting that dispersion in

beliefs is negatively correlated with future returns, and that this effect is amplified when a larger

fraction of investors potentially face short-selling constraints. This finding is consistent with the

literature that argues that belief disagreement and short-selling constraints can generate equilib-

rium asset prices that are higher than the valuation of the average investor, leading to lower future

returns.5

While the bulk of our analysis focuses on S&P 500 linked ETFs and investor expectations of stock

market returns, our approach readily extends to other asset classes. We use our model to recover

the time-varying distribution of investor expectations for gold, oil, European equities, emerging

markets equities, US real estate, medium-term (7-10 year) Treasury, and long-term (20+ year)

Treasury using ETFs linked to the primary benchmarks in these asset classes.

We recover the distribution of investor beliefs at monthly and quarterly frequencies from 2008

through 2018. However, our methodology, in principle, allows us to recover the distribution of

beliefs at the same frequency as ETF flow data. As an extension, we use daily ETF flow data to

recover the distribution of investor beliefs at a daily level during the COVID-19 pandemic. Our

results suggest that news of the first recorded death in the US in late February coincided with a

substantial increase in the dispersion of investor beliefs that peaked in mid-March and persisted

through June. The average retail investor appeared cautiously optimistic until US states started

imposing lockdowns in mid-to-late March, after which the average expected return fell by more

than 20 percent. Negative mean expectations lasted until mid-April, when infection rates in the US

started to fall. These results highlight the potential usefulness and scope of our methodology; we

recover the distribution of investor beliefs in real time using readily available data.

The paper proceeds as follows: Section 2 describes the data used in our analysis. Section 3

introduces our model of investor choice and describes how variation in leverage within the choice

set allows us to nonparametrically identify the distribution of beliefs. Section 4 details the param-

eterization of our empirical model, describes the estimation routine, and presents the results along

with a comparison to survey data. We analyze the formation of investor expectations in Section 5

and additional extensions to our method in Section 6. Section 7 concludes.

Related Literature

Our paper builds on the demand estimation literature at the intersection of industrial organization

and finance.6 On a conceptual level, our paper complements the recent work of Koijen and Yogo
5The theoretical literature dates back to Miller (1977) and is supported by an empirical literature that includes Chen

et al. (2002) and Diether et al. (2002).
6Demand estimation has recently been used in a number of other financial applications such as demand for bank

deposits (Dick, 2008; Egan, Hortaçsu, and Matvos, 2017; Egan, Lewellen, and Sunderam, 2017; Wang, Whited, Wu,
and Xiao, 2018), bonds (Egan, 2019), credit default swaps (Du et al., 2019), insurance (Koijen and Yogo, 2016, 2018),
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(2019a). Koijen and Yogo (2019a) develop an equilibrium asset pricing model where investors

have heterogeneous preferences, and each investor’s portfolio is generated from a Berry et al.

(1995) type demand system. This type of demand-side approach to asset pricing uses the revealed

preferences of investors, by focusing on quantities rather than prices or returns. It is conceptually

related to the approaches that Shumway et al. (2009) and Berk and van Binsbergen (2016) use to

study mutual fund flows and Heipertz et al. (2019) uses to study French banks.

We build on the idea of estimating preference heterogeneity across investors by studying in-

vestor expectations. To this end, our paper also relates to Ross (2015) and the corresponding

literature that uses asset prices to separately recover risk preferences and transition probabilities,

which correspond to beliefs about returns in our context. These other methodologies, such as Ross

(2015) or Ghosh and Roussellet (2020), use asset prices across products that span different states

to recover beliefs for a representative investor. By contrast, we use data on investment flows, rather

than asset prices, to recover the distribution of investor expectations. In other words, we recover

heterogeneity across investors, whereas the previous methods typically focus on a hypothetical,

homogeneous investor. We find heterogeneity across investors to be very important empirically.7

Further, in the context of leveraged ETFs, we observe plausibly exogenous variation in the cost of

leverage, allowing us to recover the distribution of beliefs without making restrictive assumptions

about the structure of asset prices, beliefs, or preferences.8

In other contexts, Calvet et al. (2019) and Martin (2017) also focus on recovering expectations

and risk preferences. Using household level data from Sweden, Calvet et al. (2019) calibrates a

life-cycle model to recover the distribution of risk aversion in the population under the maintained

assumption that investors hold common expectations of returns. Lastly, Martin (2017) derives a

lower bound on the equity premium using data from index option prices. Although we use a very

different approach and data set, our time-varying estimates of the equity premium are similar to

the estimates in Martin (2017).

Our paper also relates to the growing work on structural behavioral economics (see DellaVigna,

2018, for a discussion of the literature). Our paper relates most closely to Barseghyan et al. (2013).

mortgages (Benetton, 2018) and investments more generally (Koijen and Yogo, 2019a,b; Koijen et al., 2019).
7There is also a related strand of literature that focuses on robust identification of investor beliefs (Chen et al., 2020;

Ghosh and Roussellet, 2020; Ghosh et al., 2020). Given a stochastic discount factor in a candidate asset pricing model
and a statistical measure of divergence between probabilities, the methods developed in this literature can recover beliefs
that are consistent with observed prices within a certain distance of divergence from rational expectation. Ghosh et al.
(2020) extends the methodology to allow for two different investor types that have potentially different preferences and
beliefs. Identification of beliefs using these methodologies depends on the underlying asset pricing model chosen by the
researcher and beliefs that do not stray too far from rational expectations.

8By comparison, Ross (2015) uses state prices computed from options to back out state transition probabilities that
are assumed to be time-homogeneous and Markov. Previous research points out that such assumptions are strong and
rule out persistent shocks to the stochastic discount factor in realistic asset pricing models (Borovička et al., 2016).
Jensen et al. (2019) relax the time-homogeneous and Markov assumptions. Their approach requires prices of securities
with different maturities, where the number of maturities is greater or equal to the fixed number of states. In addition,
Martin and Ross (2019) investigate the recovery theorem in fixed income markets where the stationary and Markov
assumptions are more likely to hold. Using a similar approach, d’Arienzo (2020) tests for the rationality of recovered
belief and show that non-rational beliefs could provide explanations for bond market puzzles.

In our baseline specification, we assume that investors have mean/variance preferences; however, in principle our
methodology allows for richer investor preferences.
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Barseghyan et al. (2013) develops a demand-side framework that shows how belief distortions can

be separately identified from risk preferences using data on insurance choice. We use a similar

framework and identification strategy to recover the distribution of beliefs, and then use the corre-

sponding estimates of the belief distribution to better understand the evolution of beliefs and the

corresponding behavioral frictions.

Our demand estimation framework and estimated beliefs complement the findings of Vissing-

Jorgensen (2003), Ben-David et al. (2013), Amromin and Sharpe (2014), Greenwood and Shleifer

(2014), and Nagel and Xu (2019). These papers use survey evidence to better understand investor

expectations. Using very different data and empirical approach, we find similar patterns of investor

expectations. While we use trading activity data to infer investor beliefs, recent account-level

evidence from Giglio et al. (2019) suggests that an investor’s beliefs, as measured by surveys, are

reflected in the direction and magnitude of her trading decisions. Given this finding, it is not

surprising that our measure of beliefs during the COVID-19 pandemic also matches the patterns

Giglio et al. (2020) find in their follow-up study on the pandemic. Our finding that beliefs are

heterogeneous and persistent is consistent with one of the main empirical facts (Fact 3) that Giglio

et al. (2019) document using survey data.

Our findings also relate to the literature linking beliefs to asset prices. One theme of this

literature is the importance of the interrelationship between belief heterogeneity and short-selling

constraints. A long theoretical literature suggests that belief disagreement in conjunction with

short-selling constraints can lead to elevated equilibrium asset prices and lower future returns.9

Restrictions on short selling constrain pessimistic investors from selling assets to the more optimistic

investors in the market. In equilibrium, the most optimistic investors will hold the asset and the

price will reflect the beliefs of the marginal-optimistic buyer. If the valuation of the average buyer

is correct in expectation, the asset will have lower future returns. Consistent with the theoretical

and corresponding empirical literature (Chen et al., 2002; Diether et al., 2002), we find evidence

that increased dispersion in beliefs is associated with lower future returns and that the effect is

magnified when more investors face short-selling constraints.

One of our key findings is that investor beliefs appear extrapolative across a number of asset

classes. This finding complements the literature that uses survey evidence to document extrapo-

lation in the stock market (Benartzi, 2001; Greenwood and Shleifer, 2014), the housing market

(Case et al., 2012), risk taking (Malmendier and Nagel, 2011), investment decisions (Gennaioli

et al., 2016), and inflation markets (Malmendier and Nagel, 2015). In our setting, we are able

to study extrapolation and beliefs simultaneously across several common asset classes. A novel

finding is that, while beliefs are extrapolative for the average investor, they do not appear extrap-

olative for all investors. For example, following downturns, the average investor becomes more

pessimistic, but a substantial fraction of investors become more optimistic. This empirical finding

of heterogeneous extrapolation is a feature of theoretical asset pricing models with extrapolative
9See, e.g., Miller (1977); Harrison and Kreps (1978); Morris (1996); Chen et al. (2002); Scheinkman and Xiong

(2003); and Hong et al. (2006). Geanakoplos (2010) and Simsek (2013) extend this idea further by adding credit and
endogenous borrowing constraints, which can strengthen the negative relationship between disagreement and returns.
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beliefs (Cutler et al., 1990; De Long et al., 1990; Barberis and Shleifer, 2003; Barberis et al., 2015,

2018). Thus, our findings provide additional evidence for understanding the formation of beliefs.

A recent literature documents that such adaptive expectations could have profound impacts on the

macroeconomy (Bordalo et al., 2018; Gennaioli and Shleifer, 2018; Bordalo et al., 2018).

2 Data

2.1 Overview of Leveraged ETFs

Leveraged ETFs provide investors a menu of different exposures to an underlying asset. Leveraged

ETFs cover many asset categories, including broad indices (S&P 500) and commodity prices (oil).

They offer discrete leverage categories of 2x or 3x on the long side and -1x, -2x, and -3x on the

short side. These products provide active retail investors access to leveraged exposure with limited

liability as an alternative to more complicated derivative contracts, which require margins and

specialty knowledge.10

Despite easy access to leverage, these products mostly attract short-term investors. Leveraged

ETFs typically rebalance either daily or monthly in order to maintain a constant ratio of leverage

relative to the linked asset. Though this rebalancing provides constant leverage in the short run, the

return on these ETFs over a longer period (i.e., more than one year) may diverge from the short-run

leverage target.11 Because ETF trades predominantly reflect shorter horizons, this feature does not

affect the typical ETF investor. In our data, the average holding period for ETFs is less than one

month.

2.2 ETF Data Sources

We assemble ETF data from Bloomberg, ETF Global, and CRSP. Bloomberg reports monthly data on

ETF AUM, net asset value, trading volume, and quarterly data on ETF institutional ownership. We

rely on benchmark and fund descriptions in ETF Global accessed via WRDS to identify the choice

sets of S&P 500 ETFs with leverage categories from -3x to 3x. Lastly, CRSP Mutual Fund Database

also accessed through WRDS provides ETF expense ratios. When missing in CRSP, we use expense

ratios from ETF Global. Our panel ranges from 2008 to 2018.

We aggregate individual ETFs to their leverage categories, so that the primary unit of observa-

tion in our analysis is at the month-by-leverage level. Our main focus is understanding investor

expectations and risk aversion, so we focus on investors’ choice of leverage (i.e., 1x vs 2x lever-

age) rather than individual ETFs (i.e., ProShares Ultra 2x S&P 500 ETF vs. Direxion Bull 2x S&P
10In addition to ETFs, retail investors can also buy leveraged mutual funds and exchange-traded notes (ETNs). We

focus on ETFs primarily because of better data quality and for comparability reasons. The structures of leveraged mutual
funds and ETNs are the same as ETFs, so our model could also be applied to these products.

11Thus, investors holding ETFs for longer periods are subject to additional risk from changes in lever-
age. The difference between nominal and realized leverage is commonly described as “volatility drift.” See
“Important information about leveraged, inverse, and commodity exchange-traded products,” Vanguard.com.
https://investor.vanguard.com/investing/leveraged-inverse-etf-etn. Accessed November 12, 2019.
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500 ETF). Implicitly, we assume that investors choose leverage and issuer separately. We consider

this approach reasonable because the risk and return profiles of ETFs are homogeneous within a

leverage category, similar to the maintained assumption in Hortaçsu and Syverson (2004). To ag-

gregate our data from ETF to leverage level, we sum the market shares across ETFs and take the

market-share weighted average expense ratio. We detail our construction of ETF-specific market

shares below.

2.3 Constructing Market Shares from Leverage Choice

A key input in our empirical model is the quantity of ETFs purchased by retail investors. We

measure quantities as the dollar amount retail investors purchase during each month. This flow

measure reflects the investor expectations at the time of transaction, as opposed to stock measures

that reflect past purchase decisions.12 Stock measures such as AUM will place greater weight on

passive investors whose holdings do not reflect contemporaneous information. This distinction is

important in our context, because a large fraction of AUM in trackers (1x) comes from passive

investors, whereas trading in leveraged ETFs is dominated by active investors. In addition, we

remove demand from institutional investors. Institutions are major investors in trackers, but they

rarely buy leveraged ETFs because they have access to more cost-effective leveraged contracts such

as futures and swaps.

We construct our measure of ETF purchases from data on trading volume and net fund flows

each month, with the ultimate goal of measuring the quantity of ETFs purchased by active retail

investors in a given month. To calculate the quantity purchased, we assume that every month a

fraction of retail investors consider investing a fixed portion of their wealth in ETFs that follow a

particular asset (e.g., the S&P 500). Investors may set aside this wealth in the process of actively

rebalancing their portfolios in that month. If an investor does not choose to invest this wealth in

an ETF, the investment is put into a money market account.

When investors purchase ETFs, they purchase from a market maker who has previously pur-

chased the ETF from another investor. Thus, measures of trading volume (Trading V olumejt)

count investor purchases and investor sales as separate transactions. When purchases exceed sales,

new shares are issued by the market maker to satisfy excess demand. These new shares are mea-

sured as net flows (NetF lowjt). When sales exceed purchases, NetF lowjt is negative and repre-

sents redemptions.

We construct the quantity of ETF j purchased by retail investors at time t as

Quantityjt = Retailj × [(Trading V olumejt −NetF lowjt)/2 +NetF lowjt].

To measure purchases only, we first subtract net flows from trading volume, capturing trades of

existing shares that have both a purchase and sale. We divide this measure in half to get a measure
12Account-level evidence from Giglio et al. (2019) indicates that, conditional on trading, investor trading decisions are

highly correlated with beliefs.
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of purchases. We add back in net flows to adjust for shares created or redeemed. To adjust for

retail demand, we scale this measure by the average retail ownership of each ETF in our sample,

Retailj .

As in most demand estimation exercises, we do not directly observe investors that consider

investing in S&P 500 ETFs but instead choose a risk-free option (0x leverage). To construct shares

for this outside option, we measure flows into retail money market accounts for retail investors

considering S&P 500 ETFs. Investing in a money market account is a natural risk-free option for

most retail investors. First, we obtain the total amount of assets invested in retail money market

funds from FRED. We scale this total by the fraction of AUM in S&P 500 ETFs out of the AUM in all

retail investment vehicles (including all ETFs and retail mutual funds). This constructs a proxy for

the share of money market AUM corresponding to S&P 500 investors. To convert this stock measure

into a flow measure of investor purchases, we scale this proxy by the ratio of retail quantity (defined

above) to retail AUM. We calculate the ratio as the average across all S&P 500 ETFs within each

month of our sample. As a robustness check, instead of using this measure, we estimate the share

in the outside option as a free parameter; the estimation results are not materially different. We

discuss this and other robustness checks in Section 4.

Table 1 compares market shares based on our demand measure with shares of raw AUM, which

includes holdings of passive or institutional investors. Because institutional investors hold a dispro-

portionate share of tracker funds, the shares in trackers are on average 88 percent under AUM but

only 57 percent according to our market share definition.13

2.4 Summary Statistics and Trends

The market for S&P 500 linked ETFs and leveraged ETFs grew dramatically over the period 2008-

2018. Figure 1 displays total AUM held in S&P 500 linked ETFs by retail investors and the asso-

ciated trading volumes over the period 2008-2018. As of 2018, retail investors held around $180

billion in S&P 500 linked ETFs.

The primary unit of observation in our analysis is the market share of each leverage category at

the monthly level. Figure 2a displays the market share of each leverage category over the period

2008-2018. While S&P 500 tracker funds (1x leverage) are the most commonly held product on

average, during the financial crisis leveraged ETFs collectively became more popular than tracker

ETFs.

Table 1 shows a breakdown of leverage categories, with average AUM and expense ratios. As

discussed above, leveraged ETFs are smaller in AUM compared to trackers. Leveraged ETFs also

charge substantially higher fees, and ETFs with more leverage tend to be marginally more expen-

sive. Figure 2b shows the trends in ETF fees. ETF fees are relatively stable over time, though the
13We have run additional specifications where we define market shares based on AUM instead of trading volume

(Appendix B.5). The estimated distributions of beliefs are similar to our baseline estimates, though there are some
differences, which is to be expected given that previous research shows that an investor’s beliefs are more correlated
with her trading decisions than her holdings (Giglio et al., 2019). For example, a buy-and-hold investor may not update
her portfolio in response to a change in beliefs.
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average fee for 1x trackers has been declining since 2013.

3 Empirical Framework

3.1 Demand for ETFs

We model an investor’s decision as a discrete-choice problem. Each investor i has a fixed amount

of wealth to allocate to ETFs that are benchmarked to the performance of the S&P 500 Index.

Investors choose an ETF leverage category j ∈ {−3,−2,−1, 0, 1, 2, 3} with corresponding leverage

βj = j, where j = 0 represents the outside option of placing their money in a retail money market

account.

Investor i’s indirect utility from choosing leverage j is given by

uij = βjµi − pj −
λ

2
βj

2σ2. (1)

The term µi reflects investor i’s expectation of future stock market returns. Investors have hetero-

geneous expectations that are distributed µi ∼ F (·). If an investor chooses βj = 2, she will realize

twice the return of the S&P 500 Index. Collectively the term βjµi − pj captures the investor’s (sub-

jective) expected return as a function of leverage βj and net of ETF fee pj . Without any loss in

generality, we normalize preferences with respect to the annualized ETF fee pj to one. Because ETF

fee pj is measured as annualized percentage of AUM, this allows us to interpret µi as the annualized

return in excess of the risk-free rate offered by a money market account.

Risk aversion is additively separable, following the second-order Taylor expansion used in

Barseghyan et al. (2013) and the Arrow-Pratt approximation of risk premium. The parameter λ

is the investor’s coefficient of risk aversion, and can be interpreted to represent constant relative

risk aversion.14 The term β2j σ
2 measures the volatility of leverage j, where σ2 is the volatility of

the S&P 500 Index. Thus, the combined term −λ
2βj

2σ2 captures the (time-varying) risk penalty for

leverage category j.

In our baseline analysis, we assume that risk aversion is constant across investors and over time.

We later extend the model to allow for heterogeneous risk aversion where λi ∼ G(·) and time-

varying risk aversion where λ potentially varies over time. Though we label λi as a risk aversion

parameter, it may also capture heterogeneous beliefs over the volatility of the stock market. Thus,

λi may be interpreted as λi
σ2
i
σ2 , where σ2i is investor i’s expectation of stock market volatility. In this

more general interpretation, λi captures heterogeneity in both risk aversion and risk perceptions.

Another feature of our model is that we treat an investor’s ETF investment choice independently

from her more general portfolio allocation problem. To address this, we consider an extension

of the model where investors account for how the ETF covaries with their wealth/portfolio, and

we allow ETF choice to potentially hedge against wealth/portfolio risk. For a derivation of this
14Another way to derive equation (1) is to assume a utility function with constant absolute risk aversion and normally

distributed returns. In this case λ represents the constant absolute risk aversion coefficient multiplied by wealth.
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model and the corresponding estimates, see Appendix B.1. Neither extension has a first-order

effect on our estimated belief distribution. Moreover, our estimates suggest that hedging demand

plays a minimal role in retail investment in ETFs.15 For these reasons, we proceed with the more

parsimonious model to develop our main results.

The investor’s problem is to choose the leverage category that maximizes her indirect utility

max
j∈{−3,−2,−1,0,1,2,3}

βjµi − pj −
λ

2
βj

2σ2. (2)

An investor chooses leverage j if and only if it maximizes her subjective risk-adjusted return relative

to the other leverage choices k 6= j.16 So an investor who chooses j prefers leverage j to leverage

j − 1 such that

uij = βjµi − pj −
λ

2
βj

2σ2 > βj−1µi − pj−1 −
λ

2
βj−1

2σ2 = uij−1.

This inequality can be re-written to provide a lower bound on investor i’s expectation of future

stock market returns:

µi >
λ

2

(
β2j − β2j−1

)
σ2 + pj − pj−1, (3)

noting that βj − βj−1 = 1. Intuitively, investor i must believe that the stock market return µi

is sufficiently high to offset the incremental change in risk λ
2

(
β2j − β2j−1

)
σ2 and fees pj − pj−1

associated with leverage j over leverage j−1. Similarly, an investor who chooses j prefers leverage

j to leverage j + 1 such that

uij = βjµi − pj −
λ

2
βj

2σ2 > βj+1µi − pj+1 −
λ

2
βj+1

2σ2 = uij+1,

generating an upper bound on investor i’s expectation of future stock market returns:

µi <
λ

2

(
β2j+1 − β2j

)
σ2 + pj+1 − pj . (4)

In words, the above inequality implies that investor i’s expectation of future stock market returns is

not sufficiently high to offset the incremental change in risk and fees to justify purchasing leverage

category j + 1 over j.

Inequalities (3) and (4) imply that an investor’s optimal leverage choice is simply a function
15The estimated mean expectation of stock returns with hedging demand is highly correlated with the estimated mean

expectation in our main results with a correlation coefficient of 0.98.
16We assume that investors are aware of all of the available leverage categories j ∈ {−3,−2,−1, 0, 1, 2, 3}. In practice,

it is possible that some investors were not aware of all of the available leverage categories, especially the -3x and
3x categories that were introduced in 2009 (after the introduction of the 2x and -2x categories). As an additional
robustness check in Appendix B.4, we estimate an alternative version of the model where we combine the 2x and 3x
leverage categories and the -2x and -3x leverage categories. While this approach inevitably “throws away” some data
because we are not using information about the investors who chose a 3x ETF over a 2x ETF or a -3x ETF over a -2x
ETF, it is useful for understanding our results. We find that the estimated beliefs and risk aversion parameters from this
alternative specification are quantitatively similar to our baseline estimates.
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of her expectation µi. We assume that every leverage category j is optimal for some investors,

i.e., there exists some µi that satisfies both (3) and (4) for all j.17 Therefore, an investor chooses

leverage category j if and only if

λ

2

(
β2j+1 − β2j

)
σ2 + pj+1 − pj > µi >

λ

2

(
β2j − β2j−1

)
σ2 + pj − pj−1.

Given the distribution of beliefs F (·), the share of investors purchasing leverage j, sj , is then

sj = F

(
λ

2

(
β2j+1 − β2j

)
σ2 + pj+1 − pj

)
− F

(
λ

2

(
β2j − β2j−1

)
σ2 + pj − pj−1

)
. (5)

The above market share equation captures the probability that any given investor would purchase

leverage j. This relationship is at the heart of our estimation strategy described below. Given

market share data sj and product characteristics p and σ, we can recover the preference parameter

λ and the distribution of expectations F (·).18

3.2 Identification

We now describe how risk aversion λ and the distribution of expectations F (·) are nonparamet-

rically identified using aggregate market share and product characteristic data. As described in

Section 4, we allow F to vary over time when we estimate beliefs. Here, we provide conditions to

identify the distribution that applies in each relevant period. We then briefly discuss the empirical

variation in our data to illustrate how identification works in our setting.

3.2.1 Nonparametric Identification Using Cross-Sectional and Within-Quarter Variation

Identification is obtained by using two sources of variation. The first source of variation comes from

the menu of choices facing investors. We choose parameters so that the implied shares from the

model match the shares chosen by investors, relying only on cross-sectional variation in investor

expectations. The second source of variation comes from time series variation in fees and volatility.

For our baseline results, we allow fees and volatility to vary at a higher frequency than the param-

eters governing the distribution of investor expectations. This modeling assumption allows us to

use variation in these observables in estimation.

We start by describing in more detail the role of cross-sectional variation in leverage choice.

By revealed preference, an investor that chooses a leverage category of 2x has a higher expected

return than an investor that chooses a 1x ETF, and a lower expected return than an investor that
17In other words, we assume that no leverage is dominated by another leverage. This can be tested empirically for any

set of parameters. Because β2
j+1 − β2

j = 2j + 1 and β2
j − β2

j−1 = 2j − 1, this assumption can be written as the condition
λσ2 > (pj − pj−1)+(pj − pj+1) for interior j (j 6= {−3, 3}). Intuitively, prices for leverage j can not be too high relative
to the nearby leverage categories.

18In our baseline setup, we assume that investors’ trading decisions are perfectly sensitive to their own beliefs. This
assumption is consistent with one of the main facts in Giglio et al. (2019) that, conditional on trading, an investor’s
trading decisions are highly correlated with her beliefs. If investors are not perfectly sensitive to their own beliefs, then
our methodology would recover attenuated beliefs, i.e., we would underestimate the true dispersion in beliefs.
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chooses a 3x return. By observing the market shares of purchases in each leverage category, we can

pin down features of the distribution of investor expectations.

Formally, the distribution of expectations is semi-parametrically identified by the shares of in-

vestors in each leverage category, similar to identification in an ordered probit or logit model. For

notational convenience, let Sj denote the cumulative share of investors purchasing all leverage

categories k ≤ j:
∑j

k=−3 sk, where j ranges from −3 to 3. We can add up the shares from equation

(5) to obtain a system of equations satisfying

Sj = F

(
λ

2
(2j + 1)σ2 + pj+1 − pj

)
, (6)

where 2j + 1 = β2j+1 − β2j for all j < 3. S3 is always equal to 1 and is not informative. The right-

hand side elements depend on the observed characteristics σ, pj+1, and pj , as well as the unknown

parameter λ and the distribution F . Because we observe six unique cutoff points in our data,

{Sj} = {S−3, S−2,S−1, S0, S1, S2}, we have a system of six equations, allowing us to identify up to

six parameters in each period. The parameters of interest include the risk aversion parameter λ and

a period-specific distribution for F . The coefficient on fees is known to be 1, as utility is normalized

to annual returns. Thus, the distribution of F can be estimated as a flexible distribution of up to

five parameters. For example, if F is parameterized as normal, then F has two degrees of freedom

(mean and variance) to attempt to fit the six observed values of {Sj}.
Our second source of variation, which allows us to obtain full nonparametric identification,

comes from time series variation in fees and volatility. Changes in these variables change the cutoff

points between leverage classes that are captured in equation (6). Intuitively, by observing how

changes in fees affect the choice of leverage relative to volatility, we can pin down the scale of risk

aversion. We provide a formal argument below.

Changes in fees alone can be sufficient to identify risk aversion and obtain nonparametric

identification of the distribution of expectations. Formally, suppose that there exist two real-

izations of the data (σ, pj , pj+1) and (σ̃, p̃j , p̃j+1) for which σ̃2 = σ2 and S̃k = Sj for k 6= j.

Then it must be that λ
2 (2j + 1)σ2 + pj+1 − pj = λ

2 (2k + 1)σ2 + p̃k+1 − p̃k. Therefore, we have
λ
2σ

2 (2j − 2k) = (p̃k+1 − p̃k)− (pj+1 − pj), or λ =
(p̃k+1−p̃k)−(pj+1−pj)

σ2(j−k) . The risk aversion coefficient

is identified from the data. Because the coefficient on price is normalized to 1, we have identi-

fied the distribution at the quantile F−1(Sj). In other words, once we have identified λ, both Sj

and the argument of F are known, so we have nonparametric identification of the distribution F

at Sj . Furthermore, we only have to identify λ once, so two realizations of the data can provide

identification at all quantiles {Sj} ∪ {S̃j}, which are the cutoff values in equation (6).

Likewise, changes in volatility can aid in identification. Intuitively, if we observe the same

realization of market shares from the same belief distribution, but prices have changed, then it

must be the case that changes in volatility have exactly offset the changes in prices for the marginal

investor. Formally, consider two different realizations of the data (σ, pj , pj+1) and (σ̃, p̃j , p̃j+1)

for which Sj = S̃j . Then, it must be that F−1(Sj) = F−1(S̃j), or λ
2 (2j + 1)σ2 + pj+1 − pj =
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λ
2 (2j + 1) σ̃2 + p̃j+1 − p̃j . The risk aversion coefficient is then λ = 2

(p̃j+1−p̃j)−(pj+1−pj)
(2j+1)(σ2−σ̃2)

. More

generally, this exactness can be relaxed by using a local approximation to estimate how leverage

market shares vary with respect to variation in prices, ∂Sj∂pj
, and volatility ∂Sj

∂σ2 . Because ∂Sj
∂pj

= −f(·)

and ∂Sj
∂σ2 = λ

2 (2j + 1) f(·), we can recover λ as λ = −2
2j+1

∂Sj

∂σ2
∂Sj
∂pj

.

By assumption, we hold the distribution of investor expectations fixed over a certain period.19

This is a key assumption, as it implies that within-period changes in fees and volatility are indepen-

dent of F (·). If—contrary to our model—the expectation distribution had within-period changes,

and if these changes were also correlated with changes in fees and volatility, then this could bias

our results. Since we estimate each period separately, correlation between the distribution of ex-

pectations and fees/volatility across periods is not problematic. Thus, the only concern is potential

within-period endogeneity.20

In the data, we find that ETF fees are unlikely to generate this concern. We observe that fees are

relatively fixed in the short run, with the largest changes occurring at an annual frequency. Further,

our sample period coincided with a “cut-throat price war” in the ETF industry, which leads us to

believe that much of the variation in fees is driven by supply-side factors—i.e., greater competition

and increased scale—over this period.21 These observations help alleviate concerns that ETF issuers

are endogenously changing fees at a high frequency in response to changes in investor expectations.

An alternative approach that eliminates the within-period endogeneity concern is to estimate F

at a monthly frequency, leveraging only the cross-sectional variation in investor expectations. We

pursue this approach and provide an alternative set of estimates in Appendix A. The alternative

estimates closely resemble our main results, though they are not identical. The differences we do

observe between the alternative estimates and our baseline results indicate that variation in fees

and volatility does play some role in pinning down investor expectations.

3.2.2 Illustration Using Empirical Variation

Our main empirical results use both sources of variation described above. We estimate the belief

distribution at the quarterly level, allowing monthly variation in prices and volatility to assist in

identification. In each month, we observe the market shares of each of the leverage categories,

allowing us to construct the cumulative shares, {Sj}. In addition, we observe the corresponding

fees, {pj}, and implied volatility, σ2. Given the risk aversion parameter, λ, we can compute the

investor expectations needed to rationalize the shares as per equation (6). If Sj investors purchased

19We do not require individual investor expectations to be fixed over the period, only the aggregate distribution.
20A modification to our identification argument with exogenous fees shows how this could bias our estimates. For

example, consider the case where fees systematically increase for leverage categories that see increased demand from
changes in expectations. Formally, consider two different realizations of the data (σ, pj , pj+1) and (σ̃, p̃j , p̃j+1) for which
volatility is constant and S̃k = Sj for k = 1 and j = 2. Fees increase for j = 2, and, at the same time, investors
become more optimistic such that F̃ first-order stochastically dominates F . Then F−1(S2) < F̃−1(S̃1), implying λ <
(p̃2−p̃1)−(p3−p2)

σ2 instead of λ = (p̃2−p̃1)−(p3−p2)
σ2 . In this example, our estimates of risk aversion would be biased upward,

because we would infer that investors are less sensitive to fees (relative to volatility) than they actually are.
21For example, see https://www.ft.com/content/10238d8e-b320-4667-944d-d463e7311213.
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leverage category j or lower, this implies that Sj fraction of investors believe that the stock market

will increase by less than λ
2 (2j + 1)σ2 + pj+1 − pj . Otherwise, they would have purchased a

higher leverage category. Thus, each cutoff point provides information about F , the distribution of

expected returns.

Figure 3 illustrates how both sources of identification work empirically. Each panel corresponds

to the cross section of expectations across investors in a given quarter. The y-axis represents the

value of cumulative shares, {Sj}, and the x-axis represents the investor expectations needed to

rationalize the leverage choice given some risk aversion parameter,
(
λ
2 (2j + 1)σ2 + pj+1 − pj

)
.

Cumulative shares ({Sj}), implied volatility (σ), and fees (p) are directly observed. Risk aversion

can be inferred because different values of λ will change the implied beliefs needed to rationalize

investors’ choices, shifting where the observations fall on the x-axis. Observations in the figure are

at the monthly level, which is the unit of observation in our baseline analysis. The plotted points

correspond to one quarter of data. Each of the three months in a quarter is represented by a differ-

ent color. In each month, we have six observations, corresponding to the J − 1 leverage categories

and the cutoff points implied by leverage, fees, and volatility. Each cutoff value is represented by a

different shape.

The estimation objective is to choose parameters for risk aversion and expectations that best

allow us to fit a CDF for F through the 18 observed points in the quarter. As discussed in the

previous paragraph, different guesses for the risk aversion parameter lead to different cutoff points,

shifting the horizontal locations of the markers in Figure 3. Different guesses for parameters of the

CDF change the curvature of the black line. We jointly choose risk aversion and the distribution of

beliefs (F ) to best fit the data.

Panel (a) in the figure shows a quarter in which the cross-sectional (within-month) variation

across leverage categories acts as a primary source of identification in pinning down the CDF. Be-

cause few investors choose the highest-leverage categories, the cutoff points in a given month span

most of the distribution. Variation in fees and leverage provide small, localized variation because

cutoff points and cumulative shares are stable across months in that quarter. Alternatively, panel (b)

provides an example quarter in which within-quarter variation in fees and volatility plays a more

substantial role in identification. In this case, larger within-quarter variation in fees or volatility

causes the observations for each leverage category to be more dispersed across months, especially

along the x-axis. A few observations overlap for different values of leverage, approximately meet-

ing our condition for nonparametric identification of risk aversion. An example from panel (b)

corresponds to S̃−1 = S−2, where S̃−1 is the third blue marker (solid blue circle) from the left

and S−2 is the second purple marker from the left (hollow purple square). When S̃−1 = S−2, this

implies that investors at the cutoff for S̃−1 must have the same beliefs as investors at the cutoff for

S−2. This pins down risk aversion. Recall that once risk aversion is identified, the distribution of

beliefs F is nonparametrically identified as per equation (6).

Panels (c) and (d) further illustrate how the risk aversion parameter is pinned down by our

model. In panel (c), we replicate the observations and estimated CDF from panel (b) in black.
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Note that the scale differs from panel (b). In red, we plot a set of observations and CDF that

would be obtained with a risk aversion parameter that is five times greater. In panel (d), we

again replicate the observations and estimated CDF from panel (b) in black. In blue, we plot the

observations corresponding to a risk aversion parameter that is five times smaller. We cannot fit a

CDF for expected returns through the observations in panel (d) because the expected return cutoff

points are not monotonically increasing with leverage. At that level of risk aversion, our model

predicts that no investor would choose a 2x ETF over a 3x ETF. Thus, the smaller risk aversion

parameter is inconsistent with what we observe in the data. The larger risk aversion parameter

in panel (c) admits a CDF, but the fit is poor compared to the estimated risk aversion parameter.

The fit is poor because the larger risk aversion parameter dramatically increases the dispersion in

the cutoff points for a given leverage category within a quarter despite there being little change in

market shares (i.e., the solid red square markets). The variation in the relative horizontal location

of each observation illustrates how our approach pins down the risk aversion parameter.

3.3 Heterogeneous Risk Aversion

The main objective of this paper is to estimate a parsimonious model that allows us to recover

the distribution of investor beliefs. However, we also consider the natural extension of the model

where investors have heterogeneous risk aversion λi ∼ G(·).

uij = βjµi − pj −
λi
2
βj

2σ2.

Here, we assume that investors agree over the volatility of the S&P 500 Index but have het-

erogeneous risk aversion. This framework corresponds to the random coefficients and latent

class/mixture ordered choice models,22 and also relates more generally to the random coefficients

models commonly used in the demand estimation literature (Berry et al., 1995). As discussed in

Section 3.1, one could recast the model of heterogeneous risk preferences into an empirically equiv-

alent model where investors have heterogeneous beliefs over the volatility of the stock market.

With heterogeneity in risk aversion, the share of investors choosing leverage j is

sj =

∫ [
F

(
λi
2

(
β2j+1 − βj

)
σ2 + pj+1 − pj

)
− F

(
λi
2

(
β2j − β2j−1

)
σ2 + pj − pj−1

)]
dG(λi).

Identification of heterogeneity in risk preferences comes from variation in the substitution patterns

with different levels of volatility similar to identification in Berry et al. (1995).23 In the above sec-

tion, we showed that two realizations from the data are sufficient to pin down a single risk aversion

parameter. If we observe more than two realizations of the data that generate the same quantile,

then we have multiple measures of the risk aversion parameter. These can be used as overidenti-

fying restrictions to reject a model of homogeneous risk aversion, or, intuitively, these additional
22See Chapter 8 of Greene and Hensher (2010) for a discussion of the literature.
23See Cunha et al. (2007) for further discussion of ordered choice models.
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realizations can be used to pin down properties of the distribution of risk aversion coefficients.

3.4 Discussion and Alternative Interpretations

Our model makes a few key assumptions that merit discussion. First, we assume that investor

expectations about future stock market performance can be collapsed into a single expected return.

We do not view this assumption as particularly problematic. Investor uncertainty will be absorbed

by the risk aversion parameter in our model. Implicitly, the parameter captures both market-level

uncertainty and investor-specific uncertainty, as described above. Investor-specific uncertainty may

reflect both forecast uncertainty and beliefs about volatility.

Second, we assume that the investor is making a discrete decision to invest a certain amount of

wealth in these ETFs. The discrete choice assumption rules out behavior where an investor splits

their wealth between two different leverage categories. The way we justify this assumption is the

standard approach in empirical discrete choice models: we allow, in theory, individual investors to

have multiple realizations from the distribution F (·). Thus, µi may represent different perspectives

within a single individual, without any modification to the model.

Third, we assume investors only focus on financial characteristics of ETFs summarized by ex-

pected return and volatility. Non-financial characteristics such as fund issuer marketing, distribu-

tion channels, and brand recognition are ruled out. Issuers of leveraged ETFs offer almost the entire

menu of leverage choices, and so they are unlikely to steer investors toward a specific leverage. By

omitting ETF-specific demand shocks, we could potentially overstate the expected return needed

for investors to shift from a tracker to a 2x ETF if investors have a brand preference for the three

(more well-known) issuers that only offer trackers.

Finally, we do not make any assumptions about an investor’s investment horizon, nor does

our method require one. As discussed previously, without any loss in generality, we normalize an

investor’s disutility from fees p to one, which allows us to interpret investor expectations over stock

market growth µi in term of annual returns. Note that this does not mean that we assume that the

investor intends to hold the ETF for a year. Rather, it means that the investor expects the S&P 500

to grow at rate of µi, where µi is measured in annualized returns.24 We do not directly observe

each investor’s investment horizon. In the data, investors in leveraged and inverse-leveraged ETFs

tend to have similar holding periods, which are less than one month on average.

4 Estimation

4.1 Empirical Model

Following our framework in Section 3, we develop and estimate an empirical model of investor

leverage choice. We allow the distribution of investor expectations to vary over time, estimating
24In other words, our methodology allows us to recover an investor’s expectations about the growth rate of the S&P

500 rather than the investor’s beliefs about what the level of the S&P 500 should be.
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Fs for each set of periods s. The subscript s indexes time-varying distributions and also the set

of months Ts for which the distribution applies, i.e., the distribution Fs applies to any period

t ∈ Ts. In our baseline specification, we estimate the model using monthly data and allow the

distribution of expectations to vary at the quarterly level such that |Ts| = 3. We estimate the

expectation distribution via maximum likelihood. The likelihood contribution of an investor who

chooses leverage j is Fs(xjt) − Fs(x(j−1)t), where Fs is the distribution of expectations and xjt is

the cutoff utility value corresponding to the expected return that renders an investor indifferent

between choice j and choice j + 1. Let ai denote the leverage choice for investor i and Nt denote

the number of potential investors in period t. Then, the likelihood component for Fs is∏
t∈Ts

∏
i∈Nt

∏
j∈J

(
Fs(xjt)− Fs(x(j−1)t)

)1[ai=j] (7)

and the log-likelihood is ∑
t∈Ts

∑
i∈Nt

∑
j∈J

1 [ai = j] ln
(
Fs(xjt)− Fs(x(j−1)t)

)
. (8)

We observe market share data, rather than individual choices. We sum over the (latent) indi-

viduals in each period and scale by Nt to obtain the following expression for the log-likelihood

∑
t∈Ts

∑
j∈J

sjt ln
(
Fs(xjt)− Fs(x(j−1)t)

)
. (9)

The parameter vector, θ, characterizes the time-varying distribution Fs and risk aversion λ. Our

estimate θ̂ is chosen to maximize the log-likelihood. We parameterize Fs as a skewed t distribution

with four parameters. The parameters correspond to location, dispersion, skewness, and kurtosis;

these are further described in Table 2.25 The four-parameter skewed t distribution is a flexible

distribution that nests other common distributions such as the Normal and Cauchy distributions. We

estimate location, dispersion, and skewness separately for each three-month period, while holding

kurtosis fixed for the entire sample. As discussed in Appendix A, we also re-estimate the model

where we allow the location, dispersion, and skewness to vary at the monthly rather than quarterly

level, and we find quantitatively similar results.

xjt is the utility index and is parameterized as

xjt =
λ

2

(
β2j+1 − β2j

)
σ2t + p(j+1)t − pjt

where ETF leverage (βj) and fees (pjt) are directly observed in the data, and we calculate implied

volatility (σ2t ) based on the VIX. In our baseline specification, we hold λ constant over time. Section

25We parameterize the skewed t distribution as F (xjt) = F̃
(
xjt−a
b

)
. The corresponding density f̃ is given by f̃(x) =

2
c+1/c

g(cx) for x < 0 and f̃(x) = 2
c+1/c

g(x
c
) for x ≥ 0, where c is the skewness parameter and g is the density of a t

distribution with degree of freedom d. In estimation, we use the skewt package in R for calculating F̃ .
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4.4 includes an extension of the model where we allow risk aversion to vary annually.

Thus, we estimate three parameters in each quarter, corresponding to the time-varying distri-

bution of expectations, plus the kurtosis parameter and an additional parameter to capture risk

aversion. Since we have 11 years and 44 quarters of data, we estimate 134 parameters in total. In

alternative specifications, we allow λi to be heterogeneous across investors and vary over time.

4.2 Baseline Results

Our estimates for investor expectations are plotted in Figure 4. Panel (a) shows the distribution

of time-varying expectations in each quarter. The mean expectation is plotted with red dots and

the median is plotted with a solid red line. Dashed lines show the 25th and 75 percentiles, and

dotted lines show the 10th and 90th percentiles. The estimated time-varying parameters that char-

acterize the distribution are displayed in the other three panels. Panels (b), (c), and (d) plot the

estimates for the location, dispersion, and skewness parameters, respectively. 95 percent confi-

dence intervals are displayed with dashed lines and are calculated using the maximum likelihood

formula for asymptotic standard errors. Here, we describe and interpret our baseline estimates

of investor expectations. In Section 5 we further study the evolution of and the factors driving

investor expectations.

Our estimates of investor expectations in Figure 4a suggest that investors became substantially

more pessimistic surrounding the 2008 financial crisis and that pessimism persisted for several

years after the crisis. During the crisis, the average investor’s expectation of the market risk pre-

mium fell by over 20 percent and remained below zero for the following two years. Over our whole

sample the average expected market risk premium of the median investor in our sample is roughly

3 percent, which is slightly smaller than other estimates in the literature (Welch, 2000; Graham

and Harvey, 2008).

We find that there is a large variation in the dispersion of expectations across investors over

time. The changing dispersion in investor expectations is captured by our dispersion parameter,

shown in panel (c), which is roughly analogous to the standard deviation. Investors have greater

disagreement during the crisis, as can be seen in the large differences between the 90th and 10th

percentile of expectations from 2008 to 2011. At the most extreme, our estimated mean expectation

in 2008 Q4 is an annualized return of less than -20 percent. In this quarter, we estimate that 10

percent of investors thought the return on the S&P 500 would be worse than -67 percent. The

results suggest that disagreement tends to rise in times of crisis. As illustrated in Figure 4a, there is

also a substantial increase in disagreement among investors surrounding the 2011-2012 European

Sovereign Debt Crisis and the 2015-2016 Chinese stock market turbulence. From 2016 to 2018,

we estimate that investors had much less disagreement about the future return of the stock market.

The expectation distribution has remained more stable with tighter bands between the 90th and

10th percentiles.

We estimate that the distribution tends to have a negative skew. In panel (d), this corresponds

to cs < 1. This affects the overall distribution by lowering the mean relative to the median, which
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can be seen in panel (a). Skewness has the greatest effect on the mean in 2008 Q4, when the

dispersion in expectations is highest. This suggests that a mass of investors became particularly

pessimistic during the financial crisis.

While the mean expectation fell during the financial crisis, we find that the median investor

became slightly more optimistic during the financial crisis. As we explore further in Section 5.1,

this suggests that a large fraction of investors are extrapolative and became substantially more

pessimistic during the financial crisis, while an even larger fraction are contrarian and became

more optimistic as the stock market fell. This is consistent with the evidence in Luo et al. (2020)

that many retail investors tend to trade as contrarians.

We summarize our estimated parameters in Table 3. For our time-varying parameters, we

report the median value and the corresponding standard errors. We report our time-invariant

parameter for kurtosis, which reflects how much of the distribution lies in the tails. Our estimated

kurtosis parameter of 1.26 implies fat tails that are roughly in line with the Cauchy distribution.26

Our estimated risk aversion parameter of λ = 0.98 implies that investors are willing to pay an

additional 39 basis points in fees for a one standard deviation reduction in volatility.27 One caveat

to interpreting the risk aversion parameter is that our implied volatility measure VIX includes both

physical volatility and a variance risk premium term, which is usually positive. When we scale the

VIX-based estimates of λ by the average ratio of VIX to realized volatility (a factor of 1.77), we

obtain an average parameter value 1.73. To put these numbers in perspective, our estimate of λ is

lower than other risk aversion estimates traditionally found in the literature. For example, using

life cycle models Fagereng et al. (2017) estimate relative risk aversion of 7.3, Calvet et al. (2019)

estimate relative risk aversion of 5.8, and Meeuwis (2019) estimate relative risk aversion of 5.4.

These differences are not necessarily surprising, given our distinct population and the fact that

our parameter may capture additional uncertainty. As described in Section 3.1, estimates of risk

aversion coefficients may not be directly comparable to the extent that investors have heterogeneity

in beliefs about volatility and forecast uncertainty.

4.3 Heterogeneous Risk Aversion

In our baseline specification, we hold the risk aversion parameter fixed for all investors. We also

estimate a specification in which investors have heterogeneous preferences for risk. As discussed

above, this assumption is isomorphic to a model in which investors have heterogeneous beliefs

about the volatility of the stock market.

Formally, we assume that λi ∼ G(·), where λi is independent from investor expectations µi.

We parameterize G as a uniform distribution. As above, we estimate our model using maximum

likelihood, while integrating out the distribution for λi. The estimated parameters are summarized

26Technically, our estimates imply that moments higher than the mean are not defined. Hence, we talk about a
dispersion parameter rather than a standard deviation. For convenience, we use the terms skewness and kurtosis, whose
corresponding moments are not defined.

27This is computed as λ
2
sd(σ)2, where sd(σ) denotes the standard deviation of VIX in our sample.
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in Table 3. We report our estimate of G in terms of its midpoint and dispersion, where dispersion

captures the distance from the midpoint to the upper and lower bounds.

Incorporating heterogeneity in risk aversion makes little difference to our overall estimates. We

estimate a risk aversion distribution of λi ∼ U [0.71, 1.00]. Thus, the midpoint of 0.85 is slightly

lower than the constant risk aversion parameter estimate of 0.98. The other parameters are only

slightly affected by the change. Figure 5 provides a comparison of the two specifications. The top

three panels correspond to the specification with fixed risk aversion, and the bottom three panels

correspond to the specification with heterogeneous risk aversion. Panels (a) and (d) show the

distribution of investor expectations, which track each other closely. Panels (c) and (f) show the fit

of log shares, where the x-axis represents the log shares in the data and the y-axis represents the

fitted shares in the model.

For a more specific comparison, we plot the distribution of investor expectations for a single

period in panels (b) and (e). These panels show the PDF of expectations in September 2009,

which is plotted in yellow. The vertical blue lines correspond to the cutoff points of indifference

between leverage categories, in terms of excess return. The area under the yellow line between two

vertical blue lines corresponds to the model-predicted shares for a particular leverage. For example,

investors with expectations between µi = 11 and µi = 16 would choose 2x leverage. Comparing

panel (b) to panel (e), we see that incorporating heterogeneity in risk aversion compresses the

cutoff points toward zero, though this effect is small. For example, the implied expectation to

choose 1x leverage over the outside option is µi = 3.3 in our baseline specification and µi = 2.9

with risk aversion heterogeneity.

4.4 Time-Varying Risk Aversion

We also estimate an extension of our baseline model where we allow the risk aversion coefficient

to vary annually. We rely on the menu of choices and the empirical variation in fees and volatility

within each calendar year to identify the risk aversion of that year.

Figure 6a displays our estimates for investor expectations with time-varying risk aversion, which

are qualitatively similar to the distribution of expectations in our baseline model. The estimated

mean expected returns in these two models are highly correlated with a correlation coefficient of

0.96. The average risk aversion is lower but similar to the level in our baseline model (0.61 vs

0.98). The most notable difference from the baseline model is that the dispersion of expectation

becomes smaller during periods with high volatility, especially in 2008 and 2009. As shown in

Figure 6b, we estimate lower risk aversion during those periods, and hence we need less dispersion

in beliefs to rationalize leverage choices in the data.

One interesting pattern in the data is that the risk aversion parameter λ appears to be procycli-

cal. Our estimated risk aversion parameter λ is relatively low at the start of the financial crisis and

then increases over time in our sample. One important caveat, as discussed in Sections 3.1 and

3.3, is that it is difficult to separately identify risk aversion from variation in risk perceptions more

generally. While this does not impact the identification of the belief distribution, it does impact the
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interpretation of the parameter λ. When λ reflects risk perceptions more generally, rather than just

risk aversion, there are a handful of intuitive explanations for why λ might have been low during

the financial crisis and increased over time. For example, as a result of either salience (Bordalo

et al., 2012) or prospect theory (Kahneman and Tversky, 1979), it is possible that during the fi-

nancial crisis investors became less risk averse as they entered the loss domain and then, during

the subsequent stock market boom, became more risk averse as they entered the gain domain.28

Relatedly, Lian et al. (2019) and Jensen (2018) suggest that, as a result of saliency, an increase in

an investor’s expected returns relative to the risk-free rate could lead the investor to become more

risk tolerant. Recent evidence from Gormsen and Jensen (2020) suggests that tail risk is perceived

to be larger in good times, and evidence from Jensen (2018) suggests risk aversion is procyclical.

These results are consistent with our findings.

In Appendix B.2, we also consider several additional model extensions where we allow the pa-

rameter λ to be both time-varying and heterogeneous, and allow investor beliefs to be correlated

with λ across investors and over time. The estimated distribution of beliefs in these alternative

models is qualitatively similar to our baseline specification where risk aversion is homogeneous

across investors and constant over time. The correlations between the mean belief from our base-

line model and the mean beliefs from these extensions are more than 0.90. While these extensions

slightly improve the fit of the model, they do so at the expense of adding many more parameters.

Consequently, our more parsimonious baseline model ranks higher than these extensions in terms

of common criterion used for model selection (e.g., BIC, AIC). See Table A1 for a summary of

goodness-of-fit for different specifications.

4.5 Comparison with Survey Data

We examine how our estimates of investor beliefs compare with survey responses, which have

been previously used to understand the formation of beliefs (Vissing-Jorgensen, 2003; Ben-David

et al., 2013; Greenwood and Shleifer, 2014; Nagel and Xu, 2019). We examine the following sur-

veys/indices that are commonly used in the literature: the Duke CFO Global Business Outlook, the

Wells Fargo/Gallup Investor and Retirement Optimism Index, the University of Michigan Survey of

Consumers, the American Association of Individual Investors (AAII) Sentiment Survey, the Shiller

U.S. Individual One-Year Confidence Index, and the Survey of Professional Forecasters. An advan-

tage of surveys is that they can be constructed to be representative of a desired target population

of individuals; conversely, the advantage of our revealed preference approach is that it is based on

the actual decisions of individuals, albeit from a specific subset of the population.

Each survey asks different questions to elicit investor beliefs about the stock market. For exam-

ple, the Duke CFO Global Business Outlook asks survey respondents to report what they believe the

stock market will return over the course of the next year, while the Shiller U.S. Individual One-Year
28According to the prospect theory (Kahneman and Tversky, 1979), individuals have an S-shaped value function such

that they are risk averse with respect to gains but risk loving with respect to losses. Saliency theory (Bordalo et al., 2012)
generates similar types of framing effects that are driven by the saliency of the payouts rather than the curvature of the
S-shaped value function.
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Confidence Index measures the percentage of respondents who expect the stock market to increase

over the upcoming year.

Because we recover the full distribution of expectations, we can use our estimates to calculate

the implied responses to each survey question. For example, our estimated mean corresponds to

a survey that asks for expected return, whereas our estimated fraction of investors taking positive

leverage corresponds to investors who think the stock market will increase. In principle, we can

simulate survey statistics quite flexibly. Overall, the survey responses implied by the estimated

distribution of beliefs from our model are statistically and positively correlated with the survey

data. For additional details of each survey and scatterplots of the relationship, see Section D in the

Appendix.

Table 4 evaluates the relationships between the survey data and our estimated distribution of

expectations. All seven of the chosen measures from surveys are positively and significantly cor-

related (at the 1 percent level) with the corresponding statistic from our estimated distribution.

Each survey captures a slightly different subset of investors in the population, so comparing the

correlations across surveys potentially provides insight into the underlying ETF investors. We find

that our estimated distribution of beliefs is more correlated with surveys that capture the beliefs

of average retail investors (i.e., Wells Fargo/Gallup Investor and Retirement Optimism Index and

the University of Michigan Survey) than with surveys that capture the beliefs of more sophisticated

investors (i.e., Duke CFO Global Business Outlook Survey, Shiller Index, and the AAII Survey).29

While these results suggest that our estimates of investor beliefs might be picking up the beliefs

of average retail investors, we also find that our measure of beliefs is highly correlated with pro-

fessional GDP forecasts. This is not necessarily surprising given that the University of Michigan

and Gallup indices are highly correlated with professional GDP forecasts, which suggests that re-

tail investor forecasts of stock market returns are highly correlated with expectations of economic

growth.

A number of these surveys also report measures of dispersion in investor expectations. In Table

5, we report the relationship between the dispersion in our estimated beliefs and the corresponding

survey measures. The results in column (1) indicate that there is a positive relationship between

our estimated dispersion in investor expectations and dispersion in CFO expectations as measured

by the Duke CFO Global Business Outlook Survey. Similarly, we find a positive relationship between

the interquartile range of expected returns across investors from our model and the interquartile

range of GDP forecasts across professional forecasters in the Survey of Professional Forecasters.

Last, in columns (3) and (4) we examine the relationship between our estimated dispersion in

investor expectations and other measures of uncertainty and dispersion used in the literature: the
29Each survey varies with respect to the underlying populations. In terms of sophistication, we might expect the Duke

CFO survey, American Association of Individual Investors (AAII) survey, and Cash Shiller survey to reflect wealthier
and more sophisticated investors as detailed in the Appendix. At the other end of the spectrum, we might expect the
University of Michigan Survey, which covers the broad US population, to reflect less sophisticated investors. The Wells
Fargo/Gallup Investor and Retirement Optimism Index is constructed based on a nationally representative survey of U.S.
investors with $10,000 or more invested in stocks, bonds, and mutual funds, and the underlying survey population likely
falls somewhere in the middle in terms of investor sophistication.
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Equity Market Volatility Tracker from Baker et al. (2019) and the Financial Uncertainty Index from

Ludvigson et al. (2020).30 We find positive relationships between the dispersion in investor expec-

tations and both of these alternative measures.

Overall, the results displayed in Tables 4 and 5 help shed light on the external validity of

our estimates. The expectations we recover from demand for S&P 500 linked ETFs are highly and

significantly correlated with the investor expectations measured in six different surveys. The results

also indicate that the relationship between our estimated beliefs and beliefs elicited from survey

data extends to other moments of the distribution beyond the mean.

4.6 Robustness Checks

We find that allowing for skewness and kurtosis, as we do in our baseline specification, provides

estimates that best fit the data. However, for robustness, we also estimate the model using a nor-

mal distribution for expectations, where we allow the mean and standard deviation (the location

and dispersion parameters) to vary over time. Using a normal distribution maintains several of the

qualitative features of our baseline specification, but the model fit is worse. The normal distribu-

tion does a poor job fitting the fat tails of the expectation distribution, and it cannot account for

skewness.

To test the sensitivity of our results to our definition of the outside option, we consider two

alternative measures. In one specification, we scale the outside share by a factor of 5 rather than

the average ratio of purchase volume to AUM, with the idea that outside options may not trade at

the same frequency as the inside goods. We also consider a specification where we estimate the

share choosing the outside option as a free parameter, rather than bringing in the data. Neither

assumption makes a meaningful difference in our estimates. The resulting expectation distributions

and the plots of model fit are displayed in Figure A1 of the Appendix.

We also present four sets of results discussed earlier as robustness checks. Appendix A pro-

vides results using only within-menu variation in choices, at both quarterly and monthly frequen-

cies. Appendix B.1 provides a discussion of our more general model where we allow an investor’s

ETF choice to incorporate hedging demand as part of the investor’s broader portfolio allocation

problem. In this extension, investors account for how the ETF investment covaries with their

wealth/portfolio, and we estimate this covariance term for each investor as a random coefficient.

The corresponding estimated time-varying distribution of investor expectations is similar to the es-

timated distribution in our baseline specification. Appendix B.3 shows that when we use realized

volatility instead of VIX, we obtain very similar estimates with time-varying risk aversion. Although

VIX includes both physical volatility and also the variance risk premium, it is unlikely that variance
30The Equity Market Volatility tracker (Baker et al., 2019) is constructed based on monthly counts of newspaper

articles that include keywords related to economy, market, or volatility across eleven major U.S. newspapers. Ludvigson
et al. (2020) construct the financial uncertainty index based on a wide range of financial series, including valuation
ratios, dividend and price growth rates, treasury and corporate bond yields, industry portfolio equity returns, and Fama
and French risk-factors. For each of these series, the authors compute the conditional volatility of the unforecastable
component and aggregate these individual conditional volatilities into an uncertainty index.
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risk premium drives our time-varying risk aversion estimates. Lastly, Appendix B.4 presents results

where we combine the market shares of positive leveraged (2x and 3x) and negative leveraged (-2x

and -3x). The corresponding estimates are very similar to our baseline specification. This suggests

that the underlying variation driving the belief distribution is mostly coming from an investors’

choice to be positively leveraged or negatively leveraged rather than the specific leverage class they

choose. The only change in the choice set of leverage categories in our sample is the introduction

of 3x and -3x leverage in 2009. This extension shows that any lack of awareness for these new

leverage categories is unlikely to bias our estimates for the distribution of beliefs.

5 Understanding Investor Expectations

In this section, we use our estimates to contribute to the understanding of how investors form

expectations. First, we confirm a previous finding that, on average, investors extrapolate recent

stock market returns when forming expectations. We contribute to the literature by showing how

extrapolation impacts not only the mean expectations but also the variance and skewness. In other

words, we show how historical returns are correlated with investor disagreement and pessimism.

Second, we examine the persistence of beliefs and find that a one-time -10 percent return shock

impacts investors’ beliefs for up to two years into the future. Third, we show that investor forecast

errors are predictable and violate full-information rational expectations, which is consistent with

the vast evidence documenting the predictability of forecast errors. Last, we explore whether in-

vestor expectations of returns forecast future returns. While we find that the average expectation is

uncorrelated with future returns, we find some evidence suggesting that dispersion in expectations

is negatively correlated with future returns.

5.1 Determinants of Investor Expectations: Extrapolated Beliefs

There is a long theoretical and empirical literature highlighting the role of extrapolation in the

formation of investor beliefs. We examine the relationship between past stock market returns and

the expectations we recover from our model. An advantage of our model is that we recover the full

distribution of beliefs, rather than just the mean or median, which allows us to examine how other

moments, such as the standard deviation and skewness of beliefs, change in response to historical

stock market returns.

We examine the relationship between the estimated mean expected excess return versus the

previous year-over–year excess return of the stock market in the following regression

E[R]q = α+ βAnnualRetq + εq (10)

where E[R]q is the mean expected return from our model and AnnualRetq is the past one year

excess return of S&P 500.31 Observations are at the quarterly level.
31Here, we look at extrapolation based on the annual returns because they are potentially the most salient, but we
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We report the corresponding estimates in column (1) of Table 6. Due to potential autocorrela-

tion of the error term, we report t-statistics based on Newey and West (1987) with four lags. The

results in column (1) indicate that a one percentage point increase in historical returns is correlated

with a 0.11 percentage point increase in investor beliefs about the stock market return. The results

also indicate that historical returns explain 58 percent of the variation in the mean expected return,

suggesting that recent returns are first-order in explaining investor expectations.

Building on these results, we examine how other moments of the expectation distribution co-

vary with recent stock market returns. Column (2) of Table 6 displays the regression estimates

corresponding to the dispersion of expected returns across investors versus historical returns. The

two series are negatively and significantly correlated. The estimates reported in column (2) indi-

cate that a one percentage-point decrease in the past 12-month excess return of the stock market

is correlated with a 2.6 percent increase in the dispersion parameter (which is analogous to the

standard deviation of a normal distribution). The results suggest that there is a substantial increase

in disagreement following negative returns, while investor beliefs become more homogeneous fol-

lowing positive returns.

Part of the increase in dispersion appears to be driven by the presence of contrarian investors. In

column (3) of Table 6, we examine the relationship between median beliefs and historical returns.

We estimate a small negative and statistically significant relationship between the median belief

and the previous 12-month excess return of the stock market. The results indicate that a one

percentage point increase in historical returns is correlated with an 0.04 percentage point decrease

in the median belief. These results suggest that while the mean belief is extrapolative, the median

investor is contrarian.

Understanding changes in the skew of the distribution helps reconcile the differences between

the mean and median belief. Column (4) of Table 6 illustrates how the skewness of the distribution

varies with recent stock market returns. The results indicate that investor expectations become

more positively skewed following positive past returns. Conversely, investor expectations become

more negatively skewed following negative returns. The results indicate that a one percentage-

point increase in recent historical returns is correlated with a 0.26 percent increase in the skewness

parameter. Combined, these findings suggest that there exists a mass of behavioral investors that

become very pessimistic after a market downturn, making the belief distribution more negatively

skewed and decreasing the mean expectation.32

find similar results if we look at shorter horizons.
32An advantage in our setting is that it is straightforward to apply our method across asset classes. We construct a

panel of the distributions of investor beliefs across eight different asset classes at a quarterly level. Using this panel
data set provides additional statistical power and insight into the formation of investor beliefs, allowing us to exploit
cross-sectional variation in asset returns. In Appendix C, we exploit the panel structure of our data to show that the
extrapolative behavior we document among S&P 500 investors, in terms of the mean, dispersion, and skewness of
investor expectations, holds more generally across asset classes.
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5.2 Persistence of Beliefs

Figure 4 panel (a) suggests that the financial crisis had a large and persistent impact on investor

beliefs. After the decline in stock market in the late fall of 2008, the mean and skewness of in-

vestor expectations become more negative, and there is also a large increase in disagreement. As

illustrated in the figure, these effects persist for up to two years.

We examine how the belief distribution evolves by estimating how the location, dispersion and

skewness parameters of the distribution evolve as an AR(1) process.

Locationq = αa + βaMonthlyRetq + ρaLocationq−1 + εaq

Dispersionq = αb + βbMonthlyRetq + ρbDispersionq−1 + εbq (11)

Skewnessq = αc + βcMonthlyRetq + ρcSkewnessq−1 + εcq

Observations in equation (11) are at the quarterly level over the period 2008-2018. We examine

how each parameter evolves as a function of the parameter value from the previous quarter, and

also MonthlyRetq, the previous monthly excess return of the stock market averaged across the

current quarter. We report the corresponding estimates in Table 7. The results indicate that there is

strong persistence in the belief distribution over time, as the AR(1) component of each parameter

estimate is positive and significant. Consistent with our previous estimates, we also continue to

find evidence that beliefs are extrapolative and impact multiple moments of the distribution.

Figure 7 displays the impulse response of how the expectation distribution evolves in response

to large swings in the stock market. Panel (a) displays how investor expectations respond follow-

ing a one-time one-month return of negative 10 percent. As illustrated in the figure, the mean

expectation across investors immediately falls, and it remains negative for almost two years. One

interesting feature, which is consistent with our previous results, is that the mean and the me-

dian move in opposite directions. While the mean expectation across investors falls, the median

expectation increases in response to a negative return. This disagreement in measures of central

tendency is possible because a negative stock market return has a large impact on the skewness

and dispersion of the distribution of beliefs. Following the negative return, there is substantial dis-

agreement among investors, and the interquartile range of investor expectations almost doubles.

In response to the negative return shock, the 10th and 25th percentile of investors become dramat-

ically more pessimistic while the median investor becomes more optimistic. The expected return

among investors in the 10th percentile falls by more than 10 percent.

Panel (b) of Figure 7 shows how the expectation distribution evolves in response to a one-time

one-month return of positive 10 percent. The average investor’s expectation of future stock market

returns jumps up and remains elevated for the next 1-2 years. In sharp contrast to the effect of

a negative return, investor expectations become less dispersed in response to positive news about

the stock market. Expectations among investors at the 25th and 75th percentiles of the distribution

converge to the median in response to the recent positive stock market return. The interquartile
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range among investor beliefs falls by half.

Our results suggest that investor beliefs are extrapolative and persistent, such that a change

in recent returns has a profound impact on the mean, variance, and skewness of investor beliefs

over the following two years. Our findings suggest that extrapolative and contrarian tendencies

are stronger in response to poor returns, leading to increased disagreement during and after crises.

Conversely, investors tend to agree more after periods of positive returns.

5.3 Are Beliefs Rational? Predictability of Forecast Errors

We explore the rationality of investor expectations by examining the predictability of forecast errors.

The unpredictability of forecast errors is a necessary condition for rational forecasts. We construct

forecast errors as

εq+4 ≡ AnnualRetq+4 − E[R]q,

where AnnualRetq+4 is the annual excess return of the S&P 500 from q to q + 4 and E[R]q is

the average expected return across investors from our model estimates at time q.33 We test the

forecastability of errors in the following linear regression model:

εq+4 = α0 + α1Xq + ηq+4 (12)

The vector Xq consists of macroeconomic variables known to investors at the time of the forecast

that are potentially correlated with stock market returns and investor expectations. We also include

lagged parameters from our belief distribution (dispersion and skew) in vector Xq. Under the null

hypothesis that expectations are rational and incorporate all relevant information, the macroeco-

nomic variables known at time q should be orthogonal to the forecast error at q + 4 , or in other

words, α1 = 0.

We report the corresponding estimates in Table 8. Our macroeconomic control variables include

past 12-month excess returns of S&P 500 and one quarter lagged values of: VIX, log price-dividend

ratio, and the consumption wealth ratio (cay) of Lettau and Ludvigson (2001). We also examine

whether four quarters lagged forecast errors εq and one quarter lagged parameters or moments

from the belief distribution (dispersion, skew, and interquartile range) predict forecast errors. We

find evidence that forecast errors are predictable by the dispersion of the belief distributions, im-

plied volatility, log price-dividend ratio, and the consumption wealth ratio.34 We also find some

evidence, albeit statistically insignificant, that forecast errors are negatively correlated with past

returns. This is consistent with our finding that beliefs are extrapolative and suggests that such

extrapolation is irrational. Similarly, we find that forecast errors are positively correlated with past

investor disagreement. Together with the evidence that disagreement is negatively correlated with

future returns (Section 5.4), this suggests the average investor belief is overly pessimistic during

times of heightened disagreement. Given that disagreement tends to increase following negative
33In untabulated results we find that forecast errors are predictable at other horizons (i.e., at three or six months).
34In the Appendix, we show that the median forecast error is also predictable.
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returns (Table 6) this again suggests that investors become overly pessimistic following negative

returns.

5.4 Beliefs and Asset Prices: Forecasting Future Returns

5.4.1 Expectations and Future Returns

Lastly, we explore whether investor expectations of returns can forecast future returns. We regress

the future 3-month excess return of the S&P 500 on the estimated mean expected return from

our sample and report the corresponding results in column (1) of Table 9. Rather than predicting

excess returns, the estimated mean expected returns instead have a weakly negative correlation

with future returns. Our evidence is consistent with the findings in Greenwood and Shleifer (2014)

and Amromin and Sharpe (2014) that investor expectations do not forecast future returns.35

In contrast, Greenwood and Shleifer (2014) and a long previous literature show that model-

based measures can forecast future returns. We examine how our estimates of investor expectations

about future returns vary with model expected returns. First, following Greenwood and Shleifer

(2014) we use the dividend price ratio as a proxy for expected returns, second, we use the con-

sumption wealth ratio (cay) of Lettau and Ludvigson (2001) as a proxy for expected returns, and

third, we use the lower bound on the equity premium that Martin (2017) constructs using prices on

S&P 500 index options. Columns (2)-(4) of Table 9 report the regression results corresponding to

the regressions of the dividend-price ratio, cay, and the lower bound on the equity premium on our

estimate of the mean expected return. The results indicate that model expected returns are nega-

tively and significantly correlated with our estimate of the mean expected return. This evidence is

consistent with the findings from Greenwood and Shleifer (2014) and Martin (2017) that investor

expected returns are negatively correlated with model-based measures of expected returns.

The lower bound on equity premium in Martin (2017) binds for a representative investor with

log utility who is unconstrained, rational, and fully invested in the market. In our framework,

we also estimate a range of expected returns such that investors with these expectations find it

optimal to hold the market (i.e., choose 1x leverage). Figure A2 in the Appendix shows that our

estimated range almost always contains the equity premium in Martin (2017). Although using

different methods based on different products, we generate very similar implications about the

beliefs of investors holding the market.

In addition, Martin and Papadimitriou (2019) highlight the difference between the median and

average beliefs in a model of heterogeneous investors. In their model, investors who happen to be

correct in hindsight become wealthier, and the wealth-weighted average belief can be extrapolative

even if no investors change their beliefs in response to past returns. The divergence between

average and median beliefs from our estimates reflects similar patterns. This further shows how

heterogeneity can complicate attempts to generate a single measure of market sentiments.
35We find similar results when we examine future 6-month and 12-month excess returns, which we report in Table A6

in the Appendix.
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5.4.2 Dispersion in Beliefs and Future Returns

As detailed in the introduction, there is a long theoretical literature and modest empirical litera-

ture documenting how belief heterogeneity in conjunction with short-selling constraints can lead

to inflated asset prices and lower future returns. The simple intuition for this mechanism from

Miller (1977) is that short-selling constraints keep pessimistic investors out of the market such that

prices reflect the valuation of more optimistic investors. Assuming the average valuation across all

investors reflects the true value of an asset, short-selling constraints will lead to inflated prices and

lower subsequent returns.

Building on this literature, we examine the relationship between our estimated dispersion in be-

liefs and future returns by regressing the future 3-month excess return of the S&P 500 on our mea-

sures of dispersion in beliefs. We measure dispersion in beliefs using both the levels and changes

in the interquartile range of beliefs and the dispersion parameter b from our estimated belief distri-

bution, which corresponds to the standard deviation of beliefs. In our specification we also control

for the average expected return across investors. Columns (1)-(4) of Table 10 display the corre-

sponding results. We estimate a negative relationship between dispersion in beliefs and returns

in each specification, and the estimates are statistically significant in two out of the four specifica-

tions. The results in column (1) indicate that a one percentage point increase in the interquartile

range is associated with a 0.39pp decrease in quarterly future returns, which is consistent with the

predictions from the literature.

The theoretical literature has pointed to the interaction of short-selling constraints and disper-

sion in beliefs as the key factor driving the negative relationship between dispersion in beliefs and

returns. We explore this potential mechanism by examining the relationship between returns and

the fraction of constrained pessimistic investors in the following regression:

Rq+1 = β1Constrainedq + β2Dispersionq + β3Constrainedq ×Dispersionq + β4E[R]q + νq. (13)

The dependent variable measures the 3-month return of the S&P 500 from period q to q+1. One of

the key independent variables of interest is the variable Constrainedq which captures the fraction

of constrained pessimistic investors and is measured as the share of investors who purchase the

lowest available leverage category. For the early part of our sample, the lowest available leverage

was -2x which changed to -3x in 2009 after the introduction of new ETFs. The other independent

variable of interest is the interaction term Constrainedq×Dispersionq. Much of the theoretical

literature indicates that the combination of disagreement and short-selling constraints leads to

lower future returns such that β3 <0.

We report the corresponding estimates in columns (5)-(7) of Table 10. In column (5) we control

for the share of constrained pessimistic investors (Constrainedq) and find a negative and signif-

icant relationship between the share of constrained pessimist investors and future returns. The

results indicate that a one percentage point increase in the share of investors in the lowest avail-

able leverage category (constrained pessimistic investors) is correlated with a 2.25pp decrease in
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returns. In columns (6)-(7) we include the interaction term Constrainedq×Dispersionq. where

we measure dispersion using the interquartile range in Column (6) and using the dispersion param-

eter b in column (7). Consistent with the theoretical literature we estimate a negative coefficient

on the interaction term, indicating that returns are lower when both short-selling constraints bind

and dispersion in beliefs is high. We also add the caveats that our measure of constrained short

sellers is likely an imperfect proxy for short-selling constraints and the investors we study reflect

only a subset of the market. Furthermore, both short-selling constraints and dispersion in beliefs

are potentially endogenous. However, the results suggest that the interaction of short-selling con-

straints and dispersion in beliefs may play a role in explaining the negative relationship between

belief dispersion and returns.36

6 Extensions

6.1 Extending the Methodology to Other Assets

It is straightforward to extend our approach to other asset classes. We extend our analysis to

estimate time-varying investor expectations for gold, oil, European equities, emerging market eq-

uities, US real estate, medium-term (7-10 year) Treasury, and long-term (20+ year) Treasury. In

Appendix C, we describe the ETFs corresponding to each asset class in detail and report corre-

sponding market shares. We follow the same methodology as above, using maximum likelihood to

recover time-varying distribution of expectations separately for each asset class. For oil and US real

estate, we have less empirical variation in choices, so we restrict the skewness parameter to be 1

(no skew) throughout the sample.37

Figure 8 panels (a)-(g) plot the estimated expected return distribution over time across the

seven different asset classes. We capture time-varying expectations that seem reasonable and are

consistent with intuition. For example, following the 2008 financial crisis, investor expectations

over the real estate sector fall dramatically and then rebound in 2010 and 2011 (8e). Similarly, the

negative effects of the European sovereign debt crisis on investor beliefs are immediately apparent

in Figure 8c, as the average investor expected a decline in equity prices and there was an increase

in disagreement across investors.

We estimate different risk aversion parameters for each asset class, because the sample of in-

vestors trading each asset class may be different. For example, we find that investors in gold are

slightly less risk averse than those in S&P 500 (λ = 0.78 vs. λ = 0.98). We estimate that investors

in oil are much less risk averse, with a risk aversion parameter of 0.28. One caveat is that the

interpretation of these estimates as risk aversion depends on the strict interpretation of the model.

If investors have heterogeneity in beliefs about volatility, this could be reflected in the estimated

36We find that dispersion is similarly predictive of future 6-month returns. It is less predictive of 12-month returns,
though we have less statistical power at that horizon. We replicate Table 10 with 6-month and 12-month horizons in
Tables A7 and A8 in the Appendix.

37If we relax this constraint, we do not estimate the skewness parameter to be significantly different from 1.
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parameter. The differences in estimated risk aversion could also vary because the size of the ETF

investment relative to the investor’s portfolio varies across asset classes.

6.2 Using Higher-Frequency Data: Evidence from the COVID-19 Pandemic

Our methodology for recovering investor beliefs allows us to calculate the distribution of beliefs at

the same frequency as the ETF flow data. From 2008 through 2018, we estimate the distribution

of beliefs at monthly and quarterly frequencies. As an extension, we exploit daily ETF flow data to

calculate the distribution of beliefs at a daily level during the COVID-19 pandemic.

We estimate the distribution of beliefs over the period January 2020 through June 2020 fol-

lowing the same procedure described in Section 4.1. We use the high-frequency data to estimate

the time-varying parameters of the distribution—location, dispersion, and skewness—at a daily fre-

quency. For this shorter time series, we set the static parameters for risk aversion and kurtosis equal

to our baseline estimates. Figure 9 panel (a) displays our daily estimates of investor beliefs and

panel (b) displays the incidence of COVID-19 and the S&P 500 Index level. Panel (a) shows that

there was a sharp increase in disagreement among investors in mid-February around the time the

first COVID-19 death was reported in the US. The increase in disagreement peaked in late March,

but remained elevated through June. Part of the increase in dispersion was driven by an increase

in pessimism, but it was also driven by an increase in optimism among contrarian investors. The

results suggest that the average investor became optimistic about returns starting in February until

states in the US started imposing lockdowns in mid-to-late March. Following the lockdowns in the

US, the average expected return fell by more than 20 percent from its peak and did not recover

until mid-to-late April when infection rates in the US started to fall. The patterns we document

are consistent with the survey evidence in Giglio et al. (2020). Using monthly survey data from

February through April 2020, Giglio et al. (2020) find that in mid-March the average investor be-

came more pessimistic and that there was a persistent increase in disagreement. Overall, the results

displayed in Figure 9 highlight the potential usefulness and scope of our methodology; we recover

the distribution of investor beliefs at a high frequency in real time using readily available data.

7 Conclusion

We use a revealed-preference approach to estimate investor expectations of stock market returns.

We apply our methodology to the market for S&P 500 ETFs. ETF investors face a fixed menu of

investment alternatives, each with a different fee structure and risk/return profile. Measuring how

investors trade-off risk/return among a fixed choice set allows us to separately identify investor

expectations of returns and risk aversion.

Our framework allows us to recover the full distribution of investor beliefs at a quarterly fre-

quency over the period 2008-2018. Our empirical estimates of investor expectations are highly

correlated with the leading survey measures of investor expectations that are commonly used in
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the literature (Greenwood and Shleifer, 2014). Because we recover the distribution of investor ex-

pectations, we are able to provide new insights into the drivers of investor beliefs. Consistent with

the literature, we find evidence of extrapolative beliefs: mean expectations about future returns

are highly and positively correlated with recent historical returns. In addition, we find that the

distribution of beliefs becomes more dispersed and more negatively skewed following a period of

negative stock market returns. As a stark illustration of heterogeneity in beliefs, we find that mean

and median expectations move in opposite directions after negative S&P 500 returns.

Our framework is straightforward to apply to other asset classes. While we study the market for

ETFs for tractability reasons, this type of demand framework could be used to provide insight into

investor expectations and risk preferences in other settings going forward, and could be particularly

useful when survey or micro data is unavailable.
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Tables

Table 1: Summary Statistics Across S&P 500 Leverage Categories

Adj. Share (%) Raw Share (%) Raw AUM (Billion) Purchases (Billion) Retail Fraction Expense Ratio (bps.)
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

-3x 2.87 0.70 0.33 0.13 0.75 0.26 2.50 1.35 0.91 0.03 93.48 1.26
-2x 6.59 5.48 1.23 1.08 1.98 0.89 7.76 10.83 0.86 0.05 89.99 1.10
-1x 1.06 0.48 0.83 0.50 1.66 0.59 1.18 0.80 0.72 0.03 90.74 2.34
1x 56.98 10.47 88.41 4.37 230.77 139.91 233.13 73.38 0.25 0.05 8.66 0.36
2x 4.85 2.08 0.99 0.63 1.93 0.62 5.41 4.36 0.79 0.04 91.24 2.09
3x 3.49 0.62 0.37 0.08 1.04 0.66 3.19 1.30 0.82 0.08 95.27 0.58

Total 75.26 5.55 92.09 2.76 237.96 140.44 252.67 83.12 0.27 0.04 29.31 9.01

Notes: Table 1 shows summary statistics at month × leverage category level. Adj. Share and Raw Share compare market
shares based on our adjusted purchase volume outlined in Section 2.3 and the raw AUM in the data. Raw AUM and
Purchases display the original AUM and our adjusted purchase volume in billion dollars. Lastly, Retail Fraction shows the
retail ownership and Expense Ratio shows the fee charged by ETFs. The last row corresponds to the means and standard
deviations of monthly total adjusted market share, AUM share, AUM, and purchase volume across all leverage categories,
monthly average retail ownership and monthly average expense ratio weighted by market share.
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Table 2: Parameters for Time-Varying Belief Distribution Fs

Parameter Function Interpretation
as Location Corresponds to mean and median with no skew (c = 1)
bs Dispersion Multiplicative scale; corresponds to standard deviation when (d =∞, c = 1)

cs Skewness More extreme negative values (c < 1) or positive values (c > 1)
ds Kurtosis Special cases are Cauchy (d = 1, c = 1) and Normal (d =∞, c = 1)
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Table 3: Estimated Parameters

Constant Heterogeneous Time-Varying
Risk Aversion Risk Aversion Risk Aversion
Coef SE Coef SE Coef SE

Expected Return
Location (Median) 2.856 (0.695) 2.543 (0.667) 2.053 (0.802)
Dispersion (Median) 1.080 (0.424) 1.005 (0.456) 0.910 (0.395)
Skewness (Median) 0.766 (0.343) 0.756 (0.243) 0.732 (0.313)
Kurtosis 1.262 (0.133) 1.322 (0.151) 1.510 (0.193)

Risk Aversion: Time Invariant
Mean 0.982 (0.020) 0.853 (0.072)
Dispersion 0.145 (0.080)

Risk Aversion: Time Varying
Min 0.255 (0.076)
Median 0.617 (0.045)
Max 1.164 (0.407)

Model Fit
R2 0.921 0.923 0.935
Log Likelihood -168.4 -168.3 -166.7
AIC 2565.0 2565.5 2560.7
BIC 3208.5 3213.8 3252.2

Notes: Table 3 shows estimation results with constant and heterogeneous risk aversion. The first panel displays pa-
rameters for the expected return distributions. Location, dispersion and skewness parameters are allowed to vary over
time, and we estimate one set of coefficients for each quarter. We display the median location, dispersion, and skewness
coefficients, as well as their corresponding standard errors. The next panel shows mean risk aversion and the dispersion
(half length of the range) when it follows uniform distribution. Standard errors are computed using the inverse of nu-
merical Hessian. Next, we compute the implied mean expected return in each quarter and display the quantiles of the
across-time distribution of mean expectations. The last two rows show R2 and log likelihood of each specification.
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Table 4: Comparison with Surveys

Survey Gallup Mich. AAII Shiller Duke CFO SPF
Survey Measure Index Index Index Index Mean Share Neg. Mean

(1) (2) (3) (4) (5) (6) (7)
Est. Measure 0.71*** 0.77*** 0.45*** 0.55*** 0.32*** 0.68*** 0.88***

(0.10) (0.075) (0.099) (0.17) (0.11) (0.12) (0.096)
Observations 40 44 44 44 44 44 44
R-squared 0.511 0.585 0.202 0.307 0.100 0.462 0.779

Notes: Table 4 shows the correlation between the estimated expectations from our model and six additional surveys: (1)
the Gallup Investor and Retirement Optimism Index, (2) the University of Michigan Survey of Consumers, (3) the Amer-
ican Association of Individual Investors (AAII) Sentiment Survey, (4) the Shiller U.S. Individual One-Year Confidence
Index,(5-6) the Duke CFO Global Business Outlook Survey (CFO), and (7) the Survey of Professional Forecasters (SPF).
The estimated belief distribution corresponds to our baseline model estimates reported in column (1) of Table 3. Obser-
vations are at the quarterly level over the period 2008-2018. For details on these surveys, see Section 4.5. Each column
displays the correlation between each survey measure and the analogous measure from our model. Surveys in columns
(1)-(3) are compared to the relative share of investors preferring positive to negative leverage, based on our estimated
distribution of expectations. The Shiller index in column (4) is compared to the fraction of investors choosing positive
leverage (greater than 1x). The CFO mean expected return in column (5) is compared to the mean estimated expected
return from our model. The fraction of CFOs who expect returns to be negative next year is compared to the fraction of
investors choosing negative leverage in column (6). The SPF average GDP growth forecast in column (7) is compared
to the mean estimated expected return from our model. We winsorize the mean and standard deviation of expected
returns from our model at the 5% level to account for outliers during the financial crisis. Winsorizing the data does
not change inference on the relationship between the corresponding series. *** p<0.01, ** p<0.05, * p<0.10.Robust
standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.10.
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Table 5: Comparison with Other Measures of Dispersion and Uncertainty

Measure Duke CFO SPF BBDK LMN
(1) (2) (3) (4)

Est. Measure 0.56*** 0.72*** 0.77*** 0.82***
(0.15) (0.19) (0.067) (0.14)

Observations 44 44 44 44
R-squared 0.310 0.512 0.586 0.678

Notes: Table 5 shows the correlation between the estimated dispersion in beliefs from our model and four additional
measures surveys and the literature: (1) the Duke CFO Global Business Outlook Survey (CFO), (2) the Survey of Profes-
sional Forecasters (SPF), (3) the US Equity Market Volatility Tracker constructed by Baker, Bloom, Davis, and Kost (2019)
(BBDK), and (4) the Financial Uncertainty Index constructed by Ludvigson, Ma, and Ng (2020) (LMN). The estimated
belief distribution corresponds to our baseline model estimates reported in column (1) of Table 3. Observations are at
the quarterly level over the period 2008-2018. For details on these surveys, see Section 4.5. Each column displays the
correlation between each alternative measure and the analogous measure from our model. Column (1) displays the cor-
relation between standard deviation of expected returns across CFOs and standard deviation parameter from our model.
Column (2) displays the correlation between th interquartile range of GDP forecasts across professional forecasters in
the SPF and the interquartile range of estimated expected returns from our model. Column (3) displays the correrlation
between the US Equity Market Volatility Tracker by Baker, Bloom, Davis, and Kost (2019) and the interquartile range
of estimated expected returns from our model. Column (4) displays the correrlation between the Financial Uncertainty
Index by Ludvigson, Ma, and Ng (2020) and the interquartile range of estimated expected returns from our model. We
winsorize the standard deviation of expected returns from our model at the 5% level to account for outliers during the
financial crisis. Winsorizing the data does not change inference on the relationship between the corresponding series.
*** p<0.01, ** p<0.05, * p<0.10. Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.10.
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Table 6: Expected Returns versus Past 12-Month Returns

Mean ln(Dispersion) Median ln(Skewness)
(1) (2) (3) (4)

Annual Return 0.11*** -0.026*** -0.038** 0.0026***
(0.030) (0.0076) (0.014) (0.00089)

Observations 44 44 44 44
R-squared 0.582 0.310 0.230 0.184

Notes: Table 6 displays the regression of different moments of the estimated expected returns distribution on the past 12-
month excess return of the S&P 500. Observations are at the quarterly level over the period 2008-2018. The dependent
variable in each column corresponds to different moments/parameters of the estimated expected returns distribution
corresponding to our baseline estimates reported in column (1) of Table 3. The dependent variable in column (1) is
the mean and is measured in percentage points, in column (2) is the dispersion parameter in logs, in column (3) is the
median and is measured in percentage points, and in column (4) is the skewness parameter in logs. The independent
variable Annual Return is measured in percentage points. We winsorize all independent and dependent variables at
the 5% level to account for outliers during the financial crisis. Winsorizing the data does not change inference on the
relationship between the corresponding series. Newey-West based standard errors are in parentheses with four lags. ***
p<0.01, ** p<0.05, * p<0.10.
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Table 7: Evolution of the Parameters of the Expectation Distribution: Vector Autoregressions

Location Dispersion Skewness
Lag Parameters 0.55*** 0.65*** 0.41***

(0.13) (0.085) (0.15)
Monthly Return -0.65*** -0.63*** 0.0015

(0.23) (0.20) (0.0038)
Const 2.32*** 1.33*** 0.45***

(0.69) (0.41) (0.12)

Observations 43 43 43
R-squared 0.726 0.791 0.195

Notes: Table 7 displays the regression results to three linear regression models (eq. 11). Observations are at the quarterly
level over the period 2008-2018. The dependent variable in each column corresponds to different moments/parameters
of the estimated expected returns distribution corresponding to our baseline estimates reported in column (1) of Table
3. The dependent variable in column (1) is the mean parameter, in column (2) is the standard deviation parameter, and
in column (3) is the skew parameter. We include the lag dependent variable in each regression as a control variable. The
independent variable Monthly Return is the previous monthly excess return of the S&P 500 averaged across the quarter
and is measured in percentage points. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.10.
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Table 8: Predictability of Forecast Errors

(1) (2) (3) (4) (5) (6) (7) (8)
Lagged Forecast Error -0.23

(0.16)
Annual Return -0.12

(0.15)
Lagged ln(Dispersion) 4.08*

(2.34)
Lagged IQR 0.63***

(0.12)
Lagged ln(Skewness) -3.57

(20.8)
Lagged VIX 0.46**

(0.19)
Lagged ln(Price/Dividend) 41.4***

(8.13)
Lagged cay 272*

(151)

Observations 40 44 43 43 43 43 43 39
R-squared 0.077 0.028 0.076 0.162 0.001 0.119 0.235 0.122

Notes: The table displays the results corresponding to a linear regression model (eq. 12). Observations are at the
quarterly level. The dependent variable is the forecast error constructed as the difference between the 12-month return
of the S&P 500 from period q to q + 4 and the mean expected return at time q. The forecast error is scaled by 100
such that it is measured in percentage points. Independent variables include four quarters lagged values of forecast
errors, past 12-month S&P 500 excess returns, one quarter lagged value of parameters or moments from the belief
distribution (dispersion, skew, and interquartile range), and one quarter lagged value of VIX, log price-dividend ratio,
and the consumption wealth ratio (cay) of Lettau and Ludvigson (2001). Newey-West based standard errors are in
parentheses. *** p<0.01, ** p<0.05, * p<0.10.
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Table 9: Comparison with Future Returns and Model Returns

Future Returns ln(Div/Price) cay Martin (2017)
(1) (2) (3) (4)

Mean of Exp. Returns -0.13 -0.047*** -0.0026*** -0.014***
(0.58) (0.0054) (0.00090) (0.0036)

Observations 44 44 39 44
R-squared 0.003 0.749 0.200 0.630

Notes: Table 9 displays the regression of future and model-based return measures on the mean belief from our estimated
distribution of investor beliefs. Observations are at the quarterly level over the period 2008-2018. The dependent
variable in column (1) is the future 3-month excess return of the S&P 500. The dependent variable in column (2) is
the log dividend-pice ratio. The dependent variable in column (3) is cay from Lettau and Ludvigson (2001). Lastly, the
dependent variable in column (4) is the lower bound on the equity premium in Martin (2017). The independent variable
Mean of Exp. Returns corresponds to our baseline model estimates reported in column (1) of Table 3. We winsorize the
Mean of Exp. Returns and the future 3-month excess return of the stock market variables at the 5% level to account for
outliers during the financial crisis. Newey-West based standard errors are in parentheses with one lag. *** p<0.01, **
p<0.05, * p<0.10.
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Table 10: Dispersion in Beliefs and Returns

(1) (2) (3) (4) (5) (6) (7)
IQR -0.39 0.77**

(0.28) (0.35)
∆ IQR -0.44***

(0.047)
Dispersion (b) -0.65 1.64**

(0.69) (0.70)
∆ Dispersion -1.00***

(0.13)
Constrained -2.25*** -1.69** -1.66**

(0.63) (0.81) (0.79)
Constrained×IQR -0.064***

(0.021)
Constrained×Dispersion -0.14***

(0.044)

Observations 44 43 44 43 44 44 44
R-squared 0.065 0.222 0.039 0.217 0.242 0.338 0.340

Notes: The table displays the results corresponding to a linear regression model (eq. 13). Observations are at the
quarterly level. The dependent variable is the 3-month return of the S&P 500 from period q to q + 1 and scaled by
100 such that it is measured in percentage points. The variable IQR measures the interquartile range of the estimated
belief distribution at time q and is scaled by 100 such that it is measured in percentage points. The variable Dispersion
corresponds to the estimated dispersion parameter (b) from our belief distribution. The variable Constrained is share
of investors who purchase the lowest available leverage category and is scaled by 100 such that it is measured in
percentage points. In each specification we also control for the estimated mean belief at time q. Robust standard errors
are in parentheses. *** p<0.01, ** p<0.05, * p<0.10.
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Figures

Figure 1: S&P 500 ETFs

(a) Assets Under Management (Retail Investors)
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(b) Trading Volume (Retail Investors)
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Notes: Figure 1 shows binned scatters at annual frequency along with the linear fitted lines for total retail AUM in panel
(a) and total retail trading volume in panel (b) of ETFs that track S&P 500. Retail AUM is computed as Retailj×AUMjt

and trading volume is computed as Retailj × TradingV olumejt according to the market share construction discussed
in Section 2.3.

Figure 2: Data at Leverage Category Level (S&P 500)
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(b) Expense Ratio
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Notes: Figure 2 top panel plots adjusted market share for each leverage category. The bottom panel plots market share
weighted average expense ratio in each leverage category.
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Figure 3: Identification Using Cross-Sectional and Within-Quarter Variation
(a) Small Within-Quarter Variation
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(b) Large Within-Quarter Variation
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(c) Higher Risk Aversion Parameter
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(d) Lower Risk Aversion Parameter
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Notes: Figure 3 plots model-implied cutoff points of expected returns against the cumulative shares to illustrate how
the distribution of expectations and risk aversion are identified. Each plotted line corresponds to an estimated CDF
of investor expected returns. The parameters of the CDF are chosen to best fit the plotted points. Panel (a) shows a
quarter in which the cross-sectional (within-month) variation acts a primary source of identification in pinning down
the CDF. Panel (b) provides an example quarter in which within-quarter variation in fees and volatility play a more
substantial role in identification. In panel (b), the overlap in cutoff points for different months within a quarter—i.e.,
the hollow purple square and the solid blue circle, corresponding to S−2 in one month and S−1 in another—illustrates
our condition for nonparametric identification of risk aversion. Panels (c) and (d) further illustrate how the risk aversion
parameter is identified. In each panel, the cutoff points and the estimated CDF from panel (b) are plotted in black. In
panel (c), we plot a set of observations and CDF that would be obtained with a risk aversion parameter that is five times
greater (in red). In panel (d), we plot the observations corresponding to a risk aversion parameter that is five times
smaller (in blue). We cannot fit a CDF for expected returns through these observations because the cutoff points are not
monotonically increasing with leverage. At that level of risk aversion, our model predicts that no investor would choose
a 2x ETF over a 3x ETF. Thus, the smaller risk aversion parameter is inconsistent with what we observe in the data. The
larger risk aversion parameter admits a CDF, but the fit is poor compared to the estimated risk aversion parameter.

49



Figure 4: Time-Varying Investor Expectations

(a) Estimated Distribution
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(b) Location Parameter (as)
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(c) Dispersion Parameter (bs)
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(d) Skewness Parameter (cs)
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Notes: Figure 4 panel (a) plots the estimated distribution of investor expectations over time. Red dots represent mean
expected return. Solid dark red lines indicate median, dashed lines indicate 25th and 75th percentiles, and dotted lines
indicate 10th and 90th percentiles. Panels (b) to (d) show estimated time-varying location, dispersion, and skewness
parameters for expectation distribution in blue dotted lines, and the 90 percent confidence intervals in blue dashed lines.
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Figure 5: Expectations and Model Fit: Baseline and Heterogeneous Risk Aversion (S&P 500)

(a) Expectation Distribution, λi = λ
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(b) September 2009, λi = λ
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(c) Fit of Log Shares, λi = λ
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(d) Expectation Distribution, λi ∼ G(·)
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(e) September 2009, λi ∼ G(·)

−20 −10 0 10 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Expected Return (%)

D
en

si
ty

−14%
−8.4%

−3.8%
2.9%

9.3%
14%

−3x
−2x

−1x
0x

1x
2x

3x

(f) Fit of Log Shares, λi ∼ G(·)
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Notes: Figure 5 top panels correspond to the baseline specification with constant risk aversion. Bottom panels allow for heterogeneous risk aversion. Left panels plot
the estimated distribution of investor expectations over time. Red dots represent mean expected return. Solid dark red lines indicate median, dashed lines indicate
25th and 75th percentiles, and dotted lines indicate 10th and 90th percentiles. Middle panels display the density of expectations for a given month (September 2009)
and cutoff points corresponding to the expected return where investors are indifferent between two adjacent leverage categories. Right panels plot fit in terms of log
market shares of each leverage. The x-axis corresponds to log market shares in the data, and y-axis corresponds to predicted log market shares. Color red to blue
represents each leverage from -3x to 3x. The solid black lines correspond to the 45 degree line.
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Figure 6: Time-Varying Risk Aversion

(a) Expectations
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(b) Risk Aversion
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Notes: Figure 6 panel (a) plots the estimated distribution of expectations over time where we allow risk aversion to vary
at annual level. Red dots represent mean expected return. Solid dark red lines indicate median, dashed lines indicate
25th and 75th percentiles, and dotted lines indicate 10th and 90th percentiles. Panel (b) plots the estimated risk aversion
which varies at the annual level.
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Figure 7: Impulse Response

(a) Response to -10% One-Month Return
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(b) Response to 10% One-Month Return
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Notes: Figure 7 displays the impulse responses of a one-month S&P 500 return of -10 percent at t = 1 in the left hand
side panel and a one-month S&P 500 return of 10 percent at t = 1 in the right hand side panel. Time t is measured in
quarter. We predict each parameter separately using their lagged value in the previous quarter and the previous monthly
S&P 500 excess return averaged cross the current quarter as reported in Table 7. The initial values are kept at steady
state mean of each parameter. We assume averaged S&P 500 monthly returns are 0.84% for t = 0 and t > 1. Red dots
correspond to analytical mean. Solid dark red line shows median, and dashed dark red lines show 10, 25, 75, and 90th
percentiles.
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Figure 8: Expectations: Other Asset Classes
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(d) Emerging Markets
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(f) Mid-Term Treasury
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(g) Long-Term Treasury
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Notes: Figure 8 panels (a)-(g) displays the estimated expectation distribution corresponding to gold, oil, European equities, emerging market equities, US real estate,
medium-term (7-10 year) Treasury, and long-term (20+ year) Treasury. Red dots represent mean expected return, solid dark red lines indicate median, dashed lines
indicate 25th and 75th percentiles, and dotted lines indicate 10th and 90th percentiles.
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Figure 9: Daily Expectations During COVID-19 Pandemic

(a) Estimated Distribution
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Notes: Figure 9 panel (a) plots the estimated distribution of investor expectations at daily frequency during the first half
of 2020. Panel (b) plots new COVID-19 cases over the past 7 days in the US in dark red with axis on the left hand side,
and S&P 500 index levels in gray with axis at the right hand side. COVID cases are downloaded from the COVID-19 Data
Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University
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Appendix

A Alternative Estimation Approach

In this appendix, we provide an alternative set of estimates for our time-varying belief distribution.

Our baseline estimates, which are presented in the text, make use of two sources of variation for

identification. The first source of variation is in the choice of leverage facing investors. The second

source is empirical variation in prices and volatility. How these sources provide identifying power

are described in more detail in Section 3.

If we rely only on the first source of variation—the choices facing investors—then we can lever-

age the model to estimate beliefs at a higher frequency, as we would not require within-period vari-

ation in prices and volatility. For our alternative estimates, we follow this approach. Because we

observe six unique points in the distribution in each period, corresponding to {Sj} = {S−3, S−2,S−1,
S0, S1, S2}, we can identify, in principle, up to six period-specific parameters for the distribution F

and risk aversion λ. Thus, even with this high degree of flexibility in the time series, our model has

sufficient identifying restrictions.

For our alternative estimates, we use nonlinear least squares to estimate parameters that vary

at the monthly level. As in our main results, we hold the risk aversion parameter (λ) and the

kurtosis parameter fixed over the sample, allowing month-specific values for location, dispersion,

and skewness. On advantage of the approach is computational efficiency. We estimate only a subset

of the parameters with a nonlinear search and the rest are recovered by ordinary least squares.

Our estimation routine works as follows: in an outer loop, we choose the risk aversion pa-

rameter (λ̂) and the kurtosis parameter (d̂), which we hold fixed across periods. Then, in each

period, we pick a value for the skewness parameter ĉt. We use the estimated skewness and kurtosis

parameters to invert the cumulative share equation, obtaining

F−1(Sjt; ĉt, d̂t) =
1

b̂t

(
λ̂

2
(2j + 1)σ2t + p(j+1)t − pjt − ât

)
+ ζjt,

where ât and b̂t are the period-specific location and dispersion parameters, and ζjt is a residual. We

then run a period-specific regression of F−1(Sjt; ĉt, d̂t) on ( λ̂2 (2j + 1)σ2t +p(j+1)t−pjt) for all j < 3.

As the coefficient on the combined term is normalized to 1, the regression coefficient provides us an

estimate of the dispersion parameter 1
b̂t

. The constant is equal to − ât
b̂t

and provides us an estimate

of the location parameter. We iterate over the outer-loop parameters λ̂ and d̂ until we find the value

of all parameters that minimize
∑

t

∑
j ζ̂

2
jt.

Our monthly estimates using this procedure are displayed in Figure A3. These estimates track

our main results fairly closely, though the skewness is somewhat less extreme during the crisis. This

may be due to the fact that this alternative approach has residuals that allow the model to fit the

shares exactly. Thus, extreme beliefs that may imply skewness in the distribution can be instead

captured with a residual.
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Figure A4 provides a more detailed comparison of the different estimates. Panels (a) and (e)

report our baseline time series, which is based on maximum likelihood estimation, and the model

fit. The alternative time series is shown in panel (d), and the fit, after removing the residuals, is

shown in panel (h). Recall that the model fits the data perfectly when the residuals are accounted

for.

To assist in comparison with the alternative estimates, we provide monthly maximum likelihood

estimates in columns (b) and (f), where we allow the parameters of the belief distribution to vary

at the monthly level. These estimates also rely only on variation in the choices and do not make

use of empirical variation in fees and volatility. Likewise, we provide quarterly estimates for the

alternative approach in panels (c) and (g).

The alternative estimates, which are obtained using different identifying restrictions and using

a different objective function in estimation (least squares instead of maximum likelihood), return

similar qualitative patterns to our baseline results. These alternative estimates show that our gen-

eral approach is not sensitive to any single assumption.

B Robustness Checks

B.1 Heterogeneous Portfolios and Hedging Demand

In this appendix, we allow for portfolio hedging in our demand estimation. In our baseline specifi-

cation, investor utility is given by

uij = βjµi − pj −
λ

2
βj

2σ2,

which specifies that the additional risk of adding an ETF to an investor’s portfolio is βj2σ2. This

model does not account for how the ETF investment decisions may covary with the investor’s

wealth. If an investor considers the risk of her wealth not invested in ETFs, then she may prefer to

pick ETFs that are negatively correlated with her other wealth to reduce her overall risk.

Formally, if an investor’s wealth ωi is correlated with the underlying ETF asset, the additional

variance of investing a fraction of her wealth δ in ETF j is given by δ2β2j σ
2 + 2δβjβωiσ

2, where

βωi is the market beta of the investor’s portfolio. The term δ2β2j σ
2 reflects the variance of the ETF

investment, and the term 2δβjβωiσ
2 reflects how the ETF investment changes the variance of the

investor’s existing portfolio.

To see this, consider an investor who has wealth W0 exposed to market risk and sets aside δW0

in active investment following S&P 500 ETFs. The total value of her wealth and ETF investment is

W = W0(1 + βωiR) + δW0(1 + βjR), where R denotes S&P 500 returns and we assume there is no

alpha in the wealth return. Taking a second-order Taylor Expansion of expected utility with respect

to deviation from W0(1 + δ) obtains
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E[u(W )] ≈ u(W0(1 + δ)) + u′(W0(1 + δ)W0E[βωiR+ δβjR] +
1

2
u′′(W0(1 + δ))W 2

0E[(βωiR+ δβjR)
2]

≈ u(W0(1 + δ)) + u′(W0(1 + δ))W0(βωiµ+ δβjµ) +
1

2
u′′(W0(1 + δ))W 2

0 σ
2(β2

ωi
+ δ2β2

j + 2δβjβωi)

� δβjµ+
1

2

u′′(W0(1 + δ))

u′(W0(1 + δ))
W0σ

2(δ2β2
j + 2δβjβωi)

= δβjµ−
λ

2
(δ2β2

j + 2δβjβωi)σ
2 � βjµ−

λ

2
β2
jσ

2(δ +
2βωi

βj
)

where, in the second line, we plug in the definition of mean and variance of return and assume

that E[βωiR+ δβjR]2 ≈ 0. In the third line, we drop terms unrelated to βj and divide by u′(W0(1 +

δ))W0. In the fourth line, we define risk aversion as constant relative risk aversion scaled by the

fraction invested in ETF: λ = −u′′(W0(1+δ))W0(1+δ)
u′(W0(1+δ))

1
1+δ . Also, note that purchasing an ETF will yield

diversification benefits for the investor if and only if sgn(βj) 6= sgn(βωi).

Thus, the indirect utility of leverage j for an investor whose wealth has market risk βωi is given

by

uij = βjµi − pj −
λ

2
βj

2σ2δ − λβjβωiσ2.

For an average βω, the cumulative probability of purchasing leverage k ≤ j becomes

Sj = F

(
λδ

2
(2j + 1)σ2 + λβωσ

2 + pj+1 − pj
)

With this extension, we identify λδ and λβω. The coefficient on the first term inside the bracket

captures risk aversion multiplied by the fraction of active ETF investment λδ. The second term

corresponds to hedging and gives us an estimate for the average wealth market risk multiplied

by risk aversion λβω. This specification considers the overall risk contribution of an ETF leverage

choice, including its covariance with the investor’s wealth in addition to its own variance. If the

investor’s wealth is positively correlated with the market (βω > 0), λβω shows that positive leverage

has an additional risk of increasing the investor’s overall market exposure while negative leverage

yields an additional hedging return. Though we can no longer isolate risk aversion λ, we can still

recover the distribution of investor expectations F .

We estimate specifications with fixed portfolio risk βω and investor-specific portfolio risk βωi ,

where we allow βωi to follow a normal distribution. We integrate out these unobserved preferences

as random coefficients. We present our estimates for the model with heterogeneity in risk aversion

and portfolio risk, but the results are similar when we do not allow for heterogeneity.

Figure A5 displays estimates for investor expectations with hedging, which are close to our

baseline results in Figure 4. The estimated mean expected returns in these two models are highly

correlated with a correlation coefficient of 0.97. Our estimates suggest that portfolio demand is

not meaningful in the context of S&P 500 ETFs. While recover an average value of βω/δ = −0.788.

Though we cannot separately identify δ, it is unlikely that active investment in S&P 500 ETFs makes

up a significant fraction of investors’ wealth. To provide an “upper bound” estimate of the effects of
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hedging demand, assume that investors place a significant fraction of their wealth—10 percent—

into ETFs. If on average δ ≈ 0.1, then βω = −0.0788. This suggests investors behave as if their

wealth is nearly uncorrelated with the market. In other words, this hedging term is close to zero,

suggesting that investors behave as if there is little hedging consideration against market risk.

In estimation, we might pick up collinearity between (2j + 1)σ2 and σ2, so we hesitate to

interpret this result strongly. But this exercise shows that our method is capable to account for

multiple sources of risks in more general settings.

B.2 Time-Varying and Heterogeneous Risk Aversion

In the main text, we show results where the perceptions of risk vary across investors in Section 4.3

and vary over-time in Section 4.4. This Appendix section presents three extensions. First, we allow

perceptions of risk to vary both across time and individuals. Then, we show two extensions where

we allow idiosyncratic risk aversion draws to be correlated with expectations.

With two dimensions of heterogeneity that vary over time, it becomes harder to evaluate distri-

butions analytically as in our baseline estimation procedure in Section 4.1. Therefore, we use sim-

ulated maximum likelihood for estimations in this Appendix section. Specifically, we take 10,000

random draws for expectations and another 10,000 draws for risk aversion using the Sobol se-

quence,38 and simulate choice probability of leverage categories based on these random draws.

Consider the extension of the model where investor utility is given by:

uijt = βjµit − pjt −
λit
2
βj

2σ2

where we assume risk aversion λit follows the time-varying distribution Gt(·). In our estimation

procedure we allow the distribution of risk-aversion to vary at the annual level, and we initially

assume that beliefs are independent of risk aversion, which we relax in additional specifications.

We present the estimated distributions of investor beliefs and risk aversion in Figure A6. The

estimated distribution of investor beliefs is qualitatively similar to our baseline specification where

risk aversion is homogeneous across investors and constant over time. The correlation between the

mean belief from our baseline model and the mean belief from our extended model is 0.92. Figure

A6b displays the distribution of investor risk aversion. In general, the dispersion in risk aversion is

relatively small, ranging from 0.03 to 0.31. Consistent with results in the main text, we find that

risk aversion, or alternatively investor perceptions about risk, were low heading into and the start

of the financial crisis.

We also consider two additional specifications where we allow an investor’s perceptions about

risk to be time varying and heterogeneous as well as potentially correlated with the investor’s

beliefs about stock market returns µit. We use a Gaussian copula to model the correlation. Let zµ,it
38Sobol numbers fill the parameter space more evenly than (pseudo-)random numbers. Using Sobol sequences results

in a faster convergence and more stable estimates. We draw Sobol random numbers between (0,1), and then use the
cumulative distribution functions to invert expectations and risk aversions.
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and zλ,it denote the CDF for expected return and risk aversion. The Gaussian copula assumes that

their standard normal inverses follow a bivariate normal with correlation ρ.

Φρ(Φ
−1(zµ,it),Φ

−1(zλ,it))

where Φ−1 denotes standard normal inverse and Φρ a bivariate normal with correlation ρ.

It is perhaps more intuitive to consider correlation between risk aversion and a measure of how

extreme the expected returns are. Investors with highly positive and highly negative beliefs may

have low perception of risk, whereas investors who believe return will be around zero may be more

risk averse. Hence, we also consider an additional specification where we allow for correlation

between µ2it and risk aversion. The square of a random variable from the skewed t distribution

does not follow a standard distribution. For computational tractability, we use the F distribution

(which captures the squared t distribution) to approximate the CDF of µ2it. Thus, we ignore the

estimated skewness in µit when generating correlation between extremeness in beliefs and risk

aversion.

We report the estimated distributions of beliefs about stock market returns and risk aversion in

Figure A7. We estimate the correlation between perception of risk and expected return to roughly

0.04, and the correlation with expected return squared to be roughly 0.03. Note that these are dif-

ferent from the estimated parameter ρ in the Gaussian copula. The correlation between the mean

beliefs from Figure A6 and these two specifications is 0.997 and 0.990. Thus, allowing for corre-

lation between risk aversion and expectations has little impact on our estimates. The estimated

distributions of investor beliefs are also similar to our baseline results. The correlation between the

mean belief from our baseline model and the mean belief when we allow for correlation between

perceptions about risk and expected return or expected return squared is 0.927 and 0.943. Using

standard goodness-of-fit criteria (AIC and BIC in Table A1), we would select our baseline model

with homogeneous risk aversion over any of these extensions.

B.3 Implied versus Realized Volatility

In the main text, we measure volatility using the VIX, which is a measure of the implied volatility

and includes the variance risk premium. To the extent that the variance risk premium is constant

and positive, our risk aversion or risk perception parameter λ is underestimated by a scalar factor

because the VIX would overstate the true underlying volatility in the market. The variance risk

premium also likely varies over time and with the market, which would impact our estimates of

risk aversion in a potentially more meaningful way, especially when we allow risk aversion to vary

over time.

As a robustness check, we estimate our model where we measure volatility using 90-day realized

volatility rather than the VIX. Figure A8 shows that the estimated distribution of beliefs and risk

aversion follow very similar patterns to the time varying risk aversion results when we use the VIX

in Figure 6. The correlations of mean beliefs and risk aversions are 0.95 and 0.94 between the
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estimates using VIX and the estimates using realized volatility. If we scale the VIX-based estimates

of λ by the average ratio of VIX to realized volatility (a factor of 1.77), we obtain an average

parameter value 1.1, which is similar to the average value of 1.3 displayed in Figure A8. These

results give us some confidence that the variation in the variance risk premium is not driving the

patterns of beliefs that we capture. Because realized volatility may often be noisier than expected

volatility, we use VIX as our preferred measure of expected volatility.

B.4 Awareness of Leverage Categories

In the main text, we assume that investors are aware of all of the available leverage categories

j ∈ {−3,−2,−1, 0, 1, 2, 3}. However, it is possible in practice that some investors are not aware of

all of the available leverage categories, especially the -3x and 3x categories which were introduced

in 2009 after the -2x and 2x categories. In this section, we estimate an alternative version of the

model where we combine the 2x and 3x leverage categories and the -2x and -3x leverage categories.

We re-estimate the model where we combine the market shares of positive leveraged (2x and

3x) and negative leveraged (-2x and -3x) and update our likelihood equation. In our baseline

estimation approach, we observe six different points of the belief distribution F (·) at any given

moment in time. After combining the positive and negative leverage categories, we only observe

four moments of the belief distribution F (·). Because of the reduced number of moments, we

estimate the belief distribution with the skewed t distribution while holding fixed the parameter

governing kurtosis (the heaviness of the tails) at our baseline estimate of 1.262.

We display the estimated distribution of beliefs in Figure A9. The distribution of beliefs is

quantitatively similar to our baseline estimates (the correlation of mean beliefs is 0.98), and the

estimated risk aversion parameter λ is also quite similar. This suggests that a lot of the under-

lying variation driving the belief distribution is coming from an investors’ choice to be positively

leveraged or negatively leveraged rather than the specific leverage category they choose.

The most obvious potential bias to our results is that some investors who purchase the 1x ETF

products are unaware of leveraged options. To the extent this happens in the data, our methodology

will understate the number of optimistic investors. If one knew how many investors were unaware

of these products (i.e., 30% of S&P 500 Index ETF investors are unaware of leveraged ETFs),

one could, in principle, adjust our estimated distribution by distributing the 30% of investors who

purchase the 1x category across the 1x, 2x, and 3x leveraged ETFs.

In addition, the leveraged ETF market for S&P 500 ETFs was well established by the start of

our sample period. Figure 1 shows that leveraged ETFs were actually the most popular in relative

terms at the start of our sample. That time period obviously coincides with the global financial

crisis, but it suggests that investors were familiar with these products.

A related concern is that investors may be differentially aware of positively and negatively lever-

aged ETFs. For example, if investors tend to be more familiar with positively leveraged ETFs than

negatively leveraged ETFs, then we would systematically underestimate the number of pessimistic

investors. Furthermore, awareness could vary over time and could be related to the past perfor-
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mance of an ETF. While we do not have any data on consumer awareness of leveraged products,

ETF providers tend to launch positively and negatively leveraged ETFs at the same time. To the

extent that consumers learn about new products over time, the fact that positively and negatively

leveraged ETFs are launched and marketed simultaneously suggests that investors are likely to be

equally aware of both types of products.

B.5 Market Shares Based on AUM

In the main text, we measure market shares based on monthly trading activity. This definition

allows us to capture investor expectations at the time of transaction. Alternatively, one could mea-

sure market shares based on the stock of holdings (AUM), which would also reflect past purchase

decisions. Previous research shows that an investor’s beliefs are more correlated with her trading

decisions than her holdings (Giglio et al., 2019), motivating our baseline definition. As a robustness

check, we also estimate the model where we construct market shares based on AUM.

Here, we construct the quantity of ETF j purchased by retail investors at time t as

QuantityAltjt =

Retailj ×AUMjt leveraged ETFs

Retailj ×AUMjt × ω 1x trackers,

where QuantityAltjt is our alternative measure. We first take AUM for each ETF at the end of each

month. We scale AUM by the average retail ownership of each ETF in our sample, Retailj , following

the same procedure in our baseline definition. To account for the fact that trackers are often held by

passive buy-and-hold investors (e.g., individuals saving for retirement), we scale by tracker AUM

by the fraction tracker investors that are active (i.e., non buy-and-hold investors). Specifically, we

assume that a fraction ω of tracker ETFs is held by active investors, while the remaining 1 − ω

fraction is held by passive buy-and-hold investors who never trade. We assume that all leveraged

ETFs are held by active investors. Under the assumption that all active investors have the same

probability of trading in a given month, we calculate the active fraction among trackers as:

ω =

Trading V olumetracker
AUMtracker

Trading V olumeleveraged
AUMleveraged

.

Thus, ω is equal to the ratio of the average trading propensity of tracker ETFs to the average trading

propensity of leveraged ETFs, where trading propensity is defined as purchase volume during each

month over AUM at the end of the month. In the data, we calculate ω using a time-invariant

measure of average trading propensity that pools all tracker ETFs or leveraged ETFs over time.

Note that because ω and Retailj are constant over time, the time-series variation in market shares

will be driven entirely by time-series variation in AUM.

Figure A10 shows the distribution of expectations based on the alternative market share and

the fit of log shares. The distribution of beliefs are similar to our baseline estimates. The estimated
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location and dispersion parameters have correlation coefficients of 0.84 and 0.97 with the estimated

parameters using our baseline market share definition. The mean belief has a weaker correlation

of 0.27. The most notable difference is that the mean belief does not decline sharply during the

last quarter in 2008, which suggests that holdings were slower to adjust to during the crisis and

is consistent with the idea that trading decisions are potentially more reflective of beliefs than

holdings.

C More Asset Classes

In addition to S&P 500, we also consider other asset classes including gold, oil, European equities,

emerging market equities, US real estate, medium-term Treasury, and long-term Treasury. For each

asset class, we include ETFs tracking the following indices:

• Gold: Bloomberg Gold Subindex, NYSE Arca Gold Miners Index, MSCI ACWI Select Gold

Miners Investable Market Index, and the spot price of gold. Our data for gold ETFs starts in

Q1 2009.

• Oil: Bloomberg WTI Crude Oil Subindex, WTI Crude Oil and Brent Crude Oil futures. Data

starts in Q1 2009.

• European equities: FTSE Developed Europe Index. Data starts in Q3 2009.

• Emerging market equities: MSCI Emerging Market Index. Data starts in Q1 2008.

• US real estate: Dow Jones US Real Estate Index and MSCI US REIT Index. Data starts in Q1

2008.

• Medium-term Treasury: Barclays US Treasury 7-10 Year Index, ICE US Treasury 7-10 Year

Bond Index, Merrill Lynch 7-15 Year US Treasury Index, and NYSE 7-10 Year Treasury Bond

Index. Data starts in Q1 2009.

• Long-term Treasury: Barclays US Treasury 20+ Year Index, NYSE 20+ Year Treasury Bond

Index. Data starts in Q1 2009.

Figures 8 and A11 plot estimated expectation distribution and market share for these seven other

asset classes. Europe and US Real Estate show different peaks of dispersion corresponding to the

sovereign debt crisis in Europe and the subprime mortgage crisis in the US. Long-term Treasury

exhibits large dispersion in 2013, possibly due to speculation that Federal Reserve might start to

wind down its quantitative easing program (tapering). Mid-term Treasury has a few discrete spikes

in 2014, most likely corresponding to some idiosyncratic trading of institutions that we are unable

to filter out using average retail ownership across time.39

39Different from other asset classes, leveraged ETFs in treasuries have reasonably low fees, so there is larger institu-
tional demand.
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We also compare the correlations across these asset classes. Table A2 shows that the mean

expectations we recover generate reasonable correlation patterns across asset classes. US stock

market comoves positively with European and emerging market equities in general, and is also

positively correlated with real estate. US stock is positively correlated with Treasury and negatively

correlated with commodities (gold and oil). On the other hand, emerging market is positively

correlated with commodities and negatively correlated with Treasury.

C.1 Investor Expectations Across Asset Classes

We examine the extrapolative nature of beliefs in our panel setting using the following regression

E[R]iq = βAnnualRetiq + µi + µq + εiq. (14)

The dependent variable (E[R]iq) is the average expected return of asset i at time q, and the key

independent variable of interest is the corresponding past one year return (AnnualRetiq). Obser-

vations are at the quarter by asset class level. The panel setting allows us to control for asset and

time fixed effects.

Table A3 displays the corresponding regression estimates. Consistent with our previous results

for the S&P 500, the results suggest investor beliefs are extrapolative across asset classes. The

results in column (1) indicate that a one percentage point increase in historical returns is correlated

with a 5 basis point increase in the mean expected return. We also find that the dispersion and

skewness of investor beliefs are correlated with past returns across asset classes. Negative returns

are correlated with an increase in investor disagreement; a one percentage point decrease in returns

is correlated with a one percent increase in the dispersion parameter (column 2). We also find

evidence that skewness of beliefs is positively correlated with past returns.

We also test whether investor expectations predict future returns across asset classes in the

following regression specification

FutureRetiq = E[R]iq + µi + µt + εiq (15)

The dependent variable (FutureRetiq) measures the realized annual return of asset i from time

q to q + 4. The independent variable (E[R]iq) is the average expected return of asset i at time q.

Observations are at the quarter by asset class level. We report the corresponding estimates in Table

A4. The results in column (1) suggest that expected returns are negatively correlated with future

returns; however, the effect becomes much smaller and statistically insignificant once we control

for asset and time fixed effects. Consistent with our results for the S&P 500, investor beliefs do not

forecast future returns across the eight major asset classes.
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D Details on Survey Data

In this section, we provide additional details on the survey data and scatter plots showing the

relationships between the survey measures and our estimated distribution of expectations.

Duke CFO Global Business Outlook: The Duke CFO Global Business Outlook surveys CFOs at

a quarterly frequency about their views on the stock market and macroeconomic outlook. As part

of the survey, CFOs are asked to report their expectations of the market risk premium over the

upcoming year. The organizers of the survey report both the mean and standard deviation of the

expected market risk premium across survey respondents, as well as the fraction with a negative

outlook (Graham and Harvey, 2011). We examine how these moments of the distribution of the

expected market risk premium across CFOs compare with the estimated moments from our model.

This survey provides a nice demonstration of how we can construct statistics that map our model

to survey results.

Figure A12 panels (a)-(c) display binned scatter plots, comparing the moments from the sur-

vey to our estimated moments. Each panel is constructed using quarterly data over the period

2008-2018 from the CFO survey and our estimates. Figure A12a displays a binned scatter plot of

the estimated mean expected market risk premium across ETF investors versus the mean expected

market risk premium across CFO survey respondents. The two series are positively and signifi-

cantly correlated, exhibiting a correlation of 0.38. Figure A12b compares the standard deviation

of expected returns across the two series. The standard deviation of the expected market risk pre-

mium across ETF investors is significantly and positively correlated (0.41) with the corresponding

standard deviation across CFOs. The Duke CFO survey also reports the fraction of respondents

expecting a negative market return over the course of the next year. We construct an analogous

measure in our ETF data by examining the fraction of investors who prefer negative leveraged

ETFs. Figure A12c displays a binned scatter plot of the share of CFO respondents versus the share

of ETF investors with a negative market outlook. Again the two series are positively and signifi-

cantly correlated with each other (0.65). It is also worth noting that the magnitudes are remarkably

similar.40 Overall, the results suggest that the distribution of investor beliefs about the stock market

recovered from our model is similar to the distribution of investor beliefs reported in the Duke CFO

Global Business Outlook.

Wells Fargo/Gallup Investor and Retirement Optimism Index: The Gallup Investor and Retire-

ment Optimism Index is constructed using a nationally representative survey of U.S. investors with

$10,000 or more invested in stocks, bonds, and mutual funds.41 The index is designed to capture a

broad measure of U.S. investors’ outlook on their finances and the economy based on their survey
40A regression of the share of CFO respondents with a negative market outlook on the share of ETF investors who

purchase negative leveraged ETFs yields a coefficient of 0.80 and is statistically indistinguishable from 1.
41The data is calculated from the figures reported online from https://news.gallup.com/poll/231776/investor-

optimism-stable-strong.aspx. A full description of the index is available online https://www.gallup.com/207062/wells-
fargo-gallup-investor-retirement-optimism-index-work.aspx.
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responses and Gallup’s proprietary index construction methodology. Given that we are unable to

directly construct an analogous index, we construct a measure of “optimism” using the fraction of

investors choosing positive leverage versus those choosing negative leverage. Specifically, we use

the following measure

M =

∑
j={1,2,3} ŝj∑

j={1,2,3} ŝj +
∑

k={−3,−2,−1} ŝj
(16)

where ŝj is the predicted share from our model.42 This measure is similar to the percent bullish mi-

nus percent bearish measure used in Greenwood and Shleifer (2014) and helps capture information

about the beliefs of the median ETF investor.

Figure A13 displays the relationships between additional surveys and analogous measures from

our ETF measurements, corresponding to quarterly time series from 2008 to 2018. Panel (a)

presents a binned scatter plot of our measure of optimism compared to the Gallup Investor and

Retirement Optimism Index. The two series are positively and significantly correlated (0.70) in the

time series. In other words, there is a positive relationship between investor outlook measured by

Gallup, and the relative share of investors preferring positive leverage to negative leverage based

on their estimated expectations. Though we omit the results for brevity, the Gallup index is also

positively and significantly correlated with our estimates of expected mean returns.

University of Michigan Surveys of Consumers: The University of Michigan Surveys of Con-

sumers asks consumers about the probability that the stock market increases. Specifically, the

survey asks a set of nationally representative of US consumers to report the percent chance that

a “one thousand dollar investment in the stock market will increase in value a year ahead.” Con-

structing an analogous measure using our model is challenging because the subjective belief about

the probability of a stock market increase depends both on the expected stock market return and

also the beliefs of the distribution of returns. Similar to our analysis with the Gallup index, we com-

pare the University of Michigan index to the relative share positive versus negative from equation

(16).

Figure A13 panel (b) shows that stock market beliefs from Michigan Surveys and our estimates

are significantly and positively correlated (0.77). This correlation suggests that our ETF data and

model estimates mirror the beliefs of consumers more broadly. The University of Michigan index is

also positively and significantly correlated with our estimates of expected mean returns, though, as

above, we omit the results for brevity.

American Association of Individual Investors (AAII) Sentiment Survey: The American Asso-

ciation of Individual Investors surveys its members each week about their sentiment towards the

stock market over the next 6 months. Specifically, the survey asks respondents whether they be-

lieve the stock market over the next six months will be up (bullish), no change (neutral), or down
42Note that the predicted shares correspond closely to the shares in the data as we obtain a high degree of model fit.
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(bearish).43 Because the percent bullish and percent bearish are highly correlated in the survey, we

construct a single measure, bullish
bullish+bearish , which corresponds closely to the relative share positive

versus negative from equation (16). Comparing each response separately to analogous measures

from our estimates yields similar results.

Panel (c) in Figure A13 displays the relationship between the AAII survey and our estimates. The

plot shows the relative share bullish compared to our measure of relative share positive (omitting

neutrals). The correlation between the two measures of sentiment is positive and significant (0.33),

which indicates relatively more investors purchase positive leverage when AAII respondents have a

more positive outlook on the market.

Shiller U.S. Individual One-Year Confidence Index: The Shiller US Individual One-Year Confi-

dence Index measures the percentage of individual investors who expect the stock market (Dow

Jones Industrial) to increase in the coming year.44 Survey respondents, who are comprised of

wealthy individual investors, are asked to provide their expected increase in the stock index over

the upcoming year, and the confidence index measures the percentage of investors who report a

positive expected increase in the stock market. For this survey, we produce a proxy measure using

the fraction of investors who would choose positively leveraged ETFs, i.e.,
∑

j={2,3} ŝj . Panel (d) of

Figure A13 displays a binned scatter plot of the share of investors purchasing positively leveraged

ETFs and the One Year Confidence Index. The two series are positively and significantly correlated

(0.47), indicating that the preferences revealed through leveraged ETF purchases line up well with

the analogous Shiller survey measure.

Survey of Professional Forecasts: The Philadelphia Federal Reserve surveys professional fore-

casters each quarter about their views regarding economic growth as part of the Survey of Pro-

fessional Forecasts (SPF). We focus on the forecast of annual real GDP growth since the SPF does

not include stock market forecasts. Panel (e) in Figure A13 displays the relationship between the

estimated mean expected stock market risk premium across ETF investors versus professional GDP

forecasts. The two series are positively and significantly correlated (0.82). The SPF also reports

the interquartile range of GDP forecasts. Panel (f) displays the interquartile range of GDP forecasts

across investors versus the interquartile range of stock market beliefs across ETF investors. As with

the mean belief/forecast, the two series are positively and significantly correlated (0.86).

Overall, the results displayed in Figures A12 and A13 help shed light on the external validity

of our estimates. The expectations we recover from demand for S&P 500 linked ETFs are highly

and significantly correlated with the investor expectations measured in six different surveys. Our
43The typical AAII member is a male in his mid-60s with a bachelor’s or graduate degree. AAII members tend

to be affluent with a median portfolio in excess of $1 million. The typical member describes himself as having
a moderate level of investment knowledge and engaging primarily in fundamental analysis. For further details see
https://www.aaii.com/journal/article3/is-the-aaii-sentiment-survey-a-contrarian-indicator [accessed 11/17/2019]

44Data are available online at https://som.yale.edu/faculty-research-centers/centers-initiatives/international-
center-for-finance/data/stock-market-confidence-indices/united-states-stock-market-confidence-indices [Accessed
10/31/2019]
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estimates of investor beliefs help complement the survey data. While the survey data are intended

to capture the beliefs of distinct populations, our belief estimates come from the actual investment

decisions of investors.
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Table A1: Goodness of Fit Across Specifications, Ranked by BIC

Goodness of Fit Correlation of Mean Median Median Parameters of Belief Distribution
Number of mean belief Risk Risk

µ λ AIC BIC log likelihood r2 Parameters with baseline Aversion Aversion Mean Location Dispersion Skewness

Skewed t Homogeneous, time invariant (baseline) 2,565.0 3,208.5 -168.4 0.921 134 - 0.98 0.98 0.77 2.86 1.08 0.77
Skewed t Uniform, time invariant 2,565.5 3,213.8 -168.3 0.923 135 0.999 0.85 0.85 0.72 2.54 1.01 0.76
Skewed t Homogeneous, varying annually 2,560.7 3,252.2 -166.7 0.935 144 0.958 0.61 0.62 0.89 2.05 0.91 0.73
Normal Homogeneous, time invariant 2,864.0 3,291.4 -197.0 0.617 89 0.567 1.76 1.76 3.03 3.03 6.15 -
Skewed t Uniform, varying annually 2,574.2 3,318.5 -166.0 0.938 155 0.919 0.58 0.56 0.92 2.02 0.85 0.73
Skewed t Uniform, varying annually, correlated with µ2 2,575.8 3,325.0 -166.0 0.939 156 0.943 0.59 0.56 0.83 2.00 0.88 0.74
Skewed t Uniform, varying annually, correlated with µ 2,576.2 3,325.3 -166.0 0.936 156 0.927 0.58 0.56 0.80 1.97 0.90 0.72
Skewed t Homogeneous, varying quarterly 2,612.6 3,462.7 -165.6 0.943 177 0.790 0.55 0.51 0.86 1.84 0.89 0.73
Skewed t Uniform, varying quarterly 2,695.3 3,756.6 -165.2 0.943 221 0.784 0.54 0.50 0.96 1.86 0.88 0.71

Notes: Table A1 displays goodness of fit measures and estimation results across different specifications. The baseline specification with homogeneous and time invariant
risk aversion is reported in the first row. The first five columns show measures of goodness of fit including AIC, BIC, log-likelihood and R-squared, as well as the number
of parameters estimated. The sixth column shows the correlation of mean belief from different specifications with the mean belief of the baseline specification. The
next two columns display estimated risk aversion. When risk aversion is heterogeneous, we focus on the average risk aversion. When risk aversion is time-varying,
these two columns present the median and mean estimate across time. The last four columns show the median of mean beliefs, and the median of location, dispersion,
and skewness parameters across quarters.
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Table A2: Correlation of Mean Expectation Across Asset Classes

S&P 500 Europe Emerging Mkt Real Estate Treasury 7-10 Treasury 20+ Gold Oil
S&P 500 1

Europe 0.641∗∗∗ 1
(0.000)

Emerging Mkt -0.790∗∗∗ -0.282∗∗ 1
(0.000) (0.002)

Real Estate 0.686∗∗∗ -0.00523 -0.362∗∗∗ 1
(0.000) (0.956) (0.000)

Treasury 7-10 0.762∗∗∗ 0.719∗∗∗ -0.251∗∗ 0.570∗∗∗ 1
(0.000) (0.000) (0.006) (0.000)

Treasury 20+ 0.590∗∗∗ 0.531∗∗∗ -0.533∗∗∗ 0.462∗∗∗ 0.647∗∗∗ 1
(0.000) (0.000) (0.000) (0.000) (0.000)

Gold -0.472∗∗∗ -0.306∗∗∗ 0.717∗∗∗ -0.340∗∗∗ -0.313∗∗∗ -0.679∗∗∗ 1
(0.000) (0.001) (0.000) (0.000) (0.001) (0.000)

Oil -0.761∗∗∗ -0.128 0.391∗∗∗ -0.653∗∗∗ -0.571∗∗∗ -0.472∗∗∗ 0.573∗∗∗ 1
(0.000) (0.173) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 132

Notes: Table A2 displays the correlation of mean expectation each quarter across all asset classes. Standard errors are
shown in paranthesis. *** p<0.01, ** p<0.05, * p<0.10.

70



Table A3: Expected Returns versus Past 12-Month Returns Across All Asset Classes

Mean ln(Dispersion) Median ln(Skewness)
(1) (2) (3) (4)

Annual Return 0.049** -0.0095* 0.033* 0.0014***
(0.022) (0.0054) (0.018) (0.00052)

Time Fixed Effects X X X X
Asset Fixed Effects X X X X
Observations 330 330 330 330
R-squared 0.351 0.619 0.256 0.684

Notes: Table A3 displays the regression of different moments of the estimated expected returns distribution on the past
12-month excess return of the corresponding asset class (eq. 14). Observations are at the asset class by quarter level
over the period 2008-2018. See Appendix C for a further description of the data. The dependent variable in each column
corresponds to different moments/parameters of the estimated expected returns distribution. The dependent variable
in column (1) is the mean and is measured in percentage points, in column (2) is the dispersion parameter in logs, in
column (3) is the median and is measured in percentage points, and in column (4) is the skewness parameter in logs.
The idependent variable Annual Return is measured in percentage points. We winsorize all independent and dependent
variables at the 5% level within each asset class to account for outliers during the financial crisis. Winsorizing the data
does not change inference on the relationship between the corresponding series. Driscoll-Kraay based standard errors
are in parentheses with four lags and are grouped by asset class. *** p<0.01, ** p<0.05, * p<0.10.
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Table A4: Future Annual Returns vs. Expected Returns Across All Asset Classes

(1) (2) (3)
AverageExpectedReturn -0.34** -0.20 0.14

(0.15) (0.24) (0.21)

Asset Fixed Effects X X
Time Fixed Effects X
Observations 330 330 330
R-squared 0.009 0.043 0.404

Notes: Table A4 displays the regression of different moments of the estimated expected returns distribution on the past
12-month excess return of the corresponding asset class (eq. 15). Observations are at the asset class by quarter level
over the period 2008-2018. See Appendix C for a further description of the data. The dependent variable measures
the realized return of the asset over the next twelve months. The independent variable, Average Expected Return,
corresponds to the average expected return from our model. We winsorize all independent and dependent variables
at the 5% level within each asset class to account for outliers during the financial crisis. Winsorizing the data does
not change inference on the relationship between the corresponding series. Driscoll-Kraay based standard errors are in
parentheses with four lags and are grouped by asset class. *** p<0.01, ** p<0.05, * p<0.10.
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Table A5: Predictability of Median Forecast Errors

(1) (2) (3) (4) (5) (6) (7) (8)
Lagged Forecast Error -0.20*

(0.11)
Annual Return 0.036

(0.13)
Lagged ln(Dispersion) 0.88

(1.93)
Lagged IQR 0.27**

(0.13)
Lagged ln(Skewness) 14.8

(21.6)
Lagged VIX 0.14

(0.17)
Lagged ln(Price/Dividend) 24.6***

(7.25)
Lagged cay 99.7

(133)

Observations 40 44 43 43 43 43 43 39
R-squared 0.069 0.003 0.004 0.034 0.020 0.012 0.098 0.019

Notes: The table displays the results corresponding to a linear regression model (eq. 12). Observations are at the
quarterly level. The dependent variable is the forecast error constructed as the difference between the 12-month return
of the S&P 500 from period q to q + 4 and the median expected return at time q. The forecast error is scaled by 100
such that it is measured in percentage points. Independent variables include four quarters lagged values of forecast
errors, past 12-month S&P 500 excess returns, one quarter lagged value of parameters or moments from the belief
distribution (dispersion, skew, and interquartile range), and one quarter lagged value of VIX, log price-dividend ratio,
and the consumption wealth ratio (cay) of Lettau and Ludvigson (2001). Newey-West based standard errors are in
parentheses. *** p<0.01, ** p<0.05, * p<0.10.
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Table A6: Comparison with Future Returns

3-Month Future Returns 6-Month Future Returns 12-Month Future Returns
(1) (2) (3)

Mean of Exp. Returns -0.13 -0.77 -0.73
(0.58) (0.59) (0.66)

Observations 44 44 44
R-squared 0.003 0.059 0.025

Notes: Table A6 displays the regression of future returns on the mean belief from our estimated distribution of investor
beliefs. Observations are at the quarterly level over the period 2008-2018. The dependent variables are the future
3-month, 6-month, and 12-month excess return of the S&P 500. The independent variable Mean of Exp. Returns
corresponds to our baseline model estimates reported in column (1) of Table 3. We winsorize the Mean of Exp. Returns
and the future excess returns of the stock market variables at the 5% level to account for outliers during the financial
crisis. Newey-West based standard errors are in parentheses with one lag. *** p<0.01, ** p<0.05, * p<0.10.
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Table A7: Dispersion in Beliefs and 6-Month Returns

(1) (2) (3) (4) (5) (6) (7)
IQR -0.16 1.05*

(0.37) (0.57)
∆ IQR -0.33***

(0.086)
Dispersion (b) -0.12 2.16*

(0.89) (1.12)
∆ Dispersion -0.74***

(0.24)
Constrained -2.58*** -2.35** -2.30**

(0.72) (0.99) (0.97)
Constrained×IQR -0.062**

(0.030)
Constrained×Dispersion -0.13**

(0.062)

Observations 44 43 44 43 44 44 44
R-squared 0.065 0.158 0.060 0.153 0.234 0.286 0.289

Notes: The table displays the results corresponding to a linear regression model (eq. 13). Observations are at the
quarterly level. The dependent variable is the 6-month return of the S&P 500 from period q to q + 2 and scaled by
100 such that it is measured in percentage points. The variable IQR measures the interquartile range of the estimated
belief distribution at time q and is scaled by 100 such that it is measured in percentage points. The variable Dispersion
corresponds to the estimated dispersion parameter (b) from our belief distribution. The variable Constrained is share
of investors who purchase the lowest available leverage category and is scaled by 100 such that it is measured in
percentage points. In each specification we also control for the estimated mean belief at time q. Robust standard errors
are in parentheses. *** p<0.01, ** p<0.05, * p<0.10.
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Table A8: Dispersion in Beliefs and 12-Month Returns

(1) (2) (3) (4) (5) (6) (7)
IQR 0.57 1.23

(0.41) (0.74)
∆ IQR 0.0026

(0.12)
Dispersion (b) 1.53 2.51*

(1.00) (1.48)
∆ Dispersion -0.00061

(0.30)
Constrained -2.59 -3.54* -3.43*

(1.65) (1.85) (1.81)
Constrained×IQR -0.016

(0.042)
Constrained×Dispersion -0.016

(0.089)

Observations 44 43 44 43 44 44 44
R-squared 0.059 0.049 0.076 0.049 0.106 0.201 0.211

Notes: The table displays the results corresponding to a linear regression model (eq. 13). Observations are at the
quarterly level. The dependent variable is the 12-month return of the S&P 500 from period q to q + 4 and scaled by
100 such that it is measured in percentage points. The variable IQR measures the interquartile range of the estimated
belief distribution at time q and is scaled by 100 such that it is measured in percentage points. The variable Dispersion
corresponds to the estimated dispersion parameter (b) from our belief distribution. The variable Constrained is share
of investors who purchase the lowest available leverage category and is scaled by 100 such that it is measured in
percentage points. In each specification we also control for the estimated mean belief at time q. Robust standard errors
are in parentheses. *** p<0.01, ** p<0.05, * p<0.10.
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Figure A1: Expectations and Model Fit: Robustness Checks
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(c) Scale Outside Share by 5
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(d) Estimate Relative Inside Share
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Notes: Figure A1 panel (a) and (e) correspond to the baseline estimates. In (b) and (f), we fit data assuming expectation follows normal distribution. In (c) and (d),
we scale the outside share of our baseline definition by a factor of 5. In (d) and (h), we fit relative inside share only without using the share of outside option. For the
top panels, red dots represent mean expected return, solid dark red lines indicate median, dashed lines indicate 25th and 75th percentiles, and dotted lines indicate
10th and 90th percentiles. The bottom panels plot fit in terms of log market shares of each leverage category. The x-axis corresponds to log market shares in the data,
and y-axis corresponds to predicted log market shares. Color red to blue represents each leverage from -3x to 3x. The solid black lines correspond to the 45 degree
line.
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Figure A2: Comparision with Lower Bound on Equity Premium

(a) Mean Expected Return vs. Lower Bound

Corr = -0.89***
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(b) Expected Returns of 1x vs. Lower Bound
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Notes: Figure A2 displays the relationship between the estimated expected returns from our model and our replication
of lower bound on equity premium in Martin (2017). The estimated expected returns correspond to our baseline model
estimates reported in column (1) of Table 3. Observations in each panel are at the quarterly level over the period
2008-2018. Panel (a) displays a binned scatter plot of the mean estimated expectation from our model versus the lower
bound on equity premium. We winsorize the mean of expected returns from our model at the 5% level to account for
outliers during the financial crisis. *** p<0.01, ** p<0.05, * p<0.10. Panel (b) plots the time-series of the lower bound
on equity premium, the estimated mean expected returns, and the estimated range of expected returns consistent with
choosing the 1x leverage.
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Figure A3: Time-Varying Investor Expectations: Alternative Estimates
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Notes: Figure A3 plots the estimated distribution of investor expectations over time in each month, using the alternative
approach described in Appendix A. These estimates use only variation in the choices facing investors to recover the time-
variation distribution of expecations. Red dots represent mean expected return. Solid dark red lines indicate median,
dashed lines indicate 25th and 75th percentiles, and dotted lines indicate 10th and 90th percentiles.
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Figure A4: Expectations and Model Fit: Comparison of Baseline and Alternative Estimates
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(b) Baseline Monthly
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(c) Alternative
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(d) Alternative Monthly
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(e) Baseline
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(f) Baseline Monthly
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(g) Alternative
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(h) Alternative Monthly
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Notes: Figure A4 panel (a) and (e) correspond to the baseline estimates. Panel (b) and (f) are based on the alternative approach described in Appendix A. These
estimates use only variation in the choices facing investors to recover the time-variation distribution of expecations. Panel (c) and (d) are based on the alternative
method in Appendix A. Panel (d) and (h) are based on monthly estimates uding the alternative method. For the top panels, red dots represent mean expected return,
solid dark red lines indicate median, dashed lines indicate 25th and 75th percentiles, and dotted lines indicate 10th and 90th percentiles. The bottom panels plot fit in
terms of log market shares of each leverage category. The x-axis corresponds to log market shares in the data, and y-axis corresponds to predicted log market shares.
Color red to blue represents each leverage from -3x to 3x. The solid black lines correspond to the 45 degree line.
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Figure A5: Time-Varying Investor Expectations: Hedging
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Notes: Figure A5 plots the estimated distribution of expectations over time for investors with hedging considerations. We
display the risk aversion coefficient, which follows a uniform distribution, and the market risk beta of investors’ wealth,
which follows a normal distribution. These coefficients are scaled by the share of wealth invested in ETFs, which we
cannot separately identify. Red dots represent mean expected return. Solid dark red lines indicate median, dashed lines
indicate 25th and 75th percentiles, and dotted lines indicate 10th and 90th percentiles.
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Figure A6: Time-varying Heterogeneous Risk Aversion

(a) Expectations

−
15

−
10

−
5

0
5

10

2008 2010 2012 2014 2016 2018

E
xp

ec
te

d 
R

et
ur

n 
(%

)

Avg Risk Aversion
= 0.585

(b) Risk Aversion
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Notes: Figure A6 panel (a) plots the estimated distribution of expectations over time where we allow risk aversion and
the dispersion to vary at annual level. Red dots represent mean expected return. Solid dark red lines indicate median,
dashed lines indicate 25th and 75th percentiles, and dotted lines indicate 10th and 90th percentiles. Panel (b) plots the
estimated distribution of risk aversion, which varies at annual level. The blue dots represent the mean risk aversion.
Blue dashed lines show lower and upper bounds of risk aversion.
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Figure A7: Time-varying Heterogeneous Risk Aversion where Beliefs are Correlated with Risk Per-
ceptions

(a) Expectations, Correlation with µ
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(b) Expectations, Correlation with µ2
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(c) Risk Aversion, Correlation with µ
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(d) Risk Aversion, Correlation with µ2
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Notes: Figure A7 panels (a) and (b) plot the estimated distribution of expectations over time where we allow risk
aversion and the dispersion to vary at annual level. Red dots represent mean expected return. Solid dark red lines
indicate median, dashed lines indicate 25th and 75th percentiles, and dotted lines indicate 10th and 90th percentiles.
Panels (c) and (d) plot the estimated distribution of risk aversion, which varies at annual level. The blue dots represent
the mean risk aversion. Blue dashed lines show lower and upper bounds of risk aversion. In panels (a) and (c), we allow
correlation between expectation and risk aversion. In panels (b) and (d), we allow correlation between expectation
squared and risk aversion.
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Figure A8: Estimation with Realized Volatility

(a) Expectations
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(b) Risk Aversion
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Notes: Figure A8 panel (a) plots the estimated distribution of expectations over time where we allow risk aversion to vary
at annual level and use 90 days realized volatility as the proxy for the level of risk. Red dots represent mean expected
return. Solid dark red lines indicate median, dashed lines indicate 25th and 75th percentiles, and dotted lines indicate
10th and 90th percentiles. Panel (b) plots the estimated risk aversion, which varies at annual level.
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Figure A9: Combining -2x & -3x, and 2x & 3x

(a) Expectations
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(b) Fit of Log Shares

−8 −6 −4 −2 0

−
8

−
6

−
4

−
2

0
Lo

g 
S

ha
re

 P
re

di
ct

ed

Log Share Data

●●●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●
●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●
●

●
●

●●

●

●●
●●●

●

●●

●

●●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●●
●

●
●
●
●● ●
●●

●●

●

●●

●
●

●
● ●

●

●

●

●

●

−3x/−2x
−1x
  0x
  1x
  2x/3x

Notes: Figure A9 panel (a) plots the estimated distribution of expectations over time where we combine -2x & -3x into
one leverage category and 2x & 3x into one leverage category. Red dots represent mean expected return. Solid dark
red lines indicate median, dashed lines indicate 25th and 75th percentiles, and dotted lines indicate 10th and 90th
percentiles. Panel (b) plots fit in terms of log market shares of each leverage. The x-axis corresponds to log market
shares in the data, and y-axis corresponds to predicted log market shares. Color red to blue represents each leverage.
The solid black lines correspond to the 45 degree line.
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Figure A10: Expectations with Market Shares Based on AUM

(a) Expectation Distribution
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Notes: Figure A10 plots the estimated distribution of expectations over time where we use assets under management
(AUM) to calculate market shares. AUM for 1x trackers is scaled by a constant ratio of the average trading propensity
of trackers to the average trading propensity of leveraged ETFs. Red dots represent mean expected return. Solid dark
red lines indicate median, dashed lines indicate 25th and 75th percentiles, and dotted lines indicate 10th and 90th
percentiles. Panel (b) plots fit in terms of log market shares of each leverage. The x-axis corresponds to log market
shares in the data, and y-axis corresponds to predicted log market shares. Color red to blue represents each leverage.
The solid black lines correspond to the 45 degree line.
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Figure A11: Market Shares: Other Asset Classes
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Notes: Figure A11 shows market share of each leverage for each asset class.

87



Figure A12: Comparison with Duke CFO Global Business Outlook Survey
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(b) Std. Dev. of Expected Return
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(c) Share with Negative Outlook
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Notes: Figure A12 panels (a)-(c) display binned scatter plots of our estimated belief distribution versus results from
the Duke CFO Global Business Outlook Survey. The estimated belief distribution corresponds to our baseline model
estimates reported in column (1) of Table 3. Observations in each panel are at the quarterly level over the period 2008-
2018. Panel (a) displays the relationship between the mean estimated expected return from our model versus the mean
expected return from the Duke CFO survey. Panel (b) displays the relationship between the estimated standard deviation
of expected returns across investors from our model versus the standard deviation of expected returns across CFOs as
reported in the Duke CFO survey. Panel (c) displays the relationship between the market share of negative leveraged
ETFs versus the share of CFOs who expect S&P 500 Returns to be negative next year. We winsorize the mean and
standard deviation of expected returns from our model at the 5% level to account for outliers during the financial crisis.
Winsorizing the data does not change inference on the relationship between the corresponding series. *** p<0.01, **
p<0.05, * p<0.10.
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Figure A13: Comparison with Surveys
(a) Gallup
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(b) University of Michigan
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(c) AAII
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(d) Shiller Index
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(e) SPF: Average GDP Forecasts
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(f) SPF: Interquartile Range of GDP Forecasts
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Notes: Figure A13 displays the relationship between the estimated expectations from our model and five additional
surveys: (a) the Gallup Investor and Retirement Optimism Index, (b) the University of Michigan Survey of Consumers,
(c) the American Association of Individual Investors (AAII) Sentiment Survey, (d) the Shiller U.S. Individual One-Year
Confidence Index, and (e)-(f) the Survey of Professional Forecasters (SPF). The estimated belief distribution corresponds
to our baseline model estimates reported in column (1) of Table 3. Observations in each panel are at the quarterly level
over the period 2008-2018. For details on these surveys, see Section 4.5. Panels (a)-(f) display binned scatter plots
comparing each survey to an analogous measure from our model. Surveys in panels (a)-(c) are compared to the relative
share of investors preferring positive to negative leverage, based on our estimated distribution of expectations. The
Shiller index in panel (d) is compared to the fraction of investors choosing positive leverage (greater than 1x). The
SPF average GDP growth forecast in panel (e) is compared to the mean estimated expected return from our model. The
interquartile range of GDP forecasts across professional forecasters in the SPF in panel (f) is compared to the interquartile
range of estimated expected returns from our model. In panels (e) and (f) we winsorize the mean and interquartile range
of expected returns from our model at the 5% level to account for outliers during the financial crisis. Winsorizing the
data does not change inference on the relationship between the corresponding series. *** p<0.01, ** p<0.05, * p<0.10.
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