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Abstract

Neural Architecture Search (NAS) is a growing field with many evolving

facets of research, from evaluation strategies and search space criterion to ar-

chitecture optimization strategies and performance prediction. Currently, these

spaces are disjoint and constrained due to lack of generalizability. Structured

search spaces restrict algorithms to specific architectures, while performance es-

timators are fixed to given benchmarks without the ability to conduct zero-shot

evaluation. Using advances in generative AI, we present a chimera of the afore-

mentioned methods in a tool called NAS-Assistant. Our methodology consists

of a new generalizable GNN-based neural architecture encoder and a cluster-

ing, attention-based regression network that predicts model performance with

high accuracy and transferability. We also propose a unique method for evalu-

ating the contribution of each layer of a network, combined with zero-cost NAS
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evaluation. Lastly, we develop a framework for using generative code language

models to explore any model search space requested from NAS-Assistant. This

thesis aims to demonstrate the first integrated generative AI optimizer for Neu-

ral Architecture Search.
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0
Introduction

The field of neural architecture search (NAS) is a frontier of machine learning

research aimed at making the design of neural networks more accessible. Select-

ing the optimal design for the given task and dataset at hand is not straight-

forward. Though designers typically rely on their previous experience, this may

in fact bias them away from the optimal design. Therefore the goal of the ideal
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NAS program would be to deliver, with high fidelity, the best model design

maximizing performance given a set of resource constraints47.

We structure the NAS problem into three components. First, there is the

search space we are considering. This space is a set containing neural architec-

tures represented as one of the following: discrete, continuous, or continuous

and differentiable. Then, there is the search strategy: given a search space, how

should one effectively look for the best architecture within the space? Last, we

have the evaluation strategy: how we choose to allocate resources to configu-

rations. This is important as training large neural network architectures with

hundreds of parameters is computationally expensive62.

State of the art NAS search spaces are very constrained. A global

search space in NAS is broad and makes the problem difficult to structure due

to the combinatorial explosion of the number of layers and nodes in a given

architecture71,64. As a result, many papers attempt to apply structure to the

problem space by adding modules that act as operator nodes and configuring

those rather than all possible combinations of weights, functions and mod-

ules37,73. The framework of the search spaces then influences the creation of

space-adapted evaluation strategies employed by Liu et al. 38 , Chen et al. 10 , and

Hu et al. 26 . For example, many specialized predictors have been trained to fit
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only a specific search space; such as BANANAS61, Once-For-All (OFA)7 and

Semi-NAS39. Aside from predictors, there are architecture embedding models

that have been custom-fit to the search spaces of NAS-10169, NAS-20115 and

NAS-30151, such as Arch2Vec67.

Neural architecture search and hyper-parameter optimization is

computationally expensive. AmoebaNet-A, NasNet, and RandomNAS both

require thousands of GPU days in order to come up with the most optimal net-

work configuration74,46,37. This is a result of their assumption that the search

space is formatted as a discrete problem rather than a continuous problem. Al-

gorithms based on reinforcement learning, sequential model-based optimization,

evolutionary algorithms, and Bayesian optimization are inherently limited47.

This is because these optimization approaches do not take advantage of the

problem space. However, efforts to relax this search space by transforming it

from discrete to continuous and differentiable using DARTS (first-order) have

reduced requirements to only 2-4 GPU days. While this is several orders of mag-

nitude better than the original options taking thousands of days, these solutions

are still constricted to very specific search spaces.

Training each model configuration completely is neither computa-

tionally feasible nor scalable. Distributed NAS evaluation strategies aim
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to develop resource-efficient and robust solutions for sorting out desirable ar-

chitectures without conceding model validation accuracy or loss, agnostic of

the search space. Single-fidelity optimizers use the results obtained after run-

ning a full training run. State-of-the-art optimization strategies aim to use the

compute-power more efficiently through early-stopping which is the termina-

tion of poor performers during training. These methods are known as multi-

fidelity gradient-free optimizers. These multi-fidelity optimizers utilize “low

fidelity” evaluations throughout the training process in order to optimize the

amount of resources allocated to architecture17,32. Additionally, we can use

performance predictors to lower the amortized cost of evaluating each model

through thresholding and model ranking42. Last, with the development of high

fidelity proxyless metrics, we can quickly evaluate the performance bounds of a

model without training it for more than a single epoch.

Pre-tabulated benchmarks are not easily generalizable. Pre-tabulated

benchmarks, such as NAS 10169, NAS Benchmark-20115, NAS Benchmark-30152

and NAS Benchmark-36057, aid in reducing resource requirements for NAS

researchers. They do this by pre-tuning, training, and storing model config-

urations and evaluations allowing researchers to use pre-tabulated results to

evaluate the efficacy of the NAS approach. However, this fails to address the in-
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herent problem of pre-computed benchmarks: the dependence on fixed problem

space parameters like model types and the dataset. NAS developers who aim

to develop schedulers that perform well on these pre-tabulated benchmarks risk

over-fitting their strategy to the benchmark types and losing generalizability to

new problem spaces.

Adding new benchmarks is not a scalable solution. One possible so-

lution is to extend existing pre-tabulated benchmarks with more data or add

entirely new benchmarks. This has partially motivated pre-computed bench-

marks like NAS-36056 because previous benchmarks are dominated by vision

datasets5,48. However, in the long term, this is not a viable solution due to sig-

nificant increases in time and cost: achieving comprehensive pre-tabulated re-

sults for every configuration of the DARTS search space took hundreds of GPU

days52. With the rapid pace in development of new neural architectures44,63, it

is fundamentally difficult for researchers to rapidly test their scheduling algo-

rithms on new benchmarks because of the holistic cost of training and develop-

ment time as well access to resources55.

Solution: NAS needs generalizability. From search space to evaluation

strategy, we need a NAS program that can work outside of the search spaces

and types of models it was originally designed to train or evaluate. To this
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Figure 1: Illustration of the NAS-Assistant workflow from data to output model.

end, GENNAPE42 processes the computation graphs generated by compiling

a model and encodes them into an embedding using a graph neural network

encoder. They then feed the embeddings into a soft-clustering algorithm which

then assigns the embedding as input to a specialized multi-layer perceptron

(MLP) that calculates the accuracy value specifically for convolutional neural

networks. We build on this by creating our own generalized performance model

as a component of our generalized NAS platform. Specifically, our goal is to

take an input model architecture AI and output a new architecture AO that is

locally optimal for any kind of model. We achieve this by first extending the

GENNAPE framework towards understanding both Tensorflow and PyTorch

defined models such that it can encode the architecture based on the compu-

tational graph (CG) for both. We then train the encoder-regression model to
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not rely on clustering anymore, as it is less generalizable to cluster, and then

direct a model to be processed by a specialized MLP for a specific cluster. If a

point is far away from any cluster, it is unlikely that the MLP regressor would

be good at predicting model performance. Instead, we use cross-attention with

a larger MLP to overcome this problem. Finally, we add proxyless NAS metrics

in order to extend the predictor’s capabilities beyond the single dataset whose

performance it was trained to predict. We devise a new metric using occlusion

to determine the contribution of each weighted model component to the overall

performance. Based on this metric and our model evaluation, we then gener-

ate new models using a large generative code language model. This process is

outlined in figure 1. We call this system the NAS-Assistant. In summary, the

contributions of this thesis are as follows:

(1) A new generalizable GNN-based neural architecture encoder and a clus-

tering attention-based regression network that predicts model performance with

high accuracy and transferability.

(2) A unique method for evaluating the contribution of each layer of a net-

work, combined with proxyless NAS evalution.

(3) A framework for using generative code language models to explore any

model search space requested from NAS-Assistant.
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1
Related Works

1.1 Graph Neural Networks and Representation Learning

Graph representation learning entails the modeling of representations of graph

nodes and edges by using some low dimensional vector12,23. Although the means

to accomplish this at first were sparse, the emergence of convolutional neural

networks (CNNs) brought a resurgence in geometric machine learning. As a
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natural result, the application of CNNs to 2d images was then extended to non-

Euclidean inputs72.

Early Graph Embedding Models. Based on the ideas behind word2vec

and natural language embedding models that successfully launched representa-

tion learning as a viable methodology, graph neural networks shortly followed21.

The first approach was DeepWalk, which used random walks and depth-first

search in conjunction with embedding SkipGrams45 to create a graph represen-

tation11.

Issues with early methods. Models like node2vec, TADW, and LINE

suffer from the lack of parameters shared between nodes in the encoding schema

and generalization to new graph topologies68,70. These approaches were also

more inefficient because they were limited to inputs of a specific length. This

means that as inputs grew linearly, so too did the number of parameters in the

network23.

Spectral Graph Learning Methods. Rooted in graph signal processing

theory50, spectral methods in GNNs have led to the emergence of the Graph

Convolutional Network Operator29. Given a graph signal x, let us define Fourier

transforms F as the following: F(x) = UTx. Note that U is the matrix of

eigenvectors derived from the normalized Laplacian of the graph such that
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Lnorm = IN −D− 1
2AD− 1

2 , given that A represents our adjacency matrix and D

represents our degree matrix. The Laplacian has unique properties that guaran-

tee its being a real symmetric positive semidefinite matrix41.

We then derive the convolution operation to be the following:

g ⋆ x = U(UTg ⊙UTx)

Note that in this equation, the expression UTg is our filter operation. This

means that g = gw can be our learnable kernel weight.

Further improvements to the GCN additionally developed this idea using

Chebyshev polynomials24, which was then further simplified by Kipf & Welling 29

to the following equation:

g ⋆ x = w0x− w1D
− 1

2AD− 1
2x

If we simplify the following, assuming that w0 = −w1, and we renormalize

to prevent exploding gradients and add a skip connection using the following

expression IN +D− 1
2AD− 1

2 = D̃− 1
2 ÃD̃− 1

2 , we arrive at the final form of the GCN:

where X is the input for the graph signal in matrix form, W is the learnable

parameter and the result is the convolution operation.
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g ⋆X = H = D̃− 1
2 ÃD̃− 1

2XW

The benefits of this operation are that the learnable parameters are input

agnostic in terms of scale. The GCN is able to read inputs of different types

and the Fourier transformation brings the representation benefits of the Fourier

series for sparse graph representation13.

Unsupervised Graph Encoder Methodologies. The first encoder method-

ology utilized GCNs in order to create a Graph Auto-Encoder (GAE) model.

This encoder-decoder structure has the goal of trying to decipher the adjacency

matrix from the encoding and uses the similarity between the original and re-

constructed in order to provide a criterion for the model to train43. Using con-

trastive learning, this methodology can be expanded to further unsupervised

learning. There are several examples such as Deep Graph Infomax (DGI)58, In-

fograph53 and Multi-view66 that all utilize various contrasted forms in order to

achieve high-fidelity representations. The basic premise lies in trying to create a

metric of distance between two representations and the choice of the representa-

tions themselves. For example, in this thesis (similarly to GENNAPE42), we use

a specific form of graph edit distance to develop a metric of distance and then

contrast the learned embeddings using cosine similarity to get the performance
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criterion.

Additionally, in order to make the GCN model layers more discriminative, we

incorporate the Weisfelier-Leman test which test for graph topologies that are

isomorphic29. This is important to learning the encoding structure of a neural

network because there are many ways to code and compile and architecture

that may perform the same in terms of performance. The evolution of this test

integration led to the proposition of Graph Isomorphic Networks (GINs) which

can be used in conjunction with the convolutional operator g ⋆ x mentioned

earlier65.

1.2 Architecture Performance Predictors

In order to maintain consistency in the descriptors for the following methods, let

us define the setup time as the computational time taken for any generalized

training or initialization for the method. The query time is defined as the time

it takes the method to compute an architecture specific prediction62.

Supervised Learning Methods. The first type of performance predictor

is based on supervised training, where the setup time is defined as the time it

takes to train on a large set of architectures using some sort of representation

to predict a ranking metric or some sort of performance indicator, such as a loss
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value or end accuracy value40. The actual query time for such an indicator is

very short, which enables high inference loads. For example, GENNAPE is a

supervised type model where the neural network is trained on 40,000 architec-

tures from NAS-101. These predictors can further be used by other statistical

frameworks such as Bayesian optimization or RL techniques to maximize their

efficacy. Other examples include boosting or random forest, Gaussian processes

or specialized encoding based regressors40,49,60.

Zero-Cost Methodologies. Zero-cost methods such as Synflow1, RE-

Measure and others36 are examples of predictors that do not require any setup

and small query time intervals in order to compute certain statistics from run-

ning a single minibatch of data. These statistics can be calculated by doing a

forward or backward pass of the model1. Additionally, other metrics include

measuring metrics related to in-network attributes such as activation weights.

These methods can be attributed to generally ranking models, but may lack

high value performance prediction capabilities. For this reason, it may be best

to use metrics like these to generally filter bad configurations early on in a NAS

search.

Learning Curve Modelling. Some predictors adopt the task of forecast-

ing the learning curves of a model given some number of hyperparameters
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and the last given loss value. In order to model the loss curve methods adopt

Bayesian, parametric or neural network models to structure the learning prob-

lem. Domhan et al. 14 describes a set of 11 model types, such as pow4: f(t) =

c − (at + b)−α. In this equation, a, b, c, α are some set of parameters that can

be fitted to a curve. The goal was to use a set of K = 11 parametric functions

ϕi(θi, t) to extrapolate loss curves to future time steps based on the previous

n time steps. Domhan et al. 14 opted to perform Markov Chain Monte Carlo

(MCMC) inference to predict future values. Later, Klein et al. 30 built on this

work and coupled Bayesian neural networks with these parametric models to

forecast loss curves. Depending on the loss landscape, the performance of these

methods can have high variability20.

Hybrid Approaches. Often, the model-based supervised predictor can be

combined with evaluation based methods that use early stopping. Examples

of this include median rule22, asynchronous successive halving34, Population

Based Training27, and Hyperband33. Additionally, we can incorporate loss curve

modelling and time series forecasting in to these same algorithms. Zero-cost

proxies can then serve as generalized filters to kick start the NAS search. There

is currently many open questions and possible ensemble models that can be

constructed62.
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1.3 Large Language Code Models

Large language models are a suite of models aimed to learn relationships in nat-

ural language data. They are typically trained on vast text datasets, ranging

from books, web pages, and code repositories. Many state of the art large lan-

guage models are high parameter transformer models that aim to complete two

main tasks in natural language processing: infilling and synthesis. Infilling is

the task of filling in sentences or code given the surrounding context. Synthesis

is the task of generating new text/code or responding to a given prompt in a

contextually-aware way. Significant breakthroughs in the LLM space include

GPT-3 by OpenAI and Incoder by Meta19.

The Incoder transformer model uses 6.7 billion parameters and is trained

on a large corpus of Python code. They perform many experiments to test

the model’s performance for code synthesis and code line infilling. They use

a zero-shot evaluation on HumanEval9 and MBPP3, which are benchmarks that

contain docstrings and aim to produce a correct matching Python function.

We focus mainly on decoder-only models since we only care about the result-

ing code. However, other works include encoder-only masked language models

which allow embeddings to be generated for text and code28,18 and encoder-

decoder models that allow both capabilities35,2,59.
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1.4 Architecture Families

Figure 1.1: TSNE Breakdown of GENNAPE Generated Latent Embedding Space from Mills
et al. 42 .

NAS-Bench-101 (NB101)51, NAS-Bench-201 (NB201)15 and NAS-Bench-301

(NB301)52 are cell based search space records where NB201 and NB301 are

DARTS configured spaces that are built on top of AutoDL genotype configura-

tions. Note that NB301 is a surrogate benchmark and hence the models derived

from it are estimated for accuracy terms. ProxylessNAS (OFA-PN)8 and Once

for-All-MobileNetV3 (OFA-MBv3)31 are based on variations of the original Mo-

bileNet configuration and cell based topology. The Once-for-All ResNet family

is a residual block based ResNet group of families from He et al. 25. HiAML

architectures are based on GA-NAS and were original designed to solve facial

recognition problems60. Inception and Two-Path are variations of the Inception

family from Szegedy et al. 54 where Inception is the single path backbone type

16



and Two-Path has two running backbones for weight efficiency. The different

families and their similarity in latent space are shown in figure 1.1.

17



2
Methods

2.1 Creating a Generalizable Performance Predictor

2.1.1 Creating a Usable Computational Graph Representation

We train a graph neural network to first learn the structure of the model ar-

chitecture. We choose to represent this architecture by using the computation

18



graph of the compiled model. In order to get the right dimensions for the model,

we also require that the user of NAS-Assistant also include the dataloader to

the API. From this input, we construct a Tensorflow style computational graph.

While PyTorch has no individual method of accessing the entirety of a model’s

computational graph for visualization or traversal, we use the TorchView pack-

age to construct similar graphs for the model to load in.

In Tensorflow, the computational graph is stored in a tf.Graph object which

contains both Tensor and Operation objects. We use the Tensor objects to

construct the weighted edges of our graph and the Operation objects to repre-

sent our nodes. Given a static graph object, we can then traverse through the

graph and create our own representation which we store in the ComputationalGraph

class. In this case we construct two types of nodes. One type of node is a WeightedNode

which has a weight tensor associated with it, like a projection tensor or convolu-

tional kernel. All other operations are stored as RegularNode objects.

In PyTorch, the computational graph has to be constructed using the dy-

namic graph interface using Autograd. We then apply TorchView to this gra-

dient object. The module uses the parsing interface to create a DOT-formatted

DiGraph object which is similar to Tensorflow’s tf.Graph() object API. From

this phase, we implement the same parsing to load the graph into our ComputationalGraph

19



object format and split the representation into weighted nodes and regular

nodes. The resulting model is not exactly the same as the Tensorflow graphs

because of representation differences and differing node definitions. However,

we find that we can generate extremely similar embeddings between models

that are written using Tensorflow and Pytorch by using Open Neural Network

Exchange (ONNX)4 to ensure similar graph encodings for the same checkpoint

objects.

2.1.2 Computational Graph Embedding Modeling

In order to represent each node in our ComputationalGraph object, we create

a node embedding model that creates an embedding layer for encoding each

type of attribute, such as weight size, operation type, kernel shape and bias

attribute.

Alongside our node encoding model, we pass the node encodings and adja-

cency matrix into our GINConvolution network with 6 layers, followed by an-

other transformer with cross-attention and four heads to create 256 embeddings

from each model. These embeddings are concatenated together to create one

large 512 long vector embedding for the computational graph. We then aggre-

gate this embedding across the dimensions of all of the nodes using another GIN

20



Convolutional model.

Our training criterion for this model is twofold and partly based on con-

trastive learning. First, we use the criterion described in GENAPPE. This

involves using dropout augmentation to create similar models in our batch.

For this, we repeat the input given to the model with dropout augmentation

at the node level. This means that each batch size is doubled. By passing the

input into our network F (x) twice, we achieve two embeddings: F (x) = e1 and

F (x) = e2. This is because the dropout is randomized for each input. For each

embedding that we generate, we train a projection head to move it into lower

dimensional space for representation learning. Using cosine similarity between

two vectors e1 and e2

e1 · e2
τ

where τ is our temperature, we generate the following loss function:

Lconstrastive = −
∑
i∈I

∑
l ̸=i

α
(i)
l log

exp
(
xi·xl

τ

)∑
r ̸=i

(
xr·xl

τ

)
In this function x1 = proj(e1) and α

(i)
l is a component of our proxy soft label

for each graph such that
∑

l ̸=i α
(i)
l = 0 and each α

(i)
l ≥ 0. In order to come up
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with this soft label, we define a form of graph distance. For this, we calculate

the normalized Laplacian of a graph G defined so:

Lnorm = IN −D− 1
2AD− 1

2

Note here that A and D are the adjacency and degree matrix of graph G.

Given this matrix, we then compute the eigenvector decomposition A =

QΛQ−1 where ordered from lowest to highest, we take the first 21 eigenvalues

and used λ1···21 as per Dwivedi & Bresson 16 to create a Euclidean distance met-

ric such that d =
√∑n

i=1(λvi − λui)2 where n = 21. We then take the softmax

of these distances values such that our resultant equation is the following.

α
(i)
l = softmax(di) =

edi∑n
j=1 e

dj

Once we have calculated our constrastive loss value, we then proceed to add

our reconstruction loss based on cosine similarity. We use a large MLP model to

take the batch encoding generated by the model and then attempt to recreate

the node embeddings of the model before it was passed into the main encoder.

From this we generate two versions of node-embeddings: one that is the orig-

inal encoder output, and the other that is the reconstructed version. We use
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consine similarity once more between the two outputs
(ei·ej

τ

)
for each value and

average the negative similarity in the loss function. We then define two hyper-

parameters β0 and β1. We use these parameters to help weigh our contruction

and constrastive losses. The final form of the loss function is as follows:

L = β0Lconstrastive + β1Lreconstruction

We then conduct hyper-parameter tuning over our losses function weighting.

For the cosine temperature, we use a linear decay schedule that starts at 0.35

and ends at 0.05. A decreasing cosine temperature is understood to be a reflec-

tion of the model’s confidence in the prediction. As a result, our linear schedule

is enforcing the model predictions become more confident the longer it trains.

2.1.3 Unsupervised Clustering

Given the diversity of architectures and the breadth of the latent space, it is

clear that using a universal regressor to predict performance off a single embed-

ding is a difficult task. In order to capture a greater amount of variance, we aim

to use clustering to direct the regressor towards specific regions in the latent

space to make precise predictions. Given that encoding is an unsupervised task,

we adopt Gaussian mixture models as our unsupervised clustering method.
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Mixture models are generative probability models that combine multiple prob-

ability distributions. Based on the generated combined probability distribution,

our goal is to understand the parameters for each probability distribution, as

well as the mixture coefficient, or probability of sampling a point from that

distribution. We call each distribution a component of the mixture model. To

formalize, in a mixture model we have Q components, a mixture coefficient that

determines the probability of sampling each component πq, the parameters for

each component θq, and the data generated from the distribution x generated

with probability P (x|θq).

The goal for the mixture model is to then infer which component q generated

a given point x. As such, this can be seen as a unsupervised classification prob-

lem. Given a set of datapoints X , we want to learn a mapping f : X → Q,

where Q is the set of clusters, or in the mixture modeling case, the set of compo-

nents.

In this vein, we employ a Gaussian Mixture Model. We assume that the data

for each cluster is generated from a spherical Gaussian, all the data X is gen-

erated from a mixture of |Q| Gaussian components, each Gaussian distribution

has the same variance σ2.

We assume this generative probability model for the underlying distribution
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of our observed latent embedding space with a dimensionality of 512. This as-

sumption is in line with previous works, such as in GENNAPE42 where they

use a fuzzy k-means clustering algorithm. Our assumptions make the GMM

analagous to this fuzzy k-means clustering algorithm, with the added benefit

that we are able to denote a probability distribution for the likelihood that a

datapoint belongs to each given cluster.

To fit this mixture model to our observed data, we use the Expectation Max-

imization algorithm. As mentioned, each component is a Gaussian, or normal

distribution parameterized as Rq ∼ N (µq, σ
2). We begin by randomly guessing

the means for each component µq. We then calculate posterior probabilities for

each data point in the expectation step:

Expectation Step: P (q|xi,µ, σ
2,π) =

πqP (xi|µq, σ
2)∑Q

q′=1 πq′P (xi|µq′ , σ2)

Where µ and π are vectors of all |Q| means and mixture values. We know

that a given data point xi is most likely with the largest P (q|xi,µ, σ
2,π). We

can compute P (xi|µq, σ
2) by using the PDF of the normal distribution with

mean µq and variance σ2. Then, in the maximization step, we calculate the new
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centroids µq and mixture coefficients given the posterior probabilities:

Maximization Step: µ̂q =

∑
i P (q|xi)xi∑
i P (q|xi)

, π̂q =

∑
i P (q|xi,µ, σ

2,π)

N

Where N is the total number of data points. As such, we converge to a given

assignment of components for each data point along with their mean centroids.

Algorithm 1 Expectation Maximization for Gaussian Mixture Model

Require: Data X = {x1, . . . , xN}, number of components |Q|, tolerance thresh-
old ϵ

Ensure: Means µ, variance σ2, mixture coefficients π
1: Initialize means µ = {µ1, . . . , µ|Q|} randomly
2: Initialize variances σ2

3: Initialize mixture coefficients π = {π1, . . . , π|Q|} uniformly
4: repeat

5: Set P (q|xi,µ, σ
2,π) = πqP (xi|µq ,σ2)∑Q

q′=1
πq′P (xi|µq′ ,σ

2)

6: Update means using µ̂q =
∑

i P (q|xi)xi∑
i P (q|xi)

7: Update mixture coefficients using π̂q =
∑

i P (q|xi,µ,σ2,π)

N

8: until ∥µ− µold∥2 < ϵ

2.1.4 Mixture of Experts Regressor

As previously mentioned, the GMM clusters the points for us in order to pro-

vide a soft label for our regressor. The regressor we train is a Mixture of Ex-

perts (MOE) model that uses an embedding space to combine the gating weights

that determine which experts to go to with the input in order to pass the input
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through the weighted mixture of the expert models. Normally, a gated network

outputs a softmax representing probabilities for using each expert model, but

here we have replaced this with our soft label from the GMM. By having the

experts share weights, we reduce overfitting and increase generalizability. This is

important for zero-shot evaluation of models where aspects of the latent space

have not been seen before, yet we still want to have some combination of ex-

perts that contain weights to predict the model’s performance given the latent

space emebdding.

2.2 Prompting Large Language Models

Using our generalizable neural network performance predictor, we utilize it in

order to infer the value of various aspects of the model. We aim for this value

to correspond to the normalized contribution of each model layer to the overall

performance prediction. In order to accomplish this, we implement a breath-first

node masking algorithm. In this, we traverse each layer of the graph and take

the operation nodes associated with that layer and mask them along with their

edges from the graph. We then replace these edges with dummy edges in order

to preserve the topology of the graph. For each masking configuration, we pass

the computational graph through the neural network encoder and generate a
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new predicted accuracy value. We then subtract the list of accuracy values from

the baseline accuracy of the original model and normalize the differences to get

a normalized contribution weight for every layer of the neural network.

Algorithm 2 Generalizable NAS-Assist Performance Predictor

1: procedure NAS-Assist(G,E) ▷ G: graph, E: encoder
2: Abaseline ← PredictAccuracy(G,E)
3: Initialize list Amasked

4: for each layer l in G do
5: Gmasked ← MaskLayer(G, l)
6: Amasked[l]← PredictAccuracy(Gmasked, E)
7: end for
8: ∆A← Abaseline − Amasked

9: W ← Normalize(∆A) ▷ Normalized contribution weights
10: return W
11: end procedure

Once we have the relative weights for each part of the model, we pass the

model code and the corresponding rankings to the large language model with

the following prompt. Note that the prompt changes for the differing types of

code language models. For this project, we utilized InCoder19 and GPT Da-Vinci-002

(3.5-Turbo)6.

We then provide the following docu-string prompt in order to have the large

code language model generate our suggested code. Prompt: The tensorflow

model is annotated with comments that contain a value corresponding

to how helpful a layer is. Positive values means the layer is improving
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Figure 2.1: Labeled NB101 inception-like model with layer relevance score output for prompting a
code language model.

performance and negative means that the layer is not helping performance.

Come up with a new model based off the ranking and the code that

follows while maintaining the same types of operations.

For each piece of code that the large langauge model outputs, we then run

algorithm 2 in order to test our the estimated prediction. Based on a user given

threshold, we repeat this process until the given threshold is achieved by finding

a model computational graph emebedding that has a qualifying accuracy. If

NAS Assist cannot converge to the thresholded accuracy in a MAX ITERATION
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Algorithm 3 NAS-Assist Prompting

1: procedure NASAssist(E, MAX ITERATION, THRESHOLD) ▷ E: encoder
2: Initialize Gbest and Abest

3: for i← 1 to MAX ITERATION do
4: Gcurrent ← LargeLanguageModelOutput()
5: Wcurrent ← PredictionModel(Gcurrent, E)
6: Acurrent ← EstimateAccuracy(Wcurrent)
7: if Acurrent ≥ THRESHOLD then
8: return Gcurrent, Acurrent

9: else if Acurrent > Abest then
10: Gbest ← Gcurrent

11: Abest ← Acurrent

12: end if
13: end for
14: return Gbest, Abest

15: end procedure

number of steps, then it returns the best mode it found until that point. This

methodology is described in algorithm 3.
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3
Evaluation and Results

3.1 Encoding Results

After training the node and graph neural network encoder, we then proceed

to take the 512 size embeddings and run principle component analysis (PCA)

and t-distributed stochastic neighbor embedding (TSNE) in order to visualize

the latent encoding space of the computational graphs. Ideally, a successful
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(a) TSNE Breakdown of NB101 Space with Accu-
racy Shading

(b) TSNE Breakdown of NB101 Space with Unsu-
pervised Cluster Assignment Shading

Figure 3.1: NB101 TSNE components reveal that our graph encoder has successfully encoded the
computational graphs such that patterns in performance and clusters around different model types
are visible.

embedding space will reveal patterns that correspond to non-embedded indica-

tors such as accuracy or flops. We analyze the embedding spaces for each of the

families below, as well as the success of the Gaussian mixture model clustering

algorithm.

NB101 Encoding and Clustering Results. As shown in figure 3.1 (a),

there are distinct clusters of points in the search space that correspond to

NB101 architectures. Some of these small clusters contain lightly shaded points

that represent higher performance architectures. Likewise, we see that there are

small clusters of darkly shaded regions which are encoded computational graphs
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from relatively poorly performing architectures. Note that in order to visualize

effectively, only the 40,000 best-performing architectures are shown encoded

here. Then there are groups of clusters that do not seem to have a pattern in

which types of architectures they represent. Some of the central-most clusters

are a diverse mix of differently performing architectures, and this represents the

difficulty in the downstream task of predicting their performance. In figure 3.1

(b), we see that some of the clusters are well-characterized by the unsupervised

learning task while others are not. For example, we can clearly see that cluster 1

(bright red) is present in different portions of the latent space and does not seem

to vary in assignment with architecture performance. On the other hand, cluster

21 (bright green) consists of mostly well-performing architectures (> 0.92) and

cluster 12 (gold) consists of relatively poor performing architectures (< 0.88).

Since the encoder and the Gaussian mixture model were trained on NB101 com-

putational graphs, we can now see how well our methodology extends to other

CNN-vision neural network families from alternative benchmarks.

NB201 Encoding and Clustering Results. In figure 3.2 (a), we see that

the encodings of the computational graph are much more sparse for the NB201

benchmark models as compared to those seen for NB101 in 3.1. Each of the

clusters in this space has a distinct performance profile. The small clusters
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(a) TSNE Breakdown of NB201 Space with Accu-
racy Shading

(b) TSNE Breakdown of NB201 Space with Unsu-
pervised Cluster Assignment Shading

Figure 3.2: NB201 TSNE components reveal that our graph encoder has successfully encoded the
computational graphs outside of its training domain.

mostly consist of architectures that perform similarly. This shows that NAS201

will be easier for the regressor to generalize to because, as long as the cluster-

ing model can assign it correctly to the right cluster, the performances within

a specific group are close enough to each other that the model will generally

be correct. Additionally, figure 3.2 (b) demonstrates that the unsupervised

clustering model groups together many distinct clusters. This will likely hurt

generalizability in downstream tasks because the grouped mini-clusters do not

share the same performance profiles. For example, cluster 45 (purple) consists

of several mini-clusters that had better performance as seen in (a) but also two

mini-clusters with worse performance. The effectiveness of clustering is highly
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(a) TSNE Breakdown of OFA ResNet Space with
Accuracy Shading

(b) TSNE Breakdown of OFA ResNet Space with
Unsupervised Cluster Assignment Shading

Figure 3.3: OFA ResNet TSNE components reveal that our graph encoder has successfully en-
coded the computational graphs outside of its training domain and assigned clusters appropriately.

dependent on the proximity of encodings to the original training data in the

nb101 encoded latent space. We see that although NB201 is close enough to the

original for cluster differentiation to occur (having a spread of different cluster

values), the unsupervised cluster model struggles at labelling each of these dis-

tinct mini-clusters due to its distance from the original unsupervised training

space.

OFA ResNet Encoding and Clustering Results. As seen in figure 3.3

(a), the encoding schema has managed to create a structured space for the ar-

chitecture encodings where position has some correlation with performance. For

example, we see in the bottom-left-most corner that there is a larger concentra-
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(a) TSNE Breakdown of OFA PN Space with
Accuracy Shading

(b) TSNE Breakdown of OFA PN Space with
Unsupervised Cluster Assignment Shading

Figure 3.4: OFA PN TSNE components reveal that our graph encoder has successfully encoded
the computational graphs outside of its training domain but the cluster assignment here is lacking.

tion of better performing architectures (relative to the rest of the family); in the

right-hand side we see some mini-clusters of worse- (darker) performing archi-

tectures. Once again, distance from the training set plays a role in the cluster

assignment. Since the ResNet architecture is a derivative of the NB101 architec-

ture, the cluster assignment in figure 3.3 (b) appears to be more structured and

clearly identifies the patterns in the space. Cluster 13 (light green) encapsulates

most of the better (> 0.78) performing architectures in this space.

OFA PN Encoding and Clustering Results. Due to the relative distance

of the OFA PN class of models from the NB101 embeddings in the shared latent

space, we see that the clustering model has done a poor job of differentiating
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the cluster assignments for values here. Despite the prescence of various possible

clusterings seen in figure 3.4 (a), we see that in (b) everything is still given

the same cluster assignment. For future work, it may be more appropriate to

use a more generalizable model that can better cluster distant families. The

remaining clustering and encoding graphs are included in the appendix.

3.2 Zero-Shot and Fine Tuning Results for Prediction Regressor

Spearman Rank Correlation Coefficient (SRCC). SRCC is commonly

used as a measurement of performance for models in Neural Architecture search

because it measures the degree of monotonicity between two variables. The

coefficient is calculated by getting the ranks of a list of variable and then calcu-

lating the difference between the ranks. We then take the Pearson correlation

coefficient with respective to the difference in ranks to get the final value. Note

that ranking allows us to be insulated from large value outliers. Additionally,

the Spearman rank coefficient is commonly used when either the relationship

between the two variables is non-linear or the data is not normally distributed.

The coefficient ranges between -1 to 1, where negative values indicate a nega-

tive monotonic relationship, 0 indicates no monotonic relationship, and positive

values indicate a positive monotonic relationship.
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NAS Assistant performs better than the baseline and comparably

to some categories of GENNAPE. As seen in Table 3.5 (a), the green rep-

resents model families for NAS assistant that perform better than the K-GNN

model described in Mills et al. 42 . The bold coefficient reflects the best value

across all columns. We see that for many model families, the full GENNAPE

outperforms our NAS Assistant Predictor. However, we should note that we did

not train a separate multi-layered perception for each cluster regressor classifi-

cation. As a result, our model is much smaller, allowing faster inference time.

It is unlikely that the choice of clustering determines the entire gap in perfor-

mance, because C-Fuzzy means and Gaussian mixture models work similarly

as K-means are a special case of GMMs and C-Fuzzy means an extension of K-

means. Lastly, our encoder has a more rigorous training routine which achieves

similarly-shaped family embeddings to those from Mills et al. 42. Therefore,

we attribute the gap in performance here to the differential in the number of

weights in each model.

Normalized Discounted Cumulative Gain (NCDG). This metric is

often used in NAS as well as recommendation systems and information retrieval.

This is because it measure the quality of the information that has been ranked

based on the ground truth (in NAS this would be model performance metrics).
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(a) SRCC Table for Zero-shot Prediction on
Architecture Families

(b) NDCG10 Table for Zero-shot Prediction on
Architecture Families

Figure 3.5: Our custom performance predictor for NAS Assistance performs comparably in some
categories to GENNAPE and far better than the standard k-GNN. Note: The green highlight
means that the NAS Assistant Model performs better than the baseline and bold means that the
value is the best within the specified category. For both measures, higher is better.

We normalize the metric by taking the discounted cumulative gain (DCG) and

the ideal discounted cumulative gain (IDCG) which measures the best possible

retrieval for the top 10 ranks and divide the DCG by the IDCG in order to get

the NDCG10 metric. Note that DCG here is the sum of the relavance scores (ie.

accuracy) for the top models. The higher the value, the more likely it is that

our algorithm was able to correctly identify the best models.

NAS Assistant performs comparably to GENNAPE and better

than the k-GNN baseline given nDCG scores. We see that from table

3.5 (b), NAS-Assist performs better in a majority of the categories in zero-shot

performance as compared to the baseline (shown in green) and better in 4 cat-

egories versus worse in 4 compared to GENNAPE. Once again, this result may

be due to the fact that NAS-Assist has a smaller set of weights given that we
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do not train separate MLP-E for each cluster assignment since that is compute

heavy and not as generalizable.

3.3 Generative AI Prompt Tuning

In order to evaluate the neural architectures reliably, we sample 50 architectures

from each high performing family based on the zero-shot results from the pre-

dictor. Namely this includes NB101, NB201, NB301, and OFA-PN. For each

architecture set, we set a threshold to be model accuracy + σ
4

based on the

standard deviation of the given family. We also set MAX ITERATIONS to be 10.

For each run per architecture, we measure the number of iterations it took to

converge and the average performance gain per architecture. Additionally, we

count the number of times max iterations was reached for each set of models.

We present the averages in table 3.6.

Figure 3.6: Our table shows that the generative AI model based search methods suffer in perfor-
mance when the predictor does not have solid granularity.

Better generative code performance comes from better predictive
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modelling. We can clearly see from the results that the better the model’s

zeros-shot predictive performance on the architecture family, the greater the

likelihood of the code language model finding a locally optimal model in the

neighborhood of the model. NB101 likely had the best performance because the

predictor module was directly trained on the dataset. Additionally, NB201 is

very similar to NB101 and for that reason it also likely had better convergence

time. NB301 performed worse and often converged to “inception” classified

models. This may be because inception models are more common in code usage

and the generative model could be biased towards them through their training

corpus. OFA-PN regularly pursued OFA-RN models and became stuck in the

prediction model classifying the performance differences in ResNet poorly due

to high amounts of noise. This made the predictions and the resulting generated

code unreliable. Once again, it may be because of the generative model’s train-

ing corpus that the code generated for improvement tended to resemble ResNet

architectures which are very common for vision related tasks.

Choice of generative model. Ideally, we would give the model more chances

to improve by feeding it back to the generative model, however this was expen-

sive because the OpenAI API is restricted in terms of the number of queries

that can be made and the Incoder model from Meta is restricted in the number
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RESPONSE (Iter 1): Replace conv2d 364 and batch normalization 370 with

a new conv2d layer with 32 filters, kernel size of 3x3 and padding

of "same" for improved performance. Replace conv2d 366 with a new

conv2d layer with 64 filters, kernel size of 3x3 and padding of "same"

for improved performance. Replace batch normalization 372 with a

new batch normalization layer for improved performance. Replace

conv2d 368 with a new conv2d layer with 64 filters, kernel size of

3x3 and padding of "same" for improved performance. Remove conv2d 370

and batch normalization 376 layers as they are not helping performance.

Replace tf.identity 9 with a new global average pooling layer to reduce

the number of parameters and improve performance.

RESPONSE (Iter 2): Removed the tf.identity layer since it has a

negative ranking and does not contribute to the model’s performance.

Kept the helpful layers with positive ranking values such as the

batch normalization and ReLU layers in the first convolution block.

Removed or replaced layers with negative ranking values in the second

convolution block to improve the model’s performance.

RESPONSE (Iter 3): Removed batch normalization from the first

convolution block (conv1 1 bn) since it has a negative ranking. Removed

batch normalization and ReLU from the second convolution block

(conv2 1 bn and conv2 1 relu) since they have negative rankings. Kept

the layers with positive ranking values, such as the input and the

convolution layers in the first and second blocks. Removed or replaced

layers with negative ranking values in the identity blocks to improve

the model’s performance.

Figure 3.7: GPT Langauge model displays intuitive reasoning given layer importance.

of tokens it can parse and queries it can remember. For this reason we opted to

stay with GPT Da-Vinci-002 (3.5-Turbo). Additionally, the benefit of using a

GPT model is that we could request a worded explanation of layers that were

changed. For example, figure 3.7 is example of the model explaining the series

of changes made to a NB101 model.

The generative code model correctly interprets relevance weights
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and attributes them to correct lines of code. Within the text of figure 3.7

we see that the model logically processes the weights and correctly interprets

areas of the model that are clearly over-regularizing and hurting performance

while also finding a way to replace lower performing layers with blocks that

correspond to better performance. The model also seems to reason about the

number of weights provided by each layer and actively removes layers that adds

an unnecessary number of parameters to the model. This leads us to believe

that with greater granularity in the information provided by the predictor re-

garding the ranking of components in the model, the large language model will

have the capability to modify the code in an effective way given the additional

information.

Preventing the generative model from changing the model type

completely. Given prompt tuning, we can prevent the model from radically

changing the structure of the user input to a standard architecture by requiring

that the same types of operations are used in the new model and that the num-

ber of parameters is not increased significantly. This logic is found our prompt

when we specify that the model must “Come up with a new model based off

the ranking and the code that follows while maintaining the same types of op-

erations.” For OFA - PN we had to make the prompt more strict by specifying
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which operations were acceptable in order to prevent the generative code model

from just replacing the code with a ResNet structure. In figure 3.8 we provide

an example of what the user interface is meant to look like locally, where the

generative model edits some lines of code after being prompt constrained. Al-

though this is a prototype model, in the future we hope to provide a more intu-

itive interface through visual studio or other capable text editor applications.

Figure 3.8: NAS-Assist Model edit example where the model architecture is constrained from
being changed completely through prompt tuning.

We remove the limitations on search space with generalizability. We

construct a generalized performance predictor that can access the performance

of an architecture and is capable of rendering a computation graph. We also
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incorporate a search engine powered by generative AI that is not limited to a

specific search space other than the artificial limitations imposed by our prompt

tuning that constricts the code changes to the local architecture space. This

allows us to improve models by suggesting reasonable edits that remain within

a close distance in our latent embedding space. As seen in figure 3.9, we have

an architecture that started out in the NB201c10 space and then the search

algorithm was able to use the generative model to take the architecture and find

a close, yet better performing architecture in an adjacent OFA ResNet family.

This demonstrates the power of extreme generalizability, where our schema is

not hindered by the structure of an arbitrary search space.
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(a) TSNE Breakdown of Combined NB201 and
OFA ResNet Space with Accuracy Shading

(b) TSNE Breakdown of Combined NB201 and
OFA ResNet Space with Unsupervised Cluster
Assignment Shading

Figure 3.9: We see here that our search algorithm that moved from one search space of models
to an adjacent one in order to optimize performance. By doing so, we demonstrate the uniqueness
in our algorithm of being able to explore and evaluate outside of the starting search space. Note
that the black line represents our search route over 3 iterations and starts from a region with lower
accuracies and ends in a region with higher accuracies.
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4
Conclusion

We present NAS-Assistant, the first NAS search and evaluation tool using gen-

erative code language models to enable a search space agnostic architecture op-

timizer tool. Through a combination of NAS methods, we present an algorithm

that uses a novel layer relevance metric that enables users to add “performance

intuition” to code generation models. The flexibility of the tool offers the ability
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for NAS-Assistant to be applied to any computer vision -related architecture

optimization problem.

Current Issues. There are two main weaknesses of this model. The first is

the capability of the performance predictor. As we saw in previous experiments,

if the performance predictor is even slightly worse in zero-shot inference, then

the model can get stuck in performance prediction loops where there is too

much noise in the prediction to achieve convergence. The second issue is that

the regressor has currently only trained on each model’s CIFAR-10 performance.

Ideally, we would expand this to other vision datasets and then use zero-cost

metrics to create performance bound estimates that can infer the performance

decrease or increase given the similarity of the test dataset.

Future work. Given that the version of NAS-Assistant presented in this

paper is a prototype, we seek to complete work to make this a full distributable

software. This entails adding zero-cost performance metrics for ground-truth

measurement of data set similarity and accuracy error bounding. We also plan

to incorporate this work with an adjacent research project that uses multi-

fidelity optimization to improve model evaluation. By integrating both projects,

NAS-Assistant can be used a prior distribution generator.

Through this paper, we establish that it is possible to integrate the advances
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of generative AI into NAS and create search space agnostic architecture op-

timization tools. Moving forward, we aim to further integrate generative AI

methods in NAS in order to enhance existing and future search and evaluation

methodologies.

49



A
Appendix
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(a) TSNE Breakdown of OFA MBv3 Space with
Accuracy Shading

(b) TSNE Breakdown of OFA MBv3 Space with
Unsupervised Cluster Assignment Shading

Figure A.1: OFA MBv3 Clustering and Encoding.

(a) TSNE Breakdown of Two Path Space with
Accuracy Shading

(b) TSNE Breakdown of Two Path Space with
Unsupervised Cluster Assignment Shading

Figure A.2: OFA Two Path Clustering and Encoding.
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(a) TSNE Breakdown of Two Path Space with
Accuracy Shading

(b) TSNE Breakdown of Two Path Space with
Unsupervised Cluster Assignment Shading

Figure A.3: Two Path Clustering and Encoding.

(a) TSNE Breakdown of Inception Space with
Accuracy Shading

(b) TSNE Breakdown of Inception Space with
Unsupervised Cluster Assignment Shading

Figure A.4: Inception Clustering and Encoding.
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(a) HiAML Breakdown of Two Path Space with
Accuracy Shading

(b) TSNE Breakdown of HiAML Space with Unsu-
pervised Cluster Assignment Shading

Figure A.5: HiAML Clustering and Encoding.
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Good, Better, Best

Let us never rest

Until our good is better

And our better is best.
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