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Preface

This report aggregates the papers presented at the fifth miniKanren and Relational Programming Workshop, hosted on
September 8, 2023 in Seattle, WA, USA and co-located with the twenty-eight International Conference on Functional
Programming.

The miniKanren and Relational Programming Workshop is a workshop for the miniKanren family of relational (pure
constraint logic programming) languages: miniKanren, microKanren, core.logic, OCanren, Guanxi, etc. The workshop
solicits papers and talks on the design, implementation, and application of miniKanren-like languages. A major goal
of the workshop is to bring together researchers, implementors, and users from the miniKanren community, and to
share expertise and techniques for relational programming. Another goal for the workshop is to push the state of the
art of relational programming—for example, by developing new techniques for writing interpreters, type inferencers,
theorem provers, abstract interpreters, CAD tools, and other interesting programs as relations, which are capable of
being “run backwards,” performing synthesis, etc.

Five papers were submitted to the workshop, and each submission was reviewed by two to three members of the
program committee. After deliberation, four submissions were accepted to the workshop.

In addition to the four full papers presented

• William E. Byrd gave a morning tutorial on miniKanren,

• the workshop closed with an open discussion on the future of miniKanren.

Thanks to all presenters, participants, and members of the program committee.

Nada Amin & William E. Byrd
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Oliver Bračevac, Galois, Inc., USA
William E. Byrd, University of Alabama at Birmingham, USA (Co-Chair)
Evan Donahue, University of Tokyo, Japan
Thomas Gilray, University of Alabama at Birmingham, USA
Ekaterina Komendantskaya, Heriot-Watt University and Southampton University, UK
Ekaterina Verbitskaia, JetBrains, Serbia

iii



iv



Contents

1 Goals as Constraints: Writing miniKanren Constraints in miniKanren by Donahue 1

2 Semi-Automated Direction-Driven Functional Conversion by Verbitskaia, Engel & Berezun 13

3 Stable Model Semantics Extension of miniKanren by Guo, Smith & Bansal 25

4 klogic: miniKanren in Kotlin by Kamenev, Kosarev, Ivanov, Fokin & Boulytchev 51

v



vi



miniKanren’23

Goals as Constraints: Writing miniKanren Constraints in
miniKanren
EVAN DONAHUE, University of Tokyo, Japan

We present an extension to the relational programming language miniKanren that allows arbitrary goals to run
efficiently as constraints. With this change, it becomes possible to express a large number of commonly used
constraints in pure miniKanren without modifying the underlying implementation. Moreover, it also becomes
possible to express a number of new constraints that have proven difficult to realize within existing constraint
authoring frameworks. We believe this approach represents a promising avenue for further extending the
expressiveness of miniKanren’s constraint handling capabilities.

1 INTRODUCTION
Most non-trivial miniKanren programs depend on the use of constraints beyond unification. How-
ever, in many current implementations, adding new constraints requires modifying the underlying
constraint solver itself, which requires deep knowledge of the implementation. The situation is
somewhat improved by past work on constraint authoring frameworks [1, 11], which separate con-
straint authoring from core language development. However, even with the use of such frameworks,
some complex constraints remain difficult to express.
In this paper, we propose using miniKanren itself as a language for constraint authoring. As

we demonstrate, using only the core operators of miniKanren, it is easy to express a wide range
of common constraints, as well as a number of novel constraints that are difficult to express in
non-relational host languages. Moreover, we show that such a constraint language interoperates
well with host language constraint frameworks that are better suited for expressing constraints
that cannot be expressed in pure miniKanren, such as numeric constraints. The key idea of this
paper is that constraint solving in miniKanren can be viewed as a natural extension of the normal
miniKanren search procedure, and can therefore be implemented as a modified miniKanren interpreter
in which constraints are represented simply as normal miniKanren goals.

The remainder of the paper is structured as follows: Section 2 describes the interface extensions
made to the language to allow the specification of constraints and presents a list of example
implementations of several constraints. Section 3 describes the implementation in detail. Section 4
discusses related work.

2 INTERFACE
In this section, we introduce three new forms and implement several constraints from previous
work to illustrate their use. constraint (2.1) converts miniKanren goals into constraints. pconstraint
(2.2) defines new primitive constraints besides ==. Finally, noto (2.3) negates miniKanren goals.

2.1 constraint: miniKanren Goals as Constraints
The constraint form wraps arbitrary miniKanren goals and redefines their semantics. Normally,
conde generates multiple search branches and conjoins one child disjunct to each branch. Wrapped
with constraint, however, it instead generates a disjunction constraint and conjoins it with the state
corresponding to the current branch. Should each disjunct fail, the branch fails, as in the following
examples.

2.1.1 booleano. The simplest non-trivial constraint we can write using constraint is the booleano

constraint [11]. booleano constrains a variable to be either #t or #f. Using constraint, booleano could
be written as follows:
(define (booleano v)

The miniKanren and Relational Programming Workshop 2023 1
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(constraint

(conde

[(== v #t)]

[(== v #f)])))

Assuming v is free, this constraint will suspend itself in the constraint store and await unification.
When v is unified, the constraint activates and check that v is either #t or #f. If it is one of those
two values, the constraint is satisfied and it is removed from the store. If it is bound to a different
ground term, the constraint fails. Otherwise, if it is bound to a variable, the constraint returns to
the constraint store.
Likewise, if v ever becomes disequal to either #t or #f, the disjunction will collapse and the

constraint will unify the remaining value in the substitution before removing itself from the store.

2.1.2 listo. listo checks that a term unifies with a proper list [11]. This constraint lazily walks
the list and confirms that it ends—if its tail is ever fully bound—with a null list.
(define (listo l)

(constraint

(conde

[(== l '())]

[(fresh (h t)

(== l (cons h t))

(listo t))])))

listo in particular among the constraints introduced so far illustrates the duality of goals and
constraints in this framework.Without the constraint form, listowould simply be a normalminiKan-
ren goal that generates proper lists. It would be perfectly possible to define listo as a generative
miniKanren goal and then wrap it using constraint only at the call site to turn it into a constraint
at the programmer’s discretion. Any miniKanren program that generates any arbitrary structure
can likewise be turned into a constraint that tests for that structure using the constraint form.1

Importantly, here and for the rest of the paper, when we write fresh, we in fact refer to a pattern
matching form, matcho, that will be described in Section 3.5. matcho has proven easier to work with for
the purposes of implementing this constraint system. It is still possible to define fresh appropriately
for use in constraints, and so we use it for greater familiarity in the code examples, but we will not
cover its implementation in detail in this paper.

2.1.3 presento. The final constraint in this section, presento, is to our knowledge novel in this
paper. presento can be understood to be the logical negation of absento. Instead of asserting that a
given value must not appear anywhere in a term, presento asserts that a given value must appear
somewhere in the term.
(define (presento present term)

(constraint

(conde

[(== term present)]

[(fresh (h t)

(== term (cons h t))

(conde

[(presento present h)]

[(presento present t)]))])))

1One minor limitation is that, unlike the generative version of the relation, the constraint version never grounds the end of
the list with null if it is not bound elsewhere in the program. Instead, it reifies as a suspended form of the waiting constraint.
We are currently exploring modifications to the reifier that may resolve this issue.

miniKanren’23
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presento is much more difficult to implement than absento using existing constraint frameworks
due to the way in which it is fundamentally disjunctive. Because the constraint store implicitly
conjoins all contained constraints, absento can insert its child constraints independently into the
store. presento, by contrast, must guarantee that, for instance, the child constraint on a list’s head
must not fail—even if it otherwise would—if the constraint on the tail succeeds. This dependency
between the child constraints requires additional bookkeeping that complicates the architecture
of the constraint and the store. The complexity is further increased if the constrained value is a
complex list term containing free variables, as the constraint may in that instance need to handle the
tree traversal logic within the context of a complex unification logic that it may not be possible to
resolve immediately. In the present framework, however, both presento and absento can be expressed
with roughly the same order of implementation complexity.

2.2 pconstraint: Primitive Constraint Constructor
In the previous section, only == was used as a primitive goal. While == allows for a wide range of
constraints on structures miniKanren is natively capable of generating, it is insufficient to define
the full range of constraints usually present in miniKanren implementations. In particular, defining
type constraints such as symbolo or numbero would require a disjunction of unbounded size, which
cannot efficiently be represented within a miniKanren program. To support such constraints, this
implementation defines the pconstraint form that acts as a constructor for new primitive constraints.

pconstraint accepts a list of variables on which the constraint depends, a function responsible
for checking the constraint, and an arbitrary Scheme value to be passed as auxiliary data into the
constraint checking function. Whenever one of the constrained variables is updated, the function
receives the variable, its updated value, any constraints on the variable, and the auxiliary value.
The function must return either a simplified pconstraint, or a trivial succeed or fail constraint.
pconstraint was designed specifically to implement type constraints, and it may be necessary to
further extend the system to handle other primitive constraints. We leave such considerations to
future work.

2.2.1 symbolo & numbero. In this section we define a general typeo relation and specialize it to arrive
at versions of the usual symbolo and numbero constraints common to many miniKanren systems.
(define (typeo v t?)

(if (var? v) (pconstraint (list v) type-check t?) (if (t? v) succeed fail)))

(define (type-check var val constraint t?) ...))

(define (symbolo v) (typeo v symbol ?))

(define (numbero v) (typeo v number ?))

(define (pairo) (typeo v pair?))

typeo accepts a value or variable and a function responsible for type checking, such as symbol?. If
it receives a value, it simply returns the trivial fail or succeed goal. If instead it receives a variable,
it constructs a pconstraint, represented as a tagged vector of its three arguments: the singleton list
of the variable v, the auxiliary data which in this case is the type checking function symbol?, and a
function responsible for performing the type check, type.

The type checking function, type, at present requires some knowledge of the internal representa-
tions used by the solver to implement. In practice, simpler interfaces can likely be defined to handle
common constraint types. The function is called each time a variable on which the constraint
depends is bound, and it accepts as arguments the variable, the value (or variable) to which it has
been bound, the auxiliary data (in this case, the type predicate t?), and a constraint goal used to

miniKanren’23
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check constraint-constraint interactions. constriant is another primitive constraint bound to var,
such as another type constriant. The auxiliary value of primitive constraints can be used to check
their interactions, such as failing when two incompatible type constraints are bound to the same
variable.

2.3 noto: Negating Goals and Constraints
Negation has been explored from a variety of angles in past work on miniKanren [14, 19]. In this
implementation, noto generalizes the usual case analysis used to perform disequality checking. It
runs its subgoal, and negates the result. If the subgoal succeeds, noto fails. If the subgoal fails, it
succeeds. If the subgoal returns any other constraint, that constraint is negated and placed into the
store. This scheme allows for the expression of a number of constraints that depend on negation,
beginning with =/=.

2.3.1 =/=. Because noto generalizes disequality solving, expressing disequality is trivial.
(define (=/= lhs rhs) (noto (== lhs rhs)))

2.3.2 not-symbolo, not-numbero. noto generalizes in the same fashion to other primitive constraints
besides ==.
(define (not-symbolo v) (noto (symbolo v)))

(define (not-numbero v) (noto (numbero v)))

(define (not-pairo v) (noto (pairo v)))

2.3.3 not-booleano, not-listo. Complex constraints built with conjunction, disjunction, and fresh
work also work as expected.
(define (not-booleano v) (noto (booleano v)))

(define (not-listo v) (noto (listo v)))

2.3.4 absento. Using disequalities and negated type constraints, it becomes possible to define the
familiar absento constraint.
(define (absento absent term)

(constrain

(=/= term absent)

(conde

[(noto (typeo term pair?))]

[(fresh (h t)

(== term (cons h t))

(absento absent h)

(absento absent t))])))

It is also possible to implement absento as a negation of presento, or vice versa.

3 IMPLEMENTATION
The implementation as a whole is composed of a pair of miniKanren interpreters. The first—the
"stream" interpreter—interprets conde and fresh as stream constructors that generate the interleaving
search tree. All other goals are viewed as constraints and are passed to the "constraint" interpreter to
check for unsatisfiability within a given branch. As the constraint solver is a miniKanren interpreter,
the constraints themselves are normal miniKanren goals, implemented here as first order structures.
The constraint interpreter defines ==, constraint, pconstraint, noto, succeed, and fail. It also redefines
conde and fresh for the constraint solving search context.

miniKanren’23
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The constraint interpreter performs a depth-first miniKanren search bounded by the rule that
fresh goals must suspend when the variables on which they depend are free.2 Because constraints
within this framework may contain conde, a given miniKanren goal, viewed as a constraint, may
imply a disjunction between any number of conjunctions of simpler constraints. The goal of the
constraint interpreter’s search is to find one such subset of mutually satisfiable primitive constraints
entailed by a single constraint store much in the same way the stream interpreter must search for
one subset of mutually satisfiable constraints entailed by the program overall.

In the next several sections, we review the implementation of the constraint solver. Code examples
have been simplified for greater readability. The implementation is open source, and the source
code should be consulted for more detail.

3.1 Conjunction
The primary interface to the constraint solving interpreter is via the solve-constraint function.
Consider the following partial listing:

(define (solve-constraint g s ctn resolve delta)

(cond

[(succeed? g) (if ... (solve-constraint ctn s succeed resolve delta))]

[(conj? g) (solve-constraint (conj-lhs g) s (conj (conj-rhs g) ctn) resolve

delta)]

...)))

The interpreter accepts the constraint goal to be solved, g, the state, s, and three additional goals,
ctn, resolve, and delta. These naming conventions will remain consistent throughout the rest of the
paper.

g and s are self-explanatory. ctn is so named due to a structural analogy with continuations and
continuation-passing style. The interpreter is written in a depth-first manner using a "conjunction-
passing style" in which the future of the computation, ctn, represented as the conjunction of all
goals to the "right" of the currently evaluated goal, is passed as an argument to the solver. When the
interpreter receives a conjunction for the current goal g, it calls itself recursively on the left-hand
side while conjoining the right-hand side to the current ctn. When the solver later finishes solving
the current constraint g, it will be called with the trivial succeed goal as the current constraint,
which will prompt the interpreter—subject to conditions discussed in more detail in the following
sections—to proceed with solving the next conjunct of the current ctn. Concretely, calling the solver
with 𝑔 ↦→ 𝑥 ≠ 1 ∧ 𝑦 ≠ 2 and 𝑐𝑡𝑛 ↦→ 𝑧 ≠ 3 will first trigger the conjunction condition, calling
the solver recursively with 𝑔 ↦→ 𝑥 ≠ 1 and 𝑐𝑡𝑛 ↦→ 𝑦 ≠ 2 ∧ 𝑧 ≠ 3, and then subsequently with
𝑔 ↦→ 𝑠𝑢𝑐𝑐𝑒𝑒𝑑 and then 𝑔 ↦→ 𝑦 ≠ 2 and 𝑐𝑡𝑛 ↦→ 𝑧 ≠ 3, provided that none of the constraints fail.

3.2 Unification
Consider the following partial listing of the unification solver, which is called from solve-constraint

when g is a unification constraint:

1 (define (solve- == g s ctn resolve delta)

2 (let-values ([(bindings recheck s) (unify s (==-lhs g) (==-rhs g))])

3 (if (fail? bindings) (values fail failure)

4 (solve-constraint succeed s ctn (conj recheck resolve) (conj delta

bindings)))))

2Recall that fresh in this case is implemented as a pattern matching form that possesses explicit references to the variables
on which it depends.

miniKanren’23
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This definition of unification will look familiar from its standard implementation elsewhere. The
unifier is called, the resulting state is checked for failure. If it has not failed, the solver proceeds
to run any constraints that need to be rechecked based on the new bindings. Line 2 calls out to
a unifier that works like most miniKanren unifiers with the exception that it returns two goals
in addition to the state. bindings is a conjunction of unification goals representing the extensions
made to the state s.3 recheck represents the conjunction of constraints on all of the newly bound
variables. The next two lines illustrate the remainder of the plumbing of the solver.

Line 3 checks whether the unification has failed by checking whether the bindings consist of the
trivial fail goal, and if so returns the failure signature—the trivial fail goal and the failure stream.
The failure stream corresponds to the failure mode of the input state s, and the fail goal likewise
corresponds to the failure mode of the input parameter delta, which is a first order representation
of the constraints that have been added to s during this execution of the constraint solver.
Consider line 4. The unification constraints representing the new bindings are conjoined to

delta and passed to further solving. Should the current constraints ultimately prove satisfiable, the
constraint solver will return s and delta, both of which contain the information about which bindings
were made at this stage in the solver. delta can be viewed as an extension of the representation
of the state that tracks changes made during solving. It is primarily useful during negation and
disjunction, as the current state representation is difficult to negate or disjoin. A constraint without
negation or disjunction will ultimately discard delta and simply return s as the product of solving.
The final architectural element of the solver is the resolve constraint, which is conceptually

equivalent to the ctn constraint. Both are conjunctions of goals waiting to be solved. The difference
is that ctn contains the constraints remaining to be solved from the initial constraint received
from the stream interpreter, whereas resolve contains constraints that started out already in the
store, and were removed by, for instance, a unification, and must be re-solved later. As such, the
constraints relevant to the current unification, recheck, are conjoined with resolve before further
solving, and will later be pulled out and solved once ctn has been exhausted. Intuitively, while
constraints received from the goal interpreter and stored in ctn are necessarily not yet reflected in
the state, constraints conjoined to resolve were initially in the state when the constraint interpreter
began solving the current constraint. As such, delta must contain a record of the changes made to
the state, which corresponds to the logical simplification of the ctn constraint, whereas it need not
contain re-solved constraints already contained in the state, and so resolve may be discarded from
the final output, although it must be checked to ensure consistency. This distinction is important
for the correctness of the negation constraint, as discussion in Section 3.3.

3.3 Negation
Generalized negation operates analogously to the specialized case of disequalities. The same case
analysis by which disequality constraints interpret the results of unification can be applied to
general constraints such as type constraints and others definedwith pconstraint. Negated constraints
simply solve their child constraints and invert the result, converting succeed to fail, fail to succeed,
and non-trivial constraints to their negations. Conjunctions and disjunctions are negated using De
Morgan’s laws in the usual way. Consider the following listing:

1 (define (solve-noto g s ctn resolve delta)

2 (let-values ([(d s2) (solve-constraint (noto g) s succeed succeed succeed)])

3 (solve-constraint succeed (store-constraint s (noto d)) ctn resolve

(conj delta (noto d)))))

3This is analogous to the newly extended prefix of the substitution in association list based implementations, but represented
using explicit first-order goals rather than a list of bindings.

miniKanren’23
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The negation of g, (noto g), is solved recursively on line 2 and then negated before being returned
to the store and simultaneously to the delta constraint on line 3. Note that the initial call to
solve-constraint is invoked with ctn, resolve, and delta all set to succeed. This creates a distinct,
"hypothetical" context in which the solver can evaluate the positive version of the goal in isolation
and without reference to future conjuncts of the original negated goal. This results in the returned
delta, d, containing only changes made by the positive version of goal g and not by the right-hand
conjuncts of the original goal. As a result, d can simply be negated and returned to the store before
further solving. Had 𝑦 = 1 been passed as ctn, for example, it would have returned conjoined to d,
and subsequently negated to 𝑦 ≠ 1 before being returned to the store, which is not correct.
Before proceeding with the remaining constraints, two remarks are in order. First, it is now

possible to return, briefly, to the solve-constraint function and its handling of succeed:

1 (define (solve-constraint g s ctn resolve delta)

2 (cond

3 [(succeed? g)

4 (if (succeed? ctn)

5 (if (succeed? resolve)

6 (values delta s)

7 (let-values ([(d s) (solve-constraint resolve s succeed succeed

delta)])

8 (if (fail? d) (values fail failure)

9 (values delta s))))

10 (solve-constraint ctn s succeed resolve delta))]

11 ...)))

When g is succeed, constraints are first pulled from ctn on line 10, as described earlier. Once
ctn has been exhausted, the constraints removed from the state to be rechecked as a result of the
solving process, contained in resolve, are solved on line 7. However, if resolve is solved, only the
original delta is returned on line 9, not the subsequently solved d. This change ensures that during
negation solving, constraints removed from the store do not pollute the returned delta and become
incorrectly negated.4 Finally, once all future constraints have been exhausted, the delta values are
returned along with the state on line 6.

3.4 Disjunction
Consider the following listing:

1 (define (solve-disj g s ctn resolve delta)

2 (let-values ([(d-lhs s-lhs) (solve-constraint (disj-lhs g) s succeed succeed

succeed)])

3 (cond

4 [(fail? d-lhs) (solve-constraint (disj-rhs g) s ctn resolve delta)]

5 [(succeed? d-lhs) (solve-constraint succeed s ctn resolve delta)]

6 [else (let-values ([(d-rhs s-rhs) (solve-constraint (disj-rhs g) s succeed

succeed succeed)])

7 (if (fail? d-rhs)

8 (solve-constraint succeed s-lhs ctn resolve (conj delta d-lhs))

9 (solve-constraint succeed (store-constraint s (disj d-lhs d-rhs)) ctn

resolve (conj delta (disj d-lhs d-rhs)))))])))

4Note that this procedure necessarily throws away the work done to solve rechecked constraints. We are currently
experimenting with alternative designs that retain more of that work.

miniKanren’23
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solve-disjunction first solves the left-hand disjunct on line 2. Like the negation solver, ctn, resolve,
and delta are all succeed, which ensures that the returned constraints reflect only simplifications of
constraints contained within the disjunct.
If the left-hand disjunct fails, the solver simply solves the right-hand disjunct on line 4. If it

succeeds, the rest of the disjuncts can be skipped. Otherwise, the right-hand side is solved on line
6 and it is disjoined with the left-hand side and returned to the store on line 9. If the right-hand
side fails, the results of the left-hand side are returned to the store, reusing the state produced by
solving the left-hand side as an optimization on line 8.
Stepping back, the disjunction constraint finally makes clear what it means to view constraint

solving as search in this instance. Each disjunction must search among its child disjuncts for at
least one that does not fail in the current state. When the state moves down the right or left-hand
branches of the disjunction constraint, it accumulates one child disjunct. When it passes through
all conjoined disjunction constraint contained in ctn or resolve, it will have ensured that there is at
least one subset of disjuncts that are mutually satisfiable in the current state. Failure to find such a
subset proves the unsatisfiability of the store, and the branch fails.
Unsatisfiability is relatively easy to detect as it only requires finding one non-failing disjunct

in each disjunction. Ensuring that unifications entailed by the constraint store are added directly
to the substitution, such as when booleano is conjoined with 𝑥 ≠ ⊤ and therefore unifies 𝑥 = ⊥,
requires that additional disjuncts be checked. The simplified implementation above naively checks
all disjuncts, but work is ongoing to investigate possible benefits of laziness in the disjunction
solver.

3.5 Matcho
In most cases in the current implementation, the pattern matching form matcho is used in place of
fresh. matcho destructures tree terms and binds their elements to variables in a new lexical scope as
in the following example:

(matcho ([xxs (x . xs)]) ...)

This form destructures xxs and binds its head and tail to x and xs, respectively, before processing
child goals. The internal representation of a matcho goal consists of a list of free variables on which
it depends, a list of bound values, and a closure for processing the final patterns. Solving simply
involves looking up the free variables, adding them to the bound variable list as they become bound,
and suspending in the constraint store on encountering a variable that is still free in the current
substitution. This procedure guarantees that constraints will only run until they exhaust the bound
values in the substitution, preserving the completeness of the search.

fresh can also be used in constraints, although it is more difficult to optimize. For that reason
it is usually preferred to write constraints with the pattern matching form. Opaque fresh goals
must expand until they yield a disjunction containing at least one non-failing disjunct. Whereas
the stream interpreter would create two branches on such a disjunction, the constraint interpreter
suspends the computation in the constraint store.

3.6 Attributed Variables
Once the constraints have been sufficiently solved, they must be added back to the constraint store
so the search can progress. For simple implementations that recheck all constraints at each step,
this poses no issue. However, many implementations use a version of attributed variables whereby
constraints in the store are indexed by the variables on which they depend. When those variables
are modified, either by unification or by the addition of another constraint, the constraints already

miniKanren’23
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indexed under that variable can be rechecked without wasting effort on unrelated constraints. The
only question, then, is on which variables does a given constraint depend?

With the exception of disjunction, this question is mostly straightforward. Primitive constraints
such as unification depend on all of their variables, while negation and conjunction depend on all
of the attributed variables of their children. Because the store itself can be viewed as a conjunction
of all the constraints it contains, storing a conjunction directly in the store can be simplified to
storing all of its children independently.
Disjunctions are the more difficult case, and the variables on which they depend themselves

depend on the level of solving performed. For the simple solver above, it is possible to attribute
disjunctions to all of their child goals’ variables. However, lazy implementations can get away with
fewer. Work on this subject remains ongoing.

Once the attributed variables have been determined, the current implementation copies pointers
to the constraint to each variable index in the store. Constraints are stored separately to avoid stale
constraints proliferating in the store.

4 RELATEDWORK
Within the domain of miniKanren research, this paper is most closely in conversation with prior
work on constraint authoring frameworks [1, 11]. Unlike these approaches, which facilitate the
development of domain specific constraints that make heavy use of specialized representations,
this paper presents a strategy for leveraging only the core operators of miniKanren to express a
wide variety of constraints that have to this point required such specialized implementations. The
benefit of the present approach is that it greatly lowers the barrier to authoring constraints that
can be expressed within this framework not only by uniformly handling constraint optimization
and interoperation, but also by allowing the expression of constraints in miniKanren, which is
particularly well suited to expressing constraints on structures that are themselves necessarily
expressible in miniKanren. That said, much work remains to be done on bridging the gap and
allowing such constraint authoring frameworks to interoperate with the system presented in this
paper to allow for the expression of constraints that lie outside of miniKanren’s core representational
facilities.
More generally, the solving of simultaneous equations and disequations within the framework

of logic programming has developed an extensive literature since its introduction [8]. This early
work has been surveyed in Comon [9]. The central design of the solver proposed in this paper
in particular generalizes the disequality constraint solver originally proposed by Bürckert [5]
and further elaborated upon in Buntine and Bürckert [4], which was subsequently adapted for
miniKanren by Byrd [6].
The strategy for avoiding unnecessary constraint checking by assigning constraints to specific

variables that may make them unsatisfiable if bound or further constrained is based on what can
be viewed as an implementation of attributed variables, albeit in a functional style [17]. Attributed
variables, roughly, offer a general means to associate additional information with specific variables,
and have found particular application in extending logic programming languages with constraint
systems, as is being done here [12, 13]. The original approach to attributing disequalities to variables
on which this paper builds originated with Ballantyne et al [2] to the best of our knowledge.

This paper also engages to a lesser extent with previous work in miniKanren concerned with the
semantics of negation, universal quantification, and fresh [7, 14, 16, 18, 19]. In particular, it offers a
practical implementation of negation for constraint authoring that would be interesting to compare
with more complex forms of negation studied in previous work.
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5 CONCLUSION
This paper introduced an extension to miniKanren that allows for the interpretation of goals as
constraints, and used this extension to implement a wide variety of useful constraints. Much work
remains to be done on the constraint system itself, from further studying the effects of laziness to
exploring integrations with solvers that require specialized representations. Finally, given the range
of constraints this and future related systems make it possible to express, however, it is also worth
wondering what kind of applications they may enable, from variations on relational interpretation
to as yet unresearched domains. In particular, one of the motivating cases driving this research has
been the prospect of running complex relations such as relational interpreters and relational type
inferencers as constraints, and studying the effect this might have on the ability to compose such
relations efficiently by letting the constraint system decompose and reorder them. Further work on
the current implementation is required before such experiments can be undertaken.
Because this constraint solver reuses representations and algorithms that already exist in most

miniKanren implementations, and particularly those that already use first order representations
of goals, and moreover because this solver replaces much of the code dedicated to implementing
individual constraints, the implementation burden on top of an existing miniKanren system is
relatively minimal. It is therefore our hope that this work can help facilitate the more rapid
exploration and prototyping of new types of constraints and the new applications they enable.

6 ACKNOWLEDGMENTS
We thank Will Byrd for discussions of early versions of this idea, Evgenii Moiseenko for clarifying
some points of previous work, and Greg Rosenblatt for identifying an important edge case. We also
thank the anonymous reviewers for their suggestions.

REFERENCES
[1] Claire E Alvis, Jeremiah J Willcock, Kyle M Carter, William E Byrd, and Daniel P Friedman. 2011. cKanren: miniKanren

with Constraints. (2011).
[2] Michael Ballantyne et al. 2020. Faster miniKanren [Source Code]. (2020). https://github.com/michaelballantyne/faster-

miniKanren
[3] David C Bender, Lindsey Kuper, William E Byrd, and Daniel P Friedman. 2009. Efficient Representations for Triangular

Substitutions: a Comparison in MiniKanren. Unpublished manuscript (2009).
[4] Wray L Buntine and Hans-Jürgen Bürckert. 1994. On Solving Equations and Disequations. Journal of the ACM (JACM)

41, 4 (1994), 591–629.
[5] Hans-Jürgen Bürckert. 1988. Solving disequations in equational theories. In 9th International Conference on Automated

Deduction: Argonne, Illinois, USA, May 23–26, 1988 Proceedings 9. Springer, 517–526.
[6] William Byrd. 2009. Relational Programming in Minikanren: Techniques, Applications, and Implementations. Ph. D.

Dissertation. Indiana University.
[7] William. E. Byrd. 2013. Relational Synthesis of Programs. webyrd.net/cl/cl.pdf
[8] A Colmerauer. 1984. Equations and Inequations on Finite and Infinite Trees. In Proc. of the International Conference on

Fifth Generation.
[9] Hubert Comon. 1991. Disunification: a Survey. (1991).
[10] Evan Donahue. 2021. Guarded Fresh Goals: Dependency-Directed Introduction of Fresh Logic Variables. miniKanren

and Relational Programming Workshop (2021).
[11] Daniel P Friedman and Jason Hemann. 2017. A Framework for Extending microKanren with Constraints. In Proceedings

of the 2017 Workshop on Scheme and Functional Programming.
[12] Christian Holzbaur. 1990. Specification of Constraint Based Inference Mechanisms Through Extended Unification. Ph. D.

Dissertation. University of Vienna.
[13] Christian Holzbaur. 1992. Metastructures vs. Attributed Variables in the Context of Extensible Unification. In Pro-

gramming Language Implementation and Logic Programming: 4th International Symposium, PLILP’92 Leuven, Belgium,
August 26–28, 1992 Proceedings 4. Springer, 260–268.

[14] Ende Jin, Gregory Rosenblatt, Matthew Might, and Lisa Zhang. 2021. UniversaL Quantification and Implication in
MiniKanren. In miniKanren and Relational Programming Workshop. 12.

miniKanren’23
10 The miniKanren and Relational Programming Workshop 2023



Goals as Constraints miniKanren 2023, September 8 2023, Seattle, WA, USA

[15] Andrew W Keep, Michael D Adams, Lindsey Kuper, William E Byrd, and Daniel P Friedman. 2009. A Pattern Matcher
for MiniKanren or How to Get into Trouble with CPS Macros. Technical Report CPSLO-CSC-09-03 (2009), 37.

[16] Dmitry Kosarev, Daniil Berezun, and Peter Lozov. 2022. Wildcard Logic Variables. In miniKanren and Relational
Programming Workshop.

[17] Serge Le Huitouze. 1990. A New Data Structure for Implementing Extensions to Prolog. In Programming Language
Implementation and Logic Programming: International Workshop PLILP’90 Linköping, Sweden, August 20–22, 1990
Proceedings 2. Springer, 136–150.

[18] Weixi Ma and Daniel P Friedman. 2021. A New Higher-Order Unification Algorithm for _Kanren. In miniKanren and
Relational Programming Workshop. 113.

[19] Evgenii Moiseenko. 2019. Constructive Negation for MiniKanren. In Proceedings of the miniKanren and Relational
Programming Workshop.

[20] Gregory Rosenblatt, Lisa Zhang, William E Byrd, and Matthew Might. 2019. First-Order MiniKanren Representation:
Great for Tooling and Search. In Proceedings of the miniKanren and Relational Programming Workshop. 16.

miniKanren’23
The miniKanren and Relational Programming Workshop 2023 11



12



miniKanren’23

Semi-Automated Direction-Driven Functional Conversion
EKATERINA VERBITSKAIA, JetBrains Research, Serbia
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One of the most attractive applications of relational programming is inverse computation. It offers an approach
to solving complex problems by transforming verifiers into solvers with relatively low effort. Unfortunately,
inverse computation often suffers from interpretation overhead, leading to subpar performance compared
to direct program inversion. A prior study introduced a functional conversion scheme capable of creating
inversions of miniKanren specifications with respect to a known fixed direction. This paper expands upon it
by providing a semi-automated functional conversion algorithm. Our evaluation demonstrates a significant
performance improvement achieved through functional conversion.

CCS Concepts: • Software and its engineering→ Constraint and logic languages.

Additional Key Words and Phrases: program inversion, inverse computations, relational programming, func-
tional programming, conversion

1 INTRODUCTION
One of the most attractive applications of relational programming is inverse computation. It is
helpful, when the program being inverted is a relational interpreter of some sort: this way an
interpreter for a programming language may be used for program synthesis, a type checker —
to solve type inhabitation problem and so on [3, 4]. Constructing relational interpreters out of
functional implementations can be done automatically by relational conversion [5]. miniKanren
along with relational conversion are capable of inverse computations. However, it is important
to note that inverse computations exhibit lower performance compared to directly executing an
inversion of the original program due to the interpretation overhead [1, 2].

Relational programs do not exist on their own: they are a part of a host program, which utilizes
query results in some way. The host languages are not expected to be able to process logic variables,
nondeterminism and other aspects of relational computations. The host program usually only deals
with a finite subset of answers, which have been reified into a ground representation, meaning
they do not include any logic variables.

When a relation is expected to produce ground answers, and the direction in which it is intended
to be run is known, then it becomes possible to convert it into a function which may execute
significantly faster than its relational counterpart. Performance improvement comes from reducing
interpretation overhead as well as replacing expensive unifications with considerably faster equality
checks, assignments and pattern matches of a host language. An informal functional conversion
scheme was introduced in the paper [9]. We are building upon this research effort, presenting a
semi-automatic functional conversion algorithm and implementation for a minimal core relational
programming language microKanren. This paper focuses on converting to the target languages of
Haskell andOCaml, although other languages can also be considered as potential target languages.
Our evaluation showed performance improvement of 2.5 times for propositional formulas synthesis
and up to 3 orders of magnitude improvement for relations over Peano numbers.

Authors’ addresses: Ekaterina Verbitskaia, kajigor@gmail.com, JetBrains Research, Belgrade, Serbia; Igor Engel, igorengel@
mail.ru, JetBrains Research, Bremen, Germany; Daniil Berezun, daniil.berezun@jetbrains.com, JetBrains Research, Amster-
dam, Netherlands.
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2 BACKGROUND
In this section, we give the abstract syntax of microKanren version used in this paper and describe
a concept of modes which was developed earlier for other logic languages.

2.1 Normal Form Abstract Syntax of microKanren
To simplify the functional conversion scheme, we consider microKanren relations to be in the
superhomogeneous normal form used in the mercury programming language [7]. Converting an
arbitrary microKanren relation into the normal form is a simple syntactic transformation, which
we omit.

In the normal form, a term is either a variable or a constructor application which is flat and linear.
Linearity means that arguments of a constructor are distinct variables. To be flat, a term should not
contain any nested constructors. Each constructor has a fixed arity 𝑛. Below is the abstract syntax
of the term language over the set of variables 𝑉 .

T𝑉 = 𝑉 ∪ {C𝑛 (𝑥1, . . . , 𝑥𝑛) | 𝑥𝑖 ∈ 𝑉 ; 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 }
Whenever a term which does not adhere to this form is encountered in a unification or as an

argument of a call, it is transformed into a conjunction of several unifications, as illustrated by the
following examples:

𝐶 (𝑥1, 𝑥2) ≡ 𝐶 (𝐶 (𝑦1, 𝑦2) , 𝑦3) ⇒ 𝑥1 ≡ 𝐶 (𝑦1, 𝑦2) ∧ 𝑥2 ≡ 𝑦3
𝐶 (𝐶 (𝑥1, 𝑥2) , 𝑥3) ≡ 𝐶 (𝐶 (𝑦1, 𝑦2) , 𝑦3) ⇒ 𝑥1 ≡ 𝑦1 ∧ 𝑥2 ≡ 𝑦2 ∧ 𝑥3 ≡ 𝑦3

𝑥 ≡ 𝐶 (𝑦,𝑦) ⇒ 𝑥 ≡ 𝐶 (𝑦1, 𝑦2) ∧ 𝑦1 ≡ 𝑦2
𝑎𝑑𝑑𝑜 (𝑥, 𝑥, 𝑧) ⇒ 𝑎𝑑𝑑𝑜 (𝑥1, 𝑥2, 𝑧) ∧ 𝑥1 ≡ 𝑥2

Unification in the normal form is restricted to always unify a variable with a term. We also
prohibit using disjunctions inside conjunctions. The normalization procedure declares a new
relation whenever this is encountered.
The complete abstract syntax of the microKanren language used in this paper is presented in

figure 1.

D𝑁
𝑉 : 𝑅𝑛 (𝑥1, . . . , 𝑥𝑛) = Disj𝑉 , 𝑥𝑖 ∈ 𝑉 normalized relation definition

Disj𝑉 :
∨ (𝑐1, . . . , 𝑐𝑛) , 𝑐𝑖 ∈ Conj𝑉 normal form

Conj𝑉 :
∧ (𝑔1, . . . , 𝑔𝑛) , 𝑔𝑖 ∈ Base𝑉 normal conjunction

Base𝑉 : 𝑉 ≡ T𝑉 flat unification
| 𝑅𝑛 (𝑥1, . . . , 𝑥𝑛) , 𝑥𝑖 ∈ 𝑉 , 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 flat call

Fig. 1. Abstract syntax of microKanren in the normal form

2.2 Modes
A mode generalizes the concept of a direction; this terminology is commonly used in the conven-
tional logic programming community. In its most primitive form, a mode specifies which arguments
of a relation will be known at runtime (input) and which are expected to be computed (output).
Several logic programming languages have mode systems used for optimizations, with mercury
standing out among them. mercury1 is a modern functional-logic programming language with a
complicated mode system capable not only of describing directions, but also specifying if a relation
in the given mode is deterministic, among other things [6].
1Website of the mercury programming language: https://mercurylang.org/
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Given an annotation for a relation, mode inference determines modes of each variable of the
relation. For some modes, conjunctions in the body of a relation may need reordering to ensure that
consumers of computed values come after the producers of said values so that a variable is never
used before it is bound to some value. In this project, we employed the least complicated mode
system, in which variables may only have an in or out mode. A mode maps variables of a relation
to a pair of the initial and final instantiations. The mode in stands for 𝑔→ 𝑔, while out stands for
𝑓 → 𝑔. The instantiation 𝑓 represents an unbound, or free, variable, when no information about its
possible values is available. When the variable is known to be ground, its instantiation is 𝑔.

In this paper, we call a pair of instantiations a mode of a variable. figure 2 shows examples of the
normalized microKanren relations with modes inferred for the forward and backward directions.
We use superscript annotation for variables to represent their modes visually. Notice the different
order of conjuncts in the bodies of the add𝑜 relation in different modes.

let double𝑜 x𝑔→𝑔 r𝑓→𝑔 =
addo𝑜 x

𝑔→𝑔
1 x

𝑔→𝑔
2 r𝑓→𝑔 ∧

x
𝑔→𝑔
1 ≡ x

𝑔→𝑔
2

let rec add𝑜 x𝑔→𝑔 y𝑔→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ y𝑔→𝑔 ≡ z𝑓→𝑔 ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔
1 ∧

add𝑜 x
𝑔→𝑔
1 y𝑔→𝑔 z

𝑓→𝑔
1 ∧

z𝑓→𝑔 ≡ S z
𝑔→𝑔
1 )

(a) Forward direction

let double𝑜 x𝑓→𝑔 r𝑔→𝑔 =
addo𝑜 x

𝑓→𝑔
1 x

𝑓→𝑔
2 r𝑔→𝑔 ∧

x
𝑔→𝑔
1 ≡ x

𝑔→𝑔
2

let rec add𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔 =
(x𝑓→𝑔 ≡ O ∧ y𝑓→𝑔 ≡ z𝑔→𝑔 ) ∨
(z𝑓→𝑔 ≡ S z

𝑔→𝑔
1 ∧

add𝑜 x
𝑓→𝑔
1 y𝑓→𝑔 z

𝑔→𝑔
1 ∧

x𝑓→𝑔 ≡ S x
𝑔→𝑔
1 )

(b) Backward direction

Fig. 2. Normalized doubling and addition relations with mode annotations

3 FUNCTIONAL CONVERSION FOR MICROKANREN
In this section, we describe the functional conversion algorithm. The reader is encouraged to first
read the paper [9] on the topic, which introduces the conversion scheme on a series of examples.

Functional conversion is done for a relation with a concrete fixed direction. The goal is to create
a function which computes the same answers as microKanren would, not necessarily in the same
order. Since the search in microKanren is complete, both conjuncts and disjuncts can be reordered
freely: interleaving makes sure that no answers would be lost this way. Moreover, the original order
of the subgoals is often suboptimal for any direction but the one which the programmer had in
mind when they encoded the relation. When the relational conversion is used to create a relation,
the order of the subgoals only really suits the forward direction, in which the relation is often not
intended to be run (in this case, it is better to run the original function).

The mode inference results in the relational program with all variables annotated by their modes,
and all base subgoals ordered in a way that further conversion makes sense. Conversion then
produces functions in the intermediate language. It may then be pretty printed into concrete
functional programming languages, in our case Haskell and OCaml.

3.1 Mode Inference
We employ a simple version of mode analysis to order subgoals properly in the given direction.
The mode analysis makes sure that a variable is never used before it is associated with some value.

miniKanren’23
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It also ensures that once a variable becomes ground, it never becomes free, thus the value of a
variable is never lost. The mode inference pseudocode is presented in listing 1.

1 modeInfer (𝑅𝑖
(
𝑥1, . . . , 𝑥𝑘𝑖

) ≡ 𝑏𝑜𝑑𝑦 ) = (𝑅𝑖
(
𝑥1, . . . , 𝑥𝑘𝑖

) ≡ (modeInferDisj body ) )
2
3 modeInferDisj (

∨ (𝑐1, . . . , 𝑐𝑛) ) =
∨(modeInferConj 𝑐1, . . . , modeInferConj 𝑐𝑛)

4
5 modeInferConj (

∧ (𝑔1, . . . , 𝑔𝑛) ) =
6 let (picked , theRest ) = pickConjunct ( [𝑔1, . . . , 𝑔𝑛] ) in
7 let moddedPicked = modeInferBase picked in
8 let moddedConjs = modeInferConj (

∧
theRest ) in

9
∧(moddedPicked : moddedConjs )

10
11 pickConjunct goals =
12 pickGuard goals <|>
13 pickAssignment goals <|>
14 pickMatch goals <|>
15 pickCallWithGroundArguments goals <|>
16 pickUnificationGenerator goals <|>
17 pickCallGenerator goals

Listing 1. Mode inference pseudocode

Mode inference starts by initializing modes for all variables in the body of the given relation
according to the given direction. All variables that are among arguments are annotated with their
in or out modes, while all other variables get only their initial instantiations specified as 𝑓 .
Then the body of the relation is analyzed (see line 1). Since the body is normalized, it can only

be a disjunction. Each disjunct is analyzed independently (see line 3) because no data flow happens
between them.
Analyzing conjunctions involves analyzing subgoals and ordering them. Let us first consider

mode analysis of unifications and calls, and then circle back to the way we order them. Whenever a
base goal is analyzed, all variables in it have some initial instantiation, and some of them also have
some final instantiation. Mode analysis of a base goal boils down to making all final instantiations
ground.
When analyzing a unification, several situations may occur. Firstly, every variable in the uni-

fication can be ground, as in 𝑥𝑔→𝑔 ≡ 𝑂 or in 𝑦𝑔→? ≡ 𝑧𝑔→? (here ? is used to denote that a final
instantiation is not yet known). We call this case guard, since it is equivalent to checking that two
values are the same.

The second case is when one side of a unification only contains ground variables. Depending on
which side is ground, we call this either assignment or match. The former corresponds to assigning
the value to a variable, as in 𝑥 𝑓→? ≡ 𝑆 𝑥

𝑔→𝑔
1 or 𝑥𝑔→𝑔 ≡ 𝑦 𝑓→?. The latter — to pattern matching with

the variable as the scrutinee, as in 𝑥𝑔→𝑔 ≡ 𝑆 𝑥
𝑓→?
1 . Notice that we allow for some variables on the

right-hand side to be ground in matches, given that at least one of them is free.
The last case occurs when both the left-hand and right-hand sides contain free variables. This

does not translate well into functional code. Any free logic variable corresponds to the possibly
infinite number of ground values. To handle this kind of unification, we propose to use generators
which produce all possible ground values a free variable may have.

miniKanren’23
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We base our ordering strategy for conjuncts on the fact that these four different unification types
have different costs. The guards are just equality checks which are inexpensive and can reduce the
search space considerably. Assignments and matches are more involved, but they still take much
less effort than generators. Moreover, executing non-generator conjuncts first can make some of
the variables of the prospective generator ground thus avoiding generation in the end. This is the
base reasoning which is behind our ordering strategy.
The function pickConjunct selects the base goal which is least likely to blow up the search

space. The right-associative function <|> used in lines 12 through 16 is responsible for selecting
the base goals in the order described. The function first attempts to pick a base goal with its
first argument, and only if it fails, the second argument is called. As a result, pickConjunct first
picks the first guard unification it can find (pickGuard). If no guard is present, then it searches
for the first assignment (pickAssignment), and then for the match (pickMatch). If all unifica-
tions in the conjunction are generators, then we search for relation calls with some ground argu-
ments (pickCallWithGroundArguments). If there are none, then we have no choice but selecting
a generating unification (pickUnificationGenerator) and then a call with all arguments free
(pickCallGenerator).

Once one conjunct is picked, it is analyzed (see line 7). The picked conjunct may instantiate new
variables, thus this information is propagated onto the rest of the conjuncts. Then the rest of the
conjuncts is mode analyzed as a new conjunction (see line 8). If any new modes for any of the
relations are encountered, they are also mode analyzed.

It is worth noticing that any relation can generate infinitely many answers. We cannot judge the
relation to be such generator solely by its mode: for example, the addition relation in the mode
add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 generates an infinite stream, while add𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔 does not.

3.2 Conversion into Intermediate Representation
To represent nondeterminism, our functional conversion uses the basis of microKanren — the
stream data structure. A relation is converted into a function with 𝑛 arguments which returns a
stream of𝑚-tuples, where𝑛 is the number of the input arguments, and𝑚 — the number of the output
arguments of the relation. Since stream is a monad, functions can be written elegantly in Haskell
using do-notation (see figure 4). We use an intermediate representation which draws inspiration
from Haskell’s do-notation, but can then be pretty-printed into other functional languages. The
abstract syntax of our intermediate language is shown in figure 3. The conversion follows quite
naturally from the modded relation and the syntax of the intermediate representation.

F𝑉 = Sum [F𝑉 ] concatenation of streams
| Bind [( [𝑉 ] , F𝑉 )] monadic bind for streams
| Return [T𝑉 ] return of a tuple of terms
| Guard (𝑉 ,𝑉 ) equality check
| Match𝑉 (T𝑉 , F𝑉 ) match a variable against a pattern
| 𝑅𝑛 ( [𝑉 ] , [𝐺]) function call
| Gen𝐺 generator

Fig. 3. Abstract syntax of the intermediate language F

A body of a function is formed as an interleaving concatenation of streams (Sum), each of which
is constructed from one of the disjuncts of the relation. A conjunction is translated into a sequence
of bind statements (Bind): one for each of the conjuncts and a return statement (Return) in the

miniKanren’23
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end. A bind statement binds a tuple of variables (or nothing) with values taken from the stream in
the right-hand side.
A base goal is converted into a guard (Guard), match (Match), or function call, depending on

the goal’s type. Assignments are translated into binds with a single return statement on the right.
Notice, that a match only has one branch. This branch corresponds to a unification. If the scrutinee
does not match the term it is unified with, then an empty stream is returned in the catch-all branch.
If a term in the right-hand side of a unification has both out and in variables, then additional guards
are placed in the body of the branch to ensure the equality between values bound in the pattern
and the actual ground values.
Generators (Gen) are used for unifications with free variables on both sides. A generator is a

stream of possible values for the free variables, and it is used for each variable from the right-
hand side of the unification. The variable from the left-hand side of the unification is then simply
assigned the value constructed from the right-hand side. Our current implementation works with
an untyped deeply embedded microKanren, in which there is not enough information to produce
generators automatically. We decided to delegate the responsibility to provide generators to the
user: a generator for each free variable is added as an argument of the relation. When the user is to
call the function, they have to provide the suitable generators.

4 EXAMPLES
In this section, we provide some examples which demonstrate mode analysis and conversion results.

4.1 Multiplication Relation
Figure 4 shows the implementation of the multiplication relation mul𝑜 , the mode analysis result for
mode mul𝑜 x𝑓→𝑔 y𝑔→𝑔 z𝑔→𝑔 , and the results of functional conversion into Haskell and OCaml.

Note that the unification comes last in the second disjunct. This is because before the two relation
calls are done, both variables in the unification are free. Our version of mode inference puts the
relation calls before the unification, but the order of the calls depends on their order in the original
relation. There is nothing else our mode inference uses to prefer the order presented in the figure
over the opposite: mul𝑜 x𝑓→𝑔

1 y𝑔→𝑔 z
𝑓→𝑔
1 ∧ add𝑜 y𝑔→𝑔 z

𝑔→𝑔
1 z𝑔→𝑔. However, it is possible to derive

this optimal order, if determinism analysis is employed: add𝑜 y𝑔→𝑔 z
𝑓→𝑔
1 z𝑔→𝑔 is deterministic while

mul𝑜 x
𝑓→𝑔
1 y𝑔→𝑔 z

𝑓→𝑔
1 is not. Putting nondeterministic computations first makes the search space

larger, and thus should be avoided if another order is possible.
Functional conversions in both languages are similar, modulo the syntax. The Haskell version

employs do-notation, while we use let-syntax in the OCaml code. Both are syntactic sugar for
monadic computations over streams. We use the following convention to name the functions:
we add a suffix to the relation’s name whose length is the same as the number of the relation’s
arguments. The suffix consists of the letters I and O which denote whether the argument in the
corresponding position is in or out. The function msum uses the interleaving function mplus to
concatenate the list of streams constructed from disjuncts. To check conditions, we use the function
guard which fails the monadic computation if the condition does not hold. Note that even though
patterns for the variable x0 in the function addoIOI are disjunct in two branches, we do not
express them as a single pattern match. Doing so would improve readability, but it does not make a
difference when it comes to the performance, according to our evaluation.

4.2 The Mode of Addition Relation which Needs a Generator
Consider the example of the addition relation in mode add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 presented in figure 5.
The unification in the first disjunct of this relation involves two free variables. We use a generator
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Semi-Automated Direction-Driven Functional Conversion 7

let rec mul𝑜 x y z = conde [
(x ≡ O ∧ z ≡ O ) ;
( fresh (x1 z1 )

(x ≡ S x1 ∧
add𝑜 y z1 z ∧
mul𝑜 x1 y z1 ) ) ]

(a) Implementation in miniKanren

let rec mul𝑜 x𝑓→𝑔 y𝑔→𝑔 z𝑔→𝑔 =
(x𝑓→𝑔 ≡ O ∧ z𝑔→𝑔 ≡ O ) ∨
(add𝑜 y𝑔→𝑔 z

𝑓→𝑔
1 z𝑔→𝑔 ∧

mul𝑜 x
𝑓→𝑔
1 y𝑔→𝑔 z

𝑔→𝑔
1 ∧

x𝑓→𝑔 ≡ S x
𝑔→𝑔
1 )

(b) Mode inference result

muloOII x1 x2 = msum
[ do { let {x0 = O }

; guard (x2 == O )
; return x0 }

, do { x4 ← addoIOI x1 x2
; x3 ← muloOII x1 x4
; let {x0 = S x3 }
; return x0 } ]

addoIOI x0 x2 = msum
[ do { guard (x0 == O )

; let {x1 = x2 }
; return x1 }

, do { x3 ← case x0 of
{ S y3 → return y3
; _ → mzero }

; x4 ← case x2 of
{ S y4 → return y4
; _ → mzero }

; x1 ← addoIOI x3 x4
; return x1 } ]

(c) Functional conversion into Haskell

let rec muloOII x1 x2 = msum
[ ( let ∗ x0 = return O in

let ∗ _ = guard (x2 = O ) in
return x0 )

; ( let ∗ x4 = addoIOI x1 x2 in
let ∗ x3 = muloOII x1 x4 in
let ∗ x0 = return (S x3 ) in
return x0 ) ]

and addoIOI x0 x2 = msum
[ ( let ∗ _ = guard (x0 = O ) in

let ∗ x1 = return x2 in
return x1 )

; ( let ∗ x3 = match x0 with
| S y3 → return y3
| _ → mzero in

let ∗ x4 = match x2 with
| S y4 → return y4
| _ → mzero in

let ∗ x1 = addoIOI x3 x4 in
return x1 ) ]

(d) Functional conversion into OCaml

Fig. 4. Multiplication relation

gen_addoIIO_x2 to generate a stream of ground values for the variable z which is passed into the
function addIIO as an argument. It is up to the user to provide a suitable generator. One of the
possible generators which produces all Peano numbers in order and an example of its usage are
presented in figure 5b.
The generators which produce an infinite stream should be inverse eta-delayed in OCaml and

other non-lazy languages. Otherwise, the function would not terminate trying to eagerly produce
all possible ground values before using any of them.
It is possible to automatically produce generators from the data type of a variable, but it is

currently not implemented, as we work with an untyped version of microKanren.

5 EVALUATION
To evaluate our functional conversion scheme, we implemented the proposed algorithm inHaskell.
We compared execution time of several OCanren relations in different directions against their

miniKanren’23
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let rec add𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ y𝑓→𝑔 ≡ z𝑓→𝑔 ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔
1 ∧

add𝑜 x
𝑔→𝑔
1 y𝑓→𝑔 z

𝑓→𝑔
1 ∧

z𝑓→𝑔 ≡ S z
𝑔→𝑔
1 )

(a) Mode inference result

genNat = msum
[ return O
, do { x ← genNat

; return (S x ) } ]
runAddoIIO x = addoIIO x genNat

(b) Generator of Peano numbers

addoIOO x0 gen_addoIOO_x2 = msum
[ do { guard (x0 == O )

; (x1 , x2 ) ← do { x2 ← gen_addoIOO_x2 ; return (x2 , x2 ) }
; return (x1 , x2 ) }

, do { x3 ← case x0 of { S y3 → return y3 ; _ → mzero }
; (x1 , x4 ) ← addoIOO x3 gen_addoIOO_x2
; let {x2 = S x4 } ; return (x1 , x2 ) } ]

(c) Functional conversion

Fig. 5. Addition relation when only the first argument is in

functional counterparts in the OCaml language. Here we showcase two relational programs and
their conversions. The implementation of the functional conversion2 as well as the execution code3
can be found on Github.

5.1 Evaluator of Propositional Formulas
In this example, we converted a relational evaluator of propositional formulas: see figure 6. It
evaluates a propositional formula fm in the environment st to get the result u. A formula is either a
boolean literal, a numbered variable, a negation of another formula, a conjunction or a disjunction
of two formulas. Converting it in the direction when everything but the formula is in (see figure 6a),
allows one to synthesize formulas which can be evaluated to the given value. The conversion of
this relation does not involve any generators and is presented in figure 6b.

We ran an experiment to compare the execution time of the relational interpreter vs. its functional
conversion. In the experiment, we generated from 1000 to 10000 formulas which evaluate to true and
contain up to 3 variables with known values. The results are presented in figure 7. The functional
conversion improved execution time of the query about 2.5 times from 724𝑚𝑠 to 291𝑚𝑠 for retrieving
10000 formulas.

5.2 Multiplication
In this example, we converted the multiplication relation in several directions and compared them
to the relational counterparts: see figure 8. Functional conversion significantly reduced execution
time in most directions.
In the forward direction, we run the query mul𝑜 n 10 q with n in the range from 100 to 1000,

and the functional conversion was 2 orders of magnitude faster: 927𝑚𝑠 vs 9.4𝑚𝑠 for the largest n,
see figure 8a. In the direction which serves as division we run the query mul𝑜 (n /10) q n with n
ranging from 100 to 1000. Here, performance improved 3 orders of magnitude: from 24𝑠 to 0.17𝑠 for
2The repository of the functional conversion project https://github.com/kajigor/uKanren_transformations
3Evaluation code https://github.com/kajigor/miniKanren-func
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Semi-Automated Direction-Driven Functional Conversion 9

let rec eval𝑜 st𝑔→𝑔 fm𝑓→𝑔 u𝑔→𝑔 =
( fm𝑓→𝑔 ≡ Lit u𝑔→𝑔 ) ∨
( elem𝑜 z𝑓→𝑔 st𝑔→𝑔 u𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Var z𝑔→𝑔 ) ∨

( not𝑜 v𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Neg x𝑔→𝑔 ) ∨

( or𝑜 v𝑓→𝑔 w𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 y𝑓→𝑔 w𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Disj x𝑔→𝑔 y𝑔→𝑔 ) ∨

( and𝑜 v𝑓→𝑔 w𝑓→𝑔 u𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 x𝑓→𝑔 v𝑔→𝑔 ∧
eval𝑜 st𝑔→𝑔 y𝑓→𝑔 w𝑔→𝑔 ∧
fm𝑓→𝑔 ≡ Conj x𝑔→𝑔 y𝑔→𝑔 ) ∨

(a) Mode inference result

evaloIOI x0 x2 = msum
[ do { let {x1 = Lit x2 }

; return x1 }
, do { x7 ← elemoOII x0 x2

; let {x1 = Var x7 }
; return x1 }

, do { x5 ← notoOI x2
; x3 ← evaloIOI x0 x5
; let {x1 = Neg x3 }
; return x1 }

, do { (x5 , x6 ) ← oroOOI x2
; x3 ← evaloIOI x0 x5
; x4 ← evaloIOI x0 x6
; let {x1 = Disj x3 x4 }
; return x1 }

, do { (x5 , x6 ) ← andoOOI x2
; x3 ← evaloIOI x0 x5
; x4 ← evaloIOI x0 x6
; let {x1 = Conj x3 x4 }
; return x1 } ]

(b) Functional conversion

Fig. 6. Evaluator of propositional formulas
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Fig. 7. Execution time of the evaluators of propositional formulas, eval [ true ; false ; true ] q true

the largest n, see figure 8b. Even more impressive was the backward direction mul𝑜 x𝑓→𝑔 y𝑓→𝑔 z𝑔→𝑔 .
Querying for all 16 pairs of divisors of 1000 (mul𝑜 q r 1000) took OCanren about 32.9𝑠 , while the
functional conversion succeeded in 1.1𝑠 .

What was surprising was the mode mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 . In this case, the functional conversion
was not only worse than its relational counterpart, its performance degraded exponentially with
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(a) Multiplication: mulo n 10 q
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(b) Division: mulo (n /10) q n
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(c) Generation: take n (mulo 10 q r )

let rec mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ z𝑓→𝑔 ≡ O ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔
1 ∧

add𝑜 y𝑓→𝑔 z
𝑓→𝑔
1 z𝑓→𝑔 ∧

mul𝑜 x
𝑔→𝑔
1 y𝑔→𝑔 z

𝑔→𝑔
1 )

(d) Inefficient mode

let rec mul𝑜 x𝑔→𝑔 y𝑓→𝑔 z𝑓→𝑔 =
(x𝑔→𝑔 ≡ O ∧ z𝑓→𝑔 ≡ O ) ∨
(x𝑔→𝑔 ≡ S x

𝑓→𝑔
1 ) ∧

mul𝑜 x
𝑔→𝑔
1 y𝑓→𝑔 z

𝑓→𝑔
1 ∧

add𝑜 y𝑔→𝑔 z
𝑔→𝑔
1 z𝑓→𝑔 )

(e) Efficient mode

Fig. 8. Execution times of the multiplication relation

the number of answers asked. It took almost 1450𝑚𝑠 to find the first 7 pairs of numbers q and r
such that 10 ∗ q = r, while OCanren was able to execute the query in 0.74𝑚𝑠 (see figure 8c). The
source of this terrible behavior was the suboptimal order of the calls in the second disjunct of the
mul𝑜 relation in the corresponding mode (see figure 8d). In this case, the call add𝑜 y𝑓→𝑔 z

𝑓→𝑔
1 z𝑓→𝑔

is put first, which generates all possible triples in the addition relation before filtering them by the
call mul𝑜 x𝑔→𝑔

1 y𝑔→𝑔 z
𝑔→𝑔
1 . The other order of calls is much better (see figure 8e): it is an order of

magnitude faster than its relational source. To achieve the better of these two orders automatically,
we delay picking any call with all arguments free. It is not clear if these heuristics are universal.
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Semi-Automated Direction-Driven Functional Conversion 11

5.3 Deterministic Directions
Running in some directions, relations produce deterministic results. For example, any forward
direction of a relation created by the relational conversion produces a single result, since it mimics
the original function. The guard directions are semi-deterministic: they may fail, but if they succeed,
they produce a single unit value. If the addition relation is run with one of the first two arguments
out, it acts as subtraction and is also deterministic.
For such directions, there is no need to model nondeterminism with the Stream monad. Semi-

determinism can be expressed with a Maybe monad, while deterministic directions can be converted
into simple functions. Our implementation of functional conversion only restricts the computations
to be monadic, it does not specify which monad to use. By picking other monads, we can achieve
performance improvement. For example, using Maybe for division reduces its execution time 30
times in addition to the 2 orders of magnitude improvement from the functional conversion itself:
see figure 9
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Fig. 9. Execution time of division: take n (mul q 10 1000)

6 DISCUSSION
Our experiments indicated that the functional conversion is capable of improving performance
of relational computations significantly in the known directions. The improvement stems from
eliminating costly unifications in favor of the cheaper equality checks and pattern matches. Besides
this, we employed some heuristics which push lower-cost computations to happen sooner while
delaying higher-cost ones. It is also possible to take into account determinism of some directions
and improve performance of them even more by picking an appropriate monad.

It is not currently clear if the heuristics we used are universal enough. However, it is always safe
to run any deterministic computations because they never increase the search space. We believe
that it is necessary to integrate determinism check in the mode analysis so that the more efficient
modes such as the one presented in figure 8e could be achieved more justifiably.
We also think that further integration with specialization techniques such as partial deduction

may benefit the conversion even more [8]. For example, the third argument of the propositional
evaluator can be either true or false . Specializing the evaluator for these two values may help to
shave off even more time.
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12 Verbitskaia, Engel, Berezun

7 CONCLUSION AND FUTUREWORK
In this paper, we described a semi-automatic functional conversion of a microKanren relation with
a fixed direction into a functional language. We implemented the proposed conversion and applied
it to a set of relations, resulting in significant performance enhancement, as demonstrated in our
evaluation. As part of the future work, we plan to augment the mode analysis with a determinism
check. We also plan to integrate the functional conversion with specialization techniques such as
partial deduction.
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Stable Model Semantics Extension of miniKanren
XIANGYU GUO, JAMES SMITH, and AJAY BANSAL, Arizona State University, USA

This paper presents a miniKanren extension with negation support under stable model semantics called sta-
bleKanren. By utilizingmacros and continuations in the functional programming language Scheme, miniKanren
shows an innovative approach to achieving resolution and unification, the essence of Prolog. Also, miniKanren
is designed to be easily modified and extended with new features. Extending miniKanren with negation that
enables non-monotonic reasoning (NMR) becomes an intriguing topic. We choose stable model semantics as
the underlying semantics since it is well-defined and has gained popularity in logic programming. Moreover,
implementing a solver with stable model semantics is a challenging task due to the NP-hard nature of the
problem. The logic programming community has shifted from top-down resolution and unification to the
bottom-up grounding and constraint-propagation approach because of the uneasy modification to the under-
lying resolution and unification algorithms. We design our algorithms to evolve resolution and unification
that requires dynamic code modification and generation. With direct access to resolution and unification in
miniKanren and easy code generation in functional programming, we have implemented our stable model
solving algorithms using these features.

CCS Concepts: • Software and its engineering→ Functional languages; • Computing methodologies→
Logic programming and answer set programming.

Additional Key Words and Phrases: logic programming, miniKanren, stable model semantics

1 INTRODUCTION
In the 1960s, John McCarthy, one of the first to propose a declarative programming paradigm in
computer science, proposed that the most natural language for specifying problems and solutions
would be logic and, in particular, predicate logic [21]. Logic programming turns a unidirectional
function into a bidirectional relation so that an expression can produce more than one result. Prolog
is an example language in this paradigm that combines a relational vision of programming with a
symbolic pattern matching mechanism named unification (definition 2.19). Over time, many logic
programming solvers were developed supporting the classical Prolog style as the input syntax
format [16], [17]. However, researchers from the functional programming community believed that
logic programming should be incorporated into the functional programming syntax instead of a
new Prolog-based syntax so that the user can quickly adapt to this new paradigm. In the 1980s, John
Alan Robinson, the inventor of the resolution (definition 2.16) algorithm, developed LOGLISP as an
alternative to Prolog but using LISP syntax [25]. Later, Daniel Friedman et al. built miniKanren, a
system that focuses on pure relation and finite failure [8], [9]. MiniKanren replicated the essence
of Prolog using macros to create a static search stream connected through continuations. The
resolution and unification were an elegant solution to monotonic reasoning, and the declarative
semantics underneath monotonic reasoning is the minimal Herbrand model semantics [28].
In the 1980s, the emergence of negation in normal logic programs (definition 2.4) leads to the

non-monotonic reasoning (NMR). Van Emden et al. showed a normal program of the winning
position in a two-person game is defined as there is a move that will make it so the opponent
has no move [27]. For such a program, good semantics should be a generalization of the minimal
Herbrand model semantics in a simple way. Many logic programming researchers were trying to
define proper semantics for negation in normal logic programs. Michael Gelfond and Vladimir
Lifschitz proposed well-defined and widely accepted stable model semantics (definition 2.15) as
a generalization of minimal model semantics [14]. The stable model semantics give more power
to logic programming so that we can do non-monotonic reasoning, and a new paradigm named

Authors’ address: Xiangyu Guo, Xiangyu.Guo@asu.edu; James Smith, jsmit106@asu.edu; Ajay Bansal, Ajay.Bansal@asu.edu,
Arizona State University, 699 S Mill Ave, Tempe, Arizona, USA, 85281.
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answer set programming (ASP) emerged. Many applications have been generated since then, like
nurse scheduling problems [7], modeling living systems [13], train table arrangement [1], and
various other hybrid problem-solving approaches [18]. Recently, we have seen there is interest in
having negation in miniKanren to increase its expressiveness of solving more problems. William
Byrd et al. developed mediKanren for biomedical reasoning [4]. Adding negation to miniKanren
will allow mediKanren to have the non-monotonic reasoning ability to handle the contradiction in
the knowledge graph. Evgenii Moiseenko’s constructive negation [23] can solve stratified negation,
but not non-stratified negation under stable model semantics.
In the late 1990s, the difficulty in solving the NMR program drove the logic programming

community to turn away from top-down resolution and unification and embrace the bottom-up
grounding and constraint-propagation approach. There were some who started to believe that
a “fully top-down” solving procedure would be impossible even in the propositional case since,
for some programs, the truth of a literal w.r.t. stable model semantics cannot be decided when
considering only the atom dependency graph below it [2]. Moreover, some researchers pointed out
that ASP and the underlying stable model semantics lacked a relevance property; the truth value of
an atom can depend on other, totally unrelated rules and atoms [6]. Later, in 2017, Kyle Marple
et al. developed s(ASP), a top-down solver that tried to supplement the missing information of
the input program dependency graph during compilation time [20]. However, our recent research
discovered that solving such an NMR program using resolution and unification requires a dynamic
search stream created at the runtime. Also, miniKanren made it easy to modify the resolution and
unification in an accessible way, and we realized that functional programming is well-suited to
achieve our goal.
As we can see, the advantage of stable model semantics is valuable; solving normal logic pro-

grams in a top-down manner is feasible, and miniKanren is also a top-down solver that can be
modified easily. In this paper, we present stableKanren, a stable model semantics extension to the
miniKanren system that combines the top-down normal logic program solving idea with func-
tional programming. We also realize that some constructs of the functional programming language
Scheme, like macros and continuations, can help solve normal logic programs. MiniKanren uses
macros to create a static search stream connected through continuations in monotonic reasoning.
Our stableKanren is going further with macros and continuations to create a dynamic search stream
in non-monotonic reasoning. We believe our solver can benefit both communities in the sense that
it brings stable model semantics to miniKanren, and it shows the advantages of using functional
language to implement normal program solver to logic programming.

2 BACKGROUND AND RELATEDWORK
In this section, we present the background concepts and some related work that has been done.
We introduce some background information on functional programming (FP) and miniKanren,
logic programming (LP) and stable model semantics. We then walk through the two different
stable model solving solutions developed by the LP community, namely the top-down versus the
bottom-up, and eventually, we show some connections between miniKanren and LP.

2.1 Functional programming and miniKanren
We have seen many benefits from using FP over the years. Firstly, doing meta-programming through
macros makes the code look simple and concise. Secondly, using immutable variables leads to fewer
side-effects, hence easier to test, and fewer bugs. Thirdly, even though a pure function may look
simple, it can be easily combined with other functions to create complex features.

MiniKanren is a system that shows a way to build features of logic programming atop a functional
programming language [3]. The original implementation was hosted on Scheme [10]. The core
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implementation introduced only a few operators: “==” for unification, “fresh” for existential, “conde”
for disjunction, and a “run” interface. Unlike Prolog, miniKanren uses a complete interleaving
search strategy on a stream to simulate backtracking [30]. Also, the interleaved stream resolved
the issue that the sequence of substitutions may be infinite to guarantee fairness when producing
the result [8].
MiniKanren uses a special syntax notation, 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@, to represent an internal goal definition

function that maps a substitution 𝑆 to an ordered sequence of zero or more substitutions. In this
way, we enforced the contract (signature) among all goal functions. For the reader using non-
Scheme-based miniKanren implementation, find the corresponding 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ similar to listing 1
in your project, as our algorithms are relying on it heavily.

Listing 1. A macro to define goal function’s internal continuation

(define -syntax lambdag@

(syntax -rules (:) ((_ (S) e ...) (lambda (S) e ...))))

The 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ is a simple macro definition that transforms “lambdag@” to “lambda” so that the
Scheme runtime can define an anonymous lambda expression.

2.2 Logic programming and stable model semantics
Llyod presented the definition for definite program and normal program [19].

Definition 2.1 (definite program clause). A definite program clause is a clause of the form,
𝐴← 𝐵1, · · · , 𝐵𝑛

where 𝐴, 𝐵1, . . . , 𝐵𝑛 are atoms.

A definite program clause contains precisely one atom A in its consequent. 𝐴 is called the head
and 𝐵1, . . . , 𝐵𝑛 is called the body of the program clause.

Definition 2.2 (definite program). A definite program is a finite set of definite program clauses.

Based on the definite program clause’s definition, Llyod defines the normal program clause and
normal program.

Definition 2.3 (normal program clause). For a normal program clause, the body of a program
clause is a conjunction of literals instead of atoms,

𝐴← 𝐵1, · · · , 𝐵𝑛, 𝑛𝑜𝑡 𝐵𝑛+1, · · · , 𝑛𝑜𝑡 𝐵𝑚
Definition 2.4 (normal program). A normal program is a finite set of normal program clauses.

Just like a function in functional programming can have variables, similarly in logic programming,
we can add variables to each atom. Therefore, we have two types of variables in logic programming,
head variable and body variable.

Definition 2.5 (head variable). A head variable is a variable that shows up in both the clause’s
head and body.

Definition 2.6 (body variable). A body variable is a variable that shows up only in the clause’s
body.

We use quantifiers like ∃ and ∀ over variables in logic programming so that each free variable can
be grounded to a value. Furthermore, we can define two types of logic rules (statements, clauses),
propositional rule and predicate rule.
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Definition 2.7 (propositional rule). A propositional logic rule is a rule without any free variables
in it, and it can be evaluated to get a truth value directly.

Definition 2.8 (predicate rule). A predicate logic rule is a rule with free variables and quantifiers
in it, and it needs to quantify its variables before evaluating a truth value.

Definition 2.9 (grounding). Grounding is a process of assigning free variables with a value. Doing
so turns a predicate rule into a propositional rule.

According to Allen Van Gelder et al., there are sets of atoms named unfounded sets in a normal
program that can help us categorize the normal programs [29].

Definition 2.10 (unfounded set). Given a normal program, the atoms inside the unfounded set are
only cyclically supporting each other, forming a loop.

Considering the combinations of negations and unfounded sets (loops) in normal programs, we
have informal definitions of tight program and stratified program.

Definition 2.11 (tight program). Given a normal program, it is tight if there is no unfounded set
(loop) in the program.

Definition 2.12 (stratified program). Given a normal program, it is stratified if all unfounded sets
(loops) do not contain any negation.

Over the years, a few important semantics have been invented to tackle negation literals in
normal programs, like closed world assumption (CWA) [24], negation as failure (NAF) [5], and
well-founded semantics [29].

Definition 2.13 (closed world assumption). Given a logic program, an atom that is not currently
known to be true is false.

Definition 2.14 (negation as failure). Given a normal program, 𝑛𝑜𝑡 𝐵 succeeds iff 𝐵 fails.

Clark’s NAF and Clark’s completion were an attempt at tight programs. The well-founded
semantics by Allen Van Gelder et al. was for a non-tight but stratified program. Eventually, the
stable model semantics by Michael Gelfond and Vladimir Lifschitz [14] can be seen as an attempt to
generalize the semantics for non-stratified programs. Miroslaw Truszczynski [26] introduces an
alternative reduct to the original definition.
Unlike the original definition that deletes rules during the reduct computation, the alternative

reduct leaves rule heads intact and only reduces rule bodies. This feature suits our needs, hence,
we are using the alternative reduct to describe the declarative semantics of stable model semantics
in three steps.

Definition 2.15 (stable model semantics). Given an input program 𝑃 , the first step is getting a
propositional image of 𝑃 . A propositional image Π is obtained from grounding each variable in 𝑃 .
The second step is enumerating all interpretations 𝐼 of Π. For a Π that has 𝑁 atoms, we will have
2𝑁 interpretations. The third step is using each model 𝑀 from 𝐼 to create a reduct program Π𝑀

and verify𝑀 is the minimal model of Π𝑀 . To create a reduct program, we are replacing a negative
literal ¬𝐵𝑖 in the rule with ⊥ if 𝐵𝑖 ∈ 𝑀 ; otherwise, we are replacing it with ⊤. Once completed, Π𝑀

is negation-free and has a unique minimal model𝑀 ′. If𝑀 = 𝑀 ′, we say𝑀 is a stable model of 𝑃 .

For example, consider the program 𝑃

𝑝 (1, 2).
𝑞(𝑥) ← 𝑝 (𝑥,𝑦),¬𝑞(𝑦) .
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The domain of 𝑥,𝑦 is {1}𝑎𝑛𝑑{2} respectively. Let Π be 𝑃 with the second rule replaced by its
ground instance:

𝑞(1) ← 𝑝 (1, 2),¬𝑞(2) .
Let𝑀 = {𝑞(2)}. Then Π𝑀 is

𝑝 (1, 2).
𝑞(1) ← 𝑝 (1, 2),⊥.

The minimal Herbrand model𝑀 ′ of this program is {𝑝 (1, 2)}. It is different from𝑀 , so that𝑀 is
not a stable model of 𝑃 . Now let us try𝑀 = {𝑝 (1, 2), 𝑞(1)}. In this case Π𝑀 is

𝑝 (1, 2).
𝑞(1) ← 𝑝 (1, 2),⊤.

The minimal Herbrand model𝑀 ′ is the same as𝑀 , hence {𝑝 (1, 2), 𝑞(1)} is a stable model of 𝑃 .

2.3 Two approaches to solve logic programs
Over the years, there have been two approaches to solving a logic program namely top-down and
bottom-up. A top-down solver, such as Prolog and miniKanren, uses resolution and unification to
obtain a model of the input program. We define resolution, goal’s signature, resolution loop, and
unification in normal programs as follows.

Definition 2.16 (resolution). Resolution is selecting a sub-goal “g” that can be proven true. The
resolution starts from the goal in the query and expands the call frame stack (CFS) by selecting a
clause that the head of the clause unifies with the goal and recursively expands the sub-goals in
the body of the clause.

Definition 2.17 (goal’s signature). A goal’s signature consists of the goal’s name and parameters
bounded to the values. If the parameter has no bounded value, we use the parameter name as part
of the signature.

Definition 2.18 (resolution loop). Resolution records a goal’s signature on the call frame stack
(CFS) during recursive goal expansions. If a goal expansion sees itself, the same signature, on the
CFS, we have a resolution loop (which we refer to as a loop from now on) starting at the current
goal.

Definition 2.19 (naive unification). In top-down solving, the truth value of a positive goal is
determined by the unification outcome. If the unification successfully returned, it is equivalent to
assigning true to the goal, and vice versa. Additionally, the return substitutions set is extended by
the goal function if any unbounded variable is bounded through unification.

We categorize the roles of resolution and unification played during top-down solving as we are
going to extend these roles in our research.

Definition 2.20 (roles of resolution). Resolution has only one role, selecting a goal, assuming that
goal is true to produce a minimal model eventually.

Definition 2.21 (roles of unification). Unification plays two roles, the first role is to assign a truth
value to a goal, and the second role is to assign a value to a variable.

In the late 1990s, the LP community moved on to consider relational programming based on
techniques other than simple resolution and unification, such as the ability to deal with numerical
constraints, and those techniques are widely used in constraint-propagation systems. Many SAT
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solvers adopted the constraint-propagation approach and achieved significant improvements in
the early 2000s. In 2007, inspired by the Conflict Driven Clause Learning algorithm in SAT solver,
Gebser et al. presented Conflict Driven Nogood Learning (CDNL) for Answer Set solving [12], and
enumeration [11]. A bottom-up solver like Clingo, uses grounding (definition 2.9) and constraint
propagation to obtain a model of the input program. CDNL introduces the concept of loop nogoods
to resolve unfounded sets (definition 2.10), but as there are exponentially many, these loop nogoods
are only computed on-the-fly. However, the grounding stage leaves a heavy memory footprint
becoming a big issue when applying the bottom-up solver to a large-scale problem.
To keep the advantage of top-down solving without dealing with the heavy memory footprint

caused by the grounding. Gopal Gupta et al. introduced conductive logic (co-LP) and co-SLD
resolution, co-SLD produces the greatest fixed point of a program [15]. Later Richard Min et al.
evolved co-SLD to co-SLDNF to achieve normal program solving [22]. However, we believe that
sticking with the least fixed point of SLD resolution is closer to stable model semantics and the
transition is simpler. Therefore, in contrast to co-SLD and co-SLDNF, our algorithm still produces
the least fixed points as the original resolution and focuses on adding stable model semantics under
the finite Herbrand model.
Our approach attempts to solve normal programs using top-down resolution and unification

with a dynamic search stream created at runtime so that we can balance the memory usage and
solving time.

2.4 Connection between logic programming and miniKanren
In this section, we establish a connection between logic programming and miniKanren that shows
how unification works in propositional logic and predicate logic. Moreover, we show how miniKan-
ren handles CWA differently than Clingo under propositional and predicate scenarios. Furthermore,
we explain the advantages and challenges variables brought to us and why we want to isolate
variables as a starting point to build our solver. Eventually, we compare and contrast the existing
attempts of the negation extension that has been built over the years.
Let us start with zero arity of variables. From the definition of propositional logic (definition

2.7), we know that there are no variables in propositional rules. Also, we know that unification
usually has two roles in top-down solving (2.21), but under propositional logic, we only use one
role of unification, which is producing a truth value. This can be verified by the logic ⊤ and ⊥
representation in miniKanren (listing 2)

Listing 2. Logic ⊤ and ⊥ in miniKanren

(define succeed (== #f #f))

(define fail (== #f #t))

The two roles of unification are coming from the extended substitution set (S), assigned a value to
a variable, via continuation on 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ and the return value, produced a truth value to a goal, of
𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ (listing 1). In propositional logic, we give the unification two values instead of a variable
and a value; hence, we are using it to produce the truth value of a logical goal only. We generalize
the example to represent a propositional logic in miniKanren, we use a nullary goal function.
Let us recall a few examples of the closed world assumption (CWA) using propositional logic.

Consider the following logic program,
p :- q.

Clingo returns p, q is false, or ∅ as a result. The program’s miniKanren counterpart is as follows,
(define (p) (q))
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However, this program cannot produce a result in miniKanren. To run this program in miniKanren,
the user has to explicitly state the CWA rules q :- false. in miniKanren.

(define (q) fail)

With the complete program,
(define (p) (q))

(define (q) fail)

miniKanren is able to produce the expected result.
In predicate logic, we give the unification of one variable and one value; hence, we are using

it to perform two roles, unify a variable with a value and produce the truth value of a logic goal.
We generalize the example to represent a predicate logic in miniKanren, we use a non-nullary
goal function. Similarly, if a predicate is not showing in any rule’s header, we need to define CWA
specifically as well. An example logic program,

p(X) :- q(X).

will have its miniKanren counterpart as follows,
(define (p x) (a x))

(define (a x) fail)

Since in this case, we are not using unification to unify our variable with any value, it is essentially
the same as propositional logic. In contrast, the CWA is implicitly handled by miniKanren if a
predicate is in the rule’s header, but the value is not. The example logic program,

p(X) :- a(X).

a(X) :- X=1..2.

has the same representation in miniKanren,
(define (p x) (a x)

(define (a x) (conde [(== x 1)] [(== x 2)]))

The user does not need to supplement any rules for CWA. A query like “(run 1 (q) (p 4)” gives us
“()”.

As we can see, variables and quantifiers drastically increase the expressiveness so that the user
gets rid of writing CWA goals explicitly unless the goal does not show up in any rule’s header.
However, variables and quantifiers also increase the solving difficulty. Hence we tend to leave out
variables first and add them back later. That is also why stable model semantics (definition 2.15,
step 1) and bottom-up solving approach (section 2.3) prefer to create a propositional image from
predicate rules through grounding (definition 2.9).

For instance, let us ground the previous predicate program into a propositional image in miniKan-
ren. The idea is simple, we simply concatenate the predicate name with the variable name and the
value it can take to get a new predicate name without any variables. The grounded logic program,

pX1 :- aX1. pX2 :- aX2.

aX1. aX2.

has the same grounded representation in miniKanren,
(define (px1) (ax1)) (define (px2) (ax2))

(define (ax1) succeed) (define (ax2) succeed)
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It easily shows the drawback of grounding which leaves a heavy memory footprint.
To the best of our knowledge, only a few attempts have been made to add negation to miniKanren.

The constructive negation introduced by Evgenii Moiseenko built upon universally quantified
disequality constraints only works for the stratified normal program [23]. Also, the semantics of
negation is more like a filter, where the solver executes the goal inside the negation, then gets
a differential set between the atoms before and after the negated goal, and eventually subtracts
the differential set from the original set. Their semantics do not handle the non-stratified normal
program like the stable model semantics we used in stableKanren. Regarding the input program
being not fully declarative, Moiseenko presented an example where the negation operator applies
to an unbounded free variable;

(run 1 (q) (noto (== q 1)) (== q 0))

We consider such an unbounded variable unsafe (definition 3.2), but can be resolved by compilation
time rewriting (through a macro) so that the rule follows the desired format (definition 2.3);

(run 1 (q) (== q 0) (noto (== q 1)))

Hence the variable is bounded and safe to use. If such an unsafe variable is a body variable quantified
by 𝑓 𝑟𝑒𝑠ℎ, stable model semantics consider the variable should be groundable. Whether finite or
infinite, each variable should be able to get a set of values under a positive goal. Therefore, the
forall operator has a domain that it can iterate through. Our transformation in section 3.5 covered
such cases.

We believe that we could give the negation a more widely accepted semantics by integrating the
stable model semantics based on miniKanren. So that we can produce an answer for a problem like
the two-person game [27], [23] in section 3.10.

3 OUR APPROACH ANDMETHODOLOGY
In this section, we present our system, stableKanren 1, which extends miniKanren with stable
model semantics. Instead of describing in pseudo-code, we present our algorithms in Scheme [10]
so that the reader can verify the implementations directly in Scheme2. We build our solver on top
of the core miniKanren3. The core miniKanren only integrates the essence of Prolog [9], and our
extension adds negation support under stable model semantics.

From stable model semantics (definition 2.15), we derive the following relationship between the
stable model of Π and the minimal model of the reduct Π𝑀 .

Definition 3.1 (stable model property). Let Π be a propositional program and𝑀 be an interpreta-
tion.𝑀 is a stable model of Π if𝑀 is the minimal model of the reduct Π𝑀 .

Stable model semantics consider a minimal model of the corresponding reduct program to be
one of the program’s stable models; therefore, we build our solver to find a minimal model and
the reduct program simultaneously. The underlying resolution process guarantees to produce a
minimal model as long as the input program can be handled. The key idea of the reduct (in stable
model semantics) and our algorithms is the negative goals work as a checker or remover while the
positive goals work as a generator as usual. In step 3 of the stable model semantics (definition 2.15),
the reduct created from the interpretation removes the loop and the negation completely so that the
program can be handled by using traditional Prolog to produce the minimal model ([14], Remark
2). Then the interpretation needs to be verified that it is the minimal model of the reduct program.
1https://github.com/stable-Kanren/stable-Kanren
2https://github.com/cisco/ChezScheme
3https://github.com/miniKanren/simple-miniKanren
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Unlike the bottom-up grounding and constraint-propagation approach, where the negations are
ignored until the truth value propagation phase; we dealt with negation as soon as we encounter
one. Therefore, we want to make sure the variable is safe (definition 3.2) before the negative goal.
Definition 3.2 (variable safety). The positive goals always ground all variables before calling any
negative goals; otherwise, the variable is unsafe to use in negative goals.

In this paper, our algorithms focus on the normal program clause and its stableKanren counterpart
as defined in definition 2.3. We assume all input logic programs and their stableKanren equivalent
are normal programs as defined in definition 2.4, and so from now on, we refer to normal programs
and normal program clauses as simply programs and clauses. Following the input format guarantees
the variables are safe in the negative goals for most cases. There are some measures to ensure the
variable safeness, but we leave them as future work and we assume the variables are safe in this
paper.
We have overcome a few challenges to solve normal programs, and we present them here.

Originally, resolution has only one role (definition 2.20) and unification plays two roles (definition
2.21). A positive goal is proven to be true iff all of its variables are successfully unified, and a
positive goal is grounded iff all of its variables are unified with a value. To get a stable model, we
would like to have our algorithm grant more roles to resolution and unification. Both resolution and
unification require changes to support the loop and negation introduced by the normal program.
We are showing the changes we made in the following sections. For resolution, it has four more
roles, distributing negation to the unification level (section 3.3, 3.5), producing truth value for
the loop (section 3.7), getting the domain of a variable (section 3.6), and continuing execution
after getting a partial result (section 3.9). For unification, it has to produce the truth value for
negated unification (section 3.2). Any non-functional language can implement our algorithm, but
the reader will see that our approach of utilizing macros and continuations is not only concise
but it is also easy to understand, extend, and experiment with different optimization algorithms
in the future. Those functional programming traits provide great aids in tackling the challenges
mainly from dynamic features after introducing negation to predicate logic, like complementing
rules (section 3.3, 3.5), obtaining fresh variables domain (section 3.6), iterating all values (section
3.6), and handling non-monotonic results (section 3.8). More challenges remain unsolved and we
will discuss them in the future work section.

To support solving negative goals, we introduced a set of new macros noto, defineo, 𝑐𝑜𝑛𝑑𝑒 , 𝑓 𝑟𝑒𝑠ℎ,
𝑐𝑜𝑛𝑑𝑒𝑡 , and 𝑓 𝑟𝑒𝑠ℎ𝑡 , etc. Some macros like defineo, 𝑐𝑜𝑛𝑑𝑒𝑡 , and 𝑓 𝑟𝑒𝑠ℎ𝑡 are not completed in one
section and will get expanded in later sections.

3.1 Meeting with new friends
Before we jump into our macros and algorithms, let us make some fundamental changes to the
internal continuation of 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ (listing 1) and introduce the negation operator. We need two
auxiliary variables along with the substitution in 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ to help us solve normal programs; a
negation counter (n) and a call stack frame (cfs).
Definition 3.3 (negation counter). A negation counter records how many negations we have
encountered during the resolution so far, where an even number means a positive goal and an odd
number means a negative goal.
Definition 3.4 (call stack frame). A call stack frame (CFS) records the goal functions we have
invoked during the resolution so far, so the starting goal is at the bottom of CFS and the current
goal is at the top of CFS.

We place the new n and cfs to the internal continuation of 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ in listing 3.
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Listing 3. Extended lambdag@ with n and cfs

(define-syntax lambdag@

(syntax-rules (:) ((_ (n cfs S) e ...) (lambda (n cfs S) e ...))))

To represent the negation operator, we add one new macro, 𝑛𝑜𝑡𝑜 (listing 4), which we picked
because 𝑛𝑜𝑡 is already taken as a Scheme keyword.

Listing 4. New macro noto

(define-syntax noto

(syntax-rules ()

((noto (name params ...))

(lambdag@ (n cfs S) ((name params ...) (+ 1 n) cfs S)))))

The 𝑛𝑜𝑡𝑜 operator simply increases the negation counter, 𝑛, by one as shown above, then passes
the new 𝑛 to the next continuation. We also need to modify the rest of the goal functions in the
system, including 𝑟𝑢𝑛, ==, 𝑓 𝑟𝑒𝑠ℎ, 𝑐𝑜𝑛𝑑𝑒 , 𝑏𝑖𝑛𝑑 , and 𝑏𝑖𝑛𝑑∗. Mainly for the goal functions defined by
𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ or calling the goal function, we need to add a negation counter and a cfs to meet the
contract between continuations.

Listing 5. Unification with updated lambdag@

(define (== u v)

(lambdag@ (n cfs s)

(cond [(unify u v s) => (lambda (s+) (unit s+))]

[else (mzero )])))

3.2 Upside down
As we have mentioned originally, unification has two roles (definition 2.21) and we have shown
that before negation the variables are bounded already, therefore unification only assigns truth
value to a negative goal. Also, for resolution, we want to retain its nice property of producing a
minimal model. Hence, we reuse the existing resolution process to prove the negative goal “not
g” is true. We deal with the base case first, where negation directly applies to the unification, and
we will discuss how to distribute the negation from a higher-level goal to this base case through
resolution in section 3.3.

We modify the naive unification (definition 2.19) to produce a truth value under negation. If the
negation directly applies to naive unification, the truth value is determined by the opposite of the
naive unification outcome. We added a negation counter to lambdag@ (listing 3) to allow the goal
function to handle both positive and negative goals. So our algorithm only modifies the unification
(listing 5) outcome to the negated unification (listing 6).

Listing 6. Negated unification

(define (== u v)

(lambdag@ (n cfs s)

(if (even? n)

(cond [(unify u v s) => (lambda (s+) (unit s+))]

[else (mzero )])

(cond [(unify u v s) => (lambda (s+) (mzero ))]

[else (unit s)]))))
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In this modified unification, under the negation branch, a failed unification becomes successful
returning an unextended substitution set, and a successful unification fails by terminating the
search stream. Furthermore, we can introduce the inequality constraint for the failed unification,
so the unbounded variable will have a list of values it cannot be bound with. We are leaving this
inequality constraint as future work. When negation does not apply to unification directly, we need
to design an algorithm (macro) to distribute it down through the resolution.

3.3 Down to the base
From the resolution (definition 2.16), we know that it is always trying to prove a goal to be true.
We decided to reuse the existing resolution process to prove negative goal “not g” is true and we
showed one part of the semantics can be achieved by modifying the unification process to negated
unification as a base case in section 3.2. The inductive case has to be handled by resolution in this
section. As long as the resolution can distribute the negation to the base case (unification level), we
complement a normal program into a format that can be handled by resolution.

From definition 2.4, we know that a goal “g” could match with multiple statements’ (rules) heads,
and if any of those statements’ bodies can be proven to be true, then “g” is also proven to be true. So
we use disjunction (𝑐𝑜𝑛𝑑𝑒) to connect different rule’s bodies under the same rule’s head, and each
rule’s body is a conjunction of literals. Hence, a goal function’s body is in Disjunctive Normal Form
(DNF), and in our stableKanren representation, each positive goal function has at most one 𝑐𝑜𝑛𝑑𝑒
operator inside. We complement the propositional rule’s body first, as it is simpler to deal with.
We will expand our transformer to support predicate rules in section 3.5. The following example
program “p” is written in stableKanren;

Listing 7. A goal function with DNF body

(define (p) (conde [(q) (r)] [(s) (t)]))

For propositional rules, DeMorgan’s law is sufficient to distribute the negation to the unification
level. After the conversion, the complemented goal function’s body is in Conjunctive Normal Form
(CNF). So, our stableKanren representation is a conjunction of multiple 𝑐𝑜𝑛𝑑𝑒s with negation
distributed to each atom.

Listing 8. A complemented goal function with CNF body

(define (not -p)

(conde [(noto (q))] [(noto (r))])

(conde [(noto (s))] [(noto (t))]))

We use two macros, 𝑐𝑜𝑛𝑑𝑒 (listing 9) and 𝑐𝑜𝑛𝑑𝑒𝑡 (listing 10), to implicitly create the complement
process we described.

Listing 9. New macro complement-conde

(define-syntax complement-conde

(syntax-rules (conde)

((_ (conde (g0 g ...) (g1 g^ ...) ...))

(conde-t (g0 g ...) (g1 g^ ...) ...))

((_ (g0 g ...))

(conde-t (g0 g ...)))))
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The macro 𝑐𝑜𝑛𝑑𝑒 replaces each 𝑐𝑜𝑛𝑑𝑒 in the clause with the 𝑐𝑜𝑛𝑑𝑒𝑡 . If there is no 𝑐𝑜𝑛𝑑𝑒 in the
clause, but only a conjunction of sub-goals, then we are treating this as a special case of the 𝑐𝑜𝑛𝑑𝑒
(still a DNF), and the 𝑐𝑜𝑛𝑑𝑒 simply adds one 𝑐𝑜𝑛𝑑𝑒𝑡 to it.

Listing 10. New macro conde-t

(define-syntax conde-t

(syntax-rules ()

((_ (g0 g ...) (g1 g^ ...) ...)

(fresh () (conde [g0] [g] ...)

(conde [g1] [g^] ...) ...))))

The macro 𝑐𝑜𝑛𝑑𝑒𝑡 complements all clauses in the body from DNF to CNF. Notice here, unlike the
“not-p” example we showed in listing 8, there is no ‘noto’ operator in our macro template. The
reason is we are wrapping “p” and “not-p” as one goal function in section 3.4 using macro ‘defineo’
(listing 11) and complement only invokes under a negation scenario where the negation counter
(definition 3.3) is an odd number. Therefore, there is always an implicit negation in our 𝑐𝑜𝑛𝑑𝑒 and
𝑐𝑜𝑛𝑑𝑒𝑡 macros, and ‘g0’, ‘g’, ‘g1’ work as ‘noto g0’, ‘noto g’, ‘noto g1’, etc.

3.4 United as one
As Clark has pointed out, it is appropriate to regard the completion of the normal program, not the
normal program itself, as the prime object of interest when dealing with negation [5]. Even though
a programmer only gives a system the normal program, the normal program is completed by the
system and what the programmer is actually programming with is the combination of the two.
We have shown a simple completion of propositional rules in section 3.3. Now, we want a goal

function that can handle two types of goals, namely the positive goal and the negative goal. We
define a macro 𝑑𝑒 𝑓 𝑖𝑛𝑒𝑜 (listing 11) so that the user only needs to define the original rules and this
macro will implicitly create a goal that has the user’s original rules and our negated complement
rules.

Listing 11. New macro defineo

(define-syntax defineo

(syntax-rules ()

((_ (name params ...) exp ...)

(define name (lambda (params ...)

(lambdag@ (n cfs s)

((cond
[(even? n) (fresh () exp ...)]

[(odd? n) (complement-conde exp ...)]) n cfs s)))))))

The 𝑑𝑒 𝑓 𝑖𝑛𝑒𝑜 will define a goal function that combines the original rules 𝑒𝑥𝑝... with the complement
rules complement-conde exp .... During execution, this goal function picks the corresponding rule
set based on the value of the negation counter. If 𝑛 is even, use the original rules, and if 𝑛 is odd,
use the complement rules.

3.5 Stretch out
We have laid a good framework, which allows us to add more features and continuously evolve
our algorithm. Let us advance from propositional logic to predicate logic, this process introduces
variables and corresponding quantifiers (∃, ∀) to the logic statement as we have shown in section
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2.2. In logic programming, there are two types of variables in each rule. The head variable (definition
2.5) and the body variable (definition 2.6). Remember that head variables in a negative goal are
always bounded, as said at the beginning of section 3. Therefore, to simplify the discussion, as a
good starting point, we focus on the case with head variables only. We deal with body variables in
section 3.6. Given the logic statement;

𝐻 (𝑋,𝑌 ) ← ∃𝑋,𝑌 (𝐵1 (𝑋,𝑌 ) ∧ 𝐵2 (𝑋 ) ∧ 𝐵3 (𝑌 ))
And we know that under negation variables 𝑋,𝑌 in the above rule always have values 𝑥,𝑦. So

we safely drop the ∃ quantifier and focus on the rule’s body transformation with assigned values
to prove ¬𝐻 is true. We can obtain the propositional form of the representation as follows;

¬𝐻𝑥,𝑦 ?← 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝐵𝑥,𝑦1 ∧ 𝐵𝑥2 ∧ 𝐵
𝑦
3 )

It would seem that we can still distribute negation over the rule’s body using DeMorgan’s law,
just like we did in section 3.3;

¬𝐻𝑥,𝑦 ← ¬(𝐵𝑥,𝑦1 ∧ 𝐵𝑥2 ∧ 𝐵
𝑦
3 ).

?
= ¬𝐻𝑥,𝑦 ← (¬𝐵𝑥,𝑦1 ∨ ¬𝐵𝑥2 ∨ ¬𝐵

𝑦
3 ).

However, the transformation does not produce the expected result for ¬𝐻 (𝑋,𝑌 ). Let’s say 𝐵1 (𝑋,𝑌 )
unifies 𝑋 with one of the values {1, 2}, and 𝐵2 (𝑋 ) unifies 𝑋 with one of the values {2, 3}. The
original positive rule evaluated 𝐻 (𝑋,𝑌 ) as 𝐻 (2, 𝑌 ), where 𝑋 could only unify to 2. Therefore, the
complement goal ¬𝐻 (𝑋,𝑌 ) is expected to be true for𝑋 ≠ 2. However, using the rule complemented
by DeMorgan’s law, we are getting ¬𝐻 (𝑋,𝑌 ) is expected to be true for 𝑋 ≠ {1, 2, 3}. To fix this
issue, we need a new approach other than DeMorgan’s law to transform the rule.

As the resolution is trying to prove each sub-goal one by one in each rule (statement), to prove
“¬𝐻” to be true, we know “H” is failing somewhere in the rule’s body among one of the rules. For a
rule’s body, each sub-goal could fail, and when a sub-goal has failed, then the prior sub-goals must
have succeeded. To capture this property, the transformation of it should be a disjunction of the
negation to each sub-goal in conjunction with all sub-goals before the current one. Furthermore,
we noticed that each sub-goal works as a checker and the values are checked by unification
independently inside the sub-goal could fail. Therefore, the transformation not only applies to the
sub-goal but also to each variable so that we can distribute the negation to the unification level.
¬𝐻 ← ¬𝐵𝑥1 ∨ (𝐵𝑥1 ∧ ¬𝐵𝑦

1 ) ∨ (𝐵𝑥1 ∧ 𝐵
𝑦
1 ∧ ¬𝐵𝑥2 ) ∨ (𝐵𝑥1 ∧ 𝐵

𝑦
1 ∧ 𝐵𝑥2 ∧ ¬𝐵

𝑦
3 )) .

In general, each 𝐵𝑣
𝑛 is a goal function in stableKanren, so we can implement the above transfor-

mation as a macro 𝑓 𝑟𝑒𝑠ℎ𝑡 ;

Listing 12. New macro fresh-t

(define-syntax fresh-t

(syntax-rules ()

((_ (x ...) g0) g0)

((_ (x ...) g0 g ...)

(conde [g0]

[(fresh ()

(noto g0)

(fresh-t (x ...) g ...))]))))

It is a recursive process that iterates through all sub-goals and unifications with distributive law.
Once again, 𝑓 𝑟𝑒𝑠ℎ𝑡 is working as “not exist”, so the negation counter carries an implicit negation
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with an odd number during the runtime. Hence, 𝑔0 means noto g0, solving the negative goal,
and noto g0 means 𝑔0, solving the positive goal. We introduce the following new macro 𝑓 𝑟𝑒𝑠ℎ to
implicitly create the complement body rule;

Listing 13. New macro complement-fresh

(define-syntax complement-fresh

(syntax-rules (fresh)

((_ (fresh (x ...) g0 g ...))

(fresh (x ...)

(fresh-t (x ...) g0 g ...)))

((_ g0 g ...) (fresh-t () g0 g ...))))

When there are not just head variables in the rule, but also body variables introduced by 𝑓 𝑟𝑒𝑠ℎ,
the macro 𝑓 𝑟𝑒𝑠ℎ replaces each 𝑓 𝑟𝑒𝑠ℎ in the rule with 𝑓 𝑟𝑒𝑠ℎ𝑡 . These unbounded body variables
require additional changes in our transformation (section 3.6), but we can treat them the same way
to simplify our transformation for now. When there is no 𝑓 𝑟𝑒𝑠ℎ in the rule, which means the rule
only has head variables, then we are treating this as a special case of 𝑓 𝑟𝑒𝑠ℎ, and 𝑓 𝑟𝑒𝑠ℎ simply adds
one 𝑓 𝑟𝑒𝑠ℎ𝑡 to it. We also need to replace the 𝑐𝑜𝑛𝑑𝑒 with 𝑓 𝑟𝑒𝑠ℎ in our 𝑐𝑜𝑛𝑑𝑒𝑡 macro (listing 10).
Eventually, DeMorgan’s law got replaced with our transformer to the predicate program as follows;

Listing 14. Extended conde-t with complement-fresh

(define-syntax conde-t

(syntax-rules ()

((_ (g0 g ...) (g1 g^ ...) ...)

(fresh ()

(complement-fresh g0 g ...)

(complement-fresh g1 g^ ...) ...))))

3.6 Code on the fly
In this section, we deal with body variables introduced by 𝑓 𝑟𝑒𝑠ℎ (∃) in the rule’s body. Once we
finish the transformation we introduced in section 3.5 of the original rule, all ∃ quantifiers over
body variables in the rule are turned into ∀ quantifiers. In the beginning, all body variables are
unbounded. An unbounded body variable does not impact our transformation since the negated
unification (section 3.2) returns false on an unbounded variable and forces resolution to choose
another path (naive unification) to bind a value to that variable. We use the concept of a generator to
represent the first naive unification that unifies the unbounded body variable to a set of values. We
have two issues concerning bounded body variables when resolution reaches a generator: getting
the domain of a body variable and iterating over all values using resolution.
The domain is based on the resolution context and resolution has to change the course from

finding one answer (∃) to finding all answers (∀). Hence, we need to construct a new program using
the resolution context at runtime to achieve our goal. We introduce a set of macros handling these
issues. We modify 𝑓 𝑟𝑒𝑠ℎ𝑡 (listing 12) in listing 15 to find the generator of the body variable, then
we get the domain of the variable by assuming the domain space is finite, and finally we iterate
through the domain and create a conjunction search stream over all possible values.

Listing 15. Extended fresh-t with forall

1 (define-syntax fresh-t
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2 (syntax-rules ()

3 ((_ (x ...) g0) g0)

4 ((_ (x ...) g0 g ...)

5 (conde

6 [g0]

7 [( lambdag@ (n cfs s)

8 ((fresh ()

9 (noto g0)

10 (lambdag@ (nn ff ss)

11 (let* ([diff (- (length ss) (length s))]

12 [ext-s (get-first-n-elements ss diff)]

13 [argv (list x ...)]

14 [b-vars (find-bound-vars argv ext-s )])

15 (if (null? b-vars)

16 (( fresh-t (x ...) g ...) nn ff ss)

17 ((( forall (x ...) (g ...) b-vars)

18 (domain-values g0 b-vars cfs s)) n cfs s))))

19 ) n cfs s))]))))

In line 7, we are preserving the substitution before executing 𝑔0. After executing 𝑔0, we get a new
substitution in line 10. From lines 11 to 14, we compute the difference between the lengths of the
two substitutions, and we are using the difference to get the delta of substitutions after executing
𝑔0. We check if any new body variables have been bound to a value. If no variable got the value,
then we keep running future sub-goals (g ...) as normal in line 16. Otherwise, we obtain all values of
the variables and check that all future sub-goals (g ...) can be proven true for all values of bounded
vars in lines 17 and 18.

The domain of body variables is fetched through the domain-values macro (listing 16).

Listing 16. New macro domain-values

(define-syntax domain-values

(syntax-rules ()

[(_ g0 bounded-vars cfs s)

(take #f (lambdaf@ ()

((fresh (tmp) g0 (== tmp bounded-vars)

(lambdag@ (f_n f_c final_s)

(cons (reify tmp final_s) '()))) 0 cfs s)))]))

This macro uses the generator 𝑔0, bounded variables, current CFS, and current substitution to
construct an internal program to generate all values. The take #f is the underlying implementation
of the 𝑟𝑢𝑛∗ interface; the reader can refer to the 𝑟𝑢𝑛∗ implementation to learn more details [9]. We
reset the negation counter to 0 to clearly state that we are using positive rules to get the domain.

The conjunction search stream over all possible values is created by the 𝑓 𝑜𝑟𝑎𝑙𝑙 (listing 17).

Listing 17. New macro forall

(define-syntax forall

(syntax-rules ()

[(_ (x ...) (g ...) vars)
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(let ([ var-list (remove-var-from-list (list x ...) vars )])

(define (iterate-values values)
(lambdag@ (n cfs s)

(if (null? values)
(unit s)

(inc (bind* n cfs

(( fresh-t (var-list) g ...)

n cfs (ext-s-forall vars (car values) s))

(iterate-values (cdr values )))))))
iterate-values )]))

It is a recursive process that iterates through all values of the bounded body variables and creates
an incomplete stream (inc) of conjunction (bind*) over the future sub-goals under the current value
and the future sub-goals under other values. It has to remove bounded body variables from the
variable list “x ...” so that the future 𝑓 𝑟𝑒𝑠ℎ𝑡 can properly detect other unbounded variables that are
getting bounded.
We could not easily complete such a task to code on the fly without using these traits from

functional language. The three macros may not look very elegant to experienced functional pro-
grammers, but they are simpler and more concise than non-functional implementations.

3.7 Not a strange loop
In this section, we deal with the loops (definition 2.18) we encounter during resolution. We believed
that when the resolution reaches a loop point instead of a unification, the resolution has to produce
a truth value without unification but via coinduction. Also, our algorithm needs to ensure that
resolution handles the loop without creating a reduct beforehand. We categorize the loop as either
a positive loop or a negative loop before introducing the coinductive resolution.

Definition 3.5 (positive loop). When a call is in a positive loop, there is no negative goal involved
on the CFS.

Definition 3.6 (negative loop). When a call is in a negative loop, there is at least one negative
goal involved on the CFS.

We handle positive loops (definition 3.5) first, and negative loops (definition 3.6) will be handled
later. The positive loop encountered during resolution produces false as the truth value. It shall
return false due to the rationality principle: one shall not believe anything until one is compelled to
believe. Therefore, it shall end the current resolution, so the resolution can try other possible paths
to find a fact to unify with. This also meets the property of minimal model semantics.
Using the negation counter (definition 3.3), we can further define odd negative loop and even

negative loop from definition 3.6.

Definition 3.7 (odd negative loop). When a call is in an odd negative loop, there are an odd
number of negative goals involved in the loop.

Definition 3.8 (even negative loop). When a call is in an even negative loop, there are an even
number of negative goals involved in the loop.

The negative loop encountered during resolution produces truth values as follows. If we see an
odd negative loop, we return false. If we see an even negative loop, we return a choice of true or
false.
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Overall, our coinductive resolution has three types of loops to handle, a positive loop, an even
negative loop, and an odd negative loop. We are using calling frame stack (CFS) (listing 3) to handle
the loop scenario with coinductive resolution. Unlike tabling miniKanren, another extension of core
miniKanren, where the solver records the result globally [3], our CFS uses runtime information
to prevent proving the same goal multiple times. The record we stored on the CFS consists of a
signature and n (the value of the negation counter). The signature is the goal function name with
parameters grounded to the bounded value. If the parameter has no bounded value, we use the
parameter name as part of the signature. During runtime, a signature must be an exact match to
the existing signature on the CFS to show we are in a loop. We extended our 𝑑𝑒 𝑓 𝑖𝑛𝑒𝑜 macro (listing
11) to use this CFS to determine a loop in listing 18.

Listing 18. Extended defineo with loop handling

1 (define-syntax defineo

2 (syntax-rules ()

3 ((_ (name params ...) exp ...)

4 (define name (lambda (params ...)

5 (let ([argv (list params ...)])

6 (lambdag@ (n cfs s)

7 (let* ([args (map (lambda (arg) (walk* arg s)) argv)]

8 [signature (list `name args)]

9 [record (seen? signature cfs)])

10 (if (and record #t)

11 (let ([diff (- n (get-value record ))])

12 (cond [(and (= 0 diff) (even? n)) (mzero)]

13 [(and (= 0 diff) (odd? n)) (unit s)]

14 [(and (not (= 0 diff)) (odd? diff)) (mzero)]

15 [(and (not (= 0 diff)) (even? diff))

16 (choice c mzero )]))

17 ((cond [(even? n) (fresh () exp ...)]

18 [(odd? n) (complement exp ...)])

19 n (expand-cfs signature n cfs) s))))))))))

In line 5, we obtain a list of parameter variables, and we try to see if each variable is bound to a
value or not in line 7. If the variable has a substitution, it will be replaced by a value, otherwise,
it will be the parameter’s name. In line 9, we check if we have encountered the signature during
resolution or not. If we have encountered the signature on CFS (line 10), then we use the difference
of the negation counter value to find out the loop type in line 11. From lines 12 to 13, the difference
is 0, which means we had a positive loop, so minimal model semantics apply here. The return value
depends on the negation counter before the positive loop. According to minimal model semantics,
all atoms inside the positive loop are evaluated as false, unless there are other ways to break the
loop, and the negation over the positive loop is evaluated as true. From lines 14 to 16, the difference
is not 0, which means we had a negative loop, so stable model semantics apply here. We return
false if it is an odd negative loop and return a choice of true or false if it is an even negative loop. If
we do not see any loop, we are solving the goal as we talked about in the previous section (listing
11) in lines 17 to 19. Notice that, in line 19, we are expanding the CFS (listing 19) while solving the
goal.
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Listing 19. A function to expand CFS

(define (expand-cfs k v cfs)

(adjoin-set (make-record k v) cfs))

There are some interesting consequences of our handling of loops and negations, based on the
properties of stable model semantics. As we have mentioned in section 2.2, unlike monotonic
reasoning which has only one minimal model, non-monotonic reasoning defined by stable model
semantics could have three outcomes, no model, one model, or multiple models. Each outcome
corresponds to one kind of loop we handled in this section. In the beginning, we assumed there was
one model and the resolution did not reach any contradiction or splitting. A positive loop causes
the reduct program to produce a minimal model smaller than the given interpretation unless the
positive loop has a fact to unify with. It does not change the number of models. An odd negative
loop caused the reduct program to reach an unusable case (contradiction). If all reduct programs,
created from all interpretations, are unusable, then the program becomes unsatisfiable and has no
model. An even negative loop leads to two models (splitting).
Let us take a look at the difference between an empty set as one stable model and no stable

model. We currently cannot distinguish the two as they both return “()” in stableKanren. The user
needs to run the query on the opposite goal to identify. If the positive query returns “()” (false), but
the negative query returns “(_.0)” (true), the program has one model with the truth value of the
query goal as false. If the positive query returns “()” (false), and the negative query also returns
“()” (false), the program has no model, and the query goal has no truth value since the program is
unsatisfiable. We will add an output “unsatisfiable” in our future work, so the user does not need to
verify by themselves.

For example, consider the following program
a :- b.

b :- c.

c :- a.

(defineo (a) (b))

(defineo (b) (c))

(defineo (c) (a))

This program has an empty set as the stable model. The query “(run 1 (q) (a))” gives “()” (false), but
the query “(run 1 (q) (noto (a)))” gives “(_.0)” (true).

The no model (unsatisfiable) case is demonstrated in the following program
a :- not b.

b :- not c.

c :- not a.

(defineo (a) (noto (b)))

(defineo (b) (noto (c)))

(defineo (c) (noto (a)))

This program is unsatisfiable and has no models. Both the query “(run 1 (q) (a))” and the query
“(run 1 (q) (noto (a)))” gives “()” (false).

So the positive loops do not create any more issues with the number of models we got, but the
negative loops have a contradiction and a splitting issue we need to handle. We will discuss the
splitting issue in section 3.8 and the contradiction issue in section 3.9.

3.8 Confine the multiverse
In this section, let us confine the splitting universe created by the even negative loop. Consider the
following logic program and its stableKanren representation

a :- not b.

b :- not a.

(defineo (a) (noto (b)))

(defineo (b) (noto (a)))
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This program has two answer sets, {a} and {b}. However, simply being able to produce different
answer sets is insufficient. We need to maintain the partial result as well. Since, unlike the definite
program, the partial result affects the future search process in the normal program. As we can see
{a} and {b} are mutually exclusive. We must consider these cases in stableKanren so that queries
like, “(run 1 (q) (a) (b))”, do not return true.
We have shown that resolution may visit an even negative loop from different entry goals and

get different outcomes for the same goal, we need to save the result we obtained in the first place.
The truth value produced by an even negative loop shall be consistent iff the partial result is locally
tabled on the partial answer set (PAS).
We combine PAS (p) with the existing substitutions (s) as a combined pair (c) on the internal

continuation of 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ (listing 20) as we want p passing through goal functions just like s.

Listing 20. Extended continuation of lambdag@ with PAS

(define-syntax lambdag@

(syntax-rules ()

((_ (n cfs c) e ...)

(lambda (n cfs c) e ...))

((_ (n cfs c : s p) e ...)

(lambda (n cfs c)

(let ([s (car c)] [p (cadr c)]) e ...)))))

In the updated 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@, We added one more macro pattern to break the combined pair 𝑐 into
𝑠 and 𝑝 so that they can be accessed by the expression 𝑒 inside the template later. Similar to the
changes we made in section 3.1, we modify the rest of the macros has 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ involved like,
𝑟𝑢𝑛, ==, 𝑓 𝑟𝑒𝑠ℎ, 𝑐𝑜𝑛𝑑𝑒 , 𝑏𝑖𝑛𝑑 , and 𝑏𝑖𝑛𝑑∗ to meet the contract between continuations. We show how
to use this updated 𝑙𝑎𝑚𝑏𝑑𝑎𝑔@ in extended 𝑑𝑒 𝑓 𝑖𝑛𝑒𝑜 (listing 21);

Listing 21. Extended defineo with partial answer set

1 (define-syntax defineo

2 ;;; omit macro pattern and template

3 (lambdag@ (n cfs c : s p)

4 (let* (;;; omit variables assignment

5 [res (seen? signature p)]

6 [sign (+ n (get-value res ))])

7 (cond [(and res (even? sign)) (unit c)]

8 [(and res (odd? sign)) (mzero)]

9 (else

10 (if (and record #t)

11 ;;; omit loop handling

12 ((cond [(even? n) (fresh () exp ... (ext-p `name argv ))]

13 [(odd? n) (complement exp ... (ext-p `name argv ))])

14 n (expand-cfs signature n cfs) c))))))))))))

Unrelated details are omitted in this code snippet to minimize disturbance. The key idea is that
resolution checks the local tabling to see if it computed the result res in line 5, and the return value
in lines 7 and 8 depends on the sign of the value we stored. Lastly, the local tabling is updated by
“ext-p” before we successfully return from a goal in lines 12 and 13.
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We implicitly append an extra updating step “ext-p” (listing 22) after each predicate definition.

Listing 22. A function to update PAS

(define (ext-p name argv)

(lambdag@(n cfs c : S P)

(let ((key (map (lambda (arg) (walk arg S)) argv) ))

(list S (adjoin-set (make-record (list name key) n) P)))))

After we finish the predicate proving process, the updating step will update the context environment,
therefore allowing a later proving process to get information from the context to know if the current
goal has been proved or not. If the goal has been proved before, we can reuse it without proving it
again.

Let us go back to the example, “(run 1 (q) (a) (b))”. During the proving process for “a”, we proved
“b” to be false, so when “a” is proved to be true the system knows that it cannot prove “b” to be true,
since the context maintained the partial result we obtained from proving “a”. Without retaining this
partial result context, the system will treat “b” as a fresh new goal and produce true for it, which is
not what we would expect to see.
Currently, we only output the values bound to the query goals. The user may see the same

values produced multiple times since they may come from a different answer set or a different
path of proving. We can output the complete answer set we stored on PAS (listing 20) as auxiliary
information in future work.

3.9 Do not stop
There is one more thing that shows the specialty of the normal program under stable model
semantics requires us to treat the program as an integral part. Unlike the definite program, the
partial result of the normal program may not be the final result since the odd negative loop may
create an unavoidable contradiction.

Definition 3.9 (unavoidable contradiction). An unavoidable contradiction means there is an atom
in a normal program that neither can be proven true nor false due to the odd negative loop always
creating a contradiction.

Even though we compute the partial minimal model and the corresponding partial reduct
program, we cannot guarantee the partial result is part of the final answer due to the missing
optimal substructure property in NP-Hard problems. It is possible that there is an odd negative loop
in other parts of the program that will create an unavoidable contradiction based on the given
partial result.

For example, consider the following program
a.

b.

p :- a, not p.

(defineo (a) succeed)

(defineo (b) succeed)

(defineo (p) (a) (noto (p)))

If we have the query “(run 1 (q) (a))”, and we only consider the partial result, then the partial result
will be that “a” is true. However, for the normal program, we need to consider the contradiction
imposed by the rule containing an odd negative loop. In this case, the rule “p :- a, not p.” causes
the program to be unsatisfiable. Under stable model semantics, we are making sure each atom
will get an assignment of either true or false no matter if it appears in the query or not. This
ensures that after we get the partial result “a”, the system will also check for “b” and “p”. In this
case, “b” will be added to the partial result, but we will get contradictions for “p” and “not p”, and
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eventually this contradiction on both sides causes the system to overturn all partial results we
obtained (unsatisfiable).
Therefore, the resolution should continue checking all untouched rules and values, even after

finishing the given query goals. Currently, we are using some bottom-up ideas to perform this task
to make sure we check all values and rules after the initial resolution has finished proving query
goals. We record all rules defined by 𝑑𝑒 𝑓 𝑖𝑛𝑒𝑜 in a “program-rules” set. Important notice here, as we
are treating all rules as a whole program, the user needs to remember to “reset-program” between
different programs.

Then we modify the “run” interface (listing 23).

Listing 23. An updated run interface

(define-syntax run

(syntax-rules ()

((_ n (x) g0 g ...)

(take n

(lambdaf@ ()

((fresh (x) g0 g ...

(lambdag@ (negation-counter cfs c : S P)

(if (null? (take 1 (lambdaf@ ()

(( check-all-rules program-rules x)

negation-counter cfs c))))

(mzero)

(cons (reify x S) '()))))

negation-counter call-frame-stack empty-c ))))))

At the end of the original query goals “g0 g ...”, instead of using “(reify x S)” to produce the final
result, we invoke “check-all-rules” (listing 24) to check our untouched rules against unavoidable con-
tradictions. If there is an unavoidable contradiction, the whole program is unsatisfiable; otherwise,
we find at least one valid final result.

Listing 24. A function to check all rules

(define (check-all-rules rules-set x)

(lambdag@ (n cfs final-c : S P)

(let ((rule (fetch-rule rules-set )))

(if (and rule #t)

(let*
([goal (get-key rule)]

[arity (get-value rule)]

[vals (get-values goal (construct-var-list arity ))])

(bind* n cfs

(( check-rule-with-all-values goal vals) n cfs final-c)

(check-all-rules (cdr rules-set) x)))

(cons (reify x S) '())))))

In this function, we obtain all values of a rule’s head, then run resolution on both positive and
negative goals for each value using “check-rule-with-all-values” (listing 25).

Listing 25. A function to check a rule with all values

miniKanren’23
The miniKanren and Relational Programming Workshop 2023 45



22 Xiangyu Guo, James Smith, Ajay Bansal

(define (check-rule-with-all-values rule values)
(lambdag@(_ cfs c)

(if (null? values)
(unit c)

(inc

(mplus*

; check positive goal , negation counter = 0

(bind* 0 cfs

((apply (eval rule) (car values )) 0 cfs c)

(check-rule-with-all-values rule (cdr values )))
; check negative goal , negation counter = 1

(bind* 1 cfs

((apply (eval rule) (car values )) 1 cfs c)

(check-rule-with-all-values rule (cdr values )))
)))))

Eventually, the resolution traversed all values if there is no contradiction showing on both positive
and negative goals at the same time, and so we have the final answer. This part can also be done in
a purely top-down approach, which we leave as future work.
The unsatisfiability comes from having a negation rule such that it cannot be proven true or

false. This can only be avoided by adding some external supporting rule like “p :- b.” to the program,
so that we will be able to prove “p” to be true bypassing (avoiding) the odd negative loop, thus
resolving the unavoidable contradiction. The new program will be

a.

b.

p :- a, not p.

p :- b.

(defineo (a) succeed)

(defineo (b) succeed)

(defineo (p) (conde

[(a) (noto (p))]

[(b)]))

Eventually, leading the system to maintain the partial result we obtained.

3.10 Back to the game
Now, let us go back to the two-person game example [27], which Moiseenko’s constructive negation
was unable to handle [23].

edge(a, b).

edge(b, a).

edge(b, c).

edge(c, d).

win(X) :- edge(X, Y),

not win(Y).

(defineo (edge x y)

(conde

[(== x 'b) (== y 'c)]

[(== x 'a) (== y 'b)]

[(== x 'b) (== y 'a)]

[(== x 'c) (== y 'd)]))

(defineo (win x)

(fresh (y) (edge x y)

(noto (win y))))
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Under stable model semantics, such a program has two stable models considering predicate “win”,
{𝑤𝑖𝑛(𝑎),𝑤𝑖𝑛(𝑐)} and {𝑤𝑖𝑛(𝑏),𝑤𝑖𝑛(𝑐)}. We can verify our solver can produce the right answer
with some example queries.

Listing 26. Example queries and output in stableKanren

> (run 1 (q) (win 'a) (win 'b))

()

> (run 1 (q) (win 'a) (win 'c))

(_.0)

> (run* (q) (win q))

(c b a a)

For the last output, we have explained the reason for getting multiple duplicated answers at the
end of section 3.8.

4 CONCLUSIONS AND FUTUREWORK
This paper introduced stableKanren, a core miniKanren extension with normal program solving
ability under stable model semantics. Inspired by the property of stable model semantics, our
main idea was to get the minimal model and its corresponding reduct program at the end of the
computation. Therefore, our work extended top-down unification and resolution algorithms, giving
more semantics to them so that they can handle normal program solving. The extended unification
works as a base case to produce truth values under the negation scenario. We retained the nice
property of resolution to produce a minimal model by always attempting to prove a goal to be true.
Then the extended resolution takes care of the loop scenario by producing truth values without
unification. We designed the rule’s body transformation enabling resolution to distribute negation
through a compound goal to the base unification level. Moreover, the existential quantifier turned
into the universal quantifier under negation. So we directed the resolution to compute the domain
of the fresh variables and changed the execution course to traverse all values. Lastly, the resolution
does not stop after obtaining a partial answer set. Rather, it extends its execution to check all rules
and values in the program to ensure no contradiction exists.

By utilizing two functional programming constructs, macros and continuations, our work demon-
strates how easily the above features can be implemented in a functional language Scheme. We laid
a foundational framework for us moving into future implementations. One future work is going to
have a detailed discussion and solution about variable safety. Currently, we assume the variables
are safe under negation, the input program follows the format in definition 2.3. For example, given
a logic program with four facts.

a(1).

a(3).

b(1).

b(2).

(defineo (a x)

(conde [(== x 1)]

[(== x 3)]))

(defineo (b x)

(conde [(== x 1)]

[(== x 2)]))

And the inference rule does not follow the format in definition 2.3. So the negative goal uses an
unsafe variable.
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p(X) :- not a(X), b(X).

(defineo (p x)

(noto (a x))

(b x))

A query on such a goal with an unsafe variable is unable to produce the expected answer. The user
needs to bind the unsafe variable with a value to get the answer. So the query ‘(p x)’ returns an
empty list, and the query ‘(p 2)’ returns true.

> (run* (x) (p x)) > (run* (x) (p 2))

() (_.0)

If we adjust the order of the inference rule to match the format in definition 2.3. The variable is
safe to use and the query produces the expected answer.

(defineo (p x) > (run* (q) (p q))

(b x) (2)

(noto (a x)))

Therefore, the variable safety can be resolved by compilation time rewriting through a macro so
that the rule follows the desired format (definition 2.3). However, the user also can have a query on
a negative goal using an unsafe query variable.

> (run* (q) (noto (p q))) > (run* (q) (noto (p 3)))

(1) (_.0)

As we can see, the declarative stable model semantics produce ‘not p(1), not p(3)’ as part of the
answer set. But our first query can only output one result, we have to bind the unsafe variable with
a value to get another result. Hence, having a runtime variable safety solution is also necessary. The
user will have a fully declarative way of using our system once we resolve variable safety issues.
Additionally, we need to prove the soundness and completeness of our algorithms w.r.t stable

model semantics. The proof can be derived from the property of stable model semantics (definition
3.1). More future work includes, but is not limited to, supporting constraint rules and choice rules,
solving the infinite Herbrand model, incorporating inequality constraints, applying the bottom-
up Conflict Driven No-good Learning (CDNL) algorithm [12] to top-down, etc. Even though in
functional programming we use streams to simulate backtracking, we still have the potential of
applying CDNL so that we can cut off other sibling streams if the current one generates a conflict.
The challenges include, but are not limited to, tagging the streams with an ID similar to how Clingo
tags decision levels and the communication between different streams. The above future work will
improve our solver’s expressiveness, performance, and robustness.
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One of the distinguishable features of embedded domain-specific languages, like miniKanren, is an easy
integration with a host language. Recently, we were asked to port our relational programs in OCaml to
Java Virtual Machine (JVM). As a result, we got a miniKanren implementation in Kotlin, which resembles
OCanren (miniKanren in OCaml). In this paper, we describe the peculiarities of a relational language
implementing on JVM using Kotlin.

CCS Concepts: • Software and its engineering→ Functional languages; Constraint and logic languages..

Additional Key Words and Phrases: miniKanren implementation, Kotlin, relational programming

1 INTRODUCTION
One of the appealing features of relational programming is an easy interaction between general-
purpose and relational programming languages. We often find it useful to prototype a solution in
miniKanren, and later improve the performance by splitting big relational programs into a number
of relational programs, connected by a functional glue. We usually use OCaml and the OCanren
DSL to do this, but recently we were asked to make our work executable on JVM.
The straightforward solution to execute OCanren in JVM would be using an OCamlJava [4]

compiler, but this project looks quite dead. Using JNI could be error-prone (for inexperienced JVM
users like us). Another approach would be a source-to-source transformation from OCaml to a
JVM-friendly language. We left it as a future work, because, at first, it is difficult for us to estimate
the difficulty of the task, and, second, it requires a working implementation of a relational DSL in
JVM.
There are plenty of relational libraries for JVM languages, e.g. for Scala (Scalogno [1]) and

Core.Logic. However, according to TIOBE [2], Kotlin is the most popular JVM language except
for Java itself, but Java lacks the syntax needed for a compact miniKanren implementation. In
our mind, more professional developers and enthusiasts can give into a new Kotlin library and
contribute to it. Our customer, who is interested in relational programming in OCanren as well
values Kotlin very much.

As a result, we developed a relational programming library klogic1 in Kotlin. The reference
implementation was OCanren, but we needed to do a few things differently because of JVM quirks.
In this paper we report the main technical decisions about Kotlin implementation, recollect the
peculiarities of the OCanren implementation in OCaml, discuss the programming experience from
an OCaml developer point of view, and do some benchmarking.

2 OCANREN REMINDER
The klogic implementation is based on OCanren: typed embedding of miniKanren to OCaml.
In this section, we describe basic blocks of OCanren, their implementation in klogic is given in
the next section. A few features (for example, disequality constraints) in klogic and OCanren are
implemented similarly and will be left out of discussion.

1https://github.com/UnitTestBot/klogic (access date: 2023-06-15)
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Unification is being performed over a tree of pointers, which represent OCaml values in the
runtime. Most algebraic values are the nodes of the tree, basic types and algebraic constructors
without arguments are the leaves. Inspection and reconstruction of the trees is performed via a
low-level non type-safe interface.

No proper OCaml types could not be assigned to values injected into logic domain, because their
representation differs. This is done for performance considerations.

Types for logic representations. In typed relational programs you can find three sorts of types:
for non-relational ground representations, logic domain, and types of relational search results, that
represent values reified (extracted) from logic domain. For the reified values we use a straightforward
solution: we declare the algebraic data type to represent either logic variables or values.

type 'a logic = Var of var_idx | Value of 'a

In principle, we can use the same logic type for representations in a logic domain. It will lead to
poor performance, which is demonstrated in [6]. These days OCanren uses slightly different types
for a logic domain than the ones described in [6], and we add details about it. For every subvalue
embedded into the logic domain, we decorate a type of this subvalue with the predefined type
type 'a ilogic. For example, integer constants will have in the logic domain type int ilogic.
The same holds for other types considered primitive in OCanren: strings, integers, floats, booleans.
In Scheme context, the closest analogue would be symbols. The injection of primitive values a to
logic domain could be done using predefined function inj.

val inj: 'a -> 'a ilogic

The injection of user-defined algebraic data types is more complicated. We want to allow the
placement of logic values in all subparts of data type, not only in positions of type variables. To
achieve that, we abstract away all concrete type parameters, and get “fully abstract data type”.
We can parameterize it by substituted types to get the type isomorphic to the original one, or
parameterize with ilogic types to get the type for logic domain, or parameterize with the type
logic, to get a type of reified representation. In Listing 2 one can see three types: the one without
logic variables, the logic counterpart, and for reified results. One can note how the second type is
being constructed by addition of ilogic type everywhere, and the reified type by replacing ilogic
with logic.

(int * bool , 'a) fa_list as 'a

((int ilogic * bool ilogic) ilogic , 'a) fa_list ilogic as 'a

((int logic * bool logic) logic , 'a) fa_list logic as 'a

The injection of user-defined types is essentially an application of a constructor to injected values,
followed by the primitive injection inj. In the previous implementation [6], the representation
of injected types had two type parameters to track ground and reified types of values. This ap-
proach requires predefined OCaml functors, one functor per type arity. In the current OCanren
implementation, this is not needed, which allows to get rid of functors and control reified type
with more flexibility.

Reification. Reification for user data type is a composition of a primitive predefined reifier
(for strings, integers, floats, and booleans), a predicate to distinguish variables from values, and a
fixpoint combinator to get reifiers for recursive values. All reifiers are two-parametric types which
track in the parameters the type in the logic domain, and the type we are going to reify into. In
practice, we found it convenient to have two kind of reifiers. The default one reifies to “logic” types,
which can represent variables using logic type mentioned above. It could be considered a general
form of reification. Another one is called projection, which reifies from a logic domain to an original
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type 'a list = [] | (::) of 'a * 'a list

type ('a, 'b) fa_list = Nil | Cons of 'a * 'b

type 'a iso_list = ('a, 'a iso_list) fa_list

type 'a injected_list = ('a, 'a injected_list) fa_list ilogic

type 'a logic_list = ('a, 'a logic_list) fa_list logic

Fig. 1. A few examples of types in OCanren using list data type. The list type is a default linked list defined
in OCaml, conventional constructors have a special treatment in the parser. The fa_list is a fully abstract
version of a list with constructors renamed. The iso_list is a definition via fa_list of the type isomorphic to
the original list. We can add ilogic / logic types to the definition of the type iso_list to get the types for
logic/reified domains.

ground representation, or raises an exception when a free variable is encountered. It reifies to the
type without holes for logic variables, and these sort of types is more approachable for integration
of functional and relational code. The projection should be used for relations, when we are sure
that the answer of relational search is ground.

val reify_list : ('a, 'b) Reifier.t ->

('a injected_list , 'b logic_list) Reifier.t

val prj_exn_list : ('a, 'b) Reifier.t ->

('a injected_list , 'b list) Reifier.t

In [6] we track the type of reified values during injection process, and the type of reified values is
fixed. Now we outsource to the user the construction of reified values, and the one is empowered
to construct values of a desired type. It is possible to project a list from the logic domain to the
standard OCaml list type. In the previous approach, we were limited to reification to 'a iso_list.
It required a manual conversion to default OCaml lists, which was cumbersome.
The klogic implementation will reuse these ideas, because both OCanren and klogic are

embedded to a typed language. There is no two types of reifiers per every data type in Scheme, a
single implicit reifier is enough.

Primitives. In original miniKanren for Scheme, most of the primitives are implemented using
a macro system. In OCanren, we apply similar macro for fresh, but conde is just a function that
takes a list of goals. We also have infix binary high-order relations for disjunction and conjunction.

3 IMPLEMENTATION
In this section, we describe peculiarities of unification with user-defined types in klogic.

3.1 Types for logic representation
In the klogic, we introduce a special interface called 𝑇𝑒𝑟𝑚 to represent the logic domain. There
are two types of logic terms — logic variables and logic values (that can store other logic terms
inside). Logic variables are represented as inline wrappers of integer index which distinguishes
variables; logic values can store any value, logic or not. So, for a simple implementation (that an
original Scheme2) it would be enough to represent the logic domain by declaring the interface
𝑇𝑒𝑟𝑚 with one existing inheritor — the inline class 𝑉𝑎𝑟 — and allowing users to inherit the 𝑇𝑒𝑟𝑚
for implementing user’s logic types.

2https://github.com/michaelballantyne/faster-minikanren (access date: 2023-06-06)
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Unfortunately, this implementation would have an important disadvantage — it allows users
to write goals that unify values of different types (for example, natural numbers and linked lists).
These sorts of unification should fail, and it sounds reasonable in a typed language to forbid such
unifications at compile time. In general, it means that each logic variable has to be created with
some known logic type to which it can be reified and with terms of which it can be unified. To
handle such a case, we decided to use parameterized types that are represented by Kotlin generics.

Actually, we have three possible types of unifications:
• unification of two logic values, both of the same type;
• unification of two logic variables, both over the same type;
• unification of a logic value and a logic variable of the same type.

These observations motivate us to implement unification function unify with the following signa-
ture.
fun <T> unify(first: Term <T>, second: Term <T>) = ...

But this approach has a drawback — it allows the creation of logic variables over non-logic types
because the parameter does not have any restrictions. The key solution to handle it is making the
parameter a logic type too. It leads to the following self-recursive declarations.
interface Term <T : Term <T>> { ... }

class Var <T : Term <T>> : Term <T> { ... }

Having these declarations, we introduce type-checking at compile time for unifications, but
another problem arises — implementing a mechanism of unifications for arbitrary logic types. A
unification requires traversing all fields of a logic value that need to be unified with an another
logic value. It can be done using Java reflection, but such an approach has significant shortcomings.
Firstly, using reflection leads to a substantial decrease in performance. Secondly, with reflection,
we lose flexibility because we cannot allow a user to specify what fields should be unified and
what should not. We came up with another solution. An abstract implementation of unification is
provided in the base class for logic terms. It walks both logic terms and unifies all values that are
defined for current logic term by a user (Listing 1). As a result, to define a new logic term a user
should inherit from the CustomTerm and implement two abstract properties — subtreesToUnify
and (optionally) subtreesToWalk.
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Listing 1. Declaration of user-defined type CustomTerm in klogic (a sketch)

1 sealed interface Term <T : Term <T>> {

2 fun unify(

3 other: Term <T>,

4 unificationState: UnificationState

5 ): UnificationState? {

6 val walkedThis = walk(unificationState.substitution)

7 val walkedOther =

8 other.walk(unificationState.substitution)

9
10 return walkedThis.unifyImpl(walkedOther , unificationState)

11 }

12
13 fun unifyImpl(walkedOther: Term <T>,

14 unificationState: UnificationState

15 ): UnificationState?

16 }

17
18 @JvmInline
19 value class Var <T : Term <T>>(val index: Int) : Term <T> {

20 override fun unifyImpl(

21 walkedOther: Term <T>,

22 unificationState: UnificationState

23 ): UnificationState? {

24 ...

25 }

26 }

27
28 interface CustomTerm <T : CustomTerm <T>> : Term <T> {

29 val subtreesToUnify: Array <*>
30
31 val subtreesToWalk: Array <*>
32 get() = subtreesToUnify

33
34 override fun unifyImpl(

35 walkedOther: Term <T>,

36 unificationState: UnificationState

37 ): UnificationState? {

38 ...

39 }

40 }

miniKanren’23
The miniKanren and Relational Programming Workshop 2023 55



miniKanren ’23, September 04–09, 2023, Seattle, Washington, United States Yury Kamenev et al.

3.2 Variables construction
Each logic variable is identified by its unique integer identifier, so to be able to create fresh variables
we need to maintain a mechanism that creates new unique identifiers. We implemented it quite
simply by storing an integer index of the last created fresh variable and issuing the incremented
value of this index for a new fresh variable.

In addition to the variable index, among unifications, we need to maintain a set of current
added constraints (for now we have only disequality constraints) and substitution of created logic
variables to other logic terms (values or variables). We reused the standard concept of a state (Fig.
2) — an immutable union of the constraints and the substitution (represented by a persistent map
from logic variables to logic terms), which changes by unifications.

Listing 2. Definition of the state in klogic

data class State(

val substitution: Substitution ,

val constraints: PersistentSet <Constraint <*>> =

persistentHashSetOf (),

)

Speaking about creating fresh variables, there is an important detail in implementation. The
creation introduces a lazy goal, i.e. inserts a delay, the user-accessible interface should encourage
users to create with a single delay a few fresh variables at once. So, we need to have many different
functions for creating different numbers of fresh variables. In some programming languages (most
of those are descendants of C programming language, for example), we can automatically generate
such functions at the compile-time using macro mechanism. For some reason, Kotlin in particular,
and Java in general, do not have macros, although some of their features may be replaced by
processing of annotations. Moreover, the number of method’s parameters in Java is limited to 2553,
and creating more than 255 fresh variables at once is impossible. So, in theory different functions for
creating different numbers of fresh variables could be generated somehow using Java annotations.
For now, we have a few predefined implementations (from 1 to 8 fresh variables, to be exact), and
functions to create more than 8 fresh variables at once has to be implemented manually by a user.

The absence of macro mechanism in the language affects the way we write relational programs.
All miniKanren primitives should be defined as functions, which are evaluated in call-by-value
strategy. In some cases, it requires an explicit inverse-eta-delay insertion before a recursive call of
relation. klogic andOCanren have primitives for that, but in Scheme it is not needed because conde
and fresh primitives are implemented using a macro. We modified the code of our benchmarks to
make execution traces the same as in Scheme. As a result, sometimes relation definitions are not
an idiomatic klogic/OCanren code.
There is an important detail in implementing and using functions for creating fresh variables

connected with Kotlin type system. Since that language was not designed to have type inference,
and the usage of overloaded functions is widespread, we are obliged to manually specify types of
created fresh variables when using fresh — consider an example in Fig. 2. On the same listing,
there is a subtlety about unification of empty logic lists. The first `===` unifies a logic variable
with an empty logic list. A swap of these two arguments is allowed in Scheme and OCanren but
not in Kotlin: type inference can’t guess the type of elements of an empty logic list using the

3https://docs.oracle.com/javase/specs/jvms/se20/html/jvms-4.html#jvms-4.3.3 (access date: 2023-06-06)
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fun <T : Term <T>>

appendo(x: ListTerm <T>, y: ListTerm <T>, xy: ListTerm <T>): Goal

=

((x `===` nilLogicList ()) `&&&` (y `===` xy))

`|||`

freshTypedVars <T, LogicList <T>, LogicList <T>>

{ head , tail , rest ->

(x `===` head + tail) `&&&`

(xy `===` head + rest) `&&&`

appendo(tail , y, rest)

}

Fig. 2. Appendo in klogic. Infix binary operators for conjunction, disjunction, and unification should be
written in backticks. Overloaded primitive for creation of fresh variables (almost always) requires types
specification.

type of a logic variable. In the benchmark implementations, we adapted many unifications to make
unification traces of Scheme, OCanren and klogic exactly the same.

4 KLOGIC VS. OCANREN
In this section, we discuss programming with klogic from OCanren programmer’s point of view.
The first thing that catches the eye: type annotations are everywhere. Sometimes we can omit

type annotations for fresh variables, for example, when a variable is not used, but these cases are
rare. This aspect of klogic is not a particular implementation decision, but rather an artifact of
Kotlin. The host language is not designed to have a powerful type inference, and in the presence of
overloaded functions (for example, the infix function + from Listing 2 which is a relational version
of cons) the compiler’s ability to infer types is limited.
The freshTypedVars primitive could be annotated by types in two ways: either in angle

brackets or without angle brackets but near every introduced variable. For example, you could
create fresh logic variables either via freshTypedVars<LogicInt, LogiInt> { n, m -> ... }
or freshTypedVars { n: Term<LogicInt>, m: Term<LogicInt> -> ... }. With the first ap-
proach the types and the names of variables are textually separated and readability is reduced.
In the second approach we need to specify explicitly, that we create a variable of a type of logic
values (just LogicInt would be a ground integer), and type annotations become longer. Sadly,
the ex-OCanren developer should decide between two suboptimal approaches. We speculate that
ex-Scheme developer would feel even more frustration.

The proposed encoding of user-defined types is a decent step forward, in comparison to another
Kotlin implementation4 we found. The KotlinKanren implementation proposed to use universal
representation for values in logic domain, and user data types should be converted to this represen-
tation and back, which could be error-prone and could raise issues related to user-defined types’
representability. The klogic approach is better, but in comparison to OCanren we could wish that
the approach would require less boilerplate code. Ideally, the method subtreesToUnify should be
generated using some macro/annotation mechanism to protect developers from mistakes.

4https://github.com/neilgall/KotlinKanren (access date: 2023-06-06)
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OCanren doesn’t allow us to skip non-logic subvalues of a logic value during unification
currently, and klogic is theoretically better in this approach. Sadly, we don’t have a good example
to demonstrate the usefulness of this feature.
Klogic currently lacks a few optimizations present in OCanren and faster-miniKanren.

The implementation of disequality constraints is very straightforward. Also, we don’t optimize
the unification with recently created fresh variables (also known as set-var-val optimization in
faster-miniKanren).

5 BENCHMARKS
We compare faster-miniKanren in Racket with OCanren in OCaml and klogic in Kotlin in a
few performance tests involving relational arithmetic [5] and Scheme relational interpreter [3]. We
picked the same relations to benchmark as the paper [6] did. All benchmarking was performed
on the desktop machine Intel© Core™ i7-4790K (16Gb RAM). Some software was taken from the
official Ubuntu 23.04 x86_64 repository: Racket 8.7 (compiled to native code using Chez backend)
and OpenJDK 17.0.7 (as the last Java LTS version). OCaml compiler 4.14+flambda was installed
using OPAM5 package manager. Running benchmarks was implemented using language-specific
libraries: benchmark6 for OCaml, benchmark7 for Racket and JMH8 for Kotlin.
In the accompanying repository9 we can find unification counts and unification traces for

relations being benchmarked. It also has a submodule for a modified klogic implementation where
traces of unifications can be toggled on/off using an environment variable. Unfortunately, this
check is not optimized out by just-in-time compilation in JVM, and we need to comment it out
manually. That’s why the benchmarks implementation in klogic lives in another repository10.
The table 3 demonstrates that if we worry only about performance, the faster-miniKanren

implementation should be recommended instead the other implementations. Today klogic has
a naive implementation of disequality constraints, which decreases performance of relational
interpreter. However, disequality constraints are not involved to the Oleg numbers benchmarks. We
can’t explain why klogic unperformed, but the set-var-val optimization from faster-miniKanren
should be applicable there. In the draft of the paper, we presented more auspicious benchmarks
of klogic but the search order had not been the same between three implementations. The big
changes of numbers demonstrates that evaluation of the performance as number of unifications
per second could be misleading. The context switching of relational streams may seriously affect
performance (it has been observed already [7]).

6 CONCLUSIONS AND FUTUREWORK
We presented klogic — a library for relational programming in Kotlin. It is designed to have a
typed representation of logic values, which prevents developers from a certain class of mistakes.
The disequality constraints are available, but other domain-specific constraints aren’t (we believe
that absento is not required for our representation of logic values). The implementation is rather
straightforward in a few places. For example, optimizations from faster-miniKanren (lazy dis-
equality constraints and storage for variable bindings inside variables) are not yet implemented.
At the moment performance is slightly worse comparatively to OCanren, and we speculate that
missing optimizations may change that.

5https://opam.ocaml.org/ (access date: 2023-08-22)
6https://github.com/Chris00/ocaml-benchmark (access date: 2023-08-22)
7https://github.com/stamourv/racket-benchmark (access date: 2023-08-22)
8https://github.com/openjdk/jmh (access date: 2023-08-22)
9https://github.com/Kakadu/miniKanren_exec_order/tree/tracing (access date: 2023-08-22)
10https://github.com/Kakadu/klogic/tree/tracing (access date: 2023-08-22)
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Unification OCanren Kotlin Racket
count (in ms) (in ms) (in ms)

35 433854 541.80 715.06 150.63
𝑙𝑜𝑔3243 56277 72.48 105.08 22.24

100 quines 150732 567.75 836.67 334.36
15 twines 148525 502.90 719.67 321.27
2 thrines 224658 838.77 1155.47 548.38

Fig. 3. Performance results for various relations (inOCanren, Kotlin and Racket) involving Oleg numbers [5]
(time of first answers of exponentiation 35 and inverse) and Scheme relational interpreter [3] (100 first quines,
15 twines and 2 thrines). The search order in the implementations is the same. On the Y axis we have latency
in milliseconds (less is better).

The process of making execution traces for tree implementations exactly the same took much
more time than we initially expected. In future, it would be great to have an automatic translator
of relational programs between klogic, OCanren, and Racket, because the manual comparison
of implementations’ code is cumbersome.
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