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ABSTRACT 

 

This dissertation aimed to employ advanced methodologies in machine learning (ML), causal 

inference, and metabolomics in epidemiological research to contribute to the field of CVD 

prevention. First, quantifying sodium intake has been a persistent challenge in epidemiological 

research due to the measurement errors, limiting the explorations of sodium exposure in relation 

to disease outcomes, such as early-onset hypertension. Chapter 1 describes the development of 

ML algorithms that predict dietary sodium intake—measured via multiple 24-hour urinary 

sodium excretion—based on questionnaire data in the subcohorts of the Nurses' Health Study 

(NHS), NHS II, and Health Professional Follow-up Study (HPFS). These algorithms well 

predicted absolute sodium intake, albeit with a modest improvement in mitigating measurement 

error bias. In Chapter 2, using the developed algorithms, we evaluated the population-attributable 

risks (PARs) of modifiable lifestyle factors concerning the incidence of overall and early-onset 

hypertension across the full cohorts of NHS, NHS II, and HPFS. The findings suggest that 

maintaining healthy weight may substantially lower the risk of hypertension, and that adopting a 

combination of lifestyle modifications could further reduce the risk across all ages, particularly 

stronger in younger populations. Second, studies exploring heterogeneous treatment effect (HTE) 

gain traction in epidemiology, potentially offering advancements in precision medicine. Chapter 
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3 delineates the methodological frameworks for HTE research using a single randomized 

controlled trial. In an application example using the Preventing Overweight Using Novel 

Strategies (POUNDS LOST) trial, we developed and validated an ITR to optimize the efficacy of 

high- and low-fat diet interventions for weight loss over two years. Third, Chapter 4 delves into 

the development of a novel biomarker identified through metabolomics technology. We 

investigated the associations between circulating branched-chain amino acids (BCAAs)— 

metabolites indicative of diabetes risk—and established cardiometabolic biomarkers in the 

Women’s Health Study, thus characterizing BCAAs as biomarkers representing CVD risk 

independent of glucose metabolism. 
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Introduction 
 

 

Cardiovascular disease (CVD) remains a paramount global health concern issue.1 

Advancing the primary prevention strategies is challenging due to the complexity of its 

determinants and inconsistent efficacy of preventive interventions across diverse populations. 

Concurrently, advancements in methods and technologies for CVD prevention are creating 

opportunities for novel scientific insights that could potentially develop and optimize preventive 

strategies. The application of these novel technologies necessitate a multidisciplinary synthesis 

of knowledge from fields including epidemiology, nutrition, computer science, economics, and 

biology. This dissertation represents collaborative efforts by specialists across these domains to 

contribute to CVD prevention through the application of state-of-the-art machine learning (ML), 

causal inference, and metabolomics methodologies. It consists of three primary objectives: 

 

1) Application of ML algorithms to address unresolved issues in epidemiological research  

The accurate quantification of dietary sodium intake has been a persistent challenge in 

epidemiological research due to the measurement error that hinder the assessment of sodium's 

impact on disease outcomes.2,3 ML algorithms have potential to capture complex interactions 

between predictors to improve the prediction accuracy. The first project aimed to employ ML 

algorithms to enhance the prediction of dietary sodium intake, as measured by multiple 24-hour 
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urinary sodium excretion, using questionnaire data in the subcohorts of the Nurses' Health Study 

(NHS), NHS II, and Health Professional Follow-up Study (HPFS) (Chapter 1).  

Evidence is lacking on the relative contributions of specific lifestyle factors on the 

prevention of hypertension, in particular early-onset hypertension.4,5 While early-onset 

hypertension is often deemed highly heritable, less has been characterized with respect to the 

role of lifestyle modification.5,6 Therefore, the second project aimed to determine the population-

attributable risks of modifiable lifestyle factors in relation to incident overall and early-onset 

hypertension, within three large US cohorts spanning ages 27 to 75, across 27-31 years of 

follow-ups (Chapter 2). We leveraged ML algorithms to refine dietary sodium intake estimates 

to reduce the measurement error. 

 

2) Application of novel causal inference methods in randomized controlled trials (RCTs)  

Moving beyond the conventional ‘one-fits-for-all’ approaches, the exploration of 

heterogeneous treatment effect (HTE) in medical and epidemiological studies is gaining 

momentum.7–9 Investigating HTE may provide pivotal evidence for precision medicine and 

individualized prevention strategies. However, the focuses of current application studies are 

often not clear. The third project sought to delineate the research concepts and methodological 

approaches (Chapter 3). Specifically, we defined two major study aims of HTE studies: the 

exploration of sources of effect heterogeneity and the development and validation of 

individualized treatment rules (ITRs).10,11 The study further illustrates the application of ITRs 

within the Preventing Overweight Using Novel Strategies (POUNDS LOST) trial.12 

 

3) Exploration of metabolomics data for novel biomarker identification and establishment  
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Metabolomics technologies have led to a discovery of various new biomarkers that can 

be potentially useful in clinical settings.13,14 Among these, circulating branched-chain amino 

acids (BCAAs) have emerged as predictive biomarkers for the future risk of type 2 diabetes and 

CVD.15,16 The forth project sought to elaborate on the role of BCAAs as the risk of CVD, 

independently of glucose metabolism investigating their relationship with established 

cardiometabolic biomarkers in the Women’s Health Study (Chapter 4).  

 

Each aim of this dissertation may not only contribute uniquely to the corpus of 

knowledge on CVD prevention but also promote the integration of innovative technologies and 

analytical methods into future medical and epidemiological studies. I hope this work will 

contribute incrementally towards ameliorating the global burden of CVD.  
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Chapter 1 

 

Prediction of 24-hour urinary sodium excretion using 

machine-learning algorithms 

 

Author: Rikuta Hamaya, MD, MSc1,2, Molin Wang, PhD1,3,4, Stephen P. Juraschek, MD, PhD5, 

Kenneth J. Mukamal, MD, MPH5, JoAnn E. Manson, MD, DrPH1,2,6, Deirdre K. Tobias, ScD2,7, 

Qi Sun, MD, ScD7,8, Gary C. Curhan, MD, ScD4,9, Walter C. Willett, MD, DrPH1, 4,7, Eric B. 

Rimm, ScD1,4,7*, and Nancy R. Cook, ScD1,2*.  
 

 

*These two last authors contributed equally 

1 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 

2 Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital 

and Harvard Medical School, Boston, MA 

3 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 

4 Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s 

Hospital and Harvard Medical School, Boston, MA 

5 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 

Boston, MA 

6 Mary Horrigan Connors Center for Women’s Health and Gender Biology, Brigham and 

Women’s Hospital and Harvard Medical School, Boston, MA  

7 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 

8 Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 

9 Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA  
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1.1 Abstract 

Background: Accurate quantification of sodium intake based on self-reported dietary 

assessments has been a persistent challenge. We aimed to apply and validate machine-learning 

(ML) algorithms to predict 24-hour urinary sodium excretion from self-reported questionnaire 

information.  

Methods: We analyzed 3,454 participants from the Nurses’ Health Study (NHS), the Nurses’ 

Health Study II (NHS-II), and the Health Professionals Follow-up Study (HPFS), with repeated 

measures of 24-hour urinary sodium excretion over one year. We used an ensemble approach to 

predict averaged 24-hour urinary sodium excretion using 36 characteristics. The agreement and 

calibration of the ML-predicted sodium were tested internally and externally using the Trial of 

Hypertension Prevention I (TOHP-I). In addition, doubly-labelled water (DLW)-derived energy 

expenditure-adjusted 24-hour sodium excretion was predicted in 1,085 participants using the 

same ML approaches. The final ML algorithms were applied to 167,920 non-hypertensive adults 

with repeated assessments of diet over 30 years of follow-up. Confounder-adjusted Cox 

proportional hazard models were fit to estimate the hazard ratio [HR] of incident hypertension 

for predicted sodium in quintiles. 

Results: Averaged 24-hour urinary sodium excretion was better predicted and calibrated with 

ML compared with FFQ, and the findings were externally validated (Spearman correlation 

coefficient [95% CI]: 0.51 [0.49, 0.54] in ML; 0.19 [0.16, 0.23] in FFQ; 0.46 [0.42, 0.50] in 

TOHP-I). However, prediction of DLW-based energy-adjusted 24-hour sodium excretion was 

only modestly better with ML (0.37 [0.31, 0.42] in ML; 0.32 [0.26, 0.37] in FFQ). ML-predicted 

sodium excretion was modestly more strongly associated than FFQ-based sodium intake in the 
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NHS-II (HR [95% CI] comparing Q5 vs. Q1: 1.48 [1.40, 1.56] in ML; 1.04 [0.99, 1.08] in FFQ) 

but no material differences were observed in NHS or HPFS.  

Conclusions: The present ML algorithm improved prediction of participants’ averaged absolute 

24-hour urinary sodium excretion. However, it heavily depended on body size, and prediction of 

energy-adjusted 24-hour sodium excretion was only modestly better using ML compared with 

the FFQ. The present algorithms may prove to be a generalizable approach for predicting 

absolute sodium intake but do not yet substantially reduce the bias stemming from measurement 

error in disease associations. 

 

 

1.2 Introduction 

Self-reported dietary intake is essential for exposure measurement in nutritional 

epidemiological research, yet error remains a methodological concern1. In particular, dietary 

sodium varies substantially between foods and can be difficult to quantify from traditional 

dietary assessment instruments, especially due to its use in food processing or at the table. The 

influence of random and systematic measurement error in quantitating sodium intake is often 

high and can interfere with the ability to assess sodium as an exposure in epidemiological studies 

of chronic disease outcomes.2,20,21 Although evidence from randomized controlled trials (RCTs) 

demonstrates sodium intake plays a causal role in development of hypertension, observational 

studies with longer follow-up periods can provide additional insights, including contributions of 

other modifiable lifestyles factors to incident hypertension22,23 or other chronic disease 

endpoints. Given the high prevalence of inadequately controlled blood pressure (BP) globally, 

accurately measuring dietary sodium intake is of particular importance in reducing the global 
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burden of cardiovascular disease (CVD).24,25 Sodium excretion based on multiple 24-hour urine 

samples is considered the gold standard method for assessing sodium intake26, but is 

prohibitively expensive in large epidemiological cohorts and burdensome for participants, 

highlighting the need for a more cost-effective strategy for accurate dietary sodium assessment. 

 

Regression calibration methods have been proposed to address the issue of measurement 

error. Widely recognized techniques include Rosner’s method27 and Carroll’s method3,17, which 

are based on a simple linear or logistic regression in an accompanying validation study. Huang et 

al. proposed a use of linear regression with subject characteristics data for the prediction of 

exposures with measurement error2, but non-linear associations and complex interactions of 

covariates are not captured by simple linear regression, and their application was prone to 

overfitting with many covariates. In addition, this initial study was limited by sample size, a 

homogeneous population of post-menopausal women, and a lack of internal and external 

validation.2 These limitations hinder the wider application of the previously proposed calibration 

or prediction methods for measurement error-correction purpose in epidemiological research.  

 

Therefore, we sought to provide a more reliable and generalizable method for accurately 

predicting sodium intake. We applied machine-learning (ML) algorithms to various 

questionnaire-based items including food frequency questionnaire (FFQ)-based dietary intake, 

demographics, and behavioral patterns, examining whether the ML-predicted true sodium 

exposure approximates the expected value of the true exposure given a large number of 

covariates in the prediction model. We then examined the associations of FFQ-based sodium 

intake and the ML-based predicted sodium intake with incident hypertension. We hypothesized 
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that the ML algorithm would more effectively capture the between-person variation of 24-hour 

urinary sodium excretion and reduce the measurement error bias in the disease associations. 

 

 

1.3 Methods 

Population 

We analyzed participants from the Nurses’ Health Study (NHS), the Nurses’ Health 

Study 2 (NHS-II), and the Health Professionals Follow-up Study (HPFS) (original cohort sizes 

are 121,700, 116,429, and 51,529, respectively).28 We included a subgroup of 2505, 365, and 

686 participants with previously assessed two, three, and four 24-hour urinary sodium excretion 

data collected within one year26, respectively. For each study, baseline was defined as the period 

during which the pre-specified numbers of 24-hour urine samples were obtained. Written or oral 

informed consent was obtained from all participants. The Trial of Hypertension Prevention 

(TOHP) I was used to assess external validation of the present approach.29 TOHP-I was designed 

to test the short-term feasibility and efficacy of seven nonpharmacologic interventions in persons 

with high normal blood pressure. From the trial, a total of 1,423 participants with two available 

24-hour urinary samples at baseline were included in the analysis. This study was approved by 

the Institutional Review Board of Brigham and Women’s Hospital and the Harvard T.H. Chan 

School of Public Health. 

 

24-Hour urinary sodium excretion  

We assessed urinary sodium excretion by averaging all available 24-hour urine samples 

for each participant. To reduce measurement error that might arise from the under-collection or 
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overcollection of 24-hour urine samples, we excluded samples that met at least one of the 

following criteria: the volume of the 24-hour urine sample was less than 500 ml or more than 

5000 ml; the start and end times of urine collection were unavailable; the duration of urine 

collection was less than 20 hours or was more than 28 hours; or the volume loss was more than 

100 ml if the estimated volume lost was reported.  

Among the cohorts, two 24-hour urine samples were collected within an average of one 

week in 2,651 participants between 2003 and 2007 to examine risk factors for kidney stones.30 In 

second cycle, four 24-hour urine samples were collected, in periods evenly spanned over four 

seasons within one year, among 1,232 participants between 2010 and 2013, as part of the 

Women’s Lifestyle Validation Study and Men’s Lifestyle Validation Study.31 We excluded 

participants with missing age, height, or BMI, and those without available at least two 24-hour 

urine samples based on the aforementioned criteria, leaving 3,454 participants in our main 

analysis. For developing the ML prediction algorithm, the averaged 24-hour urinary sodium 

excretion over all available samples was used as the prediction target. 

In secondary analysis predicting averaged 24-hour urinary sodium excretion adjusted for 

doubly-labelled water (DLW)-based total energy expenditure, 1,085 participants with available 

DLW data were included.  

 

Questionnaires 

In NHS, NHS-II and HPFS, participants returned a biennial questionnaire to ascertain 

lifestyle information and new onset disease diagnoses with follow-up rates greater than 90% of 

eligible person-time. Participants also answered semi-quantitative FFQs every four years, 

reporting intake of more than 130 foods and beverages. For the FFQ, respondents were asked 
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how often, on average, they consumed the specified amount of each food or beverage during the 

preceding year; 9 possible frequency categories ranged from never/almost never to ≥ 6 times per 

day. Nutrient intake, including FFQ-based sodium intake, was calculated by multiplying the 

frequency of intake by the nutrient composition for the portion size specified for each food or 

vitamin supplement using the Harvard University nutrient database. The database is derived from 

the USDA food composition manufacturers information, derived information from food 

ingredient lists, and direct analyses of foods. Frequency of using added table salt was asked with 

the same scale. Predictors were defined from demographics, behavioral and dietary information 

based on the baseline questionnaire, defined as the questionnaire that covered the period during 

which the prespecified numbers of 24-hour urine samples were obtained.  

 

Predictors  

We used the following covariates to develop the ML prediction model aiming for 

external usage: FFQ-based sodium intake, FFQ-based potassium intake, sodium-to-potassium 

ratio, age, sex, body weight, height, BMI, hours per week of moderate-to-vigorous physical 

activity (PA hours), history of hypertension, use of antihypertensives/diuretics, menopausal 

status, FFQ-based total calorie intake, DASH score without a sodium component, and FFQ-

based intake of red meat, vegetables, fruits, tea or coffee, alcohol, and energy-adjusted sodium 

and potassium (FFQ-based sodium or potassium divided by FFQ-based total calorie intake). 

These predictors (selected list of predictors) were selected considering that this prediction 

algorithm would have external usage and most epidemiologic studies of chronic disease would 

collect this information. For internal usage only (i.e. in NHS/NHS-II/HPFS), another ML model 

was developed using the following predictors in addition to the list above (comprehensive list of 
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predictors): cohorts, ever use of oral contraceptives, living alone, marital status, frequency of 

fried foods at home/ away from home, family history of hypertension, frequency of using added 

table salt, menopausal hormone therapy (past and current), parity, and FFQ-based intake of 

processed meat, hot dogs, hamburgers, and cheese. Sex was omitted in the comprehensive list of 

predictors when cohort was used for a predictor since the cohorts were exclusively male or 

female.  

 

Machine-learning  

Figure 1.1 illustrates the present ML prediction approach. Missing values of each 

predictor were imputed using single imputation based on the Multiple Imputation by Chained 

Equations (MICE) algorithm.32 Continuous variables were centered and scaled. Dummy 

variables were created for categorical variables.  

After preprocessing, we used 36 predictors for internal usage and 22 for external usage. 

The outcome was averaged 24-hour urinary sodium excretion over all available 24-hour urine 

samples per participant. A 5-fold cross-fitting procedure was applied, in which data was 

randomly split into 5 subsets to calculate the predicted sodium intake in every participant33. Each 

subset was used in turn as the validation data while the remaining four subsets served as the 

corresponding training data for building a prediction algorithm. For prediction, three fully tuned 

distinct ML algorithms were used: elastic net, eXtreme Gradient Boosting (XGBoost), and 

Bayesian regularization for feed-forward neural net (BRNN). Further description of these 

algorithms is provided in the Appendix 1.1. Five-fold cross-validation (CV) was conducted for 

the hyperparameter tuning within each training set. Finally, the predicted sodium intake from the 
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three ML algorithms were simply averaged (ensemble method). The output was used to assess 

the prediction accuracy with averaged 24-hour urinary sodium excretion.  

 

 

Figure 1.1: Summary of the present study methods 
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Figure 1.1 (continued) 

This study aimed to assess the prediction accuracy of the machine-learning (ML)-derived sodium 

intake against 24-hour urinary sodium excretion (A), and evaluate the association of the ML- and 
food frequency questionnaire (FFQ)-derived sodium intake with incident hypertension (B). A) 

Using derivation dataset (N=3,454) in which data on multiple 24-hour urinary sodium excretion 
was available, we computed ML-derived sodium intake in all the participants by the cross-fitting 

approach (out-of-fold prediction). After training/test data splitting, each fold was used as the 

validation data while the remaining folds will serve as the corresponding training data for 
building a prediction algorithm. For prediction, an ensemble algorithm over fully tuned four 

distinct MLs as was used: elastic net, eXtreme Gradient Boosting (XGBoost), and Bayesian 
regularization for feed-forward neural net (brnn). Five-fold cross-validations (CV) were 
conducted for the hyperparameter tuning within each training set. Finally, the predict ion 

accuracy of the ML-derived sodium intake was assessed against the corresponding 24-hour 
urinary sodium excretion. B) We then finalized the prediction algorithm based on fully tuned 

MLs and optimized ensemble weights for each algorithm. Each ML algorithms were trained 
based on the whole derivation dataset, and the weights were calculated via Bayesian optimization 
using the out-of-fold prediction in A. Using the final algorithm, the ML-derived sodium intake 

was calculated in the whole participants in NHS, NHS-II, and HPFS for every time point. Cox 
proportional hazard models were used to evaluate the associations between ML- and FFQ-

derived sodium intake and incident hypertension in the three cohorts separately. 

 

 

Prediction of energy-adjusted sodium 

In a secondary analysis, we set DLW-based energy-adjusted averaged 24-hour urinary 

sodium excretion, based on the density method34, as our prediction target in the subset with 

available measures of DLW (N=1,085). The aim of this analysis was to account for strong 

confounding and extraneous variation due to body size.34 For interpretability, we multiplied the 

median of the DLW-based energy expenditure in the derivation data to the predicted values by 

our ML algorithm, which was the final output of the prediction algorithm (ML-energy-adjusted 

sodium).  

We conducted another analysis, in which averaged 24-hour urinary sodium excretion and 

DLW-based total energy expenditure were predicted separately (in N=3,454 and N=1,085, 
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respectively). Then the predicted energy-adjusted sodium was evaluated as the ratio of ML-

predicted sodium and ML-predicted energy (ML-energy-adjusted ML-sodium). 

 

Association with incident hypertension 

For a use of the prediction algorithm to examine the association with hypertension in the 

total cohorts of NHS/NHS-II/HPFS, we refit the ML models using the total sample and the 

hyperparameters were tuned by 5-fold CV. Then we applied Bayesian optimization to calculate 

the optimal weights for each ML algorithm for the ensemble method 35. The ML algorithm was 

applied to the NHS, NHS-II, and HPFS cohorts for every 4-year time period, separately, to 

estimate the time-varying sodium intake for all the participants. We then compared the 

association of FFQ-derived and ML-predicted sodium intake with incident hypertension among 

those without a history of hypertension. For this analysis, participants were excluded if they 

reported a diagnosis of hypertension, cancer, or stroke at the baseline questionnaire (1986 for 

NHS and HPFS, 1991 for NHS-II).  

We examined the following exposures: FFQ-derived sodium intake (FFQ-sodium), FFQ-

derived sodium intake divided by FFQ-derived calorie intake (FFQ-energy-adjusted sodium), 

ML-predicted 24-hour sodium excretion (ML-sodium), ML-predicted DLW-based energy 

expenditure-adjusted 24-hour sodium excretion (ML-energy-adjusted sodium), and ML-

predicted 24-hour sodium excretion divided by ML-predicted DLW-based energy expenditure 

(ML-energy-adjusted ML-sodium). 

Physician diagnosis of hypertension was self-reported on the baseline and biennial 

questionnaires. This method of reporting a diagnosis of hypertension among female and male 

health professionals was shown to be valid in these three cohorts when compared to ascertained 
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medical records in a subsample.36–38 Participants were determined to be cases if they reported a 

diagnosis of hypertension and year of diagnosis after the baseline questionnaire as previously 

described.36,37 

 

Statistical analysis 

Overview of the present analyses is in Figure 1.2. For the assessment of prediction 

accuracy in the derivation cohorts (i.e. NHS/NHS-II/HPFS) and in external dataset (TOHP-I), we 

computed Spearman correlation coefficients between FFQ-based sodium intake, ML-derived 

sodium intake (ML-sodium), and average 24-hour urinary sodium excretion. Calibration plots, 

Bland-Altman plots, and calibration intercepts and slopes were also computed. Calibration 

intercepts close to 0 and calibration slopes close to 1 were considered “good” calibration in 

general.39 

 

 

Figure 1.2: Overview of the present analyses 
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Figure 1.2 (continued) 

Using N=3,454 dataset, averaged 24-hour urinary sodium excretion was predicted (ML-1), which 

was internally validated and examined with respect to incident hypertension in NHS and NHS-II 
(NHSs) and HPFS. An ML model for 24-hour sodium was developed using selected predictors 

(ML-2) and the model was internally and externally validated. Using N=1,085 dataset, DLW-
energy-adjusted averaged 24-hour urinary sodium excretion was predicted (ML-3), which was 

also internally validated and examined with respect to incident hypertension in NHSs and HPFS. 

Finally DLW-based energy expenditure was predicted in the same dataset (ML-4), which was 
used either as a covariate in Cox models or to calculate ML-energy-adjusted ML-sodium. 

 

 

We fit Cox proportional models in the three cohorts to assess the association of FFQ- and 

ML-derived sodium measures with incident hypertension. The exposures were categorized into 

quartiles to compute the hazard ratio (HR) and 95% confidence intervals (CIs) and treated as 

time-varying. Age was used as the time axis for the models. The models were adjusted for race 

(white; non-white), family history of hypertension (yes; no), smoking status (never; past; 

current), BMI (continuous, kg/m2), ML-energy (continuous, kcal/day), alcohol intake (0; 0.1 to 

<5; 5 to <15; 15 to <30; ≥30 g/day), FFQ-based potassium intake (continuous, mg/day), DASH 

score without the sodium component (continuous, unit), moderate-to-vigorous physical activity 

(continuous, hours/week), and use of aspirin, acetaminophen, and non-steroidal anti-

inflammatory drugs (yes/no). In the NHS and NHS-II, menopausal status (pre-; post-

menopausal), use of menopausal hormone therapy (never/past/current), and parity (none; 1 or 2; 

3 or 4; ≥5 kids) were additionally adjusted. In the NHS-II only, use of oral contraceptive (never; 

past; current) was further adjusted. All of these covariates were included in the ML prediction 

model. Estimates and 95% CIs were calculated in each cohort separately. 

The statistical analyses were performed using R 4.2.0 (R Foundation for Statistical 

Computing, Vienna, Austria.), Python 3.9.13, and SAS 9.4 (SAS Institute Inc., Cary, NC, USA). 
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1.4 Results 

Baseline characteristics are summarized in Table 1.1. A total of 3,454 participants with at 

least two 24-hour urinary sodium excretion data were included from the three cohorts. Higher 

urinary sodium excretion was characterized by younger age, greater proportion of men or pre-

menopausal women, non-White race, larger body size, higher FFQ-based sodium intake, history 

of hypertension and cancer, and ever usage of oral contraceptives. Supplemental Table 1.1 

contrasts baseline characteristics according to the quartile of energy-adjusted 24-hour sodium 

excretion. Higher energy-adjusted sodium excretion was associated with smaller DLW-based 

energy expenditure and higher 24-hour sodium excretion, and the correlation with body size was 

not strong. 

 

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 

 N = 864 N = 864 N = 863 N = 863 

Cohort                     

1: HPFS (Men only)    151 (17.5)     200 (23.1)     290 (33.6)     387 (44.8)  

2: NHS (Women only)    417 (48.3)     295 (34.1)     243 (28.2)     164 (19.0)  

3: NHS-II  (Women only)    296 (34.3)     369 (42.7)     330 (38.2)     312 (36.2)  

Age, years   63.2 (10.4)   61.2 (10.5)   61.4 (10.3)   59.9 (9.7) 

Body mass index, kg/m2   24.6 (4.5)   25.7 (4.4)   26.7 (5.0)   28.9 (6.0) 

Non-White race, %     36 ( 4.2)      41 ( 4.7)      45 ( 5.2)      54 ( 6.3)  

History of hypertension, %    306 (35.4)     299 (34.6)     318 (36.8)     352 (40.8)  

History of cancer, %    100 (11.6)     102 (11.8)     122 (14.1)     156 (18.1)  

Use of antihypertensives, %    282 (32.6)     287 (33.2)     287 (33.3)     327 (37.9)  

Family history of hypertension, %    437 (50.6)     426 (49.3)     380 (44.0)     413 (47.9)  

Family history of CVD, %    197 (22.8)     175 (20.3)     184 (21.3)     159 (18.4)  

Moderate to vigorous PA, hours/w    3.9 (5.0)    4.1 (5.7)    4.2 (4.9)    4.2 (5.1) 

Smoking status                 

1: Never    506 (58.6)     530 (61.3)     520 (60.3)     517 (59.9)  

2: Past    314 (36.3)     294 (34.0)     302 (35.0)     313 (36.3)  

3: Current     44 ( 5.1)      40 ( 4.6)      41 ( 4.8)      33 ( 3.8)  

Alcohol, gram/day    8.8 (13.2)    8.1 (13.0)    8.4 (13.2)    7.9 (11.6) 

DASH score without sodium 

component   21.2 (4.3)   21.1 (4.1)   20.6 (4.3)   20.2 (4.1) 

FFQ-based sodium, mg/day  2000 (729) 2159 (745) 2263 (774) 2411 (864) 

FFQ-based pottasium, mg/day  3271 (1013) 3314 (1069) 3322 (1109) 3397 (1113) 
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FFQ-based total calorie, kcal/day 1830 (557) 1871 (592) 1900 (601) 1941 (636) 

Averaged 24-hour urinary sodium 

excretion, mg/day 2074 (372) 2889 (185) 3591 (237) 5014 (906) 

 

Table 1.1: Baseline characteristics according to the quartile of the averaged 24-hour 

urinary sodium excretion in N=3,454 participants of NHS, NHS-II , and HPFS 

 

 

Prediction of averaged 24-hour urinary sodium excretion 

Averaged 24-hour urinary sodium excretion was weakly correlated with FFQ-based 

sodium intake (Spearman correlation coefficient [95% CI]: 0.19 [0.16, 0.23]) and moderately 

correlated with ML-based predicted value (0.51 [0.49, 0.54]; Figure 1.3). Elastic net, XGBoost, 

and BRNN algorithms predicted the target with Spearman correlation coefficient [95% CI] of 

0.51 [0.49, 0.54], 0.50 [0.48, 0.53], and 0.51 [0.48, 0.53], respectively (Supplemental Figure 

1.1). The calibration of the ML-predicted sodium was good (calibration intercept [SE]: -92 

mg/day [97]; calibration slope: 1.03 [0.03]). However, the ML output did not cover 24-hour 

urinary sodium excretion values below 1944 mg/day or above 5682 mg/day, partly reflecting the 

limited number of participants with such sodium intake values (N=265 and 163, respectively). 

The mean difference between ML-predicted sodium intake and averaged 24-hour urinary sodium 

excretion was -0 mg/day (95% CI: -1986, 1987), and higher actual intake was associated with 

systematically underestimated ML estimate (Supplemental Figure 1.2). ML models based on a 

selected list of covariates yielded similar prediction accuracy (Supplemental Figure 1.3). 

Body size had the largest contribution to the prediction algorithm of absolute sodium 

excretion, followed by age and sex (Table 1.2). In the elastic net algorithm, weight, FFQ-sodium 

measures and use of table salt were strongly and positively predictive, while age and  

membership in NHS or NHS-II (i.e. women) were negatively associated. In the XGBoost 

algorithm, weight, FFQ-based calorie-adjusted sodium intake, BMI, and age were most highly 
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predictive. The strong predictors were similar when the subset of selected covariates was used 

(Supplemental Table 1.2). 

 

 

Figure 1.3: Comparison of ML-predicted and FFQ-based sodium intake with averaged 24-

hour urinary sodium excretion in N=3,454 participants from NHS, NHS-II, and HPFS 

Scatter plots describing the association between ML-predicted sodium intake (A) and FFQ-based 

sodium intake (B) with respect to averaged 24-hour urinary sodium excretion in N=3,454 
participants. ML-predicted sodium intake was based on out-of-fold prediction based on 36 
predictors using ensemble over three ML algorithms. Each dot represents each participant.  

Blue straight lines are the calibration curves, and the values of calibration intercept and 
calibration slope are provided. ρ represents Spearman correlation coefficient. 
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A. Coefficients of elastic net   

Positive association Shrunk to null Negative association 

 Coef  Coef  Coef 

Weight 371 FFQ-sodium 0 Age -258 

FFQ-sodium/FFQ-calorie 191 BMI 0 NHS -218 

Use of table salt 
81 

FFQ-sodium/ FFQ-

potassium 0 
NHS-II 

-187 

Height 75 FFQ-potassium 0 Use of oral contraceptives -113 

Fried food away from home 33 Fruit 0 FFQ-calorie -31 

Red meat 33 PA hours 0 Past use of HRT -31 

Processed meat 33 Post-menopausal 0 Alcohol -19 

Use of diuretics 32 FH of CVD 0 DASH score -16 

Fried food at home 31 Hotdog 0 FH of hypertension -2 

FFQ-potassium/FFQ-calorie 29 Married 0   

Living alone 19 Current use of HRT 0   
Use of antihypertensives 13 Parity 0   

Hamburger 11     

Cheese 6     
Vegetable 6     

Tea or coffee 3     

History of hypertension 2     

      
B. Top 10 variable importance in XGBoost 

 Variable importance 

Weight 100 

FFQ-sodium/FFQ-calorie 30 

BMI 24 

Age 22 

Height 20 

FFQ-sodium/ FFQ-potassium 14 

Post menopausal 11 

FFQ-sodium 9 

FFQ-calorie 8 

Fruit 7 
 

 

Table 1.2: Interpretation of ML models based on full covariate list for predicting averaged 

24-hour urinary sodium excretion in N=3,454 participants 

A) Values are coefficients per category for categorical variables and per SD for continuous 

variables 

B) Variable importance measures are scaled into 0 to 100. 
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The averaged 24-hour urinary sodium excretion in TOHP-I was moderately well-

predicted by the ML based on selected list of covariates (Spearman correlation coefficient [95% 

CI]: 0.46 [0.42, 0.50]; Figure 1.4). The calibration intercept [SE] was -269 mg/day [209] and 

calibration slope was 0.83 [0.044]), systematically over-estimating sodium intake by ML. 

Nevertheless, it substantially outperformed prediction by FFQ-based sodium (Spearman 

correlation coefficient: 0.22 [0.17, 0.27]). (calibration intercept [SE]: 2852 [105]; calibration 

slope: 0.21 [0.027]). The mean difference between 24-hour urinary sodium excretion and ML-

predicted sodium intake was -1076 mg/day [95%CI: -3638, 1497] (Supplemental Figure 1.4). 

 

Prediction of DLW-based energy and energy-adjusted averaged 24-hour urinary sodium 

excretion 

 Among 1,085 participants whose DLW-information was available, DLW-based energy 

expenditure was well predicted and calibrated by ML approach compared with FFQ-derived total 

calorie intake (Spearman correlation coefficient [95% CI]: 0.77 [0.75, 0.80] in ML, 0.29 [0.24, 

0.35] in FFQ; Supplemental Figure 1.5-1.6), with weight being the strongest predictor 

(Supplemental Table 1.3). However, DLW-based energy-adjusted averaged 24-hour urinary 

sodium excretion (i.e. sodium excretion / DLW-energy) was only modestly better predicted in 

ML approaches compared with FFQ-based calorie-adjusted FFQ-based sodium intake (Spearman 

correlation coefficient: 0.37 [0.31, 0.42] in ML outputs predicting ‘24-sodium / DLW-energy’, 

0.32 [0.27, 0.38] in ML outputs predicting 24-hour sodium divided by ML outputs predicting 

DLW-energy, and 0.32 [0.26, 0.37] in FFQ-calorie-adjusted FFQ-sodium; Figure 1.5). 

Calibration was better and mean differences were smaller in ML approaches compared with a 

FFQ measure (Figure 1.5 and Supplemental Figure 1.7). In ML models predicting DLW-
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energy-adjusted sodium, FFQ-based nutritional or food intakes related to sodium and potassium 

were most predictive, and the contributions of body size were smaller. 

 

 

Figure 1.4: Comparison of ML-predicted and FFQ-based sodium intake with averaged 24-

hour urinary sodium excretion in N=1,423 participants in the TOHP-I 

Scatter plots describing the association between ML-predicted sodium intake (A) and FFQ-based 
sodium intake (B) with respect to averaged 24-hour urinary sodium excretion in N=1,423 

participants in the TOHP-I. The ML prediction algorithm was externally developed based on 22 
predictors in the NHS, NHS-II, and HPFS. Each dot represents each participant. Blue straight 

lines are the calibration curves, and the values of calibration intercept and calibration slope are 
provided. ρ represents Spearman correlation coefficient. 
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Figure 1.5: Comparison of ML-derived and FFQ-based energy-adjusted sodium intake 

with DLW-based energy-adjusted averaged 24-hour urinary sodium excretion in N=1,085 

participants from NHS, NHS-II, and HPFS 
Scatter plots describing the association between ML-predicted DLW-energy-adjusted 24-hour 

urinary sodium excretion (A), ML-predicted DLW-energy-adjusted ML-predicted 24-hour 

urinary sodium excretion (B), and FFQ-based calorie-adjusted FFQ-based sodium intake (C) 
with respect to DLW-energy-adjusted averaged 24-hour urinary sodium excretion in N=1,085 

participants. ML-predicted sodium measures was based on out-of-fold prediction based on 36 
predictors using ensemble over three ML algorithms. Each dot represents each participant.  
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Figure 1.5 (continued) 

Blue straight lines are the calibration curves, and the values of calibration intercept and 

calibration slope are provided. ρ represents Spearman correlation coefficient. 

 

 

Association between FFQ- or ML-based sodium measures and incident hypertension 

We applied the ML algorithm to the NHS (N=52,780), NHS-II (N=83,871), and HPFS 

(N=31,269) cohorts for each repeated FFQ in every 4-year period to estimate the time-varying 

intake of sodium intake (Table 1.3). In NHS, FFQ-energy-adjusted sodium was similarly 

associated with incident hypertension than ML-based measures (Q5 vs. Q1: HR = 1.00 for FFQ-

energy-adjusted sodium; HR = 0.99-1.01 for ML-based measures). In NHS-II, the associations 

with ML-based measures were stronger than FFQ-based ones (Q5 vs. Q1: HR = 1.05 for FFQ-

energy-adjusted sodium; HR = 1.13-1.48 for ML-based measures). In HPFS, similar inverse 

associations were observed for FFQ- and ML-based measures ones (Q5 vs. Q1: HR = 0.92 for 

FFQ-energy-adjusted sodium; HR = 0.93-0.97 for ML-based measures). 

 

NHS 
 Q1 Q2 Q3 Q4 Q5   

FFQ-sodium 
– 

0.99 (0.96, 

1.03) 

0.99 (0.96, 

1.03) 

0.97 (0.93, 

1.00) 

0.99 (0.95, 

1.03) 

FFQ-energy-adjusted sodium 
– 

1.00 (0.97, 

1.04) 

1.03 (1.00, 

1.07) 

1.00 (0.97, 

1.04) 

1.00 (0.96, 

1.04) 

ML-sodium 
– 

0.97 (0.93, 

1.00) 

0.96 (0.92, 

1.00) 

0.99 (0.94, 

1.03) 

1.01 (0.95, 

1.07) 

ML-energy-adjusted sodium 
– 

1.00 (0.97, 

1.04) 

1.01 (0.97, 

1.05) 

1.00 (0.97, 

1.04) 

0.99 (0.96, 

1.03) 

ML-energy-adjusted ML-sodium 
– 

1.00 (0.96, 

1.04) 

1.03 (0.99, 

1.07) 

1.01 (0.97, 

1.05) 

1.00 (0.96, 

1.05) 

NHS-II  
 Q1 Q2 Q3 Q4 Q5   

FFQ-sodium 
– 

0.99 (0.95, 

1.02) 

1.04 (1.00, 

1.08) 

1.03 (0.99, 

1.07) 

1.04 (0.99, 

1.08) 

FFQ-energy-adjusted sodium 
– 

1.03 (0.99, 

1.07) 

1.04 (1.01, 

1.08) 

1.02 (0.98, 

1.06) 

1.05 (1.02, 

1.09) 

ML-sodium 
– 

1.11 (1.07, 

1.16) 

1.23 (1.18, 

1.29) 

1.34 (1.28, 

1.40) 

1.48 (1.40, 

1.56) 
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ML-energy-adjusted sodium 
– 

1.07 (1.02, 

1.11) 

1.09 (1.05, 

1.14) 

1.12 (1.07, 

1.16) 

1.13 (1.08, 

1.17) 

ML-energy-adjusted ML-sodium 
– 

1.07 (1.02, 

1.11) 

1.14 (1.09, 

1.19) 

1.19 (1.14, 

1.24) 

1.19 (1.14, 

1.24) 

HPFS 
 Q1 Q2 Q3 Q4 Q5   

FFQ-sodium 
– 

0.98 (0.93, 

1.03) 

0.95 (0.90, 

1.00) 

0.96 (0.91, 

1.01) 

0.90 (0.84, 

0.95) 

FFQ-energy-adjusted sodium 
– 

0.99 (0.94, 

1.03) 

0.98 (0.93, 

1.02) 

0.96 (0.91, 

1.01) 

0.92 (0.87, 

0.98) 

ML-sodium 
– 

0.97 (0.92, 

1.02) 

0.94 (0.88, 

1.00) 

0.92 (0.86, 

0.99) 

0.97 (0.89, 

1.06) 

ML-energy-adjusted sodium 
– 

1.00 (0.95, 

1.05) 

1.00 (0.94, 

1.05) 

0.98 (0.93, 

1.03) 

0.93 (0.88, 

0.98) 

ML-energy-adjusted ML-sodium 
– 

1.01 (0.96, 

1.06) 

1.01 (0.95, 

1.06) 

0.99 (0.93, 

1.05) 

0.96 (0.90, 

1.02) 
 

Table 1.3: Multivariable-adjusted Hazard Ratios (95% CI)  between FFQ-based energy-adjusted ML-

predicted or FFQ-derived sodium measures and incident hypertension among 52,780 women in the in 

the NHS, 83,871 women in the NHS-II , and 31,269 men in the HPFS 

Numbers are case numbers or hazard ratios (95% confidence intervals).  

The exposures are the quintiles of FFQ-derived sodium intake (FFQ-sodium), FFQ-derived sodium intake 

divided by FFQ-derived calorie intake (FFQ-energy-adjusted sodium), ML-predicted 24-hour sodium 

excretion (ML-sodium), ML-predicted DLW-based energy expenditure-adjusted 24-hour sodium excretion 

(ML-energy-adjusted sodium), and ML-predicted 24-hour sodium excretion divided by ML-predicted DLW-

based energy expenditure (ML-energy-adjusted ML-sodium). 

The outcome is incident self-reported hypertension. 

The multivariable-adjusted models are adjusted for age, race, family history of hypertension, smoking status, 

body mass index, DASH score without sodium component, moderate-to-vigorous physical activity, alcohol 

intake, potassium intake, and total calorie  in HPFS; plus parity, menopausal status, and hormone replacement 

therapy in NHS; and plus contraceptive use  in NHS-II . 

The 95% CIs did not take into account the variation due to fitting the prediction model. 

Abbreviations: NHS, Nurses’ Health Study; HPFS, Health Professional Follow-up Study; DASH, Dietary 

Approaches to Stop Hypertension score; P-Y, person-years; HR, hazard ratio. 

 

 

1.5 Discussion 

In this study, using data from 3,454 participants from the NHS, NHS-II, and HPFS, we 

applied ML algorithms to predict average 24-hour urinary sodium excretion over multiple 

samples. Our algorithms yielded a more accurate prediction and calibration of sodium intake 

compared with that calculated based on a single FFQ. The prediction accuracy was externally 

validated in TOHP-I but the calibration was poor. However, the improvement in prediction was 
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largely due to the incorporation of body size, and prediction of DLW-based energy-adjusted 24-

hour sodium excretion was only modestly better in ML compared with FFQ-calorie-adjusted 

FFQ-sodium. In the NHS-II consisting of younger women (mean age of 36y), more robust 

associations with incident hypertension were observed in ML-based sodium measures than FFQ-

based measures. However, in NHS (mean 52y) and HPFS (mean 53y), no apparent associations 

were observed between ML-based sodium measures and incident hypertension. Therefore, the 

proposed algorithms may serve as a novel and more generalizable method for predicting more 

accurate absolute sodium intake compared with a FFQ, but given the widely-observed 

association of sodium with hypertension from both trials and observational studies, ML-

predicted sodium could not greatly attenuate the apparent bias stemming from measurement error 

in disease association. 

 

Measurement error in estimating sodium intake based on dietary assessment has been a 

persistent challenge in epidemiological research due to the great variability of sodium in 

processed foods and food prepared away from home.2,3,21 This study represents a pioneering 

effort to incorporate all available information from cohort questionnaires using ML algorithms to 

improve the calibration of sodium exposure. Our algorithms, which referenced the averaged 24-

hour urinary sodium excretion across multiple samples, provided substantially more accurate 

estimates of sodium intake compared with those based solely on FFQ. We leveraged three 

distinct algorithms (linear, tree-based, and neural network algorithms) to capture multiple aspects 

of the contributions of the predictors, and the ensemble approach resulted in the best 

performance. The algorithm performed fairly well in TOHP-I, despite distinct differences in 

participant characteristics from those in the NHS, NHS-II, and HPFS. Therefore, our approach 
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may have broad applicability and provide a more robust prediction of absolute sodium intake. In 

addition, DLW-based energy expenditure was well predicted using the same ML approach 

despite the limited sample size, also suggestive of its potential utility in future investigations. 

 

However, the better prediction did not necessary lead to a greater reduction of 

measurement error bias in the disease association. The variable importance analyses indicated 

that body size, age, and sex, were the strongest predictors of sodium intake. This reflects the fact 

that larger and younger participants eat more food, including salt, and the contributions of these 

variables are of no interest in evaluating the association between sodium and disease outcome – 

i.e. these variables are confounders included in the disease model. Therefore, a primary 

nutritional exposure in disease association is energy-adjusted intake to minimize such 

confounding, inferring the effect of changing the composition of diet on disease outcomes. The 

present MLs only modestly improved the prediction accuracy for ‘gold -standard’ DLW-energy-

adjusted 24-hour sodium excretion compared with FFQ-based calorie-adjusted FFQ-sodium, 

although the predictions for either 24-hour sodium excretion or DLW-based energy expenditure 

were far more accurate than FFQ-based measures. The improvement in ML prediction was 

largely due to FFQ-based dietary information related to sodium or potassium. Consequently, we 

observed only slight improvement in removing measurement error bias using the ML in the 

association with incident hypertension in the younger female cohort and no improvement in the 

other cohorts. 

 

Accurate calculation of salt intake from a generic list of foods in the FFQ is challenging, 

whereas signals from other questionnaire-based information were meaningful for the prediction 
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by reflecting salt-related eating behaviors. This aligns with prior epidemiological studies in 

which salt preference was used as a proxy for salt intake.40,41 Our prediction algorithms were 

robust in that they accounted for the flexible contributions of multiple characteristics and have 

the potential to be applied in a wide range of settings. For example, quantifying sodium intake 

purely based on questionnaire information would be informative as well as cost saving compared 

with 24-hour urinary sampling, having the potential to be widely used in the clinical setting for 

counselling/lifestyle interventions, given that dietary guidelines define cutoffs for absolute 

sodium intake. However, the use of absolute sodium excretion has dubious value in clinical 

applications because of its strong dependence on age, sex, and body size, whereas the 

intervention would be on diet quality or adiposity if appropriate. Further work to develop sod ium 

screeners targeting diet quality and incorporating additional behavioral questions would be 

desirable.  

 

A limited number of longer-term RCTs have reported the effect of salt reduction 

interventions on incident hypertension. In the meta-analysis conducted within the Dietary 

Reference Intakes for Sodium and Potassium, the relative risk estimate integrating TOHP-I, 

TOHP-II, and Hypertension Prevention Trial was 0.79 (95%CI: 0.67, 0.93).42 Although our 

estimates may not be directly compared to these trial results as we did not emulate the target trial 

of the comparable intervention, we only observed 1.2 to 1.4-fold higher risk in the highest intake 

group versus the lowest one in the NHS-II and null results in NHS and HPFS. The notable 

differences across NHS, NHS-II, and HPFS suggest effect modification by age; NHS and HPFS 

consisted of older populations, and the participants most susceptible to hypertension may have 

been already excluded at baseline. Effect modification by sex may also be present, as studies 
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reporting women are more salt-sensitive compared with men.43–45 Further investigation is 

warranted to clarify the relationship between predicted sodium intake and hypertension to 

identify specific targets for sodium reduction interventions. 

 

Strengths and limitations 

Strengths of this study include the use of multiple 24-hour urinary samples and DLW 

information, its large sample size, rigorous ML algorithms, external validation, and application 

examples for the actual use of the predicted sodium measures in outcome analyses targeting 

incident hypertension. However, there are several limitations that warrant consideration. 

Although averaged 24-hour urinary sodium excretion is considered the gold standard approach to 

estimate sodium intake, the measure still suffers from measurement error due to true variability 

from day-to-day sodium exposure. There is also likely to be measurement error in the DLW-

based energy expenditure used for calculating energy-adjusted sodium measures. Although we 

externally validated the present algorithm in TOHP-I, which had sizeable minority participation, 

further evaluation is warranted in other racial/ethnic groups and across different cultures. Urine 

and DLW samples were based on smaller number of participants, and thus the generalizability of 

the ML algorithm might be limited. In addition, DLW information was not available in TOHP-I 

and external validation could not be assessed. The 95% CIs in the Cox models did not take into 

account the variation due to fitting the calibration model, whereas a simulation study showed 

such CI estimates would work when the predicted value is used as a categorical variable.46 

Finally, our prediction of incident hypertension was in three large prospective observational 

studies with all self-reported lifestyle and demographic information, which in themselves may 

have modest measurement error, although the reliability of self-reported hypertension has been 
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validated 36–38. This error is likely mostly random with respect to our predicted sodium intake 

and thus our risk estimates may be underestimated with respect to predicted incidence of 

hypertension.  

 

Conclusion 

ML algorithms provided improved prediction of average 24-hour urinary sodium 

excretion and DLW-based energy expenditure compared with the FFQ-based estimates. The 

prediction accuracy was externally valid. However, the ML algorithms heavily depended on 

body size, age, and sex, which were confounders in disease associations and included in the 

disease prediction models. Therefore, the prediction of energy-adjusted 24-hour sodium 

excretion was only modestly better using ML compared with FFQ. The ML-predicted sodium 

intake was more strongly associated with incident hypertension than FFQ-based ones in NHS-II, 

whereas there were no appreciable differences in NHS or HPFS. The present algorithms may 

thus prove to be a more effective and generalizable approach for predicting absolute sodium 

intake but did not materially reduce the measurement error bias in disease associations. 
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2.1 Abstract 

Importance: Primordial prevention of hypertension by lifestyle modification is a high priority. 

Evidence is lacking on the relative contributions of specific lifestyle factors and their overall 

contribution to prevention of hypertension, in particular early-onset hypertension.  

Objective: To investigate the population attributable risks (PARs) and restricted mean survival 

time (RMST) differences of lifestyle factors in incident hypertension and early-onset 

hypertension in three large US cohorts. 

Design: Prospective cohort study. 

Setting, and Participants: We included participants of the Nurses’ Health Study (NHS, 

N=52,780 women, aged 40–67 in 1986), the Nurses’ Health Study II (NHS II, N=83,871 women, 

aged 27–46 in 1991), and the Health Professionals Follow-up Study (HPFS, N =31,269 men, 

aged 40–75 in 1986), who were free from hypertension, cardiovascular disease and cancer at 

baseline. 

Exposures: Four modifiable lifestyles based on the 2020 International Society of Hypertension 

Global Hypertension Practice Guidelines; body mass index (BMI), moderate-to-vigorous 

physical activity (MVPA), Dietary Approaches to Stop Hypertension (DASH) score, and alcohol 

intake, updated every 2 to 4 years. 

Main Outcomes and Measures: Primary outcome was incident self-reported diagnosis of 

hypertension with 27-31 years of follow-up. Diagnosed hypertension treated with 

antihypertensive medication was assessed in sensitivity analyses. We calculated hazard ratios, 

PARs, and RMST differences that accounted for time-varying exposures/covariates to infer the 

contributions of each exposure. 
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Results: Each lifestyle factor was associated with incident hypertension in dose-dependent 

manners across the cohorts, with BMI having the strongest associations with HRs [95% CIs] 

comparing BMI ≥35 kg/m2 versus 18.5 to <25 kg/m2 of  2.13 [95% CI 1.99, 2.28], 3.29 [3.12, 

3.48], and 2.19 [1.93, 2.48] in NHS, NHS II and HPFS, respectively. On average, adhering to 

BMI <25 kg/m2 was associated with 20.3 [18.5, 22.0], 25.0 [23.2, 26.8], and 18.6 [16.7, 20.7] 

months longer periods free from hypertension during 25-year follow-up in NHS, NHS II and 

HPFS, respectively. BMI accounted for approximately 20% of incident hypertension in NHS and 

HPFS, and 35% of early-onset hypertension (age < 55y). MVPA and diet accounted for 10-15% 

of incident hypertension in women, and the contributions were greater for early-onset 

hypertension. Similar results were observed for incident hypertension treated with anti-

hypertensive medication. 

Conclusions and Relevance: Maintaining healthy weight during adulthood may provide the 

greatest reduction in the burden of hypertension, but several other lifestyle choices in 

combination could further reduce risk across all ages, and delay onset of hypertension, with 

stronger associations in younger individuals. 

 

 

2.2 Introduction 

Hypertension is a leading cause of cardiovascular diseases (CVD). The prevalence has 

doubled from 1990 to 201947 and now impacts almost half of the US adult population48, and the 

condition accounts for a major proportion of CVD incidence49 and burden of death and 

disability.50 Hypertension also leads to debilitating, financially costly chronic conditions 

including kidney disease, stroke, and heart failure. Although numerous therapeutic options are 
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available, this condition is poorly controlled at the population level, as a recent study from the 

National Health and Nutrition Examination Survey data reported only 43.7% of the patients in 

the US in 2017 and 2018 had systolic/diastolic blood pressure (BP) below 140/90 mmHg.24 

Furthermore, there are increasing global disparities in the prevalence, awareness, treatment and 

control of hypertension.25 As such, prevention of hypertension is an increasingly important 

public health aim. 

The adoption of healthier lifestyle habits can prevent or delay the development of the 

condition, lower BP, and enhance the efficacy of antihypertensive medications.4,51 The 2020 

International Society of Hypertension Global Hypertension Practice Guidelines listed 10 lifestyle 

modifications that should be included in the management of hypertension; in particular, the 

totality of evidence suggests consistent roles of weight reduction52, sodium reduction22,53, 

adherence to an overall healthy diet pattern such as Dietary Approaches to Stop Hypertension 

(DASH)54, moderation of alcohol consumption55, and enhanced regular, aerobic physical 

activity56, in reducing BP. The guidelines also relate healthy drinks such as coffee or tea, stress 

reduction, complementary alternative medicines, and reduction of exposures to air pollution or 

cold temperature as other factors for hypertension management/prevention. 

Given the high prevalence of uncontrolled BP, to properly guide prevention and 

interventional strategies at the population level, clarifying the attributable fraction of specific 

lifestyle factors on incidence hypertension is a high priority. Previously, more than a decade ago, 

we investigated the population attributable risks (PAR) of hypertension among younger women 

in the Nurses’ Health Study II57, but such large studies among men or in older populations of 

women have not been conducted. Previous studies have shown important age- and sex-specific 

differences in incident hypertension.58,59 Furthermore, the guidelines for prevention and 
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diagnosis of hypertension has substantially changed with new evidence8 and an emphasis on 

early-onset hypertension.6,60 Many consider early onset hypertension a highly heritable trait, but 

less has been characterized with respect to the role of lifestyle modification. 

In this study, we aimed to comprehensively investigate the contributions of modifiable 

lifestyle factors on incident hypertension in three large US cohorts with an age range from 27-75 

years, with 27-31 years of follow-up. We evaluated PARs to estimate the proportion of 

hypertension cases attributable to poor adherence to a healthy lifestyle and computed restricted 

mean survival time (RMST) differences61 to assess the estimated gain in disease-free months if 

we had intervened and each participant had shifted to the healthy category for each lifestyle 

factor.  

 

2.3 Methods 

Population 

Participants consisted of the Nurses’ Health Study (NHS), the Nurses’ Health Study II 

(NHS II), and the Health Professionals Follow-up Study (HPFS). We excluded participants who 

reported a diagnosis of hypertension, cancer, heart failure, or stroke at the baseline questionnaire 

(1986 in NHS, 1991 in NHS II, and 1986 in HPFS). The resulting study population consisted of 

52,780 women (aged 40–67 in 1986) from NHS, 83,871 women (aged 27–46 in 1991) from NHS 

II, and 31,269 men (aged 40–75 in 1986) from HPFS. Participants returned a biennial 

questionnaire every two years to ascertain lifestyle information and new onset disease diagnoses 

with follow-up rates greater than 90% of eligible person-time. Participants also answered semi-

quantitative food frequency questionnaires (FFQs) every four years, reporting intake of more 
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than 130 foods and beverages. This study was approved by the Institutional Review Board of 

Brigham and Women’s Hospital and the Harvard T.H. Chan School of Public Health.  

 

Assessment of modifiable lifestyle factors 

On baseline and follow-up questionnaires, body weight and time spent on recreational 

moderate-to-vigorous physical activity (MVPA) were ascertained. Components of physical 

activity included brisk walking with ≥3 mph, jogging, running, swimming, racquet sports, 

bicycling, weight training, or other aerobic activity. Waist was assessed similarly only in NHS II. 

For the FFQ, respondents were asked how often, on average, they consumed the specified 

amount of each food or beverage during the preceding year; 9 possible frequency categories 

ranged from never/almost never to ≥ 6 times per day. Open-ended questions were used for usual 

brand and type of margarine, cooking oil, cold breakfast cereal, and multivitamins. We also 

collected detailed information regarding the type of fat used at the table and in food preparation. 

Nutrient intake was calculated by multiplying the frequency of intake by the nutrient 

composition for the portion size specified for each food or vitamin supplement using the Harvard 

University nutrient database. The database is derived from the USDA food composition 

database21 manufacturers information, derived information from food ingredient lists, and direct 

analyses of foods. The FFQ has been extensively validated in these populations against 2X7 day 

diet records and biomarkers of intake.18,19,62 Based on each year’s FFQs, We calculated each 

participant’s DASH score63,64, consisting of fruits, vegetables, whole grains, nuts and legumes, 

low-fat dairy, red and processed meats, sweetened beverages, and sodium. Since FFQs are 

known to poorly estimate sodium intake on their own, we used ML to derive estimated sodium 

intake from other variables based upon a subsample of 3,454 participants who underwent 
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measured 24-hour sodium excretion. We also developed an algorithm to predict doubly labelled 

water (DLW)-based energy expenditure using ML. As the sodium component of the DASH 

score, we used predicted energy-adjusted sodium levels (predicted sodium excretion divided by 

predicted DLW-based energy expenditure).  

 

Ascertainment of Hypertension 

Physician diagnosis of hypertension was self-reported on the baseline and biennial 

questionnaires. This method of reporting a diagnosis of hypertension among female and male 

health professionals was shown to be valid in these three cohorts when compared to ascertained 

medical records in a subsample.36–38 Participants were determined to be cases if they reported a 

diagnosis of hypertension and year of diagnosis after the baseline questionnaire. Early-onset 

hypertension was defined as incident hypertension at age less than 55 years.6,60,65,66  

 

Covariates 

Age, smoking status, use of aspirin, acetaminophen, and non-steroidal anti-inflammatory 

drugs (NSAIDs), and for women, parity and current use of oral contraceptives and 

postmenopausal hormone therapy were assessed on biennial questionnaires, and potassium 

intake was evaluated on FFQs. Predicted DLW-based energy expenditure was also used as a 

covariate. In addition, participants reported race, ethnicity, and family history of hypertension. 

All covariates except race and family history of hypertension were used as time-varying 

covariates. 

 

Statistical analysis 
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The person-time for each participant was calculated from the date of the return of the 

questionnaire in 1986 in NHS, 1991 in NHS II, and 1986 in HPFS, to the date at which 

hypertension was first diagnosed, death, or June 2017 in NHS and HPFS, and June 2018 in NHS 

II, whichever came first. Cumulative incidence curves that accounted for the time-varying 

associations were drawn for each exposure with age as the time scale. Confounder-adjusted 

associations between modifiable lifestyles factors and incident hypertension and early-onset 

hypertension were evaluated by three distinct approaches: hazard ratios, PAR %, and RMST 

differences.  

Cox proportional hazards regression, with age as the time scale, was used to compute the 

hazard ratio (HR) and 95% confidence intervals (CIs) for categories of each factor. The counting 

process data structure was used to handle time-varying covariates and the left truncation issue. 

Models were stratified by age and calendar year of the current questionnaire cycle. Four 

modifiable lifestyle factors were categorized in accordance with current guidelines as follows4: 

BMI (<18.5 kg/m2, 18.5 to 25 kg/m2, 25 to <30 kg/m2, 30 to <35 kg/m2, and ≥35 kg/m2); MVPA 

(<0.2 hours/week, 0.2 to <1 hours/week, 1 to <2.5 hours/week, 2.5 to <5 hours/week, and ≥5 

hours/week); DASH score (quintiles); and alcohol (none, <5 g/day, 5 to <15 g/day, 15 to <30 

g/day, and ≥30 g/day). 

The PAR %67, an estimate of the percentage of new hypertension cases occurring in this 

population that hypothetically could have been prevented if all participants had been in the 

guideline-recommended group, assuming causal relationships of the modifiable lifestyle factors 

and incident hypertension, was calculated for each of the dichotomized lifestyle factors. For the 

analyses, each lifestyle factor was dichotomized into adherence with guideline vs non–adherence  

with guideline categories as follows; BMI (<25 kg/m2 vs. ≥25 kg/m2); MVPA (≥2.5 hours/week 
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vs. <2.5 hours/week); DASH score (40th percentile or higher vs. lower than 40th percentile); and 

alcohol intake (men: ≤20 gram/day vs. >20 gram/day; women: ≤15 gram/day vs. >15 gram/day).  

Confounders-adjusted RMST differences between the guideline-adhered vs non–adhered 

groups were evaluated. RMST difference in this context is interpreted as months free from 

hypertension in guideline-adherence group compared with non-adherence group, holding the 

covariates constant for each exposure.68 95% confidence intervals [CIs] for RMST differences 

were obtained based on N=500 bootstrapping. The cutoffs of the maximum follow-ups for the 

RMST calculation were defined as 25 years for hypertension outcome and 15 years for early-

onset hypertension outcome. Dichotomized exposures were used for the analyses, which were 

same as the PAR models. 

Models were adjusted mutually for all four modifiable risk factors and the following 

covariates: age at start of follow-up for the questionnaire cycle (years), calendar year, race 

(Caucasian or not), family history of hypertension (yes/no), smoking status (never/past/current), 

potassium intake (mg), use of aspirin (no/once per week/ more than once per week), 

acetaminophen (yes/no), non-steroidal anti-inflammatory drugs (yes/no)69, and predicted total 

energy expenditure (kcal) in all cohorts; plus parity (none, 1, 2, or ≥3), menopausal status 

(premenopausal, postmenopausal, or unsure), and postmenopausal hormone therapy 

(never/ever/current) in NHS and NHS II; and plus contraceptive use (never/past/current) in NHS 

II. The four modifiable lifestyle factors and covariates excluding race and family history of 

hypertension were updated as time-dependent variables with each questionnaire cycle to reflect 

the most recent information. For PAR and RMST models, all covariates were categorized (age 

by 5 years; potassium intake and predicted total energy expenditure in quintiles). For RMST 

models, Covariate adjustment was done by setting the target values; median for categories 
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stemming from continuous covariates (e.g. quintile of potassium) and most frequent category for 

categorical covariates (e.g. smoking). 

We conducted sensitivity analyses by use of self-reported hypertension combined with 

the initiation of antihypertensives as the outcome, by excluding those using any 

antihypertensives from the source populations, and using DASH score based on predicted 

absolute (i.e. not energy-adjusted) sodium levels. We also examined the contribution of smoking 

on incident hypertension by including the time-varying exposure (a total of five exposures). In 

NHS II, contribution of optimal weight, defined as BMI<25 kg/m2 as well as waist<80cm, was 

additionally evaluated. 

All statistical analyses were performed using SAS statistical software version 9.4 (SAS 

Institute Inc, Cary, North Carolina).  

 

 

2.4. Results 

Baseline characteristics are summarized in Table 2.1. At baseline, the mean (SD) age 

was 52.1 (7.1) years in NHS, 36.4 (4.6) years in NHS II, and 52.7 (9.5) years in HPFS. The mean 

BMI was 24.8 (4.5) kg/m2 in NHS, 24.3 (5.0) kg/m2 in NHS II, and 25.2 (3.1) kg/m2 in HPFS. 

Throughout the follow-up periods of 31, 27, and 31 years, incident hypertension was reported 

among 34,537 (65.4%), 32,520 (38.8%), and 15,937 (51.0%) participants in NHS, NHS II, and 

HPFS, respectively. Figures 2.1-2.3 depict age-adjusted time-to-event associations between each 

of the four lifestyle factor and incident hypertension. 
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 NHS NHS II HPFS 

 N=52,780 N=83,871 N=31,269 

Age, years 52.1 (7.1) 36.4 (4.6) 52.7 (9.5) 

Caucasian 50,074 (94.9%) 81,061 (96.7%) 28,543 (91.3%) 

Family history of hypertension 22,935 (43.5%) 42,109 (50.2%) 9,820 (31.4%) 

BMI, kg/m2 24.7 (4.4) 24.3 (5.0) 25.2 (3.1) 

Smoking    

  Never 23,430 (44.4%) 55,263 (65.9%) 16,064 (51.4%) 

  Past 18,082 (34.3%) 18,531 (22.1%) 12,241 (39.2%) 

  Current 11,268 (21.4%) 10,077 (12.0%) 2,964 (9.5%) 

Moderate-to-vigorous PA, hours/week 0.67 (0, 2.5) 1.7 (0.4, 4.1) 1.3 (0.2, 3.8) 

Sodium, gram/day 3.8 (3.5, 4.2) 3.4 (3.2, 3.6) 3.7 (3.4, 3.7) 

Potassium, gram/day 3.2 (2.5, 3.9) 2.8 (2.2, 3.5) 3.3 (2.6, 4.0) 

Alcohol, gram/day 1.8 (0, 7.6) 0.9 (0, 3.5) 5.5 (0.9, 14.6) 

DASH score, unit 22 (19, 26) 23 (19, 27) 23 (19, 27) 

 

Table 2.1: Baseline characteristics of the study populations of Nurses’ Health Study (NHS), NHS II, and 

Health Professional Follow-up Study (HPFS) 

Values are frequency (%) for categorical variables and mean (SD) or median (IQR) for continuous variables.  

Sodium was predicted based on ML algorithms, and potassium and alcohol were based on FFQ.  

 

 

Hazard ratios 

Table 2.2A summarizes the association of modifiable lifestyles and incident hypertension 

using Cox proportional hazard models. After mutual adjustment of exposures as well as for other 

confounders, BMI, MVPA, DASH score, and alcohol were robustly associated with incident 

hypertension in dose-dependent manners across three cohorts. The associations were strongest 

with BMI, with HRs [95% CIs] of 2.13 [1.99, 2.27], 3.29 [3.12, 3.48], and 2.19 [1.93, 2.48] in 

BMI ≥35 kg/m2 compared with 18.5 to <25 kg/m2 in NHS, NHS II and HPFS, respectively. 

Alcohol intake ≥30 g/day was more strongly associated with incident hypertension in NHS II 

compared with other cohorts (HRs referenced of never-drinker: 1.28 [1.21, 1.35] in NHS, 1.73 

[1.62, 1.83] in NHS II, and 1.32 [1.24, 1.40] in HPFS).  
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Figure 2.1: Cumulative incidence curves of hypertension according to each lifestyle factor 

in NHS 

Cumulative incidence curves of hypertension by age (x-axis) in NHS by each lifestyle 

factor: BMI (<18.5 kg/m2, 18.5 to 25 kg/m2, 25 to 30 kg/m2, 30 to 35 kg/m2, and ≥35 kg/m2); 
moderate-to-vigorous PA (<0.2 hours/week, 0.2 to <1 hours/week, 1 to <2.5 hours/week, 2.5 to 

<5 hours/week, and ≥5 hours/week); DASH score (quintiles); and alcohol (none, <5 g/day, 5 to 
<15 g/day, 15 to <30 g/day, and ≥30 g/day). Adherence to guideline-recommended lifestyles 

were represented as black, red, brown, blue, purple lines orderly from the best to worst in each 

exposure. 
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Figure 2.2: Cumulative incidence curves of hypertension according to each lifestyle factor 

in NHS II 

Cumulative incidence curves of hypertension by age (x-axis) in NHS II by each lifestyle 
factor: BMI (<18.5 kg/m2, 18.5 to 25 kg/m2, 25 to 30 kg/m2, 30 to 35 kg/m2, and ≥35 kg/m2); 

moderate-to-vigorous PA (<0.2 hours/week, 0.2 to <1 hours/week, 1 to <2.5 hours/week, 2.5 to 
<5 hours/week, and ≥5 hours/week); DASH score (quintiles); and alcohol (none, <5 g/day, 5 to 
<15 g/day, 15 to <30 g/day, and ≥30 g/day). Adherence to guideline-recommended lifestyles 

were represented as black, red, brown, blue, purple lines orderly from the best to worst in each 
exposure. 
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Figure 2.3: Cumulative incidence curves of hypertension according to each lifestyle factor 

in HPFS 

Cumulative incidence curves of hypertension by age (x-axis) in HPFS by each lifestyle 
factor: BMI (<18.5 kg/m2, 18.5 to 25 kg/m2, 25 to 30 kg/m2, 30 to 35 kg/m2, and ≥35 kg/m2); 

moderate-to-vigorous PA (<0.2 hours/week, 0.2 to <1 hours/week, 1 to <2.5 hours/week, 2.5 to 

<5 hours/week, and ≥5 hours/week); DASH score (quintiles); and alcohol (none, <5 g/day, 5 to 
<15 g/day, 15 to <30 g/day, and ≥30 g/day). Adherence to guideline-recommended lifestyles 

were represented as black, red, brown, blue, purple lines orderly from the best to worst in each 
exposure. 
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A. Incident hypertension 

 NHS NHS II HPFS 
BMI  

  
  <18.5 kg/m2 0.90 (0.82, 0.98) 0.76 (0.66, 0.88) 1.02 (0.78, 1.34) 
  18.5 to <25 kg/m2 Reference Reference Reference 
  25 to <30 kg/m2 1.42 (1.38, 1.46) 1.81 (1.76, 1.87) 1.42 (1.36, 1.47) 
  30 to <35 kg/m2 1.85 (1.77, 1.93) 2.63 (2.52, 2.73) 2.00 (1.88, 2.14) 
  ≥35 kg/m2 2.13 (1.99, 2.27) 3.29 (3.12, 3.48) 2.19 (1.93, 2.48) 
Moderate-to-vigorous PA   
  <0.2 hours/week Reference Reference Reference 
  0.2 to <1 hours/week 0.94 (0.91, 0.97) 0.97 (0.94, 1.01) 0.93 (0.87, 0.99) 
  1 to <2.5 hours/week 0.96 (0.93, 1.00) 0.98 (0.94, 1.01) 0.98 (0.93, 1.04) 
  2.5 to <5 hours/week 0.94 (0.91, 0.98) 0.93 (0.90, 0.96) 0.98 (0.92, 1.03) 
  ≥5 hours/week 0.91 (0.88, 0.94) 0.91 (0.88, 0.94) 0.95 (0.90, 1.00) 
DASH score   
  ≤20th percentile Reference Reference Reference 
  >20th to 40th percentile 0.96 (0.93, 0.99) 0.96 (0.92, 0.99) 0.98 (0.93, 1.03) 
  >40th to 60th percentile 0.92 (0.89, 0.95) 0.89 (0.86, 0.92) 0.94 (0.89, 0.98) 
  >60th to 80th percentile 0.91 (0.87, 0.94) 0.81 (0.78, 0.84) 0.93 (0.88, 0.98) 
  >80th percentile 0.88 (0.85, 0.92) 0.72 (0.69, 0.76) 0.87 (0.81, 0.92) 
Alcohol    
  Never Reference Reference Reference 
  <5 g/day 0.98 (0.96, 1.01) 0.95 (0.92, 0.97) 1.03 (0.98, 1.08) 
  5 to <15 g/day 1.01 (0.98, 1.04) 0.98 (0.95, 1.01) 1.00 (0.95, 1.05) 
  15 to <30 g/day 1.10 (1.05, 1.15) 1.22 (1.16, 1.28) 1.12 (1.06, 1.18) 
  ≥30 g/day 1.28 (1.21, 1.35) 1.73 (1.62, 1.83) 1.32 (1.24, 1.40) 

B. Incident early-onset hypertension (incident hypertension in age < 55 years) 

 NHS NHS II HPFS 

BMI  
  

  <18.5 kg/m2 1.01 (0.76, 1.34) 0.75 (0.63, 0.88) 0.45 (0.11, 1.79) 
  18.5 to <25 kg/m2 Reference Reference Reference 
  25 to <30 kg/m2 1.70 (1.59, 1.81) 1.90 (1.83, 1.97) 1.70 (1.55, 1.86) 
  30 to <35 kg/m2 2.50 (2.28, 2.74) 2.81 (2.69, 2.94) 2.86 (2.47, 3.31) 
  ≥35 kg/m2 2.93 (2.55, 3.36) 3.58 (3.37, 3.81) 3.47 (2.71, 4.46) 
Moderate-to-vigorous PA   
  <0.2 hours/week Reference Reference Reference 
  0.2 to <1 hours/week 0.97 (0.9, 1.04) 0.96 (0.93, 1.00) 0.93 (0.81, 1.06) 
  1 to <2.5 hours/week 1.01 (0.94, 1.09) 0.97 (0.93, 1.00) 0.89 (0.78, 1.00) 
  2.5 to <5 hours/week 0.91 (0.83, 0.98) 0.91 (0.87, 0.95) 0.88 (0.77, 0.99) 
  ≥5 hours/week 0.88 (0.81, 0.96) 0.91 (0.87, 0.94) 0.83 (0.74, 0.94) 
DASH score   
  ≤20th percentile Reference Reference Reference 
  >20th to 40th percentile 1.06 (0.99, 1.13) 0.96 (0.93, 1.00) 0.92 (0.83, 1.02) 
  >40th to 60th percentile 0.98 (0.91, 1.06) 0.90 (0.87, 0.94) 0.93 (0.84, 1.04) 
  >60th to 80th percentile 0.94 (0.86, 1.02) 0.81 (0.78, 0.85) 0.90 (0.79, 1.02) 
  >80th percentile 0.91 (0.82, 1.01) 0.72 (0.68, 0.75) 0.86 (0.74, 0.99) 

Table 2.2: Hazard ratios (95% CI) for modifiable lifestyles and incident hypertension and early -
onset hypertension in Cox proportional hazard models among women and men in the Nurses’ 

Health Studies and the Health Professionals Follow-up Study 
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Table 2 (continued) 

Alcohol    
  Never Reference Reference Reference 
  <5 g/day 0.95 (0.90, 1.01) 0.93 (0.90, 0.96) 0.95 (0.86, 1.06) 
  5 to <15 g/day 0.99 (0.92, 1.07) 0.96 (0.92, 1.00) 0.94 (0.84, 1.04) 
  15 to <30 g/day 1.11 (0.99, 1.24) 1.20 (1.13, 1.28) 1.05 (0.93, 1.19) 
  ≥30 g/day 1.49 (1.32, 1.70) 1.72 (1.59, 1.86) 1.36 (1.19, 1.55) 

 
Numbers were hazard ratios (95% confidence intervals).  
The multivariable-adjusted models were mutually adjusted for four modifiable risk factors and the 
following covariates: age, race , family history of hypertension, smoking status, potassium intake, use of 
aspirin, acetaminophen, and NSAIDs, and energy expenditure in all cohorts; plus parity, menopausal 
status, and hormone replacement therapy in NHS and NHS II; and plus contraceptive use  in NHS II.  
 

 

Associations of lifestyles with incident early-onset hypertension (incident hypertension in 

age<55 years) was generally similar to the overall except for BMI in hazard ratio scale (Table 

2.2B). BMI was more strongly associated with early-onset hypertension than with overall 

hypertension, with HRs of 2.93 [2.55, 3.36], 3.58 [3.37, 3.81], and 3.47 [2.71, 4.46] in BMI ≥35 

kg/m2 compared with 18.5 to <25 kg/m2 in NHS, NHS II and HPFS, respectively. 

 

Population attributable risks 

Results of analyses on PARs are summarized in Table 2.3A. The highest partial PAR 

values for each cohort were for BMI, with 19.6% [18.1, 21.1] in NHS, 35.5% [33.7, 37.2] in 

NHS II, and 21.7% [19.4, 23.9] in HPFS. MVPA accounted for approximately 10% of incident 

hypertension in NHS and NHS II, while the contribution was smaller in HPFS (12.3% [10.7, 

14.0] in NHS, 10.8% [9.5, 12.1] in NHS II, and 2.5% [1.1, 3.9] in HPFS). Contribution of DASH 

diet was higher in NHS II (14.0% [12.4, 15.6]) compared with NHS (4.0% [2.5, 5.5]) and HPFS 

(3.4% [1.1, 5.7]). 
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The PARs of lifestyles for incident early-onset hypertension were generally stronger than 

those for incident hypertension in older individuals (Table 2.3B). Notably, the contributions of 

BMI were 30.6% [27.4, 33.7] in NHS and 33.6% [28.9, 38.0] in HPFS for early-onset 

hypertension, which was approximately 50% higher than those for incident hypertension overall. 

The PARs of MVPA and the DASH diet were more than two times higher in NHS and HPFS for 

early-onset hypertension compared with incident hypertension overall. 

 
A. Incident hypertension 

 NHS NHS II HPFS 

BMI 19.6 (18.1, 21.1) 35.5 (33.7, 37.2) 21.7 (19.4, 23.9) 

Moderate-to-vigorous PA 12.3 (10.7, 14.0) 10.8 (9.5, 12.1) 2.5 (1.1, 3.9) 

DASH score 4.0 (2.5, 5.5) 14.0 (12.4, 15.6) 3.4 (1.1, 5.7) 

Alcohol 1.2 (0.8, 1.6) 2.6 (2.2, 2.9) 3.5 (2.6, 4.3) 
 

B. Incident early-onset hypertension (incident hypertension in age < 55 years) 

 NHS NHS II HPFS 

BMI 30.6 (27.4, 33.7) 37.5 (35.6, 39.5) 33.6 (28.9, 38.0) 

Moderate-to-vigorous PA 13.8 (9.9, 17.7) 11.2 (9.7, 12.8) 5.5 (1.9, 9.0) 

DASH score 9.6 (5.1, 14.1) 15.1 (13.1, 17.0) 7.5 (11.0, 13.9) 

Alcohol 2.0 (1.2, 2.9) 2.1 (1.8, 2.5) 4.4 (2.6, 6.3) 
 

Table 2.3: Association of modifiable lifestyles and incident hypertension and early-onset hypertension in 

population attributable risk (PAR) % among women and men in the Nurses’ Health Studies and the 

Health Professionals Follow-up Study 

 

Numbers indicate PAR % (95% CI) computed for each dichotomized lifestyle factor; BMI (<25 kg/m2 vs. ≥25 

kg/m2); moderate-to-vigorous physical activity (≥2.5 hours/week vs. <2.5 hours/week); DASH score (40th 

percentile or higher vs. lower than 40th percentile); and alcohol intake (≤20 gram/day vs. >20 gram/day in 

male; ≤15 gram/day vs. >15 gram/day in female).  

Models were mutually adjusted for four modifiable risk factors and the following covariates: age, race, family 

history of hypertension, smoking status, potassium intake, use of aspirin, acetaminophen, and NSAIDs, and 

energy expenditure in all cohorts; plus parity, menopausal status, and hormone replacement therapy in NHS 

and NHS II; and plus contraceptive use  in NHS II. 

 

 

Periods free from hypertension 
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RMST differences until the cutoff years of the follow-ups are summarized in Table 2.4. 

Periods free from incident hypertension [95% CI] were on average longer by 20.3 [18.5, 22.0] 

months in NHS, 25.0 [23.2, 26.8] months in NHS II, and 18.6 [16.7, 20.7] months in HPFS, 

among those with BMI ≤25 kg/m2 compared with >25 kg/m2, in 25-year follow-up. RMST 

differences for early-onset hypertension were similarly greater by adhering optimal weight and 

alcohol intake compared with other lifestyles. 

 

A. Incident hypertension by a cutoff of 25 years 

 NHS NHS II HPFS 

BMI 20.3 (18.5, 22.0) 25.0 (23.2, 26.8) 18.6 (16.7, 20.7) 

Moderate-to-vigorous PA 3.6 (2.5, 4.8) 1.9 (1.2, 2.5) 0.3 (-1.1, 1.9) 

DASH score 2.1 (0.9, 3.3) 3.2 (2.6, 4.1) 2.4 (1.0, 4.2) 

Alcohol 7.1 (5.3, 9.0) 9.9 (8.5, 11.4) 8.9 (7.1, 10.8) 
 

B. Incident early-onset hypertension (incident hypertension in age < 55 years ) by a cutoff of 15 years 

 NHS NHS II HPFS 

BMI 6.0 (4.6, 7.8) 3.9 (3.5, 4.2) 6.7 (5.2, 8.4) 

Moderate-to-vigorous PA 1.0 (0.5, 1.5) 0.3 (0.2, 0.4) 0.7 (0.0, 1.5) 

DASH score 0.7 (0.2, 1.2) 0.5 (0.4, 0.6) 0.5 (-0.1, 1.1) 

Alcohol 2.3 (1.4, 3.5) 1.5 (1.3, 1.8) 2.7 (1.7, 4.0) 
 

Table 2.4: Months free from hypertension and early-onset hypertension by adhering optimal lifestyles 

among women and men in the Nurses’ Health Studies and the Health Professionals Follow-up Study 

 

Numbers indicated months (95% CI) free from hypertension or early-onset hypertension by adhering optimal 

lifestyles, with a cutoff of 25 years for incident hypertension and 15 years for early-onset hypertension. 

RMST differences were computed for each dichotomized lifestyle factor; BMI (<25 kg/m2 vs. ≥25 kg/m2); 

moderate-to-vigorous physical activity (≥2.5 hours/week vs. <2.5 hours/week); DASH score (40th percentile 

or higher vs. lower than 40th percentile); and alcohol intake (≤20 gram/day vs. >20 gram/day in male; ≤15 

gram/day vs. >15 gram/day in female). 

Models were mutually adjusted for four modifiable risk factors and the following covariates: age, race , family 

history of hypertension, smoking status, potassium intake, use of aspirin, acetaminophen, and NSAIDs, and 

energy expenditure in all cohorts; plus parity, menopausal status, and hormone replacement therapy in NHS 

and NHS II; and plus contraceptive use  in NHS II. Covariate adjustment was done by setting the target values; 

median for categories stemming from continuous covariates (e.g. quintile of potassium) and most frequent 

category for categorical covariates (e.g. smoking). 

 

 



 49  

 

 

Sensitivity analyses 

We conducted sensitivity analyses using various PAR models (Supplemental Table 2.1). 

The patterns of the associations between lifestyle factors and incident hypertension and early-

onset hypertension were generally similar to those of the main analyses, with the largest 

contributions by BMI in particular for early-onset hypertension. In HPFS, the contributions of 

BMI, MVPA, and DASH diet were smaller when the hypertension outcome was defined as self-

reporting plus initiating anti-hypertensives; in contrast, for early-onset hypertension, the stricter 

outcome definition was associated with higher PAR of MVPA, while there was much uncertainty 

due to limited sample size. An inclusion of smoking as a 5th exposure did not influence the 

contributions of other lifestyle factors, with little contribution of smoking to the outcomes. Using 

predicted absolute sodium instead of energy-adjusted sodium in DASH score led to decreased 

PARs of diet. Finally, in NHS II, adhering to both optimal BMI and waist had even larger PARs 

(38.6% for overall hypertension and 40.0% for early-onset hypertension). 

 

 

2.5 Discussion 

In three large cohorts of US adults, adhering to a healthy lifestyle was associated with 

lower risk of incident hypertension in approximately 30 years of follow-up with stronger 

associations at younger ages among men and women. Higher BMI was most consistently and 

strongly associated with risk of incident hypertension across all three cohorts, accounting for 

approximately 20% of hypertension overall and 35% of early-onset hypertension. The RMST 

analysis showed that there would be an additional 20-30 months free from hypertension on 

average by maintaining a healthy BMI throughout 25-year follow-up. MVPA and diet accounted 
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for 10-15% of early-onset hypertension in women. The present observations highlight not only 

the potential impact of primordial prevention of hypertension, but the significance of prevention 

strategies starting at younger ages, focusing most importantly on body weight.  

 

In general, unhealthy lifestyle choices are known major causes of middle-to-late-onset 

hypertension, whereas early-onset hypertension is usually considered a highly heritable trait.6,60 

The present study, in contrast, found that lifestyle modification at younger ages could contribute 

to preventing up to half of early-onset hypertension. Since early-onset hypertension is associated 

with potentially more devastating consequences such as increased CVD incidence and 

mortality58,70, our observation is particularly important and should lead to enhanced efforts by 

medical professionals to screen and provide guidance for primordial prevention via lifestyle 

modification in younger populations. We observed relatively modest contributions of lifestyle 

factors in older cohorts with mean age of 52-53 years, which likely is due to depletion of the 

most susceptible from the at risk pool and because with many decades of exposure to dozens of 

small risk factors there is a dilution of effect of the five we identified. However, lifestyle choices 

still accounted for approximately 30% of the incident hypertension in older populations, 

highlighting the importance of choosing a healthy lifestyle across the adult lifespan. Other 

lifestyle scores have shown a similar pattern for primordial prevention of CVD based on risk 

exposure from mid to later life71. 

 

Our findings indicate that a BMI below 25kg/m2 may be the cornerstone to preventing 

incident hypertension, concordant with multiple RCTs52,72 that documented blood pressure 

lowering effects by weight loss interventions. Higher MVPA and better adherence to the DASH 
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diet also importantly contributed to lower hypertension risk (~10% depending on the 

population). The lower effect estimate for physical activity could partly be attributable to the 

importance of BMI on mediating the effects of PA on incident hypertension. The effect size of 

alcohol abstinence or excessive consumption was modest and might be driven by the non-linear 

effects of alcohol as well as on the importance of drinking patterns rather than just average 

alcohol consumption on incident hypertension73. We did not separate the contribution of sodium 

from other diet because of the complexity of sodium assessment in the diet, where it is spread 

across most foods with tremendous variability (due to processing, cooking methods, and 

individual preference for adding salt to meals), leading to measurement errors, which were not 

addressed by our ML algorithm. There may be other contributions to the heterogeneity of the 

causal role of sodium in raising BP due to sodium sensitivities according to age, genotypes, and 

other factors.4,74–76  The present study does not undermine the roles of PA or diet in reducing the 

risk of hypertension but emphasizes that weight loss may play an essential role regardless of 

other lifestyle choices.  This is further supported by a recent trial showing that weight loss due to 

glucagon-like peptide-1 receptor agonists resulted in a pronounced reduction in BP.72  

 

Strengths and limitations 

Strengths of our study include the prospective cohort designs, large sample size, very 

long follow-up periods, large number of events, detailed information on repeatedly measured 

lifestyle factors and the covariates over follow-up periods, a use of newly developed ML 

algorithms predicting sodium intake, and rigorous sensitivity analyses. 

Our study also has several limitations. First, the interpretation of PAR depends on 

assumption that the association is causal, which might be too strong given the observational 
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study design. However, many of the lifestyle factors we chose have been shown to be causally 

related to BP lowering. Second, the populations were predominantly white health professionals 

and thus our findings might not be generalizable to other populations or cultures. However, the 

homogeneity of the study populations and comprehensive lifestyle assessment minimized 

potential confounding by a myriad of factors associated with lower socio-economic status. Third, 

self-reported lifestyles and hypertension status could have led to some modest misclassification 

of exposure or to under screened populations, although we have previously validated self-report 

of PA77, diet18, weight78, alcohol18,79, and hypertensive status.36–38 In addition, we performed 

several sensitivity analyses, which provided generally consistent results. Still, sodium was 

subject to measurement error despite using ML prediction, and the impact of measurement error 

could particularly impact PAR results due to misclassification-caused biases in the prevalence.80 

Finally, reverse causation was possible. With BP within a prehypertension range, the participants 

might have been advised to changes lifestyles, such as reducing weight. Such biases would 

generally underestimate the contributions of lifestyle factors to incident hypertension. 

 

Conclusion 

Our data provide a strong public health message that avoiding overweight and obesity 

will substantially reduce the burden of hypertension among all adults, with the strongest 

contribution among populations under 55 years of age. Primordial prevention through weight 

control combined with a healthy DASH diet, avoidance of excessive alcohol consumption, and 

moderate or vigorous aerobic activity could substantially reduce hypertension risk, in particular 

early-onset hypertension in the United States.    
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3.1 Abstract 

Estimating conditional average treatment effect (CATE) and developing an individualized 

treatment rule (ITR) using a well-powered randomized controlled trial (RCT) may directly 

inform practical evidence to advance precision medicine, while there are some pitfalls in the 

application methodology. We overviewed methodological approaches of heterogeneous 

treatment effect (HTE)-related studies, which differ according to the study aims: 1) to investigate 

the sources of effect heterogeneity; 2a) to derive and validate a new ITR; and 2b) to validate 

existing ITRs in a new trial dataset. Meta-learners and causal forest are popular and easy 

methodologies to predict CATE, while double machine-learning including R-learner and doubly-

robust learner are more efficient in high-dimensional settings. ITR evaluation approaches include 

population average value (PAV), population average prescription effect (PAPE), area under the 

prescriptive effect curve (AUPEC), and the sorted grouped average treatment effect (GATE). In 

the application with the POUNDS Lost trial, we demonstrate the development and validation of 

an effective ITR of fat diet intervention on 2-year weight change. 

 

 

3.2 Introduction 

Evidence-based medicine, prevention and epidemiology, as well as evidence-based 

policy-making (EBPM), have largely evolved from the evaluation of average treatment effects 

(ATE) in target populations, primarily relying on data from randomized controlled trials (RCTs). 

However, treatment effects are often heterogeneous depending on participants’ characteristics, 

leading to the presence of heterogeneous treatment effects (HTEs).9,81 Recent advancements in 
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machine learning (ML) approaches have led to significant developments in applications related 

to HTE, in particular in high-dimensional settings.7,8,33,82–85 HTE exploration could lead to a 

development of individualized treatment rules (ITRs) – algorithms that optimize intervention 

delivery to maximize population-level treatment effects – that clinicians and policymakers 

ultimately need.10,11 Rigorous medical and epidemiological studies, combined with valid 

statistical techniques for development and evaluation of ITRs, will usher in a new era of 

evidence-based personalized medicine, precision nutrition, and individualized prevention. 

 

HTEs have been thoroughly investigated in medical RCTs, typically through analysis of 

effect measure modification (EMM) by a single (often categorical) variable. Generally, the 

variables of interest, known as effect modifiers, are pre-specified in an RCT analysis plan.81 

Regression models incorporating interaction terms between the intervention variable and each 

effect modifier are employed to evaluate EMM, with assessments often based on p-values of the 

coefficient of the interaction term. Although this conventional approach is generally pre-

specified and boosts interpretability, it suffers from multiple testing issues and cannot capture 

nonlinear contributions from continuous effect modifiers or complex interactions between effect 

modifiers. In addition, developing an ITR may better incorporate information from multiple 

covariates. This is where ML-based, data-driven approaches for exploring HTE have an 

advantage.  

 

There are distinct study aims related to HTEs, and the methodological approaches can 

greatly differ accordingly – however, the focuses of current application studies are often not 

clear, partly because similar methods can be used for different aims. Specif ically, the major aims 
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of HTE-related studies can be 1) to investigate the sources of effect heterogeneity and 2) to 

derive and validate a new ITR. In the latter situation, methodology can differ if researchers 

validate the ITR in an external dataset or not. In this paper, we sought to outline research 

concepts and approaches according to HTE-related study aims. Although a thorough 

understanding of causal inference language and relevant statistics is necessary to grasp these 

concepts formally, we strive to explain them practically without resorting to technical jargon. We 

focus on the setting of a well-powered RCTs in which identifiability assumptions are met.86 For 

simplicity, we consider the intention-to-treat basis and do not account for post-randomization 

selection bias.87,88 We do not cover the methodological extension to survival data. 

 

In Part A, we provide an overview of different methodological approaches according to 

the study aims. In Part B, we introduce estimation methods for conditional average treatment 

effect (CATE) and the cross-fitting approach, which are the basis of HTE-related research. In 

Part C, we present different methodological approaches for studies aiming at interpreting sources 

of HTE. In Part D, we explain various evaluation approaches for studies aiming at developing an 

ITR. Lastly, in Part E, we present an applied example using the Preventing Overweight Using 

Novel Strategies (POUNDS Lost) trial - a 2x2 factorial RCT of high vs. low fat and high vs. low 

protein diets.12 In this application, we created and evaluated ITRs of distinct macronutrient 

compositions on two-year weight loss outcomes according to baseline characteristics. To 

enhance the readability of this paper, Table 3.1 summarizes the terminology specific to HTE-

related research. 

 
 

Types of treatment effects  

ATE = average treatment effect 
As it stands, the average effect of an intervention on an outcome. 

Usually the primary target to estimate in RCTs 
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CATE = conditional average treatment 

effect 

Treatment effect conditional on the participants' characteristics 

(≒individualized treatment effect [ITE]) 

Concepts related to heterogeneous 

treatment effect  

HTE = heterogeneous treatment effect 
Variations in the treatment effect across individuals or subgroups 

within a study population. 

ITR = individualized treatment rule 
A rule that assigns a treatment to an individual based on their 

observable characteristics with the goal of optimizing an outcome  

High-dimensional setting 

In a situation where many covariates need to be accounted for 

with a limited sample size. This is almost always the case when 

aiming to estimate CATE in medical and epidemiological RCTs. 

CATE estimation approaches  

Causal Forest 
An ML algorithm adapting random forest specifically designed to 

estimate CATE. Causal forest is essentially a DML. 

Meta-learner 

Overarching algorithms that learn from different models, aiming 

to estimate CATE. Examples include S-, T-, X-, DR-, and R-

learner. 

  S-learner 
A type of meta-learner based on a single model that includes 

treatment indicators as predictors. 

  T-learner 
A type of meta-learner training separate models for the treated 

and control groups. 

  DR-learner 
A type of meta-learner leveraging doubly robust estimator. One of 

the DML approaches. 

  R-learner 
A type of meta-learner leveraging residuals of outcome and 

propensity score models. One of the DML approaches. 

Cross-fitting 
Similar to cross-validation, but it is used to calculate CATE in all 

samples in the same dataset in which model training is conducted . 

Concepts related to DML  

DML = double machine learning 

A statistical approach to estimate ATE or CATE in which scores 

obeying Neyman orthogonality conditions are used, including 

DR-learner and R-learner. 

Nuisance model 

Models that are not of direct interest but that must be accounted 

for in the analysis, including the outcome and propensity score 

models in DR-learner or R-learner. 

Doubly robust estimator 

An estimator in which correct specification of either the outcome 

model or the propensity score model is necessary to get unbiased 

estimates, but not necessarily both. DR-learner is based on this 

estimator. 

ITR evaluation approaches  

PAV = population average value 
The expected average outcome under a particular treatment rule 

over the entire population. 

PAPE = population average prescription 

effect 

Difference between the overall average outcome in the population 

under an ITR versus under random assignment of the intervention 

with a fixed proportion of the intervention assignment as in the 

ITR. 

AUPEC = area under the prescriptive 

effect curve 

Area between the curve indicating PAV and the straight line 

indicating the average outcome under random assignment of the 

intervention, with varying proportion of intervention 

GATE = the sorted grouped average 

treatment effect 

An estimate of the average treatment effect within pre-specified 

subgroups formed by sorting individuals according to their 

estimated CATEs. 

TOC = targeting operator characteristic 
The difference between an average effect among those with ranks 

of the priority score higher than a cutoff and ATE. 
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AUTOC = are under the TOC curve 
Area between the curve indicating TOC and the straight line 

indicating ATE with varying the quantile cutoff for TOC. 

RATE = the rank-weighted average 

treatment effect 

Weighted average of TOC. An example is AUTOC. RATE 

metrics only depend on the ranks of priority score (e.g. estimated 

CATE). 

Table 3.1: Terminologies of methods related heterogeneous treatment effects 
 

 

 

3.3 Part A: An overview of the methodological approaches 

according to the study aims 

Clarifying the objective of an applied HTE research is pivotal to conducting high-quality 

applied research. There are two major distinct aims – 1) to explore the sources of effect 

heterogeneity in interpretable ways; and 2) to develop and validate an ITR. Here we focus on 

these two most clinically relevant aims, named Study type 1 and type 2, to explain the conceptual 

and methodological differences – although we acknowledge that there can be other aims, such as 

developing a recruitment algorithm to an RCT to maximally detect HTE. Note, for ITR 

evaluation, the methodological approaches can differ according to whether the evaluation is 

conducted in an internal (or derivation) dataset or an external one, which are named Study type 

2a and 2b in the following. 

 

In either study aim, estimating the CATE, referring to a potentially different treatment 

effect conditional on a combination of specific participant characteristics83, can be a major 

milestone. CATE largely corresponds to the concept of “individualized treatment effect (ITE)”, 

and these have used these terms interchangeably in applied research. Strictly speaking, CATE is 

not necessarily a treatment effect for an individual but an effect conditional on combinations of 
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multiple covariates,89 whereas such distinction may not be practically important. In general, there 

are numerous combinations of the covariates, and the estimation of CATE can be challenging 

even in a large-scale RCT, i.e. a high-dimensional setting (limited sample size relative to the 

number of covariates). This is because the primary aim of any medical/epidemiological RCTs is 

to estimate the ATE, treatment effect in a target population, and the trials are typically only 

powered for ATE estimation.90 CATE can be estimated for all participants in an RCT with use of 

a cross-fitting approach. A detailed description of estimation approaches to CATE is provided in 

Part B.  

 

In this section, we outline study aim-specific methodological approaches using CATE in 

an RCT. An overview of the distinct aims and approaches of HTE-related studies is summarized 

in Figure 3.1. 

 

 

Study type 1: To explore the source of effect heterogeneity in interpretable 

ways 

In epidemiology and medicine, practitioners almost always need a ‘rational’ for 

employing an intervention. Documented and statistically tested ATE in a well-conducted RCT is 

typically considered strong evidence supporting such decisions. At the same time, potentially 

different treatment effects according to population characteristics are often taken into account, in 

particular when the intervention is costly and reasonable EMM is observed. Therefore, 

interpreting the sources of effect heterogeneity align with current use of health interventions and 

are essential to personalizing existing interventions. 
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Figure 3.1: Types of studies related to heterogeneous treatment effect 

There are major two study types: to explore the sources of heterogeneous treatment effect (HTE) (type 1) 
and to develop and validate an individualized treatment rule (ITR). In each aim, the first step is to 

estimate conditional average treatment effect (CATE), for example using meta-learners, causal forest, and 
double machine learning. For study aim 1, the sources of HTE is explored by interpreting the drivers of 
estimated CATE. For study aim 2, an ITR is developed based on estimated CATE – and the evaluation 
may be according to whether the evaluation is internal (type 2a) or external (type 2b). Optionally, as is in 

study aim 1, the drivers of estimated CATE may be explored in study aim 2. 
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When the study aim is to explore sources of effect heterogeneity, a simple, very effective 

approach is to assess the EMM by single covariates one at a time, as is almost always 

implemented in recent RCTs. Candidate effect modifiers are best if they are a priori specified to 

avoid “p-hacking”, and this simple approach boosts interpretability with little risk of model 

misspecification. Using ML-based HTE methods may shed light on other aspects, for example 

accounting for complex interactions and avoiding multiple testing issues, while these complex 

approaches may or may not complement the simple EMM evaluation.  

 

Generic approaches to interpreting CATE 

Given that CATE is validly estimated for all the individuals in an RCT, there are several 

‘generic’ methodologies to explore the source of effect heterogeneity for any approaches to 

CATE estimation; ‘generic’ in terms of what can be done irrespective of how CATE is 

estimated. Three approaches are given below that can be easily implemented while informative: 

 

1) One simple approach is to compare covariates one by one according to quartile (or quintile 

etc) of the estimated CATE, similar to Table 1 in any epidemiological research. Standardized 

mean difference (SMD) may be used to quantify the difference across the CATE quartile. This 

allows an interpretation of which variables are correlated with the estimated CATE. 

 

2) Another way is to show characteristics of the participants with top and bottom estimated 

CATE.82 For example, by comparing individuals with top 10 and bottom 10 CATE, one can 

qualitatively understand which characteristics may drive the CATE estimates. 
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3) A Classification and Regression Tree (CART) can be employed to visualize the contributions 

of covariates to the estimated CATE.91 Fitting CART using the estimated CATE as the outcome 

variable, a decision tree can be visualized showing the interactions between covariates to 

determine CATE. Variables that appear in the decision tree can be considered as those driving 

the HTE.  

 

Another more advanced approach includes a use of Shapley Additive Explanations 

(SHAP)92,93, one of popular approaches to explain black-box ML algorithms. SHAP is rooted in 

cooperative game theory and quantifies the importance of each covariates’ impact on a model's 

prediction. Briefly, SHAP determines how much every feature sways the prediction from a 

default baseline. By giving a detailed breakdown, it offers a clear understanding of the factors 

driving CATE values.  

 

Model-specific approaches to interpret CATE 

In recent application studies, the variable importance (VI) measure in the Causal forest 

algorithm (see Part B–CATE estimation) is often used to interpret CATE. Similar to random 

forest algorithm, the VI measure in the Causal forest indicates the relative importance of a 

variable in estimating the treatment effect. A variable is deemed to be important if splitting on 

that variable greatly improves the accuracy of predicting the outcome difference between 

intervention and control groups. When using doubly robust-learner or R-learner (also see Part B 

–CATE estimation), we can get direct estimates of the contribution to CATE of all covariates. 

In those two-stage approaches, we can get interpretable values for each covariates especially 

when resorting to simple linear regression in the final (i.e. 2nd stage) models.  
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Of note, caution is needed that causality of the EMM may not be inferred by using any of 

the above approaches to interpret CATE. Differentiating causal effect modifiers and surrogate 

effect modifiers is an issue of causal structure.86 Thus, even if one variable has a high influence 

in differentiating HTE, one may not know how much the variable performs in another dataset. 

 

 

Study type 2a: To develop and validate an ITR in a single RCT 

Another major study aim related to HTE exploration is to develop an ITR, a tailored 

treatment rule according to participants’ characteristics, maximizing the benefit of the 

intervention. An ITR is a treatment rule based on a scoring rule, that is, a single covariate. CATE 

is an intuitive scoring rule since it is rationale to treat someone only if the estimated CATE 

indicates a treatment benefit. Although the scoring rule may be based on another metric, here we 

focus on the case with use of estimated CATE.  

 

We can estimate CATE in all the RCT participants using cross-fitting (see Section 2–

Cross fitting). The next step is ITR evaluation. For this purpose, we would like to observe two 

potential outcomes86,94 per participant, either treated or not treated, in order to directly evaluate 

the ITR performance. However, this is impossible, and thus we need evaluation metrics 

specifically designed for ITR evaluation. Such metrics should reflect the performance of an ITR 

with respect to the overall treatment effect in the target population. In addition, the evaluation 

methods should be generalizable to any ITR development approach in practice. Given that the 

CATE estimation approach is data-driven, traditional epidemiological approaches may not be 
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valid for an ITR evaluation, such as using it in a simple interaction in a Cox proportional hazard 

model and referring the p-value of the coefficient of the interaction term. Statistically valid 

metrics include the population average value (PAV)10,11, the population average prescription 

effect (PAPE)10, the area under the prescriptive effect curve (AUPEC), and the sorted group 

average treatment effect (GATE).85,95 Details of these metrics are explained in Part C. 

 

An ITR can be a ‘black-box’ algorithm suggesting who to treat or not, while an 

interpretation of the black-box is generally informative in thinking of an actual application. In 

essence, interpretation of an ITR is same as interpretation of the CATE that shapes the ITR. 

Therefore, for this purpose, the same approach to Study type 1 can be applied, such as simple 

comparison across CATE quartile or a use of CART using estimated CATE as the outcome 

variable. However, this endeavor is only to supplement the understanding of an ITR, different 

from the aim of Study type 1, although the same methodologies can be used. 

 

 

Study type 2b: Validation of an externally developed ITR 

Just like studies aiming at developing a prediction model, it is important to evaluate a 

performance of an ITR in external settings. In cases of ITR, the external dataset should be an 

RCT with the same (or similar) intervention as that of the derivation RCT. Although similar to 

Study type 2a, external evaluation approaches can be more flexible. 

 

If an ITR is developed externally, the resulting dichotomous variable indicating who to 

treat can be used safely with usual epidemiological methods, such as interaction analysis for 
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EMM evaluation. The analytic approach is same as a “risk score” based on several variables.81 

For the assessment of EMM, it is advisable to evaluate several scales, including risk difference 

(e.g. in linear regression) and risk ratio (e.g. in pooled logistic regression) scales, since the extent 

of effect modification depends on the outcome measure.86 Contrasting number needed to treat 

(NNT) metrics between participants with distinct ITR value is also informative. Using PAV, 

PAPE, AUPEC, and GATEs is also valid and informative when contrasting the performance of 

an ITR in internal (i.e. derivation) versus external dataset. 

 

 

 

3.4 Part B: CATE estimation and cross-fitting 

As stated in a previous section, estimating CATE, individualized treatment effect 

conditional on a combination of specific participant characteristic, is necessary in each study 

aim. Here we describe possible approaches to estimate CATE based on RCTs, including meta-

learners, double machine learning (DML), and causal forest. Then, an explanation of cross-

fitting, an important technique of training/test data splitting, follows. Throughout this section, the 

aim is set to estimate CATE for every participant in an RCT while avoiding bias. 

 

CATE estimation: naïve but valid approaches  

Meta-learners comprise a family of ML methods that integrate existing supervised ML 

algorithms to estimate CATE through a two-step estimation process: model training and CATE 

estimation.8,96 Meta-learners can be classified into several types, including T-learner, S-learner, 

X-learner, R-learner, and doubly-robust (DR)-learner. Among them, we discuss the two simplest 
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approaches: T-learner and S-learner. More efficient approaches especially in high-dimensional 

settings are explained in the next section. 

 

The T-learner method, where "T" signifies "two," is based on two prediction models 

(Figure 3.2A).8,11,97 In the first stage, using the training dataset, outcome prediction models are 

developed separately for the intervention and control arms. These prediction models, called base-

learners, can be any prediction algorithm, such as simple linear or logistic regression, random 

forest, penalized regression models, support vector machines, and ensembles over multiple MLs. 

The input of the prediction algorithms includes covariates that are selected a priori. In the second 

stage, two prediction models are fitted to the covariate test data, separately, regardless of the 

actual intervention received. The predicted values from the prediction model based on the 

intervention arm represent the estimates of the outcome had the participants been in the 

intervention arm, while the predicted values from the control arm-derived prediction model are 

the estimates of the outcome had they been in the control arm. Finally, the difference of the two 

predicted values (i.e. predicted value if in the treatment arm minus that if in the control arm) is 

the estimate of CATE.  

 

In contrast, the S-learner method, where "S" denotes "single," relies on a single 

prediction model (Figure 3.2B).8,82,98,99 In the first stage, an outcome prediction model based on 

any algorithm is built using both intervention status and covariate information. This base learner 

is more effective in capturing HTE if it better captures the interaction between intervention status 

and covariates, for example making Bayesian additive regression trees (BART) a suitable choice. 

In the second stage, the prediction algorithm is fitted to two test datasets in which the 



 67  

 

 

intervention status is imputed as 0 and 1 for every participant. The predicted values from the 

intervention status = 0 represent the estimate if participants had been in the control arm, and 

those from intervention status = 1 is the estimate if they had been in the control arm. The 

differences between those two predicted values provide the estimates of CATE. 

 

 

Figure 3.2: Graphical explanation of simple meta-learner approaches 

T-learner (A) and S-learner (B) approaches to estimate CATE are explained. In either approach, first split 
dataset into training data and test data. For T-learner, two outcome prediction models are developed in 
either intervention arm or control arm only (Modelint and Modelcont, respectively). CATE is estimated as 
the differences in outputs of the two models in test dataset. For S-learner, one outcome prediction model 
is developed based on covariates and intervention status. CATE estimate is estimated as the differences in 

outputs of the model in test data inputting either all 1 or 0 in the intervention status.  
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In any meta-learner approaches, the base learner(s) can be any ML prediction algorithms, 

such as random forests, regularized regression, deep neural nets, boosted trees, and ensembles of 

these methods.100 In selecting the algorithm, understanding the concept of each approach would 

be helpful; for instance, a simple linear or logistic regression without interaction terms does not 

work in the S-learner, since it generates a constant treatment effect for every individual. In 

addition, although the T-learner effectively accounts for the covariate interactions by the 

intervention status through stratification, base-learners with weak predictive accuracy may not 

perform well, since the last procedure, subtraction of the absolute predicted values from the two 

algorithms, relies on the assumption that each absolute predicted value is reliable.  

 

In T- and S-learner, the base-learners are trained to minimize the prediction error, not the 

error of the treatment effect, which may not be efficient in exploring HTE (i.e. the CATE 

estimator is consistent but the variance is high).8,100,101 Therefore, in practice, a use of more 

efficient approaches will be required to explore HTE or develop an ITR in 

medical/epidemiological RCTs. 

 

CATE estimation: efficient approaches   

Double/Debiased machine-learning (DML) is a more involving but efficient approach. 

DML refers to a statistical approach in which scores obeying Neyman orthogonality conditions 

are used100 (details in Appendix 3.1), which includes DR-learner100,102 and R-learner96,100. DML 

approaches need additional data splitting within the training dataset, and thus a use of multiple 

cross-validation is necessary to gain statistical efficiency, as described in the next section. 
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In DR-learner, a pseudo-outcome is created using a doubly robust estimator, which is an 

unbiased estimator for CATE, and the pseudo-outcomes are regressed on covariates, thereby 

minimizing the mean squared error for estimated CATE (Figure 3.3).  

 

 

Figure 3.3: Graphical explanation of doubly robust-learner (DR-learner) approach 
First split the data into Data1 and Data2 (note either data can be considered as training datasets). Using 
Data1, three prediction models are developed: two models predicting outcome in either intervention arm 

or control arm only (Modelint and Modelcont, respectively), and one predicting intervention status 
(ModelPS). Using Data2, construct doubly robust estimator (ESTDR) using outputs in the three prediction 
models. Lastly, construct a final model to predict ESTDR using linear regression or ML models. To apply 

the final model to estimate CATE, another test dataset may be needed.  
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Specifically, first randomly split the dataset into two-folds, for example by half, denoting Data1 

and Data2 (note, these are not training/test). This data splitting prevents overfitting and is 

necessary to obtain valid CATE estimates. In Data1, base-learners for S- or T-learner and 

propensity score (PS) model are each constructed based on covariates using the same data 

partition. The PS model may better be fit even in an RCT setting, in particular with relatively 

small sample size, although the true propensity score is constant (e.g. 0.5)103,104. Of note, using 

ML algorithms is recommended for the PS model as well as the base-learners, although logistic 

regression has been typically used for PS models in epidemiological studies. The models 

developed in Data1 are called nuisance models or functions, since they are not directly of interest 

but are needed in order to produce an unbiased and consistent CATE estimator. In Data2, the 

doubly robust estimator of treatment effect is calculated based on the predicted values from these 

models. The estimator is called “doubly robust” since correct specification of either the outcome 

model or the PS model is necessary to get unbiased estimates, but not necessarily both. Finally, a 

covariate-based linear regression is built using the doubly robust estimator as the independent 

variable. The use of the final model is basically intended for causal inference; i.e. to determine 

which variables contribute to CATE. The final model can be based on an ML algorithm. The 

DR-learner works well in high-dimensional settings, with narrower variance of the estimator (i.e. 

more efficient) compared with those from S- or T-learner. 

 

The R-learner relies on calculating residuals for the CATE estimation.100 Estimation steps 

are similar to those of DR-learner, in which prediction algorithms are trained in two-stages 

(Figure 3.4). First, split the dataset into two-folds (Data1 and Data2). In Data1, two prediction 

algorithms are developed for outcome and intervention status based on baseline covariates; 
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different from S-learner, the outcome prediction model does not include intervention status. 

Then, in Data2, residuals for outcome and intervention status are calculated separately, as the 

differences between observed minus predicted values based on the prediction algorithms. Here, 

the residuals for intervention status should be close to the true proportion of intervention (e.g. 

0.5). There are several approaches afterwards. A linear regression model may be used 

incorporating interaction terms between residual for intervention status and covariates. CATE 

can be estimated as subtracting the predicted values from the linear model imputing either all 1 

or 0 in the intervention status in Data2, similarly in case of S-learner. Also the coefficients for 

each interaction term may be interpreted as the contribution of each covariate in CATE. An ML 

algorithm may also be used as the final model, whereas the process differs a bit. The final ML 

model is developed to predict the ratio of two residuals, using squared value of residual for 

intervention status as the weight (details in Appendix 3.1). The predicted value from the last 

prediction model is the CATE estimate.  

 

Of note, although R-learner is one of the DML approaches, it is sometimes called as 

parametric (e.g. when linear regression is used in the final step) or non-parametric (e.g. when an 

ML is used) DML. Similar to DR-learner, R-learner is trained so as to optimize HTE, processing 

doubly robust property and performing well in a setting of high dimensionality.  
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Figure 3.4: Graphical explanation of R-learner approach 

 
First split the data into Data1 and Data2 (note either data can be considered as training datasets). Using 
Data1, two prediction models are developed: one model predicting outcome (ModelY), and one predicting 
intervention status (ModelPS). Using Data2, calculate residuals for outcome (Yresi) and intervention status 
(Tresi) using the two prediction models. Lastly, construct a final model to predict Yresi/Tresi with Yresi

2 as 
weight, using linear regression or ML models. Or, a final model may be a linear regression with 

interactions between covariates and Tresi. To apply the final model to estimate CATE, another test dataset 
may be needed. 
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CATE estimation: Causal Forest 

The generalized random forest algorithm, also known as the Causal Forest, is an 

adaptation of random forest, specifically designed to estimate CATE.7,105 Causal Forest employs 

recursive partitioning to identify neighborhoods in covariate space. These forests are built from 

causal trees in which the splitting criterion is optimized to represent treatment effect 

heterogeneity. By assuming a constant CATE within neighborhoods, the algorithm aims to locate 

leaves with constant but unique treatment effects across the leaves. The Causal Forest averages 

multiple causal trees from bootstrap samples, with variations arising from subsampling. 

Treatment effect predictions rely on the difference in average outcomes between intervention and 

control arms in terminal leaves. 

 

A key of Causal Forest is the honesty condition, which is essentially a DML (i.e. meets 

Neyman orthogonality conditions). Half of the training data is utilized to estimate the tree 

structure (splitting subsample), while the remaining half is used to estimate treatment effects in 

each leaf (estimating subsample), thus preventing overfitting. Estimates of Causal Forest 

guarantee valid confidence intervals with asymptotic variance estimators based on the honesty 

condition. 

 

Cross-fitting approach 

Cross-fitting, a form of cross-validation, is a technique employed to develop a CATE 

algorithm while estimating CATE in the same samples. This is particularly important in high-

dimensional settings where the number of covariates is large relative to the sample size, as is 

generally the case in medical and epidemiological trials.33 Splitting the dataset into training and 
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testing subsets for estimating and evaluating purposes, which is necessary, leads to a loss of large 

number of samples. Cross-fitting enables a use of every sample for the evaluation purpose, 

thereby increasing the statistical efficiency. In brief, the approach repeats the CATE estimation 

and prediction process for every fold so that CATE is predicted for every test data (Figure 3.5). 

 

 

Figure 3.5: Cross-fitting in simple approaches 
 

Figure illustrates a 3-fold cross-fitting approach to develop a model estimating CATE while estimate 
CATE for all samples using one RCT. First split the dataset into 3-fold, in which two is used for CATE 
algorithm development (training dataset) and the other one is for CATE estimation (test dataset). Repeat 
the process by switching the roles, and CATE can be estimated for all samples while avoiding overfitting 

due to using same population for model development and the estimation.  

 

 

Cross-fitting in simple algorithms 

First, suppose that in an application of the T-learner the trial data is first divided into K 

mutually exclusive and exhaustive subsets, known as "folds". K=5 is commonly used but some 

studies suggest larger K values (such as 200) for obtaining stable results.10,95 This partitioning 
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separates the data used for model estimation (training) from the data used for prediction (test). 

Once K is determined, the following steps are performed: 

 

1: Model estimation: Fit the prediction models that estimate CATE, such as a meta-learner or 

causal forest, setting aside one fold or subset it turn to serve as the test data (i.e. training data). 

Covariate selection or hyperparameter tuning, often through cross-validation, should be 

conducted separately each time within the training data. 

 

2: Prediction: Using each developed model, estimate CATE for the observations in the held -out 

or test data. In the example, each of the five subsets, which were not used for the training, will be 

used in turn.  

 

3: Cross-fitting: Repeat 1-2 for K times, obtaining CATE estimates for all samples. In this 

process each observation is included in one of the held-out data sets, and treated as a test 

observation.  

 

Cross-fitting in DML 

Cross-fitting may be applicable to DML algorithms including DR-learner and R-learner, 

but it gets a bit complex since these algorithms generally need additional cross-validation. 

Figure 3.6 illustrates an efficient process with R-learner, which is applicable to DR-learner too. 

Researchers may need to set the numbers of folds for cross-fitting (to estimate CATE for all 

samples) and cross-validation (within the DML algorithm), to say K1=4 and K2=3, respectively. 

Then perform the following steps: 
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1: Nuisance model development: set aside one fold from K1 for test purpose (i.e. estimate 

CATE). Using the remaining 3/4 of the total data, which we call training data, we further split it 

into K2 folds. Setting aside one fold from K2 within the training data (i.e. 2/4 of the total data or 

Data1), we develop nuisance models, corresponding to a model predicting outcome and another 

model predicting intervention status.  

 

 

Figure 3.6: Cross-fitting in approaches needing cross-validation in their frameworks 
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Figure 3.6 (continued) 

Figure illustrates a 4-fold cross-fitting approach to develop a model estimating CATE using DR-learner or 
R-learner while estimate CATE for all samples using one RCT. First split the dataset into 4-fold, in which 

three is used for CATE algorithm development (training dataset) and the other one is for CATE 
estimation (test dataset). Further split the training dataset into 3-fold for example. Two (Data1) are used to 
develop nuisance models (e.g. ModelY and ModelPS in R-learner), and one (Data2) is used to calculate 
parameters necessary for CATE model development (e.g. Yresi and Tresi in R-learner). Repeat the process 
by switching the roles of Data1 and Data2, and these parameters are estimated in all training samples. 
Then fit the final model using all samples in training dataset to estimate CATE, and estimate CATE in 
test dataset. Repeat the process by switching the roles of training and test dataset, and CATE can be 
estimated for all samples while avoiding overfitting due to using same population for model development 

and the estimation. 

 

2: Residual calculation: In the held-out data within training data (1/4 of the total data or Data2), 

the residuals for outcome and intervention status are calculated using the models developed in 

Data1.  

 

3: CATE estimation model development: Repeat 1-2 for K2 times, obtaining residuals for every 

sample in the training data. Fit the final model in the whole training data (i.e. 3/4 of the total 

data), which is the model to estimate CATE. 

 

4: CATE estimation: Using the test data (1/4 of the total data or test data), estimate CATE using 

the model developed in step 3.  

 

5: Cross-fitting: Repeat 1-4 for K1 times, obtaining CATE estimates for all samples. 

 

By employing cross-fitting, the CATE estimates are derived from models that are 

independent of the test dataset, thereby preventing overfitting and avoiding the complexity 

conditions necessary to obtain a consistent estimator. As all samples are used for evaluation, the 

statistical precision is improved compared with a simple training/test splitting approach.  
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However, in case of an evaluation of ITRs, to appropriately account for the statistical gain in 

precision necessitates a complex computation of the variance estimator of the ITR evaluation 

indices, which is described in a later section of this paper.10,85 

 

 

3.5 Part C: Evaluation approaches to an ITR 

An ITR refers to a data-driven rule indicating who to treat or not such that the rule 

maximizes the treatment effect (i.e. benefit) in the target population. As detailed in Section 1, 

developing an effective ITR can be a major aim of HTE-related studies. Once CATE is 

estimated, a simple ITR can be easily developed – if CATE is preferable (such as CATE < 0 for 

incident CVD outcome), then the subject should be treated, and otherwise not. An ITR may be 

developed based on a variable or a scoring rule other than CATE. In addition, more complex 

treatment rules can be made, for example, considering HTE for ≥2 distinct outcomes or 

considering the limit of offering treatment (called budget constraints)106, but here we focus on 

the evaluation of a simple ITR. For this purpose, we would want to observe two potential 

outcomes86,94 per patient, either if treated or if not treated, in order to directly evaluate the ITR 

performance. However, this is impossible, and thus we need evaluation metrics specifically 

designed for ITR evaluation. Such metrics should reflect the performance of an ITR with respect 

to the overall treatment effect in the target population. In addition, the evaluation methods should 

be generalizable to any ITR development approaches in practice. We introduce the population 

average value (PAV)10,11, the population average prescription effect (PAPE)10, the area under the 

prescriptive effect curve (AUPEC), the sorted group average treatment effect (GATE), and the 

rank-weighted average treatment effect (RATE) metrics.85,95,107 Visual explanation on PAV, 
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PAPE, and AUPEC with reference to ATE is provided in Figure 3.7. The implementation of 

some these evaluation methods can be easily done with an R package ‘evalITR’ or ‘grf’.85,107 

Note, the valid evaluation metrics for an ITR are not limited to these measuress95 and are under 

rigorous investigation. 

 

Population average value (PAV) 

A standard metric to evaluate an ITR is the PAV, which describes the average outcome 

(of the super-population) if the population is treated according to an ITR.10,11,108 If a smaller 

value is better for the outcome (such as incident CVD), an ITR that produces the smallest PAV 

(biggest reduction) is considered as the most effective treatment strategy. Of note, PAV indicates 

an average outcome if everyone were treated according to an ITR, not a treatment effect; 

therefore, it is not reasonable to compare PAV (average outcome) and ATE (treatment effect), 

for example. In a case of cross-fitting, the PAV estimand and the variance estimator become a bit 

complex, accounting for the estimation uncertainty of the ITR by averaging over the random 

sampling of training sets.10 

 

Population average prescription effect (PAPE) 

A good ITR is always expected to outperform a non-individualized treatment rule that 

does not use individuals’ information, and a budget constraint should be considered since 

intervention is often costly. To reflect these concepts, PAPE compares the overall average 

outcome in the population under an ITR versus under random assignment of the intervention 

with a fixed proportion of the intervention assignment as in the ITR.10 In this metric, if an ITR 

recommends 30% of the target population to be treated, then the comparator is a non-
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individualized treatment rule in which 30% of the population is randomly assigned to the 

intervention arm. Thus, PAPE explains how much average outcome could be improved by just 

changing the assignment of intervention from random to an organized way (i.e. ITR). Similar to 

PAV, the best ITR should confer the most beneficial PAPE, when the budget constraints are 

accounted for. 

 

 

Figure 3.7: Graphical illustration of PAV, PAPE, and AUPEC 

Individualized treatment rule (ITR) may be evaluated in unique evaluation metrics when the ITR is 
developed and evaluated in the same trial using cross-fitting. X-axis indicates treatment proportion in 
random assignment and Y-axis is average outcome (e.g. weight loss). Blue line indicates average outcome 

with the treatment proportion (assuming random assignment) equal to the value in X-axis.  
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Figure 3.7 (continued) 

Red line indicates population average value (PAV), an average outcome if everyone is treated according 
to the ITR, which should be larger than random assignment. Average difference under an ITR and random 
assignment at the treatment proportion according to the ITR is called population average prescription 
effect (PAPE). Finally, the area under the prescription effect curve (AUPEC) is the shaded area between 

red and blue line. 

 

 

Area under the prescriptive effect curve (AUPEC) 

Figure 3.7 effectively shows the relationships between PAV, PAPE, ATE, and average 

potential outcome if treated and if not treated. In this example, average potential outcome (e.g. 

weight loss) if treated is better than that if not treated, and thus the difference between if 

randomly treated (i.e. treatment proportion > 0%) and if not treated (i.e. treatment proportion = 

0%) is higher if the proportion of intervention assignment (x-axis) is higher. The difference 

between the treatment proportion = 100% and 0% indicates ATE. The ITR in this figure 

necessitates that 70% of the population should be treated, and so PAV is plateaued if x-axis 

≥70%. PAPE is the difference between PAV and average outcome if 70% of the population is 

randomly treated. AUPEC is the shaded area between the curve indicating PAV (red curve) and 

the straight line indicating the average outcome under random assignment of the intervention 

(blue line). Thus, the AUPEC represents the average performance of an ITR compared with the 

random allocation of intervention over the range of the intervention proportion. 

 

The sorted group average treatment effect (GATE) 

With good estimates of CATE, we should be able to correctly stratify the individuals 

according to the estimated outcome value for the actual observed outcome; i.e. individuals with 

lower CATE should be associated with lower observed outcome value, on average, compared 

with those with higher CATE. This represents a concept of GATE, which describes the groups 
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according to sorted estimated CATE values.85,95 Tertile, quartile, or quintile categorization 

approaches may be used, depending on the size of the dataset. Estimating GATEs is fairly 

straightforward; with estimated CATEs in the test dataset, categorize individuals into, say, 

quartiles according to the CATE values, such that the least quartile group has the smallest CATE 

values and vice versa. Then, for each category separately, estimate the treatment effect as the 

average of the observed outcomes in the intervention arm minus those in the control arm. There 

are a few distinct ways to calculate the variance estimator and to generalize the method to cross-

fitting.85,95 In addition, a valid statistical test for effect heterogeneity and monotonicity across 

GATEs have been proposed.85 

 

The rank-weighted average treatment effect (RATE) metrics 

Given very limited sample sizes for exploring HTE in medical/epidemiological RCTs, a 

high power test not requiring division of data into subgroups (as in GATE) is warranted. RATE 

metrics, including the targeting operator characteristic (TOC) and area under the targeting 

operator characteristic (AUTOC), are such evaluation approaches (Figure 3.8).107 For the 

calculation, the rank according to estimated CATEs (or another continuous metric used to tailor 

the intervention) is used instead of estimated CATEs themselves. Then the TOC is defined as 

average effect among those with top X quantile (i.e. ranks) of CATE minus ATE, with X 

determined arbitrarily. We expect that if X is smaller (i.e. the cutoff rank of CATE is higher), the 

TOC becomes higher, since we are then targeting a very selective population with expected large 

positive treatment effect. TOC becomes 0 when X is 1. TOC curve is defined by TOC values 

when X varies between 0 to 1 (i.e. 100 to 0 percentile), and AUTOC is the area under the TOC 

curve. AUTOC thus evaluates the performance of CATE-based ranks with respect to ATE, not 
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necessitating the arbitrary grouping. Of note, AUTOC differs from AUPEC in two aspects; the x-

axis is based on ranks based on CATE versus CATE estimates themselves, and the y-axis 

represents average effects versus average outcome in AUTOC and AUPEC, respectively. The 

RATE metrics can be powerful since it ignores the CATE estimates themselves. However, the 

interpretation of AUTOC may be challenging – which represents the average performance of the 

ranking approaches (often based on CATE) compared with ATE over the range of the cutoffs for 

the ranking as to who to treat.  

 

 

 

Figure 3.8: Graphical illustration of TOC and AUTOC 

Targeting operator characteristic (TOC) and area under the targeting operator characteristic (AUTOC) are 
ITE evaluation approaches based on CATE-based ranks. X-axis indicates quantiles of CATE (or other 
metrics indicative for heterogeneous treatment effect), or percentiles. Y-axis is the average treatment 
effect among the target population. Red curve indicates the average effect among those ranked higher  
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Figure 3.8 (continued) 
than the quantile at the x-axis that varies from 0 to 1. When X-axis becomes 1, the red curve is equal to 
average treatment effect (ATE) because then the target population is everyone. TOC is the difference 
between a point on the red curve at arbitral x-axis level (X) and ATE. Blue line denotes ATE at any X. 

Finally, AUTOC is the shaded area between red and blue line.  

 

 

 

3.6 Part D: How to avoid common pitfalls 

There are several pitfalls that researchers can make in studies focusing on exploring HTE 

and development of an ITR in medical and epidemiological research. In this section, we explain 

why these are problematic and how to avoid them. 

 

Split the dataset into training and test 

Some studies use a whole dataset to train HTE algorithms, estimate CATE in the same 

dataset using the algorithms, and make inferences. This practice is problematic partly because 

the algorithm is very likely to be overfitted to the dataset. Complex ML algorithms can always 

be overfitted to the data used for the model training, and that is why practicing training/test data 

splitting is always necessary to evaluate valid prediction accuracy. An inference that is made 

using an apparently overfitted algorithm to the target dataset does not provide any useful 

information. Splitting training/test is an easy way to avoid complex assumptions needed to obtain 

valid estimates of CATE, and that is why DML or DR-learner is built upon cross-

validation.100,101 

 

A practice of training/test splitting is a standard in the computer science community since 

developing prediction algorithms aims for generalizable usage, for which accounting for 
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overfitting is essential. However, in medical and epidemiological communities, a practice of data 

splitting is less common, in particular when estimating subgroup effects. This potentially reflects 

a widespread usage of simple linear or logistic regressions for the inference, which are less 

sensitive to overfitting issues. Such practice also reflects that generally high dimensionality is an 

inevitable issue in medical and epidemiological research. In HTE-related research, it is generally 

recommended not only to split the data but also to conduct cross-fitting process for statistical 

efficiency. Applied researchers should be aware of the necessity of such methods and how to 

conduct them. Of note, data splitting is essential for internal validity, and external validity for the 

generalizability of an ITR should be tested using another independent dataset, as in popular 

simple prediction practices. 

 

In addition, any ML training procedures, including hyper-parameter tuning, should be 

done strictly in the training dataset in each cross-fitting process. Use of the information on a test 

dataset in the training phase will lead to “data leakage”, a major source overfitting.109 Therefore, 

in each fold, the same CATE estimation algorithms, including the pre-specified approaches of 

covariate selection and hyperparameter tuning, should be trained respectively. 

 

Do not consider variables with high variable importance in causal forest algorithm as causally 

important for estimating HTE 

Inference on causality of an effect modification is difficult. To be an effect modifier, the 

covariate may just need to be associated with outcome.110 Suppose there is one true causal effect 

modifier; then a highly correlated covariate could show similar effect modification, which is 

called a surrogate effect modifier. In general, it is not possible to estimate the causal contribution 
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of one covariate on an effect modification using a data-driven approach. VI measures in causal 

forest algorithm provide useful information on the extent to which variables contribute to the 

prediction algorithm, but nothing more. The measures may be used to partly interpret the “black-

box” algorithm but may not provide causal interpretation on the effect modification. 

Furthermore, the important variables may be likely different in other HTE algorithms such as 

meta-learners, and thus generalizable information may not be obtained from exploring variable 

importance in a causal forest algorithm alone. In addition, simple interaction terms between 

intervention status and a single covariate would offer more interpretable information on the 

importance of the effect modification. 

 

Do not evaluate the ITR performance with an interaction in simple outcome regression 

In medical and epidemiology literatures, it is very common to evaluate effect 

modification based on the coefficient of the interaction term between intervention status and a 

covariate in simple outcome regressions.81 This is a good practice for a pre-specified list of 

potential effect modifiers in an RCT, but not for a data-driven approach such as an ITR. 

Fundamentally, ITR development relies on the covariate distribution of the derivation data (in 

this case an RCT), and the evaluation metric needs to account for it. Interaction analysis between 

intervention status and CATE is incorrect, since the estimated CATE is not a linear predictor of 

the true CATE.95 For this purpose, investigators should rely on a method to estimate the best 

linear predictor of CATE, for example.95 Interaction analysis between intervention status and a 

categorical variable based on CATE (GATE for example) is also incorrect, since the standard 

variance estimator does not account for the uncertainty stemming from estimating the cutoff 

points.85 Finally, in the cross-fitting settings, the variation across training datasets and efficiency 
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gain from the cross-validation procedure should be considered when estimating the variance of 

GATE, which may not be achievable by simple outcome regression. For these reasons, the 

evaluation approaches for an ITR should be different from conventional statistical methods in 

medical and epidemiological literatures.  

 

 

3.7 Part E: An applied example 

The Preventing Overweight Using Novel Strategies (POUNDS Lost) trial was conducted 

to fill the knowledge gap of whether overweight people have a better response in the long term to 

reduced-calorie diets that emphasized a specific macronutrient composition12. The 2x2 factorial 

RCT of high vs. low fat and high vs. low protein, which consequently also compared high vs. 

low carbohydrates, resulted in similar weight loss, blood pressure, and glucose metabolism over 

2 years. However, the treatment effects were very heterogeneous and many effect measure 

modifications have been identified primarily by genotypes.111–114 Given the variety of potential 

effect modifiers, it is of particular interest to determine which individuals are most likely to 

benefit from which reduced-calorie diets, and to develop an ITR such that the rule maximizes the 

overall effectiveness of the dietary interventions – corresponding to the study type 2 in the 

Section 3. In this example, we sought to estimate CATE for the dietary interventions in the 

POUNDS Lost trial and develop a clinically meaningful CATE-based ITR.  

 

Methods 

Population 
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The POUNDS Lost Trial is a randomized intervention trial in which 811 individuals with 

a body mass index (BMI) between 25 to 40 kg/m2 were assigned to one of 4 energy-reduced 

diets varying in macronutrient compositions of fat, protein, and carbohydrate to compare their 

effects on body weight and composition over 2 years.12 The interventions included (1) low-fat, 

average-protein diet (% of fat/protein/carbohydrate: 20/15/65); (2) low-fat, high-protein diet 

(20/25/55); (3) high-fat, average protein diet (40/15/45); (4) high-fat, high-protein diet 

(40/25/35). Hence, the trial constituted a 2-by-2 factorial design contrasting low (20%) versus 

high (40%) fat, and average (15%) versus high (25%) protein diet. More details of this trial were 

described elsewhere.12 The study was conducted from October 2004 through December 2007 at 2 

sites: Harvard T.H. Chan School of Public Health and Brigham and Women’s Hospital in 

Boston, MA, and the Pennington Biomedical Research Center of Louisiana State University 

System, in Baton Rouge, LA. The study was approved by the human subjects committee at both 

institutions and by a data safety monitoring board appointed by the National Heart, Lung, and 

Blood Institute. All participants gave written informed consent. 

 

Intervention arm, outcomes, and covariates 

Intervention/control arms were defined for high-fat/low-fat diet and high-protein/average-

protein diet, respectively. These two interventions were evaluated separately. The primary 

outcome of the study was defined as, in accordance with the primary report12, the change in body 

weight over 2 years. N=645 out of total 811 participants completed the weight assessment at 2-

year, and for persons who withdrew from the study early (after at least 6 months of 

participation), their weight at the end of the trial was imputed on the basis of a rate of 0.3 kg per 

month of regained weight after withdrawal.12 ITRs were developed to maximize the effects of 
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each intervention on the primary outcome. Covariates included age, gender, height, weight, 

waist, and income. 

 

Statistical analysis 

For CATE estimation, we applied the following approaches; Causal forest, T-learner with 

linear regression as the base-learner, S-learner with random forest as the base-learner, R-learner 

with random forest as the base-learner and second-stage model, and DR-learner with random 

forest as the base-learner and second-stage model. An ITR was defined as a treatment rule in 

which participants with estimated CATE<0 are offered interventions and others are assigned to 

controls. PAV, PAPE, and GATE were used for the ITR evaluation. In the present context, the 

estimate of PAV is the average 2-year weight change if participants are treated under an ITR. 

The estimate of PAPE is the difference in average 2-year weight change under the ITR compared 

with the random assignment of the intervention with the same proportion of intervention arm in 

the ITR. The estimates of GATEs represent a difference in 2-year weight change between 

intervention arm and control arm in groups according to the tertile of the estimated CATE. A 5-

fold cross-fitting process was applied and the valid variance for the estimates of the evaluation 

metrics was calculated. The statistical estimates were calculated based on the R package 

‘evalITR’. We also explored the CATE algorithm using SMD across GATE-based groups and a 

regression tree employed for the estimated CATE.91 All the statistical analysis was conducted 

using R 4.2.1. 
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Results 

The average 2-year weight reduction (95% CI) was 3.3 kg (2.8, 3.8) in the total 

population, 3.3 kg (2.6, 4.0) in high-fat group, 3.3 kg (2.6, 4.0) in low-fat group, 3.6 kg (2.9, 4.3) 

in high-protein group, and 3.0 kg (2.3, 3.7) in average-protein group. The ATEs (as weight 

reduction) were -0.034 kg [95% CI: -0.99, 0.92] in the fat intervention (low fat preferable) and 

0.60 kg [95% CI: -0.35, 1.6] in the protein intervention (high protein preferable), neither leading 

to a significant difference on average. 

 

Table 3.2 summarizes the GATEs, PAV, and PAPE from the five approaches of CATE 

estimation. Note, the values indicate weight loss. In fat intervention analyses, GATE1 is a 

subgroup with expected smaller weight change by high-fat intervention (i.e. expected greater 

weight loss by high-fat intervention); in contrast, GATE3 is a subgroup with expected greater 

weight loss by low-fat intervention. GATE1 in the protein intervention is a subgroup with 

expected greater weight loss by high-protein intervention, and GATE3 is the opposite. Overall, 

effect heterogeneity was well detected for the fat intervention but not for the protein intervention. 

In the fat intervention, the R-learner algorithm conferred the biggest weight loss by the 

intervention shown as beneficial PAV and PAPE. In the R-learner, those with the highest 

estimated benefit from the low-fat (i.e. GATE3) had an actual 2.68 kg (SD: 0.97) net weight gain 

by high-fat compared with low-fat intervention, or 2.68 kg net weight loss by low-fat 

intervention. In contrast, those in other GATE groups had 1.28 kg and 1.45 kg net weight 

reduction by reversing intervention (by offering high-fat compared with low-fat intervention). 

The resulting ITR algorithm indicates 448 participants (55.2%) should be treated with high-fat 

intervention. A fat intervention following the ITR would lead to a 4.13 kg (SD: 0.43) weight 



 91  

 

 

reduction in the population on average (interpretation of PAV), and changing the assignment 

according to the ITR from random resulted in 0.84 kg (SD: 0.32) weight reduction (interpretation 

of PAPE). The best model was also R-learner for the protein intervention, and the resulting ITR 

showed an overall average weight reduction of 3.8 kg (SD: 0.06), which was not very different 

from the high-protein group. While the groups were ordered in the development data, the GATEs 

did not show a rank-consistent pattern (smaller treatment effect for GATE1 and higher for 

GATE3) in the testing data. 

 

 
A. Fat intervention  

GATEs ITR evaluation 

CATE estimation approach GATE1 GATE2 GATE3 PAV PAPE 

Causal Forest 1.32 (0.77)  0.02 (0.86) -1.28 (2.51) 3.89 (0.39) 0.65 (0.47) 

T-learner/ Linear Regression 1.04 (1.35)  -0.39 (0.82) -0.60 (2.02) 3.45 (0.37) 0.20 (0.53) 

S-learner/ Random Forest 0.69 (1.66)  0.53 (1.81) -1.17 (1.06) 3.76 (0.37) 0.52 (0.36) 

R-learner/ Random Forest 1.28 (0.85)  1.45 (1.83) -2.68 (0.97) 4.13 (0.43) 0.84 (0.32) 

DR-learner/ Random Forest 2.36 (1.85)  -0.03 (0.93) -2.28 (1.52) 4.08 (0.67) 0.78 (0.49) 

B. Protein intervention  
GATEs ITR evaluation 

CATE estimation approach GATE1 GATE2 GATE3 PAV PAPE 

Causal Forest -0.01 (2.35)   1.62 (0.84) 0.35 (2.60) 3.67 (0.42) 0.04 (0.16) 

T-learner/ Linear Regression -0.79 (2.01)   2.59 (0.95) 0.16 (1.27) 3.37 (0.36) -0.11 (0.30) 

S-learner/ Random Forest 0.37 (1.88)  1.51 (1.65) 0.07 (1.48) 3.61 (0.63) 0.18 (0.51) 

R-learner / Random Forest -0.03 (1.54)   1.93 (0.99) 0.06 (1.82) 3.75 (0.60) 0.34 (0.32) 

DR-learner/ Random Forest 0.60 (1.71)   1.33 (1.30) 0.03 (1.65) 3.40 (0.36) 0.00 (0.27) 

 
Table 3.2. Evaluation of ITRs in POUNDS Lost trial 

 

Numbers are estimated weight loss (SD). 
For GATEs, the number indicates the effect of high-fat diet on the 2-year weight reduction (kg) minus 
that of low-fat diet (A), and the effect of high-protein diet on the 2-year weight reduction minus that of 
average-protein diet (B). Positive values favor either high-fat or high-protein diet intervention, and 

negative values favor low-fat or average-protein diet intervention. 
GATE1 is a subgroup with expected smaller weight change by high-fat or high-protein intervention (i.e. 
expected greater weight loss by high-fat or high-protein intervention); in contrast, GATE3 is a subgroup 

with expected greater weight loss by low-fat or average-protein intervention. 
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PAV stands for the average 2-year weight reduction under the ITR. PAPE indicates the additional weight 
reduction by changing the allocation of the intervention according to the ITR compared with random 

assignment. Higher values indicate greater effects on weight reduction of the ITR. 

 

 

Finally, we aimed to interpret the algorithm of the best ITR for the fat intervention. Table 

3.3 describes the patient characteristics according to the GATEs. In the R-learner model, those 

with estimated higher treatment effect by low fat (GATE 3) were characterized by high 

proportion of male and larger body size,. Figure 3.9 illustrates a treatment algorithm developed 

by applying the CART algorithm to the estimated CATE.  

 

 

  CATE based on R-learner     

 Tertile 1 (GATE 1) Tertile 2 (GATE 2) Tertile 3 (GATE 3)  SMD 

  N = 271 N = 270 N = 270     

Age, years  51.5 (8.1)  51.7 (8.6)  49.4 (10.6) 
 

0.16 

Male, %     56 (20.7)      56 (20.7)     184 (68.1)  
 

0.73 

Height, cm 165 (8) 166 (7) 174 (8) 
 

0.80 

Weight, kg  88 (17)  89 (13) 102 (12) 
 

0.75 

Waist, cm  99 (14) 100 (11) 111 (10) 
 

0.70 

Income, %             
 

0.66 

   >150K     25 (9.2)      41 (15.2)      54 (20.0)  
 

 
   100-150K     72 (26.6)      45 (16.7)      47 (17.4)  

 
 

   50-100K     66 (24.4)     110 (40.7)     147 (54.4)  
 

 
   <50K    108 (39.9)      74 (27.4)      22 (8.1)  

 
  

 

Table 3.3. Interpretation of ITR for fat intervention in POUNDS Lost trial 
 

CATE is estimated effect of high-fat vs. low-fat diet on 2-year weight loss. GATE1 is a subgroup with 
expected smaller weight change by high-fat or high-protein intervention (i.e. expected greater weight loss 
by high-fat or high-protein intervention); in contrast, GATE3 is a subgroup with expected greater weight 

loss by low-fat or average-protein intervention. 
Numbers are mean (SD) for continuous variables and frequency (%) for categorical variables. 
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Figure 3.9: Decision tree explaining the ITR of individualized fat intervention in the 

POUNDS Lost trial 

An ITR of high fat/ low fat intervention is developed in POUNDS LOST using R-learner, and a 

regression tree is fit to predict estimated CATE. Values indicate estimated CATE, average 
weight loss by high-fat intervention compared with low-fat intervention (i.e. positive values 

mean greater weight loss by high-fat intervention compared with low-fat). 

 

 

Discussion 

In the present post-hoc analysis of the POUNDS Lost trial, we applied machine-learning 

algorithms on baseline covariates to identify the subpopulations in which the effects of distinct 

macronutrient-based dietary interventions on 2-year weight loss were heterogeneous. We 

identified effect heterogeneity of the fat intervention but not the protein intervention. The most 

striking algorithm was the R-learner, in which those with the highest estimated treatment effect 

had 2.7 kg net weight reduction with low-fat compared with high-fat intervention, although the 
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ATE was almost null. The ITR based on the causal forest algorithm showed a 4.1 kg weight 

reduction in the total population, and a 0.84 kg weight reduction compared with random 

assignment of the fat intervention. Those with estimated greater response to low-fat diet was 

characterized by a higher proportion male, of tall height, and high weight and waist. Although 

the overall effect size was modest, our machine-learning approach successfully developed an 

effective ITR based on the baseline covariates. 

 

Precision nutrition has been a major focus in nutritional epidemiology in which dietary 

interventions may be best tailored to individuals according to their characteristics.115 Although 

there are many approaches to advance precision nutrition, the present approaches based on 

CATE and ITR using an RCT could directly provide evidence for this purpose. The CATE-based 

ITR can be quite flexible and may better capture the complex effect modification across multiple 

variables. The drawbacks of this approach include that an exploration of CATE generally always 

be under-powered given that an RCT is only powered to detect ATE. However, our application 

in the POUNDS Lost successfully resulted in a discovery of a novel treatment algorithm for a 

low-fat intervention based on baseline characteristics, informing the precision nutrition approach. 

Of note, the observed sex difference is in line with previous studies showing female mice more 

resistant to high-fat diet-induced obesity onset than males116,117, as well as with human 

trials.118,119  

 

There are several limitations of our study. First, we imputed the outcome values with a 

stable rate for weight regain in accordance with the primary study. This imposed an assumption 

of such natural changes of participant weight, which was untestable. Second, we applied 
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intention-to-treat analysis, not accounting for the adherence to the assigned interventions. 

However, the present CATE estimation and ITR development implicitly took account for the 

adherence by the correlation with covariates, since individuals with low adherence would lead to 

little changes in weight. Third, the study consists of 80% White participants and thus the 

generalizability is limited. Fourth, the lack of observed heterogeneity for the protein intervention 

may be due to lack of HTE or the type 2 error. Combining RCTs with the same or similar 

treatment arms would increase the chance of detecting meaningful signals. Finally, our treatment 

algorithm should be tested in another RCT to assess generalizability. 

 

 

3.8 Concluding Remark 

In this paper, general approaches to HTE-related research in medical and epidemiological 

RCT settings. The methodological approaches of HTE-related study depend on the aims of the 

study. Meta-learners and the causal forest are the popular approaches to estimate CATEs that can 

be easily implemented, while DR-learner and R-learner are powerful in a setting of high-

dimensionality. Cross-fitting is recommended to gain statistical efficiency. Statistically valid 

evaluation metrics for an ITR include PAV, PAPE, AUPEC, GATE, and RATE metrics. In the 

POUNDS Lost application, the R-learner algorithm detected significant HTE by high vs. low-fat 

diet according to baseline characteristics. The present approach and observations may thus 

contribute to the growing evidence for precision nutrition by directly suggesting practical 

treatment strategies. 

  



 96  

 

 

 

 

 

Chapter 4 

 

Association of plasma branched chain amino acid with 

biomarkers of inflammation and lipid metabolism in 

women 

 

Author: Rikuta Hamaya, MD, MSc1,2, Samia Mora, MD, MHS1,3, Patrick R Lawler, MD, MPH4, 

Nancy R Cook, ScD1,5, Paul M Ridker, MD, MPH1, Julie E Buring, ScD1,5, I-Min Lee, MBBS, 

ScD1,5, JoAnn E Manson, MD, DrPH1,5,6, Deirdre K Tobias, ScD1,2 

  
 

1Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and 

Harvard Medical School, Boston, MA 

2Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 

3Center for Lipid Metabolomics and Division of Cardiovascular Medicine, Brigham and 

Women’s Hospital and Harvard Medical School, Boston, MA 

4Peter Munk Cardiac Centre, University Health Network, and Heart and Stroke Richard Lewar 

Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, ON, Canada 

5Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 

6Mary Horrigan Connors Center for Women’s Health and Gender Biology, Brigham and 

Women’s Hospital and Harvard Medical School, Boston, MA  



 97  

 

 

4.1 Abstract 

Backgrounds: Branched-chain amino acids (BCAAs; isoleucine, leucine and valine) correlate 

with insulin resistance and poor glucose control, which may in part explain associations between 

type 2 diabetes (T2D) and cardiovascular disease (CVD). However, the relationships of BCAAs 

with other cardiometabolic pathways, including inflammation and dyslipidemia, are unclear. We 

hypothesized that plasma BCAAs would correlate with multiple pathways of cardiometabolic 

dysfunction. 

Methods: We conducted a cross-sectional analysis among 19,472 participants (mean age=54.9 

years, SD=7.2 years) in the Women’s Health Study without a history of T2D, CVD, or cancer. 

We quantified the concentrations of individual biomarkers of inflammation and lipids, across 

quartiles of BCAAs, adjusting for age, smoking, BMI, physical activity, and other established 

CVD risk factors at blood draw. 

Results: Women in the highest vs. lowest quartiles of plasma BCAAs had higher inflammatory 

markers including high-sensitivity C-reactive protein (multivariable-adjusted means: 1.96 vs. 

1.43 mg/L), fibrinogen (367 vs. 362 mg/dL), soluble intercellular cell adhesion molecule-1 (361 

vs. 353 ng/mL), and glycoprotein acetylation (407 vs. 371 µmol/L) (p-trend=0.0002 for 

fibrinogen; p<0.0001 for others). Similarly for lipids, women with higher BCAAs had lower 

HDL-c (49.0 vs. 55.0 mg/dL), and higher triglycerides (143 vs. 114 mg/dL), LDL-c (133 vs. 124 

mg/dL), and lipoprotein insulin resistance score (52.6 vs. 37.3) (all: p<0.0001). Similar 

associations with these biomarkers were observed in isoleucine, leucine and valine, respectively. 

Conclusions: Higher circulating BCAA concentrations are associated with adverse profiles of 

biomarkers of inflammation and dyslipidemia independent of established CVD risk factors, and 

thus may reflect poorer cardiometabolic health through multiple pathways.   
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4.2 Introduction 

Type 2 diabetes (T2D) is one of the most prevalent chronic diseases, which is strongly 

linked to the development of cardiovascular disease (CVD). However, mechanisms underlying 

these interrelated diseases are poorly understood. Characterizing the metabolite traits shared by 

T2D and CVD years prior to their diagnosis may allow the identification of high-risk individuals, 

increase opportunities for early intervention and prevention, and uncover shared pathways for 

potential novel therapeutic targets.  

 

Branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) are essential amino 

acids that are preserved in muscle and utilized to synthesize proteins and perform various 

metabolic/physiological functions120. The degradation of BCAAs occurs mainly in mitochondria, 

eventually producing acetyl-CoA or succinyl-CoA, which enters Krebs cycle. This process 

occurs outside of liver, which lacks the expression of mitochondrial branched-chain 

aminotransferase. Dysfunction at each step in this process can lead to an accumulation of plasma 

BCAAs, such as in maple syrup urine disease, a deficiency of branched-chain α-ketoacid 

dehydrogenase complex. Recent evidence shows lowered branched-chain keto acid 

dehydrogenase activity121, muscle breakdown122, as well as excess adiposity15,123, contribute to 

higher circulating BCAAs. Circulating BCAAs are highly predictive of incident T2D124,125, and 

we have previously demonstrated the positive association between BCAAs with incident CVD 

risk.126 Mendelian randomization studies suggest a causal role of impaired BCAA metabolism in 

the disease process of T2D127,128 although evidence is inconclusive. However, the relationships 
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of BCAAs with other cardiometabolic traits predictive of CVD incidence have not been 

explored, which may contribute to our understanding of the T2D/CVD relationship. 

 

Evidence supports T2D as an inflammatory disease in terms of hypoxia, cell death, or 

various inflammatory cytokines/chemokines, which may partly explain the consequent 

development of CVD.129 A variety of molecules are involved in systemic inflammation, some 

represented as biomarkers including C-reactive protein (CRP), fibrinogen, soluble intercellular 

adhesion molecule-1 (sICAM-1), or glycoprotein acetylation (GlycA), which may be related to 

impaired glucose metabolism and incident T2D.130–133 Dyslipidemia may also contribute to the 

relationship between T2D and CVD risk. Various lipid and lipoprotein abnormalities are 

associated with impaired glucose metabolism, including higher triglycerides and lower HDL 

cholesterol, primarily triggered by the overproduction of triglyceride-rich VLDL particle 

(VLDL-p) mediated by insulin.134,135 A recently derived lipoprotein insulin resistance score 

(LPIR) is a composite biomarker based on six lipid metabolite features136 reflecting risk for 

T2D.136–138 However, the relationships between circulating BCAA levels with each of these 

cardiometabolic pathways represented by these individual biomarkers are largely unknown. 

 

We therefore aimed to evaluate the interrelationship of BCAAs with established 

cardiometabolic traits to further characterize BCAAs as metabolites of T2D and CVD risks. We 

conducted cross-sectional analyses for the associations of plasma BCAAs with inflammatory and 

lipid biomarkers in the Women’s Health Study (WHS), which recruited a large cohort of US 

women. We hypothesized that higher plasma total or individual BCAAs would be correlated 

with cardiometabolic biomarkers representing lipid or inflammatory profiles, possibly 



 100  

 

 

independent of concurrent traits of glycemic control as measured by hemoglobin A1C (HbA1c). 

We also examined effect modification by BMI, a consistent predictor of higher total plasma 

BCAAs.139–141 

 

 

4.3 Methods 

Data described in the manuscript, code book, and analytic code will be made available 

upon request pending application and approval. Written informed consent was obtained from all 

participants and the study protocol was approved by the Institutional Review Board of the 

Brigham and Women’s Hospital (Boston, Massachusetts). The full methods are now available as 

supplemental data. 

 

Study design and participants  

Our analysis included participants in the WHS, a completed, randomized, placebo-

controlled, factorial trial of low-dose aspirin and vitamin E for the primary prevention of 

cardiovascular disease and cancer (ClinicalTrials.gov identifier: NCT00000479), whose 

participants are currently being followed observationally. The trial randomized 39,876 female 

US health professionals who were aged 45 years or older without a history of cancer (except 

non-melanoma skin cancer) or cardiovascular disease to low dose aspirin (100 mg every other 

day) and vitamin E (600 IU every other day).142 Our analyses included participants who were 

fasting (at least 8 hours since last eating or drinking) at baseline blood draw, with assay data 

available for isoleucine, leucine and valine concentrations. We excluded samples from 

participants reporting non-fasting status at blood draw to minimize extraneous variability from 
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recent food intake.143 We excluded those reporting a history of diabetes at baseline, which left 

19,472 women eligible for the analysis.  

 

Plasma BCAA measurements 

Blood samples were collected voluntarily prior to randomization, shipped to the 

laboratory on ice via overnight courier, processed, and stored at −170°C in vapor liquid nitrogen 

until biomarker measurements were performed. Proton nuclear magnetic resonance (1H NMR) 

spectroscopy (LipoScience, now LabCorp; Raleigh, North Carolina) quantified isoleucine, 

leucine, and valine.144 The amino acid signal amplitudes deconvoluted from the NMR spectra 

were converted into μmol/L as previously described.144 The inter-assay reproducibility among 

stored Women’s Health Study (WHS) plasma samples was previously estimated with good intra- 

and inter-assay coefficient of variations (CVs) for isoleucine (5.9-6.1%), leucine (4.5-4.9%), and 

valine (1.5-2.1%).  

 

Inflammatory biomarkers 

Assay laboratory methods for the inflammatory biomarkers have been previously 

described in detail145–149. Briefly, high-sensitivity CRP (hsCRP) was assayed on a Hitachi 917 

auto- analyzer with a high-sensitivity immunoturbidimetric assay (Denka Seiken, Tokyo, 

Japan).146 Fibrinogen was measured using an immunoturbidimetric assay with internal standards 

(Kamiya Biomedical, Seattle, Washington).147 LipoScience (now LabCorp; Raleigh, North 

Carolina) measured GlycA from 400 MHz plasma proton (1H) NMR spectra. Signals were 

quantified through deconvolution analysis from signal amplitudes that originated from N-acetyl 

methyl group protons of the N-acetylglucosamine moieties of specific serum proteins and 



 102  

 

 

reflects serum concentration and glycosylation state of main acute-phase reactants such as α1-

acid glycoprotein, haptoglobin, α1-antitrypsin, α1-antichymotrypsin and transferrin145,148. 

sICAM-1 was assayed with the R&D assay via a standard quantitative sandwich enzyme 

immunoassay technique by enzyme-linked immunosorbent assay that does not detect the 

modified form of sICAM-1 in African Americans (R&D Systems; Minneapolis, Minnesota).149 

Laboratory inter-assay coefficients of variation for hsCRP, fibrinogen, GlycA, and sICAM-

1were 3.0%, 1.17%, 1.9%, and 7.4%, respectively. 

 

Lipid biomarkers  

LDL cholesterol (LDL-c), HDL cholesterol (HDL-c), and triglycerides were measured by 

direct assays (Roche Diagnostics, Indianapolis, IN, USA). Lipoprotein subclasses, including 

large, medium and small VLDL; large, medium and small HDL; and large and small LDL 

concentrations, were measured using targeted metabolomics approach (Liposcience, Inc. now 

LabCorp, Raleigh, NC, USA) by detecting the proton NMR spectroscopy methyl group 

signal136,150. Mean VLDL, LDL, and HDL particle sizes derive from weighted averages of each 

subclass diameter relative to its mass percentage. LPIR, a composite weighted score of six 

lipoprotein parameters with homeostasis model assessment of insulin resistance (HOMA-IR), 

was calculated based on the profiles of lipoprotein subclasses as previously described.136 LPIR 

interassay repeatability from 80 replicate analyses of 8 plasma pools over 20 days had a CV of 

6% within-run and 9% between-run.136  

 

Covariates 
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At baseline, questionnaires captured information on demographics, health status, 

reproductive history, and lifestyle characteristics, as previously described.142 A semi-quantitative 

food frequency questionnaire (FFQ) was used to evaluate usual dietary intake, and the 

Alternative Health Eating Index 2010 (aHEI-2010) dietary pattern score was derived as an 

estimate of diet quality of habitual diet.151 

 

Statistical analysis 

Baseline characteristics were compared across the quartiles of summed concentrations of 

plasma BCAAs (isoleucine [µmol/L] + leucine [µmol/L] + valine [µmol/L]). Spearman 

correlation coefficients were derived to compare the associations between total plasma BCAAs, 

inflammatory/lipid biomarkers, and HbA1c. A correlation network was leveraged for this 

visualization using qgraph R package. 

 

We used linear regression models to evaluate the associations between total BCAAs as 

the independent variable and individual cardiometabolic biomarkers as the dependent variables. 

Total plasma BCAAs were analyzed categorically using quartiles. We analyzed the biomarkers 

of inflammation and lipid continuously after excluding the top and bottom 0.5% of the 

distributions to minimize the influence of outliers, and high-sensitivity CRP (hsCRP) values >20 

mg/L to exclude probable acute infections. Biomarkers other than LDL cholesterol (LDL-c) and 

LPIR were logarithmically transformed to improve approximation of a normal distribution.  

 

Models were adjusted for the assignment to aspirin and to vitamin E group, and age at 

blood draw (continuous) (age-adjusted model), and additionally for body mass index (BMI) 
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(kg/m2, continuous), white race, family history of T2D, smoking (none, ever, current), 

menopausal status (premenopausal, postmenopausal [natural or non-natural menopause], 

unsure), use of postmenopausal hormone therapy (never, past, current), parity as number of 

pregnancies lasting ≥6 months (0, 1, 2, ≥3), leisure-time physical activity as total MET-

hour/week (quintiles), the Alternative Health Eating Index 2010 (aHEI-2010) (quintiles), alcohol 

consumption (none, <10g/day, 10 to <20g/day, ≥20g/day), and the use of cholesterol-lowering 

drugs. The missing values in covariates were all <1%, and we imputed the median values for 

continuous characteristics and coded as ‘never’ or ‘unsure’ categories for categorical factors. We 

calculated the adjusted least-square means and 95% confidence intervals (CIs) of each biomarker 

across total BCAA quartiles, in separate models. Tests for linear trends of inflammatory/lipid 

biomarkers across increasing plasma BCAA levels were conducted by assigning participants the 

median BCAA level in each BCAA quartile and modeling as a continuous variable. In addition, 

we explored whether any associations of BCAAs with inflammatory/lipid biomarkers were 

independent of impaired glucose metabolism by further adjusting models for HbA1c. 

 

We also evaluated the relationship between continuous total BCAAs with each biomarker 

standardized to a common scale per 1 standard deviation of its distribution in the WHS to 

facilitate visual comparison and contrast their magnitudes of associations. We performed 

analyses stratified by BMI at blood draw (<25.0, 25.0 to 29.9, ≥30.0 kg/m2) to examine potential 

effect modification by body weight. The statistical interaction between BCAA and BMI was 

assessed for each biomarker using a 2 degrees of freedom log-likelihood ratio test comparing 

models with and without the categorical interaction terms between total continuous BCAAs and 

categorical BMI categories. Secondary analyses were conducted repeating the above models for 
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quartiles of individual plasma BCAAs, isoleucine, leucine, and valine. In sensitivity analyses we 

analyzed women age<60 years and ≥60 years separately. 

 

All analyses were conducted using R (The R Foundation). Bonferroni correction was 

used to adjust the threshold of two-sided p-value for the multiple comparisons, which was 0.006 

given the eight biomarkers of interest.  

 

 

4.4 Results 

Baseline characteristics 

In 19,472 women in the WHS included in this analysis, the mean (SD) age was 54.9 (7.2) 

years with median [IQR] BMI of 24.8 [22.4, 28.3] kg/m2. Median [IQR] concentration of 

summed BCAAs was 396 [349, 450] μmol/L (the distribution is shown in Supplemental Figure 

4.1). The baseline characteristics of the participants according to the quartiles of plasma BCAA 

levels are summarized in Table 4.1. Higher BCAA was associated with older age, higher BMI, 

lower physical activity level, lower diet quality represented by AHEI-2010, lower alcohol intake, 

lower prevalence of smoking, use of cholesterol-lowering drugs, and post-menopausal status.  

 

 BCAA quartile 

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 

 n=4868 n=4868 n=4868 n=4868 

Age, years 54.7 (7.3) 55.0 (7.4) 55.2 (7.1) 54.9 (7.0) 
Race, %     
  White, Non-Hispanic 4640 (96.0) 4643 (96.1) 4622 (95.9) 4569 (94.7) 
  Hispanic 41 (0.8) 43 (0.9) 48 (1.0) 58 (1.2) 
  African American 81 (1.7) 67 (1.4) 86 (1.8) 89 (1.8) 

  Asian/Pacific Islander 51 (1.1) 61 (1.3) 52 (1.1) 83 (1.7) 
  Other/unknown 19 (0.4) 19 (0.4) 13 (0.2) 25 (0.5) 
Smoking, %     
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Never 2380 (48.9) 2521 (51.8) 2612 (53.7) 2613 (53.7) 

Past use 1844 (37.9) 1800 (37.0) 1729 (35.5) 1698 (34.9) 
Current use 644 (13.2) 547 (11.2) 527 (10.8) 557 (11.4) 

Family history of T2D, % 1065 (21.9) 1148 (23.6) 1223 (25.1) 1462 (30.0) 

BMI, %     
<25 3418 (70.2) 2921 (60.0) 2356 (48.4) 1535 (31.5) 
≥25, <30 1100 (22.6) 1422 (29.2) 1621 (33.3) 1845 (37.9) 

≥30 350 (7.2) 525 (10.8) 891 (18.3) 1488 (30.6) 
Menopausal status, %     

Premenopausal 1469 (30.2) 1306 (26.8) 1230 (25.3) 1208 (24.8) 

Postmenopausal, natural 1898 (39.0) 1929 (39.6) 1926 (39.6) 1812 (37.2) 

Postmenopausal, non-
natural 

679 (13.9) 778 (16.0) 845 (17.4) 876 (18.0) 

Uncertain 822 (16.9) 855 (17.6) 867 (17.8) 972 (20.0) 

PA, MET-h/w 10.5 [3.4, 23.0] 10.0 [3.4, 21.2] 9.1 [2.9, 20.5] 6.9 [2.2, 17.5] 
aHEI-2010 49 [42, 56] 48 [42, 55] 48 [42, 55] 48 [41, 54] 

Alcohol intake, g/day 1.2 [0.0, 6.5] 1.1 [0.0, 5.7] 0.86 [0.0, 4.6] 0.86 [0.0, 2.9] 
Cholesterol drugs 120 (2.5) 146 (3.0) 171 (3.5) 201 (4.1) 
Total BCAAs 317 [292, 334] 373 [361, 385] 421 [408, 434] 493 [468, 533] 

hsCRP, mg/L 1.3 [0.54, 2.8] 1.7 [0.69, 3.6] 2.1 [0.93, 4.3] 2.8 [1.4, 5.2] 
Fibrinogen, mg/dL 337 [298, 387] 345 [306, 394] 356 [313, 407] 365 [319, 418] 
GlycA,µmol/L 353 [316, 395] 373 [332, 416] 389 [349, 434] 410 [366, 455] 

sICAM-1, ng/mL 333 [294, 381] 337 [297, 386] 344 [303, 394] 356 [311, 408] 
Triglyceride,mg/dL 94 [69, 134] 106 [76, 151] 118 [83, 168] 140 [99, 193] 
LDL cholesterol, mg/dL 116 [97, 138] 122 [102, 144] 125 [104, 148] 128 [108, 152] 

HDL cholesterol, mg/dL 57 [48, 68] 55 [46, 65] 52 [43, 61] 47 [40, 56] 
LPIR score 25 [15, 44] 33 [18, 52] 41 [22, 61] 56 [35, 71] 
HbA1c, % 5.0 [4.8, 5.1] 5.0 [4.8, 5.1] 5.0 [4.9, 5.2] 5.1 [4.9, 5.3] 

Table 4.1: Characteristics of 19,472 Women’s Health Study participants at baseline blood draw 

according to quartiles of plasma BCAA level 

 

Correlation between BCAA and inflammation, lipid, and HbA1c 

Figure 4.1 illustrates the spearman correlation network between total BCAAs, 

inflammatory biomarkers, and lipid biomarkers. Total plasma BCAAs were significantly 

correlated with all biomarkers (p<0.0001), with highest correlations observed with LPIR 

(ρ=0.35) and GlycA (ρ=0.30) (hsCRP: ρ=0.24, fibrinogen: ρ=0.13, sICAM-1: ρ=0.11, 

triglyceride: ρ=0.26, HDL: ρ=–0.27, LDL: ρ=0.14, HbA1c: ρ=0.17). hsCRP with GlycA had the 

highest correlations between inflammatory biomarkers (ρ=0.58, p<0.0001). The correlation 

matrix is shown in Supplemental Table 4.1. 
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Figure 4.1: Correlation network between BCAA, inflammatory biomarkers, lipid biomarkers, and 

HbA1c 
Correlation network between BCAA, hsCRP, fibrinogen, GlycA, sICAM-1, triglyceride, HDL-c, LDL-c, 

LPIR, and HbA1c is shown. Spearman correlation coefficients (ρ) were calculated in each pair of 
biomarkers and only associations with ρ>0.10 are visualized as lines. Thicker lines indicate stronger 

correlations and green and red lines represent positive and negative correlations, respectively.  

 

 

Associations of BCAA and inflammation/lipid 

Table 4.2 summarizes the associations between BCAA and cardiometabolic biomarkers. 

Women in the highest vs. lowest quartiles of plasma BCAAs had higher hsCRP (adjusted mean 

[95% CI]: 1.96 [1.85, 2.07] vs. 1.43 [1.35, 1.51] mg/L), fibrinogen (367 [363, 371] vs. 362 [358, 

366] mg/dL), sICAM-1 (361 [357, 365] vs. 353 [349, 357] ng/mL), and GlycA (407 [403, 410] 

vs. 371 [368, 375] µmol/L) (p-trend=0.0002 for fibrinogen; p<0.0001 for others).  
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 BCAA Q1 BCAA Q2 BCAA Q3 BCAA Q4 
†p for 

linear trend 

Inflammation Geometric mean [95% confidence interval]  

hsCRP, mg/L       

 Age-adjusted 1.22 [1.19, 1.26] 1.54 [1.49, 1.58] 1.92 [1.86, 1.98] 2.51 [2.44, 2.59] <0.0001 

 *Multivariable-adjusted 1.43 [1.35, 1.51] 1.62 [1.53, 1.71] 1.8 [1.7, 1.91] 1.96 [1.85, 2.07] <0.0001 

Fibrinogen, mg/dL       

 Age-adjusted 340 [338, 341] 347 [345, 349] 356 [354, 358] 365 [363, 367] <0.0001 

 *Multivariable-adjusted 362 [358, 366] 365 [361, 369] 368 [364, 372] 367 [363, 371] 0.0002 

sICAM-1, ng/mL       

 Age-adjusted 338 [336, 340] 340 [338, 342] 346 [344, 348] 358 [356, 360] <0.0001 

 *Multivariable-adjusted 353 [349, 357] 353 [349, 358] 356 [352, 360] 361 [357, 365] <0.0001 

GlycA, µmol/L       

 Age-adjusted 354 [352, 355] 371 [369, 373] 387 [386, 389] 406 [404, 408] <0.0001 

 *Multivariable-adjusted 371 [368, 375] 385 [382, 389] 397 [393, 400] 407 [403, 410] <0.0001 

Lipid      

Triglyceride, mg/dL       

 Age-adjusted 99 [98, 100] 108 [107, 110] 119 [117, 120] 139 [137, 141] <0.0001 

 *Multivariable-adjusted 114 [111, 117] 121 [118, 124] 128 [125, 132] 143 [140, 147] <0.0001 

HDL-c, mg/dL       

 Age-adjusted 56.9 [56.5, 57.3] 54.3 [53.9, 54.7] 51.6 [51.2, 51.9] 47.3 [47.0, 47.6] <0.0001 

 *Multivariable-adjusted 55.0 [54.2, 55.7] 53.1 [52.4, 53.9] 51.5 [50.8, 52.3] 49.0 [48.3, 49.6] <0.0001 

LDL-c, mg/dL       

 Age-adjusted 119 [118, 120] 124 [124, 125] 127 [126, 128] 131 [130, 132] <0.0001 

 *Multivariable-adjusted 124 [122, 126] 129 [127, 131] 131 [129, 133] 133 [131, 135] <0.0001 

LPIR score       

 Age-adjusted 30.5 [29.9, 31.2] 35.9 [35.3, 36.5] 42 [41.4, 42.6] 52.7 [52.1, 53.4] <0.0001 

 *Multivariable-adjusted 37.3 [36.1, 38.6] 41 [39.8, 42.3] 45.1 [43.9, 46.3] 52.6 [51.4, 53.9] <0.0001 

Table 4.2: Adjusted means of inflammatory and lipid biomarkers by the quartiles of BCAA level 

 

Numbers are adjusted geometric means [95% confidence intervals] based on linear regression.  
*Models were adjusted for age at the randomization (continuous), assignment to ASA group, assignment 

to vitamin E group, race (white or not), family history of diabetes, smoking (none, ever, current), 
menopausal status (premenopausal, postmenopausal [natural], postmenopausal [non-natural], unsure), use 
of menopausal hormone therapy (never, past, current), parity as number of pregnancies lasting ≥6 months 
(nulliparous, 0, 1, 2, ≥3), exercise as total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol 
consumption (none, <10g/day, <20g/day, ≥20g/day), cholesterol lowering drugs, and BMI (continuous). 

Test for trend was based on a variable containing the median value for each quartile.  
†P-trend threshold was 0.006 after Bonferroni correction. 
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Further adjustment for HbA1c attenuated these associations, and the association with fibrinogen 

became not statistically significant after consideration of multiple comparisons (Table 4.3). 

 
 BCAA Q1 BCAA Q2 BCAA Q3 BCAA Q4 *p-trend 

 Geometric mean [95% confidence interval]  

Inflammation      

 hsCRP, mg/dL 1.41 [1.33, 1.5] 1.6 [1.51, 1.7] 1.78 [1.68, 1.89] 1.9 [1.8, 2.02] <0.0001 

 Fibrinogen, mg/dL 361 [357, 365] 364 [360, 368] 367 [363, 371] 364 [360, 368] 0.0090 

 sICAM-1, ng/mL 352 [348, 356] 352 [348, 357] 355 [351, 359] 358 [354, 362] <0.0001 

 GlycA, µmol/L 371 [367, 374] 384 [381, 388] 395 [392, 399] 404 [400, 408] <0.0001 

Lipid      

 Triglyceride, mg/dL 113 [110, 116] 121 [117, 124] 128 [124, 131] 142 [138, 146] <0.0001 

 HDL-c, mg/dL 55.1 [54.3, 55.9] 53.3 [52.6, 54.0] 51.7 [51.0, 52.4] 49.3 [48.6, 50.0] <0.0001 

 LDL-c, mg/dL 124 [122, 126] 129 [127, 131] 131 [129, 133] 132 [130, 134] <0.0001 

 LPIR score 37.2 [35.9, 38.4] 40.8 [39.6, 42] 44.9 [43.6, 46.1] 52 [50.8, 53.3] <0.0001 

Table 4.3: Adjusted means of inflammation/lipid biomarkers by the quartiles of BCAA level after 

adjustment for HbA1c 

 
Numbers are adjusted geometric means [95% confidence intervals] based on linear regression.  

Models were adjusted for age at the randomization (continuous), assignment to ASA group, assignment to 
vitamin E group, race (white or not), family history of diabetes, smoking (none, ever, current), 

menopausal status (premenopausal, postmenopausal [natural], postmenopausal [non-natural], unsure), use 
of menopausal hormone therapy (never, past, current), parity as number of pregnancies lasting ≥6 months 
(nulliparous, 0, 1, 2, ≥3), exercise as total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol 

consumption (none, <10g/day, <20g/day, ≥20g/day), the use of cholesterol lowering drugs, BMI 
(continuous), and HbA1c (continuous). 

*Test for trend was based on a variable containing the median value for each quartile. P-trend threshold 
was 0.006 after Bonferroni correction. 

 

 

Higher BCAA was associated with elevated triglycerides (143 [140, 147] vs. 114 [111, 

117] mg/dL), LDL-c (133 [131, 135] vs. 124 [122, 126] mg/dL) and LPIR (52.6 [51.4, 53.9] vs. 

37.3 [36.1, 38.6] unit), and lower HDL cholesterol (HDL-c) (49.0 [48.3, 49.6] vs. 55.0 [54.2, 
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55.7] mg/dL) in the multivariable-adjusted models (all: p-trend<0.0001) (Table 4.2). Further 

adjustment for HbA1c did not substantially attenuate these associations (Table 4.3). 

Standardized differences of each cardiometabolic biomarker per SD difference of BCAA levels 

after adjustment of confounders were illustrated in Figure 4.2. In inflammatory biomarkers, the 

strongest association with BCAA was seen for GlycA (0.203 [95%CI: 0.19. 0.217] per SD 

difference of BCAA). Among lipid biomarkers, the association with BCAA was strongest in 

LPIR (0.254 [95%CI: 0.241. 0.267] per SD difference of BCAA). 

 

 

Figure 4.2: Standardized differences of cardiometabolic biomarkers per SD changes of BCAA 

levels 
 

Linear regressions of standardized biomarkers constructed by standardized continuous total BCAA levels 
and covariates [age at randomization (continuous), assignment to ASA group, assignment to vitamin E 
group, race (white or non-white), family history of diabetes, smoking history (none, ever, current), 

menopausal status (premenopausal, postmenopausal [natural], postmenopausal [non-natural], unsure), use 
of menopausal hormone therapy (never, past, current), parity as number of pregnancies lasting ≥6 months 
(nulliparous, 0, 1, 2, ≥3), exercise as total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol 
consumption (none, <10g/day, <20g/day, ≥20g/day), the use of cholesterol lowering drugs, and BMI 

(continuous)]. Standardized differences [95% confidence interval] per SD of BCAAs are shown.  

 

 

Stratified analysis by BMI 
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Supplemental Table 4.2 (least square means) and Supplemental Figure 4.2 

(standardized differences) illustrates the associations between BCAA concentrations and 

inflammation/lipid biomarkers stratified by BMI. Overall, these associations differed across BMI 

categories, but the patterns were not consistent. In inflammatory biomarkers, after consideration 

of multiple comparisons, the associations of BCAAs and sICAM-1 were significantly different 

according to BMI (p-interaction<0.0001). In particular, sICAM-1 was robustly associated with 

BCAA concentration in women with BMI≥25 kg/m2 (p-trend<0.0001) but not in those with 

BMI<25 kg/m2 (p-trend=0.19). Among lipid biomarkers, LDL-c and LPIR score were 

differentially related to BCAA levels according to BMI categories (p-interaction=0.0004 and 

0.0002, respectively). There were no significant interactions between BMI and hsCRP or HDL-c 

with BCAAs. 

 

Associations between individual BCAAs and biomarkers 

We also assessed the relationships between inflammatory/lipid biomarkers and the 

individual BCAAs, isoleucine (Supplemental Table 4.3 and Supplemental Figure 4.3), leucine 

(Supplemental Table 4.4 and Supplemental Figure 4.4), and valine (Supplemental Table 4.5 

and Supplemental Figure 4.5). The associations between fibrinogen and isoleucine and valine 

were not significant in the multivariable-adjusted models. The other associations were significant 

and the directions were the same as the relationships with summed BCAA levels. 

 

Sensitivity analysis 

The results were similar when we stratified by age <60 or ≥60 years (Supplemental 

Tables 4.6 and Supplemental Figure 4.6), with all p-values for interaction non-significant. In 
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the adjusted models, circulating BCAA concentration was significantly associated with all of the 

inflammatory and lipid biomarkers except for fibrinogen. Additional sensitivity analyses by 

fasting status showed similar results for nonfasting BCAA measurements (not shown).  

 

 

4.5 Discussion 

In this large cross-sectional study of US women, plasma BCAA concentrations were 

associated with biomarkers of inflammation and dyslipidemia, indicative of their correlation with 

an overall poorer cardiometabolic health profile. Among inflammatory biomarkers, plasma 

BCAAs were moderately associated with hsCRP and GlycA. Higher BCAA levels were also 

moderately associated with the LPIR score. The interactions of BCAAs and BMI varied 

according to cardiometabolic biomarkers. The findings for the individual BCAAs, isoleucine, 

leucine and valine and inflammatory/lipid biomarkers were similar to total BCAAs. 

 

Few studies have investigated the relationships between circulating BCAA metabolites 

and inflammation in humans. In a study of 286 Finnish twins, hsCRP levels were modestly 

correlated with isoleucine and leucine, but not with valine.152 Among 611 Chinese adults, hsCRP 

was not significantly associated with serum BCAAs after adjustment for age, sex, smoking and 

alcohol consumption (p=0.064).153 However, this was a small and diverse population that 

included participants with ages ranging from 21 to 110 years, and without exclusion for 

prevalent T2D at blood draw, which may introduce variability. We investigated circulating 

BCAAs in relation to biomarkers representing various inflammatory pathways. Associations of 

BCAAs with hsCRP and GlycA persisted even after adjusting for HbA1c, a marker of glycemic 
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control, suggesting BCAAs may be related to cardiometabolic risk independent of this T2D-

related glycemic trait. GlycA is a nuclear magnetic resonance (NMR) signal basically reflecting 

the glycosylation and abundance of α1-acid glycoprotein, haptoglobin, α1-antitrypsin, α1-

antichymotrypsin and transferrin.145 Evidence indicates that GlycA itself132, as well as the major 

contributors including α1-acid glycoprotein154, α1-antitrypsin155 and transferrin156, are associated 

with incident T2D. The association of BCAAs with fibrinogen was attenuated after adjusting for 

HbA1c, suggesting that BCAAs are not likely to be independently related to this inflammatory 

marker. 

 

Higher circulating BCAAs were associated with biomarkers of dyslipidemia. The 

relationship between BCAAs and the LPIR score persisted with adjustment for HbA1c and was 

similar across BMI strata. These findings are consistent with known relationships between 

BCAAs and insulin resistance, which correlates highly with LPIR124,136,138. Of note, 

dyslipidemia, as well as inflammation, may potentially precede the development of insulin 

resistance, as is supported by prior evidence that elevated LPIR137 and hsCRP132,157 are involved 

upstream of T2D progression; in addition, both biomarkers were strongly associated with 

incident CHD158,159; therefore, impaired BCAA metabolism, capturing multiple aspects of 

inflammation and dyslipidemia, may represent a shared pathology predisposing to T2D and 

CVD. However, the temporal relationship of these correlations cannot be established given the 

cross-sectional nature of this analysis. 

 

Strengths and limitations 
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Strengths of this study include the large sample size, measured inflammatory/lipid 

biomarkers, and detailed demographic, lifestyle, and health information to carefully control for 

potential confounders. Our study has limitations, however, including the cross-sectional design, 

which precludes the ability to establish the temporality between biomarkers. The female 

participants were predominantly white with higher socioeconomic status160, thus limiting 

generalizability of the study findings. Also, we cannot rule out residual confounding by 

unmeasured confounding by other determinants of BCAAs and cardiometabolic risk, including 

other biomarkers that were not included in our investigation. 

 

Conclusion 

In a large cohort of US women without T2D or CVD, plasma BCAAs were associated 

with biomarkers of inflammation (hsCRP, sICAM-1 and GlycA) and dyslipidemia (triglyceride, 

LDL-c, HDL-c and LPIR), indicative of an overall poorer cardiometabolic health profile. 

BCAAs remained positively associated with some of these pathways independent of impaired 

glucose metabolism, supporting elevated BCAAs may be an independent component of 

cardiometabolic risk. 
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Appendix 1. Description of machine-learning (ML) algorithms used in the study 

 
1. Elastic net 

Elastic Net is a regularization method employed in linear regression models to avoid overfitting and 
enhance model generalization. This technique blends two well-known regularization approaches: (L1 
regularization (used in Lasso Regression) and L2 regularization (used in Ridge Regression).  
 

L1 Regularization (Lasso): 

Lasso (Least Absolute Shrinkage and Selection Operator) is a regularization method that employs L1 

norm as the penalty term. It incorporates the absolute values of the coefficients into the cost function  (i.e. 

measure of the performance of the model), making some coefficients to become precisely zero. 

Consequently, this leads to feature selection, as less significant features are effectively eliminated from 

the model. 

 

L2 Regularization (Ridge): 

Ridge regression is another regularization method that uses L2 norm as the penalty term. It incorporates 

the squared coefficients into the cost function, shrinking the coefficients but not setting them to exactly 

zero, while minimizing multicollinearity issues and prevents overfitting.  

 

Elastic Net: 

Elastic Net is a hybrid of L1 and L2 regularization methods, merging both Lasso and Ridge penalties. A 

mixing parameter, α (alpha), is used to balance the contributions of L1 and L2 penalties. The Elastic Net 

cost function can be expressed as: 

 

Cost = MSE + λ[(1-α)/2 * Σ(βi^2) + α * Σ|βi|] 

 

Here, λ (lambda) represents the regularization strength, and α is the mixing parameter ranging between 0 

and 1. When α = 0, Elastic Net is equivalent to Ridge regression, and when α = 1, it becomes Lasso 

regression. 

 

Elastic Net addresses some limitations of Lasso and Ridge regression. By merging both penalties, it can 

carry out feature selection like Lasso while managing multicollinearity like Ridge. In the hyper-parameter 

tuning, both λ and α need to be optimized. 

 

 

2. eXtreme Gradient Boosting (XGBoost) 

eXtreme Gradient Boosting (XGBoost) is a tree-based machine learning algorithm based on the gradient 

boosting framework. XGBoost is very popular in machine learning competitions since its performance is 

better than numerous other algorithms. 

 

Gradient Boosting Framework is an ensemble technique that combines weak learners (usually shallow 

decision trees) to form a strong learner. This is achieved by iteratively adding weak learners to the 

ensemble, with each new learner aiming to correct the errors of the previous ones. The new learners are 

fitted to the residual errors (gradients) of the earlier learners. 
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The objective function in XGBoost consists of two components: a loss function and a regularization term. 

The loss function quantifies the discrepancy between the true labels and the predicted values, while the 

regularization term, including both both L1 (Lasso) and L2 (Ridge) regularization, regulates the 

complexity of the model. The objective function can be expressed as: 

 

Obj = Loss(y, y_pred) + Ω(f) 

 

where y and y_pred denote the true and predicted labels, respectively, and Ω(f) represents the 

regularization term for the base learners (decision trees). 

 

XGBoost trains the model additively, sequentially incorporating decision trees into the ensemble. During 

each iteration, the algorithm calculates the gradients and the Hessian (second-order derivatives) of the 

loss function concerning the predictions. These values are utilized to identify the best split points and leaf 

values for the new tree. The process is repeated for a specified number of rounds or until a stopping 

criterion, such as no further improvement in the loss function, is met.  

 

The capabilities to handle large datasets, missing values, and its support for early stopping and cross-

validation make XGBoost a versatile and powerful tool for a wide range of machine learning problems.  

 

In the hyper-parameter tuning, the following parameters were optimized: 

nrounds: the total number of iterations.  

max_depth: the maximum depth of a tree and is used to control over-fitting.  

eta: the weighting of new trees added to the model, with a range of 0 (no contribution) to 1 (full 

contribution).  

gamma: a regularization parameter that controls the minimum loss reduction required to make a split .  

colsample_bytree: the fraction of the features (columns) to be used in each decision tree or iteration, 

chosen by random sampling.  

min_child_weight: the minimum sum of weights of all observations required in a child.  

subsample: the fraction of the total data set that's used for each iteration or tree.  

 

 

3. Bayesian regularization for feed-forward neural net (brnn) 

BRNN is a technique that applies Bayesian learning principles to regularize and improve the 

generalization performance of neural networks. Feed-Forward Neural Networks are a class of artificial 

neural networks where the connections between nodes do not form a cycle. These networks consist of an 

input layer, one or more hidden layers, and an output layer. The information flows from the input layer 

through the hidden layers to the output layer without any feedback loops.  

 

In the context of neural networks, Bayesian regularization aims to find an optimal set of weights by 

treating them as random variables and estimating their posterior probability distribution given the training 

data. The regularization term is derived from the prior distribution of the weights, and it encodes our 

beliefs about the possible values of the weights before observing the data.  

 

The objective function for Bayesian regularization in neural networks can be written as:  
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Obj = Loss(y, y_pred) + λ * Ω(w) 

 

Here, y and y_pred represent the true and predicted labels, respectively, w is the vector of weights, Ω(w) 

is the regularization term, and λ is the regularization strength. 

 

In brnn function in R caret package, only one hyperparameter, neuron, has to be tuned. This design is for 

usability. The neurons hyperparameter defines the complexity of the neural network. The more neurons 

there are in the hidden layers, the more complex the patterns the network can learn.  Bayesian 

regularization inherently handles some of the issues that other hyperparameters usually manage in other 

types of neural networks. For example, the regularization part of Bayesian regularization acts as a form of 

weight decay, reducing the necessity for an explicit learning rate hyperparameter.  Other parameters are 

just set to default or empirically determined values within the function's implementation.  
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Supplemental Figure 1.1: Comparison of each ML-predicted and FFQ-based sodium intake with 

averaged 24-hour urinary sodium excretion in N=3,454 participants from NHS, NHS-II, and HPFS 

based on full list of predictors 

 

 
 

Scatter plots describing the association between each ML-predicted sodium intake with respect to 
averaged 24-hour urinary sodium excretion in N=3,454 participants. ML-predicted sodium intakes were 
based on out-of-fold prediction based on 36 predictors using Elastic net, XGBoost, BRNN, and ensemble 
over these ML algorithms. Each dot represents each participant. Blue straight lines are the calibration 
curves. ρ represents Spearman correlation coefficient.   



 135  

 

 

Supplemental Figure 1.2: Bland-Altman plots of ML-predicted and FFQ-based sodium intake 

compared with averaged 24-hour urinary sodium excretion in N=3,454 participants from NHS, 

NHS-II, and HPFS 

 

 

 
Bland-Altman plots describing the association between ML-predicted sodium intake (A) and FFQ-based 
sodium intake (B) with respect to averaged 24-hour urinary sodium excretion in N=3,454 participants. 
ML-predicted sodium intake was based on out-of-fold prediction based on 36 predictors using ensemble 
over three ML algorithms. Each dot represents each participant. Red lines indicate the mean values of the 
means and differences, and dashed black lines represent the 95% confidence intervals of the mean 
differences.  
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Supplemental Figure 1.3: Comparison of each ML-predicted and FFQ-based sodium intake with 

averaged 24-hour urinary sodium excretion in N=3,454 participants from NHS, NHS-II, and HPFS 

based on selected list of predictors 

 

 

 
Scatter plots describing the association between each ML-predicted sodium intake with respect to  
averaged 24-hour urinary sodium excretion in N=3,454 participants. ML-predicted sodium intakes were 
based on out-of-fold prediction based on 23 predictors using Elastic net, XGBoost, BRNN, and ensemble 
over these ML algorithms. Each dot represents each participant. Blue straight lines are the calibration 
curves. ρ represents Spearman correlation coefficient.   
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Supplemental Figure 1.4: Bland-Altman plots of ML-predicted and FFQ-based sodium intake 

compared with averaged 24-hour urinary sodium excretion in N=1,423 participants in TOHP-I 

 

 

 
Bland-Altman plots describing the association between ML-predicted sodium intake (A) and FFQ-based 
sodium intake (B) with respect to averaged 24-hour urinary sodium excretion in N=1,423 participants. 
ML-predicted sodium intake was based using NHS, NHS-II, and HPFS based on 22 predictors using 
ensemble over three ML algorithms. Each dot represents each participant. Red lines indicate the mean 
values of the means and differences, and dashed black lines represent the 95% confidence intervals of the 
mean differences.  
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Supplemental Figure 1.5: Comparison of each ML-predicted energy and FFQ-based total calorie 

intake with DLW-based energy expenditure in N=1,085 participants from NHS, NHS-II, and HPFS  

 

 

 

Scatter plots describing the association between ML-predicted DLW-based energy expenditure (A) and 
FFQ-based total calorie intake (B) with respect to actual DLW-based energy expenditure in N=1,085 
participants. ML-predicted sodium intakes were based on out-of-fold prediction based on 6 predictors 
using Elastic net, XGBoost, BRNN, and ensemble over these ML algorithms. Each dot represents each 
participant. Blue straight lines are the calibration curves. ρ represents Spearman correlation coefficient.  
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Supplemental Figure 1.6: Bland-Altman plots of each ML-predicted energy and FFQ-based total 

calorie intake with DLW-based energy expenditure in N=1,085 participants from NHS, NHS-II, 

and HPFS 

 

 

 
Bland-Altman plots describing the association between ML-derived predicted sodium intake (A) and 
FFQ-based sodium intake (B) with respect to averaged 24-hour urinary sodium excretion in N=1,085 
participants. ML-derived predicted sodium intake was based on out-of-fold prediction based on 6 
predictors using ensemble over three ML algorithms. Each dot represents each participant. Red lines 
indicate the mean values of the means and differences, and dashed black lines represent the 95% 
confidence intervals of the mean differences.  
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Supplemental Figure 1.7: Bland-Altman plots of ML-predicted and FFQ-based energy-adjusted 

sodium measures compared with DLW-based energy expenditure-adjusted averaged 24-hour 

urinary sodium excretion in N=1,085 participants from NHS, NHS-II, and HPFS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bland-Altman plots describing the association between ML-predicted DLW-energy-adjusted 24-hour 
urinary sodium excretion (ML-energy-adjusted sodium; A), ML-predicted DLW-energy-adjusted ML-
predicted 24-hour urinary sodium excretion (ML-energy-adjusted ML-sodium; B), and FFQ-based 
calorie-adjusted FFQ-based sodium intake (C) with respect to DLW-energy-adjusted averaged 24-hour 
urinary sodium excretion in N=1,085 participants. ML-sodium was based on out-of-fold prediction based 
on N=3,454 participants using ensemble over three ML algorithms, while ML-energy and ML-energy-
adjusted sodium was derived from N=1,085 participants. Each dot represents each participant. Red lines 
indicate the mean values of the means and differences, and dashed black lines represent the 95% 
confidence intervals of the mean differences. 
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Supplemental Table 1.1. Baseline characteristics according to the quartile of the DLW-based energy-

adjusted averaged 24-hour urinary sodium excretion in N=1,085 participants whose doubly-labelled 

water (DLW) information is available 

 

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 

 N = 272 N = 271 N = 271 N = 271 

Cohort     
1: HPFS (Men only) 121 (44.5) 102 (37.6) 88 (32.5) 83 (30.6) 

2: NHS (Women only) 76 (27.9) 75 (27.7) 83 (30.6) 76 (28.0) 

3: NHS-II  (Women only) 75 (27.6) 94 (34.7) 100 (36.9) 112 (41.3) 

Age, years 65.8 (9.1) 65.1 (9.4) 65.3 (9.1) 63.8 (9.6) 

Body mass index, kg/m2 25.1 (4.4) 25.6 (4.4) 25.8 (4.4) 26.6 (5.1) 

Non-White race, % 18 ( 6.6) 24 ( 8.9) 16 ( 5.9) 27 (10.0) 

History of hypertension, % 100 (36.8) 94 (34.7) 118 (43.5) 109 (40.2) 

History of cancer, % 44 (16.2) 41 (15.1) 30 (11.1) 34 (12.5) 

Use of antihypertensives, % 86 (31.6) 88 (32.5) 104 (38.4) 101 (37.3) 

Family history of hypertension, % 127 (46.7) 136 (50.2) 115 (42.4) 136 (50.2) 

Family history of CVD, % 48 (17.6) 48 (17.7) 61 (22.5) 52 (19.2) 

Moderate to vigorous PA, hours/w 6.1 (5.7) 5.2 (5.9) 5.1 (5.4) 4.9 (5.3) 

Smoking status     
1: Never 175 (64.3) 170 (62.7) 152 (56.1) 151 (55.7) 

2: Past 89 (32.7) 96 (35.4) 115 (42.4) 115 (42.4) 

3: Current 8 ( 2.9) 5 ( 1.8) 4 ( 1.5) 5 ( 1.8) 

Alcohol, gram/day 12.4 (15.3) 12.4 (15.5) 11.7 (14.2) 9.9 (13.8) 

DASH score without sodium component 22.0 (4.4) 21.7 (4.0) 21.2 (4.0) 20.8 (4.1) 

FFQ-based sodium, mg/day  1925 (740) 2147 (788) 2079 (756) 2190 (812) 

FFQ-based pottasium, mg/day  3480 (1082) 3546 (1126) 3330 (1087) 3331 (1150) 

FFQ-based total calorie, kcal/day 1948 (613) 1994 (625) 1874 (599) 1855 (623) 

Averaged 24-hour urinary sodium 

excretion, mg/day 0.9 (0.1) 1.2 (0.1) 1.4 (0.1) 1.8 (0.2) 

DLW-based energy expenditure (kcal/day) 2512 (502) 2385 (429) 2329 (424) 2283 (424) 

Only in women     
Parity, N 1.3 (0.7) 1.3 (0.8) 1.4 (0.7) 1.3 (0.7) 

Post menopausal 115 (76.2) 130 (76.9) 151 (82.5) 148 (78.7) 

Use of hormone replacement therapy     
1: Never 46 (30.5) 54 (32.0) 53 (29.0) 60 (31.9) 

2: Past 67 (44.4) 85 (50.3) 94 (51.4) 79 (42.0) 

3: Current 38 (25.2) 30 (17.8) 36 (19.7) 49 (26.1) 

Ever use of oral contraceptives 72 (47.7) 89 (52.7) 97 (53.0) 111 (59.0) 

 

Values are frequency (%) for categorical variables and mean (SD) or median [IQR] for continuous variables.  
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Supplemental Table 1.2. Interpretation of ML models based on selected covariate list predicting 

averaged 24-hour urinary sodium excretion in N=3,454 participants 

 

A. Coefficients of elastic net (per SD for continuous variables) 

Positive association Shrunk to null Negative association 

 
Coef 

 
Coef 

 
Coef 

Weight 503 Height 0 Age -237 

Men 281   
FFQ-calorie -132 

FFQ-sodium 168   
BMI -125 

FFQ-sodium/FFQ-calorie 138   
DASH score -45 

Red meat 49   
FFQ-potassium -21 

Use of diuretics 38   Alcohol -21 

FFQ-potassium/FFQ-calorie 35   PA hours -13 

Postmenopausal 
30   

FFQ-sodium/FFQ-

potassium -6 

Use of antihypertensives 16     
Vegetable 9     
History of hypertension 2     
Tea or coffee 1     
Fruit 1     

 

B. Top 10 variable importance in XGBoost 

 Variable importance 

Weight 100 

FFQ-sodium/FFQ-calorie 34 

Age 30 

BMI 28 

Height 20 

FFQ-sodium/ FFQ-potassium 19 

FFQ-sodium 14 

Fruit 12 

Red meat 12 

Men 11 

 

 

Values are coefficients per category for categorical variables and per SD for continuous variables (A). 

Variable importance measures are scaled into 0 to 100 (B). 
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Supplemental Table 1.3. Interpretation of ML models predicting DLW-based energy expenditure in 

N=1,085 participants 

 

A. Coefficients of elastic net (per SD for continuous variables) 

 Coef 

Weight 180 

Men 153 

Height 68 

PA hours 56 

FFQ-calorie 34 

Age -110 

 

B. Variable importance in XGBoost 

 Variable importance 

Weight 100 

PA hours 32 

Age 32 

Height 30 

FFQ-calorie 29 

Men 0 

 

Values are coefficients per category for categorical variables and per SD for continuous variables (A). 

Variable importance measures are scaled into 0 to 100 (B). 
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Supplemental Table 1.4. Interpretation of ML models predicting DLW-based energy-adjusted averaged 

24-hour urinary sodium excretion in N=1,085 participants 

 

A. Coefficients of elastic net (per SD for continuous variables) 

Positive association Shrunk to null Negative association 

 Coef  Coef  Coef 

FFQ-sodium/FFQ-calorie 54 Married 0 Fruit -22 

FFQ-sodium/ FFQ-potassium 35 Family history of hypertension 0 FFQ-calorie -17 

Use of table salt 34   PA hours -15 

Hamburger 19   DASH score -15 

Red meat 16   Height -13 

FFQ-sodium 15   FFQ-potassium -11 

Use of oral contraceptives 15   Alcohol -9 

Post menopausal 14   Age -3 

Use of diuretics 
14   

Fried food away 

from home -1 

Parity 14   NHS -1 

Vegetable 13     

NHS II 13     
BMI 13     
Processed meat 13     

Current use of HRT 10     
Use of antihypertensives 9     
FFQ-potassium 9     

Tea or coffee 7     
Fried food at home 6     
History of hypertension 4     

Weight 4     
Cheese 4     
Living alone 3     

Hotdog 1     
Ever use of HRT 1     
Family history of CVD 1     
 

B. Top 20 variable importance in XGBoost 

 Variable importance 

FFQ-sodium/FFQ-calorie 100 

FFQ-sodium/FFQ-potassium 57 

Age 45 

Vegetable 44 

Fruit 42 
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Use of table salt 40 

FFQ-calorie 37 

Tea or coffee 34 

DASH score 33 

FFQ-potassium 32 

PA hours 30 

FFQ-sodium 29 

BMI 26 

FFQ-potassium/FFQ-calorie 26 

Alcohol 24 

Height 23 

Weight 23 

Red meat 22 

Cheese 21 

Hotdog 17 

 

A: Values are coefficients per category for categorical variables and per SD for continuous variables. 

Coefficients were multiplied by the median of DLW-based energy expenditure (2347 kcal/day) to make the 

value interpretable. 

B: Variable importance measures are scaled into 0 to 100. 

  



 146  

 

 

Appendix B. Supplemental data to Chapter 2 

Modifiable lifestyle factors in the primordial prevention of hypertension in three US cohorts 

 

Supplemental Table 2.1. Sensitivity analysis of population attributable risks % for modifiable lifestyles 

and incident hypertension and early-onset hypertension among women and men in the Nurses’ Health 

Studies and the Health Professionals Follow-up Study 
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Supplemental Table 2.1. Sensitivity analysis of population attributable risks % for modifiable lifestyles 

and incident hypertension and early-onset hypertension among women and men in the Nurses’ Health 

Studies and the Health Professionals Follow-up Study 

 

NHS 

 Weight PA Diet Alcohol 

Incident hypertension at any age     

Main analyses 19.6 (18.1, 21.1) 12.3 (10.7, 14.0) 4.0 (2.5, 5.5) 1.2 (0.8, 1.6) 

Outcome: self-reporting plus 

starting anti-hypertensives 20.2 (18.6, 21.8) 12.7 (11.0, 14.4) 3.5 (1.9, 5.1) 1.2 (0.8, 1.6) 

Population: among those not using 

anti-hypertensives 19.5 (17.9, 21.1) 12.1 (10.4, 13.8) 4.8 (3.2, 6.4) 1.2 (0.7, 1.6) 

Predicted absolute sodium intake 

used in DASH score 19.7 (18.1, 21.2) 12.4 (10.8, 14.1) 3.4 (2.1, 4.8) 1.2 (0.8, 1.6) 

Including smoking as an exposure 19.6 (18.1, 21.1) 12.3 (10.7, 14.0) 4.0 (2.5, 5.5) 1.3 (0.9, 1.7) 

   *PAR for smoking: 0.4 (-0.1, 0.8)     
Incident early-onset hypertension     
Main analyses 30.6 (27.4, 33.7) 13.8 (9.9, 17.7) 9.6 (5.1, 14.1) 2.0 (1.2, 2.9) 

Outcome: self-reporting plus 

starting anti-hypertensives 30.8 (27.5, 33.9) 13.3 (9.3, 17.2) 10.2 (5.6, 14.8) 1.8 (0.9, 2.7) 

Population: among those not using 

anti-hypertensives 29.9 (26.6, 33.2) 14.0 (9.9, 18.0) 10.3 (5.6, 15.0) 1.9 (1.0, 2.8) 

Predicted absolute sodium intake 

used in DASH score 30.7 (27.6, 33.8) 14.0 (10.1, 17.9) 7.2 (3.3, 11.2) 2.0 (1.2, 2.9) 

Including smoking as an exposure 30.6 (27.4, 33.7) 13.7 (9.8, 17.6) 9.6 (5.1, 14.1) 2.1 (1.2, 2.9) 

   *PAR for smoking: –     

 

NHS II 

 Weight PA Diet Alcohol 

Incident hypertension at any age     
Main analyses 35.5 (33.7, 37.2) 10.8 (9.5, 12.1) 14.0 (12.4, 15.6) 2.6 (2.2, 2.9) 

Outcome: self-reporting plus 

starting anti-hypertensives 36.0 (34.2, 37.8) 10.9 (9.5, 12.3) 14.8 (13.1, 16.5) 2.4 (2.0, 2.8) 

Population: among those not using 

anti-hypertensives 35.6 (33.9, 37.4) 10.8 (9.4, 12.2) 14.0 (12.3, 15.7) 2.5 (2.1, 2.9) 

Predicted absolute sodium intake 

used in DASH score 35.7 (34.0, 37.4) 11.5 (10.2, 12.8) 10.1 (8.6, 11.5) 2.5 (2.2, 2.9) 

Optimal BMI and waist as the 

weight measure 38.6 (36.1, 41.0) 10.7 (8.9, 12.5) 13.5 (11.4, 15.7) 2.9 (2.3, 3.4) 

Including smoking as an exposure 35.5 (33.7, 37.2) 10.8 (9.4, 12.1) 14.0 (12.4, 15.6) 2.6 (2.3, 3.0) 

   *PAR for smoking: –     
Incident early-onset hypertension     
Main analyses 37.5 (35.6, 39.5) 11.2 (9.7, 12.8) 15.1 (13.1, 17.0) 2.1 (1.8, 2.5) 

Outcome: self-reporting plus 

starting anti-hypertensives 38.1 (36.0, 40.1) 11.4 (9.8, 13.1) 15.8 (13.7, 17.8) 2.1 (1.7, 2.5) 

Population: among those not using 

anti-hypertensives 37.6 (35.6, 39.5) 11.1 (9.5, 12.6) 15.1 (13.1, 17.1) 2.1 (1.7, 2.5) 
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Predicted absolute sodium intake 

used in DASH score 37.8 (35.9, 39.7) 12.0 (10.4, 13.5) 10.4 (8.6, 12.1) 2.1 (1.7, 2.5) 

Optimal BMI and waist as the 

weight measure 40.0 (37.2, 42.6) 10.7 (8.7, 12.7) 14.6 (12.1, 17.1) 2.5 (2.0, 3.1) 

Including smoking as an exposure 37.5 (35.6, 39.5) 11.2 (9.7, 12.8) 15.1 (13.1, 17.0) 2.2 (1.8, 2.5) 

   *PAR for smoking: –     
 

HPFS 

 Weight PA Diet Alcohol 

Incident hypertension at any age     
Main analyses 21.7 (19.4, 23.9) 2.5 (1.1, 3.9) 3.4 (1.1, 5.7) 3.5 (2.6, 4.3) 

Outcome: self-reporting plus starting 

anti-hypertensives 18.6 (15.4, 21.7) 0.8 (-1.1, 2.8) 0.1 (-3.1, 3.2) 4.4 (3.1, 5.6) 

Population: among those not using 

anti-hypertensives 22.0 (19.7, 24.3) 2.1 (0.6, 3.6) 3.5 (1.1, 5.9) 3.6 (2.7, 4.5) 

Predicted absolute sodium intake 

used in DASH score 21.7 (19.5, 23.9) 2.6 (1.2, 4.0) 2.5 (0.5, 4.6) 3.4 (2.6, 4.3) 

Including smoking as an exposure 22.1 (19.9, 24.3) 2.7 (1.3, 4.1) 3.7 (1.5, 6.0) 4.0 (3.1, 4.8) 

   *PAR for smoking: 0.6 (0.2, 1.0)     
Incident early-onset hypertension     
Main analyses 33.6 (28.9, 38.0) 5.5 (1.9, 9.0) 7.5 (1.1, 13.9) 4.4 (2.6, 6.3) 

Outcome: self-reporting plus starting 

anti-hypertensives 29.8 (22.3, 36.9) 8.5 (3.1, 13.9) 1.1 (-9.2, 11.4) 3.3 (0.5, 6.2) 

Population: among those not using 

anti-hypertensives 33.9 (29.1, 38.6) 4.7 (1.1, 8.4) 5.8 (-0.9, 12.5) 4.2 (2.2, 6.1) 

Predicted absolute sodium intake 

used in DASH score 33.6 (29.0, 38.1) 5.5 (2.0, 9.0) 7.7 (1.9, 13.4) 4.4 (2.5, 6.3) 

Including smoking as an exposure 33.6 (29.0, 38.0) 5.5 (1.9, 9.0) 7.5 (1.1, 13.9) 4.4 (2.6, 6.3) 

   *PAR for smoking: 0.5 (-0.7, 1.6)     

 

 

Numbers indicate PAR % (95% CI). Early-onset hypertension was defined as incident hypertension in age < 

55 years. 

PAR percent were computed for each dichotomized lifestyle factor; BMI (<25 kg/m2 vs. ≥25 kg/m2); 

moderate-to-vigorous physical activity (≥2.5 hours/week vs. <2.5 hours/week); DASH score (40th percentile 

or higher vs. lower than 40th percentile); and alcohol intake (≤20 gram/day vs. >20 gram/day in male; ≤15 

gram/day vs. >15 gram/day in female). 

Models were mutually adjusted for four modifiable risk factors and the following covariates: age, race, family 

history of hypertension, smoking status, potassium intake, use of aspirin, acetaminophen, and NSAIDs, and 

energy expenditure in all cohorts; plus parity, menopausal status, and hormone replacement therapy in NHS 

and NHS II; and plus contraceptive use  in NHS II. 

PAR was not shown if the value was less than zero. 
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Appendix C. Supplemental data to Chapter 4 

Association of plasma branched chain amino acid with biomarkers of inflammation and lipid 

metabolism in women 

 

Supplemental Table 4.1. Spearman correlation matrix between plasma BCAA and 

inflammation, lipid, and HbA1c biomarkers 

Supplemental Table 4.2. Adjusted means of inflammation/lipid biomarkers by the quartiles of 

BCAA level stratified by BMI 

Supplemental Table 4.3. Adjusted means of inflammatory and lipid biomarkers by the quartiles 

of isoleucine level 

Supplemental Table 4.4. Adjusted means of inflammatory and lipid biomarkers by the quartiles 

of leucine level 

Supplemental Table 4.5. Adjusted means of inflammatory and lipid biomarkers by the quartiles 

of valine level 

Supplemental Table 4.6. Adjusted means of inflammatory and lipid biomarkers by the quartiles 

of BCAA level stratified by age 

Supplemental Figure 4.1. Distribution of circulating BCAA concentrations 

Supplemental Figure 4.2. Standardized differences of cardiometabolic biomarkers per SD 

difference of BCAA levels, stratified by BMI 

Supplemental Figure 4.3. Standardized differences of cardiometabolic biomarkers per SD 

difference of isoleucine levels  

Supplemental Figure 4.4. Standardized differences of cardiometabolic biomarkers per SD 

difference of leucine levels  

Supplemental Figure 4.5. Standardized differences of cardiometabolic biomarkers per SD 

difference of valine levels  

Supplemental Figure 4.6. Standardized differences of cardiometabolic biomarkers per SD 

difference of BCAA levels stratified by age 

 

  



 150  

 

 

Supplemental Table 4.1. Spearman correlation matrix between plasma BCAA and 

inflammation, lipid, and HbA1c biomarkers 

 

 BCAAs hsCRP Fibrinogen GlycA 

sICAM-

1 TG 

HDL-

c 

LDL-

c LPIR HbA1c 

BCAAs 1 0.24 0.12 0.30 0.10 0.26 -0.27 0.14 0.34 0.17 

hsCRP  1 0.36 0.57 0.25 0.40 -0.15 0.07 0.40 0.15 

Fibrinogen   1 0.43 0.25 0.12 -0.23 0.20 0.15 0.20 

GlycA    1 0.26 0.44 -0.23 0.18 0.45 0.19 

sICAM-1     1 0.21 -0.20 0.14 0.23 0.15 

Triglyceride      1 -0.37 0.31 0.78 0.14 

HDL-c       1 -0.08 -0.59 -0.15 

LDL-c        1 0.16 0.16 

LPIR         1 0.17 

HbA1c          1 

 

Values indicate spearman correlation coefficients. 
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Supplemental Table 4.2. Adjusted means of inflammation/lipid biomarkers by the quartiles 

of BCAA level stratified by BMI 

 

 BCAA quartiles 
 

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 

p-

interaction 

 Geometric mean [95% confidence interval]  

Inflammation      

hsCRP, mg/L     0.29 

  BMI: <25 1.06 [0.98, 1.16] 1.16 [1.06, 1.26] 1.26 [1.15, 1.38] 1.40 [1.27, 1.53]  

  BMI: 25 to <30 1.62 [1.48, 1.79] 1.93 [1.76, 2.12] 2.18 [1.99, 2.39] 2.30 [2.11, 2.51]  

  BMI: ≥30 2.90 [2.55, 3.31] 3.29 [2.9, 3.73] 3.63 [3.23, 4.09] 3.92 [3.5, 4.39]  

Fibrinogen, mg/dL     0.0083 

  BMI: <25 344 [339, 349] 347 [341, 352] 349 [344, 355] 349 [343, 354]  

  BMI: 25 to <30 371 [364, 378] 375 [368, 382] 377 [371, 385] 378 [371, 385]  

  BMI: ≥30 413 [400, 426] 409 [397, 421] 413 [401, 424] 409 [398, 420]  

sICAM-1, ng/mL     <0.0001 

  BMI: <25 348 [343, 354] 348 [342, 354] 350 [344, 355] 351 [345, 357]  

  BMI: 25 to <30 354 [346, 361] 357 [350, 364] 361 [354, 368] 365 [358, 372]  

  BMI: ≥30 360 [348, 372] 369 [358, 381] 373 [362, 384] 381 [370, 391]  

GlycA, µmol/L     0.081 

  BMI: <25 363 [358, 368] 374 [369, 379] 384 [379, 389] 394 [388, 399]  

  BMI: 25 to <30 375 [369, 381] 393 [387, 399] 404 [398, 411] 413 [407, 420]  

  BMI: ≥30 397 [387, 406] 410 [401, 420] 421 [412, 430] 431 [423, 440]  

Lipid      

Triglyceride, 

mg/dL     0.0008 

  BMI: <25 110 [106, 114] 115 [111, 120] 122 [117, 127] 134 [129, 140]  

  BMI: 25 to <30 119 [113, 125] 129 [123, 135] 137 [131, 144] 154 [147, 161]  

  BMI: ≥30 127 [118, 137] 130 [121, 140] 134 [125, 143] 149 [140, 159]  

HDL-c, mg/dL     0.12 

  BMI: <25 57.1 [56, 58.2] 55.5 [54.4, 56.6] 53.7 [52.6, 54.8] 51.2 [50.2, 52.3]  

  BMI: 25 to <30 53.0 [51.7, 54.3] 51.3 [50.2, 52.5] 49.8 [48.7, 51] 47.2 [46.2, 48.3]  

  BMI: ≥30 49.8 [48, 51.6] 48.3 [46.6, 50] 47.7 [46.2, 49.2] 45.2 [43.8, 46.6]  

LDL-c, mg/dL     0.0004 

  BMI: <25 124 [121, 126] 128 [125, 131] 130 [127, 133] 132 [130, 135]  

  BMI: 25 to <30 127 [124, 131] 132 [129, 136] 134 [131, 137] 137 [134, 140]  
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  BMI: ≥30 125 [120, 131] 127 [122, 132] 129 [125, 134] 130 [126, 135]  

LPIR score     0.0002 

  BMI: <25 35.3 [33.7, 37] 38.1 [36.3, 39.8] 41.8 [40, 43.5] 48.3 [46.5, 50.1]  

  BMI: 25 to <30 39.8 [37.5, 42.1] 44.2 [42, 46.4] 48.5 [46.3, 50.7] 56.4 [54.2, 58.5]  

  BMI: ≥30 42.3 [39.1, 45.6] 47.5 [44.4, 50.6] 50.5 [47.6, 53.4] 57.8 [55, 60.6]  

 

 

Numbers are adjusted geometric means [95% confidence intervals] calculated based on multivariable 

linear regression.  

Models were adjusted for age at the randomization (continuous), assignment to ASA group, assignment to 

vitamin E group, race (white or not), family history of diabetes, smoking (none, ever, current), 

menopausal status (premenopausal, postmenopausal [natural], postmenopausal [non-natural], unsure), use 

of menopausal hormone therapy (never, past, current), parity as number of pregnancies lasting ≥6 months 

(nulliparous, 0, 1, 2, ≥3), exercise as total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol 

consumption (none, <10g/day, <20g/day, ≥20g/day), the use of cholesterol lowering drugs, and BMI 

(continuous). 

P-interaction was assessed using log-likelihood ratio test (two degrees of freedom test). 

P-thresholds after Bonferroni correction were 0.0063. 
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Supplemental Table 4.3. Adjusted means of inflammatory and lipid biomarkers by the 

quartiles of isoleucine level 

 

 Isoleucine quartile  

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-trend 

Inflammation      

 hsCRP, mg/L 1.52 [1.44, 1.61] 1.61 [1.52, 1.71] 1.70 [1.61, 1.8] 1.94 [1.83, 2.05] <0.0001 

 Fibrinogen, mg/dL 364 [360, 368] 366 [362, 370] 365 [361, 369] 366 [362, 370] 0.26 

 sICAM-1, ng/mL 351 [347, 355] 352 [348, 356] 356 [352, 360] 363 [359, 367] <0.0001 

 GlycA, µmol/L 380 [376, 383] 386 [383, 390] 390 [387, 394] 403 [399, 407] <0.0001 

Lipid      

 TG, mg/dL 113 [110, 116] 121 [118, 124] 126 [123, 130] 147 [143, 151] <0.0001 

 HDL-c, mg/dL 55.1 [54.3, 55.8] 53.4 [52.7, 54.1] 52.0 [51.3, 52.7] 48.4 [47.7, 49] <0.0001 

 LDL-c, mg/dL 126 [125, 128] 129 [127, 131] 130 [128, 132] 131 [129, 133] <0.0001 

 LPIR score 36.7 [35.5, 37.9] 40.7 [39.5, 41.9] 44.4 [43.2, 45.6] 54 [52.8, 55.2] <0.0001 

 

 

Numbers are adjusted geometric means [95% confidence intervals] calculated based on multivariable 

linear regression.  

Models were adjusted for age at the randomization (continuous), assignment to ASA group, assignment to 

vitamin E group, race (white or not), family history of diabetes, smoking (none, ever, current), 

menopausal status (premenopausal, postmenopausal [natural], postmenopausal [non-natural], unsure), use 

of menopausal hormone therapy (never, past, current), parity as number of pregnancies lasting ≥6 months 

(nulliparous, 0, 1, 2, ≥3), exercise as total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol 

consumption (none, <10g/day, <20g/day, ≥20g/day), the use of cholesterol lower ing drugs, and BMI 

(continuous). 

Test for trend was based on a variable containing the median value for each quartile.  

P-trend threshold was 0.0021 after Bonferroni correction. 
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Supplemental Table 4.4. Adjusted means of inflammatory and lipid biomarkers by the 

quartiles of leucine level 

 

 Leucine quartile  

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-trend 

Inflammation      

 hsCRP, mg/L 1.49 [1.41, 1.57] 1.61 [1.53, 1.71] 1.74 [1.65, 1.84] 1.97 [1.86, 2.09] <0.0001 

 Fibrinogen, mg/dL 361 [357, 364] 364 [360, 368] 368 [364, 372] 370 [366, 374] <0.0001 

 sICAM-1, ng/mL 354 [350, 358] 355 [350, 359] 356 [352, 360] 360 [356, 364] <0.0001 

 GlycA, µmol/L 374 [370, 377] 384 [380, 387] 394 [391, 398] 410 [406, 414] <0.0001 

Lipid      

 TG, mg/dL 122 [118, 125] 122 [119, 125] 127 [123, 130] 137 [133, 141] <0.0001 

 HDL-c, mg/dL 53.5 [52.7, 54.2] 52.8 [52, 53.5] 51.8 [51.1, 52.5] 50.0 [49.3, 50.7] <0.0001 

 LDL-c, mg/dL 124 [122, 126] 127 [125, 129] 131 [129, 133] 135 [133, 137] <0.0001 

 LPIR score 41.1 [39.8, 42.3] 42 [40.8, 43.3] 44.7 [43.4, 45.9] 49.5 [48.3, 50.8] <0.0001 

 

 

Numbers are adjusted geometric means [95% confidence intervals] calculated based on multivariable 

linear regression.  

Models were adjusted for age at the randomization (continuous), assignment to ASA group, assignment to 

vitamin E group, race (white or not), family history of diabetes, smoking (none, ever, current), 

menopausal status (premenopausal, postmenopausal [natural], postmenopausal [non-natural], unsure), use 

of menopausal hormone therapy (never, past, current), parity as number of pregnancies lasting ≥6 months 

(nulliparous, 0, 1, 2, ≥3), exercise as total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol 

consumption (none, <10g/day, <20g/day, ≥20g/day), the use of cholesterol lower ing drugs, and BMI 

(continuous). 

Test for trend was based on a variable containing the median value for each quartile.  

P-trend threshold was 0.0021 after Bonferroni correction. 
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Supplemental Table 4.5. Adjusted means of inflammatory and lipid biomarkers by the 

quartiles of valine level 

 

 Valine quartile  

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-trend 

Inflammation      

 hsCRP, mg/L 1.43 [1.36, 1.52] 1.65 [1.56, 1.75] 1.79 [1.7, 1.9] 1.93 [1.82, 2.04] <0.0001 

 Fibrinogen, mg/dL 365 [361, 368] 365 [361, 369] 367 [363, 371] 365 [361, 369] 0.34 

 sICAM-1, ng/mL 354 [350, 358] 355 [350, 359] 356 [352, 360] 359 [355, 363] <0.0001 

 GlycA, µmol/L 375 [372, 379] 386 [383, 390] 396 [393, 400] 403 [399, 406] <0.0001 

Lipid      

 TG, mg/dL 112 [109, 116] 123 [119, 126] 131 [127, 135] 142 [138, 146] <0.0001 

 HDL-c, mg/dL 54.9 [54.1, 55.6] 53.1 [52.4, 53.9] 

51.2 [50.5, 

51.9] 49.2 [48.5, 49.9] <0.0001 

 LDL-c, mg/dL 126 [124, 128] 129 [127, 131] 131 [130, 133] 131 [129, 133] <0.0001 

 LPIR score 37.2 [35.9, 38.4] 41.4 [40.2, 42.7] 46.2 [45, 47.4] 51.9 [50.7, 53.1] <0.0001 

 

 

Numbers are adjusted geometric means [95% confidence intervals] calculated based on multivariable 

linear regression.  

Models were adjusted for age at the randomization (continuous), assignment to ASA group, assignment to 

vitamin E group, race (white or not), family history of diabetes, smoking (none, ever, current), 

menopausal status (premenopausal, postmenopausal [natural], postmenopausal [non-natural], unsure), use 

of menopausal hormone therapy (never, past, current), parity as number of pregnancies lasting ≥6 months 

(nulliparous, 0, 1, 2, ≥3), exercise as total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol 

consumption (none, <10g/day, <20g/day, ≥20g/day), the use of cholesterol lower ing drugs, and BMI 

(continuous). 

Test for trend was based on a variable containing the median value for each quartile.  

P-trend threshold was 0.006 after Bonferroni correction. 
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Supplemental Table 4.6. Adjusted means of inflammatory and lipid biomarkers by the 

quartiles of BCAA level stratified by age 

 

A. 14926 women with age<60 years 

 BCAA quartile  

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-trend 

Inflammation      

 hsCRP, mg/L 1.3 [1.2, 1.4] 1.5 [1.4, 1.7] 1.7 [1.6, 1.9] 1.9 [1.8, 2.0] <0.0001 

 Fibrinogen, mg/dL 357 [352, 362] 360 [355, 365] 363 [358, 368] 362 [357, 367] 0.0005 

 sICAM-1, ng/mL 353 [348, 358] 354 [349, 359] 357 [352, 362] 361 [355, 366] <0.0001 

 GlycA, µmol/L 371 [367, 375] 385 [381, 389] 396 [392, 401] 406 [402, 411] <0.0001 

Lipid      

 TG, mg/dL 112 [108, 116] 120 [116, 124] 127 [122, 131] 142 [138, 147] <0.0001 

 HDL-c, mg/dL 55 [54, 56] 53 [52, 54] 51 [50, 52] 49 [48, 49] <0.0001 

 LDL-c, mg/dL 125 [122, 127] 130 [127, 132] 131 [129, 134] 134 [132, 136] <0.0001 

 LPIR score 37 [35, 38] 41 [39, 43] 45 [43, 46] 53 [51, 54] <0.0001 

 

B. 4546 women with age≥60 years 

 BCAA quartile  

 Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-trend 

Inflammation      

 hsCRP, mg/L 2.4 [1.5, 3.8] 2.6 [1.6, 4.0] 2.8 [1.8, 4.4] 3.1 [2.0, 4.8] <0.0001 

 Fibrinogen, mg/dL 377 [344, 413] 380 [347, 416] 383 [350, 419] 380 [347, 416] 0.16 

 sICAM-1, ng/mL 380 [346, 417] 377 [344, 414] 380 [346, 417] 389 [354, 427] 0.0014 

 GlycA, µmol/L 365 [339, 394] 378 [351, 408] 390 [362, 421] 399 [370, 430] <0.0001 

Lipid      

 TG, mg/dL 125 [100, 156] 131 [105, 164] 140 [112, 174] 153 [122, 190] <0.0001 

 HDL-c, mg/dL 55 [49, 62] 54 [48, 61] 52 [46, 58] 49 [44, 55] <0.0001 

 LDL-c, mg/dL 128 [111, 144] 133 [117, 150] 135 [119, 151] 136 [120, 152] <0.0001 

 LPIR score 48 [38, 59] 51 [40, 61] 56 [45, 66] 62 [52, 73] <0.0001 

 

Numbers are adjusted geometric means [95% confidence intervals] calculated based on multivariable 

linear regression.  

Models were adjusted for age at the randomization (continuous), assignment to ASA group, assignment to 

vitamin E group, race (white or not), family history of diabetes, smoking (none, ever, current), 

menopausal status (premenopausal, postmenopausal [natural], postmenopausal [non-natural], unsure), use 

of menopausal hormone therapy (never, past, current), parity as number of pregnancies lasting ≥6 months 

(nulliparous, 0, 1, 2, ≥3), exercise as total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol 
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consumption (none, <10g/day, <20g/day, ≥20g/day), the use of cholesterol lowering drugs, and BMI 

(continuous). 

Test for trend was based on a variable containing the median value for each quartile.  

P-trend threshold was 0.006 after Bonferroni correction. 
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Supplemental Figure 4.1: Distribution of circulating BCAA concentrations 

 

Histogram of plasma branched chain amino acid (BCAA) levels in the present cohort is shown.  
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Supplemental Figure 4.2: Standardized differences of cardiometabolic biomarkers per SD 

difference of BCAA levels, stratified by BMI 
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Linear regressions of standardized biomarkers constructed by standardized continuous total 

BCAA levels and covariates [age at randomization (continuous), assignment to ASA group, 

assignment to vitamin E group, race (white or non-white), family history of diabetes, smoking 

history (none, ever, current), menopausal status (premenopausal, postmenopausal [natural], 

postmenopausal [non-natural], unsure), use of menopausal hormone therapy (never, past, 

current), parity as number of pregnancies lasting ≥6 months (nulliparous, 0, 1, 2, ≥3), exercise as 

total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol consumption (none, <10g/day, 

<20g/day, ≥20g/day), the use of cholesterol lowering drugs, and BMI (continuous)]. 

Standardized differences [95% confidence interval] per SD of BCAAs stratified by BMI (<25, 25 

to <30, and ≥30 kg/m2) are shown. 

  



 161  

 

 

Supplemental Figure 4.3: Standardized differences of cardiometabolic biomarkers per SD 

difference of isoleucine levels  

 

 

 

Linear regressions of standardized biomarkers constructed by standardized continuous total 

isoleucine levels and covariates [age at randomization (continuous), assignment to ASA group, 

assignment to vitamin E group, race (white or non-white), family history of diabetes, smoking 

history (none, ever, current), menopausal status (premenopausal, postmenopausal [natural], 

postmenopausal [non-natural], unsure), use of menopausal hormone therapy (never, past, 

current), parity as number of pregnancies lasting ≥6 months (nulliparous, 0, 1, 2, ≥3), exercise as 

total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol consumption (none, <10g/day, 

<20g/day, ≥20g/day), the use of cholesterol lowering drugs, and BMI (continuous)]. 

Standardized differences [95% confidence interval] per SD of isoleucine are shown. 
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Supplemental Figure 4.4: Standardized differences of cardiometabolic biomarkers per SD 

difference of leucine levels  

 

 

 

Linear regressions of standardized biomarkers constructed by standardized continuous total 

leucine levels and covariates [age at randomization (continuous), assignment to ASA group, 

assignment to vitamin E group, race (white or non-white), family history of diabetes, smoking 

history (none, ever, current), menopausal status (premenopausal, postmenopausal [natural], 

postmenopausal [non-natural], unsure), use of menopausal hormone therapy (never, past, 

current), parity as number of pregnancies lasting ≥6 months (nulliparous, 0, 1, 2, ≥3), exercise as 

total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol consumption (none, <10g/day, 

<20g/day, ≥20g/day), the use of cholesterol lowering drugs, and BMI (continuous)]. 

Standardized differences [95% confidence interval] per SD of leucine are shown. 
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Supplemental Figure 4.5: Standardized differences of cardiometabolic biomarkers per SD 

difference of valine levels  

 

 

 

Linear regressions of standardized biomarkers constructed by standardized continuous total 

valine levels and covariates [age at randomization (continuous), assignment to ASA group, 

assignment to vitamin E group, race (white or non-white), family history of diabetes, smoking 

history (none, ever, current), menopausal status (premenopausal, postmenopausal [natural], 

postmenopausal [non-natural], unsure), use of menopausal hormone therapy (never, past, 

current), parity as number of pregnancies lasting ≥6 months (nulliparous, 0, 1, 2, ≥3), exercise as 

total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol consumption (none, <10g/day, 

<20g/day, ≥20g/day), the use of cholesterol lowering drugs, and BMI (continuous)]. 

Standardized differences [95% confidence interval] per SD of valine are shown. 
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Supplemental Figure 4.6: Standardized differences of cardiometabolic biomarkers per SD 

difference of BCAA levels stratified by age 

 

 

 

Linear regressions of standardized biomarkers constructed by standardized continuous total 

BCAA levels and covariates [age at randomization (continuous), assignment to ASA group, 

assignment to vitamin E group, race (white or non-white), family history of diabetes, smoking 

history (none, ever, current), menopausal status (premenopausal, postmenopausal [natural], 
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postmenopausal [non-natural], unsure), use of menopausal hormone therapy (never, past, 

current), parity as number of pregnancies lasting ≥6 months (nulliparous, 0, 1, 2, ≥3), exercise as 

total MET-hour/week (quintiles), aHEI-2010 (quintiles), alcohol consumption (none, <10g/day, 

<20g/day, ≥20g/day), the use of cholesterol lowering drugs, and BMI (continuous)]. 

Standardized differences [95% confidence interval] per SD of BCAAs stratified by age (<60 and 

≥60 years) are shown. 
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