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Abstract

While AI is assuming omnipresence today more than ever, its adoption is still limited in solving challenges
pertaining to socially-critical problem domains such as in public health, especially among low-resource and un-
derserved communities. Motivated by the desire to solve impactful, real-world problems that involve reasoning,
strategic decision-making, or planning in uncertain, stochastic or resource-limited settings, my thesis presents
novel solutions designed for two such real-world public health challenges: tuberculosis prevention and improv-
ing maternal and child healthcare.

Building AI systems for realizing social impact in public health, demands solving a number of fundamental
research questions. For instance, community health workers and NGOs operating with limited health resources
face the challenge of optimally utilizing these resources to maximize their impact. In doing so, such NGOs must
account for domain-specific considerations such as fairness or risk-averseness and plan the limited resources
to serve beneficiaries at scale, in an uncertain and dynamically changing world. Even with new solution tech-
niques for allocating limited resources in such socially critical domains now being built, their accurate evaluation
through Randomized Controlled Trials (RCTs) remains difficult due to high sample variance in these settings.

Towards tackling these challenges, my thesis utilizes techniques such as Restless Multi-Armed Bandits (RMAB)
to solve the sequential decision-making problem of allocating scarce health intervention resources. My thesis
builds computationally efficient solution algorithms to this problem, that can be adopted by non-profits without
needing access to heavy computing power. Next, I also propose techniques that allow the planner to accommo-
date real-world considerations such as risk-averseness or fairness in planning health interventions. Furthermore,
my thesis also builds solutions that can plan such health interventions while accounting for dynamically chang-
ing patient cohorts and the finite stay of patients in such health programs. Transcending the boundaries of tra-
ditional research, I have transitioned this work from the blackboard to a first-of-its-kind field evaluation of the
RMAB algorithm, involving 23,000 real-world mothers over a 7-week period, results of which show a∼ 30%
improvement in the performance metric of interest. Finally, my work mitigates the challenges faced in the eval-
uation of such resource allocation algorithms through RCTs. Using techniques from causal reasoning, I present
a novel concept that retrospectively reassigns participants to experimental groups in a trial. Using this concept, I
build a new estimator, that I show, can sharply reduce sample variance.
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0
Introduction

Public health is a grand global challenge today—with 6 out of 10 biggest causes of deaths being communicable,

neonatal or nutritional diseases. This challenge is even more critical in the limited-resource settings of the global

south, where half the world’s population lacks access to essential health services122. This situation has only been

made worse by the COVID-19 pandemic, further impacting the underserved populations and widening existing

disparities55. With the belief that AI holds the potential to solve some of these most pressing problems faced

by the world today, my thesis aims to unlock the power of AI to tackle such impactful real-world problems. My

thesis focuses on challenges in public health, drawing on tools from AI— specifically, techniques such as Restless

Multi-Armed Bandits, Probabilistic Modeling, Multi-agent Systems and Causal Reasoning to develop innovative

solutions for two such motivating application domains: tuberculosis prevention and improving maternal and
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(a) Picture credits: CDC (b) Picture credits: WHO
SEARO

(c) Picture credits: Pippa ranger

child healthcare.

My thesis describes work in partnership with ‘ARMMAN’11, an India-based non-profit, that endeavors to

improve maternal and child health outcomes – and has served over 26 million women in India so far. My thesis

also includes work in collaboration with the Government of Maharashtra and AI solutions designed for assisting

TB prevention in India.

Figure 1: During a field visit in
Mumbai to understand the prob‐
lem first‐hand and to determine
the most useful AI solutions.

One common challenge in these public health contexts is that of monitoring

and encouraging adherence to prescribed medication or ensuring engagement

of beneficiaries with health information programs. For instance, Community

HealthWorkers (CHWs) are often tasked with monitoring adherence of Tu-

berculosis patients to their prescribed 6-month-long treatment regimen and are

expected to deliver interventions where necessary to encourage adherence. Simi-

larly, support staff at non-profits like ARMMAN11 running health information

programs may deliver interventions to boost engagement with the goal of maxi-

mizing the positive health outcomes from the program.

In dealing with these challenges, my research thrust examines the entire data-

to-impact pipeline and identifies several fundamental research questions consist-

ing of three key components:

• Optimization and Planning of Limited Resources: Viewed algorithmically, one central question ad-

dressed in my work, is to decide how to allocate the limited health worker intervention resources opti-
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mally. The objective is to maximize adherence or engagement with the program, but with limited inter-

vention resources at hand. Thus, this intervention planning challenge entails determining a subset of k

beneficiaries from theN-strong cohort to intervene on each timestep (k � N), so as to maximize the

overall benefits of the interventions.

• Deployment: I have strived to actualize the impact of my technical work through deployment and real-

world evaluations in the field. Building upon these evaluations and the lessons learned along the way, my

work has culminated in a full-scale deployment of my algorithms and has served> 100, 000 expectant

and newmothers enrolled in the health program by the partner NGO so far.

• Evaluation: Finally, accurate evaluation and measurement of the performance of the developed methods

is the key last step towards achieving measurable, social impact. I have proposed new techniques that

improve the accuracy of this evaluation.

0.1 Problem Statement

To summarize the key research challenge addressed, in this thesis, I seek to answer the question: “How can we

use AI to maximally utilize limited resources and design solutions that deliver measurable, real-world impact in

public health?”

My key contributions towards answering this question are: (1) novel algorithms with relevant theoretical guar-

antees to solve the sequential decision-making challenges faced by stakeholders in public health settings, while

accommodating a number of real-world considerations they may care about (2) first-of-its-kind field evaluation

of these techniques in partnership with non-profits and finally (3) novel methods to improve evaluation through

RCTs, of such resource allocation algorithms being increasingly developed for addressing critical issues of societal

impact.
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0.2 Summary of Contributions

0.2.1 RestlessMulti-Armed Bandits for OptimizingHealthcare Interventions

Mywork is the first to cast this ‘engagement monitoring and intervention planning’ challenge as a Restless Multi-

Armed Bandits (RMAB) problem. The RMAB framework – used typically for handling resource allocation

problems141 –models each TB patient or expectant mother as a Markov Decision Process representing one arm

of the RMAB. Solving for the optimal RMAB policy is PSPACE hard in general. Existing solutions are computa-

tionally expensive needing a computing cluster to run, rendering them inaccessible to low-resource non-profits.

My work identifies ‘Collapsing Bandits’ (CoBs)101 as a special RMAB subclass, with useful theoretical prop-

erties. Using these, I develop a fast algorithm exploiting the special structure of CoBs to accelerate computation.

My algorithm achieves a 3-order-of-magnitude speedup while maintaining similar solution quality. This advance

enables applying the RMAB techniques in the context of applications such as adherence monitoring for TB pa-

tients, without needing access to powerful computational resources.

0.2.2 Risk-Aware Bandits for Planning Public Health Interventions

While ‘Collapsing Bandits’ presents a useful tool for solving this problem, it fails to account for risk-sensitivity

considerations of the real world. It also relies on the end beneficiaries reporting their state of adherence truthfully

during each intervention.

To overcome these limitations, my thesis extends the collapsing bandits framework to allow for risk-aware

planning that can account for real-world planner considerations such as risk-averseness or equitable allocation

and can even counter imperfect observations characteristic of the real world. While these are useful solution

techniques, the existence of a solution and the accompanying optimality guarantees hinge on the validity of a

technical condition called ‘indexability’. Unfortunately, there are no known results on indexability of RMABs

in general. I also derive novel theoretical results on indexability for risk-aware bandits, that yield compact closed-

form sufficient conditions for verifying indexability simply from the problem parameters104.
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0.2.3 ‘Streaming Bandits’: Optimizing Interventions for Dynamically Changing Cohorts

Existing RMAB solutions (including101 and104) assume all agents (such as mothers in a health program) start

and end the program synchronously. However, in reality, the beneficiary cohort can be dynamic— new bene-

ficiaries may join and existing enrolled beneficiaries may leave continually. This asynchronous and finite inter-

mediate stay, unfortunately, prevents existing scalable techniques from working well out-of-the-box. Towards

circumventing these issues in a scalable manner, I first showed that interpolating between the cheaply available

solutions for the infinite- and small-horizon problems is nearly as effective as solving the finite-horizon problem

exactly. Using this, I proposed ‘Streaming Bandits’100 that yields an interpolation-based algorithm that speeds up

the planning process by 2-orders-of-magnitude, while preserving the performance quality of exact methods, even

for dynamically changing cohorts.

0.2.4 Field Study in Deploying Restless Bandit Algorithms in Healthcare

Mywork102 is the first to evaluate RMABs through a real-world field trial for any public health application. In

partnership with ARMMAN11, I ran a first-of-its-kind large-scale trial, extending over 7 weeks and involving

23,003 real mothers in India evaluating the RMAB algorithm. Real-world numbers from the trial show, with

statistical significance, that my RMAB algorithmmanaged to cut engagement drops among mothers by∼ 30%

in comparison to other baselines.

0.2.5 Non-Stationary Restless Bandit Algorithms

While previous work shows the RMABmodel to be useful, its practical utility is restrained by a key underlying

model assumption: that each agent being catered to in the health program follows a Markov Decision Process

(MDP). In reality, we find evidence from real-world data collected in the above trial suggesting that such real-

world agents may not conform to the Markov behavior model.

To bridge this gap, my work casts this challenge as a non-stationary RMAB problem (RMAB-NS), that admits

time-varying transition parameters,P(t) instead of a fixed pointP . Towards ensuring the practicability of our

approach, this work presents a technique to infer the time-dependent parametersP(t), for real-world agents — a

task exacerbated by the richer parameter space of the RMAB-NS model. The idea hinges on leveraging the small
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number of unique behavior patterns displayed by agents, and pooling data by clustering agents according to these

behavior patterns.

0.2.6 SAHELI

Building on the above technical advances and learnings from field testing, we build and deploy “Saheli”, a sys-

tem to efficiently utilize the limited availability of health workers for improving maternal and child health in

India. Saheli is the first deployed application for RMABs in public health, and is already in continuous use by

our partner NGO, ARMMAN.We have already reached∼ 150K beneficiaries with Saheli, and are on track to

serve 1 million beneficiaries by the end of 2023. This scale and impact has been achieved through multiple inno-

vations in the RMABmodel and its development, in preparation of real-world data, and in deployment practices;

and through careful consideration of responsible AI practices. Specifically, this chapter describes our approach

to learn from past data to improve the performance of Saheli’s RMABmodel, the real-world challenges faced

during deployment and adoption of Saheli, and the end-to-end pipeline.

0.2.7 Improved Evaluation of Algorithmic Resource Allocation Policies

Evaluation of resource allocation policies through RCTs is significantly difficult because the individual outcomes

are interlinked through the resource constraint. My work shows how this leads to significantly large variance,

making the evaluation difficult. Despite the increasing use of algorithmic resource allocation, evaluation of such

policies is a critical gap that no prior work has tried to mitigate. My thesis addresses this gap106 by proposing a

new estimator that reduces the sample variance.

I propose a novel concept that retrospectively reassigns participants to trial arms, thus generating additional

samples of counterfactual trials. I prove theoretically that such reassignments are “allowed” and lead to unbiased

estimate that is guaranteed to reduce sample variance. Empirically, I showed the statistical performance of my

method to be equivalent to running anywhere between 2 to 13 independent, full-sizedRCTs in parallel.
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0.3 Thesis outline

The remainder of the thesis follows the outline of the summary. Chapters 1, 2, 3 pertain to the first theme (Op-

timization and Planning) and present novel algorithmic solutions and theoretical results to the resource alloca-

tion decision-making problem. Chapters 4, 5, 6 pertain to the second theme and present work on deploying and

evaluating the RMAB algorithm in the field, in a maternal and child healthcare task. Chapter 7 (final theme)

describes new methods to improve the evaluation of algorithmic resource allocation policies through RCTs. Re-

lated work and background information is provided in each chapter. Finally, Chapter 8 presents a concluding

summary and directions for future research.
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1
‘Collapsing Bandits’ for Optimizing Public

Health Intervention Resources

1.1 Introduction

Motivation. This chapter considers scheduling problems in which a planner must act on k out ofN binary-state

processes each round. The planner fully observes the state of the processes on which she acts, then all processes

undergo an action-dependent Markovian state transition; the state of the process is unobserved until it is acted

upon again, resulting in uncertainty. The planner’s goal is to maximize the number of processes that are in some

“good” state over the course of T rounds. This class of problems is natural in the context ofmonitoring tasks
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which arise in many domains such as sensor/machine maintenance63,46,2,158, anti-poaching patrols132, and espe-

cially healthcare. For example, nurses or community health workers are employed to monitor and improve the

adherence of patient cohorts to medications for diseases like diabetes116, hypertension26, tuberculosis134,28 and

HIV77,76. Their goal is to keep patients adherent (i.e., in the “good” state) but a health worker can only intervene

on (visit) a limited number of patients each day. Health workers can play a similar role in monitoring and deliver-

ing interventions for patient mental health, e.g., in the context of depression97,113 or Alzheimer’s Disease93.

We adopt the solution framework ofRestless Multi-Arm Bandits (RMABs), a generalization of Multi-Arm

Bandits (MABs) in which a planner may act on k out ofN arms each round that each follow aMarkov Decision

Process (MDP). Solving an RMAB is PSPACE-hard in general125. Therefore, a common approach is to con-

sider the Lagrangian relaxation of the problem in which the k
N budget constraint is dualized. Solving the relaxed

problem gives Lagrange multipliers which act as a greedy index heuristic, known as the Whittle index, for the

original problem. Specifically, theWhittle index policy computes the Whittle index for each arm, then plays the

top k arms with the largest indices. TheWhittle index policy has been shown to be asymptotically optimal (i.e.,

N → ∞with fixed k
N ) under a technical condition

160 and generally performs well empirically8 making it a com-

mon solution technique for RMABs.

Critically, using the Whittle index policy requires two key components: (i) a fast method for computing the

index and (ii) proving the problem satisfies a technical condition known as indexability. Without (i) the ap-

proach can be prohibitively slow, and without (ii) asymptotic performance guarantees are sacrificed160. Neither

(i) nor (ii) are known for general RMABs. Therefore, to capture the scheduling problems addressed in this work,

we introduce a new subclass of RMABs, Collapsing Bandits, distinguished by the following feature: when an arm

is played, the agent fully observes its state, “collapsing” any uncertainty, but when an arm is passive, no observa-

tion is made and uncertainty evolves. We show that this RMAB subclass is more general than previous models

and leads to new theoretical results, including conditions under which the problem is indexable and under which

optimal policies follow one of two simple threshold types. We use these results to develop algorithms for quickly

computing the Whittle index. In experiments, we analyze the algorithms’ performance on (i) data from a real-

world healthcare scheduling task in which our approach ties state-of-the-art performance at a fraction the run-

time and (ii) various synthetic distributions, some of which the algorithm achieves performance comparable to

the state of the art even outside its optimality conditions.
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To summarize, our contributions are as follows: (i) We introduce a new subclass of RMABs, Collapsing Ban-

dits, (ii) Derive theoretical conditions for Whittle indexability and for the optimal policy to be threshold-type,

and (iii) Develop an efficient solution that achieves a 3-order-of-magnitude speedup compared to more general

state-of-the-art RMAB techniques, without sacrificing performance.

1.2 RestlessMulti-Armed Bandits

An RMAB consists of a set ofN arms, each associated with a two-actionMDP131. AnMDP {S,A, r,P} con-

sists of a set of states S , a set of actionsA, a state-dependent reward function r : S → R, and a transition

function P, where Pas,s′ denotes the probability of transitioning from state s to s′ when action a is taken. An

MDP policy π : S → A represents a choice of action to take at each state. We will consider both discounted

and average reward criteria. The long-term discounted reward starting from state s0 = s is defined asRπ
β (s) =

E
[∑∞

t=0 β
tr(st+1 ∼ T(st, π(st), st+1)|π, s0 = s

]
where β ∈ [0, 1) is the discount factor and actions are selected

using π. To define average reward, let fπ(s) : S → [0, 1] denote the occupancy frequency induced by policy π,

i.e., the fraction of time spent in each state of the MDP. The average reward Rπ of policy π be defined as the

expected reward computed over the occupancy frequency: Rπ
=
∑

s∈S fπ(s)r(s).

Each arm in an RMAB is anMDP with the action setA = {0, 1}. Action 1 (0) is called the active (passive)

action and denotes the arm being pulled (not pulled). The agent can pull at most k arms at each time step. The

agent’s goal is to maximize either her discounted or average reward across the arms over time. Some RMAB prob-

lems need to account for partial observability of states. It is sufficient to let the MDP state be the belief state: the

probability of being in each latent state73. While intractable in general due to infinite number of reachable belief

states, most partially observable RMABs studied (including our Collapsing Bandits) have polynomially many

belief states due to a finite time horizon or other structures.

Related workRMABs have been an attractive framework for studying various stochastic scheduling prob-

lems since Whittle indices were introduced163. Because general RMABs are PSPACE-hard125, RMAB studies

usually consider restricted classes under which some performance guarantees can be derived. Collapsing Bandits

form one such novel class that generalizes some existing results which we note in later sections. Liu & Zhao 95

develop an efficient Whittle index policy for a 2-state partially observable RMAB subclass in which the state
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transitions are unaffected by the actions taken and reward is accrued from the active arms only. Akbarzadeh &

Mahajan 3 define a class of bandits with “controlled restarts,” giving indexability results and a method for com-

puting the Whittle index. However, “controlled restarts” define the active action as state independent, a stronger

assumption than Collapsing Bandits which allow state-dependent action effects. Glazebrook et al. 46 give Whit-

tle indexability results for three classes of restless bandits: (1) A machine maintenance regime with determin-

istic active action effect (we consider stochastic active action effect) (2) A switching regime in which the pas-

sive action freezes state transitions (in our setting, states always change regardless of action) (3) A reward deple-

tion/replenishment bandit which deterministically resets to a start state on passive action (we consider stochastic

passive action effect). Hsu 60 and Sombabu et al. 142 augment the machine maintenance problem fromGlaze-

brook et al. 46 to include either i.i.d. or Markovian evolving probabilities of an active action having no effect, a

limited form of state-dependent action. Meshram et al. 108 introduce HiddenMarkov Bandits which, similar to

our approach, consider binary state transitions under partial observability, but do not allow for state dependent

rewards on passive arms. In sum, our Collapsing Bandits introduce a new, more general RMAB formulation

than special subclasses previously considered. Qian et al. 132 present a generic approach for any indexable RMAB

based on solving the (partially observable) MDPs on arms directly. Because we derive a closed form for the Whit-

tle index, our algorithm is orders of magnitude faster.

1.3 Collapsing Bandits

b0(1)

b1(1)

b0(2)

b1(2)

b0(3)

b1(3)

b0(4)

b1(4)

...

...

1 1 1 1

1 1 1 1

Figure 1.1: Belief‐state MDP under the policy of always being passive. There is
one chain for each observation ω ∈ {0, 1} with the head marked black. Belief
states deterministically transition down the chains.

We introduce Collapsing Bandits (CoB)

as a specially structured RMABwith

partial observability. In CoB, each arm

n ∈ {1, . . . ,N} has binary latent states

S = {0, 1}, representing bad and good

state, respectively. The agent acts dur-

ing each of finite days t ∈ 1, . . . ,T. Let

at ∈ {0, 1}N denote the vector of actions

taken by the agent on day t. Arm n is said to be active at t if at(n) = 1 and passive otherwise. The agent acts on k
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arms per day, i.e., ‖at‖ = k, where k � N because resources are limited. When acting on arm n, the true latent

state of n is fully observed by the agent and thus its uncertainty “collapses” to a realization of the binary latent

state. We denote this observation as ω ∈ S . States of passive arms are completely unobservable by the agent.

Active arms transition according to the transition matrix Pa,ns,s′ and passive arms transition according to Pp,ns,s′ .

We drop the superscript nwhen there is no ambiguity. Our scheduling problem, like many problems in analo-

gous domains, exhibits the following natural structure: (i) processes are more likely to stay “good” than change

from “bad” to “good”; (ii) when acted on, they tend to improve. These natural structures are respectively cap-

tured by imposing the following constraints on Pp and Pa for each arm: (i) Pp0,1 < Pp1,1 and Pa0,1 < Pa1,1;

(ii) Pp0,1 < Pa0,1 and P
p
1,1 < Pa1,1. To avoid unnecessary complication through edge cases, all transition probabilities

are assumed to be nonzero. The agent receives reward rt =
∑N

n=1 st(n) at t, where st(n) is the latent state of arm

n at t. The agent’s goal is to maximize the long term rewards, either discounted or average, defined in Sec. 1.2.

Belief-StateMDPRepresentation In limited observability settings, belief-state MDPs have organized

chain-like structures, which we will exploit. In particular, the only information that affects our belief of an arm

being in state 1 is the number of days since that arm was last pulled and the state ω observed at that time. There-

fore, we can arrange these belief states into two “chains” of length T, each for an observation ω. A sketch of the

belief state chains under the passive action is shown in Fig. 2.2. Let bω(u) denote the belief state, i.e., the probabil-

ity that the state is 1, if the agent received observation ω ∈ {0, 1}when it acted on the process u days ago. Note

that bω(u) is also the expected reward associated with that belief state, and let B be the set of all belief states.

When the belief-state MDP is allowed to evolve under some policy, the following mechanism arises: first, after

an action, the state ω is observed (uncertainty “collapses”), then one round passes causing the agent’s belief to

become Paω,1, representing the head of the chain determined by ω. Subsequent passive actions cause the process

to transition deterministically down the same chain (though, the transition in the latent state is still stochastic).

Then when the process’s arm is active, it transitions to the head of one of the chains with probability equal to the

belief that the corresponding observation would be emitted (see Fig. 1.2a for an illustration).

The belief associated with a belief state can be calculated in closed form with the given transition probabilities.
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Formally,

bω(u) = τu−1(Paω,1) ∀u ∈ [T] where τu(b) =
Pp0,1 − (Pp1,1 − Pp0,1)u(P

p
0,1 − b(1+ Pp0,1 − Pp1,1))

(1+ Pp0,1 − Pp1,1)
(1.1)

1.4 Collapsing Bandits: Threshold Policies andWhittle Indexability

Because of the well-known intractability of solving general RMABs, the widely adopted solution concept in the

literature of RMABs is the Whittle index approach; for a comprehensive description, see Whittle 163 . Intuitively,

the Whittle index captures the value of acting on an arm in a particular state by finding the minimum subsidy

m the agent would accept to not act, where the subsidy is some exogenous “donation” of reward. Formally, the

modified reward function becomes rm : S × A → R, where rm(s, 0) = r(s) + m and rm(s, 1) = r(s).

LetRπ
β,m(s) = E

[∑∞
t=0 β

trm(st, π(st))|π, s0 = s
]
andRπ

m =
∑

s∈S fπ(s)rm(s, π(s)) be the discounted and

average reward criteria for this new subsidy setting, respectively. The former is maximized by the discounted value

function (we give a value function for the average reward criterion in Fast Whittle Index Computation):

Vm(b) = max


m+ b+ βVm(τ1(b)) passive

b+ β(bVm(Pa1,1) + (1− b)Vm(Pa0,1)) active
(1.2)

where τ is defined in Eq. 1.1 and b is shorthand for bω(u). In a CoB, the Whittle index of a belief state b is the

smallestm s.t. it is equally optimal to be active or passive in the current state. Formally:

W(b) = inf
m
{m : Vm(b; a = 0) ≥ Vm(b; a = 1)} (1.3)

Critically, performance guarantees hold only if the problem satisfies indexability160,163, a condition which says

that for all states, the optimal action cannot switch to active asm increases. Let Π∗
m be the set of policies that

maximize a given reward criterion under subsidym.

Definition 1 (Indexability). An arm is indexable if B∗(m) = {b : ∀π ∈ Π∗
m, π(b) = 0}monotonically
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increases from ∅ to the entire state space as m increases from−∞ to∞. An RMAB is indexable if every arm is

indexable.

The following special type of MDP policy is central to our analysis.

Definition 2 (Threshold Policies). A policy is a forward (reverse) threshold policy if there exists a threshold bth

such that π(b) = 0 (π(b) = 1) if b > bth and π(b) = 1 (π(b) = 0) otherwise.

Theorem 1. If for each arm and any subsidy m ∈ R, there exists an optimal policy that is a forward or reverse

threshold policy, the Collapsing Bandit is indexable under discounted and average reward criteria.

Proof Sketch. Using linearity of the value function in subsidym for any fixed policy, we first argue that when for-

ward (reverse) threshold policies are optimal, proving indexability reduces to showing that the threshold mono-

tonically decreases (increases) withm. Unfortunately, establishing such a monotonic relationship between the

threshold andm is a well-known challenging task in the literature that often involves problem-specific reason-

ing95. Our proof features a sophisticated induction argument exploiting the finite size of B and relies on tools

from real analysis for limit arguments.

All formal proofs can be found in the appendix. We remark that Thm. 1 generalizes the result in the seminal

work by Liu & Zhao 95 who proved the indexability for a special class of CoB. In particular, the RMAB in Liu &

Zhao 95 can be viewed as a CoB setting with Pa = Pp, i.e., transitions are independent of actions.

Though theWhittle index is known to be challenging to compute in general163, we are able to design an algo-

rithm that computes the Whittle index efficiently assuming the optimality of threshold policies, which we now

describe.

FastWhittle Index Computation The main algorithmic idea we use is the Markov chain structure that

arises from imposing a forward threshold policy on anMDP. A forward threshold policy can be defined by a

tuple of the first belief state in each chain that is less than or equal to some belief threshold bth ∈ [0, 1]. In the

two-observation setting we consider, this is a tuple (Xbth
0 ,Xbth

1 ), where Xbthω ∈ 1, . . . ,T is the index of the first
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belief state in each chain where it is optimal to act (i.e., the belief is less than or equal to bth). We now drop the su-

perscript bth for ease of exposition. See Fig. 1.2a for a visualization of the transitions induced by such an example

policy. For a forward threshold policy (X0,X1), the occupancy frequencies induced for each state bω(u) are:

f(X0,X1)(bω(u)) =



α if ω = 0, u ≤ X0

β if ω = 1, u ≤ X1

0 otherwise

(1.4)

α =

(
(X1b0(X0))

1− b1(X1)
+ X0

)−1
, β =

(
X1b0(X0)

1− b1(X1)
+ X0

)−1 b0(X0)

1− b1(X1)
(1.5)

These equations are derived from standardMarkov chain theory. These occupancy frequencies do not depend

on the subsidy. Let J(X0,X1)
m be the average reward of policy (X0,X1) under subsidym. We decompose the average

reward into the contribution of the state reward and the subsidy

J(X0,X1)
m =

∑
b∈B

bf(X0,X1)(b) +m(1− f(X0,X1)(b1(X1))− f(X0,X1)(b0(X0))) (1.6)

Recall that for any belief state bω(u), the Whittle index is the smallestm for which the active and passive actions

are both optimal. Given forward threshold optimality, this translates to two corresponding threshold policies

being equally optimal. Such policies must have adjacent belief states as thresholds, as can be concluded from

Lemma 4 in Appendix A.1. Note that for a belief state b0(X0) the only adjacent threshold policies with active

and passive as optimal actions at b0(X0) are (X0,X1) and (X0 + 1,X1) respectively. Thus the subsidy which

makes these two policies equal in value must thus be the Whittle Index for b0(X0), which we obtain by solving:

J(X0,X1)
m = J(X0+1,X1)

m form. We use this idea to construct two fast Whittle index algorithms.

Sequential index computation algorithm Alg. 1 precomputes the Whittle index of every belief state

for each process, having time complexityO(|S|2TN). Then, the per-round complexity to retrieve the top k in-

dices isO(Nmin{k, log(N)}). This gives a great improvement over the more general method given by Qian et

al.132 (our main competitor) which has per-round complexity of≈ O(N log( 1ε )(|S|T)
2+ 1

18 ), where log( 1ε ) is

due to a bifurcation method for approximating the Whittle index to within error ε on each arm and (|S|T)2+
1
18 is
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Figure 1.2: (a) Visualization of forward threshold policy (X0 = 4, X1 = 3). Black nodes are the head of each chain and grey nodes
are the thresholds. (b) Non‐increasing belief (NIB) process has non‐increasing belief in both chains. A split belief process (SB) has non‐
increasing belief after being observed in state 1, but non‐decreasing belief after being observed in state 0.

due to the best-known complexity of solving a linear program with |S|T variables69.

Alg. 1 is optimized for settings in which theWhittle index can be precomputed. However, for online learning

settings, we give an alternative method in Appendix A.6 that computes the Whittle index on-demand, in a closed

form.

Algorithm 1: Sequential index computation algorithm
Initialize counters to heads of the chains: X1 = 1, X0 = 1
while X1 < T or X0 < T do

Computem1 := m such that J(X0,X1)
m = J(X0,X1+1)

m
Computem0 := m such that J(X0,X1)

m = J(X0+1,X1)
m

Set i = argmin{m0,m1} andW(Xi) = min{m0,m1}
Increment Xi

end

Our algorithm also requires that belief is decreasing in X0 and X1. Formally, we require:

Definition 3 (Non-increasing belief (NIB) processes). A process has non-increasing belief if, for any u ∈ [T] and

for any ω ∈ S , bω(u) ≥ bω(u+ 1).

All possible CoB belief trends are shown in Fig. 1.2b. We make this distinction because the computation of

the Whittle index in Alg. 1 is guaranteed to be exact for NIB processes that are also forward threshold optimal,

though we show empirically that our approach works surprisingly well for most distributions. In the next sec-

tion, we analyze the possible forms of optimal policies to find conditions under which threshold policies are opti-

mal.
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Figure 1.3: Components ofVm(b) in Eq. 1.2. Since the passive action is convex
in b, active action is linear in b, and value function is a max over these, at most
three optimal policy types are possible.

Types of Optimal Policies Analyz-

ing Eq. 1.2 reveals that at most three types

of optimal policies exist. This follows di-

rectly from the definition ofVm(b), which

is a max over the passive action value func-

tion and the active action value function.

The former is convex in b, a well-known

POMDP result145, and the latter is linear

in b. Thus, as shown in Fig. 1.3, there are three ways in which the value functions of each action may intersect;

this defines three optimal policy forms of forward, reverse and dual threshold types, respectively. Forward and

reverse threshold policies are defined in Def. 2; dual threshold policies are active between two separate threshold

points and passive elsewhere. Not only do threshold policies greatly reduce the optimization search space, they

often admit closed form expressions for the index as demonstrated earlier in this section. We now derive sufficient

conditions on the state transition probabilities under which each type of policy is verifiably optimal.

Theorem 2. Consider a belief-stateMDP corresponding to an arm in a Collapsing Bandit. For any subsidy m,

there is a forward threshold policy that is optimal under the condition:

(Pp1,1 − Pp0,1)(1+ β(Pa1,1 − Pa0,1))(1− β) ≥ Pa1,1 − Pa0,1 (1.7)

Proof Sketch. Forward threshold optimality requires that if the optimal action at a belief b is passive, then it must

be so for all b′ > b. This can be established by requiring that the derivative of the passive action value function is

greater than the derivative of the active action value function w.r.t. b. The main challenge is to distill this require-

ment down to measurable quantities so the final condition can be easily verified. We accomplish this by leverag-

ing properties of τ(b) and using induction to derive both upper and lower bounds onVm(b1)− Vm(b2) ∀ b1, b2

as well as a lower bound on d(Vm(b))
db .

Intuitively, the condition requires that the intervention effect on processes in the “bad” state must be large,

making Pa1,1 − Pa0,1 small. Note that Liu & Zhao 95 consider the case where Pa1,1 = Pp1,1 and Pa0,1 = Pp0,1, which
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makes Eq. 1.7 always true. Thus we generalize their result for threshold optimality.

Theorem 3. Consider a belief-stateMDP corresponding to an arm in a Collapsing Bandit. For any subsidy m,

there is a reverse threshold policy that is optimal under the condition:

(Pp1,1 − Pp0,1)
(
1+

β(Pa1,1 − Pa0,1)
1− β

)
≤ Pa1,1 − Pa0,1 (1.8)

Intuitively, the condition requires small intervention effect on processes in the “bad” state, the opposite of

the forward threshold optimal requirement. Note that both Thm. 6 and Thm. 7 also serve as conditions for the

average reward case as β → 1 (a proof based on Dutta’s Theorem36 is given in Appendix A.4).

Conjecture 1. Dual threshold policies are never optimal for Collapsing Bandits.

This conjecture is supported by extensive numerical simulations over the random space of state transition

probabilities, values of β, and values of subsidym; its proof remains an open problem. Note that this would im-

ply that all Collapsing Bandits are indexable.

1.5 Experimental Evaluation

We evaluate our algorithm on several domains using both real and synthetic data distributions. We test the fol-

lowing algorithms: Threshold Whittle is the algorithm developed in this chapter. Qian et al. 132 , a slow, but

precise general method for computing the Whittle index, is our main baseline that we improve upon. Random

selects k process to act on at random each round. Myopic acts on the k processes that maximize the expected re-

ward at the immediate next time step. Formally, at time t, this policy picks the k processes with the largest values

of Δbt = (bt+1|a = 1) − (bt+1|a = 0). Oracle fully observes all states and uses Qian et al. 132 to calculate Whit-

tle indices. We measure performance in terms of intervention benefit, where 0% corresponds to the reward of a

policy that is always passive and 100% corresponds to Oracle. All results are averaged over 50 independent trials.

1.5.1 Real Data: Monitoring Tuberculosis Medication Adherence

We first test on tuberculosis medication adherence monitoring data, which contains daily adherence information

recorded for each real patient in the system, as obtained from Killian et al. 79 . The “good” and “bad” states of the
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arm (patient) correspond to “Adhering” and “Not Adhering” to medication, respectively. State transition prob-

abilities are estimated from the data. Because this data is noisy and contains only the adherence records and not

the intervention (action) information (as the authors state), we perturb the computed average transition matrix

by reducing (increasing) Pω,1 by a uniform random number between 0 and δ1, δ2 (δ3, δ4) then renormalizing to

obtain Ppω,1 (Paω,1) for the simulation. Reward is measured as the undiscounted sum of patients (arms) in the ad-

herent state over all rounds, where each trial lasts T = 180 days (matching the length of first-line TB treatment)

withN patients and a budget of k calls per day. All experiments in this section set all δ to 0.05.

In Fig. 1.4a, we plot the runtime in seconds vs the number of patientsN. Fig. 1.4b compares the intervention

benefit forN = 100, 200, 300, 500 patients and k = 10% ofN. In theN = 200 case, the runtimes of a single

trial of Qian et al. and ThresholdWhittle index policy are 3708 seconds and 3 seconds, respectively, while attain-

ing near-identical intervention benefit. Our algorithm is thus 3 orders of magnitude faster than the previous state

of the art without sacrificing performance.

We next test ThresholdWhittle as the resource level k is varied. Fig. 1.4c shows the performance in the k =

5%N, k = 10%N and k = 15%N regimes (N = 200). ThresholdWhittle outperformsMyopic and Random

by a large margin in these low resource settings. We also affirm the robustness of our algorithm to δ, the perturba-

tion parameter used to approximate real-world Ppω,1 and Paω,1 from the data, and present the extensive sensitivity

analysis in Appendix A.7. Finally, in Appendix A.6 we couple our algorithm to a Thompson Sampling-based

learning approach and show it performs well in the real-world case where transition probabilities would need to

be learned online, supporting the deployability of our work.
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Figure 1.4: (a) Threshold Whittle is several orders of magnitude faster than Qian et al. and scales to thousands of patients without
sacrificing performance on realistic data (b). (c) Intervention benefit of Threshold Whittle is far larger than naive baselines and nearly as
large as Oracle.
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1.5.2 Synthetic Domains

We test our algorithm on four synthetic domains, that potentially characterize other healthcare or relevant do-

mains, and highlight different phenomena. Specifically, we: (i) identify situations whenMyopic fails completely

while Whittle remains close to optimal, (ii) analyze the effect of latent state entropy on policy performance, (iii)

identify limitations of ThresholdWhittle by constructing processes for which ThresholdWhittle shows separa-

tion fromOracle, and (iv) test robustness of our algorithm outside of the theoretically guaranteed conditions. To

facilitate comparison with the real data distribution, we simulate trials for T = 180 rounds where reward is the

undiscounted sum of arms in state 1 over all rounds. We consider the space of transition probabilities satisfying

the assumed natural constraints, as outlined in Sec. 1.3.

Fig. 1.5a demonstrates a domain characterized by processes that are either self-correcting or non-recoverable.

Self-correcting processes have a high probability of transitioning from state 0 to 1 regardless of the action taken,

while non-recoverable processes have a low chance of doing so. We show that when the immediate reward is

larger for the former than the latter, Myopic can perform even worse than Random. That is because a myopic

policy always prefers to act on the self-correcting processes per their larger immediate reward, while Threshold

Whittle, capable of long-term planning, looks to avoid spending resources on these processes. In this regime, the

best long-term plan is to always act on the non-recoverable processes to keep them from failing. Analytical expla-

nation of this phenomenon is presented in Appendix A.5. We set the resource level, k = 10%N in our simulation

for Fig. 1.5a. Note that performance of Myopic drops as the fraction of self-correcting processes becomes larger

and reaches a minimum at x = 100% − k = 90%. Beyond this point, ThresholdWhittle can no longer com-

pletely avoid self-correcting processes and the gap subsequently starts to decrease.

Fig. 1.5b explores the effect of uncertainty in the latent state on long-term planning. For each point on the

x-axis, we draw all transition probabilities according to Ppω,1,Paω,1 ∼ [x, x + 0.1]. The entropy of the state of

a process is maximum near 0.5 making long term planning most uncertain and as a result, this point shows the

biggest gap with Oracle, which can observe all the states in each round. Note that Myopic andWhittle policies

perform similarly, as expected for (nearly) stochastically identical arms.

Fig. 1.5c studies processes that have a large propensity to transition to state 0 when passive and a correspond-

ing low active action impact, but a significantly larger active action impact in state 1. This makes it attractive to
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exclusively act on processes in the 1 state. This simulates healthcare domains where a fraction of patients degrade

rapidly, but can recover, and indeed respond very well to interventions if already in a good state. To simulate

these, we draw transition matrices with Pp0,1,P
p
1,1,Pa0,1 ∼ [0.3, 0.32] and Pa1,1 ∼ [0.7, 0.72] in varying propor-

tions and sample the rest from the real TB adherence data. Because the best plan is to act on processes in state 1,

bothMyopic andWhittle act on the processes with the largest belief giving Oracle a significant advantage as it has

perfect knowledge of states.

Although we provide theoretical guarantees on our algorithm for forward threshold optimal processes with

non-increasing belief, Fig. 1.5d reveals that Alg. 1 performs well empirically even with these conditions relaxed.

Here, we sample processes uniformly at random from the state transition probability space, and use rejection

sampling to vary the proportion of threshold optimal processes. ThresholdWhittle performs well even when as

few as 20% of the processes are forward threshold optimal; we briefly analyze this phenomenon in Appendix A.8.
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Figure 1.5: (a) Myopic can be trapped into performing even worse than Random while Threshold Whittle remains close to optimal.
(b) Long‐term planning is least effective when entropy of states is maximum. (c) Myopic and Whittle planning become similar when
more processes are prone to failures. (d) Threshold Whittle is surprisingly robust to processes even outside of theoretically guaranteed
conditions.

1.6 Conclusion

We open a new subspace of Restless Bandits, Collapsing Bandits, which applies to a broad range of real-world

problems, especially in healthcare delivery. We give new theoretical results that cover a large portion of real-world

data as well as an algorithm that runs thousands of times faster than the state of the art without sacrificing per-

formance. We simultaneously also recognize limitations of our theoretical results, which become narrow in the

average reward case. We envision several interesting avenues for future work, including techniques to incorporate
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the user/health worker inputs for planning, generalizing our inherently 2-state approach to allow for a multi-state

model, and allowing multiple actions and/or more general reward functions.

Broader Impact

Figure 1.6: CHW delivering vaccine. Credit: Pippa Ranger.

Our work is largely motivated by resource constrained

health intervention delivery. This setting is common

across low, middle, and high-income countries, in which

community health workers (CHWs) are recruited to de-

liver basic care to a cohort of patients or benefactors. In

fact, CHWs have been critical in achieving global health

initiatives for over five decades, and evidence shows that

CHWs have had a positive impact in myriad domains

including maternal and newborn health32,38, (non-)communicable diseases32,140, and sexual/reproductive

health165 in low-resource communities across the world35,38,140,162. Our modeling has the potential to improve

the delivery of care in these highly resource-constrained settings.

However, a deployment of our system to any setting must be done responsibly. For instance, we designed our

system with the intention of assisting human CHWs plan resource-limited interventions. That said, we present

results that highlight our algorithm’s ability to plan for thousands of processes at a time, far more than for which

a human could independently plan. Just making this capability available could encourage the automation of

applicable interventions via automated calls or texts, potentially displacing CHW jobs, reducing human contact

with patients, and unfairly limiting care for patients with limited access to technology.

Additionally, users of the systemmust be dutifully aware that its recommendations will be based solely on the

data entered in the system. In the context of medication adherence monitoring, if the worker enters incorrect

data, e.g., the patient was adhering (“good” state) but they instead mark the patient as not adhering (“bad” state),

then the algorithm could make the wrong recommendation about the patient the next day, since its belief of the

patient’s adherence would also be wrong.

Finally, our AI system is inherently a blackbox which would likely be replacing an interpretable scheduling
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heuristic. This would limit any user or administrator’s ability to audit decisions around why certain patients were

recommended for intervention. As with any potential deployment of a blackbox system to a domain that affects

the allocation of resources to humans, system designers should be acutely aware of the balance between their

needs to be able to perform audits vs. their need for optimization.
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2
Risk-aware Bandits for Risk-sensitive Healthcare

Intervention Planning

2.1 Introduction

Community Health workers (CHWs) play a key role in complementing the primary health facilities, and are crit-

ical to health care systems globally, and especially in low-resource countries155. CHWs are members of the local

community who serve as frontline health workers and form the cornerstone of the bridge between the health

resources and the local communities through building trust and a range of other activities such as outreach, pro-

viding health education, screening and basic emergency care167,165. The effectiveness of CHWs in achieving de-
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Figure 2.1: Community Health Worker delivering an intervention. Image source: Pippa Ranger

sirable community health outcomes through the interventions they deliver has been recognized in the context of

several domains such as achieving child survival goals52, improving child and maternal health162,119, communica-

ble and non-communicable diseases32,140, sexual and reproductive health121, etc.

A key challenge that CHWs face in effective delivery of welfare activities is optimally managing their severely

limited resources. In the global south, each CHWmay routinely be responsible for managing the health out-

comes of hundreds of patients. As a motivating example, we consider the real-world CHWHMIP of moni-

toring adherence for tuberculosis (TB) patients, who must complete a 6-month medication plan. Given the

resource scarcity, the CHWs can only monitor and intervene on some k patients from theirN-strong patient

cohort (k � N) each day. In this situation, the CHWsmust determine the best k candidates to intervene on

each day, based on who would likely display the highest benefits of the intervention through improvement in

their future adherence. While doing so, the CHWsmust simultaneously juggle at least three real-world considera-

tions, in addition to broadly maximizing the overall adherence of their cohort. These may include: incorporating

risk-sensitive perspectives, ensuring no patients are left ignored for too long, or accounting for patients who may

misrepresent their adherence status.

A naive planning approach typically implemented in practice is to intervene on patients in a round robin fash-

ion. However, this strategy is likely sub-optimal because some patients may need interventions less often than

others. Previous works in AI for health interventions129,91,30 have largely focused on building assistants that send

personalized health reminders or recommendations to patients. However, these assume resource-rich environ-
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ments in which interventions can be launched at will, and are thus irrelevant to the CHWs’ intervention planning

problem at hand. Some recent works in AI95,132,101 have also explored intervention planning algorithms under

limited resources using the Restless Multi-Armed Bandits (RMAB) framework. However, these are either slow

or can only optimize for aggregate cohort-level health statistics weighing the adherence in all stages of the pro-

gram equally and do not cater to the complicated patient-specific considerations of the CHWs.

In this chapter, we tackle this issue of planning the limited CHW intervention resources in the HMIP while

accommodating more complex objectives than past work. Our theoretical analysis identifies a wider class of in-

dexable HMIPs even in the case of standard linear rewards. We leverage these results to construct tailor-made

reward functions, designed to accommodate the real-world planner objectives outlined above. Further, we also

develop additional techniques to solve the issue pertaining to patients incorrectly reporting/not reporting their

true adherences.

Thus, our contributions in this chapter are as follows: (1) We present an algorithm for the HMIP that can ad-

mit any arbitrary, monotonically increasing reward function and supports a wider class of observations. (2) We

prove theoretical guarantees on the optimality of our algorithm. Further, we show that for the specific reward

definition of average cohort adherence studied in previous work, our conditions are much wider (giving stronger

results). For example, in the average reward case, the previous optimality guarantees become vacuous, while our

theoretical guarantees hold for as much as 88% of the entire space of bandits. (3) We show the applicability of

these results for catering to three real-world CHW considerations including: (i) risk-sensitive planning, (ii) fair-

ness protection towards patients who may otherwise be completely ignored by the planning algorithms, and (iii)

accounting for patients who may misrepresent their true adherences.

2.2 Background

2.2.1 RestlessMulti-Armed Bandits.

An RMAB consists ofN independent arms, each consisting of an associated 2-actionMarkov Decision Process

(MDP)131. AnMDP is defined by the tuple {S,A, r,P}, where S denotes the state space,A is the set of pos-

sible actions, r is a state-dependent reward function r : S → R andP represents a transition function, with

Pas,s′ representing the probability of transitioning from a current state s to a next state s′ when an action a is taken.
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AnMDP policy, π : S → A is a mapping from the state space to the action space specifying the action to be

taken at a particular state. The reward accrued by a policy π can be measured either using the discounted reward

or the average reward criterion. The discounted reward of a policy π starting from an initial state s0 is defined as

Rπ
β (s0) = E

[∑∞
t=0 β

tr(st)|π, s0
]
, where β ∈ [0, 1) is the discount factor and actions are selected according to

π. The average reward of a policy π can be defined (independent of the starting state) as: Rπ
=
∑

s∈S fπ(s)r(s),

where fπ(s) represents the average visit frequency induced by the policy π, or the long term fraction of time spent

in a state swhen following π. The total reward accrued by the planner is the sum of the total individual rewards

accrued by each of the arms (under either the discounted or average reward criteria). The planner’s goal is to max-

imize her total reward summed up across all arms.

We model the intervention planning problem as an RMABwith each arm representing an agent (patient) with

the planner (CHW) who must decide which arms to monitor and intervene upon.

2.2.2 Whittle Index solution technique

Computing the optimal policy for an RMAB has been shown to be PSPACE hard in general even when the tran-

sition dynamics are perfectly known125. However, Whittle proposed a heuristic163, known today as the Whittle

Index, that was later been shown to be asymptotically optimal for the time average reward problem160, and also

for other more general families of RMABs arising from stochastic scheduling problems46.

The main idea of the Whittle Index technique is to compute an index for every arm at each time step that in-

tuitively captures the value of pulling that arm at that timestep. Such an index is calculated for each arm indepen-

dently, thus transforming theN-arm RMAB problem toN smaller problems each consisting of a single MDP.

TheWhittle Index policy for the RMAB is to pull the k arms with the highest Whittle indices.

The notion of the Whittle Index is centered around the concept of passive subsidy,m. Intuitively, passive sub-

sidy is the amount one must pay the planner as compensation not to pull an arm. Formally, this can be expressed

through a modified reward function for each arm, given as: rm : S × A → R, where rm(s, a = 0) = r(s) + m

and rm(s, a = 1) = r(s), where a = 1(a = 0) for the MDP corresponds to pulling (not pulling) an

arm of the RMAB. The modified reward function induces a corresponding value function in each state, for

each of the two actions: Vm(s, a = 0) andVm(s, a = 1). TheWhittle IndexW is defined as the infimum
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subsidym for which the planner is indifferent between either pulling or not pulling the arm. In other words,

W(s) = infm{m : Vm(s, a = 0) = Vm(s, a = 1)}.

A common challenge associated with theWhittle Index solution technique is establishing a technical con-

dition, known as ‘indexability’ that guarantees the asymptotic optimality of the Whittle Index heuristic. This

condition may not be satisfied by all RMABs and previous literature has established indexability only for specific

problem instances. A second challenge is often computing the value of the Whittle Index itself, which can be

computationally expensive or may often need numerical approximations.

2.2.3 RelatedWork

RMABs have proved to be a popular framework for modeling limited resource planning problems in a myriad of

domains. Because establishing indexability for RMABs is very challenging, previous works have only explored the

same for specialized problem structures.46 prove indexability results for a family of RMABs that arise in machine

maintenance and stochastic problems with switching penalties. However, they assume a deterministic action

effect, whereas we do not.60 and142 augment the machine maintenance problem by introducing either i.i.d. or

Markovian stochasticity in the reset action, and152 studyWhittle Index for general functions of states assuming a

single, fixed, reset state.108 explore HiddenMarkov Bandits which consider partial observability with binary state

transitions, but don’t accommodate state dependent rewards from passive arms.

Liu & Zhao 95 is a seminal work that builds off of the well-established 2-state Elliot-Gilbert channel model44

and computes the Whittle Index efficiently along with a closed form. They assume that the state transitions

are unaffected by the action taken and only accrue reward from the active arms.3 is a recent work that consid-

ers RMABs with “controlled restarts” giving indexability results as well as a closed form for the Whittle Index,

but they rely on state-independent restarts, which is narrower than the model of this chapter.132 present a more

generic approach that relies on solving the MDP on each arm for the optimal action to compute the Whittle In-

dex policy. While it can thus relax many of these constraints, this technique is very expensive computationally,

and is thus very slow.101 is a recent work that is orders of magnitude faster while also relaxing the restrictions of

previous work. However, they fail to account for real world risk-sensitive and fairness related planning consider-

ations. Additionally, they also assume perfect observability of the patient states when acted upon, which may be
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Figure 2.2: Belief states are arranged in two chains, one corresponding to each observation. Belief state deterministically transitions to
the next belief state in the chain when passive. b0(1) and b1(1) (shown in black) are the reset states. 101.

unrealistic. Despite these shortcomings, the performance guarantees only hold for a narrow range of RMABs.

A rich body of literature has also explored risk-sensitive and other similar learning-based perspectives to ban-

dit planning. However, most of these consider risk and the risk-attitude in the learning stage while minimizing

regret, and not in the planning stage78,171,20.81 and23 are other contemporaneous works that focus on RMAB

planning with multiple available actions or model-free approaches to learning in RMABs.

2.3 Problem Formulation

We define the health monitoring and intervention problem (HMIP) as follows. In this problem, the planner rep-

resents the community health worker responsible for managing the health outcomes for their patient cohort. The

patient cohort is represented by a set ofN agents (representing arms of the RMAB),N = {1, 2, . . .N}, whose

health outcomes are monitored by the planner. The planner must decide which arms to pull (which patients to

intervene on) each day of the program. The health program lasts for T discrete days.

On each day of the program, each agent can be in one of two latent states, a ‘good’ state (1) and a ‘bad’ state

(0)—denoted by S = {1, 0}. In the context of tuberculosis adherence monitoring, this translates to each patient

being in either the adherent or the non-adherent latent state respectively each day, for T = 180 days of the treat-

ment program. Each agent follows anMDP, with states defined by the belief value, i.e. the probability that the

agent is in the ‘good’ latent state at that time step. We assume such a belief-state MDP over states b ∈ B is fixed

and known, but can be unique to every agent and have arbitrary transition dynamics.

The action space,A consists of two possible actions: passive (denoted as ‘0’) and active (denoted as ‘1’, repre-

senting an intervention). The planner can intervene on at most k agents each day (where k � N because of scarce

resources). Let at ∈ {0, 1}N denote the vector of actions chosen by the planner on a particular day. Then such

29



an at must have ‖at‖ ≤ k because of the resource constraint. In case of passive actions, no observation about the

agent is available and the belief state evolves according to the standard belief update: b → bPp11+(1−b)Pp01. When

an active action is taken, the patient emits an observation ω from the observation set Ω = {0, 1, . . . |Ω| − 1} and

as a result of the intervention, transitions to a ‘reset’ belief state. The reset state engendered by the intervention,

depends on whether precise observations are available. In case of precise observations, the planner can observe

the agent’s true latent state upon intervening, leading to Ω = {0, 1}. In this case, the agent’s belief state resets

to a value Paω1 depending on which ω ∈ {0, 1}was observed. In the context of TB however, assuming perfect,

reliable observations may be unrealistic in some cases as patients may sometimes refuse to answer the CHWs’

intervention phone calls or may not report their latent state truthfully. We cast these events as imprecise observa-

tions of the patient’s latent state. When observations are imprecise, since true state of the patient is unobserved,

the planner pre-defines a fixed reset belief state for every possible observation ω ∈ Ω. These imprecise observa-

tions are assumed to be emitted according to a fixed, known emission matrix, E|S|×|Ω| unique to every patient. In

our empirical analysis in Section 2.5, for simplicity, we assume two such possible imprecise observations—a posi-

tive shade and a negative shade of response (resetting to Pa1 and Pa0 respectively such that Pa0 ≤ Pa1 )—however, our

algorithm is again amenable to a multiple-observation setting.

We impose two additional natural constraints on each arm as consistent with previous literature95,101 that

closely simulate real settings: (1) Pa0,1 < Pa1,1; P
p
0,1 < Pp1,1; (it is more likely for a patient to stay adhering than it

is to switch from being non-adhering to adhering) and (2) Pa > Pp;Pa1 > Pp1,1;Pa0 > Pp0,1 (intervention effect is

positive).

The planner’s goal is to find an intervention policy that maximizes her utility measured according to her own

yardstick, defined by the utility function U . For each patient in a belief state b in the MDP, we assume the plan-

ner accrues a reward ρ(b) for that patient at that time step, where ρ is chosen such that E[U(b)] = ρ(b). The

planner solves for a policy that maximizes the total reward accrued,
∑T

t=1
∑N

n=1 ρ(bt) summed up over all agents

over the entire time horizon, which is in effect tantamount to maximizing her expected utility.

Prior work in the context of TB such as101 considers a planner with the goal of maximizing the overall av-

erage adherence of the patients. For such a planner, U =


1 if patient adheres

0 if patient does not adhere
. Thus E[U ] =

P[patient adheres] = b. Thus setting ρ(b) = b for each belief state optimizes for the average adherence objec-
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tive. In this work, we allow the planner to have an arbitrary objective that translates to the goal of maximizing the

long term reward accrued, specified by an arbitrary, monotonically increasing ρ(b).

2.4 Index Policy Computation

Belief stateMDP Our analysis of the agents’ behavior is centered around the belief state MDP that they

follow. Let bω(u) denote a belief state, which is attained after being left passive for u time steps if the observation

last received (when the arm was last pulled) was ω. Here the value bω(u) represents the belief, i.e., the probabil-

ity that the agent is in the ‘good’ state. Let B denote the set of all possible belief states, which we organize into

‖Ω‖ chains, one chain for each possible observation as shown in Fig. 2.2. In this arrangement, when passive, the

MDP transitions to the next belief state (on the right) in the same chain and when active, it jumps to one of the

‘reset’ states (shown in black). TheMDP resets to the chain starting from the bω(1) state if an observation ω was

observed as a result of the intervention. The reset probability is thus simply the probability of observing ω, which

in turn, directly depends on the current belief state as shown in Fig. 2.3. The belief update when starting from an

initial belief b and passive for u time steps, can be obtained via the standard belief update (as shown in95)and is

given by:

τu(b) =
Pp0,1 − (Pp1,1 − Pp0,1)u(P

p
0,1 − (1+ Pp0,1 − Pp1,1)b)

(1+ Pp0,1 − Pp1,1)
(2.1)

We use τ(b) to denote the passive belief update when u = 1.

TheWhittle Index heuristic for RMABs has been shown to display strong performance, however it involves

two challenges. First, the theoretical guarantees on the performance are valid only if a technical condition—

referred to as indexability—holds good, which we prove for our problem in subsection 2.4.1. Second, compu-

tation of the index itself is challenging and can be computationally expensive. We use the theoretical results of

subsection 2.4.1, to devise a fast algorithm to compute the Whittle Index efficiently, which we present in Subsec-

tion 2.4.2.
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Figure 2.3: State transition diagram when a threshold policy with thresholds u0 = 4 and u1 = 3 is implemented. Belief stochastically
resets to one of the reset states when active.

2.4.1 Indexability and Threshold Optimality

Definition 4 (Indexability). An RMAB is indexable if each arm of the RMAB is indexable. An arm is indexable

if the set of passive-optimal states of the arm, given by B∗(m) = {b : ∃ π∗ ∈ Π∗
m, such that π∗(b) = 0}

monotonically increases from ∅ to the entire state space as the subsidy, m increases from−∞ to∞.

The optimal action is determined by comparing the passive and active value functions for a belief state b as

given in Eq. 2.2 below and picking the action with a larger value.

Vm(b) = max


m+ ρ(b) + βVm(τ(b))...passive

ρ(b) + β
(
b.Vm(Pa1,1) + (1− b)Vm(Pa0,1)

)
...active

(2.2)

A common strategy to proving indexability has been to first show that a special class of policies—‘threshold

policies’—are optimal for each arm under consideration.101 has shown that if threshold policies are optimal (ei-

ther forward or reverse threshold, defined below) then the RMAB is indexable; the same reasoning also applies

to this work. This thus shifts the indexability heavy lifting to proving optimality of threshold policies for our

problem.

Definition 5 (Threshold Policies). A policy π is a forward (reverse) threshold policy if there exists a threshold bth

such that π(b) = 0 (π(b) = 1) if b > bth and π(b) = 1 (π(b) = 0) otherwise.

Consider the reward of a belief state b to be given by a non-decreasing function, ρ(b). Note that in a standard

Collapsing Bandit101, ρ(b) = b. Let Δa = (Pa11 − Pa01) and Δp = (Pp11 − Pp01) in all of the analysis in the rest of

the chapter. Let ρ′max = maxb∈[0,1]
d(ρ(b))

db , and ρ′min = minb∈[0,1]
d(ρ(b))

db .
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Theorem 4 (Forward Threshold Optimality). Consider a belief-state MDP corresponding to an arm in an RMAB

with some non-decreasing reward function given by ρ(b) and transition matrix given by P. For any subsidy m, there

is a forward threshold policy that is optimal if:

Δp(1− βmax{Δp,Δa})
Δa(1− βmin{Δp,Δa})

≥
ρ′max
ρ′min

(2.3)

Proof Sketch. Optimality of a forward threshold policy implies that if the optimal action at a belief b is passive,

then it must be so for all b′ > b. To accomplish this, we derive conditions which, if enforced, restrict the deriva-

tive of the passive action value function to be greater than the derivative of the active action value function w.r.t.

b—thus implying forward threshold optimality. To arrive at such conditions, we first derive both upper and

lower bounds onVm(b1) − Vm(b2) ∀ b1, b2 . The key challenge is to then show that these bounds themselves

imply tighter upper and lower bounds. We do this recursively for the new, tighter bounds and repeat this process

an infinite number of times, arriving at tighter bounds each time and find that the bounds converge, which then

leads us to the result. The full proof is in Appendix B.1 of the chapter.

Theorem 5 (Reverse Threshold Optimality). Consider a belief-stateMDP corresponding to an arm in an RMAB

with some non-decreasing reward function given by ρ(b) and transition matrix given by P. For any subsidy m, there

is a reverse threshold policy that is optimal if:

Δp(1− βmin{Δp,Δa})
Δa(1− βmax{Δp,Δa})

≤
ρ′min
ρ′max

(2.4)

Proof Sketch. The proof follows similar reasoning as Thm.4. The final sufficiency condition obtained is such

that when imposed, it restricts the derivative of the active action value function to be always greater than the

derivative of the passive action value function w.r.t. b. Complete proof is given under Appendix B.2 of the chap-

ter.

2.4.2 Fast Index Algorithm

Optimality of forward threshold policies forms the cornerstone of the fast Whittle Index computation algorithm.

Recall that the Whittle Index of a belief state b is the infimum subsidym such that the active and passive actions
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are both equally optimal to take at b. The key idea is to express the passive (active) action value function for a

belief state b in a closed form by leveraging the forward threshold optimal structure.

The natural constraints imposed on the transition matrix at each arm (as mentioned in Sec. 2.3) ensure that

τu(b) is a monotonic function of u. The fast algorithm presented below is guaranteed to be optimal for patients

(RMAB arms) whose belief monotonically decreases with time (u) and for whom forward threshold policies

are optimal. A forward threshold policy with a belief threshold of bth induces a Markov chain over the belief

states as shown in Fig. 2.3. Such a bth determines a tuple of thresholds,U(bth) = (u0, u1, . . . u∥Ω∥−1), where

bω(uω) specifies the threshold state for the chain corresponding to the observation ω. The threshold belief state

is the first belief state of the chain where the optimal action is active. For the two-observation case, let (u0, u1)

be the thresholds corresponding to the 0 and 1 chains respectively. A forward threshold policy with thresholds

(u0, u1) induces a corresponding visit frequency f(u0,u1)(b) over the belief states. This f(u0,u1)(b) is the eigenvector

solution for the equation fM = f, whereM is the state transition matrix over the belief states. Mbb′ denotes the

transition probability from belief state b to belief state b′ and is completely determined by thresholds (u0, u1) as:

Mbb′ =



1 if b′ = τ(b) and b′ ≥ bω(uω) for ω ∈ {0, 1}

b if b′ = b1(1) and b = bω(uω) for ω ∈ {0, 1}

1− b if b′ = b0(1) and b = bω(uω) for ω ∈ {0, 1}

0 otherwise

(2.5)

The visit frequencies f(u0,u1)(b) so determined, coupled with the known reward function ρ(b), determine the

overall reward of this threshold policy with a subsidym, under the average reward criterion, given by J(u0,u1)m,ρ =∑
b∈B f(u0,u1)(b)

(
ρ(b) +m.1{b>bth}

)
.

For a belief state b, the active and passive action value functions correspond to the average rewards of two

threshold policies with thresholds of b and b + ε (where ε → 0) respectively. Thus, finding theWhittle Index

for which the active and passive value functions are equal is same as finding the subsidym that satisfies JU(b)m,ρ =

JU(b+ε)
m,ρ . Note that changing the threshold to b + ε affects the threshold belief state only on the current chain. We

use this idea to construct the fast Whittle Index computation algorithm (Alg.1).
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Algorithm 2:Risk-sensitive Index Computation Algorithm
1: Initialize pointers to heads of chains, u0 = 1, u1 = 1.
2: while u0 < T or u1 < T do
3: Computem1 := m such that J(u0,u1)m,ρ = J(u0,u1+1)

m,ρ

4: Computem0 := m such that J(u0,u1)m,ρ = J(u0+1,u1)
m,ρ

5: Set i = argmin{m0,m1} andW(bi(ui)) = mi
6: Increment ui
7: end while

2.4.3 Application to Collapsing Bandits

Figure 2.4: For ρ(b) = b, the theoretical guarantees presented in this chapter hold for a wider range of processes as compared to the
state‐of‐the‐art conditions of Mate et al. 101 .

Our theoretical results also generalize and improve upon the current state-of-the-art guarantees explored for

the HMIP, as we demonstrate in this section. Collapsing bandits (CoBs)101 are a sub-case of the risk-sensitive

bandits considered in this chapter, with reward function ρ(b) = b. The conditions of Thms. 4 and 5 yield novel

sufficiency conditions when ρ(b) = b, that are wider than those presented inMate et al. 101 . For example, under

the average reward criterion (or β = 1), as shown in Fig. 2.4, the conditions of Mate et al. 101 become vacuous,

whereas the new conditions derived here guarantee indexability for 88% of the entire space of CoBs.

Theorem 6. Consider a belief-stateMDP corresponding to an arm in a standard Collapsing Bandit. For any

subsidy m, there is a forward threshold policy that is optimal if:

Δa ≤ Δp and Δa + Δp ≤
1
β

(2.6)
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Intuitively, this condition requires that the action impact of both, passive and active actions in the ”bad” state

must not be too low (ensuring Δa and Δp are not too large) and further, the active action impact must be large

(making Δa small). To prove the theorem, we show using simple algebraic manipulations that the condition

of Eq. 2.6 satisfies the condition of Thm.4 when ρ(b) = b. Complete details of the proof are available in Ap-

pendix B.3 of the chapter.

Theorem 7. Consider a belief-stateMDP corresponding to an arm in a Collapsing Bandit. For any subsidy m,

there is a reverse threshold policy that is optimal if:

Δp ≤ Δa and Δp + Δa ≤
1
β

(2.7)

Intuitively, this condition requires that the action impact under both, passive and active actions in the “bad”

state must not be too small (ensuring Δa and Δp are not too large) and further, the passive action impact must be

large (making Δp smaller than Δa).

Note that both Thm. 6 and Thm. 7 define conditions for the discounted reward case, however, substituting

β = 1 yields the sufficient conditions for the average reward criterion because the MDP is value-bounded (proof

using Dutta’s Theorem36 is given in Appendix B.4 in the full version of the chapter).

Corollary 1. Collapsing Bandits are indexable if:

Δp + Δa ≤
1
β
. (2.8)

From Thms. 6 and 7, we see that all CoBs satisfying the above condition have at least either a forward thresh-

old policy or a reverse threshold policy as optimal. From Thm. 1 of Mate et al. 101 , this implies that they must be

indexable.

Corollary 2. Collapsing bandits are indexable under either the average reward or the discounted reward criteria

(for any β) if

Δp + Δa ≤ 1. (2.9)

Remark 1. Corollary 2 proves that Conjecture 1 of101 must be true for at least 88% instances of Collapsing Bandits.
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Remark 2. For β < 1
2 , the condition of Corollary 1 reduces to being “Always True”, thus subsuming the previous

results of an indexability guarantee for β < 1
2 established by Qian et al.

132 and others.

2.5 Handling Imprecise Observations

Real-world patients may misrepresent their adherence state or may sometimes simply not answer the CHW’s

calls, especially when not adhering to the prescribed dosage. In such cases, the intervention cannot be fully deliv-

ered, nor can the latent state be perfectly observed. We account for these uncertainties stemming from ‘imprecise’

observations by absorbing it in our RMAB planning framework, making it more amenable to real-world deploy-

ment.

2.5.1 Belief Dynamics

When precise binary observations of ‘good’ or ‘bad’ are unavailable, the planner may not get to directly observe

and make confident conclusions about the latent state of the patient. Instead, the planner may only receive an

observation ω ∈ Ω that she associates uniquely with a corresponding likely belief about the patient’s latent

state in the next step using her previous historical experience and field expertise. For example, in practice, for

‖Ω‖ = 4, these may correspond to either a confident positive, hesitant positive, a negative or no response from

the patient. We remove the reliance on perfect observations from the patient, by including the human planner

in the loop and allowing her to define her own belief state MDP for the patient, including the set of possible

observations Ω as well as their respective reset belief states, Paω. The observation probabilities and reset dynamics

are explained further below.

We assume the planner observes an observation from the observation set Ω = {0, 1, ...‖Ω‖ − 1} every time

a patient is intervened upon. We define the observation function, Θω(b) as the probability that the planner ob-

serves the evidence ω from the arm, when in a belief state b prior to the intervention. Thus, naturally the sum of

the observation functions over all possible evidences must be equal to 1, giving:
∑ω=∥Ω∥−1

ω=0 Θω(b) = 1. Such an

observation function can be either estimated by the planner directly or obtained via an emission matrix, either of

which is specified by the planner from her historical experience. Such an emission matrix (and consequently the

observation function) may be uniquely defined for each patient. Let E denote the emission matrix of a patient, as
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Figure 2.5: Multiple observations lead to a multiple‐chain organization of belief states, with each observation having its corresponding
reset state. An active action resets the belief state to bω(1) if observation ω is observed.

given by E =

e00 e01 . . . e0∥Ω∥−1

e10 e11 . . . e1∥Ω∥−1

where esω represents the probability of emitting the observation ω when

the true state of the patient is s. For such an emission matrix E, the corresponding observation function Θω(b),

can then be obtained as: Θω(b) = P(ω|b) = be1ω + (1 − b)e0ω Note that here Θω(b) is a linear in b and has a

derivative independent of b, given by Θ′
ω(b) = (e1ω − e0ω) = Δeω (say).

The planner defines a unique, fixed reset state Paω for each observation, ω ∈ Ω. When the planner intervenes

on a patient and receives an observation ω, the patient’s belief state resets to Paω, independent of the current be-

lief. Further, given that the observation ω appears with a probability Θω(b) as established earlier, the passive and

active action value functions can now be expressed as:

Vm(b) = max


m+ ρ(b) + βVm(τ(b))...passive

ρ(b) + β
(∑

ω Θω(b).Vm(Paω)
)
...active

(2.10)

where
∑ω=∥Ω∥−1

ω=0 Θω(b) = 1

2.5.2 Threshold Optimality

For the setting with two possible observations (‖Ω‖ = 2), we derive conditions, which, if satisfied, guarantee the

optimality of forward and reverse threshold policies as in previous sections. Let ω = 1 (ω = 0) be the observation

corresponding to a positive (negative) response to the intervention and have a reset belief state of Pa1 (Pa0). The
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observation functions {Θω(b)}ω=0,1 can be expressed using a single parameter and given by Θ1(b) = Θ(b) and

Θ0(b) = 1− Θ(b). We also let Δe = Θ′(b) = (e11 − e01).

Theorem 8 (Forward Threshold Optimality). Consider a belief-state MDP corresponding to an arm in an RMAB

with some non-decreasing reward function given by ρ(b), transition matrix given by P and an observation function,

Θ(b) for a belief state b. For any subsidy m, there is a forward threshold policy that is optimal if:

Δp(1− βmax{Δp, (Δa.Δe)})
Δa(1− βmin{Δp, (Δa.Δe)})

≥
ρ′max
ρ′min

(2.11)

where Δe = Θ′(b) for a linearΘ(b) such as in the example above.

Theorem 9 (Reverse Threshold Optimality). Consider a belief-stateMDP corresponding to an arm in an RMAB

with some non-decreasing reward function given by ρ(b), transition matrix given by P and an observation function,

Θ(b) for a belief state b. For any subsidy m, there is a reverse threshold policy that is optimal if:

Δp(1− βmin{Δp, (Δa.Δe)})
Δa(1− βmax{Δp, (Δa.Δe)})

≤
ρ′min
ρ′max

(2.12)

where Δe = Θ′(b) for a linearΘ(b) such as in the example above.

2.6 Experimental Evaluation
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Figure 2.6: Risk‐Aware Whittle optimizes for the objectives the planner cares about, and avhieves much higher utility than Threshold
Whittle, even while scoring lower on average adherence—a metric that previous approaches to the HMIP focus on.
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Figure 2.7: (a) Threshold Whittle ignores many patients leaving them at a very low adherence (see blue spike at x = 0). Risk‐Aware
Whittle removes the blue spike, redistributing these patients towards moderate belief values. (b–left:) Risk‐Aware Whittle boosts the
number of patients completing treatment with high adherence rates. (b–right:) Risk‐Aware Whittle better caters to risk‐averse planners,
who prefer having patients in the high belief zone.
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Figure 2.8: Risk‐Aware Whittle is significantly better at tackling the specific concerns of the CHW. (a) shows a sharp decrease in the
number of patients with a severely low adherence rate. (b) shows a significant jump in the number of patient finishing the treatment
with a high adherence score.

We explore several suitable reward functions ρ(b), tailor-made for each of the specific CHW planning consid-

erations at hand. We demonstrate the effectiveness of our approach for addressing at least three real-world objec-
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tives evaluating our algorithm on both real and simulated data. We use real tuberculosis medication adherence

monitoring data, consisting of records of patients in Mumbai, India, obtained from79 and run simulations fol-

lowing the same data imputation steps as101 for consistency. We compare the following algorithms: Risk-Aware

Whittle is the algorithm presented in this chapter. Threshold Whittle is the SOTA fast algorithm presented

in101, our primary baseline, which has been shown to display near-optimal performance. Random selects k pa-

tients to call at random. Myopic calls the k patients that maximize the expected adherence at the immediate next

time step. ‘Everybody’ is an unattainable upper baseline that simulates the effect of intervening on everybody ev-

eryday. Wherever applicable, we measure performance using ‘intervention benefit’, which scales the reward from

0% (corresponding to no interventions) to 100% (corresponding to ThresholdWhittle unless indicated other-

wise) and is given by I.B.(ALG) = RALG−RNo intervention

RThresholdWhittle−RNo intervention whereR is the average reward of the algorithm. All

results are measured over 50 independent trials.

2.6.1 Risk-sensitive planning

Real-world health workers may be risk-averse and prefer to consolidate the well-being of at least some of their

patients rather than being unsure about the health outcomes of the entire patient cohort. For example, in case of

the TB treatment, the medication programmay be effective only if completed with a high degree of adherence.

In such a case, the CHWmay want to prioritize maximizing the number of patients who complete the program

with a high adherence rate. To account for risk-averseness, we employ a convex reward function, ρ(b) = eλb for

λ = 20 in our algorithm and measure its impact. We run a simulation forN = 100 patients and k = 20 calls per

day, with patient transition matrices drawn from a fixed simulated distribution.

Fig. 2.6 shows the tradeoff between the utility to the planner and the average adherence of the patient cohort.

Algorithms studied in previous work only focus on maximizing the average patient adherence, which unfortu-

nately may not be perfectly aligned with the objectives the CHWs value the most. Our algorithm, on the other

hand directly optimizes for the CHW’s objectives, and achieves a much higher utility than the state-of-the-art,

ThresholdWhittle even while yielding a lower average adherence, which is less valuable to the planner, and is thus

a bad yardstick to measure performance.

Fig. 2.7b(right) shows the histogram of time spent by patients in a belief state over the duration of the pro-
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gram. The convex reward function imposed by Risk-Aware Whittle “scoops out” patients from the moderate

belief zone, pushing part of these towards the high-belief zone, boosting the number of patients adhering with

high confidence, towards realizing the objectives the planner cares about. This effect is also manifested in the ad-

herence histogram of Fig. 2.7b(left), which shows the total days adhered to on the x-axis and the corresponding

number of patients with that score on the y-axis. Fig. 2.8(b) plots the number of patients completing the pro-

gram high degree of adherence (defined as adherent for> 90% days in the program). Risk-aware Whittle shows a

steep increase over ThresholdWhittle in the number high-adherence patients.

2.6.2 Fairness towards Patients: Real Data

A specific fairness concern faced by CHW planning algorithms is that some patients may be completely ignored

by the algorithm because it deems them less valuable to intervene on. Even though it may be optimal when mea-

sured with the yardstick of average cohort outcome, such an algorithmmay be socially unacceptable.

To address this issue, we use a concave reward function soliciting risk-seeking behavior through which the

planner intervenes on patients that may be sub-optimal in expectation. Such a reward function imposes a large

negative reward on lower belief values, making the algorithm intervene on these patients in a bid to bring them

to moderate belief states. We employ ρ(b) = −e(λ(1−b)) with λ = 20 as the concave reward function. We use

the real TB adherence data fromMumbai to draw patient transition matrices forN = 100 patients and a budget

k = 20 calls per day to run the simulation.

Fig. 2.7a(right) shows the histogram of time spent by patients in possible belief states. The effect of the risk-

seeking reward function is to transfer patients from very low and very high belief values and to spread them over

the moderate belief values. Fig. 2.7a(left) plots the histogram of adherence of patients and shows the effectiveness

of this algorithm in nearly wiping out the spike at x = 0, representing the patients who never interact with the

CHW. This is corroborated by Fig. 2.8(a) which plots the number of patients with very low adherence (defined as

< 5% days of adherence) and shows substantial decrease under the Risk-Aware Whittle algorithm as against the

ThresholdWhittle algorithm.
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2.6.3 Imprecise Observations

We next evaluate empirically, the performance of our algorithm when precise observations of their latent states

are not available from patients like in real-world. To model this, we assume patients emit two possible observa-

tions: ‘0’ (denoting a negative response such as not answering the CHW’s call at all or responding prevarica-

tively) and ‘1’ indicating a positive response to the intervention. We simulate using an emission matrix given by

E =

e00 = 1− Plie0 e01 = Plie0

e10 = Plie1 e11 = 1− Plie1

 parameterized by Plie0(1), capturing the probability that patients mis-

represent when in a true latent state of 0(1). In Fig. 2.9 we fix plie1 = 0.01 as the small probability that the in-

tervention goes unanswered when the patient is adherent and vary plie0, from [0, 0.7] the probability of giving a

false observation when non-adherent . We measure the performance on the y-axis, as improvement in the overall

adherence in terms of “intervention benefit” (defined previously), normalized w.r.t ‘ThresholdWhittle’ as the

baseline fixed at y = 100%. Figure shows, our algorithm outperforms ThresholdWhittle, which doesn’t account

for imprecise observations and thus grapples with incorrect belief values.
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Figure 2.9: Risk‐Aware Whittle beats Threshold Whittle when patients misrepresent their adherence states.

2.7 Discussion and Conclusion

Mitigating bias in socio-technical systems such as ours, is an important issue49,58. We rely on the human in the

loop to ensure that more complex human objectives can be addressed, and provide flexibility to admit other

objectives, which for example, may be more ethical or fair as against the specific examples considered here. The

human-in-the-loop and other stakeholders situated in the community may be able to better assess the needs of
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the community and may collectively provide a better perspective on the objective.

To conclude, we propose a new RMAB-based planning framework that allows for planning health interven-

tions while accommodating the real-world objectives of the health workers effectively. We prove theoretical guar-

antees on the performance of our algorithm that apply to a more general class and are stronger than the guaran-

tees for the specific sub-case studied previously. Through empirical results, we demonstrate the effectiveness of

our algorithm in achieving improved health outcomes, addressing three real-world planning challenges faced by

the health workers.
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3
‘Streaming Bandits’: Optimizing Interventions

for Dynamically Changing Cohorts

3.1 Introduction

In community healthcare settings, adherence of patients to prescribed health programs, that may involve tak-

ing regular medication or periodic health checkups, is critical to their well-being. One way to improve patients’

health outcomes is by tracking their health or monitoring their adherence to such programs. Such health moni-

toring programs combined with suitably designed intervention schemes help patients alleviate health issues such

as diabetes117, hypertension27, tuberculosis29,135, depression98,114, etc. However, health interventions often
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require dedicated time of healthcare workers, which is a severely scarce resource, grossly inadequate to meet the

total demand. This issue is especially more severe in the global south. Moreover, planning interventions with

these limited resources is made more challenging due to the fact that the extent of adherence of patients may be

both, uncertain as well as transient. Consequently, the healthcare workers have to grapple with this sequential

decision making problem of deciding which patients to intervene on, with limited resources, in an uncertain en-

vironment. Existing literature on healthcare monitoring and intervention planning (HMIP)4,101,18,105,102 casts

this as a restless multi-armed bandit (RMAB) planning problem. In this setup, the patients are typically repre-

sented by the arms of the bandit and the planner must decide which arms to pull (which patients to intervene on)

under a limited budget. The RMAB problem formalizes the (restless) behavioral dynamics of the patients both

in the presence and in the absence of interventions.

In addition to healthcare, RMABs have caught traction as solution techniques in a myriad of other domains

involving limited resource planning for applications such as anti-poaching patrol planning132, multi-channel

communication systems95, sensor monitoring tasks45, UAV routing85 etc. For ease of presentation, we con-

sider the HMIP problem for motivation but our approach is relevant and can be extended to other real-world

domains.

The existing literature on RMABs for intervention planning, however, has mainly focused on problems in-

volving an infinite time horizon (i.e., the health programs are assumed to run forever) and, moreover, the results

are limited to settings where no new patients (or bandit arms) arrive midway during the health program. We

consider a general class of RMABs, which we call streaming restless multi-armed bandits, or S-RMAB. In an

S-RMAB instance, the arms of the bandit are allowed to arrive asynchronously, that is, the planner observes an

incoming and outgoing stream of bandit arms. The classic RMAB (both with infinite and finite horizon) is a spe-

cial case of the S-RMAB where all arms appear (leave) at the same time. Additionally, each arm of an S-RMAB

is allowed to have its own transition probabilities, capturing the potentially heterogeneous nature of patient co-

horts. S-RMABs display a special structure in the presence of streaming arms and a finite horizon, which the

existing methods fail to utilize. Our approach exploits this structure to arrive at approaches that perform better in

the streaming bandit setting.

A fairly general approach, proposed by132 may be applied even when patients arrive and leave asynchronously

after staying for a finite duration. The method allows to approximate the exact solution arbitrarily well, but it
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is computationally expensive as the number of patients or arms increases. A more recent approach, proposed

by101, exploits the structure of the HMIP and is considerably faster, but the method relies on the assumption

of an infinite planning horizon. This algorithm suffers a severe deterioration in performance when employed on

shorter horizon settings.

Our contribution consists of proposing a new approach, designed for the finite-horizon and asynchronous

arrival settings, that achieves a combination of the advantages of existing methods, i.e. high solution quality and

low runtime, in those settings. We provide theoretical justifications for the use of Whittle indices in streaming

RMABs, as well as for the setup of our algorithms, designed to leverage the structure of the finite horizon and

asynchronous cases. We further show that our method also applies to S-RMAB arms exhibiting reverse thresh-

old optimality, while previous methods only applied to settings with forward threshold optimality. We perform

experimental evaluations of our algorithms using real-world data from two domains, as well as synthetic and

adversarial domains. Our algorithms provide a 2-orders-of-magnitude speed-up compared to existing accurate

methods, without loss in performance.

3.2 Relatedwork

The RMAB problem was introduced by163. The paper studied the RMAB problem with the goal of maximiz-

ing the average reward in a dynamic programming framework. Whittle formulated a relaxation of the problem

and provided a heuristic calledWhittle Index policy. This policy is optimal when the underlying Markov Deci-

sion Processes satisfy indexability, which is computationally intensive to verify. Later,124 established that solving

RMAB is PSPACE hard, even when the transition rules are known. Since then, specific classes of RMABs have

been studied extensively.132 studied the infinite horizon RMAB problem and proposed a binary search based

algorithm to findWhittle index policy. However, the algorithm becomes computationally expensive as the num-

ber of arms grows.18 models the problem of maximizing health information coverage as an RMAB problem and

proposes a hierarchical policy which leverages the structural assumptions of the RMABmodel.4 provide a solu-

tion for the class of bandits with “controlled restarts” and state-independent policies, possessing the indexability

property.101 model a health intervention problem, assuming that the uncertainty about the state collapses when

an intervention is provided. They provide an algorithm called ThresholdWhittle to compute the Whittle indices
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for infinite horizon RMAB. There are many other papers that provide Whittle indexability results for different

subclasses of Partially Observable Markovian bandits45,59,143,96. However, these papers focus on infinite horizon,

whereas we focus on the more challenging setting when there is a fixed finite horizon.

The RMAB problem with finite horizon has been comparatively less studied.118 provided solutions to the

one-armed restless bandit problem, where only one arm is activated at each time before a time horizon T. Their

solution do not directly extend to the scenario when multiple arms can be pulled at each time step.61 considered

finite horizon multi-armed restless bandits with identically distributed arms. They show that an index based pol-

icy based on the Lagrangian relaxation of the RMAB problem, similar to the infinite horizon setting, provides

a near-optimal solution.86 study the problem of selecting patients for early-stage cancer screening, by formulat-

ing it as a very restricted subclass of RMAB. All these works consider that all the arms are available throughout

T time steps. Some other works, such as109,53 also adopt different approaches to decomposing the bandit arms,

which may be applicable to finite horizon RMABs. These techniques to solving weakly coupledMarkov Deci-

sion Processes are more general, but consequently less efficient than theWhittle Index approach in settings where

indexability assumption holds.

The S-RMAB problem has been studied in a more restricted setting by173. They assume that, at each time

step, arms may randomly arrive and depart due to random abandonment. However, the main limitation of their

solution is the assumption that all arms have the same state-transition dynamics. This assumption does not hold

in most of the real-world instances and thus, in this chapter, we consider heterogeneous arms—arms are allowed

to have their own transition dynamics. We show empirically that our algorithms perform well even with hetero-

geneous arms.

Another related category of work studied sleeping arms for the stochastic multi-armed bandits (SMAB) prob-

lem, where the arms are allowed to be absent at any time step74,83,24. However, the SMAB is different from

RMAB because, in the former, when an arm is activated, a reward is drawn from a Bernoulli reward distribu-

tion (and not dependent on any state-transition process). Thus, the algorithms and analysis of SMABs do not

translate to the RMAB setting.
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3.3 Streaming bandits

The streaming restless multi-armed bandit (S-RMAB) problem is a general class of RMAB problem where a

stream of arms arrive over time (both for finite and infinite-horizon problems). Similar to RMAB, at each time

step, the decision maker is allowed to take active actions on at most k of the available arms. Each arm i of the S-

RMAB is a Partially Observable Markov Decision Process (POMDP)—represented by a 4-tuple (S,A,P, r).

S = {0, 1} denotes the state space of the POMDP, representing the “bad” state (say, patient not adhering to

the health program) and “good” state (patient adhering), respectively. A is the action space, consisting of two

actionsA = {a, p}where an action a (or, p), denotes the active (or, passive) action. The state s ∈ S of the

arm, transitions according to a known transition function, Pa,is,s′ if the arm is pulled and according to the known

function, Pp,is,s′ otherwise. We also assume the transition function to conform to two natural constraints often

considered in existing literature95,101: (i) Interventions should positively impact the likelihood of arms being in

the good state, i.e. Pa01 > Pp01 and Pa11 > Pp11 and (ii) Arms are more likely to remain in the good state than to

switch from the bad state to the good state, i.e. Pa11 > Pa01 and P
p
11 > Pp01. Though the transitions probabilities are

known to the planner, the actual state change is stochastic and is only partially observable—that is, when an arm

is pulled, the planner discovers the true state of the arm; however, when the arm is not pulled, uncertainty about

the true state persists. Under such uncertainties, it is customary to analyze the POMDP using its equivalent belief

state MDP representation instead101. The state space of this MDP is defined by a set of all possible “belief” values

that the arm can attain, denoted by Bi. Each belief state b ∈ Bi represents the likelihood of the arm being in state

1 (good state). This likelihood is completely determined by the number of days passed since that arm was last

pulled and the last observed state of the arm95. At each time step t, the planner accrues a state-dependent reward

rt from an active arm i, defined as:

rt(i) =


0 if st(i) = 0 (arm i is in the bad state at time t)

1 if st(i) = 1 (arm i is in the good state at time t).

The total reward* ofRt =
∑

i∈[N](rt(i)) is accrued by the planner at time t, which is the sum of individual

rewards obtained from the available arms. The planner’s goal is to maximize her total reward collected, R̄ :=

*For a natural numberN, we use the notation [N] := {1, ...N}.
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∑
t∈[T] Rt. This reward criterion is motivated by our applications in the healthcare intervention domain: inter-

ventions here correspond to reminding patients to adhere to their medication schedules and the good and bad

states refer to patients either adhering or not adhering. The planner’s goal is to maximize the expected number of

times that all patients in the program adhere to their medication schedules. However, due to the limited budget,

the planner is constrained to pull at most k arms per time step. Assuming a set ofN arms, the problem then boils

down to determining a policy, π : B1 × . . .BN → AN which governs the action to choose on each arm given the

belief states of arms, at each time step, maximizing the total reward accumulated across T time steps.

Contrary to previous approaches that typically consider arms to all arrive at the beginning of time and stay

forever, in this chapter we consider streaming multi-armed bandits—a setting in which arms are allowed to arrive

asynchronously and have finite lifetimes. We denote the number of arms arriving and leaving the system at a time

step t ∈ [T] by X(t) and Y(t), respectively. Each arm i arriving at time t, is associated with a fixed lifetime Li

(for example, Li can be used to represent the duration of the health program for a patient, which is known to the

planner). The arm consequently leaves the system at time t+ Li. Thus, instead of assuming a finite set ofN arms

throughout the entire time horizon, we assume that the number of arms at any time t is denoted by the natural

numberN(t), and can be computed asN(t) =
∑t

s=1(X(s) − Y(s)). Thus, the goal of the planner is to decide,

at each time step t, which k arms to pull (out of theN(t) � k arms, relabeled as [N(t)] each timestep for ease of

representation), in order to maximize her total reward,

R̄ :=
∑
t∈[T]

∑
i∈[N(t)]

rt(i). (3.1)

3.4 Methodology

The dominant paradigm for solving RMAB problems is the Whittle index approach. The central idea of the

Whittle approach is to decouple the RMAB arms and then compute indices for each arm that capture the “value”

of pulling that arm. TheWhittle Index policy then proceeds by pulling the k arms with the largest values of

Whittle Index. This greedy approach makes the time complexity linear in the number of arms, as indices can

be computed independently for each arm. The computation of the index hinges on the notion of a “passive sub-

sidy”m, which is the amount rewarded to the planner for each arm kept passive, in addition to the usual reward
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collected from the arm. TheWhittle Index for an arm is defined as the infimum value of subsidy,m that must

be offered to the planner, so that the planner is indifferent between pulling and not pulling the arm. To formal-

ize this notion, consider an arm of the bandit in a belief state b. Its active and passive value functions, under a

discount factor of β, and when operating under a passive subsidym, can be written as:

Vp
m,T(b) = b+m+ βVm,T−1(bP

p
11 + (1− b)Pp01) (3.2)

Va
m,T(b) = b+ βbVm,T−1(Pa11) + β(1− b)Vm,T−1(Pa01) (3.3)

The value function for the belief state b isVm,T(b) = max{Vp
m,T(b),

Va
m,T(b)}. TheWhittle Index for the belief state b, with a residual lifetime T is defined as: infm{m : Vp

m,T(b) =

Va
m,T(b)}. TheWhittle Index approach is guaranteed to be asymptotically optimal when a technical condition

called indexability holds for all the arms. Intuitively, indexability requires that if for some passive subsidym, the

optimal action on an arm is passive, then ∀m′ > m, the optimal action should still remain passive. Equivalently,

indexability can be expressed as: ∂
∂mV

p
m,T(b) ≥

∂
∂mV

a
m,T(b).

In this section we first show theoretically that the Streaming Bandit setup is indexable (subsection 3.4.1).

Next, in subsection 3.4.2, we observe and formalize a useful phenomenon about the Whittle Index in the finite

horizon setting. We use this phenomenon to design fast algorithms for S-RMABs in subsection 3.4.3 and we pro-

vide runtime complexity analysis for the same in subsection 3.4.4. Finally in subsection 3.4.5 we identify cases

beyond those identified by previous work to which our efficient algorithm extends.

3.4.1 Conditions for indexability of streaming bandits

In this section, we extend the conditions for indexability that101 originally established for infinite horizon, to the

finite horizon setting of Streaming bandits. To show indexability, we first show in Theorem 10, that S-RMABs

can be reduced to a standard RMABwith augmented belief states. We build on this result and prove another

useful Lemma, both of which combined can be used to show that indexability holds for this augmented RMAB

instance, and ultimately for S-RMABs (Theorem 20).

Definition 6 (Threshold Optimality101). An RMAB instance is called threshold optimal if either a forward
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threshold policy or a reverse threshold policy is optimal. A forward (or reverse) threshold policy π is optimal if there

exists a threshold b∗ such that it is optimal to take a passive (or active) action whenever the current belief of the arm is

greater than b∗, that is, π(b) = 0 (or π(b) = 1) whenever b > b∗ and π(b) = 1 (or π(b) = 0) whenever b ≤ b∗.

First, we show that the belief state MDP of a Streaming Bandit arm with deterministic arrival and departure

time can be formulated as an augmented belief state MDP of the same instance with infinite horizon. Using this,

we prove that, whenever the infinite horizon problem satisfies threshold optimality for a passive subsidym, then

the augmented belief state MDP for finite horizon also satisfies threshold optimality. Using the result that in-

dexability holds whenever threshold optimality is satisfied101, we imply that the Streaming Bandits problem is

indexable whenever threshold optimality on the underlying infinite horizon problem is satisfied.

Theorem 10. The belief state transition model for a 2-state Streaming Bandit arm with deterministic arrival time

T1 and departure time T2 can be reduced to a belief state model for the standard restless bandit arm with T2 +

(T2 − T1)
2 states.

Proof. Consider a streaming arm, that arrives (or, becomes available to the system) at time step T1 and exits (or,

becomes unavailable) at time step T2. To capture the arm’s arrival and departure in the belief model, we con-

struct a new belief model with each state represented by a tuple 〈 behavior, time-step 〉, where behavior takes

a belief value in the interval (0, 1) or is set toU (unavailable). U can be set to any constant value (such asU = 0).

The transition probabilities are constructed as follows:

• The first T1 − 1 states represent the unavailability of the arm and have deterministic transitions, i.e., for an

action a,

Pa⟨U,t−1⟩,⟨U,t⟩ = 1 for all t ∈ {2, . . . ,T1 − 1}.

• At time T1, the arm can either be in good state or bad state, so we create two states 〈1,T1〉 and 〈0,T1〉. For

each x ∈ {0, 1}, Pa⟨U,T1−1⟩,⟨x,T1⟩ = px where px represents the probability that the arm starts at a good (1)

or bad (0) state. Note that, in our experiments, we assume that the initial state of an arm is fixed to 0 or 1,

and can be captured by using either px = 0 or px = 1, respectively.

• For each time step t ∈ {T1 + 1,T2 − 1}, we create 2(t− T1 + 1) states: 〈bw(0), t〉, . . . , 〈bw(t− T1), t〉 for

each action w ∈ {0, 1}. For any t′, t′′ ∈ {0, 1, . . . , t− T1}, the probability of transitioning from the state
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〈bw(t′), t− 1〉 to the state 〈bw(t′′), t+ 1〉 is same as the probability of changing from belief value bw(t′) to

bw(t′′) in one time step on taking action w.

• For time step t ≥ T2, we create one sink state 〈U,T2〉. This state represents unavailability of the arm

subsequent to time step T2 − 1. For any t′ ∈ {0, 1, . . . ,T2 − T1}, the probability of transitioning from

〈bw(t′),T2〉 to 〈U,T2〉 is 1.

Thus, the number of states in the new belief network is:

T1 − 1+ 2(1+ . . .+ (T2 − T1)) + 1 (3.4)

= T1 + (T2 − T1)(T2 − T1 + 1)

= T2 + (T2 − T1)
2

Thus, T2 + (T2 − T1)
2 states are required for converting a belief network representing 2-state streaming bandits

problem to a classic RMAB problem.

Lemma 1. If a forward (or reverse) threshold policy π is optimal for a subsidy m for the belief states MDP of the

infinite horizon problem, then π is also optimal for the augmented belief state MDP.

Proof. First, we define the value function for the modified belief states.

Vp
m(〈b, t〉) =

 b+m+ βVm(〈bP
p
11 + (1− b)Pp01, t+ 1〉) if b 6= U

b+m+ Vm(〈b′, t+ 1〉) otherwise

Va
m(〈b, t〉) =


b+ β(Vm(〈bPa11, t+ 1〉) + (1− b)Vm(〈Pa01, t+ 1〉))

if b 6= U

b+ Vm(〈b′, t+ 1〉) otherwise

where b′ is the next belief state.

The minimum value ofmU that makes the passive action as valuable as active action at the states 〈U, t〉 for
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T1 ≤ t < T2, can be obtained by equating

Vp
mU(〈U, t〉) = Va

mU(〈U, t〉) (3.5)

⇒ U+mU + VmU(〈b′, t+ 1〉) = U+ VmU(〈b′, t+ 1〉) (3.6)

⇒ mU = 0. (3.7)

Assuming that there exists a forward (or reverse) threshold policy,mU = 0 implies that, even without any sub-

sidy, passive action is as valuable as active action.

Further, we show in the Appendix that the minimum subsidy at any other belief state is greater than 0. As

the belief states b 6= U require a positive subsidy for the passive action to be optimal, while for the belief state

U, passive is already optimal for a subsidy of zero, a policy that maximizes value while paying minimum subsidy,

would never choose to set arms currently in the u state to active.

Theorem 11. A Streaming Bandits instance is indexable when there exists an optimal policy, for each arm and

every value of m ∈ R, that is forward (or reverse) threshold optimal policy.

Proof. Using Theorem 1 and Lemma 1, it is straightforward to see that an optimal threshold policy for infinite

horizon problem can be translated to a threshold policy for Streaming bandits instance. Moreover, using the fact

that the existence of threshold policies for each subsidym and each arm i ∈ N is sufficient for indexability to hold

(Theorem 1 of101), we show that the Streaming bandit problem is also indexable.

3.4.2 Index decay for finite horizons

In this section we describe a phenomenon called index decaywhich is observed considering short horizon. Here,

the Whittle index values are low when the residual lifetime of an arm is 0 or 1. We formalize this observation in

Theorem 21. We use this phenomenon as an anchor to develop our algorithm (detailed in 3.4.3). We proceed by

stating one fact and proving one useful Lemma, building up towards the Theorem.

Fact 1. For two linear functions, f(x) and g(x) of x, such that f′(x) ≥ g′(x), whenever f(x1) < g(x1) and f(x2) =

g(x2), the following holds: x2 > x1.
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Figure 3.1: Whittle Indices for a belief state as computed by different algorithms. Both our algorithms capture index decay providing
good estimates.

Lemma 2. Consider an arm operating under a passive subsidy m. Assuming an initial belief state b0, let ρa(b0, t)

and ρp(b0, t) denote the probability of the arm being in the good state at time t ∀t < T when policies πa(t) and

πp(t) are adopted respectively, such that πa(0) = a, πp(0) = p, and πa(t) = πp(t) ∀t ∈ {1, . . . ,T}. Then,

ρa(b0, t) > ρp(b0, t) ∀t ∈ {1, . . . ,T}.

Theorem 12 (Index Decay). Let Vp
m,T(b) and V

a
m,T(b) be the T-step passive and active value functions for a belief

state b with passive subsidy m. Let mT be the value of subsidy m, that satisfies the equation Vp
m,T(b) = Va

m,T(b)

(i.e. mT is theWhittle Index for a residual life time of T). Assuming indexability holds, we show that: ∀T > 1 :

mT > m1 > m0 = 0.

Proof. We provide our argument for a more general reward criterion than the total reward introduced in Section

3.3. Consider a discounted reward criterion with discount factor β ∈ [0, 1] (where β = 1 corresponds to total

reward). m0 is simply them that satisfies: Vp
m,0(b) = Va

m,0(b) i.e., b+m = b, thusm0 = 0. Similarly,m1 can be

solved by equatingVp
m1,1(b) andV

a
m1,1(b) and obtained as: m1 = βΔb = β

((
b Pa11+(1− b) Pa01

)
−
(
b Pp11+(1−

b) Pp01
))

Using the natural constraints Pas1 > Pps1 for s ∈ {0, 1}, we obtainm1 > 0.

Now, to showmT > m1 ∀T > 1, we first show thatVa
m1,T(b) > Vp

m1,T(b). Combining this with the fact

thatVm(.) is a linear function ofm and by definition,mT is a point that satisfiesV
p
mT,T(b) = Va

mT,T(b), we use

Fact 1 and set f = Vp
m,T(b), g = Va

m,T(b), x1 = m1 and x2 = mT to obtainm1 < mT, and the claim follows. To

complete the proof we now show thatVa
m1,T(b) > Vp

m1,T(b).
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Starting from an initial belief state b0, let ρp(b0, t) be the expected belief for the arm at time t, if the passive

action was chosen at t = 0 and the optimal policy, πp(t)was adopted for 0 < t < T. Similarly let ρa(b0, t) be

the expected belief at time t, if the active action was chosen at t = 0 and the same policy, πp(t) (which may not be

optimal now) was adopted for 0 < t < T. Then, β
(
ρa(b0, 1)− ρp(b0, 1)

)
= m1 > 0 as shown above. Note that

if we took actions according to πp(t) for t ∈ {1, . . . ,T− 1}with active action taken at the 0th time step, the total

expected reward so obtained is upper bounded by the active action value function,Va
m1,T(b0). Thus,

Vp
m1,T(b0) = b0 +m1 + βρp(b0, 1) +

T∑
t=2

βtρp(b0, t) (3.8)

+
( T∑

t=1
βtm1.1{πp(t)=passive}

)
= b0 + βρa(b0, 1)+

T∑
t=2

βtρp(b0, t) +
( T∑

t=1
βtm1.1{πp(t)=passive}

)
< b0 + βρa(b0, 1)+

T∑
t=2

βtρa(b0, t) +
( T∑

t=1
βtm1.1{πp(t)=passive}

)
(3.9)

(by Lemma 2)

≤ Va
m1,T(b0)

3.4.3 Proposed algorithms

The key insight driving the design of our solution is that, by accounting for the index decay phenomenon, we can

bypass the need to solve the costly finite horizon problem. We make use of the fact that we can cheaply compute

index values for arms with residual lifetime 0 and 1, where the index decay phenomenon occurs, and for infinite

horizon bandits. Our proposed solution for computing indices for arbitrary residual lifetime is to use a suitable

functional form to interpolate between those three observations. We propose an interpolation template, that

can be used to obtain two such algorithms, one using a piece-wise linear function and the other using a logistic

function.

Recall that we establish in Theorem 21 that the Whittle Index for arms with a zero residual lifetime, is always
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zero. Similarly, indices for arms with residual lifetime of 1 are simply the myopic indices, computed as:

Δb =
(
b Pa11 + (1− b) Pa01

)
−
(
b Pp11 + (1− b) Pp01

)
.

For the linear interpolation, we assume Ŵ(h), our estimatedWhittle Index, to be a piece-wise-linear function

of h (with two pieces), capped at a maximum value of the Whittle Index for the infinite horizon problem, corre-

sponding to h = ∞. We denote Whittle Index for infinite horizon asW. The first piece of the piece-wise-linear

Ŵ(h)must pass through the origin, given that the Whittle Index is 0 when the residual lifetime is 0. The slope

is determined by Ŵ(h = 1)which must equal the myopic index, given by Δb. The second piece is simply the

horizontal line y = W that caps the function to its infinite horizon value. The linear interpolation index value is

thus given by

Ŵ(h,Δb,W) = min{h Δb,W}. (3.10)

The linear interpolation algorithm performs well and has very low run time, as we will demonstrate in the later

sections. However, the linear interpolation can be improved by using a logistic interpolation instead. The logistic

interpolation algorithm yields moderately higher rewards in many cases for a small additional compute time. For

the logistic interpolation, we let

Ŵ(h,Δb,W) =
C1

1+ e−C2h
+ C3. (3.11)

We now apply the three constraints on theWhittle Index established earlier and solve for the three unknowns

{C1,C2,C3} to arrive at the logistic interpolation model. For the residual lifetimes of 0 and 1, we have that

Ŵ(0) = 0 and Ŵ(1) = Δb. As the horizon becomes infinity, Ŵ(.)must converge toW, giving the final

constraint Ŵ(∞) = W. Solving this system yields the solution:

C1 = 2W, C2 = − log

((
Δb
C1

+
1
2

)−1
− 1

)
, C3 = −W.

We note that both interpolations start from Ŵ = 0 for h = 0 and saturate to Ŵ = W as h → ∞.
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Algorithm 3: Interpolation Algorithm Template
1: Pre-computeW(b,Pi) ∀b ∈ Bi, ∀ i ∈ [N], with transition matrix Pi and set of belief states Bi.
2: Input: b̄N×1 ∈ [0, 1]N, h̄N×1 ∈ [L]N, containing the belief values and remaining lifetimes for theN

arms.
3: Initialize ŴN×1 to store estimatedWhittle Indices.
4: for each arm i in N do
5: Let b := b̄i, h := h̄i and let P be i’s transition matrix.
6: Compute the myopic index Δb as:

Δb =
(
b Pa

11 + (1− b) Pa
01
)
−
(
b Pp

11 + (1− b) Pp
01
)
.

7: Set Ŵi(h,Δb,W) according to one of the interpolation functions (3.10) or (3.11).
8: end for
9: Pull the k arms with the largest values of Ŵ.

We compare the index values computed by our interpolation algorithms with the exact solution by132. Figure

3.1 shows an illustrative example, plotting the index values as a function of the residual lifetime and shows that

the interpolated values agree well with the exact values.

Infinite horizon index: For transition matrices that satisfy the conditions for forward threshold policies to

be optimal, Mate et al. 101 present an algorithm that computesW cheaply. The cornerstone of their technique is

to leverage forward threshold optimality to map the passive and active actions to two different forward threshold

policies, and find the value of subsidym that makes the expected reward of the policies equal. We extend this

reasoning to reverse threshold optimal arms.

3.4.4 Complexity analysis

For the complexity analysis of the algorithms, we denote by X̄ the expected number of arms arriving each time

step and L̄ their average expected lifetimes. The expected number of arms at any point in time is thenO(X̄L̄)94.

Our algorithms (both versions) require a per-period cost ofO(X̄ ∗ |Bi| = X̄ ∗ 2L̄) for the ThresholdWhittle

pre-computations, plusO(X̄) computations for the myopic cost, plusO(X̄L̄ ∗ L̄) calculations (for X̄L̄ arms,

each requiring up to L̄ additions or multiplications) andO(X̄L̄) for determining the top k indices. The overall

per-period complexity of our algorithm is thusO(X̄L̄2).

For comparison, Qian et al. has a per-period complexity of≈ O
(
X̄L̄(3+ 1

18 ) log( 1ε )
)
, where log( 1ε ) is due to a

bifurcation method for approximating the Whittle index to within error ε on each arm and L̄2+ 1
18 is due to the
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best-known complexity of solving a linear program with L̄ variables69 .

3.4.5 Reverse Threshold Arms

Computing the infinite horizonWhittle index cheaply (W) is key to the runtime efficiency of our approach. Ex-

isting methods provide techniques to computeW used in the previous subsection, when the transition matrices

satisfy the forward threshold optimality conditions. In this subsection, we describe how the technique can be

extended to the case when reverse threshold optimality conditions are satisfied.

All the belief states that an arm can ever visit during its lifetime L can be enumerated and organized into two

chains — each chain corresponding to one of the two possible observations (ω ∈ {0, 1}) last observed for that

arm. These chains are shown in Figure 3.2.101 present an algorithm to compute the index for forward threshold

arms with belief states belonging to the NIB process (i.e. whenever b > bstationary =
Pp01

Pp01+Pp10
). The algorithm

relies on mapping the active and passive actions to two different forward threshold policies (with corresponding

threshold states on the two chains indexed as X0,X1) and equating the policies’ rewards to solve for the passive

subsidym, that makes the two actions equal.

We extend this reasoning to reverse threshold arms with belief chains belonging to the ω = 0 chain of the SB

(split-belief) process, as shown in Figure 3.2. The belief states belonging to the increasing chain (ω = 0 chain)

satisfy b < bstationary =
Pp01

Pp01+Pp10
. We identify two different reverse threshold policies that correspond to the

active and passive actions, which can be used to set up similar indifference equations. For a given belief state on

the increasing chain with index in the chain X, the corresponding reverse threshold policies can be indexed by

(X0,X1) = (1,X) and (X0,X1) = (1,X + 1) and used to solve for the whittle index using the indifference

equation outlined in Algorithm 1 of101.

3.5 Experimental evaluation

We evaluate the performance and runtime of our proposed algorithms against several baselines, using both, real

as well as synthetic data distributions. Logistic and Linear are our proposed algorithms. Our main baselines

are: (1) a precise, but slow algorithm by Qian et al., which accounts for the residual lifetime by solving the

expensive finite-horizon POMDP on each of theN arms and finds the k best arms to pull and (2) Threshold-
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Figure 3.2: Belief values arranged in chains as presented in 101. For every possible last observed state of the arm, ω, there is a corre‐
sponding chain of belief states.

Whittle101 (marked as TW), a much faster algorithm, that is only designed to work for infinitely long residual

time horizons. Myopic policy is a popularly used baseline101,132,95 that plans interventions optimizing for the

expected reward of the immediate next time step. Random is a naive baseline that pulls k arms at random.

Performance is measured as the excess average intervention benefit over a ‘do-nothing’ policy, measuring the

sum of rewards over all arms and all timesteps minus the reward of a policy that never pulls any arms. Interven-

tion benefit is normalized to set132 equal to 100% and can be obtained for an algorithm ALG as: 100×(RALG−RNo intervention
)

RQian et al.−RNo intervention

whereR is the average reward. All simulation results are measured and averaged over 50 independent trials and

error bars denote the standard errors.
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(b) Arms arriving asynchronously as a stochastic process

Figure 3.3: (a) Performance of Threshold Whittle algorithm degrades when the lifetime of arms gets shorter, even when all arms start
synchronously (b) The performance dwindles further if arms arrive asynchronously.
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Figure 3.4: (a) Linear and Logistic interpolation algorithms are nearly 200× faster than Qian et al. (b) & (c) The interpolation algorithms
achieve the speedup without sacrificing on performance, while other fast algorithms like Threshold Whittle deteriorate significantly for
small residual horizons.

3.5.1 Real domain: Monitoring tuberculosis medication adherence

We first test on an anonymized real-world data set used by79, consisting of daily adherence data of tuberculosis

patients in Mumbai, India following a prescribed treatment regimen for six months. For our study, we only ob-

tain the summary statistics capturing the transition probabilities of these patients moving between the adherent

and non-adherent states as extracted from the dataset. We then follow the same data imputation steps adopted

by101 for arriving at the transition matrices, Pass′ and P
p
ss′ for each patient. We sample transition matrices from this

real-world patient distribution and run simulations over a simulation length much longer than the lifetimes of

the patients in the simulation.

In Figure 3.3a, we first demonstrate the impact of a short horizon alone on the performance of various al-

gorithms in a simple, non-streaming setting. In Figure 3.3b, we contrast this with a similar comparison for the

short horizon setting combined with a stochastic incoming stream of patients.

In Figure 3.4, we again consider the finite horizon setting with a deterministic incoming stream of patients. In

Figure 3.4a, we plot the runtimes of our algorithms and that of Qian et al., as a function of the daily arrival rate,

X̄ of the incoming stream. Figure 3.4b measures the intervention benefits of these algorithms for these values of

X̄. The lifetime of each arm, L is fixed to 5 and the number of resources, k is set to 10% × (X̄L). Each simulation

was run for a total length T such that X̄T = 5000, which is the total number of arms involved in the simulation.

Runtime is measured as the time required to simulate L days. The runtime of Qian et al. quickly far exceeds that

of our algorithms. For the X̄ = 200 case, a single trial of Qian et al. takes 106.69 seconds to run on an average,

while the proposed Linear and Logistic interpolation algorithms take 0.47 and 0.49 seconds respectively, while
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attaining virtually identical intervention benefit. Other competing fast algorithms like ThresholdWhittle, which

assume an infinite residual horizon, suffer a severe degradation in performance for such short residual horizons.

Our algorithms thus manage to achieve a dramatic speed up over existing algorithms, without sacrificing on per-

formance.

In Figure 3.4c, we consider an S-RMAB setting, in which arms continuously arrive according to a determinis-

tic schedule, and leave after staying on for a lifetime of L, which we vary on the x-axis. The details about the other

parameters are deferred to the appendix. We also study the isolated effects of small lifetimes and asynchronous

arrivals separately as well as performance in settings with stochastic arrivals, in the appendix. Across the board,

we find that the performance of TW degrades as the lifetime becomes shorter and that this effect only exacer-

bates with asynchronous arrivals. The performance of our algorithms remains on par with Qian et al., in all of

the above.
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Figure 3.5: (a) The interpolation algorithms achieve a speedup of about 250× over baselines.(b) The error between the actual and
estimated indices is largest for TW and lower for our interpolation algorithms (c) The good performance is maintained even for reverse
threshold optimal arms.

3.5.2 Real domain: ARMMAN for improving maternal healthcare

Considering an alternate real-world domain, we again only use summary statistics (transition probabilities) from

an application domain consisting of intervention planning for improving maternal healthcare21. Individuals

(arms) are labeled to be in one of three states at any time step, of which one is the good state.102 cast the prob-

lem as an RMABwith 2-state MDP on each arm. We also focus on maximizing the number of individuals in the

good state, merging the other two states from the data into a single bad state. The data set consists of three types
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of transition matrices for different groups, only one of which satisfies the constraints mentioned in Section 3.3

and is used in our subsequent analysis, which is otherwise analogous to Section 3.5.1. Figure 3.5a establishes

similar large runtime gains achieved by our algorithm as against other baselines, while maintaining similar per-

formance figures in this domain. In the supplementary material we also present more details and analyses of the

performance of our algorithms and baselines for this domain.

3.5.3 Synthetic domains

Finally, in this section, we test our algorithms on synthetic domains. We identify corner cases where our so-

lutions do poorly and construct adversarial domains based on those. The ratio between the infinite horizon

Whittle Index W̄ and the myopic index Δb is an important driver of the approximation quality of our algo-

rithms. The linear interpolation takes W̄
Δb steps to reach the finite horizon value, hence the higher this ratio is,

higher the potential for approximation errors. In figure 3.5b we sum the approximation error over this interval

ε :=
∑h=W

Δb
h=1 (‖Ŵ(h) − WQian(h)‖) and plot it for different ratios W̄

Δb . As expected, the approximation error

increases with W̄
Δb . We construct an adversarial domain by simulating cohorts with varying proportions of such

patients. The results in the supplementary material show the intervention benefit of our algorithms decreases but

remains within one standard error of Qian et al.

In Figure 3.5c, we simulate a population consisting of reverse threshold optimal patients exclusively and show

similar good performance even though the previous theoretical guarantees of ThresholdWhittle apply to forward

threshold optimal patients only. In the supplementary material, we test multiple synthetic domains by varying

the proportion of forward threshold optimal patients. In addition, we perform several other robustness checks

varying important problem parameters and find that the run time and strong performance of our algorithms

remains consistent across the board.

3.6 Conclusion

We study streaming bandits, or S-RMAB, a class of bandits where heterogeneous arms arrive and leave asyn-

chronously under possibly random streams. While efficient RMAB algorithms for computingWhittle Indices

for infinite horizon settings exist, for the finite horizon settings however, these algorithms are either compara-
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tively costly or not suitable for estimating the Whittle Indices accurately. To tackle this, we provide a new scalable

approach that allows for efficient computation of the Whittle Index values for finite horizon restless bandits

while also adapting to more general S-RMAB settings. Our approach leverages a phenomenon called index decay

to compute the indices for each arm. Through an extensive set of experiments on real-world and synthetic data,

we demonstrate that our approach provides good estimates of Whittle Indices, and yield over 200× runtime

improvements without loss in performance.

64



4
Field Study in Deploying Restless Bandit

Algorithms for Healthcare

4.1 Introduction

The wide-spread availability of cell phones has allowed non-profits to deliver targeted health information via

voice or text messages to beneficiaries in underserved communities, often with significant demonstrated bene-

fits to those communities126,75. We focus in particular on non-profits that target improving maternal and infant

health in low-resource communities in the global south. These non-profits deliver ante- and post-natal care infor-

mation via voice and text to prevent adverse health outcomes70,12,56.
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Unfortunately, such information delivery programs are often faced with a key shortcoming: a large fraction

of beneficiaries who enroll may drop out or reduce engagement with the information program. Yet non-profits

often have limited health-worker time available on a periodic (weekly) basis to help prevent engagement drops.

More specifically, there is limited availability of health-worker time where they can place crucial service calls

(phone calls) to a limited number of beneficiaries, to encourage beneficiaries’ participation, address complaints

and thus prevent engagement drops.

Optimizing limited health worker resources to prevent engagement drops requires that we prioritize benefi-

ciaries who would benefit most from service calls on a periodic (e.g., weekly) basis. We model this resource opti-

mization problem using Restless Multi-Armed Bandits (RMABs), with each beneficiary modeled as an RMAB

arm. RMABs have been well studied for allocation of limited resources motivated by a myriad of application do-

mains including preventive interventions for healthcare101, planning anti-poaching patrols133, machine repair

and sensor maintenance47 and communication systems142. However, RMABs have rarely seen real-world de-

ployment, and to the best of our knowledge, have never been deployed in the context of large-scale public health

applications.

This chapter presents first results of an RMAB system in real-world public health settings. Based on available

health worker time, RMABs choosem out ofN total beneficiaries on a periodic (e.g., weekly) basis for service

calls, where them are chosen to optimize prevention of engagement drops. The chapter presents two main con-

tributions. First, previous work often assumes RMAB parameters as either known or easily learned over long pe-

riods of deployment. We show that both assumptions do not hold in our real-world contexts; instead, we present

clustering of offline historical data as a novel approach to infer unknown RMAB parameters.

Our second contribution is a real-world evaluation showing the benefit of our RMAB system, conducted in

partnership with ARMMAN*, an NGO in India focused on maternal and child care. ARMMAN conducts a

large-scale health information program, with concrete evidence of health benefits, which has so far served over a

million mothers. As part of this program, an automated voice message is delivered to an expecting or newmother

(beneficiary) over her cell phone on a weekly basis throughout pregnancy and for a year post birth in a language

and time slot of her preference.

Unfortunately, ARMMAN’s information delivery program also suffers from engagement drops. Therefore,

*https://armman.org/
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in collaboration with ARMMANwe conducted a service quality improvement study to maximize the effective-

ness of their service calls to ensure beneficiaries do not drop off from the program or stop listening to weekly

voice messages. More specifically, the current standard of care in ARMMAN’s program is that any beneficiary

may initiate a service call by placing a so-called “missed call”. This beneficiary-initiated service call is intended to

help address beneficiaries’ complaints and requests, thus encouraging engagement. However, given the overall

decreasing engagement numbers in the current setup, key questions for our study are to investigate an approach

for effectively conducting additional ARMMAN-initiated service calls (these are limited in number) to reduce

engagement drops. To that end, our service quality improvement study comprised of 23,003 real-world beneficia-

ries spanning 7 weeks. Beneficiaries were divided into 3 groups, each adding to the current standard of care. The

first group exercised ARMMAN’s current standard of care (CSOC) without additional ARMMAN-initiated

calls. In the second, the RMAB group, ARMMAN staff added to the CSOC by initiating service calls to 225

beneficiaries on average per week chosen by RMAB. The third was the Round-Robin group, where the exact

same number of beneficiaries as the RMAB group were called every week based on a systematic sequential basis.

Results from our study demonstrate that RMAB provides statistically significant improvement over CSOC and

round-robin groups. This improvement is also practically significant— the RMAB group achieves a∼ 30% re-

duction in engagement drops over the other groups. Moreover, the round-robin group does not achieve statisti-

cally significant improvement over the CSOC group, i.e., RMAB’s optimization of service calls is crucial. To the

best of our knowledge, this is the first large-scale empirical validation of use of RMABs in a public health context.

Based on these results, the RMAB system is currently being transitioned to ARMMAN to optimize service calls

to their ever-growing set of beneficiaries. Additionally, this methodology can be useful in assisting engagement

in many other awareness or adherence programs, e.g., Thirumurthy & Lester 149 , Chen et al. 31 . Our RMAB code

would be released upon acceptance.

4.2 RelatedWork

Patient adherence monitoring in healthcare has been shown to be an important problem99, and is closely related

to the churn prediction problem, studied extensively in the context of industries like telecom34, finance170,139,

etc. The healthcare domain has seen several studies on patient adherence for diseases like HIV154, cardiac prob-
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lems144,33, Tuberculosis82,127, etc. These studies use a combination of patient background information and

past adherence data, and build machine learning models to predict future adherence to prescribed medication †.

However, such models treat adherence monitoring as a single-shot problem and are unable to appropriately han-

dle the sequential resource allocation problem at hand. Additionally, the pool of beneficiaries flagged as high risk

can itself be large, and the model can’t be used to prioritize calls on a periodic basis, as required in our settings.

Campaign optimization (via phone outreach) has also been studied previously. Most existing works87,37 how-

ever, rely on the availability of a customer social network based on preferences, behavior or demographics, to help

identify the set of key customers who will increase the reach of the campaign. In our domains of interest, there

is no evidence of a social network among the beneficiaries, so such campaign optimization techniques are inap-

plicable. Furthermore, campaign optimization relies on single-shot interventions for optimization, whereas, our

problem requires tracking progress of beneficiaries over multiple timesteps.

The Restless Multi-Armed Bandit (RMAB) framework has been popularly adopted to tackle such sequen-

tial resource allocation problems164,71. Computing the optimal solution for RMAB problems is shown to be

PSPACE-hard. Whittle proposed an index-based heuristic164, that can be solved in polynomial time and is now

the dominant technique used for solving RMABs. It has been shown to be asymptotically optimal for the time

average reward problem160, and other families of RMABs arising from stochastic scheduling problems47. Sev-

eral works as listed in Section 4.1, show applicability of RMABs in different domains but these unrealistically

assume perfect knowledge of the RMAB parameters, and have not been tested in real-world contexts. Biswas

et al. 22 , Avrachenkov & Borkar 15 , present a Whittle Index-based Q-learning approach for unknown RMAB pa-

rameters. However, their techniques either assume identical arms or rely on receiving thousands of samples from

each arm, which is unrealistic in our setting, given limited overall stay of a beneficiary in an information program

— a beneficiary may drop out or stop engaging with the program few weeks post enrolment unless a service call

convinces them to do otherwise. Instead, we present a novel approach that applies clustering to the available his-

torical data to infer model parameters.

Clustering in the context of Multi-Armed Bandit and Contextual Bandits has received significant attention

in the past43,90,172,88, but these settings do not consider restless bandit problems.111 tackles a non-stationary

†Similarly, in our previous preliminary study (anonymous 2020) published in a non-archival setting, we used demo-
graphic and message features to build models for predicting beneficiaries likely to drop-off from ARMMAN’s information
program.
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setup with stochastic rewards, while16 infers model parameters from independent studies in absence of historic

data. In contrast, we focus on learning RMAB parameters using clustered historic beneficiary data.176,92 propose

building predictive models per beneficiary in an online fashion, which is infeasible in our setup given the short

stay of the beneficiaries.

4.3 Preliminaries

4.3.1 Background: RestlessMulti-Armed Bandits

An RMAB instance consists ofN independent 2-actionMarkov Decision Processes (MDP)130, where each

MDP is defined by the tuple {S,A,R,P}. S denotes the state space,A is the set of possible actions,R is the

reward functionR : S × A × S → R andP represents the transition function. We use Pαs,s′ to denote the

probability of transitioning from state s to state s′ under the action α. The policy π, is a mapping π : S → A

that selects the action to be taken at a given state. The total reward accrued can be measured using either the dis-

counted or average reward criteria to sum up the immediate rewards accrued by the MDP at each time step. Our

formulation is amenable to both, although we use the discounted reward criterion in our study.

The expected discounted reward starting from state s0 is defined asVπ
β (s0) = E

[∑∞
t=0 β

tR(st, π(st), st+1|π, s0)
]

where the next state is drawn according to st+1 ∼ Pπ(st)
st,st+1 , β ∈ [0, 1) is the discount factor and actions are selected

according to the policy mapping π. The planner’s goal is to maximize the total reward.

We model the engagement behavior of each beneficiary by anMDP corresponding to an arm of the RMAB.

Pulling an arm corresponds to an active action, i.e., making a service call (denoted by α = a), while α = p denotes

the passive action of abstaining from a call. The state space S consists of binary valued states, s, that account for

the recent engagement behavior of the beneficiary; s ∈ [NE,E] (or equivalently, s ∈ [0, 1]) where E andNE

denote the ‘Engaging’ and ‘Not Engaging’ states respectively. For example, in our domain, ARMMAN considers

that if a beneficiary stays on the automated voice message for more than 30 seconds (average message length is 1

minute), then the beneficiary has engaged. If a beneficiary engages at least once with the automated voice mes-

sages sent during a week, they are assigned the engaging (E) state for that time step and non-engaging (NE) state

otherwise. For each action α ∈ A, the beneficiary states follow aMarkov chain represented by the 2-state Gilbert-

Elliot model44 with transition parameters given by Pαss′ , as shown in Figure 5.1. With slight abuse of notation, the
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reward functionR(.) of nth MDP is simply given byRn(s) = s for s ∈ {0, 1}.

NE E

1− PαE,E

PαE,E

PαNE,E

1− PαNE,E

Figure 4.1: The beneficiary transitions from a current state s to a next state s′ under action α, with probability Pα
ss′ .

We adopt the Whittle solution approach described previously for solving the RMAB. It hinges around the

key idea of a “passive subsidy”, which is a hypothetical reward offered to the planner, in addition to the original

reward function for choosing the passive action. TheWhittle Index is then defined as the infimum subsidy that

makes the planner indifferent between the ‘active’ and the ‘passive’ actions, i.e.,:

W(s) = infλ{λ : Qλ(s, p) = Qλ(s, a)} (4.1)

4.3.2 Data Collected by ARMMAN

Beneficiaries enroll into ARMMAN’s information program with the help of health workers, who collect the

beneficiary’s demographic data such as age, education level, income bracket, phone owner in the family, gesta-

tion age, number of children, preferred language and preferred slots for the automated voice messages during

enrolment. These features are referred to as Beneficiary Registration Features in rest of the chapter. Beneficiaries

provided both written and digital consent for receiving automated voice messages and service calls. ARMMAN

also stores listenership information regarding the automated voice messages together with the registration data in

an anonymized fashion.

4.4 Problem Statement

We assume the planner has access to an offline historical data set of beneficiaries,Dtrain. Each beneficiary data

pointDtrain[i] consists of a tuple, 〈f, E〉, where f is beneficiary i’s feature vector of static features, and E is an

episode storing the trajectory of (s, α, s′) pairs for that beneficiary, where s denotes the start state, α denotes the

action taken (passive v/s active), and s denotes the next state that the beneficiary lands in after executing α in state
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Figure 4.2: RMAB Training and Testing pipelines proposed

s. We assume that these (s, α, s′) samples are drawn according to fixed, latent transition matrices Pass′ [i] and P
p
ss′ [i]

(corresponding to the active and passive actions respectively), unknown to the planner, and potentially unique to

each beneficiary.

GivenDtrain, we now consider a new beneficiary cohortDtest, consisting ofN beneficiaries, marked {1, 2, . . . ,N},

that the planner must plan service calls for. TheMDP transition parameters corresponding to beneficiaries in

Dtest are unknown to the planner, but assumed to be drawn at random from a distribution similar to the joint

distribution of features and transition parameters of beneficiaries in the historical data distribution. We assume

the planner has access to the feature vector f for each beneficiary inDtest.

We now define the service call planning problem as follows. The planner has uptom resources available per

round, which the planner may spend towards delivering service calls to beneficiaries. Beneficiaries are represented

byN arms of the RMAB, of which the planner may pull uptom arms (i.e.,m service calls) at each time step. We

consider a round or timestep of one week which allows planning based on the most recent engagement patterns

of the beneficiaries.

4.5 Methodology

Figure 4.2 shows our overall solution methodology. We use clustering techniques that exploit historical data

Dtrain to estimate an offline RMAB problem instance relying solely on the beneficiaries’ static features and state

transition data. This enables overcoming the challenge of limited samples (time-steps) per beneficiary. Based on

this estimation, we use the Whittle Index approach to prioritize service calls.
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4.5.1 ClusteringMethods

We use historical dataDtrain to learn the impact of service calls on transition probabilities. While there is limited

service call data (active transition samples) for any single beneficiary, clustering on the beneficiaries allows us to

combine their data to infer transition probabilities for the entire group. Clustering offers the added advantage

of reducing computational cost for resource limited NGOs; since all beneficiaries within a cluster share identical

transition probability values we can compute their Whittle index all at once. We present four such clustering

techniques below:

1. Features-only Clustering (FO): This method relies on the correlation between the beneficiary feature

vector f and their corresponding engagement behavior. We employ k-means clustering on the feature vector f

of all beneficiaries in the historic datasetDtrain, and then derive the representative transition probabilities for

each cluster by pooling all the (s, α, s) tuples of beneficiaries assigned to that cluster. At test time, the features f

of a new, previously unseen beneficiary inDtest map the beneficiary to their corresponding cluster and estimated

transition probabilities.

2. Feature + All Probabilities (FAP) In this 2-level hierarchical clustering technique, the first level uses

a rule-based method, using features to divide beneficiaries into a large number of pre-defined buckets, B. Tran-

sition probabilities are then computed by pooling the (s, α, s) samples from all the beneficiaries in each bucket.

Finally, we perform a k-means clustering on the transition probabilities of these B buckets to reduce them to k

clusters (k � B). However, this method suffers from several smaller buckets missing or having very few active

transition samples.

3. Feature + Passive Probabilities (FPP): This method builds on the FAPmethod, but only considers

the passive action probabilities to preclude the issue of missing active transition samples.

4. Passive Transition-Probability based Clustering (PPF):

The key motivation here is to group together beneficiaries with similar transition behaviors, irrespective of their

features. To this end, we use k-means clustering on passive transition probabilities (to avoid issues with missing
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active data) of beneficiaries inDtrain and identify cluster centers. We then learn a map φ from the feature vector f

to the cluster assignment of the beneficiaries that can be used to infer the cluster assignments of new beneficiaries

at test-time solely from f. We use a random forest model as φ.

The rule-based clustering on features involved in FPP and FAP methods can be thought of as using one spe-

cific, hand-tuned mapping function φ. In contrast, the PPF method learns such a map φ from data, eliminating

the need to manually define accurate and reliable feature buckets.

4.5.2 Evaluation of ClusteringMethods

We use a historical dataset,Dtrain from ARMMAN consisting of 4238 beneficiaries in total, who enrolled into

the program betweenMay-July 2020. We compare the clustering methods empirically, based on the criteria de-

scribed below.

(a) FO clustering (b) FPP clustering (c) FAP clustering (d) PPF clustering

Figure 4.3: Comparison of passive transition probabilities obtained from different clustering methods with cluster sizes k = {20, 40}
with the ground truth transition probabilities. Blue dots represent the true passive transition probabilities for every beneficiary while
red or green dots represent estimated cluster centres.

1. Representation: Cluster centers that are representative of the underlying data distribution better resemble

the ground truth transition probabilities. This is of prime importance to the planner, who must rely on these val-

ues to plan actions. Fig 4.3 plots the ground truth transition probabilities and the resulting cluster centers deter-

mined using the proposed methods. Visual inspection reveals that the PPF method represents the ground truth

well, as is corroborated by the quantitative metrics of Table 4.1 that compares the RMSE error across different

clustering methods.

2. Balanced cluster sizes: A low imbalance across cluster sizes is desirable to preclude the possibility of arriv-

ing at few, gigantic clusters which will assign identical whittle indices to a large groups of beneficiaries. Working

with smaller clusters also aggravates the missing data problem in estimation of active transition probabilities.
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Considering the variance in cluster sizes and RMSE error for the different clustering methods with k = {20, 40}

as shown in Table 4.1, PPF outperforms the other clustering methods and was chosen for the pilot study.

Table 4.1: Average RMSE and cluster size variance over all beneficiaries for different methods. Total Beneficiaries = 4238, μ20 = 211.9,
μ40 = 105.95 (μ = average beneficiaries per cluster)

Clustering
Method

Average RMSE Standard Deviation
k = 20 k = 40 k = 20 k = 40

FO 0.229 0.228 143.30 74.22
FPP 0.223 0.222 596.19 295.01
FAP 0.224 0.223 318.46 218.37
PPF 0.041 0.027 145.59 77.50

Next we turn to choosing k, the number of clusters: as k grows, the clusters become sparse in number of active

samples aggravating the missing data problem while a smaller k suffers from a higher RMSE. We found k = 40 to

be optimal and chose it for the pilot study .

Finally, we adopt the Whittle solution approach for RMABs to plan actions and pre-compute all of the pos-

sible 2 ∗ k index values that beneficiaries can take (corresponding to combinations of k possible clusters and 2

states). The indices can then be looked up at all future time steps in constant time, making this an optimal solu-

tion for large scale deployment with limited compute resources.

As we got this RMAB system ready for real-world use, there was as an important observation for social im-

pact settings: real-world use also required us to carefully handle several domain specific challenges, which were

time consuming. For example, despite careful clustering, a few clusters may still be missing active probability

values, which required employing a data imputation heuristic . Moreover, there were other constraints specific

to ARMMAN, such as a beneficiary should receive only one service call every ηweeks, which was addressed by

introducing “sleeping states” for beneficiaries who receive a service call .

4.6 Experimental Study

In this section, we discuss a real-world quality improvement study. We also simulate the expected outcome in

other synthetically constructed situations and demonstrate good performance of our approach across the board.
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4.6.1 Service Quality Improvement Study

Setup

This cohort of beneficiaries registered in the program between Feb 16, 2021 andMarch 15, 2021 asDtest and

started receiving automated voice messages few days post enrolment as per their gestational age. Additionally, as

per the current standard of care, any of these beneficiaries could initiate a service call by placing a “missed call”.

The 23003 beneficiaries are randomly distributed across 3 groups, each group adding to the CSOC as follows:

• Current-Standard-of-Care (CSOC) Group: The beneficiaries in this group follow the original standard

of care, where there are no ARMMAN initiated service calls. The listenership behavior of beneficiaries in

this group is used as a benchmark for the RR and RMAB groups.

• RMAB group: In this group, beneficiaries are selected for ARMMAN-initiated service call per week

via the Whittle Index policy described in Section 4.3. Even though all beneficiaries within a cluster are

modeled by identical MDP parameters, their states may evolve independently, and so theWhittle indices

are tracked for each beneficiary separately, leading to an RMABwith 7668 arms.

• Round Robin (RR) group: By default, NGOs including ARMMAN often conduct service calls using

some systematic set order – the idea here is to have an easily executable policy, that services enough of

a cross-section of beneficiaries and can be scaled up or down per week based on available resources. To

recreate this setting, we generate service calls to beneficiaries based on the ascending order of their date

of enrollment for this RR group, as recommended by ARMMAN. If this method succeeds compared to

CSOC, then a simple manual strategy is enough; RMAB style optimization may not be needed.

Table 4.2 shows the absolute number of beneficiaries in states E or NE, where the state is computed using one

week of engagement data between April 19 - April 26, 2021.

Beneficiaries across all three groups receive the same automated voice messages regarding pregnancy and post-

birth care throughout the program, and no health related information is withheld from any beneficiary. The

study only aims to evaluate the effectiveness of ARMMAN-initiated outbound service calls with respect to im-
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Table 4.2: Beneficiary distribution in the three groups and their start states during week 0 of the study.

Group Engaging Non-Engaging Total(E) (NE)
RMAB 3571 4097 7668
RR 3647 4021 7668

CSOC 3661 4006 7667

proving engagement with the program across the three groups. No interviews or research data or feedback was

collected from the beneficiaries.

The study started on April 26, 2021, withm beneficiaries selected from the RMAB and RR group each

(m � N) per week for ARMMAN-initiated service calls. ARMMAN staff performing service calls were blind to

the experimental groups that the beneficiaries belonged to. Recall, the goal of the service calls is to encourage the

beneficiaries to engage with the health information message program in the future. For this study, number of ser-

vice callsmwas on average 225 per week for each of RMAB and RR groups to reflect real-world constraints on

service calls. The study was scheduled for a total of 7 weeks, during which 20% of the RMAB (and RR) group

had received a service call, which is closer to the percentage of population that may be reached in service calls by

ARMMAN. ‡

Results

We present our key results from the study in Figure 4.4. The results are computed at the end of 7 weeks from the

start of the quality improvement study on April 26, 2021.

Figure 4.4 measures the impact of service calls by the RMAB and RR policies in comparison to the CSOC

Group. Beneficiaries’ engagement with the program typically starts to dwindle with time. In Figure 4.4, we mea-

sure the impact of a service call policy as the cumulative drop in engagement prevented compared to the CSOC

Group. We consider drop in engagement instead of the raw engagement numbers themselves, because of the

slight difference in the numbers of beneficiaries in engaging (E) state at the start of the study. The drop in en-

‡Each beneficiary group also received very similar beneficiary-initiated calls, but these were less than 10% of the
ARMMAN-initiated calls in RMAB or RR groups over 7 weeks.
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Figure 4.4: Cumulative number of weekly engagement drops prevented (in comparison to the CSOC group) by RMAB far exceed those
prevented by RR.

gagement under a policy π at time t can be measured as the change in engagement:

Δπ
current(t) :=

∑
n∈N

(Rn(s0)− Rn(st)) (4.2)

whereRn(st) represents the reward for nth beneficiary in state st at time step t and cumulative drop in engagement

is:

Δπ
cumulative(t) :=

∑
n∈N

ζ=t∑
ζ=0

(Rn(s0)− Rn(sζ)) (4.3)

The cumulative drop in engagement prevented by a policy π, in comparison to the CSOCGroup is thus simply:

Δπ
cumulative(t)− ΔCSOC

cumulative(t) (4.4)

and is plotted on the y-axis of Figure 4.4.

Figure 4.4 shows that the RMAB policy prevents a total 622 instances of a drop in automated health message

engagement, at the end of 7 weeks, as compared to CSOC. RR group, on the other hand, only prevents 101 en-

gagement drops by the end of week 7. Given that there are a total of 1944 engagement drops in the CSOC group,

we show in the first row of Table 4.3, that the RMAB group has 32.0% and 28.3% less cumulative engagement

drops as compared to the CSOC and RR groups respectively by the end of the study.
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Statistical Analysis

Table 4.3: Statistical significance for service call policy impact at week 7 is tested using a linear regression model. We use: ∗p <
0.05; †p < 0.1

RMAB
vs CSOC

RR vs
CSOC

RMAB
vs RR

% reduction in cu-
mulative engagement
drops

32.0% 5.2% 28.3%

p-value 0.044∗ 0.740 0.098†
Coefficient β -0.0819 -0.0137 -0.0068

To investigate the benefit from use of RMAB policy over policies in the RR and CSOC groups, we use regres-

sion analysis6 §. Specifically, we fit a linear regression model to predict number of cumulative engagement drops

at week 7 while controlling for treatment assignment and covariates specified by beneficiary registration features.

The model is given by:

Yi = k+ βTi +

J∑
j=1

γjxij + εi

where for the ith beneficiary, Yi is the outcome variable defined as number of cumulative engagement drops at

week 7, k is the constant term, β is the treatment effect, Ti is the treatment indicator variable, xi is a vector of

length J representing the ith beneficiary’s registration features, γj represents the impact of the jth feature on the

outcome variable and εi is the error term. For evaluating the effect of RMAB service calls as compared to CSOC

group, we fit the regression model only for the subset of beneficiaries assigned to either of these two groups. Ti

is set to 1 for beneficiaries belonging to the RMAB group and 0 for those in CSOC group. We repeat the same

experiment to compare RR vs CSOC group and RMAB vs RR group.

The results are summarized in Table 4.3. We find that RMAB has a statistically significant treatment effect in

reducing cumulative engagement drop (negative β, p < 0.05) as compared to CSOC group. However, the treat-

ment effect is not statistically significant when comparing RR with CSOC group (p = 0.740). Additionally,

comparing RMAB group with RR, we find β, the RMAB treatment effect, to be significant (p < 0.1). This

shows that RMAB policy has a statistically significant effect on reducing cumulative engagement drop as com-

§See Appendix D.1 for erratum
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pared to both the RR policy and CSOC. RR fails to achieve statistical significance against CSOC. Together these

results illustrate the importance of RMAB’s optimization of service calls, and that without such optimization,

service calls may not yield any benefits.

RMAB Strategies

(a)Week 1 Service Calls (b)Week 2 Service Calls

Figure 4.5: Distributions of clusters picked for service calls by RMAB and RR are significantly different. RMAB is very strategic in picking
only a few clusters with a promising probability of success, RR displays no such selection.

We analyse RMAB’s strategic selection of beneficiaries in comparison to RR using Figure 4.5, where we

group beneficiaries according to their whittle indices, equivalently their 〈cluster, state〉. Figure 4.5 plots the

frequency distribution of beneficiaries (shown via corresponding clusters) who were selected by RMAB and RR

in the first two weeks. For example, the top plot in Figure 4.5a shows that RMAB selected 60 beneficiaries from

cluster 29 (NE state).

First, we observe that RMAB was clearly more selective, choosing beneficiaries from just four (Figure 4.5a) or

seven (Figure 4.5b) clusters, rather than RR that chose from 20. Further, we assign each cluster a hue based on

their probability of transitioning to engaging state from their current state given a service call. Figure 4.5 reveals

that RMAB consistently prioritizes clusters with high probability of success (blue hues) while RR deploys no

such selection; its distribution emulates the overall distribution of beneficiaries across clusters (mixed blue and

red hues).
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Furthermore, Figure 4.6a further highlights the situation in week 1, where RMAB spent 100% of its service

calls on beneficiaries in the non-engaging state while RR spent the same on only 64%. Figure 4.6b shows that

RMAB converts 31.2% of the beneficiaries shown in Figure 4.6a from non-engaging to engaging state by week

7, while RR does so for only 13.7%. This further illustrates the need for optimizing service calls for them to be

effective, as done by RMAB.

(a) (b)Week 2 Service Calls

Figure 4.6: (a) % of week 1 service calls on non‐engaging beneficiaries (b) % of non‐engaging beneficiaries of week 1 receiving service
calls that converted to engaging by week 7

4.6.2 Synthetic Results

We run additional simulations to test other service call policies beyond those included in the quality improve-

ment study and confirm the superior performance of RMAB. Specifically, we compare to the following baselines:

(1) Random is a naive baseline that selectsm arms at random. (2) Myopic is a greedy algorithm that pulls arms

optimizing for the reward in the immediate next time step. Whittle is our algorithm. We compute a normal-

ized reward of an algorithm ALG as: 100×(RALG−RCSOC
)

RWHITTLE−RCSOC whereR is the total discounted reward. Simulation results

are averaged over 30 independent trials and run over 40 weeks.

Figure 4.7 presents simulation of an adversarial example101 consisting of x% of non-recoverable and 100− x%

of self-correcting beneficiaries for different values of x. Self-correcting beneficiaries tend to miss automated voice

messages sporadically, but revert to engaging ways without needing a service call. Non-recoverable beneficiaries

are those who may drop out for good, if they stop engaging. We find that in such situations, MYOPIC proves

brittle, as it performs even worse than RANDOMwhile WHITTLE performs well consistently. The actual
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Figure 4.7: Performance of myopic can be arbitrarily bad and even worse than Random, unlike the Whittle policy.

quality improvement study cohort consists of 48.12% non-recoverable beneficiaries (defined by Pp01 < 0.2) and

the remaining comprised of self-correcting and other types of beneficiaries.

4.7 Conclusions and Lessons Learned

The widespread use of cell-phones, particularly in the global south, has enabled non-profits to launch massive

programs delivering key health messages to a broad population of beneficiaries in a cost-effective manner. We

present an RMAB based system to assist these non-profits in optimizing their limited service resources. To the

best of our knowledge, ours is the first study to demonstrate the effectiveness of such RMAB-based resource

optimization in real-world public health contexts. These encouraging results have initiated the transition of our

RMAB software to ARMMAN for real-world deployment. We hope this work paves the way for use of RMABs

in many other health service applications.

Some key lessons learned from this research, which complement some of the lessons outlined in166,41,151 in-

clude the following. First, social-impact driven engagement and design iterations with the NGOs on the ground

is crucial to understanding the right AI model for use and appropriate research challenges. As discussed in foot-

note 1, our initial effort used a one-shot prediction model, and only after some design iterations we arrived at the

current RMABmodel. Next, given the missing parameters in RMAB, we found that the assumptions made in

literature for learning such paramters did not apply in our domain, exposing new research challenges in RMABs.

In short, domain partnerships with NGOs to achieve real social impact automatically revealed requirements for use

of novel application of an AI model (RMAB) and new research problems in this model.

Second, data and compute limitations of non-profits are a real world constraint, and must be seen as genuine

research challenges in AI for social impact, rather than limitations. In our domain, one key technical contribution

in our RMAB system is deploying clustering methods on offline historical data to infer unknown RMAB param-
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eters. Data is limited as not enough samples are available for any given beneficiary, who may stay in the program

for a limited time. Non-profit partners also cannot bear the burden of massive compute requirements. Our clus-

tering approach allows efficient offline mapping toWhittle indices, addressing both data and compute limits,

enabling scale-up to service 10s if not 100s of thousands of beneficiaries. Third, in deploying AI systems for social

impact, there are many technical challenges that may not need innovative solutions, but they are critical to deploy-

ing solutions at scale. Indeed, deploying any system in the real world is challenging, but even more so in domains

where NGOs may be interacting with low-resource communities. We hope this work serves as a useful example

of deploying an AI based system for social impact in partnership with non-profits in the real world and will pave

the way for more such solutions with real world impact.

Finally, there are also some important topics for future work in improving the RMAB system, which include

handling fairness104, changing the current RMABmodel with two actions to incorporate multiple actions80,

and improving the RMABmodel from interactions with beneficiaries22.
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5
Non-Stationary and Restless Bandits for

Improved Intervention Planning

5.1 Introduction

In many public health contexts, monitoring patient adherence or beneficiary engagement with prescribed health

programs has been shown to be an important problem99. The healthcare domain has seen several studies on pa-

tient adherence for diseases like HIV154, cardiac problems144,33, tuberculosis82,127, etc. In low-resource settings,

such monitoring resources may be severely limited, thereby making it critical to utilize these resources optimally.

As a motivating example, we consider a popular maternal healthcare task in which limited health workers

83



strive to monitor and improve engagement of enrolled beneficiaries with the information program. Non-profits

such as70,12,56 deliver ante- and post-natal care information via voice and text to enrolled beneficiaries, aiming

to prevent adverse health outcomes. Unfortunately, such information programs often see dwindling rates of

engagement among enrollees, with a large fraction even dropping out completely leading to negative health out-

comes. Such non-profits have very limited health worker resources at their disposal to place crucial service calls to

beneficiaries, to encourage participation, address complaints and prevent dropouts. Viewed algorithmically, these

health workers must choose k out of the totalN beneficiaries (where k � N) on a periodic basis (eg. weekly) for

service calls, such that the chosen k beneficiaries are likely to benefit the most from the service calls.

Several works in public health have modeled similar challenges as Restless Multi-Armed Bandit (RMAB)

problems, in contexts such as monitoring tuberculosis medication adherence100, screening for hepatocellular

carcinoma86, spreading health awareness18, delivering health services through mobile health clinics123, besides

existing work on improving maternal health outcomes22.

One key assumption about the RMAB setting however, is that the bandit arms in an RMABmust follow

fixed, but possibly distinct Markov Decision Processes (MDPs) with fixed transition parameters. In context of

the maternal healthcare application (used as a running example hereafter), we find from real-world data collected

over a 3-month long study presented in102, involving 23,003 real-world beneficiaries that the Markov model may

not fit the data well. In fact, we find that the state transition parameters of beneficiaries, assumed to remain fixed

in the MDPmodel, show transient patterns.

In this chapter, in a bid to improve resource allocation for the engagement monitoring problem, our con-

tributions are as follows: (1) We cast the planning challenge as a Non-stationary Restless Multi-Armed Bandit

(RMAB-NS) that admits time-varying transition parameters,P(t) instead of a fixed pointP and present a Whit-

tle index based solution technique. (2) We prove ‘indexability’ for the RMAB-NS problem. Indexability is a

technical condition that guarantees existence and asymptotic optimality of the Whittle index solution. Our proof

hinges on showing a reduction from the RMAB-NS problem to the standard RMAB framework via a state-space

expansion trick. (3) We propose a practical algorithm based on an index interpolation idea, useful particularly in

long-horizon planning problems when the transition functionP(t) changes linearly. Our algorithm provides a

30× speed-up for a planning horizon L = 100, with a marginal sacrifice on performance. (4) From a practical

standpoint, the time-dependent transition parameter model exacerbates the challenge of predicting these values
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for real-world agents, especially in data-scare settings. We solve this challenge via a technique that identifies a few,

distinct behavior patterns among agents using clustering, and pools data by bucketing agents according to these

behavior patterns.(5) Finally, we evaluate using both synthetic as well as real data from a maternal healthcare ap-

plication, and show improved performance over existing baselines.

5.2 Preliminaries

5.2.1 Stationary RestlessMulti-Armed Bandits

A stationary RMAB instance consists ofN independent 2-actionMarkov Decision Processes (MDP)130, where

eachMDP is defined by the tuple {S,A,R,P}. S denotes the state space,A is the set of possible actions,R is

the reward functionR : S × A × S → R andP represents the transition function. L denotes the total length

of horizon over which the MDP continues. In stationary RMABs,P is assumed to be constant (stationary in

time) throughout this time horizon. We use Pαs,s′ to denote the probability of transitioning from state s to state

s′ under the action α. The policy π, is a mapping π : S → A that selects the action to be taken at a given state.

The total reward accrued can be measured using either the discounted or average reward criteria to sum up the

immediate rewards accrued by the MDP at each time step. Our formulation is amenable to both, although we

use the discounted reward criterion in our study.

The expected discounted reward starting from state s0 is defined asVπ
β (s0) = E

[∑∞
t=0 β

tR(st, π(st), st+1|π, s0)
]

where the next state is drawn according to st+1 ∼ Pπ(st)
st,st+1 , β ∈ [0, 1) is the discount factor and actions are selected

according to the policy mapping π. The planner’s goal is to maximize the total reward.

In context of the engagement monitoring problem, the stationary RMAB formulation models the engage-

ment behavior of each beneficiary as anMDP corresponding to an arm of the RMAB. Pulling an arm corre-

sponds to an active action, i.e., making a service call (denoted by α = a or α = 1), while α = p or α = 0 denotes

the passive action of abstaining from a call. The state space S consists of binary valued states, s, that account for

the recent engagement behavior of the beneficiary; s ∈ [NE,E] (or equivalently, s ∈ [0, 1]) where E andNE de-

note the ‘Engaging’ and ‘Not Engaging’ states respectively. For each action α ∈ A, the beneficiary states follow a

Markov chain represented by the 2-state Gilbert-Elliot model44 with transition parameters given by Pαss′ , as shown

in Figure 5.1. With slight abuse of notation, the reward functionR(.) of the MDP is simply given byR(s) = s
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for s ∈ {0, 1}.

NE E

1− PαE,E

PαE,E

PαNE,E

1− PαNE,E

Figure 5.1: The beneficiary transitions from a current state s to a next state s′ under action α, with probability Pα
s,s′ .

5.2.2 Whittle Index Solution Approach

Computing the optimal policy for an RMAB is PSPACE-hard in general, even when the transition functions

are stationary and perfectly known.125. Whittle in164, proposed an index-based heuristic, known today as the

Whittle Index, that can be solved in polynomial time. Today, the Whittle solution approach is the predominant

technique used for solving the RMAB. It hinges around the key idea of a “passive subsidy”, which is a hypotheti-

cal reward offered to the planner, in addition to the original reward function for choosing the passive action. The

Whittle Index is then defined as the infimum subsidy that makes the planner indifferent between the ‘active’ and

the ‘passive’ actions, i.e.,:

W(s) = infλ{λ : Qλ(s, 0) = Qλ(s, 1)} (5.1)

However, passive subsidy is well-defined only if a technical condition called ‘indexability’ is satisfied. Further, in-

dexability also guarantees the asymptotic optimalilty of the Whittle Index technique. TheWhittle approach has

been shown to be asymptotically optimal for the time average reward problem160 and other families of RMABs

arising from stochastic scheduling problems47.

5.2.3 RelatedWork

Healthcare Intervention Planning The healthcare domain has seen several studies on patient adher-

ence for diseases like HIV154, cardiac problems144,33, tuberculosis82,127, etc. These studies propose models that

operate by predicting beneficiaries at a high-risk of defaulting on the prescribed programs. However, oftentimes,

the pool of beneficiaries marked as high-risk itself can be large, and thus prioritization of beneficiaries for inter-

vention becomes a challenge.
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Optimization of limited intervention resources has been widely studied in the past, for applications such as

campaign optimization via phone outreach87,37. Some studies also consider application to public health123, but

assume that access to some social network of beneficiaries is available. When such a network is unknown or when

optimization over multiple timesteps is involved, RMABs have been shown to be useful in assisting engagement

monitoring in many other adherence or awareness programs such as149,31.

RestlessMulti-Armed Bandits (RMABs) This framework has been popularly adopted to tackle sequen-

tial resource allocation problems in a myriad of application domains such as anti-poaching patrol planning132,

multi-channel communication systems95, sensor monitoring tasks45, UAV routing85 etc. Even in the public

health domain, several works104,86,18,123 show applicability of RMABs for the engagement monitoring and inter-

vention resource planning problem. However, most of these works assume agents to follow the Markov property.

In addition, most of these works also unrealistically assume perfect knowledge of the RMAB parameters.22,15,115,

present Whittle Index-based Q-learning or Deep RL approaches for handling unknown RMAB parameters.

However, their techniques either assume identical arms or rely on receiving large number of samples from each

arm. This may be an unrealistic requirement in setting such as the maternal healthcare program, where the over-

all stay may be limited— a beneficiary may drop out or stop engaging with the program few weeks post enrol-

ment unless an intervention convinces them to do otherwise.102 reports results from a real-world experiment

with 23003 beneficiaries demonstrating the utility of RMABs for optimizing use of limited service calls for maxi-

mizing beneficiary engagement in the program.

Clustering in the context of Multi-Armed Bandit and Contextual Bandits has received significant attention

previously43,90,172,88, but these studies do not consider the restless bandit setup.111 tackles a non-stationary setup

with stochastic rewards, while16 infers model parameters from independent studies in absence of historic data.

Non-Stationary Bandits Several other works consider non-stationary bandits175,136,17 in which the re-

wards from bandit arms are allowed to change with time, but are not dependent on arms chosen or satisfy other

simplifying assumptions and thus do not capture the complexities of the RMAB setting.
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5.3 EngagementMonitoring Problem

We formalize the engagement monitoring and intervention planning problem as follows. The setup consists of a

cohort of N agents in a health program, each with 2-states (‘Engaging (E)’ denoted by s = 1 and ‘Not Engaging

(NE)’ denoted as s = 0) participating for a duration of L timesteps. At a each timestep, there are k intervention

resources available to encourage agents to engage with the program. Depending on whether an agent received

such an intervention or not, and depending on the time-step in the program, each agent may transition from a

state st at time t to a state st+1 at timestep t + 1, with some probability Pαstst+1(t). The states and state transition

matrix may be unique for each agent i ∈ [N] and may be formally represented as st[i] and Pαstst+1(t)[i], but we

drop i from the notation (as above) when the agents index i is irrelevant. Note that this setup is different from a

stationary RMAB in that the transition function P is not stationary, but is a function of time t. In this problem,

the planner represents the health worker responsible for managing the engagement outcomes for the set of agents

being catered to.

Data We assume that the planner has access to a bunch of historical dataD from previous agents enrolled in

the program. D consists of two parts: For the first part, each agent inD has an associated static feature vector

f. In the context of maternal healthcare, these may be demographic features such as age, income, location, etc.

The second part consists of state and action trajectories over the L timesteps recording the engagement status of

agents each timestep. In our problem, both the state and action are assumed to be binary variables. In the ma-

ternal healthcare example, the state represents the engagement status of enrolled mothers and the action variable

denotes whether or not the mother was screened for receiving service calls that timestep.

ProblemDefinition The planner’s goal is to maximize the total engagement across the agent cohort over

the duration of the program. Formally, the planner wishes to maximize the total reward (either discounted or

average):

R̄ :=
∑
t∈[L]

∑
i∈[N]

Rt(i). (5.2)

In doing so, the planner has access to a limited budget k of intervention resources (such as manual service calls

to mothers) to nudge agents to the engaging state. The goal of the planner is to decide which k agents to select
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for delivery of intervention (out of theN agents in total) at each time step t, to maximize the overall engagement.

Note that the state transition matrix Pαstst+1(t)[i], governing the agent behavior is unknown to the planner for all

agents.

5.4 Methodology: Planning in RMAB-NS

5.4.1 Whittle Index Approach

We adopt the Whittle Index technique as our solution approach. Typical approaches entail adopting value iter-

ation to estimate the value functionsQλ(s, 0) andQλ(s, 1). This method however fails, given the time-varying

transition matrices. We circumvent this issue in two stages. First, for small residual horizon values, we modify the

Bellman equation by appropriately supplying the applicableP(t) at time-step t, to compute the finite-horizon

value functions,Qt
λ(s, 1)instead. These can be computed as shown below:

Qt
λ(s, a) = R(s, a) + λ.1{a==0} + β.

(∑
s′

P(t).Vt+1
λ (s′)

)
whereP(t) = Pas,s′(t). Finally, we modify Equation 5.1 and apply a binary search based algorithm of132 to search

for the index λ satisfying: Qt
λ(s, 0) = Qt

λ(s, 1). This method provides apparatus to compute the index for any size

of planning horizon L. However, the second stage of our solution consists of leveraging the structure ofP(t) to

compute the index for larger horizons inexpensively. We present this technique in Section 5.4.3.

5.4.2 Conditions for Indexability in RMAB-NS

In this subsection, we show results on indexability from the RMAB-NS setup. Indexability is crucial to guaran-

teeing existence of the Whittle index in the first place, and also to prove its optimality.

Theorem 13. The RMAB-NS problem instance with time-varying transition parametersP(t) is indexable under

the same sufficient conditions of indexability for the standard RMAB problem.

Proof Sketch. We prove the theorem by showing a reduction of the RMAB-NS problem to a standard RMAB

setup, using a state space expansion technique that incorporates the time-step twithin the state definition. We
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also add a dummy sink state that the MDP transitions to almost surely at the end of the horizon length L. This

expands the state space to size ‖S‖L + 1. We then show that the passive and active Q-values in the original

RMAB-NS problemmatch the corresponding Q-values in the reduced problem (differing by upto constant).

Thus if the reduced problem with augmented state space satisfies the indexability condition in difference of the

Q-values, it also implies indexability for the RMAB-NS problem. Existing results on conditions for indexability

of observable MDPs5 thus also extend to our setup.

5.4.3 Fast Algorithm

In this section we propose a fast algorithm for computing the intervention policy when the transition parameters

change as a linear function of residual horizon. Our algorithm is particularly useful if the planning horizon is

large. The central idea powering our algorithm is based on the following proposition:

For an agent with transition parametersP(t) changing linearly with time t, the Whittle indexWτ(s) can also

be approximated as a linear function of the residual horizon, τ for large values of τ.

As shown in Figure 5.2, the Whittle index trend can be decomposed and approximated as a two-piece func-

tion. The first piece represents the index for small horizon values (≈ 0 ≤ x ≤ 5 in the figure). Previous work100

establishes the ‘index decay’ phenomenon which shows that the index value decays as the residual horizon ap-

proaches zero.100 also proposes a technique in which the Whittle index in the index decay phase can be approxi-

mated as a linear or logistic function.

The second piece captures the linear trend for large horizon values, stemming from the non-stationary transi-

tion parameters (≈ x > 5 in figure 5.2). Previous work100 fails to account for the impact of non-stationary pa-

rameters, stopping at only addressing index decay. Whereas previous work regards the index value to be constant

for large horizons, our contribution is to leverage the observed linear index trend and propose to approximate the

Whittle index using a one-switch piece-wise linear function. This technique allows sampling the Whittle index

only at a few values of residual horizon τ and interpolate to other values, without having to compute the exact

index for all τ. We describe the algorithmic details in Algorithm 4.
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Algorithm 4: Fast Algorithm
1: Input: Transition functionP(t) changing linearly with size S× A× T for every time step in

horizon
2: ComputeWhittle Indices for four values of residual horizon:
3: W0(s) := WI(horizon = 0) = 0(known to be 0)
4: W1(s) := WI(horizon = 1) = Pα=1

s,1 − Pα=0
s,1

5: WL−1(s) := WI(horizon = L− 1)
6: WL−2(s) := WI(horizon = L− 2)
7: Compute t∗, the point of intersection of the two-piece linear curves as:

t∗ = L− W1(s)−WL−1(s)
WL−2(s)−WL−1(s)

− 1
8: initializeWt(s) as an array of size L.
9: SetWt(s) = t.W1(s) ∀ t in 0 ≤ t ≤ t∗.
10: SetWt(s) = WL−1 + (WL−2 −WL−1)(L− 1− t) ∀ t in t∗ ≤ t ≤ L.
11: returnWt(s)

Figure 5.2: Whittle index (on y‐axis) computed for the two possible states (blue and orange lines) shows an approximately piece‐wise
linear trend as a function of residual horizon (on x‐axis), when the transition functions change linearly with time.
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5.5 Inferring Transition Parameters

While the richer RMAB-NS model comes with more expressive power and allows for better optimized interven-

tion planning, it also significantly amplifies the challenge of learning the appropriate model parameters, especially

from scarce data. We counter this issue by proposing a novel technique of grouping agents with similar transition

parameters into clusters to aid parameter estimation.

5.5.1 Discovering Behavior Patterns

We hypothesize that the transition behavior of agents being catered to, belongs to one of a finite collection of

unique behavior types. These behavior types may be unique to the population of agents and type of application

considered, and may be potentially different for different application domains. We aim to identify these unique

behavior types through the available historical dataD. We leverage unsupervised clustering techniques, which

provide a natural solution to this task of identifying agents with similar behavior patterns, and allow grouping

them together.

ClusteringMethodology

Clustering for trajectories has been extensively studied in the existing literature19. Our method operates by ex-

tracting relevant feature representations from the trajectories by boiling them down to a vector of informative

attributes, which can then be supplied as an input to standard clustering algorithms. We use k-means clustering

in our setup.

To unearth behavior patterns among agents, we consider their observed state and action trajectories {st} and

{at}. The limited active action resources mean that the passive action transition samples are more abundantly

available than the active samples. We utilize these passive samples to compute point estimates of the average pas-

sive transition probabilities for the observed time horizon as, P̂0ss′ :=
η{st=s}→{st+1=s′}|a=0

η{st=s}|a=0
, where η denotes the

number of agents in the group satisfying the condition on state transition specified in the subscript, under an

action a. This point estimate, computed separately for each agent in the training set (historical data,D) encodes

the representative vector. We perform clustering using available techniques such as k-means, over these estimated

P̂0ss′ values, arriving at C distinct clusters of transition values. Each cluster represents a group of beneficiaries with
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similar behavior patterns. These clusters are discovered organically from data without needing manual segrega-

tion or specification by hand of possible behavior patterns.

All agents within each cluster are assumed to share the same transition probability values. This allows pooling

of samples from several agents together, helping circumvent the challenge of limited data for parameter estima-

tion, particularly for active transitions. We estimate time-dependent transition parameters, P̂ass′(t) for each cluster

c ∈ [C] as: P̂ass′(t) :=
η{st=s}→{st+1=s′}|a

η{st=s}|a
where η denotes the number of agents in the group satisfying the condition

on state transition specified in the subscript, under an action a ∈ {0, 1}.

Choosing ClusteringHyperparameters

The number of clusters, C is a tunable hyperparameter. For large values of C, some clusters could be spread too

thin, leading to insufficient samples to accurately estimate transition parameter values. On the other hand, mak-

ing C too small can conflate distinct innate behavior patterns into a single cluster, giving rise to a more coarse-

grained model. We generate an elbow plot measuring the clustering error to inform the choice of C as shown in

Figure 5.3(a). In our experiments, for the maternal health program dataset, we arrive at C = 40 as the optimal

choice for empirical evaluation.

5.5.2 Inferring Behavior Patterns

We use these estimated parameters to construct a look-up table, ℘, in which, for each cluster c ∈ [C], ℘(c) stores

the sequence of non-stationary transition probabilities P̂ass′(t) computed ∀t ∈ [L] using the above method. We

employ a predictive model φ to map each beneficiary to their cluster assignment c, using the demographic feature

vector f as: c = φ(f). We implement φ using a Random Forest model, but our method can admit any other

implementation for φ.

5.6 Evaluation Testbed

5.6.1 Limitation of existing approaches

Restless Bandit Models typically model each arm of the bandit as anMDP with fixed transition parameters, Pαss′ .

Simulations based on this model operate by computing a point estimate for the transition parameters P̂αss′ from
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Figure 5.3: (a) Elbow plot measuring the clustering error informs the choice of ideal number of clusters. (b) The best‐fit Markov simula‐
tor (dashed line) can only manage to crudely capture actual behavior, even when trained on the actual observations. The richer MMSim
simulator on the other hand (solid line), is more expressive and is better suited for simulating an RMAB‐NS environment.

available historical data to simulate transitions under new policies. However, while the markov assumption

makes it analytically tractable, in effect, it restricts the possible trajectories spanned by the model to a specific

subclass of all possible trajectories. For some classes of agents in the real-world, the Markov model can prove to be

a crude approximation limited by the expressive power of the markov model.

On the other hand, simulations via fine-grained agent based models are impracticable to run in this scenario,

given limited data on individual beneficiaries to inform tailored behavior models. Consequently, these simulated

RMAB evaluations are only as veracious as the Markov assumption and may not dependably extend to real-world

settings.

Figure 5.3(b) shows evidence of this phenomenon. We consider the engagement trajectories of beneficiaries

participating in the maternal healthcare study presented in102. We extract the best fitting stationary transition

parameters P̂αss′ for these beneficiaries from the observed transitions according to the Markov model and use that

to simulate effect of the same actions as in the original study. In Figure 5.3, we plot the timestep on the x-axis

and measure the engagements (either simulated or actual) on the y-axis. The dashed lines in Figure 5.3 show, via

visual inspection, that the simulation output is far from the actual numbers (red triangles). The nature of curve

is significantly different, as the output of the Markov simulator tends to saturate to its stationary state quickly,

whereas the engagement values observed in practice continue to decline steadily.
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Figure 5.4: Overview of pipeline. The proposed Multi‐environment Simulator involves discovering suitable environments from data that
represent beneficiary behavior well. MDP environment, Oscillatory environment and others are examples of potential behavior models
that could be discovered from actual data.

5.6.2 Overview of Simulator

To overcome this issue of limited evaluation accuracy in simulation, we propose a new simulation technique—

theMulti-Model Simulator (MMSim)— that we show yields more accurate predictions. The key idea powering

MMSim is to forgo the Markov assumption and build richer behavior models learnt from data. To avoid the

challenges that ABMs encounter, MMSim pools data from agents with similar behavior patterns. Figure 5.4

gives a broad overview of MMSim. Note that the simulation environment operates independent of the policy

generation module. The simulation environment treats the policy generation step as a black box, accepting the

policy π as an input. It then simulates the effect of this policy π depending on the model it implements (for e.g.

MDPmodel). In contrast to the Markov simulator, the coin tosses for each agent in MMSim are implemented

via bespoke behavior models, designed to capture the unique transition behavior patterns, characteristic of their

cluster.

5.7 Empirical Evaluation

In this section we evaluate our proposed RMAB-NS approach and solution technique on real as well as synthetic

datasets. We build up the evaluation in five stages: (1) Evidence of non-stationary behavior patterns identified

from real data (2) Evaluation of simulation testbed (3) Evaluation of planning algorithm (4) Evaluation of plan-
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ning in combination with inferring real-world transition parameters (5) Synthetic data evaluation of fast algo-

rithm.

Real Data: Service Call Allocation for Maternal Health For our empirical analysis, we obtain

data collected in a real-world experiment reported in102. The experiment was carried out in partnership with an

Indian non-profit, ‘ARMMAN’, and involved 23003 new or expecting mothers. The experiment spanned 13

weeks betweenMay—July 2021, during which period all beneficiaries were provided with weekly automated

voice calls delivering crucial health-related information. The weekly engagement status of these mothers with

the voice calls was tracked, and on the basis of which, manual service calls were delivered to a small fraction of

mothers each week, to encourage them to engage with the automated calls.

The data consists of two parts. For the first part, each beneficiary has an associated set of static demographic

features, such as age, income, education level, location, etc. These features are recorded when beneficiaries enroll

into ARMMAN’s maternal health information program with the help of health workers. They also collect infor-

mation such as phone owner in the family, gestation age, number of children, preferred language and preferred

slots for the automated voice messages during enrolment. These features constitute f, the static feature vector

available for each agent in the RMAB-NS model. Beneficiaries provided both written and digital consent for

receiving automated voice messages and service calls.

The second part consists of trajectories of engagement status of beneficiaries over the 13 weeks of the experi-

ment, along with binary action data indicating whether or not the beneficiary was screened for receiving service

calls that week. ARMMAN also stores this listenership information regarding the automated voice messages

together with the registration data in an anonymized fashion.

ARMMAN considers that if a beneficiary stays on the automated voice message for more than 30 seconds

(average message length is 1 minute), then the beneficiary has engaged. If a beneficiary engages at least once with

the automated voice messages sent during a week, they are assigned the engaging (E or s = 1) state for that time

step and non-engaging (NE or s = 0) state otherwise.
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5.7.1 Real Data: Behavior Patterns Unearthed

We test out the proposed methodology on the real-world data generated from the maternal health experiment

and find that it churns out a finite number of unique behavior patterns exhibited by beneficiaries. We generate

the look-up table ℘ using k-means clustering on data pooled together from all participant beneficiaries in the

experiment. Figures 5.5c, 5.5b and 5.5a, illustrate some examples of patterns identified in ℘. In each of these

figures, we plot the transition probability Pp01(t) on the y-axis, as a function of time, t on the x-axis. We also com-

pute 95% confidence intervals for an estimated transition probability value p̂, using standard results for bernoulli

random variables as C.I.(p̂) = z
√

p̂(1−p̂)
n .

For instance, Figure 5.5a shows a group of beneficiaries displaying a flat (time-invariant) transition probability

curve, indicating that their behavior could be approximated well using a Markov model. Figure 5.5c on the other

hand shows beneficiaries with transition probabilities that decay with time and Figure 5.5b represents beneficia-

ries with a similar such unique pattern.

(a)Markov behavior (b) Unique pattern (c) Downward pattern (d) Upward Behavior

Figure 5.5: Distinct behavior patterns among beneficiaries are unearthed from data. (a): Some beneficiaries show decaying transition
probabilities (b) Some beneficiaries display unique behavior characteristics. (c) Some beneficiaries show fixed probabilities, indicating a
Markov model would be a good fit.

5.7.2 Real Data Evaluation of Simulation Testbed

In this section, we empirically evaluate our proposed simulation technique pitting it against the existing simula-

tion technique for RMABs. We again test our approach on the real-world data from the maternal health applica-

tion domain.
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Predictive accuracy of simulator

The goal of this subsection is to evaluate the accuracy of our proposed simulation technique in predicting the

engagement trajectories of new beneficiary cohorts, using the behavior patterns learnt from observing the trajec-

tories of beneficiaries in the training data. We establish via two experiments, that our proposed simulator does

a better job at simulating the engagement outcome than the existing Markov simulator. We test the following

methods: (1)Markov Sim denotes the traditional Markov simulator that assumed anMDPmodel for each agent

in simulation. (2)MMSim is our proposed simulator that works with temporally changing transition proba-

bilities. (3)Actual denotes the actual engagement numbers observed in the real-world experiment mentioned

previously.

Apportioning Improved Prediction Quality to Simulator

In this experiment, the goal is to compare and evaluate the simulation outputs of both simulators, given perfect

information about the transition pattern clusters of all beneficiaries. The key idea behind this setup is to take

the performance of the predictive model supplying the cluster predictions out of the equation. This allows us to

apportion the contribution of the simulation technique, predicting the engagement behavior for a known class

label. We divide the available data randomly, into a 80-20 train-test split as follows:

Training Data: We assume both simulators have access to the training dataDtrain, consisting ofNtrain benefi-

ciaries, where for each beneficiary, there is a trajectory of states {st} ∀ t ∈ [L] and a sequence of actions chosen

{at} ∀ t ∈ [(L− 1)] recorded. These state trajectories would later be used to perform clustering and assign cluster

labels to each beneficiary.

Test Data: The test dataDtest, similarly consist ofNtest beneficiaries each with their own state and action se-

quences, {st} and {at} respectively. Each simulator is fed with only the action sequences {at} as an input, while

the true state sequences {st} are kept hidden. To sidestep the predictive model performance in predicting the

cluster assignments of the test set beneficiaries, in this experiment, we also supply the true class labels c̄ ∈ [C]Ntest

of the test beneficiaries, to the simulator in both simulation methods.

Results: Figure 5.6a compares the total engagements predicted by both simulators each week, against the back-

drop of actual numbers observed in the real-world experiment. Figure shows the output for a single simulation
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(a) (b) (c)

Figure 5.6: (a) MMSim matches the real numbers more closely as compared to the traditional MDP‐based simulator, despite even know‐
ing the behavior categories of beneficiaries. (b)MMSim shows much lower Root Mean Square Error (RMSE) in the number of weekly
engagements. (c) MMSim still achieves lower RMSE than the Markov simulator, even after including the predictive model in the evalua‐
tion.

instance. The closer the simulated output is to the actual output, the better. We repeat the experiment over 30

random instances of the simulation (random seeds) and formalize the error measurement over these as explained

below.

In Figure 5.6b, we measure and compare the RMSE error in weekly engagements. This is measured as:

εRMSE :=

√∑t=L
t=1
(∑

i∈Ntest

(̂
st(i)− st(i)

))2
L

We argue that this error metric is more useful at reporting the true picture than an error metric comparing simply

the total engagements, because it is possible for the latter to be very low by predicting the correct total engage-

ments, despite having a large error in weekly engagement predictions. In Figure 5.6b, we find that our simulator

produces significantly lower εRMSE than the Markov simulator.

Integrating Cluster Prediction in Evaluation

In this setup, we aim to test the simulator performance while also including the cluster prediction model (φ) in

the pipeline. We retain the exact train-test split and training data design as the previous experiment. From the test

set, we now withhold information about the true class labels, c̄.

We use a Random Forest model to implement φ, i.e. to infer the cluster assignments for new beneficiaries with

unknown behavior patterns, by utilizing their known demographic feature information. This problem fits within

the standard supervised learning framework and can admit any available machine learning model for φ.
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Figure 5.7: Planning Evaluation: Evaluated on planning performance alone, given full knowledge of the transition function, Whittle‐NS
outperforms other baselines.

Figure 5.6c shows the predictive error measured for 30 random instances of the simulation. Through the

lower error statistics, we conclude that our new simulator performs better than the Markov simulator.

5.7.3 Evaluation of Planning Algorithm

In this section we evaluate our solution against other existing baselines when the non-stationary transition func-

tions are perfectly known. We use the MMSim testbed to simulate test policies using transition parameters

drawn from the maternal health program data. We consider the following baselines: (1)Nobody places no ser-

vice call interventions. (2)Round Robin selects beneficiaries for service calls in a cyclic fashion in a set order.

(3)Whittle-Stat is the Whittle index solution that models the beneficiary behavior as a stationary MDP. (4)

Whittle-NS is our proposed solution using the RMAB-NS model.

We run the evaluation for a setup identical to the original experiment used to collect the data102. Specifically,

our simulation consists ofN = 23003 beneficiaries with an intervention budget of k = 450 service calls per week

for a period of L = 13 weeks. We measure the performance of an algorithm in terms of the total engagements

summed up across all beneficiaries over the L timesteps. All results are averaged over 30 independent runs of the

simulation.

Figure 5.7 shows that our algorithm outperforms the other competitor algorithms. The intervention benefit

achieved byWhittle-NS in improving engagement over the control (‘Nobody’) group is 55% higher than the

intervention benefit of the best stationary baseline.
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Figure 5.8: Full Pipeline Evaluation: RMAB‐NS solution outperforms stationary baselines, notwithstanding the added challenge of
inferring more complex model parameters.

5.7.4 Real Data: Evaluation of Full Pipeline

Having seen promising results from the planning component, we next test our model with the full pipeline in-

volving the added challenge of inferring the unknown non-stationary transition parameters.

To enlarge the performance difference between policies for a clearer comparison, we ramp up the budget level

used in this experiment, simulating k = 1350 service calls per week.

Figure 5.8 plots the weekly engagement numbers on the y-axis resulting from different intervention policies

with the week numbers on x-axis. We see that by end of week-12, our proposedWhittle-NS policy improves over

existing methods and leads to 367 additional engagements compared to the state-of-the-art Whittle index policy

for the stationary RMABmodel.

We show that Whittle-NS outperforms stationary baselines despite the added challenge of learning richer

transition parameters. The intuition is that owing to a limited number of unique behavior patterns among bene-

ficiaries, both models — the stationary RMAB or the non-stationary RMAB-NS— perform similarly in terms of

predicting behavior patterns. However, because the RMAB-NS model encodes much richer information within

each behavior pattern, it is able to leverage the same for planning better actions.

5.7.5 Synthetic Domains: Evaluation of Fast Interpolation Algorithm

In this subsection, we test out our fast interpolation algorithm on synthetically generated datasets in which the

transition parameters of agents vary linearly with time. We sample a linear functionP(t) at random, and measure
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Figure 5.9: (a) Runtime comparison figure. Our linear interpolation algorithm brings a 30× speedup for L = 100. (b) Performance
evaluation figure: the speed‐up comes with a marginal error in estimation of Whittle index .

the exact and interpolated whittle indices for horizon values of upto L = 50. We repeat the same process for 30

independently sampled transition matrices.

Figure 5.9(a) compares the run-time involved for planning using the exact Whittle-NS algorithm and for

the interpolation algorithm. We see that interpolation dramatically speeds up index computation achieving a

speedup of 30× for L = 100. Figure 5.9(b) shows a scatter plot with the exact and interpolated values on the

x-axis and y-axis respectively. We see that the interpolation algorithm unlocks this speedup while estimating index

values nearly as well as the exact Whittle-NS values.

5.8 Conclusion

In this work, we focus on Restless Bandits with non-stationary transition probabilities. We show from real-world

data that such a model can be useful as real-world agents may not conform to the MDP assumption of the stan-

dard RMAB framework. We propose a Whittle index based solution technique for time varying transition pa-

rameters and derive conditions on performance guarantees of the algorithm. We also present an approximate,

but faster interpolation algorithm that achieves a 30× speedup for a planning horizon of 100. Additionally, we

also present a technique to infer the richer set of transition parameters in the real world, and show via evaluations

on both real-wold as well as synthetic data that our proposed RMAB-NS approaches outperform the stationary

baselines across the board.
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6
Deployed “SAHELI” for Increasing Impact of

Mobile Health Programs

6.1 Introduction

Mobile health (mHealth) programs, that leverage the widespread use of cellphones, are a crucial resource for

bridging information inequities for underserved and marginalized communities in the global south153,50, es-

pecially in areas such as public health and social services where access to authoritative information is unevenly

distributed. Many non-governmental organizations (NGOs) periodically send automated voice messages to im-

prove health outcomes of beneficiaries. However, in spite of high adoption, adherence is a key challenge in public
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health information programs10,65,40,110. NGOs often employ live service calls made by health workers to boost

engagement via encouragement or through logistic changes requested by beneficiaries. However, given the com-

paratively large number of potential beneficiaries, it is important to maximally utilize the limited availability of

health workers, and thus it is crucial to identify the best recipients for such service calls.

Figure 6.1: A beneficiary receiving preventive health information

While AI models can help health workers in optimizing their service calls, deploying these models in the con-

text of mHealth programs for underserved communities presents unique challenges. First, available data is sparse

and skewed (because data is necessarily limited from small numbers of service calls). Second, NGOs are con-

strained by a very limited compute budget. Third, responsible deployment of the AI models is particularly im-

portant in such settings.

In this chapter, we show how we address these research challenges in our deployed AI model – a deployed

Restless Multi-Armed Bandits (RMAB) model for public health – together with our NGO partner ARM-

MAN9 to help improve the quality of service of their mHealth program focusing on maternal and child care.

India suffers from high maternal and neonatal mortality rates107,169, and ARMMAN9 runs one of the largest

mHealth programs in this domain in India. Our system, Saheli (System for Allocating Healthcare-resources Ef-

ficiently given Limited Interventions), is the result of deep partnership of an interdisciplinary team of researchers.

Saheli (meaning ‘female friend’ in Hindi) is designed to assist, rather than substitute, health workers in their

normal workflow. The key contributions of deployed Saheli are:

• Saheli includes the first deployed application of RMABs for public health, and it is continuously in use

by our partner NGOARMMAN.

• A key novelty of the deployment is that it both predicts RMABmodel parameters and computes opti-

mal policies; in contrast with most past research that has focused on computing optimal policies. To that
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end, we provide an improved and robust machine learning prediction framework by performing model

selection and evaluation of real-world RMAB systems.

• We deployed Saheli on cloud infrastructure with an emphasis on frugality throughout the end-to-end

pipeline given the resource constraints of the NGO partner.

• We present Responsible AI practices to address ethical considerations for deploying an AI system for im-

pact in underserved communities, particularly in this non-western context.

Saheli has been developed as a platform, with the ability to be scaled to more NGOs in more domains. Our

source code and data dictionary are available on Github*.

6.2 RelatedWork

While several works in the healthcare domain have studied patient adherence for diseases like HIV154, cardiac

problems144,33, and tuberculosis82,127, these largely focus on building machine learning classifiers to predict

future adherence to prescribed medication. With such models, the pool of beneficiaries flagged as ‘high-risk’ can

itself be very large. Furthermore, the one-shot predictions of these models fail to capture the sequential decision

making aspect of the problem. Other approaches that consider sequential decision making challenges, such as

Pollack et al. 128 , Liao et al. 92 , Brisimi et al. 25 adopt reinforcement learning techniques to build personalized

health monitors that can send timely notifications or activity suggestions to users. However, these models assume

notifications can be sent at will, and as such, do not address the challenge of limited service call resources.

Alternatively, RMABs have seen significant theoretical investigation, motivated by resource allocation chal-

lenges, such as in anti-poaching patrols132, multi-channel communication95, sensor monitoring and machine

maintenance tasks45. While they provide important contributions, none of these works have seen a real-world

deployment, and most have not been field tested.

Key reasons for the lack of RMAB deployment are their significant computational and data requirements. For

example, just the optimization problem of computing the optimal allocation π, while assuming the transition pa-

rametersP are available is already known to be PSPACE-hard125. Furthermore, in the real world, these transition

*https://github.com/armman-projects/SAHELI
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parameters are not just unknown but also hard to infer for real beneficiaries enrolling with ARMMAN and other

similar health programs, as they come with no historical transition data. Despite such difficulties, our work is the

first to deploy RMABs in tackling a real-world maternal healthcare task via frugal design choices discussed below.

6.3 Problem Introduction

ARMMAN is a non-governmental nonprofit organization based in India, focused on improving maternal and

child health outcomes among underserved and underprivileged communities9. Their flagship program, ‘mMi-

tra’, is a mHealth service that aims to leverage the extensive cellphone penetration in India to send out critical

preventive health information to expectant or new mothers via automated voice messages. A large fraction (∼

90%) of mothers in the mMitra program are below theWorld Bank international poverty line168. Despite the

acute economic disadvantages faced by these mothers, such automated voice messages prove to be a feasible mode

of information dissemination at scale, thanks to the wide accessibility of low-cost phones.

After enrollment into the mMitra mHealth program, beneficiaries receive 1-2 minute voice messages with

health information according to beneficiary’s gestational age or age of the infant. Unfortunately, despite the

proven effectiveness of this information program in improving maternal health outcomes, ARMMAN often

sees dwindling engagement rates among beneficiaries, including frequent dropouts. Around 22% of beneficia-

ries dropout of the program after just 3 months. To counter this issue, ARMMAN leverages health workers that

place live service calls (phone calls) to a limited number beneficiaries on a weekly basis to encourage beneficiaries’

participation, address requests/ complaints, and attempt to prevent engagement drops. This raises the key ques-

tion of deciding which beneficiaries to pick for live service call in order to improve engagement rates among the

beneficiaries.

6.4 RestlessMulti-Armed Bandits (RMAB)

The Restless Multi-Armed Bandits (RMABs) model was first introduced byWhittle 163 to address limited re-

source allocation problems, but has not received much attention in terms of real-world deployments. An RMAB

consists of a set ofN arms, where each arm is associated with a two-actionMDP131. AnMDP {S,A, r,P}

consists of a set of states S , a set of actionsA, a reward function r : S × A × S 7→ R, and a transition
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function P, where Pαs,s′ is the probability of transitioning from state s to s′ when action α is chosen. The reward

function in our set up is given as r(s, α, s′) = s′. AnMDP policy π : S 7→ Amaps to the choice of action

to take at each state. The long-term discounted reward for a policy π, starting from state s0 = s is defined as

Rπ
γ (s) = E

[∑∞
t=0 γtr(st+1)|s0 = s

]
where st+1 ∼ Pπ(st)

st,st+1 and γ ∈ [0, 1) is the discount factor. The total reward in

the RMAB is defined as the sum of the total rewards accrued by individual arms of the RMAB.

In the setup we consider, each arm of the RMABmodels a beneficiary enrolled with ARMMAN, who can

be in one of two states S = {0, 1} (corresponding to ‘Not Engaging (NE)’ and ‘Engaging (E)’ respectively).

Engagement in our setup was defined in consultation with the subject matter experts at ARMMAN: we define a

beneficiary as engaged when she listens to at least one call in a week for more than 30 seconds. The action space

for each arm consists of two actions,A = {0, 1}, where 1(0), typically called the active (passive) action, refers

to selecting (not selecting) the beneficiary for the live service call. Beneficiaries may transition from say their E

state to NE state (or other transitions) from one week to the next week based on their transition probabilities

defined on passive or active actions. The planner’s goal is to select actions on arms (deliver live service calls) so as

to maximize the total reward, i.e. number of beneficiaries in the engaged state, accrued by the RMAB. However,

the budget constraint demands that the planner can choose no more than k arms (k � N) for the active action at

any given timestep, i.e., no more than k live service calls per week.

The dominant technique for solving RMABs uses the Whittle Index heuristic163, which is shown to have

asymptotic optimality under some conditions161, and to provide excellent performance in practice132. Whittle

indexes are formulated using the idea of passive subsidy, and informally rank arms so as to choose the top k, based

on how attractive it is for a planner to activate each arm. For computingWhittle index, we use binary search

algorithm fromQian et al. 132

Previous Study:

Our previous study conducted in April 2021103 is the first to present real-world service quality improvement

using RMABs in the context of mMitra program. This study tested an RMAB-based policy against two baselines

of interest, and showed RMAB outperforming its competitors. The study spanned 7 weeks and included 23, 003

real-world beneficiaries who were distributed in three groups corresponding to the RMAB policy, round robin
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(RR) and current standard of care (CSOC). Whereas RR corresponds to a non-AI heuristic for systematically

calling beneficiaries, CSOC did not call any individuals. The results from this pilot study are shown in Table 6.1.

Improvements RMAB over CSOC RMAB over
RR

RR over CSOC

% reduction in total benefi-
ciary engagement drops

32.0% 28.3% 5.2%

p-value 0.044 0.098 0.740

Table 6.1: RMABs demonstrate statistically significant superior performance when compared against other non‐AI approaches, namely
current standard of care (CSOC) and round robin (RR), as showed by Mate et al. 103 .

The pilot results demonstrated that the RMABmethod cuts∼ 30% of the beneficiary engagement drops

experienced by the other groups. Furthermore, whereas RMAB achieves statistically significant improvement

against CSOC (p < 0.05) and RR (p < 0.1), RR fails to achieve any statistically significant improvement over

CSOC. This key result forms the basis of relying on RMAB-based strategy over other non-AI strategies as a basis

of Saheli. In this chapter, we describe the journey from this initial study to the final deployment. Whereas we

use the same overall RMAB learning and optimization approach, we made multiple changes to provide signifi-

cant enhancements that reduce data anomalies and improve computational performance of this RMAB-based

strategy. Additionally, our deployed cloud application now automates the data exchange process with the NGO’s

systems while requiring minimal compute resources to be feasibly handled by the NGO.We now describe the

end-to-end Saheli system.

6.5 Deploying Saheli

We now introduce Saheli and its architecture. We begin by discussing the different components, and follow

that up with the description of the AI pipeline. We then discuss the frugal design choices – both in modeling and

infrastructure – that were required to finalize the deployment.
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Figure 6.2: Pipeline of Deployed System. Beneficiary information on app UI is available only to the health worker in charge.

6.5.1 System Architecture

We first describe all the interactions within Saheli’s ecosystem (refer Figure 6.2). The health workers in the field

periodically register beneficiaries through door-to-door visits or at the hospitals (step 1). The socio-demographic

data such as age, language, income range, as well as the information on gestational age is then entered into the

database maintained by ARMMAN (step 3). Automated voice messages tailored to the beneficiaries’ gestation

age are sent with the help of a telecommunication provider (step 4). The meta-data of the outcome such as du-

ration of the call, failure reason etc, is also pushed to ARMMAN’s database . As beneficiaries’ engagement with

the voice messages diminishes over time, live service calls are made by ARMMAN to encourage beneficiaries to

engage with the program (step 10). However due to limited resources on the NGO’s side, only a limited number

of live service calls can be made each week. The AI pipeline predicts which beneficiaries would benefit most from

receiving a service call in any given week. This list of beneficiaries is then generated at the start of each week and

distributed across health workers in an automated fashion as shown on Figure 6.2 in steps through 2-9.

The AI pipeline (described in the next section) for a dynamically growing population is deployed on infras-

tructure hosted on Google Cloud Platform (GCP). The AI pipeline is wrapped as an application using Flask,

which is containerized using Docker. The docker image is created to contain the requisite code scripts for the

AI pipeline with apt environment requirements. Our default GCP container settings are to use 6 vCPUs and

16GiB memory. A weekly scheduler job on GCP triggers the Flask application, which then generates the list of

beneficiaries.

Step 8 in Figure 6.2 shows the generation of the list of beneficiaries that should be intervened in the given

week using the AI pipeline. This list is ingested in ARMMAN’s cloud databases, which serve as the back-end of a
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client mobile application (screenshot provided in Figure 6.2) used by the health workers. This client application

randomly distributes the list of scheduled service calls among health workers based on their weekly availability.

An illustrative screenshot (not real beneficiary) is also shown in Figure 6.2. The health worker sees a list of ben-

eficiaries that he/she can call, along with certain features like number of call attempts. They can also click on a

particular beneficiary and see more information about the beneficiary and past calls with them (not shown). The

calls are made through the week with a maximum of 3 call attempts to the same beneficiary. All the beneficiaries

in the generated list receive the aforesaid service calls. The model is currently providing services to beneficiaries

enrolling at an average rate of 20K beneficiaries per month with a budget of 1000 calls per week.

Saheli streamlines the entire deployment workflow in a singular pipeline, and automates its orchestration

and execution, making this process computationally efficient, cost-effective, and easy to debug. As more benefi-

ciaries get enrolled periodically, the beneficiary cohort in the application can now be updated automatically.

Health workers can then make the calls (step 10 in Figure 6.2) to these beneficiaries motivating them to listen

to the voice messages and address any logistic issues (e.g. time slots, language of communication, and others) that

might be affecting their engagement. As we show later in the chapter, motivating the beneficiaries is key to driv-

ing adherence. However, it bears repeating that given the limited availability of the health workers, they can only

make a limited number of calls. In our AI pipeline we focused on identifying the right set of beneficiaries to call,

and not on automating the contents of the service call. This is a key design choice in Saheli: we thus complement

the human-to-human engagement between the health worker and the beneficiary, and together they contribute

towards aiding a particular beneficiary and driving higher engagement with the mHealth program. This model

of working together with the health workers embodies ARMMAN’s core ‘tech plus touch’ philosophy9 and is

essential to our successful outcomes.

6.5.2 Pipeline Description

This section describes the modules in the AI pipeline for both the offline model training and the online model

execution. The offline model creation begins with the processing of the training data (i.e. historic data from past

mHealth studies), clustering of processed data, and the RMABmodeling per cluster. The transition probabilities

and theWhittle indexes are then learned per cluster. Additionally, a mapping from socio-demographic features
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of a beneficiary to a cluster is also learned offline. This mapping is used to treat a new beneficiary during model

execution – transition probabilities andWhittle index values for the new beneficiary are given by the correspond-

ing values of the beneficiary’s mapped cluster. These individual modules are now described. For data privacy

reasons, the data pipeline only uses anonymized data and no personally identifiable information (PII) is made

available to the AI models.

(a) (b) (c) (d)

Figure 6.3: Figures (a) and (b) show anomalous engagement behavior while figures (c) and (d) are genuine behaviors. The y‐axis shows
the proportion of cluster‐population in engaging state.

Data Processing:

We train the model on a dataset obtained from historic data collected by ARMMAN, consisting of demographic

features and listenership patterns. However, during the pre-deployment trials, we observed some anomalous en-

gagement behaviors – the engagement behavior for some beneficiaries was extremely spiky and unexpected. Fig-

ures 6.3(a) and (b), shows two such anomalous groups with a clear peak and dip contrasted with groups having

genuine engagement behavior. Upon investigation we found that this spiky behavior resulted from unanticipated

real-world events like network outages.

We detect and exclude such anomalies from Saheli’s data training pipeline. We first group beneficiaries based

on their passive transition probabilities. For grouped beneficiaries, we then obtain a running mean of their en-

gagement over time where the mean is calculated over a window of 3 weeks. We filter out all groups with more

than 20% change in running mean engagement within a week. Figures 6.3(c) and (d) show two groups that don’t

exhibit anomalous behavior and are maintained in the data pipeline.

Additionally, further discussions with ARMMAN pointed out long-term engagement issues in some benefi-

ciaries, such as the registration of a wrong or out-of-service phone number, or the beneficiary not being pregnant.

Live service calls in these cases are not productive. Thus, as a pre-processing step, we do not consider beneficiaries

who have not listened to any automated voice calls in the past 6 weeks.
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Clustering:

We face a data scarcity and skew challenge in our domain. Specifically, our training dataset comprises of benefi-

ciaries from our own past studies where intervention data is available for only a limited set of these beneficiaries.

Thus, to define the parameters of the RMABmodel, we cluster beneficiaries as an effective way of addressing

data scarcity. We cluster the beneficiaries per their transition behaviors for passive actions using k-means cluster-

ing. We obtain transition probabilities for each of these clusters by aggregating their transitions as a whole.

However, the optimal number of clusters is a design choice not readily addressed by k-means. We experi-

mented with the number of clusters ranging from 1 to 100, and looked at the distortionmetric. Distortion is the

sum of squared distances of each point from its corresponding centroid, where smaller distortion implies better

clustering. We plot the distortion values for multiple number of clusters and find 20 to be the ideal choice using

elbow-method. The results are shown in Figure 6.4a where the x-axis is the number of clusters and the y-axis is

the distortion value. This has the added advantage of offering computational frugality.

(a) (b) (c) (d)

Figure 6.4: Figure (a) shows elbow plot with distortion for varying number of clusters. Figures (b), (c), and (d) show the distribution of
predicted clusters using the Feature Only (FO), Feature and Warm‐up (FW), and Warm‐up Only (WO) mapping functions.

Mapping Features to Clusters:

When a new beneficiary enrolls into the system, the system only knows about their demographic data. We there-

fore need to learn a mapping of a beneficiary’s socio-demographic features to clusters, to enable inferring tran-

sition probabilities andWhittle indexes for newly enrolled beneficiaries (step 6 in Figure 6.2). We experimented

with different mapping functions to identify the best one: Features Only (FO) mapping - beneficiaries’ socio-

demographic features only; Warm-up Only (WO) mapping - transition probabilities computed from warm-up

period (first 6 weeks post enrollment); and lastly Feature andWarm-up (FW) mapping - using a combination of

the above two.
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We compute Mean Absolute Error between predicted and ground truth passive transition probabilities as a

performance metric and found them as [0.40, 0.37, 0.38] for FO, FW, andWO strategies respectively. In addi-

tion toMAE, we plot the distribution of beneficiaries predicted in different clusters (refer Figures 4.3(b), (c) and

(d)). Having a sparse cluster distribution is undesirable since large clusters lowers the granularity of Whittle in-

dex planning. As an extreme example, if all beneficiaries are mapped to a single cluster, they would all have the

same transition probability and thus the sameWhittle indexes. Since the cluster size is nowmuch larger than the

number of arms to be pulled, the beneficiaries within that cluster would be chosen randomly for receiving service

calls, which would degrade the performance.

Thus, to ensure equitable cluster distribution, we computed Entropy and Gini index values for the predicted

distribution of number of beneficiaries per cluster. Entropy values came out to be [2.81, 2.56, 2.04] for FO, FW,

andWO respectively, and Gini indexes were [0.29, 0.48, 0.57]. Given the error similarities for the three strategies,

and higher entropy / lower Gini index implies more equitable clusters, we chose FO as our strategy.

Figure 6.5: Index computation is significantly faster with the infinite sleeping approximation.

RMABModeling andWhittle Index Computation:

These transition probabilities per cluster are used to compute Whittle indexes for all beneficiaries, similar to Mate

et al. 103 , i.e., computing 2 × k unique indexes where k is the number of clusters. There are twoWhittle indexes

per cluster as beneficiaries may be in the engaging or non-engaging states. Whittle index indicates the benefit

of performing an active action on a beneficiary: higher Whittle indexes are chosen to receive service calls (step 7

in Figure 6.2). By mapping beneficiaries to clusters, the Whittle indexes can be pre-computed per cluster at the
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beginning of the deployment, thus providing a frugal solution ideal for large scale deployment with minimal

resources.

Frequency of Repeated Live Service Calls:

We initially enforced a frequency restriction that required ensuring no beneficiary be called more than once in

η+1 weeks (we set η = 3). Algorithmically, we implement this by appending η sets of dummy ‘sleeping states’ to

the state space that we force the beneficiaries to transition through each time they are called. This augmentation

yields a state space of size 2η+2 and a transition matrix of size (2η+2)×(2η+2). However, our pilot tests reveal

that repeat calls made within just η = 3 weeks are less effective. For instance, we observed that 30% of ‘Non-

engaging’ beneficiaries converted to ‘Engaging’ due to the first service call; however this number drops to 20% for

repeat calls made just three weeks later. To address this, along with the subject matter experts at ARMMAN, we

increased the sleeping period, η, to 12 weeks.

6.5.3 Frugality of SystemDesign

Successful deployments of AI systems like Saheli in social good settings requires conscious focus on frugal-

ity across the system design. This is to reduce both the direct costs (e.g. number of calls) and indirect costs (e.g.

computational requirements) on our NGO partners. Here are some design choices in Saheli that have led to

frugality in its operations:

1. Clustering of beneficiaries allows us to compute transition probabilities andWhittle indexes at a cluster

level as opposed at the beneficiary level. Since we use 20 clusters for thousands of beneficiaries, it provides a sig-

nificant scale-up in performance, while simultaneously reducing data demands for learning RMABmodel pa-

rameters.

2. As described above, we updated the ‘sleeping states’ parameter η to 12. However, this increases the Whittle

index computation time sharply, owing to a bulky transition matrix of size 26 × 26. With frugality in mind, we

use the insight that a sleeping constraint with large η can be approximated as a permanent sleeping constraint,

akin to setting η to+∞, for the purposes of index computation. This is because in index computation, the con-

tribution of reward terms appearing after η timesteps is discounted by a factor of γη (γ < 1), which precipitously
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diminishes to zero. This simplification compresses the transition matrix to 4 × 4, and unlocks a 25× speedup in

index computation, as shown in Figure 6.5.

3. Lastly, multiple frugal design choices were made in the orchestration of cloud infrastructure. Specifically,

we run our services on-demand using a task scheduler on default container settings of 6 vCPUs and 16GiB mem-

ory.

6.6 Application Use and Payoff

We now discuss the impact of Saheli on both the beneficiaries as well as the AI community in more detail. Sa-

heli is deployed and in continuous use at ARMMAN. It has already reached 50K beneficiaries, and is on track

to reach one million beneficiaries by the end of 2023.

6.6.1 Engagement Results

In order to evaluate the impact of live service calls through Saheli, we track the engagement behavior of a co-

hort of 5000 beneficiaries for 12 weeks, registered between February 2022 to April 2022. We further filter 2538

beneficiaries with engagement between 10% to 90% as these would benefit the most from live service calls. Ad-

ditionally, we create a holdout set of beneficiaries registered in the same time period but are not given any live

service calls (we obtained ethical approvals before our studies; see section Responsible AI practices for further

discussion). We make sure that both the Saheli and holdout groups have equal number of beneficiaries, equal

number engaging beneficiaries at the start of experiment, and similar socio-demographic features.

Figure 6.6(a) shows howmany engagements did not occur in the holdout group that occurred in the Saheli

group, aggregated cumulatively across months. It demonstrates that the Saheli group received significant ben-

efit: the Saheli group has an additional 300 engaging beneficiaries over the holdout group cumulatively at the

end of three months.

We also measured the benefit for the Saheli group over the holdout group in terms of time spent listening

to mMitra voice calls. More time spent implies more content exposure for our beneficiary population, as well

as better adherence with the mHealth program. In particular, by the end of month 3, the Saheli group had

listened to 60, 000 secondsmore of content than the holdout group (Figure 6.6(b)). Overall, at the end of three
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months, Saheli prevented drop in engagements by 30.5%with an additional content exposure of 46.4% in

comparison to the holdout group. This analysis demonstrates Saheli’s success in achieving our core objectives

of improving information dissemination.

(a) (b)

Figure 6.6: (a) Prevention in drop in engagement (cumulative) (b) Increased time spent listening to calls (cumulative)

6.6.2 Impact of Live Service Calls

We performed a qualitative study to understand human-AI collaboration due to the AI system. We conducted

a total of 24 interviews, 2 focus group discussions, and approximately 90 hours of observation. We found that

healthcare workers engaged positively with targeted predictions through the AI system that integrated into their

day-day workflows seamlessly. It helped them improve the engagement of beneficiaries, provided an opportunity

to support them in their care journeys and understand their needs.

We also investigated the reasons for why live service calls helped improve engagement with ARMMAN’s mMi-

tra mHealth program from the perspective of the beneficiary. Specifically, we conducted a follow-up study with a

sample of beneficiaries who were given live service calls one year ago. We could successfully reach out to 306 ben-

eficiaries, out of which 134 recalled the details of the service call from a year ago. Table 6.2 shows the responses

to our follow-up study by these 134 beneficiaries. Particularly, 50.75% beneficiaries engaged more with mMi-

tra calls after getting more information about the program. The service calls also helped improve listenership by

making logistical updates such as updating delivery date (9.7%), changing time slot of receiving the call (8.21%) or

updating the phone number (2.99%).
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Did the call help you to listen to the mMitra calls more regularly? # of Benefi-
ciaries

% of Bene-
ficiaries

Yes, after getting more information about mMitra, I am listening to the calls more
regularly

68 (in 134) 50.75%

Not really 30 22.39%
Yes, after updating my delivery date, I was able to get the right information 13 9.7%
Yes, after changing time slot, I am able to listen to the calls more regularly 11 8.21%
Have not asked my wife 4 2.99%
Yes, after changing the number, I am able to listen to the calls more regularly 4 2.99%
Any other 4 2.99%

Table 6.2: Follow‐up study responses

6.6.3 Fairness of the RMABmodel

Model fairness in non-western contexts has not received much attention in the literature138. Responsible AI

principles of the Government of India’s NITI AAYOG 120 for example, requires non-discrimination based on

sensitive markers like caste and religion. These sensitive data are specifically not collected by ARMMAN for

mMitra, thereby, making it inaccessible to Saheli’s AI models. We worked with public health and field ex-

perts to evaluate other indicators such as education, and income levels that signify markers of socio-economic

marginalization. ARMMAN’s goals for SAHELI are to favor beneficiaries of lower income and lower education

levels for service calls. We conducted a post-hoc analysis of the deployment to evaluate if SAHELI indeed met

such preferences.

(a) (b)

Figure 6.7: Distribution of (a) education (highest education received) and (b) income (monthly family income in Indian Rupees) across
cohort that received service call and the whole population.

Figure 6.7(a) shows the distribution of beneficiaries aggregated across Saheli’s enrollments split into different

education levels in India. We compare those who were chosen for live service calls by Saheli versus the enrolled
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population. The x-axis portrays the education levels; for instance grade 1-5 represents primary school, grade 6-9

middle school, 10th pass junior high, and 12th pass represents senior high school. The y-axis is the % of bene-

ficiaries per education category. For instance, Saheli calls 5.5% of beneficiaries who had no formal education

(illiterate), whereas this group was 2.8% of the overall enrolled population.

We did a similar analysis split by income as depicted in Figure 6.7(b). The x-axis contains buckets of average

monthly income of the beneficiary household in Indian Rupees, and the y-axis denotes the % of beneficiaries

in that income category. As an example, the category ‘5K-10K’ contains around 30% of the beneficiaries in the

population, and almost 40% of the beneficiaries who received a service call.

Both these figures show that Saheli favors the beneficiaries in the ‘illiterate’ education category and in the

‘5K-10K’ income category. This distribution is in line with ARMMAN’s goals – Saheli favors beneficiaries of

lower income and lower education levels for service calls.

6.6.4 EnablingNewResearch

From identifying the right problem to solve, to creating an AI solution, testing it in pilot, iterating on learnings

and finally, establishing an end-to-end integrated system, we made our journey to this deployment. With this, we

provide other AI researchers an important case study to take an AI model from the lab out on the field. In our

pursuit of deployment of Saheli, we uncover several research challenges, e.g., we overcame the challenges of data

scarcity and frugal design. This hopefully inspires additional research in robust and computationally efficient

approaches for RMABs and other AI applications for mHealth.

6.7 Responsible AI Practices

We recognize the responsibility associated with deploying real-world AI systems that impacts underserved com-

munities. In our approach, we have iteratively designed, developed and deployed the system in constant coor-

dination with an interdisciplinary team comprised of ARMMAN’s field staff, social work researchers, public

health researchers and ethical experts. Along with seeking ethical approvals through review boards at Google

and ARMMAN, we have taken additional steps to constantly monitor and mitigate the risks associated with Sa-

heli by abiding with AI principles at Google 48 as well as key policy making bodies in India such as the NITI
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AAYOG 120 . Our success draws attention to the practices around responsible AI including ethics, fairness and

accountability in the non-western context138 where Saheli is deployed. We now discuss three of the core Re-

sponsible AI principles that impacted the design of Saheli.

Socially beneficial: The intent of this work is to bring the power of AI in service to some of the most marginal-

ized communities in the global south. The challenges faced by our team were limited resources in every dimen-

sion – limited data on the beneficiaries, limited compute available to the NGO, and limited health workers to

make the outreach calls. Thus, we had to develop new algorithms that were not data hungry, and were bounded

in their computational requirements. To that affect, Saheli is the first large-scale deployment of RMABs for

public health.

Avoid reinforcing unfair bias: As discussed in the previous section, we have undertaken extensive analysis to

study model’s fair treatment of beneficiaries.

Incorporate privacy design principles: We take significant measures to ensure participant consent is un-

derstood and recorded in a language of the community’s choice at each stage of the program. Data stewardship

resides in the hands of the NGO, and only the NGO is allowed to share data. This dataset will never be used by

Google for any commercial purposes. In this dataset, sensitive features such as caste and religion are never col-

lected and stored. Saheli’s data pipeline only uses anonymized data and no personally identifiable information

(PII) is made available to the AI models. Lastly, domain experts at ARMMAN have been deeply involved in the

development and testing of Saheli and have provided continuous input and oversight in data interpretation,

data consumption and model design.

6.8 Maintenance

Since SAHELI has been automated end-to-end, there has not been any manual intervention in the run of the

system. We have been reviewing the system regularly in collaboration with ARMMAN. Though no updates

have been required since deployment, the modular composition of Saheli enables us to make updates to the AI

model without affecting other components.
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6.9 Lessons Learned

Over the course of one year of our experiments moving from Pilot study to Deployment, we learned several

lessons along the way. Most importantly, we learned that even a successful pilot study can’t be translated as-is

in to a full-scale deployment, and that several considerations are critical for wide-scale adoption of AI tools and

scaling up of impact.

Selecting the right problem: There are multitude of problems that require to be solved to address the needs

of the underserved communities. In our interactions with ARMMAN, we realized that we could create the most

impact with our techniques by improving the selection of the right beneficiaries for manual intervention, as opposed

to automating the communication with the beneficiary. Our choice of problem is consistent with the ‘tech plus

touch‘ philosophy of ARMMAN 9 , and ensures that we complement the human expertise of the health worker.

This way, each chosen beneficiary continued to have a one-on-one interaction with a health worker, while simul-

taneously improving the overall engagement with the mHealth program.

Immersion into the real-world problem: We learned that immersing in the working of a NGO and public

health infrastructure is critical in understanding the context of the problem. The authors went on multiple field

visits to understand the stakeholders involved in the mMitra’s workflow. The health workers interact with the

beneficiaries across multiple mHealth programs, and thus can speak to the needs and behaviors of the beneficia-

ries. For instance, upon interacting with these health workers, we understood how telecom outages lead to more

anomalous and incomplete data than we had anticipated. We also understood the decreased value in utility of

calling the same beneficiary again shortly after a previous call. These field visits forced us to re-evaluate our assump-

tions, and led to better data processing and modeling choices, as discussed in the earlier sections. For instance, after

these discussions, we incorporated a new anomaly detection mechanism in our data pipeline, and impacted our

choice of horizon (η) in our RMABmodel.

Fairness of AI models: AI algorithms and datasets can reflect, reinforce, or reduce unfair biases. It is imper-

ative on AI designers to seek to avoid unfair impacts on people, particularly on underserved and marginalized

communities. As discussed in the section on Responsible AI practices, we worked with public health and field

experts to demonstrate fairness of our approach. As we mentioned before, 94% of our potential beneficiary pop-

ulation are belowWHO’s poverty index. Studying multiple socio-demographic attributes was essential to evaluate
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fairness of our approach. Weworked closely with ethics experts, the ARMMAN’s ethics team, and Google’s ethics

teams and extensively validated the fairness of our models.

End-to-end integration testing: In addition to the lessons learned on problem selection and model devel-

opment, we also ran into several issues in our end-to-end integrated pipeline. On one occasion, we saw poor re-

sults because the data schema had evolved in the data storage pipeline at ARMMAN. Testing of our application

required our NGO partner to be equally involved in the validation of Saheli’s outputs – as domain experts, they

are better equipped to identify counter-intuitive behaviors. Our experiences uncovering issues in the end-to-end

pipeline led to improved communication practices, better documentation and tighter test goals. Social good ap-

plications like Saheli has real-world consequences for beneficiaries in underserved communities, and it is critical

that there be a real partnership for testing and integration.

6.10 Conclusion

In this chapter, we presented Saheli, the first ever deployment of restless multi armed bandits in the public

health domain for allocation of limited resources. Saheli is built on an improved and robust framework that

both predicts RMAB parameters and computes optimal policies for it, in contrast with most past research that

has only focused on computing optimal policies. It has been built with careful design choices inspired by close

interactions with all stakeholders. It incorporates numerous lessons learned by embedding ourselves in the real-

world domain. Saheli has been deployed on cloud infrastructure with an emphasis on frugality, and has reached

out to 50k beneficiaries so far and aims to reach 1 million by 2023. Furthermore, in this chapter, we also discuss

the importance of responsible AI practices in deploying AI systems at scale, especially in the social domain. This

work serves as an important case study for AI researchers and NGO communities alike to take MLmodels from

the lab and deploy them in the field.
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7
Improved Evaluation of Algorithmic Resource

Allocation Policies

7.1 Introduction

We consider a subclass of randomized controlled trials (RCTs) wherein the goal of the trial is to evaluate the ef-

ficacy of an algorithmic resource allocation policy. Such policies recommend an allocation (action), commonly

utilizing tools such as reinforcement learning42,148, variations of the multi-armed bandit framework66, network

optimization166,157, etc. As machine learning becomes increasingly widely applied in socially critical settings,

such policies have been used to allocate limited resources in a variety of domains, including campaign optimiza-
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tion87,37, improving maternal healthcare21, screening for hepatocellular carcinoma86, monitoring tuberculosis

patients104, etc. Such a policy may rank all individuals within a group, and offer a scarce resource, such as a home

visit by a health worker, to the highest-ranked individuals within the group.

RCTs evaluating these resource allocation policies consist ofM experimental arms labeled {1, . . . ,M}, with

each arm consisting ofN unique, randomly assigned individuals. The policy in each experimental arm prescribes

an allocation of resources while respecting some resource constraints. This process may be either single-shot (allo-

cations made once) or sequential (new allocation decisions made adaptively over a series of rounds). Each policy,

dictating its own resource allocation strategy, is evaluated at the end of the trial by analyzing the outcomes data

from its corresponding experimental arm. The group-level decision making of resource allocation policies creates

new challenges for their experimental analysis. In a standard RCT, the aim is to evaluate the treatment effect –

there is no resource constraint, so all participants receive treatment – for the average participant7. As the out-

comes of all participants are independent, analysts can simply compare outcomes in the treatment versus control

groups. However, trials of resource allocation policies aim to evaluate the group outcome of a set of individuals to

whom the policy is applied (some of whom receive the resource, and some who do not). Even when the number

of individuals in the trial is large by the standards of a normal RCT, randomized trials of allocation policies can

suffer from high variance, leading to noisy and potentially erroneous estimates of the treatment effect.

This high variance stems from two sources. First, the outcomes of individuals within a given arm are corre-

lated because allocation policies typically consider all individuals jointly in making an allocation decision (e.g., to

respect budget constraints on the total number of individuals who may receive an intervention). This interde-

pendence implies that we only see one independent sample of a policy’s performance per RCT, instead of many

(in contrast with one sample per participant in a standard RCT). Second, for many individuals the allocation de-

cisions made by different policies being compared may coincide. For instance, no matter the policy applied, many

individuals may consistently get screened in, or many may get screened out of receiving a resource. Because these

individuals are oblivious to the policy employed and receive identical allocations under different test policies,

their outcomes are never truly impacted by the policy employed. Yet their presence generates additional vari-

ance in the average outcome of the group due to stochasticity in their outcomes, independent of the policy being

evaluated. To our knowledge, no prior work has proposed strategies to mitigate these sources of variance in RCTs of

resource allocation algorithms, despite the increasing use ofML-based policies in socially critical domains.
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An intuitive first attempt at variance reduction would be to share information across arms. For example, we

could average out fluctuations in the outcomes of individuals who do not receive an allocation by pooling to-

gether such individuals across all of the test policies. Unfortunately, such naive estimators are biased because the

distribution of which individuals receive a resource (or not) is different across the trial arms – indeed, assessing the

comparative efficacy of these distributions is exactly the point of the trial. A more sophisticated strategy would be

to exploit overlap between the policies via inverse propensity weighting estimators which reweight participants in

one arm to match the actions a different policy would have taken84,14. However, such estimators are themselves

subject to notoriously high variance, particularly when the overlap between policies is poor177. Moreover, as we

discuss in Section 7.4.1, propensity scores are impossible to calculate for sequential intervention settings, where

unseen states prevent us from evaluating individual-level propensities for a different policy.

Our key contribution fixing these issues is a novel estimator for the treatment effect of resource allocation

policies which exploits overlap between arms in a principled manner, is guaranteed to reduce variance, and is

applicable to either single-stage or sequential settings. The main idea is to find a subset of individuals with the

following property: if we ran a hypothetical trial where the arm assignments of these individuals were swapped,

the allocations made for all individuals remain unchanged. Our estimator identifies such sets of individuals with

this property and averages the outcomes of all corresponding hypothetical trials (which are observable because no

allocation decisions were altered from the original trial). We make the following contributions: (1) we propose

this novel estimator and prove that it produces an unbiased estimate of the treatment effect with a guaranteed

reduction in variance compared to the standard estimator, implying that it has strictly smaller average error; (2)

we show how this estimator can be implemented in a computationally efficient manner for a class of policies en-

compassing those most commonly used in real-world allocation decisions; (3) we conduct experiments on three

domains leveraging synthetic, semi-synthetic, and real-world data. We show the application of our techniques to

real-world case study data illustrating its usefulness in solically critical domains. Across the board, our estimator

substantially cuts error (by up to∼ 70%) compared to available estimates.
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7.2 Problem Formulation

RCT Setup: We consider a set ofN individuals. Each has a feature vector x := [xo, xu], where xo ∈ Ro

denotes the individual’s observable features (such as demographics) while xu ∈ Ru denotes unobservable

characteristics which nevertheless influence outcomes. A resource allocation policy π jointly considers allN

individuals, their joint matrix of observable featuresXo ∈ RN×o, and prescribes an allocation (action) vector

a := π(Xo) ∈ AN whereA denotes the space of possible actions for each individual. The allocations amust

respect resource constraints specific to the domain. On example is a budget constraint ||a|| ≤ B capping the to-

tal cost of allocated actions. Each individual then stochastically yields an outcome state s ∈ S , according to an

unknown function P∗(x, a, s) denoting the probability of the individual receiving outcome s. We use r(s, a) to

denote the reward accrued by the policymaker from this outcome. We remark that this notation is equivalent to

the standard potential outcomes framework137 where r(s, a) is the realization of the individual’s potential out-

come given action a and P governs the joint distribution between x and the potential outcomes. We adopt the

present notation for easy generalization to the sequential setting.

The goal of an RCT is to compareM such resource allocation policies usingM randomly constructed experi-

mental arms C1, . . .CM where Ci denotes the set of individuals assigned to the ith arm. We use C := {C1, . . .CM}

to denote this particular assignment of individuals to experimental arms, chosen uniformly at random from C,

which denotes the universal set of all possible assignments. At the end of an RCT, the analyst can compare the

performance of theM allocation policies by comparing the sum total of rewards accrued by participants within

each arm, given as Eval(πm) :=
∑

i∈Cm
r
(
s(i), a(i)

)
.

Sequential RCTs: We also consider RCTs involving a multi-stage resource allocation setup. Such RCTs run

for a total of T rounds (the single-stage setting above corresponds to T = 1), where allocations at ∈ AN must

be made at each timestep t ∈ [T] subject to potentially time-dependent resource constraints. At each time t,

each individual has a state s belonging to state space S . We use st to denote theN individuals’ states at timestep

t. The policy πmay consider the entire history of previous states and actions to generate a new action allocation

as at := π(Xo, s0:t−1, a1:t−1). Similarly, the individual transitions to a new state st+1 according to the probability

function P∗(x, s0:t, a1:t+1, st+1). The state and action trajectories of allN participants are recorded for each of the

M experimental arms as matrices: S1, . . . , SM ∈ SN×T+1 and A1, . . . ,AM ∈ AN×T, which facilitates similar
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computation of Eval(πm) :=
∑

i∈Cm
r(S[i],A[i]) as defined for the single-shot setting.

Index-based policy: We define a specific class of policies – called ‘index-based policies’ – for which a compu-

tationally efficient estimator can be derived. Index-based policies rank individuals according to some scoring rule

that determines a prioritization among individuals for allocation of a resource. Such policies encompass most

relevant resource allocation policies commonly employed in practice due to their transparency and ease of imple-

mentation156. Note that this class includes seemingly unlikely candidates that allocate resources to individuals

cyclically in a set order or benchmarks such as ‘control’ groups (details in Appendix E.2). Formally, index-based

policies are defined for a binary action spaceA := {0, 1}with a budget constraint allowing at most B individuals

to receive the action a = 1. The policy computes a time-dependent index Υ(xo, s0:t−1, a1:t−1) for each individ-

ual at each timestep t, based solely on the individual’s observable features xo, trajectory of states s and history of

actions a received. The policy π allocates action a = 1 to the top B individuals with the largest values of index Υ.

At any given time t, we assume the value of Υ is unique for each individual, i.e., the policy induces a total order-

ing. The key feature of an index-based policy is that Υ is computed independently for each individual based only

on their own features and history.

Problem Statement: Eval(πm) provides a single random sample with which to estimate the expected perfor-

mance of allocation policy πm, combining the randomness in the assignments C ∈ C and the randomness in

outcomes within each C, engendered by stochasticity in state transitions. Let Eval∗(πm) be the expected value of

the performance of πm:

Eval∗(πm) := ESm∼P∗EC∼C

[
Eval(πm)

]
(7.1)

We assume data available from only a single run of an RCT. Our goal is to build an estimator that estimates

Eval∗(πm) accurately from just the single RCT instance. We remark that our results make no distributional

assumptions about the set of individuals in the trial, e.g., we do not require them to be IID from some distri-

bution. Rather, we treat the observed individuals as fixed (nonrandom) and propose techniques that use only

the randomness in the assignment process of the RCT. The only assumption required is that individuals’ state

transitions are independent, akin to the standard stable unit treatment values assumption (SUTVA) in causal in-

ference57. This is aligned with the growing emphasis on design-based inference in causal inference (c.f.62,112,1),
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which allows us to formulate methods which require minimal modeling assumptions.

7.3 RelatedWork

Off-Policy Evaluation: The most closely related previous work is the off-policy evaluation (OPE) liter-

ature, where the goal is to use samples collected under some baseline policy to inform the evaluation of a new

policy146,68,159. OPE makes frequent use of inverse propensity weighting estimators96,89; we discuss strategies for

constructing such estimators as well as their disadvantages in Section 4.1. To date, the OPE literature has largely

focused on individual-level decisions, as opposed to the group-level resource allocation we study. One exception

is slate-level OPE, where the policy recommends a ranked list of items to a user147. Slate OPE is most similar to

our single-step case, while we develop methods that extend to the multi-step setting. Additionally, slate OPE

is motivated by unobservable individual-level rewards, while we assume that individual rewards are observable

and the challenge for the single-step setting is that policies may be deterministic (preventing us from using their

methods).

Individual treatment rules: Recent work in statistics has studied experimental design and analysis for indi-

vidual treatment rules (ITR), which are similar to our class of index-based policies64,13. The crucial difference is

that ITRs make decisions independently for each individual, while in our setting the policy considers the group

of individuals jointly, which is required for exact enforcement of constraints such as budgets. Our techniques are

motivated by the need to reduce variance when policies can only be evaluated at group level.

Cluster-randomization and interference: Our setting is related to a family of RCTs known as cluster-

randomized trials (see54 for an overview). In such trials, treatment is assigned at a group level (e.g., assignment

of classrooms within a school instead of students), just as groups of individuals are assigned to policies in our set-

ting. However, cluster-randomized trials are motivated by the potential for spillover effects, where the outcomes

of one unit can influence others. By contrast, in our setting the outcomes of individuals are still independent

conditioned on the actions of the policy. Accordingly, there is no need to account for potential correlations as in

the interference literature; instead, we leverage this structured independence to develop lower-variance estimators.
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7.4 Methodology

Our goal is to leverage the overlap in decisions of multiple resource allocation policies to improve our estimate

of the reward from deploying each. We start by developing an estimator using inverse propensity weighting – a

popular approach typically adopted for such a task – and show how it can be naturally applied to the single-stage

setting. However, this natural estimator suffers from two challenges. First, inverse propensity estimators can

suffer from notoriously high variance, a phenomenon that we empirically confirm in Section 7.6. Second, the

approach breaks down entirely in the multi-stage setting, where (as detailed below) computation of propensities

is impossible due to missing data. We resolve these challenges by developing a more stable “assignment permuta-

tion” estimator, which applies to both settings and is guaranteed to reduce estimation error.

7.4.1 Propensity Scores Approach

In typical off-policy evaluation settings, inverse propensity weighting (IPW) methods reweight samples according

to the probability that observed actions would be taken by a given policy. These methods are not immediately

applicable to our problem because we do not assume that policies are randomized – indeed, explicit randomiza-

tion is rare in policies deployed by real-world governments, health systems, etc. When policies are deterministic,

the probability that they would yield an alternate action is precisely zero, leaving standard propensity estimators

undefined.

We show how to circumvent this issue in the single-step setting by leveraging an alternate source of random-

ness: the assignment in the trial itself. Calculated over the randomness in the assignment, each individual has

some probability of being assigned a given action, denoted as PrC,π[a(i) = a] (intuitively, whether they receive

a resource depends on who else the policy is comparing them to). Formally, exchanging the order of expectations

allows us to write Eval∗(π) as:

N∑
i=1

Pr[i ∈ Cm]
∑
a∈A

PrC,π[a(i) = a|i ∈ Cm]Es[r(s, a)]

Since the assignment C is random, Pr[i ∈ Cm] =
1
M . Moreoever, in the inner term, conditioning on i ∈ Cm

leaves the other members of Cm distributed uniformly at random. Accordingly, we can estimate PrC,π[a(i) =
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a|i ∈ Cm] for any policy π by drawing repeated samples of the assignment C and running π to reveal whether π

would have assigned a(i) = a given the group Cm containing individual i. Let p̂(i, a|π) denote the fraction of

these samples in which a(i) = a. A standard IPW estimator for Eval(π) is given by

1
M

M∑
m=1

∑
i∈Cm

p̂(i, a(i)|π)
p̂(i, a(i)|πm)

r(s(i), a(i)). (7.2)

In a sequential setup (T > 1), propensity score methods become entirely inapplicable for two reasons. First,

standard multi-time step IPW estimators require randomness in the policy, while we assume that policies may

be deterministic. We cannot use the alternate approach described above (leveraging randomness in assignments)

over multiple time steps, because the marginal probability that individual i receives action a(i) on future steps de-

pends on the state of all other individuals, and we do not have samples of such future states under counterfactual

assignments. Second, even if we limited to randomized policies, standard off-policy methods calculate the proba-

bility of taking exactly the observed sequence of actions in the observed states. In our case, this requires comput-

ing the probability of π selecting the vector of actions assigned to each individual, i.e, we have aN-dimensional

action space within each time step. Multi-step IPW estimators are already known to suffer from variance which

explodes exponentially in T, often rendering them impractical89. In our case, their variance would (in the worst

case) scale exponentially inN as well.

7.4.2 Main Contribution: Assignment Permutation

We present a novel approach that counters both challenges to compute a stable, accurate estimator. The key

idea behind our estimator is to identify hypothetical trials with counterfactual experimental group assignments,

whose reward outcomes can be exactly determined using the given outcomes from the original trial. We lever-

age the fact that although the state transitions depend only the received allocations, regardless of what policy π

chooses those allocations.

As a warm-up, consider a single-shot trial T in which two individuals i and j are assigned to policies πi and

πj, that make identical resource allocations a to both individuals, yielding outcomes si and sj respectively. Now

consider a hypothetical trial T †, run exactly identical to T except that the assignments of i and j are switched. If

in T †, both i and j receive the same allocation a as in T , allocations to other individuals would also remain unaf-
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fected, and consequently, all individuals would see identical inputs in both T † and T . Thus, the actual sample of

outcomes s in T is a sample from the same distribution as that induced by T †. Generalizing this idea, consider a

sequential RCT T , in which a subset of individuals’ group assignments are permuted to construct a hypothet-

ical trial T †, which sees new allocations a†t made at time t. If an individual experiences sub-trajectories of states

s0:t−1 and actions a1:t−1 till time t − 1 that are identical in both T † and T , and if the new allocation a†t received is

also identical to at, then original state sample st observed in T , is also a valid sample in T †, drawn from the same

distribution, P∗(x, s0:t−1, a1:t, st). Furthermore, inductively, the entire original state trajectory s0:T of T can be

treated as a valid sample for T † if ∀ t ∈ [T] the input sub-trajectory s0:t−1, produces new allocations, a†t that are

identical to at.

We exploit this concept to retrospectively check for all such possible reassignments, that would lead to the

same sequence of output actions given the same input sub-sequence of the state-action trajectory at all times.

The implication is that this allows us to uncover and aggregate outcomes from several such additional ‘observable

counterfactual assignments’ (defined below) in estimating the performance of a given test policy. Algorithm 5

outlines the idea for a generalM-arm setting. Later, in Algorithm 6 we present an efficient algorithm crafted for

handling index-based policies.

Definition 7 (Observable Counterfactual Assignment). For an actual assignment C, we define C† to be an ob-

servable counterfactual assignment if in a hypothetical trial with assignments C†, for each t = 1...T the actions

each policy would assign to each individual are identical to the original actions received, conditioned on the state and

action histories (s0:t−1, a1:t−1) matching up until time t− 1.

Estimation via Assignment Permutation: Let C†(C) be the set of all ‘observable counterfactual assign-

ments’ engendered by a single actual experimental assignment C. Our proposed estimator averages the outcomes

of all such observable counterfactuals:

Eval†(πm) :=
∑

C∈C† Eval(πm|C)
|C†|

(7.3)

In Theorem 14, we show that this is an unbiased estimator for the true expectation Eval∗. The main technical

step (Lemma 23) is to show that the that C†(C) defines a partition over C (the set of all possible assignments)
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where two assignments C1, C2 lie in the same part if C†(C1) = C†(C2). Intuitively, this means that our estimator

does not “overweight” any particular counterfactual assignment; it maintains the equal weight that each has in

Eval∗.

Algorithm 5: Estimation through Assignment Permutation
Input: States : {SN×T+1

1 , . . . , SN×T+1
M }, Actions : {AN×T

1 , . . .AN×T
M }, Assignment,

C : {C1, . . . ,CM}
Output: Eval†
1: Compute C†, the set of observable counterfactual assignments of C.
2: Compute Eval†(πm) :=

∑
C∈C† Eval(πm|C)

|C†|

3: return Eval†(πm)

7.4.3 Theoretical Results

In this section, we prove theoretically that Eval†(.) gives a more accurate estimate because it is unbiased and si-

multaneously reduces variance. Let † be a homogeneous relation on C, defined as: † = {(C1,C2) ∈ C×C : C2 ∈

C†(C1)}. Intuitively, † represents existence of a valid reshuffling to arrive at a counterfactual assignment C2 from

C1.

Lemma 3. The relation † is an equivalence relation and the family of sets defined by C†(·) forms a partition over C.

All proofs may be found in the appendix. We leverage this property to prove unbiasedness:

Theorem 14. Eval†(πm) is an unbiased estimate of the expected value of the performance, Eval∗(πm) ∀m ∈ [M],

defined in equation 7.1. i.e.

ESm∼P∗EC∼C [Eval†(πm)] = Eval∗(πm) ∀m ∈ [M]

Theorem 15. The sample variance of our estimator, Eval†(π) is smaller than the standard estimator, Eval(π):

(Eval(π))− (Eval†(π)) =

1
|C|

·
∑
j∈[η]

[∑
C∈Pj

Eval2(π|C)−

(∑
C∈Pj

Eval(π|C)
)2

|Pj|

]

131



≥ 0, where {P1, . . . ,Pη} is the partition of C induced by †.

Proof Sketch. We compute the sample variance by first conditioning over the partitionPj (of the equivalence

sets defined by †) that an instance of an assignment, C belongs to and then accounting for the variance stemming

from the candidate assignments Cwithin the partition. Finally, we use the Cauchy-Schwarz inequality to show

that the right-hand-side expression in Theorem 15 is non-negative.

The variance contraction expression of Theorem 15 reduces to zero if and only if Eval(π|C) is identical ∀C ∈

Pj, ∀ j ∈ [η]; if different assignments imply different rewards then our estimator exhibits a strict improvement in

variance.

7.5 Efficient Swapping Algorithm

Identifying C† exhaustively in Algorithm 5 involves iterating through every possible assignment in C and running

the policy to determine if the assignment belongs to C†. However, the number of possible assignments |C| grows

exponentially withN, making full enumeration infeasible. We show how this computational bottleneck can be

circumvented for index-based policies with a modified estimator denoted Eval†Υ(·). This estimator implicitly

averages over a subset of the possible permutations in C†, trading off some variance reduction for computational

efficiency.

For ease of exposition, here we consider RCTs with two experimental arms (M = 2) employing allocation

policies π0 and π1 respectively. We aim to estimate Eval∗(πj)j={0,1}. Intuitively, instead of working with the

space of all possible assignments, we instead consider all individuals participating in the trial and to identify non-

overlapping groups of individuals {Gk} ⊂ (C0 ∪ C1) that satisfy certain desirable properties. Specifically, we

intend to find sets of ‘compatible’ individuals such that any subset of individuals within each group {Gk} can be

mutually swapped to arrive at either an unchanged assignment or a valid observable counterfactual assignment in

C†(C). Our intention is to compute an estimate by replacing the original reward of every individual i ∈ Gk by

the average of rewards of all individuals inGk, for every such groupGk (justification in Theorem 16). We identify

these groups by checking for two eligibility conditions pertaining to swappability of individuals.

The first eligibility condition for swapping two individuals i and j is that their original allocations a(t)must be

identical to each other ∀t, to continue to satisfy the resource constraints in both arms after the swap. To check
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for this condition, we partition individuals into super-groups {Ḡ1, . . . , Ḡκ}, putting all individuals experiencing

the same action vector a(t) ∈ AT, in the same super-group, where κ denotes the number of such super-groups.

All individuals within each Ḡk satisfy this first eligibility condition for being included in groupGk. For conve-

nience, we let φ : C0 ∪ C1 → [κ] denote a many-to-one map identifying the super-group Ḡφ(i) that an individual

i belongs to.

The second eligibility condition for swapping an individual is that their new allocation a†(t) under the new

policy must be identical to the original a(t), for the same sequence of input states as in the original trial. For each

individual i, we use a binary-valued variable Λi ∈ {0, 1} to indicate satisfaction of this second condition. We

introduce and exploit the ‘index-threshold’ property here to verify this condition efficiently. We define an index

threshold τj(t) as the smallest value among indices Υ(t) of individuals in Cj at time t, that get picked to receive

the allocation a = 1 under policy πj. To enable efficient computation, we only allow swaps within a groupGk

that maintain the index thresholds τj(t) at the same values as the original. We implement this constraint by set-

ting Λi = 0 for all individuals exactly at the index threshold. Furthermore, for other individuals i, Λi can be

cheaply determined by just verifying if the index Υπj
i (t) lies to the same side of threshold τj(t) ∀ t ∈ [T] and for

j ∈ {0, 1}. To summarize

Λi =


1 if

∏j=1
j=0(Υ

πj
i (t)− τj(t)) > 0 ∀ t ∈ [T]

0 otherwise
(7.4)

Intuitively, Λi = 1 means that a†1:T(i) = a1:T(i) and indicates that individual i satisfies the second eligibility

condition. Taking an intersection of both conditions, we form groupGk by including all individuals i ∈ Ḡk that

have Λi = 1. For each groupGk, we compute the reward of a representative average individual as:

r̃k :=
1

|Gk|
∑
i∈Gk

r(S[i],A[i]) (7.5)

In computation of the final estimate Eval†Υ(πj), we consider all individuals in the arm Cj, but replace the re-

ward of swappable individuals among those (i.e. whose Λi = 1) by r̃φ(i). We leave the rewards of other individu-
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als unchanged. Finally we compute Eval†Υ(πj) by summing up as:

Eval†Υ(πj) =
∑
i∈Cj

(
Λir̃φ(i) + (1− Λi)r(S[i],A[i])

)
(7.6)

Our theoretical analysis of this estimator establishes that it corresponds to an instance of the general permuta-

tion estimator which averages over a subset of the assignments in C† (instead of the entire set). The main idea is

that we can sub-partition C† into sets with the same value of the index threshold (shown formally in Lemma 24).

We denote the part of C† where the index thresholds are the same as in the actual trial as C†
Υ. Each permutation of

individuals within groups {Gk} corresponds to an assignment in C†
Υ(C), and the final estimator averages over all

such assignments:

Theorem 16. Eval†Υ(·) computed as per Equation 7.6 computes the average of Eval(|C) over all assignments in C†
Υ.

i.e. Eval†Υ(π) =
∑

C∈C†Υ
Eval(π|C)

|C†
Υ|

From this, Eval†Υ(πj) is easily shown to inherit the desirable properties of the general permutation estimator,

e.g., Corollary 8 proves that it is also an unbiased estimator of Eval∗(πj). The tradeoff is a slight sacrifice in vari-

ance contraction as it yields smaller partitionsPj of C (as defined in Theorem 15), since we discard assignments

with a different threshold. However, working with C†
Υ enables a computationally efficient algorithm for index

policies, avoiding the exponential runtime of the general estimator.

Algorithm 6:Reshuffling between index based policies
Input: C := {C0,C1}, States: S0, S1 ∈ SN×T+1, Actions: A0,A1 ∈ {0, 1}N×T, Indexes:
Υπ0 ,Υπ1 ∈ R2N×T

Output: Estimates: Eval†Υ
1: Group individuals according to action vectors into {Ḡk} and determine φ(i) ∀ individuals

i ∈ C0 ∪ C1.
2: Determine ∀t ∈ [T], index thresholds on both arms as:

τ̄j(t) := min
{
Υπj(i, t) |Aj[i, t] = 1, i ∈ [N]

}
3: Determine Λi ∀ individuals i according to Equation 7.4.
4: Compute groupGk as: {i ∈ Ḡk |Λi = 1},∀k ∈ [κ]
5: For each groupGk, compute the average reward of a representative individual as per Equation 7.5.
6: Compute Eval†Υ(πj) per Equation 7.6
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7.6 Empirical Evaluation

We test our proposed methodology empirically on several datasets: (1) synthetic example (2) semi-synthetic tu-

berculosis medication adherence monitoring data and (3) real-world field trial data from an intervention for a

maternal healthcare. We consider a state space S = {0, 1}, respectively representing an ‘undesirable’ and a ‘desir-

able’ state (of health, program engagement, etc.). The action spaceA = {0, 1}, denotes ‘no delivery’ or ‘delivery’

of an intervention. We assume a budget constraint, limiting the total number of interventions per time step. The

reward function is defined as r(s0:T, a1:T) =
∑

t st, translating to an objective of maximizing the total time spent

by individuals in state s = 1.

7.6.1 Synthetic Dataset

This setup consists of three types of individuals characterized by their P−matrices. P1 and P2 are designed such

that it is always optimal to intervene on P1 individuals consistently, whereas intervening on P2 individuals is

strictly sub-optimal (details in Appendix E.3.1). P3 individuals are unaffected by interventions, with transi-

tion dynamics independent of the action received. We consider two test policies π1 and π2, which are designed

such that policy πj always chooses individuals of type Pj to intervene on, when available, making π1 the opti-

mal policy. We simulate 300 P1 individuals, 300 P2 individuals and (300∗η P3) individuals and set an interven-

tion budget of 300 per timestep for T = 20 timesteps. We measure the performance lift of π1 against π2 as:

Δ := Δ(π1, π2) = Eval(π1)− Eval(π2).

In Figure 7.1a, we vary the budget on the x-axis. Each blue dot in the scatter plot shows one independent

RCT instance and measures the raw difference in rewards Δ on the y-axis. Applying assignment permutation

maps each blue dot to an orange dot. The black dashed line marks the expected value of the performance lift. Vi-

sually, both colors are centered on the black line, as both estimators are unbiased. The assignment-permuted esti-

mates lie closer to the expected value than the raw estimates, indicating a smaller sample variance. Quantitatively,

we measure the sample variance of Δ on the y-axis in Figure 7.1b. Variance reduces sharply upon applying assign-

ment permutation – for instance, at a budget level of 3%, our approach cuts the variance by 7×, from 11.3× 104

to 1.6 × 104. The intuition is that both π1 and π2 overlap in their decision to not intervene upon P3 individuals.

However, their final rewards are based partly on which P3 individual gets (randomly) assigned to which group,
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(a) Total engagements (b) Sample Variance

Figure 7.1: Estimates and sample variance in synthetic domain.

independent of the underlying policies. Assignment permutation counters this randomness by averaging over

alternate assignments of the P3 individuals.

7.6.2 Semi-synthetic evaluationwith tuberculosis dataset

We use real tuberculosis medication adherence monitoring data, consisting of daily records of patients in Mum-

bai, India, obtained from79 and simulate patient behavior by estimating the Pmatrix. More details can be found

in the appendix.

We consider two policies: a “Whittle index” policy163 that attempts to maximize long-run reward, and a

greedy policy which optimizes an estimate of next-step reward. We simulateN = 1000 patients in each arm

and vary the budget constraint. We consider both the multi-step setting (T = 10) and single step (T = 1). We

compare three estimation methods: “Raw” is the naive average of outcomes in each arm, “Permuted” our pro-

posed estimator, and “IPW” the inverse propensity estimator from Section 4.1 (available only for T = 1). In

practice, we find it necessary to trim propensity scores for IPW177 to the range [0.01, 0.99], since extreme values

lead to very large variance. This introduces a slight bias, visible in Figure 7.3b.

Table E.1 shows the sample variance of estimates returned by each method. For unbiased methods (Raw, Per-

muted) the variance is also their mean squared error; this holds approximately for IPW due to trimming. Ta-
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(a) Total engagements (b) Sample Variance

Figure 7.2: Multi‐step setting. (a) The permuted estimates (orange) are closer to the true expectation (black line) than the raw estimates
(blue) (b) Assignment permutation reduces variance.

ble E.1 includes an additional column labeled ‘n−value’. To benchmark the improvement produced by our

method, this gives the minimum number of independent RCTs that would need to be run (and averaged over)

to match the sample variance achieved by assignment permutation (computed by simulation).

For all comparisons and parameter settings, we find that our assignment permutation estimator produces a

substantial improvement in variance. Indeed, achieving a comparably precise estimate using the naive raw estima-

tor would require running anywhere from 2 to 13 independent RCTs. This underscores the importance of vari-

ance reduction – running RCTs is hugely costly and assigns many individuals to suboptimal policies; improved

analysis allows us to draw comparably precise conclusions at dramatically lower cost.

Figure 7.2 illustrates this improvement in a single example where both trial arms are the Greedy policy and so

the expected difference in rewards is exactly zero (with B = 3% and T = 10). Each dot in Figure 7.2a corre-

sponds to a single instance of a trial, with the x- and y-axes giving total engagements in the two arms. The black

dashed line (y = x) denotes the expectation, Δ = 0. The blue dots, representing raw measurements, have a wider

spread around the black line than the orange dots obtained via assignment permutation. Figure 7.2b, shows a

violin plot of the sample difference in rewards between the two arms. Both violins are centered on the zero line,

reflecting that the estimators are unbiased. The violin corresponding to assignment permutation is more com-

pact, indicating lower sample variance.
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(a) (b)

Figure 7.3: Illustration of results for single‐step setting

Table 1: Sample variance in Measured Performance Lift

T B π1 v π0 raw permuted ipw n-val

1 3% πwi v πgr 49.09 4.94 0.48 9
1 10% πwi v πgr 49.86 15.11 6.66 3
1 25% πwi v πgr 49.45 19.94 78.12 2
10 3% πwi v πwi 2381 916 NA 3
10 3% πwi v πgr 2348 728 NA 4
10 3% πgr v πgr 26356 1860 NA 13
10 10% πgr v πgr 25983 3808 NA 7
10 25% πgr v πgr 23619 5477 NA 5

In the single-step setting, the IPW estimator returns mixed results: it has the best variance for small values of

the budget, but actually performs worse than the naive raw estimator for larger budgets. Essentially, the overlap

between two policies becomes smaller as the budget increases because they agree only on the few highest-priority

individuals. Low overlap translates into extreme propensity scores, inflating variance. Figures 7.3b and 7.3a show

an illustration, where IPW often produces an improvement but is susceptible to large outliers. However, when

overlap is high and we operate only in the single-step setting, IPW can be a valuable option.

7.6.3 Case study: Real-world Trial

Our method is directly applicable to real-world settings; we show this by considering an actual large-scale RCT

reported in103 evaluating a Restless Multi-Armed Bandit-based algorithm for resource allocation in a maternal

and child healthcare. The data consists of 23,000 real-world beneficiaries, randomly split between three groups

for the trial: RMAB algorithm, baseline algorithm and a control group, which sees no interventions. Real-world

health workers delivered interventions recommended by the algorithms. We consider the performance lift of the

RMAB algorithm in improving engagement with the program in comparison to the control group and apply

our proposed permutation algorithm to the originally reported raw results. Figure 7.4 (left) plots the total en-

gagement numbers on the y-axis as a function of time (in weeks) on the x-axis. Figure 7.4 (right) computes the

lift provided by the RMAB algorithm, as defined in103 on the y-axis. Our findings suggest that the performance

lift of RMAB algorithm is larger than originally reported and by week 7, RMAB is estimated to prevent 815 en-
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Figure 7.4: Impact of permutation estimator on real‐world data.

gagement drops, vs the originally reported 622. Since this is real data, the true values are unknown. However, this

case study provides evidence that the variance reduction provided by our estimator can be significant in practice.

7.7 Conclusion

We address the critical gap of mitigating the error in evaluation of resource allocation policies through RCTs. We

propose a new estimator using a novel concept based on the idea of retrospective reassignment of participants to

experimental arms. We prove that our estimator is unbiased while simultaneously reducing sample variance, and

hence reduces error. Through empirical tests on multiple data sets – including a real-world dataset in a socially

critical domain – we show that our approach cuts error by as much as 70% and from a single given RCT, can

achieve benefits equivalent of running upto 13 independent RCTs in parallel.
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8
Conclusion and Future Vision

To conclude, my thesis centers around designing and deploying innovative AI solutions aimed at improving pub-

lic health outcomes, especially for the underserved and under-resourced communities. My thesis considers the

data-to-realized positive social impact pipeline, consisting of optimization of available resources, deployment and

measurement of impact. I show that achieving such impact may often require overcoming several fundamental

research questions along this pipeline. In my thesis, I propose several ideas and algorithmic solutions to some of

these problems in the context of two public health application domains: (1) Tuberculosis prevention and (2)

improving maternal and child health.

Future Vision: My vision for future research is grounded in my drive and commitment to advancing AI tech-

niques spanning the entire data-to-impact pipeline integrating tools frommachine learning, decision-making and
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(a) (b) (c)

Figure 8.1: (a) Field visit in Mumbai. (b) AI vs TB workshop. (C) Immersive discussions with ARMMAN staff

causal inference. Below I outline a few avenues of future research work that I deem important to address.

1. Limited Resource Allocation: Limited resources are ubiquitous, not just in public health settings, but in

a myriad of other contexts and applications. Towards optimizing the use of these resources, it is important to

push the frontiers of (sequential) planning to build robust, efficient algorithms for a wider class of models. I aim

to generalize and expand on the MDP family of models and build scalable algorithms for non-markov or non-

stationary resource allocation settings, building methods that are more useful in practical contexts.

2. Data Scarcity and Compute Efficiency: Scare, missing or incorrect data, present a difficult challenge in most

applications of AI today. Decision-Focused Learning (DFL) is a paradigm that has shown promise in being able

to squeeze out better quality of decisions despite limited data. However, current advances only scratch the sur-

face. I intend to throw light on why DFL works or when it works best, improving our understanding of DFL

through sharp theoretical insights. I am keen to combine ideas from surrogate models and DFL to discover clever

ways to unlock computational speedup to make this technique scalable and accessible in real-world contexts.

3. Evaluation through deployment: I envision my recent work106 on improved evaluation of resource alloca-

tion policies to open up an entire direction of research on AI in RCTs. Inference through RCTs for resource

allocation methods has received little attention. I intend to address several unanswered ambitious questions per-

taining to design of smart RCTs, with impactful consequences. For instance, the challenge of deriving confidence

interval techniques for the evaluation of resource allocation policies through RCTs is still an important open

problem to solve. I also intend to build newmethodology using tools from causal inference to evaluate stochastic

policies as well as methods to identify optimal experimental design, to reduce dependence on expensive large-scale

RCTs.
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A
Appendix to Chapter 1

A.1 Proof of Indexability

We give the proof assuming forward threshold policies are optimal, and note where relevant how the proof also

works for reverse threshold optimal policies.

Fact 2. For two non-concurrent, increasing, linear functions f1(m) and f2(m) and two points m1,m2, such that

m1 ≤ m2, if f1(m1) ≤ f2(m1) and f1(m2) ≥ f2(m2), then
df1
dm ≥ df2

dm . Additionally, if f1(m1) < f2(m1) and

f1(m2) ≥ f2(m2), then
df1
dm >

df2
dm .

Proof. We now start proving the theorem by assuming that forward belief threshold policies are optimal. Let

b∗th(m) denote the threshold corresponding to the optimal threshold policy for a givenm. To show indexability,
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we must show that if a belief state b is passive, i.e., b > b∗th(m1), for somem1, then it is also passive, i.e., b >

b∗th(m2), for allm2 ≥ m1.

In our problem, we have 2T belief states which, for a forward threshold policy, can be arranged in a descending

order of their belief values: B := {b2T, b2T−1, . . . , bi, . . . , b1}.* A forward threshold policy is then any real value

bth which splits B into a passive setP = {bi : bi > bth ∀bi ∈ B} and active set C = {bi : bth ≥ bi ∀bi ∈ B}.

Note that all values of bth such that bi+1 ≥ bth > bi ∀i ∈ 1, . . . , 2T correspond to the same threshold policy.

Thus there are only 2T + 1 unique threshold policies possible corresponding to the 2T + 1 such belief regions

marked by points in B. Let Π = {π2T+1, π2T, . . . , π1} denote these unique possible threshold policies arranged

in a decreasing order, where πi ≥ πj implies b∗th(πi) ≥ b∗th(πj)where b
∗
th(πi) is the optimal belief threshold

associated with πi.† Thus the threshold policy πi would follow: bi > b∗th(πi) ≥ bi−1 ∀i ∈ 1, . . . , 2T + 1,

where b0 := −∞ and b2T+1 := ∞. Note that in a policy πi, if for a belief state b, the optimal action is passive,

then under a policy πj, the optimal action at b is also passive ∀j ≤ i because b∗th(πi) ≥ b∗th(πj). Thus to prove

indexability, it is sufficient to show that:

∀m1,m2 such thatm1 ≤ m2,

if π∗(m1) = πi and π∗(m2) = πj, then

=⇒ i ≥ j

(A.1)

where π∗(m) denotes the optimal threshold policy at subsidym.

Lemma 4. Letm∗
i be the infimum among allm’s for which π∗(m) = πi. Then, the infimum is achievable (i.e.,

π∗(m∗
i ) = πi) and moreoverm∗

2T+1 < m∗
2T < ... < m∗

1 .

Proof. We prove this using induction. Consider the base case: m∗
2T+1 < m∗

i ∀ i < 2T + 1. Whenm → −∞,

the optimal action would clearly always be to act to avoid accruing large negative reward. So π2T+1 would be the

optimal policy form → −∞ and clearly the base case is true.

*For simplicity, this assumes the starting belief is equal to the belief at the head of one of the chains, i.e., Pa
1,1 or Pa

0,1.
However, we could add to the set B another T belief states corresponding to a chain that starts from any arbitrary belief
and evolves for T passive actions. These new states could be ordered appropriately within B and the rest of the proof would
follow unchanged.

†For reverse threshold optimal processes, simply arrange B and Π in ascending order of belief. The rest of the proof
follows similarly.
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For the inductive case, assume the hypothesis,m∗
2T+1 < ... < m∗

t+1 < m∗
i ∀i < t + 1. Letm∗

t be the

infimum among allm’s for which π∗(m) = πt. We must show: (1)m∗
t < m∗

i ∀i < t; (2) π∗(m∗
t ) = πt (i.e., the

infimum is achievable). For convenience, we denote L = {πt, πt−1, ...π1} as the set of “lower-side” polices and

U = {π2T+1, π2T, ...πt+1} as the set of “upper-side” policies.

Asm is increased beyondm∗
t+1, letm′ be the infimum value among allm’s whose optimal policy is from L =

{πt, πt−1, ...π1} (note, the definition ofm′ is different fromm∗
t since at this point we do not know whether the

smallestm’s optimal policy is πt or some πi with i < t yet). That is, either the optimal threshold policy atm′

is from L (when the infimum is achievable) or there exists an infinite sequence {m̄l}∞l=1 that converges from the

right side tom′ (i.e., m̄l ≥ m′ for all s) and the optimal policy for any m̄l is from policy set L (when the infimum

is not achievable). For notational convenience, we will think of the former achievable case also as that there is a

sequence {m̄l}∞l=1 that converges tom
′ and the optimal policy for any m̄l is from L (letting all m̄l = m′ will do).

In fact, a stronger conclusion holds. That is, we can choose an infinite-length sequence {m̄l}∞l=1 such that the

optimal policy for each m̄l will be the same. This simply follows from the fact that {m̄l}∞l=1 has infinite length,

and their optimal policy is from a finite set L. So some policy from Lmust be optimal for infinitely many of m̄l’s.

Therefore, we shall assume that m̄l → m′ from the right side and the optimal policy for each m̄l is some π̄ ∈ L.

Our main claim is that for subsidym′, the passive action and active action must both be optimal at state

bt. Therefore, by definition, this implies the threshold policy πt is optimal form′. We thus havem∗
t = m′,

m∗
i > m∗

t ∀i < t, and moreover πt is indeed optimal form∗
t (i.e., the infimum is achievable). This concludes

the induction proof. The remainder of this proof will be devoted to prove this claim.

By definition ofm′, there exists a sequence {mu}∞u=1 that converges tom′ from the left side (i.e.,mu < m′ for

all t) and moreover the optimal policy for anymu is from the policy setU = {π2T+1, π2T, ...πt+1}. Similar to the

above reasoning, we shall choose the sequence {mu}∞u=1 such that their optimal policy is the same π ∈ U.

We now prove that the passive action and active action must both be optimal at state bt form′. Assume, for

the sake of contradiction, that the optimal action at bt for subsidym′ is passive and that the active action is not

optimal (the other case where the optimal action is active follows a similar contradiction argument). That means

the optimal policy form′ has a threshold b∗th(m
′) < bt and thus π∗(m′) ∈ L. Moreover, since the active action is

not optimal for bt, πmust not be optimal form′ and thus achieves strictly less reward than π∗(m′). Sincemu →
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m′, we thus have

lim
u→∞

Vmu
(π) = Vm′(π) < Vm′(π(m′)),

where the last inequality uses the fact that π is sub-optimal form′ because the active action is strictly sub-optimal

for bt. On the other hand,

Vm′(π(m′)) = lim
u→∞

Vmu
(π(m′)) ≤ lim

u→∞
Vmu

(π)

These two inequalities contradict each other. This concludes our proof of the lemma.

Let πi be the optimal policy at somem1.

=⇒ m∗
i ≤ m1

=⇒ m∗
j < m∗

i ≤ m1 ∀j > i using Lemma 4

LetVπ(m, b) be the discounted reward of policy π at arbitrary state b as defined in Eq. 1.2 of the main text. Then

for anyVπi(m, b) andVπj(m, b) such that j > iwe have:

Vπi(m∗
j , b) < Vπj(m∗

j , b) (πj is optimal atm∗
j ) (A.2)

Vπi(m∗
i , b) ≥ Vπj(m∗

i , b) (πi is optimal atm∗
i ) (A.3)

m∗
j < m∗

i if j > i (A.4)

=⇒ dVπi
dm

>
dVπj

dm
∀j > i (A.5)

Where Eq. A.2 is a strict inequality as implied by Lemma 4 and Eq. A.5 follows from Fact 2 and the value func-

tion’s linear dependence onm (whether discounted or average reward criterion). We now claim that ∀mj > m∗
i ,

if πj is optimal formj then we must have j ≤ i. Towards a contradiction, assume j > i. Then similar to the above
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equations, we have the following:

Vπi(mj, b) ≤ Vπj(mj, b) (πj is optimal atmj) (A.6)

Vπi(m∗
i , b) ≥ Vπj(m∗

i , b) (πi is optimal atm∗
i ) (A.7)

m∗
i < mj (A.8)

=⇒ dVπi
dm

≤
dVπj

dm
∀j > i (A.9)

Where Eq. A.9 follows from Fact 2 and the value function’s linear dependence onm (whether discounted or

average reward criterion). which contradicts Eq. A.5. Therefore, our claim holds. From A.1, that implies indexa-

bility.

A.2 Technical Condition for Forward Threshold Policies to be Optimal

We restate Eq. 1.2 here:

Vm(b) = max


m+ b+ βVm(τ(b)) passive

b+ β(bVm(Pa1,1) + (1− b)Vm(Pa0,1)) active

where τ(b) := τ1(b) from Eq. 1.1. Simplified, τ(b) is simply a linear function of b given by the expression

τ(b) = bPp1,1 + (1− b)Pp0,1

= (Pp1,1 − Pp0,1)b+ Pp0,1
(A.10)

We will start by stating two facts, then proving three useful technical lemmas.

Fact 3. d(τ(b))
db = (Pp1,1 − Pp0,1) ≤ 1.

Fact 4. ∀b, b′ s.t. b ≥ b′, τ(b) ≥ τ(b′).

Facts 5 and 6 follow from Eq A.10.

Lemma 5. Vm(b1)− Vm(b2) ≥ b1 − b2,∀b1, b2 s.t. b1 > b2
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Proof. Wewill proceed via induction, where the base case will be a one-step value function. Then we will show

that the t-step value function assumption implies the t+1-step inductive value function hypothesis. In the base

case the value function equals only the one-step immediate reward. It is sufficient to compare the value functions

V1
m(b1) andV1

m(b2) element-wise, since if the true optimal action for one of the value functions is passive and the

other active, the bound can still be established by flipping the action of one of the value functions as needed. This

gives:

Base caseV1
m(b1)− V1

m(b2) =

m+ b1 − (m+ b2) = b1 − b2 passive (A.11)

b1 − b2 = b1 − b2 active (A.12)

is clearly satisfied. Now assumeVt
m(b1)− Vt

m(b2)) ≥ b1 − b2. ThenVt+1
m (b1)− Vt+1

m (b2)

Case 1 (both passive):

= m+ b1 + βVt
m(τ(b1))− (m+ b2 + βVt

m(τ(b2)))

= b1 − b2 + β
(
Vt
m(τ(b1))− Vt

m(τ(b2))
)

≥ b1 − b2 + β(τ(b1)− τ(b2))

≥ b1 − b2

(A.13)

Case 2 (both active):

= b1 − b2 + β
(
(b1 − b2)Vt

m(Pa1,1) + (b2 − b1)Vt
m(Pa0,1)

)
= b1 − b2 + β

(
(b1 − b2)(Vt

m(Pa1,1)− Vt
m(Pa0,1))

)
= (b1 − b2)(1+ β(Vt

m(Pa1,1)− Vt
m(Pa0,1))

≥ (b1 − b2)(1+ β ∗ 0)

= (b1 − b2)

(A.14)

Corollary 3. Vm(b) is an increasing function in b, i.e.,Vm(b) ≥ Vm(b′), ∀b, b′ s.t. b ≥ b′.

Proof. The proof follows from Lemma 5 by setting b1 = b and b2 = b′.
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Lemma 6. Vm(b1)− Vm(b2) ≤ b1−b2
1−β ,∀b1, b2 s.t. b1 > b2

Proof. Proceed by induction again. The base caseVm(b1)− Vm(b2) =

m+ b1 − (m+ b2) = b1 − b2 ≤
b1 − b2
1− β

both passive (A.15)

b1 − b2 = b1 − b2 ≤
b1 − b2
1− β

both active (A.16)

which are both clearly satisfied. Now assumeVt
m(b1)− Vt

m(b2) ≤ b1−b2
1−β . Then,Vt+1

m (b1)− Vt+1
m (b2)

Case 1 (both passive):

=
(
m+ b1 + βVt

m(τ(b1))
)
−
(
m+ b2 + βVt

m(τ(b2))
)

= (b1 − b2) + β
(
Vt
m(τ(b1))− Vt

m(τ(b2))
)

≤ (b1 − b2) + β

(
τ(b1)− τ(b2)

1− β

)

≤ (b1 − b2) + β

(
(b1 − b2)
1− β

)
by Fact 6

=
b1 − b2
1− β

(A.17)

Case 2 (both active):

=
(
b1 + β

(
b1Vt

m(Pa1,1) + (1− b1)Vt
m(Pa0,1)

))
−(

b2 + β
(
b2Vt

m(Pa1,1) + (1− b2)Vt
m(Pa0,1)

))
= (b1 − b2) + β

((
b1 − b2

)(
Vt
m(Pa1,1)− Vt

m(Pa0,1)
))

≤ (b1 − b2) + β

(
(b1 − b2).

Pa1,1 − Pa0,1
1− β

)

≤ (b1 − b2) + β

(
(b1 − b2)
1− β

)
by Fact 5

=
b1 − b2
1− β

(A.18)

Lemma 7. d(Vm(b))
db ≥ 1+ βα

where, α = min{Pp1,1 − Pp0,1,Pa1,1 − Pa0,1}
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Proof. Using Eq. 1.2, we get:

d(Vm(b))
db

=


1+ βd(Vm(τ(b)))

d(τ(b))
d(τ(b))

db passive

1+ β(Vm(Pa1,1)− Vm(Pa0,1)) active
(A.19)

Case 1 (passive):

= 1+ β
d(Vm(τ(b)))

d(τ(b))
(Pp1,1 − Pp0,1) (A.20)

= 1+ β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))
τ(b) + δ− τ(b)

(Pp1,1 − Pp0,1) (A.21)

≥ 1+ β(Pp1,1 − Pp0,1) by Lemma 5 (A.22)

≥ 1+ βα (A.23)

Case 2 (active):

= 1+ β(Vm(Pa1,1)− Vm(Pa0,1)) (A.24)

≥ 1+ β(Pa1,1 − Pa0,1) by Lemma 5 (A.25)

≥ 1+ βα (A.26)

Now we derive the technical condition forTheorem 6. In this case, proving that threshold policies are optimal is

equivalent to proving that, if it is optimal to act now, then it is optimal to act for all later beliefs. Formally, if for

a belief b, the optimal action is to act, then we must show that for a lower b′ < b, the optimal action is also to

act. To do this, we show that Theorem 6 implies that the derivative wrt b of the passive action value function is

greater than the derivative wrt b of the active action value function:
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(Pp1,1 − Pp0,1)(1+ β(Pa1,1 − Pa0,1))(1− β) ≥ Pa1,1 − Pa0,1 (A.27)

Note that since (Pa1,1−Pa0,1) ≤ 1, =⇒ (1+β(Pa1,1−Pa0,1))(1−β) ≤ 1, Eq.A.27 itself implies that α = Pa1,1−Pa0,1.

Thus, it becomes:

(Pp1,1 − Pp0,1)(1+ βα)(1− β) ≥ Pa1,1 − Pa0,1 (A.28)

=⇒ (Pp1,1 − Pp0,1)(1+ βα) ≥ Vm(Pa1,1)− Vm(Pa0,1) by Lemma 6 (A.29)

=⇒ (Pp1,1 − Pp0,1)
d(Vm(b))

db
≥ Vm(Pa1,1)− Vm(Pa0,1) by Lemma. 7 (A.30)

=⇒ 1+ β
d(Vm(τ(b)))

d(τb)
d(τ(b))

db
≥ 1+ β(Vm(Pa1,1)− Vm(Pa0,1)) by Fact 5 (A.31)

=⇒ d(Vm(b|a = 0))
d(b)

≥ d(Vm(b|a = 1))
d(b)

(A.32)

(A.33)

A.3 Technical Condition for Reverse Threshold Policies to be Optimal

Nowwe derive a technical condition for a reverse threshold policy. That is, a threshold policy in which if it is

optimal to be passive in the current state, then it must also be optimal to act in all later states in the order. First

we prove one more technical Lemma.

Lemma 8. d(Vm(b))
db ≤ 1+ βγ

1−β

where, γ = max{Pp1,1 − Pp0,1,Pa1,1 − Pa0,1}

Proof. Using Equation A.2, we get:

d(Vm(b))
db

=


1+ βd(Vm(τ(b)))

d(τ(b))
d(τ(b))

db passive

1+ β(Vm(Pa1,1)− Vm(Pa0,1)) active
(A.34)
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Case 1 (passive):

= 1+ β
d(Vm(τ(b)))

d(τ(b))
(Pp1,1 − Pp0,1) (A.35)

= 1+ β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))
τ(b) + δ− τ(b)

(Pp1,1 − Pp0,1) (A.36)

≤ 1+
β

1− β
(Pp1,1 − Pp0,1) by Lemma 6 (A.37)

≤ 1+
βγ

1− β
(A.38)

Case 2 (active):

= 1+ β(Vm(Pa1,1)− Vm(Pa0,1)) (A.39)

≤ 1+
β

1− β
(Pa1,1 − Pa0,1) by Lemma 6 (A.40)

≤ 1+
βγ

1− β
(A.41)

Now to give a condition under which reverse threshold policies are optimal. Formally, if for a belief b, the opti-

mal action is to be passive, then we must show that for a lower b′ < b, the optimal action is also to be passive. We

do this by showing that the Theorem 7 statement implies that the derivative wrt b of the passive value function is

less than the derivative wrt b of the active action value function:

(Pp1,1 − Pp0,1)(1+
β(Pa1,1 − Pa0,1)

1− β
) ≤ Pa1,1 − Pa0,1 (A.42)
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Note that the Eq. A.42 itself implies that γ = Pa1,1 − Pa0,1, thus giving:

(Pp1,1 − Pp0,1)(1+
βγ

1− β
) ≤ Pa1,1 − Pa0,1 (A.43)

=⇒ (Pp1,1 − Pp0,1)(1+
βγ

1− β
) ≤ Vm(Pa1,1)− Vm(Pa0,1) by Lemma 5 (A.44)

=⇒ (Pp1,1 − Pp0,1)
d(Vm(b))

db
≤ Vm(Pa1,1)− Vm(Pa0,1) by Lemma 8 (A.45)

=⇒ 1+ β
d(Vm(τ(b)))

d(τb)
d(τ(b))

db
≤ 1+ β(Vm(Pa1,1)− Vm(Pa0,1)) by Fact 5 (A.46)

=⇒ d(Vm(b|a = 0))
d(b)

≤ d(Vm(b|a = 1))
d(b)

(A.47)

(A.48)

A.4 Threshold Conditions for Average Reward Case

First we define the concept of value boundedness36:

Definition 8 (Value Boundedness). For a givenMDP, consider a value function Vβ(b), states b ∈ B and some

index state z ∈ B. Then anMDP is value bounded if for a constantM and functionM(b):

M(b) < Vβ(b)− Vβ(z) < M (A.49)

We now prove that Thm. 6 and Thm. 7 hold respectively under the average reward criterion as β −→ 1 using

Dutta’s Theorem as follows36. Consider anMDP that is value bounded. Let πβ(·) be a stationary optimal policy

for the discountedMDP. (1) Suppose πβ(·) −→ π pointwise, as β −→ 1. Then π is a stationary optimal policy for

the average reward criterion. (2) Furthermore, given state orderingO, if for all discounted optimal policies πβ(b),

O(b′) ≥ O(b) implies πβ(b′) ≥ πβ(b) (i.e., threshold policies are optimal), then any sequence of discounted

optimal policies converge to an average optimal policy as β −→ 1.

(2) and (1) together imply that anyMDP that admits threshold optimal policies under discounted reward

criteria also admits threshold optimal policies under average reward criteria. By construction, anyMDP that

satisfies Thm. 6 or Thm. 7 admits threshold optimal policies under the discounted reward criterion. Therefore,

to prove that those conditions hold under the average reward criterion as β −→ 1, we need only prove that any
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CoB is value bounded.

Theorem 17. Any Collapsing Bandit is value bounded.

A.5 ExampleWhen theMyopic Policy Fails

We present an example in which the myopic baseline is barely better than No Calls, while ThresholdWhittle is

optimal. Consider the system withN = 2 and k = 1 and the transition probabilities shown in Fig. A.1a.

P p,1 =


0.97 0.03
0.03 0.97

�
P a,1 =


0.96 0.04
0.01 0.99

�

P p,2 =


0.25 0.75
0.03 0.97

�
P a,2 =


0.23 0.77
0.01 0.99

�
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Figure A.1: For the example transition matrices, Myopic performs worse than random, while Threshold Whittle is nearly optimal.

Fig. A.1b shows how various policies perform on these two processes. The myopic policy is worse than ran-

dom and thresholdWhittle is nearly optimal. The myopic policy always acts on process 2 because the immediate

reward it considers, (bt+1|a = 1) − (bt+1|a = 0) is marginally higher for process 2 than process 1. However,

process 1 is better to pull in the long run because process 2 has a large Pp0,1, making it self-correcting, meaning the

process is likely to become adhering quickly even without an intervention. However, process 1 has a very small

Pa0,1 and P
p
0,1 and is thus difficult to revive from the bad state even with an intervention, making it important to

keep intervening to stop the process from ever entering the bad state.

The following analysis shows that the myopic policy always prefers to pull arm 2:
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For process 1:

(bt+1|a = 0) = 0.97.bt + 0.03.(1− bt) = 0.94.bt + 0.03

(bt+1|a = 1) = 0.99.bt + 0.01.(1− bt) = 0.95.bt + 0.04

Thus, Δbt = (bt+1|a = 1)− (bt+1|a = 0) = 0.01+ 0.01.bt < 0.02

Similarly, for process 2:

Δbt = 0.02

The myopic policy chooses the arm with the greater Δbt.

A.6 Learning Online

So far we assumed that all transition probabilities are known. However, in a real deployment, the transition prob-

abilities of processes would be unknown at the start, and it would be desirable to learn the transition probabilities

online in tandem with planning. To develop an online planning regime for our algorithm, we use the tuberculo-

sis medication adherence monitoring domain from the main text as a case study and motivating example.

We implement a Thompson sampling-based learning method150, which is a heuristic which has been shown

to work well in practice and has been frequently used in the bandit literature72. In Thompson sampling, we sam-

ple from a posterior distribution over the estimated parameters and use the samples for planning. This allows for

“sub-optimal” actions to be taken periodically, building exploration implicitly into planning. Then, as arms are

pulled we use the observations to update our posterior distribution. We maintain a Beta distribution posterior

over the parameters of each row of a patient’s transition matrix and sample from it each day to generate a matrix

with which the system can plan for that round.

Additionally, we consider two specific features of the TBmedication adherence monitoring domain that can

be used to accelerate learning with Thompson sampling. First, it is reasonable to assume that patients (processes)

might remember some number of previous days of their medication adherence behavior. Thus, when the agent

pulls an arm, the armmay reveal state observations for some number of previous days which we call buffer length.
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The larger the buffer length, the faster learning will converge since more observations are obtained for updat-

ing the posterior. We parameterize buffer length and evaluate its effect on learning and planning in experiments.

Second, we verify with real data that virtually all patients adhere to the natural constraints on the transition prob-

abilities given in Section 1.3. We exploit this known structure on the transition probabilities – i.e., that processes

tend to degrade when passive and that interventions must have positive effect – to identify a constrained prob-

ability space from which we would like to sample when learning online. We implement a version of Thompson

sampling called constrained Thompson sampling which samples from this joint, constrained probability space via

rejection sampling.

On-demand index computation algorithm. When we learn online, the transition matrices for a process

change every day, and thus pre-computing the Whittle indices for every belief state as in Alg. 1 is inefficient. We

can address this by identifying and solving only the indifference equation that is relevant to the current state of

the process. We use the insight that for a threshold of Xi on the current chain i, the corresponding threshold Xj

on chain jwould be the state with the largest belief lower than b(Xi), i.e., Xj = min
u

{u : bj(u) < b(Xi)}. The

Whittle index for Xi is then obtained by solving form : J(Xi,Xj)
m = J(Xi+1,Xj)

m . These computations are repeated

every day yielding overall complexity ofO(|Ω|T2) per process.

Unconstrained Constrained
0

50

100

In
te

rv
en

ti
on

be
ne

fit
(%

)

5 10 25
k/N (%)

Random

TW 1

TW 4

TW 7

TW 1
Oracle

Figure A.2: (left) Constrained Thompson sampling improves learning. (right) buffer lengths of 4–7 perform well for various values of
k/N, using constrained Thompson sampling. TW_X is the on‐demand index algorithm run in tandem with Thompson sampling and a
buffer length of X.

Fig. A.2 (right) evaluates the impact of varying buffer lengths for various ratios of k/N. Note that in these

experiments, Oracle fully observes states, but must still learn transition probabilities online. Critically, we see that
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even when simulated patients report 4–7 observations per arm-pull, the performance is close to that of the non-

Oracle learning upper bound (buffer length=∞) for any k/N. This is a key consideration for deployment in a

medication adherence context: patients need only remember their last 4–7 doses on average for our approach to

be nearly effective as possible in the TB context.

Fig. A.2 (left) compares the performance of learning policies with and without constrained Thompson sam-

pling for k/N = 25%. All policies benefit from the constrained sampling approach, suggesting that imposing

our knowledge of the transition probability constraints was beneficial to learning.

A.7 Sensitivity Analysis

In Fig. A.3, we investigate ThresholdWhittle’s performance relative to the choice of parameters used to perturb

the real data from the TBmedication adherence domain. All the plots show that ThresholdWhittle’s perfor-

mance is robust to the choice of parameters.
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Figure A.3: Performance of Threshold Whittle is robust to perturbation of the transition matrix parameters. Note that 100% corre‐
sponds to the performance of Threshold Whittle for this plot only.

A.8 ThresholdWhittle’s Performance on Reverse Threshold Optimal Processes

Here we investigate why ThresholdWhittle demonstrates near-optimal performance even on reverse-threshold-

optimal processes. We randomly sample forward and reverse threshold optimal processes, checked with Thm. 6

and Thm. 7, respectively, using β = 0.95, then compute their indices with the ThresholdWhittle algorithm.

Figures. A.4a and A.4b show a few samples of these trajectories for reverse and forward threshold optimal pro-

cesses, respectively. Via similar arguments from the proof in Appendix A.1, it can be shown that the true Whit-
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Figure A.4: (a) Threshold Whittle‐computed indices vs. reachable beliefs for 10 randomly sampled reverse threshold optimal processes
(one line per process). These indices tend to increase in belief, as expected for reverse threshold optimal processes according to the
proof in Appendix A.1. (b) Threshold Whittle‐computed indices vs. reachable beliefs for 10 randomly sampled forward threshold optimal
processes (one line per process). These indices always decrease in belief, as expected for forward threshold optimal processes according
to the proof in Appendix A.1.

tle indices for reverse (forward) threshold optimal processes should always be increasing (decreasing) in belief.

Fig. A.4a shows that for such reverse threshold optimal processes, the indices computed by ThresholdWhittle

do tend to increase in belief as expected, which may lead to ThresholdWhittle’s good performance even though

it is not guaranteed to be optimal on those processes. (And for completeness, Fig. A.4b shows that for forward

threshold optimal policies, the indices computed by ThresholdWhittle always decrease in belief as expected.)
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B
Appendix to Chapter 2

B.1 Proof of Theorem 4

Theorem 4 (Forward Threshold Optimality). Consider a belief-state MDP corresponding to an arm in an RMAB

with some non-decreasing reward function given by ρ(b) and transition matrix given by P. For any subsidy m, there

is a forward threshold policy that is optimal if:

Δp(1− βmax{Δp,Δa})
Δa(1− βmin{Δp,Δa})

≥
ρ′max
ρ′min

(2.3)

Proof. We start with presenting three facts and proving several lemmas that underpin the proofs of Thms. 4 and

5.
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Fact 5. d(τ(b))
db = Pp11 − Pp01

Fact 6. ∀b, b′ s.t. b ≥ b′, τ(b) ≥ τ(b′).

Fact 7. ∀b, b′ s.t. b ≥ b′, τ(b)− τ(b′) = (Pp11 − Pp01)(b− b′).

Lemma 9. Vm(b1)− Vm(b2) ≥ ρ′min(b1 − b2)∀ b1, b2 s.t. b1 ≥ b2

Proof. Wewill prove this via induction, where the base case will be a one-step value function. For the iterative

case, we will show that the t-step value function assumption implies the t+1-step inductive value function hy-

pothesis. It is sufficient to compare the value functions for each case corresponding to each action being the op-

timal. If the true optimal action for one of the value functions is passive and the other active, then the bound can

still be established by flipping the action of one of the value functions as needed. This gives:

Base caseV1
m(b1)− V1

m(b2) =

m+ ρ(b1)− (m+ ρ(b2)) = ρ(b1)− ρ(b2) passive (B.1)

ρ(b1)− ρ(b2) = ρ(b1)− ρ(b2) active (B.2)

is clearly satisfied. Now assumeVt
m(b1)− Vt

m(b2)) ≥ ρ′min(b1 − b2). ThenVt+1
m (b1)− Vt+1

m (b2)

Case 1 (both passive):

= m+ ρ(b1) + βVt
m(τ(b1))− (m+ ρ(b2) + βVt

m(τ(b2)))

= ρ(b1)− ρ(b2) + β
(
Vt
m(τ(b1))− Vt

m(τ(b2))
)

≥ ρ(b1)− ρ(b2) + βρ′min(τ(b1)− τ(b2))

≥ ρ(b1)− ρ(b2)

(B.3)
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Case 2 (both active):

= ρ(b1)− ρ(b2) + β
(
(b1 − b2)Vt

m(Pa1,1) + (b2 − b1)Vt
m(Pa0,1)

)
= ρ(b1)− ρ(b2) + β

(
(b1 − b2)(Vt

m(Pa1,1)− Vt
m(Pa0,1))

)
≥ ρ′min(b1 − b2) + β

(
(b1 − b2)(Vt

m(Pa1,1)− Vt
m(Pa0,1))

)
≥ ρ′min(b1 − b2)

(B.4)

Lemma 10. If ∀ b1, b2 s.t. b1 ≥ b2, ∃ κ such that Vm(b1) − Vm(b2) ≥ κρ′min(b1 − b2), then, for α =

min{Δa,Δp}:

Vm(b1)− Vm(b2) ≥ ρ′min(1+ βακ)(b1 − b2) (B.5)

Proof. Using Eq. 2.2, we get:

d(Vm(b))
db

=


ρ′(b) + βd(Vm(τ(b)))

d(τ(b))
d(τ(b))

db passive

ρ′(b) + β(Vm(Pa1,1)− Vm(Pa0,1)) active
(B.6)

Case 1 (passive):

= ρ′(b) + β
d(Vm(τ(b)))

d(τ(b))
(Pp1,1 − Pp0,1) (B.7)

= ρ′(b) + β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))
τ(b) + δ− τ(b)

(Pp1,1 − Pp0,1) (B.8)

≥ ρ′(b) + βκρ′min(P
p
1,1 − Pp0,1) (B.9)

≥ ρ′min + βκρ′min(P
p
1,1 − Pp0,1) (B.10)

≥ ρ′min(1+ βακ) (B.11)
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Case 2 (active):

= ρ′(b) + β(Vm(Pa1,1)− Vm(Pa0,1)) (B.12)

≥ ρ′(b) + βκρ′min(P
a
1,1 − Pa0,1) (B.13)

≥ ρ′min + βκρ′min(P
a
1,1 − Pa0,1) (B.14)

≥ ρ′min(1+ βακ) (B.15)

Thus,

=⇒ d(Vm(b))
db

≥ ρ′min(1+ βακ)

=⇒
∫ b1

b2

d(Vm(b))
db

db ≥
∫ b1

b2
ρ′min

(
1+ βακ

)
db

=⇒ Vm(b1)− Vm(b2) ≥ ρ′min
(
1+ βακ

)
(b1 − b2)

(B.16)

Lemma 11. Vm(b1)− Vm(b2) ≥
ρ′min(b1−b2)

1−βα ∀ b1, b2 s.t. b1 ≥ b2

Proof. Consider the function, f(x) = 1+ βαx and let fn(x) := f(f(...f(x)))︸ ︷︷ ︸
f(.) applied n times

. We show using induction that:

Vm(b1)− Vm(b2) ≥ fn(1) ρ′min(b1 − b2)∀n ∈ W, ∀ b1, b2 s.t. b1 ≥ b2 (B.17)

Consider the base case, n = 0. Eq. B.17 reduces to the statement of Lemma 9 with f0(1) = 1, and thus holds

true. For the inductive case, we assume Eq.B.17 to be true for some n and then show that it must also be true for

n+ 1, as follows:

IfVm(b1)− Vm(b2) ≥ fn(1).ρ′min(b1 − b2), then

=⇒ Vm(b1)− Vm(b2) ≥ f
(
fn(1)

)
.ρ′min(b1 − b2). using Lemma 10

=⇒ Vm(b1)− Vm(b2) ≥ fn+1(1)ρ′min(b1 − b2)

(B.18)

Thus we show Eq. B.17 to be true for all n. We note that the sequence {fn(1)}∞n=0 is strictly increasing and
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bounded, and thus the sequence converges. The point of convergence can be obtained as follows:

Let the sequence converge to f∞ = lim
n→∞

fn(1)

=⇒ f
(
f∞
)
= f
(
lim
n→∞

fn(1)
)
= lim

n→∞
fn+1(1) = lim

n→∞
fn(1) = f∞

=⇒ 1+ βαf∞ = f∞

=⇒ 1 = f∞(1− βα)

=⇒ f∞ =
1

(1− βα)

(B.19)

Resubstituting f∞ in place of fn(1) in Eq.B.17 finally gives us the required result.

Corollary 4. d(Vm(b))
db ≥ ρ′min

1−βα

Proof. This follows from Lemma 11 by setting b1 = b+ δ, b2 = b under the limit δ → 0.

Lemma 12. Vm(b1)− Vm(b2) ≤
ρ′max(b1−b2)

1−β ∀ b1, b2 s.t. b1 ≥ b2

Proof. Proceed by induction again. The base caseVm(b1)− Vm(b2) =

m+ ρ(b1)− (m+ ρ(b2)) = ρ(b1)− ρ(b2) ≤
ρ′max(b1 − b2)

1− β

both passive

ρ(b1)− ρ(b2) ≤
ρ′max(b1 − b2)

1− β
both active

which are both clearly satisfied. Now assumeVt
m(b1)− Vt

m(b2) ≤
ρ′max(b1−b2)

1−β . Then,Vt+1
m (b1)− Vt+1

m (b2)
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Case 1 (both passive):

=
(
m+ ρ(b1) + βVt

m(τ(b1))
)
−
(
m+ ρ(b2) + βVt

m(τ(b2))
)

= (ρ(b1)− ρ(b2)) + β
(
Vt
m(τ(b1))− Vt

m(τ(b2))
)

≤ (ρ(b1)− ρ(b2)) + β

(
ρ′max(τ(b1)− τ(b2))

1− β

)

≤ ρ′max(b1 − b2) + β

(
ρ′max(b1 − b2)

1− β

)
by Fact 7

=
ρ′max(b1 − b2)

1− β

(B.20)

Case 2 (both active):

=
(
ρ(b1) + β

(
b1Vt

m(Pa1,1) + (1− b1)Vt
m(Pa0,1)

))
−(

ρ(b2) + β
(
b2Vt

m(Pa1,1) + (1− b2)Vt
m(Pa0,1)

))
= (ρ(b1)− ρ(b2)) + β

((
b1 − b2

)(
Vt
m(Pa1,1)− Vt

m(Pa0,1)
))

≤ (ρ(b1)− ρ(b2)) + β

(
(b1 − b2).

ρ′max(P
a
1,1 − Pa0,1)
1− β

)

≤ ρ′max(b1 − b2) + β

(
ρ′max(b1 − b2)

1− β

)

=
ρ′max(b1 − b2)

1− β

(B.21)

Lemma 13. If ∀ b1, b2 s.t. b1 ≥ b2, ∃ κ such that Vm(b1) − Vm(b2) ≤ κρ′max(b1 − b2), then, for γ =

max{Δa,Δp}:

Vm(b1)− Vm(b2) ≤ ρ′max(1+ βγκ)(b1 − b2) (B.22)

Proof. Using Equation 2.2, we get:
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d(Vm(b))
db

=


ρ′(b) + βd(Vm(τ(b)))

d(τ(b))
d(τ(b))

db passive

ρ′(b) + β(Vm(Pa1,1)− Vm(Pa0,1)) active
(B.23)

Case 1 (passive):

= ρ′(b) + β
d(Vm(τ(b)))

d(τ(b))
(Pp1,1 − Pp0,1) (B.24)

= ρ′(b) + β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))
τ(b) + δ− τ(b)

(Pp1,1 − Pp0,1) (B.25)

≤ ρ′(b) + βκρ′max(P
p
1,1 − Pp0,1) (B.26)

≤ ρ′max(1+ βγκ) (B.27)

Case 2 (active):

= ρ′(b) + β(Vm(Pa1,1)− Vm(Pa0,1)) (B.28)

≤ ρ′(b) + βκρ′max(P
a
1,1 − Pa0,1) (B.29)

≤ ρ′max + βρ′maxγκ (B.30)

≤ ρ′max(1+ βγκ) (B.31)

Thus,

=⇒ d(Vm(b))
db

≤ ρ′max(1+ βγκ)

=⇒
∫ b1

b2

d(Vm(b))
db

db ≤
∫ b1

b2
ρ′max

(
1+ βγκ

)
db

=⇒ Vm(b1)− Vm(b2) ≤ ρ′max
(
1+ βγκ

)
(b1 − b2)

(B.32)

Lemma 14. Vm(b1)− Vm(b2) ≤
ρ′max(b1−b2)

1−βγ ∀ b1, b2 s.t. b1 ≥ b2

Proof. We use an approach similar to the proof of Lemma 11. Consider the function, g(x) = 1 + βγx and let
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gn(x) := g(g(...g(x)))︸ ︷︷ ︸
g(.) applied n times

. We show using induction that, ∀n ∈ W, ∀ b1, b2 s.t. b1 ≥ b2:

Vm(b1)− Vm(b2) ≤ gn
( 1
1− β

)
ρ′max(b1 − b2)

(B.33)

Consider the base case, n = 0. Eq. B.33 reduces to the statement of Lemma 19 with g0
( 1
1−β
)
= 1

1−β , and is thus

true. For the inductive case, we assume Eq.B.33 to be true for some n and then show that it must also be true for

n+ 1, as follows:

IfVm(b1)− Vm(b2) ≤ gn
( 1
1− β

)
ρ′max(b1 − b2), then

=⇒ Vm(b1)− Vm(b2) ≤ g
(
gn
( 1
1− β

))
ρ′max(b1 − b2). by Lemma 20

=⇒ Vm(b1)− Vm(b2) ≤ gn+1
( 1
1− β

)
ρ′max(b1 − b2)

(B.34)

Thus we show Eq. B.33 to be true for all n. We note that the sequence {gn( 1
1−β)}

∞
n=0 is strictly decreasing and

bounded, and thus the sequence converges. The point of convergence can be obtained as follows:

Let the sequence converge to g∞ = lim
n→∞

gn(
1

1− β
)

=⇒ g
(
g∞
)
= g
(

lim
n→∞

gn(
1

1− β
)
)
= lim

n→∞
gn+1(

1
1− β

) = g∞

=⇒ 1+ βγg∞ = g∞

=⇒ 1 = g∞(1− βγ)

=⇒ g∞ =
1

(1− βγ)

(B.35)

Resubstituting g∞ in place of gn( 1
1−β) in Eq.B.33 finally gives us the required result.

Corollary 5. d(Vm(b))
db ≤ ρ′max

1−βγ
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Proof. This follows from Lemma 21 by setting b1 = b+ δ, b2 = b under the limit δ → 0.

Now we complete the proof for Thm.4 as follows:

Eq.2.3 =⇒ Δp ≥
Δa(1− βα)ρ′max
(1− βγ)ρ′min

(B.36)

=⇒
(Pp1,1 − Pp0,1)ρ′min

(1− βα)
≥

ρ′max(P
a
1,1 − Pa0,1)

(1− βγ)
(B.37)

=⇒
(Pp1,1 − Pp0,1)ρ′min

(1− βα)
≥ Vm(Pa1,1)− Vm(Pa0,1) by Lemma 21 (B.38)

=⇒ (Pp1,1 − Pp0,1)
d(Vm(b))

db
≥ Vm(Pa1,1)− Vm(Pa0,1) by Cor. 6 (B.39)

=⇒ d(τ(b))
db

d(Vm(b))
db

≥ Vm(Pa1,1)− Vm(Pa0,1) by Fact 5 (B.40)

=⇒ ρ′(b) + β
d(Vm(τ(b)))

d(τb)
d(τ(b))

db
≥ ρ′(b)+ (B.41)

β(Vm(Pa1,1)− Vm(Pa0,1)) (B.42)

=⇒ d(Vm(b|a = 0))
d(b)

≥ d(Vm(b|a = 1))
d(b)

(B.43)

B.2 Proof of Theorem 5

Theorem 5 (Reverse Threshold Optimality). Consider a belief-stateMDP corresponding to an arm in an RMAB

with some non-decreasing reward function given by ρ(b) and transition matrix given by P. For any subsidy m, there

is a reverse threshold policy that is optimal if:

Δp(1− βmin{Δp,Δa})
Δa(1− βmax{Δp,Δa})

≤
ρ′min
ρ′max

(2.4)

Proof. Optimality of a reverse threshold policy implies that if the optimal action at a belief b is active, then it

must be so for all b′ > b. Similar to proof of Theorem 4, we approach this by deriving conditions which if im-

posed, restrict the derivative of the active action value function to be greater than the derivative of the passive

action value function w.r.t. b— thus implying reverse threshold optimality. We show that the conditions of The-
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orem 5 satisfy this required property:

Eq.2.4 =⇒ Δp ≤
Δa(1− βγ)ρ′min
(1− βα)ρ′max

(B.44)

=⇒
(Pp1,1 − Pp0,1)ρ′max

(1− βγ)
≤

ρ′min(P
a
1,1 − Pa0,1)

(1− βα)
(B.45)

=⇒
(Pp1,1 − Pp0,1)ρ′max

(1− βα)
≤ Vm(Pa1,1)− Vm(Pa0,1) by Lemma 11 (B.46)

=⇒ (Pp1,1 − Pp0,1)
d(Vm(b))

db
≤ Vm(Pa1,1)− Vm(Pa0,1) by Cor. 6 (B.47)

=⇒ d(τ(b))
db

d(Vm(b))
db

≤ Vm(Pa1,1)− Vm(Pa0,1) by Fact 5 (B.48)

=⇒ ρ′(b) + β
d(Vm(τ(b)))

d(τb)
d(τ(b))

db
≤ ρ′(b)+ (B.49)

β(Vm(Pa1,1)− Vm(Pa0,1)) (B.50)

=⇒ d(Vm(b|a = 0))
d(b)

≤ d(Vm(b|a = 1))
d(b)

(B.51)

B.3 Proof of Theorem 6

Theorem 6. Consider a belief-stateMDP corresponding to an arm in a standard Collapsing Bandit. For any

subsidy m, there is a forward threshold policy that is optimal if:

Δa ≤ Δp and Δa + Δp ≤
1
β

(2.6)

Proof. To prove this thoerem, we show that the condition of Eq. 2.6 satisfies the condition of Thm.4 when
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ρ(b) = b. Note that ρ′max = ρ′min = 1.

Eq.2.6 =⇒ (Δp − Δa)(
1
β
− (Δp + Δa)) ≥ 0

=⇒ (Δp − Δa)− β(Δp − Δa)(Δp + Δa) ≥ 0

=⇒ Δp − βΔ2
p − Δa + βΔ2

a ≥ 0

=⇒ Δp(1− βΔp) ≥ Δa(1− βΔa)

=⇒
Δp(1− βmax{Δp,Δa})
Δa(1− βmin{Δp,Δa})

≥ 1(∵ Δp ≥ Δa)

B.4 Proof of Theorem 7

Theorem 7. Consider a belief-stateMDP corresponding to an arm in a Collapsing Bandit. For any subsidy m,

there is a reverse threshold policy that is optimal if:

Δp ≤ Δa and Δp + Δa ≤
1
β

(2.7)

Proof. To prove this thoerem, we show that the condition of Eq. 2.7 satisfies the condition of Thm.5 when

ρ(b) = b. Note that ρ′max = ρ′min = 1.

Eq.2.7 =⇒ (Δp − Δa)(
1
β
− (Δp + Δa)) ≤ 0 (B.52)

=⇒ (Δp − Δa)− β(Δp − Δa)(Δp + Δa) ≤ 0 (B.53)

=⇒ (Δp − Δa)− β(Δ2
p − Δ2

a) ≤ 0 (B.54)

=⇒ Δp − βΔ2
p − Δa + βΔ2

a ≤ 0 (B.55)

=⇒ Δp(1− βΔp) ≥ Δa(1− βΔa) (B.56)

=⇒ Δp ≤
Δa(1− βΔa)

(1− βΔp)
(B.57)

=⇒
Δp(1− βmin{Δp,Δa})
Δa(1− βmax{Δp,Δa})

≤ 1(∵ Δp ≤ Δa) (B.58)
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B.5 Value Boundedness Theorem

Definition 9 (Value Boundedness). For a given belief state MDP, with a value function Vβ(b), states b ∈ B and

some index state z ∈ B, anMDP is value bounded if for a constant U0 and function L(b):

L(b) < Vβ(b)− Vβ(z) < U0 (B.59)

We use Dutta’s Theorem36 to prove that Thm. 4 and Thm. 5 hold respectively under the average reward crite-

rion as β −→ 1.

To prove that the conditions of these theorems hold under the average reward criterion as β −→ 1, we need to

prove that any Collapsing Bandit is value bounded.

Theorem 18. Any Collapsing Bandit is value bounded.

Proof. Set the index state to be the head of the ω = 1 chain, i.e., z = Pa1,1. Since Pa1,1 is the maximum possible

belief,Vβ(Pa1,1) is the largest possible value function according to Corollary 6. Therefore we can setU0 = 0.

Now according to Lemmas 11 and 21, we have:

Vm,β(Pa1,1)− Vm,β(b) ≤
Pa1,1 − b
1− βγ

≤
Pa1,1 − b
1− γ

∀β ∈ [0, 1) (B.60)

Vm,β(b)− Vm,β(Pa1,1) ≥
b− Pa1,1
1− βα

≥
b− Pa1,1

1
∀β ∈ [0, 1) (B.61)

Thus L(b) = b−Pa1,1
1−γ , where γ = max{Pa1,1 − Pa0,1,P

p
1,1 − Pp0,1}, thus completing the proof.

B.6 Proof of Theorem 8

Theorem 8 (Forward Threshold Optimality). Consider a belief-state MDP corresponding to an arm in an RMAB

with some non-decreasing reward function given by ρ(b), transition matrix given by P and an observation function,

Θ(b) for a belief state b. For any subsidy m, there is a forward threshold policy that is optimal if:
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Δp(1− βmax{Δp, (Δa.Δe)})
Δa(1− βmin{Δp, (Δa.Δe)})

≥
ρ′max
ρ′min

(2.11)

where Δe = Θ′(b) for a linearΘ(b) such as in the example above.

Proof. We start with re-deriving the difference bound lemmas for the imprecise observations case. Recall that the

value function for the active and passive actions is now given by:

Vm(b) = max


m+ ρ(b) + βVm(τ(b))...passive

ρ(b) + β
(∑

ω Θω(b).Vm(Paω)
)
...active

(2.10)

Lemma 15.
∥Ω∥−1∑
ω=1

Θ′
ω(b)

(
Vm(Paω)− Vm(Pa0)

)
=
∑
ω

(
Θ′

ω(b)Vm(Paω)
)

(B.62)

Proof.

R.H.S. =
∑
ω

(
Θ′

ω(b)Vm(Paω)
)

=

∥Ω∥−1∑
ω=1

(
Θ′

ω(b)Vm(Paω)
)
+ Θ′

0(b)Vm(Pa0)

=

∥Ω∥−1∑
ω=1

(
Θ′

ω(b)Vm(Paω)
)
+

(
1−

∥Ω∥−1∑
ω=1

Θω(b)
)′
Vm(Pa0)

=

∥Ω∥−1∑
ω=1

(
Θ′

ω(b)Vm(Paω)
)
+

(
−

∥Ω∥−1∑
ω=1

Θ′
ω(b)

)
Vm(Pa0)

=

∥Ω∥−1∑
ω=1

Θ′
ω(b)

(
Vm(Paω)− Vm(Pa0)

)
=L.H.S.
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Lemma 16. Vm(b1)− Vm(b2) ≥ ρ′min(b1 − b2)∀ b1, b2 s.t. b1 ≥ b2

Proof. The proof follows the same procedure as the precise observations case. We get:

Base caseV1
m(b1)− V1

m(b2) =

m+ ρ(b1)− (m+ ρ(b2)) = ρ(b1)− ρ(b2) passive (B.63)

ρ(b1)− ρ(b2) = ρ(b1)− ρ(b2) active (B.64)

is clearly satisfied. Now assumeVt
m(b1)− Vt

m(b2)) ≥ ρ′min(b1 − b2). ThenVt+1
m (b1)− Vt+1

m (b2)

Case 1 (both passive):

= m+ ρ(b1) + βVt
m(τ(b1))− (m+ ρ(b2) + βVt

m(τ(b2)))

= ρ(b1)− ρ(b2) + β
(
Vt
m(τ(b1))− Vt

m(τ(b2))
)

≥ ρ(b1)− ρ(b2) + βρ′min(τ(b1)− τ(b2))

≥ ρ(b1)− ρ(b2)

(B.65)

Case 2 (both active):

= ρ(b1)− ρ(b2) + β
(
(Θ(b1)− Θ(b2))Vt

m(Pa1,1)+

(Θ(b2)− Θ(b1))Vt
m(Pa0,1)

)
= ρ(b1)− ρ(b2) + β

(
(Θ(b1)− Θ(b2))(Vt

m(Pa1,1)− Vt
m(Pa0,1))

)
≥ ρ′min(b1 − b2) + β

(
(Θ(b1)− Θ(b2))(Vt

m(Pa1,1)− Vt
m(Pa0,1))

)
≥ ρ′min(b1 − b2)

(B.66)
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Lemma 17. If ∀ b1, b2 s.t. b1 ≥ b2, ∃ κ such that Vm(b1) − Vm(b2) ≥ κρ′min(b1 − b2), then, for α =

min{Δa,
∑

ω ΔeωΔpω}:

Vm(b1)− Vm(b2) ≥ ρ′min(1+ βακ)(b1 − b2) (B.67)

Proof. Using Eq. 2.2, we get:

d(Vm(b))
db

=


ρ′(b) + βd(Vm(τ(b)))

d(τ(b))
d(τ(b))

db passive

ρ′(b) + β(
∑

ω Θω(b)Vm(Paω)) active
(B.68)

Case 1 (passive):

= ρ′(b) + β
d(Vm(τ(b)))

d(τ(b))
(Pp1,1 − Pp0,1) (B.69)

= ρ′(b) + β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))
τ(b) + δ− τ(b)

(Pp1,1 − Pp0,1) (B.70)

≥ ρ′(b) + βκρ′min(P
p
1,1 − Pp0,1) (B.71)

≥ ρ′min + βκρ′min(P
p
1,1 − Pp0,1) (B.72)

≥ ρ′min(1+ βακ) (B.73)

Case 2 (active):

= ρ′(b) + β(
∥Ω∥−1∑
ω=1

Θ′
ω(b)

(
Vm(Paω)− Vm(Pa0)

)
) (B.74)

≥ ρ′(b) + βκρ′min

( ∥Ω∥−1∑
ω=1

Θ′
ω(b)(Paω − Pa0)

)
(B.75)

≥ ρ′min + βκρ′min

∥Ω∥−1∑
ω=1

(ΔeωΔpω) (B.76)

≥ ρ′min(1+ βακ) (B.77)
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Thus,

=⇒ d(Vm(b))
db

≥ ρ′min(1+ βακ)

=⇒
∫ b1

b2

d(Vm(b))
db

db ≥
∫ b1

b2
ρ′min

(
1+ βακ

)
db

=⇒ Vm(b1)− Vm(b2) ≥ ρ′min
(
1+ βακ

)
(b1 − b2)

(B.78)

Lemma 18. Vm(b1)− Vm(b2) ≥
ρ′min(b1−b2)

1−βα ∀ b1, b2 s.t. b1 ≥ b2

Proof. This proof is exactly same as the proof for Lemma. 11.

Corollary 6. d(Vm(b))
db ≥ ρ′min

1−βα

Proof. This follows from Lemma 18 by setting b1 = b+ δ, b2 = b under the limit δ → 0.

Lemma 19. Vm(b1)− Vm(b2) ≤
ρ′max(b1−b2)

1−β ∀ b1, b2 s.t. b1 ≥ b2

Proof. Proceed by induction again. The base caseVm(b1)− Vm(b2) =

m+ ρ(b1)− (m+ ρ(b2)) = ρ(b1)− ρ(b2) ≤
ρ′max(b1 − b2)

1− β

both passive

ρ(b1)− ρ(b2) ≤
ρ′max(b1 − b2)

1− β
both active

which are both clearly satisfied. Now assumeVt
m(b1)− Vt

m(b2) ≤
ρ′max(b1−b2)

1−β . Then,Vt+1
m (b1)− Vt+1

m (b2)
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Case 1 (both passive):

=
(
m+ ρ(b1) + βVt

m(τ(b1))
)
−
(
m+ ρ(b2) + βVt

m(τ(b2))
)

= (ρ(b1)− ρ(b2)) + β
(
Vt
m(τ(b1))− Vt

m(τ(b2))
)

≤ (ρ(b1)− ρ(b2)) + β

(
ρ′max(τ(b1)− τ(b2))

1− β

)

≤ ρ′max(b1 − b2) + β

(
ρ′max(b1 − b2)

1− β

)
by Fact 7

=
ρ′max(b1 − b2)

1− β

(B.79)

Case 2 (both active):

=
(
ρ(b1) + β

(
Θ(b1)Vt

m(Pa1,1) + (1− Θ(b1))Vt
m(Pa0,1)

))
−(

ρ(b2) + β
(
Θ(b2)Vt

m(Pa1,1) + (1− Θ(b2))Vt
m(Pa0,1)

))
= (ρ(b1)− ρ(b2)) + β

((
Θ(b1)− Θ(b2)

)(
Vt
m(Pa1,1)− Vt

m(Pa0,1)
))

≤ (ρ(b1)− ρ(b2)) + β

(
(Θ(b1)− Θ(b2)).

ρ′max(P
a
1,1 − Pa0,1)
1− β

)

≤ ρ′max(b1 − b2) + β

(
ρ′max(Θ(b1)− Θ(b2))

1− β

)

≤ ρ′max(b1 − b2) + β

(
ρ′max(b1 − b2)

1− β

)

=
ρ′max(b1 − b2)

1− β

(B.80)

Lemma 20. If ∀ b1, b2 s.t. b1 ≥ b2, ∃ κ such that Vm(b1) − Vm(b2) ≤ κρ′max(b1 − b2), then, for γ =

max{Δp,
∑

ω ΔaωΔeω}:

Vm(b1)− Vm(b2) ≤ ρ′max(1+ βγκ)(b1 − b2) (B.81)

Proof. Using Equation 2.2, we get:
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d(Vm(b))
db

=


ρ′(b) + βd(Vm(τ(b)))

d(τ(b))
d(τ(b))

db passive

ρ′(b) + β(Vm(Pa1,1)− Vm(Pa0,1)) active
(B.82)

Case 1 (passive):

= ρ′(b) + β
d(Vm(τ(b)))

d(τ(b))
(Pp1,1 − Pp0,1) (B.83)

= ρ′(b) + β lim
δ→0

Vm(τ(b) + δ)− Vm(τ(b))
τ(b) + δ− τ(b)

(Pp1,1 − Pp0,1) (B.84)

≤ ρ′(b) + βκρ′max(P
p
1,1 − Pp0,1) (B.85)

≤ ρ′max(1+ βγκ) (B.86)

Case 2 (active):

= ρ′(b) + β(
∑
ω

Θ′
ωVm(Paω)) (B.87)

= ρ′(b) + β(
∑
ω

Θ′
ω(Vm(Paω)− Vm(Pa0))) (B.88)

≤ ρ′(b) + βκρ′max(
∑
ω

Θ′
ω(Paω − Pa0)) (B.89)

≤ ρ′max + βρ′maxγκ (B.90)

≤ ρ′max(1+ βγκ) (B.91)

Thus,

=⇒ d(Vm(b))
db

≤ ρ′max(1+ βγκ)

=⇒
∫ b1

b2

d(Vm(b))
db

db ≤
∫ b1

b2
ρ′max

(
1+ βγκ

)
db

=⇒ Vm(b1)− Vm(b2) ≤ ρ′max
(
1+ βγκ

)
(b1 − b2)

(B.92)
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Lemma 21. Vm(b1)− Vm(b2) ≤
ρ′max(b1−b2)

1−βγ ∀ b1, b2 s.t. b1 ≥ b2

Proof. The proof is same as the proof of Lemma 21.

Corollary 7. d(Vm(b))
db ≤ ρ′max

1−βγ

Proof. This follows from Lemma 21 by setting b1 = b+ δ, b2 = b under the limit δ → 0.

Now we complete the proof for Thm.8 as follows:

Eq.2.11 =⇒ Δp ≥
Δa(1− βα)ρ′max
(1− βγ)ρ′min

(B.93)

=⇒
(Pp1,1 − Pp0,1)ρ′min

(1− βα)
≥

ρ′max(P
a
1,1 − Pa0,1)

(1− βγ)
(B.94)

=⇒
(Pp1,1 − Pp0,1)ρ′min

(1− βα)
≥ Vm(Pa1 )− Vm(Pa0) by Lemma 21 (B.95)

=⇒ (Pp1,1 − Pp0,1)
d(Vm(b))

db
≥ Vm(Pa1 )− Vm(Pa0) by Cor. 6 (B.96)

=⇒ d(τ(b))
db

d(Vm(b))
db

≥ Vm(Pa1 )− Vm(Pa0) by Fact 5 (B.97)

=⇒ ρ′(b) + β
d(Vm(τ(b)))

d(τb)
d(τ(b))

db
≥ ρ′(b)+ (B.98)

β
(
Vm(Pa1 )− Vm(Pa0)

)
(B.99)

=⇒ d(Vm(b|a = 0))
d(b)

≥ d(Vm(b|a = 1))
d(b)

(B.100)

B.7 Proof of Theorem 9

Theorem 9 (Reverse Threshold Optimality). Consider a belief-stateMDP corresponding to an arm in an RMAB

with some non-decreasing reward function given by ρ(b), transition matrix given by P and an observation function,

Θ(b) for a belief state b. For any subsidy m, there is a reverse threshold policy that is optimal if:

Δp(1− βmin{Δp, (Δa.Δe)})
Δa(1− βmax{Δp, (Δa.Δe)})

≤
ρ′min
ρ′max

(2.12)
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where Δe = Θ′(b) for a linearΘ(b) such as in the example above.

Proof. This proof follows along the same lines as Proof of Thm. 5 using the value function bounds for imprecise

observations.
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C
Appendix to Chapter 3

C.1 Proofs

Theorem 19. The belief state transition model for a 2-state Streaming Bandit arm with deterministic arrival time

T1 and departure time T2 can be reduced to a belief state model for a restless bandit arm with T2 + (T2 − T1)
2

states.

Let us consider that a streaming arm, that arrives (or, becomes available to the system) at time step T1 and exits

(or, becomes unavailable) at time step T2. For including their arrival and departure in the belief model, we con-

struct a new belief model with each state represented by a tuple 〈 behavior, time-step 〉, where behavior takes

a belief value in the interval (0, 1) or is set toU (unavailable). U can be set to any constant value. The transition
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probabilities are constructed as follows:

• The first T1 − 1 states represent the unavailability of the arm and have deterministic transitions, i.e., for an

action a,

Pa⟨U,t−1⟩,⟨U,t⟩ = 1 for all t ∈ {2, . . . ,T1 − 1}.

• At time T1, the arm can either be in good state or bad state, so we create two states 〈1,T1〉 and 〈0,T1〉. For

each x ∈ {0, 1}, Pa⟨U,T1−1⟩,⟨x,T1⟩ = px where px represents the probability that the arm starts at a good (1)

or bad (0) state. Note that, in our experiments, we assume that the initial state of an arm is fixed to 0 or 1,

that can be captured by using either px = 0 or px = 1, respectively.

• For each time step t ∈ {T1 + 1,T2 − 1}, we create 2t states: 〈bw(0), t〉, . . . , 〈bw(t − T1), t〉 for each

action w ∈ {0, 1}. For any t′, t′′ ∈ {0, 1, . . . , t − T1}, the probability of transitioning from the state

〈bw(t′), t− 1〉 to the state 〈bw(t′′), t+ 1〉 is same as the probability of changing from belief value bw(t′) to

bw(t′′) in one time step on taking action w.

• For time step t ≥ T2, we create one sink state 〈U,T2〉. This state represents that unavailability of the arm

subsequent to time step T2 − 1. For any t′ ∈ {0, 1, . . . ,T2 − T1}, the probability of transitioning from

〈bw(t′),T2〉 to 〈U,T2〉 is 1.

Thus, the new belief network contains the following number of states:

T1 − 1+ 2(1+ . . .+ (T2 − T1)) + 1 (C.1)

= T1 + (T2 − T1)(T2 − T1 + 1) (C.2)

= T2 + (T2 − T1)
2 (C.3)

Thus, T2 + (T2 − T1)
2 states are required for converting a belief network representing 2-state streaming bandits

problem to a classic RMAB problem. □

Lemma 22. If a forward (or reverse) threshold policy π is optimal for a subsidy m for the belief states MDP of the

infinite horizon problem, then π is also optimal for the augmented belief state MDP.
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Proof. First, we define the value function for the modified belief states.

Vp
m(〈b, t〉) =

 b+m+ βVm(〈bP
p
11 + (1− b)Pp01, t+ 1〉) if b 6= U

b+m+ Vm(〈b′, t+ 1〉) otherwise

Va
m(〈b, t〉) =


b+ β(Vm(〈bPa11, t+ 1〉) + (1− b)Vm(〈Pa01, t+ 1〉))

if b 6= U

b+ Vm(〈b′, t+ 1〉) otherwise

where b′ is the next belief state.

The minimum value ofmU that makes the passive action as valuable as active action at the states 〈U, t〉 for

T1 ≤ t < T2, can be obtained by equating

Vp
mU(〈U, t〉) = Va

mU(〈U, t〉) (C.4)

⇒ U+mU + VmU(〈b′, t+ 1〉) = U+ VmU(〈b′, t+ 1〉) (C.5)

⇒ mU = 0. (C.6)

Assuming that there exists a forward (or reverse) threshold policy,mU = 0 implies that, even without any sub-

sidy, passive action is as valuable as active action. To show that the passive action is optimal at the u states, we

now show that the minimum subsidy at any other belief state is greater than 0. We show this by contradiction.
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Let us assume that the minimum subsidymb = 0 for a belief state b 6= U. Then,

Vp
mb(〈b, t〉) ≥ Va

mb
(〈b, t〉)

⇒ b+mb + βVmb(bP
p
11 + (1− b)Pp01) ≥

b+ β(VmB(bPa11) + (1− b)Vmb(Pa01))

⇒ Vmb(bP
p
11 + (1− b)Pp01) ≥

Vmb(bPa11) + (1− b)Vmb(Pa01)

⇒ Vmb(bP
p
11 + (1− b)Pp01) >

Vmb(bP
p
11) + (1− b)Vmb(P

p
01)

∵ Pax1 > Ppx1 andVm(b) is non-decreasing (Corollary 1 in101).

The last inequality contradicts the fact thatVm(b) is a convex function of b145. Hence, the minimum subsidy

required at any belief state b 6= U to make the passive action more valuable is strictly greater than 0.

Theorem 20. A Streaming Bandits instance is indexable when there exists an optimal policy, for each arm and

every value of m ∈ R, that is forward (or reverse) threshold optimal policy.

Proof. Using Theorem 1 and Lemma 1, it is straightforward to see that an optimal threshold policy for infinite

horizon problem can be translated to a threshold policy for Streaming bandits instance. Moreover, using the fact

that the existence of threshold policies for each subsidym and each arm i ∈ N is sufficient for indexability to hold

(Theorem 1 of101), we show that the Streaming bandit problem is also indexable.

Theorem 21 (Index Decay). Let Vp
m,T(b) and V

a
m,T(b) be the T-step passive and active value functions for a belief

state b with passive subsidy m. Let mT be the value of subsidy m, that satisfies the equation Vp
m,T(b) = Va

m,T(b) (i.e.

mT is theWhittle Index for a horizon T). Assuming indexability holds, we show that theWhittle index decays for

short horizons: ∀T > 1 : mT > m1 > m0 = 0.

Proof. We provide our argument for a more general reward criterion than the total reward introduced in Section

3.3. Consider a discounted reward criterion with discount factor β ∈ [0, 1] (where β = 1 corresponds to total
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reward). m0 is simply them that satisfies: Vp
m,0(b) = Va

m,0(b) i.e., b+m = b, thusm0 = 0. Similarly,m1 can be

solved by equatingVp
m1,1(b) andV

a
m1,1(b) as follows:

=⇒ b+m1 + β
(
bPp11 + (1− b)Pp01

)
= b+ β

(
b(Pa11) + (1− b)(Pa01)

)
=⇒ m1 = β

(
b(Pa11 − Pp11) + (1− b)(Pa01 − Pp01)

)
(C.7)

Using the natural constraints Pas1 > Pps1 for s ∈ {0, 1}, we obtainm1 > 0.

Now, to showmT > m1 ∀T > 1, we first show thatVa
m1,T(b) > Vp

m1,T(b). Combining this with the fact that

Vm(.) is a linear function ofm and by definition,mT is a point that satisfiesV
p
mT,T(b) = Vp

mT,T(b), we use Fact 1

and set f = Vp
m,T(b), g = Va

m,T(b), x1 = m1 and x2 = mT to obtainm1 < mT, and the claim follows. For

completeness, we now show thatVa
m1,T(b) > Vp

m1,T(b).

Starting from an initial belief state b0, let ρp(b0, t) be the expected belief for the arm at time t, if the passive

action was chosen at t = 0 and the optimal policy, πp(t)was adopted for 0 < t < T. Similarly let ρa(b0, t) be

the expected belief at time t, if the active action was chosen at t = 0 and the same policy, πp(t) (which may not be

optimal now) was adopted for 0 < t < T. Then, ρa(b0, 1) − ρp(b0, 1) = m1 > 0 as shown above. Note that if

we took actions according to πp(t) for t ∈ {1, . . . ,T − 1}with active action taken at the 0th time step, the total

expected reward so obtained is upper bounded by the active action value function,Va
m1,T(b0). Thus,

Vp
m1,T(b0) = b0 +m1 + βρp(b0, 1) +

T∑
t=2

βtρp(b0, t) (C.8)

+
( T∑

t=1
βtm1.1{πp(t)=passive}

)
= b0 + βρa(b0, 1)+

T∑
t=2

βtρp(b0, t) +
( T∑

t=1
βtm1.1{πp(t)=passive}

)
< b0 + βρa(b0, 1)+

T∑
t=2

βtρa(b0, t) +
( T∑

t=1
βtm1.1{πp(t)=passive}

)
(C.9)

(by Lemma 2)

≤ Va
m1,T(b0)
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C.2 Robustness Checks

We conduct several robustness checks by varying key parameters important for the simulation and confirm that

the good results remain constant across various settings. We also simulate a few additional synthetic domains as

described below.
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Figure C.1: (a)Performance of our algorithm remains robust even when population is composed of a varying fraction of forward thresh‐
old optimal arms (b) Performance of our algorithm remains robust under varying levels of available resources
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Figure C.2: Non‐recoverable patients are those that remain in the bad state with high probability, even after receiving an intervention.
Performance of Threshold Whittle begins to dwindle when the fraction of non‐recoverable patients in the cohort increases, but our
interpolation algorithms remain robust.
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Figure C.3: Tests on the ARMMAN domain reveal that the large speedup is achieved while virtually maintaining the same good quality
of performance
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(a) Arm lifetime= 10
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(b) Arm lifetime= 40.

Figure C.4: We generate corner cases consisting of varying proportion of patients with high value of W
Δb . We test the algorithms under

two situations corresponding to lifetime of arms smaller/larger than the ratio W
Δb and find that our algorithm still show good perfor‐

mance throughout.
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D
Appendix to Chapter 4

D.1 Clarification on Statistical Analysis

It has been brought to our attention that the standard statistical test employed in the paper, while being popular,

is still imperfect for the unique nature of the adaptively collected data analyzed in our study. Designing a valid

statistical test for concluding from adaptively collected data from trials such as ours, is still an area of modern

research51,174.

The unique challenge is that the outcomes of individual beneficiaries within an experimental arm, are not in-

dependent owing to the budget constraint. In fact, we expect the outcomes to be negatively correlated under the

assumption that interventions are never detrimental — reason being that while allocating an intervention to a
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beneficiary tends to improve their outcomes, it robs some other beneficiary of the intervention resource, leading

to a decline in their expected outcome. This negative correlation is expected to translate to a lower sample varia-

tion in the measured outcomes than what is accounted for under the independent-outcomes assumption. Our

discussion67 suggests that this is likely to result in a less heavy tail than expected, and consequently, our computa-

tion should likely yield conservative p-values. We justify this intuition further via an illustrative example involving

a simpler setting below.

Because the computed p-values are conservative, the conclusions drawn in our study should still remain valid.

D.1.1 Justification of why negative correlation leads to p-value inflation:

We provide intuition through an example, for why negative correlation leads to inflated p-values.

Consider a simplified linear model, similar to the one employed in the paper, without contributions from

intermediate terms such as k,Ti, xij, retaining only β, ε. Consider the null hypothesisH0 := β = 0. To reject

this hypothesis, consider employing the z-test that would construct a z-statistic as: z-stat =
√
n·Ȳ
σ . If the Yi’s were

assumed to be independent, we would obtain the p-value as α in terms of the tail distribution Z of a standard

normal distribution as:

|
√
n · Ȳ
σ

| = Z1− α
2

However, in reality, since the Yi’s are not independent, but in fact, negatively correlated, the actual variance in Ȳ

is smaller. This is because the second term in the expansion of the variance of the mean outcomes, contributes

negatively as in:

var(Ȳ) =
1
n2
[∑

var(Yi) +
∑

cov(Yi,Yj)
]

This leads to σ2 being an inflated version of the actual variance and equivalently, this leads to an under-inflated

value of |
√
n·Ȳ
σ |. This translates to a larger mass on the right tail of the Z distribution, leading to a conservative

(i.e. larger) p-value.
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E
Appendix to Chapter 7

E.1 Complete Proofs to Theoretical Results

E.1.1 Proof of Lemma 23

Lemma 23. The relation † is an equivalence relation and the family of sets defined by C†(·) forms a partition over

C.

Proof. To prove that † is an equivalence relation, we show that it is reflexive, symmetric and transitive. † is reflex-

ive because ∀C ∈ C,C ∈ C†(C) by definition. Furthermore, † is also trivially symmetric because if C2 ∈ C†(C1),

then by definition, the allocations received by all individuals at all times are identical under both C1 and C2.

Hence C1 ∈ C†(C2). Finally, † is also transitive because if all allocations received by all individuals at all times
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are identical in C1 and C2 as well as in C2 and C3, that means the allocations are also identical in C1 and C3. Thus

formally, if C2 ∈ C†(C1) and C3 ∈ C†(C2), then C3 ∈ C†(C1). Thus † is an equivalence relation over C and

consequently, partitions C into a family of equivalence classes C†(·) such that every element C ∈ C lies in exactly

one partition39.

E.1.2 Proof of Theorem 14

Theorem 14. Eval†(πm) is an unbiased estimate of the expected value of the performance, Eval∗(πm) ∀m ∈ [M],

defined in equation 7.1. i.e.

ESm∼P∗EC∼C [Eval†(πm)] = Eval∗(πm) ∀m ∈ [M]

Proof.

Eval∗(πm) =ESm∼P∗
[
EC∼C

[
Eval(πm)

]]
= ESm∼P∗

[ ∑
C ∈ C

Prob[C] · Eval(πm|C)
]

= ESm∼P∗
[ 1
|C|

∑
C ∈ C

Eval(πm|C)
]

(∵ all C equally likely)

= ESm∼P∗

[
1
|C|

[ ∑
C ∈ P1

Eval(πm|C) + · · ·+
∑

C ∈ Pη

Eval(πm|C)
]]

where {P1, . . . ,Pη} defines partition of C induced by †.

= ESm∼P∗

[∑
j∈[η]

|Pj|
|C|

· 1
|Pj|

.
[ ∑
C ∈ Pj

Eval(πm|C)
]]

= ESm∼P∗

[∑
j∈[η]

|Pj|
|C|

·
[
Eval†(πm|C)

]]
(∀C ∈ Pj)

= ESm∼P∗

[∑
j∈[η]

Prob[Pj] ·
[
Eval†(πm|C)

]]
(∀C ∈ Pj)

= ESm∼P∗

[∑
j∈[η]

∑
C∈Pj

Prob[C] ·
[
Eval†(πm|C)

]] (
∵ Prob[Pj] =

∑
C∈Pj

Prob[C]
)

= ESm∼P∗EC∼C [Eval†(πm)]
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E.1.3 Proof of Theorem 15

Theorem 15. The sample variance of our estimator, Eval†(π) is smaller than the standard estimator, Eval(π):

(Eval(π))− (Eval†(π)) =

1
|C|

·
∑
j∈[η]

[∑
C∈Pj

Eval2(π|C)−

(∑
C∈Pj

Eval(π|C)
)2

|Pj|

]

≥ 0, where {P1, . . . ,Pη} is the partition of C induced by †.

Proof. We compute the sample variance by first conditioning over the partitionPj (of the equivalence sets de-

fined by †) that an instance of an assignment, C belongs to and then accounting for the variance stemming from

the candidate assignments Cwithin the partition. Thus we get:

(Eval(π)) =
1
|C|
∑
C∈C

(
Eval(π|C)− Eval∗(π)

)2
=

1
|C|
∑
j∈[η]

∑
C∈Pj

(
Eval(π|C)− Eval∗(π)

)2
=

1
|C|
∑
j∈[η]

(∑
C∈Pj

(
Eval(π|C)

)2 − 2 Eval∗(π)
∑
C∈Pj

Eval(π|C) + |Pj|
(
Eval∗(π)

)2) (E.1)

Similarly, we compute the variance of our estimator Eval† as:

(Eval†(π)) =
1
|C|
∑
j∈[η]

∑
C∈Pj

(
Eval†(π|C)− Eval∗(π)

)2
=

1
|C|
∑
j∈[η]

(
|Pj| ·

{∑
C∈Pj

Eval(π|C)
|Pj|

− Eval∗(π)
}2
)

=
1
|C|
∑
j∈[η]

(
|Pj| ·

{(∑
C∈Pj

Eval(π|C)
|Pj|

)2
− 2 Eval∗(π)

(∑
C∈Pj

Eval(π|C)
|Pj|

)
+
(
Eval∗(π)

)2})

=
1
|C|
∑
j∈[η]

{(∑
C∈Pj

Eval(π|C)
)2

|Pj|
− 2 Eval∗(π)

∑
C∈Pj

Eval(π|C) + |Pj|
(
Eval∗(π)

)2} (E.2)
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Subtracting expression in Equation E.2 from the expression in Equation E.1 gives:

(Eval(π))− (Eval†(π)) =
1
|C|
∑
j∈[η]

(∑
C∈Pj

(
Eval(π|C)

)2 −
(∑

C∈Pj
Eval(π|C)

)2
|Pj|

)
(E.3)

We can show that the expression for variance contraction derived in Equation E.3 is non-negative as a direct

consequence of the Cauchy-Schwarz inequality. The Cauchy-Schwarz inequality states that for two vectors u and

v, |〈u, v〉|2 ≤ 〈u, u〉·〈v, v〉, where 〈·, ·〉 denotes the inner product. Setting u =
[
Eval(π|C1), . . . ,Eval(π|C|Pj|)

]
︸ ︷︷ ︸

|Pj|entries

)

and v =
[
1, . . . , 1

]
︸ ︷︷ ︸

|Pj| 1′s

yields the desired result: (Eval(π))− (Eval†(π)) ≥ 0.

E.1.4 Efficient Algorithm

Lemma 24. The relation †Υ is an equivalence relation over both C as well as each set in the family C†(·) and the

family of sets defined by C†
Υ(·) forms a partition over C.

Proof. Similar to Lemma 23, we prove that †Υ is an equivalence relation by showing that it is reflexive, symmetric

and transitive. †Υ is reflexive because ∀C ∈ C,C ∈ C†
Υ(C) by definition. Furthermore, † is also trivially sym-

metric because if C2 ∈ C†(C1), then by definition, the index thresholds, as well as the allocations received by

all individuals at all times, are identical under both C1 and C2. Hence C1 ∈ C†(C2). Finally, † is also transitive

because if all index threshold and allocations received by all individuals at all times are identical in C1 and C2 as

well as in C2 and C3, that means the same are also identical in C1 and C3. Thus formally, if C2 ∈ C†(C1) and

C3 ∈ C†(C2), then C3 ∈ C†(C1). Thus †Υ is an equivalence relation over C and consequently, partitions C

into a family of equivalence classes C†(·) such that every element C ∈ C lies in exactly one partition39. Similar

reasoning also shows that †Υ is an equivalence relation over each set in the family C†(·).

Corollary 8. Eval†Υ(πm) is an unbiased estimate of the expected value of the performance, Eval∗(π), defined in

equation 7.1. i.e. ESm∼P∗EC∼C [Eval†(πm)] = Eval∗(πm) ∀m ∈ [M]

Proof. Using Lemma 24, we apply similar arguments as Theorem 14 on the parition defined by †Υ to show that

Eval†Υ yields an unbiased estimate.
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Theorem 16. Eval†Υ(·) computed as per Equation 7.6 computes the average of Eval(|C) over all assignments in C†
Υ.

i.e. Eval†Υ(π) =
∑

C∈C†Υ
Eval(π|C)

|C†
Υ|

Proof. The key to showing that the two are equivalent is in interpreting the summation of (modified) rewards

over individuals in the view of average group rewards over assignments. Mathematically, starting from the defi-

nition of Eval†Υ(πm) , the key lies in moving the summation operation over assignments in C†
Υ from outside the

Eval†Υ() term to inside, applying it individually on each contributing participant. Formally, we can rewrite the
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expression of Eval†Υ(πm) as:

Eval†Υ(πj) =

∑
C∈C†

Υ
Eval(πj|C)

|C†
Υ|

(E.4)

=

∑
C∈C†

Υ

∑
i∈Cj

r(S[i],A[i])

|C†
Υ|

(E.5)

=
∑
C∈C†

Υ

∑
k∈κ
∑

i∈Gk
1{i∈Cj} · r(S[i],A[i]) +

∑
i∈Cj

(1− Λi) · r(S[i],A[i])

|C†
Υ|

(E.6)

(splitting the summation over groupsGk and other individuals that can’t be swapped) (E.7)

=
∑
k∈κ

∑
i∈Gk

[ ∑
C∈C†

Υ

1{i∈Cj} · r(S[i],A[i])

|C†
Υ|

]
+
∑
i∈Cj

(1− Λi) · r(S[i],A[i]) (E.8)

=
∑
k∈κ

∑
i∈Gk

[ ∑
C∈C†

Υ

1{i∈Cj}

|C†
Υ|

· r(S[i],A[i])

]
+
∑
i∈Cj

(1− Λi) · r(S[i],A[i]) (E.9)

=
∑
k∈κ

∑
i∈Gk

[
Pr(i ∈ Cj|C†

Υ) · r(S[i],A[i])

]
+
∑
i∈Cj

(1− Λi) · r(S[i],A[i]) (E.10)

=
∑
k∈κ

∑
i∈Gk

[
|{ι : ι ∈ (Gφ(i) ∩ Cj)}|

|Gφ(i)|
· r(S[i, 0 : T],A[i, 1 : T])

]
+
∑
i∈Cj

(1− Λi) · r(S[i],A[i])

(E.11)

=
∑
k∈κ

|{ι : ι ∈ (Gφ(i) ∩ Cj)}| ·
∑
i∈Gk

[
1

|Gφ(i)|
· r(S[i, 0 : T],A[i, 1 : T])

]
+
∑
i∈Cj

(1− Λi) · r(S[i],A[i])

(E.12)

=
∑
k∈κ

|{ι : ι ∈ (Gφ(i) ∩ Cj)}| · r̃k +
∑
i∈Cj

(1− Λi) · r(S[i],A[i]) (E.13)

=
∑
i∈Cj

r̃φ(i) · Λi +
∑
i∈Cj

(1− Λi) · r(S[i],A[i], 1 : T) (E.14)
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Table E.1: Sample variance in Measured Performance Lift

T B π1 v π0 raw permuted ipw n-val

1 3% πwi v πgr 49.09 4.94 0.48 9
1 10% πwi v πgr 49.86 15.11 6.66 3
1 25% πwi v πgr 49.45 19.94 78.12 2
10 3% πwi v πwi 2381 916 NA 3
10 3% πwi v πgr 2348 728 NA 4
10 3% πgr v πgr 26356 1860 NA 13
10 10% πgr v πgr 25983 3808 NA 7
10 25% πgr v πgr 23619 5477 NA 5

E.2 Casting Resource Allocation Policies as Index Policies

Control: A control group that sees no interventions can be handled by using any randomly generated index

matrix with finite entries. Setting the index threshold Υi = ∞∀ i ensures that no individual assigned the control

policy gets picked for intervention.

Round Robin: Common policies such as ‘round robin’, that operate by selecting individuals cyclically for

intervention in a set order can also be represented as index policies. The index for each individual at each time

step, can be determined in two stages. First, we consider the feature used for ranking theN individuals and we

start by setting Υi(t) := r, for r ∈ {1, . . .N}where r denotes the priority rank of the individual (highest rank

picked first). Next, each time an individual receives an action a = 1, we want to push them at the bottom of

the queue, so we subtractN from their index for all future timesteps, repeating this process for each instance of

a = 1.
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Figure E.2: (Left:) Variance reduces by running and averaging over n‐independently run trials. (Center, Right:) Single shot setup

E.3 Additional Experimental Results

E.3.1 Synthetic Data Generation in Section 7.6.1 Explained

P p,1 =


0.97 0.03
0.03 0.97

�
P a,1 =


0.96 0.04
0.01 0.99

�

P p,2 =


0.25 0.75
0.03 0.97

�
P a,2 =


0.23 0.77
0.01 0.99

�

<latexit sha1_base64="Ui55jDWJZMxnNw38ybERan0oQXE="></latexit>

Figure E.1: Probability values forming the matrix P1 and P2

We reproduce the transition probabilities P1 and P2 used in our simulation, adopted from101 in Figure E.1. Each

P comprises of a set of probabilities under each of the two actions (a = 0, denoted as ‘p’, for passive and a = 1

denoted as ‘a’, for active).

Intuition is that P1 has a very small Pa0,1 and P
p
0,1 and is thus difficult to revive once it enters state s = 0, even

with an intervention (a = 1), making it important to keep intervening to stop the individual from ever entering

s = 0. On the other hand, P2 has a large P
p
0,1, making it self-correcting, meaning the individual is likely to return

to s = 1 quickly even without intervention.

E.3.2 Single-shot RCTs

E.3.3 Sequential RCTs

We run more comparisons usingN = 100 individuals per arm, simulating 500 instances of trials for T = 10

timesteps. The n−values are listed in Table E.1.
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Figure E.3: Whittle vs Greedy (left two panels) and Whittle vs whittle (right two panels)

Setup: Greedy vs Greedy For more granular analysis, we consider the state trajectories of individuals par-

ticipating in the trial. This usesN = 1000 individuals per arm and simulates 30 instances of trials for T = 10

timesteps. We see that orange trajectories (after permutation) is closer to the expected value than blue trajectories

(blue)

Figure E.4: Time trajectories of Greedy v Greedy
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