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Abstract

This dissertation consists of three essays in econometrics. A common throughline is decision theory,

defined here broadly as the formal considerations justifying, informing, or undermining choices of

statistical procedures.

The first chapter proposes a new interpretation of synthetic control methods as instances of online

convex optimization algorithms. Viewed in a certain way, synthetic control methods implement an

algorithm called Follow-The-Leader. Mathematical guarantees of Follow-The-Leader then translate

into new guarantees for synthetic control. Specifically, over long time horizons, synthetic control

methods predict almost as well as the best weighted average of untreated units chosen ex post.

The second chapter proposes new empirical Bayes methods that improve statistical decision-

making. It shows that conventional empirical Bayes methods embed an assumption called prior

independence; this assumption frequently fails to hold; and imposing this assumption incorrectly can

harm the performance of standard empirical Bayes methods. Motivated by these observations, the

chapter proposes new empirical Bayes methods and proves some new decision-theoretic guarantees.

The third chapter is a paper co-authored with Jonathan Roth. Empirical researchers frequently

want to estimate some causal effect in terms of the log transformation of their outcome variables.

However, when the outcome variable can take the value zero, its log is not well-defined. In such

situations, empirical researchers often resort to certain “logarithm-like” transformations that are defined

at zero and continue to interpret results as approximate log or percentage effects. We show that such

interpretations are inappropriate. We also show that there exists no estimand satisfying certain desirable

properties simultaneously, and one has to forgo at least one of these properties.
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Abstract

This paper notes a simple connection between synthetic control and online learning. Specifically, we

recognize synthetic control as an instance of Follow-The-Leader (FTL). Standard results in online

convex optimization then imply that, even when outcomes are chosen by an adversary, synthetic

control predictions of counterfactual outcomes for the treated unit perform almost as well as an oracle

weighted average of control units’ outcomes. Synthetic control on differenced data performs almost as

well as oracle weighted difference-in-differences, potentially making it an attractive choice in practice.

We argue that this observation further supports the use of synthetic control estimators in comparative

case studies.
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1.1 Introduction

Synthetic control (Abadie and Gardeazabal, 2003; Abadie et al., 2015) is an increasingly popular

method for causal inference among policymakers, private institutions, and social scientists alike.

In parallel, there is a rapidly growing methodological literature providing statistical guarantees for

synthetic control methods.2 Existing results for synthetic control—and for modifications thereof—are

typically derived under a low-rank linear factor model or a vector autoregressive model of the outcomes

(see, among others, Abadie et al., 2010; Ben-Michael et al., 2019, 2021; Ferman and Pinto, 2021;

Viviano and Bradic, 2019).3 While these statistical guarantees formally hold under these outcome

models, a number of authors have expressed optimism that the synthetic control method is robust to

these modeling assumptions.4

On the other hand, in empirical settings where synthetic control is commonly applied—where the

treated unit is an aggregate entity like a country or a U.S. state—plausible outcome modeling may be

challenging. Manski and Pepper (2018), in studying the effect of gun laws in the United States using

state-level crime rates, provocatively ask, “what random process should be assumed to have generated

the existing United States, with its realized state-year crime rates?” Granted, the low-rank linear factor

model is a general class of data-generating processes and may even arise under finer-grained models

on the individual outcomes contained in the aggregate data (Shi et al., 2022). But to pessimists and

skeptics, perhaps even such a model is implausible for the settings considered by many synthetic

control studies. Indeed, if practitioners were willing to fully commit to an outcome model, perhaps

they should estimate the outcome model directly—e.g., use factor model-based methods (Bai and Ng,

2002; Bai, 2003; Xu, 2017; Athey et al., 2021a)—instead of using synthetic control?

As a result, existing methodological results seem to leave practitioners in a somewhat awkward

2See the review by Abadie (2021) as well as the special section on synthetic control methods in the Journal of the
American Statistical Association (Abadie and Cattaneo, 2021).

3Notably, like this paper, Bottmer et al. (2021) consider a design-based framework which conditions on the outcomes
and considers randomness arising solely from assignment of the treated unit or the treatment time period.

4For instance, Ben-Michael et al. (2019) write, “Outcome modeling can also be sensitive to model mis-specification,
such as selecting an incorrect number of factors in a factor model. Finally, [... synthetic control] can be appropriate under
multiple data generating processes (e.g., both the autoregressive model and the linear factor model) so that it is not necessary
for the applied researcher to take a strong stand on which is correct.” Abadie and Vives-i-Bastida (2021) write, “Synthetic
controls are intuitive, transparent, and produce reliable estimates for a variety of data generating processes.”
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position. On the one hand, synthetic control is intuitively appealing, and it is conjectured to have good

properties under a variety of outcome models. On the other hand, perhaps existing outcome models that

have so far proved sufficiently analytically tractable are not always compelling in common empirical

settings. To address this tension, this paper provides a few theoretical results and offers a novel

interpretation of synthetic control methods. In particular, we seek guarantees for synthetic control that

do not rely on any outcome model. Consequently, our results complement existing, model-based ones.

It is unlikely that nontrivial guarantees on the performance of synthetic control exist without any

structure on the outcomes. However, we can derive guarantees of synthetic control’s performance

relative to a class of alternatives, such as weighted matching or weighted difference-in-differences

(DID) estimators, which practitioners may otherwise choose. Our first main result shows that, on

average over hypothetical treatment timings, synthetic control predictions are never much worse than

the predictions made by any weighted matching estimator. Our second main result shows that the same

is true for synthetic control on differenced data versus any weighted DID estimator. These results imply

that if there is a weighted matching or DID estimator that performs well, synthetic control likewise

performs well. To be clear, these regret guarantees average over hypothetical treatment timings, which

can be interpreted as expected loss under random treatment timing, a design-based assumption.

Taken together, our results provide reassurances for practitioners, as they offer justifications

for synthetic control that do not rely on particular statistical models of the outcomes. At least on

average over hypothetical treatment timings, regardless of outcomes, variations of synthetic control

are competitive against common estimators, such as weighted matching and weighted DID estimators.

Additionally, our second result introduces a novel version of synthetic control that is competitive

against DID. Since DID is extremely popular in practice (Currie et al., 2020) and is thus a natural

benchmark, this version of synthetic control may be particularly attractive.

We derive our results by casting prediction with panel data as an instance of online convex

optimization, and by recognizing synthetic control as an online regression algorithm known as Follow-

The-Leader (FTL, a name coined by Kalai and Vempala, 2005).5 Regret guarantees on FTL in the

5For an introduction to online convex optimization, see Hazan (2019), Orabona (2019), Cesa-Bianchi and Lugosi (2006),
and Shalev-Shwartz (2011).
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online convex optimization literature translate directly to guarantees for synthetic control against a

class of alternative estimators. Since most results in online convex optimization have been derived

under an adversarial model—where an imagined adversary generates the data—these results translate

to guarantees on synthetic control without any structure on the outcome process.

This paper is perhaps closest to Viviano and Bradic (2019). They propose an ensemble scheme to

aggregate predictions from multiple predictive models, which can include synthetic control, interactive

fixed effects models, and random forests. Using results from the online learning literature, Viviano

and Bradic (2019)’s ensemble scheme has the no-regret property, making the ensemble predictions

competitive against the predictions of any fixed predictive model in the ensemble. Under sampling

processes that yield good performance for some predictive model in the ensemble, Viviano and Bradic

(2019) then derive performance guarantees for the ensemble learner. In contrast, we study synthetic

control directly in the worst-case setting, and connect corresponding worst-case results to guarantees

on statistical risk in a design-based framework. We show that synthetic control algorithms themselves

are no-regret online algorithms and are in fact competitive against a wide class of matching or DID

estimators.

Section 1.2 sets up the notation and the decision protocol and presents our main results for synthetic

control. Section 1.3 presents several extensions that show alternative guarantees on modifications

of synthetic control; in particular, we show that synthetic control on differenced data is competitive

against a class of difference-in-differences estimators. Section 1.4 concludes the paper.

1.2 Setup and main results

Consider a simple setup for synthetic control, following Doudchenko and Imbens (2016). There are T

time periods and N + 1 units. To simplify convergence rate expressions, we assume T > N unless

noted otherwise, but this assumption is not strictly necessary for our results. Let unit 0 be the only

treated unit, first treated at some time S ∈ {1, . . . , T} ≡ [T ]. The other N units are referred to as

control units. Since we observe the treated potential outcomes for the treated unit after S, estimating

causal effects for unit 0 amounts to predicting the unobserved, post-S untreated potential outcomes of

this unit. Thus, we focus on untreated potential outcomes.
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Let the full panel of untreated potential outcomes be Y = Y(0) with representative entry yit =

yit(0). Since we focus on untreated potential outcomes, it is convenient to omit the “(0)” symbol

going forward. We let (i) Y1:s = (y0t, . . . , yNt)
s
t=1 collect all untreated potential outcomes until and

including time s, and we let (ii) yt = (y1t, . . . , yNt)
′ be the vector of control unit outcomes at time t.

Additionally, we let y(1) = (y1(1), . . . , yT (1))
′ denote the treated potential outcomes of unit 0, which

are only observable for times t ≥ S. Similarly, we let y(0) = (y01(0), . . . , y0T (0))
′ = (y01, . . . , y0T )

′

denote the untreated potential outcomes of unit 0, which are observable for t < S. The analyst is

tasked with predicting y0S from observed data, which typically consist of pre-treatment outcomes of

unit 0 and outcomes of untreated units. Like the main analysis in Doudchenko and Imbens (2016),

we do not consider covariates extensively, though Section 1.3.3 considers matching on covariates as a

form of regularization.6

Synthetic control (Abadie and Gardeazabal, 2003; Abadie et al., 2010), in its basic form, chooses

some convex weights θ̂S that minimize past prediction errors

θ̂S ∈ argmin
θ∈Θ

S−1∑
t=1

(y0t − θ′yt)2, (1.1)

where Θ ≡ {(θ1, . . . , θN ) ∈ RN : θi ≥ 0, 1′θ = 1} is the simplex. For a one-step-ahead forecast

for y0S , synthetic control outputs the weighted average ŷS ≡ θ̂′SyS , and forms the treatment effect

estimate τ̂S ≡ yS(1)− ŷS .

Theoretical guarantees for treatment effect estimates τ̂S often rely on statistical models of the

outcomes Y. While synthetic control has good performance under a range of outcome models, one

may still doubt whether these models are plausible—and whether the underlying repeated sampling

thought experiments are appropriate—in the spirit of comments by Manski and Pepper (2018). In

contrast to the usual outcome modeling approach, we instead consider a worst-case setting where

6To extend our analysis to cases with covariates, at a minimum, we can interpret Y as the residuals of the untreated
potential outcomes against some fixed regression function of the covariates, i.e. yit = y∗it − ht(xi), for fixed ht (perhaps
estimated from auxiliary data), outcomes y∗it, and covariate vectors xi. The residualization is similar to Section 5.5 in
Doudchenko and Imbens (2016) and expression (16) in Abadie (2021), but is stronger due to ht being fixed for different
adversarial choices of Y. Our results apply so long as these residuals obey the boundedness assumption ∥Y∥∞ ≤ 1 that we
impose later.
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the outcomes are generated by an adversary.7 Doing so has the appeal of giving decision-theoretic

justification for methods while being entirely agnostic towards the data-generating process. Since a

dizzying range of reasonable data-generating models and identifying assumptions are possible in panel

data settings—yet perhaps none are unquestionably realistic—this worst-case view is valuable, and

worst-case guarantees can be comforting.

In particular, we assume an adversary picks the outcomes Y—or, equivalently, we derive results

that hold uniformly over {Y : ∥Y∥∞ ≤ 1}. Specifically, we consider the following protocol between

an analyst and an adversary:

(P1) The analyst commits to a class of linear prediction rules ŷt ≡ f(yt; θt(Y1:t−1)) = θ′tyt,

parametrized by some θt ∈ Θ that may be chosen as a function of the past data Y1:t−1. We refer to the

maps σ ≡ {θt(·) : t ∈ [T ]} as the analyst’s strategy. This means that if the treatment time S is equal

to t, then the analyst reports ŷt as their prediction for the untreated potential outcome at the first period

after treatment.

(P2) The adversary chooses the matrix of outcomes Y. In order to obtain nontrivial bounds,

we assume that the adversary cannot choose arbitrarily large outcomes, and without further loss of

generality, we assume ∥Y∥∞ ≤ 1. Since we are interested in the worst case, the adversary may choose

Y with knowledge of σ.

(P3) The analyst suffers loss equal to squared prediction error at time S: i.e., ℓ(ŷS , y0S) ≡

(ŷS − y0S)2.8

If we just consider the prediction error at a specific value of S = s0 known to the adversary, then

there is little hope of obtaining nontrivial guarantees. In this case, the adversary is simply too powerful:

They can choose outcomes at s0 such that any method performs badly on any metric. Motivated by

this difficulty, we consider a different performance criterion: Under (P1) to (P3), the analyst’s average

7The adversarial framework, popular in online learning, dates to the works of Hannan (1958) and Blackwell (1956).

8The protocol (P1) to (P3) easily generalizes when we replace f(yt, θt) with any known scalar function and ℓ(·, ·) with
any loss function, so long as θ 7→ ℓ(f(yt, θ), y0t) is convex and bounded. Our results in Section 1.3.3 allow for general loss
functions.
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squared loss, averaging over hypothetical values of S, is

1

T

T∑
S=1

(y0S − ŷS)2 =
1

T

T∑
S=1

(y0S − θ′SyS)2 = ES∼Unif[T ]

[
(y0S − ŷS)2

]
. (1.2)

Most results in this paper are guarantees in terms of the decision criterion (1.2) for synthetic control,

where synthetic control (1.1) is viewed as a particular strategy σ under (P1) to (P3).

As the second equality in (1.2) indicates, under an additional assumption that treatment timing is

uniformly random, S ∼ Unif[T ], the average loss over hypothetical treatment timings is equal to the

expected squared loss over S. This additional assumption is a design-based perspective (Doudchenko

and Imbens, 2016; Bottmer et al., 2021) on the panel causal inference problem. This perspective enables

us to interpret average prediction loss over hypothetical treatment timings as expected prediction loss

under the random treatment time S. The latter can in turn be thought of as design-based risk. Uniformly

random assignment of S is restrictive, but we shall relax this requirement in Sections A.2.1 and 1.3.1.

We now make clear the connection with online convex optimization (see Section 1.1 in Hazan,

2019). Online convex optimization works with the following general protocol. Time t increments

sequentially for T periods, and at time t:

(O1) An online player chooses some θt ∈ Θ, where Θ ⊂ Rd is a bounded convex set. The choice

θt may depend on the loss functions {ℓs : s < t} chosen by the adversary in the past.

(O2) After θt is chosen, an adversary chooses a loss function ℓt : Θ→ R from some given set of

loss functions, which may be further parametrized. These loss functions are constrained to be convex

and bounded but can otherwise be quite general. They are often further constrained in order to obtain

specific regret results.

(O3) The player suffers loss ℓt(θt) and observes the entire loss function ℓt(·).9 The player may

update their decision θt+1 based on ℓ1(·), . . . , ℓt(·).

At the end of the game, the online player suffers total loss
∑T

t=1 ℓt(θt).

9A closely related setting, where the player only observes ℓt(θt) instead of the entire loss function ℓt(·), is known as
bandit convex optimization (see Chapter 6 in Hazan, 2019), of which the adversarial multi-armed bandit problem (Robbins,
1952; Bubeck and Cesa-Bianchi, 2012) is a special case.
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Our setup of the panel prediction protocol, (P1) to (P3), is then an instance of online convex

optimization, (O1) to (O3). To see this, the most important step is to recognize that the analyst’s loss

(1.2) is analogous to the online player’s loss, and therefore to think of the analyst as making sequential

decisions where Y is sequentially revealed to them. This change in perspective relies on (i) our choice

of decision criterion (1.2) and (ii) the fact that the analyst’s decisions θt(·) only require outcomes prior

to t. Indeed, by fixing Y and considering the hypothetical values of S = 1, . . . , T sequentially, we can

treat the analyst as if they were solving an online problem and learning from data in the past—even

though, for any particular value of S, they are only confronted with a static, offline problem. To be

clear, we are not considering some online version of synthetic control; the connection to online convex

optimization comes from considering hypothetical, unrealized values of S.

After viewing the analyst’s problem as an online problem, we may straightforwardly establish the

remaining correspondences. First, note that the simplex Θ is convex and bounded. Second, note that

we may imagine the adversary in the panel prediction game as picking loss functions ℓt(·) of the form

θ 7→ (y0t − θ′yt)2, parametrized by the potential outcomes (y0t,yt). These loss functions are indeed

convex in θ and bounded, since both θ and Y are bounded. Finally, note that the average loss (1.2) is

equal to 1
T

∑T
t=1 ℓt(θt), which is simply the total loss in the online protocol scaled by 1

T .10

Having recognized our setup as an instance of online convex optimization, the main observation of

this paper recognizes that synthetic control is an online learning algorithm known as Follow-the-Leader

(FTL). FTL, under (O1) to (O3), is the algorithm that, when prompted for a decision in (O1), simply

10It may be tempting to ask whether the same argument applies to “horizontal regression” (Athey et al., 2021a), where
one regresses yiS on yi1, . . . , yiS−1, perhaps constraining the coefficients to some bounded, convex set. Since synthetic
control can be viewed as a “vertical regression,” where one regresses y0t on y1t, . . . , yNt, it seems we may apply our
argument to the transposed Y matrix. Indeed, we may formulate analogous claims by replacing t with i, s with j, S with
some randomly chosen unit M ∈ [N ], and T with N . However, a difficulty with this interpretation is that synthetic control
(1.1) naturally only uses information in the past (t < S), but the analogous restriction in horizontal regression, i < M , for a
randomly chosen treated unit M ∈ [N ], is much less natural.
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chooses θt to minimize past losses:11,12

θt ∈ argmin
θ∈Θ

∑
s<t

ℓs(θ).

Observation 1.2.1. Synthetic control (1.1) is an instance of FTL applied to the panel prediction

protocol (P1) to (P3).

Standard online convex optimization results on regret then apply to synthetic control as well.

Before introducing these results, let us define regret as the gap between the total loss of a strategy σ

and the best fixed weights θ in hindsight:

RegretT (σ;Y) ≡
T∑
t=1

ℓt(θt)−min
θ∈Θ

T∑
t=1

ℓt(θ) (1.3)

=

T∑
S=1

(y0S − θ′SyS)2 −min
θ∈Θ

T∑
S=1

(y0S − θ′yS)2 (1.4)

= T

(
ES [(y0S − θ′SyS)2]−min

θ∈Θ
ES [(y0S − θ′yS)2]

)
(1.5)

≥ T
(
ES [(y0S − θ′SyS)2]− ES [(y0S − θ′yS)2]

)
for any θ ∈ Θ. (1.6)

(1.4) observes that, in our setting, regret is the difference between total squared prediction error of

a strategy σ and that of the best fixed weights θ chosen in hindsight, summing over hypothetical

treatment times S. (1.5) interprets the sum of losses as T times the expected loss under random

treatment timing. Finally, (1.6) observes that regret is an upper bound of the expected error gap

between the strategy σ and any fixed weights θ. We refer to argminθ∈Θ
∑T

S=1(y0S − θ′yS)2 as the

oracle weighted match—the best set of weights for a given realization of the data Y.

Focusing on regret rather than loss shifts the goalposts from performance to competition, which is

a more fruitful perspective in our adversarial setting. After all, we cannot hope to obtain meaningful

loss control as the all-powerful adversary can make the analyst miserable. However, the crucial

11FTL is also known as fictitious play in game theory (Brown, 1951). The name “follow-the-leader,” coined by Kalai and
Vempala (2005), is popular in the recent computer science literature. For an introduction to FTL and similar algorithms, see
Chapter 5 in Hazan (2019) and Chapters 1 and 7 in Orabona (2019).

12When there are multiple minima, the choice of θt does not affect our theoretical guarantees. Nevertheless, it seems
sensible in practice to take the minimum that is smallest in some norm, e.g. ∥·∥2.
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insight of regret analysis is that, for certain strategies σ, the adversary cannot simultaneously make

the analyst suffer high loss while letting some fixed strategy θ perform well—in other words, if any

fixed θ performs well, then σ performs almost as well over time. Indeed, if regret is sublinear, i.e.,

RegretT ≤ o(T ),13 then the strategy σ never performs much worse than any fixed weights θ, on

average over hypothetical treatment timing S. In this case, we can interpret σ as a strategy that is

competitive against the class of weighted matching estimators.

It may appear surprising that these no-regret strategies σ exist in the first place. We emphasize that

σ can output different weights θt, chosen adaptively over time, while σ is compared to an oracle that

uses the best fixed weights. As a result, σ can compensate for its lack of oracle access by changing its

choices judiciously over time.

The main result of this paper shows that the regret of synthetic control under quadratic loss is

logarithmic in T . The result follows from a direct application of Hazan et al. (2007)’s regret bound for

FTL (Theorem 5 in their paper, reproduced as Theorem A.1.1 in the appendix).

Theorem 1.2.2. With bounded outcomes ∥Y∥∞ ≤ 1, synthetic control (1.1), denoted σ, satisfies the

regret bound14

RegretT (σ,Y) ≤ 16N(log(
√
NT ) + 1) = O(N log T ).

Theorem 1.2.2 shows that the synthetic control strategy (1.1) achieves logarithmic regret—and as a

result, the average difference between the losses of synthetic control and losses of the oracle weighted

match vanishes quickly as a function of T .15 In particular, if there exists a weighted average of the

13We mean RegretT ≤ o(T ) in the sense that lim supT→∞
1
T
RegretT ≤ 0, since it is possible for RegretT to be

negative. Following the online convex optimization literature, we sometimes refer to σ as no-regret if it has sublinear regret.

14We say f(N,T ) = O(g(N,T )) for g(N,T ) > 0 if, for any sequence NT < T and T →∞,

lim sup
T→∞

f(NT , T )

g(NT , T )
<∞.

In the conclusion of Theorem 1.2.2, the inequality does not require T > N . The assumption T > N is only used for
the simplification 16N(log(

√
NT ) + 1) = O(N logN + N log T ) = O(N log T ). Of course, the regret bound is less

interesting if lim supN log T/T > 0.

15Restricting θ to the simplex Θ—a debated choice in the synthetic control literature—is somewhat important for
the dependence on N , in so far as the simplex is bounded in ∥·∥1. This is a consequence of the assumption that the
outcomes Y are bounded in the dual norm ∥·∥∞, which implies a bound on θ′yt that is free of N,T . In contrast, if we let
Θ = {θ : ∥θ∥2 ≤ D/2} be an ℓ2-ball, then the regret bound worsens to O(D2N2 log(T )).
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untreated units’ outcomes that tracks y(0) well, then the average one-step-ahead loss of synthetic

control estimates is only worse by O
(
N log T
T

)
.

On its own, Theorem 1.2.2 is purely an optimization result; we now offer a few comments on

its statistical implications. As a preview, under random treatment timing, Theorem 1.2.2 implies

that the risk of estimating the causal effect at time S for synthetic control is not too much higher

than that for any weighted matching estimator. Indeed, if any weighted matching estimator performs

well, then synthetic control achieves low risk as well. Our discussion below translates Theorem 1.2.2

into guarantees on the expected loss at treatment time—expressing regret as (1.5)—which relies

on the design assumption that S is randomly assigned. Nevertheless, we stress that we could view

Theorem 1.2.2 purely as guarantees of average loss over hypothetical timings S—expressing regret

only as (1.4)—which does not require a treatment timing assumption.

We can interpret regret as a gap in the design-based risk of estimating treatment effects. Specifically,

we can interpret the expected loss of predicting the untreated outcome as the risk of estimating the

treatment effect:

Risk(σ,Y,y(1)) ≡ ES
[
(τS − τ̂S(σ))2

]
≡ ES

[
((yS(1)− y0S)− (yS(1)− ŷS))2

]
= ES [(y0S − ŷS)2]. (1.7)

Hence, (1.5) and (1.7), combined with Theorem 1.2.2, imply that the risk of using synthetic control is

no more than N log T/T worse than the risk of the oracle weighted match,16 regardless of the potential

outcomes Y,y(1):

Risk(σ,Y,y(1))−min
θ∈Θ

Risk(θ,Y,y(1)) =
1

T
RegretT (σ,Y) = O

(
N log T

T

)
. (1.8)

This observation connects regret on prediction of the untreated potential outcome with differences in

the risk of estimating treatment effects. Roughly speaking, (1.8) shows that synthetic control estimates

of one-step-ahead causal effects are competitive against that of any fixed weighted match, for any

realization of Y,y(1), on average over S.

16We slightly abuse notation and use θ to denote the strategy that outputs θ every period.
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Of course, since the guarantee (1.8) holds for every Y, it continues to hold when we average

over Y and y(1), over a joint distribution P that respects the boundedness condition ∥Y∥∞ ≤ 1.

In this sense, analyzing regret in the adversarial framework not only does not preclude statistical

interpretations, but rather facilitates analysis in a wide range of outcome models.17 Formally, let

P be a family of distributions for Y,y(1) such that P (∥Y∥∞ ≤ 1) = 1 for all P ∈ P . Under an

outcome model P , we may understand Risk(σ,Y,y(1)) as conditional risk and EPRisk(σ,Y,y(1))

as unconditional risk. Then, (1.8) implies that18

sup
P∈P

EP

[
Risk(σ,Y,y(1))−min

θ∈Θ
Risk(θ,Y,y(1))

]
= O

(
N log T

T

)
. (1.9)

Therefore, the unconditional risk of synthetic control is never much worse than the risk of the oracle

weighted match

R∗
Θ ≡ EP

[
min
θ∈Θ

Risk(θ,Y,y(1))

]
.

Hence, if the data-generating process P guarantees that R∗
Θ is small, then synthetic control achieves

low expected risk as well. Concretely speaking, this latter requirement is that, for most realizations of

the data, had we observed all the potential outcomes, we could find a weighted match that tracks the

potential outcomes y01, . . . , y0T well, so that19

EP

[
min
θ∈Θ

1

T

T∑
t=1

(y0t − θ′yt)2
]
≈ 0.

In many empirical settings, it seems plausible that the oracle weighted match performs well.20

17The technique of “online-to-batch conversion” in the online learning literature exploits this intuition to prove results in
batch (i.i.d.) settings via results in online adversarial settings.

18Abernethy et al. (2009) show that a minimax theorem applies, and

sup
P

inf
σ
EP

[
Risk(σ,Y,y(1))]−min

θ∈Θ
Risk(θ,Y,y(1))

]
=

1

T
inf
σ

sup
Y

RegretT (σ,Y).

Note that the ≤ direction is immediate via the min-max inequality. This result shows that the worst-case optimal risk
differences in a stochastic setting (i.e. the analyst knows P and responds to it optimally) is equal to minimax regret. In this
sense, worst-case regret analysis is not by itself conservative for a stochastic setting—minimax regret is a tight upper bound
for performance in stochastic settings.

19Also, observe thatEP [minθ∈Θ
1
T

∑T
t=1(y0t−θ

′yt)
2] ≤ minθ∈Θ EP [

1
T

∑T
t=1(y0t−θ

′yt)
2], and thus the guarantee

(1.9) is stronger in the sense that it allows the oracle θ to depend on the realization of the data.

20We recognize that under many data-generating models, there is unforecastable, idiosyncratic randomness in y0t. As a
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Abadie (2021) states the following intuition in many comparative case studies: “[T]he effect of an

intervention can be inferred by comparing the evolution of the outcome variables of interest between

the unit exposed to treatment and a group of units that are similar to the exposed unit but were

not affected by the treatment.” More formally speaking, a well-fitting oracle weighted match also

resembles—and implies—Abadie et al. (2010)’s assumption that there exists a perfect pre-treatment

fit of the outcomes. When the oracle weighted match performs well, our regret guarantees imply a

guarantee on the loss of the feasible synthetic control estimator, making it an attractive option for

causal inference in comparative case studies.

Even if no weighted average of the untreated units tracks y0t closely, synthetic control continues

to enjoy the assurance that it performs almost as well as the best weighted match. Moreover, in

the general online learning setup (O1) to (O3), this no-regret property cannot be attained without

choosing θt in some data-dependent manner.21 This observation rules out alternatives such as simple

difference-in-differences, which does not aggregate the control units in a data-dependent manner. In

contrast, in Section 1.3, we additionally show that synthetic control on differenced data performs

almost as well as the best weighted difference-in-differences estimator, a popular class of estimators in

practice.

1.3 Extensions

1.3.1 Non-uniform treatment timing

The previous interpretations—in (1.5) and (1.7)—rely on interpreting average loss over hypothetical

values of S as expected loss over S, which requires uniform treatment timing S ∼ Unif[T ]. Despite

being plausible in certain settings and appearing elsewhere in the literature (Doudchenko and Imbens,

result, there may not exist a synthetic match that perfectly tracks the realized series y0t (even though such a match may exist
that tracks various conditional expectations of y0t quite well). In many such cases, since squared error can be orthogonally
decomposed, risk differences for estimating y0t are also risk differences for estimating conditional means µt of y0t. We
discuss these results in Section A.2.3.

21See Section A.1.2 for a simple argument in a general setup with unspecified ℓ(·). Since simple DID does not choose
weights adaptively, it fails to control regret against the class of weighted DID estimators that we discuss in Section 1.3.
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2016; Bottmer et al., 2021), this assumption is perhaps crude.22 To some extent this is inevitable: Since

we are agnostic on the outcome generation process, it is unavoidable to make treatment timing assump-

tions in order to obtain nontrivial statistical results on estimation of causal quantities. Nevertheless,

note that such an assumption is only necessary for interpreting average losses as expected losses. The

a priori proposition that it is reasonable to expect a causal estimator to predict well relative to some

oracle, at least on average over hypothetical treatment timings, strikes us as defensible. Accepting this

dictum relieves us of any need to model treatment timing.

Even if we wish to maintain the interpretation of average loss as expected loss, we can relax

the uniform treatment timing assumption. In this subsection, we show that if the treatment timing

distribution is known, then a weighted version of synthetic control achieves logarithmic weighted

regret. Moreover, even if the treatment timing distribution is non-uniform, unknown, and possibly

chosen by the adversary, we continue to show that synthetic control performs well if some weighted

average of untreated units predicts y0S accurately. Both results have constants that worsen if the

treatment timing distribution deviates far from Unif[T ].

Suppose the conditional distribution (S | Y) is denoted by π = (π1, . . . , πT )
′, where

∑T
t=1 πt = 1,

which may depend on Y. Note that, for a known π, we may apply the same argument in Theorem 1.2.2

to the following weighted synthetic control estimator:

θ̂πS ∈ argmin
θ∈Θ

∑
t<S

πt(y0t − θ′yt)2, (1.10)

by redefining the loss functions ℓt(·). This argument shows that (1.10) achieves log T weighted

regret, stated in the following corollary. Note that (1.10) implements FTL with loss functions ℓt(θ) ≡

πt(y0t − θ′yt)2, and hence the argument of Hazan et al. (2007) applies.

Corollary 1.3.1. Suppose S ∼ π, 1
CT ≤ πt ≤ C

T for some C, and ∥Y∥∞ ≤ 1. Then weighted

22Doudchenko and Imbens (2016) discuss inference in synthetic control via randomization of the treatment timing in
their Section 6.2. Bottmer et al. (2021) consider randomization of the treated period in their Assumption 2, though, in their
setting, the treatment lasts only one period. We also note that the randomness per se of S conditional on Y can be realistic,
but that its distribution is uniform and known is restrictive.
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synthetic control (1.10), denoted σπ, achieves weighted regret bound

RegretT (σπ;π,Y) ≡ T ·
(
ES∼π[(y0S − θ̂′SyS)2]−min

θ∈Θ
ES∼π[(y0S − θ′yS)2]

)
(1.11)

≤ 16C3N

[
log

√
NT

C2
+ 1

]
= O(C3N log T ).

Theorem 1.3.1 shows that the weighted regret—a difference in π-expected loss—is logarithmic in

T , thereby controlling the worst-case gap between weighted synthetic control and the oracle weighted

match for the expected loss. Assuming a known π could be reasonable. With a known dynamic

treatment regime, π can depend on Y1:S−1, but is known whenever the analyst is prompted for a

prediction at time S.23 We can also interpret Theorem 1.3.1 as providing guarantees on differences in

Bayes risk under the analyst’s prior S ∼ π, independent of Y.

Even when π is unknown and chosen by the adversary, we can bound the loss of unweighted

synthetic control, so long as π is not too far from uniform.

Corollary 1.3.2. Suppose S ∼ π, πt ≤ C/T for some C, and ∥Y∥∞ ≤ 1. Then synthetic control

(1.1), denoted σ, achieves the following bound on the expected loss

ES∼π

[
(y0S − θ̂′SyS)2

]
≤ C

(
min
θ∈Θ

1

T

T∑
t=1

(y0t − θ′yt)2 +
1

T
RegretT (σ;Y)

)
, (1.12)

where RegretT (σ;Y) is defined by (1.4). Hence, for any joint distribution Q of (Y, S) where

Q(S = t | Y) ≤ C/T for all t, and Q(∥Y∥∞ ≤ 1) = 1, we have the average loss bound

EQ[(y0S − θ̂′SyS)2] ≤ C

(
EQ

[
min
θ∈Θ

1

T

T∑
t=1

(y0t − θ′yt)2
]
+O

(
N log T

T

))
. (1.13)

The result (1.12) shows that, uniformly over all bounded Y and bounded treatment distributions π,

the expected squared error is bounded by the average loss of the oracle weighted match plus the regret,

all scaled with a constant C that indexes how far π deviates from the uniform distribution. Under the

23Since the bound is for a fixed Y, we can allow π to depend on Y, so long as πt(Y) is known at time t + 1 so that
the analyst can compute (1.10). This allows for Theorem 1.3.1 to be applied in the following example, which is a more
realistic design-based setting. There is a known dynamic treatment regime (Chakraborty and Murphy, 2014) parametrizing
the treatment hazard: That is,

P (S = t | S ≥ t,Y) = rt(Y1:t−1)

for some known rt(·). Then πt(Y) = P (S = t | Y) = (1 − r1) · · · (1 − rt−1)rt is a function of Y1:t−1. We thank
Davide Viviano for suggesting this extension.
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same assumption that the oracle weighted match performs well on average, (1.12) continues to show

that the treatment estimation risk of synthetic control is small. Since such a result is valid for all Y and

π, we may understand (1.12) as a bound that holds even in a setting where the adversary picks both Y

and π, with the restriction that πt ≤ C/T , but otherwise unrestricted in the dependence between Y

and π.

As before, since (1.12) is a guarantee uniformly over Y, it is also a guarantee when we average

over Y under an outcome model, yielding (1.13). Again, (1.13) shows that for any joint distribution of

the bounded outcomes and the treatment timing, the unconditional risk of synthetic control is small

when the expected oracle conditional risk, EQ[minθ∈Θ
1
T

∑T
t=1(y0t − θ′yt)2], is small—so long as S

has sufficient randomness conditional on Y so that C is not too large.

So far, we have considered weighted averages of untreated units as the class of competing esti-

mators. These competing estimators are matching estimators. However, a more common class of

competing estimators in applications are difference-in-differences (DID) estimators. It turns out that

synthetic control on preprocessed data has regret guarantees against a class of DID estimators, which

we turn to in the next subsection.

1.3.2 Competing against DID

Section 1.2 shows that the original synthetic control estimator is competitive against a class of matching

estimators that use weighted averages of untreated units as matches for the treated unit. However,

in many applications in economics, matching estimators are much less popular than DID estimators,

since the latter accounts for unobserved confounders that are additive and constant over time. In this

subsection, we show that synthetic control on differenced data is competitive against a large class

of DID estimators. Additionally, Section A.1.3 offers regret guarantees against other flavors of DID

estimators.

In practice, a common DID specification is the following two-way fixed effects regression:

min
µi,αt,λ

N∑
i=0

S∑
t=1

(
yobs
it − µi − αt − λ1 [(i, t) = (0, S)]

)2
,

where the observed outcome yobs
it = yit for all (i, t) ̸= (0, S), and yobs

0S = yS(1). This specification
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regresses the observed outcomes on unit and time fixed effects, and uses the estimated coefficient λ as

an estimate of the treatment effect yS(1) − y0S . Implicitly, this regression uses the estimated fixed

effects µ0 + αS as a forecast for the unobserved y0S . We consider a weighted generalization of this

regression, a special case of the synthetic DID estimators in Arkhangelsky et al. (2021):24,25

min
µi,αt,λ

N∑
i=0

S∑
t=1

wi(y
obs
it − µi − αt − λ1 [(i, t) = (0, S)])2 w0 = 1,

N∑
i=1

wi = 1, wi ≥ 0. (1.14)

For convex weights w = (w1, . . . , wN )
′, denote by σTWFE(w) the strategy that estimates (1.14) on

the data (Y1:t−1,yt) at time t,26 and outputs the estimated coefficients µ0 + αt as a prediction for

y0t. By varying over w ∈ Θ, we obtain a class of competing DID strategies, where conventional DID

corresponds to picking uniform weights w = (1/N, . . . , 1/N)′. We calculate in Section A.1.6 that the

prediction that σTWFE(w) makes is

ŷt(σTWFE(w)) =
1

t− 1

t−1∑
s=1

y0s + w′

(
yt −

1

t− 1

t−1∑
s=1

ys

)
t ≥ 2,

which simply uses the outcome difference against historical averages of untreated units to forecast that

of unit 0. Note that this strategy amounts to using a weighted match with weight w on the differenced

data

ỹi1 = yi1 ỹit ≡ yit −
1

t− 1

t−1∑
s=1

yis |ỹit| ≤ 2

to forecast the same differences of unit 0, ỹ0t. Therefore, we may apply Theorem 1.2.2 and show the

following regret bound.

Theorem 1.3.3. Consider synthetic control on the differenced data, where the analyst computes

θ̂t ∈ argmin
θ∈Θ

∑
s<t

(
ỹ0s − θ′ỹs

)2
and predicts ŷt = 1

t−1

∑
s<t y0s + θ̂′tỹt. Here, ỹit = yit − 1

t−1

∑
s<t yis is the difference against

24The weight w0 does not affect µ0 + αS achieving the optimum in the least-squares problem, per the calculation in
Section A.1.6. As a result, we normalize w0 = 1. Moreover, specifically, (1.14) is a special case of synthetic DID, (1) in
Arkhangelsky et al. (2021), with only unit-level weights and no time-level weights.

25(1.14) is underdetermined if S = 1. The ensuing discussion assumes
∑N
i=1 wiyi1 is the weighted two-way fixed

effects prediction for y01.

26The value of y0t does not enter αS + µ0 since it is absorbed by the coefficient λ.
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historical means, and ỹt = (ỹ1,t, . . . , ỹN,t)
′. Then we have the following regret guarantee against the

oracle σTWFE, whose weights are chosen ex post:

T∑
t=1

(y0t − ŷt)2 −min
θ∈Θ

T∑
t=1

(y0t − ŷt(σTWFE(θ)))
2 ≤ CN log T

for some constant C.

Theorem 1.3.3 shows that synthetic control on differenced data controls regret against the class of

DID estimators (1.14).27 In particular, the class of DID benchmarks corresponds to weighted two-way

fixed effects regressions, and synthetic control is competitive against any fixed weighting. In this sense,

Theorem 1.3.3 builds on the intuition that synthetic control is a generalization of DID (Doudchenko

and Imbens, 2016) to show that a version of synthetic control performs as well as any weighted

DID estimator. Again, if any weighted DID estimator performs well, then Theorem 1.3.3 becomes

a performance guarantee on synthetic control. Moreover, since (1.14) is a popular alternative for

many practitioners—setting aside whether there is a weighted DID that performs well—Theorem 1.3.3

shows that it is without much loss to use synthetic control in such settings instead. Since DID is

more popular in practice than weighted matching, competitive performance against DID is a more

relevant consideration, which suggests prioritizing synthetic control on differenced data ỹit over classic

synthetic control (1.1).28

To the best of our knowledge, the difference scheme ỹit has yet to be considered in the literature.

We do note that since the resulting predictions are equivalent to a weighted two-way fixed effects

regression, this proposed synthetic control scheme can be thought of as synthetic DID (Arkhangelsky

et al., 2021) with weights chosen by constrained least-squares on ỹit. We also note that ỹit is slightly

different from Ferman and Pinto (2021)’s demeaned synthetic control, which takes the difference

ẏit ≡ yit− 1
t

∑t
s=1 yis. In Section A.1.3, we show that Ferman and Pinto (2021)’s demeaned synthetic

27The benchmark class of DID estimators in Theorem 1.3.3 output predictions in a sequential manner, in so far as the
coefficients in the regression (1.14) depend on S. In contrast, Theorem A.1.3 compares synthetic control against a class of
static DID estimators that do not exhibit this feature.

28This comment is with the caveat that the constant in Theorem 1.3.3 is worse than that in Theorem 1.2.2. It seems
possible to further improve the guarantee in Theorem 1.3.3, since in our proof, we solely use the implication |ỹit| ≤ 2 and
do not restrict the adversary from choosing ỹit where the implied |yit| > 1. We leave such a refinement to future work.

Of course, this observation also implies that Theorem 1.3.3 holds without bounded outcomes ∥Y∥∞ ≤ 1 and solely with
bounded differences maxi,t |ỹit| ≤ 2.
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control achieves logarithmic regret against a different class of DID estimators that we call static

DID estimators.29 Another popular alternative is first-differencing (Abadie, 2021), which by similar

arguments may be shown to control regret against a class of two-period weighted DID strategies that

output ŷt(σ2P-DID(θ)) ≡ y0t−1 + θ′ (yt − yt−1) as successive predictions.

1.3.3 Regularization, covariates, and other extensions

Theorem 1.2.2 shows that synthetic control, as FTL, gives logarithmic regret when we consider

quadratic loss. However, to some extent this bound is an artifact of using squared losses, whose

curvature ensures that the FTL predictions do not move around excessively over time. If we replace

the loss function with the absolute loss |ŷ − y|, then the regret may be linear in T—no better than that

of the trivial prediction ŷt ≡ 0 (see Example 2.10 in Orabona, 2019).

Motivated by the lack of general sublinear regret guarantees in FTL, the online learning literature

proposes a large class of algorithms called Follow-The-Regularized-Leader (FTRL), where regular-

ization helps stabilize the FTL predictions. With linear prediction functions f(y; θ) = θ′y, such

strategies take the form

θt ∈ argmin
θ∈Θ

∑
s<t

ℓ(θ′ys, y0s) +
1

η
Φ(θ) (1.15)

for some convex penalty Φ(·) and regularization strength 1
η > 0. Here, we let ℓ(·, ·) denote a generic

convex and bounded loss function, generalizing our previous framework. Many regularized variants of

synthetic control have been proposed (among others, Chernozhukov et al., 2021; Doudchenko and

Imbens, 2016; Hirshberg, 2021). These regularized estimators have the form (1.15), though most such

estimators are based on quadratic loss.

Observation 1.3.4. Regularized synthetic control with penalty Φ(·) is an instance of FTRL, where

ℓ(·, ·) is typically quadratic loss.

Moreover, we can think of synthetic control with covariates as regularized synthetic control as

29Under certain conditions, Ferman and Pinto (2021) (Proposition 3) show that the demeaned synthetic control in
Theorem A.1.3 dominates DID with uniform weighting θi = 1/N . The results Theorems A.1.3 and 1.3.3 are in a similar
flavor, and show that synthetic control is competitive against DID with any fixed weighting, on average over random
assignment of treatment time. Of course, Theorems A.1.3 and 1.3.3 are not generalizations of Ferman and Pinto (2021)’s
result—for one, we consider average loss under random treatment timing, and Ferman and Pinto (2021) consider a fixed
treatment time under an outcome model, with the number of pre-treatment periods tending to infinity.
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well. With time-invariant covariates xj = (x1j , . . . , xNj)
′ for j = 1, . . . , J , synthetic control may

choose weights θ to additionally match the covariates (see, e.g., (7) in Abadie, 2021):

θ̂S,x ∈ argmin
θ∈Θ

∑
t<S

(y0t − θ′yt)2 +
1

2η

J∑
j=1

ηj(x0j − θ′xj)2, (1.16)

for some given ηj that indexes the importance of matching covariate j. Observe that, for fixed x0j ,xj ,

(1.16) is a special case of (1.15); specifically, (1.16) uses a quadratic penalty of the form

Φ(θ) =
1

2
(x−Xθ)′H(x−Xθ)

for some positive definite H , vector x, and conformable matrix X. Thus, under the assumption that

the covariates x0j ,xj are fixed and not chosen by the adversary, we may analyze synthetic control

with time-invariant covariates as a special case of FTRL.

Motivated by the importance of loss function curvature, we slightly generalize and consider

regularized synthetic control estimators using generic loss functions. A standard result in online

convex optimization (e.g. Corollary 7.9 in Orabona (2019), Theorem 5.2 in Hazan (2019)) shows that

choices of η exist to obtain
√
T regret.30 The conditions for this result are highly general, explaining

the popularity of FTRL in online convex optimization. We specialize to a few choices of the penalty

function Φ in the synthetic control setting; see Theorem A.1.4 for a general statement.

Theorem 1.3.5. Consider regularized synthetic control (1.15), equivalently FTRL, with penalty

function Φ(θ) and θ restricted to the simplex Θ. Let ℓ(θ′yt, y0t) be a convex loss function in θ, not

necessarily quadratic, to be specified.

1. Consider the quadratic penalty Φ(θ) = 1
2(x−Xθ)

′H(x−Xθ). Assume the Hessian∇θθ′Φ(·) =

X′HX is positive definite with minimum eigenvalue normalized to 1. Let K = supθ∈ΘΦ(θ)−

infθ∈ΘΦ(θ) be the range of Φ(·). Then, for both squared loss ℓ(ŷ, y) = 1
2(y − ŷ)

2 and linear

loss ℓ(ŷ, y) = |y − ŷ|, we have

RegretT ≤ 2
√
2KNT with the choice η =

√
K(2NT )−1.

30This rate matches the lower bound for linear losses. See Chapter 5 of Orabona (2019).
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Moreover, if x = 0 and X = H = I , then Φ(θ) = 1
2∥θ∥

2 is the ridge penalty, for which we

obtain

RegretT ≤ 2
√
NT with the choice η = 1/

√
4NT.

2. For the entropy penalty Φ(θ) =
∑

i θi log θi + log(N), for both squared and linear losses, we

have

RegretT ≤ 3
√
T logN with the choice η =

√
(logN)/T .

These results hold for any N,T > 0 and allow for T ≤ N .

Naturally, these choices of Φ(·) correspond to regularized variants of synthetic control. As we

discuss above, quadratic penalties generalize ridge penalization (Hirshberg, 2021) and matching on

covariates.31 The entropy penalty, which is very natural when the parameters lie on the simplex, is a

special case of the proposal in Robbins et al. (2017); the resulting regret bound has better dependence

on N and obtains the no-regret property as long as logN
T → 0.32 For these guarantees, the choice of η

does require knowledge on the total number of periods T . This may be relaxed via the “doubling trick”

(see Shalev-Shwartz (2011), Section 2.3.1), if we allow for different regularization strengths ηS for

different realizations of S.

We conclude this section by pointing out a few other extensions. First, another weakening of

the uniform treatment timing requirement can be achieved by considering the maximal regret over

subperiods of [T ], also known as adaptive regret. We show in Section A.2.1 that a modification to the

synthetic control algorithm—which still outputs a weighted average of untreated units—achieves worst

subperiod regret of order log T . Such a result implies that if we additionally let the adversary pick a

subperiod of length T ′, and treatment is uniformly randomly assigned on this subperiod, then modified

synthetic control is at most log T
T ′ -worse on expected loss than the oracle weighted match. Of course,

31Ridge penalties are a special case of elastic net penalties proposed by (Doudchenko and Imbens, 2016). Theorem A.1.4
applies to elastic net penalties with nonzero ℓ2 component as well.

Note that when X ∈ RJ×N represents pre-treatment covariates of the control units, X′HX being positive definite
requires that the dimension of the covariates is at least the number of control units.

32Interestingly, ℓ1-penalty (proposed by,e.g., Chernozhukov et al., 2021) alone is not strongly convex (See Section 9.1.2
of Boyd and Vandenberghe, 2004), and Theorem A.1.4 does not apply. However, Theorem A.1.4 only contains sufficient
conditions, and so this alone is not a criticism of ℓ1-penalty.
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this regret guarantee is meaningful only when the subperiod is sufficiently long, i.e., T ′ ≫ log T .

Second, under a design-based framework on treatment timing, we can test sharp hypotheses of the

form H0 : y(1)−y(0) = z by leveraging symmetries induced by random treatment timing. We briefly

discuss inference in Section A.2.2.

1.4 Conclusion

This paper notes a simple connection between synthetic control methods and online convex optimiza-

tion. Synthetic control is an instance of Follow-The-Leader, which are well-studied strategies in the

online learning literature. We present standard regret bounds for FTL that apply to synthetic control,

which have interpretations as bounds for expected regret under random treatment timing. These regret

bounds translate to bounds on expected risk gap under outcome models and imply that synthetic control

is competitive against a wide class of matching estimators. In cases where some weighted match of

untreated units predict the unobserved potential outcomes, these results show that synthetic control

achieves low expected loss. Moreover, the regret bounds can be adapted to be regret bounds against

difference-in-differences strategies. Lastly, we draw an analogous connection between regularized

synthetic control and Follow-the-Regularized-Leader, a popular class of strategies in online learning.

We now point out a few limitations of this paper and directions for future work. First and foremost,

the approach we have taken in this paper is deliberately pessimistic. Living in fear of an adversary

constrained solely by bounded outcomes is perhaps too paranoid for sound decision-making. For

instance, this worst-case perspective is not particularly amenable to incorporating covariates, since

matching on covariates is inherently based on the hope that the covariates are predictive of potential

outcomes. Further constraining the adversary (Rakhlin et al., 2011) may be an interesting direction for

future research. For instance, it may be fruitful to consider an adversary with a fixed budget for how

much y0t,yt deviate from y0,t−1,yt−1. Constraining the adversary may also render covariates useful,

even in a worst-case framework.

It may also be interesting to consider alternative online protocols. So far, we have considered a

thought experiment where, before each step t, the analyst only has access to data Y1:t−1 to output

a prediction function. In practice, the analyst typically does have access to y1, . . . ,yT . Alternative
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protocols have been considered in the online learning literature. One example is the Vovk–Azoury–

Warmuth forecaster (See Section 7.10 in Orabona, 2019), where we assume the analyst additionally

has access to yt before they are prompted for a prediction at time t. In this case, regularized strategies

can also achieve log T regret. Additionally, Bartlett et al. (2015) consider the fixed design setting in

which y1, . . . ,yT is fully accessible to the analyst before they are prompted for a prediction. Bartlett

et al. (2015) give a simple and explicit minimax regret strategy for online linear regression, which we

may adapt into a synthetic control estimator.

We have only considered regret on one-step-ahead prediction for y0S , but synthetic control

estimates are often extrapolated multiple time periods ahead in practice. In attempting to extend

our results to k-step-ahead prediction, it is natural to consider y̌it = (yit, . . . , yi,t+k), and to attempt

a similar argument on Y̌. The chief difficulty in doing so is one of delayed feedback, where the

analyst cannot update their time-S decision based on loss from times 1, . . . , S − 1. That is, for

k-step-ahead prediction, the analyst, viewed as an online player who is prompted for a forecast

of y̌0,S = (y0S , y0,S+1, . . . , y0,S+k−1), does not have access to their prediction loss for y̌0,S−1 =

(y0,S−1, y0S , . . . , y0,S+k−2), since y0,S+k−2 is not yet observed. As a result, unlike (O3) in the

standard online convex optimization protocol, the analyst does not have access to ℓ1(·), . . . , ℓS−1(·)

when making decisions θS—rendering our results here insufficient. That said, delayed feedback—

where the online player only has knowledge of the loss function after k periods—is studied in online

learning (Weinberger and Ordentlich, 2002; Korotin et al., 2018; Flaspohler et al., 2021), and we leave

an exploration to future work.
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Chapter 2

Empirical Bayes when estimation

precision predicts parameters1

1This paper is previously titled “Gaussian Heteroskedastic Empirical Bayes without Independence.” I thank my advisors,
Isaiah Andrews, Elie Tamer, Jesse Shapiro, and Edward Glaeser, for their guidance and generous support. I thank Harvey
Barnhard, Raj Chetty, Dominic Coey, Aureo de Paula, Jiaying Gu, Nathaniel Hendren, Keisuke Hirano, Peter Hull, Kenneth
Hung, Lawrence Katz, Patrick Kline, Scott Duke Kominers, Soonwoo Kwon, Lihua Lei, Andrew Lo, Michael Luca, Anna
Mikusheva, Joris Pinkse, Mikkel Plagborg-Møller, Suproteem Sarkar, Ashesh Rambachan, David Ritzwoller, Brad Ross,
Jonathan Roth, Neil Shephard, Rahul Singh, Asher Spector, Winnie van Dijk, Christopher Walker, Davide Viviano, and
workshop and seminar participants at Brown, Harvard, Penn State, Philadelphia Fed, Rutgers, Princeton, Stanford, University
of Chicago, Berkeley, UCLA, and Yale. I am responsible for any and all errors. An R implementation of CLOSE is found at
https://github.com/jiafengkevinchen/close.

25

https://github.com/jiafengkevinchen/close


Dissertation Advisor:
Professor Isaiah Andrews

Author:
Jiafeng Chen

Essays in Econometrics

Abstract

Empirical Bayes shrinkage methods usually maintain a prior independence assumption: The unknown

parameters of interest are independent from the known standard errors of the estimates. This assumption

is often theoretically questionable and empirically rejected. For one, the sample sizes associated with

each estimate may select on or may influence the underlying parameters of interest, thereby making

standard errors predictive of the unknown parameters. This paper instead models the conditional

distribution of the parameter given the standard errors as a flexibly parametrized family of distributions,

leading to a family of methods that we call CLOSE. This paper establishes that (i) CLOSE is rate-

optimal for squared error Bayes regret, (ii) squared error regret control is sufficient for an important

class of economic decision problems, and (iii) CLOSE is worst-case robust when our assumption

on the conditional distribution is misspecified. Empirically, using CLOSE leads to sizable gains for

selecting high-mobility Census tracts targeting a variety of economic mobility measures. Census

tracts selected by CLOSE are substantially more mobile on average than those selected by the standard

shrinkage method. This additional improvement is often multiple times the improvement of the

standard shrinkage method over selection without shrinkage.
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2.1 Introduction

Applied economists often use empirical Bayes methods to shrink noisy parameter estimates, in hopes

of accounting for the imprecision in the estimates and improving subsequent policy decisions.2 The

textbook empirical Bayes method assumes prior independence—that the precisions of the noisy

estimates do not predict the underlying unknown parameters. However, prior independence is eco-

nomically questionable and empirically rejected in many contexts. This is frequently because sample

sizes associated with the estimates either select on or affect the underlying parameters, rendering

the resulting standard errors highly predictive of the parameters.3 Inappropriately imposing prior

independence can harm empirical Bayes decisions, possibly even making them underperform decisions

without using shrinkage. Motivated by these concerns, this paper introduces empirical Bayes methods

that relax prior independence.

To be concrete, our primary empirical example (Bergman et al., 2023) computes empirical Bayes

posterior means for economic mobility estimates of low-income children4 published in the Opportunity

2Empirical Bayes methods are appropriate whenever many parameters for heterogeneous populations are estimated
in tandem. For instance, value-added modeling, where the parameters are latent qualities for different service providers
(e.g. teachers, schools, colleges, insurance providers, etc.), is a common thread in several literatures (Angrist et al., 2017;
Mountjoy and Hickman, 2021; Chandra et al., 2016; Doyle et al., 2017; Hull, 2018; Einav et al., 2022; Abaluck et al., 2021;
Dimick et al., 2010). Our application (Bergman et al., 2023) is in a literature on place-based effects, where the unknown
parameters are latent features of places (Chyn and Katz, 2021; Finkelstein et al., 2021; Chetty et al., 2020; Chetty and
Hendren, 2018; Diamond and Moretti, 2021; Baum-Snow and Han, 2019). Empirical Bayes methods are also applicable in
studies of discrimination (Kline et al., 2022, 2023; Rambachan, 2021; Egan et al., 2022; Arnold et al., 2022; Montiel Olea
et al., 2021), meta-analysis (Azevedo et al., 2020; Meager, 2022; Andrews and Kasy, 2019; Elliott et al., 2022; Wernerfelt
et al., 2022; DellaVigna and Linos, 2022; Abadie et al., 2023), and correlated random effects in panel data (Chamberlain,
1984; Arellano and Bonhomme, 2009; Bonhomme et al., 2020; Bonhomme and Manresa, 2015; Liu et al., 2020; Giacomini
et al., 2023).

In terms of policy decisions driven by empirical Bayes posterior means, Gilraine et al. (2020) report that by the end of 2017,
39 states require that teacher value-added measures—typically, empirical Bayes posterior means of teacher performance—be
incorporated into the teacher evaluation process.

3To see this, take value-added modeling as an example. The precision of value-added estimates is usually a function
of the number of customers associated with a service provider (e.g. number of students for a teacher). It is possible that
customers select into higher quality providers. It is also possible that congestion effects render more popular service providers
worse. These channels predict that the sample sizes for a provider are associated with latent value-added, and the direction of
association depends on the interplay of the selection and congestion effects. Section B.1.5 outlines a formal discrete choice
model to illustrate these effects. Potential failure of prior independence is noted by, among others, Bruhn et al. (2022), Kline
et al. (2023), George et al. (2017), and Mehta (2019).

4Throughout this paper, measures of economic mobility are defined as certain average outcomes of children from
low-income households. There are various definitions of economic mobility provided by Chetty et al. (2020), discussed later
in the paper. They are all measures of economic outcomes for children from low-income households (households at the 25th

percentile of the national income distribution). One example is the probability that a Black person have incomes in the top
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Atlas (Chetty et al., 2020). Here, prior independence assumes that the standard errors of these noisy

mobility estimates do not predict true economic mobility. However, more upwardly mobile Census

tracts tend to have fewer low-income children and hence noisier estimates of economic mobility.

Consequently, the standard errors of the estimates and true economic mobility are positively correlated,

violating prior independence.

Bergman et al. (2023) use empirical Bayes posterior means to select high-mobility Census tracts,

choosing those with high estimated posterior means. Using a validation procedure that we develop,

for a few measures of economic mobility where prior independence is severely violated, we find that

screening on conventional empirical Bayes posterior means selects less economically mobile tracts,

on average, than screening on the unshrunk estimates.5 In contrast, screening on empirical Bayes

posterior means computed by our method selects substantially more mobile tracts.

To describe our method, let Yi be some noisy estimates for some parameters θi, with standard errors

σi, over heterogeneous populations i = 1, . . . , n. In our empirical application, (Yi, σi) are published

in the Opportunity Atlas for each Census tract i and are designed to measure true economic mobility

θi. Motivated by the central limit theorem applied to the underlying micro-data, Yi is approximately

Gaussian:

Yi | θi, σi ∼ N (θi, σ
2
i ) i = 1, . . . , n. (2.1)

If we knew the distribution of (θi, σi), then we can do no better than oracle Bayes decisions, based on

the posterior distribution θi | σi, Yi. Empirical Bayes emulates such optimal decisions by estimating

the oracle prior distribution of (θi, σi). Prior independence θi y σi simplifies this estimation problem.

However, empirical Bayes methods based on this assumption can have poor performance when it fails

to hold.

We relax prior independence by modeling the prior distribution θi | σi flexibly, detailed in

Section 2.2. We model θi | σi as a conditional location-scale family, controlled by σi-dependent

20 percentiles, whose parents have household incomes at the 25th percentile. As another example, Bergman et al. (2023)
measure economic mobility as the mean income rank of children growing up in households at the 25th income percentile.

5Fortunately, for the measure of economic mobility (mean income rank pooling over all demographic groups whose
parents are at the 25th percentile of household income) used in Bergman et al. (2023), the violation of prior independence is
sufficiently mild, so that screening on these empirical Bayes posterior means still outperforms screening on the raw estimates.
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location and scale hyperparameters and a σi-independent shape hyperparameter. Under this assumption,

different values of the standard errors σi translate, compress, or dilate the distribution of the parameters

θi | σi, but the underlying shape of θi | σi does not vary. This model subsumes prior independence as

the special case where the unknown location and scale parameters are constant functions of σi.

This conditional location-scale assumption leads naturally to a family of empirical Bayes methods

that we call CLOSE. Since the unknown prior distribution θi | σi is fully described by its location, scale,

and shape hyperparameters, CLOSE estimates these parameters flexibly and plugs the estimated param-

eters into downstream decision rules. Among different estimation strategies for the hyperparameters,

our preferred specification of CLOSE uses nonparametric maximum likelihood (NPMLE, Kiefer and

Wolfowitz, 1956; Koenker and Mizera, 2014) to estimate the unknown shape of the prior distribution

θi | σi. We find that CLOSE-NPMLE inherits the favorable computational and theoretical properties of

NPMLE documented in the literature (Soloff et al., 2021; Jiang, 2020; Polyanskiy and Wu, 2020).

Section 2.3 provides three statistical guarantees for CLOSE-NPMLE. First and foremost, CLOSE-

NPMLE emulates the oracle as well as possible, at least in terms of squared error loss. Specifically,

Theorems 2.3.4 and 2.3.5 establish that CLOSE-NPMLE is minimax rate-optimal—up to logarithmic

factors and under the conditional location-scale assumptions—for Bayes regret in squared error, a

standard performance metric (Jiang and Zhang, 2009). Bayes regret is the performance gap between

CLOSE-NPMLE and oracle Bayes decisions made with knowledge of the distribution of (θi, σi).

Second, our guarantee for squared error regret also controls the Bayes regret for two ranking-related

decision problems, including the problem of selecting high-mobility tracts encountered by Bergman

et al. (2023). Theorem 2.3.7 shows that the Bayes regret in squared error dominates the Bayes regret for

these decision problems. Thus, these ranking-related problems are easier than squared error estimation,

and our squared error regret result implies upper bounds for the regrets of these problems.

Third, to assess robustness of CLOSE to the location-scale modeling assumption, Theorem 2.3.10

establishes that CLOSE-NPMLE is worst-case robust. Without imposing the location-scale assumptions,

for a population version of CLOSE-NPMLE, we show that its worst-case mean-squared error is a

bounded multiple of that of the minimax procedure. Since the minimax procedure optimizes its

worst-case risk, this result shows that CLOSE-NPMLE does not perform exceedingly poorly even when
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the location-scale model is misspecified.

Since practitioners may want to assess how and whether CLOSE-NPMLE provides improvements in

specific applications, Section 2.4.3 produces an out-of-sample validation procedure by extending the

coupled bootstrap in Oliveira et al. (2021). If one had access to the micro-data, one could split the data

into training and testing samples, use one to compute decisions, and use the other to evaluate them.

Our validation procedure emulates this sample-splitting without needing access to the underlying

micro-data. It provides unbiased loss estimates for any decision rules. In particular, this procedure

allows practitioners to evaluate whether CLOSE provides improvements for their setting by comparing

loss estimates for CLOSE and those for the standard shrinkage procedure.

To illustrate our method, Section 2.5 applies CLOSE to two empirical exercises, building on Chetty

et al. (2020) and Bergman et al. (2023). The first exercise is a calibrated Monte Carlo simulation, in

which we have access to the true distribution of (θi, σi). We find that CLOSE-NPMLE has mean-squared

error (MSE) performance close to that of the oracle posterior, uniformly across the 15 measures of

economic mobility that we include. For all 15 measures, CLOSE-NPMLE captures over 90% of possible

MSE gains relative to no shrinkage, whereas conventional shrinkage captures only 70% on average

and as little as 40% for some measures.

The second exercise evaluates the out-of-sample performance of various procedures for an eco-

nomic policy problem. Bergman et al. (2023) use empirical Bayes procedures to select high-mobility

Census tracts in Seattle. We consider a version of their exercise with different mobility measures,

scaled up to the largest Commuting Zones in the United States. We find that CLOSE-NPMLE selects

more economically mobile tracts than the conventional shrinkage method. These improvements are

large relative to two benchmarks. First, they are on median 3.2 times the value of basic empirical

Bayes—that is, the improvements the standard method delivers over screening on the raw estimates

Yi directly. Therefore, if one finds using the standard empirical Bayes method a worthwhile method-

ological investment, then the additional gain of using CLOSE is likewise meaningful. Second, for 6

out of 15 measures of mobility, CLOSE even improves over the standard method by a larger amount

than the value of data—that is, the amount by which the standard method improves over selecting

Census tracts completely at random. These improvements are substantial, since the value of data is
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likely economically significant if the mobility estimates are at all useful for the policy problem.

2.2 Model and proposed method

We observe estimates Yi and their standard errors σi for parameters θi, over populations i ∈ {1, . . . , n}.

We maintain throughout that the estimates are conditionally Gaussian and independent across i:

Yi | θi, σ2i ∼ N (θi, σ
2
i ) i = 1, . . . , n. (2.2)

The Normality in (2.2) is motivated by the central limit theorem applied to the underlying micro-data

that generate the estimates Yi. That is, let ni denote the underlying sample size in the micro-data

which generate (Yi, σi). Standard large-sample approximation implies

Yi − θi
σi

d−→ N (0, 1) (2.3)

as ni →∞.6

We also assume that the population parameters (θi, σi) are sampled from some joint distribution.

Throughout this paper, we condition on σ1:n = (σ1, . . . , σn) and treat them as fixed. We assume

that (θi, σi) are independently and identically drawn,7 but the conditional distribution θi | σi may be

different across σi:

θi | σi
i.n.i.d.∼ G(i). (2.4)

We use G(i) to denote the distribution of θi | σi. We use P0 to denote the distribution of θ1:n | σ1:n,

which is fully described by (G(1), . . . , G(n)). We refer to P0 as the oracle Bayes prior.

These assumptions imply that the Bayes decision rule with respect to the oracle Bayes prior P0

is optimal (Lehmann and Casella, 2006). Consider a loss function L(δ, θ1:n), which evaluates an

6Note that, under standard assumptions, the approximation (2.3) holds regardless of whether σi is an estimated standard
error or its unknown population counterpart. This is because the estimation error in σi is typically of order 1/ni, which is
smaller than that in Yi, which is of order 1/

√
ni.

7Combined with the independence assumption of Yi across i, we assume that (θi, σi, Yi) are independently drawn
unconditionally. The independence assumption for the estimates Yi conditional on (θi, σi) holds when the underlying
micro-data for different estimates Yi are sampled independently. This assumption does not precisely hold for the Opportunity
Atlas, but the correlation between Yi and Yj , which arises from individuals who move between tracts, is likely small. Papers
imposing this assumption include Mogstad et al. (2020) and Andrews et al. (2023). Moreover, we discuss an interpretation
of the procedure when we erroneously assume that Yi and/or θi are independent across i in Section B.1.6.
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action δ at a vector of parameters θ1:n. For instance, in our empirical application, the loss function

may measure how well we estimate true mobility θ1:n or how well we select high mobility Census

tracts.8 At any realization of the data (Y1:n, σ1:n), the oracle Bayes decision rule δ⋆ picks an action

that minimizes the posterior expected loss:

δ⋆(Y1:n, σ1:n;P0) ∈ argmin
δ

EP0 [L(δ, θ1:n) | Y1:n, σ1:n]. (2.5)

Empirical Bayesians seek to approximate the oracle Bayes rule δ⋆ (Efron, 2014). With an estimate P̂

for P0, it is natural to plug P̂ into (2.5):9

δEB(Y1:n, σ1:n; P̂ ) ∈ argmin
δ

EP̂ [L(δ, θ1:n) | Y1:n, σ1:n]. (2.6)

Popular empirical Bayes methods impose more structure than (2.4) in order to simplify estimating

P0.10 The standard parametric empirical Bayes method additionally models G(i) as identical across

i and Gaussian: i.e., for all i, G(i)
i.i.d.∼ N (m0, s

2
0) (Morris, 1983). Following the recipe (2.6), this

approach estimates the prior parameters (m0, s
2
0). Henceforth, we shall refer to this method as

INDEPENDENT-GAUSS. On the other hand, state-of-the-art empirical Bayes methods (Jiang, 2020;

Soloff et al., 2021; Jiang and Zhang, 2009; Koenker and Gu, 2019; Gilraine et al., 2020) assume that

the marginal distributions are equal to some common, unknown distribution G(0), not necessarily

Gaussian: i.e., for all i, G(i)
i.i.d.∼ G(0). They estimate G(0) with nonparametric maximum likelihood

and form decision rules according to (2.6). We refer to this method as INDEPENDENT-NPMLE. The

“INDEPENDENT” here emphasizes that these methods assume prior independence: θi y σi under the

8We formalize the sense of optimality and formalize three decision problems in Section 2.2.3.

9To emphasize the distinction between the true expectation with respect to the data-generating process (2.4) and a
posterior mean taken with respect to some possibly estimated measure P̂ , we shall use E to refer to the former and E to
refer to the latter. Subscripts typically make the distinction clear as well. Specifically,

EP̂ [L(δ, θ1:n) | Y1:n, σ1:n] =

∫
L (δ(Y1:n, σ1:n), θ1:n)

∏n
i=1 φ

(
yi−θi
σi

)
P̂ (dθ1:n | σ1:n)∫ ∏n

i=1 φ
(
yi−θi
σi

)
P̂ (dθ1:n | σ1:n)

,

where φ(·) is the probability density function of a standard Gaussian.

10The literature on empirical Bayes methods is vast. For theoretical and applied results of particular interest to economists,
see the recent lecture by Gu and Walters (2022) and references therein. Efron (2019) and accompanying discussions are
excellent introductions to the statistics literature.
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prior P0.

We relax prior independence by instead modeling θi | σi as a location-scale family,11 indexed by

unknown hyperparameters (m0(·), s0(·), G0(·)): Specifically, we assume

P (θi ≤ t | σi) = G0

(
t−m0(σi)

s0(σi)

)
, (2.7)

where the distribution G0 is normalized to have zero mean and unit variance. Under (2.7), different

values of σ may translate, compress, or dilate the conditional distribution of θ | σ via the location

parameter m0(·) and the scale parameter s0(·), but the conditional distributions can be normalized to

take the same shape G0(·). Under this model, the oracle prior distribution P0 is fully described by the

hyperparameters (m0(·), s0(·), G0(·)). Our method, CLOSE, proposes to estimate P0 with an estimate

P̂ derived from estimated hyperparameters (m̂(·), ŝ(·), Ĝn). CLOSE then produces empirical Bayes

decision rules with respect to the estimated prior P̂ , following the recipe (2.6).

Before specifying our procedure in detail in Section 2.2.2, we illustrate with an example where

prior independence fails and show what happens to empirical Bayes decision rules that inappropriately

impose prior independence.

2.2.1 Plausibility of prior independence

As a running example, let us define economic mobility θi as the probability of family income ranking

in the top 20 percentiles of the national income distribution, for a Black individual growing up in

tract i whose parents are at the 25th national income percentile. Note that the standard error σi for an

estimate of θi is then related to the implicit sample size—the number of Black households at the 25th

income percentile in tract i.

Prior independence is readily rejected for this measure of economic mobility. Figure 2.1 plots Yi

against log10(σi) and imposes a nonparametric regression estimate of the conditional mean function

11We explore alternatives to the location-scale model in Section B.1.7. We find that no alternative provides a free-lunch
improvement over our assumptions.

More restrictive forms of this assumption also appear in the past and concurrent literature. For instance, Kline et al. (2023)
model the dependence as a pure scale model θ | σ ∼ s(σ) · τ for some τ | σ i.i.d.∼ G (with additional parametric restrictions
on s(·)) and George et al. (2017) impose the location scale model (2.7) with G0 ∼ N (0, 1) (as well as additional parametric
restrictions on s0(·),m0(·)).
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Notes. All tracts within the largest 20 Commuting Zones (CZs) are shown. Due to the regression
specification in Chetty et al. (2020), point estimates of θi ∈ [0, 1] do not always lie within [0, 1].
The orange line plots nonparametric regression estimates of the conditional mean E[Y | σ] = E[θ |
σ] ≡ m0(σ), estimated via local linear regression with automatic bandwidth selection implemented in
Calonico et al. (2019). The orange shading shows a 95% uniform confidence band, constructed by
the max-t confidence set over 50 equally spaced evaluation points. The confidence band excludes any
constant function. See Section B.7 for details on estimating conditional moments of θi given σi.

Figure 2.1: Scatter plot of Yi against log10(σi) in the Opportunity Atlas

m0(σi) ≡ E[θi | σi] = E[Yi | σi]. If θi were independent of σi, then the true conditional mean

function m0(σi) should be constant. Figure 2.1 shows the contrary—tracts with more imprecisely

estimated Yi tend to have higher economic mobility.12

This correlation is in part through the following channel. Since θi is an average outcome for

children from poor Black families, tracts with more poor Black families tend to have more precise

estimates of θi.13 However, these tracts also tend to have lower economic mobility θi due to the

pernicious effects of residential segregation.

12Moreover, log σi remains predictive of Yi even if we residualize Yi against a vector of tract-level covariates (Figure B.9).
Prior independence is also readily rejected for the mobility measure used in Bergman et al. (2023), but its violation is not

as severe once adjusted for tract-level covariates (see Section 2.5 and Figure B.8).

13Since θi is also the mean of a binary outcome, the asymptotic variance of its estimators also depend on mechanically
on θi.
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Notes. The top panel shows posterior mean estimates with INDEPENDENT-GAUSS shrinkage. The
middle panel shows the same with INDEPENDENT-NPMLE shrinkage. The bottom panel displays
posterior mean estimates from our preferred procedure, CLOSE-NPMLE. In the top panel, the estimates
for m0, s

2
0 are weighted by the precision 1/σ2i (as in Bergman et al., 2023). Under θi y σi, this

weighting scheme improves efficiency of the (m0, s0)-estimates by underweighting noisier Yi.

Figure 2.2: Posterior mean estimates under prior independence
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What happens if we apply empirical Bayes methods that assume prior independence here? Fig-

ure 2.2 overlays empirical Bayes posterior means on the Yi-against-log σi scatterplot. In the top panel,

INDEPENDENT-GAUSS shrinks estimates Yi towards a common estimated mean m̂0, depicted as the

black line. INDEPENDENT-GAUSS shrinks noisier estimates more aggressively. When σi and θi are

positively correlated—as is the case here—estimated posterior means under INDEPENDENT-GAUSS

systematically undershoot θi for populations with imprecise estimates. Similarly, the middle panel of

Figure 2.2 shows that INDEPENDENT-NPMLE suffers from the same undershooting, though less so.

In contrast, the bottom panel of Figure 2.2 previews our preferred procedure, CLOSE-NPMLE, which

shrinks towards the conditional mean E[θi | σi], thus avoiding the undershooting.

This undershooting is particularly problematic if one would like to select high-mobility Census

tracts. These high-mobility tracts are exactly those with high imprecision σi, owing to the positive

correlation between θi and σi. By shrinking these tracts severely towards the estimated common mean,

empirical Bayes under prior independence makes suboptimal selections that may even underperform

screening directly based on Yi.14

For a given empirical context, prior independence can always be checked empirically by plotting à

la Figure 2.1. Nevertheless, we discuss the general plausibility of prior independence in the following

remark.

Remark 2.2.1 (Plausibility of prior independence). To describe the general channels underlying the

potential failure of prior independence, let us write (2.3) in a different form

√
ni(Yi − θi)

d−→ N (0, σ20i) where σi ≈
σ0i√
ni
. (2.8)

Expression (2.8) decomposes the (estimated) standard error into the underlying sample size ni in the

micro-data and the asymptotic variance σ20i of the (properly scaled) estimator. Both ni and σ0i may

predict θi in a variety of empirical contexts.

Let us start with the implicit sample sizes ni. It is possible that ni is in part determined by θi,

which we loosely term selection. In value-added modeling, ni is the number of observations associated

with a provider. It is possible that ni selects on the latent quality θi of that provider. For instance,

14This latter point is similarly made in Mehta (2019), though for different loss functions.

36



Chandra et al. (2016) find “higher quality hospitals have higher market shares and grow more over

time.” If market share and hospital size relate to the underlying sample size ni (e.g. number of patient

observations) for estimating hospital value-added, then this suggests non-independence between θi

and σi (see George et al. (2017) for some empirical evidence). As another example, in meta-analysis,

suppose θi represents the treatment effect of some intervention i. If researchers power studies based

on informative priors for θi, then we should observe that interventions with larger conjectured effect

sizes have smaller sample sizes ni.

Another channel driving the correlation between ni and θi can be loosely termed congestion, where

ni affects the latent feature θi. For our primary application, ni represents the number of poor and

minority households in a Census tract, and θi represents underlying economic or social mobility. Places

with more poor and minority households experience white flight and residential segregation (Cutler

et al., 1999; Agan and Starr, 2020; Kain, 1968), develop oppressive institutions (Derenoncourt, 2022;

Alesina et al., 2001), and provide worse public goods (Laliberté, 2021; Jackson and Mackevicius,

2021; Colmer et al., 2020). These factors contribute to lower economic mobility θi. Section B.1.5

contains more examples of violation of prior independence and outlines a model in which selection

and congestion effects drive correlation between ni and θi.

There are also channels for the asymptotic variance σ20i to correlate with θi. In the context of

intergenerational mobility, a parallel literature on the Great Gatsby curve (Durlauf et al., 2022) seeks

to explain a negative relationship between inequality—which contributes to σ20i—and intergenerational

mobility. For instance, Becker et al. (2018) posit that parental investment and parental human capital

are complements for forming the skills of a child. As a result, parents with higher human capital—and

more wealth—invest disproportionately more in their children’s education than parents with lower

human capital. This process then produces both inequality and low economic mobility. In other words,

places that are more unequal (which may result in higher σ20i) have lower mobility θi. ■

2.2.2 Conditional location-scale relaxation of prior independence

Having argued that (i) prior independence is theoretically suspect and empirically rejected and that

(ii) inappropriately imposing it can harm empirical Bayes decision rules, we propose the conditional

37



location-scale model (2.7) as a relaxation.15 Here, we state the location-scale assumption (2.7)

equivalently as the following representation with transformed parameters τi =
θi−m0(σi)
s0(σi)

:

θi = m0(σi) + s0(σi)τi τi | σi
i.i.d.∼ G0 EG0 [τi] = 0 VarG0(τi) = 1. (2.9)

To estimate P0 under (2.9), it suffices to estimate the unknown hyperparameters (m0, s0, G0).

Expression (2.9) makes clear that, under the location-scale model, the transformed parameter τi ∼ G0

is independent from σi. Analogously, let Zi =
Yi−m0(σi)
s0(σi)

be the transformed estimates and νi = σi
s0(σi)

be their standard errors.

Crucially, (Zi, τi, νi) obey an analogue of the Gaussian location model (2.2) in which prior

independence holds:

Zi | νi, τi ∼ N (τi, ν
2
i ), independently across i and τi | σi

i.i.d.∼ G0.

Therefore, it is a natural to first transform (Yi, σi) into (Zi, νi) and then use empirical Bayes methods

that assume prior independence on these transformed quantities to estimate G0.

This strategy is still infeasible, since the transformation depends on unknown location and scale

parameters η0 ≡ (m0, s0). Fortunately, m0(·) and s0(·) are readily estimable from the data (Yi, σi),

as they only require conditional expectations and variances of Y given σ:

m0(σ) = E[θ | σ] = E[Y | σ] and s20(σ) = Var(θ | σ) = E[(Y −m0(σ))
2 | σ]− σ2. (2.10)

Given estimates m̂ and ŝ of m0(·) and s0(·), we then form the estimated transformed data Ẑi, ν̂i as

Ẑi =
Yi − m̂(σi)

ŝ(σi)
and ν̂i =

σi
ŝ(σi)

. (2.11)

We then apply empirical Bayes methods assuming prior independence on (Ẑi, ν̂i). This leads to a

family of empirical Bayes strategies that we refer to as conditional location-scale empirical Bayes, or

CLOSE:16

15In the presence of covariates Xi—which do not predict the noise in Yi, Yi y Xi | θi, σi—the assumption (2.7) can be
modified to accommodate additional covariates as well. We provide additional discussion of covariates in Section B.1.6.

16We give a more detailed walkthrough of these steps in Section 2.4. We also detail a local linear regression estimator in
Section B.7 for CLOSE–STEP 1 .
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CLOSE–STEP 1 Nonparametrically estimate m0(σ), s
2
0(σ) according to (2.10).

CLOSE–STEP 2 With the estimates η̂ = (m̂, ŝ), transform the data according to (2.11).

Apply empirical Bayes methods with prior independence to estimate G0 with some Ĝn on

the transformed data (Ẑi, ν̂i).

CLOSE–STEP 3 Having estimated (η̂, Ĝn), which implies an estimate P̂ of P0, we then

form empirical Bayes decision rules following (2.6).

This framework produces a family of empirical Bayes strategies, since CLOSE–STEP 2 can

take different forms. To leverage theoretical and computational advances, we will focus on—and

recommend—using nonparametric maximum likelihood (NPMLE) to estimate G0. That is, we maxi-

mize the log-likelihood of (an estimated version of) the transformed data Zi, whose marginal distribu-

tion is the convolution G0 ⋆N (0, ν2i ):
17

Ĝn ∈ argmax
G∈P(R)

1

n

n∑
i=1

log

∫ ∞

−∞
φ

(
Ẑi − τ
ν̂i

)
1

ν̂i
G(dτ). (2.12)

When the estimated moments m̂, ŝ are constant functions of σ, CLOSE-NPMLE estimates the same

prior as INDEPENDENT-NPMLE. In the theoretical literature, under prior independence, INDEPENDENT-

NPMLE is state-of-the-art in terms of computational ease and regret properties.18 Our subsequent

results in Section 2.3 extend some of these favorable properties to CLOSE-NPMLE under the conditional

location-scale model.

A simple alternative, which we call CLOSE-GAUSS and think of as a “lite” version of CLOSE-

NPMLE, additionally models the shape G0 as standard Gaussian. We briefly discuss its properties in

17We use (f ⋆ g)(t) =
∫∞
−∞ f(x)g(t − x) dx to denote convolution and φ(t) = 1√

2π
e−t

2/2 to denote the Gaussian
probability density function. The maximization is over the set of all probability measures on R, P(R).

18The nonparametric maximum likelihood has a long history in econometrics and statistics (Kiefer and Wolfowitz, 1956;
Lindsay, 1995; Heckman and Singer, 1984). There is recent renewed interest. See, among others, Koenker and Gu (2019);
Koenker and Mizera (2014); Jiang and Zhang (2009); Jiang (2020); Soloff et al. (2021); Saha and Guntuboyina (2020);
Polyanskiy and Wu (2020); Shen and Wu (2022); Polyanskiy and Wu (2021). Empirical Bayes methods via NPMLE have
computational and theoretical advantages, though much of the favorable theoretical results are proven in a homoskedastic
setting. Its computational ease (Koenker and Mizera, 2014; Koenker and Gu, 2017) and lack of tuning parameters are
advocated in Koenker and Gu (2019). Polyanskiy and Wu (2020) find that, with high probability, NPMLE recovers a
distribution Ĝn with only O(logn) support points despite searching over the set of all distributions; they refer to this
property as self-regularization. For regret control in the homoskedastic Gaussian model, Jiang and Zhang (2009)’s result is
the best known and matches a lower bound up to log factors (Polyanskiy and Wu, 2021).
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the following remark.

Remark 2.2.2 (CLOSE-GAUSS). Under G0 ∼ N (0, 1), the oracle Bayes posterior means are simply

θ∗i,N (0,1),η0
=

σ2i
s20(σi) + σ2i

m0(σi) +
s20(σi)

s20(σi) + σ2i
Yi. (2.13)

Equation (2.13) is the analogue of posterior means estimated by INDEPENDENT-GAUSS, where the

unconditional mean m0 and variance s20 are replaced with their conditional counterparts (m0(·), s20(·)).

As an empirical Bayes strategy, CLOSE-GAUSS then replaces the unknown conditional moments with

their estimated counterparts.19 Its properties depend on those of the oracle (2.13) it mimics, which we

turn to now.

Despite being rationalized under the assumption θi | σi ∼ N (m0(σi), s
2
0(σi)), (2.13) enjoys

strong robustness properties: It is optimal over a restricted class of decision rules and minimax over

all decision rules—without imposing the location-scale assumption (2.7). First, (2.13) is the optimal

decision rule for estimating θi when we restrict to the class of decision rules that are linear in Yi

(Weinstein et al., 2018). Second, (2.13) is minimax in the sense that it minimizes the worst-case mean

squared error, where an adversary chooses G(1), . . . , G(n), subjected to the constraint that G(i)’s first

two moments are (m0(σi), s
2
0(σi)).

20

However, the Normality assumption does imply that (2.13), unlike CLOSE-NPMLE, fails to ap-

proximate the optimal decision (2.5) when the location-scale assumption (2.7) holds but θi | σi may

not be Gaussian. Since we also show that CLOSE-NPMLE is worst-case robust—though with higher

worst-case risk than CLOSE-GAUSS, we recommend CLOSE-NPMLE over CLOSE-GAUSS, unless the

researcher is extremely concerned about the misspecification of the location-scale model. ■

19(2.13) is first proposed by Weinstein et al. (2018). Weinstein et al. (2018) propose estimatingm0(·), s0(·) in a particular
manner to ensure the resulting empirical Bayes posterior means dominate the naive estimates Yi uniformly over θ1:n, σ1:n,
which are conditioned upon.

20Formally,

θ∗1:n,N (0,1),η0 ∈ argmin
δ1:n

sup
G(1:n)

1

n

n∑
i=1

EG(i)

[
(δi(Y1:n, σ1:n)− θi)2

]
,

where the supremum is taken over G(i) having moments η0(σi). To wit, note that the Bayes risk of (2.13) is the same
regardless of choices of G(1), . . . , G(n) under the moment constraint, and it is equal to the optimal Bayes risk when
G(i) ∼ N (m0(σi), s

2
0(σi)). We therefore conclude that (2.13) is minimax by observing that the minimax Bayes risk is at

least the risk of (2.13).
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2.2.3 Decision problems

To prepare for our theoretical results in the next section, we close this one by introducing decision

theory notation and formalizing a few decision problems. Let δ(Y1:n, σ1:n) be a decision rule mapping

the data (Y1:n, σ1:n) to actions. Let L(δ, θ1:n) denote a loss function mapping actions and parameters

to a scalar. Let RF(δ, θ1:n) = E[L(δ, θ1:n) | θ1:n, σ1:n] denote the frequentist risk associated with the

loss function L, which integrates over the randomness in Y1:n, keeping θ1:n, σ1:n fixed. Finally, let

RB(δ;P0) = EP0 [RF(δ, θ1:n) | σ1:n] be the Bayes risk of δ under P0, which additionally integrates

over the conditional distribution θ1:n | σ1:n.21

The oracle Bayes decision rule δ⋆ (2.5) is optimal in the sense that it minizes RB. A natural metric

of success for the empirical Bayesian (2.6) is thus the gap between the Bayes risks of δEB and δ⋆. We

refer to this quantity as Bayes regret:

BayesRegretn(δEB) = RB(δEB;P0)−RB(δ
⋆;P0) = E[L(δEB, θ1:n)− L(δ⋆, θ1:n) | σ1:n] (2.14)

where the right-hand side integrates over the randomness in θ1:n, Y1:n, and, by extension, P̂ . If an

empirical Bayes method achieves low Bayes regret, then it successfully imitates the decisions of the

oracle Bayesian, and its decisions are thus approximately optimal. Our theoretical results focus on

bounding Bayes regret for CLOSE.22

We introduce a few concrete decision problems by specifying the actions δ and loss functions L

and state the corresponding oracle Bayes and empirical Bayes decision rules.

Decision Problem 1 (Squared-error estimation of θ1:n). The canonical statistical problem (Robbins,

1956) is estimating the parameters θ1:n under mean-squared error (MSE). That is, the action δ =

21Since σ1:n is kept fixed throughout, we suppress their appearances in RB(·), RF(·).

22Bayes regret is likewise the focus of the literature in empirical Bayes that we build on (Jiang, 2020; Soloff et al.,
2021). On the other hand, other optimality criteria are also considered. For instance, Kwon (2021), Xie et al. (2012),
Abadie and Kasy (2019), and Jing et al. (2016) propose methods that use Stein’s Unbiased Risk Estimate (SURE) to select
hyperparameters for a class of shrinkage procedures. A common thread of these approaches is that they seek optimality in
terms of the frequentist risk RF—which is stronger than controlling the Bayes risk RB—but limit attention to squared error
and to a restricted class of methods.
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(δ1, . . . , δn) collects estimates δi for parameters θi, evaluated with MSE:

L(δ, θ1:n) =
1

n

n∑
i=1

(δi − θi)2.

The oracle Bayes decision rule δ⋆ = (δ⋆1 , . . . , δ
⋆
n) here is the posterior mean under P0, denoted by

θ∗i = θ∗i,P0
:

δ⋆i = θ∗i,P0
≡ EP0 [θi | Yi, σi]

with empirical Bayesian counterpart θ̂i,P̂ = EP̂ [θi | Yi, σi]. ■

Next, we describe two problems that are likely more relevant for policy-making, such as replacing

low value-added teachers and recommending high economic mobility tracts (Gilraine et al., 2020;

Bergman et al., 2023).23

Decision Problem 2 (UTILITY MAXIMIZATION BY SELECTION). Suppose δ = (δ1, . . . , δn), where

δi ∈ {0, 1} is a selection decision for population i. For each population, selecting that population has

benefit θi and known cost ci. The decision maker wishes to maximize utility (i.e., negative loss):

−L(δ, θ1:n) =
1

n

n∑
i=1

δi (θi − ci) .

The oracle Bayes rule selects all populations whose posterior mean benefit θ∗i,P0
exceeds the selection

cost ci:

δ⋆i = 1
(
θ∗i,P0

≥ ci
)
.

One natural empirical Bayes decision rule replaces θ∗i,P0
with θ∗

i,P̂
, following (2.6).

In a context where the parameters are conditional average treatment effects for a particular covariate

cell, θi = CATE(i) ≡ E[Y (1)− Y (0) | X = i], and δi are treatment decisions, this problem is an

instance of welfare maximization by treatment choice (Manski, 2004; Stoye, 2009; Kitagawa and

Tetenov, 2018; Athey and Wager, 2021). In this setting, δi is a decision to treat individuals with

covariate values in the ith cell. The average benefit of treating these individuals is their conditional

23We analyze these problems from a decision-theoretic perspective, under the sampling assumption (2.4). For a different
and complementary perspective in terms of conditional-on-θ frequentist inference on ranks, see Mogstad et al. (2020, 2023).
For additional ranking-related decision problems, see Gu and Koenker (2023).
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average treatment effect θi, and the cost of treatment is ci.24 ■

Decision Problem 3 (TOP-m SELECTION). Similar to UTILITY MAXIMIZATION BY SELECTION, sup-

pose δ consists of binary selection decisions, with the additional constraint that exactly m populations

are chosen:
∑

i δi = m. The decision maker’s utility is the average θi of the selected set:

−L(δ, θ1:n) =
1

m

n∑
i=1

δiθi. (2.15)

Oracle Bayes selects the populations corresponding to the m largest posterior means θ∗i,P0
(breaking

ties arbitrarily):

δ⋆i = 1
(
θ∗i,P0

is among the top-m of θ∗1:n,P0

)
.

Again, the empirical Bayes recipe (2.6) suggests replacing P0 with the estimate P̂ .

The utility function (2.15) rationalizes the widespread practice of screening based on empirical

Bayes posterior means. For instance, this objective may be reasonable for rewarding the top 5% of

teachers or replacing the bottom 5%, according to value-added (Gilraine et al., 2020; Chetty et al.,

2014a; Kane and Staiger, 2008; Hanushek, 2011). In Bergman et al. (2023), where housing voucher

holders are incentivized to move to Census tracts selected according to economic mobility, (2.15)

represents the expected economic mobility of a mover if they move randomly to one of the selected

tracts.25 ■

2.3 Regret results for CLOSE-NPMLE

We observe (Yi, σi)
n
i=1, where (θi, σi) satisfies the location-scale assumption (2.7) and (Yi, θi, σi)

obeys the Gaussian location model (2.2). Our recommended procedure, CLOSE-NPMLE, transforms

the data (Yi, σi) into (Ẑi, ν̂i), with estimated nuisance parameters η̂ = (m̂, ŝ) for η0 = (m0, s0) in

CLOSE–STEP 1 . It then estimates the unknown shape parameterG0 via NPMLE (2.12) on (Ẑi, ν̂i)
n
i=1.

Our leading result shows that CLOSE-NPMLE mimics the oracle Bayesian as well as possible, for

24The literature on treatment choice uses a different notion of regret compared to this paper (based on RF rather than
RB).

25Our theoretical results in Section 2.3.2 can accommodate a slightly more general decision problem, which allows for
an expected mobility interpretation for movers who do not move uniformly randomly. See Theorem 2.3.8.
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the problem of estimation under squared error loss, in the sense that its Bayes regret vanishes at the

minimax optimal rate. Our second result connects squared error estimation to Decision Problems 2

and 3, by showing that if an empirical Bayesian has low regret in squared error loss, then they likewise

have low regret for Decision Problems 2 and 3.

Since our main result assumes the location-scale model, one may be concerned about its potential

misspecification. The last result in this section, Theorem 2.3.10, bounds the worst-case Bayes risk

of an idealized version of CLOSE-NPMLE (i.e. with known η0 and fixed but misspecified Ĝn) as a

multiple of a notion of minimax risk, without assuming (2.7). Thus, even under misspecification,

CLOSE-NPMLE does not perform arbitrarily badly relative to the minimax procedure.

The rest of this section states and discusses these results formally. Practitioners who are less

interested in the theoretical details are free to skip to Section 2.4, where we discuss a number of

practical considerations.

Remark 2.3.1 (Notation). In what follows, we use the symbol C to denote a generic positive and

finite constant which does not depend on n. We use the symbol Cx to denote a generic positive and

finite constant that depends only on x, some parameter(s) that describe the problem. Occurrences of

the same symbol C,Cx may not refer to the same constants. Similarly, for An, Bn ≥ 0, generally

functions of n, we use An ≲ Bn to mean that some universal C exists such that An ≤ CBn for all n,

and we use A ≲x B to mean that some universal Cx exists such that An ≤ CxBn for all n. In logical

statements, appearances of ≲ implicitly prepend “there exists a universal constant” to the statement.26

Since all expectation or probability statements are with respect to the conditional distribution P0 of

θ1:n | σ1:n, going forward, we treat σ1:n as fixed and simply write E[·], P (·) to denote the expectation

and probability over θ1:n | σ1:n ∼ P0. We omit the P0 subscript and the conditioning on σ1:n. ■

26For instance, statements like “under certain assumptions, P (An ≲ Bn) ≥ c0” should be read as “under certain
assumptions, there exists a constant C > 0 such that for all n, P (An ≤ CBn) ≥ c0.”
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2.3.1 Regret rate in squared error

Since we consider CLOSE-NPMLE in mean-squared error, we define

Regret(G, η) ≡ 1

n

n∑
i=1

(θ̂i,G,η − θi)2 −
1

n

n∑
i=1

(θ∗i − θi)
2

θ∗i ≡ θ∗i,P0
= EP0 [θi | Yi, σi] θ̂i,G,η ≡ EG,η[θi | Yi, σi] ≡

∫
θφ
(
Yi−θ
σi

)
1
σi
dG
(
θ−m(σi)
s(σi)

)
∫
φ
(
Yi−θ
σi

)
1
σi
dG
(
θ−m(σi)
s(σi)

)
as the excess loss of the empirical Bayes posterior means—obtained by priorG and nuisance parameter

estimate η for η0—relative to that of the oracle Bayes posterior means. The Bayes regret for CLOSE-

NPMLE in squared error is then the P0-expectation of Regret:

BayesRegretn = E
[
Regret(Ĝn, η̂)

]
= E

[
1

n

n∑
i=1

(θ∗i − θ̂i,Ĝn,η̂)
2

]
. (2.16)

Equation (2.16) additionally notes that expected Regret is equal to the expected mean-squared differ-

ence between the empirical Bayesian posterior means θ̂i,Ĝn,η̂ and the oracle Bayes posterior means.

We assume that P0 ∈ P0 belongs to some restricted class. Informally speaking, our first main

result shows that for some constants C, β > 0 that depend solely on P0, the Bayes regret in squared

error decays at the same rate as the maximum estimation error for η0 squared:

BayesRegretn ≤ C(log n)βmax

(
E∥η̂ − η0∥2∞,

1

n

)
,

where we define ∥η∥∞ = max (∥m∥∞, ∥s∥∞) for η = (m, s). This result continues a recent statistics

literature on empirical Bayes methods via NPMLE by characterizing the effect of an estimated nuisance

parameter η̂ in a first step.27

Moreover, we show that controlling the Bayes regret is no easier than estimating m in ∥·∥2, which

is a corresponding lower bound on regret. There exists c such that for any estimator of θi, its worst-case

27Our theory hews closely to—and extends—the results in Jiang (2020) and Soloff et al. (2021), which themselves are
extensions of earlier results in the homoskedastic setting (Jiang and Zhang, 2009; Saha and Guntuboyina, 2020). These
results, under either homoskedasticity or prior independence, show that empirical Bayes derived from estimating the prior
via NPMLE achieves fast regret rates. In particular, Soloff et al. (2021) show that the regret rate is of the form C(logn)β 1

n

under prior independence and assumptions similar to ours.
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regret is bounded below28

sup
P0∈P0

BayesRegretn ≥ c inf
m̂

sup
m0

E∥m̂−m0∥22.

Since the minimax estimation rates of ∥η̂ − η0∥∞ and of ∥η̂ − η0∥2 are the same up to logarithmic

factors, we conclude that our regret upper bound is rate-optimal up to logarithmic factors. We now

introduce the assumptions on P0 ∈ P0 needed for these results, state the upper and lower bounds, and

provide a technical discussion.

Assumptions for regret upper bound

We first assume that Ĝn is an approximate maximizer of the log-likelihood on the transformed data

Ẑi and ν̂i satisfying some support restrictions. This is not a restrictive assumption, as the actual

maximizers of the log-likelihood function satisfy it.29

Assumption 2.3.1. Let ψi(Zi, η̂, G) ≡ log
(∫∞

−∞ φ
(
Ẑi−τ
ν̂i

)
G(dτ)

)
be the objective function in

(2.12), ignoring a constant factor 1/ν̂i. We assume that Ĝn satisfies

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn) ≥ sup
H∈P(R)

1

n

n∑
i=1

ψi(Zi, η̂, H)− κn (2.17)

for tolerance κn

κn =
2

n
log

(
n√
2πe

)
. (2.18)

Moreover, we require that Ĝn has support points within [mini Ẑi,maxi Ẑi]. To ensure that κn is

positive, we assume that n ≥ 7 = ⌈
√
2πe⌉.30

We now state further assumptions on the data-generating processes P0 beyond (2.7). First, we

assume that G0 is exponential-tailed with parameter α that controls the thickness of its tails. We state

28Our proof only exploits a lower bound for the performance of m̂; doing so is without loss if m0 and s0 belong to the
same smoothness class.

29In particular, the support restriction for Ĝn in Assumption 2.3.1 is satisfied by all maximizers of the likelihood function
(see Corollary 3 in Soloff et al., 2021).

30The constants κn also feature in Jiang (2020) to ensure that the fitted likelihood is bounded away from zero. The
particular constants in κn are chosen to simplify expressions and are not material to the result.
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the restriction in an equivalent form of simultaneous moment control.31

Assumption 2.3.2. The distribution G0 is has zero mean, unit variance, and admits simultaneous

moment control with parameter α ∈ (0, 2]: There exists a constant A0 > 0 such that for all p > 0,

(Eτ∼G0 [|τ |p])
1/p ≤ A0p

1/α. (2.19)

Next, Assumption 2.3.3 imposes that members of P0 have various variance parameters uniformly

bounded away from zero and infinity. This is a standard assumption in the literature, maintained

likewise by Jiang (2020) and Soloff et al. (2021).

Assumption 2.3.3. The variances (σ1:n, s0) admit lower and upper bounds:

σℓ < σi < σu and sℓ < s0(·) < su,

where 0 < σℓ, σu, s0ℓ, s0u <∞. This implies that 0 < νℓ ≤ νi = σi
s0(σi)

≤ νu <∞ for some νℓ, νu.

Lastly, we require that m0, s0 satisfies some smoothness restrictions. We also require that m̂, ŝ

satisfy some corresponding regularity conditions.

Assumption 2.3.4. Let CpA1
([σℓ, σu]) be the Hölder class of order p ≥ 1 with maximal Hölder norm

A1 > 0 supported on [σℓ, σu].32 We assume that

1. The true conditional moments are Hölder-smooth: m0, s0 ∈ CpA1
([σℓ, σu]).

Additionally, let β0 > 0 be a constant. Let V be a set of bounded functions supported on [σℓ, σu]

31An equivalent statement to Assumption 2.3.2 is that there exists a1, a2 > 0 such that PG0(|τ | > t) ≤ a1 exp (−a2tα)
for all t > 0. Note that when α = 2, G0 is subgaussian, and when α = 1, G0 is subexponential (see the definitions in
Vershynin, 2018), as commonly assumed in high-dimensional statistics. Assumption 2.3.2 is slightly stronger than requiring
that all moments exist for G0, and weaker than requiring G0 to have a moment-generating function. Similar tail assumptions
feature in the theoretical literature on empirical Bayes (Soloff et al., 2021; Jiang and Zhang, 2009; Jiang, 2020).

32We recall the definition of a Hölder class from van der Vaart and Wellner (1996), Section 2.7.1. We specialize its
definition to functions of one real variable. For an integer p, Hölder-p functions are (p − 1)-times differentiable, with a
Lipschitz continuous (p− 1)st derivative.

Definition 2.3.2. For some setX ⊂ R and constantA > 0, p > 0, letCpA(X ) be the set of continuous functions f : X → R
with ∥f∥(p) ≤ A. The norm ∥·∥(p) is defined as follows. Let p be the greatest integer strictly smaller than p. Define

∥f∥(p) = max
k≤p

sup
x∈X

∣∣∣f (k)(x)
∣∣∣+ sup

x,y∈X

∣∣∣f (p)(x)− f (p)(y)
∣∣∣

|x− y|p−p
.

We refer to CpA(X ) as a Hölder class of order p and ∥f∥(p) as the Hölder norm.
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that (i) admits the uniform bound supf∈V∥f∥∞ ≤ CA1 and (ii) admits the metric entropy bound

logN(ϵ,V, ∥·∥∞) ≤ CA1,p,σℓ,σu(1/ϵ)
1/p.

We assume that the estimators for m0 and s0, η̂ = (m̂, ŝ), satisfy the following assumptions.

2. For any ϵ > 0, there exists a sufficiently large C = C(ϵ), independently of n, such that for all n,

P
(
max (∥m̂−m0∥∞, ∥ŝ− s0∥∞) > C(ϵ)n

− p
2p+1 (log n)β0

)
< ϵ.

3. The nuisance estimators take values in V almost surely: P (m̂ ∈ V, ŝ ∈ V) = 1.

4. The conditional variance estimator respects the conditional variance bounds in Assumption 2.3.3:

P
(
s0ℓ
2 < ŝ < 2s0u

)
= 1.

Assumption 2.3.4 is a Hölder smoothness assumption on the nuisance parametersm0 and s0, which

is a standard regularity condition in nonparametric regression; our subsequent minimax rate optimality

statements are relative to this class. Moreover, it is also a high-level assumption on the quality of the

estimation procedure for (m̂, ŝ). Specifically, Assumption 2.3.4 expects that the nuisance parameter

estimates m̂ and ŝ are rate-optimal up to logarithmic factors (Stone, 1980). Assumption 2.3.4 also

expects that the nuisance parameter estimates belong to a class V with the same metric entropy behavior

as the Hölder class CpA1
([σℓ, σu]).33

Assumptions 2.3.2 to 2.3.4 specify a class of distributions P0 and nuisance estimators η̂ indexed by

a set of hyperparametersH = (σℓ, σu, sℓ, su, A0, A1, α, β0, p). Our subsequent theoretical results are

finite sample, with implicit constants dependent on these hyperparametersH. To review, (σℓ, σu, sℓ, su)

are bounds on the variances (σ2i , s
2(σi)); (A0, α) control the tails of G0; and (A1, p) control the

smoothness of η0; and β0 is the power of the log factor in the ∥·∥∞ estimation rate for η0.

33Regarding Assumption 2.3.4(2), we note that kernel smoothing estimators attain the rates required for Hölder smooth
functions m0, s0 (see Tsybakov (2008) and Section B.7). Regarding Assumption 2.3.4(3), if the nuisance parameters are p-
Hölder smooth almost surely, we can simply take V = Cp

A′
1
([σℓ, σu]) for some potentially differentA′

1. This can be achieved
in practice by, say, projecting estimated nuisance parameters η̃ to CA1([σℓ, σu]) in ∥·∥∞. Finally, Assumption 2.3.4(4) also
expects the nuisance parameter estimates to respect the boundedness constraints for s0. This is mainly so that our results are
easier to state; we discuss this assumption in Theorem B.3.3.
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Regret results

Consider the following “good event,” indexed by C > 0,

An(C) ≡
{
∥η̂ − η0∥∞ ≤ Cn−

p
2p+1 (log n)β0

}
. (2.20)

An(C) indicates that the nuisance parameter estimates satisfy some rate in ∥·∥∞. Our main result

derives a convergence rate for the expected MSE regret conditional on this good event An(C).

Theorem 2.3.3. Assume Assumptions 2.3.1 to 2.3.4 hold. Then, for any δ ∈ (0, 12), there exists

universal constants C1,H,δ > 0 and C0,H,δ > 0 such that (i) P (An(C1,H,δ)) ≥ 1− δ and that (ii) the

expected regret conditional on An(C1,H,δ) is dominated by the rate function

E
[
Regret(Ĝn, η̂) | An(C1,H,δ)

]
≤ C0,H,δn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 . (2.21)

If the event An(C) is sufficiently likely, we can control expected regret on the bad event AC
n as

well. In Section B.7, we verify that local linear regression satisfies a weakening of these assumptions

that are also sufficient for the conclusion of Theorem 2.3.4.

Corollary 2.3.4. Assume the same setting as Theorem 2.3.3. Suppose, additionally, for all sufficiently

large C1,H > 0, P (An(C1,H)) ≥ 1 − n−2. Then, there exists a constant C0,H > 0 such that the

expected regret is dominated by the rate function

BayesRegretn = E
[
Regret(Ĝn, η̂)

]
≤ C0,Hn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 .

We can show a corresponding lower bound on the Bayes regret—i.e., a lower bound on the worst-

case Bayes regret when an adversary picks G0, η0—by showing that any good posterior mean estimate

θ̂i implies a good estimate m̂(σi) for m0. Minimax lower bounds for estimation of m0 then imply

lower bounds for estimation of the oracle posterior means θ∗i .34

Theorem 2.3.5. Fix a set of valid hyperparametersH = (σℓ, σu, sℓ, su, A0, A1, α, β0, p) for Assump-

tions 2.3.2 to 2.3.4. Let P(H, σ1:n) be the set of distributions P0 on support points σ1:n which satisfy

(2.7) and Assumptions 2.3.2 to 2.3.4 corresponding to H. For a given P0, let θ∗i = EP0 [θi | Yi, σi]

34A similar argument is considered in Ignatiadis and Wager (2019) for a related but distinct setting. See, also, Sec-
tion B.1.6.
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denote the oracle posterior means. Then there exists a constant cH > 0 such that the worst-case Bayes

regret of any estimator exceeds cHn
− 2p

2p+1 :

inf
θ̂1:n

sup
σ1:n∈(σℓ,σu)
P0∈P(H,σ1:n)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2 − (θ∗i − θi)2
]
≥ cHn−

2p
2p+1 ,

where the infimum is taken over all (possibly randomized) estimators of θ1:n.

As a result, the rate (2.21) is optimal up to logarithmic factors. The additional logarithmic factors

are partly the price of having to estimate G0 via NPMLE and partly deficiencies in the proof of

Theorem 2.3.3. In any case, this cost is not substantial.

The regret upper bounds Theorems 2.3.3 and 2.3.4 are finite-sample statements. As a result,

they hold uniformly over all distributions P0 delineated by the problem parametersH. However, the

usefulness of Theorems 2.3.3 and 2.3.4 still lies in the convergence rate, as the constants implied by

the proofs are not sharp.

These regret upper bounds readily extend to the case where covariates are present and the location-

scale assumption is with respect to the additional covariates Xi:

θi | σi, Xi ∼ G0

(
θi −m0(Xi, σi)

s0(Xi, σi)

)
,

under assumption onm0, s0, m̂, ŝ analogous to Assumption 2.3.4. Of course, the resulting convergence

rate would suffer from the curse of dimensionality, and the term n
− 2p

2p+1 would be replaced with

n
− 2p

2p+1+d , where d is the dimension of X .

Taken together, Theorems 2.3.4 and 2.3.5 are strong statistical optimality guarantees for CLOSE-

NPMLE in the canonical problem of estimation with squared error loss. That is, the worst-case

performance gap of CLOSE-NPMLE relative to the oracle contracts at the best possible rate, meaning

that CLOSE-NPMLE mimics the oracle as well as possible.

For interested readers, we provide an overview of the proof of our main result Theorem 2.3.3 in

the following remark. A more detailed walkthrough is in Section B.3.3.

Remark 2.3.6 (Informal discussion of the proof for Theorem 2.3.3). Regret results assuming prior

independence are established by Soloff et al. (2021) and Jiang (2020), and we build on these results for

Theorem 2.3.3. Applied to (Zi, νi, τi), these results state that (i) approximate maximizers G̃n of the
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(infeasible) log-likelihood Ψn(η0, G) ≡ 1
n

∑
i ψi(Zi, η0, G) are close to G0 in terms of the average

Hellinger distance of the induced densities of Zi

h̄2(fG̃n,·, fG0,·) ≡
1

n

n∑
i=1

h2
(
N (0, ν2i ) ⋆ G̃n,N (0, ν2i ) ⋆ G0

)
, h2(f, g) ≡ 1−

∫ ∞

−∞

√
f(x)g(x) dx

and (ii) if h̄2(fG̃n,·, fG0,·) is small, then posterior means for τi under G̃n are close to posterior means

under G0 in squared error.

Our results extend this argument by accommodating the fact that η0 is unknown and must be

estimated with η̂.35 To apply (ii) in the literature, we would like to show that (i’) Ĝn—an approximate

maximizer of the feasible log-likelihood Ψn(η̂, G) =
1
n

∑
i ψi(Zi, η̂, G)—is close to G0 in terms of

h̄2(·, ·). This is not a straightforward task and is the most intricate part of our argument. To show (i’),

we prove a lower bound for the likelihood Ψn(η0, Ĝn) (Theorem B.4.1) and adapt the argument for (i)

to accommodate our likelihood lower bound (Theorem B.5.1).

To lower bound Ψn(η0, Ĝn), we relate the two likelihoods by linearization (formally, see (B.15)):

Ψn(η̂, Ĝn)−Ψn(η0, Ĝn) ≈
1

n

n∑
i=1

∂ψi(Zi, η0, Ĝn)

∂η
(η̂(σi)− η0(σi))︸ ︷︷ ︸

≤∥η̂−η0∥∞

.

Since Ĝn approximately maximizes the feasible likelihood Ψn(η̂, ·), Ψn(η̂, Ĝn) is large by construc-

tion. Thus, if we can show that the right-hand side is small, then the infeasible likelihood Ψn(η0, Ĝn)

would be close to Ψn(η̂, Ĝn) and hence would also be large. To obtain the rate (2.21), it is important

to show that the right-hand side vanishes strictly faster than ∥η̂ − η0∥∞. To do so, we additionally

need to show that the derivatives 1
n

∑
i ∂ψi(Zi, η0, Ĝn)/∂η are small. Without it, we would obtain a

worse squared error regret rate of the form n
− p

2p+1 (log n)β .

In particular, we manage to relate the average derivative to the average Hellinger distance (see

Theorems B.4.3 and B.4.4)∣∣∣∣∣ 1n
n∑
i=1

∂ψi(Zi, η0, Ĝn)

∂η
(η̂(σi)− η0(σi))

∣∣∣∣∣ ≲ (log n)γ h̄(fĜn,·, fG0,·)∥η̂ − η0∥∞, for some γ > 0.

35We also translate the resulting regret guarantee on estimating τi to regret guarantees on estimating θi. In doing so, we
identify an apparent gap in the arguments of Jiang (2020) and Soloff et al. (2021). We show a modified argument avoids the
gap in our setting, which applies to the setting in Soloff et al. (2021) as well. See Theorem B.6.5 for details.
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Loosely, this is because the population score in η is mean-zero, E[∂ψi(Z, η0, G0)/∂η] = 0. Thus if

Ĝn is close to G0, then the sample score evaluated at Ĝn should also be approximately zero. This is a

key step in Section B.4.

This bound for Ψn(η0, Ĝn) creates an additional complication when attempting to apply the

claim (i). The claim (i) upper bounds the Hellinger distance h̄(fG̃n,·, fG0,·) using a lower bound

for Ψn(η0, G̃n). However, now our lower bound for the likelihood Ψn(η0, Ĝn) itself depends on

h̄(fĜn,·, fG0,·), and so we cannot apply (i) directly. The proof for (i’) additionally modifies the

argument for (i) to accommodate our likelihood bound (Section B.5). ■

So far, our regret guarantees are only about estimation in squared error (Decision Problem 1). In

the next subsection, we analyze regret for empirical Bayes decision rules targeted to the ranking-related

problems (Decision Problems 2 and 3), and relate their performances to those for Decision Problem 1.

2.3.2 Other decision objectives and relation to squared-error loss

Notably, the oracle Bayes decision rules δ⋆ in Decision Problems 2 and 3 depend solely on the vector

of oracle Bayes posterior means θ∗1:n.36 Therefore, for these problems, the natural empirical Bayes

decision rules simply replace oracle Bayes posterior means (θ∗i ) with empirical Bayes ones (θ̂i) in the

oracle decision rules.37 For instance, if one is comfortable with the prior estimated by CLOSE-NPMLE,

then the corresponding decision rules for Decision Problems 2 and 3 threshold based on estimated

posterior means under CLOSE-NPMLE.

In these problems, BayesRegretn (2.14) is equal to the expected risk gap between using the

36In principle, one could consider many other policy problems with a ranking flavor (Koenker and Gu, 2019; Kline et al.,
2023). Among these problems, UTILITY MAXIMIZATION BY SELECTION and TOP-m SELECTION are special in that optimal
decisions are simple functions of the posterior means. We caution that the worst-case regret rate for ranking-type problems
without this property can be unfavorable—as Gu and Koenker (2023) put it, “inherently futile”—since their optimal decisions
depend on functionals that are known to be difficult to estimate (i.e., they have logarithmic minimax rates of estimation,
Pensky, 2017; Dedecker and Michel, 2013; Cai and Low, 2011), without stronger assumptions on the prior.

In general, the minimax squared error rate of estimating E[f(θ)] is logarithmic, unless f is an analytic function, by an
extension of the argument in Cai and Low (2011). Ranking-type problems often involve f of the form f(θ) = 1(θ > c) or
f(θ) = max(θ, c), which are not smooth. This observation suggests that these ranking-type problems may also suffer from
logarithmic regret rates—though, this observation alone does not rigorously prove this, as difficulties in estimating Ef(θ) in
squared error might not preclude a polynomial regret rate for these ranking-type problems.

37Theorem 2.3.7 applies to any estimators of the oracle Bayes posterior means—not necessarily derived through an
empirical Bayes procedure—and does not impose the location-scale assumption. As a result, it may be of independent
interest.
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feasible decision rules δ̂ and the oracle decision rules δ⋆. To specialize, we let UMRegretn denote

BayesRegretn for Decision Problem 2 and we let TopRegret(m)
n denote BayesRegretn for Decision

Problem 3. The following result relates UMRegretn and TopRegret
(m)
n to Regret.

Theorem 2.3.7. Suppose (2.4) holds, but (2.7) may or may not hold. Let δ̂i be the plug-in decisions

with any vector of estimates θ̂i, not necessarily from CLOSE-NPMLE. We have the following inequalities

on the expected regret corresponding to the decision rules δ̂i:

1. For UTILITY MAXIMIZATION BY SELECTION,

E[UMRegretn] ≤

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (2.22)

2. For TOP-m SELECTION,

E[TopRegret(m)
n ] ≤ 2

√
n

m

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (2.23)

Theorem 2.3.7 shows that the two decision problems UTILITY MAXIMIZATION BY SELECTION

and TOP-m SELECTION are easier than estimating the oracle Bayesian posterior means. As a result, our

convergence rates from Theorems 2.3.3 and 2.3.4 also upper bound regret rates for these two decision

problems, rendering the regret rates more immediately useful for policy problems. In particular,

for m/n ≍ 1, both regret rates (2.22) and (2.23) are of the form n−p/(2p+1)(log n)c = o(1) under

Theorem 2.3.4. Thus, the performance of the empirical Bayes decision rule approximates that of the

oracle with at least the rate O(n−p/(2p+1)) up to log factors.

Remark 2.3.8 (Mover interpretation of Theorem 2.3.7). Recall that we can think of TOP-m SELECTION

as the decision problem in Bergman et al. (2023). The utility function represents the expected mobility

of a mover, assuming that the mover moves randomly into one of the high mobility Census tracts. Our

proof of Theorem 2.3.7 in Section B.1.2 allows for a slightly more general decision problem. Suppose

the decision now is to provide a full ranking of Census tracts for potential movers and maximize the

expected mobility for a mover. Suppose that the probability that a mover moves to a tract depends

decreasingly and solely on the tract’s rank. To be more concrete, suppose the mover has probability

π1 of moving to the highest-ranked tract, π2 to the second-highest, and so forth. Then, with the same
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argument, the corresponding regret is dominated by 2
√
n
∑n

i=1 π
2
i ·
(
E
[
1
n

∑n
i=1(θ̂i − θ∗i )2

])1/2
,

which generalizes (2.23). ■

Remark 2.3.9 (Tightness of Theorem 2.3.7). We suspect that the actual performance of CLOSE-NPMLE

for Decision Problems 2 and 3 may be better than predicted by Theorem 2.3.7. Take the bound for

UMRegretn, for instance. As would be clear from the proof, the bound (2.22) holds even when the

ci’s are adversarially chosen38 such that the empirical Bayesian makes every mistake: δ̂i ̸= δ⋆i for every

i. However, for a fixed vector c, we expect that δ̂i ̸= δ⋆i only for a vanishing fraction of populations,

and thus the actual performance of δ̂i may be better than the rate in Section B.1.2 implies.39

Though we conjecture that the rate in Theorem 2.3.7 does not match a lower bound, Theorem 2.3.7

is competitive with recent results. TOP-m SELECTION is recently studied by Coey and Hung (2022),

who show that under prior independence, if θ̂1:n are posterior means for some estimate Ĝ of the prior

G(0), then

E[TopRegret(m)
n ] = O

(
W 2

1 (G(0), Ĝ)
)

where W1(P,Q) is the Wasserstein-1 distance between P,Q. Theorem 2.3.7 attains a worse rate in

parametric settings, when the prior G(0) can be estimated at fast rates. However, in nonparametric

settings, G(0) is often only estimable at logarithmic rates (Dedecker and Michel, 2013), and thus the

rate in Theorem 2.3.7 is much more favorable in those settings. ■

38That said, if the ci’s are indeed adversarially chosen given knowledge of (Y1:n, σ1:n, P0), then Theorem 2.3.7 does
match a corresponding lower bound, derived by choosing ci = (θ̂i + θ⋆i )/2.

39Upper and lower bounds are derived in related but distinct settings by Audibert and Tsybakov (2007); Bonvini et al.
(2023); Liang (2000); some upper bounds, under possibly stronger assumptions, appear better than implied by Section B.1.2.

For UTILITY MAXIMIZATION BY SELECTION, suppose we impose a margin condition of the form

For all i, P (|θ∗i − ci| ≤ t) ≲ tξ ξ ∈ (0,∞), t ∈ (0, c0]

where if θ∗i has (uniform-in-i) bounded density around ci, then ξ can be taken to be 1. Proposition 2 in Bonvini et al. (2023)
then yields the sharper result that

UMRegretn ≲ξ
1

n

n∑
i=1

E[(θ̂i − θi)2] ≤

(
E

[
1

n

n∑
i=1

(θ̂i − θi)2
]) 1

2
+ 1

2
ξ

2+ξ

.

Further applications of Audibert and Tsybakov (2007) and Bonvini et al. (2023) to the Gaussian sequence setting remain
open.
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2.3.3 Robustness to the location-scale assumption (2.7)

We prove our regret upper and lower bounds imposing the location-scale model (2.7). This is an

optimistic assessment of the performance of CLOSE-NPMLE. While (2.7) nests prior independence, it

may still be misspecified. We now consider the worst-case behavior of CLOSE-NPMLE without the

location-scale assumption. Since without the location-scale assumption, CLOSE-NPMLE can no longer

hope to emulate the oracle Bayes decisions, we focus on worst-case Bayes risk here, instead of on

regret.

We will do so by considering an idealized version of the procedure. So long as θi | σi has two

moments, η0(·) = (m0(·), s0(·)) are well-defined as conditional moments of θi | σi without imposing

the location-scale assumption. We will assume that m0, s0 are known. Without the location-scale

model, G0 is ill-defined, but we will assume that we obtain some pseudo-true value G∗
0 that has

zero mean and unit variance. This is a reasonable condition to impose, since every conditional prior

distribution τi | σi obeys this moment constraint.40 Thus, for estimating τi =
θi−m0(σi)
s0(σi)

, whose true

prior is τi | σi ∼ Gi, this idealized procedure uses some misspecified prior G∗
0 ̸= Gi, which does have

the correct first two moments.

Using results we develop in a related note (Chen, 2023), we show that this idealized procedure has

maximum risk within a constant factor of the minimax risk, uniformly over η0. The minimax risk here

is defined with respect to a game where the analyst knows m0, s0 and an adversary chooses the shape

of the distribution τi | σi for every i.

Theorem 2.3.10. Under (2.4) but not (2.7), assume the conditional distribution θi | σi has mean

m0(σi) and variance s20(σi). Denote the set of distributions of θ1:n | σ1:n which obey these restrictions

as P(m0, s0). Let θ̂i,G∗
0,η0

denote the posterior mean estimates with some prior P ∗ under the location-

scale model P ∗ (θi ≤ t | σi) = G∗
0

(
t−m0(σi)
s0(σi)

)
, for some fixed G∗

0 with zero mean and unit variance.

Let ρ̄ = maxi s
2
0(σi)/σ

2
i <∞ be the maximal conditional signal-to-noise ratio and assume that it is

40We do not know if the maximizer G of the population analogue to (2.12) respects the moment constraints. In any
case, imposing these moment constraints computationally in NPMLE is feasible, as they are simply linear constraints over
the optimizing variables. Projecting the estimated Ĝn to these moment constraints makes little difference in our empirical
exercise (Section B.2.2).
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bounded. Then, for some Cρ̄ <∞ that solely depends on ρ̄,

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i,G∗
0,η0
− θi)2

]
≤ Cρ̄ · inf

θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
. (2.24)

where the infimum on the right-hand side is over all (possibly randomized) estimators of θi given

(Yi, σi)
n
i=1 and η0(·).

Theorem 2.3.10 shows that the worst-case behavior of an idealized version of CLOSE-NPMLE

must come within a factor of the minimax risk and hence is not arbitrarily unreasonable, even under

misspecification. We caution that (2.24) is a fairly weak guarantee, in that the decision rule that

simply outputs the prior conditional mean (δi = θ̂i,δ0,η0 = m0(σi)) also satisfies it. Nevertheless,

even so, (2.24) does not hold for the idealized version of INDEPENDENT-GAUSS, plugging in known

unconditional moments m0 = 1
n

∑n
i=1m0(σi) and s20 = 1

n

∑n
i=1(m0(σi) − m0)

2 + s20(σi).
41 To

provide additional reassurance for CLOSE-NPMLE under misspecification, Section B.1.7 discusses

an interpretation of CLOSE-NPMLE under misspecification of (2.7), and the validation procedure

developed in Section 2.4.3 provides unbiased evaluation without relying on the location-scale model.

2.4 Practical considerations

2.4.1 A detailed recipe

We now describe the implementation of CLOSE-NPMLE in more detail, following our previous outline

in CLOSE–STEP 1 to CLOSE–STEP 3 .

The first step CLOSE–STEP 1 estimates the conditional moments η0 = (m0, s0) nonparametri-

cally. Since the two conditional moments can be written as conditional expectations

m0(σ) = E[θ | σ] = E[Y | σ]

s20(σ) = Var(θ | σ) = E[(Y −m0(σ))
2 | σ]− σ2, (2.25)

we can estimate them accordingly with off-the-shelf methods (e.g., local polynomial kernel smoothing

41To wit, take s0(σi) ≈ 0. Then, the minimax risk as a function of (s0(·),m0(·)) is approximately zero, but m0(·) can
be chosen such that the risk of INDEPENDENT-GAUSS is bounded away from zero.
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methods implemented by Calonico et al., 2019). Specifically, estimating m0 with m̂ is directly a non-

parametric regression of Yi on σi.42 Estimating s20(·) can be operationalized by first nonparametrically

regressing (Yi − m̂(σi))
2 on σi, and then subtracting off σ2i . This is a plug-in estimator for s20, as it

replaces quantities in (2.25) with their empirical counterparts.43

A wrinkle is that the plug-in estimate ŝ may be negative.44 Truncating ŝ at zero results in

observations whose estimated prior variances ŝ2(σi) = 0. These observations also have implied

ν̂i =∞. For these observations, an empirical Bayesian taking ŝ2(σi) = 0 at face value has degenerate

priors at m̂(σi). Since observations with νi = ∞ do not contribute to the likelihood objective for

NPMLE, excluding them from the NPMLE computation does not alter the estimated Ĝn. Thus, we can

continue to use (m̂, ŝ2, Ĝn) as the estimated posterior—an observation with ŝ2(σi) = 0 would have

a point mass at m̂(σi) as its estimated posterior. In our experience, this simple approach does not

appear to affect performance. Nevertheless, in Section B.7, we propose a heuristic but data-driven

truncation rule, borrowing from a statistics literature on estimating non-centrality parameters for

non-central χ2 distributions (Kubokawa et al., 1993). Section B.7 also discusses tuning parameter

selection for estimating (m0, s0) and verifies that our local linear regression estimators satisfy the

regularity conditions in Section 2.3.

Next, in the second step CLOSE–STEP 2 , we form the transformed estimates Ẑi =
Yi−m̂(σi)
ŝ(σi)

and the transformed standard errors ν̂i = σi/ŝ(σi). We then estimate the NPMLE on the data

(Ẑi, ν̂i) by maximizing (2.12). In practice, the infinite-dimensional optimization problem (2.12)

is approximated with a finite-dimensional one by discretizing distributions on a grid. To be pre-

cise, let mini Ẑi = τ(1) ≤ · · · ≤ τ(J) = maxi Ẑi be a pre-specified grid of points, not necessarily

equally spaced, and denote it by τ .45 The feasible version of (2.12) maximizes the concave program

42We take log(σi) in our empirical implementation since the distribution of σi tends to be right-skewed, and thus we
suspect regressing on log(σi) has a better fit.

43Since (2.25) can be written in different forms, there are other reasonable plug-in estimators for s0. We investigate one
such alternative estimator in Section B.2.2 and find very similar performance in our empirical exercise.

44The negative estimated variance phenomenon similarly may occur with estimating the prior variance with
INDEPENDENT-GAUSS and with conditional variance estimation in Armstrong et al. (2022). This is in part caused by estima-
tion noise in Var(Yi | σi). However, there is some evidence that observations with large estimated σi’s are underdispersed
for the measures of economic mobility in the Opportunity Atlas (see Section B.2.1.)

45Since the gridding is a computational approximation to the infinite dimensional optimization problem, the sole downside
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π⋆ ≡ maxπ∈RJ≥0,π
′1=1

∑n
i=1 log

(∑J
j=1 πjφ

(
Ẑi−τ(j)
ν̂i

))
. The estimated NPMLE Ĝn is a discrete

distribution with support points τ(j) and corresponding masses π⋆j .

Finally, given the estimate Ĝn = (τ , π⋆), we can compute empirical Bayes decision rules and

implement CLOSE–STEP 3 by minimizing posterior expected loss. Since Ĝn is a discrete distribution,

the posterior for τi is given by the probability mass function

PĜn(τi = τ(j) | Ẑi = z, ν̂i = ν) ∝ π⋆j exp
(
− 1

2ν2
(z − τ(j))2

)
,

normalized so that the probabilities sum to 1. This probability mass function can be plugged into (2.6)

to compute the empirical Bayes decision rule for any loss function L.46

2.4.2 When does relaxing prior independence matter?

When prior independence holds, CLOSE-NPMLE is the same as INDEPENDENT-NPMLE, up to the

estimation of the constant conditional moments (m0(·), s0(·)). Since CLOSE-NPMLE has to estimate

the conditional moments, we expect it to underperform INDEPENDENT-NPMLE, though not by much in

large samples.

When prior independence does not hold, but when the conditional location-scale model (2.7)

approximately holds, we expect CLOSE to outperform methods that assume prior independence.

Qualitatively speaking, we expect the improvement of CLOSE-methods to be large when the conditional

expectation accounts for large portions of the unconditional signal variance Var(θi). Since we can

decompose Var(θi) = E[s20(σi)] + Var(m0(σi)), we expect the improvement of CLOSE-methods to

be large when the variance of the conditional expectation Var(m0(σi)) is large compared to E[s20(σi)].

Intuitively, this is the case when σi is highly predictive of θi. Whether this is the case can be easily

checked by plotting Yi against σi, as in Figure 2.1, and inspecting the estimated conditional moments.

of a finer grid is computational burden (cf. bias-variance tradeoffs in typical tuning parameter selection problems). Ideally,
adjacent grid points should have a sufficiently small and economically insignificant gap between them. Since the true
prior G0 for τi have zero mean and unit variance, we find that a fine grid within [−6, 6] (e.g., 400 equally spaced grid
points), with a coarse grid on [mini Ẑi,maxi Ẑi] \ [−6, 6] (e.g., 100 equally spaced grid points), performs well. Also see
recommendations in Koenker and Gu (2017) and Koenker and Mizera (2014).

46In the leading use-case, the posterior means for θi are simply m̂(σi) + ŝ(σi)EĜn,ν̂i
[τi | Ẑi, ν̂i]. In practice,

REBayes::GLmix (Koenker and Gu, 2017) in R implements estimation of the NPMLE and computation of the posterior
means EĜn,ν̂i

[τi | Ẑi, ν̂i].
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Finally, when the conditional distributions θi | σi are non-Gaussian, and in particular when they are

discrete, skewed, or thick-tailed, we expect CLOSE-NPMLE to additionally outperform INDEPENDENT-

GAUSS due to not assuming Normality of θi. When the conditional priors are Gaussian, estimating

it via the NPMLE pays a modest statistical price. Admittedly, it is often difficult to diagnose whether

the underlying conditional distributions θi | σi have these properties, since we only observe (Yi, σi).

Likewise, so far the discussion in this subsection is heuristic. To be more certain of the extent of

improvement of CLOSE-NPMLE over other methods, it is helpful to have out-of-sample validation. The

next subsection proposes a minor extension of Oliveira et al. (2021), which allows for an unbiased

estimate of loss and serves as a validation procedure.

2.4.3 A formal validation procedure via coupled bootstrap

Consider (Yi, σi) where Yi | σi, θi ∼ N (θi, σ
2
i ). For some ω > 0 and an independent Gaussian noise

Wi ∼ N (0, 1), consider adding to Yi and subtracting from Yi some scaled version of Wi:

Y
(1)
i = Yi +

√
ωσiWi Y

(2)
i = Yi −

1√
ω
σiWi.

Oliveira et al. (2021) call (Y (1)
i , Y

(2)
i ) the coupled bootstrap draws. Observe that the two draws are

conditionally independent:Y (1)
i

Y
(2)
i

 | θi, σ2i ∼ N

θi
θi

 ,
(1 + ω)σ2i 0

0 (1 + ω−1)σ2i


 . (2.26)

The conditional independence allows us to use Y (2)
i as an out-of-sample validation for decision rules

computed based on Y (1)
i . We denote their variances by σ2i,(1) and σ2i,(2).

It is helpful to think of Y (1)
i as training data and Y (2)

i as testing data. In fact, the coupled bootstrap

precisely emulates sample-splitting on the micro-data. To see that, suppose Yi = 1
ni

∑n
j=1 Yij

is a sample mean of i.i.d. micro-data {Yij : j = 1, . . . , ni}. Suppose we split the micro-data

{Yij : j = 1, . . . , ni} into a training set and a testing set, with proportions 1
ω+1 and ω

ω+1 , respec-

tively. Let Y (1)
i and Y (2)

i be the training and testing set sample means, respectively. Then the central
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limit theorem implies that, approximately,

Y
(1)
i | θi, σ2i ∼ N

(
θi, (1 + ω)σ2i

)
Y

(2)
i | θi, σ2i ∼ N

(
θi, (1 + ω−1)σ2i

)
(2.27)

independently. Note that the two representations (2.26) and (2.27) are equivalent, and hence coupled

bootstrap emulates sample-splitting. For instance, coupled bootstrap with a value of ω = 1/9 is

statistically equivalent to splitting the micro-data with a 90-10 train-test split.

Just as we can perform out-of-sample validation with sample-splitting on the micro-data, we

can also do so with the coupled bootstrap emulation of sample-splitting. The following proposition

formalizes this and states unbiased estimators for the loss of these decision rules, as well as their

accompanying standard errors.47

Table 2.1: Unbiased estimators for loss of decision rules and associated conditional variance
expressions (Theorem 2.4.1)

Problem Unbiased estimator of loss, T
(
Y

(2)
1:n , δ

)
Var

(
T
(
Y

(2)
1:n , δ

)
| F
)

Decision Problem 1 1
n

∑n
i=1

(
Y

(2)
i − δi(Y (1)

1:n )
)2
− σ2

i,(2)
1
n2

∑n
i=1 Var

(
(Y

(2)
i − δi(Y (1)

1:n ))
2 | F

)
Decision Problem 2 − 1

n

∑n
i=1 δi(Y

(1)
1:n )(Y

(2)
i − ci) 1

n2

∑n
i=1 δi(Y

(1)
1:n )σ

2
i,(2)

Decision Problem 3 − 1
m

∑n
i=1 δi(Y

(1)
1:n )Y

(2)
i

1
m2

∑n
i=1 δi(Y

(1)
1:n )σ

2
i,(2)

Proposition 2.4.1. Suppose (Yi, σi) obey the Gaussian heteroskedastic location model, assumed to

be independent across i (2.4). Fix some ω > 0 and let Y (1)
1:n , Y

(2)
1:n be the coupled bootstrap draws.

For some decision problem, let δ(Y (1)
1:n ) be some decision rule using only data

(
Y

(1)
i , σ2i,(1)

)n
i=1

. Let

F =
(
θ1:n, Y

(1)
1:n , σ1:n,(1), σ1:n,(2)

)
, for Decision Problems 1 to 3, the estimators T (Y (2)

1:n , δ) displayed

in Table 2.1 are unbiased for the corresponding loss:

E
[
T (Y

(2)
1:n , δ(Y

(1)
1:n )) | F

]
= L

(
δ(Y

(1)
1:n ), θ1:n

)
.

Moreover, their conditional variances are equal to those expressions displayed in the third column of

47Oliveira et al. (2021) state the unbiased estimation result for the mean-squared error estimation problem. They develop
the result further by connecting the coupled bootstrap estimator to Stein’s unbiased risk estimate. Our analogous calculation
for other loss functions and for the standard errors is a minor extension of their results. Theorem 2.4.1 can also be easily
generalized to other loss functions that admit unbiased estimators (Effectively, the loss is a function of a Gaussian location
θi. For unbiased estimation of functions of Gaussian parameters, see Table A1 in Voinov and Nikulin, 2012).
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Table 2.1.

Theorem 2.4.1 allows for an out-of-sample evaluation of decision rules, as well as uncertainty

quantification around the estimate of loss, solely imposing the heteroskedastic Gaussian model. This is

a useful property in practice for comparing different empirical Bayes methods. The alternative is to

take some estimated prior—say the one learned by CLOSE-NPMLE—as the true prior, and evaluate

performance of competing methods. Doing so likely tips the scale in favor of a particular method, and

we advocate for the coupled bootstrap instead.

2.5 Empirical illustration

How does CLOSE-NPMLE perform in the field? We now consider two empirical exercises related to the

Opportunity Atlas (Chetty et al., 2020) and Creating Moves to Opportunity (Bergman et al., 2023).

We first summarize these papers.

2.5.1 The Opportunity Atlas and Creating Moves to Opportunity

Chetty et al. (2020) and Bergman et al. (2023) are motivated by a growing literature in neighborhood

effects on upward mobility. There is a large body of quasiexperimental evidence that the neighborhood

a child grows up in has substantial causal effects on upward mobility (Chetty and Hendren, 2018; Chetty

et al., 2016; Laliberté, 2021; Chyn and Katz, 2021). Consequently, social programs that encourage

low-income families to move to better neighborhoods can potentially benefit upward mobility.

Such programs hinge on two economic questions and one econometric question. First, how do we

measure neighborhood mobility? Second, are low-income families currently living in low-opportunity

neighborhoods because they prefer some unobserved quality of these neighborhoods, or is it due to

certain economic and informational barriers? Third, econometrically, given noisy measures of mobility,

how do we identify high-mobility neighborhoods?

Motivated by the first question, Chetty et al. (2020) provide Census tract-level estimates of poor

children’s outcomes in adulthood and argue that these observational measures of mobility predict

neighborhoods’ causal effects. Motivated by the second question, Bergman et al. (2023) show that
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financial assistance and informational support do induce low-income families to move to neighborhoods

that researchers recommend, indicating that these families indeed face barriers to moving to opportunity.

The third question is naturally answered by empirical Bayes methods.

Specifically, using longitudinal Census micro-data, Chetty et al. (2020) estimate tract-level chil-

dren’s outcomes in adulthood and publish the estimates in a collection of datasets called the Opportunity

Atlas. Each dataset contains estimates and standard errors for some particular definition of the eco-

nomic parameter of interest, at the Census tract level. Taking these estimates from the Opportunity

Atlas, Bergman et al. (2023) conducted a program in Seattle called Creating Moves to Opportunity.

They provided assistance to treated low-income individuals48 to move to “Opportunity Areas”—Census

tracts with empirical Bayes posterior means in the top third.49 We view Bergman et al.’s (2023) objec-

tives as TOP-m SELECTION (Decision Problem 3), for m equal to one third of the number of tracts in

King County, Washington (Seattle).

The Opportunity Atlas also includes tract-level covariates, a complication that we have so far

abstracted away from. In the ensuing empirical exercises—as well as in Bergman et al. (2023)—the

estimates and parameters are residualized against the covariates as a preprocessing step. We now let

Ỹi denote the raw Opportunity Atlas estimates for a pre-residualized parameter ϑi and let (Yi, θi) be

their residualized counterparts against a vector of tract-level covariates Xi, with regression coefficient

β.50 We can apply the empirical Bayes procedures in this paper to (Yi, σ
2
i ) and obtain an estimated

posterior for θi. This estimated posterior for the residualized parameter θi then implies an estimated

posterior for the original parameter ϑi = θi +X ′
iβ, by adding back the fitted values X ′

iβ (Fay and

Herriot, 1979). When there are no covariates, ϑi = θi and Yi = Ỹi.

We consider several measures of economic mobility ϑi. For our purposes, these definitions of

48They are families with a child below age 15 who are issued Section 8 vouchers between April 2018 and April 2019,
with median household income of $19,000. About half of the sampled households are Black and about a quarter are white
(Table 1, Bergman et al., 2023).

49There are also adjustments to make the selected tracts geographically contiguous. See Bergman et al. (2023) for details.

50Precisely speaking, let Xi be a vector of tract-level covariates. Let Ỹi be the raw Opportunity Atlas estimates of a
parameter ϑi, with accompanying standard errors σi. Let β be some vector of coefficients, typically estimated by weighted
least-squares of Yi on Xi. Let Yi = Ỹi−X ′

iβ and θi = ϑi−X ′
iβ be the residuals. We assume that the tract-level covariates

do not predict the estimation noise in Ỹi: i.e., Xi y Ỹi | θi, σ2
i . Since β is precisely estimated, we ignore its estimation

noise. Then, the residualized objects (Yi, θi) obey the Gaussian location model Yi | θi, σi ∼ N (θi, σ
2
i ). See additional

discussion on covariates in Section B.1.6. Figure B.6 contains empirical results without residualizing against covariates.
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ϑi take the following form: ϑi is the population mean of some outcome for individuals of some

demographic subgroup growing up in tract i, whose parents are at the 25th income percentile. We will

consider three types of outcomes:

1. Percentile rank of adult income

2. An indicator for whether the individual has incomes in the top 20 percentiles

3. An indicator for whether the individual is incarcerated

for the following demographic subgroups:51 1. all individuals (POOLED), 2. white individuals, 3. white

men, 4. Black individuals, and 5. Black men. As shorthands, we refer to the three types of outcomes

as MEAN RANK, TOP-20 PROBABILITY, and INCARCERATION, respectively. The outcome we use in

Section 2.2 corresponds to TOP-20 PROBABILITY for Black individuals, while Bergman et al. (2023)

consider MEAN RANK POOLED.52

The remainder of this section compares several empirical Bayes approaches on two exercises.

The first exercise is a calibrated simulation. In the simulation, we compare MSE performance of

various methods to the that of the oracle posterior. We find that CLOSE-NPMLE has near-oracle

performance in terms of MSE, and substantially outperforms INDEPENDENT-GAUSS. The second

exercise is an empirical application to a scale-up of the exercise in Bergman et al. (2023). It uses

the coupled bootstrap to evaluate whether CLOSE-NPMLE selects more economically mobile tracts

than INDEPENDENT-GAUSS. We find that it does, and the magnitude of improvement is substantial

compared to two benchmarks, which we refer to as the value of basic empirical Bayes methods and

the value of data.

51We focus on men as a subgroup since incarceration rates for women are extremely low.

52In each Opportunity Atlas dataset, the estimates Ỹi, σi are computed from the fitted value of a semiparametric regression
procedure on the Census micro-data. The regression procedure implicitly pools observation with similar parent income ranks
and is not fully nonparametric. As a result of this extrapolation, the estimates Yi need not respect support conditions for
Bernoulli means. For instance, some estimates for TOP-20 PROBABILITY and for INCARCERATION are negative. Similarly,
the standard errors for estimates for binarized ϑi are typically not precisely of the form

√
ϑi(1− ϑi)/ni. We refer interested

readers to Chetty et al. (2020) for details of their regression specification.
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2.5.2 Calibrated simulation

Our first empirical exercise is a calibrated simulation. To devise a data-generating process that does

not impose the location-scale assumption, we partition σ into vingtiles, fit a location-scale model

within each vingtile, and draw from the estimated model (see Section B.2.3 for details). Since the

location-scale model is only imposed within each vingtile, this data-generating process does not

impose (2.7) on the entire dataset. Figure 2.3 shows an overlay of real and simulated data for one of

the variables we consider. Visually, at least, the simulated data resemble the real estimates.
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Opportunity Atlas estimates for 
 P(Income ranks in top 20 | Black, Parent at 25th Percentile)

All tracts in the largest 20 Commuting Zones

Real estimates
Simulated estimates (NPMLE by vingtiles)

Figure 2.3: A draw of real vs. simulated data for estimates of TOP-20 PROBABILITY for
Black individuals

On the simulated data, we then put various empirical Bayes strategies to test. We consider the

feasible procedures NAIVE, INDEPENDENT-GAUSS, INDEPENDENT-NPMLE, CLOSE-GAUSS, and

CLOSE-NPMLE, where NAIVE sets θ̂i = Yi.53 Because we have the ground truth data-generating

process, we additionally have two infeasible benchmarks:

53We note that none of the feasible procedures (NAIVE, INDEPENDENT-GAUSS, INDEPENDENT-NPMLE, CLOSE-GAUSS,
and CLOSE-NPMLE) have access to the true projection coefficient β of Ỹi onto Xi, which they must estimate by residualizing
against covariates on the data. Additionally, we weight the estimation of m0 and s0 in INDEPENDENT-GAUSS by the
precision 1/σ2

i , following Bergman et al. (2023).
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• ORACLE: A Bayesian who has access to the distribution of (θi, σi) and uses the true posterior

means for θi.54

• ORACLE-GAUSS: A Bayesian who knows (m0, s0) and uses (2.13).

For this exercise, we focus on estimating the parameters ϑi in MSE (Decision Problem 1).
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Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Column median

-4 25 49 50 85 88 91 91 91

55 60 66 66 87 90 94 95 95

30 61 87 87 82 88 93 94 93

63 69 74 75 89 92 93 94 95

32 54 86 87 83 86 93 93 94

-160 9 67 67 57 81 91 93 93

31 51 65 65 75 80 94 97 95

-6 24 93 95 46 53 95 97 97

23 46 71 72 70 76 90 94 94

-8 21 94 96 37 45 95 97 97

-5 32 68 68 51 59 88 95 91

61 72 90 96 74 81 91 93 97

42 51 94 95 48 52 96 98 97

43 53 92 96 60 64 93 95 98

25 42 90 90 42 49 96 99 96

30 51 86 87 70 80 93 95 95

What % of Naive-to-Oracle MSE gain do we capture?

Notes. Each column is an empirical Bayes strategy that we consider, and each row is a different
definition of ϑi. The table shows relative performance, defined as the squared error improvement over
NAIVE, normalized as a percentage of the improvement of ORACLE over NAIVE. That is, if we think
of going to ORACLE from NAIVE as the total extent of risk gains via empirical Bayes methods, this
relative performance denotes how much of those gains each method captures. The last row shows the
column median. Since we rely on Monte Carlo approximations of ORACLE, the resulting Monte Carlo
error causes CLOSE-NPMLE to outperform ORACLE in the top right. Results are averaged over 1,000
Monte Carlo draws.
For absolute, un-normalized performance of INDEPENDENT-GAUSS, INDEPENDENT-NPMLE, CLOSE-
NPMLE, and ORACLE, see Figure B.10.

Figure 2.4: Table of relative squared error Bayes risk for various empirical Bayes approaches

54These posterior means are computed by approximating the true prior with the empirical distribution of a large sample
drawn from the true prior.
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Figure 2.4 plots the main results from this calibrated simulation. For each method and each target

variable, we display a relative measure of gain in terms of mean-squared error. For each method, we

calculate its squared error gain over NAIVE, as a percentage of the squared error gain of ORACLE over

NAIVE. If we think of the ORACLE–NAIVE difference as the total size of the “statistical pie,” then

Figure 2.4 shows how much of this pie each method captures. A value of 70 in Figure 2.4, for instance,

indicates that a particular method captures 70% of the possible extent of risk gains for a particular

parameter definition.

The first four columns show the relative mean-squared error performance without residualizing

against covariates, applying empirical Bayes methods directly on (Ỹi, σi). We see that methods which

assume prior independence—INDEPENDENT-GAUSS and INDEPENDENT-NPMLE—perform worse

than methods based on CLOSE.55 Across the 15 variables, the median proportion of possible gains

captured by INDEPENDENT-GAUSS is only 30%. This value is 51% for INDEPENDENT-NPMLE, and

87% for CLOSE-NPMLE. Individually for each variable, among the first four columns, CLOSE-NPMLE

uniformly dominates all three other methods. This is because the standard error σi contains much

of the predictive power of the covariates, and using that information can be very helpful when the

researcher does not have rich covariate information.

The next five columns show performance when the methods do have access to covariate informa-

tion. Compared to their no-covariates counterparts, the methods that assume prior independence do

substantially better, since the covariates absorb some dependence between ϑi and σi. For MEAN RANK,

after covariate residualization, there appears to be little dependence between θi and σi. INDEPENDENT-

NPMLE and CLOSE-NPMLE perform similarly, capturing almost all of the available gains. Both methods

slightly outperform the Gaussian methods for MEAN RANK.56

55It may be surprising that INDEPENDENT-GAUSS can perform worse than NAIVE on MSE, since Gaussian empirical
Bayes typically has a connection to the James–Stein estimator, which dominates the MLE. We note that, as in Bergman
et al. (2023), when we estimate the prior mean and prior variance, we weight the data with precision weights proportional to
1/σ2

i . When the independence between θ and σ holds, these precision weights typically improve efficiency. However, the
weighting does break the connection between Gaussian empirical Bayes and James–Stein, and the resulting posterior mean
does not always dominate the MLE (i.e., NAIVE). To take an extreme example, if a particular observation has σi ≈ 0, then
that observation is highly influential for the prior mean estimate. If E[θi | σi] is very different for that observation than the
other observations, then the estimated prior mean is a bad target to shrink towards.

56Section B.2.4 contains an alternative data-generating process in which the true prior is Weibull, which has thicker tails
and higher skewness. Under such a scenario, NPMLE-based methods substantially outperform methods assuming Gaussian
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For the other two outcome variables, TOP-20 PROBABILITY and INCARCERATION, the dependence

between θi and σi is stronger, and CLOSE-based methods display substantial improvements over

INDEPENDENT-GAUSS and INDEPENDENT-NPMLE. CLOSE-NPMLE achieves near-oracle performance

across the different definitions of θi (capturing a median of 95% of the ORACLE-NAIVE gap), and

uniformly dominates all other feasible methods.

So far, we have tested the methods in a synthetic environment set up to imitate the real data.

Next, we turn to an empirical application that uses the coupled bootstrap (Section 2.4.3) estimator of

performance.

2.5.3 Validation exercise via coupled bootstrap

Our second empirical exercise uses the coupled bootstrap described in Section 2.4.3 for the ranking

policy problem in Bergman et al. (2023). Throughout, we choose ω to emulate a 90-10 train-test split

on the micro-data.

Bergman et al. (2023) use empirical Bayes methods to select the top third Census tracts in Seattle,

based on economic mobility—which we view as a TOP-m SELECTION problem (Decision Problem 3).

Can CLOSE-NPMLE make better selections—can it select tracts with higher ϑi on average? Specifically,

we imagine scaling up Bergman et al. (2023)’s exercise and perform INDEPENDENT-GAUSS and

CLOSE-NPMLE for all Census tracts in the largest twenty Commuting Zones. We then select the top

third of tracts within each Commuting Zone, according to empirical Bayesian posterior means for

ϑi. Additionally, to faithfully mimic Bergman et al. (2023), here we perform all empirical Bayes

procedures within Commuting Zone. That is, for each of the twenty Commuting Zones that we consider,

we execute all empirical Bayes methods—including the residualization by covariates—with only Ỹi, σi

of tracts within the Commuting Zone.57

Figure 2.5(a) shows the estimated performance gap between a given empirical Bayes method

priors.

57Section B.2.6 contains results where we perform empirical Bayes pooling over all Commuting Zones and select
the top third within each Communting Zone. We obtain very similar results. Section B.2.6 also contains results without
residualizing against covariates, and INDEPENDENT-GAUSS performs very poorly in that setting. Section B.2.5 contains
results on estimating ϑi in MSE (Decision Problem 1) in this context.
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(a) Estimated performance difference relative to NAIVE

2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.6

38.738.2

49.649.6

35.534.7

18.618.5

23.523.2

10.17.1

22.521.5

9.36.0

4.44.0

3.42.4

7.95.8

6.04.0

15.412.1

CLOSE-NPMLE
Independent Gaussian
Naive (zero)

(b) Estimated performance difference relative to picking uniformly at random

0 1 2 3 4 5 6 7 8
Performance difference relative to picking uniformly at random (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.6

38.738.2

49.649.6

35.534.7

18.618.5

23.523.2

10.17.1

22.521.5

9.36.0

4.44.0

3.42.4

7.95.8

6.04.0

15.412.1

CLOSE-NPMLE
Independent Gaussian
Naive
[0,  SD( )]

Notes. These figures show the estimated performance of various decision rules over 1,000 draws of
coupled bootstrap. Empirical Bayes methods, including residualization with respect to the covariates,
are applied within each Commuting Zone. Performance is measured as the mean ϑi among selected
Census tracts. All decision rules select the top third of Census tracts within each Commuting Zone.
Figure (a) plots the estimated performance gap relative to NAIVE, where we annotate with the
estimated performance for CLOSE-NPMLE and INDEPENDENT-GAUSS. Figure (b) plots the estimated
performance gap relative to picking uniformly at random; we continue to annotate with the estimated
performance. The shaded regions in Figure (b) have lengths equal to the unconditional standard
deviation of the underlying parameter ϑ.

Figure 2.5: Performance of decision rules in top-m selection exercise

and NAIVE as the x-position of the dots. The estimated performance of each method,58 defined as

58By virtue of Theorem 2.4.1, these estimated performances are unbiased for the true (negative) Bayes risk. Despite being
averaged over 1,000 coupled bootstrap draws, these estimates are not free of sampling error, since, for one, the stochastic
components in Yi are not redrawn.
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the average ϑi among those selected (2.15), is shown in the annotated figures. According to these

estimates, CLOSE-NPMLE generally improves over INDEPENDENT-GAUSS.59

For the MEAN RANK variables, using CLOSE-NPMLE generates substantial gains for mobility

measures for Black individuals (0.8 percentile ranks for Black men and 0.5 percentile ranks for Black

individuals). To put these gains in dollar terms, the Housing Choice Voucher holders in Bergman

et al. (2023) have incomes around $19,000, and for these individuals, an incremental percentile rank

amounts to about $1,000. Thus, the estimated gain in terms of mean income rank is roughly $500–800.

For the other two outcomes, TOP-20 PROBABILITY and INCARCERATION,60 the gains are even more

sizable, especially for Black individuals. These gains are as high as 2–3 percentage points on average

in terms of these two variables.

Bergman et al. (2023) select tracts based on MEAN RANK POOLED. For this measure, there

is little additional gain from using CLOSE-NPMLE, at least when residualized against sufficiently

rich covariates. Nevertheless, since about half of the trial participants are Black in Bergman et al.’s

(2023) setting, one might consider providing more personalized recommendations by targeting mea-

sures of economic mobility for finer demographic subgroups. If we select tracts based on these

demographic-specific measures of economic mobility, CLOSE-NPMLE then provides economically

significant improvements.61

We can think of the performance gap between INDEPENDENT-GAUSS and NAIVE as the value

of basic empirical Bayes. If practitioners find using the standard empirical Bayes method to be a

worthwhile investment over screening on the raw estimates directly, perhaps they reveal that the value

of basic empirical Bayes is economically significant. Across the 15 measures, the improvement of

CLOSE-NPMLE over INDEPENDENT-GAUSS is on median 320% of the value of basic empirical Bayes,

where the median is attained by MEAN RANK for Black individuals. Thus, the additional gain of

CLOSE-NPMLE over INDEPENDENT-GAUSS is substantial compared to the value of basic empirical

59For MEAN RANK POOLED, CLOSE-NPMLE is worse by 0.012 percentile ranks, and CLOSE-NPMLE is worse by 0.058
percentile ranks for MEAN RANK for white males. In either case, the estimated disimprovement is small.

60For incarceration, we consider a policy objective of encouraging people to move out of high-incarceration areas.

61Section B.2.7 shows that screening with mobility measures for Black individuals outperforms screening mobility for
Black individuals with the POOLED estimate.
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Bayes. If the latter is economically significant, then it is similarly worthwhile to use CLOSE-NPMLE

instead.

For 3 of the 15 measures, including our running example, INDEPENDENT-GAUSS in fact under-

performs NAIVE, rendering the estimated value of basic empirical Bayes negative. As a result, we

consider a different normalization in Figure 2.5(b). Figure 2.5(b) plots the difference between a given

method’s performance and the estimated mean ϑi for a given measure. Analogous to the value of basic

empirical Bayes, we think of the difference between INDEPENDENT-GAUSS’s performance and the

estimated mean ϑi as the value of data, since choosing the tracts randomly in the absence of data has

expected performance equal to mean ϑi. If the mobility estimates are at all useful for decision-making,

the value of data must be economically significant.

Across the 15 measures considered, the gain of CLOSE-NPMLE is on median 25% of the value of

data. For six of the 15 measures, the gain of CLOSE-NPMLE exceeds the value of data. For MEAN

RANK for Black individuals, the incremental value of CLOSE-NPMLE over INDEPENDENT-GAUSS is

about 15% of the value of data, which is already sizable. These relative gains are more substantial

for the binarized outcome variables TOP-20 PROBABILITY and INCARCERATION. For our running

example (TOP-20 PROBABILITY for Black individuals), this incremental gain of CLOSE-NPMLE is

210% the value of data. That is, relative to choosing randomly, CLOSE-NPMLE delivers gains 3.1 times

that of INDEPENDENT-GAUSS.

2.6 Conclusion

This paper studies empirical Bayes methods in the heteroskedastic Gaussian location model. We argue

that prior independence—the assumption that the precision of estimates does not predict the true

parameter—is theoretically questionable and often empirically rejected. Empirical Bayes shrinkage

methods that rely on prior independence can generate worse posterior mean estimates, and screening

decisions based on these estimates can suffer as a result. They may even be worse than the selection

decisions made with the unshrunk estimates directly.

Instead of treating θi as independent from σi, we model its conditional distribution as a location-

scale family. This assumption leads naturally to a family of empirical Bayes strategies that we call
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CLOSE. We prove that CLOSE-NPMLE attains minimax-optimal rates in Bayes regret, extending

previous theoretical results. That is, it approximates infeasible oracle Bayes posterior means as

competently as statistically possible. Our main theoretical results are in terms of squared error, which

we further connect to ranking-type decision problems in Bergman et al. (2023). Additionally, we

show that an idealized version of CLOSE-NPMLE is robust, with finite worst-case Bayes risk. Lastly,

we introduce a simple validation procedure based on coupled bootstrap (Oliveira et al., 2021) and

highlight its utility for practitioners choosing among empirical Bayes shrinkage methods.

Simulation and validation exercises demonstrate that CLOSE-NPMLE generates sizable gains

relative to the standard parametric empirical Bayes shrinkage method. Across calibrated simulations,

CLOSE-NPMLE attains close-to-oracle mean-squared error performance. In a hypothetical, scaled-up

version of Bergman et al. (2023), across a wide range of economic mobility measures, CLOSE-NPMLE

consistently selects more mobile tracts than does the standard empirical Bayes method. The gains

in the average economic mobility among selected tracts, relative to the standard empirical Bayes

procedure, are often comparable to—or even multiples of—the value of basic empirical Bayes. These

gains are even comparable to the benefit of using standard empirical Bayes procedures over ignoring

the data.

We close by highlighting some future directions. In Section 2.5, we use kernel smoothing methods

to estimate the unknown conditional moments η0 = (m0, s0). These methods presume a given level of

smoothness and do not adapt to the true smoothness of η0. We can imagine replacing the conditional

moment estimation with adaptive methods (e.g., van der Vaart and van Zanten, 2009). With cross-

fitting, the regret result should similarly adapt to the ∥·∥∞ rate of the estimators. Additionally, for

the purpose of frequentist inference, the procedure of Armstrong et al. (2022) apply in our setting as

well and provide confidence sets for the vector of parameters θ1:n with average coverage guarantees.

For frequentist inference on the oracle posterior mean EP0 [θi | Yi, σi], we conjecture that a version of

Ignatiadis and Wager’s (2022) procedure—which so far only applies in the homoskedastic Gaussian

case—is valid under the location-scale model (2.7).
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Chapter 3

Logs with zeros? Some problems and

solutions1

1Jiafeng Chen and Jonathan Roth, “Logs with zeros? Some problems and solutions,” The Quarterly Journal of
Economics, forthcoming, online advanced article qjad054, by permission of Oxford University Press.
An earlier draft of this paper was titled “Log-like? Identified ATEs defined with zero-valued outcomes are (arbitrarily)
scale-dependent.” We thank Isaiah Andrews, Kirill Borusyak, Jonathan Cohn, Amy Finkelstein, Edward Glaeser, Nick
Hagerty, Peter Hull, Jetson Leder-Luis, Erzo Luttmer, Giovanni Mellace, John Mullahy, Edward Norton, David Ritzwoller,
Brad Ross, Pedro Sant’Anna, Jesse Shapiro, Neil Thakral, Casey Wichman, and seminar participants at BU, Georgetown,
Harvard/MIT, Southern Denmark University, Vanderbilt, Stanford, UC-Irvine, UCLA, UCSD, and the SEA annual conference
for helpful comments and suggestions. Bruno Lagomarsino provided superb research assistance.
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Abstract

When studying an outcome Y that is weakly-positive but can equal zero (e.g. earnings), researchers

frequently estimate an average treatment effect (ATE) for a “log-like” transformation that behaves

like log(Y ) for large Y but is defined at zero (e.g. log(1 + Y ), arcsinh(Y )). We argue that ATEs for

log-like transformations should not be interpreted as approximating percentage effects, since unlike

a percentage, they depend on the units of the outcome. In fact, we show that if the treatment affects

the extensive margin, one can obtain a treatment effect of any magnitude simply by re-scaling the

units of Y before taking the log-like transformation. This arbitrary unit-dependence arises because an

individual-level percentage effect is not well-defined for individuals whose outcome changes from zero

to non-zero when receiving treatment, and the units of the outcome implicitly determine how much

weight the ATE for a log-like transformation places on the extensive margin. We further establish a

trilemma: when the outcome can equal zero, there is no treatment effect parameter that is an average

of individual-level treatment effects, unit-invariant, and point-identified. We discuss several alternative

approaches that may be sensible in settings with an intensive and extensive margin, including (i)

expressing the ATE in levels as a percentage (e.g. using Poisson regression), (ii) explicitly calibrating

the value placed on the intensive and extensive margins, and (iii) estimating separate effects for the

two margins (e.g. using Lee bounds). We illustrate these approaches in three empirical applications.
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3.1 Introduction

When the outcome of interest Y is strictly positive, researchers often estimate an average treatment

effect (ATE) in logs of the form EP [log(Y (1)) − log(Y (0))], which has the appealing feature that

its units approximate percentage changes in the outcome.2 A practical challenge in many economic

settings, however, is that the outcome may sometimes equal zero, and thus the ATE in logs is not

well-defined. When this is the case, it is common for researchers to estimate ATEs for alternative

transformations of the outcome such as log(1 + Y ) or arcsinh(Y ) = log
(√

1 + Y 2 + Y
)

, which

behave similarly to log(Y ) for large values of Y but are well-defined at zero. The treatment effects for

these alternative transformations are typically interpreted like the ATE in logs, i.e. as (approximate)

average percentage effects. For example, among the 11 papers published in the American Economic

Review since 2018 that interpret a treatment effect for arcsinh(Y ), all but one interpret the result as a

percentage effect or elasticity.3

The main point of this paper is that identified ATEs that are well-defined with zero-valued outcomes

should not be interpreted as percentage effects, at least if one imposes the logical requirement that a

percentage effect does not depend on the baseline units in which the outcome is measured (e.g. dollars,

cents, or yuan).

Our first main result shows that if m(y) is a function that behaves like log(y) for large values

of y but is defined at zero, then the ATE for m(Y ) will be arbitrarily sensitive to the units of Y .

Specifically, we consider continuous, increasing functions m(·) that approximate log(y) for large

values of y in the sense that m(y)/ log(y)→ 1 as y →∞. The common log(1 + y) and arcsinh(y)

transformations satisfy this property. We show that if the treatment affects the extensive margin

(i.e. P (Y (1) = 0) ̸= P (Y (0) = 0)), then one can obtain any magnitude for the ATE for m(Y ) by

rescaling the outcome by some positive factor a. It is therefore inappropriate to interpret the ATE for

m(Y ) as a percentage effect, since a percentage is inherently a unit-invariant quantity, while the ATE

for m(Y ) depends arbitrarily on the units of Y .

2That is, log(Y (1)/Y (0)) ≈ Y (1)−Y (0)
Y (0)

when Y (1)/Y (0) ≈ 1.

3We found 17 papers overall using arcsinh(Y ) as an outcome variable, of which 11 interpret the units; see Table C.1.
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The intuition for this result is that a “percentage” treatment effect is not well-defined for an

individual for whom treatment increases their outcome from zero to a positive value. For example, in

our application to Carranza et al. (2022) in Section 3.5, the treatment induces more people to have

positive hours worked. The percentage change in hours is then not well-defined for individuals who

would work positive hours under the treatment condition but zero hours under the control condition.

Any average treatment effect that is well-defined with zero-valued outcomes must therefore implicitly

assign a value for a change along the extensive margin. For logarithm-like transformations m(·), the

importance of the extensive margin is determined implicitly by the units of Y . To see why this is

the case, consider an individual who works positive hours only if they are treated, so that Y (1) > 0

and Y (0) = 0. Their treatment effect for the transformed outcome m(Y ) is m(Y (1))−m(0), which

becomes larger if the units of Y are re-scaled by some a > 1, e.g. if we convert from weekly hours

worked to yearly hours worked. When the treatment has an extensive margin effect, the ATE for m(Y )

can thus be made large in magnitude by re-scaling Y by a large factor a. By contrast, if we re-scale

Y by a small factor a ≈ 0, such that the resulting outcomes are close to zero, then m(Y ) ≈ m(0),

and so the ATE for m(Y ) will be small. By varying the units of the outcome, we can thus obtain any

magnitude for the ATE for m(Y ).

Our theoretical results also imply that if we re-scale the units of the outcome by a finite factor

a > 0, the ATE for a log-like transformation m(Y ) will change by approximately log(a) times the

effect of the treatment on the extensive margin. This result implies that sensitivity analyses that explore

how the estimated ATE for m(Y ) changes with finite changes in the units of Y—or equivalently, how

the ATE for log(c+ Y ) changes with the constant c—are essentially indirectly measuring the size of

the treatment effect on the extensive margin.

We illustrate the practical importance of these results by systematically replicating recent papers

published in the American Economic Review that estimate treatment effects for arcsinh-transformed

outcomes. In line with our theoretical results, we find that treatment effect estimates using arcsinh(Y )

are sensitive to changes in the units of the outcome, particularly when the extensive margin effect is

large. In half of the papers that we replicated, multiplying the original outcome by a factor of 100 (e.g.

converting from dollars to cents) changes the estimated treatment effect by more than 100% of the
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original estimate. We obtain similar results using log(1 + Y ) instead of arcsinh(Y ).

What, then, are alternative options in settings with zero-valued outcomes? Our second main result

delineates the possibilities. We show that when there are zero-valued outcomes, there is no treatment

effect parameter that satisfies all three of the following properties:

(a) The parameter is an average of individual-level treatment effects, i.e. takes the form θg =

EP [g(Y (1), Y (0))], where g is increasing in Y (1).

(b) The parameter is invariant to re-scaling of the units of the outcome (i.e. g(y1, y0) = g(ay1, ay0)).

(c) The parameter is point-identified from the marginal distributions of the potential outcomes.

This “trilemma” implies that any target parameter that is well-defined with zero-valued outcomes must

necessarily jettison at least one of the three properties above. Of course, the choice of target parameter

should depend on the economic question of interest. Which of the three properties the researcher

prefers to forgo will thus generally depend on their context-specific motivation for using a log-like

transformation in the first place.

To that end, Section 3.4 highlights a menu of parameters that may be attractive depending on the

researcher’s core motivation. We first consider the case where the researcher is interested in obtaining

a causal parameter with an intuitive “percentage” interpretation. In this case, it may be natural to

consider a parameter outside of the class of individual-level averages of the form EP [g(Y (1), Y (0))].

One prominent option is θATE% = E[Y (1)−Y (0)]
E[Y (0)] , the ATE in levels as a percentage of the baseline

mean, which in many cases can be estimated via Poisson regression (Santos Silva and Tenreyro, 2006;

Wooldridge, 2010). The researcher might also consider alternative normalizations of the outcome that

lead to intuitive units, e.g. expressing the outcome in per-capita units or converting it to a rank with

respect to some reference distribution. Next, we suppose the researcher would like to capture concave

preferences over the outcome; for example, the researcher might consider income gains to be more

meaningful for individuals who are initially poor. In this case, it is natural to directly specify how

much the researcher values a change along the extensive margin relative to the intensive margin—e.g.,

that a change from 0 to 1 is worth an x percent change along the intensive margin. Finally, suppose

the researcher is interested in separately understanding the effects of the treatment along both the
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intensive and extensive margins. In this case, the researcher may target separate parameters for the

two margins—e.g., E[log(Y (1))− log(Y (0)) | Y (1) > 0, Y (0) > 0], the average effect in logs for

individuals with positive outcomes under both treatments, captures the intensive margin. Separate

effects for the two margins are not generally point-identified, but can be can be bounded using the

method in Lee (2009) or point-identified with additional assumptions (Zhang et al., 2008, 2009).

Section 3.5 provides a blueprint for estimating these alternative parameters in practice by applying

our recommended approaches to three recent empirical applications, including a randomized controlled

trial (RCT) (Carranza et al., 2022), a difference-in-differences (DiD) setting (Sequeira, 2016), and an

instrumental variables (IV) setting (Berkouwer and Dean, 2022).

Related work. The use of log-like transformations for dealing with zero-valued outcomes has a long

history. The use of the log(1 + Y ) transformation dates to at least Williams (1937), while Bartlett

(1947) considers both the log(1+Y ) and inverse hyperbolic sine transformations.4 More recent papers

by Burbidge et al. (1988) and Bellemare and Wichman (2020), among others, provide results for

arcsinh(Y ) that are frequently cited in economics papers using this transformation.5

Previous work has illustrated in simulations or selected empirical applications that results for

particular transformations such as log(1 + Y ) or arcsinh(Y ) may be sensitive to the units of the

outcome (Aihounton and Henningsen, 2021; de Brauw and Herskowitz, 2021). In concurrent work,

Mullahy and Norton (2023) show theoretically that the marginal effects from linear regressions using

log(1+Y ) or arcsinh(Y ) are sensitive to the scaling of the outcome, with the the limits of the marginal

effects approaching those of either a levels regression or a (normalized) linear probability model,

depending on whether the units are made small or large. We complement this work by proving that

scale-dependence is a necessary feature of any identified ATE that is well-defined with zero-valued

outcomes, and that the dependence on units is arbitrarily bad for transformations that approximate

log(Y ) for large values of Y . Thus, it is not possible to fix the issues with log(1 + Y ) or arcsinh(Y )

by choosing a “better” transformation or using a different estimator. We also complement previous

4Bartlett (1947) proposes using arcsinh(
√
Y ).

5MacKinnon and Magee (1990) propose transformations of the form arcsinh(yζ)/ζ, where ζ is estimated by assuming
arcsinh(yζ)/ζ is normally distributed conditional on covariates.
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empirical examples by providing a systematic analysis of the sensitivity to scaling for papers in the

American Economic Review using arcsinh(Y ).

Other work has considered the interpretation of regressions using arcsinh(Y ) or log(1 + Y )

from the perspective of structural equations models, as opposed to the potential outcomes model

considered here. This literature has reached diverging conclusions: For example, Bellemare and

Wichman (2020) conclude that coefficients from arcsinh(Y ) regressions have an interpretation as a

semi-elasticity, while Cohn et al. (2022) conclude that these estimators are inconsistent and advocate

for Poisson regression instead. Thakral and Tô (2023) show that the semi-elasticities implied by

OLS regressions using arcsinh(Y ) or log(1 + Y ) are sensitive to scale; they recommend instead the

use of power functions Y k, which they show are the only transformations (besides log) for which

the implied semi-elasticities for OLS regressions are scale-invariant. In Section C.3, we show that

these diverging conclusions stem from the fact that the structural equations considered in these papers

implicitly impose different restrictions on the potential outcomes—some of which are incompatible

with zero-valued outcomes—and consider different target causal parameters. This highlights the value

of a potential outcomes framework such as ours, which makes transparent what causal parameters are

identifiable and what properties they can have.

Finally, there is a long history in econometrics of explicitly modeling the intensive and extensive

margins in settings with zero-valued outcomes, such as Tobin (1958) and Heckman (1979). Broadly

speaking, these methods impose parametric structure on the joint distribution of the potential outcomes,

which allows one to separate out the intensive and extensive margin effects of a treatment (see

Section C.3 for technical details). Of course, the parametric restrictions underlying these approaches

may often be difficult to justify in practice, which perhaps has contributed to the growth in the use

of log-like transformations in place of approaches that explicitly model the extensive margin. Our

paper shows that the presence of an extensive margin should not simply be ignored by taking a log-like

transformation. It also clarifies what parameters can be learned in such cases without imposing

restrictions on the joint distribution of the potential outcomes.
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3.1.1 Setup and notation

Let D ∈ {0, 1} be a binary treatment and let Y ∈ [0,∞) be a weakly positively-valued outcome.6 We

assume that Y = DY (1)+(1−D)Y (0), where Y (1) and Y (0) are respectively the potential outcomes

under treatment and control. We suppose that in some (sub-)population of interest, (Y (1), Y (0)) ∼ P

for some (unknown) joint distribution P . We denote the marginal distribution of Y (d) under P by

PY (d) for d = 0, 1. We assume that neither PY (0) nor PY (1) is a degenerate distribution at zero.

3.2 Sensitivity to scaling for transformations that behave like log(Y )

We first consider average treatment effects of the form θ = EP [m(Y (1))−m(Y (0))] for an increasing

function m. We note that θ corresponds to the ATE among the (sub-)population indexed by P ; if P

refers to the sub-population of compliers for an instrument, for instance, then θ is the local average

treatment effect (LATE), rather than the ATE in the full population. We are interested in how θ changes

if we change the units of Y by a factor of a. That is, how does

θ(a) = EP [m(aY (1))−m(aY (0))]

depend on a? Setting a = 100, for example, might correspond with a change in units between dollars

and cents. Of course, if Y is strictly positive and m(y) = log(y), then θ(a) is the ATE in logs and

does not depend on the value of a.

We consider “log-like” functionsm(y) that are well-defined at zero but behave like log(y) for large

values of y, in the sense that m(y)/ log(y)→ 1 as y →∞. This property is satisfied by log(1 + y)

and arcsinh(y), for example. Our first main result shows that if the treatment affects the extensive

margin, then |θ(a)| can be made to take any desired value through the appropriate choice of a.

Proposition 3.2.1. Suppose that:

1. (The function m is continuous and increasing) m : [0,∞) → R is a continuous, weakly

increasing function.

6The arcsinh transformation is sometimes used in settings where Y can be negative. We impose that Y ∈ [0,∞), and
thus do not consider this case. See Section C.2.2 for extensions of our results to settings with continuous treatments.
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2. (The function m behaves like log for large values) m(y)/ log(y)→ 1 as y →∞.

3. (Treatment affects the extensive margin) P (Y (1) = 0) ̸= P (Y (0) = 0).

4. (Finite expectations) EPY (d)
[| log(Y (d))| | Y (d) > 0] <∞ for d = 0, 1.7

Then, for every θ∗ ∈ (0,∞), there exists an a > 0 such that |θ(a)| = θ∗. In particular, θ(a) is

continuous with θ(a)→ 0 as a→ 0 and |θ(a)| → ∞ as a→∞.

Theorem 3.2.1 casts serious doubt on the interpretation of ATEs for functions like log(1 + Y ) or

arcsinh(Y ) as (approximate) average percentage effects. While a percent (or log point) is entirely

invariant to the units of the outcome, Theorem 3.2.1 shows that, in sharp contrast, the ATEs for these

transformations are arbitrarily dependent on units.

3.2.1 Intuition for Theorem 3.2.1

Loosely speaking, the result in Theorem 3.2.1 follows from the fact that a “percentage” treatment effect

is not well-defined for individuals who have Y (0) = 0 but Y (1) > 0.8 Any ATE that is well-defined

with zero-valued outcomes must implicitly determine how much weight to place on changes along the

extensive margin relative to proportional changes along the intensive margin.

When m(Y ) behaves like log(Y ) for large values of Y , the importance of the extensive margin is

implicitly determined by the units of Y . For intuition, suppose that we re-scale the outcomes so that the

non-zero values of Y are very large. Then for an individual for whom treatment changes the outcome

from zero to non-zero, the treatment effect will be very large, since m(Y (1))≫ m(Y (0)) = m(0).

Extensive margin treatment effects thus have a large impact on the ATE when the values of Y are

made large. By contrast, changing the units of Y does not change the importance of treatment

effects along the intensive margin by much, since for Y (1) > 0 and Y (0) > 0, we have that

m(Y (1))−m(Y (0)) ≈ log(Y (1)/Y (0)), which does not depend on the units of the outcome.

To see the roles of the extensive and intensive margins more formally, for simplicity consider the

7This assumption simply ensures that EPY (d)
[|m(aY (d))| | Y > 0] exists for all values of a > 0.

8See Delius and Sterck (2020) for an intuitive discussion of this difficulty in the context of the arcsinh(·) transformation.
They write, “the concept of elasticity itself does not make sense with zeros” (p. 21).

80



case where P (Y (1) = 0, Y (0) > 0) = 0, so that, for example, everyone who has positive income

without receiving a training also has positive income when receiving the training.9 Then, by the law of

iterated expectations, we can write

E[m(aY (1))−m(aY (0))]

= P (Y (1) > 0, Y (0) > 0)EP [m(aY (1))−m(aY (0)) | Y (1) > 0, Y (0) > 0]︸ ︷︷ ︸
Intensive margin

+ P (Y (1) > 0, Y (0) = 0)EP [m(aY (1))−m(0) | Y (1) > 0, Y (0) = 0]︸ ︷︷ ︸
Extensive margin

.

When a is large, m(ay) ≈ log(ay) for non-zero values of y, and thus the intensive margin effect in the

previous display is approximately equal to EP [log(Y (1)) − log(Y (0)) | Y (1) > 0, Y (0) > 0], the

treatment effect in logs for individuals with positive outcomes under both treatment and control. This,

of course, does not depend on the scaling of the outcome. However, the extensive margin effect grows

with a, since m(aY (1)) ≈ log(a) + log(Y (1)) is increasing in a while m(0) does not depend on a.

Thus, as a grows large, the ATE for m(aY ) places more and more weight on the extensive margin

effect of the treatment relative to the intensive margin. We can therefore make |θ(a)| arbitrarily large

by sending a→∞. By contrast, if a ≈ 0, then m(aY (d)) ≈ 0 with very high probability, and thus

the ATE for m(aY ) is approximately equal to 0.

It is worth emphasizing that the arbitrary scale-dependence described in Theorem 3.2.1 exists

whenever the treatment affects the probability that the outcome is zero, regardless of whether the

extensive margin is of direct economic interest or not.10 In some settings, the presence of zeros may

correspond to a discrete economic choice (e.g. not participating in the labor market), and thus may

be of direct interest. In other settings—for example, if the outcome is a yearly count of publications

which is sometimes zero for idiosyncratic reasons—the extensive margin may be a “nuisance” rather

than a direct economic object of interest.11 The result in Theorem 3.2.1 highlights that regardless

9A similar argument goes through without this restriction, but then there are two extensive margins, one for individuals
with Y (1) > 0 = Y (0), and the other for those with Y (0) > Y (1) = 0.

10Without an extensive margin, ATEs for transformations m(·) defined at zero still exhibit scale-dependence, though
perhaps not arbitrarily so. See Section 3.3.1 below for further discussion.

11One setting where nuisance zeros may arise is when the observed outcome Y is actually a mis-measured version of
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of the source of the zeros, an ATE for a log-like transformation is not interpretable as a percentage,

since the presence of the extensive margin effect makes it arbitrarily dependent on the units. Indeed,

a percentage effect is not a well-defined for individuals moving from zero to non-zero outcomes.

Whether the zeros correspond to a discrete economic choice or not will be relevant, however, when

considering the choice of alternative target parameter, a topic we return to in Section 3.4 below.

Intuition for the special case of log(1 + Y )

We can also develop some intuition for Theorem 3.2.1 by considering the special case where m(y) =

log(1 + y). In that case, we have that

θ(a) = E[log(1 + aY (1))− log(1 + aY (0))] = E

[
log

(
1 + aY (1)

1 + aY (0)

)]
. (3.1)

Note that

lim
a→∞

log

(
1 + aY (1)

1 + aY (0)

)
=



log
(
Y (1)
Y (0)

)
if Y (1) > 0, Y (0) > 0

0 if Y (1) = 0, Y (0) = 0

∞ if Y (1) > 0, Y (0) = 0

−∞ if Y (1) = 0, Y (0) > 0.

We thus see that the term inside the expectation in (3.1) diverges to∞ for individuals with Y (1) >

0, Y (0) = 0, and likewise diverges to −∞ when Y (1) = 0, Y (0) > 0. If on average the extensive

margin effect is positive, then there are more individuals for whom the limit is +∞ rather than −∞,

and thus (under appropriate regularity conditions) the ATE diverges to∞. Analogously, if the extensive

margin effect is negative, then the ATE diverges to −∞. Hence, we see that the magnitude of the ATE

for log(1 + aY ) diverges as a→∞ when the average effect on the extensive margin is non-zero. By

contrast, as a→ 0, log(1 + aY (d))→ log(1) = 0 for both d = 0 and d = 1, and thus the treatment

effect converges to 0. Theorem 3.2.1 shows that this dependence on units occurs for any log-like

transformation, not just log(1+ Y ), and thus this issue cannot be fixed by choosing a different log-like

the true economic object of interest. For example, publications Y may be a noisy measure of true researcher productivity
Y ∗ > 0. One possible remedy in this setting is to model the measurement error to recover the treatment effect on Y ∗ rather
than on Y . In a similar vein, Gandhi et al. (2023) models the measurement error in product shares in demand estimation,
which are sometimes zero in finite samples.
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transformation (log(c+ Y ), arcsinh(Y ), arcsinh(
√
Y ), etc.)

3.2.2 Additional remarks and extensions

Remark 3.2.2 (ATEs for log(c+ Y )). In some settings, researchers consider the ATE for log(c+ Y )

and investigate sensitivity to the parameter c. Observe that log(1 + aY ) = log(a(1/a + Y )) =

log(a) + log(1/a + Y ), and thus the ATE for log(1 + aY ) is equal to the ATE for log(1/a + Y ).

Hence, varying the constant term for log(c+ Y ) is equivalent to varying the scaling of the outcome

when using m(y) = log(1 + y). Theorem 3.2.1 thus implies that if treatment affects the extensive

margin, one can obtain any desired magnitude for the ATE for log(c + Y ) via the choice of c. In

particular, the ATE for log(c+ Y ) grows large in magnitude as c→ 0, and small as c→∞.

Remark 3.2.3 (Finite changes in scaling). Theorem 3.2.1 shows that any magnitude of |θ(a)| can be

achieved via the appropriate choice of a. How much does θ(a) change for finite changes in the scaling

a? Theorem C.2.1 in the appendix shows that the change in the ATE from multiplying the outcome by

a large factor a is approximately log(a) times the treatment effect on the extensive margin,12

EP [m(aY (1))−m(aY (0))] = (P (Y (1) > 0)− P (Y (0) > 0)) · log(a) + o(log(a)). (3.2)

Thus, the ATE for m(Y ) will tend to be more sensitive to finite changes in scale the larger is the

extensive margin treatment effect. This implies that sensitivity analyses that assess how treatment

effect estimates for m(Y ) change under finite changes in the units of Y—or equivalently, under finite

changes of c in log(c+ Y )—are roughly equivalent to measuring the size of the extensive margin.

Remark 3.2.4 (Extension to continuous treatments). We focus on ATEs for binary treatments for

expositional simplicity, although similar results apply with continuous treatments. In Section C.2.2,

we show that when d is a continuous treatment, any treatment effect contrast that averages m(aY (d))

across possible values of d (i.e. a parameter of the form
∫
ω(d)E[m(aY (d)]) is arbitrarily sensitive to

scaling when there is an extensive margin effect.

Remark 3.2.5 (Extension to OLS estimands). It is worth noting that the results in this section show that

12We say f(a) = o(g(a)) if lima→∞ |f(a)/g(a)| = 0. That is, as a→∞, |f(a)| grows strictly slower than |g(a)|.
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population ATEs for m(Y ) are sensitive to the units of Y . These results are about estimands, and thus

any consistent estimator of the ATE form(Y ) will be sensitive to scaling (at least asymptotically). Thus,

our results apply to ordinary least squares (OLS) estimators when they have a causal interpretation,

but also to non-linear estimators such as inverse-probability weighting or doubly-robust methods.

Nevertheless, given the prominence of OLS in applied work, and the fact that OLS is sometimes used

for non-causal estimands, in Section C.2.3 we provide a result specifically on the scale-sensitivity of

the population regression coefficient for a random variable of the form m(Y ) on an arbitrary random

variable X . Our result shows that the coefficients on X will be arbitrarily sensitive to the scaling of Y

when the coefficients of a regression of 1[Y > 0] on X are non-zero. Thus, the OLS estimand using a

logarithm-like function on the left-hand side will be sensitive to scaling even when it does not have a

causal interpretation.

Remark 3.2.6 (Statistical significance). Equation (3.2) shows that P (Y (1) > 0) − P (Y (0) > 0)

is the dominant term in θ(a) for large a, which suggests that the t-statistic for an estimator of

θ(a) will generally converge to that for the analogous estimator of the extensive margin effect,

P (Y (1) > 0) − P (Y (0) > 0). Theorem C.2.4 in the appendix formalizes this intuition when the

treatment effects are estimated via OLS: As a is made large, the t-statistic for θ̂(a) converges to that for

the extensive margin estimate. In our empirical analysis of papers in the American Economic Review

below, we find that indeed the t-statistics for estimates of the ATE using arcsinh(Y ) are typically

close to those for the extensive margin effect.

Remark 3.2.7 (When most values are large). Researchers often have the intuition that if most of the

values of the outcome are large, then ATEs for transformations like log(1 + Y ) or arcsinh(Y ) will

approximate elasticities, since m(Y ) ≈ log(Y ) for most values of Y . Indeed, in an influential paper,

Bellemare and Wichman (2020) recommend that researchers using the arcsinh(Y ) transformation

should transform the units of their outcome so that most of the non-zero values of Y are large. The

results in this section suggest—perhaps somewhat counterintuitively—that if one rescales the outcome

such that the non-zero values are all large, the behavior of the ATE will be driven nearly entirely by the

effect of the treatment on the extensive margin and not by the distribution of the potential outcomes

conditional on being positive. Moreover, the rescaling can be chosen to generate any magnitude for
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the ATE if the treatment affects the extensive margin.

Remark 3.2.8 (Zero extensive margin). Theorem 3.2.1 applies to settings where treatment has a

non-zero effect on average on the extensive margin. This raises the question of whether the use

of log-like transformations is justified in the absence of an extensive margin treatment effect. Our

Theorem C.1.3 below implies that the ATE for any log-like transformation will be sensitive to the

units of the outcome for at least some distribution with strictly positive outcomes, but perhaps not

arbitrarily so in the sense of Theorem 3.2.1 (see Section 3.3.1 for further discussion). Moreover, if one

were confident that the extensive margin effect were exactly zero for all individuals, one could recover

the ATE in logs for individuals with positive outcomes by simply dropping individuals with Y = 0.

The use of log-like transformations is thus somewhat difficult to justify even in settings without an

extensive margin.

3.2.3 Empirical illustrations from the American Economic Review

We illustrate the results in this section by evaluating the sensitivity to scaling of estimates using the

arcsinh(Y ) transformation in recent papers in the American Economic Review (AER). In November

2022, we used Google Scholar to search for “inverse hyperbolic sine” among papers published in the

AER since 2018. We searched for papers using arcsinh(Y ) rather than log(1 + Y ) since the former

are easier to find with a simple keyword search. Our search returned 17 papers that estimate treatment

effects for an arcsinh-transformed outcome.13 Of these, 10 explicitly interpret the results as percentage

changes or elasticities, and 6 of the remaining 7 do not directly interpret the units. See Table C.1 for

a list of the papers and relevant quotes. Of the 17 total papers using arcsinh(Y ), 10 had publicly

available replication data that allowed us to replicate the original estimates and assess their sensitivity

to scaling.14 For our replications, we focus on the first specification using arcsinh(Y ) presented in

a table in the paper, which we view as a reasonable proxy for the paper’s main specification using

13We consider papers with both binary and non-binary treatments, as our theoretical results extend easily to non-binary
treatments; see Theorem 3.2.4. Seven of the 10 papers we replicated used a binary treatment.

14We include one paper where there was a slight discrepancy between our replication of the original result and the result
reported in the paper that only affected the third decimal place.
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arcsinh(Y ).15

We assess the sensitivity of these results by re-running exactly the same procedure as in the original

paper, except replacing arcsinh(Y ) with arcsinh(100 · Y ). Thus, for example, if the original paper

estimated a treatment effect for the arcsinh of an outcome measured in dollars, we use the same

procedure to re-estimate the treatment effect for the arcsinh of the outcome measured in cents. Since

(3.2) shows that the sensitivity to scaling depends on the size of the extensive margin effect, we also

estimate the extensive margin effect by using the same procedure as in the original paper but with the

outcome 1[Y > 0].

Table 3.1: Change in estimated treatment effects from re-scaling the outcome by a factor of
100 in papers published in the AER using arcsinh(Y )

Treatment Effect Using: Change from
rescaling units:

Paper arcsinh(Y ) arcsinh(100 · Y ) Ext. Margin Raw %

Azoulay et al (2019) 0.003 0.017 0.003 0.014 464
Fetzer et al (2021) -0.177 -0.451 -0.059 -0.273 154
Johnson (2020) -0.179 -0.448 -0.057 -0.269 150
Carranza et al (2022) 0.201 0.453 0.055 0.252 125
Cao and Chen (2022) 0.038 0.082 0.010 0.044 117
Rogall (2021) 1.248 2.150 0.195 0.902 72
Moretti (2021) 0.054 0.068 0.000 0.013 24
Berkouwer and Dean (2022) -0.498 -0.478 0.010 0.020 -4
Arora et al (2021) 0.113 0.110 -0.001 -0.003 -3
Hjort and Poulsen (2019) 0.354 0.354 0.000 0.000 0

Note: This table replicates treatment effect estimates using arcsinh(Y ) as the outcome in recent papers
published in the AER, and explores their sensitivity to the units of Y . The first column shows the
author(s) and date of the paper. The second column shows the treatment effect on arcsinh(Y ) using the
units originally reported in the paper. The third column shows a treatment effect estimate constructed
identically to the estimate in column 2 except using arcsinh(100 · Y ) as the outcome instead of
arcsinh(Y ), e.g. converting Y from dollars to cents before taking the arcsinh transformation. The
fourth column shows an estimate of the size of the extensive margin, obtained using 1[Y > 0] as
the outcome. The final two columns show the raw difference and percentage difference between the
second and third columns. The table is sorted on the magnitude of the percentage difference.

The results of this exercise, shown in Table 3.1, illustrate that treatment effect estimates can be

15We use the first coefficient presented in a figure for one paper without any tables in the main text using arcsinh(Y ). If
the first specification is a validation check (e.g. a pre-trends test), we use the first specification of causal interest.
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Figure 3.1: Change from multiplying outcome by 100 versus extensive margin effect

Note: This figure shows the relationship between the sensitivity of treatment effects using arcsinh(Y )
to re-scaling the units of Y and and the size of the extensive margin. For each replicated paper, this
figure plots the absolute value of the change in the estimated treatment effect from multiplying the
outcome by 100 (i.e. the absolute value of the Raw Change column in Table 3.1) on the y-axis against
log(100) times the absolute value of the extensive margin effect on the x-axis. If the approximation in
(3.2) were exact, all points would lie on the 45 degree line.

quite sensitive to the scaling of the outcome when the extensive margin is not approximately zero.

Indeed, in 5 of the 10 replicable papers, multiplying the outcome by a factor of 100 changes the

estimated treatment effect by more than 100% of the original estimate. The change in the estimated

treatment effect is less than 10% only in three papers, all of which have either zero or near-zero (<1

p.p.) effects on the extensive margin. Figure 3.1 shows that the (absolute) change in the estimated

treatment effect is larger when the extensive margin effect is larger, with the change lining up very

closely with the approximation given in (3.2).16

Using the same 10 papers, we also estimate treatment effects using log(1 + Y ) as the outcome,

and analogously explore how the results change when we multiply the units of Y by 100. (Four of

16In Figure C.1, we plot the t-statistics for the treatment effects estimates as well as those for the extensive margin effect.
In line with the discussion in Theorem 3.2.6, we find that the t-statistics for the treatment effect using arcsinh(Y ) tend to be
similar to those for the extensive margin, except when the extensive margin is very small, and become even closer when
multiplying the units by 100.
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the 10 papers that we replicate report an alternative specification using log(1 + Y ) in the paper.)

The results, shown in Table C.2, are qualitatively quite similar those in Table 3.1, with five of the 10

treatment effect estimates again changing by more than 100%. These results underscore the fact that

Theorem 3.2.1 applies to all log-like transformations, including both arcsinh(Y ) and log(c+ Y ) for

any constant c.

3.3 Sensitivity to scaling for other ATEs

Our results so far show that ATEs for transformations that are defined at zero and approximate log(y)

are arbitrarily sensitive to scaling. What other options are available when there are zero-valued

outcomes? To help delineate alternative options, in this section we provide a result showing what

properties a parameter defined with zero-valued outcomes can have. Specifically, we establish a

“trilemma”: When there are zero-valued outcomes, there is no parameter that is (a) an average of

individual-level treatment effects of the form θg = EP [g(Y (1), Y (0))], (b) scale-invariant, and (c)

point-identified.17 Any approach for settings with zero-valued outcomes must therefore abandon one

of the properties (a)–(c); in Section 3.4 below we discuss several approaches that relax one (or more)

of these requirements.

Before stating our formal result, we must make precise what we mean by scale-invariance and

point-identification. We say that g is scale-invariant if its value is the same under any re-scaling of the

units of y by a positive constant a.

Definition 3.3.1. We say that the function g is scale-invariant if it is homogeneous of degree zero, i.e.

g(y1, y0) = g(ay1, ay0) for all a, y1, y0 > 0.

We next describe point-identification. We consider parameters that are identified without placing

restrictions on treatment effect heterogeneity. As in Fan et al. (2017), this is formalized by considering

parameters that can be learned if we know the marginal distributions of Y (1) and Y (0), but not the

17Of course, not all parameters of the form EP [g(Y (1), Y (0))] can be interpreted as an average of individual treatment
effects. For example E[1[Y (1) > 0, Y (0) > 0]] is the fraction of individuals whose outcomes is positive under both
treatments, rather than a treatment effect. Our results apply to all parameters of this form, regardless of whether they are
average treatment effects per se.
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full joint distribution of (Y (1), Y (0)).

To connect treatment effect heterogeneity to the joint distribution of potential outcomes, consider

the simple case of a randomized experiment. By examining the outcome distribution for the treated

group, we can learn the marginal distribution of Y (1). Likewise, by examining the outcome distribution

for the control group, we can learn the marginal distribution of Y (0). If treatment effects were assumed

to be constant, then for each observed treated unit with outcome Y (1), we could infer their untreated

outcome as Y (0) = Y (1)− τ , where τ is the average treatment effect. Hence, the joint distribution of

(Y (1), Y (0)) would be identified. However, if we allow for treatment effect heterogeneity, then for an

observed treated unit with outcome Y (1), we do not know what their value of Y (0) would be, and

thus we do not know the joint distribution of (Y (1), Y (0)). This winds up being especially important

in settings with an extensive margin, since when we observe the distribution of outcomes for treated

units, it means that we do not know which of the treated units would have had a zero outcome under

the control condition, and thus it is difficult to disentangle the intensive and extensive margins.18

With that intuition in mind, we now give a formal definition. Recall that P denotes the joint

distribution of (Y (1), Y (0)), while PY (d) denotes the marginal distribution of Y (d). We then say θg

is point-identified if it depends on P only through the marginals PY (1), PY (0).

Definition 3.3.2 (Identification). We say that θg is point-identified from the marginals at P if for

every joint distribution Q with the same marginals as P (i.e. such that QY (d) = PY (d) for d = 0, 1),

EP [g(Y (1), Y (0))] = EQ[g(Y (1), Y (0))]. For a class of distributions P , we say that θg is point-

identified over P if for every P ∈ P, θg is point-identified from the marginals at P .

We will denote by P+ the set of distributions on [0,∞)2. Thus, θg is point-identified over P+ if it

is always identified when Y takes on zero or weakly positive values. Our next result formalizes that

it is not possible to have a parameter of the form EP [g(Y (1), Y (0))] that is both scale-invariant and

point-identified over P+.

Proposition 3.3.3 (A trilemma). The following three properties cannot hold simultaneously:

18In Section C.3, we discuss a variety of structural approaches that impose assumptions restricting the joint distribution,
thus allowing us to separately point-identify the effects for the two margins.
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(a) θg = EP [g(Y (1), Y (0))] for a non-constant function g : [0,∞)2 → R that is weakly increasing

in its first argument.

(b) The function g is scale-invariant.

(c) θg is point-identified over P+.19

Any parameter defined with zero-valued outcomes must therefore abandon one of properties (a)–(c).

As a special case, Theorem 3.3.3 implies that the ATE for any increasing function m(Y ) defined

at zero cannot be scale-invariant. This is because the ATE for m(Y ) takes the form in (a) with

g(y1, y0) = m(y1) − m(y0), and is also point-identified (part (c)). It follows that property (b)

must be violated, i.e. there is some c, y0, y1 > 0 such that m(cy1) − m(cy0) ̸= m(y1) − m(y0).

Theorem 3.3.3 thus formalizes the sense in which it is not possible to “fix” the issues with ATEs for

log-like transformations described above by taking alternative transformations of the outcome (e.g.
√
Y ).

3.3.1 Implications for settings without an extensive margin

The trilemma in Theorem 3.3.3 applies for transformations of the outcome defined at zero. To prove

Theorem 3.3.3, however, we establish an even stronger result: the only parameter satisfying properties

(a) and (b) that is point-identified over distributions for which Y is strictly positively-valued is the

ATE in logs.20 This result, which is formalized in Theorem C.1.3 in the Appendix, has some useful

implications for settings in which the outcome is strictly positive.

First, it implies that the ATE for any transformation of the outcome other than log(Y ) will depend

on the units of the outcome for at least some DGP where the outcome is strictly positive. The scale-

dependence of log-like transformations such as log(1 + Y ) or arcsinh(Y ) is thus not entirely limited

19A minor technical complication arises from the fact that EP [g(Y (1), Y (0)] could be infinite for some P . For the
purposes of our result, it suffices to trivially define θg to be identified in this case. Alternatively, the same result holds if part
(c) is modified to impose only that θg is point-identified over all distributions in P+ with finite support, thus avoiding issues
related to undefined expectations.

20More precisely, the only such treatment effect is the ATE in logs or an affine tranformations thereof.

90



to settings with an extensive margin.21 We note, however, that while the ATE for such transformations

may depend on the units of the outcome even without zero-valued outcomes, the dependence need

not be arbitrarily bad in the sense of Theorem 3.2.1. Indeed, (3.2) shows that if there is no extensive

margin, the ATE for a log-like transformation will be approximately insensitive to scaling once the

values of Y are made large. This is intuitive, since if Y is strictly positively-valued, the ATE for a

log-like transformation will be approximately equal to the ATE in logs when the values of Y are made

large.

Second, Theorem C.1.3 implies that even when Y (1) and Y (0) are strictly-positively valued, the

average proportional effect θAvg% = E[(Y (1)− Y (0))/Y (0)] is not point-identified. This parameter

is empirically relevant: For instance, Andrews and Miller (2013) show that in the Baily (1978)–Chetty

(2006) model with heterogeneous consumption responses to unemployment, the optimal level of

unemployment insurance depends on a parameter of the form θAvg%, where Y is consumption and D

is unemployment. Although the ATE in logs may approximate θAvg% when the proportional effect of

the treatment is approximately constant, our results imply that it is not possible to point-identify θAvg%

when allowing for arbitrarily heterogeneous proportional effects.

3.4 Empirical approaches with zero-valued outcomes

Our theoretical results above imply that when there are zero-valued outcomes, the researcher should not

take a log-like transformation of the outcome and interpret the resulting ATE as an average percentage

effect: Unlike a percentage, such an ATE depends on the units of the outcome. In this section, we

highlight some other parameters that are well-defined and easily interpreted when there are zero-valued

outcomes; in Section 3.5 below, we show how these parameters can be estimated in three empirical

applications. Of course, any alternative parameter must necessarily drop one of the requirements in the

trilemma in Theorem 3.3.3, but the choice of which to drop may depend on the researcher’s motivation.

To inform our discussion of alternative parameters, it is therefore useful to first enumerate several

reasons why empirical researchers may target treatment effects for a log-transformed outcome rather

21There is thus no conflict between our results and those in Thakral and Tô (2023), who note that semi-elasticities for OLS
regressions using log-like transformations may depend on the units of the outcome even when Y is strictly positively-valued.

91



than the ATE in levels:

(i) The researcher is interested in reporting a treatment effect parameter with easily-interpretable

units, such as “percentage changes.”

(ii) The researcher believes that there are decreasing returns to the outcome, and thus wants

to place more weight on treatment effects for individuals with low initial outcomes. For instance,

the researcher may perceive it to be more meaningful to raise income from Y (0) = $10,000 to

Y (1) = $20,000 than from Y (0) = $100,000 to Y (1) = $110,000, yet both of these treatment effects

contribute equally to the ATE in levels.

(iii) The researcher is interested in both the intensive and extensive margin effects of the treatment,

and is using the ATE for a log-like transformation as an approximation to the proportional effect along

the intensive margin.

These three motivations suggest different ways of breaking out of the trilemma in Theorem 3.3.3.

If the goal is to achieve a percentage interpretation, then one can consider scale-invariant parameters

outside of the class EP [g(Y (1), Y (0))]. For instance, researchers can consider the ATE in levels

expressed as a percentage of the control mean, or the ATE for a normalized parameter Ỹ that already has

a percentage interpretation. Alternatively, if the goal is to capture concave social preferences over the

outcome, then it is natural to specify how much we value the intensive margin relative to the extensive

margin—thus abandoning scale-invariance. Finally, if the goal is to separately understand the intensive

margin effect, the researcher can abandon point-identification (from the marginal distributions) and

directly target the partially identified parameter E [log(Y (1))− log(Y (0)) | Y (0) > 0, Y (1) > 0],

the effect in logs for individuals with positive outcomes under both treatments. We address each of

these cases in turn below, with a summary of some possible parameters in Table 3.2.

Remark 3.4.1 (Statistical reasons for transforming the outcome). We focus on settings where the

researcher is interested in a parameter other than the ATE in levels. In some settings, the researcher

may be interested in the ATE in levels, but simple regression estimators may be noisy owing to a long

right-tail of the outcome (Athey et al., 2021b). The researcher might then try to estimate the ATE in

levels by first estimating the ATE for a log-like transformation, and then multiplying by the baseline
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Table 3.2: Summary of alternative target parameters

mean. However, since the ATE for a log-like transformation depends on the units of the outcome—and

is thus not a true “percentage” effect—the validity of this approach for recovering the ATE in levels

will depend on the initial units of Y .22 We refer the reader to Athey et al. (2021b) and Müller (2023)

for alternative approaches to estimation and inference targeted to settings where the ATE in levels is of

interest but the outcome has heavy tails.

Remark 3.4.2 (Transformation-specific identification). Another reason that researchers may consider

taking a transformation of the outcome is that a parametric assumption used for identification may

be more plausible for some functional forms than others. For example, when the outcome is strictly

positive, parallel trends in logs may be more plausible than parallel trends in levels if time-varying

factors are thought to have a multiplicative impact on the outcome. We note that justifying parallel

trends for a log-like transformation is especially tricky, however, since if parallel trends holds for

the arcsinh of an outcome measured in dollars, say, it will not generally hold for the arcsinh of the

outcome measured in cents (Roth and Sant’Anna, 2023). Thus, the parallel trends assumption is

specific to both the transformation m(·) and the units of the outcome. Moreover, even if the researcher

is confident in parallel trends for a particular log-like transformation and unit of the outcome, our

results imply that they should not interpret the resulting ATT as an average percentage effect, since

22Even in the case where Y is strictly positive and one first estimates the ATE in logs, this approach will only recover the
ATE in levels under certain homogeneity assumptions, e.g. constant proportional effects. See Wooldridge (1992) for related
discussion.
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that ATT is dependent on the units in which the outcome is measured (Theorem 3.2.1).

In what follows, we consider alternative parameters that may be of interest when the marginal

distributions of the potential outcomes are identified for some population of interest. Such identification

is obtained in RCTs or under conditional unconfoundedness (for the full population), as well in

instrumental variables settings (for the population of compliers), as these designs do not rely on

functional form assumptions for identification. If the original identification strategy relies on a

functional form assumption (e.g. parallel trends), then obtaining identification of the alternative

parameters discussed below may require different identifying assumptions. We discuss these issues in

detail in Section 3.5.2, where we revisit the difference-in-differences application in Sequeira (2016).

3.4.1 When the goal is interpretable units

We first consider the case where the researcher’s primary goal is to obtain a treatment effect parameter

with easily interpretable units, such as percentages.

Normalizing the ATE in levels. One possibility is to target the parameter

θATE% =
E[Y (1)− Y (0)]

E[Y (0)]
,

which is the ATE in levels expressed as a percentage of the control mean. For example, if a researcher is

studying a program D meant to reduce healthcare spending Y , then θATE% is the percentage reduction

in costs from implementing the program. This parameter is point-identified and scale-invariant, and

thus has an intuitive percentage interpretation. Importantly, however, θATE% is the percentage change

in the average outcome between treatment and control, but is not an average of individual-level

percentage changes.23 That is, θATE% does not take the form EP [g(Y (1), Y (0))], thus avoiding the

trilemma in Theorem 3.3.3.

We note that θATE% is consistently estimable by Poisson regression (see Gourieroux et al. (1984);

Santos Silva and Tenreyro (2006); Wooldridge (2010, Chapter 18.2)) under an appropriate identifying

assumption. With a randomly assigned D, for example, estimation of Y = exp(α+βD)U by Poisson

23This is roughly analogous to how quantile treatment effects show changes in the quantiles of the potential outcomes
distributions, but not the quantiles of the treatment effects (without further assumptions).
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quasi-maximum likelihood (QMLE) consistently estimates the population coefficient β, which satisfies

eβ − 1 = E[Y (1)]/E[Y (0)] − 1 = θATE%. In Section 3.5 below, we illustrate how θATE% can be

estimated by Poisson regression in practice in several empirical examples, including both an RCT and

DiD setting.

We also emphasize that θATE% is influenced by treatment effects along both the intensive and

extensive margins. In particular, the numerator of θATE% is the ATE in levels. Thus, if an individual

has a treatment effect of say 1, that contributes the same to θATE% regardless of whether their outcome

changes from 0 to 1 (an extensive margin change) or 1 to 2 (an intensive margin change). The parameter

θATE% may therefore be attractive in settings where the researcher does not want to distinguish between

the intensive and extensive margins. For example, if Y is a count of publications by a researcher in a

particular year, and publications are sometimes zero owing to the idiosyncracies of the publication

process, then it may be reasonable to view a change between 0 and 1 as similar to a change between 1

and 2. On the other hand, in settings where a zero corresponds to a distinct economic choice, such

as not participating in the labor market, then it may be of interest to separate the effects along the

intensive and extensive margin, as we discuss in more detail in Section 3.4.3 below.

It is also worth noting that if the researcher has determined that the ATE in levels is not of economic

interest, then similar issues will likely arise for θATE%, since θATE% is just a re-scaling of the ATE in

levels. For one, the ATE in levels (and hence θATE%) imposes no diminishing returns, and thus might

be dominated by individuals in the tail of the outcome distribution, particularly when the outcome is

skewed. Whether this is warranted will depend on the economic question: if the policy-maker’s goal is

to reduce healthcare spending, it may not matter whether the savings are produced mainly by reducing

spending for a small fraction of individuals with catastrophic medical spending. On the other hand, a

policy that increases every American’s income by $100 and one that increases Elon Musk’s income by

$35 billion and has no effect on anyone else would have approximately the same value of θATE%, yet

the former may be vastly preferred by an inequality-minded policy-maker. We therefore next turn to

alternative approaches that place less weight on the tails of the outcome distribution.
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Normalizing other functionals. While θATE% normalizes the ATE by the control mean, one can

obtain scale-invariance by normalizing other functionals of the potential outcomes distributions.24 For

example,

θMedian% =
Median(Y (1))−Median(Y (0))

Median(Y (0))
,

is the quantile treatment effect at the median normalized by the median of Y (0).25 Put otherwise, it

captures the percentage change in the median between the treated and control distributions. (θMedian%

thus may be particularly relevant for politicians interested in maximizing the happiness of the median

voter!) As is typically the case with quantile treatment effects, however, the numerator of θMedian%

need not correspond to the median of individual-level treatment effects. Moreover, in many settings,

decision-makers may care about treatment effects throughout the distribution, not just at the median,

in which case θMedian% may not be the most economically-relevant parameter.

Normalizing the outcome. A related approach to obtaining a treatment effect with more intuitive

units is to estimate the ATE for a transformed outcome that has a percentage interpretation. One

example is to consider an outcome of the form Ỹ = Y/X , where Y is the original outcome and

X is some pre-determined characteristic. For example, suppose Y is employment in a particular

area. The treatment effect in levels for Y may be difficult to interpret, since a change in employment

of 1,000 means something very different in New York City versus a small rural town. However,

if X is the area’s population, then Ỹ is the employment-to-population ratio, which may be more

comparable across places, and is already in percentage (i.e. per capita) units. We note that the

ATE for Ỹ is a scale-invariant, point-identified parameter of the form θ = EP [g(Y (1), Y (0), X)],

and thus escapes the trilemma in Theorem 3.3.3 by avoiding property (a).26 The viability of this

approach, of course, depends on having a variable X such that the normalized outcome Ỹ is of

economic interest. We suspect that in many contexts, reasonable options will be available, including

pre-treatment observations of the outcome (assuming these are positive), or the predicted control

24Indeed, any functional ϕ(P ) is homogeneous of degree zero if and only if it can be written as the ratio of two
homogeneous of degree one functionals.

25Note that θMedian% is well-defined only if Median(Y (0)) > 0.

26It is scale-invariant in the sense that g(y1, y0, x) = g(ay1, ay0, ax).
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outcome given some observable characteristics (i.e., X = E[Y (0) |W ], for observable characteristics

W ).

A second example is to use Ỹ = FY ∗(Y ), where FY ∗ is the cumulative distribution function (CDF)

of some reference random variable Y ∗, as suggested in Delius and Sterck (2020). The transformed

outcome Ỹ then corresponds to the rank (i.e. percentile) of an individual in the reference distribution,

and the ATE for Ỹ can be interpreted as the average change in rank caused by the treatment. The ATE

for Ỹ is unit-invariant so long as Y and Y ∗ and measured in the same units. Outcomes of this form

have become increasingly popular in the literature on intergenerational mobility, where Ỹ corresponds

to a child’s rank in the national income distribution. This approach has been found to yield more stable

estimates than approaches using log(c + Y ), which Chetty et al. (2014b) show are sensitive to the

choice of c.27

Finally, the researcher might report treatment effects on transformed outcomes of the form 1[Y ≥ y]

for different values of y. For example, the researcher might report the impact of the treatment on the

probability that an individual earns at least $50,000, $60,000, etc., and interpret it as the treatment

effect on the probability of obtaining a “well-paying job.”28 Such treatment effects have interpretable

units as percentage points (i.e. changes in probabilities). We note that treatment effects for outcomes

of this form combine the effect of the treatment along the intensive and extensive margin, since for

example, a worker who has Y (1) > $50, 000 > Y (0) could either not work under control (Y (0) = 0)

or work under control but have earnings below $50,000.

3.4.2 When the goal is to capture decreasing returns

We next consider the case where the researcher wants to capture some form of decreasing marginal

utility over the outcome. For example, when Y is strictly positively valued, the ATE in logs corresponds

to the change in utility from implementing the treatment for a utilitarian social planner with log utility

over the outcome, U = E[log(Y )]. Intuitively, this social welfare function captures the fact that the

27Similar to the discussion in Footnote 22, the treatment effect in ranks cannot be converted back to obtain the ATE in
levels without additional assumptions.

28The researcher could also report the implied CDF of Y (1) and Y (0), from which one can infer the treatment effect on
outcomes of this form for all y.
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planner values a percentage point of change in the outcome equally for all individuals, regardless of

their initial level of the outcome.

Of course, log utility is not well-defined when there is an extensive margin: A coherent utility

function defined with zero-valued outcomes must take a stand on the relative importance of the

intensive versus extensive margins. Recall from Section 3.2.1 that when using transformations like

log(1+ y) or arcsinh(y), the scaling of the outcome implicitly determines the weights placed on these

margins.

Instead of implicitly weighting the margins via the scaling of Y , a more transparent approach is to

explicitly take a stand on how much one values the two margins of treatment. Of course, if one knows

that their utility is captured by U = E[m(Y )] (for a particular unit of Y , say earnings in dollars),

then the ATE for m(Y ) is appropriate. If one is unsure exactly of their utility function, then a rough

calibration is to specify how much one values a change in earnings from 0 to 1 relative to a percentage

change in earnings for those with non-zero earnings. If, for example, one values the extensive margin

effect of moving from 0 to 1 the same as a 100x percent increase in earnings, then one might consider

setting m(y) = log(y) for y > 0 and m(0) = −x. The ATE for this transformation can be interpreted

as an approximate percentage (log point) effect, where an increase from 0 to 1 is valued at 100x log

points.29

We emphasize that for a fixed value of x, this approach necessarily depends on the scaling of the

outcome (thus avoiding the trilemma in Theorem 3.3.3). However, this may not be so concerning

since the appropriate choice of x also depends on the units of the outcome—e.g., saying a change

from 0 to 1 is worth 100x percent means something very different if 1 corresponds with one dollar

versus a million dollars. In other words, ATEs for transformations such as arcsinh(Y ) may be difficult

to interpret because the scaling of the outcome implicitly determines the relative importance of the

intensive and extensive margins; this approach avoids that difficulty by explicitly taking a stand on the

tradeoff between these two margins. Nevertheless, a challenge with this approach is that researchers

29Note that this transformation will generally only be sensible if the support of Y excludes (0, e−x), since otherwise
the function m(y) is not monotone in y over the support of Y . It is common, however, to have a lower-bound on non-zero
values of the outcome; e.g., a firm cannot have between 0 and 1 employees. In our application to Sequeira (2016) below, we
normalize the minimum non-zero value of Y to 1 when applying this approach.
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may have differing opinions over the appropriate choice of x (or more generally, over the appropriate

utility function).

3.4.3 When the goal is to understand intensive and extensive margins

Finally, we consider the case where the researcher is interested in understanding the intensive and

extensive margin effects separately. A common question in the literature on job training programs

(Card et al., 2010), for instance, is whether a program raises participants’ earnings by helping them

find a job—which would be expected only to have an extensive-margin effect—or by increasing human

capital, which would be expected to also affect the intensive margin. In such settings, it is natural to

target separate parameters for the intensive and extensive margins.

For example, the parameter

θIntensive = E[log(Y (1))− log(Y (0)) | Y (1) > 0, Y (0) > 0]

captures the ATE in logs for those who would have a positive outcome regardless of their treatment

status. The parameter θIntensive is scale-invariant but is not point-identified from the marginal distribu-

tions of the potential outcomes (thus avoiding the trilemma in Theorem 3.3.3), and therefore cannot be

consistently estimated without further assumptions.30 However, Lee (2009) popularized a method for

obtaining bounds on θIntensive under the monotonicity assumption that, for example, everyone with

positive earnings without receiving a training would also have positive earnings when receiving the

training.31 Bounds on θIntensive can be reported alongside measures of the extensive margin effect,

such as the change in the probability of having a non-zero outcome, P (Y (1) > 0)− P (Y (0) > 0).

One can also potentially tighten the bounds (or restore point-identification) by imposing additional

assumptions on the joint distribution of the potential outcomes—we provide an example of this in our

30θIntensive also does not take the form EP [g(Y (1), Y (0))], although it can be written as

EP [1[Y (1) > 0, Y (0) > 0] log(Y (1)/Y (0))]

EP [1[Y (1) > 0, Y (0) > 0]]
,

where both the numerator and denominator take this form.

31See, also, Zhang and Rubin (2003) for related results, including bounds without the monotonicity assumption.
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application to Carranza et al. (2022) below; see Zhang et al. (2008, 2009) for related approaches.32

We note that the parameter θIntensive is generally distinct from the “intensive margin” marginal

effects implied by two-part models (2PMs), which were recommended for scenarios with zero-valued

outcomes by Mullahy and Norton (2023), among others. In Section C.4, we consider the causal

interpretation of the marginal effects of 2PMs, building on the discussion in Angrist (2001). Our

decomposition shows that the marginal effects from 2PMs yield the sum of a causal parameter

similar to θIntensive as well as a “selection term” comparing potential outcomes for individuals for

whom treatment only has an intensive margin effect to those with an extensive margin effect. It thus

will generally be difficult to ascribe a causal interpretation to the marginal effects of 2PMs without

assumptions about this selection.

3.5 Empirical applications

In this section, we focus on three concrete empirical applications to illustrate how the alternative

parameters described in Section 3.4 can be estimated in practice. To illustrate a range of possible

applications, we consider a randomized controlled trial, a difference-in-differences design, and an

instrumental variables design.

3.5.1 An RCT setting: Carranza et al. (2022)

Carranza et al. (2022) conduct a randomized controlled trial (RCT) in South Africa. Individuals

randomized to the treatment group are provided with certified test results that they can show to

prospective employers to vouch for their skills. Individuals in the control group do not receive test

results.33 They then investigate how this treatment impacts labor market outcomes such as employment,

hours worked, and earnings. We focus here on the effects on hours worked.

32We note that the Lee (2009) bounds will tend to be tight when the extensive margin effect is close to zero. As noted
in Theorem 3.2.3, this is precisely the setting where ATEs for log-like transformations are relatively insensitive to finite
changes in scale.

33Some individuals are also assigned to a “placebo” arm in which they are provided the test results but the form does
not include the individual’s name, and thus cannot credibly be shared with employers. We focus on the effect of the main
treatment relative to the pure control group.
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Original specification and sensitivity to units. Carranza et al. (2022) estimate the effect of their

randomized treatment on the inverse hyperbolic sine of weekly hours worked. Formally, they estimate

the OLS regression specification

arcsinh(Yi) = β0 +Diβ1 +X ′
iγ + ui, (3.3)

where Yi is average weekly hours worked for unit i, Di is an indicator for whether unit i was in the

treatment group, and Xi is a vector of controls.34 Their estimate of the ATE (β̂1) is 0.201 (see column

(1) in Table 3.3). They interpret this as a 20% change in hours: “Certification increases average weekly

hours worked, coded as zero for nonemployed candidates, by 20 percent” (p. 3560).

Table 3.3: Estimates using arcsinh(Y ) with different units of Y in Carranza et al. (2022)

arcsinh(weekly hrs) arcsinh(yearly hrs) arcsinh(FTEs)

Treatment 0.201 0.417 0.031
(0.052) (0.096) (0.012)

Units of outcome: Weekly Hrs Yearly Hrs FTEs

Note: This table shows estimates of the average treatment effect in Carranza et al. (2022) on the
inverse hyperbolic sine of hours worked, estimated using (3.3). In the first column, the outcome is
the inverse hyperbolic sine of weekly hours, as in the original paper. The remaining columns use the
inverse hyperbolic sine of annualized hours (weekly hours times 52) or the inverse hyperbolic sine
of the number of full-time equivalents worked (weekly hours divided by 40). Standard errors are
clustered at the assessment date (the unit of treatment assignment) as in the original paper.

However, the results in Section 3.2 suggest that the estimate of β1 should not be interpreted as

a percentage effect, since it depends on the units of the outcome. To illustrate this, in columns (2)

and (3) we re-estimate specification (3.3) with Yi redefined to be (a) yearly hours worked, i.e. weekly

hours times 52, or (b) the number of full-time equivalents (FTE) worked, i.e. weekly hours divided by

40. The results change quite substantially depending on the units used, with an estimate of 0.417 using

yearly hours and 0.031 using FTEs. We therefore turn next to alternative approaches with a percentage

interpretation in this setting.

34Carranza et al. (2022) include individuals receiving the “placebo” treatment in the sample and add an indicator for
receiving the placebo treatment in Xi. We follow the same practice, although the results are similar if units receiving the
placebo treatment are dropped.
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Percentage changes in the average. The average number of (weekly) hours worked was 9.84 in

the treated group and 8.85 in the control group. A simple summary of the treatment effect is thus that

average hours worked were 11% higher in the treated group (9.84/8.85 = 1.11). This is an estimate of

the parameter θATE% = E[Y (1)− Y (0)]/E[Y (0)] discussed in Section 3.4.1 above. A numerically

equivalent way to obtain this estimate of 11% is to use Poisson quasi-maximum likelihood estimation

(Poisson QMLE) to estimate

Yi = exp(β0 + β1Di)Ui (3.4)

and then calculate θ̂ATE% = exp(β̂1)− 1 = 0.11 (see column (1) in Table 3.4).35 This formulation

in terms of Poisson QMLE is useful since it allows us to include covariates to potentially increase

precision. Column (2) of Table 3.4 shows the estimate of θ̂ATE% from estimating

Yi = exp(β0 + β1Di +X ′
iγ)Ui (3.5)

by Poisson QMLE, with smaller standard errors than in column (1) (0.069 vs. 0.081).

Table 3.4: Poisson Regression and Implied Proportional Effects in Carranza et al. (2022).

(1) (2)

β0 2.180 0.150
(0.058) (0.311)

β1 0.106 0.150
(0.072) (0.060)

Implied Prop. Effect 0.112 0.150
(0.081) (0.069)

Covariates N Y

Note: the first two rows of column (1) show the estimates of the coefficients β0 and β1 in (3.4),
estimated using Poisson QMLE. The third row shows the implied estimate of the proportional effect,
E[Y (1)−Y (0)]/E[Y (0)], calculated as θ̂ATE% = exp(β̂1)−1. The second column shows analogous
estimates using (3.5), which adds controls for pre-treatment covariates (we do not show the coefficients
on the controls in the interest of brevity). Standard errors are clustered at the assessment date (the unit
of treatment assignment) as in the original paper.

35This estimation is done in the sample of treated units and control units, discarding the placebo group. One could
equivalently retain the units in the placebo group and add an indicator for the placebo group to (3.4).
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Separate estimates for the extensive/intensive margins. As shown in Table 3.1, the treatment in

Carranza et al. (2022) has an estimated extensive margin treatment effect of 0.055, meaning that it

increases the fraction of people with positive hours worked by 5.5 percentage points. We may be

interested in whether the overall 11% increase in hours worked is driven entirely by the extensive

margin, or whether there is an intensive margin effect. That is, does the treatment increase hours

only by bringing people into the labor force, or does it also allow people who would have worked

anyway to find jobs with more hours (e.g. full-time instead of part-time)? To this end, we can use

the method of Lee (2009) to compute bounds for the effect of the treatment for “always-takers” who

would have positive hours worked regardless of treatment (Y (1) > 0, Y (0) > 0).36 The Lee bounds

approach requires the monotonicity assumption that anyone who would work positive hours without

the treatment would also work positive hours when treated (i.e., P (Y (1) = 0, Y (0) > 0) = 0). This

seems reasonable if workers only share the information provided by the treatment when it helps their

job prospects. It could be violated, however, if workers mistakenly share their test score results when

in fact employers view them negatively.

Column 1 of Table 3.5 reports bounds of [−0.20, 0.28] for the effect of the treatment on log hours

worked by the always-takers, while Column 2 shows bounds of [−6.67, 2.77] for weekly hours (in

levels). Unfortunately, in this setting the Lee bounds are fairly wide, including both a zero intensive-

margin effect as well as fairly large intensive-margin effects (up to 28 log points). Thus, without

further assumptions, the data is not particularly informative about the size of the intensive margin.

We can, however, say more if we are willing to impose some assumptions about how the always-

takers, who would work regardless of treatment status (Y (1) > 0, Y (0) > 0), compare to the

compliers (Y (1) > 0, Y (0) = 0), who only work positive hours when receiving the treatment. We

might reasonably expect that the compliers are negatively selected relative to the always-takers and

thus would work fewer hours when receiving treatment. We can formalize this by imposing that

E[Y (1) | Complier] = (1− c)E[Y (1) | Always-taker], i.e. that average hours worked for compliers

under treatment is 100c% lower than for always takers. Columns 3 through 5 of Table 3.5 report

36We again exclude units receiving the “placebo treatment.”
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estimates of the average effect on the always-takers, assuming c = 0, 0.25, and 0.5, respectively.37 If

we assume that always-takers and compliers work an equal number of hours under treatment (c = 0),

then our point estimates suggest that there is actually a negative intensive-margin effect for the always-

takers (−1.02 weekly hours). Under the assumption that compliers work 25% fewer hours (c = 0.25),

the estimated effect for always-takers is near zero (−0.07 weekly hours), consistent with no important

intensive margin. Finally, if we assume compliers work half as many hours as the always-takers

(c = 0.5), then our estimates suggest a positive intensive margin effect (0.95 weekly hours). Our

assessment of the importance of the intensive margin thus depends on how negatively-selected we

think compliers are relative to always-takers.

Table 3.5: Bounds and point estimates for the intensive margin treatment effect in Carranza
et al. (2022)

(1) (2) (3) (4) (5)

Lower bound −0.195 −6.665
(0.064) (1.366)

Upper bound 0.283 2.771
(0.114) (2.067)

Point estimate −1.025 −0.069 0.954
(1.182) (1.349) (1.588)

units Log(Hours) Hours Hours Hours Hours
c 0 0.25 0.5

Note: This table shows bounds and point estimates of the intensive margin treatment effect in Carranza
et al. (2022), i.e. the treatment effect on hours worked for “always-takers” who would work positive
hours regardless of treatment status. The first first two columns of the table show Lee (2009) bounds
for the effect of treatment on the always-takers when the outcome is log(Hours) and weekly hours,
respectively. Columns 3 through 5 show point estimates for the effect on weekly hours worked for
always-takers under the assumption that average hours worked by “compliers” (who work only when
treated) are 100c% lower than for the always-takers. Standard errors are calculated via a non-parametric
bootstrap using 1,000 draws, clustered at the assessment date level.

37Under the assumptions in Lee (2009),E[Y (1) | Y (1) > 0] = θE[Y (1) | Always-taker]+(1−θ)E[Y (1) | Complier],
where θ = P (Y (0) > 0)/P (Y (1) > 0). Plugging in E[Y (1) | Complier] = (1− c)E[Y (1) | Always-taker], it follows
thatE[Y (1) | Always-taker] = 1/(θ+(1−c)(1−θ))E[Y (1) | Y (1) > 0]. Further,E[Y (0) | Always-taker] = E[Y (0) |
Y (0) > 0]. Our estimation plugs in sample analogs to these expressions to estimate E[Y (1)− Y (0) | Always-taker].
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3.5.2 A DiD setting: Sequeira (2016)

Sequeira (2016) studies a decrease in tariffs on trade between Mozambique and South Africa which

occurred in 2008. She is interested in whether the reduction in tariffs reduced bribes paid to customs

officers (among other outcomes). To study this question, she utilizes a difference-in-differences design

comparing the change in bribes paid for products that were affected by the tariff change to that for a

comparison group of products that did not experience a change in tariffs.

Original specification and sensitivity to units. Sequeira (2016) has repeated cross-sectional data

with information on the bribe amount Yit paid on shipment i in year t. She estimates the regression

specification

log(1 + Yit) = β0 +Di × Postt β1 +Di β2 + Postt β3 +X ′
itβ4 + ϵit, (3.6)

where Di is an indicator for whether shipment i is for a product type affected by the tariff change

in 2008, Postt is an indicator for whether year t is after the tariff change, and Xit is a vector of

covariates related to shipment i in period t. Sequeira (2016) estimates (3.6) with Yit measured in

2007 Mozambican Metical (MZN) and obtains β̂1,(MZN) = −3.7 (SE = 1.1). However, estimating

the same specification with Yit measured in thousands of U.S. dollars instead yields an estimate of

β̂1,($1000) = −0.11 (SE = 0.070).38 These results reinforce the conclusion from Section 3.2 that

treatment effects for m(y) = log(1 + y) should not be interpreted as approximating a percentage

effect.

In what follows, we discuss a variety of alternative approaches that may be reasonable in this

context. We note that in a non-experimental setting like this, different approaches may rely on different

identifying assumptions. We therefore explicitly discuss the identifying assumptions needed by each

of the methods we discuss.

38We use the conversion rate of 1 USD = 24.48 MZN as of January 1, 2007, as provided by fxtop.com.

105



Proportional treatment effects. One natural approach here is to target the average proportional

treatment effect on the treated,

θATT% =
E[Yit(1) | Di = 1,Postt = 1]− E[Yit(0) | Di = 1,Postt = 1]

E[Yit(0) | Di = 1,Postt = 1]
.

This is the percentage change in the average outcome for the treated group in the post-treatment period.

Identification of θATT% requires us to infer the counterfactual post-treatment mean outcome for

the treated group, E[Yit(0) | Di = 1,Postt = 1]. Of course, one approach to obtain such identification

would be to assume parallel trends in levels. However, given that the treated and control groups have

different pre-treatment means (see the bottom panel of Table 3.6), it may be unreasonable to expect that

time-varying factors (e.g. the macroeconomy) have equal level effects on the outcome. An alternative

identifying assumption is to impose that, in the absence of treatment, the percentage changes in the

mean would have been the same for the treated and control group. As in Wooldridge (2023), this can

be formalized using a “ratio” version of the parallel trends assumption,

E[Yit(0) | Di = 1,Postt = 1]

E[Yit(0) | Di = 1,Postt = 0]
=
E[Yit(0) | Di = 0,Postt = 1]

E[Yit(0) | Di = 0,Postt = 0]
. (3.7)

Intuitively, (3.7) states that if the treatment had not occurred, the average percentage change in the

mean outcome for the treated group would have been the same as the average percentage change in the

mean outcome for the control group. Under (3.7), we can thus estimate the counterfactual percentage

change in the mean outcome for the treated group using the observed percentage change for the control

group.

Table 3.6 shows that the sample mean of the outcome for the untreated group decreased by 75%

between the pre-treatment and post-treatment periods (from 4,742 to 1,172 (MZN)). Under the ratio

parallel trends assumption (3.7), this suggests that the mean outcome for the treated group would

also have decreased by 75% in the absence of treatment, thus implying an estimate of 2, 602 for the

counterfactual mean outcome for the treated group. The actual post-treatment mean for the treated

group is 465, which is 82% below this implied counterfactual. This implies that the tariff reduction

reduced the average bribe in the post-treatment period by 82%, i.e. θ̂ATT% = −0.82. Conveniently,
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this estimate can also be obtained using Poisson QMLE to estimate

Yit = exp(β0 +Di × Postt β1 +Di β2 + Postt β3)ϵit (3.8)

and then computing θ̂ATT% = exp(β̂1)− 1 = −0.82, as shown in column (1) of Table 3.6.

Table 3.6: Poisson regression estimates of θATT%

(1) (2)

Post × Treatment −1.722 −1.272
(0.632) (0.606)

Prop. Effect −0.821 −0.720
(0.113) (0.170)

Covariates N Y

Treated Group Means (Pre, Post): 10527 465
Untreated Group Means (Pre, Post): 4742 1172

Note: this table shows Poisson regression estimates of (3.8) and (3.9) in columns (1) and (2), respec-
tively. The first row of the table shows the estimate β̂1. The second row shows exp(β̂1)− 1, which is
the implied estimate of the proportional treatment effect θATT%. The coefficients on control variables
are omitted for brevity. Standard errors are clustered at the four-digit product code as in the original
paper. The mean bribe amounts (in MZN) by treatment group and time period are displayed in the
bottom panel. The pre-period refers to the year 2007, whereas the post-treatment period is an average
over the years 2008, 2011, and 2012 (the three post-treatment years for which data is available).

We can also re-incorporate the covariates Xit by estimating

Yit = exp(β0 +Di × Postt β1 +Di β2 + Postt β3 + β′4Xit)ϵit, (3.9)

which yields an estimate of θATT% of −0.72, as shown in the second column of Table 3.6. As

formalized in Wooldridge (2023), this estimate will be a consistent estimate of θATT% if (3.7) holds

conditional on Xit, and the conditional expectation of Yit takes the functional form implied by (3.9)

(assuming ϵit has mean 1 conditional on the covariates). The approach with covariates thus suggests

that the tariff change reduced the average bribe for treated products by 72% in the post-treatment

period.

Sequeira (2016)’s data only contains information on one year prior to treatment (2007), and so
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in this context it is not possible to evaluate the plausibility of (3.7) using periods prior to the policy

change of interest. If multiple pre-treatment periods were available, however, one could estimate a

Poisson QMLE event-study of the form

Yit = exp

λt +Di β2 +
∑
r ̸=−1

Di × [RelativeTimet = r]βESr

 ϵit, (3.10)

where RelativeTimet = t− 2008 is the time relative to the treatment date. The event-study coefficients

βESr for r < 0 are analogous to “pre-trends” coefficients in typical difference-in-differences event-

studies, and are informative about whether the pre-treatment analogue to (3.7) holds.39

Log effects with calibrated extensive margin value. The analysis above presented estimates of

θATT%, the proportional change in the average bribe caused by the treatment. It is well-known that

averages can be heavily influenced by observations in the tail, especially when the outcome has a

skewed distribution, as is the case here (see Figure 3.2). One might argue that a world in which

most products receive medium-sized bribes is more corrupt than one in which a very small fraction

of products receive large bribes—even if they both produce the same average bribe amount. This

motivates studying the treatment effect on a concave transformation of the outcome that is less heavily

influenced by outcomes in the tail of the distribution. As an illustration of this, we first normalize

the outcome so that 1 corresponds to the value of the minimum non-zero bribe in the data (that is,

we divide by ymin = minYit>0 Yit = 15.68 MZN). We then estimate the treatment effect for the

transformed outcome m(Y ), where m(y) = log(y) for y > 0 and m(0) = −x for some choice of x,

as described in Section 3.4.2. If x is set to 0, then this estimates the treatment effect in logs where all

zero bribes are set to equal the smallest positive bribe in the data; this specification thus “shuts off” the

extensive margin change between 0 and ymin. If instead x is set to 0.1, for example, then a change

39More precisely, the exponentiated coefficients exp(β̂r)− 1 correspond to the implied “placebo” proportional treatment
effects for periods before treatment. We recommend plotting the exponentiated coefficients in event-studies, although we
note that exp(β)− 1 ≈ β for β ≈ 0. As with typical tests for pre-trends, one should be cautious that a failure to reject the
null that the pre-treatment coefficients equal zero does not necessarily imply that the identifying assumption is satisfied
(Kahn-Lang and Lang, 2020; Roth, 2022). One can (partially) address these issues by applying sensitivity analysis tools
for event-studies (e.g. Rambachan and Roth, 2023) to estimates of (3.10) to further gauge the robustness of the findings
to violations of the identifying assumptions. We also refer the reader to Wooldridge (2023) for extensions of the Poisson
regression approach to settings with staggered treatment timing.

108



0.0e+00

2.5e−05

5.0e−05

7.5e−05

0 20000 40000 60000

Bribe amount (MZN)

D
e
n
s
it
y

Figure 3.2: Density of bribe amount in Sequeira (2016)

Note: this figure shows a kernel density estimate of the bribe amount in Sequeira (2016), pooling
across all observations with a positive bribe. The kernel density estimates are constructed using the
default settings of the stat_density function in R.

between 0 and ymin is valued as the equivalent of a 10 log point change along the intensive margin.

We estimate the treatment effect for these transformations using the analogue to (3.6) that replaces

log(1 + Yit) with m(Yit) on the left-hand side.40 The results for x ∈ {0, 0.1, 1, 3} are shown in

Table 3.7. Column (1) shows an effect of 249 log points (β̂1 = −2.49) when we treat zero bribes as if

they were equal to ymin (i.e. setting x = 0). The estimated treatment effect grows in magnitude as

we place more value on the extensive margin by increasing x. Interestingly, the original estimate in

Sequeira (2016) of −3.748 using log(1 + Y ) is similar to what we obtain when we value a change

from 0 to ymin at 300 log points (x = 3). The original specification can thus be viewed as placing a

rather large weight on the extensive margin.

40As usual, identification of the treatment effect for m(Y ) using difference-in-differences requires parallel trends for
m(Y (0)). The identifying assumption thus varies depending on the choice of x. The results in Roth and Sant’Anna (2023)
imply that parallel trends will hold for all values of x when a parallel trends assumption is satisfied for the distribution
of Y (0). If more pre-treatment periods were available, these identifying assumptions could be partially evaluated using
pre-trends tests. See Theorem 3.4.2 for additional discussion of identification.
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Table 3.7: Explicit calibration of the extensive margin in Sequeira (2016)

(1) (2) (3) (4)

Post × Treatment −2.493 −2.538 −2.949 −3.860
(0.740) (0.752) (0.861) (1.106)

Extensive margin value (x): 0.000 0.100 1.000 3.000

Note: this table shows estimates of the treatment effect on the treated using m(Y ) as the outcome in
Sequeira (2016), where m(y) is defined to equal log(y) for y > 0 and −x for y = 0. The outcome
is normalized so that Y = 1 corresponds to the minimum non-zero value of the outcome. Thus, the
treatment effect assigns a value of 100x log points to an extensive margin change between 0 and
the minimum non-zero value of Y . The treatment effects are estimated using (3.6), except replacing
log(1 + Yit) with m(Yit). Standard errors are clustered at the four-digit product code as in the original
paper.

3.5.3 An IV setting: Berkouwer and Dean (2022)

Berkouwer and Dean (2022) conduct an RCT in Nairobi in which they randomize the price for energy-

efficient stoves. They use the randomized price (pi) as an instrument for whether an individual i buys

an energy-efficient stove (Di). They use this instrument to estimate the effects of stove-adoption on

outcomes such as charcoal spending (Yi).

Original specification and sensitivity to scale. Let Xi be a vector of control variables (including a

constant). Berkouwer and Dean (2022) estimate

arcsinh(Yi) = Diβ +X ′
iγ + ϵi (3.11)

by two-stage least squares (TSLS), using pi as an instrument for Di.41 (They also report results where

spending is measured in levels.) The estimated coefficient β̂ is an estimate of the LATE of stove

adoption on the arcsinh of charcoal spending for instrument-compliers whose decision of whether to

purchase the stove depends on the price offered in the experiment.42 In Berkouwer and Dean (2022),

41More precisely, each observation i is an individual-by-week pair, and some (but not all) individuals are surveyed on
multiple weeks. Standard errors are clustered at the respondent level.

42We use the phrase “instrument-compliers” to distinguish compliers for the instrument, whose value of D(z) depends
on z, from “compliers” discussed earlier who have Y (1) > 0, Y (0) = 0. Since the instrument takes on multiple values (i.e.
multiple price offers), β corresponds to a weighted average of treatment effects across instrument-compliers for different
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Yi is measured as weekly charcoal spending in dollars. They obtain a coefficient of β̂ = −0.50 and

write “[t]he 50 log point reduction corresponds to a 39 percent decrease in charcoal consumption [since

exp(−0.50) = 1− 0.39]” (p. 3306).

However, if we change the units of the outcome to annual charcoal spending in Kenyan shillings,

the original currency in which charcoal spending was measured, the same specification yields an

estimate of −0.44. Relative to our previous applications, the change in the treatment effect estimates

is fairly small for these choices of units, due to a small estimated extensive margin of 0.01 (see

Table 3.1).43 Nevertheless, the fact that the treatment effects using an arcsinh-transformed outcome

depend on the units should give us pause in interpreting them as percentages. Indeed, a percentage

effect is not well-defined for someone who has non-zero spending under treatment and zero spending

under the control, so an average individual-level percentage effect does not make sense if the treatment

can affect whether one has any charcoal spending.

Berkouwer and Dean (2022) first discuss the LATE in levels, and then immediately afterwards state

that the treatment effect for the arcsinh-transformed outcome “corresponds to a 39 percent decrease

in charcoal consumption” (p. 3306). The main goal of taking the arcsinh transformation here thus

appears to be to obtain a treatment effect with a percentage interpretation. We therefore next implement

two approaches with an (approximate) percentage interpretation in this context.

Proportional LATE. One natural approach in this context is to estimate the proportional change

in the average outcome for instrument-compliers, i.e. to estimate θATE% among the population of

instrument-compliers. Put otherwise, we can express the LATE in levels as a percentage of the control

mean for instrument-compliers. An estimate of the LATE in levels is naturally obtained using TSLS

specification (3.11) with Yi as the outcome, which yields an estimate of−2.46. As described in Abadie

(2002), we can likewise obtain an estimate of the control instrument-complier mean by using TSLS

with −(Di − 1) · Yi as the outcome, which yields an estimate of 5.86. Putting these together, we

obtain an estimate of θATE% for instrument-compliers of −2.46/5.86 = −0.42 (SE = 0.046), which

values of the instrument (Angrist et al., 2000).

43We note, however, that the t-statistic for the effect on arcsinh(Yi) is rather sensitive here, changing from approximately
7 to 3 depending on the units.
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suggests that average charcoal spending is 42% lower for instrument-compliers under treatment than

under control.44 If pollution is proportional to charcoal spending, then this parameter is economically

relevant as it corresponds to the percentage reduction in pollution for instrument-compliers from

gaining access to the efficient stove.

Lee bounds. Berkouwer and Dean (2022) benchmark their treatment effect estimates relative to

engineering estimates of the efficiency gains of using an efficient stove relative to a non-efficient

one. For this benchmarking exercise, it seems sensible to focus on the intensive-margin effect of the

treatment—i.e., the treatment effect for instrument-compliers who would use a non-efficient stove if

offered a high price and an efficient one if offered a low price. To do so, we can form Lee (2009)-type

bounds for the average treatment effect in logs for instrument-compliers who would have positive

charcoal spending regardless of treatment status.45

The bounds on θIntensive for instrument-compliers are [−0.565,−0.538] (with SEs for the lower and

upper bounds of 0.072 and 0.075).46 This implies that for the instrument-compliers who would spend

on charcoal regardless of treatment status, spending decreases by 54 to 56 log points. We note that the

Lee bounds are fairly tight in this case, as tends to be the case when the extensive margin is small. It

is also worth noting that in this example, the estimated treatment effects using arcsinh(Yi)—both in

terms of weekly spending in dollars and in terms of annual spending in Kenyan shillings—fall outside

of the Lee bounds, although they are fairly close to the upper bound when using weekly spending in

dollars.

44The standard error was calculated via a non-parametric bootstrap with 1,000 draws, clustered at the respondent level.
We note that with a binary instrument, an estimate of θIntensive for instrument-compliers can be obtained using Poisson IV
regression (e.g. the ivpoisson command in Stata); see Angrist (2001). However, we are not aware of a LATE interpretation
of Poisson IV regression with a multi-valued instrument, and thus do not pursue it here. Whether Poisson IV regression has
such an interpretation with a continuous IV strikes us an interesting topic for future work.

45The validity of the Lee (2009)-type bounds requires the “monotonicity” assumption that all instrument-compliers who
would have some charcoal consumption when not buying an efficient stove would also have some charcoal consumption when
buying an efficient stove, which seems reasonable. Note that this is a distinct assumption from the instrument monotonicity
assumption needed for a LATE interpretation for instrumental variables (Imbens and Angrist, 1994), which in this context
states that anyone who would buy a stove at a higher price would also buy at a lower price.

46We obtain these estimates using the procedure in Abadie (2002), as described in detail in Section C.5.
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3.6 Conclusion

It is common in empirical work to estimate ATEs for transformations such as log(1+Y ) or arcsinh(Y )

which are well-defined at zero and behave like log(Y ) for large values of Y . We show that the ATEs

for such transformations should not be interpreted as percentages, since they depend arbitrarily on the

units of the outcome when there is an extensive margin. Further, we show that any parameter that is an

average of individual-level treatment effects of the form EP [g(Y (1), Y (0))] must be scale-dependent

if it is point-identified and well-defined at zero. We discuss several alternative approaches, including

estimating scale-invariant normalized parameters (e.g. via Poisson regression), explicitly calibrating

the value placed on the intensive versus extensive margins, and separately estimating effects for the

intensive and extensive margins (e.g. using Lee bounds). We illustrate how these approaches can be

applied in practice in three empirical applications.
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Appendix A

Appendix to Chapter 1

A.1 Proofs and additional results

A.1.1 Proofs of Theorems 1.2.2, 1.3.1 and 1.3.2

We reproduce Theorem 5 of Hazan et al. (2007) in our notation.

Theorem A.1.1 (Theorem 5, Hazan et al. (2007)). Assume that for all t, the function ℓt : Θ→ R can

be written as

ℓt(θ) = gt(v
′
tθ)

for a univariate convex function gt : R → R and some vector vt ∈ Rn. Assume that for some

R, a, b > 0, we have ∥vt∥2 ≤ R and for all θ ∈ Θ, we have |g′t(v′tθ)| ≤ b and g′′t (v
′
tθ) ≥ a, for all t.

Then FTL on ℓt satisfies the following regret bound:

RegretT ≤
2nb2

a

[
log

(
DRaT

b

)
+ 1

]
where D = maxx,y∈Θ∥x− y∥2 is the diameter of Θ.

Proof of Theorem 1.2.2. Theorem 1.2.2 follows immediately from Theorem 5 in Hazan et al. (2007),

reproduced in our notation as Theorem A.1.1. The proof of this theorem relies solely on optimality of

θt (and the associated first-order condition); thus, in the case of multiple minima when minimizing∑s
t=1 ℓt(θ), any particular sequence of minima {θt} satisfies the guarantee.
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Since Θ is the simplex, we know

D = max
θ1,θ2∈Θ

∥θ1 − θ2∥2 ≤ max
θ1,θ2∈Θ

∥θ1 − θ2∥1 ≤ max
θ1,θ2∈Θ

∥θ1∥1 + ∥θ2∥1 = 2.

We choose gt(x) = 1
2(y0t − x)

2 with g′t(x) = x − y0t and g′′t (x) = 1. (The scaling by 1/2 means

that we obtain a bound on 1/2 times the regret.) The vectors vt = yt, whose dimensions are n = N

and whose 2-norms are bounded by R =
√
N . Note that |y′

tθ| = |v′tθ| ≤ ∥vt∥∞∥θ∥1 ≤ 1. Hence,

|g′t(v′tθ)| = |y′
tθ − y0t| ≤ |y′

tθ| + |y0t| ≤ 2 ≡ b and g′′t (x) ≥ 1 ≡ a. To summarize, we have

R =
√
N, a = 1, b = 2, D = 2, and n = N .

Plugging in, we have
1

2
RegretT ≤ 8N(log(

√
NT ) + 1),

which rearranges into the claim.

Proof of Theorem 1.3.1 . The proof for Theorem 1.3.1 follows similarly, now with

gt(x) =
T

2
πt(y0t − x)2 g′t(x) = Tπt(x− y0t) g′′t (x) = Tπt.

Note that, since 1
CT ≤ πt ≤

C
T , we can take a = 1/C and b = 2C. Doing so yields the expression in

Theorem 1.3.1.

Proof of Theorem 1.3.2. For Theorem 1.3.2, and in particular (1.12), by (1,∞)-Hölder’s inequality,

T∑
t=1

πt(y0t − θ̂′tyt)2 ≤
(
max
t
πt

) T∑
t=1

(y0t − θ̂′tyt)2 ≤
C

T

T∑
t=1

(y0t − θ̂′tyt)2.

We then apply Theorem 1.2.2 to bound
∑T

t=1(y0t− θ̂′tyt)2 = minθ∈Θ
∑T

t=1(y0t− θ′yt)2+RegretT .

(1.13) follows immediately from (1.12) by taking the expectation EQ, noting that

EQ[(y0S − θ̂′SyS)2] = EQ

[
T∑
t=1

1(S = t)(y0t − θ̂′tyt)2
]

= E

[
E

[
T∑
t=1

1(S = t)(y0t − θ̂′tyt)2 | Y

]]

= E

[
T∑
t=1

Q(S = t | Y)(y0t − θ̂′tyt)2
]
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We then apply (1.12) to complete the proof.

A.1.2 Lack of regret control for fixed strategies

Lemma A.1.2. In the online convex optimization setup, suppose the class of loss functions available

to the adversary satisfies the following property: There exists ϵ > 0 such that for any θ ∈ Θ, there

exists θ̃ and ℓ1, . . . , ℓT , for which ℓt(θ̃) ≤ ℓt(θ)− ϵ. Then, the regret of any fixed strategy that outputs

θt = θ for every period is at least ϵT .

Proof. Let ℓt, θ̃ be the sequence of loss functions and alternative satisfying the required property on

the class of loss functions. Then RegretT (θ) ≥
∑

t ℓt(θ)−
∑

t ℓt(θ̃) = ϵT .

It is easy to see that the loss functions in the panel prediction problem are rich enough to satisfy the

property in Theorem A.1.2. Fix, say, ϵ < 0.0001. For any θ, we can find θ̃ ∈ Θ where ∥θ̃− θ∥1 ≥
√
ϵ.

Then, there exists some y, ∥y∥∞ ≤ 1 where

|(θ̃ − θ)′y| = max
∥y∥∞≤1

|(θ̃ − θ)′y| = ∥θ̃ − θ∥1 ≥
√
ϵ

since ∥·∥1 is the dual norm to ∥·∥∞. The adversary chooses yt = y for all t ∈ [T ] and y0t = θ̃′yt.

Then ℓt(θ̃) = 0 but ℓt(θ) ≥ (
√
ϵ)2 = ϵ.

A.1.3 Static DID regret control

We could consider affine predictors with bounded intercepts

f(yt; θ0, θ1) = θ0 + θ′1yt Θ = [−2, 2]×∆N−1.

This choice corresponds to variations of synthetic control proposed by Doudchenko and Imbens (2016)

and Ferman and Pinto (2021) in efforts to mimic behavior of DID estimators.1 Our regret bound from

Theorem 1.2.2 generalizes immediately to the affine predictions, where the benchmark oracle the

1Synthetic control with an intercept is equivalent to synthetic control with demeaned data {ys − 1
t

∑
k≤t yk : s =

1, . . . , t} (Ferman and Pinto, 2021), since the constraint that θ0 ∈ [−2, 2] does not bind.
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regret measures against is

min
(θ0,θ1)∈Θ

T∑
t=1

(y0t − θ0 − θ′1yt)2. (A.1)

(A.1) simultaneously chooses the best intercept and the best set of convex weights in hindsight.

Because (A.1) is limited to using the same intercept for prediction in each period, it is, in some sense,

a static DID estimator.

Theorem 1.2.2 can be adapted to show that synthetic control with an intercept is competitive

against static DID.

Proposition A.1.3. Consider demeaned synthetic control, where the analyst outputs the prediction

ŷt = θ̂0t + θ̂′tyt by solving the least-squares problem

θ̂0t, θ̂t = argmin
θ0,θ∈[−2,2]×∆N−1

∑
s<t

(y0s − θ0 − θ′ys)2.

Then, under bounded data ∥Y∥∞ ≤ 1, we have the following regret bound:

T∑
t=1

(y0t − ŷt)2 − min
θ0,θ∈[−2,2]×∆N−1

T∑
t=1

(y0s − θ0 − θ′ys)2 ≤ CN log T

for some constant C.

Proof. We define the loss as 1
2(x−y)

2, which only affects the regret up to a factor of 2. Theorem A.1.3

can be proved with Theorem A.1.1. Note that the diameter of the parameter space [−2, 2]×∆N−1 can

be bounded by D = 2 ·
√
22 + 1 = 2

√
5. The 2-norm of the vector vt = [1,y′

t]
′ is now bounded by

R =
√
N + 1. The 1-norm of the parameter vector ϑ = [θ0, θ

′]′ is now bounded by 2 + 1 = 3. Hence,

|v′tϑ| ≤ 3. Hence, we may take b = 3 + 1 = 4 and a = 1. Plugging in, we obtain

RegretT ≤ 64N

[
log

(√
5

2

√
N + 1T

)
+ 1

]
< CN log T

for some C.

A.1.4 Proof of Theorem 1.3.3

Similarly to the proof of Theorem A.1.3, suppose the adversary picks the differences |ỹit| ≤ 2, without

the constraint that the resulting levels obey the restriction ∥Y∥∞ ≤ 1. An application of Theorem A.1.1
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shows that
T∑
t=1

(ỹ0t − θ̂′tỹt)2 −min
θ∈Θ

T∑
t=1

(ỹ0t − θ′ỹt)2 ≤ CN log T

for some C, uniformly over |ỹit| ≤ 2, where θ̂t is the FTL strategy on the data ỹit, which is exactly the

synthetic control on the differenced data when Y is chosen by the adversary.

Now, given any ∥Y∥∞ ≤ 1, we have that the corresponding differences ỹit obey the above regret

bound, since they are bounded by 2. Moreover, for both synthetic control (θt = θ̂t) and the oracle

σTWFE (θt = θ), the prediction error of the data y0t is equal to the prediction error on the differences:

y0t − ŷt =
1

t− 1

∑
s<t

y0s + ỹ0t −

(
1

t− 1

∑
s<t

y0s + θ′tỹt

)
= ỹ0t − θ′tỹt.

Hence, we may rewrite the above regret bound as the bound

T∑
t=1

(y0t − ŷt)2 −min
θ∈Θ

T∑
t=1

(y0t − ŷt(σTWFE(θ)))
2 ≤ CN log T.

A.1.5 Proof of Theorem 1.3.5

Theorem A.1.4. Assume that

1. ℓt(θ) ≡ ℓ(θ′yt, y0t) is convex in θ for any Y.

2. The regularizer Φ(θ) is 1-strongly convex in some norm ∥·∥. Normalize Φ such that its minimum

over Θ is zero and maximum is K <∞.

3. All subgradients∇θℓt(θ) are bounded in the dual norm ∥·∥∗, uniformly over Θ,Y:

∥∇θℓt(θ)∥2∗ ≤ G.

Then FTRL attains the regret bound

RegretT ≤
K

η
+
ηTG

2
.

We first reproduce Corollary 7.9 from Orabona (2019) in our notation. Consider an FTRL algorithm

that regularizes according to

θt ∈ argmin
θ

∑
s≤t

ℓs(θ) +
1

η
Φ(θ).
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This corresponds to choosing ηt = η, ψ(x) = Φ(x), and minθ Φ(θ) = 0 in Orabona (2019).

Theorem A.1.5 (Corollary 7.9, Orabona (2019)). Let ℓt be a sequence of convex loss functions. Let

Φ : Θ→ R be µ-strongly convex with respect to the norm ∥·∥. Then, FTRL guarantees

T∑
t=1

ℓt(θt)−
T∑
t=1

ℓt(θ) ≤
Φ(θ)

η
+

η

2µ

T∑
t=1

∥gt∥2∗

for all subgradients gt ∈ ∂ℓt(θt) and all θ ∈ Θ, where ∥·∥∗ is the dual norm of ∥·∥.

Proof of Theorem A.1.4. Theorem A.1.4 then follows immediately where ∥gt∥2∗ ≤ G, Φ(θ) ≤ K, and

µ = 1.

Proof of Theorem 1.3.5. For both squared and absolute losses, we can bound the gradient of the loss

function in terms of

∥∇θℓt(θ)∥∗ = ∥∇q(y − ŷ) · yt∥∗ = |∇q(y − ŷ)|∥yt∥∗ ≤ 2 sup
∥y∥∞≤1

∥y∥∗

under any norm, where q(t) = t2/2 or q(t) = |t|. This is because (i) for squared loss, the gradient

|∇f | = |y − ŷ| is bounded by 2 and (ii) for absolute loss, the subgradients |∇f | are bounded by 1 and

hence by 2. Hence, we should pick G to be 4 sup∥y∥∞≤1∥y∥2∗.

For the quadratic penalty assumed, it is 1-strongly convex with respect to ∥·∥2 by the assumption

that the minimum eigenvalue of its Hessian is 1. Thus the dual norm ∥·∥∗ is also the Euclidean norm,

and we may take G = 4N . This yields the bound by Theorem A.1.4, since

K√
K(2TN)−1

+
4NT

2

√
K

2TN
= 2
√
2
√
NTK.

Setting K = 1/2 yields the ridge penalty result.

The entropy penalty is 1-strongly convex with respect to ∥·∥1.2 Thus we may take G = 4∥yt∥2∞ =

2This is a well-known result in online convex optimization. To prove it, we first note that

Φ(y) = Φ(x) +∇Φ(x)′(y − x) +DKL(y∥x),

where Φ(x) =
∑
i xi log xi + C, DKL(y∥x) =

∑
i yi log(yi/xi), and x, y lie in the interior of the simplex. Pinsker’s

inequality then implies

Φ(y) ≥ Φ(x) +∇Φ(x)′(y − x) + 1

2
∥x− y∥21.

This is exactly the definition of 1-strong convexity with respect to ∥·∥1.
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4. The maximum of entropy (shifted so that its minimum is zero) can take K = logN . This yields the

bound via Theorem A.1.4.

A.1.6 Two-way fixed effect calculation

Consider the TWFE regression with known, nonnegative weights
∑N

i=1wi = 1 and the normalization

w0 = 1:

argmin
µi,αt

∑
i,t:(i,t) ̸=(0,S)
i∈{0,...,N}
t∈[S]

wi(yit − µi − αt)2.

We may eliminate (i, t) = (0, S) from the sum since λ1(i = 0, S = t) in (1.14) absorbs that term,

leaving µi, αt unaffected. Consider forecasting y0S with µ0 + αS that solves the above program. As a

reminder, in this subsection, we show that the estimated µ0 + αS takes the form of forecasting with

weighted average on differenced data.

The first-order condition for µi takes the form

S−1∑
t=1

yit − µi − αt + 1(i ̸= 0)(yiS − µi − αt) = 0.

Hence,

µi =


ȳi − ᾱ i ̸= 0

ȳ0 − S
S−1 ᾱ+ 1

S−1αS i = 0

where ᾱ = 1
S

∑S
t=1 αt and ȳi is the sample mean of observations for unit i over time 1, . . . , S, with the

understanding that y0S is not included for ȳ0. Hence, the forecast is µ0 + αS = ȳ0 +
S
S−1 (αS − ᾱ) .

Let us inspect the first-order condition for αS :

N∑
i=1

wi(yiS − µi − αS) =
N∑
i=1

wi(yiS − ȳi + ᾱ− αS) = 0.

Rearrange to obtain that αS − ᾱ =
∑N

i=1wi

(
S−1
S yiS − 1

S

∑S−1
t=1 yit

)
. Therefore, S

S−1(αS − ᾱ) =∑N
i=1wi

(
yiS − 1

S−1

∑S−1
t=1 yit

)
. Thus the forecast is

µ0 + αS =
1

S − 1

S−1∑
t=1

y0t +
N∑
i=1

wi

(
yiS −

1

S − 1

S−1∑
t=1

yit

)
.
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Note that arriving at this result does not use the fact that w0 = 1. Hence, w0 does not matter for

µ0 + αS .

A.2 Further extensions

A.2.1 Adaptive regret

The online learning literature also has results for controlling the adaptive regret:

AdaptiveRegretT = sup
1≤r<s≤T

s∑
t=r

{
ℓt(θt)−min

θr,s

s∑
t=r

ℓt(θr,s)

}
, (A.2)

which is the worst regret over any subinterval of [T ]. An upper bound of adaptive regret serves as an

upper bound of the regret over any subperiod indexed by r < s. In particular, suppose we obtain a

O(log T ) upper bound on adaptive regret, then we obtain meaningful average regret upper bounds for

all subperiods significantly longer than O(log T ).

A simple meta-algorithm called Follow The Leading History (FLH) (Algorithm 31 in Hazan, 2019)

serves as a wrapper for an online learning algorithm σ, such that

AdaptiveRegretT (FLH(σ)) ≤ RegretT (σ) +O(log T ). (A.3)

When applied to synthetic control, FLH takes the following form. We initialize p11 = 1 and set α = 1
4 .

At each time t, when prompted to make a prediction about y0t:

1. Consider the synthetic control estimated weights θ1t , . . . , θ
t
t, where θjt is the synthetic control

weights estimated based on data from time horizons j, . . . , t− 1.

2. Output the weighted average θt =
∑t

j=1 p
j
tθ
j
t .

3. After receiving yt, y0t (and hence receiving ℓt(θ) = 1
2(y0t − θ

′yt)
2), instantiate

pit+1 ←
pite

−αℓt(θit)∑t
j=1 p

j
te

−αℓt(θjt )
1 ≤ i ≤ t.
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4. Set pt+1
t+1 =

1
t+1 and further update

pit+1 ←
(
1− 1

t+ 1

)
pit+1 1 ≤ i ≤ t.

At each step, FLH applied to synthetic control continues to output a convex weighted average of control

unit outcomes, making it a type of synthetic control algorithm. Theorem 10.5 in Hazan (2019) then

implies the bound (A.3) for the above algorithm.3 In a nutshell, FLH treats synthetic control predictions

from different horizons as expert predictions, and applies a no-regret online learning algorithm to

aggregate these expert predictions. We direct readers to Hazan (2019) for further intuitions about the

algorithm.

Combined with Theorem 1.2.2 for synthetic control, we find that the adaptive regret of FLH-

synthetic control is of the same order O(N log T + N logN). This means that the average regret

over any subperiod of length T ′ is O
(
N log T+N logN

T ′

)
, a meaningful bound for long subperiods

T ′ ≫ N log T . In other words, in a protocol where the adversary additionally picks a subperiod of

length T ′, and nature subsequently samples a treatment timing uniformly randomly over the subperiod,

FLH-synthetic control achieves expected regret bound of O
(
N log T+N logN

T ′

)
. The adaptive regret

bound thus partially relaxes the requirement for uniform treatment timing, and allows for expected

regret control over random treatment timing on any subperiod.

A.2.2 A note on inference

Under the treatment assignment model S ∼ Unif[T ], we may test the sharp null H0 : y(1) = y(0),

leveraging symmetries arising from treatment assignment. This is similar in spirit to Bottmer et al.

(2021), who consider design-based inference under random assignment of the treated unit. They

compute the variance of the estimated treatment effect (for treated unit M ∼ Unif[N ] at some fixed

time S) under random assignment, holding the outcomes fixed, and propose an unbiased estimator.

3The proof follows immediately since 1
2
(y0t − θ′yt)2 is 1

4
-exp-concave. That is,

θ 7→ exp

(
−1

4
· 1
2
(y0t − θ′yt)2

)
is concave. This is because −2 ≤ y0t − θ′yt ≤ 2, and g(x) = exp

(
− 1

4
· 1
2
x2
)

is concave on x ∈ [−2, 2]. The Hessian of
exp

(
− 1

4
· 1
2
(y0t − θ′yt)2

)
in θ is then g′′(y0t − θ′yt)yty′

t, which is negative semidefinite.
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This is also similar in spirit to unit-randomization-based placebo tests (Abadie et al., 2010).

Let yt = y0t for t < S and let yt = yt(1) for t ≥ S be the observed time series of the treated unit.

For any prediction ŷt that does not depend on S—not limited to synthetic control predictions—we

may form the residuals rt = |yt − ŷt|. One (finite-sample) test of the sharp null rejects when rS is at

least the ⌈T (1− α)⌉th order statistic of the sample {r1, . . . , rT }. Since, under the null, rS is equally

likely to equal any of {r1, . . . , rT }, the probability of it being the among largest 100α% is bounded

by α. Similarly, if S ∼ π where πt ≤ C/T , a least-favorable test may be constructed by rejecting

when rt ≥ r(T−⌊Tα/C⌋). Informally speaking, this test is more powerful when the predictions ŷt

are better, and our regret guarantees are in this sense informative for inference. Moreover, note that

this procedure is very similar to conformal inference (Lei et al., 2018; Chernozhukov et al., 2021).

Conformal intervals rely on the assumption that the data is exchangeable in the underlying sampling

process. This symmetry is true here by virtue of assuming S ∼ Unif[T ], since the treated period is

equally likely to be any one.

The argument above does not use the regret result. From Markov’s inequality, we can control the

probability for the prediction error to deviate far relative to its expectation

PS∼Unif[T ]

[
(y0S − ŷS)2 > c

]
≤ ES [ℓS(θS)]

c
≤ 1

c

(
min
θ∈Θ

1

T

T∑
i=1

ℓt(θ) +
1

T
RegretT

)
.

Under assumptions where the pre-treatment loss minθ
1

S−1

∑
t<S ℓt(θ) is a consistent estimator for

the oracle performance minθ
1
T

∑T
i=1 ℓt(θ), the above observation allows for predictive confidence

intervals for the untreated outcome and confidence intervals of the treatment effect, which are valid

over random treatment timing.

A.2.3 Risk interpretation under idiosyncratic errors

We consider another interpretation of (1.9). In many data-generating processes,

EP

[
min
θ

Risk(θ,Y,y(1))

]
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may not be small, because the realized data Y may contain certain unforecastable components. The

purpose of this section is to leverage the decomposition

EP [(ŷ0t − y0t)2] = EP [ϵ
2
t ] + EP [(ŷ0t − µt)2],

where ϵt = y0t − µt is some unforecastable component satisfying EP [ϵtŷ0t] = 0. This decomposition

breaks prediction errors into forecastable and unforecastable components. Because of this additive

decomposition, under certain conditions on ϵt, we can interpret risk differences as regret on estimating

the forecastable component µt (since EP [ϵ2t ] cancels in the difference). We can also decompose risk

into the oracle error on estimating µt, the regret against the oracle on estimating µt, and the variance

of the unforecastable errors ϵt.

For a fixed θ, under uniform treatment timing we have that

EP [Risk(θ,Y,y(1))] = EP [ES(y0S − µS)2] + EP [ES(θ
′yS − µS)2]

for some mean component µt, possibly random, of the outcome process y0t. For instance, we may take

µt = EP [y0t | Y1:t−1,yt]. For this µt, we can also write

EP [Risk(σ,Y,y(1))] = EP [ES(y0S − µS)2] + EP [ES(θ̂
′
tyS − µS)2],

since θ̂′tyt depends solely on Y1:t−1,yt. We thus have the following implication of (1.9)

EP [ES(θ̂
′
tyS − µS)2]−min

θ∈Θ
EP [ES(θ

′yS − µS)2] ≤
1

T
sup

∥Y∥∞≤1
RegretT (σ;Y),

which says that the risk difference of estimating the conditional mean µt—the forecastable component

of the outcome process—is upper bounded by the regret. As a corollary, if P = PT is a sequence of

data-generating processes where, as T →∞,

min
θ∈Θ

EP [ES(θ
′yS − µS)2]→ 0,

then we obtain a consistency result for synthetic control, in that

EP [ES(θ̂
′
tyS − µS)2]→ 0
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as well.

Shifting from risk differences to risks themselves, this means that the treatment effect estimation

risk for synthetic control admits the following upper bound

EP [Risk(σ,Y,y(1))] ≤ min
θ∈Θ

EP [ES(θ
′yS − µS)2] +

1

T
sup

∥Y∥∞≤1
RegretT (σ;Y)

+ EP [ES(y0S − µS)2],

where the first term is the best possible error on the forecastable component µt, the second term is

the average regret, and the third term is the variance of the unforecastable component that cannot be

improved upon. We think the first two terms are likely small, and the last term is unavoidable.

This argument also extends to non-uniformly random treatment timing. Suppose we have a joint

distribution Q of (Y,y(1), S) such that πt(Y) = Q(S = t | Y) ≤ C/T . Suppose further that

y0t = µt + ϵt, where EQ[ϵt | µt, πt,Y1:t−1,yt] = 0 for some mean component µt.4 Then we have a

similar decomposition of the risk of estimating the treatment effect at S:

EQ[(y0S − θ̂′Syt)2] =
T∑
t=1

EQ[πt(Y)(y0t − θ̂′Syt)2]

=
T∑
t=1

EQ
[
πt(Y)(y0t − µt)2

]
+ EQ[πt(Y)(µt − θ̂′tyt)2]

+ 2EQ[πtϵt(µt − θ̂′tyt)]

= EQ[ϵ
2
S ] + EQ[(µS − θ̂′SyS)2] (Last term is zero)

≤ EQ[ϵ2S ] +
C

T

T∑
t=1

EQ[(µt − θ̂′tyt)2] ((1,∞)-Hölder’s inequality)

≤ EQ[ϵ2S ] + C

(
min
θ∈Θ

1

T

T∑
t=1

EQ[(µt − θ′yt)2]

+
1

T
sup

∥Y∥∞≤1
RegretT (σ;Y)

)
.

The last right-hand side is equal to the variance of the unforecastable component ϵS plus C times the

oracle risk on estimating the mean component, as well as O(NT−1 log T ) regret. If the oracle risk

4We can take µt = E[y0t | yt,Y1:t−1] whenever S y Y under Q.

139



for estimating the mean component is small, then synthetic control is close to optimal, and its risk on

estimating the mean component EQ[(µS − θ̂′SyS)2] is also small.5

5Note that the bound

EQ[(y0S − θ̂′Syt)2] ≤ C

(
EQ[ϵ

2
S ] + min

θ∈Θ

1

T

T∑
t=1

EQ[(µt − θ′yt)2] +
1

T
sup

∥Y∥∞≤1

RegretT (σ;Y)

)

is immediate and allows for µt = E[y0t | Y1:t−1,yt] = 0, yet the scaled idiosyncratic risk CEQ[ϵ2S ] may be large.
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Appendix B

Appendix to Chapter 2

B.1 Proofs and discussions of results except the regret upper bound

B.1.1 A simple regret rate lower bound: proof of Theorem 2.3.5

In this section, we prove Theorem 2.3.5, restated below.

Theorem 2.3.5. Fix a set of valid hyperparametersH = (σℓ, σu, sℓ, su, A0, A1, α, β0, p) for Assump-

tions 2.3.2 to 2.3.4. Let P(H, σ1:n) be the set of distributions P0 on support points σ1:n which satisfy

(2.7) and Assumptions 2.3.2 to 2.3.4 corresponding to H. For a given P0, let θ∗i = EP0 [θi | Yi, σi]

denote the oracle posterior means. Then there exists a constant cH > 0 such that the worst-case Bayes

regret of any estimator exceeds cHn
− 2p

2p+1 :

inf
θ̂1:n

sup
σ1:n∈(σℓ,σu)
P0∈P(H,σ1:n)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2 − (θ∗i − θi)2
]
≥ cHn−

2p
2p+1 ,

where the infimum is taken over all (possibly randomized) estimators of θ1:n.

Proof. We consider a specific choice of G0, σ1:n, and s0. Namely, suppose G0 ∼ N (0, 1), σ1:n are

equally spaced in [σℓ, σu], and s0(σ) = (sℓ + su)/2 ≡ s0 is constant. Note that we can represent

Yi = θi + σℓWi︸ ︷︷ ︸
Vi

+(σ2i − σℓ)1/2Ui.

for independent Gaussians Wi, Ui ∼ N (0, 1). Suppose we are additionally given Vi, σℓ. The expanded
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class of estimators θ̃1:n that may depend on Vi, σℓ is larger than the estimators θ̂1:n. Moreover,

since ((Vi, σi)
n
i=1, σℓ) is sufficient for θ1:n, we may restrict attention to θ̃1:n that depend solely on

V1:n, σ1:n, σℓ.

Under our assumptions, the oracle posterior means θ∗i are equal to

θ∗i =
s20

s20 + σ2i
Yi +

σ2i
s20 + σ2i

m0(σi)

For a given vector of estimates θ̃1:n, we can form

m̂(σi) =
s20 + σ2i
σ2i

(
θ̃i −

s20
s20 + σ2i

Yi

)
Then

E

[
1

n

n∑
i=1

(θ̃i − θ∗i )2
]
= E

[
1

n

n∑
i=1

(
σ2i

s20 + σ2i

)2

(m̂(σi)−m0(σi))
2

]
≳ E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
.

We have just shown that

inf
θ̂1:n

sup
σ1:n,P0

E

[
1

n

n∑
i=1

(θ̂i − θi)2 − (θ∗i − θi)2
]
≳ inf

m̂
sup
m0

E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]

where the supremum is over m0 satisfying Assumption 2.3.4, and the infimum is over all randomized

estimators ofm0(σ1), . . . ,m0(σn) with data (Vi, σi). Note that the squared error loss on the right-hand

side takes expectation over the fixed design points σ1, . . . , σn.

Lastly, we connect the squared loss on the design points to the L2 loss of estimating m0(·) with

homoskedastic data Vi ∼ N (m0(σi), σ
2
ℓ + s20). Since we are simply confronted with a nonparametric

regression problem, note that we may translate and rescale so that the design points σ1:n are equally

spaced in [0, 1] and the variance of Vi is 1—potentially changing the constant A1 for the Hölder

smoothness condition. The remaining task is to connect the average ℓ2 loss on a set of equally spaced

grid points to the L2 loss over the interval.

Observe that for any m̂(σ1), . . . , m̂(σn), there is a function m̃ : [0, 1]→ R such that its average

value on [1 + (i− 1)/n, 1 + i/n] is m̂(σi):

n

∫
[1+(i−1)/n,1+i/n]

m̃(σ) dσ = m̂(σi).
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Now, note that∫ 1

0
(m̃(x)−m0(x))

2 dx =
n∑
i=1

∫
[(i−1)/n,i/n]

(m̃(x)−m0(x))
2 dx

≤ 2
n∑
i=1

∫
[(i−1)/n,i/n]

(m̃(x)−m0(σi))
2 + (m0(σi)−m0(x))

2 dx

(Triangle inequality)

≤ 2

n∑
i=1

[
1

n
(m̂i −m0(σi))

2 +
L2

n3

]

=
2

n

n∑
i=1

(m̂i −m0(σi))
2 +

2L2

n2
.

The third line follows by observing (i)
∫
I(m̃(x)−m0(σi))

2 dx =
(
n
∫
I m̃(x) dx−m0(σi)

)2 1
n and

(ii) m0(·) is Lipschitz for some constant L since p ≥ 1 in Assumption 2.3.4.

Therefore,

inf
m̂

sup
m0

E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
≥ 1

2
inf
m̃

sup
m0

{
E

[∫ 1

0
(m̃(x)−m0(x))

2 dx

]
− 2L2

n2

}
≳H n

− 2p
2p+1 ,

where the last inequality follows from the well-known result of L2 minimax regression rate for Hölder

classes. See, for instance, Corollary 2.3 in Tsybakov (2008).

Remark B.1.1. For ease of interpretation, Theorem 2.3.5 is stated in the expected regret version, which

is slightly disconnected from the upper bound Theorem 2.3.3, which conditions on a high-probability

event. Observe that Theorem 2.3.3 immediately implies the in-probability upper bound on Regret:

Regret(Ĝn, η̂) = OP

(
n
− 2p

2p+1 (log n)
2+α
α

+3+2β0
)
.

Using the in-probability version of the minimax lower bound for nonparametric regression in Theo-

rem 2.3.5 then implies an analogous lower bound (See, for instance, Theorems 2.4 and 2.5 in Tsybakov,

2008). ■

B.1.2 Relating other decision objects to squared-error loss

Theorem 2.3.7. Suppose (2.4) holds, but (2.7) may or may not hold. Let δ̂i be the plug-in decisions

with any vector of estimates θ̂i, not necessarily from CLOSE-NPMLE. We have the following inequalities
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on the expected regret corresponding to the decision rules δ̂i:

1. For UTILITY MAXIMIZATION BY SELECTION,

E[UMRegretn] ≤

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (2.22)

2. For TOP-m SELECTION,

E[TopRegret(m)
n ] ≤ 2

√
n

m

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (2.23)

Proof. 1. We compute

UMRegretn =
1

n

n∑
i=1

1(θ∗i ≥ ci)(θi − ci)−
1

n

n∑
i=1

1(θ̂i ≥ ci)(θi − ci)

=
1

n

n∑
i=1

{
1(θ∗i ≥ ci)− 1(θ̂i ≥ ci)

}
(θi − ci)

By law of iterated expectations, since θ̂i, θ∗i are both measurable with respect to the data,1

E[UMRegretn] = E

[
1

n

n∑
i=1

{
1(θ∗i ≥ ci)− 1(θ̂i ≥ ci)

}
(θ∗i − ci)

]

Note that, for 1(θ∗i ≥ ci)−1(θ̂i ≥ ci) to be nonzero, ci is between θ̂i and θ∗i . Hence, |θ∗i−ci| ≤ |θ∗i−θi|

and thus

E[UMRegretn] ≤ E

[
1

n

n∑
i=1

|θ∗i − θi|

]
≤ E

[
1

n

n∑
i=1

(θ∗i − θi)2
]1/2

. (Jensen’s inequality)

2. Let J ∗ collect the indices of the top-m entries of θ∗i and let Ĵ collect the indices of the top-m

entries of θ̂i. Then,

m

n
TopRegret(m)

n =
1

n

n∑
i=1

{
1(i ∈ J ∗)− 1(i ∈ Ĵ )

}
θi

1For a randomized decision rule θ̂i that is additionally measurable with respect to some U independent of (θi, Yi, σi)ni=1,
this step continues to hold since E[θi | U, Yi, σi] = θ∗i .
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and hence, by law of iterated expectations,

m

n
E[TopRegret(m)

n ] =
1

n

n∑
i=1

E
[{
1(i ∈ J ∗)− 1(i ∈ Ĵ )

}
θ∗i

]
.

Observe that this can be controlled by applying Theorem B.1.2, where wi = 0 for all i ≤ n−m and

wi = 1 for all i > n−m. In this case, ∥w∥ =
√
m. Hence,

m

n
E[TopRegret(m)

n ] ≤ 2

√
m

n
E

( 1

n

n∑
i=1

(θ̂i − θ∗i )2
)1/2

 ≤ 2

√
m

n

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

.

Divide through by m/n to obtain the result.

Proposition B.1.2. Suppose σ(·) is a permutation such that θ̂σ(n) ≥ · · · ≥ θ̂σ(1). Then

1

n

n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ
∗
σ(i) ≤

2∥w∥√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2,

where ∥w∥ =
√∑

iw
2
i .

Proof. We compute

1

n

n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ
∗
σ(i) ≤

∣∣∣∣∣ 1n
n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ̂σ(i)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

wi(θ̂σ(i) − θ∗σ(i))

∣∣∣∣∣
≤ ∥w∥2√

n
·

(
1

n

n∑
i=1

(θ∗(i) − θ̂σ(i))
2

)1/2

+
∥w∥2√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2

≤ 2
∥w∥2√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2.

The last step follows from the observation that

n∑
i=1

(θ∗(i) − θ̂σ(i))
2 ≤

n∑
i=1

(θ̂i − θ∗i )2.

The left-hand side is the sorted difference between θ∗i and θ̂i. This is smaller than the unsorted

difference by an application of the rearrangement inequality.2

2That is, for all real numbers x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn,
∑
i xiyπ(i) ≤

∑
i xiyi for any permutation π(·).
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B.1.3 Worst-case risk

Theorem 2.3.10. Under (2.4) but not (2.7), assume the conditional distribution θi | σi has mean

m0(σi) and variance s20(σi). Denote the set of distributions of θ1:n | σ1:n which obey these restrictions

as P(m0, s0). Let θ̂i,G∗
0,η0

denote the posterior mean estimates with some prior P ∗ under the location-

scale model P ∗ (θi ≤ t | σi) = G∗
0

(
t−m0(σi)
s0(σi)

)
, for some fixed G∗

0 with zero mean and unit variance.

Let ρ̄ = maxi s
2
0(σi)/σ

2
i <∞ be the maximal conditional signal-to-noise ratio and assume that it is

bounded. Then, for some Cρ̄ <∞ that solely depends on ρ̄,

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i,G∗
0,η0
− θi)2

]
≤ Cρ̄ · inf

θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
. (2.24)

where the infimum on the right-hand side is over all (possibly randomized) estimators of θi given

(Yi, σi)
n
i=1 and η0(·).

Proof. Note that

θ̂i,G∗
0,η0

= s0(σi)τ̂i,G∗
0,η0

+m0(σi)

and

θi = s0(σi)τi +m0(σi).

Thus,
1

n

n∑
i=1

(θ̂i − θi)2 =
1

n

n∑
i=1

s20(σi)(τ̂i,G∗
0,η0
− τi)2.

Chen (2023) shows that

R̄B ≡ sup
{
Eτi∼G(i),Zi|τi∼N (τi,ν2i )

[(τ̂i,G∗
0,η0
− τi)2] : νi > 0, G(i), G

∗
0 has zero mean and unit variance

}
is finite. Taking the expected value with respect to P0 ∈ P(m0, s0) and apply the bound R̄B, we have

that

E

[
1

n

n∑
i=1

(θ̂i − θi)2
]
≤ R̄B

1

n

n∑
i=1

s20(σi).

Note that when P0 is such that θi | σi ∼ N (m0(σi), s
2
0(σi)), the risk of any procedure exceeds the
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Bayes risk (achieved by (2.13)). Hence, the Bayes risk under this P0 lower bounds the minimax risk

1

n

n∑
i=1

σ2i
σ2i + s20(σi)

s20(σi) ≤ inf
θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
.

Note that, for some cσℓ,su > 0,

1

n

n∑
i=1

σ2i
σ2i + s20(σi)

s20(σi) =
1

n

n∑
i=1

1

1 + s20(σi)/σ
2
i

s20(σi) ≥ cρ̄
1

n

n∑
i=1

s20(σi).

Hence

E

[
1

n

n∑
i=1

(θ̂i − θi)2
]
≤ R̄B

cρ̄

1

n

n∑
i=1

σ2i
σ2i + s20(σi)

s20(σi) ≤ Cρ̄ inf
θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
.

B.1.4 Unbiased loss estimation

Proposition B.1.3. Suppose (Yi, σi) obey the Gaussian heteroskedastic location model, assumed to

be independent across i (2.4). Fix some ω > 0 and let Y (1)
1:n , Y

(2)
1:n be the coupled bootstrap draws.

For some decision problem, let δ(Y (1)
1:n ) be some decision rule using only data

(
Y

(1)
i , σ2i,(1)

)n
i=1

. Let

F =
(
θ1:n, Y

(1)
1:n , σ1:n,(1), σ1:n,(2)

)
, for Decision Problems 1 to 3, the estimators T (Y (2)

1:n , δ) displayed

in Table 2.1 are unbiased for the corresponding loss:

E
[
T (Y

(2)
1:n , δ(Y

(1)
1:n )) | F

]
= L

(
δ(Y

(1)
1:n ), θ1:n

)
.

Moreover, their conditional variances are equal to those expressions displayed in the third column of

Table 2.1.

Proof. These are straightforward calculations of the expectation. Since every expectation and variance

is conditional on θ1:n, Y
(1)
1:n , σ1:n,(1), σ1:n,(2), we write E[· | F ] and Var(· | F) without ambiguity.

1. (Decision Problem 1) The unbiased estimation follows directly from the calculation

E
[
(Y

(2)
i − δi(Y (1)

1:n ))
2 | F

]
= (θ

(2)
i − δi(Y

(1)
1:n ))

2 + σ2i,(2)

The conditional variance statement holds by definition.
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2. (Decision Problem 2) The unbiased estimation follows directly from the calculation

E
[
δi(Y

(1)
1:n )(Y

(2)
i − ci) | F

]
= δi(Y

(1)
1:n )(θi − ci).

The conditional variance statement follows from

Var
[
δi(Y

(1)
1:n )(Y

(2)
i − ci) | F

]
= δi(Y

(1)
1:n )σ

2
1:n,(2).

3. (Decision Problem 3) The loss function for Decision Problem 3 is the same as that for Decision

Problem 2 with ci = 0. Since we condition on Y (1)
1:n , the argument is thus analogous.

B.1.5 A discrete choice model

There are n options facing N consumers, where each consumer chooses one option. Each option is

characterized by idiosyncratic quality βj and inherent quality αj . The latent quality of an option is

θj = αj + ρ
Nj
E[N ] , where Nj ≤ N is the number of consumers using option j, generated in equilibrium

from a discrete choice model. The term ρNj reflects externalities generated by the users of an option

(congestion). We assume that αj , βj
i.i.d.∼ F where µ denotes E[αj + βj ] and σ2α, σ

2
β, σαβ denotes the

variances and covariance of α and β.

To connect this model to our setting, we can imagine that the data analyst has estimates Yj for θj ,

whose standard errors are a function of Nj . The discrete choice model specifies how Nj selects on the

quality component αj , and ρ determines how θj is affected by Nj . We characterize Cov(θj , Nj) as a

function of the primitives ρ, µ, σα, σβ, σαβ.

Each individual i is endowed with a private type ϵi = (ϵi1, . . . , ϵiJ) of i.i.d Type-1 extreme value

random utilities. This prior for ϵi is common knowledge and well-specified. α1:n, β1:n, N are common

knowledge as well. Each individual i is an expected utility maximizer, where the utility of item j is

Vj =

(
αj + βj + ρ

Nj,−i
N − 1

)
exp (ϵij)

where Nj,−i is the number of other individuals choosing item j. Since individuals other than i are
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symmetric to i, the expected utility (conditional on what i observes) is3

EiVj = (αj + βj + ρπ−ij) exp (ϵij) ,

where π−ij is i’s prior expectation of Nj,−i/(N − 1). A Bayes-Nash equilibrium is one in which

individual i chooses the option with the highest EiVj and his beliefs about other individuals, π−ij , are

correct.

Since individuals are ex-ante symmetric, we assume that

π−ij = πj = P (EiVj ≥ EiVk ∀k).

In such a symmetric equilibrium, π solves the system of equations

αj + βj + ρπj(N − 1)∑
j αj + βj + ρπj(N − 1)

= πj =⇒ πj =
αj + βj∑
j αj + βj

.

Finally, we assume that the total number of consumers is ex ante random

N | (α1:n, β1:n) ∼ Pois

λ ·
 n∑
j=1

αj + βj

 .

Assume that the data-generating process draws α, β,N , and individuals play the Bayes–Nash equilib-

rium under symmetric beliefs π. By the thinning property of Poisson processes, we have that

Lemma B.1.4. Nj | (α1:n, β1:n) ∼ Pois (λ(αj + βj)) independently across j.

Now, under this process, we can compute the covariance between the latent quality θj and the

sample size Nj in closed form:

Cov (θj , Nj) = Cov(αj , Nj)︸ ︷︷ ︸
selection

+
ρ

λnµ
Var(Nj)︸ ︷︷ ︸

congestion

= λ(σ2α + σαβ) +
ρ

λnµ

[
λµ+ λ2(σ2α + σ2β + 2σαβ)

]

3Note that the externality that enters the utility is different from the externality in θ. This is for analytical tractability
purposes.

To prevent the utility component from becoming negative, we additionally assume that αj + βj > −ρ almost surely,
which imposes that ρ > −µ.
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This is positive—meaning that the latent quality is positively associated with precision—iff

ρ

λnµ
> −Cov(αj , Nj)

Var(Nj)
= −

σ2α + σαβ
µ+ λ(σ2α + σ2β + 2σαβ)

.

When the selection effect is positive (Cov(αj , Nj)), the above display requires the externality ρ to not

be too negative so as to dominate the selection effect. Note that the sign of the selection contribution

depends on the covariance between α and β, and thus could be negative. Moreover, if α instead were

an undesirable trait to consumers, then the selection effect may also be negative. The congestion effect

similarly does not have to be negative. We allow for positive spillovers by ρ > 0.

We can interpret various empirical observations through this model:

• For hospital value-added (Chandra et al., 2016), Nj positively selects on hospital quality αj .

This is likely true for most value-added settings.

• For teacher value-added, it is possible (Lazear, 2001; Barrett and Toma, 2013; Mehta, 2019) that

teachers may prefer smaller classes, and school administrators may reward good teachers by

letting them teach smaller classes. In the lens of this model, Nj negatively selects on quality.4

• In integenerational mobility, Nj is the number of poor minority households. Higher Nj leads to

oppressive institutions and residential segregation. We can interpret these pernicious effects as a

negative ρ.

However, this model does not capture all channels through which θj can be correlated with σj . For

instance, the following is difficult to map to the discrete choice model.

• In unbalanced panel data settings, the length of the observed period for a unit—which relates to

the precision of the unit’s estimated fixed effect—may be correlated with the underlying fixed

effect. This observation dates at least to Olley and Pakes (1996), who note that in a firm panel,

those firms with shorter observed period are probably less productive and have to shut down

sooner. For value-added modeling of nursing homes, Einav et al. (2022) note that patients with

shorter stays at nursing homes typically experience an adverse health event, including death.

4Though the channel is not through student-level discrete choice of teachers.
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Such events are presumably more likely for worse nursing homes, again inducing a correlation

between nursing home qualities and the sample sizes used to estimate them. Similarly, for

teacher value-added, Bruhn et al. (2022) find that teachers who have shorter observed spells in

administrative datasets tend to be worse and have noisier value added estimates.

B.1.6 Interpretation of empirical Bayes sampling model

When the empirical Bayes sampling model fails to hold, empirical Bayes methods do not precisely

mimic an oracle Bayesian’s decision. However, in many cases, we can still interpret the empirical

Bayes decision rules. In most such cases, the interpretation is in terms of emulating an oracle Bayesian

who is constrained. The oracles are constrained either by removing its access to certain information

or by restricting its decisions to a particular class. We will consider two scenarios when such an

interpration is natural.

Interpretation when independence of units fails

We consider the interpretation of the sampling model (2.4) when it is misspecified. Recall that we

assume (Yi, θi, σi) are sampled independently across i, with Yi | θi, σi ∼ N (θi, σi). This sampling

model can fail in two ways. First, it is possible that Y1:n | θ1:n, σ1:n are correlated but still multivariate

Gaussian. Second, it is possible that (θi, σi) are correlated across i. Here, we limit our discussion to

Decision Problem 1.

Let Y = (Y1, . . . , Yn) and θ = (θ1, . . . , θn)
′. Let us assume instead that

Y | θ,Σ ∼ N (θ,Σ)

where diag(Σ) = [σ21, . . . , σ
2
n] and the variance-covariance matrix Σ is known. Let Q0 be the joint

distribution of θ | Σ. Now, the oracle Bayesian—who knows Q0—would use EQ0 [θi | Y ,Σ] as

their decision rule. The empirical Bayesian can similarly emulate that oracle Bayes decision rule by

estimating Q0. If the empirical Bayesian is willing to assume that the location-scale assumption (2.7)

describes Q0:

(θi | Σ) ∼ (θi | σ1:n) ∼ G0

(
· −m0(σi)

s0(σi)

)
,
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then the empirical Bayesian can similarly implement CLOSE, and output estimates of EQ0 [θi | Y ,Σ].

We should caveat that the NPMLE step no longer maximizes the full likelihood of Y with respect to

G0, but a quasi-likelihood that averages over the log-likelihood of each Yi separately, ignoring their

joint distribution.

Now, let us consider what interpretation our method has when we erroneously assume either the

independence of Yi across i or that θi | Σ are independent across i. The latter independence may fail,

for instance, when the populations index places, and the θi’s are thought to be spatially correlated (e.g.,

in Müller and Watson, 2022). Consider the class of separable decision rules, where the forecast for θi

can depend solely on Yi, σi:

δi(Y , σ1:n) = δi(Yi, σi).

Consider a constrained oracle Bayesian who is forced to use a separable decision rule. They would use

EQ0 [θi | Yi, σi]. Note that this constrained decision rule depends on Q0 only through the distribution

θi | σi (and not θi | Σ). Thus, under the location-scale assumption

(θi | σ1:n) ∼ G0

(
· −m0(σi)

s0(σi)

)
,

CLOSE-based methods emulate this oracle Bayesian constrained to separable decision rules. Of course,

the resulting empirical Bayesian decision rule is not separable (since Ĝn presumably depends on all the

data), but it seeks to emulate the best possible separable rule. This interpretation in terms of emulating

a constrained oracle Bayesian holds regardless of the joint distribution of Y or of θ, so long as our

specification of the marginal distribution holds. Of course, our regret results do not immediately carry

over to this setting.

Interpretation with additional covariates Xi

Additionally, we may also have population-level covariates Xi. Let us maintain that Xi does not

predict the noise in Yi:

Yi y Xi | θi, σi.
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Here, we will discuss two questions. First, how do we handle covariates? Second, what is the difference

between using Xi and σi—is the standard error simply a covariate?5

On the first question, there are two ways of incorporating covariates, under similar but distinct

assumptions. First, CLOSE-methods can be extended to incorporate covariates by augmenting (2.7) to

incorporate covariates. That is, we can instead assume that

P0(θi ≤ t | Xi, σi) ∼ G0

(
t−m0(σi, Xi)

s0(σi, Xi)

)
(B.1)

and estimate m0, s0 nonparametrically. Instead of being one-dimensional nonparametric regression

problems, they are now (d+ 1)-dimensional nonparametric problems. Under the same Hölder-type

smoothness conditions, the corresponding regret rate replaces n−
2p

2p+1 with n−
2p

2p+1+d . Second, as

we do in the empirical exercises, one could consider a strategy of residualizing against Xi in some

arbitrary way, performing empirical Bayes, and undoing the residualization. This strategy dates back

to Fay and Herriot (1979). That is, with raw data Ỹi for parameter ϑi, we can consider forming the

residuals Yi = Ỹi − b(Xi) and θi = Yi − b(Xi), and perform empirical Bayes methods on (Yi, θi, σi).

At a high level, we can rationalize this strategy as mimicking a constrained oracle Bayesian who solely

has access to Yi, σi, who knows the joint distribution of (θi, σi), but who does not have access to Xi.

Note that this interpretation is coherent regardless of the transformation b(Xi), allowing us to be more

blasé about modeling Xi than the previous approach. In particular, choosing b(Xi) = 0 ignores the

covariate entirely; the resulting empirical Bayes procedure mimics an oracle that does not have access

to Xi. Of course, when we impose the location-scale assumption (2.7) on (θi, σi), different b(Xi)

gives rise to different—and possibly mutually exclusive—underlying models on (ϑi, σi, Xi).

On the second question, in an operational sense, σi is simply another covariate. σi is not particularly

special in the assumption (B.1), and one interpretation of CLOSE is treating σi precisely as a covariate

to be regressed out. However, σi does occupy a special place in the statistical structure of the problem.

The likelihood of the data, Yi | θi, σi, depends on σi but not Xi. This special role of σi means that we

5Covariates are considered in Ignatiadis and Wager (2019). They assume a homoskedastic setting where the prior
depends on some covariates Xi: i.e., in our notation, θi | Xi ∼ N (m(Xi), s

2
0) and Yi | θi ∼ N (θi, σ

2). Starting from our
setting (2.7), to obtain theirs, one would (i) restrict to homoskedasticity σi = σ, (ii) consider some covariates Xi that predict
θi, and model θi | Xi as a conditional location—but not scale—family, and (iii) restrict G0 ∼ N (0, 1).

Their minimax lower bound on the regret uses essentially the same argument as we do in Theorem 2.3.5.
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must treat it with more care so that the resulting procedure has a coherent interpretation. If we wanted

to ignore covariates Xi, we can imagine an oracle Bayesian who does not have access to Xi, and the

resulting empirical procedure simply mimics that constrained oracle. This line of reasoning does not

work with σi, since any oracle Bayesian—constrained or otherwise—must have access to σi. As a

result, we cannot avoid the problem of modeling θi | σi as easily as we could have avoided modeling

θi | Xi, σi by changing the goalpost.

B.1.7 Alternatives to CLOSE

Alternative methods

Let us turn to a few specific alternative methods that consider failure of prior independence. We argue

that they do not provide a free-lunch improvement over our assumptions. At a glance, these alternative

methods have properties summarized in Table B.1.

Table B.1: Properties of alternative methods

t-ratios Var. stab.
transforms

Random σ̂i SURE

Restrict to a class of procedures X X
Change the loss function X X
Require access to micro-data X
Assume θi is independent from some other known

nuisance parameter, e.g. ni
X X

Parametric restrictions on the micro-data X X

Alternative 1 (Working with t-ratios). We may consider normalizing σi away by working with t-ratios

Ti ≡ Yi
σi
| (σi, θi) ∼ N (θi/σi, 1) . The resulting problem is homoskedastic by construction. It is

natural to consider performing empirical Bayes shrinkage assuming that θi
σi

i.i.d.∼ H0, and use, say,

σiEĤn

[
θi
σi
| Ti
]

as an estimator for the posterior mean of θi (Jiang and Zhang, 2010). However, such

an approach approximates the optimal decision rule within a restricted class on a different objective.

Let us restrict decision rules to those of the form δi,t-stat(Yi, σi) = σih(Yi/σi). The oracle Bayes

choice of h is h⋆(Ti) =
E[σiθi|Ti]
E[σ2

i |Ti]
. However, h⋆ is not the posterior mean of θi/σi given the t-ratio

Ti, unless σ2i y θi/σi. On the other hand, the loss function that does rationalize the posterior mean

h(Ti) = E[θi/σi | Ti] is the precision-weighted compound loss L(δ, θ1:n) = 1
n

∑n
i=1 σ

−2
i (δi − θi)2.
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Thus, rescaling posterior means on t-ratios achieves optimality for a weighted objective among a

restricted class of decision rules δi,t-stat. ■

Alternative 2 (Variance-stabilizing transforms). Second, we may consider a variance-stabilizing

transform when the underlying micro-data are Bernoulli and θi is a Bernoulli mean (Efron and Morris,

1975; Brown, 2008). Specifically, we rely on the asymptotic approximation

√
ni(Yi − θi)

d−→
ni→∞

N (0, θi(1− θi)).

A variance-stabilizing transform can disentangle the dependence: Let Wi = 2arcsin(
√
Yi) and

ωi = 2arcsin(
√
θi), and, by the delta method,

√
ni (Wi − ωi)

d−→
ni→∞

N (0, 1). Thus, approximately, Wi | ωi, ni ∼ N
(
ωi,

1

ni

)
.

One might consider an empirical Bayes approach on the resulting Wi. Note that Wi may still violate

prior independence, since ωi may not be independent of ni. Moreover, squared error loss on estimating

ωi = 2arcsin(
√
θi) is different from squared error loss on estimating θi. We do not know of any

guarantees for the loss function on θi, 1
n

∑n
i=1(δi − sin2(ωi/2))

2, when we perform empirical Bayes

analysis on ωi. ■

Alternative 3 (Treating the standard error as estimated). Lastly, if the researcher has access to

micro-data, Gu and Koenker (2017) and Fu et al. (2020) propose empirical Bayes strategies that

treat σi as noisy as well, in which we know the likelihood of (Yi, σi). This approach allows for

dependence between θi and σi but assumes independence between (θi, σi) and some other known

nuisance parameter. To describe their model, we introduce more notation. Let Yij , j = 1, . . . , ni,

denote the micro-data for population i, where, for each i, we are interested in the mean of Yij . Let Yi

denote their sample mean and S2
i denote their sample variance, where σ2i = S2

i /ni. Let σ2i0 denote the

true variance of observations from population i.

Both papers work under Gaussian assumptions on the micro-data. This parametric assumption6 on

the micro-data—which is stronger than we require—implies that Yi y S2
i | (σi0, θi, ni) with marginal

6The parametric restriction on the micro-data Yij can be relaxed by appealing to the asymptotic distribution of (Yi, S2
i )—

resulting in the Gaussian likelihood (Yi, S
2
i ) | θi,Σi ∼ N (θi,Σi). In general, however, Σi also depends on ni and higher

moments of Yij , which again may not be independent of θi.
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distributions:

Yi | σi0, θi, ni ∼ N
(
θi,

σ2i0
ni

)
S2
i | σi0, θi, ni ∼ Gamma

(
ni − 1

2
,

1

2σ2i0

)
.

They then propose empirical Bayes methods treating Yi ≡ (Yi, S
2
i ) as noisy estimates for parameters

θi ≡ (θi, σ
2
i0). This formulation allows θi to have a flexible distribution, and thus allows for depen-

dence between θi and σ2i0. However, since the known sample size ni enters the likelihood of Yi, this

approach still assumes that ni y θi. ■

This discussion is not to say that CLOSE is necessarily preferable to these alternatives. It highlights

that the possible dependence between θi and σi cannot be easily resolved. As summarized in Table B.1,

existing alternatives compromise on optimality, use a different loss function, or implicitly assume θi is

independent from components of σ2i (e.g., ni). Of course, depending on the empirical context, these

may well be reasonable features.

In contrast, our approach models θi | σi directly via the location-scale assumption (2.7). A natural

question is whether other types of modeling may be superior—which we turn to next. We argue that the

location-scale model uniquely capitalizes on the appealing properties of the NPMLE-based empirical

Bayes approaches.

Alternative models for θi | σi

One alternative is simply treating the joint distribution of (θi, σi) fully nonparametrically. For instance,

an f -modeling approach with Tweedie’s formula7 implies that an estimate of the conditional distribu-

7That is, the posterior mean can be written as a functional of the density of Y :

E[θi | Yi, σi] = Yi + σ2
i
d

dy
log f(y | σi)

∣∣∣∣
y=Yi

,

where f(y | σ) is the conditional density of Y | σ. Empirical Bayes approaches exploiting this formula is known as
f -modeling (Efron, 2014), since f usually denotes the marginal distribution of Y . This is in contrast to g-modeling, which
seeks to estimate the prior distribution of θi.

Brown and Greenshtein (2009) develop an f -modeling approach with a kernel smoothing density estimator in the
homoskedastic setting. Liu et al. (2020) extend this approach to a homoskedastic, balanced dynamic panel setting, where
the initial outcome for each unit acts as a known nuisance parameter, much like σi in our case. Brown and Greenshtein
(2009) and Liu et al. (2020) show that the squared error Bayes regret converges to zero faster than the oracle Bayes risk.
These guarantees do not imply regret rate characterizations similar to those that we obtain. See Jiang and Zhang (2009)
for additional discussion about the strengths of the theoretical results in Brown and Greenshtein (2009) compared to
NPMLE-based g-modeling approaches.
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tion Yi | σi is all one needs for computing the posterior means (Brown and Greenshtein, 2009; Liu

et al., 2020; Luo et al., 2023). However, conditional density estimation is a challenging problem, and

most available methods do not exploit the restriction that Yi | σi is a Gaussian convolution. Similarly,

one could consider flexible parametric g-modeling of θi | σi in the vein of the log-spline sieve of Efron

(2016).8 This has the advantage of estimating a smooth prior at the cost of having tuning parameters.

We are not aware of regret results for this approach.

If we commit to making some substantive restriction on the joint distribution of (θi, σi), it is fair to

ask why the conditional location-scale restriction (2.7) is necessarily preferable. However, if we wish

to capitalize on the theoretical and computational advantages of NPMLE, it is natural to consider a class

of procedures that transform the data in some way and use the NPMLE on the resulting transformed

data to estimate the prior distribution (Section B.1.7 gives a heuristic justification for this strategy). If

we wish to preserve the Gaussian location model structure on the transformed data, then effectively we

can only consider affine transformations (i.e., Z = a(σ) + b(σ)Y ) (shown in Theorem B.1.5 below).

If we further wish that Z obeys a Gaussian location model in which prior independence holds (i.e.,

τ ≡ a(σ) + b(σ)θ is independent from ν ≡ b(σ)σ)—so that we can apply NPMLE-based approaches

assuming prior independence—then we have no other choice but to assume (2.7). Thus, the conditional

location-scale assumption is uniquely well-suited to capitalize on the favorable properties of NPMLE

already established in the literature, which we extend via Theorem 2.3.3.

Lemma B.1.5. Let Y ∼ N (θ, σ2) with known σ2. Consider a strictly increasing and differentiable

function g(·). Let Z = h(Y ). Then the corresponding family of distributions of Z is a natural

exponential family if and only if h(Y ) = a+ bY .

Proof. The “if” part (⇐=) is immediate. We focus on the “only if” ( =⇒ ) part. Writing the

distribution of Y as an exponential family,

pY (y) ∝ exp

(
y
θ

σ2
+ g(y, σ) +A(θ, σ)

)

8Generalizing Efron (2016), we may model g(θ | σ) ∝ exp(
∑J
j=1 aj(σ;αj)pj(θ)) where p1, . . . , pJ are flexible sieve

expansions (e.g. spline basis functions) and aj(σ;αj) are flexible functions indexed by finite-dimensional parameters αj .
The parameters α1, . . . , αJ can be estimated by maximizing the penalized likelihood of Y1:n.
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for some g(y, σ) and A(θ, σ). Note that we have

pZ(z) = pY (y)

∣∣∣∣dydz
∣∣∣∣ = pY (h

−1(z))
dh−1(z)

dz

Thus, writing in exponential family form, for some g̃, we have that

pZ(z) ∝ exp

(
h−1(z)

θ

σ2
+ g̃(z, σ) +A(θ, σ)

)
Suppose Z follows a natural exponential family with natural parameter q(θ;σ). Then we can write

h−1(z)
θ

σ2
= zq(θ;σ) + v(θ, σ) + w(z).

Since h is strictly monotone and differentiable, so is h−1. Taking the z-derivative of both sides:

dh−1

dz
=
σ2

θ
q(θ;σ) + w′(z)

σ2

θ
.

Since the left-hand side does not depend on θ, it follows that

q(θ;σ) + w′(z)

θ

is free of θ for all z. Suppose w′(z) is not constant, then for z1 ̸= z2 and w′(z1) ̸= w′(z2), the

difference is θ-dependent

q(θ;σ) + w′(z1)

θ
− q(θ;σ) + w′(z2)

θ
=
w′(z1)− w′(z2)

θ
.

Hence w′(z) is a constant. As a result, dh
−1

dz does not depend on z, and hence h(z) = a+ bz.

Model-free interpretation of CLOSE-NPMLE

When the location-scale model fails to hold, it remains sensible to consider estimating the NPMLE on

an affine transformation of the data, as in CLOSE-NPMLE.

Let us first consider a given affine transformation of the data—not necessarily τ = Z−m0(σ)
s0(σ)

—into

(Zi, τi, νi) for which τi | νi ∼ H(i), and ask why NPMLE is reasonable. In population, NPMLE seeks to

minimize the average Kullback–Leibler (KL) divergence between the distribution of the estimates Zi
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and the distribution implied by the convolution H ⋆N (0, ν2i ):

max
H

1

n

n∑
i=1

EZi∼fH(i),νi
[log fH,νi(Zi)] , equivalent to min

H

1

n

n∑
i=1

KL
(
fH(i),νi ∥ fH,νi

)
,

where fH,ν is the density of the convolution H ⋆N (0, ν2). As shown by Jiang and Zhang (2009) and

Jiang (2020) (see Section B.3.3), the regret in mean-squared error under a misspecified prior τi ∼ H is

upper bounded by the average squared Hellinger distance between the distribution of the data and the

distribution implied by H . The average Hellinger distance is further upper bounded by the average KL

divergence:
1

n

n∑
i=1

h2
(
fH(i),νi , fH,νi

)
≤ 1

n

n∑
i=1

KL
(
fH(i),νi ∥ fH,νi

)
.

In this sense, even under misspecification (H(i) ̸= H(j)), NPMLE chooses a common distribution H

that minimizes an upper bound of regret.

Now that we have a justification for the NPMLE, let us consider the transformation we would

like to choose. It is reasonable, then, to choose the affine transform (a(σ), b(σ)) so that the resulting

conditional distributions H(i) of the transformed parameter τi | σi are similar—under some distance

measure. Doing so does not recover prior independence on the transformed data but limits the extent

of non-independence. Choosing a(σ), b(σ) to ensure that τi | σi has the same first two moments

is intuitively reasonable, and actually has a formal interpretation in terms of information-theoretic

divergences and optimal transport metrics, at least in a large-σ regime (Chen and Niles-Weed, 2022).

B.2 Additional empirical exercises

B.2.1 Positivity of s0(·) in the Opportunity Atlas data

In the Opportunity Atlas data, we often observe that the estimated conditional variance is neg-

ative: ŝ20 < 0. To test if this is due to sampling variation or underdispersion of the Opportu-

nity Atlas estimates relative to the estimated standard error, we consider the following upward-

biased estimator of s20(σi). Without loss, let us sort the Yi, σi by σi, where σ1 ≤ · · · ≤ σn. Let
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Figure B.1: Estimated conditional variance s20(σ), binned into deciles, with 95% uniform
confidence intervals shown.

Si =
1
2

[
(Yi+1 − Yi)2 − (σ2i + σ2i+1)

]
. Note that

E[Si | σ1:n] =
1

2
E[(θi+1 − θi)2 | σ1:n] =

s20(σi+1) + s20(σi)

2
+

1

2
(m0(σi+1)−m0(σi))

2

≥ s20(σi+1) + s20(σi)

2
.

Hence Si is an overestimate of the successive averages of s0(σ). Figure B.1 plot the estimated

conditional expectation of Si given σi, using a sample of (S1, S3, S5, . . .) so that the Si’s used

are mutually independent. We see that for many measures of economic mobility, we can reject

E[Si | σi] ≥ 0, indicating some overdispersion in the data.
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P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)
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Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Column median

85.0 88.4 91.4 91.7 91.8 91.7

87.0 90.3 94.2 95.0 95.1 94.9

81.9 88.5 93.2 93.4 93.5 92.9

89.4 92.3 93.5 94.9 94.9 94.7

82.9 85.9 92.6 93.6 93.7 93.6

57.7 80.8 91.4 92.8 92.9 92.9

74.6 80.3 93.8 94.9 94.9 94.8

46.0 53.0 95.4 97.8 97.5 97.2

69.6 75.7 90.2 93.5 93.6 93.4

36.8 44.8 94.4 97.5 97.0 96.6

50.6 58.9 88.2 91.2 91.0 90.7

73.9 80.7 91.2 96.3 96.8 95.1

47.8 52.4 96.4 97.9 97.4 97.2

59.6 64.0 93.2 97.4 97.6 96.8

41.7 49.3 96.0 96.6 96.3 96.2

69.6 80.3 93.2 94.9 94.9 94.8

What % of Naive-to-Oracle MSE gain do we capture?

Figure B.2: Additional CLOSE-NPMLE variants for the calibrated simulation in Section 2.5.
Here the results average over 100 replications.

B.2.2 Robustness checks for the calibration exercise in Section 2.5

In Figure B.2, we evaluate two variants of CLOSE-NPMLE. The first variant (column 4) uses an estimator

for s0(·) that smoothes the difference (Y − m̂(σ))2 − σ2, rather than smoothing (Y − m̂(σ))2 and

then subtracting σ2. Since local linear regression suffers from bias coming from the convexity of

the underlying unknown function, smoothing the difference can perform better, as the convexity bias

differences out. The second variant (column 6) projects the estimated NPMLE Ĝn to the space of mean

zero and variance one distributions, by normalizing by its estimated first and second moments. Neither

variant performs appreciably differently from the main version of CLOSE-NPMLE (column 5) that we

demonstrate in the main text.
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B.2.3 Simulation exercise setup

This section describes the details of the simulation exercise in Section 2.5. We restrict to the 10,109

tracts within the twenty largest Commuting Zones. Tracts with missing information are dropped for

each measure of mobility. Specifically, the simulated data-generating process is as follows:

(Sim-1) Residualize Ỹi against some covariates Xi to obtain β and residuals Yi. Estimate the

conditional moments m0, s0 on (Yi, σi) via local linear regression, described in Section B.7.

(Sim-2) Partition σ into vingtiles. Within each vingtile j, estimate an NPMLE Gj over the data(
Yi−m0(σi)
s0(σi)

, σi
s0(σi)

)
and normalize Gj to have zero mean and unit variance. Sample τ∗i | σi ∼ Gj if

observation i falls within vingtile j.

(Sim-3) Let ϑ∗i = s0(σi)τ
∗
i +m0(σi) + β′Xi and let Ỹ ∗

i | θ∗i , σi ∼ N (θ∗i , σ
2
i ).

The estimated β,m0, s0 will serve as the basis for the true data-generating process in the simulation,

and as a result we do not denote it with hats.

The covariates used are poverty rate in 2010, share of Black individuals in 2010, mean household

income in 2000, log wage growth for high school graduates, mean family income rank of parents,

mean family income rank of Black parents, the fraction with college or post-graduate degrees in 2010,

and the number of children—and the number of Black children—under 18 living in the given tract

with parents whose household income was below the national median. These covariates are included

in Chetty et al.’s (2020) publicly available data, and these descriptions are from their codebook. This

set of covariates is not precisely the same as what is used in Bergman et al. (2023). Bergman et al.

(2023) additionally use economic mobility estimates for a later birth cohort, which are not included in

the publicly released version of the Opportunity Atlas. The “number of children” variables are used by

(Chetty et al., 2020) as a population weighting variable; they contain some information on the implicit

micro-data sample sizes ni.

B.2.4 Different Monte Carlo setup

We have also conducted a Monte Carlo exercise where we replace (Sim-2) with the following step:
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28 67 81 88 76 97 87 87 100

60 71 71 75 85 98 89 90 99

30 59 80 89 78 94 87 87 100

-125 4 53 59 45 93 72 73 98

29 50 60 63 70 83 88 90 96

-6 33 92 96 46 60 95 96 99

23 48 71 73 70 80 90 94 96

-8 29 94 97 37 51 95 97 98

-6 34 69 70 51 62 90 97 92

63 78 93 98 76 87 94 96 99

42 54 93 96 47 56 95 97 98

44 61 94 97 61 71 95 97 99

25 43 88 90 41 51 94 97 96

28 50 80 88 65 83 90 94 99

What % of Naive-to-Oracle MSE gain do we capture?

Figure B.3: Analogue of Figure 2.4 for the data-generating process in Section B.2.4. Here
the results average over 100 replications.

• For each σi, let

αi =
1

2
+

1

2

m0(σi)−minim0(σi)

maxim0(σi)−mini(σi)
∈ [1/2, 1]

We sample τ∗i | σi as a scaled and shifted Weibull distribution with shape αi. The scaling

and translation ensures that τi | σi has mean zero and variance one. Because we choose the

Weibull distribution, the shape parameter αi corresponds exactly to α in Assumption 2.3.2.

Our choices of αi implies that τi | σi has thicker tails than exponential and does not have a

moment-generating function.

The Weibull distribution has thicker tails and is skewed, and as a result, NPMLE-based methods tend

to greatly outperform methods based on assuming Gaussian priors. Figure B.3 show the analogue of

Figure 2.4 for this data-generating process. Indeed, we see that INDEPENDENT-NPMLE improves over

INDEPENDENT-GAUSS considerably, and similarly for CLOSE-NPMLE and ORACLE-GAUSS.
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B.2.5 MSE in validation exercise with coupled bootstrap

We compare empirical Bayes procedures for the squared error estimation problem (Decision Problem 1),

in the setting of the validation exercise in Section 2.5. Since this is an empirical application on real,

rather than synthetic, data, we no longer have access to oracle estimators. As a result, for the relative

MSE performance, we normalize by a different benchmark. We can think of the performance gain of

INDEPENDENT-GAUSS over NAIVE as the value of doing basic, standard empirical Bayes shrinkage.

We normalize each method’s estimated MSE improvement against NAIVE as a multiple of this “value

of basic empirical Bayes.” Figure B.4(a) shows the resulting relative performance. Since our notion

of relative performance has changed, we use a different color scheme. A value of 1 means that a

method does exactly as well as INDEPENDENT-GAUSS, and a value of 2 means that, relative to NAIVE,

a method doubles the gain of basic empirical Bayes. Performance on a non-relative scale is shown in

Figure B.4(b).

We find that our empirical patterns from the calibrated simulation Figure 2.4 mostly persists

on real data. In particular, INDEPENDENT-NPMLE offers small improvements over INDEPENDENT-

GAUSS. Nevertheless, CLOSE-NPMLE continues to dominate other methods. Across the definitions

of ϑi, CLOSE-NPMLE generates a median of 180% the value of basic empirical Bayes. That is, on

mean-squared error, moving from INDEPENDENT-GAUSS to CLOSE-NPMLE is about half as valuable

as moving from NAIVE to INDEPENDENT-GAUSS. For our running example (TOP-20 PROBABILITY

for Black individuals), moving from INDEPENDENT-GAUSS to CLOSE-NPMLE is more valuable than

moving from NAIVE to INDEPENDENT-GAUSS. If practitioners find using the standard empirical Bayes

method to be a worthwhile investment over using the raw estimates directly, then they may find using

CLOSE-NPMLE over INDEPENDENT-GAUSS to be a similarly worthwhile investment.

B.2.6 Empirical Bayes pooling over all Commuting Zones in validation exercise

Here, we repeat the exercise in Figure 2.5, but we now estimate empirical Bayes methods pooling over

all Commuting Zones. We still pick the top third of every Commuting Zone. Our first exercise repeats

Figure 2.5 in this setting, shown in Figure B.5. The results are extremely similar.

Separately, we consider the version of this exercise without covariates in Figure B.6. We see that
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covariates are extremely important for the performance of INDEPENDENT-GAUSS, as it frequently

underperforms NAIVE without covariates.9 By comparison, they are less important for the performance

of CLOSE-NPMLE, as σi contains a lot of the signal in the tract-level covariates.

B.2.7 The tradeoff between accurate targeting and estimation precision

In this section, we investigate the tradeoff between accurate targeting and estimation precision. That

is, suppose θi, Yi, σi and ϑi,Υi, ςi are two sets variables corresponding to two measures of economic

mobility. For instance, perhaps θi is MEAN RANK for Black individuals and ϑi is MEAN RANK pooling

over all individuals. Suppose the decision maker would like to select populations with high θi, but the

estimates Yi are noisier than the estimates Υi. It is plausible that screening on posterior means for ϑi

might outperform screening on posterior means for θi.

We investigate this question via coupled bootstrap in the Bergman et al. (2023) exercise. In

particular, we let the subscript b (resp. w) denote quantities for Black (resp. white) individuals. We

assume that Yib y Yiw | θib, θiw. For each tract, we construct πi = nib/ni, where ni (resp. ni) is the

number of (resp. Black) children under 18 living in the given tract with parents whose household

income was below the national median.10 Let θi = πiθib + (1− πi)θiw be a pooled measure, where

Yi = πiYib + (1− πi)Yiw | θi ∼ N (0, π2i σ
2
ib + (1− πi)2σ2iw).

Each coupled bootstrap draw adds and subtracts noise Zib, Ziw to Yib and Yiw, where Zib y Ziw.

Bootstrap draws for Yi are constructed by taking the πi-combination of bootstrap draws for Yib, Yiw.

Here, we investigate whether screening tracts based on posterior mean estimates for θiw or θi

generates better decisions in terms of θib, owing to the precision in Yiw and Yi. Figure B.7 shows

estimated performances of different empirical Bayes methods by different proxy variables that the

screening targets. For each measure of economic mobility for Black individuals, dots on the thick

9This is in part since our implementation of INDEPENDENT-GAUSS uses weighted means for estimating the prior
parameters, worsening the misspecification. See Footnote 55.

10This is the demographic weighting variable used in Chetty et al. (2020). We use this weighting to construct a pooled
variable, rather than use the pooled variable in the Opportunity Atlas directly for the following reasons. The pooled estimates
of Chetty et al. (2020) unfortunately frequently lies outside the convex hull of the white and Black estimates, making it
difficult to infer the relative weights for Black individuals in a tract.
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black dashed line correspond to screening on the corresponding θib. Dots on the red (resp. blue)

dashed line correspond to screening on θiw (resp. θi). We see that for all three measures of economic

mobility, using CLOSE-NPMLE to screen on the original parameter θib performs best. In other words,

the benefits of higher precision are insufficient to offset inaccurate targeting.

B.3 Regret control proofs: Setup, assumptions, and notation

We recall some notation in the main text, and introduce additional notation. Recall that we assume

n ≥ 7. We observe (Yi, σi)
n
i=1, (Yi, σi) ∈ R× R>0 such that

Yi | (θi, σi) ∼ N (θi, σ
2
i )

and (Yi, θi, σi) are mutually independent. Assume that the joint distribution for (θi, σi) takes the

location-scale form (2.7)

θi | (σ1, . . . , σn) ∼ G0

(
θi −m0(σi)

s0(σi)

)
Define shorthands m0i = m0(σi) and s0i = s0(σi). Define the transformed parameter τi = θi−m0i

s0i
,

the transformed data Zi = Yi−m0i
s0i

, and the transformed variance ν2i =
σ2
i

s20i
. By assumption,

Zi | (τi, νi) ∼ N (τi, ν
2
i ) τi | ν1, . . . , νn

i.i.d.∼ G0.

Let η̂ = (m̂, ŝ) denote estimates of m0 and s0. Likewise, let η̂i = (m̂i, ŝi) = (m̂(σi), ŝ(σi)). For a

given η̂, define

Ẑi = Ẑi(η̂) = Ẑi(Zi, η̂) =
Yi − m̂i

ŝi
=
s0iZi +m0i − m̂i

ŝi
ν̂2i = ν̂2i (η̂) =

σ2i
ŝ2i
.

We will condition on σ1:n throughout, and hence we treat them as fixed.

For generic G and ν > 0, define

fG,ν(z) =

∫ ∞

−∞
φ

(
z − τ
ν

)
1

ν
G(dτ).

to be the marginal density of some mixed normal deviate Z | τ ∼ N (τ, ν2) with mixing distribution
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τ ∼ G. As a shorthand, we write

fi,G = fG,νi(Zi) f ′i,G = f ′G,νi(Zi)

Let the average squared Hellinger distance be

h̄2(fG1,·, fG2,·) =
1

n

n∑
i=1

h2 (fG1,νi , fG2,νi) .

For generic values η = (m, s) and distribution G, define the log-likelihood function

ψi(z, η,G) = ψi(z, (m, s), G) = log

∫ ∞

−∞
φ

(
Ẑi(η)− τ
ν̂i(η)

)
G(dτ) = log

(
ν̂i(η) · fG,ν̂i(η)(Ẑi(η))

)
Define

Subn(G) =

(
1

n

n∑
i=1

ψi(Zi, η0, G)−
1

n

n∑
i=1

ψi(Zi, η0, G0)

)
+

(B.2)

as the log-likelihood suboptimality of G against the true distribution G0, evaluated on the true, but

unobserved, transformed data Zi, νi.

Fix some generic G and η = (m, s). The empirical Bayes posterior mean ignores the fact that

G, η are potentially estimated. The posterior mean for θi = siτ +mi is

θ̂i,G,η = mi + siEG,ν̂i(η)[τ | Ẑi(η)].

Here, we define EG,ν [h(τ, Z) | z] as the function of z that equals the posterior mean for h(τ, Z) under

the data-generating model τ ∼ G and Z | τ ∼ N (τ, ν). Explicitly,

EG,ν [h(τ, Z) | z] =
1

fG,ν(z)

∫
h(τ, z)φ

(
z − τ
ν

)
1

ν
G(dτ).

Explicitly, by Tweedie’s formula,

EG,ν̂i(η)[τi | Ẑi(η)] = Ẑi(η) + ν̂2i (η)
f ′G,ν̂i(η)(Ẑi(η))

fG,ν̂i(η)(Ẑi(η))
.

Hence, since Ẑi(η) = Yi−mi
si

,

θ̂i,G,η = Yi + siν̂
2
i (η)

f ′G,ν̂i(η)(Ẑi(η))

fG,ν̂i(η)(Ẑi(η))
.
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Define θ∗i = θ̂i,G0,η0 to be the oracle Bayesian’s posterior mean. Fix some positive number ρ > 0,

define a regularized posterior mean as

θ̂i,G,η,ρ = Yi + siν̂
2
i (η)

f ′G,ν̂i(η)(Ẑi(η))

fG,ν̂i(η)(Ẑi(η)) ∨
ρ

ν̂i(η)

(B.3)

and define θ∗i,ρ = θ̂i,G0,η0,ρ correspondingly.

Lastly, we will also define

φ+(ρ) = φ−1(ρ) =

√
log

1

2πρ2
ρ ∈ (0, (2π)−1/2) (B.4)

so that φ(φ+(ρ)) = ρ. Observe that φ+(ρ) ≲
√
log(1/ρ).

B.3.1 Assumptions

Recall the assumptions we stated in the main text.

Assumption 2.3.1. Let ψi(Zi, η̂, G) ≡ log
(∫∞

−∞ φ
(
Ẑi−τ
ν̂i

)
G(dτ)

)
be the objective function in

(2.12), ignoring a constant factor 1/ν̂i. We assume that Ĝn satisfies

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn) ≥ sup
H∈P(R)

1

n

n∑
i=1

ψi(Zi, η̂, H)− κn (2.17)

for tolerance κn

κn =
2

n
log

(
n√
2πe

)
. (2.18)

Moreover, we require that Ĝn has support points within [mini Ẑi,maxi Ẑi]. To ensure that κn is

positive, we assume that n ≥ 7 = ⌈
√
2πe⌉.11

Assumption 2.3.2. The distribution G0 is has zero mean, unit variance, and admits simultaneous

moment control with parameter α ∈ (0, 2]: There exists a constant A0 > 0 such that for all p > 0,

(Eτ∼G0 [|τ |p])
1/p ≤ A0p

1/α. (2.19)

11The constants κn also feature in Jiang (2020) to ensure that the fitted likelihood is bounded away from zero. The
particular constants in κn are chosen to simplify expressions and are not material to the result.
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Assumption 2.3.3. The variances (σ1:n, s0) admit lower and upper bounds:

σℓ < σi < σu and sℓ < s0(·) < su,

where 0 < σℓ, σu, s0ℓ, s0u <∞. This implies that 0 < νℓ ≤ νi = σi
s0(σi)

≤ νu <∞ for some νℓ, νu.

Assumption 2.3.4. Let CpA1
([σℓ, σu]) be the Hölder class of order p ≥ 1 with maximal Hölder norm

A1 > 0 supported on [σℓ, σu].12 We assume that

1. The true conditional moments are Hölder-smooth: m0, s0 ∈ CpA1
([σℓ, σu]).

Additionally, let β0 > 0 be a constant. Let V be a set of bounded functions supported on [σℓ, σu]

that (i) admits the uniform bound supf∈V∥f∥∞ ≤ CA1 and (ii) admits the metric entropy bound

logN(ϵ,V, ∥·∥∞) ≤ CA1,p,σℓ,σu(1/ϵ)
1/p.

We assume that the estimators for m0 and s0, η̂ = (m̂, ŝ), satisfy the following assumptions.

2. For any ϵ > 0, there exists a sufficiently large C = C(ϵ), independently of n, such that for all n,

P
(
max (∥m̂−m0∥∞, ∥ŝ− s0∥∞) > C(ϵ)n

− p
2p+1 (log n)β0

)
< ϵ.

3. The nuisance estimators take values in V almost surely: P (m̂ ∈ V, ŝ ∈ V) = 1.

4. The conditional variance estimator respects the conditional variance bounds in Assumption 2.3.3:

P
(
s0ℓ
2 < ŝ < 2s0u

)
= 1.

12We recall the definition of a Hölder class from van der Vaart and Wellner (1996), Section 2.7.1. We specialize its
definition to functions of one real variable. For an integer p, Hölder-p functions are (p − 1)-times differentiable, with a
Lipschitz continuous (p− 1)st derivative.

Definition B.3.1. For some setX ⊂ R and constantA > 0, p > 0, letCpA(X ) be the set of continuous functions f : X → R
with ∥f∥(p) ≤ A. The norm ∥·∥(p) is defined as follows. Let p be the greatest integer strictly smaller than p. Define

∥f∥(p) = max
k≤p

sup
x∈X

∣∣∣f (k)(x)
∣∣∣+ sup

x,y∈X

∣∣∣f (p)(x)− f (p)(y)
∣∣∣

|x− y|p−p
.

We refer to CpA(X ) as a Hölder class of order p and ∥f∥(p) as the Hölder norm.
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B.3.2 Regret control: result statement

Define the regret as the difference between the mean-squared error of some feasible posterior means

θ̂i,G,η against the mean-squared error of the oracle posterior means

Regret(G, η) =
1

n

n∑
i=1

(θ̂i,G,η − θi)2 −
1

n

n∑
i=1

(θ∗i − θi)2

=
1

n

n∑
i=1

(θ̂i,G,η − θ∗i )2 +
2

n

n∑
i=1

(θ∗i − θi)(θ̂i,G,η − θ∗i ) (B.5)

(B.5) decomposes the MSE regret into a mean term that equals the mean-squared distance between the

feasible posterior means and the oracle posterior means, as well as a term that is mean zero conditional

on the data Y1, . . . , Yn, since θ∗i − θi represents irreducible noise.

Fix sequences ∆n > 0 and Mn > 0. Define the following “good” event which we use in

Theorem B.6.2:

An =

{
∥η̂ − η∥∞ ≡ max(∥m̂−m0∥∞, ∥ŝ− s0∥∞) ≤ ∆n, Z̄n ≡ max

i∈[n]
(|Zi| ∨ 1) ≤Mn

}
. (B.6)

On the event An, the nuisance estimates η̂ are good, and the data Zi are not too large. Note that, with

∆n = C1n
− p

2p+1 (log n)β0 ,

An = An(C1) ∩
{
Z̄n ≤Mn

}
,

where An is the event in (2.20).

Here, we prove the version of our result stated in the main text.

Theorem 2.3.3. Assume Assumptions 2.3.1 to 2.3.4 hold. Then, for any δ ∈ (0, 12), there exists

universal constants C1,H,δ > 0 and C0,H,δ > 0 such that (i) P (An(C1,H,δ)) ≥ 1− δ and that (ii) the

expected regret conditional on An(C1,H,δ) is dominated by the rate function

E
[
Regret(Ĝn, η̂) | An(C1,H,δ)

]
≤ C0,H,δn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 . (2.21)

Proof. Immediately by Assumption 2.3.4(2–3), we can choose C1,H so that P (An(C1,H)) ≥ 1− δ.

Let ∆n = C1,Hn
− p

2p+1 (log n)β0 and Mn = C(log n)1/α for some C to be chosen. Both C1,H and C
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may depend on δ. Moreover, we can decompose

E
[
Regret(Ĝn, η̂) | An(C1,H)

]
≤ 1

1− δ

E
[
Regret(Ĝn, η̂)1(An)

]
+ E

Regret(Ĝn, η̂)1(An(C1,H), Z̄n > Mn)︸ ︷︷ ︸
An\An




≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β0 +
1

n
(log n)2/α (Theorems B.6.1 and B.6.2)

≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β0

Note that the application of Theorems B.6.1 and B.6.2 implicitly picks some constant for Mn =

C(log n)1/α. This concludes the proof.

Corollary B.3.2. Assume the same setting as Theorem 2.3.3. Suppose, additionally, for all sufficiently

large C1,H > 0, P (An(C1,H)) ≥ 1 − n−2. Then, there exists a constant C0,H > 0 such that the

expected regret is dominated by the rate function

BayesRegretn = E
[
Regret(Ĝn, η̂)

]
≤ C0,Hn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 .

Proof. Let ∆n,Mn as in the proof of Theorem 2.3.3. Decompose

E[Regret(Ĝn, η̂)] = E[Regret(Ĝn, η̂)1(An)] + E[Regret(Ĝn, η̂)1(A
C
n )]

= E[Regret(Ĝn, η̂)1(An)] + E[Regret(Ĝn, η̂)1(A
C
n ∪ {Zn > Mn})]

≤ E[Regret(Ĝn, η̂)1(An)] + E[Regret(Ĝn, η̂)1(A
C
n )]

+ E[Regret(Ĝn, η̂)1(Z̄n > Mn)]

≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β0 +
2

n
(log n)2/α (Theorems B.6.1 and B.6.2)

≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β0 ,

where our application of Theorem B.6.1 uses the assumption that P (An(C1,H)
C) = 1(∥η̂ − η∥∞ >

∆n) ≤ 1
n2 .

Remark B.3.3 (Relaxing Assumption 2.3.4(4)). Note that the event An(C) implies s0ℓ/2 ≤ ŝ ≤ 2s0u

for all sufficiently large n > NC,s0ℓ,s0u,p,β0 . Since we condition on An(C) in Theorem 2.3.3, we
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can drop Assumption 2.3.4(3) by only requiring (2.21) to hold for all sufficiently large n. This is a

minor modification since Theorem 2.3.3 is an upper bound on the convergence rate. On the other hand,

dropping Assumption 2.3.4(4) does affect regret control on the event AC
n (C1) below. Our truncation

rule for ŝ(·) in Section B.7 ensures that ŝ(·) ≥ c
n . We show in Section B.7 that this is sufficient for the

conclusion of Theorem 2.3.4.13 ■

B.3.3 Regret control: proof ideas

We now discuss the main ideas and the structure of our argument. Existing work (Soloff et al., 2021)

controls the following quantity, in our notation,

E
[
Regretτ (Ĝn, η0)

]
≡ E

[
1

n

n∑
i=1

(τ̂i,Ĝ∗
n,η0
− τ∗i )2

]
(B.7)

where τ̂i,Ĝn,η0 = EĜn,νi [τ | Zi] and Ĝ∗
n is an approximate NPMLE on the data (Zi, νi)

n
i=1 (Theorem

8 in Soloff et al. (2021)).

They do so by showing that, loosely speaking,

(i) For some constant C and rate function δn, with high probability, the NPMLE achieves low

average squared Hellinger distance:

P
(
h̄2(fĜ∗

n,·
, fG0,·) > Cδ2n

)
<

1

n
.

This is because distributions G that achieve high likelihood—which G∗
n does by construction—tend to

have low average squared Hellinger distance with respect to G0 (Theorem 6 in Soloff et al. (2021)).

Roughly speaking, the rate function is linked to likelihood suboptimality (B.2):

δ2n ≍ max

(
Subn(Ĝ

∗
n),

1

n
(log n)

2α
2+α

+1

)
. (B.8)

(ii) For a fixed distribution G, the deviation from oracle between the regularized posterior means

13This lower bound on ŝ also adds enough regularity to avoid writing “sufficiently large n” for the statement analogous
to Theorem 2.3.3 as well. See Section B.7 for details.
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(B.3) is bounded by the average squared Hellinger distance:

E[(τ̂i,G,η0,ρn − τ∗i,ρn)
2] ≲ (log(1/ρn))

3h̄2(fG,·, fG0,·). (B.9)

Therefore, we should expect that the rate attained is log(1/ρn)3δ2n, subjected to resolving the following

two issues.

(iii) Additional arguments can handle the difference between (B.9) and (B.7).

(iv) Additional empirical process arguments can handle the fact that Ĝ∗
n is estimated.

Our proof adapts this argument, where the key challenge is that we only observe (Ẑi, ν̂i) instead

of (Zi, νi). As an outline,

• Section B.4 (Theorems B.4.1 and B.4.2) establishes that Ĝn, estimated off (Ẑi, ν̂i), achieves

high likelihood (i.e., low Subn(Ĝn)) on the data (Zi, νi), with high probability. This is an oracle

inequality in the sense that it bounds the performance degredation of Ĝn relative to a setting where η0

is known.

• Section B.5 (Theorems B.5.1 and B.5.3) establishes that Ĝn, with high probability, achieves low

Hellinger distance. This is a result of independent interest, as it characterizes the quality of fĜn,νi as

an estimate of the true density fG0,νi .

• Section B.6 (Theorem B.6.2) establishes that the regret of θ̂i,Ĝn,η̂ is low, using the argument

controlling (B.7).

Intuition for Section B.4

The argument in Section B.4 is our most novel theoretical contribution. Note that, by (B.8), to obtain

a rate of the form δ2n = n
− 2p

2p+1 (log n)γ ,14 we would require that Subn(Ĝn) ≲ n
− 2p

2p+1 (log n)γ .

However, such a rate is not immediately attainable. To see this, note that a direct Taylor expansion in η

14We let (logn)γ denote a generic logarithmic factor, and we will not keep track of γ throughout this heuristic discussion.
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of the log-likelihood yields

1

n

∑
i

ψi(Zi, η̂, Ĝn)−
1

n

∑
i

ψi(Zi, η0, Ĝn)

≈ 1

n

∑
i

(
∂ψi
∂ηi

)′
(ηi − η0i) +

1

2n

∑
i

(ηi − η0i)′
∂2ψi
∂η2i

(ηi − η0i). (B.10)

⪅ (log n)γ

{
1

n

∑
i

∂ψi
∂ηi

O
(
n
− p

2p+1

)
+ n

− 2p
2p+1

∑
i

∥∥∥∥∂2ψi∂η2i

∥∥∥∥
}

Thus, without somehow showing that the first-order term ∂ψi
∂ηi

converges to zero, we would only be

able to obtain Subn(Ĝn) ≲ n
− p

2p+1 (log n)γ , which is insufficient.

Fortunately, it is easy to compute that the expected first derivative, evaluated at G0, is zero:

E

[
∂ψi(Z,G0, η0)

∂η

]
= 0.

As a result, we expect that if Ĝn is close to G0, then the corresponding first-order terms for Ĝn will

also be small. More precisely, it is possible to bound the first-order term in terms of the average

squared Hellinger distance, yielding∣∣∣∣∣ 1n∑
i

(
∂ψi
∂ηi

)′
(ηi − η0i)

∣∣∣∣∣ ≲ n
− p
p+1 (log n)γ h̄(fĜn,·, fG0,·).

To summarize, through our calculation, the rate we obtain (Theorem B.4.2, (B.14)) for Subn(Ĝn) is

εn = (log n)γ
{
n
− p

2p+1 h̄(fĜn,·, fG0,·) + n
− 2p

2p+1

}
.

A more detailed breakdown is presented in Section B.4.2.

Intuition for Section B.5

Since the rate for Subn(Ĝn) from Section B.4 itself includes h̄, it is necessary to adapt the argument

in the literature on Hellinger rate control (See, e.g., Theorem 4 in Jiang, 2020).

Our argument proceeds by observing that, with high probability,

Subn(Ĝn) ≲ γ2n + h̄(fĜn,·, fG0,·)λn.
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for some rates γn, λn. Then, we separately bound, for k = 1, . . . ,K,

P
[
Cλ1−2−k

n ≤ h̄(fĜn,·, fG0,·) ≤ Cλ1−2−k+1

n , Subn(Ĝn) ≲ γ2n + h̄(fĜn,·, fG0,·)λn

]
≤ P

[
Cλ1−2−k

n ≤ h̄(fĜn,·, fG0,·), Subn(Ĝn) ≲ γ2n + λ1−2−k+1

n λn

]
(B.11)

using standard arguments in the literature. This is now feasible since the event (B.11) comes with an

upper bound for h̄. Thus, by a union bound,

P
(
h̄(fĜn,·, fG0,·) > Cλn · λ−2−K

n

)
⪅
K

n
.

We can choose K →∞ appropriately slowly so as to obtain h̄2 ≲ δ2n with high probability.

Intuition for Section B.6

All that is remaining before we can use the bound (B.7) directly is dealing with the difference between

θ̂i,Ĝn,η̂ and τi,Ĝn,η0 . In Section B.6.3, we can use a Taylor expansion to control the distance

∣∣∣θ̂i,Ĝn,η̂ − θ̂i,Ĝn,η0∣∣∣ = σ2i

∣∣∣∣ f ′Ĝn,ν̂i(Ẑi)ŝifĜn,ν̂i(Ẑi)
−

f ′
Ĝn,νi

(Zi)

s0ifĜn,νi(Zi)

∣∣∣∣ = σi

∣∣∣∣∣∂ψi∂m

∣∣∣∣
Ĝn,η̂

− ∂ψi
∂m

∣∣∣∣
Ĝn,η0

∣∣∣∣∣ .
Doing so requires bounding the second derivatives of ψi, which are posterior moments under Ĝn

(Section B.4.10), and hence bounded due to assuming that Ĝn has supported bounded within the range

of the data Ẑi (Theorem B.4.18). We then immediately find that∣∣∣θ̂i,Ĝn,η0 − θ∗i,G0,η0

∣∣∣
is proportional to the difference in τ -space. Therefore, the existing argument for (B.7) controls the

regret.

B.4 Regret control proofs: An oracle inequality for the likelihood

Recall that for some fixed ∆n,Mn, we define An =
{
∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn

}
. In this section,

we bound

P
[
An,Subn(Ĝn) ≳H ϵn

]
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for some rate function ϵn. It is convenient to state a set of high-level assumptions on the rates ∆n,Mn.

These are satisfied for ∆n ≍ n−p/(2p+1)(log n)β,Mn ≍ (log n)1/α.

Assumption B.4.1. Assume that

1. 1√
n
≲H ∆n ≲H

1
M3
n
≲H 1

2.
√
log n ≲H Mn

Note that there exists ρn by Theorem B.4.13 that lower bounds the density fĜn,νi(z) for all Zi.

Then our main result is an oracle inequality.

Theorem B.4.1. Let ∥η̂ − η∥∞ = max(∥m̂ − m0∥∞, ∥ŝ − s0∥∞) and Z̄n = maxi∈[n] |Zi| ∨ 1.

Suppose Ĝn satisfies Assumption 2.3.1. Under Assumptions 2.3.2 to 2.3.4 and B.4.1, there exists

constants C1,H, C2,H > 0 such that the following tail bound holds: Let

ϵn =Mn

√
log n∆n

1

n

n∑
i=1

h
(
fĜn,νi , fG0,νi

)
+∆nMn

√
log ne−C2,HM

α
n+∆2

nM
2
n log n+M

2
n

∆
1− 1

2p
n√
n

.

(B.12)

Then,

P
[
Z̄n ≤Mn, ∥η̂ − η∥∞ ≤ ∆n, Subn(Ĝn) > C1,Hϵn

]
≤ 9

n
.

The following corollary plugs in some concrete rates for ∆n,Mn and verifies that they satisfy

Assumption B.4.1.

Corollary B.4.2. For β ≥ 0, suppose

∆n = CHn
− p

2p+1 (log n)β and Mn = (CH + 1)(C−1
2,H log n)1/α. (B.13)

Then there exists aC∗
H such that the following tail bound holds. Suppose Ĝn satisfies Assumption 2.3.1.

Under Assumptions 2.3.2 to 2.3.4, define εn as:

εn = n
− p

2p+1 (log n)
2+α
2α

+βh̄
(
fĜn,·, fG0,·

)
+ n

− 2p
2p+1 (log n)

2+α
α

+2β, (B.14)

we have that,

P
[
Z̄n ≤Mn, ∥η̂ − η∥∞ ≤ ∆n,Subn(Ĝn) > C∗

Hεn

]
≤ 9

n
.
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The constant CH in ∆n,Mn affects the conclusion of the statement only through affecting the constant

C∗
H.

B.4.1 Proof of Theorem B.4.2

We first show that the specification of ∆n and Mn means that the requirements of Assumption B.4.1

are satisfied. Among the requirements of Assumption B.4.1:

1. is satisfied since the polynomial part of ∆n converges to zero slower than n−1/2, but converges

to zero faster than any logarithmic rate. Mn is a logarithmic rate.

2. is satisfied since α ≤ 2.

We also observe that by Jensen’s inequality,

1

n

∑
i

h(fĜn,νi , fG0,νi) ≤ h̄(fĜn,·, fG0,·),

and so we can replace the corresponding factor in ϵn by h̄. Now, we plug the rates ∆n,Mn into ϵn.

We find that the term

∆nM
2
ne

−C2,HM
α
n = ∆nM

2
ne

−(CH+1)α(logn) ≤ ∆nM
2
nn

−1 ≤ 1

n
∆nM

2
n ≲H ∆2

nM
2
n log n

since log n > 1 as n >
√
2πe by Assumption 2.3.1. Plugging in the rates for the other terms, we find

that

ϵn ≲H εn.

Therefore, Theorem B.4.2 follows from Theorem B.4.1.

B.4.2 Proof of Theorem B.4.1

Decomposition of Subn(Ĝn)

Observe that, by definition of Ĝn in (2.17),

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn)−
1

n

n∑
i=1

ψi(Zi, η̂, G0) ≥ κn
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For random variables an, bn such that almost surely∣∣∣∣ 1n
n∑
i=1

ψi(Zi, η̂, Ĝn)− ψi(Zi, η0, Ĝn)
∣∣∣∣ ≤ an∣∣∣∣ 1n

n∑
i=1

ψi(Zi, η̂, G0)− ψi(Zi, η0, G0)

∣∣∣∣ ≤ bn
we have

1

n

n∑
i=1

ψi(Zi, η0, Ĝn)−
1

n

n∑
i=1

ψi(Zi, η0, G0) ≥ −an − bn − κn

and

Subn(Ĝn) ≤ an + bn + κn.

Therefore, it suffices to show large deviation results for an and bn.

Taylor expansion of ψi(Zi, η̂, Ĝn)− ψi(Zi, η0, Ĝn)

Define ∆mi = m̂i −m0i, ∆si = ŝi − s0i, and ∆i = [∆mi,∆si]
′. Recall ∥η̂ − η∥∞ = max(∥s −

s0∥∞, ∥m−m0∥∞) as in (B.6). Since ψi(Zi, η,G) is smooth in (mi, si) ∈ R× R>0, we can take a

second-order Taylor expansion:

ψi

(
Zi, η̂, Ĝn

)
− ψi

(
Zi, η0, Ĝn

)
=
∂ψi
∂mi

∣∣∣∣
η0,Ĝn

∆mi +
∂ψi
∂si

∣∣∣∣
η0,Ĝn

∆si +
1

2
∆′
iHi(η̃i, Ĝn)∆i︸ ︷︷ ︸

R1i

(B.15)

where Hi(η̃i, Ĝn) is the Hessian matrix ∂2ψi
∂ηi∂η′i

evaluated at some intermediate value η̃i lying on the

line segment between η̂i and η0i.

We further decompose the first-order terms into an empirical process term and a mean-component

term. By Theorem B.4.13, (B.37), and (B.39), for

ρn =
1

n3
e−CHM

2
n∆n ∧ 1

e
√
2π
, (B.16)

we have that the numerators to the first derivatives can be truncated at ρn, as the truncation does not
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bind:

∂ψi
∂mi

∣∣∣∣
η0,Ĝn

= − 1

si

f ′
i,Ĝn

fi,Ĝn ∨
ρn
νi

≡ Dm,i(Zi, Ĝn, η0, ρn)

∂ψi
∂si

∣∣∣∣
η0,Ĝn

=
si
σ2i

Qi(Zi, η0, Ĝn)

fi,Ĝn ∨
ρn
νi

≡ Ds,i(Zi, Ĝn, η0, ρn).

Let

D̄k,i(Ĝn, η0, ρn) =

∫
Dk,i(z, Ĝn, η0, ρn) fG0,νi(z)dz for k ∈ {m, s}

be the mean of Dk,i. Then, for k ∈ {m, s},

∂ψi
∂ki

∣∣∣∣
η0,Ĝn

∆ki =
[
Dk,i(Zi, Ĝn, η0, ρn)− D̄k,i(Ĝn, η0, ρn)

]
∆ki + D̄k,i(Ĝn, η0, ρn)∆ki

Hence, we can decompose the first-order terms in an as

1

n

n∑
i=1

∂ψi
∂ki

∣∣∣∣
η0,Ĝn

∆ki =
1

n

n∑
i=1

D̄k,i(Ĝn, η0, ρn)∆ki

+
1

n

n∑
i=1

[
Dk,i(Zi, Ĝn, η0, ρn)− D̄k,i(Ĝn, η0, ρn)

]
∆ki

≡ U1k + U2k

Let the second order term be R1 =
1
n

∑
iR1i. We let an = |R1|+

∑
k∈{m,s} |U1k|+ |U2k|

Taylor expansion of ψi(Zi, η̂, G0)− ψi(Zi, η0, G0)

Like (B.15), we similarly decompose

ψi(Zi, η̂, G0)− ψi(Zi, η0, G0) =
∂ψi
∂mi

∣∣∣∣
η0,G0

∆mi +
∂ψi
∂si

∣∣∣∣
η0,G0

∆si +
1

2
∆′
iHi(η̃i, G0)∆i︸ ︷︷ ︸

R2i

(B.17)

=
∑

k∈{m,s}

Dk,i(Zi, G0, η0, 0)∆ki +R2i

≡ U3mi + U3si +R2i. (B.18)

Let U3k =
1
n

∑
i U3ki for k ∈ {m, s} and let R2 =

1
n

∑
iR2i. We let bn = |R2|+

∑
k∈{m,s} |U3k|+

|U3k|
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Bounding each term individually

By our decomposition, we can write

an + bn + κn ≤ κn + |R1|+ |R2|+
∑

k∈{m,s}

|U1k|+ |U2k|+ |U3k|

The ensuing subsections bound each term individually. Here we give an overview of the main ideas:

1. We bound 1(An)|U1m| in almost sure terms in Theorem B.4.3 by observing that |D̄mi| is small

when Ĝn is close to G0, since D̄mi(G0, η0, 0) = 0. To do so, we need to control the differences

D̄mi(Ĝn, η0, ρn)− D̄mi(G0, η0, ρn)

and

D̄mi(G0, η0, ρn)− D̄mi(G0, η0, 0)︸ ︷︷ ︸
=0

= D̄mi(G0, η0, ρn).

Controlling the first difference features the Hellinger distance, while controlling the second relies

on the fact that PX∼f(X)(f(X) ≤ ρ) cannot be too large, by a Chebyshev’s inequality argument in

Theorem B.4.16. Similarly, we bound 1(An)|U1s| in Theorem B.4.4.

2. The empirical process termsU2m, U2s are bounded probabilistically in Theorems B.4.5 and B.4.6

with statements of the form

P (An, |U2k| > c1) ≤ c2.

To do so, we upper bound 1(An)U2k ≤ Ū2k in almost sure terms. The upper bound is obtained by

projecting Ĝn onto a ω-net of P(R) in terms of some pseudo-metric dk,∞,Mn induced by D̄k,i. The

upper bound Ū2k then takes the form

ω∆n + max
j∈[N ]

sup
η∈S

∣∣∣∣ 1n∑
i

(Dki − D̄ki)(ηi − η0i)
∣∣∣∣ N ≤ N(ω,P(R), dk,∞,Mn).

Large deviation of Ū2k is further controlled by applying Dudley’s chaining argument (Vershynin, 2018),

since the entropy integral over Hölder spaces is well-behaved. The covering number N is controlled

via Theorem B.4.11 and Theorem B.4.12, which are minor extensions to Lemma 4 and Theorem 7 in

Jiang (2020). The covering number is of a manageable size since the induced distributions fG,νi are
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very smooth.

3. Since D̄k,i(G0, η0, 0) = 0. U3m, U3s are effectively also empirical process terms, without the

additional randomness in Ĝn. Thus the ω-net argument above is unnecessary for U3m, U3s, whereas

the bounding follows from the same Dudley’s chaining argument. Theorem B.4.8 bounds U3k.

4. For the second derivative terms R1, R2, we observe that the second derivatives take the form of

functions of posterior moments. The posterior moments under prior Ĝn is bounded within constant

factors of M q
n since the support of Gn is restricted. The posterior moments under prior G0 is bounded

by |Zi|q ≲H M q
n as we show in Theorem B.4.22, thanks to the simultaneous moment control for G0.

Hence 1(An)R1 can be bounded in almost sure terms. We bound 1(An)R2 probabilistically. The

second derivatives are bounded in Theorems B.4.7 and B.4.9.

(1) and (4) above bounds U1k, R1, R2 almost surely under An. (2) and (3) bounds U2k, U3k

probabilistically. By a union bound in Theorem B.4.21, we can simply add the rates. Doing so, we find

that the first term in ϵn (B.12) comes from U1s, which dominates U1m. The second term comes from

U2s, which dominates U2m. The third term comes from R1, which dominates R2. The fourth term

comes from U3s. The leading terms in ϵn dominate κn, recalling (2.18). This completes the proof.

Before we proceed to the individual lemmas, we highlight a few convenient facts:

• The support of Ĝn is within [−M̄n, M̄n], where M̄n = maxi |Ẑi(η̂)| ∨ 1. Under Assump-

tion B.4.1, 1(An)M̄n ≲H Mn by Theorem B.4.15(3).

• As a result, moments of Ĝn and fĜn,νi is bounded by appropriate moments of Mn, up to

constants, under An.

B.4.3 Bounding U1m

Lemma B.4.3. Under Assumptions 2.3.1 to 2.3.4, assume additionally that ∥η̂−η∥∞ ≤ ∆n, Z̄n ≤Mn.

Assume that the rates satisfy Assumption B.4.1. Then

|U1m| ≡

∣∣∣∣∣ 1n
n∑
i=1

D̄mi(Ĝn, η0, ρn)∆mi

∣∣∣∣∣ ≲H ∆n

[
log n

n

n∑
i=1

h(fG0,νi , fĜn,νI ) +
M

1/3
n

n

]
. (B.19)
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Proof. Note that

|D̄m,i(Ĝn, η0, ρn)| ≲s0ℓ

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fG0,νi(z)dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

[fG0,νi(z)− fĜn,νi(z) + fĜn,νi(z)]dz

∣∣∣∣∣
≤

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

[fG0,νi(z)− fĜn,νi(z)] dz

∣∣∣∣∣ (B.20)

+

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fĜn,νi(z)dz

∣∣∣∣∣ (B.21)

By the bounds for (B.20) and (B.21) below, we have that

|U1m| ≲H ∆n

{√
log n

n

n∑
i=1

h(fG0,νi , fĜn,ν̂i) +
M

1/3
n

n

}

by Assumption B.4.1.

Bounding (B.20)

Consider the first term (B.20):∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

(
fG0,νi(z)− fĜn,νi(z)

)
dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

(√
fG0,νi(z)−

√
fĜn,νi(z)

)(√
fG0,νi(z) +

√
fĜn,νi(z)

)
dz

∣∣∣∣∣
≤


∫ (√

fG0,νi(z)−
√
fĜn,νi(z)

)2

dz︸ ︷︷ ︸
2h2

·
∫ ( f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

)2(√
fG0,νi(z) +

√
fĜn,νi(z)

)2

dz


1/2

(Cauchy–Schwarz)

≲ h(fG0,νi , fĜn,νi)


∫ ( f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

)2

(fG0,νi(z) + fĜn,νi(z)) dz


1/2

(B.22)

By Theorems B.4.13 and B.4.14,(
f ′
Ĝn,νi

(z)

fĜn,νi(z) ∨
ρn
νi

)2

≲
1

νi
log(1/ρn) ≲H log n.
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Hence,

(B.20) ≲H h(fG0,νi , fĜn,νi)
√
log n

Bounding (B.21)

The second term (B.21) is∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fĜn,νi(z) dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z)

(
fĜn,νi(z)

fĜn,νi(z) ∨
ρn
νi

− 1

)
fĜn,νi(z) dz

∣∣∣∣∣
≤
∫ ∣∣∣∣∣f

′
Ĝn,νi

(z)

fĜn,νi(z)

∣∣∣∣∣1(fĜn,νi(z) ≤ ρn/νi) fĜn,νi(z) dz
≤

(
EZ∼fĜn,νi

[(
EĜn,νi

[
(τ − Z)
ν2i

| Z
])2

])1/2

︸ ︷︷ ︸
≤Eτ∼Ĝn,Z∼N (τ,νi)

[(τ−Z)2/ν4i ]1/2=ν
−1
i

·
√
PfĜn,νi

[fĜn,νi(Z) ≤ ρn/νi].

(Cauchy–Schwarz and (B.44))

By Jensen’s inequality and law of iterated expectations, the first term is bounded by 1
νi

. By Theo-

rem B.4.16, the second term is bounded by ρ1/3n VarZ∼fĜn,νi
(Z)1/6. Now,

VarZ∼fĜn,νi
(Z) ≤ ν2i + µ22(Ĝn) ≲H M2

n.

Hence, ∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fĜn,νi(z) dz

∣∣∣∣∣ ≲H M1/3
n ρ1/3n ≲H M1/3

n n−1. (Theorem B.4.13)

B.4.4 Bounding U1s

Lemma B.4.4. Under Assumptions 2.3.1 to 2.3.4 and B.4.1, if ∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, then

|U1s| ≲H ∆n

[
Mn
√
log n

n

n∑
i=1

h(fĜn,νi , fG0,νi) +
M4/3

n

]
. (B.23)
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Proof. Similar to our computation with D̄m,i, we decompose

|D̄s,i(Ĝn, η0, ρn)| ≲σℓ,σu,s0ℓ,s0u

∣∣∣∣∫ Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)
(fG0,νi(z)− fĜn,νi(z)) dz

∣∣∣∣ (B.24)

+

∣∣∣∣∫ Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)
fĜn,νi(z) dz

∣∣∣∣. (B.25)

We conclude the proof by plugging in our subsequent calculations.

Bounding (B.24)

The first term (B.24) is bounded by(∫
Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)

[
fG0,νi(z)− fĜn,νi(z)

]
dz

)2

≲ h2(fG0,νi , fĜn,νi)

∫ (
Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)

)2 [
fG0,νi(z) + fĜn,νi(z)

]
dz,

similar to the computation in (B.22).

By Theorems B.4.13 and B.4.17,(
Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)

)2

≲σℓ,σu,s0ℓ,s0u (
√
log nMn + log n)2 ≲H M2

n log n

Hence ∫ (
Q(z, νi)

fĜn,ν̂i(z) ∨ (ρn/νi)

)2 [
fG0,νi(z) + fĜn,νi(z)

]
dz ≲H M2

n log n.

Hence

(B.24) ≲σℓ,σu,s0ℓ,s0u Mn

√
log nh(fG0,νi , fĜn,νi). (B.26)

Bounding (B.25)

Observe that

(B.25) =

∣∣∣∣∣
∫
Qi(z, η0, Ĝn)

fĜn,νi(z)

(
fĜn,νi(z)

fĜn,νi(z) ∨ (ρn/νi)
− 1

)
fĜn,νi(z) dz

∣∣∣∣∣
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Similar to our argument for (B.21), by Cauchy–Schwarz,

(B.25) ≤
(
EfĜn,νi (z)

[
(EĜn,νi [(Z − τ)τ | Z])

2
])1/2√

PfĜn,νi (z)
(fĜn,νi(z) ≤ ρn/νi)

≲H Mn · ρ1/3n M1/3
n ≲H

M
4/3
n

n
.

B.4.5 Bounding U2m

Lemma B.4.5. Under Assumptions 2.3.1 to 2.3.4 and B.4.1,

P

[
∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, |U2m| ≳H

√
log n∆n

{
e−CHM

α
n +

log n√
n

+
1

(n∆
1/p
n )1/2

}]
≤ 2

n

Proof. We prove this claim by first showing that if ∥η̂ − η∥∞ ≤ ∆n and Z̄n ≤ Mn, we can upper

bound |U2m| by some stochastic quantity Ū2m. Now, observe that

P
[
∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, |U2m| > t

]
≤ P

[
∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, Ū2m > t

]
≤ P [Ū2m > t].

Hence, a stochastic upper bound on Ū2m would verify the claim.

We now construct Ū2m assuming ∥η̂ − η∥∞ ≤ ∆n and Z̄n ≤Mn. Let

Dm,i,Mn(Zi, Ĝn, η̂, ρn) = Dm,i(Zi, Ĝn, η̂, ρn)1(|Zi| ≤Mn)

and let

D̄m,i,Mn(Ĝn, η̂, ρn) =

∫
Dm,i(z, Ĝn, η̂, ρn)1(|z| ≤Mn)fG0,νi(z) dz.

On the event Z̄n ≤Mn, Dm,i,Mn = Dm,i. We recall that

|U2m| =
∣∣∣∣ 1n

n∑
i=1

(Dm,i − D̄m,i)∆mi

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

(Dm,i,Mn − D̄m,i,Mn)∆mi

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

(D̄m,i − D̄m,i,Mn)∆mi

∣∣∣∣.

185



Note that

|D̄m,i − D̄m,i,Mn | ≲σℓ,σu,s0ℓ,s0u

∣∣∣∣∫
|z|>Mn

f ′
Ĝn,νi

(z)

fĜn,νi(z) ∨ (ρn/νi)︸ ︷︷ ︸
≲H

√
logn, Theorems B.4.13 and B.4.14

fG0,νi(z) dz

∣∣∣∣
≲H

√
log nPG0,νi(|Zi| > Mn)

By Theorem B.4.20, PG0,νi(|Zi| > Mn) ≤ exp (−Cα,A0,νuM
α
n ) . Hence, the second term

| 1
n

n∑
i=1

(D̄m,i − D̄m,i,Mn)∆mi|

is bounded above by e−CHM
α
n
√
log n∆n, up to constants.

Note that under our assumptions, maxi |Ẑi| ∨ 1 ≤ CHMn. Let L = [−CHMn, CHMn] ≡

[−M̄, M̄ ]. Define

S =
{
(m, s) : ∥m−m0∥ ≤ ∆n, ∥s− s0∥ ≤ ∆n, (m, s) ∈ CpA1

([σℓ, σu])
}
. (B.27)

For two distributions G1, G2, define the following pseudo-metric

dm,∞,Mn(G1, G2) = max
i∈[n]

sup
|z|≤Mn

|Dm,i(z,G1, η0, ρn)−Dm,i(z,G2, η0, ρn)| (B.28)

Let G1, . . . , GN be an ω-net of P(L) in terms of dm,∞,Mn(G1, G2), where N is taken to be the

covering number

N = N (ω,P(L), dm,∞,Mn(·, ·)) .

Let Gj∗ be a Gj where dm,∞,Mn(Ĝn, Gj∗) ≤ ω.

By construction, |D̄m,i,Mn(Ĝn, η̂, ρn)− D̄m,i,Mn(Gj∗ , η̂, ρn)| ≤ ω as well, since the integrand is

bounded uniformly. Hence, by projecting Ĝn to Gj∗ , we obtain∣∣∣∣ 1n
n∑
i=1

(Dm,i,Mn(Zi, Ĝn, η0, ρn)− D̄m,i,Mn(Ĝn, η0, ρn))(m̂(σi)−m0(σi))

∣∣∣∣
≤ 2ω∆n + max

j∈[N ]

∣∣∣∣ 1n
n∑
i=1

(Dm,i,Mn(Zi, Gj , η0, ρn)− D̄m,i,Mn(Gj , η0, ρn))(m̂(σi)−m0(σi))

∣∣∣∣
(B.29)
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Next, consider the process

η 7→ 1

n

n∑
i=1

(Dm,i,Mn(Zi, Gj , η0, ρn)− D̄m,i,Mn(Gj , η0, ρn))(m(σi)−m0(σi))

≡ 1

n

n∑
i=1

vi,j(η) ≡ Vn,j(η)

so that, when ∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn,

(B.29) ≲ ω∆n + max
j∈[N ]

sup
η∈S
|Vn,j(η)|.

Thus, we can take

Ū2m = CH

{
e−CHM

α
n
√
log n∆n + ω∆n + max

j∈[N ]
sup
η∈S
|Vn,j(η)|

}

where we shall prove a stochastic upper bound and optimize ω shortly.

By the results in Section B.4.5 via Dudley’s chaining argument, with probability at least 1− 2/n,

max
j∈[N ]

sup
η∈S
|Vn,j(η)| ≲H

∆n
√
log n√
n

[
∆−1/(2p)
n +

√
logN +

√
log n

]
By Section B.4.5, we can pick ω such that

ω∆n + max
j∈[N ]

sup
η∈S

Vnj(η) ≲H ∆n

√
log n

 log n√
n

+
1√
n∆

1/p
n

 (B.30)

with probability at least 1− 2/n. Putting these observations together, we have that

P

[
Ū2m ≳H

√
log n∆n

{
e−CHM

α
n +

log n√
n

+
1

(n∆
1/p
n )1/2

}]
≤ 2

n
.

This concludes the proof.

Bounding maxj∈[N ] supη∈S |Vn,j(η)|

Note that Evij(η) = 0. Moreover, by Theorems B.4.13 and B.4.14,

max
(
Dm,i,Mn(Zi, Gj , η0, ρn), D̄m,i,Mn(Gj , η0, ρn)

)
≲H

√
log(1/ρn) ≲H

√
log n
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Recall that ∥η1 − η2∥∞ = max (∥m1 −m2∥∞, ∥s1 − s2∥∞) . Then,

|vij(η1)− vij(η2)| ≲H
√

log n∥η1 − η2∥∞

As a result,15

∥Vn,j(η1)− Vn,j(η2)∥ψ2 ≲H

√
log n√
n
∥η1 − η2∥∞.

Hence Vn,j(η) is a mean-zero process with subgaussian increments16 with respect to ∥η1 − η2∥∞.

Note that the diameter of S under ∥η1 − η2∥∞ is at most 2∆n. Hence, by an application of Dudley’s

tail bound (Theorem 8.1.6 in Vershynin (2018)), for all u > 0,

P

[
sup
η∈S
|Vn,j(η)| ≳H

√
log n√
n

{∫ 2∆n

0

√
logN(ϵ, S, ∥·∥∞) dϵ+ u∆n

}]
≤ 2e−u

2
.

Note that

√
logN(ϵ, S, ∥·∥∞) ≤

√
2 logN(ϵ, CpA1

([−σℓ, σu]), ∥·∥∞) ≤
√
2 logN(ϵ/A1, C

p
1 ([−σℓ, σu]), ∥·∥∞)

By Theorem 2.7.1 in van der Vaart and Wellner (1996),

logN(ϵ/A1, C
p
1 ([−σℓ, σu]), ∥·∥∞) ≲p,σℓ,σu

(
A1

ϵ

)1/p

≲H

(
1

ϵ

)1/p

.

Hence, plugging in these calculations, we obtain

P

[
sup
η∈S
|Vn,j(η)| ≳H

√
log n√
n

{
∆

1− 1
2p

n + u∆n

}]
≤ 2e−u

2
.

This implies that

sup
η∈S
|Vn,j(η)| ≲H

√
log n√
n

∆
1− 1

2p
n + Ṽn,j ,

15See Definition 2.5.6 in Vershynin (2018) for a definition of the ψ2-norm (subgaussian norm).

16See Definition 8.1.1 in Vershynin (2018).
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for some random variable Ṽn,j ≥ 0 and ∥Ṽn,j∥ψ2 ≲H
∆n√
n

√
log n.17 Thus,

(B.29) ≲H ∆n

ω +

√
log n√
n∆

1/p
n

+ max
j∈[N ]

Ṽn,j .

Finally, note that by Theorem B.4.19 with the choice t =
√
log n,

P

[
max
j∈[N ]

Ṽn,j ≳H
∆n√
n

√
log n

[√
logN +

√
log n

]]
≤ 2

n
.

Selecting ω

The rate function that involves ω and logN is of the form

ω +

√
logN

n

√
log n

Reparametrizing ω = δ log(1/δ)

√
log(1/ρn)

ρn
, by Theorem B.4.12, shows that

logN ≤ logN

(
δ log(1/δ)

√
log(1/ρn)

ρn
,P(R), dm,∞,M

)
≲H log(1/δ)2max

(
1,

Mn√
log(1/δ)

)

Consider picking δ = ρn
1√
n
≤ 1/e so that log(1/δ) = log(1/ρn) +

1
2 log n ≲H log n. Since

log(1/ρn) ≳M2
n, we conclude that max

(
1, Mn√

log(1/δ)

)
≲H 1. Hence,

logN ≲H log2 n.

Note too that ω ≲H
(logn)3/2√

n
. Thus, under Assumption B.4.1,

ω +
√

logN
1√
n

√
log n ≲H

(log n)3/2√
n

.

17We can take

Ṽn,j =

{
sup
η∈S
|Vn,j(η)| − CH

Mn√
n
∆

1− 1
2p

n

}
+

.

The tail bound P (Ṽn,j ≳H u∆n√
n
Mn) ≤ 2e−u

2

implies the ψ2-norm bound by expression (2.14) in Vershynin (2018).
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B.4.6 Bounding U2s

Lemma B.4.6. Under Assumptions 2.3.1 to 2.3.4 and B.4.1,

P

∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, |U2s| ≳H ∆nMn

√
log n

e−CHM
α
n +

log n√
n

+
1√
n∆

1/p
n


 ≤ 2

n

Proof. This proof operates much like the proof of Theorem B.4.5. We observe that we can come up

with an upper bound Ū2s of U2s under the event ∥η̂ − η∥∞ ≤ ∆n and Z̄n ≤Mn. A stochastic upper

bound on Ū2s then implies the lemma.

Let us first assume ∥η̂ − η∥∞ ≤ ∆n and Z̄n ≤Mn . Define Ds,i,Mn and D̄s,i,Mn analogously to

Dm,i,Mn and D̄m,i,Mn . A similar decomposition shows

|U2s| ≤
∣∣∣∣ 1n

n∑
i=1

(Ds,i,Mn − D̄s,i,Mn)∆si

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

(D̄s,i − D̄s,i,Mn)∆si

∣∣∣∣
Theorem B.4.17 is a uniform bound on the integrand in the second term. Hence, the second term is

bounded by∣∣∣∣ 1n
n∑
i=1

(D̄s,i − D̄s,i,Mn)∆si

∣∣∣∣
≲H ∆n

√
log(1/ρn)

1

n

n∑
i=1

(∫
|Zi|>Mn

|z|fG0,νi(z) dz +
√

log(1/ρn)

∫
|Zi|>Mn

fG0,νi(z) dz

)

≲H ∆n

√
log n

{
e−

CH
2
Mα
n max
i∈[n]

µ2(fG0,νi) +
√
log ne−CHM

α
n

}
(Cauchy–Schwarz for the first term and apply Theorems B.4.13 and B.4.20)

≲H ∆n(log n)e
−CHM

α
n .

Note that under our assumptions, maxi |Ẑi| ∨ 1 ≤ CHMn. Let L = [−CHMn, CHMn] ≡

[−M̄, M̄ ]. Define S =
{
(m, s) : ∥m−m0∥ ≤ ∆n, ∥s− s0∥ ≤ ∆n, (m, s) ∈ CpA1

([σℓ, σu])
}

. For

two distributions G1, G2, define the following pseudo-metric

ds,∞,Mn(G1, G2) = max
i∈[n]

sup
|z|≤Mn

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)| (B.31)
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Let G1, . . . , GN be an ω-net of P(L) in terms of ds,∞,Mn(G1, G2), where

N = N (ω,P(L), ds,∞,Mn(·, ·)) .

LetGj∗ be aGj where ds,∞,Mn(Ĝn, Gj∗) ≤ ω.By construction, |D̄s,i,Mn(Ĝn, η0, ρn)−D̄s,i,Mn(Gj∗ , η0, ρn)| ≤

ω as well, since the integrand is bounded uniformly.

Hence∣∣∣∣ 1n
n∑
i=1

(Ds,i,Mn(Zi, Ĝn, η0, ρn)− D̄s,i,Mn(Ĝn, η0, ρn))(ŝ(σi)− s0(σi))
∣∣∣∣

≤ 2ω∆n + max
j∈[N ]

∣∣∣∣ 1n
n∑
i=1

(Ds,i,Mn(Zi, Gj , η0, ρn)− D̄s,i,Mn(Gj , η0, ρn))(ŝ(σi)− s0(σi))
∣∣∣∣ (B.32)

Next, consider the process

η 7→ 1

n

n∑
i=1

(Ds,i,Mn(Zi, Gj , η0, 0)− D̄s,i,Mn(Gj , η0, 0))(s(σi)− s0(σi)) ≡
1

n

n∑
i=1

vi,j(η) ≡ Vn,j(η)

so that (B.32) ≲ ω∆n+maxj∈[N ] supη∈S |Vn,j(η)|. This again upper bounds |Uis| with some Ūis that

does not depend on the event ∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, on the event ∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn.

Hence, we can choose

Ū2s = CH

{
ω∆n + max

j∈[N ]
sup
η∈S
|Vn,j(η)|+∆n(log n)e

−CHM
α
n

}
.

It remains to show a tail bound with an appropriate choice of ω for Ū2s.

By Theorem B.4.17, the process Vn,j has the subgaussian increment property

|Vn,j(η1)− Vn,j(η2)| ≲H
Mn
√
log n√
n

∥η1 − η2∥∞

as in Section B.4.5, with a different constant for the subgaussianity. Hence, by the same argument as

in Section B.4.5, with probability at least 1− 2/n,

max
j∈[N ]

sup
η∈S
|Vn,j(η)| ≲H

∆nMn
√
log n√

n

[
∆−1/(2p)
n +

√
logN +

√
log n

]
We turn to selecting ω. The relevant term for selecting ω is ω + Mn

√
logn√
n

√
logN . Reparametrize

ω =Mn

√
log(1/ρn)δ log(1/δ)/ρn. Pick δ = ρn/

√
n < 1/e. The same argument as in Section B.4.5
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with Theorem B.4.12 shows that

ω +
Mn
√
log n√
n

√
logN ≲H

Mn(log n)
3/2

√
n

.

Therefore, we can select ω such that, overall, with probability at least 1 − 2/n, under Assump-

tion B.4.1,

Ū2s ≲H ∆n

Mn

√
log n exp (−Cα,A0,νuM

α
n ) +

Mn(log n)
3/2

√
n

+Mn

√
log n

1√
n∆

1/p
n

+

√
log n√
n

Mn

√
log n


≲H ∆nMn

√
log n

e−CHM
α
n +

log n√
n

+
1√
n∆

1/p
n

 .

This concludes the proof.

B.4.7 Bounding R1

Lemma B.4.7. Recall R1i from (B.15). Then, under Assumptions 2.3.1 to 2.3.4 and B.4.1, if

∥η̂ − η∥∞ ≤ ∆n and Z̄n ≤Mn, then R1i ≲H ∆2
nM

2
n log n.

Proof. Observe that R1i ≲σℓ,σu,s0ℓ,s0u max
(
∆2
mi,∆

2
si

)
· ∥Hi(η̃i, Ĝn)∥∞, where ∥·∥∞ takes the

largest element from a matrix by magnitude. By assumption, the first term is bounded by ∆2
n.

By Theorem B.4.18, the second derivatives are bounded by M2
n log n. Hence ∥Hi(η̃i, Ĝn)∥∞ ≲H

M2
n log n. This concludes the proof.

B.4.8 Bounding U3m, U3s

Lemma B.4.8. Under Assumptions 2.3.2 to 2.3.4 and B.4.1,

P

[
∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, |U3m| ≳H ∆n

{
e−CHM

α
n +

Mn√
n

(
∆−1/(2p)
n + log n

)}]
≤ 2

n

P

[
∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, |U3s| ≳H ∆n

{
e−CHM

α
n +

M2
n√
n

(
∆−1/(2p)
n + log n

)}]
≤ 2

n
.

Proof. The proof structure follows that of Theorems B.4.5 and B.4.6.

192



Recall that

U3m =
1

n

n∑
i=1

Dm,i(Zi, G0, η0, 0)(m̂i −m0).

=
1

n

n∑
i=1

(Dm,i,Mn − D̄m,i,Mn)(m̂i −m0) + D̄m,i,Mn(m̂i −m0)

Note that

|D̄m,i,Mn | =
∣∣∣∣∫

|z|≤Mn

f ′G0,νi
(z)

fG0,νi(z)
fG0,νi(z) dz

∣∣∣∣
=

∣∣∣∣∫ 1 (|z| > Mn) ·
f ′G0,νi

(z)

fG0,νi(z)
fG0,νi(z) dz

∣∣∣∣
≲σℓ,σu,s0ℓ,s0u P (|z| > Mn)

1/2

(Cauchy–Schwarz, Jensen, and law of iterated expectations via (B.44))

≲H e−CHM
α
n . (B.33)

Recall S in (B.27). Define the process Vn(η) = 1
n

∑
i vn,i(η) ≡

1
n

∑n
i=1(Dm,i,Mn−D̄m,i,Mn)(m̂i−

m0). Therefore, if ∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn,

|U3m| ≲H ∆ne
−CHM

α
n + sup

η∈S
|Vn(η)| ≡ Ū3m.

Therefore, to bound U3m it suffices to show a tail bound for supη∈S |Vn(η)|. Observe that

Vn(η1)− Vn(η2) =
1

n

∑
i

(Dm,i,Mn − D̄m,i,Mn)(η1i − η2i)

Now, by Lemma 2.6.8 in Vershynin (2018), since |Dm,i,Mn | ≲H Mn by Theorem B.4.22,

∥vni(η1)− vni(η2)∥ψ2 ≲ ∥Dm,i,Mn(η1i − η2i)∥ψ2 ≲H Mn∥η1 − η2∥∞.

Since vni(η1)− vni(η2) is mean zero, we have that

∥Vn(η1)− Vn(η2)∥ψ2 ≲H
Mn√
n
∥η1 − η2∥∞ (B.34)

Hence, by the same Dudley’s chaining calculation in Section B.4.5, with probability at least 1− 2/n,

Ū3m ≲H ∆n

{
e−CHM

α
n +

Mn√
n

(
∆−1/(2p)
n + log n

)}
.
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This concludes the proof for U3m.

The proof for U3s is similar. We need to establish the analogue of (B.33) and (B.34). For the tail

bound (analogue of (B.33)), we have the same bound

|D̄s,i,Mn | ≲ P (|z| > Mn)
1/2
(
EfG0,νi

(z)

[
(EG0,νi [(Z − τ)τ | Z])2

])1/2
≲H e−CHM

α
n .

For the analogue of (B.34), since Theorem B.4.22 implies that |Ds,i,Mn | ≲H Z2
i 1(Zi ≤Mn) ≤

M2
n,

∥Vn(η1)− Vn(η2)∥ψ2 ≲H
M2
n√
n
∥η1 − η2∥∞.

Hence, with probability at most 2/n

Ū3s ≳H ∆n

{
e−CHM

α
n +

M2
n√
n
(∆−1/(2p)

n + log n)

}
.

B.4.9 Bounding R2

Lemma B.4.9. Under Assumptions 2.3.2 to 2.3.4 and B.4.1, then

P
(
∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, |R2| ≳H ∆2

n

)
≤ 1

n
.

Proof. Recall that 1(An) = 1(∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn). Note that

1(An)|R2| ≲H ∆2
n

1

n

n∑
i=1

1(An)∥Hi∥∞.

by (1,∞)-Hölder inequality. Moreover, note that the second derivatives that occur in entries of Hi

are functions of posterior moments. By Theorem B.4.22, under G0, these posterior moments are

bounded by above by corresponding moments of Ẑi(η̃i). By Theorem B.4.22, underG0, these posterior

moments are bounded by above by corresponding moments of Ẑi(η̃i). Hence,

1(An)∥Hi∥∞ ≲H 1(An)
(
Ẑi(η̃i) ∨ 1

)4
≲H (Zi ∨ 1)4. (B.35)
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Hence,

1(An)|R2| ≲H ∆2
n

1

n

n∑
i=1

(Zi ∨ 1)4.

By Chebyshev’s inequality,

P

(
1

n

n∑
i=1

(Zi ∨ 1)4 > E[(Zi ∨ 1)4] + t

)
≤ 1

t2
Var

(
1

n

n∑
i=1

(Zi ∨ 1)4

)
=

Var(Z4
i ∨ 1)

nt2
.

Picking t2 = Var(Z4
i ∨ 1) yields that

P

(
1

n

n∑
i=1

(Zi ∨ 1)4 ≳H 1

)
≤ 1

n
.

Hence,

P
(
∥η̂ − η∥∞ ≤ ∆n, Z̄n ≤Mn, |R2| ≳H ∆2

n

)
≤ 1

n
.

B.4.10 Derivative computations

It is sometimes useful to relate the derivatives of ψi to EG,η.

We compute the following derivatives. Since they are all evaluated at G, η, we let ν̂ = ν̂i(η) and
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ẑ = Ẑi(η) as a shorthand.

∂ψi
∂mi

∣∣∣∣
η,G

= − 1

si

f ′G,ν̂(ẑ)

fG,ν̂(ẑ)
(B.36)

=
si
σ2i

EG,ν̂ [Z − τ | ẑ] (B.37)

∂ψi
∂si

∣∣∣∣
η,G

=
1

σiν̂i(η)fG,ν̂(η)(Ẑi(η))

∫
(Ẑi(η)− τ)τφ

(
Ẑi(η)− τ
ν̂i(η)

)
1

ν̂i(η)
G(dτ)︸ ︷︷ ︸

Qi(Zi,η,G)

(B.38)

=
1

σiν̂
EG,ν̂ [(Z − τ)τ | ẑ] (B.39)

∂2ψi
∂m2

i

∣∣∣∣
η,G

=
1

s2i

f ′′G,ν̂(ẑ)
fG,ν̂(ẑ)

−

(
f ′G,ν̂(ẑ)

fG,ν̂(ẑ)

)2
 (B.40)

=
1

s2i

[
1

ν̂4
EG,ν̂ [(τ − Z)2 | ẑ]−

1

ν̂2
− 1

ν̂4
(EG,ν̂ [(τ − Z) | ẑ])2

]
(B.41)

∂2ψi
∂mi∂si

∣∣∣∣
η,G

=

(
1

σ2i
EG,ν̂ [(Z − τ)τ | ẑ]−

1

s2i

)
1

ν̂2
EG,ν̂ [(τ − Z) | ẑ] +

EG,ν̂ [(τ − Z)2τ | ẑ]
ν̂σisi

(B.42)

∂2ψ

∂s2

∣∣∣∣
η,G

=
1

σ2i

{
EG,ν̂

[(
s2i
σi

(Z − τ)2 − 1

)
τ2 | ẑ

]
− 1

ν̂2
(EG,ν̂ [(Z − τ)τ | ẑ])2

}
(B.43)

It is useful to note that

f ′G,ν(z)

fG,ν(z)
=

1

ν2
EG,ν [(τ − Z) | z] (B.44)

f ′′G,ν(z)

fG,ν(z)
=

1

ν4
EG,ν [(τ − Z)2 | z]−

1

ν2
(B.45)

B.4.11 Metric entropy of P(R) under moment-based distance

The following is a minor generalization of Lemma 4 and Theorem 7 in Jiang (2020). In particular,

Jiang (2020)’s Lemma 4 reduces to the case q = 0 below, and Jiang (2020)’s Theorem 7 relies on the

results below for q = 0, 1. The proof largely follows the proofs of these two results of Jiang (2020).

We first state the following fact readily verified by differentiation.

Lemma B.4.10. For all integer m ≥ 0:

sup
t∈R
|tmφ(t)| = mm/2φ(

√
m).
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As a corollary, there exists absolute Cm > 0 such that t 7→ tmφ(t) is Cm-Lipschitz.

Proposition B.4.11. Fix some q ∈ N ∪ {0} and M > 1. Consider the pseudometric

d
(q)
∞,M (G1, G2) = max

i∈[n]
max
0≤v≤q

sup
|x|≤M

∣∣∣∣∫ (u− x)v

νvi
φ

(
x− u
νi

)
(G1 −G2)(du)

∣∣∣∣︸ ︷︷ ︸
dq,i,m(G1,G2)

.

Let νℓ, νu be the lower and upper bounds of νi. Then, for all 0 < δ < exp(−q/2) ∧ e−1,

logN(δ logq/2(1/δ),P(R), d(q)∞,M ) ≲q,νu,νℓ log
2(1/δ)max

(
M√

log(1/δ)
, 1

)
.

Proof. The proof strategy is as follows. First, we discretize [−M,M ] into a union of small intervals

Ij . Fix G. There exists a finitely supported distribution Gm that matches moments of G on every Ij . It

turns out that such a Gm is close to G in terms of ∥·∥q,∞,M . Next, we discipline Gm by approximating

Gm with Gm,ω, a finitely supported distribution supported on the fixed grid {kω : k ∈ Z} ∩ [−M,M ].

Finally, the set of all Gm,ω’s may be approximated by a finite set of distributions, and we count the

size of this finite set.

Approximating G with Gm

First, let us fix some ω < φ(
√
q) ∧ φ(1).

Let a = νu
νℓ
φ+(ω) ≥ 1. Let Ij = [−M + (j − 2)aνℓ,−M + (j − 1)aνℓ] be such that

I = [−M − aνℓ,+M + aνℓ] ⊂
⋃
j

Ij

where Ij is a width aνℓ interval. Let j∗ = ⌈2Maνℓ + 2⌉ be the number of such intervals.

There exists by Carathéodory’s theorem a distribution Gm with support on I and no more than

m = (2k∗ + q + 1)j∗ + 1

support points s.t. the moments match∫
Ij

ukdG(u) =

∫
Ij

ukdGm(u) for all k = 0, . . . , 2k∗ + q and j = 1, . . . , j∗.

for some k∗ to be chosen later.
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Then, for some x ∈ Ij ∩ [−M,M ], we have

dq,i,M (G,Gm) ≤ max
0≤v≤q

[∣∣∣∣∫
(Ij−1∪Ij∪Ij+1)C

(
u− x
νi

)v
φ

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣ (B.46)

+

∣∣∣∣∫
Ij−1∪Ij∪Ij+1

(
u− x
νi

)v
φ

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣
]

(B.47)

Note that tvφ(t) is a decreasing function for all t >
√
v. Note that ω < φ(

√
q) implies that

aνu/νℓ = φ+(ω) >
√
q. Hence, the integrand in (B.46) is bounded by φ+(ω)

vω, as |u−x|
νi
≥

aνℓ/νu = φ+(ω):

(B.46) ≤ 2 max
0≤v≤q

φ+(ω)
vω = 2φ+(ω)

qω.

Note that

φ(t) =
∞∑
k=0

(−t2/2)k√
2πk!

=
k∗∑
k=0

(−t2/2)k√
2πk!

+R(t)

Thus the second term (B.47) can be written as the maximum-over-v of the absolute value of

k∗∑
k=0

∫ (
x−u
νi

)v+2k
(−1/2)k

√
2πk!

[G(du)−Gm(du)] +
∫
R

(
x− u
νi

)(
x− u
νi

)v
[G(du)−Gm(du)]

The first term in the line above is zero since the moments match up to 2k∗ + q. Therefore (B.47) is

equal to

(B.47) = max
0≤v≤q

∣∣∣∣∫
(Ij−1∪Ij∪ICj+1)

(
u− x
νi

)v
R

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣.
We know that since φ(t) has alternating-signed Taylor expansion,

|R(t)| ≤ (t2/2)k
∗+1

√
2π(k∗ + 1)!

198



We can bound |u−xνi | ≤ 2aνℓ/νi ≤ 2a. Hence the integral is upper bounded by

(B.47) ≤ 2 · (2a)q ·
(
(2a)2/2

)k∗+1

√
2π(k∗ + 1)!

((2a)v ≤ (2a)q)

≤ 2(2a)q

(2π)
√
k∗ + 1

(
2a2

k∗ + 1
e

)k∗+1

(Recall Stirling’s formula (k∗ + 1)! ≥
√

2π(k∗ + 1)
(
k∗+1
e

)k∗+1
.)

≤ (2a)q

π
√
k∗ + 1

(e
3

)k∗+1
(Choosing k∗ + 1 ≥ 6a2 ≥ 6)

≤ (2a)q

π
√
k∗ + 1

exp

(
−1

2

k∗ + 1

6

)
((e/3)6 ≤ e−1/2)

≤ (2a)q
√
k∗ + 1

√
π/2

φ(aνℓ/νu)︸ ︷︷ ︸
φ(φ+(ω))

(k∗ + 1 ≥ 6a2 ≥ 6(aνℓ/νu)
2)

≤ (2a)q
√
k∗ + 1

√
π/2

ω

≤ 2q√
3π

(
νu
νℓ

)q−1

φq−1
+ (ω)ω (k∗ + 1 ≥ 6a2)

This bounds (B.46) + (B.47) uniformly over |x| ≤M . Therefore,

dq,i,M (G,Gm) ≤
(
2 +

2q√
3π

(νu/νℓ)
q−1

)
· φq+(ω)ω ≲q,νu,νℓ log

q/2(1/ω)ω.

Disciplining Gm onto a fixed grid

Now, consider a gridding of Gm via Gm,ω. We construct Gm,ω to be the following distribution. For

a draw ξ ∼ Gm, let ξ̃ = ω sgn(ξ)⌊|ξ|/ω⌋. We let Gm,ω be the distribution of ξ̃. Gm,ω has at most

m = (2k∗ + q + 1)j∗ + 1 support points by construction, and all its support points are multiples of ω.

Since ∫
g(x, u)Gm,ω(du) =

∫
g(x, ω sgn(u)⌊|u|/ω⌋)Gm(du)

we have that∣∣∣∣∫ g(x, u)Gm,ω(du)−
∫
g(x, u)Gm(du)

∣∣∣∣ ≤ ∫ |g(x, ω sgn(u)⌊|u|/ω⌋)− g(x, u)|Gm(du)

In the case of g(x, u) = ((x− u)/νi)v φ((x− u)/νi), this function is Lipschitz by Theorem B.4.10,
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we thus have that,

dq,i,M (Gm, Gm,ω) ≤
∫
Cq

ω

νi
Gm(du) ≲νℓ,q ω.

So far, we have shown that there exists a distribution with at most m support points, supported on

the lattice points {jω : j ∈ Z, |jω| ∈ I}, that approximates G up to

Cq,νu,νℓω logq/2(1/ω)

in d(q)∞,M (·, ·).

Covering the set of Gm,ω

Let ∆m−1 be the (m− 1)-simplex of probability vectors in m dimensions. Consider discrete distribu-

tions supported on the support points of Gm,ω, which can be identified with a subset of ∆m−1. Thus,

there are at most N(ω,∆m−1, ∥·∥1) such distributions that form an ω-net in ∥·∥1. Now, consider a

distribution G′
m,ω where

∥G′
m,ω −Gm,ω∥1 ≤ ω.

Since tqφ(t) is bounded, we have that

∥G′
m,ω −Gm,ω∥q,i,M ≤ ω max

0≤v≤q
vv/2φ(

√
v) ≲q ω

by Theorem B.4.10.

There are at most (
1 + 2⌊(M + aνℓ)/ω⌋

m

)
configurations of m support points. Hence there are a collection of at most(

1 + 2⌊(M + aνℓ)/ω⌋
m

)
N(ω,∆m−1, ∥·∥1)

distributions G where

min
H∈G
∥G−H∥q,∞,M ≤ Cq,νu,νℓ log(1/ω)

q/2ω︸ ︷︷ ︸
ω∗

.
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Putting things together

In other words,

N(ω∗,P(R), ∥·∥q,∞,M ) ≤
(
1 + 2⌊(M + aνℓ)/ω⌋

m

)
N(ω,∆m−1, ∥·∥1)

≤
(
(ω + 2)(ω + 2(M + aνℓ))e

m

)m
ω−2m(2πm)−1/2

((6.24) in Jiang (2020))

Since ω < 1 and m ≥ 212a2+3+q
aνℓ

(M + aνℓ), the first term is of the form Cm:

(ω + 2)(ω + 2(M + aνℓ))e

m
≤ 3e

m
(1 + 2(M + aνℓ)) ≲

aνℓ
12a2 + 3 + q

≲ νℓ.

Therefore

logN(ω∗,P(R), ∥·∥q,∞,M ) ≲ m · | log(1/ω)|+m| log νℓ| ≲νℓ,νu,q m log(1/ω).

Finally, since m = (2k∗+ q+1)j∗+1. Recall that we have required k∗+1 ≥ 6a2, and it suffices

to pick k∗ = ⌈6a2⌉. Then

m ≲q,νu,νℓ log(1/ω)max

(
M√

log(1/ω)
, 1

)
.

Hence

logN(ω∗,P(R), ∥·∥q,∞,M ) ≲q,νu,νℓ log(1/ω)
2max

(
M√

log(1/ω)
, 1

)
.

Lastly, let K equal the constant in ω∗ = K log(1/ω)q/2ω. Note that we can take K ≥ 1. For some

c > 1 such that log(cK)q/2 < c, we plug in ω = δ
cK such that whenever δ < cK(φ(1) ∧ φ(√q)) ∧

e−q/2, the covering number bound holds for

ω∗ =
δ

c
log(cK/δ)q/2 ≤ δ log(1/δ)q/2.
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In this case,

N
(
δ log(1/δ)q/2,P(R), ∥·∥q,∞,M )

)
≤ N

(
ω∗ log(1/δ)q/2,P(R), ∥·∥q,∞,M )

)
≲q,νu,νℓ log(1/ω)

2max

(
M√

log(1/ω)
, 1

)

≲q,νu,νℓ log(1/δ)
2max

(
M√

log(1/δ)
, 1

)

This bound holds for all sufficiently small δ. Since δ log(1/δ)q/2 is increasing over (0, e−q/2 ∧ e−1)

and the right-hand side does not vanish over the interval, we can absorb larger δ’s into the constant.

As a consequence, we can control the covering number in terms of dk,∞,M for k ∈ {m, s}

Proposition B.4.12. Consider d(q)∞,M in Theorem B.4.11, ds,∞,M in (B.31), and dm,∞,M in (B.28) for

some M > 1. Then

d
(2)
∞,M (H1, H2) ≤ δ =⇒ ds,∞,M (H1, H2) ≲H

M
√

log(1/ρn) + log(1/ρn)

ρn
δ.

and

d
(2)
∞,M (H1, H2) ≤ δ =⇒ dm,∞,M (H1, H2) ≲H

√
log(1/ρn)

ρn
δ.

As a corollary, for all δ ∈ (0, 1/e),

logN

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dm,∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)

logN

(
δ log(1/δ)

ρn

(
M
√

log(1/ρn) + log(1/ρn)
)
,P(R), ds,∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)
.

Proof. Recall that

Ds,i(zi, G, η0, ρn) =
si
σ2i

Qi(Zi, η0, G)

fi,G ∨ ρn
νi

.
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Hence

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)|

≲H
1

fi,G1 ∨
ρn
νi

|Qi(Zi, η0, G1)−Qi(Zi, η0, G2)|+ |Qi(Zi, η0, G2)|

∣∣∣∣∣ 1

fi,G1 ∨
ρn
νi

− 1

fi,G1 ∨
ρn
νi

∣∣∣∣∣
≲H

1

ρn
|fi,G1EG1,νi [(Z − τ)τ | z]− fi,G2EG2,νi [(Z − τ)τ | z]|

+
M
√
log(1/ρn) + log(1/ρn)

ρn
|fi,G1 − fi,G2 |

where the last inequality follows from the definition of Qi and Theorem B.4.17.

Note that

fi,G1EG1,νi [(Z − τ)τ | z] = fi,G1EG1,νi [(Z − τ)2 | z]− zfi,G1EG1,νi [(Z − τ) | z].

Thus we can further upper bound, by the bound on d(2)∞,M ,

|EG1,νi [(Z − τ)τ | z]−EG2,νi [(Z − τ)τ | z]| ≲H δ(1 +M) ≲Mδ.

Similarly, |fi,G1 − fi,G2 | ≲H δ. Hence,

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)| ≲H

{
M

ρn
+ ρ−1

n

(
M
√
log(1/ρn) + log(1/ρn)

)}
δ

≲H
M
√
log(1/ρn) + log(1/ρn)

ρn
δ.

Similarly,

Dm,i(z,G, η0) =
si
σ2i

fi,GEG,νi [(Z − τ) | z]
fi,G ∨ ρn/νi

.

Therefore

|Dm,i(z,G1, η0)−Dm,i(z,G2, η0)| ≲H
1

ρn
δ +

1

ρn

√
log(1/ρn)δ ≲

1

ρn

√
log(1/ρn)

by a similar calculation, involving Theorem B.4.14.

Thus, for the “corollary” part, note that, letting CH be the constant in the bound, taken to be at
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least 1:

N

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dm,∞,M

)
≤ N

(
δ

CH
log(1/(δ/(CH))),P(R), d(2)∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)
.

for all 0 < δ < 1/e. Similarly for the covering number in ds,∞,M .

B.4.12 Auxiliary lemmas

Lemma B.4.13. Suppose |Z̄n| = maxi∈[n] |Zi|∨1 ≤Mn, ∥ŝ−s0∥∞ ≤ ∆n, and ∥m̂−m0∥∞ ≤ ∆n.

Let Ĝn satisfy Assumption 2.3.1. Then, under Assumption B.4.1,

1. |Ẑi ∨ 1| ≲H Mn

2. There exists CH such that with ρn = 1
n3 exp

(
−CHM

2
n∆n

)
∧ 1
e
√
2π

,

fĜn,νi(Zi) ≥
ρn
νi
.

3. The choice of ρn satisfies log(1/ρn) ≍H log n, φ+(ρn) ≍H
√
log n, and ρn ≲H n−3.

Proof. Observe that |Ẑi| ∨ 1 ≲σℓ,σu,s0ℓ,s0u (1+∆n)Mn+∆n ≲ (1+∆n)Mn by Theorem B.4.15(3).

Hence by Assumption B.4.1, |Ẑi| ∨ 1 ≲H Mn.

For (2), we note by Theorem 5 in Jiang (2020),

fĜn,ν̂i(Ẑi) ≥
1

n3ν̂i

thanks to κn in (2.18). That is, ∫
φ

(
Ẑi − τ
ν̂i

)
Ĝn(dτ) ≥

1

n3
.

Now, note that

Ẑi − τ
ν̂i

=
Zi +

m0i−m̂i
s0i

+
(
1− ŝi

s0i

)
τ − τ

νi
=
Zi − τ
νi

+
m0i − m̂i

σi
+

1

σi
(si−s0i)τ =

Zi − τ
νi

+ξ(τ)

(B.48)

where |ξ(τ)| ≲H ∆nMn over the support of τ under Ĝn, under our assumptions.
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Then, for all Zi, since |Zi| ≤Mn by assumption,

φ

(
Ẑi − τ
ν̂i

)
= φ

(
Zi − τ
νi

)
exp

(
−1

2
ξ2(τ)− ξ(τ)Zi − τ

νi

)
≤ φ

(
Zi − τ
νi

)
exp

(
CH∆nMn

∣∣∣∣Zi − τνi

∣∣∣∣)
≤ φ

(
Zi − τ
νi

)
exp

(
CH∆nM

2
n

)
. (

∣∣∣Zi−τνi

∣∣∣ ≲H Mn)

Therefore, ∫
φ

(
Zi − τ
νi

)
Ĝn(dτ) ≥

1

n3
e−CH∆nM2

n .

Dividing by νi on both sides finishes the proof of (2). Claim (3) is immediate by calculating

log(1/ρn) =
(
3 log n− CHM

2
n∆

2
n

)
∨ log(e

√
2π) ≲H log n and apply Assumption B.4.1(1) to

obtain that ∆nM
2
n ≲H 1.

Lemma B.4.14 (Lemma 2 Jiang (2020)). For all x ∈ R and all ρ ∈ (0, 1/
√
2πe),∣∣∣∣ ν2f ′H,ν(x)

(ρ/ν) ∨ fH,ν(x)

∣∣∣∣ ≤ νφ+(ρ).

Moreover, for all x ∈ R and all ρ ∈ (0, e−1/
√
2π),∣∣∣∣

(
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)(
νfH,ν(x)

(νfG,ν(x)) ∨ ρ

)∣∣∣∣ ≤ φ2
+(ρ),

where we recall φ+ from (B.4).

Proof. The first claim is immediate from Lemma 2 in Jiang (2020). The second claim follows from

parts of the proof. Lemma 1 in Jiang (2020) shows that

0 ≤
ν2f ′′H,ν(x)

fH,ν(z)
+ 1 ≤ log

1

2πν2fH,ν(z)2︸ ︷︷ ︸
φ2
+(νfH,ν(z))

.

Case 1 (νfH,ν(x) ≤ ρ < e−1/
√
2π): Observe that t log 1

2πt2
is increasing over t ∈ (0, e−1(2π)−1/2).

Hence, (
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)
νfH,ν(x) ≤ νfH,ν log

1

2πν2fH,ν(z)2
≤ ρ log 1

2πρ2
.

Dividing by (νf) ∨ ρ = ρ confirms the bound for νf < ρ.
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Case 2 (νf > ρ): Since log 1
2πt2

is decreasing in t, we have that∣∣∣∣
(
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)(
νfH,ν(x)

(νfG,ν(x)) ∨ ρ

)∣∣∣∣ = ν2f ′′H,ν(x)

fH,ν(z)
+ 1 ≤ φ2

+(νfH,ν) ≤ log
1

2πρ2
.

Lemma B.4.15. The following statements are true:

1. Under Assumption 2.3.4, 1/ν̂i ≲s0u,σℓ 1 and ν̂i ≲s0ℓ,σu 1

2. Under Assumption 2.3.4, |1− s0i
ŝi
| ≲s0ℓ ∥ŝ− s0∥∞

3. Under Assumption 2.3.4,

max
i
|Ẑi| ≲σℓ,σu,s0ℓ,s0u (1 + ∥ŝ− s0∥∞)Z̄n + ∥m̂−m0∥∞

where Z̄n is defined in (B.6).

Proof. 1. Immediate by 1/ν̂i = ŝi/σi and P [s0ℓ < ŝi < s0u] = 1.

2. Immediate by observing that |1− s0i
ŝi
| = | ŝi−s0iŝi

| and P [s0ℓ < ŝi < s0u] = 1.

3. Immediate by Ẑi = s0i
ŝi
Zi + [m0i − m̂i]

Lemma B.4.16 (Zhang (1997), p.186). Let f be a density and let σ(f) be its standard deviation. Then,

for any M, t > 0, ∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤ σ(f)2

M2
+ 2Mt.

In particular, choosing M = t−1/3σ(f)2/3 gives∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤ 3t2/3σ2/3.

Proof. Since the value of the integral does not change if we shift f(z) to f(z − c), it is without loss of
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generality to assume that Ef [Z] = 0.∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤

∫ ∞

−∞
1(f(z) ≤ t, |z| < M)f(z) dz +

∫ ∞

−∞
1(f(z) ≤ t, |z| > M)f(z) dz

≤
∫ M

−M
t dz + P (|Z| > M)

≤ 2Mt+
σ2(f)

M2
. (Chebyshev’s inequality)

Lemma B.4.17. Recall that Qi(z, η,G) =
∫
(z − τ)τφ

(
z−τ
νi(η)

)
1

νi(η)
G(dτ). Then, for any G, z and

ρn ∈ (0, e−1/
√
2π), ∣∣∣∣ Qi(z, η0, G)

fG,νi(z) ∨ (ρn/νi)

∣∣∣∣ ≤ φ+(ρn) (νi|z|+ νiφ+(ρn)) . (B.49)

Proof. We can write

Qi(z, η0, G) = fG,νi(z)
{
zEG,νi [(z − τ) | z]−EĜn,νi [(z − τ)

2 | z]
}
.

From Theorem B.4.14,

fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
EG,νi [(z − τ) | z] ≤ νiφ+(ρn)

and

fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
EG,νi [(z − τ)2 | z] = ν2i

(
ν2i f

′′
i,G

fi,G
+ 1

)
fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
≤ ν2i φ2

+(ρn).

Therefore, ∣∣∣∣ Qi(z, η0, G)

fG,νi(z) ∨ (ρn/νi)

∣∣∣∣ ≤ φ+(ρn)νi (|z|+ φ+(ρn)) .

Lemma B.4.18. Under the assumptions in Theorem B.4.13, suppose η̃i lies on the line segment

between η0 and η̂i and define ν̃i, m̃i, s̃i, Z̃i accordingly. Then, the second derivatives (B.40), (B.42),
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(B.43), evaluated at η̃i, Ĝn, Z̃i, satisfy

|(B.40)| ≲H log n

|(B.42)| ≲H Mn log n

|(B.43)| ≲H M2
n log n.

Proof. First, we show that

| log(fĜn,ν̃i(Z̃i)ν̃i)| ≲H log n. (B.50)

Observe that we can write

Ẑi =
s̃iZ̃i + m̃i − m̂i

ŝi
.

where ∥s̃ − ŝ∥∞ ≤ ∆n and ∥m̃ − m̂∥∞ ≤ ∆n. This also shows that |Z̃i| ≲H Mn under the

assumptions.

Note that by the same argument in (B.48) in Theorem B.4.13, we have that

φ

(
Ẑi − τ
ν̂i

)
≤ φ

(
Z̃i − τ
ν̃i

)
e−CH∆nM2

n .

Hence,

ν̃ifĜ(i),ν̃i
(Z̃i) ≥

1

n3
e−CH∆nM2

n .

This shows (B.50).

Now, observe that

EĜn,ν̃ [(τ − Z)
2 | Z̃i] ≲H log

 1

ν̃ifĜ(i),ν̃i
(Z̃i)

 ≲H log n

and

EĜn,ν̃ [|τ − Z| | Z̃i] ≲H

√√√√√log

 1

ν̃ifĜ(i),ν̃i
(Z̃i)

 ≲H
√

log n

by Theorem B.4.14, since we can always choose ρ = ν̃ifĜ(i),ν̃i
(Z̃i) ∧ 1√

2πe
. Similarly, by Theo-

rem B.4.17, and plugging in ρ = ν̃ifĜ(i),ν̃i
(Z̃i) ∧ 1√

2πe
,∣∣∣EĜn,ν̃ [(τ − Z)Z | Z̃i]∣∣∣ ≲H

√
log n|Z̃i|+ log n ≲H

√
log nMn.
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Observe that ∣∣∣EĜn,ν̃i [(τ − Z)2τ | Z̃i]∣∣∣ ≲H MnEĜn,ν̃i [(τ − Z)
2] ≲H Mn log n.

since |τ | ≲H Mn under Ĝn. Similarly,

EĜn,ν̃i [(Z − τ)
2τ2 | Z̃i] ≲H M2

n log n EĜn,ν̃i [τ
2 | Z̃i] ≲H M2

n.

Plugging these intermediate results into (B.40), (B.42), (B.43) proves the claim.

Lemma B.4.19. Let X1, . . . , XJ be subgaussian random variables with K = maxi∥Xi∥ψ2 , not

necessarily independent. Then for some universal C, for all t ≥ 0,

P

[
max
i
|Xi| ≥ CK

√
log J + CKt

]
≤ 2e−t

2
.

Proof. By (2.14) in Vershynin (2018), P (|Xi| > t) ≤ 2e
−ct2/∥Xi∥2ψ2 ≤ 2e−ct

2/K for some universal

c. By a union bound,

P

[
max
i
|Xi| ≥ Ku

]
≤ 2 exp

(
−cu2 + log J

)
Choose u = 1√

c
(
√
log J + t) so that cu2 = log J + t2 + 2t

√
log J ≥ log J + t2. Hence

2 exp
(
−cu2 + log J

)
≤ 2e−t

2
.

Implicitly, C = 1/
√
c.

Lemma B.4.20. Suppose Z has simultaneous moment control E[|Z|p]1/p ≤ Ap1/α. Then

P (|Z| > M) ≤ exp (−CA,αMα) .

As a corollary, suppose Z ∼ fG0,νi(·) and G0 obeys Assumption 2.3.2, then

P (|Z| > M) ≤ exp (−CA0,α,νuM
α) .

Proof. Observe that

P (|Z| > M) = P (|Z|p > Mp) ≤

{
Ap1/α

M

}p
. (Markov)
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Choose p = (M/(eA))α such that{
Ap1/α

M

}p
= exp (−p) = exp

(
−
(

1

eA

)α
Mα

)
.

Lemma B.4.21. Let E be some event and assume that

P (E,A > a) ≤ p1 P (E,B > b) ≤ p2

Then P (E,A+B > a+ b) ≤ p1 + p2

Proof. Note that A+B > a+ b implies that one of A > a and B > b occurs. Hence

P (E,A+B > a+ b) ≤ P ({E,A > a} ∪ {E,B > b}) ≤ p1 + p2

by union bound.

Lemma B.4.22. Let τ ∼ G0 where G0 satisfies Assumption 2.3.2. Let Z | τ ∼ N (τ, ν2). Then the

posterior moment is bounded by a power of |z|:

E[|τ |p | Z = z] ≲p (|z| ∨ 1)p

Proof. Let M ≥ |z| ∨ 2. We write

E[|τ |p | Z = z] =
1

fG0,ν(z)

∫
|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ).

Note that∫
|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ) ≤ (3M)pfG0,ν(z) +

∫
1(|τ | > 3M)|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ)

≤ (3M)pfG0,ν(z) +

∫
|τ |>3M

|τ |pG0(dτ) ·
1

ν
φ (|2M |/ν)

(|z − τ | ≥ 2M when |τ | > 3M )
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Also note that

fG0,ν(z) =

∫
φ

(
z − τ
ν

)
1

ν
G0(dτ) ≥

1

ν
φ (|2M |/ν)G0([−M,M ])

(|z − τ | ≤ 2M if τ ∈ [−M,M ])

Hence,

E[|τ |p | Z = z] ≤ (3M)p +

∫
|τ |pG0(dτ)

G0([−M,M ])

Since G0 is mean zero and variance 1, by Chebyshev’s inequality, G0([−M,M ]) ≥ G0([−2, 2]) ≥

3/4.

Hence

E[|τ |p | Z = z] ≲p M
p ≲p (|z| ∨ 1)p,

since we have simultaneous moment control by Assumption 2.3.2.

B.5 Regret control proofs: A large-deviation inequality for the average

Hellinger distance

Theorem B.5.1. For some n >
√
2πe, let τ1, . . . , τn | (ν21 , . . . , ν2n)

i.i.d.∼ G0 where G0 satisfies

Assumption 2.3.2. Let νu = maxi νi and νℓ = mini νi. Assume Zi | τi, ν2i ∼ N (τi, ν
2
i ). Fix positive

sequences γn, λn → 0 with γn, λn ≤ 1 and constant ϵ > 0. Fix some positive constant C∗. Consider

the set of distributions that approximately maximize the likelihood

A(γn, λn) =
{
H : Subn(H) ≤ C∗ (γ2n + h̄(fH,·, fG0,·)λn

)}
.

Also consider the set of distributions that are far from G0 in h̄:

B(t, λn, ϵ) =
{
H : h̄(fH,·, fG0,·) ≥ tBλ1−ϵn

}
with some constant B to be chosen. Assume that for some Cλ,

λ2n ≥
(
Cλ
n

(log n)1+
α+2
2α

)
∨ γ2n.
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Then the probability that A ∩ B is nonempty is bounded for t > 1: There exists a choice of B that

depends only on νℓ, νu, C∗, Cλ such that

P [A(γn, λn) ∩B(t, λn, ϵ) ̸= ∅] ≤ (log2(1/ϵ) + 1)n−t
2
. (B.51)

Corollary B.5.2. Let λn = n
− p

2p+1 (log n)γ1 ∧ 1 and γn = n
− p

2p+1 (log n)γ2 ∧ 1 where γ1 ≥ γ2 > 0.

Fix some C∗
H. Fix ϵ > 0. Then there exists BH that depends solely on C∗

H, p, γ1, γ2, νℓ, νu such that

P
[
There exists H: Subn(H) ≤ C∗

H(γ
2
n + h̄(fH,·, fG0,·)λn) and h̄(fH,·, fG0,·) ≥ tBHn

− p
2p+1 (log n)γ1

]
≤
(
log logn

log 2
+ 1

)
n−t

2

Proof. First, note that λ2n ≥ γ2n and λ2n ≳ (logn)1+
α+2
2α

n .

Note that tBλ1−ϵn ≤ tBHn
− p

2p+1
+ϵ p

2p+1 (log n)γ1 ≤ tBHn
− p

2p+1
+ϵ
(log n)γ1 . Therefore,

{
H : h̄(fH,·, fG0,·) ≥ tBHn

− p
2p+1

+ϵ
(log n)γ1

}
⊂
{
H : h̄(fH,·, fG0,·) ≥ tBλ1−ϵn

}
.

As a result, the probability

P
[
There exists H: Subn(H) ≤ C∗

H(γ
2
n + h̄(fH,·, fG0,·)λn) and h̄(fH,·, fG0,·) ≥ tBHn

− p
2p+1

+ϵ
(log n)γ1

]
is upper bounded by

P [A(γn, λn) ∩B(t, λn, ϵ) ̸= ∅] ≤ (log2(1/ϵ) + 1)n−t
2

via an application of Theorem B.5.1.

Finally, set ϵ = 1
logn . Note that nϵ = n

1
logn = exp (log n/ log n) = e. Hence

tBHn
− p

2p+1
+ϵ
(log n)γ1 = tBHen

− p
2p+1 (log n)γ1 .

Corollary B.5.3. Assume the conditions in Theorem B.4.2. That is,

1. The estimate Ĝn satisfies Assumption 2.3.1.

2. For β ≥ 0, and suppose that ∆n,Mn take the form (B.13).

3. Suppose Assumptions 2.3.2 to 2.3.4 hold.
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Define the rate function

δn = n−p/(2p+1)(log n)
2+α
2α

+β. (B.52)

Then, there exists some constant BH, depending solely on C∗
H in Theorem B.4.2, β, and p, νℓ, νu such

that

P
[
Z̄n ≤Mn, ∥η̂ − η∥∞ ≤ ∆n, h(fĜn,·, fG0,·) > BHδn

]
≤
(
log log n

log 2
+ 10

)
1

n
.

Proof. Let γ = 2+α
2α + β. We first verify that, for εn in (B.14), we make the choices

λn = n−p/(2p+1)(log n)
2+α
2α

+β ∧ 1 γn = n−p/(2p+1)(log n)
2+α
2α

+β ∧ 1

does satisfy λ2n ≥ γ2n, as required by Theorem B.4.2. Since εn ≲ λnh̄+ γ2n, the truncation by 1 only

affects our subsequent results by constant factors.

The event in question is a subset of the union of

{
Z̄n ≤Mn, ∥η̂ − η∥∞ ≤ ∆n,Subn(Ĝn) > C∗

Hεn

}
and

{
Z̄n ≤Mn, ∥η̂ − η∥∞ ≤ ∆n,Subn(Ĝn) ≤ C∗

Hεn, h̄(fĜn,·, fG0,·) > BHn
−p/(2p+1)(log n)γ

}
.

The first event has measure at most 9/n by Theorem B.4.2, and there exists a choice of BH such that

the second has measure at most n−1
(
log logn
log 2 + 1

)
by Theorem B.5.2. We conclude the proof by

applying a union bound.

B.5.1 Proof of Theorem B.5.1

Decompose B(t, λn, ϵ)

We decompose B(t, λn, ϵ) ⊂
⋃K
k=1Bk(t, λn) where, for some constant B to be chosen,

Bk =
{
H : h̄ (fH,·, fG0,·) ∈

(
tBλ1−2−k

n , tBλ1−2−k+1

n

]}
.

The relation B(t, λn, ϵ) ⊂
⋃
k Bk holds if we take K = ⌈| log2(1/ϵ)|⌉, since, in that case, K ≥

log2(1/ϵ) =⇒ 2−K ≤ ϵ =⇒ λ1−2−K
n ≤ λ1−ϵn .
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We will bound

P (A(γn, λn) ∩Bk(t, λn) ̸= ∅) ≤ n−t
2

which becomes the bound (B.51) by a union bound. For k ∈ [K], define µn,k = Bλ1−2−k+1

n such that

Bk =
{
H : h̄ (fH,·, fG0,·) ∈ (tµn,k+1, tµn,k]

}
. To that end, fix some k.

Construct a net for the set of densities fG

Fix a positive constant M and define the seminorm

∥G∥∞,M = max
i∈[n]

sup
y∈[−M,M ]

fG,νi(y).

Note that ∥G∥∞,M is proportional to ∥G∥0,∞,M defined in Theorem B.4.11. Fix ω = 1
n2 > 0 and

consider an ω-net for the distribution P(R) under ∥·∥∞,M . Let N = N(ω,P(R), ∥·∥∞,M ) and the

ω-net is the distributions H1, . . . ,HN . For each j, let Hk,j be the distribution with

h̄(fHk,j ,·, fG0,·) ≥ µn,k+1

if it exists, and let Jk collect the indices for which Hj,k exists.

Project to the net and upper bound the likelihood

Fix a distribution H ∈ Bk(t, λn). There exists some Hj where ∥H −Hj∥∞,M ≤ ω. Moreover, H

serves as a witness that Hk,j exists, with ∥H −Hk,j∥∞,M ≤ 2ω.

We can construct an upper bound for fH,νi(z) via

fH,νi(z) ≤


fHk,j ,νi(z) + 2ω |z| < M

1√
2πνi

|z| ≥M
.

Define

v(z) = ω1(|z| < M) +
ωM2

z2
1(|z| ≥M).
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Observe that

fH,νi(z) ≤
fHk,j ,νi(z) + 2v(z)
√
2πνiv(z)

if |z| > M

fH,νi(z) ≤ fHk,j ,νi(z) + 2v(z) if |z| ≤M.

Hence, the likelihood ratio between H and G0 is upper bounded:

n∏
i=1

fH,νi(Zi)

fG0,νi(Zi)
≤

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

∏
i:|Zi|>M

1√
2πνiv(Zi)

≤

(
max
j∈Jk

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

) ∏
i:|Zi|>M

1√
2πνiv(Zi)

If H ∈ A(t, γn, λn), then the likelihood ratio is lower bounded:

n∏
i=1

fH,νi(Zi)

fG0,νi(Zi)
≥ exp

(
−nC∗(γ2n + h̄ (fH,·, fG0,·)λn)

)
≥ exp

(
−ntC∗(tγ2n + h̄ (fH,·, fG0,·)λn)

)
.

(t > 1)

Hence,

P [A(t, γn, λn) ∩Bk(t, λn) ̸= ∅]

≤ P

{(
max
j∈Jk

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

) ∏
i:|Zi|>M

1√
2πνiv(Zi)

≥ exp
(
−nt2C∗(γ2n + µn,kλn)

)}

≤ P

[
max
j∈Jk

n∏
i=1

fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)
≥ e−nt2aC∗(γ2n+µn,kλn)

]
(B.53)

+ P

 ∏
i:|Zi|>M

1√
2πνiv(Yi)

≥ ent2(a−1)C∗(γ2n+µn,kλn)

 (B.54)

The first inequality follows from plugging in h̄ ≤ tµn,k. The second inequality follows from choosing

some a > 1 and applying union bound.
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Bounding (B.53)

We consider bounding the first term (B.53) now:

(B.53) ≤
∑
j∈Jk

P

[
n∏
i=1

fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)
≥ e−nat2C∗(γ2n+µn,kλn)

]
(Union bound)

≤
∑
j∈Jk

E

[
n∏
i=1

√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

]
enat

2C∗(γ2n+µn,kλn)/2

(Take square root of both sides, then apply Markov’s inequality)

=
∑
j∈Jk

enat
2C∗(γ2n+µn,kλn)/2

n∏
i=1

E

[√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

]
(B.55)

where the last step (B.55) is by independence over i. Note that

E

[√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Yi)

]
=

∫ ∞

−∞

√
fHk,j ,νi(x) + 2v(x)

√
fG0,νi(x) dx

≤ 1− h2(fHk,j ,νi , fG0,νi) +

∫ ∞

−∞

√
2v(x)fG0,νi(x) dx

(
√
a+ b ≤

√
a+
√
b)

≤ 1− h2(fHk,j ,νi , fG0,νi) +

(
2

∫ ∞

−∞
v(x) dx

)1/2

(Jensen’s inequality)

= 1− h2(fHk,j ,νi , fG0,νi) +
√
8Mη (Direct integration)

Also note that, for ti > 0, we have

∏
i

ti = exp
∑
i

log ti ≤ exp

(∑
i

(ti − 1)

)
.

and thus
n∏
i=1

E

[√
fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)

]
≤ exp

[
−nh̄2(fHk,j ,·, fG0,·) + n

√
8Mω

]
.
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Thus, we can further bound (B.55):

(B.53) ≤ (B.55) =
∑
j∈Jk

enαt
2(γ2n+µn,kλn)/2

n∏
i=1

E

[√
fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)

]

≤
∑
j∈Jk

exp

{
nat2C∗

2
(γ2n + µn,kλn)− nh̄2(fHk,j ,·, fG,·) + n

√
8Mω

}

≤
∑
j∈Jk

exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω

}

≤ exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω + logN

}
(|Jk| ≤ N )

≤ exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω + C| logω|2max

(
M√
| logω|

, 1

)}
(Theorem B.4.11, q = 0)

= exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 +

√
8M + C(log n)2max

(
M√
log n

, 1

)}
.

(Recall that ω = 1
n2 )

Bounding (B.54)

We now consider bounding the second term (B.54). By Markov’s inequality again (taking x 7→

x1/(2 logn) on both sides, we can choose to bound

(B.54) ≤ E

[
n∏
i=1

(
1

(2πν2i )
1/4

Zi
M
√
ω

) 1
logn

1(|Zi|>M)
]
exp

(
−
n(a− 1)t2C∗(γ2n + µn,kλn)

2 log n

)
instead. Define

ai =
1

(2πν2i )
1/4M

√
ω
≤ Cνℓn

M
λ =

1

log n

Apply Theorem B.5.4 to obtain the following. Note that to do so, we require

M ≥ νu
√
8 log n p ≥ 1

log n
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Then,

logE

[
n∏
i=1

(
1

(2πν2i )
1/4

Zi
M
√
ω

) 1
logn

1(|Zi|>M)
]
= logE

[∏
i

(aiZi)
λ1(|Zi|≥M)

]

≲νu

n∑
i=1

(aiM)λ
(

1

Mn
+

2pµpp(G0)

Mp

)

≤
n∑
i=1

(Cνℓn)
1

logn

(
1

Mn
+

2pµpp(G0)

Mp

)
≲νu,νℓ

1

M
+

2pnµpp(G0)

Mp

As a result,

log[(B.54)] ≤ Cνu,νℓ
(

1

M
+

2pnµpp(G0)

Mp

)
− n(a− 1)

2 log n
t2C∗

(
γ2n +Bλ2(1−2−k)

n

)
. (B.56)

Choosing p,M, a and verifying conditions

By Assumption 2.3.2, µpp(G0) ≤ Ap0pp/α. Let M = 2eA0(cm log n)1/α and p = (M/(2eA0))
1/α so

that

2pµpp(G0)/M
p ≤ exp (−cm log n)

We choose cm ≥ 2 sufficiently large such that M = 2eA0(cm log n)1/α > νu
√
8 log n ∨ 1 and p ≥ 1

for all n > 2 to ensure that our application of Theorem B.5.4 is correct. Since α ≤ 2, such a choice is

available. Hence,
2pnµpp(G0)

Mp
≤ 1

n
.

Hence the first term in (B.56) is less than 2Cνu,νℓ .

Choose a = 1.5 to obtain that

log[(B.54)] ≤ 2Cνu,νℓ −
n

4 log n
t2C∗

(
γ2n +Bλ2(1−2−k)

n

)
≤ t2

[
2Cνu,νℓ −

n

4 log n
C∗Bλ2n

]
(t ≥ 1, γn > 0, λn < 1)

≤ t2
[
2Cνu,νℓ −

C∗BCλ
4

(log n)

]
(λ2n ≥ Cλ(log n)1+

α+2
2α /n ≥ Cλ(log n)2/n)

There exists a sufficiently largeB dependent only onC∗, Cλ, Cνu,νℓ where 2Cνu,νℓ−
C∗BCλ

4 (log n) ≤
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− log n for all n ≥ 2. Hence, for all sufficiently large B,

log[(B.54)] ≤ −t2 log n.

Similarly, under these choices,

log[(B.53)] ≤ −nt2
[
−3

4
C∗(γ2n +Bλ2(1−2−k)

n ) +B2λ2(1−2−k+1)
n

]
+ C(log n)1+

2+α
2α

≤ −nt2
[
−3

4
C∗(λ2n +Bλ2(1−2−k)

n ) +B2λ2(1−2−k+1)
n

]
+ C(log n)1+

2+α
2α t2

(γn ≤ λn, t ≥ 1)

≤ −t2
[
nλ2n

(
−3

4
C∗ − 3

4
C∗B

(
1

λn

)2−k+1

+B2

(
1

λn

)2−k+2
)
− C(log n)1+

2+α
2α

]

≤ −t2
[
nλ2n

(
1

λn

)2−k+2 (
−3

4
C∗ − 3

4
C∗B +B2

)
− C(log n)1+

2+α
2α

]
(λn ≤ 1. Pick B such that −3

4C
∗ − 3

4C
∗B +B2 > 0)

≤ −t2
[
nλ2n

(
−3

4
C∗ − 3

4
C∗B +B2

)
− C(log n)1+

2+α
2α

]
≤ −t2(log n)1+

2+α
2α

[
Cλ

(
−3

4
C∗ − 3

4
C∗B +B2

)
− C

]
There exists choices of B, depending solely on C∗, C, Cλ, Cνu,νℓ where[

Cλ

(
−3

4
C∗ − 3

4
C∗B +B2

)
− C

]
> 1

so that the above is at most −t2 log n− log 2.

Putting the union bound together, we obtain that

(B.53) + (B.54) ≤ n−t2 .

This concludes the proof.

B.5.2 Auxiliary lemmas

Lemma B.5.4 (Lemma 5 in Jiang (2020)). Suppose Zi | τi ∼ N (τi, ν
2
i ) where τi | ν2i ∼ G0

independently across i. Let 0 < νu, νℓ < ∞ be the upper and lower bounds for νi. Then, for

all constants M > 0, λ > 0, ai > 0, p ∈ N such that M ≥ νu
√
8 log n, λ ∈ (0, p ∧ 1), and

219



a1, . . . , an > 0:

E

{∏
i

|aiZi|λ1(|Zi|≥M)

}
≤ exp

{
n∑
i=1

(aiM)λ
(

4νu

Mn
√
2π

+

(
2µp(G0)

M

)p)}
.

B.6 Regret control proofs: An oracle inequality for the Bayes squared-

error risk

Recall the definition of Regret in (B.5) and the event An in (B.6).

B.6.1 Controlling Regret on AC
n

The first term is the regret when a bad event occurs, on which either the nuisance estimates are bad or

the data has large values. The probability of this bad event is

P (AC
n ) ≤ P (∥η̂ − η∥∞ > ∆n) + P (Z̄n > Mn) ≤ P (∥η̂ − η∥∞ > ∆n) + n−2.

There exist choices of the constant in (B.13) forMn such that P (Z̄n > Mn) ≤ n−2, by Theorem B.6.8.

Thus, at a minimum, the first term is o(1) for appropriate choices of ∆n,Mn such that P (AC
n )→ 0.

We can also control the expected value of Regret on the bad event AC
n .

Lemma B.6.1. Under Assumptions 2.3.1 to 2.3.4. For β ≥ 0, suppose n > 3 and suppose ∆n,Mn

satisfies (B.13) such that P (Z̄n > Mn) ≤ n−2, we can decompose

E[Regret(Ĝn, η̂)1(∥η̂ − η∥∞ > ∆n)] ≲H P (∥η̂ − η∥∞ > ∆n)
1/2(log n)2/α

E[Regret(Ĝn, η̂)1(Z̄n > Mn)] ≲H
1

n
(log n)2/α

Proof. Observe that, for an event A on the data Z1:n,

E
[
Regret(Ĝn, η̂)1(A)

]
= E

[
1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2
1(A)

]

≤ E

( 1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2

)2
1/2

P (A)1/2

by Cauchy–Schwarz.
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A crude bound (Theorem B.6.7) shows that, almost surely,{
1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2

}2

≲H Z̄4
n.

Apply Theorem B.6.8 to find that E[Z̄4
n] ≲H (log n)4/α. This proves both claims.

B.6.2 Controlling Regret on An

Theorem B.6.2. Assume the conditions in Theorem B.5.3. That is,

1. Suppose Ĝn satisfies Assumption 2.3.1.

2. For β ≥ 0, suppose ∆n,Mn satisfies (B.13).

3. Suppose Assumptions 2.3.2 to 2.3.4 hold.

Then,

E
[
Regret(Ĝn, η̂)1(An)

]
≲H n

− 2p
2p+1 (log n)

2+α
α

+3+2β

Proof. Let C∗
H be the constant in Theorem B.4.2 and BH be the constant in Theorem B.5.3. Recall

the Hellinger rate δn in (B.52).

Recall the decomposition (B.5) for Regret. Note that the term corresponding to the second term

in the decomposition (B.5),

E

[
1(An)

2

n

n∑
i=1

(θ∗i − θi)(θ̂i,Ĝn,η̂ − θ
∗
i )

]
= 0,

is mean zero, since E[(θ∗i − θi) | Y1, . . . , Yn] = 0. Thus, we can focus on

E

[
1(An)

n

n∑
i=1

(θ̂i,Ĝn,η̂ − θ
∗
i )

2

]
≡ 1

n
E[1(An)∥θ̂Ĝn,η̂ − θ

∗∥2], (B.57)

where we let θ̂Ĝn,η̂ denote the vector of estimated posterior means and let θ∗ denote the corresponding

vector of oracle posterior means. Let the subscript ρn denote a vector of regularized posterior means

as in (B.3). Thus, we may further decompose,

∥θ̂Ĝn,η̂ − θ
∗∥ ≤ ∥θ̂Ĝn,η̂ − θ̂Ĝn,η0∥+ ∥θ̂Ĝn,η0 − θ̂Ĝn,η0,ρn∥+ ∥θ̂Ĝn,η0,ρn − θ

∗
ρn∥+ ∥θ

∗
ρn − θ

∗∥.
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Let

ξ1 =
1(An)

n
∥θ̂Ĝn,η̂ − θ̂Ĝn,η0∥

2 (B.58)

ξ2 =
1(An)

n
∥θ̂Ĝn,η0 − θ̂Ĝn,η0,ρn∥

2 (B.59)

ξ3 =
1(An)

n
∥θ̂Ĝn,η0,ρn − θ

∗
ρn∥

2 (B.60)

ξ4 =
1(An)

n
∥θ∗ρn − θ

∗∥2 (B.61)

corresponding to the square of each of the terms, such that

(B.57) ≤ 4(Eξ1 + Eξ2 + Eξ3 + Eξ4) = 4(Eξ1 + Eξ3 + Eξ4).

Observe that ξ2 = 0 by Theorem B.4.13, since the truncation by ρn does not bind when An occurs.

The ensuing subsections control Eξ1, Eξ3, Eξ4 individually. Putting together the rates we obtain,

we find that

ξ1 ≲H M6
n∆

2
n =⇒ Eξ1 ≲H M2

n(log n)
2∆2

n

Eξ3 ≲H (log n)3δ2n

Eξ4 ≲H
1

n

Now, observe that δn ≍H ∆nM
2
n ≳H ∆nMn log n and 1

n ≲H (log n)3δ2n. Hence, the dominating rate

is (log n)3δ2n. Plugging in δ2n in (B.52) to obtain the rate

(B.57) ≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β1 .

B.6.3 Controlling ξ1

Lemma B.6.3. Under the assumptions of Theorem B.6.2, in the proof of Theorem B.6.2, ξ1 ≲H

M2
n(log n)

2∆2
n.
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Proof. Note that, by an application of Taylor’s theorem,

∣∣∣θ̂i,Ĝn,η̂ − θ̂i,Ĝn,η0∣∣∣ = σ2i

∣∣∣∣∣∣
f ′
Ĝn,ν̂i

(Ẑi)

ŝifĜn,ν̂i(Ẑi)
−

f ′
Ĝn,νi

(Zi)

s0ifĜn,νi(Zi)

∣∣∣∣∣∣
= σ2i

∣∣∣∣∣
(
∂ψi
∂mi

∣∣∣∣
Ĝn,η̂

− ∂ψi
∂mi

∣∣∣∣
Ĝn,η0

)∣∣∣∣∣
= σ2i

∣∣∣∣∣ ∂2ψi
∂mi∂si

∣∣∣∣
Ĝn,η̃i

(ŝi − s0i) +
∂2ψi
∂m2

i

∣∣∣∣
Ĝn,η̃i

(m̂i −m0i)

∣∣∣∣∣ ,
where we use η̃i to denote some intermediate value lying on the line segment between η̂i and η0i. By

Theorem B.4.18,

1(An)
∣∣∣θ̂i,Ĝn,η̂ − θ̂i,Ĝn,η0∣∣∣ ≲H Mn log n∆n.

Hence, squaring both sides, we obtain ξ1 ≲H M2
n(log n)

2∆2
n.

B.6.4 Controlling ξ3

Lemma B.6.4. Under the assumptions of Theorem B.6.2, in the proof of Theorem B.6.2, Eξ3 ≲H

(log n)3δ2n.

Proof. Observe that ∣∣∣θ̂i,Ĝn,η0,ρn − θ∗i,ρn∣∣∣ = s0i

∣∣∣τ̂i,Ĝn,η0,ρn − τ∗i,ρn∣∣∣
where τ̂i,Ĝn,η0,ρn is the regularized posterior with prior Ĝn at nuisance parameter η0 and τ∗i,ρn =

τ̂i,G0,η0,ρn .

We shall focus on controlling

1(An)∥τ̂Ĝn,η0,ρn − τ
∗
ρn∥

2

Fix the rate function δn in (B.52) and the constant BH in Theorem B.5.3 (which in turn depends on

C∗
H in Theorem B.4.2). Let Bn = {h̄(fĜn,·, fG0,·) < BHδn} be the event of a small average squared

Hellinger distance. Let G1, . . . , GN be a finite set of prior distributions (chosen to be a net of P(R)

in some distance), and let τ (j)ρn be the posterior mean vector corresponding to prior Gj with nuisance

parameter η0 and regularization ρn.

223



Then
1(An)

n
∥τ̂Ĝn,η0,ρn − τ

∗
ρn∥

2 ≤ 4

n

(
ζ21 + ζ22 + ζ23 + ζ24

)
where

ζ21 = ∥τ̂Ĝn,η0,ρn − τ
∗
ρn∥

2
1
(
An ∩BC

n

)
(B.62)

ζ22 =

(
∥τ̂Ĝn,η0,ρn − τ

∗
ρn∥ − max

j∈[N ]
∥τ (j)ρn − τ

∗
ρn∥
)2

+

1(An ∩Bn) (B.63)

ζ23 = max
j∈[N ]

(
∥τ (j)ρn − τ

∗
ρn∥ − E

[
∥τ (j)ρn − τ

∗
ρn∥
])2

+
(B.64)

ζ24 = max
j∈[N ]

(
E
[
∥τ (j)ρn − τ

∗
ρn∥
])2

(B.65)

The decomposition ζ1 through ζ4 is exactly analogous to Section C.3 in Soloff et al. (2021) and to the

proof of Theorem 1 in Jiang (2020). In particular, ζ1 is the gap on the “bad event” where the average

squared Hellinger distance is large, which is manageable since 1(An ∩ BC
n ) has small probability

by Theorem B.5.3. ζ2 is the distance from the posterior means at Ĝn to the closest posterior mean

generated from the net G1, . . . , GN ; ζ2 is small if we make the net very fine. ζ3 measures the distance

between ∥τ (j)ρn − τ∗ρn∥ and its expectation; ζ3 can be controlled by (i) a large-deviation inequality and

(ii) controlling the metric entropy of the net (Theorem B.4.12). Lastly, ζ4 measures the expected

distance between τ (j)ρn and τ∗ρn ; it is small sinceGj are fixed priors with small average squared Hellinger

distance.

However, our argument for ζ3 is slightly different and avoids an argument in Jiang and Zhang

(2009) which appears to not apply in the heteroskedastic setting. See Theorem B.6.5.

The subsequent subsections control ζ1 through ζ4, and find that ζ4 ≲H (log n)3δ2n is the dominating

term.

Controlling ζ1

First, we note that

(
τ̂i,Ĝn,η0,ρn − τ

∗
ρn

)2
1(An ∩BC

n ) ≲H log(1/ρn)1(An ∩BC
n ) = log n1(An ∩BC

n )
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By Theorem B.5.3, P (An ∩BC
n ) ≤

(
log logn
log 2 + 9

)
1
n , and hence

1

n
Eζ21 ≲H

log n log log n

n
.

Controlling ζ2

Choose G1, . . . , GN to be a minimal ω-covering of
{
G : h̄(fG,·, fG0,·) ≤ δn

}
under the pseudometric

dMn,ρn(H1, H2) = max
i∈[n]

sup
z:|z|≤Mn

∣∣∣∣∣ ν2i f
′
H1,νi

(z)

fH1,νi(z) ∨
(
ρn
νi

) − ν2i f
′
H2,νi

(z)

fH2,νi(z) ∨
(
ρn
νi

)∣∣∣∣∣ (B.66)

where N ≤ N (ω,P(R), dMn,ρn). We note that (B.66) and (B.28) are different only by constant

factors. Therefore, Theorem B.4.12 implies that

logN

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dMn,ρn

)
≲H log(1/δ)2max

(
1,

Mn√
log(1/δ)

)
(B.67)

for all sufficiently small δ > 0.

Then

1

n
ζ22 ≤ 1(An ∩Bn) max

j∈[N ]
∥τ̂Ĝn,η0,ρn − τ

(j)
ρn ∥

2 (Triangle inequality : ∥a− b∥ − ∥b− c∥ ≤ ∥a− c∥)

= 1(An ∩Bn) max
j∈[N ]

n∑
i=1

1 (|Zi| ≤Mn)

 ν2i f
′
Ĝn,νi

(Zi)

fĜn,νi(Zi) ∨
(
ρn
νi

) − ν2i f
′
Gj ,νi

(Zi)

fGj ,νi(Zi) ∨
(
ρn
νi

)
2

≤ ω2

≤ δ2 log(1/δ)2

ρ2n
log(1/ρn). (Reparametrize ω = δ log(1/δ)ρ−1

n

√
log(1/ρn))

Controlling ζ3

We first observe that Vij ≡ |τ (j)i,ρn
− τ∗i,ρn | ≲H

√
log n, by Theorem B.4.14. Let Vj = (V1j , . . . , Vnj)

′,

we have that

ζ3 = max
j

(∥Vj∥ − E∥Vj∥)+

Let Kn = CH log n ≥ maxij |Vij |. Since Gj , G0 are both fixed, V1j , . . . , Vnj are mutually indepen-

dent.
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Observe that

P (∥Vj∥ > E[∥Vj∥] + u) = P

(∥∥∥∥ VjKn

∥∥∥∥ ≥ E ∥∥∥∥ VjKn

∥∥∥∥+ u

Kn

)
≤ exp

(
− u2

2K2
n

)
.

by Theorem B.6.9. By a union bound,

P
(
ζ23 > x

)
≤ N exp

(
− x

2K2
n

)
.

Therefore

E[ζ23 ] =

∫ ∞

0
P (ζ23 > x) dx

=

∫ ∞

0
min

(
1, N exp

(
− x

2K2
n

))
dx

= 2K2
n logN +

∫ ∞

2K2
n logN

N exp

(
− x

2K2
n

)
dx

≲H log n logN.

Now, if we take δ = ρn/n, then

1

n
E[ζ22 + ζ23 ] ≲H

(log n)3

n
.

Remark B.6.5. For the analogous term in the homoskedastic setting, Jiang and Zhang (2009) (and,

later on, Saha and Guntuboyina (2020)) observe that ∥τ (j)ρn − τ∗ρn∥ is a Lipschitz function of the noise

component Zi − τi. As a result, a Gaussian isoperimetric inequality (Theorem 5.6 in Boucheron et al.

(2013)) establishes that

P
(
∥τ (j)ρn − τ

∗
ρn∥ ≥ E

[
∥τ (j)ρn − τ

∗
ρn∥ | τ1, . . . , τn

]
+ x
)

is small, independently of n—a fact used in Proposition 4 of Jiang and Zhang (2009). Note that the

concentration of ∥τ (j)ρn − τ∗ρn∥ is towards its conditional mean E
[
∥τ (j)ρn − τ∗ρn∥ | τ1, . . . , τn

]
. In the

homoskedastic setting where νi = ν,

E
[
∥τ (j)ρn − τ

∗
ρn∥ | τ1, . . . , τn

]
= EG0,n

[
∥τ (j)ρn − τ

∗
ρn∥
]

(B.68)

where G0,n = 1
n

∑
i δτi is the empirical distribution of the τ ’s. However, (B.68) no longer holds in
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the heteroskedastic setting, and to adapt this argument, we need to additionally control the difference

betweenE
[
∥τ (j)ρn − τ∗ρn∥ | τ1, . . . , τn

]
andE

[
∥τ (j)ρn − τ∗ρn∥

]
. The arguments of Jiang (2020) (p.2289)

and Soloff et al. (2021) (Section C.3.3, arXiv:2109.03466v1) appear to use the Gaussian concentration

of Lipschitz functions argument without the additional step.

Instead, we establish control of ζ3 by observing that entries of τ (j)ρn − τ∗ρn are bounded and applying

the convex Lipschitz concentration inequality. Since, like Soloff et al. (2021), we seek regret control in

terms of mean-squared error, this argument applies to their setting as well. Jiang (2020), on the other

hand, seeks regret control in terms of root-mean-squared error, and it is unclear if similar fixes apply.

■

Controlling ζ4

Consider a change of variables where we let wi = z/νi and λi = τ/νi. Let G(i) be the distribution of

λi under G, where

G(i)(dλ) = G(dτ)

Then

fG,νi(z) =

∫
1

νi
φ (wi − λi)G(dτ) =

1

νi

∫
φ (wi − λi)G(i)(dλi) =

1

νi
fG(i),1(wi)

and

f ′G,νi(z) =
1

ν2i
f ′G(i),1

(wi).

Hence,

E(τ (j)ρn − τ
∗
ρn)

2 = ν2i E

(
f ′Gji,1(wi)

fGji,1(wi) ∨ ρn
−

f ′G0i,1
(wi)

fG0i,1(wi) ∨ ρn

)2

≲H max
(
(log 1/ρn)

3, | log h(fGji,1, fG0i,1)|
)
h2(fGji,1, fG0i,1)

(Theorems B.4.13 and B.6.10)

= max
(
(log 1/ρn)

3, | log h(fGj ,νi , fG0,νi)|
)
h2(fGj ,νi , fG0,νi)

(Hellinger distance is invariant to change-of-variables)

Let hi = h(fGj ,νi , fG0,νi).
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Hence,

1

n
E[ζ24 ] ≲H

(log n)3

n

∑
i:| log hi|<(log 1/ρn)3

h2i +
1

n

∑
i:| log hi|>(log 1/ρn)3

| log hi|h2i

≤ (log n)3h̄2(fGj ,·, fG0,·) +
1

n

∑
i:| log hi|>(log 1/ρn)3

1

e
hi (x| log x| ≤ e−1)

Note that

| log hi| > (log 1/ρn)
3 =⇒ hi < exp

(
− log(1/ρn)

3
)
< ρ(log 1/ρn)

2

n ≲H ρ3n ≲H n−1.

(Assumption B.4.1)

Therefore the first term dominates, and

1

n
E[ζ24 ] ≲H (log n)3δ2n.

B.6.5 Controlling ξ4

Lemma B.6.6. Under the assumptions of Theorem B.6.2, in the proof of Theorem B.6.2, Eξ4 ≲H
1
n .

Proof. Note that

E[(θ∗i,ρn − θ
∗
i )

2] =

∫ (
ν2i
f ′G0,νi

(z)

fG0,νi(z)

)2(
1−

fG0,νi

fG0,νi ∨
ρn
νi

)2

fG0,νi(z) dz

≤ E

(ν2i f ′G0,νi
(z)

fG0,νi(z)

)4
1/2

P [fG0,νi(Z) < ρn/νi]
1/2 (Cauchy–Schwarz)

≲H ρ1/3n Var(Z)1/6 (Theorem B.4.16)

≲H
1

n
.

Therefore, E[ξ4] ≲H
1
n .

B.6.6 Auxiliary lemmas

Lemma B.6.7. Let θ̂i,Ĝ,η̂ be the posterior mean at prior Ĝ and nuisance parameter estimate at η̂.

Let θ∗i = θ̂i,G0,η0 be the true posterior mean. Assume that Ĝ is supported within [−M̄n, M̄n] where

M̄n = maxi |Ẑi(η̂) ∨ 1|. Let ∥η̂ − η∥∞ = max(∥m̂−m0∥∞, ∥ŝ− s0∥∞).
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Then, suppose

1. ∥η̂ − η∥∞ ≲H 1.

2. Assumptions 2.3.2 and 2.3.3 holds.

3. ŝ ≳H sℓn for some fixed sequence sℓn > 0.

Then ∣∣∣θ̂i,Ĝ,η̂ − θ∗i ∣∣∣ ≲H s̄−2
ℓn Z̄n.

Moreover, the assumptions are satisfied by Assumptions 2.3.1 to 2.3.4 with sℓn = s0ℓ ≍ 1.

Proof. Observe that

∣∣∣θ̂i,Ĝn,η̂ − θ̂i,G0,η0

∣∣∣ =
∣∣∣∣∣∣ 1ŝi

ν̂2i f
′
Ĝn,ν̂i

(Ẑi)

fĜn,ν̂i(Ẑi)
− 1

s0i

v2i f
′
G0νi

(Zi)

fG0,νi(Zi)

∣∣∣∣∣∣
≲H s−1

ℓn M̄n + Z̄n.

by the boundedness of Ĝn and Theorem B.4.22. Note that

|Ẑi(η̂)| =
∣∣∣∣s0iŝi Zi + m0i − m̂i

ŝi

∣∣∣∣ ≲H s−1
ℓn |Zi|.

Therefore, ∣∣∣θ̂i,Ĝn,η̂ − θ̂i,G0,η0

∣∣∣ ≲H s−2
ℓn Z̄n.

Lemma B.6.8. Let Z̄n = maxi |Zi| ∨ 1. Under Assumption 2.3.2, for t > 1

P (Z̄n > t) ≤ n exp (−CA0,α,νut
α) .

and

E[Z̄pn] ≲p,H (log n)p/α.

Moreover, if Mn = (CH + 1)(C−1
2,H log n)1/α as in (B.13), then for all sufficiently large choices

of CH, P (Z̄n > Mn) ≤ n−2.
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Proof. The first claim is immediate under Theorem B.4.20 and a union bound.

The second claim follows from the observation that

E[max
i

(|Zi| ∨ 1)p] ≤

(∑
i

E[(|Zi| ∨ 1)pc]

)1/c

≤ n1/cCpH(pc)
p/α.

where the last inequality follows from simultaneous moment control. Choose c = log nwith n1/ logn =

e to finish the proof.

For the “moreover” part, we have that

P (Zn > Mn) ≤ exp
(
log n− CA0,α,νu(CH + 1)αC−1

2,H log n
)

and it suffices to choose CH such that (CH + 1)α >
3C2,H

CA0,α,νu
so that P (Zn > Mn) ≤ e−2 logn =

n−2.

Lemma B.6.9. LetW = (W1, . . . ,Wn) be a vector containing independent entries, whereWi ∈ [0, 1].

Let ∥·∥ be the Euclidean norm. Then, for all t > 0

P [∥W∥ > E∥W∥+ t] ≤ e−t2/2.

Proof. We wish to use Theorem 6.10 of Boucheron et al. (2013), which is a dimension-free concentra-

tion inequality for convex Lipschitz functions of bounded random variables. To do so, we observe that

w 7→ ∥w∥ is Lipschitz with respect to ∥·∥, since

∥w + a∥ ≤ ∥w∥+ ∥a∥ ∥w∥ = ∥w + a− a∥ ≤ ∥w + a∥+ ∥a∥ =⇒ |∥w + a∥ − ∥w∥| ≤ ∥a∥.

Moreover, trivially ∥λw + (1 − λ)v∥ ≤ λ∥w∥ + (1 − λ)∥v∥ for λ ∈ [0, 1], and hence w 7→ ∥w∥ is

convex. Convexity implies separate convexity required in Theorem 6.10 of Boucheron et al. (2013).

This checks all conditions and the claim follows by applying Theorem 6.10 of Boucheron et al.

(2013).
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Lemma B.6.10. Let fH = fH,1. Then, for 0 < ρn ≤ 1√
2πe2

,

∫ (
f ′H1

(x)

fH1(x) ∨ ρn
−

f ′H0
(x)

fH0(x) ∨ ρn

)2

fH0(x) dx

≲ max
(
(log 1/ρn)

3, | log h (fH1 , fH0) |
)
h2 (fH1 , fH0)

where we define the right-hand side to be zero if H1 = H0.

Proof. This claim is an intermediate step of Theorem 3 of Jiang and Zhang (2009). In (3.10) in

Jiang and Zhang (2009), the left-hand side of this claim is defined as r(fH1 , ρn). Their subsequent

calculation, which involves Lemma 1 of Jiang and Zhang (2009), proceeds to bound

r(fH1 , ρn) ≤ 4e2h2(fH1 , fH0)max
(
φ6
+(ρn), 2a

2
)
+ 2φ+(ρn)

√
2h(fH1 , fH0),

for a2 = max
(
φ2
+(ρn) + 1, | log h2 (fH1 , fH0) |

)
. Collecting the powers on h, log h and using

φ+(ρn) ≲
√
log(1/ρn) proves the claim.

B.7 Estimating η0 by local linear regression

In this section, we verify that estimating η0 by local linear regression satisfies the conditions we require

for the nuisance estimators, when the true nuisance parameters belong to a Hölder class of order p = 2:

m0(σ), s0(σ) ∈ C2
A1

([σℓ, σu]).

In our empirical application, we estimate m0, s0 by nonparametrically regressing Yi on xi ≡

log10(σi).
18 Since log(·) is a smooth transformation on strictly positive compact sets, Hölder smooth-

ness conditions for (m0, s0) translate to the same conditions on (E[Y | x],Var(Y | x) − σ2(x)),

with potentially different constants. Moreover, scaling and translating xi linearly do not affect our

technical results. As a result, we assume, without essential loss of generality, xi ∈ [0, 1]. We abuse

and recycle notation to write m0(x) = E[Yi | xi = x], s0(x) = Var(θi | xi = x). We also note that

m0(x), s0(x) ∈ C2
A3

([0, 1]) for some A3 ≲H A1.

We will consider the following local linear regression of Yi on xi. There are many steps imposed

18Correspondingly, let σ(x) = 10x.
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for ease of theoretical analysis, but we conjecture are unnecessary in practice. In our empirical

exercises, omitting these steps do not affect performance.

(LLR-1) Fix some kernel K(·). Use the direct plug-in procedure of Calonico et al. (2019) to estimate a

bandwidth ĥn,m.

(LLR-2) For some Ch > 1, project ĥn,m to some interval [C−1
h n−1/5, Chn

−1/5] so as to enforce that it

converges at the optimal rate:19

ĥn,m ← (ĥn,m ∨ C−1
h n−1/5) ∧ Chn−1/5.

(LLR-3) Using ĥn,m, estimate m0 with the local linear regression estimator m̂raw under kernel K(·) and

bandwidth ĥn,m.

(LLR-4) Project the resulting estimator m̂ to the Hölder class C2
A3

([0, 1]):

m̂ ∈ argmin
m∈C2

A3
([0,1])

∥m− m̂raw∥∞.

We obtain m̂ through this procedure.

(LLR-5) Form estimated squared residuals R̂2
i = (Yi − m̂(xi))

2.

(LLR-6) Repeat (LLR-1) on data (R̂2
i , xi) to obtain a bandwidth ĥn,s.

(LLR-7) Repeat (LLR-2) to project ĥn,s.

(LLR-8) Using ĥn,s, estimate v(x) = E[R2
i | X = x] with the local linear regression estimator v̂ under

kernel K(·).

(LLR-9) Since v̂ is a local linear regression estimator, it can be written as a linear smoother v̂(x) =∑n
i=1 ℓi(x; ĥn,s)R̂

2
i . Let an estimate of the effective sample size be

pn =
1

n

n∑
i=1

1∑n
j=1 ℓ

2
i (xj , ĥn,s)

. (B.69)

19We use the← notation to reassign a variable so that we can reduce notation clutter.
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(LLR-10) Truncate the estimated conditional standard deviation:

ŝraw(x) =
√
v̂(x)− σ2(x) ∨

√
2

pn + 2
v̂(x). (B.70)

(LLR-11) Finally, project the resulting estimate to the Hölder class as in (LLR-4):

ŝ(x) ∈ argmin
s∈C2

A3
([0,1])

s2(·)≥ 2
pn+2

mini σ
2
i

∥s− ŝraw∥∞.

In practice, we expect the projection steps (LLR-3), (LLR-4), (LLR-7) and (LLR-11) to be unnecessary,

at least with exceedingly high probability, since (i) Calonico et al. (2019)’s procedure is consistent for

the optimal bandwidth, which contracts at n−1/5, and (ii) local linear regression estimated functions

are likely sufficiently smooth to obey Assumption 2.3.4(3). Hence, in our empirical implementation,

we do not enforce these steps and simply set m̂ = m̂raw, ŝ = ŝraw. Omitting the projection steps does

not appear to affect performance.

To ensure we always have a positive estimate of s0, we truncate at a particular point (B.70). This

truncation rule is a heuristic (and improper) application of results from the literature on estimating

non-centrality parameters. We digress and discuss the truncation rule in the next remark.

Remark B.7.1 (The truncation rule in (B.70)). The truncation rule in (B.70) is an ad hoc adjustment

without affecting asymptotic performance.20 It is based on a literature on the estimation of non-central

χ2 parameters (Kubokawa et al., 1993). Specifically, let Ui
i.i.d.∼ N (λi, 1) and let V =

∑p
i=1 U

2
i be a

noncentral χ2 random variable with p degrees of freedom and noncentrality parameter λ =
∑p

i=1 λ
2
i .

The UMVUE for λ is V −p, which is dominated by its positive part (V −p)+. Kubokawa et al. (1993)

derive a class of estimators of the form V − ϕ(V ; p) that dominate (V − p)+ in squared error risk. An

estimator in this class is (V − p) ∨ 2
p+2V .21

20Indeed, since we already assumed that the true conditional variance s0(x) > sℓ, we can truncate by any vanishing
sequence. Given any vanishing sequence, eventually it is lower than sℓ, and eventually |ŝ − s0| is small enough for the
truncation to not bind. This is, in some sense, silly, since finite sample performance is likely affected if we truncate by,
say, 1

log logn
, reflected in a large constant in the corresponding rate expression. Our following argument assumes that the

truncation of order O(n−4/5). Doing so is likely to achieve a smaller constant in the rate expression, despite not mattering
asymptotically.

21Though, since neither (V − p)+ and (V − p) ∨ 2
p+2

V is differentiable in V , they are not admissible.
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This setting is loosely connected to ours. Suppose m0 is known, and we were using a Nadaraya–

Watson estimator with uniform kernel. Then, for a given evaluation point x0, we would be averaging

nearby R2
i ’s. Each Ri is conditionally Gaussian, Ri | (θi, σi) ∼ N (θi −m0(σi), σ

2
i ) with approx-

imately equal variance σ2i ≈ σ(x0)
2. If there happens to be p0 R2

i ’s that we are averaging, the

Nadaraya–Watson estimator is of the form

v̂(x0) =
σ(x0)

2

p0

p∑
i=1

(
Ri

σ(x0)

)2

Conditional on σ2i , θi, the quantity
∑p

i=1

(
Ri

σ(x0)

)2
is (approximately) noncentral χ2 with p degrees of

freedom and noncentrality parameter

λ =

p0∑
i=1

(
θi −m0(xi)

σ(x0)

)2

Therefore, correspondingly, applying the truncation rule from Kubokawa et al. (1993), an estimator for

the sample variance of θi, 1
p0

∑p0
i=1(θi −m0(xi))

2, is

(
v̂(x0)− σ2(x0)

)
∨ 2

p0 + 2
v̂(x0).

Here, we apply this truncation rule (improperly) to the case where v̂(x0) is a weighted average

of the squared residuals, with potentially negative weights due to higher-order polynomials (equiv.

higher-order kernels). To do so, we would need to plug in an analogue of p0. We note that when

independent random variables Vi have unit variance, the weighted average has variance equal to the

squared length of the weights

Var

(∑
i

ℓi(x)Vi

)
=

n∑
i=1

ℓ2i (x).

Since a simple average has variance equal to 1/n, we can take
(∑n

i=1 ℓ
2
i (x)

)−1 to be an effective

sample size. Our rule simply takes the average effective sample size over evaluation points in (B.69)

and use it as a candidate for p. ■

The goal in this section is to control the following probability as a function of t > 0

P
(
∥η̂ − η0∥∞ > CHtn

−2/5(log n)β
)
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for some constants β,CH to be chosen. Since we treat x1, . . . , xn as fixed (fixed design), we shall

do so placing some assumptions on sequences of the design points x1:n as a function of n. These

assumptions are mild and satisfied when the design points are equally spaced. They are also satisfied

with high probability when the design points are drawn from a well-behaved density f(·).

Before doing so, we introduce some notation on the local linear regression estimator. Note that, by

translating and scaling if necessary, it is without essential loss of generality to assume xi take values

in [0, 1]. Let hn denote some (possibly data-driven) choice of bandwidth. Let u(x) = [1, x]′ and let

Bnx = Bnx(hn) =
1
nhn

∑n
i=1K

(
xi−x
hn

)
u
(
xi−x
hn

)
u
(
xi−x
hn

)′
. Then, it is easy to see that the local

linear regression weights can be written in terms of Bnx and u(·):

sn ≡ nhn ℓi(x) = ℓi(x, hn) ≡
1

sn
u(0)′B−1

nx u

(
xi − x
hn

)
K

(
xi − x
hn

)
.

We shall maintain the following assumptions on the design points. The following assumptions

introduce constants (Ch, n0, λ0, a0,K0,K(·), c, C, CK , VK) which we shall take as primitives like

those inH. The symbols ≲,≳,≍ are relative to these constants, and we will not keep track of exact

dependencies through subscripts.

Assumption B.7.1. For some constant Ch > 1, the data-driven bandwidth hn is almost surely

contained in the set Hn ≡ [C−1
h n−1/5 ∨ 1

2n , Chn
−1/5].

Assumption B.7.1 is automatically satisfied by the projection steps (LLR-3) and (LLR-7).

Assumption B.7.2. The sequence of design points (xi : i = 1, . . . , n) satisfy:

1. There exists a real number λ0 > 0 and integer n0 > 0 such that, for all n ≥ n0, any x ∈ [0, 1],

and any h̃ ∈ [C−1
h n−1/5 ∨ 1

2n , Chn
−1/5], the smallest eigenvalue λmin(Bnx(h̃)) ≥ λ0.

2. There exists a real number a0 > 0 such that for any interval I ⊂ [0, 1] and all n ≥ 1,

1

n

n∑
i=1

1(xi ∈ I) ≤ a0
(
λ(I) ∨ 1

n

)
where λ(I) is the Lebesgue measure of I .

3. The kernel K is supported on [−1, 1] and uniformly bounded by some positive constant K0.
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4. There exists c, C > 0 such that for all n ≥ n0, the choice of pn in (B.69) satisfies cn4/5 ≤

pn(h̃) ≤ Cn4/5 for all h̃ ∈ [C−1
h n−1/5 ∨ 1

2n , Chn
−1/5].

Assumption B.7.2(1–3) is nearly the same as Assumption (LP) in Tsybakov (2008). The only

difference is that Assumption B.7.2(1) requires the lower bound λ0 to hold uniformly over a range

of bandwidth choices, relative to LP-1 in Tsybakov (2008), which requires λ0 to hold for some

deterministic sequence hn. This is a mild strengthening of LP-1: Note that if xi are drawn from a

Lipschitz-continuous, everywhere-positive density f(x), then for h→ 0, nh→∞,

Bnx(h) ≈
∫
K(t)u(t)u(t)′f(x) dt ⪰

∫
K(t)u(t)u(t)′ dt

(
min
x∈[0,1]

f(x)

)
where ≻ denotes the positive-definite matrix order. Thus the minimum eigenvalue of Bnx(h) should

be positive irrespective of x and h. See, also, Lemma 1.5 in Tsybakov (2008).

Assumption B.7.2(2)–(3) are the same as (LP-2)–(LP-3) in Tsybakov (2008). (2) expects that the

design points are sufficiently spread out, and (3) is satisfied by, say, the Epanechnikov kernel.

Lastly, (4) expects that the average effective sample size is about sn = nhn ≍ n−4/5. Again,

heuristically, if xi are drawn from a Lipschitz and everywhere-positive density f(x), then

n∑
i=1

ℓ2i (xj) ≈ n
1

s2n
hn ·

∫
(u(0)′B−1

n,xju(t)K(t))2f(xj) dt =
1

sn

∫
(u(0)′B−1

n,xju(t)K(t))2f(xj) dt.

Hence the mean reciprocal pn is of order sn. We also remark that Assumption B.7.2 is satisfied by

regular design points xi = i/n.

Assumption B.7.3. The kernel satisfies the following VC subgraph-type conditions. Let

Fk =

{
y 7→

(
y − x
h

)k−1

K

(
y − x
h

)
: x ∈ [0, 1], h ∈ Hn

}

for k = 1, 2. For any finitely supported measure Q,

N(ϵ,Fk, L2(Q)) ≤ CK(1/ϵ)VK

for CK , VK that do not depend on Q.

Assumption B.7.3 is satisfied for a wide range of kernels, e.g. the Epanechnikov kernel. By

Lemma 7.22 in Sen (2018), reproduced as Theorem B.7.6 below, so long as the function t 7→ tk−1K(t)
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is bounded (assumed in Assumption B.7.2(3)) and of bounded variation (satisfied by any absolutely

continuous kernel function), the covering number conditions hold by exploiting the finite VC dimension

of subgraphs of these functions.

We now state and prove the main results in this section. The key to these arguments is Theo-

rem B.7.4 on the bias and variance of local linear regression estimators. Theorem B.7.4 is uniform in

both the evaluation point x and the bandwidth h, as long as the latter converges at the optimal rate.

Theorem B.7.2. Suppose the conditional distribution θi | σi and the design points σ1:n satisfy

Assumptions 2.3.2, 2.3.3 and B.7.2. Moreover, suppose m0, s0 satisfies Assumption 2.3.4(1) with

p = 2. Suppose the kernel K(·) satisfies Assumption B.7.3. Let m̂, ŝ denote the estimators computed

by (LLR-1) through (LLR-11). Then:

1. P
(
m̂, ŝ ∈ C2

A3
([0, 1])

)
= 1

2. For some C depending only on the parameters in the assumptions, for all n ≥ 7 and t > 1,

P
(
max (∥m̂−m0∥∞, ∥ŝ− s0∥) ≥ Ctn−

2
5 (log n)1+2/α

)
≤ 1

n10t2
. (B.71)

3. For some c depending only on the parameters in the assumptions, for all n ≥ 7,

P
( c
n
≤ ŝ
)
= 1.

Proof. The first claim is true automatically by the projection to the Hölder space. The third claim is

true automatically by (LLR-11), since pn ≍ n4/5 and n−4/5 ≳ n−1.

Now, we show the second claim. Since we assume that m0, s0 lies in the Hölder space with

s0 > s0ℓ, then projection to the Hölder space (and truncation by 2/(2 + pn)mini σ
2
i ) worsens

performance by at most a factor of two for all sufficiently large n. The projection to the Hölder space

ensures that ∥η̂ − η0∥∞ is bounded a.s. for all n, so that we can remove “for all sufficiently large n” at

the cost of enlarging a constant so as to accommodate the first finitely many values of n. As a result, it

suffices to show that

P
(
max (∥m̂raw −m0∥∞, ∥ŝraw − s0∥∞) > Ctn−2/5(log n)β

)
≤ 1

n10t2
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for some C and β = 1 + 2/α.

Let Yi = m0(xi) + ξi where ξi = θi − m0(xi) + (Yi − θi). Note that we have simultaneous

moment control for ξi:

max
i
E[|ξi|p]1/p ≲ p1/α

where α is the constant in Assumption 2.3.2. Therefore, we can apply Theorem B.7.4 to obtain

P
(
∥m̂raw −m0∥∞ > Ctn−2/5(log n)1+1/α

)
≤ 1

2n10t2

for the local linear regression estimator m̂raw.

The same argument to control ∥ŝraw − s0∥∞ is more involved. First observe that

|ŝ2raw − s20| = |ŝraw − s0|(ŝraw + s0) ≥ s0ℓ|ŝraw − s0|.

Also observe that for a positive f0,

|f̂ ∨ g − f0| ≤ |f̂ − f0| ∨ |g|.

As a result, it suffices to control the upper bound in

∥ŝraw − s0∥∞ ≤
1

s0ℓ

(
∥v̂ − v0∥∞ ∨

(
2

2 + pn
v̂

))
(v0(x) ≡ Var(Yi | xi = x))

≲ ∥v̂ − v0∥∞ ∨
∥v̂ − v0∥∞ + ∥v0∥∞

2 + n4/5
(Assumption B.7.2)

≲ ∥v̂ − v0∥∞ (B.72)

Now, observe that R̂2
i = R2

i + (m0 − m̂)2 − 2(m0 − m̂)ξi. Hence,

|v̂(x)− v0(x)| ≤

∣∣∣∣∣
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∣∣∣∣∣
+

{
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)} n∑

i=1

|ℓi(x, ĥn,s)|

≤

∣∣∣∣∣
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∣∣∣∣∣+ C

{
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)}

.

(B.73)

By Lemma 1.3 in Tsybakov (2008), the term
∑n

i=1 |ℓi(x, ĥn,s)| is bounded uniformly in h and x by a
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constant. Note that

ξ̃i ≡ R2
i − v0(xi)

has simultaneous moment control with a different parameter (α̃ = α/2):

max
i

(E|ξ̃i|p)1/p ≲ p2/α.

Thus, applying Theorem B.7.4 and taking care to plug in ξ̃, α̃, we can bound the first term in (B.73)

P

(∥∥∥∥∥
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∥∥∥∥∥
∞

≥ Ctn−2/5(log n)1+2/α

)
≤ 1

4n10t2
.

Note that by an application of Theorem B.6.8, for any a, b > 0, we have that

P

(
max
i
|ξi| > C(a, b)t(log n)1/α

)
< an−be−t

2

As a result, the second term in (B.73) admits

P

(
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)
> Ctn−2/5(log n)1+2/α

)
≤ 1

4n10t2

Finally, putting these bounds together, we have that

P
(
∥v̂ − v0∥∞ > Ctn−2/5(log n)1+2/α

)
≤ 1

2n10t2
,

where the same bound (with a different constant) holds for ŝraw by (B.72).

Combining the bounds for m̂ and ŝ, we obtain (B.71). This concludes the proof.

Theorem B.7.3. Under the assumptions of Theorem B.7.2, let η̂ = (m̂, ŝ) denote estimators computed

by (LLR-1) through (LLR-11). Then,

E
[
Regret(Ĝn, η̂)

]
≲ n−2/5(log n)1+2/α.

Proof. Recall the event An in (B.6) for ∆n = C1n
−2/5(log n)β and Mn = C2(log n)

1/α, where

C1, C2 are to be chosen and β = 1 + 2/α. Define Ãn = An ∩ {s0ℓ/2 ≤ ŝ ≤ 2s0u}. Decompose

E
[
Regret(Ĝn, η̂)

]
= E

[
Regret(Ĝn, η̂)1(Ãn)

]
+ E

[
Regret(Ĝn, η̂)1(Ã

C
n )
]
.

Note that, for all sufficiently large n > N , such that N depends only on C1, β, sℓ, su, the event
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An implies {s0ℓ/2 ≤ ŝ ≤ 2s0u} and hence An = Ãn. Thus, by Theorem B.7.2, for all sufficiently

large n, on the event An, statements analogous to Assumption 2.3.4(2–4) hold for the estimator η̂. As

a result, we may apply Theorem B.6.2, mutatis mutandis, to obtain that

E
[
Regret(Ĝn, η̂)1(Ãn)

]
≲ n−4/5(log n)

2+α
α

+3+2β

for all sufficiently large choices of C1, C2.

To control E
[
Regret(Ĝn, η̂)1(Ã

C
n )
]
, we observe that under Theorem B.6.7 and Theorem B.7.2(1

and 3), we have that almost surely,

Regret(Ĝn, η̂) ≲ n4Z̄2
n.

Hence, by Cauchy–Schwarz as in Theorem B.6.1,

E
[
Regret(Ĝn, η̂)1(Ã

C
n )
]
≲ P (ÃC

n )
1/2n4(log n)2/α,

where we apply Theorem B.6.8 to bound E[Z̄4
n].

For all sufficiently large n > N ,

P (AC
n ) = P (ÃC

n ) ≤ P (Z̄n > Mn) + P (∥η̂ − η0∥∞ > ∆n).

Sufficiently large C1, C2 can be chosen such that the right-hand side is bounded by n−10. To wit, we

can apply Theorem B.7.2 to bound ∥η̂ − η0∥∞. We can apply Theorem B.6.8 to bound P (Z̄n > Mn).

As a result, we would obtain

E
[
Regret(Ĝn, η̂)1(Ã

C
n )
]
≲

1

n
(log n)2/α

for all sufficiently large n.

Since E[Regret(Ĝn, η̂)] ≲ n4(log n)2/α is finite for all n, at the cost of enlarging the implicit

constant, we have the result of the theorem holding for all n.
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B.7.1 Auxiliary lemmas

Proposition B.7.4. Consider the local linear regression of data Yi = f0(xi) + ξi on the design points

xi, for i = 1, . . . , n. Suppose f0 belongs to a Hölder class of order two: f0 ∈ C2
L([0, 1]) for some

L > 0. Suppose that the design points satisfy Assumption B.7.2 and the (possibly data-driven)

bandwidths hn satisfy Assumption B.7.1. Assume the kernel additionally satisfies Assumption B.7.3.

Assume that the residuals ξi are mean zero, and there exists a constant Aξ > 0, α > 0 such that

max
i=1,...,n

(E[|ξi|p])1/p ≤ Aξp1/α

for all p ≥ 2. Let ℓi(x, h) be the weights corresponding to local linear regression, and define the bias

part b(x, hn) = (
∑n

i=1 ℓi(x, hn)f0(xi))− f0(xi) and the stochastic part v(x, h) =
∑n

i=1 ℓi(x, h)ξi.

Recall that Hn is the interval for hn in Assumption B.7.1. Then:

1. The bias term is of order n−2/5:

sup
x∈[0,1],h∈Hn

|b(x, h)| ≲ n−2/5.

2. The variance term admits the following large-deviation inequality: For any a, b > 0, there exists

a constant C(a, b), which may additionally depend on the constants in the assumptions, such

that for all n > 1 and t ≥ 1

P

(
sup

x∈[0,1],h∈Hn
|v(x, h)| > C(a, b) · t · (log n)1+1/αn−2/5

)
≤ an−b 1

t2
.

3. As a result, let f̂(·) = b(·, hn) + v(·, hn) + f0(·), we have that for any a, b > 0, there exists a

constant C(a, b) such that for all n > 1 and t ≥ 1,

P
(
∥f̂ − f0∥∞ > C(a, b)t(log n)1+1/αn−2/5

)
≤ an−b 1

t2
.

Proof. Note that (3) follows immediately from (1) and (2) since the bounds in (1) and (2) are uniform

over all h ∈ Hn. We now verify (1) and (2).

1. This claim follows immediately from the bound for b(x0) in Proposition 1.13 in Tsybakov
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(2008). The argument in Tsybakov (2008) shows that

sup
x∈[0,1]

|b(x, hn)| ≤ Ch2n,

which is uniformly bounded by Cn−2/5 by Assumption B.7.1. Hence

sup
x∈[0,1],h∈Hn

|b(x, h)| ≲ n−2/5.

2. Let M be a truncation point to be defined. Let

ξi,<M = ξi1(|ξi| ≤M)− E[ξi1(|ξi| ≤M)] ξi,>M = ξi1(|ξi| > M)− E[ξi1(|ξi| > M)]

be truncated and demeaned variables. Note that

ξi = ξi,<M + ξi,>M .

First, let V1n(x, hn) =
∑n

i=1 ℓi(x, hn)ξi,>M . Note that by Cauchy–Schwarz, uniformly over

x, hn,

V 2
1n ≤

n∑
i=1

ℓi(x, hn)
2

n∑
i=1

ξ2i,>M

≲
1

h2n

1

n

n∑
i=1

ξ2i,>M (Lemma 1.3(i) in Tsybakov (2008) shows that |ℓi(x, hn)| ≤ C
nhn

)

≲ n2/5
1

n

n∑
i=1

ξ2i,>M

Now, for some C related to the implicit constant in the above display,

P

(
sup

x∈[0,1],hn∈Hn
V 2
1n(x, hn) > Ct2

)
≤ P

(
1

n

n∑
i=1

ξ2i,>M > t2n−2/5

)
≤

maxiEξ
2
i,>M

t2
n2/5.

(Markov’s inequality)

We note that by Cauchy–Schwarz,

E[ξ2i,>M ] ≤
√
E[ξ4i ]

√
P (|ξi| > M) ≲

√
P (|ξi| > M) ≤ exp (−cMα) (Theorem B.4.20)

242



where c depends on Aξ. Hence, for a potentially different constant C,

P

(
sup

x∈[0,1],hn∈Hn
|V1n(x, hn)| > Ct

)
≤ exp

(
−cMα − 2 log t+

2

5
log n

)
. (B.74)

Next, consider the process

V2n(x, hn) =
n∑
i=1

ℓi(x, hn)ξi,<M

=
1

nhn

n∑
i=1

u(0)′B−1
nx

1
0


︸ ︷︷ ︸

A1(x,hn)

K

(
xi − x
hn

)
ξi,<M

+
1

nhn

n∑
i=1

u(0)′B−1
nx

0
1


︸ ︷︷ ︸

A2(x,hn)

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M

≡ A1(x, hn)

hn

1

n

n∑
i=1

K

(
xi − x
hn

)
ξi,<M +

A2(x, hn)

hn

1

n

n∑
i=1

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M .

Note that, by Assumption B.7.2(1), uniformly over x ∈ [0, 1] and hn ∈ Hn,

|Ak(x, hn)| ≤ ∥u(0)′B−1
nx ∥ ≤

1

λ0
.

By triangle inequality,

V2n(x, hn) ≲
1

hn

∣∣∣∣∣ 1n
n∑
i=1

K

(
xi − x
hn

)
ξi,<M

∣∣∣∣∣+ 1

hn

∣∣∣∣∣ 1n
n∑
i=1

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M

∣∣∣∣∣
≡ 1√

nhn
V2n,1(x, hn) +

1√
nhn

V2n,2(x, hn).

We will aim to control the ψ2-norm of the left-hand side. Note that it suffices to control the ψ2-norm

of both terms on the right-hand side:∥∥∥∥∥ sup
x∈[0,1],hn∈Hn

|V2n(x, hn)|

∥∥∥∥∥
ψ2

≲
1√
nhn

max
k=1,2

∥∥∥∥∥ sup
x∈[0,1],hn∈Hn

|V2n,k(x, hn)|

∥∥∥∥∥
ψ2

 .

The above display follows from replacing the sum with two times the maximum and Lemma 2.2.2 in

van der Vaart and Wellner (1996).
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We will do so by applying Theorem B.7.5. The analogue of f in Theorem B.7.5 is

t 7→ f(t;x, h) =

(
t− x
h

)k−1

K

(
t− x
h

)
for V2n,k, k = 1, 2. Naturally, the analogues of F is

Fk = {t 7→ f(t;x, h) : x ∈ [0, 1], h ∈ Hn} ∪ {t 7→ 0}.

Note that

f(t;x, h) ≤ 1(|t− x| ≤ h)K0

and thus the diameter of Fk is at most

sup
A⊂[0,1]:λ(A)≤4Chn−1/5

K0

√√√√ 1

n

n∑
i=1

1(xi ∈ A) ≲ n−1/10

by Assumption B.7.2(2). Therefore, by Assumption B.7.3, we apply Theorem B.7.5 and obtain that

for k = 1, 2 ∥∥∥∥∥ sup
x∈[0,1],h∈Hn

|V2n,k(x, h)|

∥∥∥∥∥
ψ2

≲Mn−1/10
√
log n.

Finally, this argument shows that∥∥∥∥∥ sup
x∈[0,1],h∈Hn

|V2n(x, h)|

∥∥∥∥∥
ψ2

≲
1

√
nhnn1/10

M
√
log n ≲ n−2/5M

√
log n. (B.75)

Putting things together, we can choose M = (cm log n)1/α for sufficiently large cm so that by

(B.74),

P

(
sup

x∈[0,1],h∈Hn
|V1n(x, h)| > Ctn−2/5

)
≤ a

2
n−b

1

t2
,

where cm depends on a, b. The bound (B.75) in turns shows that

P

(
sup

x∈[0,1],hn∈Hn
|V2n(x, hn)| > C(a, b)t(log n)

2+α
2α n−2/5

)
≤ 2e−t

2

Taking t =
√
b log n+ log(a/4)s gives

P

(
sup

x∈[0,1],hn∈Hn
|V2n(x, hn)| > C(a, b)s(log n)1+1/αn−2/5e−s

2

)
≤ a

2
n−be−s

2
<
a

2
n−b

1

s2
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for all s > 1.

Therefore, combining the two bounds,

P

(
sup

x∈[0,1],hn∈Hn
|v(x, hx)| > C(a, b)t(log n)1+1/αn−2/5

)
≤ an−b 1

t2
.

Lemma B.7.5. Suppose ξi are bounded by M ≥ 1 and mean zero. Consider the process

Vn(f) =
1√
n

n∑
i=1

f(xi)ξi

over a class of real-valued functions f ∈ F and evaluation points x1, . . . , xn ∈ [0, 1]. Define the

seminorm ∥·∥n relative to x1, . . . , xn by

∥f∥n =

√√√√ 1

n

n∑
i=1

f(xi)2.

Suppose 0 ∈ F and F has polynomial covering numbers:

N(ϵ,F , ∥·∥n) ≤ C(1/ϵ)V ϵ ∈ [0, 1]

where C, V > 0 depend solely on F . Then∥∥∥∥∥supf∈F
|Vn(f)|

∥∥∥∥∥
ψ2

≲Mdiam(F)
√
log(1/diam(F)),

where diam(F) = supf1,f2∈F∥f1 − f2∥n.

Proof. The process Vn(f) has subgaussian increments with respect to ∥·∥n:

∥Vn(f1)− Vn(f2)∥ψ2 ≲M∥f1 − f2∥n.

Hence, by Dudley’s chaining argument (e.g. Corollary 2.2.5 in van der Vaart and Wellner (1996)), for

some fixed f0 ∈ F ,∥∥∥∥∥supf Vn(f)

∥∥∥∥∥
ψ2

≤ ∥Vn(f0)∥ψ2 + CM

∫ diam(F)

0

√
logN(δ,F , ∥·∥n) dδ.
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Note that (i) the metric entropy integral is bounded by Cdiam(F)
√

log(1/diam(F)), and (ii) for a

fixed f0, ∥Vn(f0)∥ψ2 ≲ ∥f0∥nM ≤ diam(F)M since 0 ∈ F . Therefore,∥∥∥∥∥supf Vn(f)

∥∥∥∥∥
ψ2

≲Mdiam(F)
√

log(1/diam(F)).

Lemma B.7.6 (Lemma 7.22(ii) in Sen (2018)). Let q(·) be a real-valued function of bounded variation

on R. The covering number of F = {x 7→ q(ax+ b) : (a, b) ∈ R} satisfies

N(ϵ,F , L2(Q)) ≤ K1ϵ
−V1

for some K1 and V1 and for a constant envelope.

246



(a) Normalized performance

Na
ive
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CL
O
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-N

PM
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Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Column median

0.0 1.0 1.0 1.1

0.0 1.0 1.0 1.0

0.0 1.0 1.0 1.2

0.0 1.0 1.0 1.0

0.0 1.0 1.0 1.2

0.0 1.0 1.8 2.5

0.0 1.0 1.0 1.1

0.0 1.0 1.1 2.2

0.0 1.0 1.0 1.2

0.0 1.0 1.2 2.4

0.0 1.0 1.1 2.1

0.0 1.0 1.1 1.8

0.0 1.0 1.3 1.9

0.0 1.0 1.2 2.3

0.0 1.0 1.1 1.8

On MSE, how much do we gain over Naive as a multiple of Indep-Gauss's gain over Naive?

(b) Performance difference against NAIVE

0.002 0.000 0.002 0.004 0.006
MSE improvement over Naive, RB, Naive RB, Method (percentage point or percentile rank)

Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Naive
Indep-Gauss
Indep-NPMLE
CLOSE-NPMLE

Notes. In panel (a), each column is an empirical Bayes strategy that we consider, and each row
is a different definition of θi. The table shows relative performance, defined as the squared error
improvement over NAIVE, normalized as a multiple of the improvement of INDEPENDENT-GAUSS over
NAIVE. By definition, such a measure is zero for NAIVE and one for INDEPENDENT-GAUSS. The last
row shows the column median. The mean-squared error estimates average over 100 coupled bootstrap
draws. For the variable INCARCERATION for white individuals, the strategy INDEPENDENT-GAUSS

underperform NAIVE, and the resulting ratio is thus undefined.
Panel (b) shows the difference in MSE against NAIVE.

Figure B.4: Estimated MSE Bayes risk for various empirical Bayes strategies in the validation
exercise.
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(a) Estimated performance of CLOSE-NPMLE, INDEPENDENT-GAUSS, and NAIVE

0 10 20 30 40 50 60
Performance (average i among selected, percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

CLOSE-NPMLE
Independent Gaussian
Naive
E[ ] ±  SD( )

(b) Estimated performance difference relative to NAIVE

2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.5

38.638.1

49.449.4

35.434.7

18.618.5

23.523.1

9.97.2

22.421.2

9.36.1

4.44.0

3.42.4

7.75.7

6.04.0

15.211.9

CLOSE-NPMLE
Independent Gaussian
Naive (zero)

(c) Estimated performance difference relative to picking uniformly at random

0 1 2 3 4 5 6 7 8
Performance difference relative to picking uniformly at random (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.5

38.638.1

49.449.4

35.434.7

18.618.5

23.523.1

9.97.2

22.421.2

9.36.1

4.44.0

3.42.4

7.75.7

6.04.0

15.211.9

CLOSE-NPMLE
Independent Gaussian
Naive
[0,  SD( )]

Notes. These figures show the estimated performance of various decision rules over 100 coupled bootstrap draws. Performance is measured
as the mean ϑi among selected Census tracts. All decision rules select the top third of Census tracts within each Commuting Zone. Figure
(a) plots the estimated performance, averaged over 100 coupled bootstrap draws, with the estimated unconditional mean and standard
deviation shown as the grey interval. Figure (b) plots the estimated performance gap relative to NAIVE, where we annotate with the estimated
performance for CLOSE-NPMLE and INDEPENDENT-GAUSS. Figure (c) plots the estimated performance gap relative to picking uniformly at
random; we continue to annotate with the estimated performance. The shaded regions in Figure (c) have lengths equal to the unconditional
standard deviation of the underlying parameter ϑ.

Figure B.5: Performance of decision rules in top-m selection exercise
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(a) Estimated performance of CLOSE-NPMLE, INDEPENDENT-GAUSS, and NAIVE

0 10 20 30 40 50 60
Performance (average i among selected, percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

CLOSE-NPMLE
Independent Gaussian
Naive
E[ ] ±  SD( )

(b) Estimated performance difference relative to NAIVE

2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.2

51.051.0

38.737.3

48.848.7

35.533.6

18.518.0

22.521.8

9.84.3

21.519.0

9.13.3

4.13.4

3.31.1

7.24.8

5.91.6

14.510.4

CLOSE-NPMLE
Independent Gaussian
Naive (zero)

(c) Estimated performance difference relative to picking uniformly at random

4 2 0 2 4 6 8
Performance difference relative to picking uniformly at random (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.2

51.051.0

38.737.3

48.848.7

35.533.6

18.518.0

22.521.8

9.84.3

21.519.0

9.13.3

4.13.4

3.31.1

7.24.8

5.91.6

14.510.4

CLOSE-NPMLE
Independent Gaussian
Naive

Notes. These figures show the estimated performance of various decision rules over 100 coupled bootstrap draws. There are no covariates
to residualize against. Performance is measured as the mean ϑi among selected Census tracts. All decision rules select the top third of
Census tracts within each Commuting Zone. Figure (a) plots the estimated performance, averaged over 100 coupled bootstrap draws, with
the estimated unconditional mean and standard deviation shown as the grey interval. Figure (b) plots the estimated performance gap relative
to NAIVE, where we annotate with the estimated performance for CLOSE-NPMLE and INDEPENDENT-GAUSS. Figure (c) plots the estimated
performance gap relative to picking uniformly at random; we continue to annotate with the estimated performance. The shaded regions in
Figure (c) have lengths equal to the unconditional standard deviation of the underlying parameter ϑ.

Figure B.6: Performance of decision rules in top-m selection exercise (No covariates)
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0.5 0.0 0.5 1.0 1.5 2.0
Performance difference relative to screening on raw estimates for Black 

 (percentile rank or percentage point)

Mean income rank [Black]

P(Income ranks in top 20 | Black)

Incarceration [Black]

Screen on estimates for Black
Screen on estimates pooling over Black and white
Screen on estimates for white
CLOSE-NPMLE
Naive
Independent Gaussian

Notes. Estimated performance for different empirical Bayes methods by different proxy parameters.
The performance of screening based on the raw Yib is normalized to zero. All results are over 100
coupled bootstrap draws.

Figure B.7: Performances of strategies that screen on posterior means for more precisely
estimated parameters
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(a) Not residualized by covariates
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95% uniform confidence band for E[ ]

(b) Residualized by covariates
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Notes. This figure shows the estimated E[θ | σ] for mean income rank, pooling over all demographic
groups. This is the measure of economic mobility used by Bergman et al. (2023). The estimation and
the confidence band procedures are the same as those in Figure 2.1. In panel (a), θi, Yi are defined as
unresidualized measures of mean income rank. In panel (b), we treat θi, Yi as residualized against a
vector of tract-level covariates as specified in Section B.2.3.

Figure B.8: Estimated E[θ | σ] for mean income rank among those with parents at the 25th

percentile
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Figure B.9: The analogue of Figure 2.1 where Yi, θi are treated as residualized against a
vector of covariates as specified in Section B.2.3.
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Figure B.10: Absolute mean-squared error risk of key methods for the calibrated simulation
in Figure 2.4.
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Appendix C

Appendix to Chapter 3

C.1 Proofs of results in the main text

C.1.1 Proof of Theorem 3.2.1

Proposition C.1.1. Suppose that:

1. (The function m is continuous and increasing) m : [0,∞) → R is a continuous, weakly

increasing function.

2. (The function m behaves like log for large values) m(y)/ log(y)→ 1 as y →∞.

3. (Treatment affects the extensive margin) P (Y (1) = 0) ̸= P (Y (0) = 0).

4. (Finite expectations) EPY (d)
[| log(Y (d))| | Y (d) > 0] <∞ for d = 0, 1.1

Then, for every θ∗ ∈ (0,∞), there exists an a > 0 such that |θ(a)| = θ∗. In particular, θ(a) is

continuous with θ(a)→ 0 as a→ 0 and |θ(a)| → ∞ as a→∞.

Proof. Note that θ(0) = EP [m(0)] − EP [m(0)] = 0. Additionally, Theorem C.2.1 below implies

that |θ(a)| → ∞ as a→∞. To establish the proof, it thus suffices to show that θ(a) is continuous on

[0,∞). The desired result is then immediate from the intermediate value theorem.

1This assumption simply ensures that EPY (d)
[|m(aY (d))| | Y > 0] exists for all values of a > 0.

253



To establish continuity, fix some a ∈ [0,∞) and consider a sequence an → a. Without loss

of generality, assume an < a + 1 for all n. Let man(y) = m(any). Since m is continuous,

man(y) → ma(y) pointwise. We are done if we can apply the dominated convergence theorem to

show that therefore E[man(Y )]→ E[ma(Y )].

Since m(y)/ log(y)→ 1 as y →∞, there exists ȳ such that m(y) < 2 log(y) for all y ≥ ȳ. From

the monotonicity of m, it follows that

m(0) ≤ m(y) ≤ 1[y ≤ ȳ]m(ȳ) + 1[y > ȳ]2 log(y)

≤ η + 2 · 1[y > ȳ] log(y), (C.1)

where η = |m(ȳ)|, and hence

m(0) ≤ man(y) ≤ η + 2 · 1[any > ȳ] log(any)

≤ η + 2 · 1[y > 0] · (| log(a+ 1)|+ | log(y)|) =: m̄(y).

for all n. Hence, we have that |man(y)| ≤ |m(0)| + m̄(y) for all n, and the bounding function

is integrable for Y (d) for d = 0, 1 by the fourth assumption of the proposition. It follows from

the dominated convergence theorem that EP [man(Y (d))] → EP [ma(Y (d))] for d = 0, 1, and thus

θ(an)→ θ(a), as we wished to show.

C.1.2 Proof of Theorem 3.3.3

Proposition C.1.2 (A trilemma). The following three properties cannot hold simultaneously:

(a) θg = EP [g(Y (1), Y (0))] for a non-constant function g : [0,∞)2 → R that is weakly increasing

in its first argument.

(b) The function g is scale-invariant.

(c) θg is point-identified over P+.2

2A minor technical complication arises from the fact that EP [g(Y (1), Y (0)] could be infinite for some P . For the
purposes of our result, it suffices to trivially define θg to be identified in this case. Alternatively, the same result holds if part
(c) is modified to impose only that θg is point-identified over all distributions in P+ with finite support, thus avoiding issues
related to undefined expectations.
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Proof. To establish the proof of Theorem 3.3.3, we rely on Theorem C.1.3, which shows that the only

scale-invariant parameter of the form EP [g(Y (1), Y (0))] that is identified over distributions on the

positive reals is the ATE in logs (up to an affine transformation).

Given Theorem C.1.3, note that if g : [0,∞)2 → R is increasing in y1, then it cannot be equal to

c log(y1/y0) + d for c > 0 everywhere on (0,∞)2, since this would imply that limy1→0 g(y1, 1) =

−∞ < g(0, 1). Theorem 3.3.3 is then immediate from Theorem C.1.3, which shows that if properties

(a) and (b) are satisfied, and θg is point-identified over P++ ⊂ P+, then g = c log(y1/y0) + d on

(0,∞)2. Thus, there does not exist such a g.

Proposition C.1.3. Let P++ denote the set of distributions over compact subsets of (0,∞)2. Suppose

g : (0,∞)2 → R is weakly increasing in y1 and scale-invariant. Then θg is point-identified over P++

if and only if g(y1, y0) = c · (log(y1)− log(y0)) + d, for constants c ≥ 0 and d ∈ R.

Proof. We first show that point-identification overP++ implies that g(·, ·) must be additively separable.

We do so by considering the points {y0, y0 + b} × {y1, y1 + a} on a rectangular grid. If g(·, ·) is not

additively separable, then its expectation with respect to distributions supported on the rectangular grid

depends on the correlation. Similar arguments appear in, e.g., Fan et al. (2017).

Formally, suppose that there there exist positive values y1, y0, a, b > 0 such that

g(y1, y0) + g(y1 + a, y0 + b) ̸= g(y1 + a, y0) + g(y1, y0 + b).

Now, consider the marginal distributions PY (d) such that P (Y (1) = y1) =
1
2 = P (Y (1) = y1 + a)

and P (Y (0) = y0) = 1
2 = P (Y (0) = y0 + b). Let P1 and P2 denote the joint distributions

corresponding with these marginals and perfect positive and negative correlation of the potential

outcomes, respectively. Then we have that

EP1(g(Y (1), Y (0))) =
1

2
(g(y1, y0) + g(y1 + a, y0 + b))

̸= 1

2
(g(y1 + a, y0) + g(y1, y0 + b))

= EP2(g(Y (1), Y (0))),

and thus θg is not point-identified from the marginals at P1. Hence, if θg is identified over P++, then

255



it must be that

g(y1, y0) + g(y1 + a, y0 + b) = g(y1 + a, y0) + g(y1, y0 + b) for all y1, y0, a, b > 0,

and hence

g(y1 + a, y0)− g(y1, y0) = g(y1 + a, y0 + b)− g(y1, y0 + b) for all y1, y0, a, b > 0.

It follows that we can write g(y1, y0) = r(y1) + q( 1
y0
), where r(y1) = g(y1, 1) − g(1, 1) and

q( 1
y0
) = g(1, y0).

Second, we show that homogeneity of degree zero, combined with monotonicity, implies that g

must be a difference in logarithms. Observe that since g is scale-invariant,

g(y1, y0) = g

(
y1
y0
,
y0
y0

)
= g

(
y1
y0
, 1

)
=: h

(
y1
y0

)
,

where h is an increasing function. We thus have that for any a, b > 0,

g(1, 1) = h(1) = r(1) + q(1)

g(a, 1) = h(a) = r(a) + q(1)

g

(
1,

1

b

)
= h(b) = r(1) + q(b)

g

(
a,

1

b

)
= h(ab) = r(a) + q(b)

and hence h(ab) = h(a) + h(b)− h(1). It follows that h̃(x) = h(x)− h(1) is an increasing function

such that h̃(ab) = h̃(a) + h̃(b) for all a, b ∈ R, i.e. an increasing function satisfying Cauchy’s

logarithmic function equation: ϕ(ab) = ϕ(a) + ϕ(b) for all positive reals a, b. Recall that if a function

is increasing, then it has countably many discontinuity points, and thus is continuous somewhere. It is

a well-known result in functional equations that the only solutions to Cauchy’s logarithmic equation

are of the form ϕ(t) = c log(t), if we require that these solutions are continuous at some point; see

Aczél (1966), Theorem 2 in Section 2.1.2.3 Since we require monotonicity, the constant c ≥ 0. Thus,

g(y1, y0) = h(y1/y0) = h̃(y1/y0)+ h̃(1) = c log(y1)−c log(y0)+ h̃(1). Letting d = h̃(1) completes

3Correspondingly, non-trivial solutions to Cauchy’s logarithmic equations are highly ill-behaved.
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the proof of Theorem C.1.3.

C.2 Extensions

C.2.1 Sensitivity to finite changes in scale

The following result formalizes the discussion in Theorem 3.2.3 about how the ATE for m(Y ) changes

with finite changes in the scale of Y .

Proposition C.2.1. Suppose that:

1. m : [0,∞)→ R is a weakly increasing function.

2. m(y)/ log(y)→ 1 as y →∞.

3. EPY (d)
[| log Y (d)| | Y (d) > 0] <∞ for d = 0, 1.

Then, as a→∞,

EP [m(a · Y (1))−m(a · Y (0))] = (P (Y (1) > 0)− P (Y (0) > 0)) · log(a) + o(log(a)).

Proof. Fix a sequence an →∞, and without loss of generality, assume an > e. We will show that

1

log an
EP [m(anY (1))−m(anY (0))]→ P (Y (1) = 0)− P (Y (0) = 0). (C.2)

Define fn(y) = m(any)/ log(an). Note that fn(y)→ 1[y > 0] pointwise, since fn(0) = m(0)/ log(an)→

0, while for y > 0,

fn(y) =
m(any)

log(an)
=

m(any)

log(any)

log(an) + log(y)

log(an)
→ 1,

where we use the fact that m(y)/ log(y) → 1 as y → ∞ by assumption. We apply the dominated

convergence theorem to show that EP [fn(Y (d))]→ P (Y (d) > 0).

We showed in the proof to Theorem 3.2.1 that

|m(y)| ≤ κ+ 2 · 1[y > 0] · | log(y)|
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where κ is a constant not depending on y.4 It follows that fn is similarly dominated:

|fn(y)| =
|m(any)|
log(an)

≤ κ+ 2 · 1[y > 0] · (1 + | log(y)|).

Further, since EP [| log(Y (d))| | Y (d) > 0] is finite by assumption, the upper bound is integrable for

y = Y (d) for d = 0, 1. It follows from the dominated convergence theorem that

EP [fn(Y (d))] = EP

[
m(anY (d))

log(an)

]
→ EP [1[Y (d) > 0]] = P (Y (d) > 0).

Equation (C.2) then follows from applying this result for d = 0, 1 and taking the difference of the

limits.

C.2.2 Extension to continuous treatments

Although we focus on binary treatment in the main text for simplicity, similar issues arise with

continuously distributed D. Suppose now that D can take a continuum of values on some set D ⊆ R.

Let Y (d) denote the potential outcome at the dose d, and P the distribution of Y (·). Consider the

parameter

θ(a) =

∫
D
ω(d)EP [m(aY (d))],

which is a weighted sum of the average values of m(aY (d)) across different values of d with weights

ω(d). For example, in an RCT with a continuous treatment, a regression of m(aY ) on D yields a

parameter of the form θ(a) where, by the Frisch–Waugh–Lovell theorem, the weights are proportional

to (d− E[D])p(d) and integrate to 0.5

We now show that θ(a) can be made to have arbitrary magnitude via the choice of a when there is

an extensive margin effect. In particular, by an extensive margin effect we mean that
∫
ω(d)P (Y (d) >

0) ̸= 0, i.e. when there is an average effect on the probability of a zero outcome, using the same

weights ω(d) that are used for θ(a). When θ(a) is the regression of m(aY ) on D in an RCT, for

example,
∫
ω(d)P (Y (d) > 0) ̸= 0 if the regression of 1[Y > 0] on D yields a non-zero coefficient.

Proposition C.2.2. Suppose that:

4In particular, (C.1) implies the inequality for κ = η + |m(0)|.

5Here, p(d) denotes the density of D at d over the randomization distribution.
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1. The function m satisfies parts 1 and 2 of Theorem 3.2.1.

2. (Extensive margin effect)
∫
D ω(d)P (Y (d) > 0) ̸= 0.

3. (Bounded expectations) For all d, EP [| log(Y (d))| | Y (d) > 0] <∞.

4. (Regularity for weights) The weights ω(d) satisfy
∫
D ω(d) = 0,

∫
D |ω(d)| <∞ and

∫
D |ω(d)| ·

EP [| log(Y (d))| | Y (d) > 0] <∞.

Then for every θ∗ ∈ (0,∞), there exists a > 0 such |θ(a)| = θ∗. In particular, θ(a) is continuous and

θ(a)→ 0 as a→ 0 and |θ(a)| → ∞ as a→∞.

Proof. Note that θ(0) =
∫
ω(d)m(0) = 0. It thus suffices to show that θ(a) is continuous for

a ∈ [0,∞) and that |θ(a)| → ∞ as a → ∞. The result then follows from the intermediate value

theorem.

We first show continuity. Fix a ∈ [0,∞) and a sequence an → a. Let fn(d) = ω(d)EP [m(anY (d))].

We showed in the proof to Theorem 3.2.1 that EP [m(anY (d))]→ EP [m(aY (d))], and thus fn(d)→

ω(d)EP [m(aY (d))] pointwise. We also showed in the proof to Theorem 3.2.1 that for an sufficiently

close to a,

|m(anY )| ≤ κ+ 2 · 1[y > 0] · | log(y)|,

for a constant κ not depending on n. It follows that

|fn(d)| ≤ |ω(d)| · |κ|+ 2|ω(d)| · EP [| log(Y (d))| | Y (d) > 0],

and the upper bound is integrable by part 4 of the Proposition. Hence, by the dominated convergence

theorem, we have that θ(an) =
∫
D fn(d)→

∫
D ω(d)EP [m(aY (d)] = θ(a), as needed.

To show that |θ(a)| → ∞ as a→∞, we will show that

θ(a)

log(a)
→
∫
D
ω(d)P [Y (d) > 0]

as a→∞. Consider an →∞, and suppose without loss of generality that an > e. Observe that

θ(an)

log(an)
=

∫
D
ω(d)

EP [m(anY (d))]

log(an)
.
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We showed in the proof to Theorem C.2.1 that for each d,

EP [m(anY (d))]

log(an)
→ P (Y (d) > 0).

Letting fn(d) = ω(d)
EP [m(anY (d))]

log(an)
, we thus have that fn(d) → ω(d)P (Y (d) > 0) pointwise.

Moreover, we showed in the proof to Theorem 3.2.1 that

|m(y)| ≤ κ+ 2 · 1[y > 0] · | log(y)|

where κ is a constant not depending on y. It follows that

|m(any)|
log(an)

≤ κ+ 2 · 1[y > 0] · (1 + | log(y)|)

and thus that

|fn(d)| ≤ |ω(d)| · (κ+ 2 + 2EP [| log(Y (d)| | Y (d) > 0])

where the upper bound is integrable by the fourth part of the proposition. The result then follows from

dominated convergence.

C.2.3 Extension to OLS estimands and standard errors

As noted in Theorem 3.2.5, our results imply that any consistent estimator of the ATE for an outcome of

the form m(aY ) will be (asymptotically) sensitive to scaling when there is an extensive margin effect.

Our results thus cover the OLS estimator when it is consistent for the ATE for some (sub)-population

P (e.g. in an RCT or under unconfoundedness). Given the prominence of OLS in applied work—and

the fact that it is sometimes used for non-causal analyses—we now provide a direct result on the

sensitivity to scaling of the estimand of an OLS regression of an outcome of the form m(aY ) on an

arbitrary random variable X .

Specifically, suppose that (X,Y ) ∼ Q, for Y ∈ [0,∞) and X ∈ RJ , where the first element of X

is a constant. Consider the OLS estimand

β(a) = EQ[XX
′]−1EQ[Xm(aY )],
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i.e. the population coefficient from a regression ofm(aY ) onX . We assume thatEQ[XX ′] is full-rank

so that β(a) is well-defined. Letting βj(a) = e′jβ(a) be the jth element of β(a), we will show that

βj(a) can be made to have arbitrary magnitude via the choice of a if γj ̸= 0, where

γ = EQ[XX
′]−1EQ[X1[Y > 0]]

is the coefficient from a regression of 1[Y > 0] on X .

Proposition C.2.3. Suppose that

1. The function m satisfies parts 1 and 2 of Theorem 3.2.1.

2. (Finite expectations) EQ[∥X∥] <∞ and EQ[∥X log(Y )∥ | Y > 0] <∞ .

Then for every j ∈ {2, ..., J}, βj(a)/ log(a) → γj as a → ∞. Moreover, if γj ̸= 0 for some

j ∈ {2, ..., J}, then for every β∗j ∈ (0,∞), there exists a > 0 such that |βj(a)| = β∗j . In particular

βj(a) is continuous with βj(a)→ 0 as a→ 0 and |βj(a)| → ∞ as a→∞.

We note that Theorem C.2.3 implies that the OLS estimator for the jth coefficient, β̂j(a), will be

arbitrarily sensitive to the choice of a when the corresponding extensive margin OLS estimator γ̂j ,

is non-zero. This follows immediately from setting Q to be the empirical distribution of (Yi, Xi)
N
i=1

and applying Theorem C.2.3 (note that part 2 of the Proposition is trivially satisfied for the empirical

distribution, since X and Y are both bounded over the empirical distribution).

OLS Standard Errors. We also show that as a → ∞, the t-statistic for the OLS estimate β̂j

constructed using heteroskedasticity-robust standard errors converges to the t-statistic for γ̂j (again

using heteroskedasticity-robust standard errors). Formally, let

Ω̂β(a) =

(
1

N

∑
i

XiX
′
i

)−1(
1

N

∑
i

XiX
′
i ϵ̂i(a)

2

)(
1

N

∑
i

XiX
′
i

)−1

denote the estimator of the heteroskedasticity-robust variance matrix for β̂(a), where ϵ̂i(a) = m(aYi)−

X ′
iβ̂(a), and β̂(a) is the OLS estimate of β(a). The t-statistic for β̂j(a) is then t̂βj (a) = β̂j(a)/σ̂βj (a),
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where σ̂βj (a) =
√
e′jΩ̂β(a)ej/

√
N . Analogously, let

Ω̂γ =

(
1

N

∑
i

XiX
′
i

)−1(
1

N

∑
i

XiX
′
iû

2
i

)(
1

N

∑
i

XiX
′
i

)−1

be the heteroskedasticity-robust variance estimator for γ̂, the OLS estimate of γ, where ui = 1[Yi >

0]−X ′
iγ̂. The t-statistic for γ̂j is then t̂γj = γ̂j/σ̂γj , where σ̂γj =

√
e′jΩ̂γej/

√
N .

Proposition C.2.4. Suppose that
(
1
N

∑
iXiX

′
i

)
is full-rank and that σ̂γj > 0. If the function m

satisfies parts 1 and 2 of Theorem 3.2.1 and γ̂j > 0, then t̂βj (a)→ t̂γj as a→∞.

It follows that when the units of Y are made large, the t-statistic for a treatment effect estimate

for m(Y ) estimated using OLS will converge to the t-statistic for the OLS estimate of the extensive

margin. Figure C.1 shows that, indeed, the t-statistics for estimates using arcsinh(Y ) in the AER tend

to be close to the t-statistics for the extensive margin, and tend to become even closer after rescaling

the units by a factor of 100.

Proof of Theorem C.2.3. Fix j ∈ {2, ..., J}. Note that β(0) = EQ[XX
′]−1E[Xm(0)], is the co-

efficient from a regression of a constant outcome m(0) on X , and thus β1(0) = m(0) while

βk(0) = 0 for k ≥ 2. Thus βj(0) = 0. To complete the proof, we will first show that βj(an) =

γj log(an) + o(log(an)). Hence, if γj > 0, then |βj(a)| → ∞ as a→∞. We will then establish that

βj(a) is continuous for a ∈ [0,∞). The fact that one can obtain any positive value for |βj(a)| then

follows from the intermediate value theorem.

For ease of notation, let ν ′ = e′jEQ[XX
′]−1, so that βj(a) = EQ[ν

′Xm(aY )].

We first show that βj(an) = γj log(an) + o(log(an)). Consider a sequence an → ∞, and

assume without loss of generality that an > e. Let fn(x, y) = ν ′x ·m(any)/ log(an). Observe that

fn(x, y)→ ν ′x · 1[y > 0] pointwise, since fn(x, 0) = ν ′x ·m(0)/ log(an)→ 0, while for y > 0,

fn(x, y) = ν ′x · m(any)

log(an)
= ν ′x · m(any)

log(any)

log(an) + log(y)

log(an)
→ ν ′x,

where we use the fact that m(y)/ log(y)→ 1 as y →∞. We showed in the proof to Theorem C.2.1

that
|m(any)|
log(an)

≤ κ+ 2 · 1[y > 0] · (1 + | log(y)|),
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which implies that

|fn(x, y)| ≤ |ν ′x · (κ+ 2 · 1[y > 0] · (1 + | log(y)|))| =: f̄(x, y).

Moreover, part 2 of the proposition implies that f̄(X,Y ) is integrable. From the dominated conver-

gence theorem, it follows that

βj(an)

log(an)
= EQ[fn(X,Y )]→ EQ[ν

′X1[Y > 0]] = γj .

Hence, we see that βj(an) = γj log(an) + o(log(an)). It follows that |βj(an)| → ∞ when γj ̸= 0.

To complete the proof, we show continuity of βj(a). Fix a ∈ [0,∞), and consider a sequence

an → a. Assume without loss of generality that an < a+ 1 for all n. Let fn(x, y) = ν ′x ·m(any).

From the continuity of m, we have that fn(x, y)→ ν ′x ·m(ay) pointwise. We showed in the proof to

Theorem 3.2.1 that there exists some κ (not depending on n) such that

|m(any)| ≤ κ+ 21[y > 0] · | log(y)|.

Hence,

|fn(x, y)| ≤ |ν ′x · (κ+ 21[y > 0]| log(y)|)|.

Moreover, the bounding function is integrable over the distribution of (X,Y ) by part 2 of the proposi-

tion. Applying the dominated convergence theorem again, we obtain that

βj(an) = EQ[fn(X,Y )]→ EQ[ν
′X ·m(aY )] = βj(a),

as needed.

Proof of Theorem C.2.4. Consider an →∞. Applying Theorem C.2.3 to the empirical distribution,

we have that β̂(an)/ log(an) = γ̂ + o(1). It follows that

1

log(an)
ϵ̂i(an) =

m(anYi)

log(an)
− β̂(an)

′Xi

log(an)
= 1[Yi > 0]− γ̂′Xi + o(1) = ûi + o(1).

Since Ω̂n(an) is a continuous function of the ϵ̂i(an)2, we obtain that log(an)−2Ω̂β(an) → Ω̂γ , and

thus that log(an)−1σ̂βj (an) = σ̂γj + o(1). It follows that
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t̂βj (an) =
β̂j(an)/ log(an)

σ̂βj (an)/ log(an)
=

γ̂j + o(1)

σ̂γj + o(1)
→ γ̂j

σ̂γj
= t̂γj ,

as needed.

C.3 Connection to structural equations models

Previous work has considered a variety of estimators for settings with zero-valued outcomes beginning

with structural equations models rather than the potential outcomes model that we consider. These

papers have reached different results, with some concluding that regressions with arcsinh(Y ) have

the interpretation of an elasticity, and others showing that they are inconsistent and advocating for

other methods (e.g. Poisson regression) instead. In this section, we interpret the results in those papers

from the perspective of the potential outcomes model, and show that these diverging conclusions stem

from different implicit assumptions about the potential outcomes, as well as a focus on different causal

parameters.

Before discussing specific papers, we first note that, broadly speaking, structural equation models

can be viewed as constraining the joint distribution of potential outcomes. Observe that, for any pair

of potential outcomes (Y (1), Y (0)), we can represent them as (Y (1, U), Y (0, U)) for some function

Y (d, u) and individual-level unobservable (or “structural error”) U . The potential outcomes framework

we work with in this paper does not impose any functional form assumptions on Y (d, u). Structural

equation models, on the other hand, tend to specify explicit functional forms for Y (d, u). In what

follows, we consider the implicit restrictions placed on the potential outcomes as well as the target

estimand in work related work that starts with a structural equations model.

C.3.1 Bellemare and Wichman (2020) and Thakral and Tô (2023)

Bellemare and Wichman (2020) consider OLS regressions of the form6

arcsinh(Y ) = β0 +Dβ1 + U. (C.3)

6They also consider specifications with additional covariates on the right-hand side, although we abstract away from this
for expositional simplicity.
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Note that when D is binary and randomly assigned, D y (Y (1), Y (0)), then from the perspective of

the potential outcomes model, the population coefficient β1 is the ATE for arcsinh(Y ). Bellemare

and Wichman (2020) instead consider the interpretation of β1 when (C.3) is treated as structural, i.e.

if there are constant treatment effects of D on arcsinh(Y ). From the perspective of the potential

outcomes model, this amounts to imposing that the potential outcomes Y (d) := Y (d, U) take the form

arcsinh(Y (d, U)) = β0 + dβ1 + U, (C.4)

where the individual-level random variable U takes the same value for all values of d. Under (C.4), we

have that

β1 = arcsinh(Y (1, U))− arcsinh(Y (0, U)).

Since arcsinh(y) ≈ log(2y) for y large, it follows that β1 ≈ log(Y (1, U)/Y (0, U)) when Y (1, U)

and Y (0, U) are large. Thus, Bellemare and Wichman (2020) argue that β1 approximates the semi-

elasticity of the outcome with respect to d when the outcome is large. They likewise provide similar

results for the elasticity of Y (d, U) with respect to treatment when treatment is continuous. Their

results thus imply that the ATE for arcsinh(Y ) has a sensible interpretation as a (semi-)elasticity when

the structural equation for the potential outcomes given in (C.4) holds.

It is worth emphasizing, however, that (C.4) will generally be incompatible with the data when

both Y (1) and Y (0) have point-mass at zero, and β1 ̸= 0. Specifically, note that (C.4) implies that for

all values of U ,

arcsinh(Y (1, U))− arcsinh(Y (0, U)) = β1.

If β1 > 0, for example, this implies that arcsinh(Y (1, U)) > arcsinh(Y (0, U)), and hence Y (1, U) >

Y (0, U), since the arcsinh(y) function is strictly increasing for y ≥ 0. However, since Y (0, U) ≥ 0

by assumption, this implies that Y (1, U) > 0 with probability 1. Thus, the model in (C.4) is

incompatible with P (Y (1) = 0) > 0 if β1 > 0. By similar logic, the model is also incompatible with

P (Y (0) = 0) > 0 if β1 < 0. In settings where there is point-mass at zero, the model that Bellemare

and Wichman (2020) show gives β1 an interpretation as a semi-elasticity will therefore typically be

rejected by the data. It is also worth noting that even if there are no zeros in the data, the model in

(C.4) will generally be sensitive to units, in the sense that if (C.4) holds for Y measured in dollars, it
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will generally not hold when Y is measured in cents. The validity of the interpretation of β1 as an

elasticity thus depends on having chosen the “correct” scaling of the outcome such that (C.4) holds.

Similar issues apply if we consider alternative transformations on the left-hand side of (C.3). For

example, Thakral and Tô (2023) consider versions of (C.3) that replaces arcsinh(Y ) with the power

function Y k. They then consider the implied “semi-elasticities” of the form η(y0) = β1/(ky
k
0 ). The

parameter η(y0) has the interpretation as a structural semi-elasticity when d has a contant effect on Y k.

Specifically, if D is continuous and the structural equation

Y (d, U)k = β0 + dβ1 + U, (C.5)

holds, then η(y0) =
(
∂
∂dY (d, U)

)
/Y (d, U) evaluated at Y (d, U) = y0, so η(y0) corresponds to the

semi-elasticity of Y (d, U) with respect to d. However, as with (C.4), (C.5) is generally incompatible

with settings in which P (Y (d, U) = 0) for multiple values of d. For example, if β1 > 0, then

Y (0, U) ≥ 0 implies that Y (1, U) > 0. Equation (C.5), which gives a causal interpretation to η(β0)

as a semi-elasticity, will thus generally be incompatible with settings in which some units have Y = 0

under multiple treatment statuses.

C.3.2 Cohn et al. (2022)

Cohn et al. (2022) consider structural equations of the form

Y = exp(α+Dβ)U. (C.6)

When E[U | D] = 1, they show that Poisson regression is consistent for β, whereas regressions of

log(1 + Y ) or log(Y ) on D may be inconsistent for β.7 Although Cohn et al. (2022) do not consider

a potential outcomes interpretation of β, we can give β a causal interpreation if we impose that the

potential outcomes take the form

Y (d, U) = exp(α+ dβ)U(d), (C.7)

7We thank Kirill Borusyak for an insightful discussion on this topic. Relatedly, in an influential paper, Santos Silva and
Tenreyro (2006) consider the structural equations model Yi = exp(X ′

iβ)Ui where E[Ui | Xi] = 1, and show that Poisson
regression consistently estimates β while a regression using log on the left-hand side does not, although they do not provide
any formal results on log-like transformations.
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where E[U(d)] = 1. Under (C.7), it follows that exp(β) = E[Y (1)]/E[Y (0)], i.e. the parameter

θATE% considered in Section 3.4.1.8

We note, however, that if one were instead to impose (C.6) with the assumption that E[log(U(d)) |

D] = 0, then the regression of log(Y ) on D would be consistent for β, whereas Poisson regression

would generally be inconsistent for β. Indeed, under the potential outcomes model in (C.7) with the

assumption that E[log(U(d))] = 0, we have that β = E[log(Y (1))− log(Y (0))], the ATE in logs.9

This discussion highlights that whether or not an estimator is consistent depends on the specification

of the target parameter. Our results help to illuminate what parameters can be consistently estimated

by enumerating the properties that identified causal parameters can (or cannot) have.

C.3.3 Tobit models

An alternative structural approach is to explicitly model the extensive margin, a classic example of

which is the Tobit model (Tobin, 1958). Following the discussion of Tobit models in Angrist and

Pischke (2009), suppose there exist latent potential outcomes Y ∗(d) = µd + U , where U ∼ N (0, σ2)

and D y U . The observed potential outcome Y (d) is then the latent potential outcome truncated

at zero, Y (d) = max(Y ∗(d), 0). We note that in this model, the treatment has a constant additive

effect of µ1 − µ0 on the latent outcome, and the latent potential outcomes are assumed to be normally

distributed.

Thanks to the parametric assumptions, the unknown parameters µ1, µ0, σ2 are identified and

estimable via, e.g., maximum likelihood. As a result, the entire joint distribution of potential outcomes

is identified, since this depends only on (µ1, µ0, σ). This implies, in turn, that all of the possible target

parameters considered in Section 3.4 are point-identified. For example, under this model

E[log Y (d) | Y (1) > 0, Y (0) > 0] = E [log (µd + U) | U > −µ1, U > −µ0] ,

where the right-hand side can be computed numerically since U ∼ N (0, σ2). Thus, the intensive

8Bellégo et al. (2022) also consider (C.6), but consider the more general class of identifying restrictions of the form
E[D log(U + δ)] = 0, where δ is a tuning parameter.

9Note that the assumption that E[log(U)] = 0 implicitly implies that U > 0, and thus Y > 0.
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margin treatment effect in logs, θIntensive, is actually point-identified under the Tobit model.10

It is worth nothing that unlike some of the models considered above, the Tobit model is consistent

with a nonzero extensive margin. However, the assumptions of normal errors and constant treatment

effects on the latent index are restrictive. As discussed in Section 3.4, imposing these assumptions

is not necessary for identification if one is ultimately interested in, say, E[Y (1) − Y (0)]/E[Y (0)],

and one can obtain bounds on the intensive margin effect without imposing these assumptions.11

Moreover, as Angrist and Pischke (2009) and Angrist (2001) point out, it is often not clear what the

economic meaning of the latent potential outcome Y ∗(d) is—if Y (d) is earnings, for example, what is

the meaning of having negative latent earnings (Y ∗(d) < 0)?

C.4 Connection to two-part models

One approach recommended for settings with weakly-positive outcomes is to estimate a two-part

model (Mullahy and Norton, 2023). In this section, we briefly review two-part models, and show that

the marginal effects implied by these models do not correspond with ATEs for the intensive margin

without further restrictions on the potential outcomes. Thus, while two-part models strike us as a

reasonable approach if the goal is to model the conditional expectation function of observed outcomes

Y given treatment D (as in Mullahy and Norton (2023)), they will often not be appropriate if instead

the goal is to learn about a causal effect along the intensive margin.12

The idea of a two-part model is to separately model the conditional distribution Y | D using (a)

a first model for the probability that Y is positive given D, P (Y > 0 | D) (b) a second model for

the conditional expectation of Y given that it is positive, E[Y | D,Y > 0]. Common specifications

include logit or probit for part (a), and a linear regression of the positive values of Y on D for part

b); see, e.g., Belotti et al. (2015). After obtaining estimates of the two-part model, it is common to

10Likewise, the intensive margin treatment effect in levels, E[Y (1)− Y (0) | Y (1) > 0, Y (0) > 0] is simply µ1 − µ0.

11We note that the assumptions of the Tobit model imply (but are strictly stronger than) the assumption of rank preservation
of the potential outcomes. However, rank preservation alone suffices to point identify E[log Y (1)− log Y (0) | Y (1) >
0, Y (0) > 0].

12We are particularly grateful to John Mullahy for an enlightening discussion of this topic.
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evaluate the marginal effects of D on both parts, i.e. the implied values of

τa = P (Y > 0 | D = 1)− P (Y > 0 | D = 0)

τb = E[Y | Y > 0, D = 1]− E[Y | Y > 0, D = 0].

We now consider how the parameters of the two-part model relate to causal effects in the potential

outcomes model. Suppose, for simplicity, that the two-part model is well-specified, so that it correctly

models P (Y > 0 | D) and E[Y | Y > 0, D]. Suppose further that D is randomly assigned,

D y Y (1), Y (0). In this case, we have that

τa = P (Y (1) > 0)− P (Y (0) > 0)

τb = E[Y (1) | Y (1) > 0]− E[Y (0) | Y (0) > 0].

From the previous display, we see that the marginal effect on the first margin, τa, has a causal

interpretation: it is the treatment’s effect on the probability that the outcome is positive.

The interpretation of the marginal effect on the second margin, τb, is more complicated, however.

For simplicity, suppose are willing to impose the “monotonicity” assumption discussed in Section 3.4,

P (Y (1) = 0, Y (0) > 0) = 0, so that anyone with a zero outcome under treatment also has a zero

outcome under control. Then, letting α = P (Y (0) = 0 | Y (1) > 0), we can write τb as

τb = (1− α)E[Y (1) | Y (1) > 0, Y (0) > 0]

+ αE[Y (1) | Y (1) > 0, Y (0) = 0]− E[Y (0) | Y (1) > 0, Y (0) > 0]

= E[Y (1)− Y (0) | Y (1) > 0, Y (0) > 0]︸ ︷︷ ︸
Intensive margin effect

+ α (E[Y (1) | Y (1) > 0, Y (0) = 0]− E[Y (1) | Y (1) > 0, Y (0) > 0])︸ ︷︷ ︸
Selection term

,

where the first equality uses iterated expectations, and the second re-arranges terms.

The previous display shows that τb is the sum of two terms. The first is the ATE for individuals

who would have a positive outcome regardless of treatment status (similar to θIntensive in Section 3.4,

except using Y instead of log(Y )). The second term is not a causal effect, but rather represents a

selection term: it is proportional to the difference in the average value of Y (1) for “compliers” who
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would have positive outcomes only under treatment versus “always-takers” who would have positive

outcomes regardless of treatment status. In many economic contexts, we may expect this selection

effect to be negative. For example, we may suspect that individuals who would only get a job if they

receive a particular training have lower ability, and hence lower values of Y (1), than individuals who

would have a job regardless of training status. The marginal effect τb thus only has an interpretation as

an ATE along the intensive margin if either (a) there is no extensive margin effect (α = 0) or (b) we

are willing to assume that the selection term is zero. Angrist (2001) provided a similar decomposition

(without imposing monotonicity), concluding that the two-part model “seems ill-suited for causal

inference,” at least without further restrictions on the potential outcomes. See, also, Mullahy (2001)

for additional discussion.

C.5 Details on Lee bounds using IV in Berkouwer and Dean (2022)

We now describe in detail our approach for constructing Lee (2009)-type bounds in the IV setting of

Berkouwer and Dean (2022).

Estimating the instrument-complier distributions. The first step is to estimate the distribution

of Y (0) and Y (1) for instrument-compliers. As shown in Abadie (2002), the CDF for Y (1) for

instrument-compliers at a point y can be consistently estimated by using two-stage least squares to

estimate the effect of treatment on the outcome Di1[Yi ≤ y]. The CDF for Y (0) for instrument-

compliers can analogously be obtained using the outcome (Di − 1)1[Yi ≤ y]. We estimate these

TSLS regressions using analogues to (3.11) (except replacing arcsinh(Yi) with the outcomes just

described) for all values of y contained in the data. We thus obtain empirical estimates of the CDFs for

instrument-compliers, F̂Y (d)(y) for d = 0, 1.

Constructing bounds. Note that if U ∼ U [0, 1], then Y (d) ∼ F−1
Y (d)(U), where F−1

Y (d)(u) :=

inf{y | FY (d)(y) ≥ u}. With this formulation in mind, Lee (2009)’s bounds for E[log(Y (1)) |
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Y (1) > 0, Y (0) > 0] can be written as

E[log(F−1
Y (1)(U)) | U ∈ [θNT , θNT + θAT ]] ≤ E[log(Y (1)) | Y (1) > 0, Y (0) > 0]

≤ E[log(F−1
Y (1)(U)) | U ∈ [1− θAT , 1]], (C.8)

where θAT = P (Y (1) > 0, Y (0) > 0), θNT = P (Y (1) = 0, Y (0) = 0), and θC = P (Y (1) >

0, Y (0) = 0). We estimate the bounds in (C.8) by plugging in the estimated CDFs for instrument-

compliers described above, as well as the values of θAT , θNT , θC implied by the estimated CDFs. We

approximate the expectation over U by taking the average over 100,000 uniform draws.13 Finally, to

compute the bounds on the treatment effect, we must estimate E[Y (0) | Y (0) > 0]. To do this, we use

the fact that

E[Y (0) | Y (0) > 0] = E[F−1
Y (0)(U) | U ∈ [θNT + θC , 1]].

As before, we then estimate the right-hand-side in the previous display by plugging-in the estimated

CDF for instrument-compliers, and simulating over 100,000 uniform draws. The Lee bounds for

θIntensive are then obtained by subtracting the estimate of E[Y (0) | Y (0) > 0] from the estimates of

the lower and upper bounds in (C.8). We estimate standard errors for the bounds using 1,000 draws

from a non-parametric clustered bootstrap.14

C.6 Appendix tables and figures

• Table C.1 contains information on the AER papers discussed.

• Figure C.1 shows how t-statistics change in the replication exercise.

• Table C.2 shows the analogue of Table 3.1 for log(1 + Y ).

13We note that in finite samples, the estimated CDF F̂Y (d)(y) may be non-monotonic. Nevertheless, the inverse
F̂−1
Y (d)(u) := inf{y | F̂Y (d)(y) ≥ u} remains well defined.

14One complication that arises is that for some draws from the bootstrap distribution, the sign of the extensive margin
can be the opposite of that in the original data. In our bootstrap procedure, we construct Lee-type bounds assuming
monotonicity in whichever direction matches the bootstrapped data. The resulting bootstrap estimates of the bounds appear
to be approximately normally distributed, but we think a formal theoretical evaluation of the bootstrap in this setting is an
interesting topic for future work.

271



Table C.1: Papers in the AER estimating effects for arcsinh(Y ) with selected quotes

Note: this table lists papers in the AER estimating treatment effects for arcsinh(Y ). The second column
classifies papers by whether they interpret the units of the treatment effect as a percent/elasticity, with
categories “yes”, “no”, or “no interpretation given.” The third column describes the units of the
outcome before applying the arcsinh transformation, and the final column provides selected quotes
and notes about the interpretation of the estimates. See Section 3.2.3 for details.
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Figure C.1: t-statistics for effect on arcsinh(Y ), versus extensive margin t-statistic

Note: this table shows the t-statistic for the extensive margin effect on the x-axis, and the t-statistic for
the treatment effect using arcsinh(Y ) on the y-axis. The circle shows the t-statistic using the original
units, whereas the arrow shows the change if we first multiply the units by 100 before applying the
arcsinh transformation. We omit two papers where there is no extensive margin. The plot shows that
the t-statistics are close to the 45 degree line when the extensive margin is not close to zero, and tend
to become closer when the units are made larger.
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Table C.2: Change in estimated treatment effects using log(1 + Y ) from re-scaling the
outcome by a factor of 100 in papers published in the AER

Treatment Effect Using: Change from
rescaling units:

Paper log(1 + Y ) log(1 + 100 · Y ) Ext. Margin Raw %

Azoulay et al (2019) 0.002 0.015 0.003 0.012 529
Fetzer et al (2021) -0.138 -0.410 -0.059 -0.272 197
Johnson (2020) -0.139 -0.408 -0.057 -0.269 194
Carranza et al (2022) 0.166 0.415 0.055 0.249 149
Cao and Chen (2022) 0.032 0.076 0.010 0.044 136
Rogall (2021) 1.109 2.015 0.195 0.906 82
Moretti (2021) 0.041 0.067 0.000 0.026 64
Berkouwer and Dean (2022) -0.412 -0.484 0.010 -0.072 17
Arora et al (2021) 0.110 0.111 -0.001 0.001 1
Hjort and Poulsen (2019) 0.354 0.354 0.000 0.001 0

Note: this table repeats the exercise in Table 3.1 but replacing arcsinh(Y ) with log(1 + Y ) as the
outcome in the second column, and arcsinh(100Y ) with log(1 + 100Y ) in the third column. The
fourth column shows the estimated extensive margin effect, which is identical to the fourth column
of Table 3.1. The final two columns show the raw difference and percentage difference between the
second and third columns. The rows are sorted based on the percentage differences. Among the papers
surveyed, which by construction report at least one specification using arcsinh(Y ), Arora et al. (2021);
Fetzer et al. (2021); Moretti (2021); Rogall (2021) also report specifications that contain log(1 + Y )
on the left-hand side, and Johnson (2020) reports a specification with log(c+ Y ) on the left-hand side,
where c is the first nonzero percentile of the distribution of the observed outcome variable.
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