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Systems and Algorithms for Efficient, Secure and Private
Machine Learning Inference

Abstract

As artificial intelligence and machine learning become ubiquitous, data privacy emerges as a crit-

ical concern. The use of sensitive data in machine learning applications exposes vulnerabilities that

could jeopardize user privacy, posing ethical and legal risks. Current machine learning systems re-

quire significant modifications to protect privacy, such as on-device computation or encryption,

which increases computational costs and may reduce accuracy, posing an issue for deployment.

These computational challenges are the key barrier to adoption and addressing the challenges at

this intersection of machine learning, data privacy, and computational efficiency is essential for the

future deployment of privacy-enhanced machine learning systems.

My PhD focuses on this unique intersection of machine learning, data privacy and systems, with

the high level aim of making privacy-enhanced machine learning techniques efficient enough to be

deployed. Over the course of my PhD I have developed systems and algorithms that accelerate by up

to an order of magnitude techniques for privacy-preserving machine learning inference, such as on-

device machine learning inference and secure neural network inference, by leveraging unique aspects

of neural networks like quantization, harnessing systems and hardware acceleration techniques like

GPU acceleration, and co-designing these hardware-software optimizations with the specific privacy

preserving machine learning algorithm to obtain maximal efficiency at inference time, all while re-

maining cognizant of and defending against potential attack vectors (i.e: data privacy leaks, such as

by gradients in federated learning) that may compromise the security and privacy of the machine
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learning system. My PhD pushes the boundary of solutions towards machine learning systems that

are simultaneously efficient, private and secure.

Towards efficiency, we develop PrecisionBatching, a general neural network acceleration

technique which utilizes quantization to accelerate neural network inference by up to 2× through

maximizing GPU utilization on inference over small batchsizes by turning a memory-bound op-

eration into a compute-bound operation. Although PrecisionBatchingmakes non-private

neural network inference more efficient, it is a crucial step towards realizing the unique applica-

tion of quantization towards privacy-preserving machine learning systems, as well the criticality of

leveraging hardware acceleration, specifically GPU acceleration, for obtaining maximal system per-

formance.

Towards privacy, we develop Tabula, an approach which utilizes quantization to enable the

use of secure lookup tables to speed up the private computation of activation functions for neural

networks by over 100×. Tabula enables private neural network inference that is over an order of

magnitude more efficient in terms of runtime and communication than prior works, enabling the

real-world deployment of secure neural network inference applications. We furthermore develop

GPU-DPF, a GPU algorithm that accelerates distributed point functions (DPF) for private infor-

mation retrieval by over 30× over a CPU by harnessing massive parallelization towards computing

expensive cryptographic primitives, for the purpose of enabling private on-device machine learning

inference with embedding tables too large to store on-device.

Finally, towards security, we develop Gradient Disaggregation, an attack that the disaggre-

gates sums of gradients of up to thousands of users that are observed during federated learning for

the purpose of undermining the privacy safeguards of federated learning systems, and furthermore

propose possible defenses against our attack, with the high level goal of developing machine learning

systems that are more secure.
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1
Introduction

1.1 The Growing Importance of Data Privacy in the Future of the Informa-

tion Age

Machine learning systems power increasingly many aspects of the applications and devices that we

interact with in our daily lives. For example, search82, social networks219, ad/product recommenda-

tion165, and text-completion on mobile devices are all embedded with machine-learning technolo-
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gies that are critical to their function.

A natural consequence of this is that users’ behavioural data is being collected at an increasingly

finer granularity than ever before driven by demand for these applications – and this trend will likely

continue as machine learning systems are increasingly deployed across services and applications. Si-

multaneously, machine learning systems are becoming increasingly powerful as their information

processing abilities scale with the advances in computational hardware and the amount of hard-

ware applied towards learning, allowing the learning of signals frommassive amounts of datasets.

Combined, this phenomenon poses a serious risk to consumers and individuals in the future of the

information age: not only is more of our data being collected, but the algorithms are getting better

at learning from them. Hence, in the limit, machine-learning systems of the future will infer increas-

ingly more about us, and such fine granularity knowledge may pose a serious risk to the general pop-

ulace should these systems fail or be compromised – mitigating these risks in case of a catastrophic

failure or a security compromise is a fundamental challenge facing the machine-learning systems of

the future.

The central aspect of this challenge lies in the key ingredient that powers these learning systems:

data. Naturally, data privacy, which is fundamentally about control over data, will thus be a key

issue as it is the data which are the unique and critical ingredient that determines whether a learning

system is effective or not. Intuitively, the importance of data privacy will scale with these systems’

learning ability, which is the product of the processing power of these systems and the amount of

data that is collected, both of which will only increase in the future.

Consequently, data privacy laws that have been introduced across the world in this decade62,209,221,231

will be used to regulate machine learning systems, for the purposes of ensuring security in the case

of failures, for the purpose of enforcing pre-existing laws like HIPAA, GDPR and PIPL, and for

competitive purposes like obtaining a regulatory moat. To a more specific degree, this implies that in

the future there will be a greater demand for techniques that ensure data privacy in machine learn-
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ing systems to safeguard users’ information and limit the growing power of this technology. A dual

effect is that data privacy will be essential not just for the purpose of limiting the growing power of

this technology but also for adapting these systems to meet the regulatory challenges that might oc-

cur in an age where data privacy regulations may have considerable impact on the deployment and

efficacy of these learning systems.

1.2 ANew Frontier: Systems for Efficient, Secure and PrivateMachine Learn-

ing

Unfortunately, machine learning systems today are ill-equipped to begin to support privacy-enhancing

features – for example, machine learning systems today, when performing inference, require that

users’ data be sent in the raw to application servers to perform inference; this poses a considerable

risk to users in situations where the data may be privacy sensitive (for example, user preferences in ad

recommendation, or health information for a medical application) particularly in cases where these

machine learning systems might fail or be compromised, leaking private information to malicious

actors. The key challenge is computational: there exists algorithms for enhancing machine learning

systems with privacy safeguards (i.e: allow the inference over user data without revealing user data to

the application servers), but they are too slow to be practically used. Consequently, the next fron-

tier for privacy in machine learning is the development of algorithms and systems that are efficient

enough to be practically deployed, but are also private and secure to being compromised.

1.3 Thesis Direction

My PhD focuses on pushing the boundary of solutions at this frontier. Specifically, my PhD con-

sists of works that develop approaches for making private machine learning inference, such as on-

device machine learning inference and secure neural network inference, efficient enough to be prac-
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Security

Efficiency

Privacy

Machine learning systems 
required in the future

Machine learning systems 
today

Figure 1.1: My PhD thesis pushes the boundary of solutions at the intersection of efficiency, privacy, and security.
Over the course of my PhD I developed approaches for making private machine learning inference, such as on‐device
machine learning inference and secure neural network inference, efficient enough to be practically deployed, by lever‐
aging unique aspects of neural networks like quantization, harnessing the power of hardware acceleration like GPU
parallelism, and jointly applying these techniques towards the specific privacy preserving algorithm to ensure maximal
efficiency, all while being aware of security risks (such as information leakage from gradients) that may compromise the
safeguards of data privacy of the system.

tically deployed, by leveraging unique aspects of neural networks like quantization, harnessing the

power of hardware acceleration like GPU parallelism, and jointly applying these techniques towards

the specific privacy preserving algorithm to ensure maximal efficiency, all while being aware of secu-

rity risks (such as information leakage from gradients) that may compromise the safeguards to data

privacy of the system. Broadly, my PhD focuses on three key requirements for privacy-enhanced

machine learning systems of the future:

• Privacy: Machine learning inference systems, particularly those that employ neural net-

works, should mitigate the amount of raw data (i.e: raw data that are inputs to the neural

network) that is collected by the central servers hosting the system, and preferably collect no

data for the purpose of performing inference. Note that in context of this thesis we do not

focus on information leakage that occurs from the predictions of the model (though this is a
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considerable and central challenge in the broader goal of securing machine learning systems).

• Efficiency: Machine learning systems, particularly those that employ neural networks, en-

hanced with privacy must be efficient enough at inference time to be practically deployed to

the real world. Concretely, these models must be efficient in terms of both speed, memory

consumption, and storage usage.

• Security: Machine learning systems should be cognizant of and secure to attacks that might

undermine data privacy. Specifically, in the context of training (i.e: federated learning), sys-

tems should be aware of attacks that might undermine individual’s data privacy and take

appropriate measures to mitigate these security risks that threaten privacy.

My PhD thesis contributes novel solutions that push the boundary of this frontier (Figure 1.1). To-

day, machine learning systems can be categorized as being only efficient (though scale and efficiency

may still be improved). The target to reach is systems that are simultaneously efficient, private, and

secure. The works in this thesis aim to present solutions straddling both algorithms and hardware,

bridging both machine learning and cryptography to get closer to this target.

1.4 Thesis Contributions

We present the following works that push the frontier of efficiency, privacy, and security for neural

network based machine learning systems (Figure 1.2).

• Quantized Neural Network Inference with Precision Batching

A general method for accelerating neural network inference on small batch sizes, utilizing

GPU acceleration and the unique property that neural networks may be heavily quantized

without accuracy loss.
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Quantized Neural Network Inference with Precision Batching 
(PACT 2021) 

Gradient Disaggregation: Breaking Privacy in Federated Learning 
by Reconstructing the User Participant Matrix
(ICML 2021) 

Tabula: Efficiently Computing Nonlinear Activation Functions for 
Secure Neural Network Inference
(??) 

GPU-based Private Information Retrieval for On-Device Machine 
Learning Inference
(ASPLOS 2024) 

Figure 1.2: Thesis works contributing towards the frontier of efficient, private and secure machine learning systems.

• Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neural

Network Inference

An algorithm for accelerating the private computation of nonlinear activation functions, a

main system bottleneck for private neural network inference.

• GPU-based Private Information Retrieval for On-Device Machine Learning Inference

AGPU algorithm for accelerating private information retrieval, specifically distributed point

functions, in context of privacy enhanced machine learning systems that require private

accesses to large embedding tables.

• Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing

the User Participant Matrix

An attack on federated learning that uncovers individual gradients from sums of gradients,

breaking individuals’ data privacy during federated learning training.

6



My thesis starts with PrecisionBatching to accelerate non-private neural network inference by lever-

aging two key aspects of neural network based machine learning systems: 1) that neural networks

may be heavily quantized with minimal accuracy loss and 2) utilizing dedicated hardware, specifi-

cally the GPU, to accelerate computation. We next use these key ideas and apply them in two sep-

arate ways towards privacy-enhanced neural network inference: first by leveraging quantization to

accelerate a major bottleneck in private neural network inference (Tabula), and by leveraging GPU

acceleration to accelerate private information retrieval in machine learning systems requiring pri-

vate accesses to large tables (GPU DPF). Finally, we undermine data privacy security in federated

learning withGradient Disaggregation, demonstrating the need for new algorithms to secure these

machine learning systems.

1.5 Thesis Roadmap

(Chapter 2) Background and Related Work introduces the relevant literature on existing methods

for privacy-preserving machine learning as well as machine-learning / neural network based perfor-

mance optimizations that will be relevant in the thesis. We specifically introduce methods spanning

across multi-party computation, homomorphic encryption, quantization and federated learning.

(Chapter 3) Quantized Neural Network Inference with Precision Batching develops a method

for accelerating neural network inference on small batch sizes by 1) leveraging the unique prop-

erty that neural networks may be quantized and 2) utilizing GPUs to accelerate computation. The

fundamental insight is that inference with small batch sizes is bottlenecked by memory operations

rather than arithmetic operations; by reframing the computation of a neural network in a bitserial

manner, recasting it as a sequence of 1-bit matrix-matrix operations (arithmetic heavy), and quantiz-

ing the resulting terms, we can gain an overall speedup by fully leveraging the arithmetic capabilities

of the hardware, while sacrificing a bit of accuracy. While this work does not touch upon privacy,
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it introduces two key and unique properties of modern neural network based machine learning sys-

tems that are key to subsequent works that accelerate privacy based machine learning systems: 1)

neural networks may be quantized while maintaining reasonable accuracy and 2) computation may

be greatly accelerated by using specialized hardware, specifically GPUs.

(Chapter 4) Tabula: Efficiently Computing Nonlinear Activation Functions for Secure Neu-

ral Network Inference accelerates the private computation of nonlinear activation functions, the

main performance bottleneck of private neural network inference, the goal of which is to perform

inference on a client’s data without leaking the model data to the client, nor the client’s data to the

server hosting the model. We leverage a key and unique property of neural networks introduced in a

previous work: quantization – by heavily quantizing neural network activations, we can fit all possi-

ble function calls of the nonlinear function in a table, enabling the use of efficient secure lookup ta-

bles without running into issues imposed by exponential memory requirements. This work greatly

accelerates the private neural network inference by eliminating a major system performance bottle-

neck.

(Chapter 5) GPU-based Private Information Retrieval for On-Device Machine Learning In-

ference accelerates two-server based methods for private information retrieval (PIR) in context of

machine learning recommendation systems that require PIR for privately accessing large embedding

tables. We develop novel GPU algorithms for accelerating the distributed point function (DPF)

for PIR on a GPU, speeding up the overall operation by over two orders of magnitude. This work

accelerates private neural network inference for applications that require private accesses to large

embedding tables.

(Chapter 6) Gradient Disaggregation: Breaking Privacy in Federated Learning by Recon-

structing the User Participant Matrix develops an attack to disaggregate sums of gradients ob-

served by a central server during federated learning, which allows the server to recover individual

users’ input data, breaking privacy. Our method leverages client participation statistics (i.e: how

8



many rounds of federated learning a client participated in) to factor the participant matrix. Our

attack demonstrates the importance of security in machine learning methods, and motivates new

algorithms for distributed learning with privacy.
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2
Background and RelatedWork

Privacy-enhanced machine learning systems require applying techniques from various disparate

fields including machine learning, cryptography and multiparty computation. Here we provide

a background and an overview of the topics that are relevant to understand the main body of the

thesis. We describe background and related work on topics such as neural network quantization,

private neural network inference with multiparty computation, private information retrieval, and

federated learning.
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Figure 2.1: Example of linear quantization applied to the distribution of weights of a trained neural network. The
distribution of weights are mapped linearly into a specified range so that the weights can be represented using lower‐
precision fixed point numbers, facilitating faster computational inference. Source: NVIDIA.

2.0.1 Neural NetworkQuantization

Neural network quantization is an optimization that reduces both the memory and compute re-

quirement of neural networks by using lower precision floating point representation for the weights

and activations of the network. Concretely, neural networks consist of a sequence of layers of the

form ai = Fnonlinear(Wiai−1) and both the weightsWi and activations ai can be quantized to lower

precision (this is termed weight quantization and activation quantization respectively). Generally, a

trained neural network’s weights are taken and quantized according to some quantization function,

for example mapping the full precision values of the weights linearly and evenly across a limited set

of points between a minimum and maximum value (which may be determined by analyzing the dis-

tribution of the pretrained weights). By reducing the precision of the weights and activations, neu-

ral network inference can be sped up by using fast, high-throughput lower precision operations (i.e:

11



Secure Inference Protocol

...

Linear Ops 
(cheap)

Non-Linear Ops 
(expensive)

Standard Approach: Garbled Circuits

● High Comm. Cost
● High Storage Cost
● Slow
● Secure

Our Approach: Tabula

F(x)
● 100x Less Comm. 
● 2-8x Less Storage
● 50x Faster
● Secure

Circuits Based 
Secure Execution

Lookup Table 
Secure Execution

Figure 2.2: Private neural network inference is composed of linear and nonlinear operations. The main performance
bottleneck is in computing the nonlinear operations; this thesis will present a method based on lookup tables to consid‐
erably reduce the costs of nonlinear operations.

8-bit floating point operations), and additionally the network’s memory requirements are reduced

as the weights require fewer bits of storage. However, this optimization comes at a cost: quantiza-

tion introduces error into the weights and activations, which may negatively affect model accuracy.

Surprisingly, neural networks have demonstrated resilience to being heavily quantized, with many

works119,39,45,57,146 showing that neural networks can be quantized down to 8-bit or even 4-bit

and 1-bit values with little accuracy loss. Quantization is a unique and effective optimization for

neural networks and is widely used in practice to speed up inference and reduce memory require-

ments119,45,57,185. Some notable works on quantization include137,233,46,119,39,45,57. We depict an

example of quantizing the distribution of weights of a neural network in Figure 2.1. In this thesis we

lever‘age quantization as a unique feature of neural networks to both develop faster, more efficient

machine learning inference, and also to develop more efficient privacy-enhanced machine learning

systems.

2.0.2 Private Neural Network Inference withMultiparty Computation

Private neural network inference is the task of performing inference with a neural network on a

client’s data while ensuring that the client’s data is not leaked to the application servers, and also en-

suring that the neural network model is not leaked to the client. This capability is useful when op-
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erating over privacy sensitive data such as health information or user preferences, and for situations

where the the model might be proprietary and should not be leaked. Current methods for private

neural network inference involve secure multiparty computation: both client and server interact and

jointly compute the prediction over secretly shared inputs such that neither party can recover the

full intermediate result (which could leak information about either the client’s input or the appli-

cation server’s model). Broadly, secure multiparty computation operates over secret shares which

guarantee that no intermediate information is leaked during the computation203. For example, a

secret integer value xwith values less than kmay be encoded in a field of order k, Fk, and arithmeti-

cally shared between two parties such that one party (the secret holder) holds x − nmod k and the

other party holds−nmod k; together the parties hold shares that sum to the secret value, but the

second party learns no information about the value of x. The parties can subsequently perform sim-

ple primitive operations such as adding and multiplying secret shares203,21, and this forms the basis

of secure multiparty computation frameworks for neural network inference. Unfortunately, the

main bottleneck in private neural network inference is performing nonlinear operations, and cur-

rent techniques heavily utilize expensive cryptographic primitives like garbled circuits170,120,132 for

their computation. As such, these private inference systems cost considerable amounts of memory,

compute and storage; for example individual ReLUs implemented as garbled circuits require over

2 KB of communication per scalar element during inference and impose over 17 KB of preprocess-

ing storage per scalar element for each individual inference170. We depict a diagram showing the

key operations in private inference (linear and non-linear operations) in Figure 2.2. In this thesis

we make private neural network inference systems more efficient by optimizing nonlinear function

calls utilizing unique aspects of neural networks, namely that they can be heavily quantized without

accuracy loss.
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Figure 2.3: Private information retrieval for machine learning systems under a two‐server PIR setup. In this setup, we
duplicate large embedding tables too large to store on device across two non‐colluding servers; a private distributed‐
point‐function (DPF) query is issued to the two servers to privately retrieve an entry in the table, which are then
inputted to the on‐device network.

2.0.3 Private Information Retrieval inMachine Learning Systems

Private information retrieval (PIR) is the task of retrieving a particular entry from a table while

ensuring that the table index is not leaked to the table holder; PIR is useful in privacy-enhanced

machine learning systems that require accesses to large embedding tables. For example, recommen-

dation systems often require accesses to large embedding tables with millions of entries78,90, and

making these systems private requires ensuring that the client’s accesses into the embedding tables

are kept secret from the application server; PIR is useful in this case to perform these embedding

lookups the result of which are then used for private inference or on-device inference. PIR can be

single-server or multi-server: single-server approaches involve just a single server hosting the table,

but require expensive homomorphic-encryption techniques to ensure privacy. Multiserver ap-

proaches, on the other hand, duplicate the table across multiple non-colluding servers, and does

not need homomorphic encryption computation but requires the extra trust assumption that the

servers are non-colluding. In this thesis we focus on PIR in a two-server context using a distributed

point function (DPF) (Figure 2.3): in addition to the client, there are two non-colluding servers

where the embedding table is duplicated across33, and to make a query the client issues two DPF

14
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...

Figure 2.4: Federated learning involves multiple clients that submit gradient updates across numerous rounds (S), which
are securely aggregated by the central server to update their model; privacy issues arise if the central server (red‐hat)
can see the updates in the clear.

keys (which together represent the index they wish to access, but individually is cryptographically

private) to the two servers who perform computation to obtain secret shares of the entry the client

requested. PIR with DPFs is a viable solution for privacy in machine learning systems that require

lookups to large embedding tables (i.e: recommendation systems), however, the main bottleneck

with DPFs is computational cost as they rely heavily on expensive cryptographic primitives like

PRFs. Despite this, DPF based PIR techniques are considerably less expensive than homomorphic

encryption based PIR approaches160,33. In this thesis we accelerate DPF based PIR approaches us-

ing GPUs for the purpose of enabling privacy-enhanced recommendation systems.

2.0.4 Federated Learning

Federated learning is a framework for collaboratively learning a single neural network model from

multiple clients and works by repeatedly aggregating gradient updates across client devices (i.e: mo-

bile phones)81. Privacy is enhanced as the user’s raw inputs are not sent directly to the application

servers hosting the neural network. Concretely, federated learning consists of a sequence of steps

where each client device begins by locally computing a gradient update based on their local input

and neural network, then sending these updates to the central server where these gradient updates
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are aggregated or summed together and applied to the model, which is finally sent back to the de-

vices. Federated learning is used in applications involving mobile devices and may be employed not

only to collaboratively learn a shared model, but also to enhance privacy166. Unfortunately, recent

lines of research show that gradient updates may leak considerable amounts of information about

their inputs244; this finding has motivated the development of ”secure aggregation” techniques that

ensure that the server sees only the final sum of updates, rather than an individual update in the

clear, which reduces information leakage26; this technique is critical in ensuring the privacy of the

data of the users. We depict the overall federated learning with secure aggregation set up in Figure

2.4. In this thesis we focus on the security of federated learning frameworks from an attacker who

has access to the central server, particularly by developing an attack that undermines the secure ag-

gregation technique, violating user data privacy.
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3
Quantized Neural Network Inference with

Precision Batching

This chapter introduces PrecisionBatching, a technique for accelerating non-private neural net-

work inference. The techniques introduced in this chapter are applied towards a non-private setting,

however, these techniques (specifically, the use of neural network quantization, and hardware ac-

celeration using GPUs) will be key ideas for the development of more efficient systems for private
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machine learning.

3.1 Introduction

Recent advances in deep learning have demonstrated the wide range of the applications of neu-

ral networks139,105,212,87,23,188,228,54, however, neural network execution remains computationally

expensive. In the context of inference, where a trained neural network is executed to make predic-

tions, these computational costs are even more significant as the quality of user facing products is

often highly sensitive to the application’s responsiveness. In these use cases, slow inference times not

only degrade the usability of these applications (e.g: a robot armmust quickly be able to identify

and manipulate an object; a text recognition systemmust react fast enough to ensure quality user

experience; a voice recognition systemmust recognize speech quickly enough to enable real time

interaction), but in some extreme cases may even restrict deployment (e.g: a drone must execute a

neural network policy quickly to adapt to a changing environment, or risk crashing).

Research in quantization aims to reduce the computational costs of neural network inference by

reducing the precision of neural network weights and activations113,114,236,213,148,236,136, however,

this technique incurs an increasingly larger accuracy penalty when quantizing to lower bitwidths

due to quantization error114,40. Traditionally, without retraining, neural networks suffer significant

accuracy degradation beyond 8 bit quantization232,239, limiting speedups to ~4× the speed of the

original network. With retraining, research has shown that networks may be quantized beyond 8

bits113,114,48, however, retraining for quantization is computationally expensive, requires architec-

tural changes to the network and converges slower113. Thus, in the context of quantization without

retraining, it remains challenging to enable< 8 bit quantization without significantly degrading

model quality, and, in the context of quantization with retraining, convergence time continues to be

a major issue.
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In this paper, we develop PrecisionBatching, a quantized inference algorithm for traditional hard-

ware platforms to speed up low batch neural network inference. PrecisionBatching decomposes

network weights and activations into 1 bit tensors, batches the 1 bit activations together, and per-

forms quantized inference with low precision weights and high precision activations (see Figure 3.1).

This attains speedups by reducing the precision of weight layers, maintains accuracy by keeping acti-

vations at higher precision, and utilizes the compute platform’s higher arithmetic intensity to absorb

the extra computation. Besides speedup, PrecisionBatching enables finer granularity control over the

weight and activation precision of quantized inference, which may yield further speedups at a given

accuracy. PrecisionBatching is a quantized inference method, a kernel, which specifies how a tradi-

tional compute platform (like a GPU) may efficiently perform quantized inference. This is unlike

quantization algorithms such as40,239,243 which specify how to quantize the network, but not how

to execute over the lower precision values; thus PrecisionBatchingmay be used in conjunction with

these quantization techniques.

We developed PrecisionBatching on three key observations:

• Insight 1: Small Batch Neural Network Inference is Memory Bound

User facing products perform network inference with a small batch size to reduce response

time / latency (it is not uncommon to see a batch size of 1)95,18,88. However, on traditional

hardware platforms like GPUs, memory transfer speeds are much slower than arithmetic

compute capabilities (FLOPs), so performing neural network inference with low batch size

ismemory bound, meaning most of the time executing the network is spent on fetching data,

rather than on arithmetic computations91,95. Specifically, in a regime with batch size 1, the

data bottleneck is transferring the weight layers of the neural network, which incurs commu-

nication cost on the order ofO(mn)wherem and n are sizes of the network’s hidden layers;

conversely, the memory cost of transferring activations is significantly less atO(m + n).
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Observing that small batch neural network inference is memory bound is significant for two

reasons: 1) it indicates that during neural network inference, the compute cores of the hard-

ware platform are idle, suggesting that one may attain free compute cycles during this dura-

tion and 2) significant speedups may be attained by reducing the time spent on transferring

weights.

• Insight 2: More Bits for Activation Precision Improves Model Quality

Quantization literature has shown that using more precision for activations improves model

quality40,239. Intuitively this makes sense, for example, between a network with 4 bit weights

and 4 bit activations and a network with 4 bit weights and 8 bit activations one would expect

the one with higher precision activations to attain higher accuracy. Additionally, from in-

sight 1, a single bit of precision for weights does not hold the same value as a single bit of pre-

cision for activations. Specifically, as inference is weight memory bound, reducing the pre-

cision of weights by a single bit is much more valuable than reducing the precision of activa-

tions by a single bit. Unfortunately, on traditional hardware platforms like GPUs, kernels fail

to capitalize on this insight by requiring both operands of a computation (weights+activations)

be the same precision.

• Insight 3: Matrix Multiplication may be Decomposed Bitserially

Full precision matrix vector multiplication may be decomposed into a sum of 1 bit matrix-

matrix multiplications; this logical decomposition is known as bitserial computation in

the hardware architecture space7,205. In the context of traditional hardware platforms like

GPUs, implementing such a routine incurs significantly more arithmetic as the terms of

the sum are separated out, which may be a reason why, to the best of our knowledge, such a

kernel is not used widely. However, leveraging insights 1 (inference is memory bound) and

2 (activations improve model quality) we can see that such a bitserial kernel may yield sig-
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nificant gains: the extra arithmetic incurred by the routine is absorbed for free by the idle

compute units and now one may perform inference with higher activation precision and

lower weight precision, reducing the weight memory-boundedness of network inference and

achieving a speedup.

To demonstrate the value of PrecisionBatching, we develop optimized computational kernels to

perform our algorithm on the GPU and evaluate our method against standard quantized inference

implementations (NVIDIA’s Cutlass linear algebra library183) on various applications including

fully connected networks for MNIST and reinforcement learning, and LSTMs/RNNs for language

modeling and natural language inference. Across this range of applications and models we demon-

strate significant end-to-end speedups over using standard quantized inference methods. We also

extensively developed a CPU implementation, however we found that the lack of vectorized 1-bit

operations (specifically, popcount), limited the memory boundedness of the operation, and yielded

little speedup. We believe that future CPU hardware capabilities (and especially hardware accelera-

tors) would enable these gains on the CPU, which we leave for future research.

In summary, our contributions are as follows:

• We develop PrecisionBatching an algorithm for quantized neural network inference targeted

to traditional hardware platforms. PrecisionBatching enables quantized inference at lower

bitwidths and achieves better speedup per accuracy over standard quantized inference with-

out retraining.

• We evaluate PrecisionBatching over a variety of applications (MNIST, language modeling,

natural language inference, reinforcement learning) and neural network architectures (fully

connected, LSTM, RNN) and show net speedups of> 10× over the full precision baseline

(> 1.5×-2× over standard 8-bit quantized inference) within the same error tolerance. Fur-

thermore, we leverage the finer granularity of precisions supported by PrecisionBatching to
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boost speed vs model quality.

• We show how using higher precision activations for quantized models as enabled by Preci-

sionBatching allows faster retraining times and achieves higher quality.

• We release optimized GPU kernels for our algorithm (and corresponding baselines) in the

form of PyTorch modules.

3.2 RelatedWork

3.2.1 Post Training Quantization

Post training quantization is the standard method for quantizing neural networks without retrain-

ing and involves clipping the values of a pre-trained model based on statistics239. Various methods

for post training quantization have been researched. Naively, post training quantization involves

casting weight and activation values to the nearest n-bit representation. More sophisticated tech-

niques involve clipping the weights and activations so as to minimize some form of error between

the quantized and real values232,239. Even more advanced techniques change the underlying floating

point format to enhance speed/accuracy214,141,122.

Pre-existing research in post training quantization methods often omit details as to how the result-

ing quantized weights/activations may be leveraged on existing CPU and GPU platforms to speed

up inference. More unusual bitwidths (e.g: 2/3/4/5) lack a corresponding data type on traditional

hardware platforms and hence it is unclear how these levels of quantization improve inference. The

implied benefit of post training quantization methods on these bitwidths is either space/memory

savings or deployment to specially developed hardware accelerators for which fixed point operations

for various bitwidths may be developed. By framing n-bit fixed point inference operations as a sum

of binary operations, PrecisionBatching is an effective solution to realize these quantization gains on
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traditional hardware platforms. Hence, PrecisionBatching extends the memory-savings benefits of

various post training quantization methods to speed gains on traditional hardware architectures.

3.2.2 PACT

The importance of activations in quantization quality has been noted in research. Specifically,

PACT (Parameterized Clipping Activation for Quantized Neural Networks)40 demonstrated that

neural network weights and activations may be quantized to very low bitwidths (< 4) if an activa-

tion scale is optimized during training. Although PACT requires changes to the training process

(and hence does not work out of the box), their research demonstrates the importance and diffi-

culty of quantizing activations in maintaining quantization quality. Motivated by their findings,

PrecisionBatching opts to keep activations in higher precision (8,16,32 bit) to maintain accuracy at

very low quantization level. This comes at minimal cost during inference as compute is dominated

by memory access times. Thus, PrecisionBatching circumvents the need to maintain a quantization

scale at training time by giving more bits of precision to activations at inference time.

3.2.3 Outlier Channel Splitting

Recently, research into quantization without retraining has emerged as a topic of interest. One no-

table work is Outlier Channel Splitting239, which eliminates large magnitude weights/activations

(which increase quantization error) by splitting them into separate channels, then applying standard

post training quantization on the splitted weights, improving quantization performance. Outlier

Channel Splitting demonstrates better performance-per-bit by using their technique in conjunction

with standard post training quantization methods. Importantly, the authors note that outlier chan-

nel splitting may also be done to activations at runtime, though this is computationally difficult as it

requires repeatedly finding the maximum of a matrix and adding rows to it. PrecisionBatching elimi-
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nates this need by using more bits to represent activations, improving accuracy. Like many standard

post-training quantization methods, Outlier Channel Splitting may be applied along with Precision-

Batching to improve quantization quality and to extend their memory-saving gains to speed gains on

traditional hardware platforms.

3.2.4 Bitserial Computation

Bitserial computation is a technique leveraged by PrecisionBatching for quantized inference and op-

erates by decomposing fixed point operations into bitwise operations124,7,205. Bitserial computation

frames n-bit fixed point operations as a sum of bitwise operations and accumulates the result layer

by layer. This formulation is most popular in the hardware architecture space to develop special-

ized accelerators for machine learning and realizing the technique in this context requires dedicated

hardware constructs. Various hardware accelerators that leverage the bitserial formulation to reduce

energy costs include124,7,205. The bitserial formulation is less used in context of traditional hardware

architectures (e.g: CPUs and GPUs) as it is less clear how the technique would perform as it greatly

increases the total amount of arithmetic per operation, though early works such as220,48 explore

CPU implementations. The key insight behind PrecisionBatching is that on traditional architec-

tures, particularly the GPU, low batched inference is heavily memory bound and by batching the

decomposed 1-bit vectors the extra overhead in compute is negated by the reduction in memory ac-

cesses, effectively turning a memory bound problem into a compute bound problem, and yielding a

net speedup.

3.2.5 Streamlined Deployment for Quantized Neural Networks

Another related work to PrecisionBatching is Streamlined Deployment for Quantized Neural Net-

works220, which leverages a bitserial formulation to speed up deployment on the CPU. Similar to
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PrecisionBatching, Streamlined Deployment for Quantized Neural Networks frames quantized op-

erations in terms of 1-bit operations. However, the key difference is that Streamlined Deployment

separates the the bitlayers of the activations into different product terms, rather than batching them

into one large matrix multiplication. As shown in their paper, the impact is that both weights and

activations must be kept in very low precision (e.g: 2-bit activations) due to the computational over-

head of performing multiple matrix products, which naturally leads to significant degredation in

accuracy. The key observation of PrecisionBatching is that activation bitlayers may be batched to-

gether into one single matrix and a single large matrix product may be performed over this batch

at high efficiency. This allows quantized inference with activations at or near full precision with

minimal computational overhead, enhancing quantization performance.

3.2.6 Automatic Generation of QuantizedMachine Learning Kernels

Automatic Generation of High-Performance QuantizedMachine Learning Kernels47 leverages a

similar bitserial decomposition of kernels as PrecisionBatching to automatically generate quantized

kernels for machine learning applications. In their work,47 build a compiler to generate quantized

kernels and demonstrate a speedup on CPU hardware platforms. Our work on PrecisionBatching

differentiates in several key respects. Firstly, we show that our quantized inference kernel can per-

form inference with higher precision activations and attain significant speedup-vs-accuracy benefits;

the work in47 do not explore the impacts of higher precision activation on model accuracy. Sec-

ondly, our method utilizes the GPU, while the work in47 demonstrates their kernel on the CPU,

so we attain better speedups as the GPU is more compute bound. Finally, our work leverages the

observation that inference is memory bound to develop a more effective quantized inference kernel,

while the work in47 is primarily focused on building a compiler for kernel generation.
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3.3 Precision Batching

We describe the mechanics behind PrecisionBatching including how to decompose matrix-multiplies

of various weight/activation bitwidths to be amenable for computation on traditional hardware

platforms. Additionally, we describe how to efficiently implement our algorithm on standard hard-

ware platforms and furthermore describe how we implemented our baseline standard quantized

inference kernels.
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Figure 3.1: PrecisionBatching quantized inference decomposes weights and activations into 1‐bit tensors and re‐frames
full precision matrix‐vector multiplication as a sum of binary matrix‐matrix opeartions, increasing the arithmetic intensity
of the operation, improving computational efficiency.
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3.3.1 Precision Batching Quantized Inference

PrecisionBatching decomposes weights and activations into 1-bit tensors and replaces the main

matrix-vector multiplication operation with a sum of 1-bit matrix-matrix operations. Figure 3.1

presents a diagram showing the core mechanism behind PrecisionBatching. The core operation of

neural network inference with a batch size of 1 is matrix-vector multiplication.

Li(x) = Wx

Li represents the function that transforms activation input x at the specific layer of the neural net-

work andW is the trained weights of the neural network at layer i. Assuming thatW > 0 and

x > 0, we can decomposeW and x into a sum of bitlayers (binary tensors) as in fixed point format

W =
1
216

(2n−1W(b)
0 + ...+ 20W(b)

n−1)whereW
(b)
i ∈ [0, 1]

x =
1
216

(2k−1x(b)1 + ...+ 20x(b)k )where x(b)i ∈ [0, 1]

In the decomposition above, n and k represent the precision at which weights and activations are

quantized to, respectively. Making n and k larger provides more accurate approximations ofW

and x. n describes the precision at whichW is estimated and represents the number of bitlayers to

accumulate. The fraction 1
216 represents the location of the fixed point and enables representation of

values 16 binary digits< 1. The fixed point may be changed depending on the scale of values of the

weights and activations. Substituting back into the first equation and rearranging we get

Li(x) = Wx

=
1
232

(2n−1W(b)
0 + ...+ 20W(b)

n−1)(2
kx(b)1 + ...+ 20x(b)k )
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=
1
232

n∑
i=0

2n−i−1W(b)
i (2kx(b)1 + ...+ 20x(b)k )

One key observation is that the terms of the sum above can be rewritten as a single matrix multi-

plication. The idea is to batch together the bitlayer decomposition of x into a single matrix and to

frame the equation as a sum of matrix-matrix products.

1
232

n∑
i=0

2n−i−1(W(b)
i [x(b)1 ...x(b)k ])[2k−1...20]

The main workloadW(b)
i [x(b)1 ...x(b)k ] exclusively consists of terms that are binary and facilitates

efficient computation using 1-bit operations on CPU and GPU.Memory is reduced by a factor of

approximately 32
n , given that the matrixW dominates the majority of memory accesses. Note that

the number of arithmetic ops is increased by a factor of k as separating out the sum induces more

work. However, as the reformulation leverages batching, the cost of the extra compute is negated

by the higher computational efficiency of the matrix-matrix multiplication, and the reduction in

memory accesses yields a net speedup.

As indicated, by choosing n and k, any precision of weights and activations can be attained. In

this paper k (activation precision) is set to either 8, 16 or 32. Note that higher activation precision

does not linearly impact performance due to the increase in computational efficiency. However,

for CPUs that are less efficient (more compute bound), setting k to be lower may significantly im-

prove overall speed versus accuracy; hence k and n are parameters that determine the precision and

speedup for quantized execution and may be tuned to the platform and requirement at hand. We

analyze the impact of varying n and k on both speed and accuracy in the results.

Note that both the inputs and outputs of the PrecisionBatching algorithm (as well as intermediate

values such as partial sum accumulators) are full precision. The overhead of maintaining inputs

and outputs as full precision is minimal as much of the computational and memory costs are at-
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tributed to large matrix multiply routines which are quantized (much of the memory costs are from

loading the weights, rather than loading activations/inputs). Thus, keeping the intermediate in-

puts/activations in full precision is still aligned with the high level goal of speeding up inference.

3.3.2 Extending toNegative Values

We extend the formulation to any real valuedW and xmatrix (allowing negative values). Allowing

any real valued input and matrix is important as it enables PrecisionBatching to handle weights with

negative values and cases where the input is not passed through a positive activation function (e.g:

the first layer of the neural network whose inputs are real and may potentially contain negative val-

ues). The simple but effective idea is to leverage two’s complement by adding an extra bitlayer with a

negative scale to handle negative values.

W =
1
216

(−2n−1W(b)
0 + ...+ 20W(b)

n ),W(b)
i ∈ [0, 1]

x =
1
216

(−2k−1x(b)0 + ...+ 20x(b)k ), x(b)i ∈ [0, 1]

Here, the first bitlayer for both x andW are negated, allowing for a complete representation of val-

ues between [−2n, 2n − 1]. This formulation is logically equivalent to two’s complement format.

Note that this technique incurs an extra bitlayer of computational overhead (for weights) and thus

increases the computational and memory costs; we found in practice that the extra bitlayer of com-

putational overhead for activations is minimal.

3.3.3 Weight/Activation Quantization

In the PrecisionBatching formulation,W and x are converted into fixed point format and quantized

to reduce computation and memory accesses. However, any standard post training quantization
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Algorithm 1: PrecisionBatching Preprocessing
Input
W Full precision weight matrix
n Number of bits to quantize

Output
W(b) Bitlayers corresponding to quantizedW
S Scales corresponding to quantized bitlayers

1: Wq←− Int(QuantizeRound(W, n)× 216)
2: max_bit←−max(log2(|Wq|))
3: W(b)←− [Wq ∧ (1≪ i) for i inmax_bit− n .. max_bit+ 1]
4: S←− [1≪ i for i inmax_bit− n .. max_bit+ 1]
5: S[0]←− S[0]×−1
6: returnW(b), S

Algorithm 2: PrecisionBatching Inference
Input
W(b) Weight bitlayers
S Weight bitlayer scales
x Full precision input

Output
z Full precision prediction

1: z←− 0
2: xq ←− Int(x× 216)
3: forWb, scale inW(b), S do
4: z←− z+ scale

232 × (Wbxq)[−231 230 .. 20]
5: end for
6: return z

technique (e.g: KL divergence, MSE, etc) can be applied toW and x to improve accuracy, as long as

the resulting set of quantization values are linearly spaced.

For applications, we use standard post training quantization before quantized execution.

Q(W) = d× round
(
W
d

)
, d =

max(W)−min(W)

2n
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This roundsW to the corresponding closest n-bit representable fixed point values. We found that in

practice, rounding produces significantly better results than truncation at very lower bitwidths (< 4

bits). Additionally, for quantizing to 1 bit, we found it extremely beneficial to exclude representing

0 and instead opt to represent a positive and negative value. After the n-bit rounding,Q(W) is ap-

plied in the PrecisionBatching algorithm where the corresponding bitlayers and scales are deduced.

Additionally, we also optimize over a clipping threshold to find a quantized matrix with the smallest

mean error versus the full precision weight matrix. Note that quantizingW is a preprocessing step

that is done offline and hence does not affect inference performance measurements.

The full PrecisionBatching algorithm is broken into two stages: a preprocessing step which converts

full precision weights to bitlayers, listed in algorithm 1, and the inference stage which makes predic-

tions given a full precision input, listed in algorithm 2.

3.3.4 Efficient Implementation

As indicated above, the core computation is an accumulation of products of binary tensors.

W(b)
i [x(b)1 ...x(b)k ]

As all values are 0 or 1, memory is reduced by packing the 0s and 1s into the bits of an integer array,

yielding 32× reduction in memory for each product of bitlayers. Operating over these packed for-

mats is inspired by standard binary quantized neural networks which uses logical operations and

popcounts for implementing multiply accumulate. An important difference is that typical binary

quantized neural network weights contain values that are -1 or 1 rather than 0 or 1. Hence, instead

of the xnor operation we use the and operation to simulate 1-bit multiplication. This is an impor-

tant distinction for current and future hardware accelerators; current hardware accelerators (e.g: T4

binary MMA) perform the xnor operation rather than the and/or operation. Hence, in this work
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we are only capable of leveraging basic GPU ands/popcounts rather than the accelerator, though us-

ing an accelerator would yield much better performance improvements due to heightened compute

speed vs memory speeds.

To leverage binary operations to compute over full precision values, the floating point input vector

must be converted to fixed point and then packed in such a way to layout the bits to be conducive to

the and/popcount instruction. Conversion to fixed point is a simple multiply and cast. Rearranging

the bits is done with a bitwise matrix transpose, for which there are efficient implementations on

both CPUs and GPUs that leverage parallelism / SIMD. In practice, we found the bitwise matrix

transpose to have negligible overhead. We furthermore note that multiple bitlayers may be stacked

together so that the entire product across bitlayers can be performed with a single operation. How-

ever, in practice we found that there is negligible performance difference in accumulating multiple

bitlayers separately, though a more optimized implementation may be the subject of analysis for

future work.

3.3.5 Integer Quantized Inference

Standard quantized inference methods quantize both weight and activation to the same precision

before execution (so that both operands are the same datatype); for example, 8-bit quantized execu-

tion quantizes both weights and activations to 8-bit ints before operation. Weights and activations

are scaled down before quantization (so that the maximum value is representable in the quantized

range), then dequantized after the operation. Like in PrecisionBatching we apply the same quan-

tization preprocessing techniques (rounding, optimizing a clipping threshold) to weights before

evaluation. In our experiments, we leverage NVIDIA’s T4 tensorcore capability (via NVIDIA’s

Cutlass linear algebra library) in the implementation of the standard quantized inference baselines

(1, 4, 8, 16, 32-bit inference methods).
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3.4 Experimental Setup

This section describes the hardware we use to demonstrate PrecisionBatching in practice. We also

describe the different neural network benchmark applications we use for evaluation.

3.4.1 Hardware Testbed

We perform all performance benchmarks and tests on NVIDIA’s Tesla T4 GPU (as no previous

GPU version supports 1/4/8 bit inference). For benchmarking kernels, we measure the wall-clock

time of performing at least 1000 iterations of the target algorithm.

Note that the choice of using GPUs for PrecisionBatching is key: GPUs exhibit much higher com-

pute vs memory capabilities than CPUs, which allows us to fully leverage PrecisionBatching’s higher

operational intensity. Current CPUs exhibit a much lower compute vs memory ratio without vec-

torized popcount instructions and so on current generations of CPUs PrecisionBatching attains

lower speedups, though with more advanced CPU architectures supporting vectorized popcounts

we expect to see the same improvements.

3.4.2 Software Implementation

Baseline 4, 8 and 16 bit standard quantized inference utilizes the NVIDIA Cutlass library which

performs low-precision matrix multiply usingWMMA (warp matrix multiply accumulate) hard-

ware operations that leverage Tensorcores for compute. We implemented PrecisionBatching using

standard CUDA (no tensorcore acceleration). In all experiments the batch dimension is one, as we

are targetting application scenarios for inference, where examples are processed one at a time where

latency is important (rather than throughput).
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3.4.3 Neural Network Benchmarks

We evaluate our method on the following applications: MNIST, language modeling, natural lan-

guage inference and reinforcement learning.

• MNISTwe train a 3-layer fully connected neural network with a hidden size of 4096 for

20 epochs, reaching a baseline accuracy of 98%. We uniformly quantize the weights and

activations of each layer to the target precisions.

• Language ModelingWe train a model with a 1-layer 2048 unit LSTM105 as the encoder,

and a 1-layer 2048 unit fully connected as the decoder (a common architecture used in

language modeling157). We apply dropout with a factor of .5 to the inputs of the encoder

LSTM’s recurrence, and to the encoder LSTM’s output. We train the model on theWikitext-

2 dataset162 for 40 epochs, reaching a baseline perplexity of 93. During evaluation of quan-

tization on model accuracy, we quantize the LSTM’s input and hidden layers to the same

weight and activation levels; however, we keep the final fully connected decoder in full preci-

sion (as it is not the main runtime bottleneck).

• Natural Language InferenceWe train a model with a 1-layer 3072 unit LSTM encoder and

a 3-layer 3072 unit fully connected decoder (a larger version of that seen in28). We train on

the SNLI dataset28 for 10 epochs and reach a baseline accuracy of 78%. During evaluation of

quantization on model accuracy, we uniformly quantize both the weights and activations of

the LSTM encoder and the fully connected decoder to the target precisions.

• Reinforcement LearningWe train models on reacher hard (easy), cheetah run (medium)

and humanoid stand (hard)218 using D4PG106 with a 3-layer 4096 unit neural network

(same, but larger, architecture in218) until convergence (task difficulties from106). We train

on features rather than pixels. During evaluation we quantize all layers of the policy. An
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episode is 1000 steps, (so maximum evaluation score is 1000, but this is not always attain-

able).

3.5 Results

Our results section is organized as follows. Firstly, we evaluate the performance of the Precision-

Batching kernel in isolation to verify that our quantized inference method attains similar or better

speedup than standard quantized inference even with higher activation precision. Secondly, we ver-

ify (across various tasks) that higher activation precision yields better model quality than when acti-

vation precision is the same as weight precision (the case when using standard quantized inference).

Then, we evaluate the end-to-end speedup vs accuracy benefits of PrecisionBatching over standard

quantized inference. Finally, we evaluate the benefits of higher precision activations motivating

PrecisionBatching for quantization with retraining.

3.5.1 Precision Batching Kernel Performance

We implement optimized GPU kernels for the PrecisionBatching algorithm and measure the speedup

of the kernel over the full precision (32-bit) operation (provided by NVIDIA’s Cutlass linear alge-

bra library) across multiple precisions and matrix sizes. Inference times include all activation pro-

cessing steps necessary for the algorithm, for example, transposing the activation bitmatrix before

1-bit execution.

Table 3.1 shows the performance of the PrecisionBatching kernel with weight bits ∈ (1, 2, 4, 8)

and activation bits ∈ (8, 16, 32), along with baseline quantizated inference kernels (Int1, Int4,

Int8, Float16, Float32). We see that at fewer bits, the PrecisionBatching kernel achieves significant

speedups over full precision inference: 10-14x speedup for 1-bit, 5-7x for 4-bit (note that the opti-

mal speedup for PBatch-n is 32
n+1 with the sign layer taken into account). Using fewer activation bits
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Table 3.1: Quantized inference speedups over 32‐bit inference across different methods, matrix sizes and activation
quantization levels on the NVIDIA T4 GPU. PBatch‐n (a=k) means n+1 bitlayers are accumulated with k‐bit activations.
(n‐bit weights, k‐bit activations). We see that using more activations yields only minor slowdowns and demonstrates the
memory‐boundedness of low batched inference.

Method 512x512 1024x1024 2048x2048 4096x4096
PBatch-1 (a=8) 10.8 13.8 12.0 13.6
PBatch-1 (a=16) 9.5 12.1 10.3 13.2
PBatch-1 (a=32) 8.0 10.7 8.0 10.7
PBatch-2 (a=8) 6.6 9.9 8.3 11.8
PBatch-2 (a=16) 6.8 8.8 7.1 10.9
PBatch-2 (a=32) 5.7 7.5 5.4 8.3
PBatch-4 (a=8) 4.9 6.5 5.1 7.3
PBatch-4 (a=16) 4.2 5.5 4.3 6.8
PBatch-4 (a=32) 3.6 4.8 3.4 5.3
PBatch-8 (a=8) 2.9 3.6 3.2 4.7
PBatch-8 (a=16) 2.5 3.2 2.5 4.0
PBatch-8 (a=32) 2.0 2.7 2.1 3.1
Int1 3.6 5.0 8.5 34.3
Int4 3.6 4.7 5.8 11.0
Int8 3.3 4.0 4.2 8.0
Float16 2.3 1.8 2.0 2.8
Float32 1 1 1 1

increases performance only slightly as compute is not the main bottleneck in these operations.

Generally, higher performance is seen at larger matrix sizes as the effect of the reduction in memory

on performance is more pronounced. Baseline kernels (Int1, Int4, Int8 especially) performmuch

better at larger matrix sizes; we believe this is the case as their kernels are more optimized than ours

and leverage Tensorcore capability for more efficient compute. This table is useful for roughly es-

timating the amount of speedup that may be attained on various applications. For example, if we

believe for our application that inference with 4-bit weights, 16/32 bit activations would achieve

the same accuracy as 8-bit weights and activations, then using PrecisionBatching on various matrix

dimensions would yield a 1.5×−2× speedup.

We additionally plot the operational intensity of PrecisionBatching versus standard inference in Fig-

ure 3.2. For each method, we compute its operational intensity: the number of operations that the
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method performs, divided by the number of bytes of memory required for the method. Note that

for standard inference, an operation is dependent on its bitwidth, for example, for 32-bit inference,

a single operation is a 32-bit multiply or add, while for 8-bit inference, a single operation is an 8-bit

multiply or add.

For PrecisionBatching, each 1-bit operation counts towards the computational ops. As shown in

Figure 3.2, PrecisionBatching achieves much higher operational intensity as the number of com-

pute operations is increased by a factor of the specified activation precision. Standard inference on

the other hand achieves low operational intensity. Thus, PrecisionBatching achieves much greater

efficiency than standard inference, and combined with the better model accuracy obtained by oper-

ating over higher activations, achieves better performance per accuracy threshold.
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24

26

28
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Pbatch
32-bit inference
16-bit inference
8-bit inference
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Figure 3.2: Operational intensity of PrecisionBatching versus standard inference. PrecisionBatching achieves higher
operational intensity with more activation bits, enabling it to operate more efficiently on GPUs. Standard inference is
primarily memory bound and achieves low operational intensity, resulting in lower compute efficiency.
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Table 3.2: Benefits of using more precision for activations on model quality, evaluated on MNIST, language modeling
(Wikitext‐2), natural language inference (SNLI) and reinforcement learning (reacher:hard, cheetah:run, humanoid:stand).
Generally, using higher precision activations allows quantizing twice as many bits with little degradation of model
accuracy. Best scores per weight precision is bolded.

Task Qactiv. = 32 Qactiv. = 16 Qactiv. = 8 Qactiv. = Qweight

MNIST (acc.)

Qweight = 1 85.8 86.7 87 10.1
Qweight = 4 97.1 97.3 97.3 94.3
Qweight = 8 98.0 97.8 97.8 98.0
Qweight = 16 98.0 97.9 97.9 98.0
Qweight = 32 - - - 98.0

Language Modeling (ppl.)

Qweight = 1 188.0 188.0 188.0 828.1
Qweight = 4 94.3 94.3 94.3 148.9
Qweight = 8 94.0 94.0 94.0 94.0
Qweight = 16 91.7 91.7 91.7 92.8
Qweight = 32 - - - 92.8

Natural Language Inference (acc.)

Qweight = 1 76.1 76.1 74.0 32.8
Qweight = 4 78.7 78.7 76.8 77.4
Qweight = 8 78.9 78.9 76.9 79.1
Qweight = 16 78.9 78.9 76.9 78.8
Qweight = 32 - - - 78.8

Reacher Hard (rew.)

Qweight = 1 9.8 6.6 9.5 24.9
Qweight = 4 676.4 765.1 960.1 826.2
Qweight = 8 969.1 973.8 962.5 976.4
Qweight = 16 960.0 974.6 966.5 957.3
Qweight = 32 - - - 968.0

Cheetah Run (rew.)

Qweight = 1 .8 0.9 0.8 0.0
Qweight = 4 616.3 685.6 651.6 480.3
Qweight = 8 700.3 701.0 681.6 700.7
Qweight = 16 706.1 707.9 682.4 705.4
Qweight = 32 - - - 702.9

Humanoid Stand (rew.)

Qweight = 1 5.0 4.9 7.4 4.7
Qweight = 4 443.0 410.6 466.9 25.7
Qweight = 8 753.3 692.7 816.0 789.4
Qweight = 16 824.1 781.2 864.2 798.9
Qweight = 32 - - - 808.1

3.5.2 Accuracy Benefits of Higher Precision Activations

Next we show that using higher precision for activations leads to significantly better model accu-

racy at low bitwidths. We benchmark model accuracy across: MNIST, language modeling, natural

language inference and reinforcement learning. For each we train one baseline full precision model

and evaluate the effects of various levels of weight and activation quantization on the model’s end

performance. For each model/application we quantize weights and activations to 1, 4, 8, 16 and 32
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bits. Note theQactiv. = Qweight column uses standard quantized inference while the other columns

use PrecisionBatching.

Table 3.2 shows model performance (accuracy for MNIST and natural language inference, perplex-

ity for language modeling, reward for reinforcement learning) for different weight and activation

precisions. For weight bitlevels< 8, keeping activations at higher precision (8, 16 or 32 bit) greatly

increases model accuracy; generally, keeping activations at a higher precision allows quantizing twice

as many bits, from 8-bits to 4-bits, without significant loss in model accuracy.

For MNIST, with 1-bit weights, using higher precision activations is the difference between 85% ac-

curacy and random guessing ( 10% accuracy); with 4-bit weights, higher precision activations main-

tains within< 1% of the full precision model’s performance. Similarly, for language modeling, with

1-bit weights, higher precision activations reduces perplexity from 800 to 180; for 4-bit weights,

higher precision activations reduce perplexity from 180 to within a few points of the full precision

performance. For natural language inference, using full precision activations allows us to quan-

tize down to 1-bit with only a couple percentages of accuracy degredation (78% to 76%), whereas

quantizing activations to 1-bit degrades to random guessing (33%). Interestingly, for language in-

ference, the 8-bit quantized model outperformed the full precision result, a known phenomenon

seen in quantization literature136,236. For reinforcement learning, trends are generally similar: better

reward is attained with higher activation precision, though in some interesting cases (e.g: reacher

hard), lower activation precision performed better. Harder tasks (e.g: humanoid stand) are gener-

ally more difficult to quantize and higher activations typically yield more consistent reward gains

on such tasks. Additionally, on some tasks, the score achieved by weights=activations is dissimilar

to that reported in theQactiv. = Qweight column; this is due to slight differences in implementation

between PrecisionBatching and standard quantized inference (e.g: we dynamically scale activations

in standard quantized inference, whereas for PrecisionBatching a static scale is used).

Additionally, Figure 3.3 shows the histogram of values of both weights and activations on the
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Figure 3.3: Histogram of weights and activations of a 3 layer neural network on the MNIST task. Note that the plotted
activations are the inputs to the corresponding matrix multiply operation with the weights. Besides the first layer (image
input = activations), activations have a significantly wider distribution of values than weights, thus quantizing activations
incurs more error and motivates using higher precision for activations.

MNIST task for each layer of the network. As shown, across all layers of the network, activation

values have a much wider spread than the weights, with the exception of the first layer, for which

the activations are the mnist input features. This indicates that quantizing activations would yield a

significantly higher quantization error than for weights, and motivates keeping activations in higher

precision.

3.5.3 End to End Performance Gains

We demonstrate the end to end speedups achieved by PrecisionBatching. We combine the observa-

tions from our previous results: we leverage the high runtime performance of the PrecisionBatching

kernel and the better model accuracy of keeping activations in higher precision to attain significant

end-to-end speedups over the full precision model while maintaining model quality. We use the

same applications (MNIST, language modeling (Wikitext-2), natural language inference (SNLI),

reinforcement learning) with the same model architectures and training parameters described previ-

ously.

We apply each target quantized inference algorithm as follows. For the MNIST/reinforcement

learning model, we replace each linear layer with the corresponding quantized inference algorithm;
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for the language modeling and natural language inference Seq2Seq model, we replace each linear

layer of the encoder 1-layer LSTMwith the target quantized inference algorithm, however we keep

the final fully connected decoder in full precision as it is not the main runtime bottleneck. For re-

inforcement learning, we replace each layer of the policy with the target quantized inference algo-

rithm.

Additionally, for both baseline quantized inference and PrecisionBatching, onMNIST, language

modeling and natural language inference, we use variable-bit quantization on different layers (e.g:

1-bit quantization on layer 1, 4-bit quantization on layer 2, etc) to further boost performance per

accuracy. Accordingly, we perform an exhaustive grid search over weight/activation precision as-

signments. On the 3-layer fully connected for MNIST, for baseline quantized inference we assign

each layer a precision∈ (1, 4, 8, 16, 32) (note that for quantized inference activations are the same

precision as weights); for PrecisionBatching, we assign each layer a precision ∈ (1, 2, 3, 4, 8) and

activations∈ (8, 16, 32). On the Seq2Seq LSTM for language modeling and natural language

inference, for baseline quantized inference we assign each layer a precision∈ (1, 4, 8, 16); for Pre-

cisionBatching, we assign each layer a precision∈ (1, 2, 4, 8) and activations ∈ (8, 16, 32). For the

reinforcement learning tasks, we opt instead to maintain each layer with the same weights/activation

precision; however, we leverage PrecisionBatching’s finer precision granularity in the evaluation

(weight precision∈ (1, 2, 3, 4, 5, 6, 7, 8)). In benchmarking the runtime performance of each

model/application, we measure the wall clock time of inference with a batch size of 1 for 10 itera-

tions on a given input repeated over 10 runs and take the minimum. We measure speedups by com-

paring the model with the target quantized inference algorithm against the model with the baseline

quantized inference method.

Figure 3.4 and Figure 3.5 shows the Pareto curves of the end-to-end speedups of PrecisionBatching

over standard quantized inference. On average, PrecisionBatching yields speedups of 8× - 10× over

full precision inference, and 1.5× - 2× over standard 8-bit quantized inference at the same error
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Figure 3.4: End‐to‐end speedup over full precision model vs model quality on MNIST, language modeling and natural
language inference over a grid search of precisions for weights and activations. Standard quantized inference is limited
to weights=activations ∈ (1, 4, 8, 16, 32). PrecisionBatching leverages execution with finer granularity inference with
weights ∈ (1, 2, 4, 8), activations ∈ (8, 16, 32). Dotted lines show Pareto boundary where layers have the same
precision, while solid lines indicate layers may have different precision. PrecisionBatching attains significant speedups
over standard quantized inference methods.
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Figure 3.5: End‐to‐end speedup over full precision model vs model quality on reinforcement learning tasks (Deepmind
Control Suite; difficulty from106). All layers have the same precision/activations. Standard quantized inference is limited
to weights=activations ∈ (1, 4, 8, 16, 32). PrecisionBatching leverages execution with finer granularity inference
with weights ∈ (1, 2, 3, 4, 5, 6, 7, 8), activations ∈ (8, 16, 32). PrecisionBatching attains significant speedups over
standard quantized inference methods.

tolerance. Additionally, the finer granularity of precision supported by PrecisionBatching enables

greater speedup per accuracy when using variable quantization across layers. The same data is re-

flected in Table 3.3, which shows the corresponding best achieved speedup for each method for

different error margins.
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Table 3.3: Best model quality, speedups and precision assignments per error margin for PrecisionBatching and baselines
over a grid search of precisions for weights and activations. PrecisionBatching precision assignments format: (Li bits,
Ai bits); quantized inference precision assignments format: (Li=Ai bits). Standard quantized inference is limited to
weights=activations ∈ (1, 4, 8, 16, 32). PrecisionBatching leverages execution with finer granularity inference with
weights ∈ (1, 2, 4, 8), activations ∈ (8, 16, 32). For reinforcement learning, all layers have the same precision (though
for PrecisionBatching activation precision is not necessarily the same as weight precision). PrecisionBatching yields
1.5×−2× speedup over standard quantized inference.

Task Error Quality Speedup vs FP32 Speedup vs Int8 Method Precision Assign.

MNIST
(acc.)

< 1% 97.3% 16.6 2.4 PBatch (4,8)(1,8)(1,8)
97.9% 8.0 1.2 Baseline (8,4,8)

< 5% 97.3% 16.6 2.4 PBatch (4,8)(1,8)(1,8)
94.3% 9.1 1.3 Baseline (4,4,4)

< 15% 87.3% 21.0 3.1 PBatch (1,8)(1,8)(1,8)
94.3% 9.1 1.3 Baseline (4,4,4)

Language Modeling
(ppl.)

< 5 94.3 7.9 1.5 PBatch (4,8)(4,8)
93.7 5.4 1 Baseline (8,8)

< 25 109.3 9.8 1.8 PBatch (1,8)(4,8)
104.3 5.9 1.1 Baseline (4)(8)

< 50 145.3 11.3 2.1 PBatch (1,8)(2,8)
148.9 6.0 1.2 Baseline (4,4)

Natural Language
Inference
(acc.)

< 1% 77.8 14.3 1.6 PBatch (4,16)(1,8)
77.9 10.5 1.2 Baseline (4,8)

< 5% 74.0 26.3 3.0 PBatch (1,8)(1,8)
77.4 12.9 1.5 Baseline (4,4)

< 15% 74.0 26.3 3.0 PBatch (1,8)(1,8)
77.4 12.9 1.5 Baseline (4,4)

Reacher Hard
(rew.) < 50 975.0 7.7 1.69 PBatch (4,8)(4,8)(4,8)

976.4 4.5 1 Baseline (8,8,8)
Cheetah Run

(rew.) < 50 651.6 7.6 1.53 PBatch (4,8)(4,8)(4,8)
700.7 5.0 1 Baseline (8,8,8)

Humanoid Stand
(rew.) < 50 825.3 7.2 1.47 PBatch (6,8)(6,8)(6,8)

789.5 4.95 1 Baseline (8,8,8)

3.5.4 Retraining Benefits of Higher Activation Precision

We show that higher activation benefits the retraining process, leading to better convergence and

accuracy. Retraining generally improves the quantized model’s quality at lower bitwidths and works

by training the model to account for quantization error. As standard quantized inference methods

require weights and activations be the same precision, the model must be retrained with same preci-

sion weights and activations. However, this often makes retraining slow and quality frequently falls

short of the corresponding full precision baseline at low bitwidths. We show that higher activation
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Table 3.4: Final scores achieved by quantized models with≤ 4 bit weights, with and without retraining. Using higher
precision activations, as PrecisionBatching enables, consistently achieve higher quality, even with retraining.

Task Base
Score

Weight Bits No Retrain Retrain
(scratch)

Retrain
(finetune)

MNIST
(acc.) 98.5

W=A W=32 W=A W=32 W=A W=32
W=1 10.1 85.8 81.7 97.9 80.0 98.2
W=4 94.3 97.1 98.6 98.6

Language
Modeling
(ppl.)

90.1
W=1 828.1 188.0 396.0 190.7 316.5 142.4
W=4 148.9 94.3 94.0 93.2
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Figure 3.6: Benefits of higher precision activations for retraining quantized models. Higher activations (A=32) achieves
better convergence and quality after retraining. This is especially true for 1 bit weights. W=32,A=32 is the full precision
baseline.

precision, as PrecisionBatching enables, facilitates retraining, thus leading to better final quality and

faster convergence.

We perform retraining from scratch and from pretrained model on bothMNIST and language

modeling with quantization aware training, the standard method to retraining for a quantized

model80. Note we do not perform any modifications to training (e.g: architectural changes to the

network to assist better performance). We train MNIST for 100 epochs and the language model
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for 40 epochs using the same hyperparameters as described in previous sections. During retraining,

quantization aware training is performed immediately from the very beginning (no quantization

delay).

Figure 3.6 shows the results of retraining on 1 bit and 4 bit precision weights for MNIST and lan-

guage modeling. Particularly for 1 bit weights, retraining with 32 bit (full precision) activations

enables faster and better convergence. For MNIST, 1 bit weights and activations is stuck at 80%

accuracy whereas 1 bit weights, 32 bit activations achieves near full precision performance. For lan-

guage modeling, 1 bit weights and activations converges at a worse quality (300 ppl), while 1 bit

weights and 32 bit activations achieves much better quality (190 ppl). Table 3.4, compares scores

achieved with no retraining, retraining from scratch and retraining from pretrained model (finetun-

ing) and demonstrates that higher precision activations consistently achieves better scores across the

tasks in all regimes.

3.5.5 Larger Batch Sizes

PrecisionBatching favors low batch sizes (batch 1 is best, a matrix-vector multiplication) to leverage

the weight boundedness of the problem. With larger batch sizes the technique sees significantly less

gains, and may even incur a slowdown, as larger batch sizes are more compute and activation bound.

The significance of this limitation means that PrecisionBatching is primarily targeted for the lin-

ear components of a network (that have low batch dimension), which limits application of the al-

gorithm primarily to fully connected neural networks, RNNs and LSTMs particularly for infer-

ence with low batch sizes where latency is important. For this reason, convolutions, which may be

framed as a matrix-matrix multiply will see less speedup using PrecisionBatching.

However, despite these shortcomings, we argue that speeding up low batched fully connected lay-

ers of a network is a significant contribution as many real world applications deploy such networks

in practice. For example, OpenAI Five24 employs a 4096 layer LSTM and inference during game
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play processes frame by frame; Google’s on-device keyword prediction model98 similarly employs an

LSTM and inference (not training) is performed sentence by sentence to minimize latency; likewise,

Waymo’s ChauffeurNet model19 consists of large LSTM and RNN components which perform

inference per environment step. We believe PrecisionBatching is a step towards fully utilizing the

parallel compute capabilities of traditional hardware systems and will be useful in many high perfor-

mance machine learning use cases.

3.6 Conclusion

We present PrecisionBatching, a quantized inference algorithm for speeding up neural network ex-

ecution on traditional hardware platforms at low weight bitwidths. PrecisionBatching leverages

the compute efficiency of traditional hardware platforms (e.g: GPUs) to perform inference with

higher activation precisions, enabling execution with lower precision weight layers, achieving a

net speedup. Across various models (fully connected, LSTMs, RNNs) and applications (MNIST,

language modeling, natural language inference, reinforcement learning) we show that Precision-

Batching yields end-to-end speedups of over 8× that of full precision inference (1.5× – 2× that of

standard 8-bit quantized inference) at the same error tolerance.
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4
Tabula: Efficiently Computing Nonlinear

Activation Functions for Private Inference

In this chapter we build off the critical insights of the prior chapter towards constructing more ef-

ficient private machine learning systems. Specifically, we leverage the key observation that neural

networks may be heavily quantized with little accuracy loss to accelerate private nonlinear activa-

tion functions in private neural network inference by using lookup tables. Nonlinear activation
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functions are the bulk of the system costs in private neural network inference and accelerating them

considerably speeds up private inference.

4.1 Introduction

Secure neural network inference seeks to allow a server to perform neural network inference on a

client’s inputs while minimizing the data leakage between the two parties. Concretely, the server

holds a neural network modelMwhile the client holds an input x. The objective of a secure infer-

ence protocol is for the client to computeM(x)without revealing any additional information about

the client’s input x to the server, and without revealing any information about the server’s model

M to the client. A protocol for secure neural network inference brings significant value to both

the server and the clients. The clients’ sensitive input data is kept secret from the server, shielding

the user frommalicious data collection. Additionally, the client does not learn anything about the

server’s model, which prevents the model from being stolen by competitors.

Current state-of-the-art multiparty computation approaches to secure neural network inference re-

quire significant communication between client and server, lead to excessive runtime slowdowns,

and incur large storage penalties171,74,121,192,125,38. The source of these expenses is computing non-

linear activation functions with garbled circuits238. Garbled circuits are costly in terms of computa-

tion, communication, and storage. Concretely, executing ReLU activation functions using garbled

circuits requires over 2 KB of communication per scalar element of the input171 and imposes over

17 KB of preprocessing storage per scalar element of the input171,74. These costs make state-of-

the-art neural network models prohibitively expensive to deploy: on ResNet-32, state-of-the-art

multiparty computation approaches for a single secure inference require more than 300MB of data

communication171, take more than 10 seconds for an individual inference171, and impose over 5

GB of preprocessing storage per inference74. These communication, runtime, and storage costs
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Figure 4.1: The Tabula approach to computing nonlinear functions for secure neural network inference. Tabula
precomputes lookup tables [T]0, [T]1 stored on client and server respectively, and also initializes shares of the
secret s so that the client holds [s]0 and the server holds [s]1. The lookup tables [T]i contain the result of all pos‐
sible nonlinear function calls to an activation function and uses quantization to make storing all possible function
calls in the table feasible. These lookup tables map secret shares of the quantized inputs to the nonlinear func‐
tion to secret shares of the output of the activation function. During the online phase, these lookup tables enable
extremely efficient nonlinear activation function execution and proceeds by 1) securely truncating the inputs, 2) re‐
constructing a blinded index and 3) looking up the blinded index in the lookup tables [T]i. Our code is released at
https://github.com/tabulainference/tabula.

pose a significant barrier to deployment, as they degrade user experience, drain clients’ batteries,

induce high network expenses, and eliminate applications that require sustained real time inference.

To replace garbled circuits and other methods192,112 for privately computing nonlinear functions,

we propose Tabula, a two-party secure protocol to efficiently evaluate neural network nonlinear

activation functions. During an offline preprocessing phase, Tabula generates tables that con-

tain the encrypted result of evaluating a nonlinear activation function over a range of all possible

quantized inputs. New tables are precomputed for each nonlinear function performed during infer-

ence, and these tables are split across client and server. Then, at inference time, Tabula performs

two steps to evaluate a nonlinear activation function: 1) securely quantize neural network acti-

vation inputs down to the precision of the range of the inputs to the precomputed tables and 2)

securely lookup the result of the activation function using a two-party secure table lookup proce-

dure117,128,53. By heavily quantizing neural network activations and reducing the space of inputs to
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the nonlinear activation function, Tabula enables storing all possible results of the activation func-

tion in a table without requiring an infeasibly large amount of memory. This allows the application

of the subsequent two-party secure table lookup protocol, which is efficient and has low storage,

communication, and computation overhead.

Tabula achieves significant improvements over garbled circuits and other192,112 approaches for

securely computing nonlinear functions on important systemmetrics such as communication and

runtime, while maintaining or even improving storage costs.

• Runtime

Tabula offers significant runtime improvements over garbled circuits with quantized in-

puts due to the simplicity of the online phase of the secure table lookup protocol 128,117,53.

Tabula’s runtime for an individual activation function is the cost of transferring a single

secretly shared value between parties, and performing a single memory access on the sub-

sequent value. Our results show that when computing individual functions, Tabula is

over 100× faster than garbled circuits with quantized inputs. This leads to significant over-

all runtime improvements when performing secure neural network inference. Our results

show that across various standard networks (LeNet, ResNet-32, ResNet-34, VGG) Tabula

achieves up to 50× runtime speedup compared to garbled circuits with quantized inputs.

Additionally, during the online phase, the Tabula protocol requires just one table lookup;

this is significantly less computation compared to schemes that use function secret sharing

(FSS), which require computing PRGs like AES-128223,89,4,31,29,197.

• Communication

Tabula requires significantly less communication than garbled circuits with quantized

inputs and also significantly less communication versus other state-of-the-art approaches

like192. Tabula’s communication cost for a single activation function is the cost of commu-
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nicating a single secretly shared element between parties, and is independent of the complex-

ity of the nonlinear function. Our experiments show that, compared to garbled circuits with

quantized inputs, communication required for a single nonlinear function call is reduced by

a factor of over 280 − 560× leading to an overall communication reduction of up to 9× on

various standard neural networks. Additionally, compared to other state-of-the-art protocols

for computing nonlinear functions like192, we show Tabula reduces communication by up

to 40× on a per-operation basis, leading to up to 10× reduction in communication when

performing end-to-end private inference on various neural networks.

• Storage and Memory

Tabula utilizes comparable storage and memory as garbled circuits with quantized inputs.

Tabula’s table sizes are dictated by how heavily quantized the activations are and increase

exponentially with the precision of the activations. Notably, Tabula’s table sizes affect the

precision of the activation function and hence affect neural network accuracy. However,

as neural network activations may be significantly quantized without significantly affect-

ing neural network quality180,55,241,154, the sizes of these individual tables may be reduced

enough to allow a comparable or smaller amount of storage than garbled circuits with quan-

tized inputs. Generally, across different models, Tabula uses between .25 − 2× as much

memory as garbled circuits while maintaining similar model quality. Like garbled circuits,

Tabula requires a new table for each individual nonlinear operation to maintain security.

A comparison of our work against others across some of these axes is shown in Table 4.1.
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Comm.
Cost

(per-op)

Runtime
Cost

(per-op)

Preproc.
Storage
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2B
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Secure
Lookup
Tables

1 RAM lookup

Garbled
Circuits

Delphi171,
Gazelle125,

SecureNN174,
DeepReduce121,

Circa74

562B 70 us 17.5KB Any
GCs
238

-

Tree-Based
Comparator

CryptFlow2192,
Cheetah112

96B - - ReLU only
Oblivious
Transfer

151

-

Function
Secret
Sharing
(FSS)

Pika223,
Llama89,

4

Ariann197

2B
(8-bit compare,

31)
-

512B
31

Any
FSS
31

29

PRG
(i.e: AES-128)

Table 4.1: Comparison of our work against other approaches for securely computing nonlinear activation functions
across selected axes. Unless specified costs refer to the cost of the online phase. Compared to garbled circuits, the
most widely used state‐of‐the‐art protocol for securely computing nonlinear functions, our approach sees significant
improvements in communication and runtime at comparable storage costs. We also compare our approach against less
generic protocols for non‐linear function computation (tree‐based comparator, limited to only ReLU) on the basis of
communication where we again see considerable improvements. Finally, compared to function secret sharing (FSS)
schemes, our approach is comparable in attaining low communication cost while being computationally more efficient.

4.2 RelatedWork

4.2.1 Multiparty Computation Approaches to Secure Neural Network In-

ference

Multiparty computation approaches to secure neural network inference have been limited by the

costs of computing both the linear and nonlinear portions of the network174,196,192,127. Recent

works like Minionn, Gazelle and Delphi150,125,171,143,192,121,38,74 have optimized the linear opera-

tions of secure neural network inference via techniques like preprocessing to the point they are no

longer a major system bottleneck171. Hence, current state-of-the-art approaches to secure inference
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like Minionn, Gazelle, Delphi, and CrypTFlow2 are primarily bottlenecked by nonlinear opera-

tions. Specifically, these approaches rely on garbled circuits, or a circuit-based protocol, to compute

nonlinear activation functions (e.g: ReLU)150,125,171,129,51, resulting in notable drawbacks including

high communication, runtime and storage costs.

Our approach addresses the problems posed by garbled circuits by eliminating them altogether.

Our method is centered around precomputing lookup tables containing the encrypted results of

nonlinear activation functions, and using quantization to reduce the size of these tables to make

them practical.

4.2.2 Lookup Tables for Secure Computation

Lookup tables have been used to speed up computation for applications in both secure multiparty

computation140,52,128,190,56 and homomorphic encryption144,49. These works have demonstrated

that lookup tables may be used as an efficient alternative to garbled circuits, provided that the input

space is small. Prior works have primarily focused on using lookup tables to speed up traditional

applications like computing AES128,52,140,56 and data aggregation190. Notable exceptions include49

which focuses on linear regression, and191 which applies variants of a lookup table as part of the

protocol to secure machine learning inference. Lookup tables are also widely used as cryptographic

primitives in SNARKS202,15, notably as efficient primitives for non-arithmetic operations inside

circuits15.

To the best of our knowledge, there exists little prior work which applies secure lookup tables to the

private execution of large neural networks. Most current state-of-the-art secure inference systems

like171,174,74,121 use garbled circuits. Two exceptions to this include192,112, which use a tree-based

secure comparator. However, the tree-based secure comparator used in192,112 is significantly lim-

ited to only the ReLU activation function, and still requires significant computation and commu-

nication overhead. Another work,191, does indeed use lookup tables as part of their protocol for
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evaluating activation functions, but crucially focuses on ensuring numerical precision, leading to

lower system performance. We highlight that a key distinction in our use of lookup tables is that we

store all possible results of the nonlinear function in these tables, which uses exponential storage.

This storage is made manageable by heavily quantizing the neural network. This strategy of securely

evaluating a function through lookup tables, although known theoretically117,53, to the best of our

knowledge has not been applied practically until now, due to the exponential storage costs. The se-

cure lookup table approach of ”storing everything in a table” is remarkably well suited to securely

and efficiently computing neural network nonlinear activation functions for two reasons: 1) neural

network activations may be quantized to extremely low precision with little degradation to accuracy

and 2) neural network activation functions are single operand. These two factors allow us to limit

the size of the lookup table to be sufficiently small to be practical, and consequently we can achieve

the significant performance benefits of secure lookup tables at runtime (i.e two orders of magni-

tude less communication). While work on quantization applied to secure inference exists51,129,

these works do not combine this property with lookup tables for evaluating nonlinear functions. In

summary, we emphasize that prior works that use secure lookup tables have either applied them to-

wards non-ML applications (i.e: MPC for AES-128), or have not leveraged exponential-sized secure

lookup tables in combination with neural network quantization to make them practical; although

the exponential-sized secure lookup table approach for securely computing functions is known, the

unique combination of this technique with neural network quantization has not been previously

explored. In this work, we demonstrate that this unique combination of techniques can be applied

to dramatically reduce the costs of secure neural network inference.

4.2.3 Function Secret Sharing

The secure lookup table approach117 employed by Tabula is related to function secret sharing

(FSS) approaches used in various private neural network inference approaches like223,89,4. The se-
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cure lookup table approach of ”storing all function inputs/outputs in a secure lookup table” can be

theoretically categorized as a FSS approach. But there are several concrete differences between the

secure table lookup approach Tabula uses compared to traditional FSS approaches. These distinc-

tions lead to significant runtime differences. Concretely, our secure lookup table approach incurs

exponential storage costs which necessitates aggressive activation quantization to make storage costs

practical. However, this approach also enables a highly efficient online phase which requires just

one 8-bit memory access (in addition to the 2B communication between parties). FSS approaches,

on the other hand, rely on using distributed point functions (DPFs) or distributed comparison

functions (DCFs),31,29 which in turn require evaluating PRGs (i.e: AES-128). Specifically, a table

lookup using FSS requires at least log(N) PRG or AES-128 evaluations, whereN is the number

of entries in the table, leading to 8-16 AES-128 evaluations per activation function call. This cost

increases for more complex nonlinear functions31,29. Evaluating PRGs like AES-128 is compara-

tively more expensive than Tabula which requires just 1 8-bit memory access, as a modern proces-

sor even with hardware acceleration computes only around 100MAES-128 operations1, whereas

a modern processor has a memory bandwidth in the 100GB/s range. As such, Tabula is much

more computationally efficient compared to FSS schemes, though as a drawback requires aggres-

sive quantization to make practical. Another benefit to Tabula is that its communication cost is

always 2B regardless of the nonlinear function being securely computed. This is not the case for

function secret sharing where more complicated nonlinear functions may cost more than 2B31,29.

Furthermore, a third advantage is that Tabula exhibits information theoretic security in the online

phase, while function secret sharing schemes are only computationally secure up to a factor of the

security parameter29; that is, the protocol leaks no information about the underlying data unlike

FSS schemes, as FSS schemes rely on pseudorandom functions. A final and notable advantage is that

Tabula is much simpler than FSS schemes that rely on computing distributed point functions or

distributed comparison functions, which are complex cryptographic primitives. Tabula’s main
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observation is that neural network activations can be aggressively quantized to 8-bits and below with

acceptable accuracy degradation and thus enable the use of exponential-sized lookup tables, thereby

avoiding the need for evaluating PRGs like AES-128 during online inference.

4.3 Tabula: Efficient Nonlinear Activation Functions for Secure Neural

Network Inference

4.3.1 Background

Secure Inference Objectives, Threat Model

Secure neural network inference seeks to compute a sequence of linear and nonlinear operations

parameterized by the server’s model over a client’s input while revealing as little information to ei-

ther party beyond the model’s final prediction. Formally, given the server’s model’s weightsWi ∈

FMi×Li
p and the client’s private input x, the goal of secure neural network inference is to compute

ai = A(Wiai−1)where a0 = x and A is a nonlinear activation function, typically ReLU.Wi ∈

FMi×Li
p are the weights of the neural network represented as a fixed point number in the finite field

of modulus p. The dimensionsMi and Li correspond to the output and input dimensions to the

linear layer at i. Convolutions may be cast as a matrix multiply and fit within this framework.

State-of-the-art secure neural network inference protocols like Delphi operate under a two-party

semi-honest setting171,143, where only one of the parties is corrupted and the corrupted party fol-

lows the protocol. Importantly, these secure inference protocols do not protect the architecture of

the neural network being executed, only its weights, and furthermore do not secure any informa-

tion leaked by the predictions themselves171. As we follow Delphi’s protocol for the overall secure

execution of the neural network these security assumptions are implicitly assumed.

Cryptographic Primitives, Notations, Definitions

Tabula utilizes standard tools in secure multiparty computation. Our protocols operate over ad-
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ditively shared secrets in finite fields. We denote Fp as a finite field over n-bit prime p. We use [x] to

denote a two party additive secret sharing of the scalar x ∈ Fp such that x = [x]0 + [x]1, where party

i holds additive share [x]i but knows no information about the other share.

Delphi Secure Inference Protocol

The Delphi framework is a set of protocols consisting of an offline preprocessing phase and an on-

line secure inference phase for securely evaluating neural networks over private client data without

revealing to the client the weights of the neural network. The Delphi framework is concerned with

the overall evaluation of the neural network (both linear and nonlinear layers). Tabula fits into the

Delphi framework by replacing their use of garbled-circuits protocols for secure nonlinear function

evaluation, which is the most computationally expensive part of their protocol171. To understand

how Tabula fits into the Delphi framework172, we outline how this protocol operates.

• Per-Input Preprocessing Phase

This phase prepares for the secure execution of a single input. The purpose of the prepro-

cessing phase is to initialize the parties with correlated randomness that enables efficient

online inference. This phase, as specified in the Delphi paper, requires the use of linearly ho-

momorphic encryption171 to ensure that the parties do not reveal to each other their secret

blinding factors which would compromise the privacy of the entire protocol. For each linear

layerWi ∈ FMi×Li
p , the client generates a random vectorRc ∈ FLi

p where Li is the length

of the inputs to the current linear layer. The client encryptsRc with their linearly homomor-

phic public encryption key k to Enck(Rc) and sends this value to the server. The server, upon

receiving Enck(Rc), generates their own secret vectorRs ∈ FMi
p whereMi is the length of the

outputs of the current linear layer. The server then encryptsRs with the client’s public key k

to obtain Enck(Rs). The server then computes and returns to the client Enck(WiRc + Rs).

The client decrypts this value to obtainWiRc + Rs which is then stored in preparation for

the online inference phase.
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• Online Inference Phase

This phase performs inference on the client’s input. For linear layers, the client and server be-

gin with additive secret shares of the linear layer’s input x. That is the client and server hold

[x]0 and [x]1 respectively, such that [x]0 + [x]1 = x. As the initial step, the client adds [x]0

with that layer’sRc to obtain [x]0 + Rc. Then the client sends this vector to the server who

adds their own share of the layer input [x]1 to obtain x + Rc. The server, upon calculating

x + Rc, then computesWi(x + Rc) + Rs = Wix + WiRc + Rs (recall thatRs was the

secret vector that the server generated for this particular layer). At this point, the client holds

WiRc + Rs from the preprocessing phase and the server has computedWix +WiRc + Rs.

The difference between these two values isWix. Thus the two parties have obtained a secret

sharing ofWix. Then, the two parties must compute a nonlinear activation function over

these shares to obtain shares of the activations; in the Delphi framework, garbled circuits are

employed to securely perform this operation171, and it is by replacing this part of the proto-

col that Tabula obtains considerable computational gains. After calculating shares of the

activations, the secure inference phase repeats starting from the linear part of the protocol for

the rest of the layers of the network.

As stated, after performing the protocol for the linear phase, the client and server hold secret shares

of the input to the nonlinear activation function F. Hence we need to construct a secure protocol

for performing nonlinear activation functions. This protocol must operate such that the client and

server, each holding a secret share of x, can calculate secret shares of F(x)without leaking any infor-

mation about x itself. F, the nonlinear function for neural network activations, is typically ReLU,

but may also be include other nonlinear functions like sigmoid or tanh. As a note, we emphasize

that details on the homomorphic preprocessing phase can be found in the Delphi paper171.
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Figure 4.2: Tabula online protocol. Initially, the client and server hold secret shares of the input [x]. Both parties begin
by executing the secure truncation protocol to obtain shares of [xtrunc]. Then, the client and server perform the secure
table lookup protocol, where they exchange blinded secrets [xtrunc]i + si to compute xtrunc + s. Finally, they use this
value as an index into local lookup tables to compute Ti[xtrunc + s] which are secret shares of the result of the nonlinear
function evaluation.

4.3.2 Tabula for Securely and Efficiently EvaluatingNeural NetworkNon-

linear Activation Functions

Tabula is divided into a preprocessing phase that initializes a lookup table for each individual non-

linear function call used in the neural network, and an online phase which securely quantizes the

activation inputs and looks up the result of the function in the previously initialized tables. An over-

all figure for our protocol is shown in Figure 4.1. We emphasize that our paper primarily focuses on

the online phase of execution, which determines the system’s real time response speed after knowing

a client’s input, rather than the preprocessing phase, which may be done offline without knowing

the client’s input data. We also develop a secure and reasonably efficient algorithm for the prepro-

cessing phase of Tabula and conduct thorough experiments in the results section to demonstrate its

viability and effectiveness. We leave further innovations to the preprocessing algorithm to future

research.

Below we describe the core building blocks that Tabula utilizes, namely, the secure lookup table

procedure117,128 and secure truncation protocol174. We then describe Tabula’s online and prepro-

cessing execution phase, and detail its security, communication, and storage properties.

Secure Lookup Table Procedure
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We employ the concepts of117 to enable the computation of a nonlinear function call through a

table lookup. By using an exponential amount of preprocessing storage, we obtain a secure protocol

under the semi-honest threat model where communication complexity depends only on the size of

its input operands, regardless of the complexity of the function being computed. Concretely, we

precompute all possible results of a nonlinear function and store them in a table, and utilize these

secure tables during the online phase of secure inference. Computing nonlinear functions in the

clear is extremely efficient computationally (i.e: cleartext comparison operations), and so the bulk

of the pre-computation workload is spent onMPC operations (i.e: Beaver triple multiplication).

The lookup table approach is similar to that described in128,117. Like in garbled circuits, Tabula

requires new circuits per operation to maintain security.

Given a table T[x] = F(x), where F : Fp → Fp is the target nonlinear function operating over

scalars, we initialize a shared table [T] across the parties, so the client holds [T]0 ∈ Fp
p and server

holds [T]1 ∈ Fp
p. A secret scalar s ∈ Fp unknown to both parties is generated and shared between

the client and the server, with the client and server holding [s]0 and [s]1 respectively. The shared table

T is constructed such that [T][s + x] = [F(x)] for all values of x ∈ Fp for some modulus p that

determines the precision to compute the nonlinear function. Concretely, this means two tables are

generated, [T]0 and [T]1 such that [T]0[s+ x] + [T]1[s+ x] = F(x); both client and server coordinate

to initialize their local [T]i in an offline preprocessing phase. The online phase, given such a shared

table, is then straightforward. Initially, the client holds x0 and the server holds x1. The client sends to

the server x0 + s0 while the server sends to the client x1 + s1. This allows both parties to obtain the

true value of x+ s. Both parties then look up this value in their corresponding tables: client looks up

[T]0[x+ s], server looks up [T]1[x+ s], the sum of which is F(x). Security is maintained in the online

phase as a new table [T] and secret s are used per function call, with s being unknown to either party,

perfectly blinding the secret value x.

Securely initializing shared table [T] from T in the offline preprocessing phase is based on the fact
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that given an index into a table, a table lookup can be cast as a dot product between the entire table

with an indicator vector containing a one in the position of the table index (e.g: the one hot vector

encoding of the index). Subsequently, a secure two party demux procedure128 transforms secret

shares of [s] into secret shared vectors [s′]which sum to an indicator vector with a one at the s’th

position. Finally, a dot product for each entry of the table can be performed to compute [T]: T[x] ×

[s′0]+T[x+ 1]× [s′1]+ ...+T[x+n]× [s′n] = [T[s+ x]]. We develop an efficient and secure protocol

for initializing Tabula tables based on these concepts later in the text.

Secure Truncation

As the size of [T] increases linearly with the size of the field Fp it becomes necessary to truncate or

quantize [x] to prevent [T] from being impracticably large. Linear layers are required to use larger

finite fields to ensure that their dot products are computed correctly without overflow. Thus, the in-

put to Tabula is a value secret shared in a larger field, and a secure truncation method is required to

switch to a smaller field so that the encoded value may be used to index into a feasibly sized table. We

use the secure truncation method in174 to achieve this. Given a truncation factor dwhich specifies

the precision of the activation inputs, the client and server perform the secure truncation protocol:

the client computes ⌊[x]0/d⌋ and the server computes p − ⌊(p− [x]1)/d⌋. After the truncation

protocol is performed, the resulting expressions the client and server hold sum to either [⌊[x]/d⌋+ 1]

or [⌊[x]/d⌋]with probability proportional to 1 − k
p where k is the maximum value xmay take, and

p is the maximum value of the finite field of the previous linear layer174. These small off by one er-

rors, like quantization error, have little impact on model quality due to neural networks’ resilience

to noise. However, with probability proportional to k
p , a large error occurs that is pessimistically as-

sumed to ruin correctness. To reduce the probability of these catastrophic errors, it is necessary to

use a large finite field modulus for linear layers. In practice, we use a 64-bit finite field modulus to

reduce the chance that a secure truncation operation catastrophically fails to less than 1000
264 . Hence,

by configuring the modulus appropriately, with high probability, the secure truncation protocol

61



computes the correctly truncated value with a small off by one error which may be tolerated by neu-

ral networks180,193. Requiring 64 bits for the field increases the communication cost required by

the linear portions of the protocol over other approaches that commonly use 32 bits, however, the

reduction in communication cost by using Tabula tables more than makes up for this communica-

tion penalty, and this is shown in the results (note without Tabula we use 32-bit precision for the

linear layers). In our experiments, using a 64-bit field size was essential to maintaining accuracy; us-

ing a 32-bit field size Tabula saw considerably worse accuracy due to catastrophic failures from the

secure truncation protocol, as a single catastrophic failure anywhere in the computation propagates

throughout the network and ruins the entire inference. We refer to174 for more details. Developing

more effective secure truncation techniques is an important topic for further research.

Tabula Online Phase

Given these fundamental building blocks, we describe the Tabula protocol. In the preprocessing

phase, Tabula generates multiple shared tables [T] as described above for each nonlinear function

call that is performed when executing the neural network. Howmuch to truncate/quantize the net-

work’ activations is chosen offline to maximize network accuracy. In the online execution phase,

Tabula quantizes the inputs to the activation function and uses this input to securely lookup

up the result of the function. The full protocol is shown in Figure 4.2. The security of Tabula

is ensured by the security of the secure truncation protocol174 and the secure table lookup proto-

col128,53,117.

Tabula Online Phase Communication and Storage Cost

Tabula achieves significant communication benefits during the online phase at comparable storage

costs. As shown in Figure 4.2, Tabula requires just one round of communication to compute any

arbitrary function, unlike garbled circuits, which may require multiple rounds for more complex

functions. As an example, ReLU implemented using garbled circuits takes two rounds, whereas

Tabula requires just one. Additionally, communication complexity is independent of the com-
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plexity of the nonlinear function being computed. Specifically, revealing sx requires both parties

to send their local shares, each nonlinear activation call incurs communication cost corresponding

to the number of bits in Fp. Since we use 64-bit Fp, this results in 16 bytes of communication per

activation function, the cost of transferring 8-byte field values back and forth. However, we can

apply an optimization to reduce this down to twice the cost of transferring the size of the input to

the table, rather than the field size. If the size of the table is 2b entries, and if finite field size p is also

power of two, then we can have party i first mod their secret shares by 2b before exchanging them.

Hence, the two parties hold [xtrunc]i mod 2b before adding their secret shares of the table secret [s]i

to the value and exchanging it; this brings down the total cost of the protocol to 2 × b bits. Mod-

ding by 2b yields the correct answer as xtrunc mod p = [xtrunc]0 + [xtrunc]1 + pl for some l, and

then (xtrunc mod p)mod 2b = ([xtrunc]0 + [xtrunc]1 + pl)mod 2b = ([xtrunc]0 + [xtrunc]1)mod 2b =

([xtrunc]0 mod 2b) + ([xtrunc]1 mod 2b). This equivalence shows that the two parties can first perform

a modulus of their shares with 2b, and that their shares would still sum up to the original sum with

the correct modulus. With this optimization, communication is now 2 × b bits per nonlinear func-

tion call; if we use 8-bit activations, then b = 8, and we use 2 bytes of communication total per call

during the online phase, an 8× improvement over the 16 bytes as previously stated.

Storage and memory, as mentioned previously, grow exponentially with the precision that is used

for activations and linearly with the number of activations in the neural network. Storage costs are

thus n × 2k × Na bits where n is the number of bits to use for the the output of the activation

function, k is the number of bits to the input of the activation function, andNa is the total num-

ber of activations that are performed by the neural network. The majority of the storage cost comes

from the 2k factor, the size of the individual tables, which grows exponentially with input space /

precision of the activations. However, as neural network activations may be heavily quantized down

without significantly affecting model quality180,55,241, we can reduce this factor enough to be prac-

tical; we also highlight more advanced techniques like using a variable number of bits per layer of
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Figure 4.3: Tabula preprocessing protocol. Client and server generate secrets s0, s1 and encode them in an indicator
vector (i.e: construct a vector of length equal to the field size, then setting a one to the position of the party’s secret
index). The parties then secret share this indicator vector with the other party. To obtain the entry for Ti[x], the parties
compute an outer product between the shared indicator vectors and a 2‐dimensional table containing F(m + n + x)
(wherem, n span the two dimensions of the table), which obtains [F(x + s)] where s = s0 + s1. This works as the 2‐D
coordinates formed by where the indicator vectors are set privately selectm, n through the dot‐product; since this is
done via private MPC operations, no information is leaked to either party about their corresponding secrets.

the network can be employed for better performance60. We verify that quantization has negligi-

ble impact on model quality in our results. We highlight that every bit of precision that is trimmed

from the activation yields a factor of two reduction in storage and memory costs, and hence more

advanced quantization techniques180,55,241 to reduce precision yields significant benefits. As storage

and memory varies with the precision of activations that is used, there is a natural tradeoff between

the accuracy of the model and the achieved memory/storage requirement. We examine these trade-

offs in the results.

4.3.3 Tabula Preprocessing Phase

Similar to garbled cicuits, Tabula tables require a preprocessing phase that initializes the client

and server with a single-use table that is used once per activation function call during the inference

phase. We develop a secure and efficient protocol for initializing Tabula tables, detailed below.

Preprocessing Phase Problem Statement

Given a nonlinear function F : Fp → Fp, we wish to securely initialize the client and server with
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tables that map any possible input in Fp to secret shares of the result of the nonlinear function F.

Specifically, we wish to initialize on the client a table [T]0 ∈ Fp
p, and on the server a table [T]1 ∈ Fp

p,

such that [T]0[s + x] + [T]1[s + x] = F(x), where s ∈ Fp is a secret unknown to both client and

server. Additionally, at the end of the protocol, we want the client to hold s1 ∈ Fp and server to hold

s2 ∈ Fp such that s1 + s2 = s.

Tabula Secure Preprocessing Protocol

To achieve this preprocessing step securely, the client and server first randomly generate s0 and s1

respectively, and s is implicitly defined as s0 + s1 (though, as the parties do not know each others’

secrets, they hence do not know what s is). Then, the client generates a random indicator vector

P ∈ Fp
p such that P[x] =


1 x = s0

0 x ̸= s0
; the server similarly initializesQ ∈ Fp

p with s1. Client

and server exchange shares of P andQ respectively, hence, both parties hold secret shares [P] and [Q]

while leaking no information about s0 or s1 to either party. Finally, client and server jointly initialize

their table Ti[x] =
∑p

m=0
∑p

n=0 F(m + n + x)([P]m × [Q]n), where i = 0 for client and i = 1

for server, and secret shares [P]m, [Q]n ∈ Fp are multiplied using Beaver triple multiplication20. We

depict the full preprocessing phase operation in Figure 4.3 and present the algorithmic details below.
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Algorithm 3:Tabula Preprocessing Phase
1: client←− random secret s0 ∈ Fp

2: server←− random secret s1 ∈ Fp

3: client, server locally initialize table F′ ∈ Fp×p×p
p s.t. F′[i][j][x] = F(i+ j+ x)

4: client computes P ∈ Fp
p s.t P[i] =


1 i = s0

0 x ̸= s0

5: server computesQ ∈ Fp
p s.tQ[i] =


1 i = s1

0 x ̸= s1
6: client, server exchange shares of P,Q to obtain secret shares [P], [Q]

7: client, server compute [PQ] ∈ Fp×p
p where [PQ][i][j] = [P][i]× [Q][j] via Beaver triple

multiplication

8: client, server compute [T][x] =
∑p

m=0
∑p

n=0 F′[m][n][x]× [PQ][m][n] for all i ∈ Fp

Preprocessing Phase Correctness

In this protocol the client and server specify the coordinate of s through an outer product of their

indicator vectors P,Q, which sets [T][x] = [F(s+ x)]. This computes the correct answer as

[T][x] =
p∑

m=0

p∑
n=0

F(m+ n+ x)([P]m × [Q]n)

=

p∑
m=0

p∑
n=0

F(m+ n+ x)([Pm × Qn]) (Beaver triple multiplication)

=

p∑
m=0

p∑
n=0

F(m+ n+ x)×


[1] m = s0 and n = s1

[0] otherwise

= [F(s0 + s1 + x)]
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= [F(s+ x)]

Preprocessing Phase Security

Security and privacy is preserved as each step of the protocol consists entirely of secure steps: secret

sharing P andQ leaks no information about the vectors (hence leaks no information about either s0,

s1, and s), and Beaver triple multiplication is likewise secure20. Concretely, we see that the only com-

munication between client and server occurs when they exchange blinded secrets (i.e: [P], [Q]) and

when they perform Beaver triple multiplication. As these steps leak no information to either party

about the underlying secrets, the client and server compute [T]without leaking any information

about s0, s1 and hence leak no information about s.

Preprocessing Phase Communication and Computation Cost

The bulk of the preprocessing phase lies in computing an outer product between P,Q. We perform

this outer product just once and reuse it across i, x in Ti[x]. Hence, the protocol requires performing

just a single outer product between vectors∈ Fp
p. This incursO(p2) Beaver triple multiplication

operations, and assuming that a sufficient number of Beaver triples were generated before the pre-

processing phase, communication cost is naivelyO(p2 log(p)) bits assuming that the values of the

vectors are each log(p) bits. This naiveO(p2 log(p)) communication cost can be significantly re-

duced toO(p2) by having P,Q be secret shared binary vectors, rather than be shared in Fp, then

doing a conversion back to Fp after the final inner product. This can be done as the true values of

the vectors P,Q are either 0 or 1. Concretely, upon reception of the binary shares of P orQ the cur-

rent party computes [Ti(x)] =
∑p

m=0
∑p

n=0 F(m + n + x) ∗ [PQT][m, n], and observe that

[Ti(x)]1 − [Ti(x)]2 is either F(s + x) or−F(s + x) (in the case that the first party has the 1 and the

second party has the 0 in the selected index, and the reverse). We perform an extra Beaver triple mul-

tiplication by the correction factor to eliminate this potential negation (by multiplying it by the par-
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ity of the sum of [PQT]), which costs an extraO(log(p)) bits of communication per inner-product.

Since there are only p inner products, these correction factors cost a negligibleO(p log(p)) commu-

nication. With this optimization, preprocessing communication cost is nowO(p2) bits. As p, the

quantized field size of the activation domain, is set to be extremely small (i.e.: less than or equal to

256 for 8-bit quantized activations), preprocessing communication costs 2(256)2 = 216 = 131072

bits = 16 KB per table (the factor of two at the front is because Beaver triple multiplication requires

both parties exchange secret shared values, and we have 2562 Beaver triple multiplication opera-

tions). This is comparable to the 17.5 KB cost that garbled circuits with full precision requires171.

We emphasize that the prior analysis assumed that Beaver triples were obtained beforehand in a pre-

preprocessing phase; we think this is reasonable that in a practical scenario parties would obtain

sufficient amounts of Beaver triples for any protocol due to their importance. However, accounting

for Beaver triple preprocessing, communication cost is still an asymptoticO(p2) bits assuming that

Beaver triples were generated using oblivious transfer e.g:181, which requires just 2 OT calls to gen-

erate 1-bit Beaver triples. Using the OT procedure proposed in112 the concrete cost of a single OT

is 3 bits for 1-bit values. Hence, pre-preprocessing costs for the Beaver triples would still beO(p2)

bits, with a higher constant factor burden. On a concrete example of 8-bit activations, the cost for

preprocessing the Beaver triples would amount to 6 × 2562 bits = 48 KB of communication. While

this exceeds the 17.5 KB cost of garbled circuits, we believe that the online benefits of Tabula more

than make up for this detriment.

In terms of computation, we see that for precomputing a single table, we require summing across p2

values (each entry of the outer product) for every entry of the table. Since there are p entries in the

table, computation costs scale asO(p3). However, these operations may be efficiently vectorized and

parallelized as they are standard matrix operations. For 8-bit tables, this is around 16 million field

operations.
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4.3.4 Note on Tabula Security

Although the Tabula protocol assumes a semi-honest threat model as inherited from the Del-

phi171 framework, more generally Tabula’s online phase which consists of utilizing a secure lookup

procedure is information-theoretically secure117. This is intuitive as all communication between

parties are randomly blinded by an additive factor. This is another advantage that Tabula holds

over garbled circuits implementations many of which are only computationally secure up to a secu-

rity parameter in the semi-honest setting2.

4.4 Results

We present results showing the benefits of Tabula over garbled circuits for secure neural net-

work inference. We evaluate our method on neural networks including a large variant of LeNet

for MNIST, ResNet-32 for Cifar10, and ResNet-34 / VGG-16 for Cifar-100, which are relatively

large image recognition neural networks that prior secure inference works benchmark74,171,121,222.

Unless otherwise stated, we compare against an implementation of the Delphi protocol171 using

garbled circuits for nonlinear activation functions, without neural architecture changes, during the

online inference phase. As before, we use 64-bit fields for Tabula to reduce the impact of the se-

cure truncation protocol, however, for the baseline implementation that uses garbled circuits we

use 32-bit fields to reduce communication cost. Experiments are run on AWS c5.4x large machines

(US-West1 (N. California) and US-West2 (Oregon)) which have 8 physical Intel Xeon Platinum@

3 GHz CPUs and 32 GiB RAM; network bandwidth between these two machines achieves a maxi-

mum of 5-10 Gbit/sec, according to AWS.We use the same machine/region specs as detailed in171,

but with 2x more cores/memory (c5.4xlarge vs c5.2xlarge).

To ensure fair comparison, we compare Tabula against garbled circuits with quantized inputs,

specifically garbled circuits with 32-bit, 16-bit, and 8-bit inputs, which are commonly used preci-
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sions, but we also showmore detailed results on a more granular level by fixing accuracy/precision

and comparing systems costs between our methods. With the same activation precision, both Tab-

ula and garbled circuits compute the same result. Like other works we benchmark using a batch

size of 1171,192,112,74. Tabula is feasible only for precision up to 12-bits due to the exponential

storage costs required for each extra bit of precision, hence, we show results up until this limit. Gar-

bled circuits on the other hand can obtain 32/16-bit precision, however this is beyond the range

of precision that Tabula may handle to avoid large storage costs. Hence, we may show results for

16/32-bit garbled circuits as a baseline reference, but the main comparison is between 8-bit garbled

circuits and 8-bit Tabula, or between the two approaches when obtaining a fixed accuracy.

4.4.1 Communication Reduction

ReLU Communication Reduction

We benchmark the amount of communication required to perform a single ReLU with Tabula vs

garbled circuits. Table 4.2 shows the amount of communication required by both protocols during

online inference. Tabula achieves significant (> 280×) communication reduction compared to

garbled circuits. Note our implementation of garbled circuits on 32-bit inputs achieves the same

communication cost as reported by171 (2KB communication for 32-bit integers).

Garbled
Circuits
(32-bit)

Garbled
Circuits
(16-bit)

Garbled
Circuits
(8-bit)

Tabula
Comm.

Reduction
(vs 32/16/8 bit GC)

2.17KB 1.1KB .562KB 2B 1112× 560× 280×

Table 4.2: Tabula with 8‐bit activations vs garbled circuits communication cost for one ReLU.

We additionally compare ReLU communication of our protocol against recent works like CrypT-

flow2192 and Cheetah112. CrypTflow2 and Cheetah similarly utilize a tree-based secure comparison
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protocol dependent on oblivious transfer192,112. However unlike CrypTflow2, Cheetah swaps out

the underlying oblivious transfer implementation for a more efficient version112. Our following

analysis assumes that CrypTFlow2 uses a more efficient OT protocol based on preprocessing which

reduces the online communication costs beyond what they present in their paper; broadly, the tree-

based comparison method that CrypTflow2 utilizes requires at least 6 calls to 1-out-of-128 obliv-

ious transfer for optimal communication complexity192, which, with preprocessing, takes at least

6 × 128 = 768 bits or 96 bytes, as oblivious transfer with preprocessing requires sending all n bits

to the original sender at the end22,178. Tabula requires just 16 bits of communication regardless of

the nonlinear function being computed, obtaining a 48× improvement in communication over the

tree based comparison method of CrypTflow2 / Cheetah assuming the use of this preprocessing-

based OTmethod. Cheetah’s approach on the other hand uses the same tree-based comparison

approach112 but swaps out the underlying OTmethod for a more efficient version; specifically,

Cheetah’s communication cost is 11 × Lwhere L is the bitlength of the field element, which results

in 88 bits of communication for 8-bit values and 352 bits for 32-bit values. Tabula requires just 16

bits of communication, which represents a 5.5× and 22× reduction respectively. SiRNN191, an-

other paper which utilizes an OT based protocol, uses more communication than that of ReLU of

CrypTflow192, hence our method would see> 48× communication improvement when compared

to their approach. We also compare communication cost against FSS approaches31,89,4,197. Gener-

ally, for the ReLU op Tabula obtains the same 2B communication cost as FSS, however Tabula

obtains several notable qualitative advantages over FSS, and a table comparison is shown in Table

4.3. We summarize these communication cost comparisons in Table 4.4, which compares the online

communication cost of a single ReLU operation for Tabula, CryptFlow2 and Cheetah.

Total Online Communication Reduction

We benchmark the total amount of online communication required during the online phase of a

single private inference for various network architectures including LeNet, Resnet-32, ResNet-34
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Tabula FSS
Computational

Efficiency
8-bit memory access

per op
>= 1 PRG (i.e: AES-128)

operation per op

Generality
2B comm. cost for

any nonlinear function
(must fit in table)

Comm. cost increases
for more complex nonlinear ops

Security Information-Theoretically Secure
Computational Security

(up to security parameters λ)
Complexity Table lookup DPF / DCF29

Table 4.3: Qualitative comparison between Tabula and FSS schemes.

Tabula
CrypTFlow2
(W/ OT)

Cheetah
32-bit

Cheetah
8-bit

FSS
(8-bit;

ReLU op)

Comm.
Reduction

2B 96B 44B 11B 2B 48× / 22× / 5.5× / 1×

Table 4.4: Tabula (8‐bit activations) vs CrypTFlow2192 and Cheetah 112 and FSS 31,29 online communication cost for
performing a single ReLU operation during the online phase. For CryptFlow2 the communication is based on an OT
method that uses preprocessing which achieves better online communication cost than what is described in192. Note
FSS, Cheetah, CrypTFlow2 costs are specific to the ReLU op, while Tabula communication cost is the same for any
function provided they are quantized down to a sufficiently small table size.

and VGG (batch size 1). Table 4.5 shows the number of ReLUs per network, as well as the com-

munication costs of using garbled circuits (for 32/16/8 bit inputs) vs Tabula. Tabula reduces

communication significantly (> 20×,> 10×,> 5× vs 32,16,8 bit garbled circuits) across various

network architectures.

We additionally compare end-to-end communication costs against192, the current state-of-the-art

for neural network inference, on various networks Minionn and ResNet34150, shown in Table 4.6.

Tabula’s compact tables enable much lower communication costs during the online phase of se-

cure neural network inference, leading to an order of magnitude reduction in communication costs.

Finally, Figure 4.4 shows the communication reduction Tabula achieves compared to garbled
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Network ReLUs
Garbled
Circuits
(32-bit)

Garbled
Circuits
(16-bit)

Garbled
Circuits
(8-bit)

Tabula
Comm. Reduction
(vs 32/16/8 bit GC)

LeNet 58K 124MB 62MB 31MB 3.5MB 35.4× 17.7× 8.8×
ResNet-32 303K 311MB 155MB 77MB 14MB 22.2× 11.1× 5.6×
VGG-16 276K 286MB 143MB 72MB 12.1 MB 23.6× 11.8× 5.6×
ResNet-34 1.47M 1.5 GB .75 GB 370MB 59.5 MB 24.7× 12.4× 6.2×

Table 4.5: Tabula vs garbled circuits total online communication cost during secure inference for different network
architectures.

Network ReLUs Tabula CrypTFlow2 Comm. Reduction
MinioNN 176K 25MB 280MB 11.2×
ResNet-34 1.47M 59.5MB 590MB 9.9×

Table 4.6: Tabula vs CrypTFlow2 192 end‐to‐end communication cost for performing secure neural network inference on
selected networks (Minionn 150 CIFAR10 architecture, and ResNet34 CIFAR100).

circuits with An-bit quantized inputs at a fixed accuracy threshold, and shows Tabula achieves over

8 − 9× communication reduction across networks to maintain close to full precision accuracy.

These values reflect total online communication costs, not just ReLU communication costs, and

hence we find we are primarily bottlenecked by the communication for the linear layers rather than

nonlinear layers. Also, we do not make any architectural changes to the neural network (e.g: replace

any ReLU operations with quadratic operations, retrain, etc).

4.4.2 Storage Costs

We compare the storage savings Tabula achieves against garbled circuits. Recall that Tabula re-

quires storing a single lookup table for each nonlinear activation call. This storage cost grows expo-

nentially with the size of its tables, which dictates the precision of the activations. Using less storage

means reducing the precision for the activations of the neural network and introduces some amount
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Figure 4.4: Tabula communication reduction improvement over garbled circuits (x‐axis) vs accuracy, when both gar‐
bled circuits and Tabula are quantized to n bit precision activations (corresponding to the labels denoted An, both of
which attain the same accuracy since they compute the same result). Tabula incurs a fixed 16 byte communication cost
regardless of the precision of activation inputs; hence when using a higher activation precision, Tabula obtains greater
communication reduction over GCs whose communication costs scale with precision; Tabula achieves up to 8 − 9×
communication reduction over garbled circuits across tasks when requiring within 1‐2% of baseline accuracy. Baseline
precision shown as the dashed blue line.

of error into the nonlinear function. This creates a tradeoff between storage and network accuracy.

Similar to garbled circuits, Tabula tables must be stored on both client and server, and likewise,

storage costs are equivalent for both client and server; hence, in our results we show the storage cost

for a single party. Below we show both the storage savings for a single ReLU operation disregarding

the accuracy impact from the quantization, and additionally the storage vs accuracy tradeoffs for

various networks (LeNet, ResNet32/34, VGG). Storage costs directly translate to memory usage

costs at inference time since the lookup tables or garbled circuits must be loaded into memory to be

used to evaluate the nonlinear functions.

ReLU Storage Savings vs Precision

We compare the storage use between Tabula and garbled circuits for a single ReLU operation.

Tabula’s storage use is the the size of its table multiplied by the number of bits of elements in the

original field, which we default to 64-bit numbers. Garbled circuits, on the other hand, uses 17KB,

8.5KB, and 4.25KB for each 32-bit, 16-bit, and 8-bit ReLU operation respectively171.

Figure 4.5 presents the storage usage of both Tabula and garbled circuits for a single ReLU opera-

tion, and shows that Tabula achieves comparable storage use to garbled circuits at precisions 8-10,
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and lower storage use with precisions below 8. Specifically, with 8 bits of precision for activation

Tabula achieves an 8.25×, 4.1× and 2× savings vs 32-bit, 16-bit and 8-bit garbled circuits; with

ultra low precision Tabula achieves even more gains (4 bits yields around 136× storage reduction

vs 32-bit garbled circuits and 17× reduction vs 8-bit garbled circuits). These results imply that stan-

dard techniques to quantize activations down below 8 bits and advanced techniques to quantize

below 4 bits180,55,241 can be applied with Tabula to achieve significant storage savings. Notably,

Tabula achieves storage savings at ultra low precision activations as a 1-bit reduction in activation

precision yields a 2× storage reduction, unlike for garbled circuits where storage is reduced linearly.
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Figure 4.5: Tabula and garbled circuits storage use for
a single ReLU operation.

Storage Savings and Accuracy Tradeoff

We present Tabula’s total storage usage versus ac-

curacy tradeoff in Figure 4.6. In this experiment, we

directly quantize the network’s activations during

execution time uniformly across layers, recording

the achieved accuracy and memory/storage require-

ments for a single inference. As shown in Figure

4.6, across various tasks and network architectures,

activations may be quantized to 9 bits or below while maintaining within 1-3% accuracy. This al-

lows Tabula to achieve comparable or even less storage use than garbled circuits at a fixed accuracy

threshold. We emphasize that future work may apply more advanced quantization techniques180,55

to reduce activation precision below 8-bits and achieve even better storage savings. Our results here

show that even with very basic quantization techniques, Tabula achieves comparable storage usage

versus garbled circuits, and indicate that Tabula is more storage efficient as fewer bits of precision

for the activations are used.

75



214 216 218 220

Storage (KB)
0.976
0.978
0.980
0.982
0.984
0.986
0.988
0.990

Ac
cu

ra
cy

A4

A5

A6
A7 A8 A9 A10A11A12

A4

A6A8A12

Baseline Acc
Tabula
Garbled Circuits

(a)MNIST LeNet

216 218 220 222

Storage (KB)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

A4 A5 A6

A7

A8
A9 A10 A11 A12

A4A6

A8
A12

Baseline Acc
Tabula
Garbled Circuits

(b) CIFAR10 ResNet32

216 218 220 222

Storage (KB)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

A4 A5

A6

A7

A8 A9 A10 A11 A12

A4

A6

A8A12

Baseline Acc
Tabula
Garbled Circuits

(c) CIFAR100 VGG16

218 219 220 221 222 223 224 225

Storage (KB)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

A4 A5

A6

A7

A8 A9 A10 A11 A12

A4

A6

A8
A12

Baseline Acc
Tabula
Garbled Circuits

(d) CIFAR100 ResNet34

Figure 4.6: Tabula overall storage usage for a single inference versus accuracy for different tasks and neural networks.
Each point is annotated with An, specifying the precision of activations for that run. With activation precisions above
10 Tabula uses more storage than garbled circuits due to the exponential increase in the size of its tables; however,
below a precision of 8, Tabula achieves notable storage savings (> 2×) over garbled circuits. Baseline precision shown
as the dashed blue line.

4.4.3 Runtime Speedup

We compare the runtime speedup Tabula achieves over garbled circuits. As noted in various se-

cure neural network inference works171,74,38, executing nonlinear activation functions via garbled

circuits takes up the majority of secure neural network execution time, hence, replacing garbled cir-

cuits with an efficient alternative has a major impact on runtime. Below we present the Tabula’s

runtime benefits when executing individual ReLU operations and when executing relatively large

state-of-the-art neural networks.

ReLU Runtime Speedup

Table 4.7 shows the runtime speedup Tabula achieves over garbled circuits when executing a sin-

gle ReLU operation. Tabula achieves over 100× runtime speedup due to its simplicity: the cost

of transferring 16 bytes of data and a single access to RAM is orders of magnitude faster than gar-

bled circuits. Our implementation of garbled circuits on 32-bit inputs is slower than reported in

Delphi171. Our implementation of garbled circuits takes around 184 us per ReLU, whereas the re-

ported is 84 us171. However, even if the implementation in Delphi achieves an optimal 4× speedup

with 8-bit quantization, Tabula is still 38× faster.
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Garbled
Circuits
32-bit

Runtime
(us)

Garbled
Circuits
16-bit

Runtime
(us)

Garbled
Circuits
8-bit

Runtime
(us)

Tabula
Runtime

(us)

Tabula Speedup
(vs 32/16/8 bit GC)

184 111 69 .55 334× 202× 105×

Table 4.7: Tabula runtime speedup vs garbled circuits on a single ReLU operation. Tabula is orders of magnitude faster
than garbled circuits.

Neural Network Runtime Speedup

We present Tabula’s overall speedup gains over garbled circuits across various neural networks in-

cluding LeNet, ResNet32/34 and VGG16. Table 4.8 and Figure 4.7 shows that Tabula reduces

runtime by up to 50× across different neural networks, bringing execution time below 1 second per

inference for the majority of the networks. Bigger networks are increasingly bottlenecked by ReLU

operations, and hence Tabula’s runtime reduction increases in magnitude with the size of the neu-

ral network under consideration. Figure 4.8 shows a breakdown of where execution time is being

spent, for both Tabula and garbled circuits. As shown, Tabula reduces the runtime spent on

computing activation functions by up to orders of magnitudes. With bigger networks, the impact

of executing nonlinear activation functions is larger. Hence, Tabula sees greater runtime improve-

ment on larger networks. Additionally, in the runtime breakdown chart, the linear layers for Tab-

ula were considerably slower than the linear layers when using garbled circuits – we believe that

cache effects caused this difference in performance, as Tabula keeps all tables in memory, which

may have overflowed to swap memory. Despite the slowdown in the linear layers, this has negligible

impact on runtime due to non-linear layers being the dominant cost, and Tabula sees considerably

performance gains by being faster on the nonlinear layers.
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Figure 4.7: Tabula overall runtime for a single inference versus accuracy for different tasks and neural networks. Each
point is annotated with An, specifying the precision of activations for that run. At activation precisions 10‐12 (achieving
within 1‐2% of baseline accuracy), Tabula achieves significant runtime speedup (> 10×) over garbled circuits.
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Runtime

(s)

Speedup
(vs 32/16/8 bit GC)

LeNet 58K 11.1 6.3 3.9 .29 38.3× 21.7× 13.4×
ResNet-32 303K 69.7 43.4 30.6 .97 71.8× 44.7× 31.5×
VGG-16 284.7K 55.9 32.1 19.9 .67 83.4× 47.9× 29.7×
ResNet-34 1.47M 284.3 159.9 95.9 1.85 153.7× 86.4× 51.8×

Table 4.8: Tabula total online runtime speedup compared with garbled circuits. Compared to garbled circuits, Tabula
achieves significant runtime speedup during neural network execution by reducing code complexity, communication
costs, and memory/storage overheads.
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Figure 4.8: Runtime breakdown across linear and nonlinear (ReLU) layers comparing Tabula with 8‐bit inputs and garbled
circuits with 32,16,and 8‐bit inputs. Tabula achieves significant performance gains on nonlinear layers, leading to major
runtime speedups.
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4.4.4 Preprocessing Costs

We benchmark our proposed algorithm for preprocessing Tabula tables against garbled circuits

preprocessing times to demonstrate that Tabula preprocessing costs are comparable to garbled

circuits.
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Figure 4.9: Tabula preprocessing com‐
munication cost vs Garbled Circuits for
different number of bits.

Preprocessing Runtime & Communication Costs

We compare runtime and communication costs for initializing

a single ReLU operation. Table 4.9 shows the cost of prepro-

cessing a single ReLU operation for Tabula with 8-bit inputs,

and garbled circuits. In terms of communication costs, Tabula

is comparable to GC with 32-bit inputs; however, Tabula re-

quires more communication than GCwith 16/8 bit inputs. In

terms of runtime, Tabula generally requires significantly more

computation than garbled circuits, leading to higher runtime. The majority of Tabula preprocessing

runtime is spent towards computing field operations for performing the multiply-add-accumulate

operation between the outer product and the nonlinear function (recall that computation costs for

an 8-bit input scales asO(2563)). These computation costs can be significantly decreased through

further parallelization and vectorization.
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Metric

Tabula

Preprocessing

(8-bit)

Garbled

Circuits

Preprocessing

(32-bit)

Garbled

Circuits

Preprocessing

(16-bit)

Garbled

Circuits

Preprocessing

(8-bit)

Runtime (ms) 6 .155 .092 .053

Communication (b) 16384 17920 8960 4480

Table 4.9: Tabula vs Garbled Circuits runtime and communication preprocessing costs for a single ReLU operation. Note:
Tabula preprocessing costs, like runtime costs, stay constant regardless of activation function, unlike garbled circuits.

We further show the effect of number of bits used for the activation function on preprocessing

communication costs. As each bit that is eliminated reduces the size of the table by a factor of 2, sav-

ing a single bit exponentially decreases runtime and communication costs. As seen in Figure 4.9, at

around 5 bits Tabula preprocessing communication costs become lower than communication cost

for garbled circuit at the same bitwidth.

4.4.5 End-to-end Preprocessing Communication Costs

We additionally compare end-to-end preprocessing communication costs across various models

(LetNet, ResNet, VGG) between Tabula and Garbled Circuits. Table 4.10 shows a comparison of

the communication costs between different models. Again, Tabula requires more communication

than GCwith 8/16-bit inputs but less than GCwith 32-bit inputs, due to the need for comput-

ing outer products using Beaver triples that scale with the cardinality of the field. Although this is

costly, results show that preprocessing can be feasibly performed at similar cost to GC with 32-bit

inputs. Further research and algorithmic developments may drive down the preprocessing cost of
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initializing Tabula tables.

Network ReLUs

Tabula

Preprocessing

(8-bit)

Garbled

Circuits

Preprocessing

(32-bit)

Garbled

Circuits

Preprocessing

(16-bit)

Garbled

Circuits

Preprocessing

(8-bit)

LeNet 58K 906MB 991MB 496MB 248MB

ResNet-32 303K 4.6 GB 5.05 GB 2.53 GB 1.27 GB

VGG-16 284.7K 4.3 GB 4.75 GB 2.37 GB 1.19 GB

ResNet-34 1.47M 22.4 GB 24.5 GB 12.25 GB 6.13 GB

Table 4.10: Preprocessing communication cost comparison between Tabula and garbled circuits for various neural
network models. Tabula has comparable preprocessing costs compared to garbled circuits.

4.5 Conclusion

Tabula is a secure and efficient protocol for computing nonlinear activation functions in secure

neural network inference. Our approach obtains considerable computational benefits over garbled

circuits and other approaches to securely computing nonlinear functions. To conclude, we point

out the following observation: quantization, as applied to improve standard neural network per-

formance, typically obtains sublinear runtime improvements (as low bitwidth ops typically do not

scale linearly in perf. with bits due to hardware inefficiencies), and linear memory improvements.

Through our method, quantization as applied to secure neural network inference, obtains super-

linear runtime/communication improvements that scale with the complexity of the underlying non-
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linear operation, and exponential memory improvements. We believe that, quantization, an already

important performance improvement technique for neural networks, will be even more crucial for

secure neural network inference, and that our method Tabula is a key approach towards realizing

this fact. Additionally, Tabula will see improvement to both the online and offline phases with

further advancements to neural network quantization. Tabula is a step towards sustained, low

latency, low energy, low bandwidth real time secure inference applications.
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5
GPU-based Private Information Retrieval

for On-Device Machine Learning Inference

In this chapter we leverage another important system acceleration technique in machine learning,

name GPU acceleration, towards making private machine learning systems more efficient. Specif-

ically, we identify that embedding tables in recommendation systems may be too large to store on

device and must be stored on the server; accessing them privately requires cryptographic methods to
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ensure user data privacy, but unfortunately these methods are computationally expensive. To this

end, we develop a novel GPU algorithm for speeding up these private cryptographic accesses and

show how this leads to considerably more efficient private machine learning systems.

5.1 Introduction

Privacy is an important consideration for real-world machine learning (ML) applications that use

user data. For privacy-sensitive ML applications, users’ demand for stronger privacy protection, as

well as regulations70,36 and platform policies13,84, all increasingly limit the use of private user data.

For example, recommendation models, which represent a significant portion of today’s ML work-

loads in practice, inherently rely on individual user data in order to provide personalized recommen-

dations. Ideally, recommendation systems should provide suggestions to users without revealing

private user features even to the service provider.

On-device ML inference is a promising solution to provide stronger privacy, as it enables model

inference without requiring clients to share private input features with the service provider. Un-

fortunately, a pure on-device ML inference solution is impractical for many applications such as

recommendation, as these applications often require access to an embedding table that is too large

to store on device. For example, recommendation models access tables that often take gigabytes or

even terabytes of memory92,179,58,176,242. These embedding tables are accessed using user features

that are important inputs to the recommendation model, and dropping themmay negatively impact

model quality. Large embedding tables pose a dilemma: storing large embedding tables on device is

impractical given device limitations while storing them in the cloud and directly accessing them in

the clear could leak private information.

To address this issue, we propose using private information retrieval (PIR) to privately query large

embedding tables stored on servers. In this work, we consider distributed point function (DPF)-
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Figure 5.1: (a) The traditional non‐private approach to ML inference, and (b) the proposed approach for private
on‐device ML inference. Using PIR, a CPU‐based client privately obtains embeddings from two GPU‐accelerated non‐
colluding servers; these embeddings are subsequently used as inputs to the client’s on‐device neural network.

based PIR, in which private embedding lookups are performed by constructing and evaluating

DPFs on two non-colluding servers (Figures 5.1 and 5.2). A two-server DPF-PIR scheme is attrac-

tive as it is much more efficient in terms of computation and communication compared to single-

server PIR schemes73,161. The two-server model is also widely used in the previous work on secure

multi-party computation (MPC) for privacy-preserving machine learning224,198,192,133 or private

analytics35,116.

Despite their advantages, DPF-based PIR protocols still exhibit massive computational overhead75,32,

making them difficult to deploy in large-scale applications that require high throughput. The com-

putational overhead stems from evaluating the DPFs on the servers, which entails executing a signif-

icant number of expensive cryptographic operations75,32. For example, expanding a typical DPF for

a table with one million entries requires performing at least one million AES-128 encryption oper-

ations. The cost is amplified duringML inference where a model may access multiple embedding

entries92,93. The computation and communication requirements of DPF-based PIRmake deploy-

ing it to real-world ML applications a considerable challenge.
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5.1.1 Our Contributions

We develop a system to efficiently and privately serve embeddings for on-device ML, with the pri-

mary focus on on-device recommendation models that require privately accessing large server-side

embedding tables. Note that recommendation models represent an important application that ac-

count for a significant portion of the computational resources for ML in practice93,123. While our

work primarily targets private on-device recommendation, the proposed PIR system can also be

applied to other on-device MLmodels that need private access to server-side embedding tables.

Embedding accesses for on-device ML, particularly on-device recommendation, have several unique

properties and requirements compared to other applications that might use PIR: 1) embedding ta-

ble entries are often short, between 64-1024 bytes, 2) multiple embedding table entries are often ac-

cessed together in a batch as part of a single model inference, and 3) throughput, latency, and model

quality are all critical to an application’s success. We leverage these properties to design a novel GPU

acceleration scheme for efficiently performing PIR on GPUs, and, additionally, co-design PIR with

the ML application to facilitate better trade-offs between model quality and system performance.

Similar to other systems work in the PIR domain161,59,72,43, our contributions focus on perfor-

mance improvements.. Our specific contributions are listed below.

GPU-accelerated PIRWe develop a set of novel optimizations to efficiently perform PIR on GPUs.

Our optimizations enable high-throughput, low-latency DPF execution, allowing us to scale to ta-

bles with millions of entries. We observe that DPF evaluation is compute-bound due to their heavy

cryptographic instruction mix, and leverage the fact that GPUs are especially well suited to perform

these computationally heavy operations. Yet, performing PIR on a GPU requires exploiting multi-

ple types of parallelism in PIR while carefully balancing computation, communication, and mem-

ory usage. Our GPU acceleration, over an optimized CPU baseline85, obtains> 1, 000× speedup

over single-threaded CPU execution, and> 20× speedup over multi-core execution. To the best
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of our knowledge, this work represents the first to explore high-performance GPU implementations

of DPFs. We note that our GPU implementation accelerates the state-of-the-art DPF algorithm75,

which exhibits an optimal communication cost ofO(log(n)) and an optimal computation com-

plexity ofO(n). Beyond private embedding table accesses for ML, our GPU PIR can be used to

accelerate any PIR applications such as checking compromised passwords. Our code is open sourced

at https://github.com/facebookresearch/GPU-DPF.

ML + PIR Co-OptimizationTo further improve performance, we develop strategies utilizing

application-specific data access patterns to co-optimize PIR with the ML application. Traditional

batch PIR algorithms118,102,12, which allow privately obtaining multiple entries together, may im-

pact ML inference quality because they only retrieve entries probabilistically and may drop some

queries. We co-design a new batch PIR algorithm for ML tasks to obtain a better trade-off between

model quality and system performance. We comprehensively evaluate the resulting performance im-

provements and model quality of the new batch PIR scheme on applications includingWikiText2

language model163, Movielens recommendation100, and Taobao recommendation217. The results

show that the proposed optimizations utilizing application-specific data access patterns can increase

the ML inference throughput by up to 100× over a straightforward PIR system design on a multi-

core CPU, while maintaining the model quality and limiting inference communication and latency

within 300 KB and 300 ms, respectively.

5.2 RelatedWork

Privacy-preserving Computation Techniques Prior work on privacy-preservingML investigated

techniques such as fully-homomorphic encryption (FHE)125,171, secure multi-party computation

(MPC)133,192,224,198, and trusted execution environments (TEEs)108,109,234. Unlike these prior stud-

ies, which primarily focus on protecting dense computation in neural networks, we investigate how
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to privately access large embedding tables in recommendation and language models.

Recent work on FHE acceleration5,195,64,131,246,63,237,164,130,112,199 suggests that FHE-based CNN

models can run with low latency. Yet, they still suffer from low throughput. Due to the high com-

putation demand of FHE, FHE accelerators typically use the entire chip (ASIC/FPGA/GPU) to

run one inference at a time. While FHE has the potential to enable private inference for any model

in the cloud, it is not yet efficient enough for high-throughput use cases.

Private Information Retrieval PIR can be categorized into single-server protocols based on ho-

momorphic encryption (HE)161,73,44,147 and n-server (n≥ 2) protocols based on DPFs72,43,59.

We focus on two-server DPF-based PIR protocols, as they are significantly more computation-

and communication-efficient than single-server schemes147,112,131,72,43,59. For example, querying

a 1B entry table with a two-server protocol is over 1000×more communication-efficient (2KB vs

3.6MB)147 and multiple orders of magnitude more computationally-efficient than single-server

protocols103,12,8,6,177,161. For a 1M-entry table, state-of-the-art HE PIR161 requires 14KB-60MB

communication whereas our DPF-based system requires only 1.25 KB. HE PIR’s advantage over

a DPF-based PIR system is that it only requires one server, rather than two non-colluding servers,

enabling PIR under a stronger threat model. Compared to n>2 DPF approaches, two-server DPF-

based PIR protocols are more communication-efficient: 2-server DPF exhibitsO(log(n)) communi-

cation 75,32 while n>2-server DPF exhibitsO(
√
n) communication 30.

The two-server PIR protocols require the two participating servers hosting the (embedding) ta-

bles to be non-colluding. This threat model with two (or more) non-colluding servers is com-

monly used in a large body of work on secure multi-party computation (MPC)133,192,224,198,72,43,59.

Different from other computation withMPC, in DPF, no communication is required between

the servers, and thus, the two servers can be hosted by different cloud providers with minimal

performance overhead. Further, recent advances in MPC platforms make such a system increas-

ingly realistic175,167,169,9,67,86. One realistic scenario is for the companies that want to provide
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strong privacy standards to form a consortium to act as each others’ non-colluding second party;

these efforts175,168 are seeing increasing adoption. Remote attestation capabilities in public cloud

TEEs9,169,83,234 can also be used to further ensure the integrity of two parties.

Batch Private Information RetrievalVarious approaches for batch PIR201,12,118,12,102 have been

proposed. We show that noise tolerance of ML allows the use probabilistic PIR protocols like201

with minimal accuracy loss.

On-device MLOn-device ML has been studied for recommendation101,79, speech recognition10,

translation216, etc. Our work uses on-device ML for privacy, and enables the private use of large

server-side embedding tables.

5.3 Private On-DeviceML Inference

5.3.1 ThreatModel

The goal of private on-device inference is to performML inference using data on a user device with-

out revealing them to a server owned by a service/cloud provider. In the context of recommendation

systems, on-device inference can allow private user data only available on a client device to be used to

provide more relevant recommendations, while ensuring that no private data leaves the device. To

reduce the burden on user devices, a server-side recommendation model can send a set of candidate

recommendations based on less sensitive user features available on the server, then a smaller on-

device model can more accurately rank the candidates leveraging private on-device user data without

revealing them to the server. In our study of a real-world model, we found that even a small (several

MB) on-device MLPmodel can noticeably improve recommendation accuracy when combined

with server-side embedding tables.

We assume that the computation part of the MLmodel can run on the user device given the increas-

ing trend of hardware accelerators and optimizations for client SoCs, but that embedding tables of
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categorical/sparse features (described below) are too large to be placed on individual devices and

hence are accessed remotely (Figure 5.1). We further assume that only a very small fraction of the

table is used per-inference.

As the indices to embedding tables represent private categorical feature values, private on-device

inference must ensure the confidentiality of table indices while allowing the use of server-side em-

bedding tables. For this purpose, we leverage private information retrieval (PIR) protocols under the

honest-but-curious threat model. The user/client device and its software are trusted. While remote

servers are untrusted, they are assumed to follow the protocol. The honest-but-curious threat model

is widely used in previous private inference work133,192,215,72,43,171. The model may be extended to

a malicious setting by using PIR protocols that protect against a malicious server deviating from the

protocol and produce wrong answers (e.g. authentication for PIR42). We also note that incorrect

PIR responses only lead to non-optimal suggestions in recommendation models; selective failure

attacks111 are difficult to perform because failures are not visible to attackers.

Like previous work on privacy preserving ML and analytics using multi-party computation

(MPC)72,43,59,224,198,192,133,35,116, we further assume a two-server model where the two servers are

non-colluding. This two-server setup can be practically realised by having two different cloud ven-

dors host and manage the two servers or having another industry actor host the second server. Form-

ing such a privacy consortium among companies is emerging in industry175. See Section 5.2 for

further discussions.

5.3.2 Key Challenge: Large Embedding Tables

Unfortunately, the embedding tables in machine learning models, especially for recommendation

models, are often too large for individual devices92,179,58,176,242, making a pure on-device inference

solution impractical. An embedding table is a large table that maps categorical features into dense

vectors that encode semantic information. For example, categorical (sparse) features may include a
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Table 5.1: Embedding table sizes for popular public datasets and models spanning across language and recommendation.

Application
# of

Embedding
Entries

Entry Size
Embedding
Table Size

Criteo 1 TB
Rec.

>100,000,000 ∼128B >90 GB

Criteo
Rec.

∼10,000,000 ∼128B ∼5 GB

FastText Emb.
(Language Model)

∼2,000,000 ∼1024B >1.9 GB

Taobao
Rec.

∼900,000 ∼128B ∼109MB

WikiText2
(Language Model)

∼131,000 ∼512B ∼64MB

Movielens-20M
Rec.

∼27,000 ∼128B ∼3MB

user’s click or search history. The value of a categorical feature is used as an index to an embedding

table where each row of the table holds the vector corresponding to that categorical feature value

(Figure 5.1). Embedding tables can have as many rows as the number of possible values in the cate-

gorical feature space so their size can grow quickly.

Recommendation models use several user and product input features to predict whether a user is

likely to interact (e.g., click or purchase) with the product179,242. These models may use user data

such as the list of products the user recently purchased242. As the number of products can be on

the order of millions, the corresponding embedding table can reach several GB to TB in size92,176,79.

Compressing the table is difficult for many real-world models, as it leads to significant accuracy

drop240. Recommendation models represent our primary target use case given their reliance on

large server-side tables.

Language models are another potential example of anML application that may require access to

server-side embedding tables. Language models empower applications such as next-word prediction,
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language translation, and speech recognition. Language models map words into a latent embed-

ding space using word embedding tables163. As there may be hundreds of thousands of different

words, with each embedding vector being hundreds of bytes long, it quickly becomes impractical to

store the entire word embedding table on-device, especially for natural language translation mod-

els supporting multiple languages61,182. Although there are alternative techniques to compress the

embeddings (e.g., character embeddings, sentence level representations, etc.), word embeddings are

considered to be more efficient to train in a regime with less training data61. We discuss the language

model as a potential example in our study to show that our system can be adopted for multiple types

of on-device models that need large server-side embedding tables. However, we note that on-device

inference for language models is limited to smaller language models that can run on a client device.

Private inference for large language models need additional computation beyond embedding table

accesses to be securely offloaded to cloud servers. Also, the embedding tables for language models

are typically much smaller compared to the tables for recommendation models.

Table 5.1 summarizes the size of the embedding tables of some popular datasets/models. The size

ranges from several MBs to hundreds of GBs. On the other hand, the mobile app size is on aver-

age 34MB, and seldom exceeds 200MB even in extreme cases173. Embedding tables, especially for

recommendation models, can easily exceed this range, which makes deploying them on-device im-

practical79.

5.3.3 Example: Real-World RecommendationModel

As a concrete use case for private on-device ML inference with sparse features, we studied a real-

world recommendation model where some of its input (user) features can only to be used on a client

device for strong privacy protection. For this model, such “device-only” sparse features represent 7

out of top 25 features when the input features are ranked by their feature importance score*. Re-

*This score measures the change in the accuracy when a particular feature is changed to a random value.
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Table 5.2: The embedding tables for a real‐world recommendation model, showing the number of entries, the table size,
and the average number of entries accessed per inference. The numbers are shown for the top 5 device‐only sparse
features with highest importance.

# Entries
Avg Queries
Per Inference

Table Size
(# of entries * 144B)

7,614,589 13.9 1.02GB
20,000,000 47.3 2.68GB
20,000,000 25.7 2.68GB
2,989,943 3.2 400MB
20,000,000 14.9 2.68GB

moving the device-only features significantly degrade the model’s utility (accuracy), and a small

(several MB) on-device model can provide good accuracy if the embedding tables can be accessed

privately.

Table 5.2 shows the embedding table size and the number of accesses per inference for the top 5

sparse features that are only accessible on-device. Similar to the public datasets, the embedding ta-

bles are too large to be sent and stored on a client device, and each table entry is relatively small (144

bytes) – on average only at most 1-10KB of entries are fetched from the table for each inference.

Our study also found that the user features change relatively slowly; the sparse user features mostly

stay the same for two consecutive recommendations for one user. If a client device keeps recently

fetched embedding table entries, only 2.44% of sparse features are new and need to access embed-

ding tables on a server. Even though Table 5.2 shows that several tens of embedding table entries

are used for each inference, the temporal locality means that only a few new entries need to be read

from the server.
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5.3.4 Our Approach: On-DeviceML Inference with PIR

To enable private on-device ML applications that require access to large embedding tables, we pro-

pose using private information retrieval (PIR)41,59. PIR allows a user to query a table without re-

vealing which index was accessed to the table holder, i.e., the server that hosts the embedding table.

We propose to keep large embedding tables on the cloud servers, and use PIR to query the table

upon an embedding table access by a client’s device (Figure 5.1).

We use a PIR protocol based on a distributed point function (DPF)75,32, which protects accesses

using two non-colluding servers. We choose PIR rather than oblivious RAM

(ORAM)77,210,229,211,115,11,14,66,194,226,227,189,149,187,34,235, another popular cryptographic technique

to hide an access pattern to memory, because ORAM is designed to protect accesses from a single

entity. In the on-device ML scenario, multiple users simultaneously send query requests. DPF-

based PIRmethods are more efficient in terms of communication and computation compared to

single-server PIR schemes that employ homomorphic encryption161,44,73,147. A key challenge in

employing DPF-based PIR is its high computational intensity due to heavy cryptographic opera-

tions. In the following section, we describe how the DPF-based PIR can be efficiently accelerated on

GPUs.

5.4 Accelerating PIR using GPUs

Algorithms for PIR exhibit significant overhead due to their heavy cryptographic operations and

cannot be immediately adopted for private on-device inference. Below, we 1) briefly introduce PIR

and DPF, 2) analyze their characteristics to understand how GPUs may accelerate them, and 3)

describe our optimizations for GPU acceleration.
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Figure 5.2: DPF based PIR scheme. The client computesGen to obtain two keys (ka, kb) that represent a secret index
and sends them to the servers. The servers individually compute Eval to obtain secret shares of the answer, from
which the client can later retrieve the desired embedding. Eval is computationally expensive and is our main target for
acceleration.

5.4.1 Fundamentals of PIR andDPF

Private information retrieval (PIR) based on distributed point functions (DPF) allows a user to ac-

cess an index in a table, shared across two non-colluding servers, without leaking the index to the ta-

ble holders. In DPF-PIR, the client sends a key that represents the index it wants to privately query.

The server, upon receiving the key, performs expensive cryptographic operations to service the user’s

query (Figure 5.2).

Naive PIRAssume a client C seeks to privately access entry T[i] ∈ FD
p from a table T ∈ FL×D

p

that is duplicated across two non-colluding servers, S1 and S2. Here, L is the number of entries in

the table,D is the vector length of each entry, and Fp is an integer field with modulus p. A simple

but highly inefficient approach is for the client C to generate and send a random vector r1 ∈ F1×L
p

and a second vector r2 ∈ F1×L
p to S1 and S2, such that they add up to a one-hot indicator vector

I(i)whose entries are all 0’s except at the ith position where it is 1 (r1 + r2 = I(i)). Upon receiving

the vectors, the servers individually compute and return r1 × T and r2 × T to the client, from

which the client can retrieve T × (r1 + r2) = T × I(i) = T[i]. Information theoretic privacy is

ensured as r1 and r2 are secret shares of the indicator vector that do not leak any information about

i individually204. This simple approach incurs large communication overhead because the size of r1

and r2 is proportional to the size of table T, making the communication overheadO(L).
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Figure 5.3: Gen vs Eval performance. Gen is highly efficient and is not our target for optimization.

DPF-PIR The generalization of the approach described above is a cryptographic primitive known

as a distributed point function (DPF). DPF is an algorithmic construct that allows a client to generate

two compact keys ka, kb, such that when the keys are expanded across a set of indices, they yield

secret shares of the indicator vector I(i).

Formally, a DPF consists of two algorithms,

• Gen(1λ, i ∈ 0..L− 1) → (ka, kb), which takes security parameter λ and input i, and

generates two keys ka, kb.

• Eval(k, j)→ Fp, which takes a key k and an evaluation index j and outputs a field element.

such that, Eval(ka, j) + Eval(kb, j) =


1 j = i

0 j ̸= i
.

Gen is a key generation process where a client encrypts the index it wishes to query into two keys

ka and kb, which are respectively sent to the two non-colluding servers. Gen is relatively lightweight

compared to Eval (O(log(L) computation)75,32, and can be quickly computed even on resource-

constrained client devices as shown in Figure 5.3.

Eval is the key evaluation process that is performed on the servers. Upon receiving ka or kb, the

servers respectively compute T×Eval(ka, {0 . . . ,L−1}) and T×Eval(kb, {0 . . . ,L−1}) and return

the result, from which the client can obtain T × (Eval(ka, {0 . . . ,L − 1}) + Eval(kb, {0 . . . ,L −
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1})) = T × I(i) = T[i]. Eval requires at leastO(L) computation75,32 and is the major bottleneck

(see Figure 5.3). Our work focuses on accelerating the Eval function. Figure 5.2 depicts the overall

DPF-PIR scheme.

A DPF should be computationally secure, meaning that given just one of the keys and no other in-

formation, it should be difficult to recover the client-queried index iwithout doing computation

proportional toO(2λ). There are many different implementations of DPFs, each with a differ-

ent computation/communication trade-off. We consider the DPF construct described in75, which

provides optimal asymptotic communication complexity ofO(λ log(L)) and optimal evaluation

computation complexity ofO(λL).

In this DPF algorithm, the evaluation of DPF involves expanding a GGM-style76 computation

tree. Keys ka and kb each consists of two two-dimensional codewords, {C0 ∈ F2×(log(L)+1)
2λ ,C1 ∈

F2×(log(L)+1)
2λ }. The server uses the codewords and expand them into a tree (Figure 5.4) to get the

secret shares of the indicator vector, using a recursively-defined helper function P:

Eval(k, j) = P(d = log(L), j) (5.1)

P(0, 0) = C0[0, 0] (5.2)

P(d, j) = PRFP(d−1,⌊ j
2 ⌋)

(jmod 2)

+ CP(d−1,⌊ j
2 ⌋)mod 2[jmod 2, d]

(5.3)

Here, d is the depth of the node (0 for the root, log(L) for the leaves), j is the index of the node

within each depth (0 being leftmost), and PRFs(x) is a pseudorandom function that encrypts a mes-

sage xwith an encryption key s, such as AES-128.

Figure 5.4 illustrates how Evalworks with an example. Assume the client wants to query a table of

L = 4. The client generates and sends a key to each server, where each key consists of two 2×3
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codewords, C0 and C1. Using the keys, the server must calculate Eval(k, 0)..Eval(k, 3) and multi-

ply them to the table. To calculate, e.g., Eval(k, 3) (which is P(2, 3) from Equation 5.1), the server

needs to calculate P(1, 1), calculating which in turns requires P(0, 0) (Euqation 5.3). The calcula-

tion can be seen as an evaluation of each node in a binary tree from the root to the leaf; a child node

is computed using the result from the parent node and C0, C1.

Evaluating a single node requires a single PRF call and an addition, requiringO(λL) computation

for the entire tree. Communication overhead is proportional to the size of the keys, resulting in

O(λ log(L)) total communication. In practice, λ is typically a 128-bit field integer to ensure suffi-

cient computational security. After computing all the leaf nodes of the tree, the output is a vector

of λ-bit (128-bit) field values; the final secret shares of the entry are obtained by performing an in-

teger dot product between the computed 128-bit field values and the table. Note that tables with

arbitrary sized entries (i.e: much greater than 128-bits) may be supported with no additional DPF

evaluation, as we can view these large-entried tables as a 2-D matrix, with the large entries subdi-

vided into groups of 128-bit values; we may then perform a matrix-vector-multiplication with the

prior DPF output to obtain secret shares of the table lookup. This works as performing a matrix-

vector-multiplication between the DPF vector and the 2-D table selects the entire set of entries that

corresponds to the selected index. In practice, the dot products for multiple queries to a single table

are batched together as a single matrix-matrix multiplication to enhance performance. We refer to75

for details on key generation.

5.4.2 Accelerating PIRwith GPU

Starting Point: Batched DPF Execution

We begin by observing that parallelism in DPF computation can be exposed in two dimensions: 1)

parallelizing the evaluation of a singleDPF; and 2) evaluatingmultipleDPFs in parallel. The latter,
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Figure 5.4: Example of the DPF computation using tree expansion. DPF expansion involves computing the leaves of a
binary computation tree which evaluate to a secret‐share of a one‐hot vector. Computing each node requires evaluating
its parent node which involves calling a PRF and adding to it a a codeword value indexed by the height and parity of the
node.

evaluating multiple DPFs in parallel, is understood as standard batched execution and is an implicit

starting point inherent to our proposed optimizations. At the GPU level, parallelizing the evalu-

ation of a single DPF is done via thread-level parallelism, and batched-execution is performed by

evaluating multiple DPFs on multiple blocks via block-level parallelism. Under this framework,

approaches falling under the two categories can be applied jointly with minimal interaction, and

hence, unless otherwise noted, batched-execution with batch-size B is assumed in all subsequent par-

allelization approaches. While batching itself is not a novel component of our proposed approach,

batching is indeed important for high utilization of GPU resources (Figure 5.9a). We also found

that the batch size needs to be carefully selected based on the size of the table and the DPF paralleiza-

tion strategy to balance latency, throughput, and memory requirement.
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Figure 5.5: Two naive approaches for parallelizing DPF computation.

Tradeoffs between Branch-parallel and Level-by-level DPF Parallelization

Approaches

Two naive approaches to parallelizing the execution of individual DPFs are branch-parallel and level-

by-level approaches, shown in Figure 5.5. A branch-parallel approach has each thread independently

compute one branch/leaf (or a subset of branches/leaves) of the DPF, while a level-by-level paral-

lelization approach has each thread evaluate the nodes of a single level of the DPF tree in parallel,

writing outputs to global memory to be used for computing the next level.

Unfortunately, these two naive parallelization approaches suffer from a major tradeoff between

computational redundancy and memory usage, making neither truly efficient nor scalable. A branch-

parallel approach suffers from computational redundancy. As computing each leaf node requires

evaluating all nodes up to the root, each thread in branch-parallel execution re-computes interme-

diate nodes unnecessarily, as shown in Figure 5.5a. As a result, the overall amount of work becomes

O(L · log(L)), instead of the optimalO(L).

The level-by-level parallelization approach eliminates this computational redundancy by storing

and reusing intermediate node outputs. However, this approach suffers frommemory overhead as
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storing intermediate results consumes significant amount of memory when the batch size and the

table size is large (O(BL) for a batch size B). Hence, there is a fundamental tradeoff between these

two approaches in balancing computation and memory usage. Figure 5.6 shows that the branch-

parallel approach suffers from high number of PRF calls, while the level-by-level approach suffers

from high peak memory usage.

Memory-bounded Tree Traversal

The tradeoff between computation and memory usage in Section 5.4.2 motivates a different par-

allelization strategy. We emphasize that memory usage is a critical factor in accelerating DPFs on

GPUs, as memory limitations bound the effective batch size that may be used; consequently, reduc-

ing memory usage allows for the use of larger batch sizes which significantly increases throughput.

In other words, reducing memory usage while ensuring efficient parallel execution is the key to effi-

cient DPF acceleration on a GPU. To this end, we developMemory-bounded tree traversal (Figure

5.7a), a parallelization scheme that is: 1) optimal in terms of computation (O(L)work); and 2) ex-

hibits memory overhead that scales logarithmicallywith the size of the table, instead of linearly as in

the level-by-level approach.

Memory-bounded tree traversal performs a depth-first evaluation of the DPF tree, with chunks of

K nodes evaluated at once in parallel for each level (Figure 5.7a). Unlike the level-by-level approach

that computes and saves all nodes in each level, the new approach only evaluatesK nodes per level,

then immediately re-uses these node outputs by recursively computing the nodes at the next level

that require these outputs, and subsequently discarding the previous node outputs. Thus, at each

level, onlyKmore nodes need to be cached to memory. Hence, this approach reduces memory over-

head fromO(BL) toO(BKlog(L)), making the memory overhead affordable even for large tables

((Figure 5.8a)). K, which is a hyperparameter that determines howmany nodes to expand in paral-

lel, must be large enough to expose sufficient parallelism but small enough to avoid out-of-memory
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Figure 5.6: The number of PRFs evaluated (compute) and the peak memory usage (memory) for different parallelization
strategies, across different table sizes (L). For both axes, lower is better. The branch‐parallel approach redundantly
calculates extra PRFs, while the level‐by‐level approach suffers from high memory usage. Our proposed approach,
memory‐bounded tree traversal (MemBoundTree), simultaneously performs less work while requiring much less memory
– MemBoundTree can significantly (i.e., up to 10x) improve performance by reducing memory consumption and allowing
the use of larger batch sizes, which increases utilization.

complications. We empirically setK = 128, which balances compute utilization and memory usage

on a V100 GPU (Figure 5.8b). Memory-bounded tree traversal achieves both optimal work and low

memory usage (Figure 5.6). As a result of achieving optimal work, low memory usage, and maximiz-

ing parallelism, the memory-bounded tree traversal method can scale to larger batch sizes and hence

increase throughput and utilization up to an order of magnitude greater than a naive level-by-level

approach. The memory advantage of the memory-bounded tree traversal approach is depicted in

Figure 5.6, and achieves utilization benefits of a considerably larger batch size as depicted in Figure

5.9a.
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Figure 5.7: Memory‐bounded tree traversal and operator fusion for reducing memory overhead.

DPF andMatrix-Multiplication Operator Fusion

After evaluating the DPF, the server needs to perform a matrix multiplication between the large ta-

ble and the DPF output (Section 5.4.1). If we naively compute the entire output before performing

a matrix multiplication, the memory must hold the entire output of the DPF and requiresO(BL)

space. To keep the memory overhead toO(BKlog(L)), we fuse the DPF evaluation operator with

the matrix multiplication operator (Figure 5.7b). Upon reaching a leaf node, a thread immediately

performs a dot product between the table entry and the corresponding leaf node output of sizeK,

accumulating the result in local memory. At the end, threads in a single thread-block coordinate to

perform a cross-thread sum of the local registers to obtain the final result, using tree-summation.

Fusing DPF has additional performance benefits as it reduces the number of accesses to global mem-

ory and allows interleaving between matrix-multiplication and DPF computation.

Batch and Table-Size Aware Scheduling

On large tables (> 222 entries), we observe that a single DPF (batch size of 1) may have enough

parallelism to sufficiently saturate GPU resources. Hence, for very-large tables, it is preferable to
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(a)Memory Usage (b) GPU Utilization vs K

Figure 5.8: The memory usage and the compute resource utilization of the memory‐bounded tree traversal.

use all GPU resources for the computation of a single DPF at a time, which significantly reduces

latency, rather than perform batched-execution. We additionally develop a parallelization strategy

based on cooperative groups184 to coordinate all GPU blocks when computing a single DPF. This

single-batch strategy is selectively applied only when the table size is very large. Figure 5.9b shows

that using cooperative groups with a batch size of 1 can indeed achieve high GPU utilization on

extremely-large tables (with a lower latency, which is not shown), while it suffers from low resource

utilization if incorrectly applied to smaller tables. We empirically use a threshold of 222 entries to

choose between batched execution and cooperative groups.

GPU-Aware PRF Selection

CPUs typically come with built-in hardware for popular PRFs such as AES and SHA-256 (e.g.,

AES-NI instructions). AES is a natural choice for the PRF on a CPU given built-in CPU hardware

primitives. However, unlike CPUs, GPUs do not offer hardware acceleration for cryptographic

primitives. As a result, AES computation on a GPU is far more computationally expensive com-

pared to a CPU. Hence, a more careful PRF selection has the potential to provide higher perfor-
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(a) Batch size vs Util (b) Table size vs Util

Figure 5.9: Effect of batch size (a) and table size (b) on GPU utilization. For figure (b), batch=1 utilizes cooperative
groups to coordinate all available GPU resources towards computing a single DPF.

mance on a GPU. In this context, we evaluate multiple PRFs including block ciphers (AES), hash

functions (SHA-256), stream ciphers (ChaCha20), and others. We mainly show results of PIR per-

formance based on AES-128 to match the standard PRFs used in the CPU PIR baseline. However,

we found that PRF selection has a significant impact on GPU PIR performance, and we report

these results in the evaluation as well. Particularly, Chacha20, which is a standard stream cipher used

in TLS37, provides noticeable performance gains. Other non-standard PRFs, such as SipHash, can

provide even more speed-up, but their security assurance may be weaker as they are not yet widely

analyzed or proven in practice. One must consider the performance and security tradeoff of a PRF

to determine whether that PRF is suitable for the application at hand.

Note on Scaling toMultiple GPUs

We note that our DPF execution strategies may be applied to multiple GPUs in the case where a

single embedding table is too large to fit in a single GPU’s memory. A single DPF can be computed

across multiple GPUs by having each of theNGPUs evaluate the DPF on a subset of the table in-

dices, then summing the result across GPUs at the end. This approach works because the final DPF
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reduction operation (a summation) is linear. Hence, we can linearly scale our DPF execution strate-

gies across multiple GPUs by simply dividing the work in an embarrassingly parallel approach. We

note that, in this scenario, each GPU effectively evaluates a DPF on a table of size L
N , hence, per-

formance is the same as if evaluating a DPF on a smaller table size. Additionally, with more GPUs,

a larger batch size may be needed to fully utilize GPU compute resources since the table sizes are

proportionally smaller. Thus, for multi-GPU execution, it becomes more important to maximize

batch size by using the memory-bounded tree traversal execution strategy, and a cooperative-groups

approach would be less effective.

5.5 Accelerating Batch-PIRwithMLCo-Design

Many recommendation/language models require multiple lookups to the same embedding table.

For example, recommendation models may lookup the same table tens of times to perform a single

inference92 (e.g., a user can have multiple clicked items, if the clicked-item history is used as a fea-

ture). Multiple lookups linearly increase the cost of PIR as simple DPF-PIR only retrieves one entry

at a time.

To support multiple tabe lookups more efficiently, we adopt partial batch retrieval (PBR)201, an al-

gorithm that accelerates the retrieval of multiple entries. PBR comes at a cost; with some probability

(when multiple queries map to the same internal bin), queries are dropped, which may negatively

affect model quality. Hence, we co-design PBR withML inference to improve system performance

while maintaining the model quality.

5.5.1 Background: Batch Private Information Retrieval

Batch private information retrieval (batch-PIR) is a set of techniques to retrieve multiple private

entries from a single table. In this work, we adopt the method proposed in201, partial batch retrieval
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Figure 5.10: Techniques used to co‐design PIR + ML. a) Partial Batch Retrieval, b) splitting the table into a smaller hot
table, and c) co‐locating frequently accessed entries.

(PBR), which operates by segmenting table T into L
I bins of size I, and issuing individual DPF-PIR

queries to each bin (Figure 5.10a). This approach saves computation by a factor of L
I in the best-case

scenario where the client retrieves L
I entries that are spread across different bins. However, a single

PBR can fetch only one query from each bin. If more than one query index fall into the same bin,

the rest of the queries except for the one must be dropped.

This limitation leads to a complex tradeoff between the communication efficiency and the accuracy

of the retrieval. A large I can reduce the accuracy of the retrieval if multiple desired entries map to

the same bin. Conversely, a smaller I yields fewer conflicts, but increases communication costs. This

tradeoff naturally affects model quality as dropped queries affect the model’s inference.

5.5.2 Co-Designing theMLModel and Batch-PIR

To improve batch-PIR efficiency while minimizing effect of retrieval failures, we propose PIR-ML

co-optimizations that improve the tradeoff between model accuracy and performance.

Frequency-Based Hot Table SplitManyML applications access embedding tables following a

power-law distribution, where a small number of hot indices account for the majority of lookups93,247.

We leverage this observation and add a small hot table that holds the top-K frequently accessed in-
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dices in addition to the large full table that holds all the embedding entries (Figure 5.10b). The hot

table is constructed statically using the observed statistics from the training dataset as part of a pre-

processing phase ahead of model deployment, and a small hash table is placed on a client device to

provide the hot table index for the categorical feature values that are in the hot table; as this hot ta-

ble is designed to be small, this index mapping can reasonably reside on client devices. At inference

time, a client looks up whether the index they wish to query is in the hot table, and issues two sets of

keys: one set that queries the hot table and the other for the full table.

Simply using the hot table as a traditional cache is insecure as it leaks the number of queries to the

hot/full tables. To avoid this information leakage, we predetermine a fixed number of queriesQhot

andQfull to issue to the hot and full tables, respectively, during preprocessing. These parameters

are chosen based on the historical query request patterns for the training data, balancing the impact

of dropped requests / model accuracy and performance costs. The queries issued to the hot table

benefit from the lower PIR cost for accessing the small table rather than a large full table. We em-

phasize that this design is necessary to eliminate data leakage through the number of queries that

a user issues to each table. For example, the number of queries to the hot table can reveal whether

the user accesses the indices that are in the hot table. The total number of table entries that a user

accesses in both hot and full tables may also leak private information such as the number of items

purchased, the number of websites visited, etc. To remove such information leakage through the

number of accesses to each table, for each inference, we require a user to issue exactlyQhot andQfull

queries to the tables. If the user needs to read more table entries than the allocated budget, these re-

quests are dropped; the dropped requests may impact model accuracy. If the user has fewer queries,

then dummy queries are added to ensure that the user makes the fixed number of PIR requests.

Access Pattern-Aware Embedding Co-location Embedding table access patterns in ML appli-

cations tend to exhibit co-occurrence142,50 as some indices are often accessed together in a single

ML inference. We co-locate the entries that are frequently accessed together in the same row of
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the table so that a single query can retrieve multiple embeddings that might be accessed together

(Figure 5.10c). Co-location is done by profiling the training dataset and co-locating the top-C em-

beddings that are most frequently retrieved with each embedding. C is empirically selected. In the

best-case scenario, co-location can reduce the number of queries by C+ 1.

Co-design Parameter SelectionThe parameters involving these two co-design techniques (frequency-

based hot table splitting and embedding co-location), which involve parameters such asQhot,Qfull,

C, and bin-size, as well as kernel parameters such as DPF execution batch size and DPF execution

strategy are selected after sweeping the parameter space using grid search and evaluating the corre-

sponding performance (i.e: communication and computational costs, as well as accuracy) for the

target application. Note we separate training and test datasets, selecting parameters based on the

training dataset, and showing results on the test dataset. Broadly, our experimental results show the

pareto frontier of the performance achieved across a complete sweep of the parameter space. Gener-

ally, across applications, we found that a good choice ofQhot is typically 10%-20% of the size of the

full embedding table. On the other hand, a good choice of C, the number of entries to collocate,

depended on the application: a higher C at around 4-5 (i.e: more collocation) was more beneficial

for the language model task, as words in a sentence have natural associations, whereas a lower C at

1-3 was better for the recommendation application. A good choice of bin size and other parame-

ters such as DPF execution batch size and strategy, generally vary and depend on performance or

accuracy constraints which may be imposed by service expectations. In summary, our co-design and

kernel parameters are determined by performing a grid search across the space of possible parameters

in order to find parameters that balance computation, communication and model accuracy.

Changes to Embedding TableUpdates to the embedding table (i.e., updates/insertions/deletions)

may occur over time as embedding tables can change when the model is re-trained. Note that up-

dates to table entries without changing indexing (no insertion/deletion) can be done under the hood

(transparent to the clients) by updating the table entries on both servers. From the client perspec-
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tive, the tables are read-only. Full updates of embedding tables that include deletions and insertions,

on the other hand, require the indexing functions on the client to be also updated. An updated hash

table for the hot table needs to be sent to the client. If the full table size is changed, the hash func-

tion for indexing the full embedding table is also updated on the client. However, this cost of a full

update is only incurred when the model itself is changed or fully re-trained, which is infrequent for

typical recommendation models or language models. In this paper, we study the overhead of our

system assuming that full embedding table updates are infrequent enough. More efficient handling

of table updates for other use cases that require frequent updates is left as future work.

5.6 Evaluation

Figure 5.11: Throughput improvement of our proposed system over the CPU baseline85. While preserving accuracy
(Acc‐eco), our system can improve the throughput on average by 5–39×. When some amount of accuracy degradation
is tolerated (Acc‐relaxed), the average improvement reaches 40–124×. All configurations searched within the latency
(< 300ms) and communication requirement (< 300KB). QPS normalized by the CPU Acc‐eco for each benchmark.

5.6.1 Evaluation Setup

Platforms We evaluate our GPU-based DPF-PIR and compare it with a state-of-the-art CPU

implementation85. We run all GPU experiments on an NVIDIA V100 GPU, and all CPU experi-

ments on an Intel(R) Xeon(R) Gold 6230 CPU@ 2.10GHz with 28 cores. The CPU baseline is an

optimized DPF-PIR implementation from Google Research85, which uses AES-NI CPU hardware

acceleration.
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Datasets andModels We evaluate our system and the baseline by running a couple of rec-

ommendation models and a language model on open-source datasets. We run (1) a 2-layer MLP-

based recommendation model101 withMovieLens-20M dataset100, (2) a 2-layer MLP-based rec-

ommendation model101 with Taobao Ads click/display dataset217, and (3) an LSTMmodel with

Wikitext2 corpus163. We protect the user history table242 for recommendation models and the

word embedding for the LSTM using PIR. The baseline model quality of the models we study

are as follows. For recommendation models, we use area under the receiver operating characteristic

curve (ROC-AUC or AUC) metric, where a higher AUCmeans better quality. Our model achieves

AUC=0.7845 for MovieLens and AUC=0.58 for Taobao, similar to prior works242,101. For LSTM,

we use perplexity (ppl), a measure of surprise, to measure the model quality. Following the training

setup of 163, our model achieves ppl=92.

System Parameters For application-independent experiments (Figures 5.13–5.15, Tables 5.4–

5.5), unless otherwise stated, we default to an entry size of 2048 bits. Most recommendation models

use entries similar or smaller than this242,179. Also, by default, we use a security parameter of 128

bits as standard (AES-128), and apply all proposed GPU acceleration optimizations, with a mem-

ory optimization factorK = 128. Batch size is tuned for each experiment separately to maximize

throughput while meeting latency and communication budgets (300ms and 300KB, unless stated

otherwise).

5.6.2 End-to-End System Throughput on Applications

First, we show that our proposed design significantly improves system throughput on various appli-

cations, compared to the baseline CPU system85. We evaluate key portions of our proposed design

separately: 1) Applying all GPU acceleration techniques (GPU (Ours)), 2) AddingML co-design

(GPU + Co-design (Ours)), and 3) Using Chacha20 instead of AES-128 (GPU + Co-design +

111



Table 5.3: Unnormalized QPS from Figure 5.11. Among our proposed design, we only show the best one (GPU + Co‐
design + Chacha20). Acc‐eco specifies that each approach must reach the full‐precision accuracy; Acc‐relaxed indicates
the approaches must reach within some range of full precision accuracy; see Section 5.6.2

Dataset CPU
Ours

Acc-eco Acc-relaxed
Wikitext2 5 577 2,306
MovieLens 44 2,821 5,476
Taobao 8k 64k 256k

Chacha20 (Ours)). For each design, we conducted an extensive parameter sweep across kernel hy-

perparameters like batch size andK, and across co-design hyperparameters like hot table and cold

table sizes, the number of entries co-located, and the number of queries issued to each table. We first

show throughput achieved requiring a fixed model quality. Then, we additionally show through-

put improvement tolerating some model quality degradation. We set the tolerated degradation to

<0.5% for MovieLens and Taobao and<5% for Wikitext2.

Figure 5.11 shows that the throughput improves by 5–39×while maintaining the model quality

(Acc-eco), and the improvement becomes 40–124×when small quality degradation is tolerated

(Acc-relaxed). GPU optimizations account for 10–20× performance improvement, and PIR-ML

co-design can additionally obtain up to 2–5× improvement. These cumulative improvements result

in significant overall gains. Co-design does not show improvement for MovieLens for this particular

setup; however, the co-design is more effective for the cases with a tighter communication budget.

We discuss this later in Figure 5.19.

Table 5.3 additionally shows the unnormalized numbers for some representative points. Our pro-

posed design improves performance from an impractical throughput (e.g., 5 QPS) to an accept-

able range of hundreds of QPS. Taobao has much higher QPS in general, because each user queries

much fewer entries per inference (2.68 on average), compared to other benchmarks (e.g., MovieLens

queries 72 entries per inference on average).

112



Figure 5.12: End‐to‐end latency breakdown of an inference query (i.e: time from client request to receiving and comput‐
ing the result). Our proposed system makes the PIR latency much lower (Wikitext2) or comparable (MovieLens, Taobao)
to the latency of other components. We are able to keep end‐to‐end latency within a reasonable 500 ms per inference
which is acceptable in standard SLAs 93

5.6.3 End-to-End System Latency

We subsequently show the impact of our system on end-to-end inference latency to show that the la-

tency overhead of our GPU-PIR results in acceptable standards for real-world applications. Four

components that affect inference latency include: (1) client-side key generation (Gen), (2) PIR

(Eval; our paper’s main focus), (3) client-server network communication (4) client on-device DNN

inference. We measure the latency of key generation and DNN inference directly on a single Intel

Core i3 CPU.We estimate the network latency assuming 60Mbit/s bandwidth as in 4G networks3.

Figure 5.12 shows that PIR is not the sole dominating latency bottleneck anymore, costing compa-

rable or less latency compared to other sources. While the overall end-to-end latency is much larger

than a no-privacy system, the end-to-end latency still falls under the typical service level requirement

(SLA) of many real-world applications93.
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Figure 5.13: Throughput vs latency for different GPU optimizations: branch‐parallel (red), level‐by‐level (green),
memory‐bounded tree traversal and operator fusion (orange), and batch/table‐size aware scheduling with cooperative
groups (blue).

5.6.4 Detailed Analysis of SystemOptimizations

Here, we evaluate and isolate the effects of our proposed system optimizations, starting with GPU

kernel optimizations, and concluding withML co-design optimizations.

Performance Impact of Each GPU Optimization Figure 5.13 plots the latency-throughput

tradeoff for each GPU optimization. As shown, our proposed optimizations increase the latency-

throughput pareto frontier significantly. As discussed in Section 5.4.2, branch-parallel (red) cannot

achieve high QPS. Level-by-level (green) is much better, but still limited, as it is bottlenecked by the

memory capacity. The proposed memory-bounded tree traversal and operator fusion (orange) is

able to increase the throughput further when some latency degradation is tolerated, by using less

memory and allowing additional batching. For very large tables (Figure 5.13 (right)), table-size aware

scheduling with cooperative groups (blue) obtains significantly better latency without harming

throughput.
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Performance Impact of Operator Fusion Figure 5.14 shows the performance benefits of fusing

the subsequent matrix multiplication with DPF evaluation, across different table entry sizes. Gen-

erally, fusing and interleaving the two kernels offer significant (> 1.5×) improvements in both

throughput and latency. Figure 5.14 was obtained with a table with 1M entries; however, the im-

provement is similar across other table sizes.

(a) Latency (b) Throughput

Figure 5.14: Performance impact of table entry size on PIR performance, with and without operator fusion.

Performance Impact of Embedding Entry Size Figure 5.14 also shows the impact of different ta-

ble entry sizes on latency and throughput. Tables with entry sizes of<512 bytes do not significantly

degrade performance, especially with operator fusion. This is because the memory operations are

tightly interwoven with the subsequent matrix operations with operator fusion. As the latency and

throughput does not linearly degrade with increasing entry size, co-locating and retrieving multiple

entries at once becomes efficient (Section 5.5.2).

Detailed Comparison with CPUWe compare our GPU-PIR implementation against an opti-

mized CPU implementation from Google Research85. Note that, Google Research’s CPU imple-

mentation of DPFs uses AES-128 for its PRF, and utilizes AES-NI hardware intrinsics to accelerate

PRF computation. Figure 5.15 compares the throughput attained by the memory-efficient GPU

DPF acceleration strategy against a 1-threaded and 32-threaded (fully-utilized) CPU version on
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Figure 5.15: Comparison of throughput performance attained by GPU DPF acceleration compared to an optimized CPU
baseline. 1 kq/s = 1,000 queries per second. All methods use the AES‐128 PRF.

different table sizes. Using AES-128 as in the CPUDPF, our GPU implementation consistently

achieves> 17× speedup over the 32-threaded CPU implementation. We show the same data in

Table 5.4.

Performance Impact of PRFTable 5.5 shows the performance of using different PRF functions

on a table with 1M entries, a batch size of 512, and a security parameter of 128-bits. Lightweight

PRFs can significantly improve the GPU-PIR performance over AES-128. In particular, Chacha20,

a well-accepted PRF that is used in high-security applications including TLS 1.337, improves the

latency and throughput significantly compared to AES-128. Other lightweight PRFs can improve

the throughput even more if their security is acceptable for the target use case.

5.6.5 PIR +MLCo-Design

Private on-device ML inference often requires the private retrieval of a batch of embeddings from

the same table. We evaluate our techniques that co-designML inference and batch PIR, and demon-
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Table 5.4: Throughput / latency comparison of our GPU acceleration (all optimizations) vs single and multi‐threaded
CPU implementations, on tables with an entry size of 2048 bits. Both use AES‐128 as their PRF. The CPU DPF baseline
is taken from 85 and is an optimized CPU implementation that uses AES‐NI hardware intrinsics. Bytes indicates the size
of the DPF key that is transferred between client and server for that table size.

# Entries Bytes Strategy QPS Latency (ms)

16K 896
GPU 60,347 3.2

CPU 1-thread 22 9
CPU 32-thread 2,810 .71

1M 1280
GPU 1,358 1.4

CPU 1-thread 1.3 638
CPU 32-thread 21.2 36

4M 1408
GPU 468 4.18

CPU 1-thread 0.78 2579.8
CPU 32-thread 12 160.1

Table 5.5: Performance evaluation of memory‐efficient GPU DPF with different PRF functions, on a table of size
1,048,576, with batch size 512, and a security parameter of 128 bits.

PRF Type Latency (ms) QPS
AES-128 Block Cipher (Ctr Mode) 591 965
SHA-256 Hash (HMAC) 659 921
Chacha20 Stream Cipher 174 3,640
SipHash PRF 82.3 7,447

HighwayHash PRF 320 1,973
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(a) Computation overhead (b) Communication overhead

Figure 5.16: Computation (a) and communication (b) needed to achieve a target model accuracy (Acc‐relaxed from Fig‐
ure 5.11), with and without ML co‐design. Co‐design improves computation overhead by 1.9–7.4× and communication
overhead by 1–2.6×.

strate how our co-design techniques significantly improve model quality vs system performance

tradeoffs.

Computation Savings Figure 5.16a shows the computation needed to reach a target accuracy with

and without ML co-design. We fixed the communication below 300KB, and target Acc-relaxed

from Figure 5.11. Figure 5.16a shows that co-design reduces the computation significantly, by

1.9×–7.4×.

Communication Savings Figure 5.16b shows the communication needed to reach a target accuracy

(Acc-relaxed) with and without ML co-design. We fixed the computation to be less than 100K PRFs

per batched inference for Wikitext2 andMovieLens, and 5M PRFs for Taobao. With a fixed compu-

tation budget, the result shows that co-design improves the communication overhead by 1.7× and

2.6× for Wikitext2 andMovieLens, respectively. Taobao’s communication overhead was already

too small (<3KB) and did not improve. Co-design can be especially useful when the communica-

tion is expensive, e.g., when using 3G/4G network.

Communication vs ComputationWe show the tradeoff between computation and communica-

tion with the fixed model quality. Figure 5.17 shows this tradeoff across various applications, with

model quality fixed to be within 2% of the full precision baseline. Co-design optimizations obtain
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Figure 5.17: Pareto curve of tradeoff between computation and communication with model accuracy fixed to be within
2% of the baseline.

significantly better tradeoffs than plain batch-PIR.

Co-Design Throughput ImprovementWe show overall co-design throughput improvement

over standard batch-PIR across all applications on select budgets in Figures 5.18, 5.19, and 5.20.

As shown, the PIR-ML co-design can result in significant improvements to the tradeoffs between

model-quality and system throughput. Co-design is most effective when a) the budget is small

enough to be sufficiently restrictive, and b) the impact of dropping queries has a significant impact

on model quality. To expand on a), the budget plays a major role in the relative improvement that

co-design sees as shown in Figures 5.18 and 5.19; there is increasingly smaller difference between

batch-PIR and batch-PIR with co-design when the budgets are large enough. This makes intuitive

sense as with a larger budget both batch-PIR schemes with and without co-design converge on the

optimal pareto curve. Expanding on b), co-design is less helpful for applications where dropping the

sparse features does not impact model quality – this is natural since co-design optimizes for model

quality and if the sparse features has less impact, the relative gains of co-design would also be less.

This phenomenon is best demonstrated by the observation that language model (Figure 5.18) and

119



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1000 QPS 

 (comm=100KB,lat=50ms)

100

110

120

pp
l

1 2 3 4 5
1000 QPS 

 (comm=300KB,lat=200ms)

100

110

120

pp
l

batch-pir batch-pir w/ co-design

Figure 5.18: System throughput vs model quality with and without co‐design for language model across different
budgets.

MovieLens (Figure 5.19), whose model inputs are entirely sparse features that require embedding

table lookups, see much greater improvement with co-design compared to Taobao (Figure 5.20),

whose sparse categorical features are only a fraction of model inputs. Overall, the results show that

PIR-ML co-design can significantly improve the system throughput beyond what just batch-PIR

can support, especially under tight computation and/or communication budgets.

5.7 Conclusion

We present a system for efficiently and privately serving embeddings for on-device ML application.

Our system on a single V100 GPU can serve up to 100, 000 queries per second—a>100× speedup

over naive system, enabling practical deployment for privacy-sensitive applications.
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Figure 5.19: System throughput vs model quality with and without co‐design for MovieLens rec across different bud‐
gets.
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Figure 5.20: System throughput vs model quality with and without co‐design for Taobao rec across different budgets.
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6
Breaking Privacy in Federated Learning by

Reconstructing the User Participant Matrix

In this final chapter we show how ensuring the security of the machine learning system, namely in

federated learning, is essential for ensuring data privacy. We develop an attack on federated learn-

ing that recovers individual gradient updates from sums, which may lead to the full recovery of

the user’s input data breaking privacy. This work shows that the security and privacy of a machine
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learning systems must be thought about from both a defensive and offensive angle and motivates

new privacy defenses in the federated learning paradigm.

6.1 Introduction

Federated learning is a method for collaboratively learning a shared model across multiple partic-

ipants and enhances privacy by limiting data sharing155,99,27,135,134. Participants’ data privacy is

preserved by sending model updates rather than raw data, which limits the amount of information

that is exposed to the central server. In the context of applications, federated learning participants

are edge devices such as users’ smart phones or wearables, and maintaining the integrity of their data

is a critical issue. Already, federated learning has been deployed by many major companies in various

privacy sensitive applications including sentiment learning, next word prediction, health monitor-

ing, content suggestion, and item ranking99,145,27. Guaranteeing data privacy in these scenarios is

becoming increasingly important as the topic of privacy becomes more heavily scrutinized by the

greater public and by government regulations155,153,68.

Recent research has shown that model updates may unintentionally leak information about their

respective training examples71,158,245. A central server that obtains participants’ model updates may

perform inference attacks to learn significant information about participants’ training data, violating

the core privacy principles of the federated learning paradigm. To address this critical privacy flaw,

researchers have introduced methods leveraging secure multiparty computation to limit the central

server’s visibility into individual participants’ model updates. Notably, secure aggregation200,208

has emerged as a standard security protocol which ensures that the central server may see only the

final sum of model updates, rather than any individual update by itself. Thus, information learned

from the aggregated model update may not be attributed to a specific user, which offers a layer of

privacy against the central server. Additionally, by aggregating updates over tens to hundreds or
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Figure 6.1: Our gradient disaggregation attack observes multiple rounds of aggregated model updates and leverages
side channel information in the form of summary analytics collected by federated learning systems (how often users
participated across certain training rounds) to uncover individual users’ private model updates, undermining the secure
aggregation protocol. Code: https://github.com/gdisag/gradient_disaggregation.

thousands of users, updates are obfuscated to a point where most inference attacks are rendered

ineffectual158,71,245.

The secure aggregation protocol is secure only to the degree that it hides individual participants’

model updates. A procedure that disaggregates individual participants’ updates or gradients from

their sum would undermine the secure aggregation protocol and unveil the aforementioned privacy

vulnerability. In this work, we develop a method for gradient disaggregation, showing that secure

aggregation offers little privacy protection against an adversarial server seeking to undermine in-

dividual users’ data privacy. Our key insight is that participant information (e.g: which rounds of

training users participated in) is derivable from aggregated model updates, when observing multiple

rounds of training and leveraging summary analytics. We can reconstruct this information and use it

to recover participants’ individual model updates (see Figure 6.1). Our contributions are as follows:

• We introduce and formulate the gradient disaggregation problem as a constrained binary

matrix factorization problem. Leveraging summary analytics collected by federated learning

systems, we demonstrate that our disaggregation attack can exactly recover the user partic-
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ipant matrix on up to thousands of participants, revealing the model update of each user.

Additionally, we show that gradient disaggregation works even in the presence of significant

noise and allows us to disaggregate aggregated model updates that were generated by feder-

ated averaging.

• We leverage gradient disaggregation to significantly improve the quality of traditional in-

ference attacks on model updates. We show that without gradient disaggregation, inference

attacks often fail to recover meaningful information on updates aggregated across tens to

hundreds of users; with gradient disaggregation, we show successful recovery of users’ privi-

leged data from their disaggregated model updates.

6.2 RelatedWork

6.2.1 Secure Aggregation

Secure aggregation is a method based on secure multiparty computation and is a key privacy mea-

sure deployed in federated learning systems. Secure aggregation ensures that the central server sees

only the final aggregate of model updates across users while guaranteeing that no participants’ up-

dates are revealed in the clear200. The secure aggregation protocol enhances privacy by obfuscat-

ing a user’s model update with many other users’ updates, limiting inference attacks such as those

in158,71,245. This obfuscation also ensures that information learned from the aggregated model up-

date may not be attributed to an individual user. Concretely, on the issue of attribution, the secure

aggregation paper states: ”Using a Secure Aggregation protocol to compute these weighted averages

would ensure that the server may learn only that one or more users in this randomly selected subset

wrote a given word, but not which users”200.

Our work on gradient disaggregation undermines the secure aggregation protocol by showing

that, through observing multiple rounds of collected data and leveraging side channel informa-
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tion (specifically, user participation frequency as collected by federated learning systems), individual

updates may be reconstructed from their overall sums. While secure aggregation has been proven

to be cryptographically secure, leaking no information which is not leaked by the aggregated model

update itself200, the key insight of our attack is that participant information (e.g: which rounds each

user participated in) is derivable from the aggregated model updates and reconstructing it allows us

to in turn recover individual model updates.

6.2.2 Analytics in Federated Learning Systems

Infrastructure to support, debug, and manage federated learning systems is critical to their function-

ing.27 outlines the design of Google’s federated learning systems and describes its core components

and protocols. A key aspect of their infrastructure is the collection of device analytics. Notably,27

collect several important device metrics such as how often devices performed training, howmuch

memory devices used during training, etc27. These metrics ensure that users’ devices are not over-

subscribed (draining battery) and may be used to debug device performance issues. Device analytics

play a critical role in maintaining user experience quality: ”Device utility to the user is mission criti-

cal, and degradations are difficult to pinpoint and easy to wrongly diagnose. Using accurate analyt-

ics to prevent federated training from negatively impacting the device’s utility to the user accounts

for a substantial part of our engineering and risk mitigation costs.”27

In our work, we leverage summary information from device analytics – specifically how often a

user performed training – to assist disaggregating gradients, breaking privacy. Note while27 points

out that device analytics contain no personally identifiable information, these reports nevertheless

provide crucial information that links gradient information collected across rounds, facilitating our

attack on disaggregating gradients.
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6.2.3 Product Identification by Solving Linear Inverse Problem

Recently, independent of our work, research has shown that individual item product prices may

be recovered given customer’s transaction history by optimizing a linear inverse problem65. Under

certain conditions (e.g: assuming that in the transaction history each item was purchased by itself

at least once) their approach recovers these item prices with high precision and allows them to re-

veal customers’ spending habits. Specifically, given a corpus of sums of item prices from customers’

transaction histories,65 utilizes a subset sum algorithm to uncover the individual prices of the trans-

action and to identify the products themselves.

Our work on gradient disaggregation and the work in65 solve the same core problem: uncovering

individual values given observations of their sums. While their work recovers prices of items, our

work analogically reconstructs participants’ model gradients. However, a key distinction in65 is the

assumption that each itemmust be purchased individually at least once. This makes their approach

unsuitable for disaggregating aggregated model updates as, under the secure aggregation protocol,

each aggregated update is composed of more than one participant’s model updates.

6.2.4 Data Leakage fromModel Updates

Recent research has shown that model updates and gradients leak significant amounts of infor-

mation. Information leaked by model updates ranges from specific properties to entire data sam-

ples158,245,71,206,186,230,152,16,159,104. Methods to recover this information from gradients are broadly

categorized as inference attacks, and prior works have demonstrated the effectiveness of inference at-

tacks on small batches of gradients, across various modalities ranging from image to text206, on both

shallow and deep networks71.

In the context of federated learning, these methods suffer decreased efficacy with larger aggregates

(> 100)158,245,71. Our work on gradient disaggregation facilitates these attacks by de-obfuscating
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these updates and by enabling attribution of learned properties to specific users.

6.2.5 Privacy Attacks in Federated Learning

Recent works have introduced various privacy attacks on federated learning. Broadly, these attacks

are performed by a malicious central server or by participants with influence over model training152.

Threats from an adversarial central server typically involve extracting private information via infer-

ence attacks as described in the previous section. Attacks by adversarial participants, on the other

hand, involve influencing the model training process to alter the behavior of the trained model (e.g:

model poisoning, backdoors)225,17,69,25.

Our work on gradient disaggregation falls under the category of an attack performed by a malicious

central server. Specifically, gradient disaggregation breaks the secure aggregation protocol and en-

ables a central server to perform inference attacks on individual participants’ model updates.

6.3 Gradient Disaggregation

6.3.1 Problem Statement, ThreatModel and Assumptions

Gradient disaggregation involves uncovering individual participants’ model updates given observa-

tions of their sums. Concretely, on round r the central server receives

Gaggregated[r,:] =
∑
s∈Sr

M(s)

where Sr is the selected participants on round r, andM(s) are the model updates. The goal of gradi-

ent disaggregation is, acting as an adversarial central server, to recoverM(s) givenGaggregated (aggre-

gated gradients across n rounds).

Our threat model and assumptions are as follows:
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• The central server is adversarial but is limited in its ability to modify the training protocol.

Specifically, we assume the central server may fix its model across rounds. Such a scenario

is realistic in a case where an attacker has read access to corporation servers (e.g: to collect

round model update data) and limited influence over when the global model is updated

(e.g: to fix the model across rounds). An adversarial central server is a major threat model

in federated learning152,145,126

• Client selection / device participation (Sr) is somewhat random and is a subset of the total

number of users. This matches the federated learning protocol which selects a random frac-

tion of devices to participate in each round of training27,155,145.

• The central server has access to side channel information in the form of summary analytics

(specifically, how often users participated across certain federated learning rounds). Device

and summary analytics are a core part of federated learning systems and infrastructure27.

6.3.2 Gradient Disaggregation by Reconstructing the User ParticipantMa-

trix

A central server that observes aggregates of users’ updates that are constant across rounds obtains

Gaggregated = PGindividual (6.1)

whereGaggregated ∈ Rn×d are the final aggregated dimension d gradients the server collected across

n rounds; P ∈ {0, 1}n×u is the user participant matrix across the n rounds with u total participants

specifying which users participated in which rounds; andGindividual ∈ Ru×d contains per user

individual gradients. Hence, recoveringGindividual may be viewed as a matrix factorization problem

where the left term is binary.
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To approach this matrix factorization problem, we start with the method introduced in207, which,

to the best of our knowledge, is one of the only works to address matrix factorization where the left

term is binary.207 first reconstructs the binary user participant matrix P, then recoversGindividual by

inverting P fromGaggregated. As observed by207, columns of P lie in the image ofGaggregated. Hence,

withNul(M) as the kernel of a matrix, an approach to solving this factorization problem would be

to recover each column pk of P:

Find pk s.tNul(GT
aggregated)pk = 0

pk ∈ {0, 1}n
(6.2)

In the context of federated learning, this attempts to recover individually for each user which rounds

they participated in. Note that such an optimization procedure can be solved using standard mixed-

integer programming frameworks such as94 and can additionally be parallelized across each user.

However, this approach is not sufficient for gradient disaggregation due to three issues: 1) failure

to distinguish between the numerous binary vectors in the image ofGaggregated, 2) inability to dis-

tinguish between user solutions and 3) computational difficulties due to the exponential nature of

the optimization problem (recovering pk is NP hard and207 reports only being able to solve up to

n = 30 vectors). To address these issues, we incorporate summary analytics to assist factorization.

6.3.3 Leveraging Summary Analytics to Reconstruct P

We leverage summary information from device analytics as collected in27 to assist reconstructing P.

Specifically, summary analytics that are collected periodically by the central server log how often a

specific user participated in training and can be used to narrow down pk by limiting the total num-

ber of participations across certain training rounds (see our RelatedWorks section for details). We

capture partial information on participations across rounds by introducing linear constraints: the
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i’th constraint Ci
k ∈ {0, 1}

n specifies for the k’th participant the training rounds for which total

number of participations cik is known. For example, knowing that a user participated in training 3

times between rounds 1-5 and 2 times between rounds 6-10 yields C1
1 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0],

c11 = 3, C2
1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], c21 = 2.

We therefore add the individual constraints.

Ci
kpk − cik = 0 (6.3)

After collecting all j constraints and counts across all users, we combine them into

Ck =


C1
k

...

Cj
k


, ck =


c1k
...

cjk


(6.4)

Incorporating them into the optimization, we obtain

Find pk s.t. Nul(GT
aggregated)pk = 0

pk ∈ {0, 1}n

Ckpk − ck = 0

(6.5)

We note that it is possible that devices timestamp the exact moment they perform a round of train-

ing; in this case, Pmay be revealed directly through the specificity of the constraints (making the dis-

aggregation problem solvable through a simple linear regression). However, even if devices log only

the total number of times they performed training (with no timestamped data) and send these ana-

lytics back to the server once every few rounds of participation, the central server may piece together

these constraints and incorporate them into the formulation above. In other words, just knowing
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the number of times particular users performed training and collecting this information periodi-

cally (both of which are reasonable based on27), the central server may obtain enough information

to carry out the gradient disaggregation attack. Incorporating summary analytics into the gradient

disaggregation attack is significant as it greatly reduces the problem space, allowing a solution to a

previously intractable problem.

6.3.4 DisaggregatingNoisyModel Updates

Previously, we assumed users submitted the same model update across every round. However, par-

ticipants may perform updates composed of multiple steps (e.g: FedAvg) or their data may change,

leading to differences in the updates they submit across rounds. We treat these differences as a form

of injected noise.

Accounting for noise, our formulation becomes

Gaggregated = PGindividual_avg + noise (6.6)

and our goal is to recover for each user the average model update they submitted across rounds

Gindividual_avg. We introduce two changes to reconstruct P in the presence of noise: 1) we use hard-

threshold SVDwith u singular values to approximate the low rank product PGindividual_avg and 2)

we relax our constraint satisfaction problem to minimize the distance of the user participant column

to the image ofGaggregated:

min ||Nul(GT
aggregated)pk||2

pk ∈ {0, 1}n

Ckpk − ck = 0

(6.7)

These two changes allow reconstructing P even when the updates user submit across rounds are
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noisy.

Note that we may have incomplete information for each user; for example, we may have constraints

for a user over certain rounds but not others if the infrastructure only provides that information

sporadically (or hides it). Additionally, if round participations are inexact (e.g: off by some small

error), we may relax the hard constraint Ckpk− ck = 0 to be a soft constraint: min||Ckpk− ck||2 and

reweight the objective accordingly. Additionally, we can check whether our solution exactly recovers

P by probing the number of optimal solutions returned by the mixed integer programming solver; if

the solver returned only one optimal solution (and proved that it is the only one), then this indicates

that our reconstruction of P is exact. Our full gradient disaggregation attack which works both for

noisy and non-noisy updates is presented in Algorithm 4.

Algorithm 4:Gradient Disaggregation
Input: Aggregated gradientsGaggregated; constraint windows C; constraint sums c,
number of users u
Output: Disaggregated gradientsGindividual_avg

U,Σ,V←− SVD(Gaggregated)
Gdenoised ←− UΣ[0 : u]V
for i = 1 to u do

pi ←− min ||Nul(GT
denoised)pi||2 s.t. pi ∈ {0, 1}n and Cipi − ci = 0

end for

P←− [p1, ..., pu]
return LeastSquares(P,Gaggregated)
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6.4 Results

6.4.1 Capabilities and Limitations of Disaggregation

We experimentally validate the capabilities and limitations of our gradient disaggregation procedure

across various parameter settings. Note that unlike prior works performing server side attacks on

privacy in federated learning, our method leverages participant information and rounds of aggre-

gated gradients. Hence in our experiments we generate this information (across various settings) to

understand how our attack behaves under different conditions. We evaluate the following parame-

ters:

• Number of Rounds: Number of rounds of training n

• Number of Users: Number of users in system u.

• Participation Rate: Fraction of participants chosen to participate in each round.

• Constraint Granularity: Granularity of windows across rounds with known participation

sums, per user. (E.g: granularity of 10 means we know howmany times each user partici-

pated across every 10 rounds).

• Gradient Noise: Noise of user model updates across rounds.

We run all experiments on a 64-core cpu and use the Gurobi optimizer94.

Number of Users

We validate the maximum number of users and rounds we can disaggregate on synthetically gener-

ated matrices. Gindividual is sampled fromN (0, 1), P is sampled with sparsity = participation rate =

.1, and constraint granularity=10, with no noise between submitted gradients. For users ∈ {16, 32,

64, 128, 256, 512, 1024} we scan over rounds ∈ {16, 32, 64, 128, 256, 512, 1024, 2048} and report

the minimum number of rounds to successfully disaggregate Pwith 100% accuracy over 30 trials.
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Figure 6.2a shows the number of rounds required to exactly recover P across number of users; data

shows that we can disaggregate matrices with thousands of user participants with enough observed

gradients. Additionally, we plot success rate of reconstructing an individual column for users ∈

{256, 512, 1024} which is shown in Figure 6.2b which furthermore reinforces that more rounds of

observed gradients can increase reconstruction success rate. We also evaluate the relation that rounds

vs users has on the runtime of the solver, shown in Figure 6.3, where we measure the runtime to ex-

actly recover columns of P (with a maximum time limit of 180 seconds per column). Results show

that larger P require more time to solve. Additionally fewer rounds leads to slower reconstruction as

there are fewer constraints, while too many rounds leads to slower optimization due to large matrix

sizes. Note we report time per column, as each column is solved in parallel.

(a) Rounds required to reconstruct P with 100% accu‐
racy vs number of users.

(b) Success rate of recovering columns of P versus
rounds.

Figure 6.2: Relationship between rounds vs number of users in gradient disaggregation. We successfully disaggregate
settings with thousands of users with enough observed aggregated updates.

Participation Rate

We evaluate the effect of participation rate – the probability that a user is selected to take part in a

round of training – on gradient disaggregation. We use the same parameter settings as in the previ-

ous section and scan participation rate ∈ {.10, .20, .30, .40, .50} across various numbers of user
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Figure 6.3: Mean, min, and max times to reconstruct columns of P vs rounds. More users require more time to recover
P; too few rounds slows optimization due to lack of constraints; too many rounds slows optimization due to large vector
sizes. We disaggregate thousands of users’ gradients in minutes on a 64‐core cpu.

participants, measuring number of rounds of observed aggregated gradients required to successfully

reconstruct Pwith 100% accuracy across 30 trials. As shown in Figure 6.4a, higher participation rate

requires more rounds to reconstruct P. Intuitively, more participants per round leads to higher ob-

fuscation of user updates, requiring more rounds to decode. However, as indicated, by observing

more rounds of collected gradients, P is eventually reconstructed exactly. We additionally evaluate

participation rate’s effect on runtime which is shown in 6.4b. Higher participation rate makes the

reconstruction problemmore difficult and hence requires longer to solve. Note that federated learn-

ing settings have between tens to hundreds of round participants145,27 and we have chosen these

points to reflect this as accurately as possible.

Constraint Granularity

We evaluate the effect of constraint granularity on gradient disaggregation. We consider granular-

ities ∈ {10, 20, 30, 40, 50}. Figure 6.5a shows that coarser constraints make reconstruction more

difficult, requiring more rounds of observed aggregated gradients. Additionally, for reference Figure

6.5b shows the histogram of the number of times a user participates within a granularity window at

different constraint granularities. Eventually, with enough observed rounds of aggregated gradients,

the participant matrix P is exactly recoverable. Our results indicate that less detailed analytics may be
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(a) Rounds required to reconstruct P with 100% accu‐
racy vs participation rate.

(b)Mean, min, and max runtime to reconstruct columns
of P vs participation rate.

Figure 6.4: Effect of participation rate in gradient disaggregation. Higher participation rate can be compensated for by
observing more rounds of aggregated gradients. We recover P even in the presence of many round participants.

compensated for by observing more rounds of aggregated model updates.

Noisy Model Updates / FedAvg

We address the scenario where model updates submitted by users are noisy across rounds, which

may be due to the stochasticity of the optimization (e.g: the FedAvg algorithm). Initial experiments

synthetically generate user ground truth gradients and inject noise into them at aggregation time.

We initialize user vectors sampled fromN (0, 1) then inject noise sampled fromN (0, σ) to each

user’s vector at aggregation time, measuring the gradient dimension required to exactly reconstruct

P. We perform the experiment with 100 users, a participation rate of .1 and constraint granularity of

10, with a 600 second time limit on reconstructing each column of P.

Figure 6.6a shows the minimum gradient dimension (d) that is required to exactly reconstruct P

with 100% success rate. Note that unlike prior experiments, increased noise may be compensated

for by incorporating a higher number of the parameters of the model update (rather than observ-

ing more rounds of gradients). As even the smallest neural network models contain thousands or

millions of parameters96,97,107, this indicates that the attack may handle significant levels of noise.
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(a) Rounds required to reconstruct P with 100% accu‐
racy vs constraint granularity.

(b) Histogram of number of user participations across
constraint windows.

Figure 6.5: Effect of constraint granularity in gradient disaggregation. Coarser constraints can be compensated by
observing more rounds of aggregated gradients.

Furthermore, note that the dimension of the model update does not significantly affect solver time

as the nullspace ofGaggregated is computed only once and reused across users.

(a) Number of parameters of the gradient dimension
required to recover P exactly.

(b) Relative noise of FedAvg updates on Cifar10 LeNet;
batch size b, momentumm, dataset fraction f.

Figure 6.6: Effect of noise on gradient disaggregation.

Additionally, we perform experiments on gradient disaggregation using model updates generated

by the FedAvg algorithm156, on Cifar10138 with a LeNet neural network (SGD lr=.01). FedAvg

performs multiple epochs of training over the participant’s dataset before sending the final model
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Dataset SizeD Batch Size b Local Epochs e
1 2 4 8 16 32 64

64
8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

128
8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

64 (momentum=.9)
8 .99 1.0 1.0 1.0 1.0 1.0 1.0
16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

128 (momentum=.9)
8 1.0 1.0 1.0 1.0 1.0 1.0 .96
16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

64 (fraction=.9)
8 .06 .66 .97 .99 .98 .99 .85
16 1.0 1.0 1.0 1.0 1.0 1.0 .99
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

128 (fraction=.9)
8 1.0 1.0 1.0 1.0 1.0 1.0 .90
16 .59 .96 1.0 1.0 1.0 1.0 .99
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 6.1: Fraction of P reconstructed with FedAvg model updates (users=100, rounds=200, Cifar10 LeNet, participant
rate=.1, granularity=10, time limit per column=10 min). We exactly reconstruct P in the majority of FedAvg settings.

difference back to the central server. We evaluate gradient disaggregation on updates generated by

FedAvg over various parameter settings: local batchsize b, epochs e, user dataset sizeD (see156 for

more details on these parameters); additionally, we simulate a shift in data distribution by randomly

sampling a fraction f of participants’ total data set during computation of model updates; finally

we test disaggregation on updates generated with and without SGDmomentumm. Figure 6.6b

shows that relative variance of model updates (D = 128) increases with epochs of training, with

momentum and with a shifting data distribution. However, as Table 6.1 shows we can reconstruct

P exactly in nearly all cases. The failure cases happen at lower (≤ 1) or higher epochs (≥ 64) of train-

ing. At lower epochs, we believe parameters of the update are smaller and less distinguished from

each other, making reconstruction more difficult; at higher epochs, reconstruction is more difficult

as updates are more noisy. With 2 − 32 epochs, we are generally able to exactly recover P across the
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settings.

6.4.2 Gradient Inversion Attacks with Disaggregation

We evaluate the benefits of gradient disaggregation on two methods to invert images from their gra-

dients. Generally, gradient inversion methods optimize image data x′,y′ to match the target gradient

∇W : arg minx′,y′ ||
∂l(F(x′,W),y′)

∇W − ∇W||2 245. This optimization grows exponentially more diffi-

cult with larger aggregates71,245; we use gradient disaggregation to reduce the aggregate and improve

the quality of the inverted images. To quantitatively measure quality, we use PSNR as in71. In our

results we only show the reconstructed image with the smallest corresponding PSNR to a ground

truth image for space.

We perform the attack in245 on anMLP network on Cifar100 and show the effect of inversion with

and without gradient disaggregation across multiple users with each user having 1 image in their

dataset (submitting full gradients of that image). Figure 6.7 shows the closest reconstructed image

to a user’s data example and Table 6.2 shows the corresponding PSNR achieved. With gradient

disaggregation, we recover the target user’s exact gradient and hence the reconstructed image is high

quality. Without disaggregation, reconstruction quality degrades significantly.

We furthermore perform the attack in71 to invert noisy FedAvg updates. Figure 6.8 and Table 6.3

show the results of inverting fedavg updates with local epochs = 4, batch size = 16, user data set size

= 64, with and without gradient disaggregation (100 users, 2 layer MLP). With gradient disaggre-

gation we achieve similar quality as inverting a single model update, whereas inverting an update

aggregated over multiple users (users=10) significantly degrades reconstruction quality.

141



(a) users=1 (or with
disaggregation)

(b) users=2 (no
disaggregation)

(c) users=4 (no
disaggregation)

(d) users=32 (no
disaggregation)

Figure 6.7: Recovered images from gradients across users (top image is the closest ground truth). Gradient disag‐
gregation recovers individual users’ exact gradients, hence, performing the gradient inversion attack with gradient
disaggregation on multiple users yields the same quality as performing the attack on just one user. Without disaggrega‐
tion, gradient inversion fails on gradients aggregated across more users.

users=1 users=2 users=4 users=32

PSNR 36.5 18.8 13.9 6.1

Table 6.2: Corresponding PSNR scores against ground truth for Figure 6.7

users=1 users=10
users=100

(disaggregated)
PSNR 16.0 13.3 18.6

Table 6.3: Corresponding PSNR scores against ground truth for Figure 6.8.

6.4.3 Property Inference Attacks with Disaggregation

We demonstrate gradient disaggregation on property inference attacks as in158. We train a gender

model on the LFW dataset110 and a model to predict whether participants’ FedAvg updates (local

epochs=4, batchsize=8, data size per user=32) on the gender model contain people of a specific race

(hence the attacker’s goal may be to learn a participants’ images’ race from the application). As in158
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(a) users=1 (no disaggregation) (b) users=10 (no disaggrega‐
tion)

(c) users=100 (disaggregated)

Figure 6.8: Recovered images from FedAvg updates across users (top image is closest ground truth). Gradient disaggre‐
gation enables high quality inversion on noisy FedAvg updates aggregated across many users; unlike disaggregation on
exact gradients, disaggregation on noisy updates recovers the average update submitted across rounds, and we are able
to reconstruct high quality images on noisy updates aggregated across many users. Without disaggregation, inversion on
updates aggregated over multiple users (users=10) significantly degrades quality.

only the target’s dataset contains a significant proportion (p=.5) of images with the specific race and

the goal is to determine whether the target’s update is present in the aggregated updates over various

numbers of users.

Figure 6.9 shows the AUC score of the attack across various numbers of users with and without

gradient disaggregation. AUC score quickly degrades with more users; however, with gradient dis-

aggregation high AUC score is maintained across increased numbers of participants as each user’s

model update is disaggregated exactly, allowing the property inference attack to be performed on

each user separately. We note that the requirement in158 that only the target has the particular data

distribution is a limiting assumption, as many participants’ data may exhibit the property of interest.

With gradient disaggregation, learned properties are attributed to individual participants, enabling
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the central server to build profiles of users, violating anonymity.

Figure 6.9: Property inference with and without gradient disaggregation (main task: gender classification, auxiliary task:
identifying images of specific race) on FedAvg updates. Gradient disaggregation enables property inference on individual
model updates and maintains high AUC score across increased number of users.

6.5 Discussion

We introduce gradient disaggregation, a method to disaggregate model updates from sums of model

updates given repeated observations and access to summary information from device analytics. Our

attack is capable of disaggregating model updates over thousands of users and we apply it to aug-

ment existing attacks such as gradient inversion and property inference. Our attack undermines the

secure aggregation protocol.

Our findings show that summary metrics such as participation frequency may, when combined

with gradient information, be used as an attack vector to undermine individual users’ data privacy

in federated learning systems. Ways to mitigate this attack include: injecting noise into model up-

dates to reduce efficacy of disaggregation, using differential privacy on the collected device metrics

to make reconstruction more difficult, and reducing or eliminating the collection of device ana-

lytics. These mitigation strategies may hinder the management of federated learning systems, and

employing these techniques to increase privacy must be balanced with the costs to utility. We hope
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that bringing awareness to the privacy risks of side channel information in federated learning infras-

tructure will assist in designing secure federated learning systems.
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7
Conclusion

In this dissertation I have asserted that data privacy will be essential in the future of machine learn-

ing systems as machine learning and AI become ubiquitous. I have furthermore established that

the key challenges to private machine learning systems of the future are primarily computational

and have identified three key requirements for these next generation systems: efficiency, privacy

and security. Finally, I have presented the major works of my PhD that have pushed this frontier

to achieve more deploy-able private machine learning systems: these works accelerate privacy pre-
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serving machine learning applications like on-device inference and secure neural network inference

by leveraging techniques specific to neural networks, like quantization, combining them with hard-

ware acceleration, like GPU acceleration, and tailoring them toward the specific machine learning

privacy technique to achieve maximal efficiency, all while remaining aware of and defending against

potential threat vectors like data leakage (i.e: privacy leakage from gradients).

In Chapter 3 we develop PrecisionBatching, which utilizes two key aspects of neural net-

works and machine learning systems to achieve more efficient non-private machine learning infer-

ence: neural network quantization and GPU acceleration. This work presents two key insights that

are critical for the rest of the works, namely the importance of neural network specific optimizations

like quantization, and the power of hardware acceleration through GPU computation.

In Chapter 4 we develop Tabula which accelerates private neural network inference by using

quantization to enable fast table-lookup based secure nonlinear activation function computation,

achieving over 10× reduction in communication and runtime while maintaining neural network

accuracy.

In Chapter 5 we present GPU-DPF which enables on-device private machine learning infer-

ence systems that require access to embedding tables too large to store on-device, by accelerating

the cryptographically heavy distributed-point-function operation by over 30× over a CPU, for the

purpose of enabling private information retrieval for on-device private machine learning inference

systems.

In Chapter 6 we construct GradientDisaggregation, an attack that breaks privacy in

federated learning by inverting individual gradient updates from sums of updates given device an-

alytics (i.e: participation counts), showing that federated learning over thousands of users may be

insecure, motivating new techniques for ensuring privacy in federated learning.
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7.1 Future ResearchDirections

Machine learning systems of the future will need to be efficient, private, and secure, and consider-

able amounts of work are still needed to reach this target.

In terms of efficiency, private neural network inference still faces high computation, commu-

nication and storage costs imposed by the linear and nonlinear layers of the network, particularly

preprocessing costs; additionally, the issue of latencymay be an issue in applications where re-

sponse time is important. Finally, scaling these private neural network inference frameworks to large

neural networks or state-of-the-art LLMs may pose considerable differences due to the differences in

instruction mix of these larger architectures.

Privacywise, this thesis has focused primarily on ensuring that the computation private, but

did not focus on ensuring that the model outputs were private. Ensuring that the model outputs

are private requires differential privacywhich imposes considerable constraints and tradeoffs on

the accuracy of the model by requiring the addition of oftentimes considerable amounts of added

noise at training time. Achieving satisfactory tradeoffs between model privacy and model accuracy is

a tremendous undertaking that remains to be properly understood and addressed.

Finally, in terms of security, security analyses on existing machine learning system infrastruc-

ture is largely absent due to the opaque nature of what machine learning system infrastructure looks

like in real settings. Clarity and insight into howmachine learning infrastructure works in real set-

tings will make a more complete privacy/security analysis more achievable and spur more research

into security analyses into machine learning systems that are deployed in the real world.
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